
SRC Technical Note

1997-029

December 1, 1997

WebL – A Programming Language for the Web

Thomas Kistler¹ and Hannes Marais²

¹ Information and Computer Science Department,
University of California at Irvine

E-mail: kistler@ics.uci.edu

² DIGITAL Systems Research Center
E-mail: marais@pa.dec.com

Systems Research Center
130 Lytton Avenue

Palo Alto, CA 94301
http://www.research.digital.com/SRC/

© Copyright 1997 Digital Equipment Corporation. All rights reserved

Abstract

In this paper we introduce a programming language for Web document processing called
WebL. WebL is a high level, object-oriented scripting language that incorporates two novel
features: service combinators and a markup algebra. Service combinators are language
constructs that provide reliable access to web services by mimicking a web surfer's behavior
when a failure occurs while retrieving a page. The markup algebra extracts structured and
unstructured values from pages for computation, and is based on algebraic operations on
sets of markup elements. WebL is used to quickly build and experiment with custom web
crawlers, meta-search engines, page transducers, shopping robots, etc.

1 of 14

1. A Computation Model for the Web

The architectural, physical and administrative constraints of the Internet require new models for computing over
planet-wide structures such as the World-Wide-Web. Some of the characteristics of the web, like its wide area
distribution, unreliable services, lack of referential integrity, security model, and lack of data typing, differ
immensely from those of traditional programming models, which presupposes a non-distributed, well-structured,
and predictable infrastructure. Furthermore, because of the web's geographical distribution, latency and
bandwidth – not CPU speed and memory size – become the limiting factors that need to be addressed. So what
kind of programming models and programming constructs are needed to compute on the web? To understand
this question, we first have to study typical web computations. In our view, a typical web computation can be
divided into three phases.

The input phase involves fetching one or more web pages for processing. During this phase we have to contend
with the web's geographic distribution and architectural inefficiencies. For example, one or more of the following
situations might apply when retrieving a page from a web service:

The page is available and can be retrieved successfully.
The server is unavailable or provides intermittent service due to a high load.
The page is (perhaps temporarily) unavailable or was redirected to another server.
The connection is unexpectedly terminated or the data transfer speed varies, stalling or dropping to an
unacceptable rate.
The page is mirrored geographically, perhaps on servers with different capacity.

Consequently, a programming model for the web not only has to expect several modes of failure (for which many
programs are typically not designed) but should also provide functionality to overcome these problems, for
example, to exploit the inherent paralellism of replicated servers. Our approach is to use service combinators to
make access to services more reliable and to simplify the handling of failures (see section 3).

The processing phase of a typical web computation involves extracting data values from pages and performing
computations on these data values. We assume pages to be marked-up in either XML or HTML, so as to exploit
the structural content of the page. Our data extraction technique is based on a markup algebra that performs
operations on sets of elements in a page (see section 4).

The output phase of a typical web computation covers the generation of web documents from values computed
during the processing phase, and storing them back on the web (for example, by publishing the page on a web
server).

Figure 1 depicts this general model of a web computation. Web pages flow through a pipeline of service
combinators for fetching pages, a markup parser, the markup algebra for extracting (or "searching" for) data
values from (on) a page, computing on those values, and page manipulation. Searching, computing and
manipulation is repeated as often as needed. Finally the page is regenerated from its internal representation by the
markup generator, and stored back on the web.

2 of 14

Figure 1.A Model for Computation on the Web

2. The Programming Language WebL

Our implementation of this computation model is called WebL. WebL is a high level, dynamically typed, object
oriented scripting language that was specifically designed for performing web computations. It incorporates two
novel features: service combinators and a markup algebra. WebL also provides functionality to generate new
web pages or to modify existing ones, and provides special modules to simplify web-related tasks. Besides the
features that are tailored towards manipulating HTML and XML, the language supports modules, closures,
exceptions, sets, lists, associative arrays, multithreading, built-in load balancing, and channel-based
synchronization. These features make WebL a convenient language to prototype computations on the web and an
excellent tool for web masters. WebL's syntax is a mix of C, C++, Modula-2 [Wir82], and Obliq [Car94]. Even
though we incorporated many features into the language, we believe WebL is still simple and easy to learn.

