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Authors’ Abstract

Traditional methods for specifying and reasoning about concurrent systems work
for real-time systems. Using TLA (the temporal logic of actions), we illustrate
how they work with the examples of a queue and of a mutual-exclusion protocol.
In general, two problems must be addressed: avoiding the real-time programming
version of Zeno’s paradox, and coping with circularities when composing real-time
assumption/guarantee specifications. Their solutions rest on properties of machine
closure and realizability.
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1 Introduction

A new class of systems is often viewed as an opportunity to invent a new semantics.
A number of years ago, the new class was distributed systems. More recently,
it has been real-time systems. The proliferation of new semantics may be fun
for semanticists, but developing a practical method for reasoning formally about
systems is a lot of work. It would be unfortunate if every new class of systems
required inventing new semantics, along with proof rules, languages, and tools.

Fortunately, no fundamental change to the old methods for specifying and reasoning
about systems is needed for these new classes. It has long been known that the
methods originally developed for shared-memory multiprocessing apply equally
well to distributed systems [7, 11]. The first application we have seen of a clearly
“off-the-shelf” method to a real-time algorithm was in 1983 [16], but there were
probably earlier ones. Indeed, the “extension” of an existing temporal logic to real-
time programs by Bernstein and Harter in 1981 [6] can be viewed as an application
of that logic.

The old-fashioned methods handle real time by introducing a variable, which we
call now, to represent time. This idea is so simple and obvious that it seems hardly
worth writing about, except that few people appear to be aware that it works in
practice. We therefore describe how to apply a conventional method to real-time
systems.

Any formalism for reasoning about concurrent programs can be used to prove
properties of real-time systems. However, in a conventional formalism based on
a programming language, real-time assumptions are expressed by adding program
operations that read and modify the variable now. The result can be a complicated
program that is hard to understand and easy to get wrong. We take as our formalism
TLA, the temporal logic of actions [13]. In TLA, programs and properties are rep-
resented as logical formulas. A real-time program can be written as the conjunction
of its untimed version, expressed in a standard way as a TLA formula, and its timing
assumptions, expressed in terms of a few standard parameterized formulas. This
separate specification of timing properties makes real-time specifications easier to
write and understand.

The method is illustrated with two examples. The first is a queue in which the
sender and receiver synchronize by the use of timing assumptions instead of ac-
knowledgements. We indicate how safety and liveness properties of the queue
can be proved. The second example is an n-process mutual exclusion protocol, in
which mutual exclusion depends on assumptions about the length of time taken by

1



the operations. Its correctness is proved by a conventional invariance argument.

We also discuss two problems that arise when time is represented as a program
variable—problems that seem to have received little attention—and present new
solutions. The solutions are expressed in terms of TLA, but they can be applied to
any formalism whose semantics is based on sequences of states or actions.

The first problem is how to avoid the real-time programming version of Zeno’s
paradox. If time becomes an ordinary program variable, then one can inadvertently
write programs in which time behaves improperly. An obvious danger is deadlock,
where time stops. A more insidious possibility is that time keeps advancing but
is bounded, approaching closer and closer to some limit. One way to avoid such
“Zeno” behaviors is to place an a priori lower bound on the duration of any action,
but this can complicate the representation of some systems. We provide a more
general and, we feel, a more natural solution.

The second problem is coping with the circularity that arises in open system spec-
ifications. The specification of an open system asserts that it operates correctly
under some assumptions on the system’s environment. A modular specification
method requires a rule asserting that, if each component satisfies its specification,
then it behaves correctly in concert with other components. This rule is circu-
lar, because a component’s specification requires only that it behave correctly if
its environment does, and its environment consists of all the other components.
Despite its circularity, the rule is sound for specifications written in a particular
style [1, 15, 17]. By examining an apparently paradoxical example, we discover
how real-time specifications of open systems can be written in this style.

2 Closed Systems

We briefly review how to represent closed systems in TLA. A closed system is
one that is self-contained and does not communicate with an environment. No
one intentionally designs autistic systems; in a closed system, the environment is
represented as part of the system. Open systems, in which the environment and
system are separated, are discussed in Section 4.

We begin our review of TLA with an example. Section 2.2 summarizes the formal
definitions. A more leisurely exposition appears in [13], and most definitions in
the current paper are repeated in a list in the appendix. Section 2.3 reviews the
concepts of safety [4] and machine closure [2] (also known as feasibility [5]) and
relates them to TLA, and Section 2.4 defines a useful class of history variables [2].
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Figure 1: A simple queue.

Propositions and theorems are proved in the appendix.

2.1 The Lossy-Queue Example

We introduce TLA with the example of the lossy queue shown in Figure 1. The
interface consists of two pairs of “wires”, each pair consisting of a val wire that
holds a message and a boolean-valued bit wire. A message m is sent over a pair
of wires by setting the val wire to m and complementing the bit wire. Input to
the queue arrives on the wire pair .ival; ibit/, and output is sent on the wire pair
.oval; obit/. There is no acknowledgment protocol, so inputs are lost if they arrive
faster than the queue processes them. The property guaranteed by this lossy queue
is that the sequence of output messages is a subsequence of the sequence of input
messages. In Section 3.1, we add timing constraints to rule out the possibility of
lost messages.

A specification is a TLA formula 5 describing a set of allowed behaviors. A
property P is also a TLA formula. The specification 5 satisfies property P iff
(if and only if) every behavior allowed by 5 is also allowed by P—that is, if 5
implies P. Similarly, a specification 9 implements 5 iff every behavior allowed
by 9 is also allowed by 5, so implementation means implication.

The specification of the lossy queue is a TLA formula that mentions the four
variables ibit, obit, ival, and oval, as well as two internal variables: q, which
equals the sequence of messages received but not yet output; and last, which
equals the value of ibit for the last received message. (The variable last is used
to prevent the same message from being received twice.) These six variables are
flexible variables; their values can change during a behavior. We also introduce
a rigid variable Msg denoting the set of possible messages; it has the same value
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InitQ
1D ^ ibit; obit 2 ftrue; falseg
^ ival; oval 2 Msg
^ last D ibit
^ q D hhii

Inp
1D ^ ibit0 D :ibit
^ ival0 2 Msg
^ .obit; oval; q; last/0 D .obit; oval; q; last/

EnQ
1D ^ last 6D ibit
^ q 0 D q Ž hhivalii
^ last0 D ibit
^ .ibit; obit; ival; oval/0 D .ibit; obit; ival; oval/

DeQ
1D ^ q 6D hhii
^ oval0 D Head.q/
^ q 0 D Tail.q/
^ obit0 D :obit
^ .ibit; ival; last/0 D .ibit; ival; last/

NQ
1D Inp _ EnQ _ DeQ

v
1D .ibit; obit; ival; oval; q; last/

5Q
1D InitQ ^ 2[NQ]v

8Q
1D 9q; last : 5Q

Figure 2: The TLA specification of a lossy queue.

throughout a behavior. We usually refer to flexible variables simply as variables,
and to rigid variables as constants.

The TLA specification is shown in Figure 2, using the following notation. A
list of formulas, each prefaced by ^, denotes the conjunction of the formulas,
and indentation is used to eliminate parentheses. The expression hh ii denotes the
empty sequence, hhmii denotes the singletonsequence having m as its one element, Ž
denotes concatenation, Head.¦/ denotes the first element of ¦ , and Tail.¦/ denotes
the sequence obtained by removing the first element of ¦ . The symbol

1D means is
defined to equal.

The first definition is of the predicate InitQ, which describes the initial state. This
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predicate asserts that the values of variables ibit and obit are arbitrary booleans, the
values of ival and oval are elements of Msg, the values of last and ibit are equal,
and the value of q is the empty sequence.

Next is defined the action Inp, which describes all state changes that represent the
sending of an input message. (Since this is the specification of a closed system, it
includes the environment’s Inp action.) The first conjunct, ibit0 D :ibit, asserts that
the new value of ibit equals the complement of its old value. The second conjunct
asserts that the new value of ival is an element of Msg. The third conjunct asserts
that the value of the four-tuple .obit; oval; q; last/ is unchanged; it is equivalent to
the assertion that the value of each of the four variables obit, oval, q, and last is
unchanged. The action Inp is always enabled, meaning that, in any state, a new
input message can be sent.

Action EnQ represents the receipt of a message by the system. The first conjunct
asserts that last is not equal to ibit, so the message on the input wire has not yet been
received. The second conjunct asserts that the new value of q equals the sequence
obtained by concatenating the old value of ival to the end of q’s old value. The third
conjunct asserts that the new value of last equals the old value of ibit. The final
conjunct asserts that the values of ibit, obit, ival, and oval are unchanged. Action
EnQ is enabled in a state iff the values of last and ibit in that state are unequal.

The action DeQ represents the operation of removing a message from the head of
q and sending it on the output wire. It is enabled iff the value of q is not the empty
sequence.

The action NQ is the specification’s next-state relation. It describes all allowed
changes to the queue system’s variables. Since the only allowed changes are the
ones described by the actions Inp, EnQ, and DeQ, action NQ is the disjunction of
those three actions.

In TLA specifications, it is convenient to give a name to the tuple of all relevant
variables. Here, we call it v.

Formula5Q is the internal specification of the lossy queue—the formula specifying
all sequences of values that may be assumed by the queue’s six variables, including
the internal variables q and last. Its first conjunct asserts that InitQ is true in the
initial state. Its second conjunct, 2[NQ]v , asserts that every step is either an NQ

step (a state change allowed by NQ) or else leaves v unchanged, meaning that it
leaves all six variables unchanged.

Formula 8Q is the actual specification, in which the internal variables q and last
have been hidden. A behavior satisfies8Q iff there is some way to assign sequences
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of values to q and last such that 5Q is satisfied. The free variables of 8Q are ibit,
obit, ival, and oval, so 8Q specifies what sequences of values these four variables
can assume. All the preceding definitions just represent one possible way of
structuring the definition of 8Q; there are infinitely many ways to write formulas
that are equivalent to 8Q and are therefore equivalent specifications.

TLA is an untyped logic; a variable may assume any value. Type correctness is
expressed by the formula 2T , where T is the predicate asserting that all relevant
variables have values of the expected “types”. For the internal queue specification,
the type-correctness predicate is

TQ
1D ^ ibit; obit; last 2 ftrue; falseg
^ ival; oval 2 Msg
^ q 2 MsgŁ

(1)

where MsgŁ is the set of finite sequences of messages. Type correctness of 5Q is
asserted by the formula5Q ) 2TQ, which is easily proved [13]. Type correctness
of8Q follows from5Q ) 2TQ by the usual rules for reasoning about quantifiers.

Formulas 5Q and 8Q are safety properties, meaning that they are satisfied by an
infinite behavior iff they are satisfied by every finite initial portion of the behav-
ior. Safety properties allow behaviors in which a system performs properly for a
while and then the values of all variables are frozen, never to change again. In
asynchronous systems, such undesirable behaviors are ruled out by adding fairness
properties. We could strengthen our lossy-queue specification by conjoining the
weak fairness property WFv.DeQ/ and the strong fairness property SFv.EnQ/ to
5Q, obtaining

9 q; last : .InitQ ^ 2[NQ]v ^ WFv.DeQ/ ^ SFv.EnQ// (2)

Property WFv.DeQ/ asserts that if action DeQ is enabled forever, then infinitely
many DeQ steps must occur. This property implies that every message reaching
the queue is eventually output. Property SFv.EnQ/ asserts that if action EnQ is
enabled infinitely often, then infinitely many EnQ steps must occur. It implies that
if infinitely many inputs are sent, then the queue must receive infinitely many of
them. The formula (2) implies the liveness property [4] that an infinite number of
inputs produces an infinite number of outputs. This formula also implies the same
safety properties as 8Q. A formula such as (2), which is the conjunction of an
initial predicate, a term of the form 2[A] f , and a fairness property, is said to be in
canonical form.
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2.2 The Semantics of TLA

We begin with some definitions. We assume a set of constant values, and we let
[[F]] denote the semantic meaning of a formula F.

state A mapping from variables to values. We let s:x denote the value that state s
assigns to variable x .

state function An expression formed from variables, constants, and operators.
The meaning of a state function is a mapping from states to values. For
example, x C 1 is a state function such that [[x C 1]].s/ equals s:x C 1, for
any state s.

predicate A boolean-valued state function, such as x > y C 1.

transition function An expression formed from variables, primed variables, con-
stants, and operators. The meaning of a transition function is a mapping from
pairs of states to values. For example, x C y 0 C 1 is a transition function, and
[[x C y 0 C 1]].s; t/ equals the value s:x C t :y C 1, for any pair of states s; t .

action A boolean-valued transition function, such as x > .y 0 C 1/.

step A pair of states s; t . It is called an A step iff [[A]].s; t/ equals true, for an
actionA. It is called a stuttering step iff s D t .

f 0 The transition function obtained from the state function f by priming all the
free variables of f , so [[ f 0]].s; t/ D [[ f ]].t/ for any states s and t .

[A] f The actionA _ . f 0 D f /, for any action A and state function f .

hAi f The action A ^ . f 0 6D f /, for any actionA and state function f .

Enabled A For any action A, the predicate such that [[Enabled A]].s/ equals
9t : [[A]].s; t/, for any state s.

Informally, we often identify a formula and its meaning. For example we say that
a predicate P is true in state s instead of [[P]].s/ D true.

An RTLA (raw TLA) formula is an expression built from actions, classical operators
(boolean operators and quantification over rigid variables), and the unary temporal
operator 2. The meaning of an RTLA formula is a boolean-valued function on
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behaviors, where a behavior is an infinite sequence of states. The meaning of the
operator 2 is defined by

[[2F]].s1; s2; s3; : : :/
1D 8n > 0 : [[F]].sn; snC1; snC2; : : :/

Intuitively, 2F asserts that F is “always” true. The meaning of an action as
an RTLA formula is defined in terms of its meaning as an action by letting
[[A]].s1; s2; s3; : : :/ equal [[A]].s1; s2/. A predicate P is an action; P is true for
a behavior iff it is true for the first state of the behavior, and 2P is true iff P is
true in all states. For any action A and state function f , the formula 2[A] f is true
for a behavior iff each step is an A step or else leaves f unchanged. The classical
operators have their usual meanings.

A TLA formula is one that can be constructed from predicates and formulas 2[A] f

using classical operators, 2, and existential quantification over flexible variables.
The semantics of actions, classical operators, and 2 are defined as before. The
approximate meaning of quantification over a flexible variable is that 9x : F is
true for a behavior iff there is some sequence of values that can be assigned to x
that makes F true. The precise definition appears in [13] and is recalled in the
appendix. As usual, we write 9 x1; : : : ; xn : F instead of 9 x1 : : : : ; 9 xn : F.

