SRC Technical Note 1997-022

Short-Length Menger Theorems

Monika Rauch Henzinger, Jon Kleinberg, and Satish Rao

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301
http://www.research.digital.com/SRC/

Jon Kleinberg is at Cornell University. His electronic mail address is: kleinber@cs.cornell.edu.

Satish Rao is at the NEC Research Institute. His electronic mail address is: satish@research.nj.nec.com.

Abstract

We give short and simple proofs of the following two theorems by Galil and Yu [3]. Let s and t be two vertices in an n-node graph G. (1) There exist k edge-disjoint $s-t$ paths of total length $O(n \sqrt{k})$. (2) If we additionally assume that the minimum degree of G is at least k, then there exist k edge-disjoint s - t paths, each of length $O(n / k)$.

Let $G=(V, E)$ be an undirected n-node graph, with no parallel edges, and let s and t be two vertices of G such that there exist k edge-disjoint s - t paths. Our goal is to give short proofs of the following two theorems of Galil and Yu [3].

Theorem 1 There exist k edge-disjoint s-t paths of total length $O(n \sqrt{k})$.
Theorem 2 If we additionally assume that the minimum degree of G is at least k, then there exist k edge-disjoint s-t paths, each of length $O(n / k)$.

We view G as a directed graph by replacing each undirected edge by two oppositely oriented directed edges. Our proof of the first theorem is based on a maximum flow algorithm of Even and Tarjan [2]; for our purposes, we need only consider its global structure. The algorithm of [2] runs in phases numbered $1,2, \ldots$. In phase d, a residual graph is maintained as a layered directed graph: the endpoints of each edge lie either in the same layer or in adjacent layers, and the distance from s to t is equal to d. The algorithm finds augmenting $s-t$ paths of length d in this layered graph until there exist no more such paths of length at most d; the phase then ends.

Proof of Theorem 1. We analyze the behavior of the Even-Tarjan algorithm for producing a flow of value k in G. We prove an upper bound on the total length of all augmenting paths found; this also upper bounds the total length of the flow paths. We set $\ell=2 n k^{-1 / 2}$. We say that an augmenting path is of type 0 if its length is at most ℓ, and of type $i(i \geq 1)$ if its length is between $2^{i-1} \cdot \ell$ and $2^{i} \cdot \ell$. The total length of all type 0 paths is at most $k \ell=2 n \sqrt{k}$. To bound the total length of all type i paths, for $i \geq 1$, note that at the start of phase $2^{i-1} \cdot \ell$ of the Even-Tarjan algorithm, there is some pair of adjacent layers in the residual graph whose union contains at most $n /\left(2^{i-2} \cdot \ell\right)$ vertices. Between this pair of layers there can be at most $n^{2} /\left(2^{2 i-2} \cdot \ell^{2}\right)$ edges, and hence at most this many augmenting paths can be produced from phase $2^{i-1} \cdot \ell$ onward. Thus the total length of all type i paths is at $\operatorname{most}\left(n^{2} 2^{-2 i+2} \ell^{-2}\right) \cdot\left(2^{i} \ell\right)=4 n^{2} \ell^{-1} 2^{-i}=2 n \sqrt{k} 2^{-i}$, and so the total length of all augmenting paths is at most $2 n \sqrt{k}+2 n \sqrt{k} \sum_{i \geq 1} 2^{-i}=4 n \sqrt{k}$.

For the proof of the second theorem, we consider the problem of finding a set of k edge-disjoint s - t paths in G whose total length is minimum. Let P_{1}, \ldots, P_{k}
be such a set of paths; say that an edge e is a flow edge if it is contained in some P_{i}, and a non-flow edge otherwise. Observe that if (u, v) is a flow edge, then by the optimality of $P_{1}, \ldots, P_{k},(v, u)$ is not a flow edge. Finding k edge-disjoint paths of minimum total length is a minimum-cost flow problem; if we take its linear programming dual, we obtain dual variables y_{v}, one for each $v \in V$, which are integers with the following properties. (See e.g. [1].)
(1) If (u, v) is a flow edge, then $y_{v}-y_{u} \geq 1$.
(2) If neither (u, v) nor (v, u) is a flow edge, then y_{u} and y_{v} differ by at most 1.
(3) We may assume without loss of generality that $y_{s}=0, y_{t} \geq 0$, and for every j in the interval $\left[0, y_{t}\right]$, there exists a node v with $y_{v}=j$. We define $X_{i}=$ $\left\{v: y_{v}=i\right\}$.
Proof of Theorem 2. We claim that for each $i \in\left[0, y_{t}-3\right],\left|\cup_{j=i}^{i+4} X_{j}\right| \geq \frac{1}{5} k$; the theorem will follow directly from this. By (3), there exist vertices $u \in X_{i+1}$, $v \in X_{i+2}$, and $w \in X_{i+3}$. Now, suppose that at most $\frac{1}{5} k$ flow paths pass through at least two of them. At least $3 k-3$ edges are incident to $\{u, v, w\}$; at most $4 \cdot \frac{1}{5} k+2 \cdot \frac{4}{5} k=\frac{12}{5} k$ of these are flow edges. Hence there are at least $\frac{3}{5} k-3$ nonflow edges incident to $\{u, v, w\}$; at least $\frac{1}{5} k-1$ of these are incident to a single one of these vertices. By (2), the endpoints of these non-flow edges lie in $\cup_{j=i}^{i+4} X_{j}$, and hence $\left|\cup_{j=i}^{i+4} X_{j}\right| \geq \frac{1}{5} k$.

Otherwise, at least $\frac{1}{5} k$ flow paths pass through at least two of u, v, w. Now, by (1), at most one flow path can pass through both u and v or both v and w; and at most one can pass directly from u to w. Thus (again by (1)), at least $\frac{1}{5} k-3$ of these paths must pass from u to w via distinct vertices in X_{i+2}. Hence $\left|X_{i+2}\right| \geq \frac{1}{5} k-3$, and so again $\left|\cup_{j=i}^{i+4} X_{j}\right| \geq \frac{1}{5} k$.

References

[1] R. Ahuja, T. Magnanti, J. Orlin, Network Flows, Prentice-Hall, 1993.
[2] S. Even, R. Tarjan, "Network flow and testing graph connectivity," SIAM J. Computing, 4(1975), pp. 507-518.
[3] Z. Galil, X. Yu, "Short-length versions of Menger's theorem," Proc. 27th ACM STOC, 1995, pp. 499-598.

