
SRC Technical Note
1997 - 033

September 4, 1997
(with minor revisions on December 16, 1997)

Strengthening Passwords

Mart́ın Abadi, T. Mark A. Lomas, and Roger Needham

d i g i t a l
Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright cDigital Equipment Corporation 1997. All rights reserved



Strengthening Passwords

Martı́n Abadi
Digital Equipment Corporation

Systems Research Center
ma@pa.dec.com

T. Mark A. Lomas
Goldman Sachs International

Information Security Department
Mark.Lomas@gs.com

Roger Needham
University of Cambridge

Computer Laboratory
and

Microsoft Research
Roger.Needham@cl.cam.ac.uk

September 4, 1997
(with minor revisions on December 16, 1997)

Abstract

Despite their notorious vulnerability, traditional passwords remain im-
portant for security. In this paper we describe a method for strengthening
passwords. Our method does not require users to memorize or to write down
long passwords, and does not rely on smart-cards or other auxiliary hardware.
The main cost of our method is that it lengthens the process of checking a
password.

1



Contents

1 Introduction 3

2 Strengthening User Passwords 4

3 Strengthening Secrets over a Network 6

4 Comparisons 9

5 Conclusion 10

References 10

2



1 Introduction

Traditional passwords are still the most common basis for user authentication.
Even systems with sophisticated cryptographic protocols often employ user pass-
words, for example for encrypting keys. It seems likely that passwords will be
pervasive for some time.

Passwords are notoriously vulnerable to attacks [MvOV96, Sch96]. Users of-
ten have weak passwords because strong passwords are long and hard to remember.
Furthermore, password protection weakens with the passage of time and improve-
ments in computer performance: attackers can rely on faster and faster computers
for guessing passwords, while user memory does not seem to be expanding, and
passwords do not seem to be getting longer.

Because long passwords are hard to remember, users may write them on pieces
of paper, or store them on floppy disks, smart-cards, or other pieces of auxiliary
hardware. In some cases, the auxiliary hardware may also contain private keys
and perform cryptographic operations. However, pieces of paper, floppy disks, and
smart-cards may all fall into enemy hands. Smart-cards could be protected with
passwords or PINs, which in turn may be weak; they are also subject to tampering.
Thus, auxiliary hardware is not a perfect remedy, and sometimes it can even be a
liability: whereas hardware may not be easy to destroy, a user may well forget a
password, and may claim that this has happened even under legal pressure to reveal
the password.

There has been much work on maintaining security despite weaknesses in pass-
words. In this paper, we address the different problem of improving passwords.
Any effort to improve passwords must be concerned with the trade-off between
user memory and security. However, as we show, it is possible to strengthen pass-
words, without requiring additional user memory and without auxiliary hardware.
Our techniques are easy to implement in software and conceptually simple. Their
main cost is in access time: a password check may take longer than usual. We
arrive at a three-way trade-off between user memory, security, and access time.
Since access time is part of this trade-off, our techniques can take advantage of
improvements in computer performance: password protection can progress at the
same speed as brute-force attacks on passwords.

In section 2, we describe a technique for strengthening passwords; it seems
particularly appealing for the protection of data stored in a laptop or other personal
computer. In section 3, we describe a variant of our ideas; this variant allows a
shared secret to be strengthened over a network. We briefly compare the techniques
of sections 2 and 3 in section 4.

The work presented in this paper was carried out in 1996 and early 1997. In the
fall of 1997, a reader of a previous version of this paper pointed us to an interesting

3



paper by Manber [Man96], which describes ideas related to those of section 2 and
their implementation in the context of Unix.

2 Strengthening User Passwords

The problem A computer may sometimes be outside the physical control of its
intended users; for example, a laptop may be stolen rather easily. Therefore, it
is prudent to restrict access to the computer’s functions, for instance by requiring
the entry of a password. It is also prudent to protect the files on the computer by
encrypting them, for instance under an encryption key derived from the password.
The password itself should not be kept in the clear on the computer. In this way,
only parties that know the password can use the computer and read the files, even
if they have direct access to the computer’s storage devices. The password should
be strong enough that an attacker cannot guess it and then decrypt the files. In this
section we present a technique for strengthening a password for this purpose.

Assumptions We assume that user and computer have some secure means for
communicating, perhaps because the user has direct, physical access to the com-
puter, or can establish a secure network connection with the computer.