A property is a set of behaviors that is invariant under stuttering, meaning that
it contains a behavior ¦ iff it contains every behavior obtained from ¦ by adding
and/or removing stuttering steps. The set of all behaviors satisfying a TLA formula
is a property, which we often identify with the formula.

For any TLA formula F, actionA, and state function f :

3F
1D :2:F

WF f .A/
1D 23:.Enabled hAi f / _ 23hAif

SF f .A/
1D 32:.Enabled hAi f / _ 23hAif

These are TLA formulas, since3hAif equals :2[:A] f .

2.3 Safety and Fairness

A finite behavior is a finite sequence of states. We say that a finite behavior satisfies
a property F iff it can be continued to an infinite behavior in F. A property F is
a safety property [4] iff the following condition holds: F contains a behavior iff
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it is satisfied by every finite prefix of the behavior.1 Intuitively, a safety property
asserts that something “bad” does not happen. Predicates and formulas of the form
2[A] f are safety properties.

Safety properties form the closed sets for a topology on the set of all behaviors.
Hence, if two TLA formulas F and G are safety properties, then F ^ G is also a
safety property. The closure C.F/ of a property F is the smallest safety property
containing F. It can be shown that C.F/ is expressible in TLA, for any TLA
formula F.

If5 is a safety property and L an arbitrary property, then the pair .5; L/ is machine
closed iff every finite behavior satisfying5 can be extended to an infinite behavior
in5^ L. Proposition 1 below shows that machine closure generalizes the concept
of fairness. The canonical form for a TLA formula is

9 x : .Init ^ 2[N ]v ^ L/ (3)

where .Init ^ 2[N ]v; L/ is machine closed and x is a tuple of variables called the
internal variables of the formula. The state function v will usually be the tuple
of all variables appearing free in Init, N , and L (including the variables of x ).
A behavior satisfies (3) iff there is some way of choosing values for x such that
(a) Init is true in the initial state, (b) every step is either an N step or leaves all the
variables in v unchanged, and (c) the entire behavior satisfies L.

An action A is said to be a subaction of a safety property 5 iff for every finite
behavior s1; : : : ; sn satisfying5with Enabled A true in state sn, there exists a state
snC1 such that .sn; snC1/ is anA step and s1; : : : ; snC1 satisfies5. By this definition,
A is a subaction of Init ^2[N ]v iff2

Init ^2[N ]v ) 2..Enabled A/) Enabled .A ^ [N ]v//

Two actionsA and B are disjoint for a safety property5 iff no behavior satisfying
5 contains anA^B step. By this definition,A and B are disjoint for Init^2[N ]v
iff

Init ^2[N ]v ) 2:Enabled .A ^ B ^ [N ]v/

The following result shows that the conjunction of WF and SF formulas is a fairness
property. It is a special case of Proposition 4 of Section 4.

1One sometimes defines s1; : : : ; sn to satisfy F iff the behavior s1; : : : ; sn; sn; sn; : : : is in F.
Since properties are invariant under stuttering, this alternative definition leads to the same definition
of a safety property.

2We let) have lower precedence than the other boolean operators.
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Proposition 1 If 5 is a safety property and L is the conjunction of a finite or
countably infinite number of formulas of the form WFw.A/ and/or SFw.A/ such
that each hAiw is a subaction of 5, then .5; L/ is machine closed.

In practice, eachwwill usually be a tuple of variables changed by the corresponding
action A, so hAiw will equal A.3 In the informal exposition, we often omit the
subscript and talk about A when we really mean hAiw.

Machine closure for more general classes of properties can be proved with the
following two propositions, which are proved in the appendix. To apply the first,
one must prove that 9x : 5 is a safety property. By Proposition 2 of [2, page 265],
it suffices to prove that 5 has finite internal nondeterminism (fin), with x as its
internal state component. Here, fin means roughly that there are only a finite
number of sequences of values for x that can make a finite behavior satisfy5.

Proposition 2 If .5; L/ is machine closed, x is a tuple of variables that do not
occur free in L, and 9x : 5 is a safety property, then ..9x : 5/; L/ is machine
closed.

Proposition 3 If .5; L1/ is machine closed and 5^ L1 implies L2, then .5; L2/

is machine closed.

2.4 History-Determined Variables

A history-determined variable is one whose current value can be inferred from the
current and past values of other variables. For the precise definition, let

Hist.h; f; g; v/
1D .h D f / ^ 2[.h0 D g/ ^ .v0 6D v/].h;v/ (4)

where f and v are state functions and g is a transition function. A variable h is
a history-determined variable for a formula 5 iff 5 implies Hist.h; f; g; v/, for
some f , g, and v such that h occurs free in neither f nor v, and h0 does not occur
free in g.

If f and v do not depend on h, and g does not depend on h0, then 9h : Hist.h; f; g; v/
is identically true. Therefore, if h does not occur free in formula 8, then 9h :
.8^Hist.h; f; g; v// is equivalent to8. In other words, conjoiningHist.h; f; g; v/
to8 does not change the behavior of its variables, so it makes h a “dummy variable”
for 8—in fact, it is a special kind of history variable [2, page 270].

3More precisely, T ^A will imply w0 6D w, where T is the type-correctness invariant.
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As an example, we add to the lossy queue’s specification8Q a history variable hin
that records the sequence of values transmitted on the input wire. Let

Hin
1D ^ hin D hh ii
^ 2[ ^ hin0 D hin Ž hhival0ii

^ .ival; ibit/0 6D .ival; ibit/ ].hin;ival;ibit/

(5)

Then Hin equals Hist.hin; hh ii; hinŽhhival0ii; .ival; ibit//, so hin is a history-determined
variable for8Q ^ Hin, and 9 hin : .8Q ^ Hin/ equals 8Q.

If h is a history-determined variable for a property 5, then 5 is fin, with h as its
internal state component. Hence, if 5 is a safety property, then 9h : 5 is also a
safety property.

3 Real-Time Closed Systems

We now use TLA to specify and reason about timing properties of closed systems.
Section 3.1 explains how time and timing properties can be represented with TLA
formulas, and Section 3.2 describes how to reason about these formulas. The prob-
lem of Zeno specifications is addressed in Section 3.3. Our method of specifying
and reasoning about timing properties is illustrated in Section 3.4 with the example
of a real-time mutual exclusion protocol.

3.1 Time and Timers

In real-time TLA specifications, real time is represented by the variable now.
Although it has a special interpretation, now is just an ordinary variable of the
logic. The value of now is always a real number, and it never decreases—conditions
expressed by the TLA formula

RT
1D .now 2 R/ ^ 2[now0 2 .now;1/]now

where R is the set of real numbers and .r;1/ is ft 2 R : t > rg.
It is convenient to make time-advancing steps distinct from ordinary program steps.
This is done by strengthening the formula RT to

RTv
1D .now 2 R/ ^ 2[.now0 2 .now;1// ^ .v0 D v/]now

11



This property differs from RT only in asserting that v does not change when now
advances. Simple logical manipulation shows that RTv is equivalent to RT ^
2[now0 D now]v , and

Init ^ 2[N ]v ^ RTv D Init ^2[N ^ .now0 D now/]v ^ RT

Real-time constraints are imposed by using timers to restrict the increase of now.
A timer for5 is a state function t such that5 implies 2.t 2 R [ fš1g/. Timer t
is used as an upper-bound timer by conjoining the formula

MaxTime(t)
1D .now � t/ ^ 2[now0 � t 0]now

to a specification. This formula asserts that now is never advanced past t . Timer t
is used as a lower-bound timer for an actionA by conjoining the formula

MinTime(t,A,v)
1D 2[A) .t � now/]v

to a specification. This formula asserts that an hAiv step cannot occur when now is
less than t .4

A common type of timing constraint asserts that an A step must occur within Ž
seconds of when the action A becomes enabled, for some constant Ž. After an A
step, the next A step must occur within Ž seconds of when action A is re-enabled.
There are at least two reasonable interpretations of this requirement.

The first interpretation is that the A step must occur if A has been continuously
enabled for Ž seconds. This is expressed by MaxTime.t/ when t is a state function
satisfying

VTimer.t; A; Ž; v/
1D ^ t D if Enabled hAiv then nowC Ž

else 1
^ 2[^ t 0 D if .Enabled hAiv/0

then if hAiv _ :Enabled hAiv
then nowC Ž
else t

else 1
^ v0 6D v ].t;v/

4Unlike the usual timers in computer systems that represent an increment of time, our timers
represent an absolute time. To allow the type of strict time bound that would be expressed by
replacing � with < in the definition of MaxTime or MinTime, we could introduce, as additional
possible values for timers, the set of all “infinitesimally shifted” real numbers r�, where t � r� iff
t < r , for any reals t and r .
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Such a t is called a volatile Ž-timer.

Another interpretation of the timing requirement is that an A step must occur if
A has been enabled for a total of Ž seconds, though not necessarily continuously
enabled. This is expressed by MaxTime.t/ when t satisfies

PTimer.t; A; Ž; v/
1D ^ t D nowC Ž
^ 2[^ t 0 D if Enabled hAiv

then if hAiv then nowC Ž
else t

else t C .now0 � now/
^ .v; now/0 6D .v; now/ ].t;v;now/

Such a t is called a persistent Ž-timer. We can use Ž-timers as lower-bound timers
as well as upper-bound timers.

Observe that VTimer.t;A; Ž; v/ has the form Hist.t; f; g; v/ and that PTimer.t;A; Ž; v/
has the form Hist.t; f; g; .v; now//, where Hist is defined by (4). Thus, if formula
5 implies that a variable t satisfies either of these formulas, then t is a history-
determined variable for5.

As an example of the use of timers, we make the lossy queue of Section 2.1 nonlossy
by adding the following timing constraints.

ž Values must be put on a wire at most once every Žsnd seconds. There are
two conditions—one on the input wire and one on the output wire. They are
expressed by using Žsnd-timers tInp and tDeQ, for the actions Inp and DeQ, as
lower-bound timers.

ž A value must be added to the queue at most1rcv seconds after it appears on
the input wire. This is expressed by using a1rcv-timer TEnQ, for the enqueue
action, as an upper-bound timer.

ž A value must be sent on the output wire within 1snd seconds of when it
reaches the head of the queue. This is expressed by using a1snd-timer TDeQ,
for the dequeue action, as an upper-bound timer.

The timed queue will be nonlossy if 1rcv < Žsnd. In this case, we expect the Inp,
EnQ, and DeQ actions to remain enabled until they are “executed”, so it doesn’t
matter whether we use volatile or persistent timers. We use volatile timers because
they are a little easier to reason about.

13



The timed version 5t
Q of the queue’s internal specification 5Q is obtained by

conjoining the timing constraints to5Q:

5t
Q

1D ^ 5Q ^ RTv
^ VTimer.tInp; Inp; Žsnd; v/ ^ MinTime.tInp; Inp; v/
^ VTimer.tDeQ;DeQ; Žsnd; v/ ^ MinTime.tDeQ;DeQ; v/
^ VTimer.TEnQ;EnQ; 1rcv; v/ ^ MaxTime.TEnQ/

^ VTimer.TDeQ;DeQ; 1snd; v/ ^ MaxTime.TDeQ/

(6)

The external specification 8t
Q of the timed queue is obtained by existentially

quantifying first the timers and then the variables q and last.

Formula5t
Q of (6) is not in the canonical form for a TLA formula. A straightforward

calculation, using the type-correctness invariant (1) and the equivalence of .2F/^
.2G/ and 2.F ^ G/, converts the expression (6) for 5t

Q to the canonical form
given in Figure 3.5 Observe how each subaction A of the original formula has a
corresponding timed version At . Action At is obtained by conjoining A with the
appropriate relations between the old and new values of the timers. If A has a
lower-bound timer, thenAt also has a conjunct asserting that it is not enabled when
now is less than this timer. (The lower-bound timer tInp for Inp does not affect the
enabling of other subactions because Inp is disjoint from all other subactions; a
similar remark applies to the lower-bound timer tDeQ.) There is also a new action,
QTick, that advances now.

Formula 5t
Q is the TLA specification of a program that satisfies each maximum-

delay constraint by preventing now from advancing before the constraint has been
satisfied. Thus, the program “implements” timing constraints by stopping time, an
apparent absurdity. However, the absurdity results from thinking of a TLA formula,
or the abstract program that it represents, as a prescription of how something is
accomplished. A TLA formula is really a description of what is supposed to happen.
Formula 5t

Q says only that an action occurs before now reaches a certain value. It
is just our familiarity with ordinary programs that makes us jump to the conclusion
that now is being changed by the system.

3.2 Reasoning About Time

Formula5t
Q is a safety property; it is satisfied by a behavior in which no variables

change values. In particular, it allows behaviors in which time stops. We can rule

5Further simplification of this formula is possible, but it requires an invariant. In particular, the
fourth conjunct of DeQt can be replaced by T 0EnQ D TEnQ .
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Initt
Q

1D ^ InitQ

^ now 2 R
^ tInp D nowC Žsnd

^ tDeQ D TEnQ D TDeQ D 1
Inpt 1D ^ Inp

^ tInp � now
^ t 0Inp D now0 C Žsnd

^ T 0EnQ D if last0 6D ibit0 then now0 C1rcv else1
^ .tDeQ; TDeQ/

0 D if q D hh ii then .1;1/ else .tDeQ; TDeQ/

^ now0 D now

En Qt 1D ^ En Q
^ T 0EnQ D1
^ .tDeQ; TDeQ/

0 D if q D hh ii then .nowC Žsnd; nowC1snd/

else .tDeQ; TDeQ/

^ .tInp; now/0 D .tInp; now/

DeQt 1D ^ DeQ
^ tDeQ � now
^ .tDeQ; TDeQ/

0 D if q 0 D hh ii then .1;1/
else .nowC Žsnd; nowC1snd/

^ T 0EnQ D if last0 D ibit0 then1 else TEnQ

^ .tInp; now/0 D .tInp; now/

QTick
1D ^ now0 2 .now;min.TDeQ; TEnQ/]
^ .v; tInp; tDeQ; TDeQ; TEnQ/

0 D .v; tInp; tDeQ; TDeQ; TEnQ/

vt
1D .v; now; tInp; tDeQ; TDeQ; TEnQ/

5t
Q

1D ^ Initt
Q

^ 2[Inpt _ En Qt _ DeQt _ QTick]vt

Figure 3: The canonical form for 5t
Q, where .r; s] denotes the set of reals u such

that r < u � s.
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out such behaviors by conjoining to 5t
Q the liveness property

NZ
1D 8 t 2 R : 3.now > t/

which asserts that now gets arbitrarily large. However, when reasoning only about
real-time properties, this is not necessary. For example, suppose we want to
show that our timed queue satisfies a real-time property expressed by formula 9 t ,
which is also a safety property. If5t

Q implies9 t , then5t
Q ^NZ implies9 t ^NZ.

