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Abstract

One way to make compilers portable is to have them compile to an inter-
mediate language which is implemented on multiple architectures. By using C as
the intermediate language and compiling the LISP dialect Scheme to it, it might
be possible to achieve the following benefits. First, since C is the lingua franca of
workstations the resulting system should be very portable.  Second, it should al-
low Scheme programs to interact with those written in other languages.  Finally, it
should simplify the compiler as it need not repeat the optimization capability
available in the C compiler.

However, there might be some unacceptable costs associated with this.  First,
there might not be a clean translation from Scheme to C, so that the implemen-
tation is not quite Scheme.  Second, the two-stage translation might result in in-
efficient code. Finally, the generated code might be so stylized that it is neither
portable nor compatible with other programming languages.

To investigate these issues, such a compiler and run-time system were con-
structed at Digital Equipment Corporation’s Western Research Laboratory. Ex-
perience with the system shows that there is a translation of Scheme to C, that has
good performance, and is portable.
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1. Introduction

Compiling one language to another, rather than to a specific machine’s instruction set, is a
very old idea. The benefits of compiling high-level languages to an intermediate language,

1UNCOL , and then compiling that language for a specific architecture were first documented in
1958 [17]. Compiling to an UNCOL has at least the following advantages to a compiler writer.
First, by emitting UNCOL rather than machine opcodes, a compiler is extremely portable.  In
theory, it can be ported to any machine which supports the UNCOL. Second, the UNCOL
provides a common meeting point for all languages and thus facilitates the construction of
programs written in multiple languages.  Finally, the UNCOL compiler can simplify the in-
dividual language compilers by providing language-independent optimization.

Unfortunately, while many efforts since then have used intermediate languages [3], it is clear
that they have not become widely accepted.  Instead, standardization efforts have focussed on
proprietary instruction set architectures, e.g. the Digitial VAX, and on industry wide standards
for higher-level languages, e.g. FORTRAN-77.

However, if one is willing to restrict one’s view to workstations running UNIX [10] or its
derivatives, one could consider C [9] as a possible UNCOL. All such systems have a C compiler,
and as C was the first high-level language for UNIX, most other languages can call C procedures
and use its data structures.  Also, since the operating system and many of the applications are
written in C, the C compiler provides some level of machine-specific optimization. Finally, since
workstation performance is passing that of traditional mainframes, the overhead imposed by
using two compilers instead of one can be tolerated.

Since C appears to be a satisfactory UNCOL, our attention can now turn to the problems of
compiling Scheme to it.  In the sections which follow, it is assumed that the reader has some
familiarity with C. The Scheme language is introduced and its differences from C are exposed in
section 2.  Section 3 provides an overview of the compiler and shows how Scheme can be ef-
ficiently mapped to C. Following this, section 4 compares the performance of this Scheme sys-
tem to a native LISP implementation, and section 5 discusses the portability of the implemen-
tation. From this, section 6 concludes that the Scheme-to-C compiler has met the desired levels
of performance, portability, and simplicity, without serious damage to Scheme’s semantics.

1UNiversial Computer Oriented Language
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2. Scheme By Example

Scheme is a dialect of Lisp which strives for simplicity without sacrificing power. It has a
small number of rules for forming expressions which have clearly defined semantics and few
restrictions on how they are composed.

When examining the examples which introduce the language, the reader should not con-
centrate on the obvious differences in syntax between Scheme and C, but on the differences in
semantics. Specific attention is paid to those items which do not cleanly translate to C. Readers
interested in going beyond this informal introduction to Scheme are encouraged to consult the
standard [13] which was used to form this section, or the text [1].

2.1. Identifiers, Variables, and Binding

Scheme’s identifiers are similar to those used in most languages.  For example, A1 is a legal
identifier in Scheme and C. However, Scheme also allows identifiers of the form <= or
vector->list and considers upper and lower case forms of a letter to be identical.  Thus,
Vector->List is the same identifier as vECtor->lISt.

One of the uses of identifiers is for variables, which name locations where values can be
stored. A variable that does this is said to be bound to the location.  The set of all bindings in
effect at some point in the program is known as the environment. Every Scheme system has a
top level environment which starts out with a number of variables bound to useful primitive
values, most of which are primitive procedures that manipulate data.  New variable bindings can
be added to the environment by expressions of the following form:

(define x 23) binds X to a location containing the value 23

(define plus +) binds PLUS to a location containing the value
of +, a predefined function to add two numbers

Variables do not have any type information associated with them.  Instead, the type is as-
sociated with the object which is the value of the variable.

2.2. Primitive Expressions

A Scheme expression is a construct that returns a value.  An expression consisting of a vari-
able evaluates to the value in the location bound to the variable.

(define x 23) Creates an initial binding for X
x ==> 23 this means:  X "evaluates to" 23

Constants such as strings or numbers evaluate "to themselves":
"This is a string" ==> "This is a string"
23 ==> 23
3.14159 ==> 3.14159
#t ==> #t the boolean for true
#f ==> #f the boolean for false

Other expressions may be used as constants by "quoting" them:
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(quote a) ==> a
’a ==> a

A procedure call is written by simply enclosing in parentheses the expressions for the proce-
dure to be called and the arguments to be passed to it.  These expressions are evaluated in any
order, then the arguments are passed to the procedure, and finally the procedure returns a value.