We also make some cryptographic assumptions, which we state informally as
follows. We rely on a functionf that is easy to compute but hard to invert. We
assume that, givenx, the computation off (x) is fast—for example, it may take
just a few microseconds. On the other hand, giveny, an x such that f (x) = y
cannot be found much faster than by applyingf to all possible arguments; this
property should hold even when part ofx is given along withy. In short, f should
be a locally one-way function [MvOV96, chapter 9]. Additionally, we assume that
f is collision-resistant. Functions such as MD5 and SHA (or variants) [Sch96]
seem fairly likely to have these properties.

A solution We describe our technique in the context of protecting a laptop and
the data stored in the laptop. Use of the laptop and access to confidential files
depends on possession of a password; the user may type this password into the
laptop at log-in time, as usual. Let us call this passwordP.

In addition toP, we consider a quantityQ, called thepassword supplement.
We refer to the concatenation ofP and Q as thefull password, and writeP + Q
for this concatenation. On the laptop, confidential files are encrypted under an
encryption key derived from the full password (P + Q).

The length ofQ is fixed; with current technology in mind, we envision that this
length would be between 16 and 20 bits. The quantityQ is chosen randomly. Both

4



the user and the laptop may contribute toQ, using whatever sources of entropy
they have available. While it is often expensive to generate high-quality random
bits, existing techniques can be applied without much trouble for constructing a
short quantity such asQ. The quantityQ never changes or changes seldom after
initial installation. For example, it would be natural for the laptop to pick a newQ
every time the user picks a newP.

The laptop holds the result of applyingf to the full password. We writeH for
this result (that is, forf (P + Q)). The quantityH need not be kept secret. The
laptop does not hold the full password or any of its parts except while in use by
a legitimate user; the full password and even the password supplement should be
kept secret.

When the user enters the passwordP, the laptop searches forQ, by trying
all possible quantitiesX of the same length asQ. For each candidate quantity
X, the laptop calculatesf (P + X). If f (P + X) equalsH , then X is Q (since
f is collision-resistant), so access is granted; later, knowledge ofP + Q enables
the decryption of confidential files. If the user types the password incorrectly, no
match will occur (sincef is collision-resistant, again), so access will be denied.

Performance consequencesPerformance can be acceptable even when the pass-
word supplement is substantial. For example, if the computation off takes 2 mi-
croseconds andQ is 20 bits long, then the search forQ should take about 1 second
on average when the user entersP correctly.

The order in which the candidatesX are generated and tried is not essential.
We suggest trying them in sequential order, but starting with a random quantity
rather than starting at 0. The random start prevents any deductions aboutQ based
on timing, while allowing the search to terminate as soon asf (P + X) equals
H . The random start also implies that no values ofQ will provide the user with
particularly good or bad access time; security would be reduced if the user could
somehow control access time by pickingQ, or by changingQ when access time is
poor.

Security consequences The protection provided by this technique is determined
by the strength of the full passwordP + Q, rather than by the strength of the
passwordP alone.

In particular, suppose that an attacker has stolen the disk of the laptop and
is trying to decrypt a confidential file by trying all possible keys. Assuming that
keys are properly derived from full passwords, there are as many possible keys as
possible values for the full password. If the length of the password supplement is
20 bits, then the search space that the attacker has to explore is 220 larger than it

5



would have been with traditional password protection.
Similarly, suppose that the attacker is trying to learnP + Q by guessing a

value, applyingf to it, and comparing the result withH , which is stored on the
laptop. Becausef is collision-resistant, a match would indicate that the attacker
has guessedP + Q correctly. Again, if the length of the password supplement is
20 bits, then the search space that the attacker has to explore is 220 larger than the
corresponding search space forP.

The protection provided by this technique is equivalent to that which we would
obtain through a traditional approach and with a longer password. In short, the user
remembers the password and gets the protection of the full password. In order to
quantify this improvement, assume for example that the passwordP is a random,
40-bit quantity, or has equivalent strength, and that the password supplementQ
is a random, 20-bit quantity. In this case, the protection goes from mediocre to
respectable: the full password is stronger than a DES key [DES77].

Salting It is common that computers do not store passwords in the clear, but
instead store something likef (P + S) and S, whereS is a salt—added for the
purpose of thwarting dictionary attacks. The main difference between the saltS
and the password supplementQ is thatS is stored and may even be public, while
Q is discarded and should be kept secret. Thus, we may summarize our technique
as follows: salt the password, then delete the salt, and reconstruct the salt by brute
force when the password is checked.