Conversely, we don’t expect conjoininga liveness property to add safety properties;
if 5t

Q ^ NZ implies 9 t , then 5t
Q by itself should imply 9 t —a point discussed in

Section 3.3 below. Hence, there is no need to introduce the liveness property NZ.

A safety property we might want to prove for the timed queue is that it does not
lose any inputs. To express this property, let hin be the history variable, determined
by Hin of (5), that records the sequence of input values; and let hout and Hout be
the analogous history variable and property for the outputs. The assertion that the
timed queue loses no inputs is expressed by

5t
Q ^ Hin ^ Hout ) 2.hout ¼ hinp/

where Þ ¼ þ iff Þ is an initial prefix of þ. This is a standard invariance property.
The usual method for proving such properties leads to the following invariant

^ TQ ^ .tInp; now 2 R/ ^ .TEnQ; tDeQ; TDeQ 2 R [ f1g/
^ now � min.TEnQ; TDeQ/

^ .last D ibit/ ) .TEnQ D1/ ^ .hinp D hout Ž q/

^ .last 6D ibit/ ) .TEnQ < tInp/ ^ .hinp D hout Ž q Ž hhivalii/
^ .q D hh ii/ � .TDeQ D1/

and to the necessary assumption1rcv < Žsnd. (Recall that TQ is the type-correctness
predicate (1) for 5Q.)

Property NZ is needed to prove that real-time properties imply liveness properties.
The desired liveness property for the timed queue is that the sequence of input
messages up to any point eventually appears as the sequence of output messages.
It is expressed by

5t
Q ^ NZ ) 8 ¦ : 2..hinp D ¦/) 3.hout D ¦//

This formula is proved by first showing

5t
Q ^ NZ ) WFv.EnQ/ ^WFv.DeQ/ (7)
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and then using a standard liveness argument to prove

5t
Q ^WFv.EnQ/ ^WFv.DeQ/ ) 8 ¦ : 2..hinp D ¦/) 3.hout D ¦//

The proof that 5t
Q ^ NZ implies WFv.EnQ/ is by contradiction. Assume EnQ is

forever enabled but never occurs. An invariance argument then shows that 5t
Q

implies that TEnQ forever equals its current value, preventing now from advancing
past that value; and this contradicts NZ. The proof that5t

Q^NZ implies WFv.DeQ/
is similar.

3.3 The NonZeno Condition

The timed queue specification 5t
Q asserts that a DeQ action must occur between

Žsnd and 1snd seconds of when it becomes enabled. What if 1snd < Žsnd? If an
input occurs, it eventually is put in the queue, enabling DeQ. At that point, the
value of now can never become more than 1snd greater than its current value, so
the program eventually reaches a “time-blocked state”. In a time-blocked state,
only the QTick action can be enabled, and it cannot advance now past some fixed
time. In other words, eventually a state is reached in which every variable other
than now remains the same, and now either remains the same or keeps advancing
closer and closer to some upper bound.

We can attempt to correct such pathological specifications by requiring that now
increase without bound. This is easily done by conjoining the liveness property NZ
to the safety property 5t

Q, but that doesn’t accomplish anything. Since 5t
Q ^ NZ

rules out behaviors in which now is bounded, it allows only behaviors in which
there is no input, if 1snd < Žsnd. Such a specification is no better than the original
specification5t

Q. The fact that the safety property allows the possibilityof reaching
a time-blocked state indicates an error in the specification. One does not add timing
constraints on output actions with the intention of forbidding input.

We call a safety property Zeno if it allows the system to reach a state from which
now must remain bounded. More precisely, a safety property5 is nonZeno iff every
finite behavior satisfying5 can be completed to an infinite behavior satisfying 5
in which now increases without bound. In other words, 5 is nonZeno iff the pair
.5;NZ/ is machine closed.6

Zeno specifications can be a source of incompleteness for proof methods. Only
nonZeno behaviors are physically meaningful, so a real-time system with specifi-

6An arbitrary property 5 is nonZeno iff .C.5/;5 ^ NZ/ is machine closed. We restrict our
attention to real-time constraints for safety specifications.
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cation 5 satisfies a property9 if5 ^ NZ) 9. Most methods for proving safety
properties use only safety properties as hypotheses, so they can prove5^NZ ) 9

for safety properties5 and9 only by proving5) 9. NonZenoness of5means
that5^NZ ) 9 holds iff5) 9 does. However, if5 is Zeno, then5^NZ ) 9

could hold even though 5 ) 9 does not, and these methods will be unable to
prove that the system with specification 5 satisfies 9. NonZenoness is therefore
required for completeness.

The following result can be used to ensure that a real-time specification written in
terms of volatile Ž-timers is nonZeno.

Theorem 1 Let v be the tuple of variables free in Init or N . The property

^ Init ^ 2[N ]v ^ RTv
^ 8i 2 I : VTimer.ti;Ai ; Ži ; v/ ^ MinTime.ti;Ai ; v/

^ 8 j 2 J : VTimer.Tj ;Aj ; 1j ; v/ ^ MaxTime.Tj/

is nonZeno if now does not appear in v, I and J are finite sets, and for all i 2 I
and j 2 J:

1. hAjiv is a subaction of Init ^2[N ]v whose free variables appear in v,

2. hAiiv and hAj iv are disjoint for Init ^2[N ]v if i 6D j ,

3. Ži and1j are positive reals and, if i D j , then Ži � 1j ,

4. the ti and Tj are distinct variables different from now and from the variables
in v.

We can apply the theorem to prove that the specification 5t
Q is nonZeno if Žsnd �

1snd. The hypotheses of the theorem are checked as follows.

1. Actions hDeQiv and hEnQiv implyNQ, so they are subactions of5Q.

2. The conjunction of any two of the actions hInpiv, hDeQiv, and hEnQiv equals
false, so the actions are pairwise disjoint for 5Q.7

3. The hypothesis Žsnd � 1snd is used here.

7Actually, the type-correctness predicate TQ is needed to prove that hInpiv ^ hDeQiv equals
false.
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4. Trivial.

The theorem is valid for persistent as well as volatile timers. Any combination
of VTimer and PTimer formulas may occur, except that a singleAk cannot have a
persistent lower-bound timer tk and a volatile upper-bound timer Tk . All of these
results are corollaries of the following theorem, which in turn is a consequence of
Theorem 4 of Section 4.

Theorem 2 Let

ž 5 be a safety property of the form Init ^2[N ]w,

ž ti and Tj be timers for 5 and let Ak be an action, for all i 2 I , j 2 J, and
k 2 I [ J, where I and J are sets, with J finite,

ž 5t 1D 5 ^ RTv ^
8 i 2 I : MinTime.ti;Ai ; v/ ^ 8 j 2 J : MaxTime.Tj/

If 1. hAiiv and hAj iv are disjoint for 5, for all i 2 I and j 2 J with
i 6D j ,

now

2. (a) does not occur free in v,

(b) .now0 D r/ ^ .v0 D v/ is a subaction of 5, for all r 2 R,

3. for all j 2 J:

(a) hAjiv ^ .now0 D now/ is a subaction of 5.

(b) 5 ) VTimer.Tj ;Aj ; 1j ; v/, or
5 ) PTimer.Tj ;Aj ; 1j ; v/, where 1j 2 .0;1/,

(c) 5t ) 2.Enabled hAjiv D
Enabled .hAj iv ^ .now0 D now///

(d) .v0 D v/ ) .Enabled hAjiv D .Enabled hAj iv/0/
4. 5t ) 2.tk � Tk/, for all k 2 I \ J,

then .5t ;NZ/ is machine closed

Most nonaxiomatic approaches, including both real-time process algebras and more
traditional programming languages with timing constraints, essentially use Ž-timers
for actions. Theorem 2 implies that they automatically yield nonZeno specifica-
tions.
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Theorem 2 can be further generalized in two ways. First, J can be infinite—if5t

implies that only a finite number of actions Aj with j 2 J are enabled before time
r , for any r 2 R. For example, by letting Aj be the action that sends message
number j , we can apply the theorem to a program that sends messages number 1
through n at time n, for every integer n. This program is nonZeno even though
the number of actions per second that it performs is unbounded. Second, we can
extend the theorem to the more general class of timers obtained by letting the 1j

be arbitrary real-valued state functions, rather than just constants—if all the1j are
bounded from below by a positive constant1.

Theorem 2 can be proved using Propositions 1 and 3 and ordinary TLA reasoning.
By these propositions, it suffices to display a formula L that is the conjunction of
fairness conditions on subactions of5t such that5t ^ L implies NZ. A suitable L
is WF.now;v/.C/, where C is an action that either (a) advances now by minj2J 1j if
allowed by the upper-bound timers Tj , or else as far as they do allow, or (b) executes
an hAj iv action for which now D Tj . The proof in the appendix of Theorem 4,
which implies Theorem 2, generalizes this approach.

Theorem 2 does not cover all situations of interest. For example, one can require
of our timed queue that the first value appear on the output line within ž seconds
of when it is placed on the input line. This effectively places an upper bound on
the sum of the times needed for performing the EnQ and DeQ actions; it cannot be
expressed with Ž-timers on individual actions. For these general timing constraints,
nonZenoness must be proved for the individual specification. The proof uses the
method described above for proving Theorem 2: we add to the timed program 5t

a liveness property L that is the conjunction of any fairness properties we like,
including fairness of the action that advances now, and prove that 5t ^ L implies
NZ. NonZenoness then follows from Propositions 1 and 3.

There is another possible approach to proving nonZenoness. One can make granu-
larity assumptions—lower bounds both on the amount by which now is incremented
and on the minimum delay for each action. Under these assumptions, nonZenoness
is equivalent to the absence of deadlock, which can be proved by existing methods.
Granularity assumptions are probably adequate—after all, what harm can come
from pretending that nothing happens in less than 10�100 nanoseconds? However,
they can be unnatural and cumbersome. For example, distributed algorithms often
assume that only message delays are significant, so the time required for local
actions is ignored. The specification of such an algorithm should place no lower
bound on the time required for a local action, but that would violate any granularity
assumptions. We believe that any proof of deadlock freedom based on granularity
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can be translated into a proof of nonZenoness using the method outlined above.

So far, we have been discussing nonZenoness of the internal specification, where
both the timers and the system’s internal variables are visible. Timers are defined
by adding history-determined variables, so existentially quantifying over them
preserves nonZenoness by Proposition 2. We expect most specifications to be fin [2,
page 263], so nonZenoness will also be preserved by existentially quantifying over
the system’s internal variables. This is the case for the timed queue.

3.4 An Example: Fischer’s Protocol

As another example of real-time closed systems, we treat a simplified version of
a real-time mutual exclusion protocol proposed by Fischer [9], [12, page 2]. The
example was suggested by Schneider [18]. The protocol consists of each process
i executing the following code, where angle brackets denote instantaneous atomic
actions:

a: await hx D 0i;
b: hx :D ii;
c: await hx D ii;

cs: critical section

There is a maximum delay1b between the execution of the test in statement a and
the assignment in statement b, and a minimum delay Žc between the assignment in
statement b and the test in statement c. The problem is to prove that, with suitable
conditions on 1b and Žc, this protocol guarantees mutual exclusion (at most one
process can enter its critical section).

As written, Fischer’s protocol permits only one process to enter its critical section
one time. The protocol can be converted to an actual mutual exclusion algorithm.
The correctness proof of the protocol is easily extended to a proof of such an
algorithm.

The TLA specification of the protocol is given in Figure 4. The formula 5F

describing the untimed version is standard TLA. We assume a finite set Proc of
processes. Variable x represents the program variable x , and variable pc represents
the control state. The value of pc will be an array indexed by Proc, where pc[i]
equals one of the strings “a”, “b”, “c”, “cs” when control in process i is at the
corresponding statement. The initial predicate InitF asserts that pc[i] equals “a” for
each process i, so the processes start with control at statement a. No assumption
on the initial value of x is needed to prove mutual exclusion.

Next come the definitions of the three actions corresponding to program statements
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InitF
1D 8 i 2 Proc : pc[i] D “a”

Go.i; u; v/
1D ^ pc[i] D u
^ pc0[i] D v
^ 8 j 2 Proc : . j 6D i/ ) .pc0[ j ] D pc[ j ]/

Ai
1D Go.i; “a”; “b”/ ^ .x D x 0 D 0/

Bi
1D Go.i; “b”; “c”/ ^ .x 0 D i/

Ci
1D Go.i; “c”; “cs”/ ^ .x D x 0 D i/

NF
1D 9 i 2 Proc : .Ai _ Bi _ Ci/

5F
1D InitF ^ 2[NF].x;pc/

5t
F

1D ^ 5F ^ RT.x;pc/

^ 8 i 2 Proc : ^ VTimer.Tb[i]; Bi; 1b; .x ; pc//
^ MaxTime.Tb[i]/

^ 8 i 2 Proc : ^ VTimer.tc[i]; Go.i; “c”; “cs”/; Žc; .x ; pc//
^ MinTime.tc[i]; Ci ; .x ; pc//

8t
F

1D 9 Tb; tc : 5t
F

Figure 4: The TLA specification of Fischer’s real-time mutual exclusion protocol.

a, b, and c. They are defined using the formula Go, where Go.i; u; v/ asserts
that control in process i changes from u to v, while control remains unchanged in
the other processes. ActionAi represents the execution of statement a by process
i; actions Bi and Ci have the analogous interpretation. In this simple protocol, a
process stops when it gets to its critical section, so there are no other actions. The
program’s next-state actionNF is the disjunction of all these actions. Formula5F

asserts that all processes start at statement a, and every step consists of executing
the next statement of some process.

Action Bi is enabled by the execution of actionAi . Therefore, the maximum delay
of 1b between the execution of statements a and b can be expressed by an upper-
bound constraint on a volatile1b-timer for action Bi . The variable Tb is an array
of such timers, where Tb[i] is the timer for action Bi .

The constant Žc is the minimum delay between when control reaches statement c and
when that statement is executed. Therefore, we need an array tc of lower-bound
timers for the actions Ci . The delay is measured from the time control reaches
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statement c, so we want tc[i] to be a Žc-timer on an action that becomes enabled
when process i reaches statement c and is not executed until Ci is. A suitable choice
for this action is Go.i; “c”; “cs”/.

Adding these timers and timing constraints to the untimed formula 5F yields
formula 5t

F of Figure 4, the specification of the real-time protocol with the timers
visible. The final specification, 8t

F , is obtained by quantifying over the timer
variables Tb and tc. Since Bj is a subaction of5F and pc[i] D “c” is disjoint from
Bj , for all i and j in Proc, Theorem 2 implies that5t

F is nonZeno if1b is positive.
Proposition 2 can then be applied to prove that 8t

F is nonZeno.