(+ 3 4) ==> 7
(+ (abs -3) 4) ==> 7
(= 1 1) ==> #t
(< 2 1) ==> #f

Procedures are created by the evaluation of a lambda expression. The environment in effect
when the lambda expression is evaluated is retained as part of the procedure.  When the proce-
dure is later called with some actual arguments, these are added to the saved environment, creat-
ing an extended environment. The expressions in the body of the lambda expression are
evaluated sequentially in the extended environment, and the result of the last expression in the
body is returned as the result of the procedure.  A few examples are:

(lambda (x) (+ x 1)) ==> #*PROCEDURE* a procedure

(define inc
(lambda (x) (+ x 1))) ==> INC defines a procedure which adds 1

to its argument

(define (inc x) (+ x 1)) ==> INC an equivalent way of defining inc,
where the lambda is implied

(inc 23) ==> 24 a procedure call to the previously
defined procedure

((lambda (x) (+ x 1)) 3) ==> 4 a procedure call, where the first
argument is a lambda expression

Unlike many earlier LISP’s which used dynamically scoped variables, Scheme’s variables are
lexically scoped.  As a result, the variable bindings in force at any point in the program can be
determined at compile time.

Conditional execution is provided by the following form.  If the value of the first expression is
true, then the second expression is evaluated and its value is returned.  Otherwise, the third ex-
pression is evaluated and its value is returned.  For example:

(if (> 3 2) ’yes ’no) ==> yes 1st expression is true

(if (= 1 2) ’yes (+ 2 1)) ==> 3 1st expression is false

The final primitive expression allows the value of a variable to be changed:
(define x 10) ==> X binds X to a location containing 10
(+ x 1) ==> 11
(set! x 23) ==> 23 changes X’s value to 23
x ==> 23

While this set of primitive expressions is sufficient to define the semantics of Scheme, it is
more convenient to program using more powerful forms which are dervied from them.

3



SCHEME->C A PORTABLE SCHEME-TO-C COMPILER

2.3. Derived Expressions

Since there are no limitations on how the primitive expressions can be combined, higher-level
expressions can be constructed which allow Scheme procedures to be written with a block struc-
ture similar to that of C. A set of expressions may be evaluated sequentially by the begin ex-
pression:

(begin (f1 1)
(f2 2)
(f3 3)
’done) ==> DONE

Since expressions in the body of a lambda expression are evaluated sequentially, the previous
expression is defined as the evaluation of a function with no arguments, whose body is com-
posed of the sequence of expressions:

((lambda ()
(f1 1)
(f2 2)
(f3 3)
’done)) ==> DONE

A more powerful form is the and expression that evaluates its arguments from left to right
until one evaluates to a false value.  To test that an integer y is between one and nine and even,
one could write:

(and (< y 9) (> y 1) (zero? (remainder y 2)))

which can be expressed using the primitive expressions as:
(if (< y 9)

(if (> y 1) (zero? (remainder y 2)) #f)
#f)

While the latter has the same meaning as the former, it’s clear the former is easier to write and
understand. This completes the introduction to Scheme expressions and our attention will now
turn to some of their properties.

2.4. Procedures Are More Than Code

At first glance, lambda seems to be some form of syntactic sugar to declare a procedure.
When used to declare a simple top level procedure that computes the absolute value of a number:

(define (abs x) (if (> x 0) x (- 0 x)))

it seems equivalent to a C procedure declaration.  It is only when one takes advantage of the
fact that a procedure is composed of an environment as well as code, that one sees its power.
The procedure make-counter takes an inital value for the counter and returns a procedure
which counts:
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(define (make-counter n) ==> MAKE-COUNTER a procedure which returns
(lambda () a procedure

(set! n (+ n 1))
(- n 1)))

(set! c1 (make-counter 100)) ==> #*PROCEDURE* counter with n bound to a
location containing 100

Each time the counter procedure is evaluated, it returns the next number:
(c1) ==> 100
(c1) ==> 101

Note that make-counter can make many counters, and while they will share the code, they
will have their own environments:

(set! c2 (make-counter 200)) ==> #*PROCEDURE* counter with n bound to a
location containing 200

(c2) ==> 200
(c2) ==> 201
(c1) ==> 102
(c2) ==> 202

Objects with more complex actions and a larger local state can be constructed in a straightfor-
ward manner.

2.5. Objects Are Created at Any Time and Last Forever

The procedures representing counters shown in the previous section can be created at any
time. Objects are never explicitly released as long as the program has at least one reference to
them. The storage allocator may use garbage collection to recover storage which is no longer
referenced. By constrast, in C most objects exist for the entire duration of the program, or are
created on entry to a procedure, and deleted on exit from it.  Objects that must have indefinite
extent are explicitly allocated and returned by calls to C library routines.

2.6. Continuations

Scheme provides a very general control mechanism based upon continuations. A continuation
represents the entire future of the computation, i.e. what to do next. In languages which have
labels and goto’s, the goto statement’s action can be described as:  ignore the implicit continua-
tion (which is the next sequential statement), and pass control to a continuation at the label.

The Scheme procedure call-with-current-continuation packages up the current
continuation as an escape procedure. The escape procedure is a Scheme procedure of one ar-
gument that, if it is later passed a value, will give the value to the continuation that was in effect
at the time that escape procedure was created. A simple example is the following which shows
how invoking the escape procedure can result in an "upexit" from the sequential execution of
expressions in the body of a procedure.