Some of the applications we constructed with WebL so far include:

Customizable web crawlers
Meta-search engines for popular search engines on the web
Meta-newspapers that collect articles from several sites according to your interests
Tools to build a newspaper from CDF-based descriptions [CDF97]
Shopping robots that shop for the cheapest books at several electronic bookstores
Tools to extract financial information from stock pages
Tools to extract and compute project information from DIGITAL's intranet
Tools to concatenate Latex2HTML-generated documents for printing
Tools to validate links in web pages

3 of 14

The WebL prototype is implemented in pure Java. To complement writing WebL programs, WebL functions are
also directly accessible from within Java code. This assists programmers that want to use the WebL functionality,
but don't want to learn yet another programming language. This mixed approach also allowed us to easily extend
WebL with support for existing Java APIs, for example libraries that implement web-servers and libraries to
access relational databases.

In the remainder of the paper we will concentrate on the two novel aspects of WebL, namely service
combinators (section 3) and the markup algebra (section 4). These sections are followed with related work
(section 5) and conclusions (section 6). An appendix lists example programs.

3. Service Combinators

An experienced web surfer exploits a repertoire of behaviors when confronted with the situations introduced in
section 1 (e.g. server failure, stalling or dropping service rates, etc.). We call these behaviors web reflexes. For
example, users may

reload a page on a stalled link
retry requests, taking short pauses in between requests
terminate a request that takes too long
switch to less used servers with the same information
switch to alternate sources of information
monitor the transfer rate and decide whether to wait for the page to arrive
run fetches in parallel, waiting for the first to finish, and stopping the other requests

A strategy for making computations on the web more reliable is to use programming constructs called service
combinators [CD97]. The main purpose of service combinators is to mimic these reflexes or, in a more general
way, to make any algorithmic behavior of web users scriptable. Therefore, under the basic premise that by
providing the programmer with easier ways to express these reflexes and it becomes easier to write robust
scripts, service combinators provide explicit language constructs to automate handling of time-out and failure,
exploitation of replicated data, etc. As in the approach suggested in [CD97], WebL maps service combinators
directly onto operators of the language. As will be noticed from the following examples, service combinators are
also convenient language constructs for handling exceptions.

For the remainder of this section S and T to denote operands (called services), which may contain primitives to
fetch pages or general WebL computations.

 Services

getpage(string, [. param1=val1, param2=val2,],
 [. header1=val1, header2=val2 .])
postpage(string, [. param1=val1, param2=val2,],
 [. header1=val1, header2=val2 .])

The getpage function fetches with the HTTP GET protocol the resource associated with the string URL.
The result returned is a page object that encapsulates the resource. The function fails if the fetch fails. The
second and third arguments to getpage are optional – when specified, they provide the server with query
arguments and HTTP headers respectively. A similar function called postpage uses the HTTP POST
protocol, used to fill in web-based input forms.

4 of 14

// This program simply attempts to fetch the named URL.
page := getpage("http://www.digital.com")

// This program looks up the word "java" on the
// AltaVista search engine.
page := getpage("http://www.altavista.digital.com/cgi-bin/query",
 [. pg="q", what="web", q="java" .])

 Sequential Execution S ? T

The "?" combinator allows a secondary service to be consulted in the case the primary service fails for
some reason. Thus, the service S ? T acts like the service S except that if S fails then it executes the
service T.

// This program first attempts to connect to AltaVista
// in California, and in the case of failure, attempts to
// connect to a mirror in Australia
page := getpage("http://www.altavista.digital.com") ?
 getpage("http://www.altavi sta.yellowpages.com.au")

 Concurrent Execution S | T

The "|" combinator allows two services to be executed concurrently. The service S | T starts both services
S and T at the same time and returns the result of whichever succeeds first. If both S and T fail, then the
combined service also fails.

// This program attempts to fetch a page from one of the two
// alternate sites. Both sites are attempted concurrently, and the
// result is that from whichever site successfully completes first.
page := getpage("http://www.altavista.digital.com") |
 getpage("http://www.altavista.yellowpages.com.au")

 Time-out timeout(t, S)

The time-out combinator allows a time limit to be placed on a service. The service timeout(t, S) acts like
S except that it fails after t milliseconds if S has not completed within that time.