Mutual exclusion asserts that two processes cannot be in their critical sections at
the same time. It is expressed by the predicate

Mutex
1D 8 i; j 2 Proc : .pc[i] D pc[ j ] D “cs”/) .i D j /

The property to be proved is

Assump ^ 8t
F ) 2Mutex (8)

where Assump expresses the assumptions about the constants Proc, 1b, and Žc

needed for correctness. Since the timer variables do not occur in Mutex or Assump,
(8) is equivalent to

Assump ^ 5t
F ) 2Mutex

The standard method for proving this kind of invariance property leads to the
invariant

^ now 2 R

^ 8 i 2 Proc :
^ Tb[i]; tc[i] 2 R [ f1g
^ pc[i] 2 f“a”; “b”; “c”; “cs”g
^ .pc[i] D “cs”/ ) ^ x D i

^ 8 j 2 Proc : pc[ j ] 6D “b”
^ .pc[i] D “c”/ ) ^ x 6D 0

^ 8 j 2 Proc : .pc[ j ] D “b”/) .tc[i] > Tb[ j ]/
^ .pc[i] D “b”/ ) .Tb[i] < nowC Žc/

^ now � Tb[i]

and the assumption

Assump
1D .0 =2 Proc/ ^ .1b; Žc 2 R/ ^ .1b < Žc/
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4 Open Systems

A closed system is solipsistic. An open system interacts with an environment,
where system steps are distinguished from environment steps. Sections 4.1 and
4.2 reformulate a number of concepts introduced in [1] that are needed for treating
open systems in TLA. Some new results appear in Section 4.3. The following two
sections explain how reasoning about open systems is reduced to reasoning about
closed systems, and how open systems are composed.

4.1 Receptiveness and Realizability

To describe an open system in TLA, one defines an action ¼ such that ¼ steps
are attributed to the system and :¼ steps are attributed to the environment. A
specification should constrain only system steps, not environment steps.

For safety properties, the concept of constraining is formalized as follows: if ¼ is
an action and 5 a safety property, then 5 constrains at most ¼ iff, for any finite
behavior s1; : : : ; sn and state snC1, if s1; : : : ; sn satisfies 5 and .sn; snC1/ is a :¼
step, then s1; : : : ; snC1 satisfies 5. The generalization to arbitrary properties of
constraining at most ¼ is ¼-receptiveness. Intuitively, 5 is ¼-receptive iff every
behavior in5 can be achieved by an implementation that performs only ¼ steps—
the environment being able to perform any :¼ step. The concept of receptiveness
is due to Dill [8]. The generalization to ¼-receptiveness is developed in [1].8 A
safety property is ¼-receptive iff it constrains at most ¼.

The generalization of machine closure to open systems is machine realizability.
Intuitively, .5; L/ is ¼-machine realizable iff an implementation that performs
only ¼ steps can ensure that any finite behavior satisfying 5 is completed to an
infinite behavior satisfying 5 ^ L. Formally, .5; L/ is defined to be ¼-machine
realizable iff .5; L/ is machine closed and 5 ^ L is ¼-receptive. For ¼ equal to
true, machine realizability reduces to machine closure.

8To translate from the semantic model of [1] into that of TLA, we let agents be pairs of states and
identify an action ¼with the set of all agents that are ¼ steps. A TLA behavior s1; s2; : : : corresponds
to the sequence s1

Þ2�! s2
Þ3�! s3

Þ4�! : : : , where Þi equals .si�1; si/. With this translation, the
definitions in [1] differ from the ones given here and in the appendix mainly by attributing the
choice of initial state to the environment rather than to the system, requiring initial conditions to be
assumptions about the environment rather than guarantees by the system.
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4.2 The �FOperator

A common way of specifying an open system is in terms of assumptions and
guarantees [10], requiring the system to guarantee a property M if its environment
satisfies an assumption E. An obvious formalization of such a specification is
the property E ) M . However, this property contains behaviors in which the
system violates M and then the environment later violates E. Because the system
cannot predict what the environment will do, such behaviors cannot occur in any
actual implementation. A behavior ¦ generated by any implementation satisfies
the additional property that if any finite prefix of ¦ satisfies E, then it satisfies M .
We can therefore formalize the assumption/guarantee specification by the property
E �F M , defined by: ¦ 2 E �F M iff ¦ 2 .E ) M/ and, for every finite prefix
² of ¦ , if ² satisfies E then ² satisfies M . If E and M are safety properties, then
E �F M is as well.

For safety properties, the operator�F is the implication operator of an intuitionistic
logic [3]. Most valid propositional formulas without negation remain valid when
) is replaced by �F, if all the formulas that appear on the left of a �F are safety
properties. For example, the following formulas are valid if 8 and 5 are safety
properties.

8 �F .5 �F 9/ � .8^5/ �F 9
.8 �F 9/ ^ .5 �F 9/ � .8_5/ �F 9

(9)

For any TLA formulas 8 and 5, the property 8 �F 5 is expressible as a TLA
formula.

4.3 Proving Machine Realizability

Propositions 1–3,which concern machine closure, have generalizations for machine
realizability. Proposition 1 is the special case of Proposition 4 in which 8 and ¼
are identically true. Proposition 3 is similarly a special case of Proposition 5 if
.true; L2/ is machine closed—that is, if L2 is a liveness property. This is sufficient
for our purposes, since NZ is a liveness property. The generalization of Proposition 2
is omitted; it would be analogous to Proposition 10 of [1].

Proposition 4 is stated in terms of ¼-invariance, which generalizes the ordinary
concept of invariance. A predicate P is a ¼-invariant of a formula 5 iff, in any
behavior satisfying 5, no ¼-step makes P false. This condition is expressed by
the TLA formula5) 2[.¼ ^ P/) P 0]P .
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Proposition 4 If 5 and 8 are safety properties, 5 constrains at most ¼, and L
is the conjunction of a finite or countably infinite number of formulas of the form
WFw.A/ and/or SFw.A/, where, for each such formula,

1. hAiw is a subaction of 5 ^8,

2. 5 ^8) 2[hAiw ) ¼]w ,

3. if A appears in a formula SFw.A/, then Enabled hAiw is a :¼-invariant
of 5 ^8,

then .8 �F 5; 8) L/ is ¼-machine realizable.

Proposition 5 If 8 and 5 are safety properties, .8 �F 5; L1/ and .true; L2/

are ¼-machine realizable, and 8 ^ 5 ^ L1 implies L2, then .8 �F 5; L2/ is
¼-machine realizable.

4.4 Reduction to Closed Systems

Consider a specification E �F M , where E and M are safety properties. We expect
the system’s requirement to restrict only system steps, meaning that M constrains
at most ¼. This implies that E �F M also constrains at most ¼. We also expect
the environment assumption E not to constrain system steps; formally, E does not
constrain ¼ iff it constrains at most :¼ and it is satisfied by every (finite behavior
consisting only of an) initial state.9

Suppose E and M have the following form:

E
1D 2[¼ _ NE ]v

M
1D Init ^ 2[:¼ _ NM ]v

Then E does not constrain¼ and M constrains at most¼. If the system’s next-state
actionNM implies¼, and the environment’s next-state actionNE implies:¼, then
a simple calculation shows that

E ^ M � Init ^ 2[NE _NM ]v (10)

Conjunction represents parallel composition, so E^M is the formula describing the
closed system consisting of the open system together with its environment. Observe

9The asymmetry between constrains at most and does not constrain arises because we assign the
system responsibility for the initial state.
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that E ^ M has precisely the form we expect for a closed system comprising two
components with next-state actionsNE and NM .

We can make the inverse transformation from a closed system specification 5 to
the corresponding assumption/guarantee specification E �F M such that5 equals
E ^M , where E does not constrain¼ and M constrains at most¼. This is possible
because any safety property 5 can be written as such a conjunction.

Implementation means implication. A system with guarantee M implements a
system with guarantee bM , under environment assumption E, iff E �F M implies
E �F bM . When E and M are safety properties, E �F M implies E �F bM iff
E ^ M implies E ^ bM . Thus, proving that one open system implements another
is equivalent to proving the implementation relation for the corresponding closed
systems. Implementation for open systems therefore reduces to implementation for
closed systems.

4.5 Composition

The distinguishingfeature of open systems is that they can be composed. The proof
that the composition of two specifications implements a third specification is based
on the following result, which is a reformulation of Theorem 2 of [1] for safety
properties.

Theorem 3 If E, E1, E2,, M1, and M2 are safety properties and ¼1 and ¼2 are
actions such that

1. E1 does not constrain ¼1 and E2 does not constrain ¼2,

2. M1 constrains at most ¼1 and M2 constrains at most ¼2,

then the following proof rule is valid:

E ^ M1 ^ M2 ) E1 ^ E2

.E1 �F M1/ ^ .E2 �F M2/ ) .E �F M1 ^ M2/

This theorem is essentially the same as Theorem 1 of [3]; the proof is omitted.

5 Real-Time Open Systems

In Section 3, we saw how we can represent time by the variable now and introduce
timing constraints with timers. To extend the method to open systems, we need
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only decide how to separate timing properties into environment assumptions and
system guarantees. An examination of a paradoxical example in Section 5.1 leads
to the general form described in Section 5.2, where the concept of nonZenoness is
generalized.

5.1 A Paradox

Consider the two components Š 1 and Š 2 of Figure 5. Let the specification of
Š 1 be Py �F Px , which asserts that it writes a “good” sequence of outputs on x
if its environment writes a good sequence of inputs on y. Let Px �F Py be the
specification ofŠ 2, soŠ 2 writes a good sequence of outputs on y if its environment
writes a good sequence of inputs on x . If Px and Py are safety properties, then it
appears that we should be able to apply Theorem 3, our composition principle, to
deduce that the composite systemŠ 12 satisfies Px ^ Py, producing good sequences
of values on x and y. (We can define ¼1 and ¼2 so that writing on x is a ¼1 action
and writing on y is a ¼2 action.)

Now, suppose Px and Py both assert that the value 0 is written by noon. These
can be regarded as safety properties, since they assert that an undesirable event
never occurs—namely, noon passing without a 0 having been written. Hence, the
composition principle apparently asserts that Š 12 sends 0’s along both x and y by
noon. However, the specifications of Š 1 and Š 2 are satisfied by systems that wait
for a 0 to be input, whereupon they immediately output a 0. The composition of
those two systems does nothing.

This paradox depends on the ability of a system to respond instantaneously to an
input. It is tempting to rule out such systems—perhaps even to outlaw specifications
like these. We show that this Draconian measure is unnecessary. Indeed, if the
specification ofŠ 2 is strengthened to assert that a 0 must unconditionallybe written
on y by noon, then there is no paradox, and the composition does guarantee that a
0 is written on both x and y by noon. All paradoxes disappear when one carefully
examines how the specifications must be written.

To resolve the paradox, we examine more closely the specifications S1 and S2 of
Š 1 and Š 2. For simplicity, let the only possible output actions be the setting of x
and y to 0. The untimed version of S1 then asserts that, if the environment does
nothing but set y to 0, then the system does nothing but set x to 0. This is expressed
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Figure 5: The composition of two systems.

in TLA by letting

Mx
1D .x 0 D 0/ ^ .y 0 D y/ ¹1

1D x 0 6D x

My
1D .y 0 D 0/ ^ .x 0 D x/

and defining the untimed version of specification S1 to be

2[¹1 _My].x;y/ �F 2[:¹1 _Mx].x;y/ (11)

To add timing constraints, we must first decide whether the system or the environ-
ment should change now. Since the advancing of now is a mythical action that does
not have to be performed by any device, either decision is possible. Somewhat
surprisingly, it turns out to be more convenient to let the system advance time. With
the convention that initial conditions appear in the system guarantee, we define:

Nx
1D Mx ^ .now0 D now/ MTx

1D MaxTime.Tx/

Ny
1D My ^ .now0 D now/ MTy

1D MaxTime.Ty/

Tx
1D if x 6D 0 then 12 else1 ¼1

1D ¹1 _ .now0 6D now/

Ty
1D if y 6D 0 then 12 else1

E1
1D 2[¼1 _Ny].x;y;now/

M1
1D .now D 0/ ^ 2[:¼1 _Nx].x;y;now/ ^ RT.x;y/ ^ MTx

Adding timing constraints to (11) the same way we did for closed systems then
leads to the following timed version of specification S1.

.E1 ^MTy/ �F M1 (12)
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However, this does not have the right form for an open system specification because
MTy constrains the advance of now, so the environment assumption constrains¼1.
The conjunct MTy must be moved from the environment assumption to the system
guarantee. Using (9), we rewrite (12) as:

S1
1D E1 �F .MTy �F M1/

This has the expected form for an open system specification, with an environment
assumption E1 that does not constrain ¼1 and a system guarantee MTy �F M1 that
constrains at most ¼1.

The specification S2 of the second component in Figure 5 is similar, where ¼2, E2,
M2, and S2 are obtained from ¼1, E1, M1, and S1 by substituting 2 for 1, x for y,
and y for x .

We now compose specifications S1 and S2. The definitions of M1 and M2 and the
observation that P �F Q implies P ) Q yield

.MTx _MTy/ ^ .MTy �F M1/ ^ .MTx �F M2/ ) M1 ^ M2 (13)

The definitions of M1 and M2 and simple temporal reasoning yield

E ^ M1 ^ M2 ) E1 ^ E2 (14)

where
E

1D 2[¼1 _ ¼2].x;y;now/

Combining (13) and (14) proves

E ^ .MTx _MTy/ ^ .MTy �F M1/ ^ .MTx �F M2/ ) E1 ^ E2

We can therefore apply Theorem 3, substituting E^.MTx_MTy/ for E, MTy �F M1

for M1, and MTx �F M2 for M2, to deduce

S1 ^ S2 ) .E ^ .MTx _MTy/ �F .MTy �F M1/ ^ .MTx �F M2/ /

Using the implication-like properties of�F, this simplifies to

S1 ^ S2 ) .E �F .MTy �F M1/ ^ .MTx �F M2// (15)

All one can conclude about the composition from (15) is: either x and y are both
0 when now reaches 12, or neither of them is 0 when now reaches 12. There is no
paradox.
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As another example, we replace S2 by the specification E2 �F M2. This specifi-
cation, which we call S3, asserts that the system sets y to 0 by noon, regardless of
whether the environment sets x to 0. The definitions imply

MTy ^ E ^ .MTy �F M1/ ^ M2 ) E1 ^ E2

and Theorem 3 yields

S1 ^ S3 ) .E �F .MTx �F M1/ ^ M2/

Since M2 implies MTx , this simplifies to

S1 ^ S3 ) .E �F M1 ^ M2/

The composition of S1 and S3 does guarantee that both x and y equal 0 by noon.