(call-with-current-continuation ==> 1
(lambda (exit)

(exit 1)
(/ 1 0)))
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Here, the division is never executed, as the procedure exit causes an immediate return to the
caller of call-with-current-continuation with the value 1. A trickier example
which hints at the power available is the following, where an escape procedure is used to return
to the "inside" of a previous computation.  When the procedure count:

(define repeat #t)

(define (count n)
(if (= n 0)

(begin (display "*")
(call-with-current-continuation

(lambda (exit) (set! repeat exit))))
(begin (display n)

(count (- n 1))
(display n))))

is called with 3 as its argument, it prints 321*123 and sets repeat to an escape procedure
which represents the future of the computation just after the * was printed.  Every time repeat
is called, it will return to that point in the computation and print the digits 123.

This ability to shift control is significantly more powerful than the upexit capability provided
by UNIX’s setjmp and longjmp [10], or Common LISP’s catch and throw [16]. As a result, a
large variety of control structures can be fabricated, as is shown in [7].

2.7. Iteration is a Special Case of Function Call

Using the concept of continuations (and ignoring the mechanism used for argument passing
and value return), the procedure call and return mechanism of C can be informally described as
follows. A procedure call consists of two steps:  first create a continuation which represents the
point to return to following the call and push it on a stack; then transfer control to the called
procedure. Following its execution, the called procedure returns by transfering control to a con-
tinuation which it pops from the stack.

When the last thing that a procedure does is to call another procedure, that call is called a
tail-call. For example, in the following C code that tests whether a non-negative integer is even
or odd:

int even( i )
int i;

{
return( if  (i == 0)  1  else  odd( i-1 ) );

}

int odd( i )
int i;

{
return( if  (i == 0) 0  else  even( i-1 ) );

}

the call to odd inside even and the call to even inside odd are tail-calls.  Even though C
always pushes a continuation on the stack on a procedure call, it is not necessary for tail-calls as
there is no need to return to the calling procedure.  That is, tail-calls can be thought of as
branches.
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Scheme on the other hand requires that the implementation be properly tail-recursive. A
Scheme system must identify tail-calls and not save another continuation when such a call is
made. This allows the Scheme version of the previous program to be written as:

(define (even i) (if (= i 0) #t (odd (- i 1))))

(define (odd i) (if (= i 0) #f (even (- i 1))))

which executes with a constant amount of stack space, irrespective of the value of i. This is
because the calls to odd and even inside even and odd are recognized as tail-calls and no
continuation is saved when the calls are made.

By recognizing how procedure calls are used, Scheme is able to avoid having an interation
primitive. When a programmer wishes to iterate, they often use the derived expression do. With
it, the programer writes an iterative form which is then expanded by the Scheme implementation
into an expression involving recursion.  When this expression is executed, those calls which are
tail-calls are recognized as such and processed efficiently.  That is, the program can be expressed
in an iterative manner, and the generated code can be iterative, but the programming language
does not directly support iteration.

2.8. A LISP Without Lists?

2In spite of the fact that pairs and lists are as prevalent in Scheme programs as arrays and
integers are in C programs, the discussion to this point has ignored them. The actual data types
supported by Scheme and the operations performed upon them are but a minor part of the im-
plementation of Scheme.  In fact, the only time that lists are used in the primitive expressions is
as part of the mechanism which allows procedures which accept a variable number of arguments.

With this overview of the semantics of Scheme, we can now turn our attention to the problems
involved in translating Scheme to C.

3. Compiling Scheme to C

As can be seen from the introduction to Scheme, there are major differences from C in the
semantics of procedure call and the lifetimes of objects.  Smaller though significant differences
exist in the semantics of procedures and procedure argument passing. Finally, Scheme introduces
a new concept with its escape procedures which capture continuations.

Before examining the solutions to these problems, a short overview of the compilation process
is in order. The design of this process owes much to Steele’s RABBIT compiler [15] done at
MIT and the ORBIT compiler [11] done at Yale.

2A pair is a type of Scheme object with two fields, the car and the cdr. Pairs are allocated by calls to the
procedure cons which takes the values to place in the two fields as its arguments.  Each of these fields may in turn
contain any Scheme object. A list is either a special object called the empty list, or a pair whose cdr field contains a
list.
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Starting with an initial source program:
(define (sample x y z) (if (or (and x y) z) 0 1))

Scheme->C converts all expressions to their equivalent primitive expressions:
(define
(sample x y z)
(if
((lambda (x thunk) (if x x (thunk)))
((lambda (x thunk) (if x (thunk) x)) x (lambda () Y))
(lambda () Z))

0
1))

Following this all variables are uniquely named, a process known as alpha-conversion [15],
and each primitive form is replaced by an equivalent internal form:

($DEFINE S1000
($LAMBDA L1001

($IF
(<APPLY> () L1005
(X1006
<-
(<APPLY> () L1008
(X1009 <- X1002)
(T1010 <- ($LAMBDA L1011 Y1003))
($IF X1009 ($CALL () T1010) X1009)))

(T1007 <- ($LAMBDA L1012 Z1004))
($IF X1006 X1006 ($CALL () T1007)))
C1014
C1013)))

Lambda expressions have their arguments replaced by a unique name.  The arguments and
other information associated with the expression are stored in a side table indexed by the unique
name. All function calls are modified to have an additional initial argument which is a flag
identifying tail-calls.  The flag is set on tail-calls to the id of the lambda expression that is exited
when the call is made. A call where the function is a lambda expression is displayed differently

3so that the lambda bindings can be observed . Thus, the expression:
(<APPLY> () L1008
(X1009 <- X1002)
(T1010 <- ($LAMBDA L1011 Y1003))
($IF X1009 ($CALL () T1010) X1009)))

is actually represented internally as:
($CALL ()

($LAMBDA L1008
($IF X1009 ($CALL () T1010) X1009))

X1002
($LAMBDA L1011 Y1003))

3Those familiar with the ORBIT compiler will note that this compiler does not do CPS conversion.
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Following conversion to the internal form, the program is optimized using rewrite rules
similar to those used in the ORBIT compiler. After the application of these transformations, the
sample expression becomes:

($DEFINE S1000
($LAMBDA L1001

(<APPLY> L1001 L1020
(Y1022 <- ($LAMBDA L1024 ($IF Z1004 C1014 C1013)))
($IF X1002

($IF Y1003 C1014 ($CALL L1001 Y1022))
($CALL L1001 Y1022)))))

At this point in the translation process, one can start to consider emitting code.  However,
before that can be done, a method for calling procedures must be picked.

