
J U L Y 1 9 9 4

WRL
Research Report 93/5

An Enhanced Access
and Cycle Time Model
for On-Chip Caches

Steven J.E. Wilton and Norman P. Jouppi

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There is a second research laboratory located in Palo Alto, the Systems Research Cen-
ter (SRC). Other Digital research groups are located in Paris (PRL) and in Cambridge,
Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, WRL-2
250 University Avenue
Palo Alto, California 94301 USA

Reports and notes may also be ordered by electronic mail. Use one of the following
addresses:

Digital E-net: JOVE::WRL-TECHREPORTS

Internet: WRL-Techreports@decwrl.pa.dec.com

UUCP: decpa!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

An Enhanced Access and Cycle Time Model

for On-Chip Caches

Steven J.E. Wilton and Norman P. Jouppi

July, 1994

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

Abstract

This report describes an analytical model for the access and cycle times of
direct-mapped and set-associative caches. The inputs to the model are the cache
size, block size, and associativity, as well as array organization and process
parameters. The model gives estimates that are within 10% of Hspice results for
the circuits we have chosen.

Software implementing the model is available from DEC WRL.

ii

.

iii

Table of Contents
1. Introduction 1
2. Obtaining and Using the Software 2
3. Cache Structure 2
4. Cache and Array Organization Parameters 3
5. Methodology 5

5.1. Equivalent Resistances 5
5.2. Gate Capacitances 6
5.3. Drain Capacitances 6
5.4. Other Parasitic Capacitances 8
5.5. Horowitz Approximation 8

6. Delay Model 9
6.1. Decoder 9
6.2. Wordlines 17
6.3. Tag Wordline 20
6.4. Bit Lines 21
6.5. Sense Amplifier 29
6.6. Comparator 31
6.7. Multiplexor Driver 34
6.8. Output Driver 36
6.9. Valid Output Driver 40
6.10. Precharge Time 40
6.11. Access and Cycle Times 42

7. Applications of Model 42
7.1. Cache Size 45
7.2. Block Size 47
7.3. Associativity 49

8. Conclusions 51
Appendix I. Circuit Parameters 53
Appendix II. Technology Parameters 57
References 58

iv

v

List of Figures
Figure 1: Cache structure 3
Figure 2: Cache organization parameter Nspd 4
Figure 3: Transistor geometry if width < 10µm 6
Figure 4: Transistor geometry if width >= 10µm 7
Figure 5: Two stacked transistors if each width >= 10µm 8
Figure 6: Decoders with decoder driver 10
Figure 7: Single decoder structure 10
Figure 8: Decoder critical path 12
Figure 9: Circuit used to estimate reasonable input fall time 12
Figure 10: Decoder driver equivalent circuit 13
Figure 11: Memory block tiling assumptions 14
Figure 12: Decoder driver equivalent circuit 14
Figure 13: Decoder delay 16
Figure 14: Word line architecture 17
Figure 15: Equivalent circuit to find width of wordline driver 17
Figure 16: Wordline results 19
Figure 17: Wordline of tag array 21
Figure 18: Precharging and equilibration transistors 22
Figure 19: One memory cell 22
Figure 20: Column select multiplexor 22
Figure 21: Bitline equivalent circuit 23
Figure 22: Step input on wordline 25
Figure 23: Slow-rising wordline 25
Figure 24: Fast-rising wordline 26
Figure 25: Bitline results without column multiplexing 27
Figure 26: Bitline results with column multiplexing 27
Figure 27: Bitline results vs. number of columns 28
Figure 28: Bitline results vs. degree of column multiplexing 29
Figure 29: Sense amplifier (from [8]) 30
Figure 30: Data array sense amplifier delay 30
Figure 31: Tag array sense amplifier delay 31
Figure 32: Comparator 32
Figure 33: Comparator equivalent circuit 33
Figure 34: Comparator delay 34
Figure 35: Overview of data bus output driver multiplexors 35
Figure 36: One of the A multiplexor driver circuits in an A-way set-associative 35

cache
Figure 37: Multiplexor driver delay as a function of baddr 37

Figure 38: Multiplexor driver delay as a function of 8 B
bo

37

Figure 39: Multiplexor driver delay as a function of bo 38
Figure 40: Output driver 38
Figure 41: Output driver delay as a function of bo: selb inverter 39
Figure 42: Output driver delay: data path 40
Figure 43: Valid output driver delay 41
Figure 44: Direct mapped: Tdataside + Toutdrive,data 43
Figure 45: Direct mapped: Ttagside,dm 43
Figure 46: 4-way set associative: Tdataside + Toutdrive,data 44
Figure 47: 4-way set associative: Ttagside,sa 44

vi

Figure 48: Access/cycle time as a function of cache size for direct-mapped cache 45
Figure 49: Access/cycle time as a function of cache size for set-associative cache 46
Figure 50: Access/cycle time as a function of block size for direct-mapped cache 47
Figure 51: Access/cycle time as a function of block size for set-associative cache 48
Figure 52: Access/cycle time as a function of associativity for 16K cache 49
Figure 53: Access/cycle time as a function of associativity for 64K cache 50
Figure II-1: Generic 0.8um CMOS Spice parameters [3] 57

vii

List of Tables
Table I-1: Transistor sizes and threshold voltages 55
Table II-1: 0.8µm CMOS process parameters 57

viii

.

1

1. Introduction

Most computer architecture research involves investigating trade-offs between various alter-
natives. This can not adequately be done without a firm grasp of the costs of each alternative.
As an example, it is impossible to compare two different cache organizations without consider-
ing the difference in access or cycle times. Similarly, the chip area and power requirements of
each alternative must be taken into account. Only when all the costs are considered can an in-
formed decision be made.

Unfortunately, it is often difficult to determine costs. One solution is to employ analytical
models that predict costs based on various architectural parameters. In the cache domain, both
access time models [8] and chip area models [5] have been published. In [8], Wada et al. present
an equation for the access time of a cache as a function of various cache parameters (cache size,
associativity, block size) as well as organizational and process parameters. In [5], Mulder et al.
derive an equation for the chip area required by a cache using similar input parameters.

This report describes an extension of Wada’s model. Some of the new features are:

• an additional array organizational parameter

• improved decoder and wordline models

• pre-charged and column-multiplexed bitlines

• a tag array model with comparator and multiplexor drivers

• cycle time expressions

The goal of this work was to derive relatively simple equations that predict the access/cycle
times of caches as a function of various cache parameters, process parameters, and array or-
ganization parameters. The cache parameters as well as the array organization parameters will
be discussed in Section 4. The process parameters will be introduced as they are used; Appendix
II contains the values of the process parameters for a 0.8µm CMOS process [3].

Any model needs to be validated before the results generated using the model can be trusted.
In [8], a Hspice model of the cache was used to validate their analytical model. The same ap-
proach was used here. Of course, this only shows that the model matches the Hspice model; it
does not address the issue of how well the assumed cache structure (and hence the Hspice
model) reflects a real cache design. When designing a real cache, many circuit tricks could be
employed to optimize certain stages in the critical path. Nevertheless the relative access times
between different configurations should be more accurate than the absolute access times, and this
is often more important for optimization studies.

The model described in this report has been implemented, and the software is available from
DEC WRL. Section 2 explains how to obtain and use the software. The remainder of the report
explains how the model was derived. For the user who is only interested in using the model,
there is no need to read beyond Section 2.

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

2

2. Obtaining and Using the Software

A program that implements the model described in this report is available. To obtain the
software, log into gatekeeper.dec.com using anonymous ftp. (Use "anonymous" as the login
name and your machine name as the password.) The files for the program are stored together in
"/archive/pub/DEC/cacti.tar.Z". Get this file, "uncompress" it, and extract the files using "tar".

The program consists of a number of C files; time.c contains the model. Transistor widths and
process parameters are defined in def.h. A makefile is provided to compile the program.

Once the program is compiled, it can be run using the command:

cacti C B A

where C is the cache size (in bytes), B is the block size (in bytes), and A is the associativity. The
output width and internal address width can be changed in def.h.

When the program is run, it will consider all reasonable values for the array organization
parameters (discussed in Section 4) and choose the organization that gives the smallest access
time. The values of the array organization parameters chosen are included in the output report.

3. Cache Structure

Before describing the model, the internal structure of an SRAM cache will be briefly
reviewed. Figure 1 shows the assumed organization. The decoder first decodes the address and
selects the appropriate row by driving one wordline in the data array and one wordline in the tag
array. Each array contains as many wordlines as there are rows in the array, but only one
wordline in each array can go high at a time. Each memory cell along the selected row is as-
sociated with a pair of bitlines; each bitline is initially precharged high. When a wordline goes
high, each memory cell in that row pulls down one of its two bitlines; the value stored in the
memory cell determines which bitline goes low.

Each sense amplifier monitors a pair of bitlines and detects when one changes. By detecting
which line goes low, the sense amplifier can determine what is in the memory cell. It is possible
for one sense amplifier to be shared among several pairs of bitlines. In this case, a multiplexor is
inserted before the sense amps; the select lines of the multiplexor are driven by the decoder. The
number of bitlines that share a sense amplifier depends on the layout parameters described in the
next section. Section 6.4 discusses this further.

The information read from the tag array is compared to the tag bits of the address. In an
A-way set-associative cache, A comparators are required. The results of the A comparisons are
used to drive a valid (hit/miss) output as well as to drive the output multiplexors. These output
multiplexors select the proper data from the data array (in a set-associative cache or a cache in
which the data array width is larger than the output width), and drive the selected data out of the
cache.

It is important to note that there are two potential critical paths in a cache read access. If the
time to read the tag array, perform the comparison, and drive the multiplexor select signals is
larger than the time to read the data array, then the tag side is the critical path, while if it takes

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

3

DATA
ARRAY

TAG
ARRAY

DECODER

COMPARATORS

COLUMN
MUXES

OUTPUT
DRIVERS

SENSE
AMPS

SENSE
AMPS

COLUMN
MUXES

MUX
DRIVERS

ADDRESS
 INPUT

BIT LINES

WORD
LINES

BIT LINES

WORD
LINES

VALID OUTPUT

DATA OUTPUT

OUTPUT
DRIVER

Figure 1: Cache structure

longer to read the data array, then the data side is the critical path. Since either side could deter-
mine the access time, both must be modeled in detail.

4. Cache and Array Organization Parameters

The following cache parameters are used as inputs to the model:

• C: Cache size in bytes

• B: Block size in bytes

• A: Associativity

• bo: Output width in bits

• baddr: Address width in bits

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

4

In addition, there are six array organization parameters. In the basic organization discussed by
Wada [8], a single set shares a common wordline. Figure 2-a shows this organization, where B
is the block size (in bytes), A is the associativity, and S is the number of sets (S =). Clearly,C

B×A

such an organization could result in an array that is much larger in one direction than the other,
causing either the bitlines or wordlines to be very slow. This could result in a longer-than-
necessary access time. To alleviate this problem, Wada describes how the array can be broken
horizontally and vertically and defines two parameters, Ndwl and Ndbl which indicates to what
extent the array has been divided. The parameter Ndwl indicates how many times the array has
been split with vertical cut lines (creating more, but shorter, wordlines), while Ndbl indicates how
many times the array has been split with horizontal cut lines (causing shorter bitlines). The total
number of subarrays is Ndwl × Ndbl.

Figure 2-b introduces another organization parameter, Nspd. This parameter indicates how
many sets are mapped to a single wordline, and allows the overall access time of the array to be
changed without breaking it into smaller subarrays.

8xBxA

S S/2

16xBxA

b) Nspd = 2a) Original Array

Figure 2: Cache organization parameter Nspd

The optimum values of Ndwl, Ndbl, and Nspd depend on the cache and block sizes, as well as
the associativity.

Notice that increasing these parameters is not free in terms of area. Increasing Ndbl or Nspd
beyond one increases the number of sense amplifiers required, while increasing Ndwl means
more wordline drivers are required. Except in the case of a direct-mapped cache with the block
length equal to the processor word length and all three parameters equal to one, a multiplexor is
required to select the appropriate sense amplifier output to return to the processor. Increasing
Ndbl or Nspd increases the size of the multiplexor.