5.2 Timing Constraints in General

Our no-longer-paradoxical example suggests that the form of a real-time open
system specification should be

E �F .P �F M/ (16)

where M describes the system’s timing constraints and the advancing of now,
and P describes the upper-bound timing constraints for the environment. Since
the environment’s lower-bound timing constraints do not constrain the advance of
now, they can remain in E. As we observed in Section 4.4, proving that one open
specification implements another reduces to the proof for the corresponding closed
systems. Since E �F .P �F M/ is equivalent to .E^ P/ �F M , the closed system
corresponding to (16) is the expected one, E ^ P ^ M .

For the specification (16) to be reasonable, its closed system version, E ^ P ^ M ,
should be nonZeno. However, this is not sufficient. Consider a specification
guaranteeing that the system produces a sequence of outputs until the environment
sends a stop message, where the nth output must occur by time .n � 1/=n. There is
no timing assumption on the environment; it need never send a stop message. This
is an unreasonable specification because now cannot reach 1 until the environment
sends its stop message, so the advance of time is contingent on an optional action
of the environment. However, the corresponding closed system specification is
nonZeno, since time can always be made to advance without bound by having the
environment send a stop message.
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If advancing now is a ¼ action, then a system that controls ¼ actions can guarantee
time to be unbounded while satisfying a safety specification S iff the pair .S;NZ/
is ¼-machine realizable. We therefore take this condition to be the definition of
nonZenoness for an open system specification S.

For specifications in terms of Ž-timers, nonZenoness can be proved with gener-
alizations to open systems of the theorems in Section 3.3. The following is the
generalization of the strongest of them, Theorem 2. It is applied to a specification
of the form (16) by substituting E ^ P for E.

Theorem 4 With the notation and hypotheses of Theorem 2, if E and M are safety
properties such that 5 D E ^ M, and

5. M constrains at most ¼,

6. (a) hAkiv ) ¼, for all k 2 I [ J,

(b) .now0 6D now/) ¼

then .E �F Mt ; NZ/ is ¼-machine realizable, where

Mt 1D M ^ RTv ^
8 i 2 I : MinTime.ti ;Ai ; v/ ^ 8 j 2 J : MaxTime.Tj/

The proof of Theorem 4, which appears in the appendix, is similar to the proof of
Theorem 2 sketched in Section 3.3. It uses Propositions 4 and 5 instead of Propo-
sitions 1 and 3. Since machine realizability implies machine closure, Theorem 2
follows from Theorem 4 by letting E and ¼ equal true and M equal5.

Theorem 4 applies to the internal specifications, where all variables are visible. For
closed systems, existential quantification is handled with Proposition 2. For open
systems, the generalization of this proposition—the analog of Proposition 10 of
[1]—is needed.

6 Conclusion

6.1 What We Did

We started with a simple idea—specifying and reasoning about real-time systems
by representing time as an ordinary variable. This idea led to an exposition that
most readers probably found quite difficult. What happened to the simplicity?
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About half of the exposition is a review of concepts unrelated to real time. All the
fundamental concepts described in Sections 2 and 4, including machine closure,
machine realizability, and the �F operator, have appeared before [1, 2]. These
concepts are subtle, but they are important for understanding any concurrent system;
they were not invented for real-time systems.

We chose to formulate these concepts in TLA. Like any language, TLA seems
complicated on first encounter. We believe that a true measure of simplicity of a
formal language is the simplicity of its formal description. The complete syntax
and formal semantics of TLA are given in about 1-1/2 pages of figures in [13].

We never claimed that specifying and reasoning about concurrent systems is easy.
Verifying concurrent systems is difficult and error prone. Our assertions that one
formula follows from another, made so casually in the exposition, must be backed
up by detailed calculations. We have omitted the proofs for our examples, which,
done with the same detail as the proofs in the appendix, occupy some twenty pages.

We did claim that existing methods for specifying and reasoning about concurrent
systems could be applied to real-time systems. Now, we can examine how hard
they were to apply.

We found few obstacles in the realm of closed systems. The second author has more
than fifteen years of experience in the formal verification of concurrent algorithms,
and we knew that old-fashioned methods could be applied to real-time systems.
However, TLA is relatively new, and we were pleased by how well it worked.
The formal specification of Fischer’s protocol in Figure 4, obtained by conjoining
timing constraints to the untimed protocol, is as simple and direct as we could have
hoped for. Moreover, the formal correctness proofs of this protocol and of the queue
example, using the method of reasoning described in [13], were straightforward.
Perhaps the most profound discovery was the relation between nonZenoness and
machine closure.

Open systems made up for any lack of difficulty with closed systems. State-based
approaches to open systems were a fairly recent development, and we had little
experience with them. Studying real-time systems taught us a great deal, and
led to a number of changes from the approach in [1]. For example, we now
write specifications with �F instead of ), and we put initial conditions in the
system guarantee rather than in the environment assumption. Many alternative
ways of writing real-time specifications seemed plausible; choosing one that works
was surprisingly hard. Even the simple idea of putting the environment’s timing
assumptions to the left of a�F in the system’s guarantee came only after numerous
failed efforts. Although the basic ideas we need to handle real-time open systems
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seem to be in place, we still have much to learn before reasoning about open systems
becomes routine.

6.2 Beyond Real Time

Real-time systems introduce a fundamentally new problem: adding physical con-
tinuity to discrete systems. Our solution is based on the observation that, when
reasoning about a discrete system, we can represent continuous processes by dis-
crete actions. If we can pretend that the system progresses by discrete atomic
actions, we can pretend that those actions occur at a single instant of time, and that
the continuous change to time also occurs in discrete steps. If there is no system
action between noon and

p
2 seconds past noon, we can pretend that time advances

by those
p

2 seconds in a single action.

Physical continuity arises not just in real-time systems, but in “real-pressure” and
“real-temperature” process-control systems. Such systems can be described in the
same way as real-time systems: pressure and temperature as well as time are repre-
sented by ordinary variables. The continuous changes to pressure and temperature
that occur between system actions are represented by discrete changes to the vari-
ables. The fundamental assumption is that the real, physical system is accurately
represented by a model in which the system makes discrete, instantaneous changes
to the physical parameters it affects.

The observation that continuous parameters other than time can be modeled by
program variables has probably been known for years. However, the first published
work we know of that uses this idea, by Marzullo, Schneider, and Budhiraja [14],
appeared only recently.
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Appendix

A Definitions

A.1 States and Behaviors

6: The set of all states (assignments of values to variables).
6Ł: The set of finite behaviors (finite sequences of states).
61: The set of behaviors (infinite sequences of states).
½: The empty sequence.
j¦ j [for ¦ 2 6Ł [61]: The length of ¦ .
¦n [for ¦ 2 6Ł [61 and 0 < n � j¦ j]: The nth state in the sequence ¦ .
¦ jn [for ¦ 2 6Ł [61 and 0 � n � j¦ j]: The finite behavior ¦1; : : : ; ¦n; equal to ½

when n D 0.
¦ Ž s [for ¦ 2 6Ł and s 2 6]: The finite behavior ¦1; : : : ; ¦j¦ j; s.
¦ ' − [for ¦; − 2 6Ł or ¦; − 2 61]: ¦ and − are equal except for stuttering steps

(repetitions of identical states).
¦ 'x − [for x a tuple of variables and either ¦; − 2 6Ł or ¦; − 2 61]:

There exist behaviorsb¦ andb− such that
^ b¦ ' ¦ andb− ' −
^ jb¦ j D jb− j
^ for every integer n � jb¦ j, the statesb¦n andb−n are equal except for the

values they assign to the variables of x .

A.2 Predicates and Actions

predicate: A subset of 6.
state function: A mapping from 6 to the set of values.
action: A subset of 6 ð6.
transition function: A mapping from 6 ð6 to the set of values.
P 0 [for P a predicate]: The action f.s; t/ : t 2 Pg.
f 0 [for f a state function]: The transition function such that f 0.s; t/ D f .t/.
Enabled A [for A an action]: The predicate fs 2 6 : .9t 2 ¦ : .s; t/ 2 A/g.
[A] f [for A an action and f a state function]: A _ . f 0 D f /
hAi f [for A an action and f a state function]: :[:A] f (equals A ^ . f 0 6D f /).
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A.3 Properties

property: A subset 5 of 61 such that for any ¦ , − in 61, if ¦ ' − then ¦ 2 5
iff − 2 5.

25 [for 5 a property]:
The property f¦ 2 ¦1 : .8n > 0 : ¦n; ¦nC1; : : : 2 5/g.

2[A] f [for A an action and f a state function]:
The property f¦ 2 61 : .8n > 0 : .¦n; ¦nC1/ 2 [A] f /g.

35 [for 5 a property or an action of the form hAi f ]: :2:5
5; 8 [for 5 and 8 properties]: 2.5) 38/

WF f .A/ [for f a state function and A an action]:
The property .23hAif / _ .23:Enabled hAi f /.

SF f .A/ [for f a state function and A an action]:
The property .23hAif / _ .32:Enabled hAi f /.

9x : 5 [for x a tuple of variables and 5 a property]:
The property f¦ 2 61 : .9² 2 5 : ² 'x ¦/g.

A.4 Closure and Safety

¦ jD 5 [for ¦ 2 6Ł and 5 a property]:
There exists − 2 5 and n such that ¦ D − jn.

C.5/ [for5 a property]: The property f¦ 2 61 : .8n ½ 0 : ¦ jn jD 5g.
safety property: A property5 such that 5 D C.5/.
.5; L/ machine closed [for 5 and L properties]: 5 D C.5 ^ L/
8 �F 5 [for 8 and 5 properties]: The property consisting of all behaviors ¦ such

that
^ ¦ 2 8 implies ¦ 2 5
^ for all n ½ 0: ¦ jn jD 8 implies ¦ jn jD 5.

A.5 Realizability

5 constrains at most ¼ [for 5 a safety property and ¼ an action]:
For any s 2 6 and ² 2 6Ł with j²j > 0, if ² jD 5 and .²j²j; s/ =2 ¼, then
² Ž s jD 5.

5 does not constrain ¼ [for5 a safety property and ¼ an action]:
5 constrains at most :¼, and every behavior of length 1 satisfies 5.

¼-strategy [for ¼ an action]: A mapping f from6Ł to6[f?g such that f .²/ 6D ?
implies .²j²j; f .²// 2 ¼, for any sequence ² 2 6Ł with ² 6D ½.

O¼. f / [for ¼ an action and f a ¼-strategy]: The set of behaviors ¦ such that
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^ f .½/ D ¦1

^ for all n > 0: .¦n; ¦nC1/ 2 ¼ implies ¦nC1 D f .¦ jn/
^ for infinitely many n: f .¦ jn/ D ? or .¦n; ¦nC1/ 2 ¼.

O¼. f; ²/ [for ¼ an action, f a ¼-strategy, and ² 2 6Ł]: If ² D ½ then O¼. f /, else
the set of behaviors ¦ such that
^ − D ¦ jj− j
^ for all n ½ j− j: .¦n; ¦nC1/ 2 ¼ implies ¦nC1 D f .¦ jn/
^ for infinitely many n: f .¦ jn/ D ? or .¦n; ¦nC1/ 2 ¼.

5 is ¼-receptive [for5 a property and ¼ an action]: For every behavior¦ 2 5 there
exists a ¼-strategy f such that ¦ 2 O¼. f / and O¼. f / � 5.

.5; L/ is ¼-machine realizable [for5 and L properties and ¼ an action]:
.5; L/ is machine closed and 5 ^ L is ¼-receptive.

B Proofs

B.1 Proof Notation

We use hierarchically structured proofs. The theorem to be proved is statement
h0i1. The proof of statement hii j is either an ordinary paragraph-style proof or the
sequence of statements hi C 1i1, hi C 1i2, : : : and their proofs. A proof may be
preceded by a proof sketch, which informally describes the proof. Within a proof,
hkil denotes the most recent statement with that number. A statement has the form

ASSUME: Assump PROVE: Goal
which is abbreviated to Goal if there is no assumption. The assertion Q.E.D. in
statement number hi C 1ik of the proof of statement hii j denotes the goal of state-
ment hii j . The statement

CASE: Assump
is an abbreviation for

ASSUME: Assump PROVE: Q.E.D.
Within the proof of statement hii j , assumption hii denotes that statement’s assump-
tion, and hii.k denotes the assumption’s kth item.

We recommend that proofs be read hierarchically, from the top level down. To read
the proof of a long level-k step: (i) read the level-.k C 1/ statements that comprise
its proof, together with the proof of the final Q.E.D. step (which is usually a short
paragraph), (ii) read the proof of each level-.k C 1/ step, in any desired order.
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B.2 Proof of Proposition 2

ASSUME: 1. .5; L/ is machine-closed.
2. x a tuple of variables, none of which occurs free in L.
3. ² is a finite behavior satisfying 9x : 5.

PROVE: There exists an infinite behavior − satisfying .9x : 5/^ L such that ² is
a prefix of − .

h1i1. Choose a finite behavior ¦ satisfying5 such that ¦ 'x ².
h2i1. Choose a behavior � such that � 2 9x : 5 and ² a prefix of �.

PROOF: Assumption h0i.1.
h2i2. Choose a behavior  such that  2 5 and  'x �.

PROOF: h2i1 and the definition of 9x : 5.
h2i3. There exists an initial prefix ¦ of  such that ¦ 'x ².

PROOF:  'x � (by h2i2) and ² a prefix of � (by h2i1).
h2i4. Q.E.D.

PROOF: h2i2 and h2i3.
h1i2. Choose � satisfying5 ^ L such that ¦ is a prefix of �.

PROOF: The existence of − follows from h1i1 and assumption h0i.1.
h1i3. Choose − such that − 'x � and ² is a prefix of − .

PROOF: − exists because ¦ is a prefix of � (by h1i2) and ¦ 'x ² (by h1i1).
h1i4. − satisfies 9x : 5.

PROOF: h1i2, h1i3, and the definition of 9x : 5.
h1i5. − satisfies L.

PROOF: h1i2, h1i3, and assumption h0i.2.
h1i6. Q.E.D.

PROOF: Steps h1i4 and h1i5 imply that − satisfies .9x : 5/ ^ L, and ² is a
prefix of − by h1i3.

B.3 Proof of Proposition 3

ASSUME: 1. .5; L1/ is machine closed.
2. 5 ^ L1 implies L2.