3.1. Procedure Call: a Dilemma

One of the strengths of a good C compiler is that it provides significant processor independent
4and dependent optimization.  While many move frequently used local variables to registers ,

compilers on RISC processors such as the MIPS R2000 [8] make a significant effort to optimize
procedure calls. Some procedure arguments are passed in the registers and calls to leaf

5procedures are optimized.  By using C’s procedure call and return mechanisms, one is able to
take advantage of these optimizations.  In addition, by retaining C’s procedure call and return
mechanism, call-outs to and call-backs from other languages can be done in a straightforward
manner.

However, there is a drawback to this approach:  C is not properly tail-recursive, so all proce-
dure calls result in a stack marker being pushed on the runtime stack.  It would appear that the
compiler writer is faced with a dilemma:  use C’s mechanisms and cease to be properly tail-
recursive, or avoid them and lose significant amounts of optimization.

After some thought, it was decided to use C’s procedure call mechanism and preserve as much
of the tail-recursive semantics as possible through compile-time analysis.

3.2. Procedure Call Analysis

Following the program transformation phase, the compiler analyzes how each procedure is
called and uses that information to decide how code for it should be emitted.  In the previous
example, the lambda expression L1001 is the procedure sample. Since it is defined at the top
level of the program, it is translated into a C procedure.  The next lambda expression, L1020, is
only called once, so it can be generated in-line where it is called.  The final lambda expression,
L1024, is called twice. Each call is a tail-call which is to exit from the lambda expression
L1001 following the execution of L1020. These conditions allow L1024 to be generated in-
line at the end of the code for L1001, and calls to it be branches.  Thus the C code for the
sample program becomes:

4Typically the compilers will ignore register declarations and rely on their own program analysis.

5A leaf procedure is a procedure which does not call any other procedure
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TSCP test_sample( x1002, y1003, z1004 )
TSCP x1002, y1003, z1004;

{ | code for L1020
if ( FALSE( x1002 ) )  goto  L1032; | tail-call to L1024
if ( FALSE( y1003 ) )  goto  L1032; | tail-call to L1024
return( _TSCP( 0 ) ); |

L1032:
if ( TRUE( z1004 ) )  goto  L1033;  | code for L1024
return( _TSCP( 4 ) ); |

L1033: |
return( _TSCP( 0 ) ); |

}

which is similar to the code that one would write in C if one expanded the and and or
6operators by hand.

The optimization mechanisms used here are not specific to and and or, as they are done only
using the primitive expression types.  For example, a do loop which prints a sequence of num-
bers can be expressed as:

(define (print-1-to-limit limit)
(do ((i 1 (+ i 1)))

((> i limit) ’done)
(display i)))

(print-1tolimit 8) ==> 12345678DONE

Following expansion to primitive expression types, it results in the following expression:
(define print-1-to-limit

(lambda (limit)
((lambda (doloop)

(set!
doloop
(lambda (i)
(if
(> i limit)
’DONE
(lambda () (display i) (doloop (+ i 1))))))

(doloop 1))
0)))

The loop is turned into a function which is called once with the initial conditions. Inside the
loop function, the next iteration is expressed as a tail-call to itself.  After the optimizing trans-
forms have been applied, the internal form is:

6TSCP is the type definition for a "tagged Scheme to C pointer", which is the type representing all Scheme
objects. _TSCP is a define which casts an expression to the type TSCP. FALSE is a define which is true if the
expression is either the Scheme boolean #f or the empty list. TRUE is a define which is true if the expression is
neither #f nor the empty list.
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($DEFINE P1000
($LAMBDA L1001

(<APPLY> L1001 L1003
(D1004 <- C1022)
($SET
D1004
($LAMBDA L1005 <-- loop function

($IF
($CALL () *greater-than* I1006 L1002)
C1020
(<APPLY> L1005 L1013
($CALL () D632 I1006)
($CALL <-- internal tail-call
L1005
D1004
($CALL () *plus* I1006 C1021))))))

($CALL L1001 D1004 C1021)))) <-- initial call

where the functions *greater-than* and *plus* are expanded in-line.  The loop proce-
dure L1005 can be generated in-line because the variable that it is assigned to, D1004, is never
passed as a procedure argument, and all but one of the calls to D1004 are tail-calls which are
internal to it.  The resulting code is iterative as one would expect:

TSCP test_print_2d1_2dto_2dlimit( l1002 )
TSCP l1002;

{
TSCP X1;

X1 = _TSCP( 4 );
L1032:

if ( GT( INT( X1 ), INT( l1002 ) ) )  goto  L1033;
scrt6_display( X1, EMPTYLIST );
X1 = _TSCP( PLUS( INT( X1 ), INT( _TSCP( 4 ) ) ) );
goto L1032;

L1033:
return( c1020 );

}

While the analysis shown in the previous examples is powerful enough to compile finite state
machines correctly, it does have some limitations.  Any procedure which must be compiled as a
C procedure can only be tail-called by itself.  This includes procedures defined at the top level,
and any procedure that is called from multiple places where at least one of the calls is not a
tail-call. As a result, the previous tail-recursive example involving two top level procedures is
not properly compiled:

(define (even i) (if (= i 0) #t (odd (- i 1))))

(define (odd i) (if (= i 0) #f (even (- i 1))))

However, correct code can be obtained if the user is willing to put a "wrapper" procedure
around a set of tail-recursive procedures.  By restating the problem as follows, correct iterative
code is generated.