Using these organizational parameters, each subarray contains columns and
8×B×A×Nspd

Ndwl

rows.C
B×A×Ndbl×Nspd

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

5

We assume that the tag array can be broken up independently of the data array. Thus, there
are also three tag array parameters: Ntwl, Ntbl, and Ntspd.

5. Methodology

The analytical model in this paper was obtained by decomposing the circuit into many equiv-
alent RC circuits, and using simple RC equations to estimate the delay of each stage. This sec-
tion shows how resistances and capacitances were estimated, as well as how they were combined
and the delay of a stage calculated.

5.1. Equivalent Resistances

The equivalent resistance seen between drain and source of a transistor depends on how the
transistor is being used. For each type of transistor (p and n), we will need two resistances:
full-on and switching.

5.1.1. Full-on Resistance

The full-on resistance is the resistance seen between drain and source of a transistor assuming
the gate voltage is constant and the gate is fully conducting. This resistance can be used for
pass-transistors that (as far as the critical path is concerned) are always conducting. Also, this is
the resistance that is used in the Horowitz approximation discussed in Section 5.5.

It was assumed that the equivalent resistance of a conducting transistor is inversely propor-
tional to the transistor width (only minimum-length transistors were considered). The equivalent
resistance of any transistor can be estimated by:

resn,on (W) =
Rn,on

W
(1)

resp,on (W) =
Rp,on

W

where Rn,on and Rp,on are technology dependent constants. Appendix II shows values for these
two parameters in a 0.8µm CMOS process.

5.1.2. Switching Resistance

This is the effective resistance of a pull-up or pull-down transistor in a switching static gate.
For the most part, our model uses an inverter approximation due to Horowitz (see Section 5.5) to
model such gates, but a simpler method using the static resistance is used to estimate the
wordline driver size and the precharge delay.

Again, we assume the equivalent resistance of a conducting transistor is inversely proportional
to the transistor width. Thus,

resn,switching (W) =
Rn,switching

W
(2)

resp,switching (W) =
Rp,switching

W

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

6

where Rn,switching and Rp,switching are technology dependent constants (see Appendix II). The
values shown in Appendix II were measured using Hspice simulations with equal input and out-
put transition times.

5.2. Gate Capacitances

The gate capacitance of a transistor consists of two parts: the capacitance of the gate, and the
capacitance of the polysilicon line going into the gate. If Leff is the effective length of the tran-
sistor, Lpoly is the length of the poly line going into the gate, Cgate is the capacitance of the gate
per unit area, and Cpolywire is the poly line capacitance per unit area, then a transistor of width W
has a gate capacitance of:

gatecap = W × Leff × Cgate + Lpoly × Leff × Cpolywire

The same formula holds for both NMOS and PMOS transistors.

The value of Cgate depends on whether the transistor is being used as a pass transistor, or as a
pull-up or pull-down transistor in a static gate. Thus, two equations for the gate capacitance are
required:

gatecap (W , Lpoly) = W × Leff × Cgate + Lpoly × Leff × Cpolywire (3)

gatecappass (W , Lpoly) = W × Leff × Cgate,pass + Lpoly × Leff × Cpolywire

Values for Cgate, Cgate,pass, Cpolywire, and Leff are shown in Appendix II. A different Lpoly was
used in the model for each transistor. This Lpoly was chosen based on typical poly wire lengths
for the structure in which it is used.

5.3. Drain Capacitances

Figures 3 and 4 show typical transistor layouts for small and large transistors respectively.
We have assumed that if the transistor width is larger than 10µm, the transistor is split as shown
in Figure 4.

GATE

Leff

W

3 x Leff 3 x Leff

SOURCEDRAIN

Figure 3: Transistor geometry if width < 10µm

The drain capacitance is composed of both an area and perimeter component. Using the
geometries in Figures 3 and 4, the drain capacitance for a single transistor can be obtained. If the
width is less than 10µm,

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

7

GATE

Leff

3 x Leff 3 x Leff

SOURCEDRAIN

3 x Leff

SOURCE

W/2

Figure 4: Transistor geometry if width >= 10µm

draincap(W) = 3 Leff × W × Cdiffarea + (6 Leff + W) × Cdiffside + W × Cdiffgate

where Cdiffarea, Cdiffside, and Cdiffgate are process dependent parameters (there are two values for
each of these: one for NMOS and one for PMOS transistors). Cdiffgate includes the junction
capacitance at the gate/diffusion edge as well as the oxide capacitance due to the gate/source or
gate/drain overlap. Values for n-channel and p-channel Cdiffgate are also given in Appendix II.

If the width is larger than 10µm, we assume the transistor is folded (see Figure 4), reducing
the drain capacitance to:

draincap(W) = 3 Leff × × Cdiffarea + 6 Leff × Cdiffside + W × Cdiffgate
W
2

Now, consider two transistors (with widths less than 10µm) connected in series, with only a
single Leff×W wide region acting as both the source of the first transistor and the drain of the
second. If the first transistor is on, and the second transistor is off, the capacitance seen looking
into the drain of the first is:

draincap(W) = 4 Leff × W × Cdiffarea + (8 Leff + W) × Cdiffside + 3 W × Cdiffgate

Figure 5 shows the situation if the transistors are wider than 10µm. In this case, the
capacitance seen looking into the drain of the inner transistor (x in the diagram) assuming it is on
but the outer transistor is off is:

draincap(W) = 5 Leff × × Cdiffarea + 10 Leff × Cdiffside + 3 W × Cdiffgate
W
2

To summarize, the drain capacitance of x stacked transistors is:
if W < 10 µm (4)

draincapn(W,x) =3 Leff × W × Cn,diffarea + (6 Leff + W) × Cn,diffside + W × Cn,diffgate +
(x − 1) × {Leff × W × Cn,diffarea + 2 Leff × Cn,diffside + 2 W × Cn,diffgate}

draincapp(W,x) =3 Leff × W × Cp,diffarea + (6 Leff + W) × Cp,diffside + W × Cp,diffgate +
(x − 1) × {Leff × W × Cp,diffarea + 2 Leff × Cp,diffside + 2 W × Cp,diffgate}

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

8

x

3xLeff

Leff

3xLeff

W/2

Leff

3xLeff

Figure 5: Two stacked transistors if each width >= 10µm

if W >= 10 µm
draincapn(W,x) =3 Leff × W / 2 × Cn,diffarea + 6 Leff × Cn,diffside + W × Cn,diffgate +

(x − 1) × {Leff × W × Cn,diffarea + 4 Leff × Cn,diffside + 2 W × Cn,diffgate}

draincapp(W,x) =3 Leff × W / 2 × Cp,diffarea + 6 Leff × Cp,diffside + W × Cp,diffgate +
(x − 1) × {Leff × W × Cp,diffarea + 4 Leff × Cp,diffside + 2 W × Cp,diffgate}

5.4. Other Parasitic Capacitances

Other parasitic capacitances such as metal wiring are modeled using the values for bitmetal and
Cwordmetal given in Appendix II. These capacitance values are fixed values per unit length in
terms of the RAM cell length and width. These values include an expected value for the area
and sidewall capacitances to the substrate and other layers. Besides being used for parasitic
capacitance estimation of the bitlines and wordlines themselves, they are also used to model the
capacitance of the predecode lines, data bus, address bus, and other signals in the memory. Al-
though the capacitance per unit length would probably less for many of these busses than for the
bit lines and word lines, the same value is used for simplicity of modeling.

5.5. Horowitz Approximation

In [2], Horowitz presents the following approximation for the delay of a static inverter with a
rising input:

delayrise (tf , trise , vth) = tf √(log [vth])2 + 2 trise b (1−vth) / tf
where vth is the switching voltage of the inverter (as a fraction of the maximum voltage), trise is
the input rise time, tf is the output time constant (assuming a step input), and b is the fraction of
the swing in which the input affects the output (we used b=0.5).

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

9

For a falling input with a fall time of tf, the above equation becomes:

delayfall (tf , tfall , vth) = tf √(log [1 − vth])2 + 2 tfall b vth / tf
In this case, we used b=0.4.

The delay of an inverter is defined as the time between the input reaching the switching volt-
age (also called threshold voltage) of the inverter and the output reaching the switching voltage
of the following gate. If the inverter drives a gate with a different switching voltage, the above
equations need to be modified slightly. If the switching voltage of the switching gate is vth1 and
the switching voltage of the following gate is vth2, then:

delayrise (tf , trise , vth1 ,vth2) = tf √ +(log [vth1])2 + 2 trise b (1−vth1) / tf (5)
tf (log [vth1] − log [vth2])

delayfall (tf , tfall , vth1 ,vth2) = tf √ +(log [1 − vth1])2 + 2 tfall b vth1 / tf
tf (log [1 − vth1] − log [1 − vth2])

6. Delay Model

This section derives the cache read access and cycle time model. From Figure 1, the follow-
ing components can be identified:

• Decoder

• Wordlines (in both the data and tag arrays)

• Bitlines (in both the data and tag arrays)

• Sense Amplifiers (in both the data and tag arrays)

• Comparators

• Multiplexor Drivers

• Output Drivers (data output and valid signal output)

The delay of each these components will be estimated separately (Sections 6.1 to 6.10), and
will then be combined to estimate the access and cycle time of the entire cache (Section 6.11).

6.1. Decoder

6.1.1. Decoder Architecture

Figures 6 and 7 show the decoder architecture. It is assumed that each subarray has its own
decoder; therefore, there are Ndwl × Ndbl decoders associated with the data array, and
Ntwl × Ntbl tag array decoders. One driver drives all the data array decoders, while another
drives the tag array decoders.

The decoder in Figure 7 contains three stages. Each block in the first stage takes three address
bits (in true and complement), and generates a 1-of-8 code. This can be done with 8 NAND
gates. Since there are

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

10

ARRAY

D
E

C
O

D
E

R

ARRAY

D
E

C
O

D
E

R

ARRAY

D
E

C
O

D
E

R

ARRAY

D
E

C
O

D
E

R

ARRAY

D
E

C
O

D
E

R

ARRAY

D
E

C
O

D
E

R

ARRAY

D
E

C
O

D
E

R

ARRAY

D
E

C
O

D
E

R

ADDRESS

Ndwl*Ndbl
Data Arrays

Ntwl*Ntbl
Tag Arrays

Figure 6: Decoders with decoder driver

3
to
8

3
to
8

WORDLINE
DRIVER

Word
Lines

Address

Figure 7: Single decoder structure

log 2 ()
C

B A Ndbl Nspd

bits that must be decoded, the number of 3-to-8 blocks required is simply:

N3to8 = log 2 () 1
3

C
B A Ndbl Nspd

(6)

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

11

(if the number of address bits is not divisible by three, then 1-of-4 codes can be used to make up
the difference, but this was not modeled here).

These 1-of-8 codes are combined using NOR gates in the second stage. One NOR gate is
required for each of the rows in the subarray. Each NOR gate must take one inputC

B×A×Ndbl×Nspd

from each 3-to-8 block; thus, each NOR gate has N3to8 inputs (where N3to8 was given in Equa-
tion 6).

The final stage is an inverter that drives each wordline driver.

6.1.2. Decoder Delay

Figure 8 shows a transistor-level diagram of the decoder. The decoder delay is the time after
the input passes the threshold voltage of the decoder driver until norout reaches the threshold
voltage of the final inverter (before the wordline driver). Notice that the delay does not include
the time for the inverter to drive the wordline driver; this delay depends on the size of the
wordline driver and will be considered in Section 6.2.

Since, in many caches, decbus will be precharged before a cache access, the critical path will
include the time to discharge decbus. This occurs after nandin rises, which in turn, is caused by
address bits (or their inverses) falling. Once decbus has been discharged, norout will rise, and
after another inverter and the wordline driver, the selected wordline will rise.

Only one path is shown in the diagram; the extra inputs to the NAND gates are connected to
other outputs of the decoder driver, and the extra inputs to the NOR gates are connected to the
outputs of other NAND gates. The worst case for both the NAND and NOR stages occurs when
all inputs to the gate change. This is the case that will be considered when estimating the
decoder delay.