// This program attempts to connect to AltaVista, but
// gives a limit of 10 seconds to succeed.
page := timeout(10000, getpage("http://www.altavista ...") |
 getpage("http://www.altavista... "))

 Repetition repeat(S)

The repeat combinator provides a way to repeatedly invoke a service until it succeeds. The service
repeat(S) acts like S, except that if S fails then S starts again. The loop can be terminated by writing
timeout(t,repeat(S)).

5 of 14

// This program makes a repeated attempts in the
// case of failure, alternating between two services.
page := repeat(getpage("http://www.altavista ...") ?
 getpage("http://www.altavista ..."))

 Non-termination stall()

The stall combinator never completes or fails.

// This program repeatedly tries to fetch the URL, but
// waits 10 seconds between attempts.
page := repeat(getpage("http://www.digital.com") ? timeout(10000, stall())

4. Structured Text Search on Web Pages

4.1 An Algebra for Text Search

One of the challenges in structured text search is to support a unified model of different views of a document. In
one view we are interested in the linear text flow of the page (without tags), for example to locate words and
character patterns. In another view, we are interested in the hierarchical organization of the document, for
example to use markup as "landmarks" for guiding data extraction. Other views, such as a publishers view that
divides the document into lines, paragraphs, and columns are also imaginable. In addition, we observe that
different views of the document are not always properly nested, as are rows in tables, or words in titles. Rather,
different views might overlap. Sentences usually go across multiple lines and images might span multiple columns.
As a consequence, a unified model has to allow searching on several views, mixing of query results from different
views, and handling of overlapping elements in the same or different views.

WebL's data extraction language addresses these problems with the notion of a markup algebra. The markup
algebra is based upon the concepts of pieces, piece-sets and algebraic operators that are applied to
piece-sets.

First, we define a piece as a contiguous text region in a document, identified by the starting and the ending
position of the region. For this paper we can imagine positions as indices that indicate a character offset in the
page, which makes it easy to determine by numerical comparison the relationship between two regions, such as
whether two pieces overlap, are contained in each other, or follow each other. The length of a piece is defined
as the difference between the starting and ending position. (Our actual WebL implementation uses a more
complicated data structure for pieces that simplifies searching and page modification.) We further define a
piece-set as a collection of pieces. Pieces within piece-sets may overlap, be nested, or may belong to different
pages. However, unlike mathematical sets that do not impose a particular ordering on their elements, piece-sets
are always in a canonical representation in which pieces are ordered accordingly to their starting position, and
then their ending position in the document. This allows iterating over pieces in a set in the sequence they appear in
the document, and also to pick the n'th occurrence of a pattern (by indexing into the piece-set). Both pieces and
piece-sets are mapped to special objects in WebL, which means that they can have attributes and be manipulated
by program.

A common way to create a piece-set is to search for all the HTML or XML elements with a specific name (we
call this a structured search). For example, the following program returns all the anchors (hyperlinks) that occur
on the DIGITAL homepage by calling a method called Elem of the page object P:

6 of 14

P := getpage("http://www.digital.com/");
links := P.Elem("A") // returns a piece-set of "A" elements

After the method invocation, the variable links contains a piece-set that, for every matching HTML or XML
element, contains a piece that points to the starting and ending position of the element. In addition, all the element
names and attributes are made visible to the programmer by associating them with the appropriate piece object.

Another way to create a piece-set is to search for character patterns, ignoring the markup (we call this
unstructured search or pattern search). The Pat method of a page object extracts all the occurrences of a Perl
5-style regular expression [Fri97] in the text of a page. The following example extracts the occurrences of the
word "Digital" or "digital" in the Digital home page.

P := getpage("http://www.digital.com/");
words := P.Pat("(D|d)igital")

If the regular expression contains Perl-5 groups, the matching groups are accessible as attributes of the piece.
Like the Elem method, the Pat method computes a set that, for every match, contains a piece that points to the
starting and ending position of the match.

Finally, we define a set operator S ¤ T as an algebraic operation ¤ between two piece-sets S and T that returns
a third piece-set as a result. For the remainder of this section, S and T denote piece-sets, the elements of S and T
are referred to as s and t, and P stands for a page object. WebL divides set operators into groups of basic set
manipulation operators, positional set operators, and hierarchical set operators, which will be discussed in the
following sections. In the interest of conciseness, we will not describe the negated operators (those starting with
an exclamation point), as their behavior is easy to deduce.

