
SRC Technical Note

1996-002a

September 12, 1996

Minor correction, January 5, 1997

The Module Structure of TLA+

Leslie Lamport

Systems Research Center
130 Lytton Avenue

Palo Alto, CA 94301
http://www.research.digital.com/SRC/

Copyright 1997 Digital Equipment Corporation. All rights reserved

Back to TLA home page

This note informally describes the syntax and semantics of TLA+ down to, but not including, the level of
expressions. Its main purpose is to introduce and explain the constructs for including modules that were
introduced in August, 1996.

Table of Contents

Modules, Declarations, and Definitions
Including One Module in Another
Modules Inside Modules
Local Definitions
Higher-Order Operators
Assumptions and Theorems

1 of 15

Expression Levels
A Closer Look at Instantiation
Notes

Modules, Declarations, and Definitions

A TLA+ specification is organized as a collection of modules. A module looks like this: (Note 1)

 ----------- MODULE DirectedGraphs ------------
 body
 --
 more body
 ==

The body consists of a sequence of statements, where a statement is a declaration, definition,
assumption, or theorem. We will ignore assumptions and theorems for now. Horizontal lines like

can appear between statements; they are purely decorative.

A declaration statement looks like this:

 CONSTANTS Node, Edge

It adds to the module the declarations of Node and Edge as constant symbols. TLA+ also allows
variable symbols, identified by the keyword "VARIABLES". (Note 2) A declared symbol is a "free
parameter" of the module.

A definition statement looks like this:

 NonEdge == (Node \X Node) \ Edge

Assuming that Edge and Node are declared as above, this statements adds to the module the
definition that defines the symbol NonEdge to equal the expression

 (Node \X Node) \ Edge

We will not worry about the meaning of this and other expressions.

We can follow this definition statement with the definition statement

 NonTrivialNonEdge == NonEdge \ {<<n, n>> : n \in Node}

This defines the symbol NonTrivialNonEdge to be the expression

 ((Node \X Node) \ Edge) \ {<<$n, $n>> : $n \in Node}

Observe that to obtain this definition, we replace the defined symbol NonEdge by its definition, and
we replace the bound variable n with a new symbol $n that cannot be declared or defined by the
user.

2 of 15

In this way, a definition always defines a symbol to equal an expression containing only declared
symbols, bound variables that are different from any symbols typed by the user, and the built-in
operators of TLA+ like \X and \.

Symbols can also be defined to equal operators that take arguments. (Note 3) For example,

 Nbrs(n, m) == <<n, m>> \in Edge

defines the symbol Nbrs to be an operator that assigns to any expressions exp_1 and exp_2 the
expression

 <<exp_1, exp_2>> \in Edge

We will denote this operator

 LAMBDA $n, $m : <<$n, $m>> \in \ Edge

We use LAMBDA only to describe the semantics of modules; it is not an operator of TLA+. (As
before, we replaced the bound variables n and m by "untypable" symbols $n and $m.) (Note 4)

TLA+ allows you to define prefix, infix, and postfix operators. For example, writing

 n ?? m == <<n, m>> \in Edge

defines the infix operator ?? to be the same as the ordinary operator Nbrs. (Note 5)

In a definition, the expression to the right of the "==" can contain only TLA+ primitives, symbols that
have already been defined or declared, and definition parameters (for example, the symbols n and m
in the definition of Nbrs). Circular definitions are not allowed. (Recursive definitions will be
discussed elsewhere.)

Including One Module in Another

One builds large hierarchical specifications by building a new module "on top of" old modules. One
way to do this is with the EXTENDS statement at the beginning of the module. The statement

 EXTENDS Foo, Bar

simply adds the declarations and definitions from modules Foo and Bar (Note 6) to the current
module. (It adds assumptions and theorems, as described below.) This has approximately (Note 7)
the same effect as inserting the body of those modules in the current module.