6.1.3. Input Fall Time

The delay of the first stage depends on the fall time of the input. To estimate a reasonable
value for the input fall time, two inverters in series as shown in Figure 9 are considered. Each
inverter is assumed to be the same size as the decoder driver (the first inverter in Figure 8).

The Horowitz inverter approximation of Equation 5 is used to estimate the delay of each in-
verter (and hence the output rise time). The time constant, tf, of the first stage is Req×Ceq where
Req is the equivalent resistance of the pull-up transistor in the inverter (the full-on resistance, as
described in Section 5.1) and Ceq is the drain capacitance of the two transistors in the first in-
verter stage plus the gate capacitance of the two transistors in the second stage (Sections 5.3 and
5.2 show how these can be calculated). The input fall time of the first stage is assumed to be 0 (a
step input), and the initial and final threshold voltages are the same. Thus, the delay of the first
inverter can be written using the notation in Section 5 as:

T1 = delayfall (tf , 0 , vthdecdrive , vthdecdrive)

where
tf = resp,on (Wdecdrivep) ×

(draincapn (Wdecdriven , 1) + draincapp (Wdecdrivep , 1) +
gatecap (Wdecdriven + Wdecdrivep))

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

12

ROWS
8

NOR GATES

To
Ndwl*Ndbl−1
other decoders

in

nandin
decbus

norout

Wordline
Driver

Figure 8: Decoder critical path

instep
input x

Figure 9: Circuit used to estimate reasonable input fall time

In the above equation, the widths of the transistors in the inverter transistors are denoted by
Wdecdriven and Wdecdrivep and the threshold (switching) voltage of the inverter is denoted by
vthdecdrive. Appendix I shows the assumed sizes and threshold voltages for each gate on the
critical path of the cache.

From the above equation, the rise time to the second stage can be approximated as .
T1

vthdecdrive

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

13

The second stage can be worked out similarly:

T2 = delayrise (tf , , vthdecdrive , vthdecdrive)
T1

vthdecdrive

From this, the fall time of the second inverter output (and hence a reasonable fall time for the
cache input) can be written as:

infalltime =
T2

1 − vthdecdrive
(7)

Note that the above expressions for T1 and T2 will not be included in the cache access time;
they were only derived to estimate a reasonable input fall time (Equation 7).

6.1.4. Stage 1: Decoder Driver

This section estimates the time for the first inverter in Figure 8 to drive the NAND inputs.
Each inverter drives 4×Ndwl×Ndbl NAND gates (recall that both address and address-bar are as-
sumed to be available; thus, each driver only needs to drive half of the NAND gates in its 3-to-8
block).

Vdd

eq
R

Ceq

nandin

Figure 10: Decoder driver equivalent circuit

Figure 10 shows a simplified equivalent circuit. In this figure, Req is the equivalent pull-up
resistance of the driver transistor plus the resistance of the metal lines used to tie the NAND
outputs to the NOR inputs. The wire length can be approximated by noting that the total edge
length of the memory is approximately 8×B×A×Ndbl×Nspd cells. If the memory arrays are
grouped in two-by-two blocks, and if the predecode NAND gates are at the center of each group,
then the connection between the driver and the NAND gate is one quarter of the sum of the array
widths (see Figure 11). In large memories with many groups the bits in the memory are arranged
so that all bits driving the same data output bus are in the same group, reducing the required
length of the data bus.

Thus, if Rwordmetal is the approximate resistance of a metal line per bit width, then Req is:

Req = resp,on (Wdecdrivep) + Rwordmetal ×
8 B A Ndbl Nspd

8

Note that we have divided the Rwordmetal term by an additional two; the first order approximation
for the delay at the end of a distributed RC line is RC/2 (we assume the resistance and
capacitance are distributed evenly over the length of the wire).

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

14

Pre-
decode

Address in
from driver

Predecoded
address

Channel for data output bus

Figure 11: Memory block tiling assumptions

The equivalent capacitance Ceq in Figure 10 can be written as:
Ceq = draincapp (Wdecdrivep , 1) + draincapn (Wdecdriven ,1) +

4 Ndwl Ndbl gatecap (Wdec3to8n + Wdec3to8p , 10) + 2 B A Ndbl Nspd Cwordmetal

where Cwordmetal is the metal capacitance of a metal wire per bit width.

Using Req and Ceq, the delay can be estimated as:

(8)
Tdec,1 = delayfall (Ceq Req , infalltime , vthdecdrive , vthdec3to8)

where infalltime is from Equation 7.

6.1.5. Stage 2: NAND Gates

This section estimates the time required for a NAND gate to discharge the decoder bus (and
the inputs to the NOR gates). The equivalent circuit is shown in Figure 12. In this diagram, Req

eqCR
eq

decbus

Figure 12: Decoder driver equivalent circuit

is the equivalent resistance of the three pull-down transistors (in series). The total resistance is

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

15

approximated by 3 resn,on(Wdec3to8n). Since all three inputs are changing simultaneously (in the
worst case), each transistor has about the same resistance. In our CMOS 0.8µm process, this
approximation induces an error of about 10%-20%. The resistance Req also includes the metal

resistance of the lines connecting the NAND to the NOR gate. Since there are rows inC
B A Ndbl Nspd

the subarray,

Req = 3 resn,on (Wdec3to8n) + Rbitmetal × C
2 B A Ndbl Nspd

where Rbitmetal is the metal resistance per bit height.

The capacitance Ceq is the sum of the input capacitances of NOR gates, the drainC
8 B A Ndbl Nspd

capacitances of the NAND driver, and the wire capacitance. Thus,
Ceq = 3 draincapp (Wdec3to8p , 1) + draincapn (Wdec3to8n , 3) +

× gatecap(Wdecnorn+Wdecnorp ,10) + × Cbitmetal
C

8 B A Ndbl Nspd

C
2 B A Ndbl Nspd

The delay of this stage is given by:

Tdec,2 = delayrise (Req × Ceq , , vthdec3to8 , vthdecnor)
Tdec,1

vthdec3to8
(9)

where Tdec,1 is from Equation 8.

6.1.6. Stage 3: NOR Gates

The final part of the decoder delay is the time for a NOR gate to drive norout high. An
equivalent circuit similar to that of Figure 10 can be used. In this case, the pull-up resistance of
the NOR gate is approximated by N3to8 × resp(Wdecnorp) where N3to8 is the number of inputs to
each NOR gate (from Equation 6). The capacitance Ceq is

Ceq = N3to8 draincapn (Wdecnorn , 1) + draincapp (Wdecnorp , N3to8) +
gatecap (Wdecinvn + Wdecinvp)

Then,

Tdec,3 = delayfall (Req × Ceq , , vthdecnor , vthdecinv)
Tdec,2

1 − vthdecnor
(10)

where Tdec,2 is from Equation 9. Note that the value of vthdecnor depends on the number of
inputs to each NOR gate (Appendix I contains several values for vthdecnor).

6.1.7. Total decoder delay

By adding equations 8 to 10, the total decoder delay can be obtained:

Tdecoder,data = Tdec,1 + Tdec,2 + Tdec,3 (11)

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

16

6.1.8. Analytical vs. Hspice Results

Figure 13 shows the decoder delay predicted by Equation 11 (solid lines) as well as the delay
predicted by Hspice (dotted lines). The transistor sizes used in the Hspice model are shown in
Appendix I and the technology parameters used are shown in Appendix II. The Hspice deck
used in this (and all other graphs in this paper) models an entire cache; this ensures that the input
slope and output loading effects of each stage are properly modeled.

The horizontal axis of Figure 13 is the number of rows in each subarray (which is).C
B A Ndbl Nspd

The results are shown for one and eight subarrays. The analytical and Hspice results are in good
agreement. The step in both results is due to a change from 3-input to 4-input NOR gates in the
final decode when moving from 9 address bits to 10 address bits.

Decoder
Delay

Rows in Each Array

0ns

1ns

2ns

3ns

4ns

5ns

6ns

7ns

8ns

0 200 400 600 800

.g g

Analytical

Hspice

1 Array

8 Arrays

g g g g g g g g g g g g g g

g
g

g
g

g
g

g

g

g g g g g g g g g g g g g g

g
g

g
g

g
g

g

g

Figure 13: Decoder delay

6.1.9. Tag array decoder

The equations derived above can also be used for the tag array decoder. The only difference is
that Ndwl, Ndbl, and Nspd should be replaced by their tag array counterparts.

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

17

6.2. Wordlines

6.2.1. Wordline Architecture

Figure 14 shows the wordline driver driving a wordline. The two inverters are the same as the
final two inverters in Figure 8 (recall that the decoder equations do not include the time to dis-
charge the decoder output).

8 x B x A x Nspd
Ndwl

Bits

norout
decout word

Wordline
Driver

Figure 14: Word line architecture

In Wada’s access time model, it was assumed that wordline drivers are always the same size,
no matter how many columns are in the array. In this model, however, the wordline driver is
assumed to get larger as the wordline gets longer. Normally, a cache designer would choose a
target rise time, and adjust the driver size appropriately. Rather than assuming a constant rise
time for caches of all sizes, however, we assume the desired rise time (to a 50% word line swing)
is:

rise time = krise × ln (cols) × 0.5

where

cols =
8 B A Nspd

Ndwl

The constant krise is a constant that depends on the implementation technology. To obtain the
transistor size that would give this rise time, it is necessary to work backwards, using an equiv-
alent RC circuit to find the required driver resistance, and then finding the transistor width that
would give this resistance.

Vdd

R

Ceq

word

p

Figure 15: Equivalent circuit to find width of wordline driver

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

18

Figure 15 shows the equivalent circuit for the wordline. The pull-up resistance can be ob-
tained using the following RC equation

Rp =
− rise time

Ceq × ln (vthwordline)
(12)

where Vthwordline is inverter threshold (relative to Vdd). This is significantly higher than the
voltage (Vt) at which the pass transistors in the memory cells begin to conduct. The use of the
inverter threshold gives a more intuitive delay for the wordline but it can result in negative bit-
line delays.

The line capacitance is approximately the sum of gate capacitances of each memory cell in the
row (a more detailed equation will be given later):

Ceq = cols × (2 × gatecappass (Wa , 0) + Cwordmetal)

This equation was derived by noting the wordline drives the gates of two pass transistors in each
bit (the memory cell is shown in Figure 19).

Once Rp is found using Equation 12, the pull-up transistor’s width can be found using:

Wdatawordp =
Rp,switching

Rp

where Rp,switching is a constant that was discussed in Section 5.1.2. When calculating
capacitances, we will assume that the width of the NMOS transistor in the driver is half of
Wdatawordp.

6.2.2. Wordline Delay

There are two components to the word-line delay: the time to discharge the input of the
wordline driver, and the time for the wordline driver to charge the wordline.

Consider the first component. The capacitance that must be discharged is:
Ceq = draincapn (Wdecinvn , 1) + draincapp (Wdecinvp , 1) +

gatecap(Wdatawordp + 0.5 Wdatawordp , 20)

The equivalent resistance of the pull-down transistor is simply
Req = resn,on (Wdecinvn)

The delay is then

Tword,1 = delayrise (Req × Ceq , , vthdecinv , vthworddrive)
Tdec,3

vthdecinv
(13)

where Tdec,3 is the delay of the final decoder stage (from Equation 10). Note that in general,
vthworddrive will depend on the size of the wordline driver. If a constant ratio between the widths
of the NMOS and PMOS driver transistors is used, however, the threshold voltage is almost
constant.

From the previous section, the delay of the second stage is approximately
Tword,2,approx = krise × ln (cols) × vthwordline

This equation, however, does not take into account changes in the input slope or wiring resis-
tances and capacitances. To get a more accurate approximation, Horowitz’s equation can once
again be used, with:

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

19

Req = resp,on (Wdatawordp) +
cols × Rwordmetal

2

Ceq = 2 cols × gatecappass (Wa , BitWidth − 2 Wa) +
draincapp (Wdatawordp , 1) + draincapn (0.5 Wdatawordp , 1) + cols × Cwordmetal

The quantity BitWidth in the above equation is the width (in µm) of one memory cell.