4.2 Basic set operators

Union S + T
Intersection S * T
Exclusion S - T

Basic set operators are used for basic set manipulation. They contain a set union operator, a set intersection
operator, and a set exclusion operator. The set union operator merges the two sets S and T and eliminates
duplicate pieces. The set intersection operator returns the set of all pieces that are contained both in S and T, and
the set exclusion operator calculates the set of pieces that are contained in S but not in T. As an example, the
following program retrieves all the level one and level two headings in a page:

titles := P.Elem("H1") + P.Elem("H2")

4.3 Positional operators

7 of 14

S before T S !before T
S after T S !after T
S directlybefore T S !directlybefore T
S directlyafter T S !directlyafter T
S overlap T S !overlap T

Positional operators provide functionality to query on the locality property of pieces, such as searching for pieces
that are located above or below other pieces in the linear text flow of the document.

The before operator computes the set of pieces in S that are located before some piece in T. We define a piece
s to be located before a piece t, if the ending position of s precedes the starting position of t. Correspondingly,
the after operator returns the set of the pieces in S that are located after some piece in T. Although being
very effective, these two operators are not always sufficient. As an example, in some cases we might not be
interested in all the occurrences of a link after a special keyword, but only in the very first occurrence of a link
after the special keyword. In this case, we use the stronger operators directlybefore and directlyafter
that return the set of only the closest pieces in S that follow or precede some piece in T. We also call the latter
non-transitive versions of the before and after operator. The following example depicts the differences
between these operators:

...

<I>Fig 1. Sonoma and Napa</I> // I1
...

<I>Fig 2. Lake Tahoe</I> // I2
...
<I>Northern California</I> // I3
...

<I>Fig 3. Mendocino</I> // I4
...

In order to retrieve the title of the first image we write the following program, assuming that the first text stretch in
italics in our excerpt is also the first text stretch in italics in the whole document:

// retrieve the first italic text stretch -> {I1}
title := P.Elem("I")[0]

Searching for all the words in italics that follow an image yields the result set containing pieces I1, I2, I3, and I4.

// retrieve all the titles that follow an image -> {I1, I2, I3, I4}
titles := P.Elem(I") after P.Elem("IMG")

To retrieve all the titles of the figures we use the directlyafter operator that does not return the word
"Northern California", since it does not directly follow an image.

// retrieve all the titles of the figures -> {I1, I2, I4}

8 of 14

titles := P.Elem("I") directlyafter P.Elem("IMG")

Finally, the overlap operator returns all the pieces in S that overlap with some piece in T.

4.4 Hierarchical operators

S in T S !in T

S contain T S !contain T

S directlyin T S !directlyin T

S directlycontain T S !directlycontain T

In contrast to positional operators that provide functionality to express locality relationships between pieces,
hierarchical operators provide functionality to express containment and inclusion relationships between piece.

The in operator returns the set of pieces in S that are contained in some piece in T. We define a piece s to be
contained in a piece t, if the starting position of s follows or is equivalent to the starting position of t, and the length
of s is smaller or equal than the length of t. Equivalently, the contain operator returns the set of pieces in S that
contain some piece in T. As an example, to search for all the rows in the third table of a page, we write,

 rows := P.Elem("TR") in P.Elem("TABLE")[2]

and to search for all the level two headings that mention the word UCI we write

 titles := P.Elem("H2") contain P.Pat("UCI")

As well as for positional operators, we define two stronger, non-transitive operators directlyin and
directlycontain that address direct containment and direct inclusion properties. They return the set of only
the first pieces in S that contain or are contained in some piece in T. The following example depicts the
differences:

 ...

 First Section // LI1
 Second Section // LI2
 Third Section // LI3

 First Subsection // LI4
 Second Subsection // LI5

 Fourth Section // LI6

 ...