The other way to use an existing module is with the INSTANCE statement, which instantiates
(substitutes for) the module's declared symbols. Suppose that module DirectedGraphs declares
the symbols Node and Edge, and defines the symbols NonEdge and Nbrs, as above. Consider the
following module:

 ------------------ MODULE SGraphs ------------------
 CONSTANT S

3 of 15

 Edge == { <<m, n>> \in S \X S : m \in n }

 INSTANCE DirectedGraphs WITH Node <- S, Edge <- Edge
 ==

The INSTANCE statement adds to module SGraphs all definitions obtained from the definitions of
DirectedGrahs by substituting S for the symbol Node and substituting the definition of Edge (from
module SGraphs) for the symbol Edge. Thus, the INSTANCE statement adds the following
definitions to module SGraphs:

NonEdge is defined to equal

 (S \X S) \ { <<$m, $n>> \in S \X S : $m \in $n }

Nbrs is defined to equal

LAMBDA $n, $m : <<$n, $m>> \in
 { <<$m, $n>> \in S \X S : $m \in $n }

Substitutions such as Edge <- Edge, in which a symbol is substituted for itself, are quite common.
We therefore introduce the convention that if no substitution for a declared symbol s of an
instantiated module appears in the WITH clause, then there is an implicit s <- s. (This means that s
must already be declared or defined in the current module.) Thus, the INSTANCE statement of
module SGraphs above can be written

 INSTANCE DirectedGraphs WITH Node <- S

If there are no explicit substitutions, the "WITH" is omitted.

A module may need to use more than one instantiation of the same module. For example, we may
want to use two different instances of the DirectedGraphs module, with different substitutions for
the parameters Node and Edge. We can't let the same symbol have two different definitions, so we
must rename the defined symbols. The statement

 Foo == INSTANCE DirectedGraphs WITH Node <- S

is the same as the INSTANCE statement in module SGraphs above except that it defines the symbols
Foo.NonEdge and Foo.Nbrs instead of the symbols NonEdge and Nbrs. (Note 8)

Sometimes we need to use a whole family of instantiations of the same module. We do this as
indicated by the following example:

 E(Set) == { <<T1, T2>> \in (SUBSET Set) \X (SUBSET Set)
 : T1 \subseteq T2 }

 DG(S) == INSTANCE DirectedGraphs
 WITH Node <- SUBSET S, Edge <- E(S)

(T1 and T2 are bound variables in the first definition.) For any expression exp, this defines
DG(exp).NonEdge to equal the expression obtained from the definition of NonEdge in the

4 of 15

DirectedGraphs module by substituting SUBSET S for Node and substituting the definition of
E(exp) for Edge. In other words, DG(exp).NonEdge equals

 ((SUBSET exp) \X (SUBSET exp))
 \ { <<$T1, $T2>> \in (SUBSET exp) \X (SUBSET exp)
 : $T1 \subseteq $T2 }

We can think of DG(exp).NonEdge as meaning DG.NonEdge(exp), where DG.NonEdge is
defined to be

 LAMBDA $S : ((SUBSET $S) \X (SUBSET $S)) \
 { <<$T1, $T2>> \in (SUBSET $S) \X (SUBSET $S)
 : $T1 \subseteq $T2 }

The INSTANCE statement above similarly defines DG(exp_1).Nbrs(exp_2,exp_3) for any
expressions exp_1, exp_2, and exp_3. Again, we can think of DG(exp_1).Nbrs(exp_2,exp_3)
as meaning DG.Nbrs(exp_1)(exp_2,exp_3), where DG.Nbrs is defined to be

 LAMBDA $S : LAMBDA $n, $m :
 <<$n, $m>> \in { <<$T1, $T2>> \in (SUBSET $S) \X (SUBSET $S)
 : $T1 \subseteq $T2 }

To summarize:

EXTENDS M
Adds to the current module the declarations and definitions (and assumptions and theorems)
from module M.

INSTANCE M WITH s_1 <- exp_1, ... , s_k <- exp_k
The s_i must be the declared symbols of module M. (If k=0, we omit the "WITH". Omitting
an explicit instantiation of a declared symbol s from the WITH clause is equivalent to adding
the instantiation s <- s.) This INSTANCE expression represents a mapping that assigns to
each defined symbol ds a definition ds_def, defined as follows. Let EXP_i be the
expression obtained from exp_i by replacing every symbol defined in the current module
with its definition, and replacing bound variables by new symbols. We let ds_def equal the
expression obtained from the definition of ds in M by replacing each declared symbol s_i
with EXP_i.

If this instance expression appears as a statement by itself, then each defined symbol
ds of M is defined in the current module to equal ds_def.