Using Ceq and Req, the time to charge the wordline is:

Tword,2 = delayfall (Req × Ceq , , vthworddrive , vthwordline)
Tword,1

1 − vthworddrive
(14)

Equations 13 and 14 can then be combined to give the total wordline delay:

Twordline,data = Tword,1 + Tword,2 (15)

6.2.3. Analytical and Hspice Comparisons

As before, the analytical model was compared to results obtained from Hspice simulations.
The technology parameters and transistor sizes shown in Appendices I and II were used, and the
results in Figure 16 were obtained. The wordline in the Hspice deck was split into 8 sections,
each section containing one eighth of the memory cells. The sections were separated by one
eighth of the wordline resistance. As the graph shows, the equation matches the Hspice
measurements very closely.

Wordline
Delay

(data array)

Columns in Each Array

0ns

0.5ns

1.0ns

1.5ns

2.0ns

100 200 300 400 500 600

.g g

Analytical

HSpice

g.
. .g.

. .g.
. .g.

. .g. .
.g. .

.g.g.g.g.g.g.g.g.g

Figure 16: Wordline results

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

20

6.3. Tag Wordline

Unlike the driver for the data array wordlines, it was assumed that the size of the wordline
driver in the tag array is constant for all cache sizes since the tag array is (usually) much nar-
rower than the data array.

Figure 14 can be used to estimate the delay of the tag wordline. Again, there are two com-
ponents to the delay: the time to discharge the wordline driver, and the time to charge the
wordline itself. For the first component, the previous equations can be used:

Ceq=draincapn (Wdecinvn , 1) + draincapp (Wdecinvp , 1) + gatecap(Wtagwordp + Wtagwordn , 20)

Req=resn,on (Wdecinvn)

Ttagword,1 = delayrise (Req × Ceq , , vthdecinv , vthtagworddrive)
Tdec,3

vthdecinv

where Tdec,3 is the delay of the final decoder stage (from Equation 10). Note that in these equa-
tions, Wtagwordp and Wtagwordn are constants (unlike the equations in the previous section).

The second component is slightly different. If an address contains baddr bits, then the number
of bits in a tag is:

tagbits = baddr − log 2(cache size in bytes) + log 2(associativity) + 2 (16)

The "+2" is because of the valid and dirty bits. This quantity can then be used in:

Req = resp,on (Wtagwordp) +
tagbits × Rwordmetal

2

Ceq = 2 tagbits × gatecappass (Wa , BitWidth −2×Wa) +
draincapp (Wtagwordp , 1) + draincapn (Wtagwordn , 1) + tagbits × Cwordmetal

to give

Ttagword,2 = delayfall (Req × Ceq , , vthtagworddrive , vthwordline)
Ttagword,1

1 − vthtagworddrive
(17)

The equations for Ttagword,1 and Ttagword,2 can then be summed to give the total delay at-
tributed to the tag array wordline:

Twordline,tag = Ttagword,1 + Ttagword,2 (18)

Figure 17 shows the wordline delay times from both the analytical model (solid line) and ob-
tained from Hspice (dotted line) using our CMOS 0.8µm process. In this case, the wordline in
the Hspice deck was divided into four sections, each section separated by one quarter of the total
wordline resistance. As can be seen, the two models agree very closely.

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

21

Wordline
Delay

(tag array)

Address Bits (C=8192, A=1)

0ns

0.5ns

1.0ns

16 32 48 64

.g g

Analytical
HSpice

g.g.g.g

Figure 17: Wordline of tag array

6.4. Bit Lines

6.4.1. Bitline architecture

Each column in the array has two bitlines: bit and bitbar. After one of the wordlines goes
high, each memory cell in the selected row begins to pull down one of its two bitlines; which
bitline drops depends on the value stored in that memory cell.

In most memories, the bitlines are initially precharged high and equilibrated using a circuit
like the one shown in Figure 18. During the precharge phase, both bitlines are charged to the
same voltage, Vbitpre. The four NMOS transistors in the figure are connected as diodes; their
only purpose is to drop the precharged voltage from Vdd to Vbitpre (in our process, Vdd is 5 volts
and Vbitpre is 3.3 volts). The sense amplifier that will be described in the next section requires
that the common mode voltage on the bitlines be less than Vdd.

A typical SRAM cell is shown in Figure 19. When the wordline goes high, the Wa transistors
will begin to conduct, discharging one of the bitlines.

In many memories, a column select multiplexor is used to reduce the number of sense
amplifiers required. Figure 20 shows such a multiplexor. The gate of the pass transistor is
driven by signals from the output of the decoder. In this paper, the degree of multiplexing, that
is, the number of bitlines that share a common sense amplifier, is Nspd × Ndbl. Thus, 8 BA sense
amplifiers are required for the data array. Notice that the output of the column multiplexor is
precharged during the precharge phase (the precharging circuit is not shown, but is the same as
Figure 18).

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

22

Bit Bitbar

Precharge

V
dd

V
dd

Figure 18: Precharging and equilibration transistors

Bit Bitbar

Word

Wa Wa

Wb

Wd

W

bW

d

Figure 19: One memory cell

Sense Amp

BITLINES

TO PRECHARGE
CIRCUIT

Figure 20: Column select multiplexor

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

23

6.4.2. Bitline delay

The delay of the bitline is defined as the time between the wordline going high (reaching
Vthwordline) and one of the bitlines going low (reaching a voltage of Vbitsense below its maximum
value).

6.4.3. Equivalent Circuit

As previously mentioned, in each row, either bit or bitbar will go low. Consider the case
when bit goes low. The equivalent circuit in Figure 21 can be used. The transistors labeled Wa

C
colmux

C
line R

mem

R
line

R
colmux

Figure 21: Bitline equivalent circuit

and Wd have been replaced by a resistor with resistance Rmem. The capacitance Cline includes
the capacitance of the memory cells sharing the bitline, the metal line capacitance, the drain
capacitance of the precharge circuit, and the drain capacitance of the column multiplexor pass
transistor:

Cline = (rows) × (draincapn(Wa , 1) + Cbitmetal) +
1
2

(19)

2 draincapp (Wbitpreequ , 1) + draincapn (Wbitmuxn , 1)

where

rows =
C

B A Ndbl Nspd
(20)

The drain capacitance of each Wa transistor is divided by two since each contact is shared be-
tween two vertically adjacent cells.

The capacitance Ccolmux in Figure 21 is the capacitance seen by the output of the conducting
column multiplexor pass transistor. It includes the drain capacitance of all pass transistors con-
nected to this sense amplifier and the input capacitance of the sense amplifier:

Ccolmux = (Nspd Ndwl) × draincapn (Wbitmuxn , 1) + (21)
2 gatecap (WsenseQ1to4 , 10)

The resistance Rcolmux is simply:

Rcolmux = resn,on (Wbitmuxn) (22)

If Ndbl×Nspd =1, then there is no column multiplexors, and equations 19 to 22 can be replaced
by:

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

24

Cline = (rows) × [draincapn(Wa , 1) + Cbitmetal] + 2 draincapp (Wbitpreequ , 1)
1
2

(23)

Ccolmux = 2 gatecap (WsenseQ1to4 , 10)

Rcolmux = 0

The resistances Rmem and Rline do not depend on the value of Ndbl×Nspd. Rmem is the equiv-
alent resistance of the conducting transistors in the memory cell:

Rmem = resn,on (Wa , 1) + resn,on (Wd , 1) (24)

Finally, Rline is the metal resistance of the bitline. As before, we assume that the resistance is
clumped rather than distributed over the entire line. Thus,

Rline = Rbitmetal
rows

2
(25)

where the number of rows is as in Equation 20.

6.4.4. Equivalent circuit solution

Figure 21 can be viewed as an RC tree as described in [7]. Using the simple single time
constant approximation, the delay can be written as:

Tstep = [Rmem Cline + (Rmem + Rline + Rcolmux) Ccolmux] ln ()
Vbitpre

Vbitpre−Vbitsense
(26)

6.4.5. Non-zero wordline rise times

Equation 26 assumes that there is a step input on the wordline. This subsection describes how
the non-zero wordline rise time can be taken into account.

Figure 22 shows the wordline voltage (the input to the bitline circuit) as a function of time
assuming a step input on the wordline. The time difference Tstep shown on the graph is the time
after the wordline rises until the bitline reaches Vbitpre − Vbitsense (the bitline voltage is not
shown on the graph). Tstep is given by Equation 26. During this time, we can consider the
bitline being "driven" towards Vbitpre − Vbitsense. Because the current sourced by the access tran-
sistor i can be approximated as

i ≈ gm (Vgs − Vt)

the shaded area in the graph can be thought of as the amount of charge discharged before the
output reaches Vbitpre − Vbitsense. This area can be calculated as:

area = Tstep × (Vdd − Vt)

(Vt is the voltage at which the NMOS pass transistor begins to conduct).

Since the same amount of discharging is required to drive the bitline to Vbitpre − Vbitsense
regardless of the shape of the input waveform, we can also calculate the bitline delay for an
arbitrary wordline waveform. Consider Figure 23. If we assume the area is the same as in
Figure 22, then we can calculate the value of Tbitline,data. This value is the corrected bitline
delay (Vs is the switching point of the NMOS pass transistor). Using simple algebra, it is easy to
show that

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

25

t

word line
voltage

T
step

t
v

Vdd

Figure 22: Step input on wordline

Tbitline,data =
−2 (vs − vt) + √4 (vs − vt)

2 − 4 × m × c

2 × m
(27)

where

c = (vs −vt)
2 − 2 Tstep (Vdd − vt)

1
m

and m is the slope of the input waveform.

t

word line
voltage

slope = m

v
s

v
t

vdd

T bit,data

area = T
step

(V
dd −v

t
)

Figure 23: Slow-rising wordline

If the wordline rises quickly, as shown in Figure 24, then the algebra is slightly different. In
this case,

Tbitline,data = Tstep + −
Vdd + Vt

2 m

vs

m
(28)

The cross-over point between the two cases for Tbitline occurs when:

Tstep =
Vdd − Vt

2 m

or

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

26

t

word line
voltage

slope = m

area = T
step

(V
dd

−v t)

Tbit,data

v
t

V
dd

v
s

Figure 24: Fast-rising wordline

m =
Vdd − Vt

2 Tstep

Calculating the slope, m, for a given wordline rise time is simple. From section 6.2:
rise time = krise × ln (cols)

Thus,

m =
Vdd

krise × ln (cols)

For most practical cases, the input rise time is slow enough that Equation 27 should be used.
However, it is always important to check the size of m before calculating Tbitline,data.

6.4.6. Analytical vs. Hspice Results

Again, an Hspice model was used to validate the analytical equations. Figure 25 shows the
bitline delay for an array with 128 columns and no column-multiplexing. The lower two lines
show the analytical and Hspice results assuming a step input on the wordline. The upper lines
show the results if a non-zero wordline rise time is assumed. As the graph shows, for a wide
range of array sizes (number of rows) the analytical predictions closely match the Hspice results.
(The bitlines appear to have a negative delay for very small numbers of rows due to the relative
thresholds used for the wordline and bitline delays.)

Figure 26 shows the same thing if 8-way column multiplexing is used; that is, a single sense
amplifier is shared among 8 pairs of bitlines. The error is somewhat larger than in Figure 25, but
the analytical and Hspice results are still within 0.1ns of each other.

Figure 27 shows the bitline delay as a function of the number of columns in the array. In the
ideal case, in which the wordline rise time does not affect the bitline delay, the number of
columns should have no effect. Indeed, the corresponding lines in Figure 27 are flat. The other
two curves show how well the approximate method to take into account a non-zero rise time
works.

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

27

Bitline
Delay

Rows (128 Columns, Nspd*Ndbl=1)

0ns

0.1ns

0.2ns

0.3ns

0.4ns

0.5ns

0.6ns

0.7ns

0.8ns

100 200 300 400 500

.

.

g g

g g

Analytical
Hspice
Analytical (step input)
Hspice (step input)

.

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g.g.g.g.g.g.g.g.g.g.g.g.g.g

Figure 25: Bitline results without column multiplexing

Bitline
Delay

Rows (128 Columns, Nspd*Ndbl=8)

0ns

0.1ns

0.2ns

0.3ns

0.4ns

0.5ns

0.6ns

0.7ns

0.8ns

100 200 300 400 500

.