To retrieve all the list items in this unnumbered list, we write the following program, assuming that there is no other
unnumbered list preceding this section in the document:

9 of 14

 // retrieves all the subsections -> {LI1, LI2, LI3, LI4, LI5, LI6}
 subsections := P.Elem("LI") in P.Elem("UL")[0]

However, in many cases we are not interested in nested lists and would only like to retrieve the list items of the
top-level list. Therefore we use the directlyin operator and write:

 // retrieve only the toplevel subsections -> {LI1, LI2, LI3, LI6}
 subsections := P.Elem("LI") directlyin P.Elem("UL")[0]

5. Related Work

Service combinators have first been presented by Cardelli and Davies in [CD97]. Their semantics for service
combinators differs slightly from the WebL semantics in that their combinators include an extra combinator
limit(t, r, S) that acts like the service S, except that each connection is considered to have failed if the rate ever
drops below r Kbytes/sec after the first t seconds of the connection. They can formally model the status of a
service at a particular time either by the current transfer rate, the done status, or the fail status. The consequence
of including the transfer rate is that their service combinators can only operate on web services, and not general
computations. Ideally, we would like to make the service combinators more orthogonal, so that a service and a
computation on that service can be expressed as a service itself. For example, a failure might occur when a page
was fetched successfully but the content of the page is invalid or unexpected (as determined by a script that
checks the page). We obtain this orthogonality by removing the limit combinator, which is not applicable to
general computations (as they do not have a "rate"). Without the limit combinator, a computation's status is either
running, completed, or failed, and we can we map failure to a programming exception. We can reintroduce the
rate limit feature as part of the getpage and postpage primitives themselves (for example as separate arguments),
which fail appropriately when the rate requirement is not met.

In practice, the most widely employed technique for searching in text documents is pattern matching using
regular expressions [Fri97, IEEE92]. Regarding structured text search, the limitations of regular expressions are
twofold: they completely lack information about the structure of the document and they apply a "leftmost longest
match" rule which is often inappropriate for nested data structures. Searching for a table, for example, only
returns a correct match if there is only one table in the document. A discussion of this problem is found in
[CC97].

Several improved approaches to extracting information from semi-structured text documents have recently been
proposed. The most prominent techniques are based on tree matching, grammar parsing, and set algebras.

In tree matching, the search problem is reduced to searching a subtree (i.e. pattern) in a parse-tree (i.e. view).
The main disadvantage of tree matching is the lack of orthogonality and compositionality regarding different views
(i.e. different parse trees). Queries that search for character patterns cannot be mixed with searches for special
structures in the document. In addition, many of the tree matching problems cannot be solved in linear time, but
have polynomial runtime. Some problems (such as unordered path inclusion) are even NP-complete [Kil92].
Several recent programming and searching languages are based on tree matching, among them the programming
language Turquois [MM97].

Context free grammars pursue an approach, in which the search pattern is specified as a context free grammar
[ST96]. The result of a search query are all the substrings in the document that are accepted by the specified
grammar. On the one hand, context free grammars are very expressive in that they allow the definition of

10 of 14

recursive search queries. On the other hand, they suffer from the same problems as tree matching: they do not
allow expressing view-spanning and overlapping queries and require polynomial runtime.

Lately, several new techniques have been published that are based on a set algebra [ST92, JK95, CCB94]. The
Standard Document Query Language (SDQL) of the Document Style Semantics and Specification
Language or DSSSL [DSSSL96] introduces the concept of nodes and node-lists, which are loosely related to
our pieces and piece-lists. Some of the WebL operators are provided and the user can also program new ones in
a Lisp-like language. The data structure SDQL operates on – called a grove – is essentially a tree of nodes
corresponding to elements in the document, and thus multiple views and overlapping elements cannot be
modelled. PAT expressions [ST92] use a set-at-a-time algebra for manipulating sets of match-points and sets of
regions. In contrast to the WebL search algebra, PAT expressions do not support an orthogonal and unified
model. Sets of match-points and sets of regions cannot be arbitrarily composed and, in regard to document
transformation, match points are not very practical since only the starting position of a match is recorded.
However, most of these problems can be avoided. Clarke, Cormack, and Burkowski propose a compositional
structured text algebra that is based on the notion of sets and ranges [CCB94]. Apart from the WebL
set-algebra, this is the only other approach that supports overlappings between views. Unfortunately, the idea has
not completely been taken to the end. Although the model supports overlappings the language does not
(remember that WebL has an explicit overlap operator). Additionally, nestings are avoided by selecting the
minimal segments from those set elements that nest. Concerning runtime complexity, all of the set algebra
problems can be solved in linear time if no two elements in a set overlap [NY96]. In the worst case, if all the
elements in the set overlap with each other, the runtime complexity is quadratic in the number of elements in the
set. Considering the unlikelyness of such an event and the importance of overlappings, this is a price that we are
willing to pay in WebL.