(define (even? x)
(define (even x) (if (= x 0) #t (odd (- x 1))))
(define (odd x) (if (= x 0) #f (even (- x 1))))
(even x))
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There are certain to be those in the Scheme community who are offended by the fact that the
tail-recursive properties of the language have been compromised.  However, the compiler cor-
rectly handles tail-recursion in the cases where there is a big win:  loops and conditional expres-
sions. With minor changes to the program, such things as finite state machines can be correctly
compiled. The inability to tail-call all procedures has been traded for high performance and com-
patibilty with other tools and languages.

3.3. Procedure Call: Loose Ends

Scheme allows procedures to be defined to accept optional arguments.  When the called proce-
dure is entered, these arguments are available in a newly constructed list.  In this implementation
of Scheme, the calling procedure is required to construct the argument list. While this adds code
to each call, it assures that procedures will always be called with the correct fixed number of
arguments. An example of a procedure which accepts one required argument and additional
optional arguments is:

(define (sum x . y)
(for-each

(lambda (z)
(set! x (+ x z)))

y))

which returns the sum of its arguments.  Calls to it are compiled as:
test_sum( _TSCP( 4 ), EMPTYLIST ); (sum 1)

X1 = CONS( _TSCP( 16 ), EMPTYLIST );
X1 = CONS( _TSCP( 12 ), X1 );
test_sum( _TSCP( 4 ), CONS( _TSCP( 8 ), X1 ) ); (sum 1 2 3 4)

A second consideration in calling procedures is that some procedures must be executed in the
environment where they were created.  For example on each call to a counter procedure, c1:

(define (make-counter n)
(lambda ()

(set! (+ n 1))
(- n 1)))

(set! c1 (make-counter 100))

the environment where n is bound must be supplied.  This is done by compiling such
procedures with a pointer to the environment as an additional argument.  It is the caller’s respon-
sibility to supply this argument.

A call to c1 in the previous example is an example of the most general form of procedure call,
where all checking and argument construction must be deferred to runtime.  In order to assure
that it is correctly done, the following operations must be performed:

• Verify that c1 is a procedure and that it is being called with the correct number of
arguments.

• Form any optional arguments into a list.

12
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• Call the procedure with the procedure’s environment as the last argument.

While it would be nice to construct a procedure call with an arbitrary number of arguments
with in-line code, C does not allow it.  The only mechanism for simulating this is to compute the
number of arguments, and use it as an index to a switch statement to select a call with the correct
number of arguments.  Needless to say, this results in a lot of code, so it must be placed in its
own procedure in the runtime library.

One optimization that is made is to assume that the procedure takes no optional arguments.
Then, the number of arguments that a procedure P is being called with will be known at compile
time and a call statement to a procedure variable X is constructed.  If at runtime P is indeed a
procedure expecting that fixed number of arguments, then X is set to P. If this is not true, then X
is set to a "trampoline" procedure in the runtime library which will handle errors or optional
arguments. The environment pointer is always supplied here, as some procedures need it and C
permits a procedure to be called with extra arguments which are simply ignored.

Fortunately, there is enough information available at compile time to correctly compile most
procedure calls.  The compiler uses its knowledge about predefined functions and those defined
in the module currently being compiled to generate the correct calling sequence.  Other calls
emit the previously described general calling sequence.  Since it can do many calls in-line, few
calls must resort to the most general calling mechanism implemented by the runtime library.

3.4. Storage Allocation

Type information is encoded in objects in a straightforward manner.  The implementation re-
quires that pointers be 32-bits long and be byte addresses.  Since storage is always allocated on a
four-byte word boundary, each object is a 32-bit pointer, with the low-order two bits reserved for
a tag.  Note that this tagging scheme does not result in the loss of any address bits. Depending
upon the value of the tag, the rest of the word is either the object, or a pointer to the object.

Since objects have an indefinite lifetime, they must be allocated from a heap.  As the objects
are never explicitly freed, some mechanism must be provided for objects which are no longer
referenced. A review of the literature on garbage collection [5] suggests that garbage collection
might be quite difficult in the C environment. Virtually all collection algorithms start with infor-
mation found in a root set of pointers which must be in known locations.  As a result, the collec-
tor must know the conventions for register and stack usage, which must always be followed.
Typically this requires that registers which are assumed to contain pointers always be valid, and
that pointers never be placed in other registers.  Items in the stack must be flagged in such a way
that all objects that are pointers can be found, and those that aren’t are never mistaken for
pointers.

When the Scheme compiler has complete control over the emitted code, conventions can be
followed. However, there is no way for a Scheme compiler generating C to enforce any register
or stack usage conventions. The C translator is the only agent which decides instruction se-
quences, how registers are used, or how the stack is allocated.  As a result, any algorithm that
requires the garbage collector to know exactly where the pointers are cannot be used.