.

g g

g g

Analytical
Hspice
Analytical (step input)
Hspice (step input)

.

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g.g.g.g.g.g.g.g.g.g.g.g.g.g

Figure 26: Bitline results with column multiplexing

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

28

Bitline
Delay

Columns (128 Rows, Nspd*Ndbl=1)

0ns

0.05ns

0.1ns

0.15ns

0.2ns

0.25ns

100 200 300 400 500

.

.

g g

g g

Analytical
Hspice
Analytical (step input)
Hspice (step input).

g

g
g

g
g

g
g

g
g

g g g
g g

g.g.g.g.g.g.g.g.g.g.g.g.g.g

Figure 27: Bitline results vs. number of columns

Finally, Figure 28 shows how the delay is affected by the degree of column multiplexing. As
expected, the larger the degree of multiplexing, the higher the delay, since more capacitance
must be discharged when the bitline drops. Again, there is good agreement between the Hspice
and analytical results.

6.4.7. Tag array bitlines

The equations derived in this section can be used for the tag array bitlines as well. The only
difference (besides replacing the data array organizational parameters with the corresponding tag
array parameters) is the calculation of the input rise time. The wordline rise time can be ap-
proximated by:

rise time =
Ttagword,2

vthwordline

where Ttagword,2 was given in Equation 17. This leads to:

m =
Vdd vthwordline

Ttagword,2

The value for Tbitline,tag can then be obtained from either Equation 27 or 28.

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

29

Bitline
Delay

Nspd*Ndbl (128 Rows, 128 Columns)

0ns

0.1ns

0.2ns

0.3ns

1 2 4 8 16

.

.

g g

g g

Analytical
Hspice
Analytical (step input)
Hspice (step input)

.

g

g

g

g

g

g.g.g.g.g

Figure 28: Bitline results vs. degree of column multiplexing

6.5. Sense Amplifier

Wada’s sense amplifier (reproduced in Figure 29) amplifies a voltage difference of 2×Vbitsense
to Vdd. In [8], an approximation of the delay of the sense amplifier is written in terms of various
process parameters. In this model, we encapsulate several of these parameters into a single
process parameter, tsense,data, which is the delay of the sense amp:

Tsense,data = tsense,data (29)

The value of tsense,data can be estimated from Hspice simulations. Figure 30 shows the delay
measured from Hspice and the constant delay predicted by the model as a function of input fall-
time (neither the analytical model used here nor Wada’s model took into account the effects of a
non-zero bitline fall time). As the graph shows, the error is small.

The delay of the sense amplifier in the tag array can also be approximated by a constant:

Tsense,tag = tsense,tag (30)

Comparing Figures 31 and 30, tsense,tag is less than tsense,data, even though the structures of the
sense amplifiers are identical. The difference is due to the output capacitance driven by each
sense amp; the sense amplifier in the tag array drives a comparator, while the data array sense
amplifier drives an output driver.

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

30

V
dd

Q
1

Q
2

Q 7 Q8

Q
13

V
dd

Q Q

Q Q

3 4

9 10

Q
14

V
dd

Q Q

Q Q

5 6

11 12

Q15

V
dd

BIT BITBAR

Out

Figure 29: Sense amplifier (from [8])

Sense
Delay

(data array)

Rows (Cols=128, Nspd*Ndwl=1)

0.0ns

0.2ns

0.4ns

0.6ns

0.8ns

1.0ns

100 200 300 400 500

.g g

Analytical

Hspice

g.g.g.g.g.g.g.g.g.g.g.g.g.g

Figure 30: Data array sense amplifier delay

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

31

Sense
Delay

(tag array)

Rows (Cols=128, Ntspd*Ntwl=1)

0.0ns

0.1ns

0.2ns

0.3ns

0.4ns

0.5ns

0.6ns

100 200 300 400 500

.g g

Analytical

Hspice

g.g.g.g.g.g.g.g.g.g.g.g.g.g

Figure 31: Tag array sense amplifier delay

The following stages will also require an approximation of the fall time of the sense amplifier
output. A constant fall time for each sense amp was assumed. The fall times will be denoted by
tfallsense,data and tfallsense,tag; the values for our process are shown in Appendix I.

6.6. Comparator

6.6.1. Comparator Architecture

The comparator that was modeled is shown in Figure 32. The outputs from the sense
amplifiers are connected to the inputs labeled bn and bn-bar. The an and an-bar inputs are driven
by tag bits in the address. Initially, the output of the comparator is precharged high; a mismatch
in any bit will close one pull-down path and discharge the output. In order to ensure that the
output is not discharged before the bn bits become stable, node EVAL is held high until roughly
three inverter delays after the generation of the bn-bar signals. This is accomplished by using a
timing chain driven by a sense amp on a dummy row in the tag array. The output of the timing
chain is used as a "virtual ground" for the pull-down paths of the comparator. When the large
NMOS transistor in the final inverter in the timing chain begins to conduct, the virtual ground
(and hence the comparator output if there is a mismatch) begins to discharge.

6.6.2. Comparator Delay

Since we assume that the an and bn bits will be stable by the time EVAL goes low, the critical
path of the comparator is the propagation delay of the timing chain plus the time to discharge the
output through the NMOS transistor in the final inverter.

First consider the timing chain. The chain consists of progressively larger inverters; we as-
sume that size of each stage is double the size of the previous stage (see Appendix I). Each stage
can be worked out using a simple application of Horowitz’s approximation described in Section
5.5:

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

32

a0

0
b

a0

0
b b

a

b

a

b

a

b

1

1 1

a1 n

n

n

n

Vdd

PRECHARGE

OUT

large n

small pFrom
dummy
row
sense
amp
in tag
array

EVAL

Figure 32: Comparator

tf,1 = resp,on(Wcompinvp1) × [gatecap(Wcompinvn2 + Wcompinvp2 , 10) +
draincapp(Wcompinvp1 , 1) + draincapn(Wcompinvn1 , 1)]

tf,2 = resn,on(Wcompinvn2) × [gatecap(Wcompinvn3 + Wcompinvp3 , 10) +
draincapp(Wcompinvp2 , 1) + draincapn(Wcompinvn2 , 1)]

tf,3 = resp,on(Wcompinvp3) × [gatecap(Wevalinvn + Wevalinvp , 10) +
draincapp(Wcompinvp3 , 1) + draincapn(Wcompinvn3 , 1)]

Tcomp,1 = delayfall (tf,1 , tfallsense,tag , vthcompinv1 , vthcompinv2)

Tcomp,2 = delayrise (tf,2 , , vthcompinv2 , vthcompinv3)
tf,1

vthcompinv2

Tcomp,3 = delayfall (tf,3 , , vthcompinv3 , vthevalinv)
tf,2

1 − vthcompinv3

The final stage involves discharging the output through a pull-down path and the NMOS tran-
sistor of the final inverter driver. An equivalent circuit is shown in Figure 33. The resistance
Revaln is the resistance of the pull-down transistor in the final inverter:

Revaln = resn,switching (Wevalinvn)

In the worst case, only one pull-down path is conducting; the resistance Rpulldown is the path’s
equivalent resistance. Since it was assumed that the inputs are stable when the evaluation takes
place, we are interested in the full-on resistance of the pull-down path:

Rpulldown = 2 resn,on (Wcompn)

In Figure 32, it is clear that approximately half of the capacitance is on the input side of the
pull-down path, and half is on the output side. These capacitances will be denoted by Ceqbot and
Ceqtop. The first can be written as:

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

33

Revaln

Ceqtop

C
eqbot

R
pulldown

out

Figure 33: Comparator equivalent circuit

Ceqbot = tabits × [draincapn(Wcompn,1) + draincapn(Wcompn,2)] +
draincapp(Wevalinvp , 1) + draincapn(Wevalinvn , 1)

where tagbits is the number of tag bits (from Equation 16). Note that there are 2× tagbits pull-
down paths (two for each bit); half of the "off" paths have the top transistor off, and half have the
bottom transistor off. We have also included the drain capacitances of the final inverter stage.

The capacitance Ceqtop can be written similarly:
Ceqtop= tabits × (draincapn(Wcompn,1) + draincapn(Wcompn,2)) + draincapp(Wcompp , 1) +

gatecap (Wmuxdrv1n + Wmuxdrv1p , 20) + tagbits × Ntbl Ntspd Cwordmetal

The output capacitance is taken to be the input capacitance of either the multiplexor driver
described in Section 6.7 or the valid signal driver in Section 6.9 (the first stage of both structures
are the same, so they have the same input capacitance). We have also included metal
capacitance of the metal output (it is assumed that the metal crosses the entire width of the tag
array).

The circuit in Figure 33 is equivalent to the circuit in Figure 21, so the same solution can be
used. The result is:

(31)

Tstep = [Revaln Ceqbot + (Revaln + Rpulldown) Ceqtop] ln ()
1

vthmuxdrv1

The non-zero input fall time can be taken into account using the same method as Section 6.4.
There are two possible equations; which one should be used depends on the slope of the input.
For a slow rising input:

Teval =
−2 (vs − vt) + √4 (vs − vt)

2 − 4 × m × c

2 × m
(32)

where

c = (vs −vt)
2 − 2 Tstep (Vdd − Vt)

1
m

and m is the slope of the input waveform:

m =
Tcomp,3

vthevalinv

The above equation should be used when:

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

34

m <
Vdd − Vt

2 Tstep

For a quickly rising input (m greater than):
Vdd − Vt

2 Tstep

Teval = Tstep + −
Vdd + Vt

2 m

vs

m
(33)

The above equations can be combined to give the total delay due to the comparator:

Tcompare = Tcomp1 + Tcomp2 + Tcomp3 + Teval (34)

6.6.3. Hspice Comparisons

Figure 34 compares the analytical model to a Hspice model of the circuit. As can be seen,
there is good agreement between the two models.

Compare
Delay

Tag Bits

0ns

1ns

2ns

3ns

4ns

0 10 20 30 40

.g g

Analytical
Hspice

g. . . .g.g.g.g.g.g.g.g.g.g

Figure 34: Comparator delay

6.7. Multiplexor Driver

In a set-associative cache, the result of the A comparisons must be used to select which of the
A possible blocks are to be sent out of the cache. The structure of the output multiplexors will be
described in the next section; here we concentrate on the driver that drives the select lines of
these multiplexors. Figure 35 gives the overall context of the multiplexor drivers and output
driver circuits in an A-way set-associative organization. Each multiplexor driver is responsible
for controlling the multiplexing of the 8B bits from each cache line onto a data bus that reads out
bo bits. This is repeated A times in an A-way set-associative cache.

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

35

bo
bo

8B
bo

Mux driver circuit

bo
bo

8B
bo

Mux driver circuit

A

bo
data
bus
outputs

1

Figure 35: Overview of data bus output driver multiplexors

6.7.1. Multiplexor Driver Architecture

Figure 36 shows the structure of the three-stage multiplexor driver that we have assumed
(since there are A comparators, A copies of this block are required). The output of the com-
parator is first inverted. This inverted match signal, matchb, is used to drive NOR gates8 B

bo

(recall that bo is the number of output bits of the cache). The other inputs to the NOR gates are
derived from the address bits; we assume they are stable before the comparator result is valid.
The output of each NOR gate is again inverted (to produce selb) and the inverted signal is used
to drive the select lines of bo multiplexors.