In contrast to the above high-level search languages, their are also efforts to specify low-level programming API's
that provides users with the functionality for document navigation and manipulation, such as navigating through the
document parse tree, or modifying HTML and XML elements. The most prominent activity in this area is W3C's
document object model [DOM97]. In contrast to WebL, DOM is restricted to manipulating and searching single
HTML and XML elements, it does not provide a notion of character patterns, does not support multiple
overlapping views, and inherently cannot perform computation.

There are also several recent proposals for automating tasks on the web. The Web Interface Definition Language
or WIDL [MA97] enables automation by mapping web content into program variables using declarative
descriptions of resources. WIDL provides features to submit queries and to extract features from the resulting
pages. WIDL does not determine itself how search is to be done, but rather uses the Java Page Object Model
[JS] or the Document Object Model [DOM97]. Page manipulation is not supported. WebSQL [AMM97] is a
declarative query language for extracting information from the web. The language emphasis is on extracting
connectivity information from pages (for example to locate pages that are two hops away from a specific page).
WebSQL regards HTML documents as monolithic objects, and therefore its analyses are limited to simple text
matching techniques. The Internet Fish Construction Kit (IFISH) is a tool to build dynamic information gatherers
on the web [LaM97]. Internet Fish use "info-chunks", possibly extracted from web pages, or created by other
independent fish, to place new info-chunks on a shared black-board. The basic idea is that many fishes
specialized for specific tasks (for example looking for telephone numbers in a page) make it easier to extract
information from web pages that continually change. IFISH is mainly concerned with the fish control structure
and not so much with the page fetching and data extracting steps.

6. Conclusions and Future Work

11 of 14

In this paper, we presented a novel programming language WebL for document processing on the
World-Wide-Web. WebL features two distinguishing features, namely service combinators and a markup
algebra. Service combinators allow the construction of reliable services and the markup algebra supports the
extraction of data values from web pages. The language provides features to perform computations on data
values, and generate or manipulate web pages appropriately. The resulting tool is well-suited for automating tasks
on the web and building and experimenting with web computations. We currently plan to experiment with WebL
for a while, to build larger applications with it, and to extend it with additional libraries in the general domain of
information retrieval. One of the extensions we are currently investigating is to generate WebL scripts
automatically by demonstration. Another interesting topic of investigation is how service combinators and the
markup algebra can be incorporated into the W3C's Document Object Model [DOM97].

References

[AMM97] Gustavo O. Arocena, Alberto O. Mendelzohn, and George A. Mihaila. Applications of a Web
Query Language. Proceedings of WWW6, 1997, Santa Clara, California.
http://atlanta.cs.nchu.ed u.tw/www/PAPER267.html

[Car94] Luca Cardelli. Obliq: A language with distributed scope. Research Report 122, Digital Equipment
Corporation Systems Research Center, Palo Alto, California. June 1994.
ftp://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-12 2.html

[CC97] C. L. A. Clarke and G. B. Cormack. On the Use of Regular Expressions for Searching Text.
ACM Transactions on Programming Languages and Systems, 19(3), pp 413-426. March 1997.

[CCB94] C. L. A. Clarke, G. V. Cormack, and F. J. Burkowski. An Algebra for Structured Text Search
and a Framework for its Implementation. Department of Computer Science, University of
Waterloo, Canada, Technical Report CS-94-30. August 1994.

[CD97] Luca Cardelli and Rowan Davies. Service combinators for Web Computing. Research Report
148, Digital Equipment Corporation Systems Research Center, Palo Alto, California. June 1997.
ftp://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-14 8.html

[CDF97] Channel Definition Format (CDF). Published by Microsoft Corp. September, 1997.
http://www.microsoft.com/stand ards/cdf.htm

[DOM97] W3C DOM working group. Document Object Model Specification. October 1997.
http://www.w3.org/TR/WD-DOM/

[DSSL96] Document Style Semantics and Specification Language (DSSSL), ISO/IEC 10179:1996.
http://www.jclark.com/dsssl/

[Fri97] Jeffrey E. F. Friedl. Mastering Regular Expressions: Powerful Techniques for Perl and Other
Tools (Nutshell Handbook). O'Reilly and Associates, 1997

[IEEE92] IEEE 1992. Standard for information technology - Portable Operating System Interface
(POSIX) - Part 2(Shell and utilities) - Section 2.8 (Regular expression notation). IEEE Std
1003.2, Institute of Electrical and Electronics Engineers, New York 1992.