If this instance expression appears in the statement IM(p_1, ..., p_j) ==
INSTANCE..., then IM.ds is defined to equal

 LAMBDA $p_1, ... , $p_j : DS_def

for each defined symbol ds of M, where DS_def is obtained from ds_def by
replacing each symbol p_i by the new symbol $p_i. We write IM(e_1, ... ,
e_j).ds instead of IM.ds(e_1, ... , e_j). If j=0, we write IM ==... and
IM.ds instead of IM()==... and IM().ds.

5 of 15

The keyword INSTANCE can be followed by a comma-separated list of instantiations, as in

 INSTANCE Naturals, Sequences

If a module M has no declared symbols, then EXTENDS M and INSTANCE M are equivalent.
EXTENDS should be used only for breaking up what is logically a single specification into smaller
pieces. If M is a general-purpose module, INSTANCE M should be used.

Modules Inside Modules

One can put one module inside another, as in

 ------------- MODULE Outer ------------
 CONSTANT z
 ...
 ----------- MODULE IMod -----------
 CONSTANT x, y
 ...
 ====================================

 Inner(x,y) == INSTANCE IMod
 ...

Module IMod is like any module, except that it can use the declared symbol z and any other
symbols declared or defined before it in module Outer. Module IMod may be used only inside
module Outer. (Note 9)

Submodules such as IMod are often used in the following way. Suppose we want to define

 Spec == \exists x, y : InnerSpec

where InnerSpec is some complicated formula involving x and y. The obvious way to do this is:

 CONSTANT x, y
 ...
 InnerSpec == ...
 Spec == \exists x, y : InnerSpec

However, the definition of Spec is illegal because it violates the following syntactic rule of TLA+:

A symbol that is already declared or defined cannot be used as a bound variable.

(The purpose of this rule is to prevent confusion between bound variables and defined or declared
symbols.) We could write

 InnerSpec(x, y) == ...
 Spec == \exists x, y : InnerSpec(x,y)

However, InnerSpec may be defined in terms of a sequence of other defined symbols, each of
which is defined in terms of x and y. We would have to make x and y explicit parameters of all
those definitions. Instead, using the module structure in the example above, we can put the definition

6 of 15

of InnerSpec in submodule IMod and define

 Spec == \exists x, y : Inner(x, y).InnerSpec

Local Definitions

It often happens that a module A extends modules B and C, both of which extend module D. For
example, D might declare symbols and make some definitions that are used by both B and C.
Module A then obtains two copies of the definitions and declarations of D--one obtained by
extending B and the other obtained by extending C. TLA+ allows the same symbol to be declared
or defined two or more times, if the declarations or definitions are the same. (Note 10)

Adding more and more definitions with each level of module inclusion will eventually lead to
unintended name clashes. We don't want to know what modules are included by Naturals (the
module that defines the natural numbers and operators like +), so we need a way to avoid name
clashes with symbols defined by those modules. TLA+ provides local definitions as a way of
avoiding such name clashes. Preceding a definition with the keyword LOCAL makes that definition
local to the current module. For example, writing

 LOCAL Temp(x) == x + y

defines Temp in the current module. But the definition of Temp is not obtained by a module that
includes the current module--whether with EXTENDS or INSTANCE. Similarly, writing

 LOCAL INSTANCE M WITH ...

or

 LOCAL Temp(x) == INSTANCE M WITH ...

makes all the definitions included from M local to the current module.

Declarations cannot be made local. Symbols are defined in terms of declared symbols, and it
wouldn't make sense to make a symbol local if it appeared in a nonlocal definition. (Remember that
the statement df == exp defines df to be the expression obtained from exp by replacing defined
symbols with their definitions, so the definition of df has no defined symbols.) Hence, one cannot
precede a declaration or an EXTENDS statement with "LOCAL". (Remember that EXTENDS M adds
M's declared symbols to those of the current module. If M declares no symbols, one can write
INSTANCE M instead of EXTENDS M.)

When writing a general-purpose module, definitions included from other modules should be made
local. For example, a general-purpose Graphs module should include the Naturals module by

 LOCAL INSTANCE Naturals

That way, a module that includes Graphs can define + to mean something other than addition of
natural numbers.

Higher-Order Operators

7 of 15

Operators can take operators as arguments. For example

 Double(A, F(_,_)) == F(A,A)

defines Double to be an operator that takes two arguments---the first of which is an expression,
and the second of which is an operator that takes two arguments, both of which are expressions.
For example, Double(3,+) equals 3+3, and Double({a},Nbrs) equals Nbrs({a},{a}).