PROVE: .5; L2/ is machine closed.
PROOF: 5 D C.5 ^ L1/ [h0i.1]

� C.5 ^ L2/ [h0i.2 and monotonicity of closure]
� C.5/ [monotonicity of closure]
D 5 [h0i.1, which implies5 closed]

This proves that5 D C.5 ^ L2/.
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B.4 Two Lemmas About Machine-Realizability

Lemma 1 .5; L/ is¼-machine realizable iff for every finite behavior − satisfying
5, there exists a ¼-strategy f such that − jD O¼. f / andO¼. f / � 5 ^ L.

PROOF: This is proved in Proposition 9 of [1].

Lemma 2 .5; L/ is¼-machine realizable iff for every finite behavior − satisfying
5, there exists a ¼-strategy f such thatO¼. f; −/ � 5 ^ L.

h1i1. ASSUME: 1. For all finite − such that − jD 5, there exists f− such that
a. f− is a ¼-strategy.
b.O¼. f− ; − / � 5 ^ L

2. ² a finite behavior such that ² jD 5.
PROVE: There exists a ¼-strategy g such that

^ ² jD O¼.g/
^ O¼.g/ � 5 ^ L

h2i1. Choose g such that, for all ¦ 2 6Ł:
g.¦/

1D if .¦ D ²jn/ ^ .n < j²j/
then if .n D 0/ _ .²n; ²nC1/ 2 ¼

then ²nC1

else ?
else f�.¦/; where � is the longest common

prefix of ² and ¦
PROOF: The requisite f� exists by assumption h0i.2, since ² jD 5

implies � jD 5, for any prefix � of ².
h2i2. g is a ¼-strategy.

PROOF: h0i.1a and the the definition of g (h2i1).
h2i3. O¼.g/ � 5 ^ L

PROOF: Assumption h0i.1b, since� 2 O¼.g/ implies that � 2 O¼. f� ; �/,
where � is the longest common prefix of � and ².

h2i4. ² jD O¼.g/
PROOF: The definition of g implies that ² is a prefix of an element of
O¼.g/.

h2i5. Q.E.D.
PROOF: h2i2, h2i3, and h2i4.

h1i2. ASSUME: .5; L/ is ¼-machine realizable and − jD 5.
PROVE: There exists a ¼-strategy f such that O¼. f; −/ � 5 ^ L.
h2i1. Choose a ¼-strategy f such that − 2 O¼. f / and O¼. f / � 5 ^ L.

PROOF: Assumption h2i and Lemma 1.
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h2i2. O¼. f; −/ � 5 ^ L
PROOF: h2i1.2 and the definition of O¼. f; −/.

h2i3. Q.E.D.
PROOF: h2i1 and h2i2.

h1i3. Q.E.D.
PROOF: By h1i1, h1i2 and Lemma 1.

B.5 Proof of Proposition 4

LET: 9
1D 8 ^5

L
1D ^ 8i 2 I : WFwi .Ai/

^ 8 j 2 J : SFwj .Aj /

ASSUME: 1. 8 and 5 are safety properties.
2. 5 constrains at most ¼.
3. I [ J a finite or countably infinite set, which we take to be a set of

natural numbers.
4. For all k in I [ J:

a. hAkiwk is a subaction of 9.
b.9 ) 2[hAkiwk ) ¼]wk

5. Forall j in J: Enabled hAjiwj is a :¼ invariant of 9.
PROVE: .8 �F 5;8) L/ is ¼-machine realizable.
By Lemma 2, it suffices to
ASSUME: 6. − jD 8 �F 5
PROVE: There exists a ¼-strategy f such that

O¼. f; −/ � .8 �F 5/ ^ .8) L/.
PROOF SKETCH: Defining the strategy f is tantamount to constructing a scheduler
that executes the actions hAkiwk to satisfy the fairness requirements. Action hAkiwk

is never considered until k steps have occurred, so only finitely many actions are
considered at any point. The next action scheduled is the enabled action that has
been under consideration for the longest time without having been executed. In
the event of ties, the lowest-numbered action is chosen. The strategy f will never
violate 9, and it stops making moves if 9 is ever made false by the environment.
In the following definitions, nextact.²/ is the k such that the scheduler chooses to
execute hAkiwk after the finite behavior ².
LET: Bk

1D hAkiwk

n
1D j− j

lasttime.²; k/
1D max .fl : 1 < l � j²j : .²l�1; ²l/ 2 Bkg [ fkg/
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able.²/
1D if ² D ½ then the set of naturals

else fk : ²j²j 2 Enabled Bkg
oldestlast.²/

1D minflasttime.²; k/ : k 2 able.²/g
nextact.²/

1D minfk 2 able.²/ : lasttime.²; k/ D oldestlast.²/g
h1i1. Choose f such that for all ² in 6Ł:

if .able.²/ D ;/ _ .² =2 9/
then f .²/ D ?
else ^ .² 6D ½/) .²j²j; f .²// 2 Bnextact.²/

^ ² Ž f .²/ 2 9
PROOF SKETCH: We must show that, for any ², the requisite f .²/ exists.
h2i1. ASSUME: .able.²/ 6D ;/ ^ ² jD 9

PROVE: 9 s 2 6 : ^ .² 6D ½/ ) .²j²j; s/ 2 Bnextact.²/

^ ² Ž s 2 9
h3i1. CASE: ² D ½

PROOF: Assumption h2i and the definition of ² jD 9.
h4i1. CASE: ² 6D ½
h5i1. ²j²j 2 Enabled Bnextact.²/

h6i1. nextact.²/ 2 able.²/
PROOF: Assumption h2i and the definitions of nextact and oldestlast.
h6i2. Q.E.D.

PROOF: Case assumption h4i and the definition of able.²/.
h5i2. Q.E.D.

PROOF: h5i1 and Assumption h0i.4a.
h4i2. Q.E.D.

PROOF: h3i1 and h4i1.
h2i2. Q.E.D.

PROOF: The existence of the required f follows easily from h2i1.
h1i2. f is a ¼-strategy.

ASSUME: .² 6D ½/ ^ . f .²/ 6D ?/
PROVE: .²j²j; f .²// 2 ¼
PROOF: h1i1 and assumption h1i imply

^ .²j²j; f .²// 2 Bnextact.²/

^ ² Ž f .²/ jD 9
and the result follows from h0i.4b.
h1i3. O¼. f; −/ � .8 �F 5/

PROOF SKETCH: This is a straightforward induction proof; h2i1 is the base case
and h2i2 is the induction step.
h2i1. ASSUME: ¦ 2 O¼. f; −/
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PROVE: ¦ j0 jD 8 �F 5
PROOF: ¦ j0 D − j0, and − jD .8 �F 5/ by assumption h2i and the definition
of O¼. f; −/.
h2i2. ASSUME: 1. ¦ 2 O¼. f; −/

2. ¦ ji jD 8 �F5
3. i ½ 0

PROVE: ¦ jiC1 jD 8 �F 5
h3i1. CASE: i ½ j− j
h4i1. CASE: .¦i ; ¦iC1/ =2 ¼

PROOF: Follows easily from assumption h2i.2 and assumption h0i.2, since
5 constrains at most ¼ implies 8 �F 5 constrains at most ¼.
h4i2. CASE: .¦i ; ¦iC1/ 2 ¼
h5i1. ¦iC1 D f .¦ ji /

PROOF: Assumption h2i.1.
h5i2. Q.E.D.

PROOF: h5i1, assumption h2i.2, and the else clause in h1i1 (the defini-
tion of f ).

h4i3. Q.E.D.
PROOF: h4i1 and h4i2.

h3i2. CASE: i < j− j
PROOF: By assumption h0i.6 and assumption h2i.1, since i < j− j implies
¦ jiC1 D − jiC1.
h3i3. Q.E.D.

PROOF: h3i1 and h3i2.
h2i3. Q.E.D.

PROOF: h2i1, h2i2, mathematical induction, and assumption h0i.1.
h1i4. O¼. f; −/ � .8) L/

PROOF SKETCH: The proof is by contradiction. We define IE and IO to be the sets
of indices of actions that should be executed infinitely often and that actually are
executed infinitely often, respectively. We show that the existence of a q in IE
but not in IO leads to a contradiction.
ASSUME: 1. ¦ 2 O¼. f; −/

2. ¦ 2 8
3. 9 k 2 I [ J : a._ k 2 I ^ ¦ =2WFwk .Ak/

b._ k 2 J ^ ¦ =2 SFwk .Ak/

PROVE: flase
LET: IE

1D fi 2 I : 32Enabled Big [ f j 2 J : 23Enabled Bj g
IO

1D fk 2 I [ J : .¦n; ¦nC1/ 2 Bk for infinitely many ng
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h2i1. ¦ 2 8 ^5
PROOF: h1i3 and assumption h1i.1, which imply ¦ 2 8 �F 5, and h1i.2.
h2i2. Choose q such that

1. q 2 IE
2. q =2 IO

PROOF: Assumption h1i.3.
h2i3. Choose m1 such that

1. m1 > q
2. 8n ½ m1 : .¦n�1; ¦n/ =2 Bq

3. m1 > j− j
PROOF: h2i2.2
h2i4. Choose m2 such that

1. m2 > m1

2. 8k 2 I [ J : .k =2 IO/ ^ .k < m1/ ) 8n > m2 : .¦n; ¦nC1/ =2 Bk

PROOF: Definition of IO.
h2i5. Choose m3 such that

1. m3 > m2

2. 8k 2 I [ J : .k 2 IO/ ^ .k < m1/ )
9 n > m2 : .n < m3/ ^ .¦n; ¦nC1/ 2 Bk

PROOF: Definition of IO.
h2i6. Choose m4 such that

1. m4 > m3

2. ¦m4 2 Enabled Bq

3. .q 2 I/) 8n > m4 : ¦n 2 Enabled Bq

PROOF: h2i2.1 and the definition of IE.
h2i7. 8n > m4 : 1.^ ¦n 2 Enabled Bq

2.^ .¦n�1; ¦n/ =2 ¼
PROOF SKETCH: By time m4, Bq is the next action scheduled for execution.
Since Bq is never again executed (by h2i3), there can be no further ¼ steps.
Since only a ¼ step can disable Bq (by assumption h0i.5), Bq must be enabled
forever. The formal proof is by induction on n; h3i1 is the base case and h3i2
is the induction step.
h3i1. ¦m4 2 Enabled Bq

PROOF: h2i6.
h3i2. ASSUME: 1. ¦n 2 Enabled Bq

2. .¦n�1; ¦n/ =2 ¼
3. n ½ m4

PROVE: ^ ¦nC1 2 Enabled Bq

^ .¦n; ¦nC1/ =2 ¼
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h4i1. .¦n; ¦nC1/ =2 ¼
ASSUME: .¦n; ¦nC1/ 2 ¼
PROVE: flase
h5i1. _ nextact.¦ jn/ D q

_ 9 k 2 I [ J : ^ nextact.¦ jn/ D k
^ k < m1 ^ k =2 IO
^ k 2 able.¦ jn/

h6i1. q 2 able.¦ jn/
Assumption h3i.1.
h6i2. ASSUME: k ½ m1

PROVE: lasttime.¦ jn; k/ > lasttime.¦ jn; q/
PROOF: lasttime.¦ jn; k/ ½ m1 by definition of lasttime, and m1 >

lasttime.¦ jn; q/ by assumption h3i.1.
h6i3. ASSUME: .k > m1/ ^ .k 2 IO/

PROVE: lasttime.¦ jn; k/ > lasttime.¦ jn; q/
PROOF: lasttime.¦ jn; k/ ½ m2 > m1 by h2i5, and m1 > lasttime.¦ jn; q/
by assumption h3i.1.
h6i4. _ oldestlast.¦ jn/ D q

_ 9 k 2 I [ J : ^ oldestlast.¦ jn/ D k
^ k < m1 ^ k =2 IO
^ k 2 able.¦ jn/

PROOF: h6i1, h6i2, and h6i3.
h6i5. Q.E.D.

PROOF: h6i4 and definition of nextact.
h5i2. _ .¦n; ¦nC1/ 2 Bq

_ 9 k 2 I [ J : ^ .¦n; ¦nC1/ 2 Bk

^ k < m1 ^ k =2 IO
PROOF: h5i1, the definition of f (h1i1), assumption h4i, and assumption
h1i.1, since n > j− j by assumption h3i.3 and h2i3–h2i6.
h5i3. Q.E.D.
h6i1. CASE: .¦n; ¦nC1/ 2 Bq

PROOF: Contradicts h2i3, since n > m1 by assumption h3i.3 and
h2i4–h2i6.
h6i2. CASE: 9 k 2 I [ J : ^ .¦n; ¦nC1/ 2 Bk

^ k < m1 ^ k =2 IO
PROOF: Contradicts h2i4, since n > m2 by assumption h3i.3, h2i5,
and h2i6.
h6i3. Q.E.D.

PROOF: h6i1 and h6i2.
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h4i2. ¦nC1 2 Enabled Bq

PROOF: Assumption h3i.1, h4i1, h2i1, and assumption h0i.5.
h4i3. Q.E.D.

PROOF: h4i1 and h4i2.
h3i3. Q.E.D.

PROOF: h3i1, h3i2, and mathematical induction.
h2i8. Q.E.D.
h3i1. 8n > m4 : f .¦ jn/ 6D ?

PROOF: h2i7.1, assumption h1i.1, assumption h1i.2, and h1i3.
h3i2. Q.E.D.

PROOF: h3i1 and h2i7.2 contradict assumption h1i.1.
h1i5. Q.E.D.

PROOF: h1i2, h1i3, and h1i4.

B.6 Proof of Proposition 5

ASSUME: 1. 8 and 5 are safety properties.
2. .8 �F5; L1/ is ¼-machine realizable.
3. .true; L2/ is ¼-machine realizable.
4. 8 ^5 ^ L1 implies L2.

PROVE: .8 �F 5; L2/ is ¼-machine realizable.
h1i1. ASSUME: ² is a finite behavior such that ² jD .8 �F 5/.

PROVE: There exists a ¼-strategy f such that
O¼. f; ²/ � .8 �F 5/ ^ L2.

h2i1. Choose ¼-strategy h such that O¼.h; ²/ � .8 �F 5/ ^ L1.
PROOF: Assumption h0i.2, assumption h1i, and Lemma 2.

h2i2. For all − , choose a ¼-strategy g− such that O¼.g− ; − / � L2.
PROOF: Assumption h0i.3 and Lemma 2.

h2i3. Let f .−/ D h.−/ for − jD 8, and otherwise let f .−/ D g�.−/ where �
is the shortest prefix of − such that � 6jD 8. Then f is a ¼-strategy.
PROOF: By steps h2i1 and h2i2 (which say that h and g� are ¼-
strategies).

h2i4. O¼. f; ²/ � .8 �F 5/ ^ L2

ASSUME: − 2 O¼. f; ²/
PROVE: − 2 .8 �F 5/ ^ L2

h3i1. CASE: − 2 8
h4i1. − 2 O¼.h; ²/

45



PROOF: By assumption h2i, since the case assumption h3i
and the definition of f (step h2i3) imply f .− jn/ D h.− jn/
for all n.

h4i2. − 2 .8 �F 5/ ^ L1

PROOF: By step h4i1 and the choice of h (step h2i1).
h4i3. − 2 8^5 ^ L1

PROOF: By step h4i2 and case assumption h3i.
h4i4. Q.E.D.