[JK95] J. Jaakkola and P. Kilpelainen. SGREP. University of Helsinki, Department of Computer Science,
1995.
http://www.cs.helsinki.fi/ ~jjaakkol/sgrep.html

[JS] Netscape Corp. JavaScript Guide.
http://developer.netscape.com/library/documentation/communicator/jsgu ide4/index.htm

[Kil92] P. Kilpelainen. Tree Matching Problems with Applications to Structured Text Databases. Ph.
D. Dissertation, Department of Computer Science, University of Helsinki, Report A-19992-6,
Helsinki, Finland. November 1992.

12 of 14

[LaM97] Brian A. LaMacchia. The Internet Fish Construction Kit. Proceedings of WWW6, 1997, Santa
Clara, California.
http://atlanta.cs.nchu.ed u.tw/www/PAPER138.html

[MA97] Phillip Merrick, Charles Allen. Web Interface Definition Language (WIDL). Published by
webMethods Inc. September 1997.
http://www.w3.org/TR/NOTE-widl

[MM97] R. C. Miller and B. A. Myers. Creating Dynamic World Wide Web Pages By Demonstration.
Carnegie Mellon University School of Computer Science Tech Report CMU-CS-97-131. May
1997.

[NY96] G. Navarro and R. Baeza-Yates. A Class of Linear Algorithms to Process Sets of Segments. In
Proceedings of PANEL'96, Volume 2, pp. 671-682, 1996

[ST92] A. Salminen and F. W. Tompa. PAT expressions: an algebra for text search. Acta Linguistica
Hungarica, Vol. 41 (1-4), pp. 277-306, 1992-93.

[ST96] A. Salminen and F. W. Tompa. Grammars++ for Modelling Information in Text. Department of
Computer Science, University of Waterloo, Canada, Technical Report, CS-96-40. November
1996.

[Wir82] Niklaus Wirth. Programming in Modula-2 (Texts and Monographs in Computer Science).
Springer Verlag, 1982.

Appendix

Although we can't give a full description of WebL in this paper, we can give a flavor of the language itself. Listing
1 implements a simple function to retrieve a stock quotation from a service. Listing 2 implements a more
complicated function to search for books by title or author at the electronic book store Amazon.com. It fills in
the query form, analyses the results, and returns a list of book objects for each book found.

 stockQuote := fun(symbol)
 page := getpage("http://fast.quote.com/fq/quotecom/quote", [. symbols=symbol .]);
 (page.Elem("B") in (page.Elem("TABLE") contain page.Pat("Stock Quotes"))[0])[1].Text()
 end;

 s := stockQuote("DEC")

Listing 1. Retrieving a stock price from Quote.com

13 of 14

 shopAmazon := fun(title, authorfirst, authorlast)
 books := [];
 params := [. .];
 params["author"] := authorfirst + " " + authorlast;
 params["author-mode"] := "full";
 params["title"] := title;
 params["title-mode"] := "word";
 params["subject"] := "";
 params["subject-mode"] := "word";
 page := postpage("http://www.amazon.com/exec/obidos/ats-query/", params);
 items := page.Elem("dd");
 every book in items do
 info1 := substring(book.Text(), `\w*([^/]*) (/ ([^/]*))?(/ [^\d]*(\d*))?`)[0];
 info2 := substring(book.Text(), `Our Price: \$(\d*.\d*)`);
 if (size(info2) > 0) and (info1[3] != "Audio Cassette") then
 books = books + [[.
 title = (page.Elem("a") directlybefore book)[0].Text(),
 link = (page.Elem("a") directlybefore book)[0].href,
 author = info1[1],
 type = info1[3],
 year = (select(info1[5],-2,-1) ? "N/A"),
 price = info2[0][1]
 .]]
 end
 end;
 books
 end

Listing 2. A WebL function to shop for books

14 of 14