Ideally, P andQ should be long enough to prevent a dictionary attack against
P + Q. Otherwise, our technique can easily be enhanced with salting, in the
standard manner: the laptop would storef (P + Q+ S) andS, whereS is a salt.

A generalization for partial password recovery A variant of our technique al-
lows the user to enter only part ofP. In that case, the laptop will search for the
remainder ofP, much like it searches for the password supplement. The search
will naturally take longer, perhaps hours or days. This delay may be acceptable in
extreme circumstances, for example when the user has accidentally forgotten the
remainder ofP. Thus, the technique provides the option of remembering more and
getting faster response, or remembering less and getting slower response.

3 Strengthening Secrets over a Network

The problem Suppose that two partiesA and B share a secretP and wish to
use it as the basis for confidential communication between them. The messages
betweenA andB may therefore be encrypted, for example applying DES and using

6



P as a key (possibly after padding or truncation). This approach is represented in
the following figure, where braces represent DES encryption andM is a typical
message.

&%
'$

A -

{M}P

&%
'$

B

WhenP is weak,A andB should be careful not to expose it to off-line attacks.
A log of the messages betweenA and B may provide an attacker with enough
information to confirm a guess ofP. For example, when the messageM contains
some recognizable plaintext, an attacker that sees{M}P and that guessesP can
confirm the guess by decrypting{M}P. The attacker can try many guesses, by
brute force, without being detected.

When A and B share a weak secret, therefore, they may wish to strengthen
this secret, or (equivalently) to establish a new, stronger shared secret. A natural
approach is forA to create a new secret and to send it toB, signed and encrypted
under P. In turning this approach into a concrete protocol, one needs to choose
particular signature and encryption mechanisms, as well as any additional fields
for A’s message. WhenP is weak, some naive choices result in poor protocols that
permit off-line attacks. For example, the following picture shows a poor protocol,
in which K is a new shared secret:

&%
'$

A -

{K }P
-&%
'$

B

{M}K

Again, an attacker may use a log of the protocol messages for confirming a
guess ofP. This kind of weakness unfortunately appears in current systems where
a strong key is stored encrypted under a user password.

Several recent, sophisticated protocols [LGSN89, GLNS93, BM92, BM93] im-
pede off-line attacks. However, these protocols are difficult to design and to ana-
lyze, and sometimes permit on-line attacks [Pat97].

7



A solution The ideas of section 2 lead to a simple protocol for strengthening a
shared secretP. First, A invents a quantityQ of a fixed length, and sendsf (P+Q)
to B. (Optionally, A could saltP+Q.) WhenB receivesA’s message,B searches
for Q, much as the laptop searches forQ in the technique of section 2. As a
result,A andB share the longer secretP + Q, which they may use for encrypting
messages. This protocol is represented in the following figure:

&%
'$

A -

f (P + Q)

-&%
'$

B

{M}P+Q

After running this protocol,A andB could useP+Q as the basis for exchang-
ing an even longer secret through a standard protocol.

Performance consequencesThe main cost of this protocol is thatB has to per-
form an exhaustive search forQ. On the other hand, the protocol imposes no great
burden onA after the invention ofQ. Because of this asymmetry, it is useful to
apply some good judgement in choosing the roles ofA and B when the protocol
is instantiated. For example, one may letA be a heavily-used server, andB be
a client with abundant idle cycles (rather than vice versa). Much as in section 2,
performance can be acceptable for the client even whenQ is fairly substantial, for
example 20 bits long.

Cryptographic assumptions and security consequencesLike the technique of
section 2, this protocol relies on the assumption thatf is a locally one-way func-
tion. Assuming in addition thatf is collision-resistant, this protocol should make
an off-line attack onP roughly 2n times more expensive than the corresponding at-
tack with a naive protocol, wheren is the length ofQ. After a run of this protocol,
an attacker could confirm a guessP′ of P by calculating f (P′ + X) for all 2n pos-
sible values ofX. Since f is collision-resistant, a matchf (P′ + X) = f (P + Q)
would indicate thatP is P′.