NOR GATES8B
bo

selb

selb

From
Comparator

matchb

sel

sel

Drives

Ouput Muxes

b
o

NOR inputs that are shown unconnected
are derived from address bits

Figure 36: One of the A multiplexor driver circuits in an A-way set-associative cache

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

36

6.7.2. Multiplexor Driver Delay

The delay of the three stages can be found in a manner similar to that used for the previously
discussed circuits. Using Horowitz’s approximation gives:

tf,1 = resp,on(Wmuxdrv1p) × [gatecap(Wmuxdrvnorn + Wmuxdrvnorp , 15) +
8 B
bo

draincapp(Wmuxdrv1p , 1) + draincapn(Wmuxdrv1n , 1)]

tf,2 = resn,on(Wmuxdrvnorn) × [gatecap(Wmuxdrv3n + Wmuxdrv3p , 15)
draincapp(Wmuxdrvnorp , 2) + 2 draincapn(Wmuxdrvnorn , 1)]

tf,3 = [resp,on(Wmuxdrv3p) + B A Nspd Ndbl Rwordmetal] ×
[gatecap(Woutdrvseln + Woutdrvselp + Woutdrvnorn + Woutdrvnorp , 35) +
draincapp(Wmuxdrv3p , 1) + draincapn(Wmuxdrv3n , 1) +
4 B A Nspd Ndbl Cwordmetal]

Tmuxdr,1 = delayfall (tf,1 , , vthmuxdrv1 , vthmuxdrvnor)
Teval

1 − vthmuxdrv1

Tmuxdr,2 = delayrise (tf,2 , , vthmuxdrvnor , vthmuxdrv3)
tmuxdr,1

vthmuxdrvnor

Tmuxdr,3 = delayfall (tf,3 , , vthmuxdrv3 , vthoutdrvsel)
tmuxdr,2

1 − vthmuxdrv3

Note that in the second-stage NOR gate, we have assumed that only one pull-down path is con-
ducting. Also, we have included the metal resistance of the selb line (we assume the line travels
half the width of the cache).

The total multiplexor driver delay is simply:
Tmuxdriver = Tmuxdr,1 + Tmuxdr,2 + Tmuxdr,3

6.7.3. Hspice comparisons

Figures 37, 38 and 39 show the delay for the analytical and Hspice models as a function of
baddr, number of NOR gates (), and bo (although the delay is not strictly a function of baddr,

8 B
bo

the fall time of the comparator is, and this affects the multiplexor delay through Horowitz’s in-
verter approximation). As the graphs show, the analytical model matches the Hspice results very
well.

6.8. Output Driver

6.8.1. Architecture

The structure of the output driver is shown in Figure 40. Each sense amplifier in the data
array drives the senseout input of an output driver; since there are 8 BA sense amplifiers, there
are that many output drivers. Typically, the number of cache output bits, bo is less than 8 BA.
Therefore, each of the output drivers is actually a tri-state driver. Each driver is turned on and
off using one of the selb signals generated in the multiplexor driver described in Section 6.7.

There are two potential critical paths through the output driver. In a set-associative cache, the
correct output can not be driven until both the senseout and selb signals are stable. Two expres-

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

37

Mux
Driver
Delay

Tag Bits (B=32, bo=32)

0.0ns

0.5ns

1.0ns

1.5ns

2.0ns

2.5ns

8 16 24 32 40 48

g g.

Analytical

Hspice

g. . .g.g.g.g.g.g.g.g.g.g.g

Figure 37: Multiplexor driver delay as a function of baddr

Mux
Driver
Delay

Second-Level Drivers (tagbits=16, bo=32)

0.0ns

0.5ns

1.0ns

1.5ns

2.0ns

2.5ns

2 4 8 16

g g.

Analytical

Hspice

g.g.g.g

Figure 38: Multiplexor driver delay as a function of 8 B
bo

sions will be derived. The first is the time after selb becomes stable until the inverted signal at
the NAND input is valid. The second expression is the time after sel and senseout are both valid
until the output of the driver is stable. Section 6.11 will show how these two quantities are used
when estimating the overall cache delay.

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

38

Mux
Driver
Delay

bo (tagbits=16, 8 second level drivers)

0.0ns

0.5ns

1.0ns

1.5ns

2.0ns

2.5ns

8 16 32 64

g g.

Analytical

Hspice

g.g.g.g

Figure 39: Multiplexor driver delay as a function of bo

selb

senseout

out

ngate

pgate

Figure 40: Output driver

6.8.2. Select invert stage

The time constant of the inverter that inverts selb can be estimated as:
tf,inv = resn,on(Woutdrvseln) × (gatecap(Woutdrvnandn+Woutdrvnandp , 10)

+ draincapp(Woutdrvselp , 1) + draincapn(Woutdrvseln , 1)

which gives:

Toutdrive,inv = delayrise (tf,inv , , vthoutdrvsel , vthoutdrvnand)
tmuxdr,3

vthoutdrvsel
(35)

Figure 41 compares the model predictions and Hspice measurements.

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

39

Sel
Inverter
Delay

bo (tagbits=16, 8 second level drivers)

0.0ns

0.1ns

0.2ns

0.3ns

8 16 32 64

g g.

Analytical
Hspice

g.g.g.g

Figure 41: Output driver delay as a function of bo: selb inverter

6.8.3. Data output path

We assume the transistor sizes in the NAND and NOR gates are such that the delay through
each is the same. This model will include the delay through the NOR gate as follows:

tf,nor = 2 resp,on(Woutdrvnorp) × [gatecap(Woutdrivern , 10) +
draincapp(Woutdrvnandp , 2) + 2 draincapn(Woutdrvnandn , 1]

Tnor = delayfall (tf,nor , tfallsense,data , vthoutdrvnor , vthoutdriver)

The output driver stage will be treated as an inverter:

tf,final = [resp,on(Woutdriverp) + Rwordmetal] ×
8 B A Nspd nvstack

2

[(draincapp(Woutdriverp , 1) + draincapn(Woutdrivern , 1)) +
8 B A

bo
Cwordmetal × (8 B A Nspd nvstack) + Cout]

Tfinal = delayrise (tf,final , , vthoutdriver , 0.5)
Tnor

vthoutdriver

where Cout is the output capacitance of the cache and nvstack is the number of arrays stacked
vertically (the arrays are assumed to be laid out so as to make the resulting structure roughly
square).

The total delay of the second part of the driver can then be written as:

Toutdrive,data = Tnor + Tfinal (36)

Figure 42 shows the analytical and Hspice estimations of Toutdrive,data.

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

40

Output
Delay

Output Drivers (8*B*A/bo)

0.0ns

0.2ns

0.4ns

0.6ns

0.8ns

1.0ns

1 2 4 8 12 16

g g.

Analytical
Hspice

g.g.g.g.g.g

Figure 42: Output driver delay: data path

6.9. Valid Output Driver

The comparator also drives a valid output. In a set-associative cache, this driver is not on the
critical path, but in a direct-mapped cache, it could be. Thus, it is necessary to estimate the delay
of this driver.

The valid signal driver is simply an inverter with transistor widths of Wmuxdrv1n and
Wmuxdrv1p. The equations for the delay of the driver are:

tf = resp,on (Wmuxdrv1p) ×
[draincapn(Wmuxdrv1n , 1) + draincapp(Wmuxdrv1p , 1) + Cout]

Tvalid = delayfall (tf , , vthmuxdrv1 , 0.5)
Teval

1 − vthmuxdrv1

Figure 43 shows the analytical and Hspice delays as a function of the number of bits in a tag.
The number of tag bits affects the comparator fall time; this affects the valid output driver delay.

6.10. Precharge Time

This section derives an estimate for the extra time required after an access before the next
access can begin. This difference between the access time and the cycle time can vary widely
depending on the circuit techniques used. Usually the cycle time is a modest percentage larger
than the access time, but in pipelined or post-charge circuits [6, 1] the cycle time can be less than
the access time. We have chosen to model a more conventional structure with the cycle time
equal to the access time plus the precharge.

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

41

Valid
Driver
Delay

Tag Bits

0.0ns

0.2ns

0.4ns

0.6ns

0.8ns

1.0ns

0 10 20 30 40

.g g

Analytical

Hspice

g. . . .g.g.g.g.g.g.g.g.g.g

Figure 43: Valid output driver delay

Since the decoder, comparator, and bitlines need to be precharged, the extra time can be writ-
ten as:

cycle time − access time = max (data wordline fall time + data bitline charge ,
tag wordline fall time + tagbitline charge ,
comparator charge time , decoder charge time)

(note that the asserted wordline has to fall before the bitlines can be discharged).

The precharge times for the four precharged elements are somewhat arbitrary, since the
precharging transistors can be scaled in proportion to the loads they are driving, while presenting
a parasitic capacitance proportional to the other loads. If this is done then only the delay driving
the precharge transistors changes with cache size. The precharge transistors are assumed to be
driven by a taper buffer during the time the wordline is being discharged, so this time is not
included in the precharge time. We assume that the time for the wordline to fall and bitline to
rise in the data array is the dominant term in the above equation; therefore, the comparator,
decoder, and tag bitline charge time will also be ignored.

Assuming the wordline drivers have properly ratioed NMOS and PMOS transistors, the
wordline fall time is the same as the wordline rise time derived earlier. After the wordline has
dropped, it is necessary to wait until the two bitlines (bit and bitbar) are within Vbitsense/2 of
each other. It is assumed that the bitline precharging transistors are such that a constant (over all
cache organization) bitline charge time is obtained. This constant will, of course, be technology
dependent. In the model, we assume that this constant is equal to four inverter delays (each with
a fanout of four):

Tprebitline = 4 delayfall (tf , 0 , 0.5 ,0.5)

where
tf = resp,on (Wdecinvp) × [draincapn(Wdecinvn , 1) +

draincapp(Wdecinvp , 1) + 4 gatecap(Wdecinvp + Wdecinvn , 0)]

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

42

The total precharge time can, therefore, be written as:

Tprecharge = Twordline,data + Tprebitline (37)

6.11. Access and Cycle Times

This section shows how the equations derived in the previous sections can be combined to
give the hit access and cycle times of a cache. First consider the access time (the time after the
address inputs are valid until the requested data is driven from the cache). For a direct-mapped
cache, the access time is simply the larger of the path through the tag array or the path through
the data array:

Taccess,dm = max (Tdataside + Toutdrive,data , Ttagside,dm (38)

where:
Tdataside = Tdecoder,data + Twordline,data + Tbitline,data + Tsense,data

Ttagside,dm = Tdecoder,tag + Twordline,tag + Tbitline,tag + Tsense,tag + Tcompare + Tvalid)

In a set-associative cache, the tag array must be read before the data signals can be driven.
Thus, the access time of a set-associative cache can be written as:

Taccess,sa = max (Tdataside , Ttagside,sa) + Toutdrive,data (39)

where:
Ttagside,sa = Tdecode,tag + Twordline,tag + Tbitline,tag + Tsense,tag + Tcompare +

Tmuxdriver + Toutdrive,inv

Figures 44 to 47 show analytical and Hspice estimations of the data and tag sides for direct-
mapped and 4-way set-associative caches. To gather these results, the model was first used to
find the optimal array organization parameters via exhaustive search for each cache size. These
optimum parameters are shown in the figures (the six numbers associated with each point cor-
respond to Ndwl, Ndbl, Nspd, Ntwl, Ntbl, and Ntspd in that order). The parameters were then used
in the Hspice model. As the graphs show, the difference between the analytical and Hspice
results is less than 10% in every case.

The cycle time of the cache (the minimum time between the start of consecutive accesses) is
the access time plus the time to precharge the bitline, comparator, and internal decoder bus.
Using Equation 37, the cycle time can be written as:

Tcycle = Taccess + Tprecharge (40)

7. Applications of Model

This section gives examples of how the analytical model can be used to quickly gather data
that can be used in architectural studies.