13
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To solve this problem, a new garbage collection algorithm called "mostly-copying" was
devised [2]. Instead of requiring that the root set be a known set of cells containing pointers
which define all accessible storage, the new algorithm only requires that the root set include
pointers or values derived from pointers which define all accessible storage.  The cells in this
new root set need not all be pointers, nor is it required that there not be cells which "look like
pointers", but aren’t.

Using this root set, the algorithm divides all accessible objects in the heap into two classes:
those which might have a direct reference from the root cells, and those which don’t.  The former
items are left in place, and the latter items are copied into a compact area of memory.  In prac-
tice, only a very small amount of the heap is left in place, so memory fragmentation is not a
problem.

3.5. Runtime Environment

Scheme requires a significantly richer runtime environment than does C. For example, a call
to function a in:

(define (a) (eq? (b) ’b))

(define (b) ’b)

7must return the value #t when both procedures are compiled together, separately compiled,
interpreted, or just one is compiled.  In order to do this, there can only be one symbol constant b.

Another example where complex initialization is required is:
(define time (current-time-of-day))

where the top level variable time is set to the current time of day. If this code is compiled,
then a mechanism must be provided which will assure that time is initialized at the start of the
program. Furthermore, the variable time must be available at runtime to a Scheme interpreter.
If one enters time, then one should get its value.  Or, if one enters (set! time 0), one
should change the value of time seen by interpreted and compiled code.

These examples suggest that C’s model of execution where compile-time globals are set to
constant values and execution starts at the main procedure is not powerful enough. Instead, an
initialization model similar to that used by Modula-2 is used. The Scheme compiler compiles a
module at a time, where each module consists of one or more source files.  The module name is
supplied in a module directive (module module-name), and define-external expres-
sions may be supplied to declare objects defined in other modules.  However, unlike Modula-2,
there are default external references.  All objects defined to be in the initial Scheme environment
are predefined.  Objects which are not defined in the initial Scheme environment are assumed to
be defined in the top level environment at runtime.

7eq? is the finest grain comparator. It returns #t, the boolean "true", when the objects are identical, i.e. the
pointers are the same.
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The code generated to handle initialization is compatible with that generated by WRL’s
Modula-2 compiler. Each module which is compiled has an initialization procedure,
module-name__init which is called at the start of execution to initialize the module.  This
initialization procedure calls the initialization procedures of all other modules needed by that
module. At the end of this initialization process, the user’s main procedure is executed.

This environment setup process is best shown by example. The classic "hello, world" program
in C is:

main()
{

printf( "hello, world\n" );
}

which can be written in Scheme as:
(module hello (main main))

(define (main clargs)
(display "hello, world")
(newline))

which compiles into the C code:
/* SCHEME->C */

#include "schemetoc/objects.h"

DEFSTRING( t1004, "hello, world", 12 );
DEFSTATICTSCP2( c1003, t1004 );

static void  init_constants()
{
}

DEFTSCP( hello_main_v );
DEFSTRING( t1005, "MAIN", 4 );
EXTERNTSCPP( scrt6_display );
EXTERNTSCP( scrt6_display_v );
EXTERNTSCPP( scrt6_newline );
EXTERNTSCP( scrt6_newline_v );

TSCP hello_main( c1002 )
TSCP c1002;

{
scrt6_display( c1003, EMPTYLIST );
return( scrt6_newline( EMPTYLIST ) );

}

void hello__init(){}

static void  init_modules( compiler_version )
char *compiler_version;

{
scrt6__init();

}

15
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main( argc, argv )
int argc;  char *argv[];

{
static int  init = 0;
if (init) return;
init = 1;
INITHEAP( 0, argc, argv, hello_main );
init_constants();
init_modules( "(hello SCHEME->C COMPILER 09nov88jfb)" );
INITIALIZEVAR( U_TX( ADR( t1005 ) ),

ADR( hello_main_v ),
MAKEPROCEDURE( 1,

0, hello_main, EMPTYLIST ) );
MAXDISPLAY( 0 );
hello_main( CLARGUMENTS( argc, argv ) );
SCHEMEEXIT();

}

Here, the main program is not the user’s code, but the module initialization code.  By examin-
ing it, one can see the Scheme initialization process.

• When the the C source is compiled, it includes the file schemetoc/objects.h
which defines the types and defines underlying the Scheme system.

• The constant t1004 defines the storage for the string "hello, world" which consists
of a header identifying the object as a string of length 12, followed by the text.  All
references to the string in the program are via the variable c1003 which contains a
tagged pointer to the actual string.

• Turning now to the main procedure, the local static variable init assures that the
initialization module is executed exactly once.

• The define INITHEAP calls a function in the run-time library to initialize the heap.

• The procedure init_constants is called to build any constant lists or vectors
which are required by this module.  Since none are needed here, this procedure is
empty.

• The call to init_modules causes the initialization procedures for all modules re-
quired by this one to be executed. In this case, scrt6__init is called because
that module contains the procedures display and newline.

• The user’s procedure main causes both a C procedure hello_main and a global
variable hello_main_v to be created. The global variable is set to a procedure
object which in turn points to the C procedure.  The define INITIALIZEVAR is
called to store the procedure object into the variable hello_main_v, and to as-
sociate the name main with that variable.

• The number of entries used in the lexical display are recorded by the define
MAXDISPLAY.

• The command line arguments are formed into a list and that is passed to the user’s
procedure which prints "hello, world" and then returns.

• Finally, the process is terminated by the define SCHEMEEXIT.
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While some of the initialization is superfluous in this example, most of it is needed most of the
time so it’s always generated.

3.6. Variable Binding

Variables in Scheme differ from those allocated by C in that they have indefinite extent.
However, compile time analysis can discover how they are used so that they may be efficiently
bound. The factors that the compiler considers are:

• Is the variable bound in the top level environment?