TLA+ does not allow an operator to take as an argument an operator that takes as an argument an
operator. In other words, there can be at most two levels of parentheses to the left of the "==". One
cannot define an operator that is any "higher-order" than Double.

The value of a TLA+ expression cannot be an operator; it must be a simple value. (A LAMBDA
expression is one whose value is an operator, but one cannot write LAMBDA expressions in TLA+.)

One can declare constant symbols to be operators. For example,

 CONSTANT Foo(_, _)

declares Foo to be an operator that takes two arguments. Since the value of an expression cannot
be an operator, the declared operator Foo can be instantiated only by an operator that has the same
number of arguments---for example, by writing

 INSTANCE ... WITH Foo <- +

One cannot declare variable symbols to be operators.

Assumptions and Theorems

A module can contain assumptions and theorems, of the form ASSUME exp and THEOREM exp,
where exp is an expression. The expression exp can contain symbols declared or defined anywhere
in the module.

For simplicity, suppose that module M contains only the single assumption ASSUME a and the single
theorem THEOREM t. (The generalization is obvious.) Let A and T be the expressions obtained from
a and t by replacing all defined symbols with their definitions, so the free variables of A and T are
declared symbols. We make the syntactic requirement that A contain only constant symbols. (Note
11) Module M is valid iff the formula A => T is valid. Writing a module asserts that the module is
valid, so a theorem represents a proof obligation for the writer of the module.

When module M is included with an EXTENDS M statement, its assumptions and theorems are added
to those of the current module. When module M is instantiated with an INSTANCE M expression,
only its definitions are added to the current module, not its assumptions or theorems (or declared
symbols).

Suppose M is valid, so A => T is a valid formula. Suppose that the instantiation

 INSTANCE M WITH s_1 <- exp_1, ... , s_k <- exp_k

8 of 15

is syntactically correct, meaning that every declared symbol of M is instantiated with an expression all
of whose symbols are defined or declared. Substitution preserves validity, so the formula obtained
from A => T by replacing each s_i with exp_i is valid.

One often write modules with assumptions but no theorems. These assumptions serve no logical
function, since they are not used to prove anything (except perhaps if the module is extended by
another module). However, they serve as useful comments to the reader about the values one
expects these symbols to assume. For example, one might add to module DirectedGraphs the
assumption

 ASSUME Edge \subseteq Node \X Node

which indicates that one expects Edge to be a set of ordered pairs of elements from the set Node.
We expect the assumption to be satisfied when the module is instantiated, but we do not make this
a formal requirement. (Note 12)

Expression Levels

TLA extends "ordinary math" (first-order logic plus set theory) with declared variable symbols and
a few nonconstant operators. The nonconstant operators of TLA+ are

 ~> (leads-to) ' (prime)
 -+-> (while) ENABLED
 \cdot (action composition) UNCHANGED
 [...]_ (e.g., [A]_f) \EE (temporal \exists)
 <<...>>_ (e.g., <<A>>_f) \AA (temporal \forall)
 [] <> WF SF

To define the semantics of TLA+, we take the following six to be primitive and we define the rest in
terms of them:

 ' ENABLED \cdot [] -+-> \EE

TLA places certain syntactic restrictions on the use of these operators. These restrictions are
described in terms of levels. Declared symbols and primitive TLA+ operators are assigned one of
four levels, listed below in increasing order:

Constant Level
Contains declared constant symbols and constant-level TLA+ operators.

State Level
Contains declared variable symbols and the ENABLED operator.

Action Level
Contains the operators ' and \cdot.

Temporal Level
Contains the operators [], -+->, and \EE.

9 of 15

The level of an expression is defined to be the level of its highest-level subexpression, except that
ENABLED A is a state-level expression even when A is an action-level expression. Note that in
determining the level of a subexpression, bound variables are considered to have constant level
except that bound variables introduced by the temporal quantifiers \EE and \AA are state-level
symbols.

TLA places the following syntactic restrictions on expressions.

The expression exp' is allowed only if exp is a state-level or contant-level expression.

A temporal-level expression is either
a constant-level or temporal-level operator applied to constant-level, state-level, or
temporal-level expressions.

an expression having one of the the following forms

 [][A]_f <><<A>>_f WF_f(A) SF_f(A)

where A has at most action level and f has at most state level.