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

43

Data Side
(including

output
driver)

Cache Size (B=16, A=1)

2048 8192 32768 131072

0ns

1ns

2ns

3ns

4ns

5ns

6ns

7ns

8ns

9ns

10ns

11ns

12ns

g g

Analytical
Hspice

Markers:
Ndwl:Ndbl:Nspd
Ntwl:Ntbl:Ntspd

4:1:1
1:2:2

g
g

2:2:1
1:2:2

g

2:4:1
1:2:2 g

2:4:2
1:2:4 g

2:4:4
1:4:4

g

2:4:4
1:4:4 g

1:8:4
1:4:8

g
g

g

g

g

g

g

Figure 44: Direct mapped: Tdataside + Toutdrive,data

Tag
Side

Cache Size (B=16, A=1)

2048 8192 32768 131072

0ns
1ns
2ns
3ns
4ns
5ns
6ns
7ns
8ns
9ns

10ns
11ns
12ns

g g

Analytical
Hspice

Markers:
Ndwl:Ndbl:Nspd
Ntwl:Ntbl:Ntspd

4:1:1
1:2:2

g

g

2:2:1
1:2:2 g

2:4:1
1:2:2 g

2:4:2
1:2:4

g

2:4:4
1:4:4

g

2:4:4
1:4:4

g

1:8:4
1:4:8

g

g

g

g

g

g

g

Figure 45: Direct mapped: Ttagside,dm

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

44

Data Side
(plus output

driver)

Cache Size (B=16, A=4)

2048 8192 32768 131072

0ns

1ns

2ns

3ns

4ns

5ns

6ns

7ns

8ns

9ns

10ns

11ns

12ns

g g

Analytical
Hspice

Markers:
Ndwl:Ndbl:Nspd
Ntwl:Ntbl:Ntspd

8:1:1
1:1:1

g g

4:2:1
1:2:1

g

4:2:1
1:2:1

g

4:1:1
1:4:1

g

4:2:1
1:4:1 g

2:4:1
1:4:2 g

1:8:1
1:4:2

g
g

g

g

g
g

g

Figure 46: 4-way set associative: Tdataside + Toutdrive,data

Tag
Side

Cache Size (B=16, A=4)

2048 8192 32768 131072

0ns
1ns
2ns
3ns
4ns
5ns
6ns
7ns
8ns
9ns

10ns
11ns
12ns
13ns
14ns

g g

Analytical
Hspice

Markers:
Ndwl:Ndbl:Nspd
Ntwl:Ntbl:Ntspd

8:1:1
1:1:1

g
g

4:2:1
1:2:1 g

4:2:1
1:2:1 g

4:1:1
1:4:1

g

4:2:1
1:4:1

g

2:4:1
1:4:2

g

1:8:1
1:4:2

g
g

g

g

g

g

g

Figure 47: 4-way set associative: Ttagside,sa

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

45

7.1. Cache Size

First consider Figures 48 and 49. These graphs show how the cache size affects the cache
access and cycle times in a direct-mapped and 4-way set-associative cache. In these graphs (and
all graphs in the remainder of this report), bo = 64 and baddr = 32. For each cache size, the op-
timum array organization parameters were found (these optimum parameters are shown in the
graphs as before; the six numbers associated with each point correspond to Ndwl, Ndbl, Nspd,
Ntwl, Ntbl, and Ntspd in that order), and the corresponding access and cycle times were plotted. In
addition, the graph breaks down the access time into several components.

Time

Cache Size (B=16, A=1)

4096 16384 65536 262144

0ns

5ns

10ns

15ns

Markers:
Ndwl:Ndbl:Nspd
Ntwl:Ntbl:Ntspd

.

.

.

.

.

g g

` `
` `
` `
∇ ∇
f f
f f
∗ ∗
∗ ∗
† †
† †

Cycle time
Access time
Data side
Tag side
Compare
Data bitline & sense
Tag bitline & sense
Data wordline
Tag wordline
Data decode
Tag decode

`

`

`

`

`

`

`

4:1:1
1:2:2

g

g

2:2:1
1:2:2

g

2:4:1
1:2:2

g

2:4:2
1:2:4

g

2:4:4
1:4:4

g

2:4:4
1:4:4

g

1:8:4
1:4:8

† †

† † †

†
†

†.†.†.†.†. .
. .

. . .
. . .

.†.†

∗ ∗

∗ ∗
∗

∗
∗

∗.∗.∗.∗.∗. .
. .

. . .
. . .

.∗.∗

f f

f
f

f

f

f

f.f.f.f.f.
..

..
..

..
..

..f.
. . .

. .
. . .

. .f

∇.∇.∇.∇.∇. .
. .

. .
. .

. .
. .∇..

..
..

..
..

..
.∇

` `

`
`

`

`

`

.̀̀.̀.̀.̀. .
. .

. .
. .

. .
. .̀.

..
..

..
..

. .
. .̀

Figure 48: Access/cycle time as a function of cache size for direct-mapped cache

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

46

Time

Cache Size (B=16, A=4)

4096 16384 65536 262144

0ns

5ns

10ns

15ns

Markers:
Ndwl:Ndbl:Nspd
Ntwl:Ntbl:Ntspd

.

.

.

.

.

g g

` `
` `
∇ ∇
f f
f f
∗ ∗
∗ ∗
† †
† †

Cycle time
Access time
Mux drv & sel inv
Compare
Data bitline & sense
Tag bitline & sense
Data wordline
Tag wordline
Data decode
Tag decode

`
`

`

`

`

`

`

8:1:1
1:1:1

g

g

4:2:1
1:2:1

g

4:2:1
1:2:1

g

4:1:1
1:4:1

g

4:2:1
1:4:1

g

2:4:1
1:4:2

g

1:8:1
1:4:2

† †
†

†

† †
†

†.†.†.†.†.†. . . .
. .

. . .
. .†

∗ ∗
∗

∗

∗
∗

∗

∗.∗.∗.∗.∗.∗. . . .
. .

. . .
. .∗

f f

f

f

f
f

f

f.f.f.f.f.f.
..

..
..

..
. .

..f

∇.∇.∇.∇.∇. . . .
. . .

. . .
.∇. .

. .
. .

. .
. .

. .∇

.̀̀.̀.̀.̀. .
. .

. . .
. . .

.̀..
..

..
..

..
..

..̀

Figure 49: Access/cycle time as a function of cache size for set-associative cache

There are several observations that can be made from the graphs. Starting from the bottom, it
is clear that the time through the data array decoders is always longer than the time through the
tag array decoders. For all the organizations selected, there are more data subarrays (Ndwl×Ndbl)
than tag subarrays (Ntwl×Ntbl). The more data arrays, the slower the first decoder stage.

In all caches shown, the comparator is responsible for a significant portion of the access time.
Another interesting trend is that the tag side is always the critical path in the cache access. In the
direct-mapped cases, organizations are found which result in very closely matched tag and data
sides, while in the set-associative case, the paths are not matched nearly as well. This is due
primarily to the delay of the multiplexor driver.

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

47

7.2. Block Size

Figures 50 and 51 show how the access and cycle times are affected by the block size (the
cache size is kept constant). In the direct-mapped graph, the access and cycle times drop as the
block size increases. Most of this is due to a drop in the decoder delay (a larger block decreases
the depth of each array and reduces the number of tags required).

Time

Block Size (C=16K, A=1)

4 8 16 32 64

0ns

5ns

10ns

15ns

Markers:
Ndwl:Ndbl:Nspd
Ntwl:Ntbl:Ntspd

.

.

.

.

.

g g

` `
` `
` `
∇ ∇
f f
f f
∗ ∗
∗ ∗
† †
† †

Cycle time
Access time
Data side
Tag side
Compare
Data bitline & sense
Tag bitline & sense
Data wordline
Tag wordline
Data decode
Tag decode

`

`

`

`

`

2:4:2
1:4:4

g

g

2:4:2
1:2:4

g

2:4:1
1:2:2

g

2:2:1
1:2:2

g

2:2:1
1:2:2

†

† †

†
†

†.†.†.†.†

∗

∗ ∗
∗ ∗∗.∗.∗.∗.∗

f

f f

f

f
f.f.f.f.f

∇.∇.∇.∇.∇

`

` `

`

`

.̀̀.̀.̀.̀

Figure 50: Access/cycle time as a function of block size for direct-mapped cache

In the set-associative case, the access and cycle time begins to increase as the block size gets
above 32. This is due to the output driver; a larger block size means more drivers share the same

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

48

Time

Block Size (C=16K, A=4)

4 8 16 32 64

0ns

5ns

10ns

15ns

Markers:
Ndwl:Ndbl:Nspd
Ntwl:Ntbl:Ntspd

.

.

.

.

.

g g

` `
` `
∇ ∇
f f
f f
∗ ∗
∗ ∗
† †
† †

Cycle time
Access time
Mux drv & sel inv
Compare
Data bitline & sense
Tag bitline & sense
Data wordline
Tag wordline
Data decode
Tag decode

`
` ` `

`

4:2:1
1:4:1

g

g

8:1:1
1:4:1

g

4:2:1
1:2:1

g

4:2:1
1:2:1

g

8:1:1
1:1:1

† †

†
† ††.†.†.†.†

∗ ∗

∗ ∗ ∗∗.∗.∗.∗.∗

f f

f
f ff.f.f.f.f

∇.∇.∇.∇.∇

.̀̀.̀.̀.̀

Figure 51: Access/cycle time as a function of block size for set-associative cache

cache output line, so there is more loading at the output of each driver. This trend can also be
seen in the direct-mapped case, but it is much less pronounced. The number of output drivers
that share a line is proportional to A, so the proportion of the total output capacitance that is the
drain capacitance of other output drivers is smaller in a direct-mapped cache than in the 4-way
set associative cache. Also, in the direct-mapped case, the slower output driver only affects the
data side, and it is the tag side that dictates the access time in all the organizations shown.

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

49

7.3. Associativity

Finally, consider Figures 52 and 53 which show how the associativity affects the access and
cycle time of a 16KB and 64KB cache. As can be seen, there is a significant step between a
direct-mapped and a 2-way set-associative cache, but a much smaller jump between a 2-way and
a 4-way cache (this is especially true in the larger cache). As the associativity increases further,
the access and cycle time begin to increase more dramatically.

Time

Associativity (C=16K, B=16)

1 2 4 8 16 32

0ns

5ns

10ns

15ns

Markers:
Ndwl:Ndbl:Nspd
Ntwl:Ntbl:Ntspd

.

.

.

.

.

g g

` `
` `
∇ ∇
f f
f f
∗ ∗
∗ ∗
† †
† †

Cycle time
Access time
Tag Path
Compare
Data bitline & sense
Tag bitline & sense
Data wordline
Tag wordline
Data decode
Tag decode

`

`
`

`

`

`

2:4:1
1:2:2

g

g

8:1:1
1:2:2 g

4:2:1
1:2:1 g

4:2:1
1:2:1

g

8:1:1
1:1:1

g

8:1:1
1:1:1

†

†

†
† † †

†.†.†.†.†.†

∗

∗

∗ ∗ ∗
∗

∗.∗.∗.∗. .
. .

. .
. .

. .
. . .

.∗..
..
..
..
..
..
..
..
..
..
..
..
.∗

f

f

f
f f

f

f.f.f.f.f.
. .

. .
. .

. .
. .

. .
. .f

∇.∇.∇.∇.∇. .
. .

. .
. .

. .
. .

. .
.∇

.̀̀.̀.̀.̀..
..

..
..

..
..

..
..

.̀

Figure 52: Access/cycle time as a function of associativity for 16K cache

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

50

Time

Associativity (C=64K, B=16)

1 2 4 8 16 32

0ns

5ns

10ns

15ns

Markers:
Ndwl:Ndbl:Nspd
Ntwl:Ntbl:Ntspd

.

.

.

.

.

g g
` `
` `
∇ ∇
f f
f f
∗ ∗
∗ ∗
† †
† †

Cycle time
Access time
Tag Path
Compare
Data bitline & sense
Tag bitline & sense
Data wordline
Tag wordline
Data decode
Tag decode

`

` `
`

`

`

2:4:4
1:4:4

g

g

2:4:1
1:4:2

g

4:2:1
1:4:1 g

4:2:1
1:2:1

g

4:1:1
1:2:1

g

4:1:1
1:1:1

†

† †

†

† ††.†.†.†.†.†

∗
∗ ∗

∗
∗ ∗

∗.∗.∗.∗.∗..
..

..
..
..

..
..
..

..
..∗

f

f f

f

f f

f.f.f.f.f. .
. .

. . .
. .

. .
. . .f∇.∇.∇.∇.∇. . .

. .
. .

. .
. .

. . .∇

.̀̀.̀.̀.̀. .
. .

. .
. .

. .
. .

. .
.̀

Figure 53: Access/cycle time as a function of associativity for 64K cache

The real cost of associativity can be seen by looking at the tag path curve in either graph. For
a direct-mapped cache, this is simply the time to output the valid signal, while in a set-
associative cache, this is the time to drive the multiplexor select signals. Also, in a direct-
mapped cache, the output driver time is hidden by the time to read and compare the tag. In a
set-associative cache, the tag array access, compare, and multiplexor driver must be completed
before the output driver can begin to send the result out of the cache.