• Otherwise, for lambda-bound variables:
• Is the variable closed by a lambda expression?

• Is the variable accessed by a nested procedure?

• Is the variable ever changed by set!?

3.6.1. Global Variables

Variables that are bound in the top level environment are allocated as C globals.  Those which
are bound to a procedure also require a C procedure with the code.  Thus the Scheme module:

(module sample)

(define x 10)

(define (inc x) (+ x 1))

will be compiled into the following globals:
.
.
.

TSCP sample_x_v; Location for X
TSCP sample_inc_v; Location for INC
TSCP sample_inc( x1004 ) Code for INC

TSCP x1004;
{

.

.

.
}

.

.

.

3.6.2. Automatic Variables

The most efficent and most common case in allocating lambda-bound variables is when none
of the conditions requiring special handling are true.  Here, the scope and extent of the variables
are identical to that of C’s procedure arguments and locals so they can be used. This allows the
variable x which is the procedure argument of inc in the previous example to be allocated by C.
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3.6.3. Display-Allocated Variables

Since C does not allow procedures to be nested lexically, the compiler must provide some
mechanism for allowing one C procedure to access another’s lexical variables.  This is done by
allocating such variables to a display, implemented by a set of global variables.

In the following contrived example:
(define (a x)

(define (b y) x)
(b x)
(b 2))

the procedure b, nested within a, needs to access the variable x which is bound on the call a.

Since b is called twice, and one of the calls is not a tail-call, it must be compiled as a separate
C procedure. When a is compiled, a slot in the display is allocated to x. On entry to a the
contents of that display entry are saved in a local variable, and the value of x is placed in it.
Within a and b, all references to x refer to the value in the display slot.  When a is exited, the
display entry is restored to its previous contents.

TSCP test_b1004( y1006 ) Code for b
TSCP y1006;

{
return( DISPLAY( 0 ) );

}

TSCP test_a( x1002 ) Code for a
TSCP x1002;

{
TSCP SD0 = DISPLAY( 0 );
TSCP SDVAL;

DISPLAY( 0 ) = x1002;
test_b1004( DISPLAY( 0 ) );
SDVAL = test_b1004( _TSCP( 8 ) );
DISPLAY( 0 ) = SD0;
return( SDVAL );

}

Variables must also be allocated to the display when a binding is "captured" by a lambda
expression. In the example described earlier which makes counters:

(define (make-counter n)
(lambda ()

(set! n (+ n 1))
(- n 1)))

analysis done by the compiler discovers that the variable n is captured by the procedure
returned as the result of calling make-counter. However, n is also modified by set! which
changes how the display slot is used.
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3.6.4. Heap-Allocated Variables

In order to be compatible with the implementation method used for saving the display and
continuations, variables allocated on the stack or in the display cannot be changed after their
initial binding.  So, variables which are changed by set! are bound to a pointer to a pair

8containing the value, rather than to the actual value . While this adds a level of indirection to
each variable access, Scheme programmers are encouraged to write in a functional manner so
set! is not extensively used.

With this in mind, we can now examine the code for make-counter:
TSCP test_l1003( c1019 ) Procedure returned by make-counter

TSCP c1019; that does the counting.
{

TSCP X2, X1;

X1 = DISPLAY( 0 );
DISPLAY( 0 ) = CLOSURE_VAR( c1019, 0 );
PAIR_CAR( DISPLAY( 0 ) ) =

_TSCP( PLUS( INT( PAIR_CAR( DISPLAY( 0 ) ) ),
INT( _TSCP( 4 ) ) ) );

X2 = _TSCP( DIFFERENCE( INT( PAIR_CAR( DISPLAY( 0 ) ) ),
INT( _TSCP( 4 ) ) ) );

DISPLAY( 0 ) = X1;
return( X2 );

}

TSCP test_make_2dcounter( n1002 ) Code for make-counter
TSCP n1002;

{
TSCP SD0 = DISPLAY( 0 );
TSCP SDVAL;

DISPLAY( 0 ) = CONS( n1002, EMPTYLIST );
SDVAL = MAKEPROCEDURE( 0,

0,
test_l1003,
MAKECLOSURE( EMPTYLIST,

1, DISPLAY( 0 ) ) );
DISPLAY( 0 ) = SD0;
return( SDVAL );

}

Here, n is allocated a slot in the display, but since it is changed by set! its actual value must
be retained in the heap. This binding of n is made part of the returned procedure. Each time such
a procedure is called, a pointer to the saved environment holding the binding of n is supplied as
its argument.  On entry, the contents of n’s entry in the display is saved in a local variable. On
exit, the display is restored from the local variable.

8ORBIT’s solution to this problem is to explicitly add this level of indirection by a process they call "assignment
conversion" during the program transformation phase of compilation.  The result is similar code, but the mechanism
is more obvious, and perhaps preferred, as it’s not hidden in the code generator as it is in this compiler.
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3.7. Continuations

Various mechanisms have been used to create continuations in Scheme, as is summarized in
[4]. Given the fact that we wish to avail ourselves of C’s procedure call/return and local vari-
able allocation mechanisms, it makes sense to implement continuations using the stack strategy.
When a continuation is constructed by call-with-current-continuation, the contents
of the stack, display, and registers are saved and made a part of the escape procedure.  When this
procedure is called, it restores the stack, display, and registers, and then returns its argument as
its value. Stack copying can be minimized by only copying the portion of the stack which has not
already been copied into some other continuation and only restoring the portion of the stack
which is not already in place.