These level restrictions place restrictions on the arguments of defined operators. For example,
consider the operator S defined by:

 S(U, V, x) == U => Enabled (V \/ x')

The expression S(e_1, e_2, e_3) is legal iff expression e_2 has at most action level, and e_3
has at most state level. The level of the complete expression is the maximum of the level of e_1 and
state level. (Note 13)

A constant-level module is one that has no declared variable symbols and uses only constant-level
operators. Constant-level modules are used for defining data structures and for describing "ordinary
math".

We make the following rules for instantiation (by an INSTANCE expression):

Except when instantiating a constant-level module, a constant symbol can be instantiated only
by a constant-level expression. (Arbitrary instantiations of declared symbols are allowed
when instantiating a constant-level module.)

Variable symbols can be instantiated only by constant-level or state-level expressions.

These restrictions ensure that the instantiated modules satisfy the syntactic level restrictions of TLA.
They are also needed to ensure that the instantiation of a valid module is valid. For example, the
TLA formula [][c'=c]_c is valid (true for all behaviors) if c is a declared constant symbol.
Substituting a variable for c would produce an invalid formula (one that is false for some behaviors).

A Closer Look at Instantiation

We have stated that instantiation preserves validity. If F is defined in module M to equal a valid

10 of 15

formula, and we write

 I == INSTANCE M WITH ...

then I.F is a valid formula. Instantiation is substitution, and in the presence of quantifiers,
substitution preserves validity only if it is defined properly. In particular, substitution must be defined
so capture of free variables by quantifiers is not allowed. For example, consider the valid formula
\exists u : u /= v. Naive substitution of u for v in this formula would yield the invalid formula
\exists u : u /= u. Validity is not preserved because the free symbol u, which is being
substituted for v, is captured by the quantifier \exists.

The problem of capture of free variables by explicit quantifiers is avoided in TLA+ by renaming
bound variables. The module

 ---------------- MODULE M ----------------
 CONSTANT v
 F == \exists u : u /= v
 ==

defines F to be the formula \exists $u : $u /= v. The statement

 I == INSTANCE M WITH v <- u

then defines I.F to be the valid formula \exists $u : $u /= u.

Some nonconstant operators of TLA+ contain implicit quantification--most notably, the operator
ENABLED. Suppose module M is

 ---------------- MODULE M ----------------
 VARIABLE u, v
 F == ENABLED ((u' = u) /\ (v' /= v))
 ==

Then F is a valid formula. Now consider the statement

 I == INSTANCE M WITH u <- x, v <- x

A naive substitution would make I.F the formula

 ENABLED ((x' = x) /\ (x' /= x))

which is equivalent to FALSE. The problem is that, within an ENABLED expression, primed variables
are really bound, so this naive substitution results in variable capture. The meaning of formula F is
really

 \exists $uprime, $vprime : ($uprime = u) /\ ($vprime = v)

To ensure that instantiation preserves validity, we make the following rule for the ENABLED operator:

When instantiating a module, every declared variable symbol that occurs primed in an
ENABLED expression is renamed to a new variable symbol before substituting for the

11 of 15

declared symbols.

For example,

 ------------------ MODULE M ------------------
 VARIABLE u
 G(v, A) == ENABLED (A \/ ({u, v}' = {u, v}))
 H == G(u, u' /= u)
 ==

defines G to equal

 LAMBDA $v, $A : ENABLED ($A \/ ({u, $v}' = {u, $v}))

and defines H to equal

 ENABLED (u' /= u) \/ ({u, u}' = {u, u})

Before instantiating M, the definition of G is changed to to

 LAMBDA $v, $A : ENABLED ($A \/ ({$$u, $v}' = {u, $v}))

and the definition of H is changed to

 ENABLED ($$u' /= u) \/ ({$$u, $$u}' = {$$u, $$u})

(The two "$"s in the name $$x are meant to indicate that it is a new bound variable symbol.) Note
that the substitution for u' in the definition of G occurs after that definition is used in defining H.

As another example, consider the module

 ----------------- MODULE MM ------------------
 VARIABLES u, v
 A == (u' = u) /\ (v' /= v)
 B(d) == ENABLED d
 C == B(A)
 ==

and the instantiation

 VARIABLE x
 I == INSTANCE MM WITH u <- x, v <- x

This instantiation yields

 I.A = (x' = x) /\ (x' /= x)
 I.B = LAMBDA $d : ENABLED $d
 I.C = ENABLED (($u' = x) /\ ($v' = x))

Note that I.C is not equivalent to I.B(I.A). In fact, I.C is valid while I.B(I.A) is equivalent to
FALSE.