PROOF: By step h4i3 and assumption h0i.4.
h3i2. CASE: − 62 8

h4i1. Let n be the least integer such that − jn 62 8.
PROOF: Such an n exists by case assumption h3i and as-
sumption h0i.1.

h4i2. − 2 O¼.g− jn ; − jn/
PROOF: By step h4i1, assumption h2i, and the definition
of f (step h2i3).

h4i3. − 2 L2

PROOF: By steps h4i2 and the choice of g− jn (step h2i2).
h4i4. Q.E.D.

PROOF: By steps h4i3 and case assumption h3i.
h3i3. Q.E.D.

PROOF: By steps h3i1 and h3i2.
h2i5. Q.E.D.

PROOF: By steps h2i3 and h2i4.
h1i2. Q.E.D.

PROOF: The result follows immediately from step h1i1 and Lemma 2.

B.7 Proof of Theorem 4

The proof of Theorem 4 is rather long and is presented in two steps. Section B.7.1
contains a high-level view of the proof; Section B.7.2 contains the complete proof,
omitting definitions and complete subproofs that appear in the high-level view. If
a formula F is a conjunction, we may number the conjuncts and let F:i denote the
i th one.

The proof uses the following two lemmas.

Lemma 3 (Rule WF1) For any predicates P, Q, and I; actions N and A; and
state function f ; if
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1. P ^ I ^ I 0 ^ [N ] f ) .P 0 _ Q0/
2. P ^ I ^ I 0 ^ hN ^Ai f ) Q0

3. P ^ I ) Enabled hAi f .
then WF f .A/ ^2I ^2[N ] f ) .P ; Q/

PROOF: This is a simple generalization of rule WF1 of [13]; the proof of soundness
is omitted.

Lemma 4 For any actions A and B, state function f , variable x, predicate P,
and property5:

1. (a) .Enabled .x 0 D f // D true.
(b) If A and B have no primed variables in common, then

.Enabled A ^ B/ D .Enabled A/ ^ .Enabled B/.
2. .Enabled A/ ^ .:Enabled B/ ) .Enabled A ^ :B/
3. .Enabled P ^A/ D .P ^ Enabled A/
4. .Enabled 9 x : A/ D .9 x : Enabled A/
5. If A) B then .Enabled A/) .Enabled B/.

PROOF: These properties all follow easily from the definitions.

B.7.1 High-Level Proof of the Theorem

LET: 5
1D E ^ M

Mt 1D M ^ RTv ^
8 i 2 I : MinTime.ti;Ai ; v/ ^ 8 j 2 J : MaxTime.Tj/

5t 1D E ^ Mt

ASSUME: 0. a.5 D Init ^ 2[N ]w for some predicate Init, action N , and state
function w.

b. ti is a timer for 5, for all i in I .
c. Tj is a timer for5, for all j in J .
d. J is a finite set.

1. hAiiv and hAj iv are disjoint for5, for all i 2 I and j 2 J with i 6D j .
now

2. a. does not occur free in v.
b. .now0 D r/^ .v0 D v/ is a subaction of 5, for all r 2 R.

3. For all j 2 J:
a. hAjiv ^ .now0 D now/ is a subaction of 5.
b.5 ) VTimer.Tj ;Aj ; 1j ; v/ or
5 ) PTimer.Tj ;Aj ; 1j ; v/, where1j 2 .0;1/.
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c.5t ) 2.Enabled hAj iv D Enabled .hAjiv ^ .now0 D now///
d. .v0 D v/ ) .Enabled hAjiv D .Enabled hAj iv/0/

4. 5t ) 2.tk � Tk/, for all k 2 I \ J .
5. E and M are safety properties, and M constrains at most ¼.
6. a. hAkiv ) ¼, for all k 2 I [ J .

b. .now0 6D now/) ¼

PROVE: .E �F Mt ; NZ/ is ¼-machine realizable.
PROOF SKETCH: We show that a fairness condition WF.now;v/.C/ implies that now
increases without bound, for a subaction hCi.now;v/ of 5t , and then apply Proposi-
tions 4 and 5. To prove that now increases without bound, we prove that now D r
leads to now ½ .r C 1/ for any number r , where 1 is the minimum of the 1j .
The action C advances now or, if that is impossible because now D Tj for some
upper-bound timer Tj , it performs the action Aj (thereby advancing Tj ).
We begin by naming the next-state relations of the RTv, MaxTime,
MinTime, VTimer, and PTimer formulas and defining some actions and predi-
cates, including C. A Bj step is defined to be anAj step that leaves now unchanged.
AnAt

j orBt
j step is anAj orBj step that satisfies the lower-bound timing constraint,

if there is one. The state function T is the smallest Tj that restricts the advance of
now.
LET: RTactv

1D [.now0 2 .now;1// ^ .v0 D v/]now

MaxTact.t/
1D [now0 � t 0]now

MinTact.t;A; v/
1D [A) .t � now/]v

VTact.t;A; Ž; v/
1D [^ t 0 D if .Enabled hAiv/0

then if hAiv _ :Enabled hAiv
then nowC Ž
else t

else 1
^ v0 6D v].t;v/

PTact.t;A; Ž; v/
1D [^ t 0 D if Enabled hAiv

then if hAiv then nowC Ž
else t

else t C .now0 � now/
^ .now; v/0 6D .now; v/].t;v;now/

Pj
1D . j 2 I/) .tj � now/

At
j

1D Aj ^ Pj

Bj
1D Aj ^ .now0 D now/

Bt
j

1D At
j ^ .now0 D now/
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T
1D minfTj : j 2 J ^ Enabled hAj ivg

1
1D minf1j : j 2 Jg

NowT
1D .now0 D min.nowC1; T// ^ .v0 D v/

C
1D _ .T 6D now/ ^ NowT
_ .T D now/ ^ 9 j 2 J : .Tj D T / ^ Bt

j

h1i1. Choose JP and JV such that:
1. J D JP [ JV

2. JP \ JV D ;
3. 8 j 2 JV : 5) VTimer.Tj ;Aj ; 1j ; v/

4. 8 j 2 JP : 5) PTimer.Tj ;Aj ; 1j ; v/

PROOF: JP and JV exist by assumption h0i.3b.
h1i2. 5t ) 2Inv, where

Inv
1D 1.^ 8 j 2 J : Tj 2 [now;1]

2.^ now 2 R
3.^ 8 j 2 J : .Enabled hAjiv D

Enabled .hAj iv ^ .now0 D now//
4.^ 8k 2 I \ J : tk � Tk

5.^ 8 j 2 JV : :Enabled hAj iv ) .Tj D1/
PROOF SKETCH: It follows immediately from the hypotheses that 5t implies
2Inv:3 and2Inv:4. The proofs for the other conjuncts of Inv are straightforward
but somewhat tedious invariance proofs, which are omitted.
h2i1. RTv ) 2Inv:2
h2i2. For all j 2 J : 5 ^2Inv:2^MaxTime.Tj/) 2Inv:1
h2i3. 5t ) 2Inv:3
h2i4. 5t ) 2Inv:4
h2i5. 5t ) 2Inv:5
h2i6. Q.E.D.

PROOF: h2i1–h2i5.
h1i3. 1. 5 D Init ^2M

2. 5t D Init t ^2N t , for some predicate Initt .
where
M

1D ^ [N ]w
^ 8 j 2 JP : PTact.Tj ;Aj ; 1j ; v/

^ 8 j 2 JV : VTact.Tj ;Aj ; 1j ; v/

N
t 1D ^M

^ RTactv
^ 8i 2 I : MinTact.ti;Ai ; v/

^ 8 j 2 J : MaxTact.Tj/
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PROOF: 1 follows from assumptions h0i.0a and h0i.3b, and 2 follows from the
definition of 5t , since 2 distributes over ^. (A simple calculation shows that
M D [M] f and N t D [N t]g, for suitable tuples f and g, so 2M and 2N t are
TLA formulas.)
h1i4. hCi.now;v/ is a subaction of5t .
h2i1. For all j in J : hBt

jiv is a subaction of5t .
h2i2. hNowTinow is a subaction of5t .
h2i3. Q.E.D.

PROOF: By h2i1 and h2i2, since hNowTinow D hNowTi.now;v/, hBt
jiv D

hBt
ji.now;v/, Lemma 4.4 implies that the disjunction of subactions is a sub-

action, and Lemma 4.3 implies that if D is a subaction, then P ^ D is also a
subaction, for any predicate P.

h1i5. 5t ^WF.now;v/.C/) NZ
PROOF: By the Lattice Rule [13], it suffices to
ASSUME: r 2 R
PROVE: 5t ^WF.now;v/.C/ ) . .now D r/; .now 2 [r C1;1// /
PROOF SKETCH: The standard method of proving that now D r leads to now 2
[rC1;1/ is to assume that now D r and now is never in [rC1;1/, and derive
a contradiction. Step h2i2 below proves that, if now equals r and it is never in
[r C1;1/, then it is always in [r; r C1/. It therefore suffices to assume now
is always in [r; r C1/ and derive the contradiction.
The contradiction is obtained by showing that eventually there is no upper-bound
timer preventing the advance of now past r C1. The timers that could prevent
the advance of now are the ones in the set U of timers that are less than r C1.
Step h2i4 asserts that U eventually becomes empty, and h2i5 asserts that time
then advances past r C1.
LET: U

1D f j 2 J : Tj < r C1g
V

1D f j 2 J : now < Tj < r C1g
TimerAct

1D 8 j 2 J : _ VTact.Tj ;Aj ; 1j ; v/

_ PTact.Tj ;Aj ; 1j ; v/

h2i1. Inv) Enabled hCi.now;v/

h2i2. 5t )
2..now D r/^ 2.now 2 .�1; r C1// ) 2.now 2 [r; r C1///

h2i3. ASSUME: j 2 J
PROVE: 1. 5t ^2.now 2 [r; r C1// ) 2.. j =2 U/) 2. j =2 U//

2. 5t ^2.now 2 [r; r C1// ) 2.. j =2 V/) 2. j =2 V//
h2i4. 5t ^2.now 2 [r; r C1// ^WF.now;v/.C/ ) 32.U D ;/
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h2i5. ^ 2.now 2 [r; r C1//
^ 2.U D ;/
^ 2Inv
^WF.now;v/.C/

) true; .now ½ r C1/
h2i6. Q.E.D.

PROOF: h2i2, h2i4, h2i5, h1i2, and temporal logic.
h1i6. .E �F Mt ; E ) WF.now;v/.C// is ¼-machine realizable.
h2i1. Mt constrains at most ¼.
h2i2. Q.E.D.

PROOF: We apply Proposition 4, with E substituted for8, Mt substituted for
5, and the single formula WF.now;v/.C/. Step h2i1 asserts that Mt constrains
at most ¼. The three numbered hypotheses of the proposition are proved as
follows:
1. h1i4.
2. Assumptions h0i.6a and h0i.6b and the definition of C.
3. Vacuous.

h1i7. .true;NZ/ is ¼-machine realizable.
PROOF: Assumption h0i.6b.
h1i8. Q.E.D.

PROOF: Proposition 5, using h0i.5, h1i6, h1i7, and h1i5.

B.7.2 Detailed Proof of the Theorem

h1i1. Choose JP and JV such that:
1. J D JP [ JV

2. JP \ JV D ;
3. 8 j 2 JV : 5) VTimer.Tj ;Aj ; 1j ; v/

4. 8 j 2 JP : 5) PTimer.Tj ;Aj ; 1j ; v/

h1i2. 5t ) 2Inv, where
Inv

1D 1.^ 8 j 2 J : Tj 2 [now;1]
2.^ now 2 R
3.^ 8 j 2 J : .Enabled hAjiv D

Enabled .hAj iv ^ .now0 D now//
4.^ 8k 2 I \ J : tk � Tk

5.^ 8 j 2 JV : :Enabled hAj iv ) .Tj D1/
h2i1. RTv ) 2Inv:2

PROOF: An invariance proof.
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h2i2. For all j 2 J : 5 ^2Inv:2^MaxTime.Tj/) 2Inv:1
PROOF: Assumption h0i.0c and an invariance proof.
h2i3. 5t ) 2Inv:3

PROOF: Assumption h0i.3c.
h2i4. 5t ) 2Inv:4

PROOF: Assumption h0i.4.
h2i5. 5t ) 2Inv:5

PROOF: h1i1.3, assumption h0i.3d, and an invariance proof.
h2i6. Q.E.D.
h1i3. 1. 5 D Init ^2M

2. 5t D Init t ^2N t , for some predicate Initt .
where
M

1D ^ [N ]w
^ 8 j 2 JP : PTact.Tj ;Aj ; 1j ; v/

^ 8 j 2 JV : VTact.Tj ;Aj ; 1j ; v/

N t 1D ^M
^ RTactv
^ 8i 2 I : MinTact.ti;Ai ; v/

^ 8 j 2 J : MaxTact.Tj/

h1i4. hCi.now;v/ is a subaction of5t .
h2i1. For all j in J : hBt

jiv is a subaction of5t .
ASSUME: j 2 J
PROVE: 5t ) 2 . Enabled hBt

j iv ) Enabled .hBt
jiv ^N t/ /

h3i1. 5 ) 2 .Enabled .hBt
j iv ^M/ )

Enabled .^ hBt
jiv ^M

^ 8i 2 I � f j g : :.hAiiv ^ hAjiv ^M/ / /

h4i1. 5 ) :Enabled .9 i 2 I � f j g : hAiiv ^ hAj iv ^M/

PROOF: h1i3.1, assumption h0i.1, and Lemma 4.4.
h4i2. Q.E.D.