While this scheme requires copying, it has two distinct advantages: there is no overhead for
the programs which do not use explicit continuations and the mechanism is portable.

3.8. Summary

This completes discussion of the mapping of Scheme’s semantics to C. Even though virtually
all of Scheme’s semantics were correctly handled, the implementation cannot properly handle all
tail-calls. While unfortunate, the discussions which follow on performance and portability sug-
gest that this is not a fatal flaw.

4. Performance in C

While compiling Scheme to C may provide a very portable system, one’s first inclination is to
expect that there is a performance penalty.  One test that was run suggests that this is not the
case. The Gabriel benchmarks [6] were run on a MicroVax II and Scheme->C’s performace was
compared against that of a native Lisp implementation, VAX Common Lisp V2.2 as reported in
[14].

When the benchmarks were compiled using the standard ULTRIX C compiler, the geometric
mean of the run-times showed that they were 5% slower than VAX Common Lisp. Better results
were obtained when the benchmarks were compiled with the VAX C compiler: the geometric
mean of the run-times in this case was the same as with VAX Common Lisp.  The best results
were obtained when the benchmarks were compiled with the GNU C compiler.  Here, the
geometric mean of the times showed that Scheme->C was 8% faster than VAX Common Lisp.
The results of the individual benchmarks are shown in Figure 1.  For each benchmark, there is a

9data point for each compiler that shows the speed relative to VAX Common Lisp. Values to the
left of 1.0 show performance less than VAX Common Lisp, values to the right show greater
performance.

Much of the variance in performance in the individual benchmarks is probably due to dif-
ferences in the systems. The block compilation model used by Scheme->C and its tail-call
analysis probably help performance. On the other hand it loses some performance, in that it uses

9Except for BOYER, where the VAX C compiler was unable to compile the benchmark.
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the standard procedure call and return instructions, has no floating point optimization, and cons
is implemented by a library procedure rather than in-line code.

In spite of these differences, one can still conclude that performance need not suffer by com-
piling to C, and the times obtained when compiling with GNU C indicate that it may be possible
to gain.  With the advent of powerful C compilers, and RISC machines such as the MIPS R2000
which benefit greatly from extensive optimization, compiling to C as is done here and in Kyoto
Common Lisp (KCL) may be preferable to retargetting a common backend when building a port-
able compiler.

5. Porting Scheme->C

The Scheme->C system makes few requirements on the target system other than it have a C
compiler. The tagged pointer scheme requires that processor addresses be 32-bits in length and
denote the first byte of the addressed object. It does not care about byte-order in a word.  While
UNIX systems typically have one address space for code and data, the implementation does not
require it.  In order to save and restore state for call-with-current-continuation,
there must be a way to save and restore the process’s stack and registers.

The Scheme->C system is broken up into processor dependent and independent modules as
follows:

• A Scheme-to-C compiler written in Scheme which emits machine-independent C
code.

• A machine-dependent definitions file which is used to compile the C code produced
by the compiler to produce a machine-dependent object file.

• Machine-independent portions of the run-time library written in C and Scheme.

• Machine-dependent portions of the run-time library written in C and assembly lan-
guage.

Organizing the modules in this manner simplifies porting the compiler to a new system as no
host system with an existing implementation is needed.  Instead, all work can be done on the
target system:  the machine-dependent parts of the run-time system are changed, and then the
entire system is compiled using the system’s C compiler.  Following the initial implementation
of the compiler on the Titan workstation developed by WRL [12], it was ported to the Digital
VAX, and the DECstation 3100 which uses a MIPS R2000 processor.  Each of these ports took
less than one week and required less than 100 lines of machine specific code.

In spite of the fact that there is only a small amount of machine dependent code, machine
specific optimizations that have a high payoff can still be done.  For example, the Titan
automatically ignores the low-order two bits of an address when a word in memory is accessed.
Thus on a Titan, the type tag need not be masked off before a memory access, and the car of a
pair is accessed:

#define PAIR_CAR( tscp ) ( ((SCP)( tscp ))->pair.car )

while on the VAX, the tag must be explicitly deleted so the code is:
#define PAIR_CAR( tscp ) ( ((SCP)((char*)tscp-PAIRTAG))->pair.car )
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Scheme->C using ULTRIX C, geo. mean of ratios = 0.95

Scheme->C using GNU C, geo. mean of ratios = 1.08

Scheme->C using VAX C, geo. mean of ratios = 1.00
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Figure 1: Performance of Scheme->C relative to VAX Common Lisp V2.2

6. Conclusion

A strong theme throughout this mapping of Scheme to C has been to try to use as much of C’s
facilities as possible.  By doing so, the implementation is portable, and a good C compiler can
produce high-performance code.  C’s procedure call/return mechanism was retained for just this
reason. While doing so makes the implementation not properly tail-recursive, it does allow C

22



SCHEME->C A PORTABLE SCHEME-TO-C COMPILER

code produced by the Scheme compiler to be compatible with other C programs or code written
in other languages.  In a similar vein, the garbage collection algorithm used allows Scheme data
structures to be mixed with other languages’ data structures.

In spite of the success of this effort, Scheme->C is not for everyone. Its greatest weakness is
that it is not a LISP environment. It does not provide any of the tools that an experienced LISP
programmer expects.  On the other hand, the fact that Scheme->C consists of a compiler and
run-time system which can be used with other parts of the computing system is its greatest
strength. By combining it with other tools and languages, it is possible to construct stand-alone
programs or embedded applications in conventional environments.
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