Complete collision-resistance does not seem absolutely necessary for this pro-
tocol. As long as f (P + Q) = f (P + Q′) implies Q = Q′, the two par-
ties A and B successfully agree on the value ofQ. It may be acceptable that
f (P+ Q) = f (P′ + Q′) whenP andP′ differ andQ andQ′ differ. Such a colli-
sion may create confusion forA andB, but perhaps this confusion can be tolerated.

8



The collision could also impede an attack, because it makes it harder to confirm a
guess ofP.

Related work: stretching secrets Recently and independently, Kelsey, Schneier,
and Wagner invented a protocol similar to ours [Wag97]. In their protocol, there is
no analogue toQ; instead, the passwordP is stretched by repeated application of
a function f :

&%
'$

A -

{M} f n(P)

&%
'$

B

Here n is a large number, such as 220. This protocol achieves some of the
same desirable properties as ours. There are however several interesting differences
between the two protocols. Some of the differences are:

• Stretching and strengthening make somewhat different assumptions about
the properties off . For example, it is clear that stretching requires certain
assumptions about the iteration off , while strengthening does not. These
assumptions would imply that it is not possible to parallelize a brute-force
attack against a stretched secret, while it is easy to parallelize a brute-force
attack against a strengthened secret.

• With stretching, both parties have to do equal work, namely the same number
of applications off . With strengthening, only one of the two parties needs
to apply f many times.

• Strengthening a secret with a supplementQ introduces entropy. In contrast,
stretching it by repeated application of a functionf does not. Therefore,
with stretching, it is particularly important to make judicious use of salts.

4 Comparisons

In the technique of section 3, two partiesA and B strengthen a secretP by ex-
changing a messagef (P + Q) on an untrusted communication medium. We may
say that the technique of section 2 is an instance of the technique of section 3,
where the untrusted communication medium is a laptop, and whereA and B are
the same user at different times.

9



An important difference is in the nature ofA and B. In section 3, bothA and
B must be capable of computingf , so they are probably not human users. In the
technique of section 2, on the other hand, the laptop is trusted to manipulateP and
to computef for a short time, while under the control of a human user.

The two techniques could be applied in combination. For example, after a user
has entered the sameP on several computers, these computers may agree on a
singleQ by exchanging their values forf (P + Q).

5 Conclusion

Password strengthening is a compatible extension of traditional password mecha-
nisms. It increases the security of passwords, without requiring users to memorize
or to write down long strings. Password strengthening does not assume any extra
hardware, and does not introduce any of the vulnerabilities that come with ex-
tra hardware. These characteristics should make password strengthening easy to
adopt, and appealing in practical applications.

References

[BM92] Steven M. Bellovin and Michael Merritt. Encrypted key exchange:
password-based protocols secure against dictionary attacks. InPro-
ceedings of the 1992 IEEE Computer Society Symposium on Research
in Security and Privacy, pages 72–84, May 1992.

[BM93] Steven M. Bellovin and Michael Merritt. Augmented encrypted key
exchange: a password-based protocol secure against dictionary attacks
and password file compromise. InProceedings of the First ACM Con-
ference on Computer and Communications Security, pages 244–250,
November 1993.

[DES77] Data encryption standard. Fed. Inform. Processing Standards Pub. 46,
National Bureau of Standards, Washington DC, January 1977.

[GLNS93] Li Gong, T. Mark A. Lomas, Roger M. Needham, and Jerome H.
Saltzer. Protecting poorly chosen secrets from guessing attacks.IEEE
Journal on Selected Areas in Communications, 11(5):648–656, June
1993.

[LGSN89] T. Mark A. Lomas, Li Gong, Jerome H. Saltzer, and Roger M. Need-
ham. Reducing risks from poorly chosen keys.Proceedings of the

10



12th ACM Symposium on Operating System Principles, ACM Operat-
ing Systems Review, 23(5):14–18, December 1989.

[Man96] Udi Manber. A simple scheme to make passwords based on one-way
functions much harder to crack.Computers and Security, 15(2):171–
176, 1996.

[MvOV96] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.

[Pat97] Sarvar Patel. Number theoretic attacks on secure password schemes.
In Proceedings of the 1997 IEEE Symposium on Security and Privacy,
pages 236–247, May 1997.

[Sch96] Bruce Schneier.Applied Cryptography: Protocols, Algorithms, and
Source Code in C. John Wiley & Sons, Inc., second edition, 1996.

[Wag97] David Wagner. Private communication. June 1997.

11