PROOF: Lemma 4.2, substituting hBt
jiv ^M for A and 9 i 2 I � f j g :

hAiiv ^ hAj iv ^M for B.
h3i2. ^ hBt

jiv ^N t

^ 8i 2 I � f j g : :.hAiiv ^ hAjiv ^M/

D ^ hBt
jiv ^M

^ 8i 2 I � f j g : :.hAiiv ^ hAjiv ^M/

PROOF: ^ hBt
jiv ^N t

^ 8i 2 I � f j g : :.hAiiv ^ hAj iv ^M/
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D [by definition of hBt
jiv]

^ At
j ^ .v0 6D v/ ^ .now0 D now/ ^N t

^ 8i 2 I � f j g : :.hAiiv ^ hAjiv ^M/

D [by definition ofN t]
^ At

j ^M^ .v0 6D v/ ^ .now0 D now/
^ 8i 2 I : Ai ) .ti � now/
^ 8i 2 I � f j g : :.hAiiv ^ hAjiv ^M/

D [by definition of At
j ]

^ Pj ^Aj ^M ^ .v0 6D v/ ^ now0 D now
^ 8i 2 I : Ai ) .ti � now/
^ 8i 2 I � f j g : :.Ai ^Aj ^M ^ .v0 6D v//
D [by predicate logic]
^ Pj ^Aj ^M ^ .v0 6D v/ ^ .now0 D now/
^ . j 2 I/) .tj � now/
^ 8i 2 I � f j g : :.Ai ^Aj ^M ^ .v0 6D v//
D [by definition of hAkiv andM]
^ Pj ^Aj ^M ^ .v0 6D v/ ^ .now0 D now/
^ . j 2 I/) .tj � now/
^ 8i 2 I � f j g : :.hAiiv ^ hAjiv ^M/

D [by definition of Pj ]
^ Pj ^Aj ^ .v0 6D v/ ^ .now0 D now/ ^M
^ 8i 2 I � f j g : :.hAiiv ^ hAjiv ^M/

D [by definition of hBt
jiv]

^ hBt
jiv ^M

^ 8i 2 I � f j g : :.hAiiv ^ hAjiv ^M/

h3i3. 5) 2 . Enabled .hBt
jiv ^M/) Enabled .hBt

jiv ^N t/ /

PROOF: h3i1, h3i2, and Lemma 4.5.
h3i4. 5) 2.Pj ^ Enabled hBjiv ) Pj ^ Enabled .hBj iv ^M//

PROOF: h1i3, Assumption h0i.3a, and the definition of Bj .
h3i5. 5) 2 . .Enabled hBt

jiv/) Enabled .hBt
j iv ^M/ /

PROOF: h3i4, the definition of Bt
j , and Lemma 4.3.

h3i6. 5) 2..Enabled hBt
j iv/) Enabled .hBt

jiv ^N t//

PROOF: h3i5 and h3i3.
h3i7. Q.E.D.

PROOF: h3i6 and the definition of 5t , which implies5t ) 5.
h2i2. hNowTinow is a subaction of5t .
h3i1. 5t ) 2 . .Enabled hNowTinow/ )

.Enabled .hNowTinow ^M// /
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h4i1. 5t ) 2 . .Enabled NowT/ ) .Enabled .NowT ^M// /

PROOF: h1i3, assumption h0i.2b, and the definition of NowT , since 5t

implies5.
h4i2. Q.E.D.

PROOF: h4i1 and Lemma 4.3, substituting now 6D T for P (since hNowTinow

equals NowT ^ .now 6D T /).
h3i2. 5t ) 2.Enabled .hNowTinow ^M/ )

Enabled .hNowTinow ^N t//

h4i1. .Inv ^ hNowTinow ^M/) .hNowTinow ^N t/

h5i1. Inv ^ hNowTinow) RTactv
PROOF: h1i3 (Inv.1 and Inv.2).
h5i2. 8i 2 I : hNowTinow) MinTact.ti;Ai ; v/

PROOF: MinTact.ti;Ai ; v/ D [ : : : ]v, and hNowTinow implies
v0 D v.
h5i3. 8 j 2 J : Inv ^ hNowTinow ^M) MaxTact.Tj/

ASSUME: 1. j 2 J
2. Inv ^ hNowTinow ^M

PROVE: MaxTact.Tj /

h6i1. CASE: Enabled hAjiv
h7i1. now0 � Tj

PROOF: Inv.1, Inv.2, hNowTinow, and the definitions of NowT,
since case assumption h6i and the definition of T imply Tj ½ T .
h7i2. CASE: j 2 JP

h8i1. CASE: T 0j D Tj

PROOF: h7i1 and the definition of MaxTact.Tj/.
h8i2. CASE: T 0j D nowC1j

PROOF: Inv.2, hNowTinow, and definition of MaxTact.Tj/.
h8i3. Q.E.D.

PROOF: h8i1, h8i2, and case assumption h7i, since case assump-
tion h6i and the definition of PTact.Tj ;Aj ; 1j ; v/ imply that
these are the only possibilities.

h7i3. CASE: j 2 JV

h8i1. Tj D T 0j
PROOF: Case assumption h7i and the definitions of M and
VTact.Tj ;Aj ; 1j ; v/, since hNowTiv implies v D v0.
h8i2. Q.E.D.

PROOF: h7i1, h8i1, and the definition of MaxTact.Tj/.
h7i4. Q.E.D.

PROOF: h7i2, h7i3, h1i1.1, and assumption h5i.1.
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h6i2. CASE: :Enabled hAj iv
h7i1. now; now0 2 R and now0 > now.

PROOF: Inv.1, Inv.2, hNowTinow, and the definition of T .
h7i2. CASE: j 2 JP

h8i1. T 0j ½ now0

PROOF: h7i1, case assumption h7i, Inv.1, and the definitions of
M and PTact.Tj ;Aj ; 1j ; v/.
h8i2. Q.E.D.

PROOF: h8i1 and the definition of MaxTact.Tj/.
h7i3. CASE: j 2 JV

h8i1. Tj D1
PROOF: By case assumption h7i and Inv.5.
h8i2. T 0j D1

PROOF: h8i1, case assumption h7i, and the definitions ofM and
VTact.Tj ;Aj ; 1j ; v/, since hNowTiv implies
v D v0.
h8i3. Q.E.D.

PROOF: h7i1, h8i2, and the definition of MaxTact.Tj/.
h7i4. Q.E.D.

PROOF: h7i2, h7i3, h1i1.1, and assumption h5i.1.
h6i3. Q.E.D.

PROOF: h6i1 and h6i2.
h5i4. Q.E.D.

PROOF: h5i1, h5i2, h5i3, and the definition ofN t .
h4i2. Q.E.D.

PROOF: h4i1 and h1i2, since by Lemma 4.3 and Lemma 4.5, Inv^D) E

implies 2Inv ) 2..Enabled D/ ) .Enabled E//, for any actions D
and E .

h3i3. Q.E.D.
PROOF: h3i1 and h3i2.

h2i3. Q.E.D.
h1i5. 5t ^WF.now;v/.C/) NZ

ASSUME: r 2 R
PROVE: 5t ^WF.now;v/.C/ ) . .now D r/; .now 2 [r C1;1// /
LET: U

1D f j 2 J : Tj < r C1g
V

1D f j 2 J : now < Tj < r C1g
TimerAct

1D 8 j 2 J : _ VTact.Tj ;Aj ; 1j ; v/

_ PTact.Tj ;Aj ; 1j ; v/
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h2i1. Inv) Enabled hCi.now;v/

h3i1. CASE: T 6D now
PROOF: By the definition ofC, since case assumption h3i implies Enabled hNowTinow.
h3i2. CASE: T D now
h4i1. Choose j 2 J such that .Tj D T / ^ Enabled hAjiv .

PROOF: Inv.2, case assumption h3i, and the definition of T .
h4i2. Enabled hBjiv

PROOF: h4i1, Inv.3, and the definition of hBjiv.
h4i3. Enabled hBt

jiv
PROOF: h4i2, Inv.4, case assumption h3i, and the definition of hBt

jiv .
h4i4. Q.E.D.

PROOF: Case assumption h3i, h4i3, and the definition of C.
h3i3. Q.E.D.

PROOF: h3i1 and h3i2.
h2i2. 5t )

2..now D r/^ 2.now 2 .�1; r C1// ) 2.now 2 [r; r C1///
h3i1. 2[RTactv]now) ..now D r/) 2.now 2 [r;1///

PROOF: A standard invariance argument.
h3i2. 2[RTactv]now) 2..now D r/) 2.now 2 [r;1///

PROOF: h3i1 and simple temporal logic.
h3i3. 5t ) 2..now D r/) 2.r � now//

PROOF: h3i2, since5t ) RTv and RTv ) 2[RTactv]now.
h3i4. Q.E.D.

PROOF: h3i3, using the temporal logic tautology
.F ; G/) ..F ^2H/; .G ^2H//

h2i3. ASSUME: j 2 J
PROVE: 1. 5t ^2.now 2 [r; r C1// ) 2.. j =2 U/) 2. j =2 U//

2. 5t ^2.now 2 [r; r C1// ) 2.. j =2 V/) 2. j =2 V//
PROOF: A standard invariance proof, using assumption h0i.3b.
h2i4. 5t ^2.now 2 [r; r C1// ^WF.now;v/.C/ ) 32.U D ;/

PROOF SKETCH: The set V consists of those timers in U that are not equal
to now. To prove that U is eventually empty, we show that, whenever U is
nonempty, eventually U or V gets smaller. Since U and V are finite, U must
eventually become empty.
h3i1. ASSUME: U0 and V0 sets, with U0 6D ;.
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PROVE: ^ 2..U � U0/ ^ .V � V0//

^ 2.now 2 [r; r C1//
^ 2Inv
^ 2[TimerAct].now;v/

^WF.now;v/.C/

) ..U D U0/ ^ .V D V0// ;

.U ² U0/ _ ..U � U0/ ^ .V ² V0//

PROOF SKETCH: This is a straightforward application of rule WF1 (Lemma 3),
with the following substitutions.
LET: I

1D 1.^ now 2 [r; r C1/
2.^ .U � U0/ ^ .V � V0/

3.^ Inv

P
1D .U D U0/ ^ .V D V0/

Q
1D .U ² U0/ _ ..U � U0/ ^ .V ² V0//

N
1D TimerAct

A
1D C

f
1D .now; v/

h4i1. I 0 ) .P 0 _ Q0/
PROOF: Obvious.
h4i2. ASSUME: P ^ I ^ I 0 ^ hN ^Ai f

PROVE: Q0

h5i1. CASE: T D now
h6i1. Choose j in J such that .Tj D T / ^ hBt

jiv.
PROOF: A and case assumption h5i.
h6i2. T 0j ½ r C1

PROOF: h6i1, I:1, the definition of Bt
j , and TimerAct.

h6i3. j 2 U ^ j =2 U 0

PROOF: h6i1, case assumption h5i, and I .1.
h6i4. j =2 U 0

PROOF: h6i2.
h6i5. Q.E.D.

PROOF: h6i3, h6i4, and I 0.2.
h5i2. CASE: T 6D now
h6i1. .now0 D T / ^ .v0 D v/

PROOF: A and case assumption h5i.
h6i2. CASE: T 2 .now; r C1/
h7i1. Choose j in J such that .Tj D T / ^ Enabled hAiv.

PROOF: Case assumption h6i and the definition of T .
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h7i2. _ T 0j D now0

_ T 0j 2 [r C1;1]
PROOF: h6i1, h7i1, I .1, and TimerAct.
h7i3. j 2 V

PROOF: h7i1, case assumption h6i, and the definition of V .
h7i4. j =2 V 0

PROOF: h7i2 and the definition of V .
h7i5. Q.E.D.
h7i3, h7i4, and I 0:2.

h6i3. CASE: T 2 [r C1;1]
PROOF: Impossible by h6i1 and I 0.1.
h6i4. Q.E.D.

PROOF: h6i2, h6i3, I .3.1, and case assumption h5i.
h5i3. Q.E.D.

PROOF: h5i1 and h5i2.
h4i3. P ^ I ) Enabled hAi f

PROOF: h2i1.
h4i4. Q.E.D.

PROOF: h4i1, h4i2, h4i3, and Lemma 3.
h3i2. ASSUME: U0 and V0 sets, with U0 6D ;.

PROVE: 5t ^2.now 2 [r; r C1// ^WF.now;v/.C/ )
..U D U0/ ^ .V D V0// ;

..U ² U0/ _ ..U � U0/ ^ .V ² V0///

h4i1. 5t ) 2..U � U0/ ^ .V � V0/) 2..U � U0/ ^ .V � V0///

PROOF: Follows from h2i3.
h4i2. Q.E.D.

PROOF: h3i1, h4i1, and h1i2, since5t ) 2[TimerAct].now;v/ by assump-
tion h0i.3b.

h3i3. Q.E.D.
PROOF: Since U and V are finite by assumption h0i.0d, it follows from h3i2
and the Lattice Rule [13] that 5t ^ 2.now 2 [r; r C 1// ^WF.now;v/.C/

implies 3.U D ;/. By h2i3, 5t ^ 2.now 2 [r; r C 1// implies 3.U D
;/) 32.U D ;/.

h2i5. ^ 2.now 2 [r; r C1//
^ 2.U D ;/
^ 2Inv
^WF.now;v/.C/

) true; .now ½ r C1/
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LET: I
1D 1.^ U D ;

2.^ now 2 [r; r C1/
3.^ Inv

P
1D true

Q
1D now ½ r C1

N
1D true

A
1D C

f
1D .now; v/

h3i1. I ^ I 0 ^ [N ] f ) .P 0 _ Q0/
PROOF: Immediate, since P 0 D true.
h3i2. ASSUME: P ^ I ^ I 0 ^ hN ^Ai f

PROVE: Q0

h4i1. T 2 [r C1;1]
PROOF: By I .
h4i2. hNowTinow

PROOF: By h4i1, I .2, and A.
h4i3. Q.E.D.

PROOF: h4i1, h4i2, and the definition of NowT.
h3i3. P ^ I ) Enabled hAi f

PROOF: h3i1.
h3i4. Q.E.D.

PROOF: h3i1, h3i2, h3i3, and Lemma 3.
h2i6. Q.E.D.
h1i6. .E �F Mt ; E ) WF.now;v/.C// is ¼-machine realizable.
h2i1. Mt constrains at most ¼.
h3i1. M constrains at most ¼.

PROOF: Assumption h0i.5.
h3i2. RTv constrains at most ¼.

PROOF: Assumption h0i.6b.
h3i3. For all i in I , MinTime.ti;Ai ; v/ constrains at most ¼.

PROOF: By definition of MinTime, a step violates MinTime.ti;Ai ; v/ only if
it is an hAiiv step, so this follows from Assumption h0i.6a.
h3i4. For all j in J , MaxTime.Tj/ constrains at most ¼.

PROOF: Assumption h0i.6b.
h3i5. Q.E.D.

PROOF: h3i1–h3i4 and the definition of Mt .
h2i2. Q.E.D.
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h1i7. .true;NZ/ is ¼-machine realizable.
h1i8. Q.E.D.
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