12 of 15

The other TLA+ primitives that have implicit quantification are \cdot (action composition) and
-+-> (while). The rule for \cdot is similar to that for ENABLED, where in the expression e_1
\cdot e_2, primed variables in e_1 and unprimed variables in e_2 are bound. The rule for -+-> is
that, before instantiating a module, each instance of P -+-> Q is replaced by an equivalent formula
containing explicit quantification. The precise formula can be found elsewhere.

Note 1
One can also write

 BEGIN MODULE DirectedGraphs
 body
 END

The precise ASCII syntax of module delimiters and decorative horizontal lines has not been
determined yet.

Note 2
The "S" at the end of "VARIABLES" and "CONSTANTS" is optional. The keyword
"PARAMETER(S)" means the same as "CONSTANTS". If you are using TLA+ for ordinary
mathematics, with no actions or temporal formulas, then all the parameters are constants.

Note 3
Operators that take arguments are different from functions. Functions, and their definitions,
will be discussed elsewhere.

Note 4
The precise rule for turning a definition statement into a definition is: First replace all defined
symbols to the right of the == by their definitions; "beta-reduce" LAMBDA expressions when
possible--for example, reduce

 (LAMBDA $a : <<$a, $a>> \in S)(Y+Z)

to <<Y+Z, Y+Z>> \in S--and finally, replace all bound symbols, including the parameters
of the definition (the symbols n and m in the definition of Nbrs) by "untypable" symbols that
do not already appear in the expression.

Note 5
TLA+ provides large, fixed sets of infix and postfix operator symbols; they will be described
elsewhere.

Note 6
The translation from module names to modules is outside the scope of this document.
Presumably, a tool will have rules for finding named modules. We suggest that a module
named N appear in a file named N.tla. The directory in which this file is to be found will be
system dependent.

Note 7

13 of 15

If module Foo makes local definitions that clash with definitions in the current module, then
the body of Foo cannot be inserted into the current module. This is the only reason EXTEND
Foo is not equivalent to inserting the body of Foo in the current module.

Note 8
If module DirectedGraphs had defined an infix operator ??, then this statement defines
Foo.?? to be an infix operator. The expression a Foo.?? b looks strange, but the
alternatives seem worse. In practice, one does not define infix operators in modules that one
wants to use with this kind of renaming.

Note 9
Submodules provide a scoping mechanism for module names, which in principle could be
used to define the mapping between module names and modules. For example, the modules
written by user Jones of company XYZ could be submodules of a module named Jones,
which is a submodule of a module named XYZ. However, in practice, such name scoping will
be provided by directory structures and file search paths.

Note 10
Two declarations of a symbol s are the same if they both declare s to be a constant or both
declare it to be a variable. Two definitions are the same if they have parse trees that differ
only in the names of bound variables.

Note 11
In general, we should define validity of M to mean A |= T, which means that the validity of A
implies the validity of T. If A is a constant formula, then A |= T is equivalent to the validity of
A => T. For writing specifications, this special case is all we need, and restricting ourselves
to it allows us to avoid introducing the semantic operator |=.

Note 12
It is tempting to include an instantiated module's assumptions as theorems, so they become
proof obligations of the current module. However, it may be impossible to discharge those
proof obligations in the current module. For example, suppose we were specifying a graph
algorithm and we wrote

 VARIABLES N, E
 INSTANTIATE DirectedGraphs WITH Node <- N, Edge <- E

where N and E represent variables of the algorithm. The instantiated assumption of the
DirectedGraphs module is E \subseteq N \X N. It is impossible to prove this formula
because it is not valid; N and E are flexible variables, so they can assume any values. What
we do expect to be able to prove is

(*) Spec => [](E \subseteq N \X N)

where Spec is the TLA formula that specifies the algorithm. Formally, there is nothing special
about Spec; it is just one of many defined symbols. So, there is no reason to take (*) as the
proof obligation associated with the instantiation. Moreover, Spec might not even be defined
in the current module, but in some other module that extends the current one.

14 of 15

Note 13
For simplicity, we always consider Enabled A to have state level, even in those special
cases when we could determine that it is a constant formula.

This page was generated automatically by mtex software.

15 of 15