Looking at the 16KB cache results, there seems to be an anomaly in the data array decoder at
A=2. This is due to a larger Ndwl at this point. This doesn’t affect the overall access time,
however, since the tag access is the critical path.

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

51

Another anomaly appears for large associativities, in which the bitline appears to have a nega-
tive delay. For slow rising wordlines, the bitline can switch completely (recall that the two bit-
lines only need to be Vsense volts apart) before the wordline has reached its gate threshold volt-
age.

8. Conclusions

In this report, we have presented an analytical model for the access and cycle time of a cache.
By comparing the model to an Hspice model, the model was shown to be accurate to within
10%. The computational complexity, however, is considerably less than Hspice; measurements
show the model to be over 100,000 times faster than Hspice.

It is dangerous to make too many conclusions from the graphs presented in this report.
Figures 52 and 53 seem to imply that a direct-mapped cache is always the best. While it is
always the fastest, it is important to remember that the direct-mapped cache will have the lowest
hit-rate. Hit rate data obtained from a trace-driven simulation (or some other means) must be
included in the analysis before the various cache alternatives can be fairly compared. Similarly,
a small cache has a lower access time, but will also have a lower hit rate. In [4], it was found
that when the hit rate and cycle time are both taken into account, there is an optimum cache size
between the two extremes.

Acknowledgments

The authors wish to thank Stefanos Sidiropoulos for his circuit advice, as well has Stuart
Oberman for his help setting up the Hspice simulations. Stefanos Sidiropoulos and Russell Kao
provided very helpful comments on an early draft of the manuscript.

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

52

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

53

Appendix I. Circuit Parameters
The transistor sizes and threshold voltages used in the circuits in this report are given in Table

I-1 (all transistor lengths are 0.8µm).

Stage Symbol Value

Decoder Driver Wdecdrivep 100µm

Wdecdriven 50µm

vthdecdrive 0.438

Decoder NAND Wdec3to8p 60µm

Wdec3to8n 90µm

vthdec3to8 0.561

Decoder NOR Wdecnorp 12µm

Wdecnorn 2.4µm

vthdecnor

(one input) 0.503

(two inputs) 0.452

(three inputs) 0.417

(four inputs) 0.390

Decoder inverter Wdecinvp 10µm

Wdecinvn 5µm

vthdecinv 0.456

Wordline driver Wworddrivep varies

Wworddriven varies

vthworddrive 0.456

krise 0.4ns

Tag wordline driver Wtagwordp 10µm

Wtagwordn 5µm

vthtagworddrive 0.456

Memory Cell (Fig 19) Wa 1µm

Wb 3µm

Wd 4µm

vthwordline 0.456

BitWidth 8.0µm

BitHeight 16.0µm

Bitlines Wbitpreequ 80µm

Wbitmuxn 10µm

Vbitpre 3.3 volts

Vbitsense 0.1 volts

vt 1.09 volts

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

54

Sense Amp (Fig 29) Q1-Q4 4µm

Q5-Q6 8µm

Q7-Q10 8µm

Q11-Q12 16µm

Q13-Q14 8µm

Q15 16µm

tsense,data 0.58ns

tsense,tag 0.26ns

tfallsense,data 0.70ns

tfallsense,tag 0.70ns

Comparator inverter 1 Wcompinvp1 10µm

Wcompinvn1 6µm

vthcompinv1 0.437

Comparator inverter 2 Wcompinvp2 20µm

Wcompinvn2 12µm

vthcompinv2 0.437

Comparator inverter 3 Wcompinvp3 40µm

Wcompinvn3 24µm

vthcompinv3 0.437

Comparator eval Wevalinvp 20µm

Wevalinvn 80µm

vthevalinv 0.267

Comparator Wcompp 30µm

Wcompn 10µm

Mux Driver Stage 1 Wmuxdrv1p 50µm

Wmuxdrv1n 30µm

vthmuxdrv1 0.437

Mux Driver Stage 2 Wmuxdrvnorp 80µm

Wmuxdrvnorn 20µm

vthmuxdrvnor 0.486

Mux Driver Stage 3 Wmuxdrvselp 20µm

Wmuxdrvseln 12µm

vthmuxdrvsel 0.437

Output Driver (sel inv) Woutdrvselp 20µm

Woutdrvseln 12µm

vthoutdrvsel 0.437

Output Driver NAND Woutdrvnandp 10µm

Woutdrvnandn 24µm

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

55

vthoutdrvnand 0.441

Output Driver NOR Woutdrvnorp 40µm

Woutdrvnorn 6µm

vthoutdrvnor 0.431

Output Driver (final) Woutdriverp 80µm

Woutdrivern 48µm

vthoutdriver 0.425

Cout 0.5 pF

Table I-1: Transistor sizes and threshold voltages

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

56

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

57

Appendix II. Technology Parameters
The technology parameters used in this report are given in Table II-1. The Spice models used

from [3] are given in Figure II-1.

Parameter Value

Cbitmetal 4.4 fF/bit

Cgate 1.95 fF/µm2

Cgatepass 1.45 fF/µm2

Cndiffarea 0.137 fF/µm2

Cndiffside 0.275 fF/µm

Cndiffgate 0.401 fF/µm

Cpdiffarea 0.343 fF/µm2

Cpdiffside 0.275 fF/µm

Cpdiffgate 0.476 fF/µm

Cpolywire 0.25 fF/µm

Cwordmetal 1.8 fF/bit

Leff 0.8 µm

Rbitmetal 0.320 Ω/bit

Rn,switching 25800 Ω*µm

Rn,on 9723 Ω*µm

Rp,switching 61200 Ω*µm

Rp,on 22400 Ω*µm

Rwordmetal 0.080 Ω/bit

Vdd 5 volts

Table II-1: 0.8µm CMOS process parameters

.model nt nmos (level=3
+ vto=0.77 tox=1.65e-8 uo=570 gamma=0.80
+ vmax=2.7e5 theta=0.404 eta=0.04 kappa=1.2
+ phi=0.90 nsub=8.8e16 nfs=4e11 xj=0.2u
+ cj=2e-4 mj=0.389 cjsw=4.00e-10 mjsw=0.26
+ pb=0.80 cgso=2.1e-10 cgdo=2.1e-10 delta=0.0
+ ld=0.0001u rsh=0.5)
*

.model pt pmos (level=3
+ vto=-0.87 tox=1.65e-8 uo=145 gamma=0.73
+ vmax=0.00 theta=0.233 eta=0.028 kappa=0.04
+ phi=0.90 nsub=9.0e16 nfs=4e11 xj=0.2u
+ cj=5e-4 mj=0.420 cjsw=4.00e-10 mjsw=0.31
+ pb=0.80 cgso=2.7e-10 cgdo=2.7e-10 delta=0.0
+ ld=0.0001u rsh=0.5)

Figure II-1: Generic 0.8um CMOS Spice parameters [3]

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

58

References
[1] Terry Chappell, et. al. A 2ns cycle, 3,8ns access 512kb CMOS ECL RAM with a fully
pipelined architecture. IEEE Journal of Solid-State Circuits, Vol. 26, No. 11 :1577-1585, Nov.,
1991.

[2] Mark A. Horowitz. Timing Models for MOS Circuits. Technical Report Technical
Report SEL83-003, Integrated Circuits Laboratory, Stanford University, 1983.

[3] Mark G. Johnson and Norman P. Jouppi. Transistor model for a Synthetic 0.8um CMOS
process. Class notes for Stanford University EE371 , Spring, 1990.

[4] Norman P. Jouppi and Steven J.E. Wilton. Tradeoffs in Two-Level On-Chip Caching. In
Proceedings of the 21th Annual International Symposium on Computer Architecture. 1994.

[5] Johannes M. Mulder, Nhon T. Quach, Michael J. Flynn. An Area Model for On-Chip
Memories and its Application. IEEE Journal of Solid-State Circuits, Vol. 26, No. 2 :98-106,
Feb., 1991.

[6] Robert J. Proebsting. Post Charge Logic permits 4ns 18K CMOS RAM. 1987.

[7] Jorge Rubinstein and Paul Penfield and Mark A. Horowitz. Signal Delay in RC Tree
Networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
Vol. 2, No. 3 :202-211, July, 1983.

[8] Tomohisa Wada, Suresh Rajan, Steven A. Przybylski. An Analytical Access Time
Model for On-Chip Cache Memories. IEEE Journal of Solid-State Circuits, Vol. 27, No. 8
:1147-1156, Aug., 1992.

[9] Neil H. E. Weste and Kamran Eshraghian. Principles of CMOS VLSI Design. Addison
Wesley, 1993. Second edition.

ULTRIX and DECStation are trademarks of Digital Equipment Corporation.

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

59

WRL Research Reports

‘‘Titan System Manual.’’

Michael J. K. Nielsen.

WRL Research Report 86/1, September 1986.

‘‘Global Register Allocation at Link Time.’’

David W. Wall.

WRL Research Report 86/3, October 1986.

‘‘Optimal Finned Heat Sinks.’’

William R. Hamburgen.

WRL Research Report 86/4, October 1986.

‘‘The Mahler Experience: Using an Intermediate

Language as the Machine Description.’’

David W. Wall and Michael L. Powell.

WRL Research Report 87/1, August 1987.

‘‘The Packet Filter: An Efficient Mechanism for

User-level Network Code.’’

Jeffrey C. Mogul, Richard F. Rashid, Michael

J. Accetta.

WRL Research Report 87/2, November 1987.

‘‘Fragmentation Considered Harmful.’’

Christopher A. Kent, Jeffrey C. Mogul.

WRL Research Report 87/3, December 1987.

‘‘Cache Coherence in Distributed Systems.’’

Christopher A. Kent.

WRL Research Report 87/4, December 1987.

‘‘Register Windows vs. Register Allocation.’’

David W. Wall.
WRL Research Report 87/5, December 1987.

‘‘Editing Graphical Objects Using Procedural
Representations.’’

Paul J. Asente.

WRL Research Report 87/6, November 1987.

‘‘The USENET Cookbook: an Experiment in

Electronic Publication.’’
Brian K. Reid.

WRL Research Report 87/7, December 1987.

‘‘MultiTitan: Four Architecture Papers.’’

Norman P. Jouppi, Jeremy Dion, David Boggs, Mich-

ael J. K. Nielsen.

WRL Research Report 87/8, April 1988.

‘‘Fast Printed Circuit Board Routing.’’

Jeremy Dion.

WRL Research Report 88/1, March 1988.

‘‘Compacting Garbage Collection with Ambiguous

Roots.’’

Joel F. Bartlett.

WRL Research Report 88/2, February 1988.

‘‘The Experimental Literature of The Internet: An

Annotated Bibliography.’’

Jeffrey C. Mogul.

WRL Research Report 88/3, August 1988.

‘‘Measured Capacity of an Ethernet: Myths and

Reality.’’

David R. Boggs, Jeffrey C. Mogul, Christopher

A. Kent.

WRL Research Report 88/4, September 1988.

‘‘Visa Protocols for Controlling Inter-Organizational

Datagram Flow: Extended Description.’’

Deborah Estrin, Jeffrey C. Mogul, Gene Tsudik,

Kamaljit Anand.

WRL Research Report 88/5, December 1988.

‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’

Joel F. Bartlett.
WRL Research Report 89/1, January 1989.

‘‘Optimal Group Distribution in Carry-Skip Ad-
ders.’’

Silvio Turrini.

WRL Research Report 89/2, February 1989.

‘‘Precise Robotic Paste Dot Dispensing.’’

William R. Hamburgen.
WRL Research Report 89/3, February 1989.

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

60

‘‘Simple and Flexible Datagram Access Controls for

Unix-based Gateways.’’

Jeffrey C. Mogul.

WRL Research Report 89/4, March 1989.

‘‘Spritely NFS: Implementation and Performance of

Cache-Consistency Protocols.’’

V. Srinivasan and Jeffrey C. Mogul.

WRL Research Report 89/5, May 1989.

‘‘Available Instruction-Level Parallelism for Super-

scalar and Superpipelined Machines.’’

Norman P. Jouppi and David W. Wall.

WRL Research Report 89/7, July 1989.

‘‘A Unified Vector/Scalar Floating-Point Architec-

ture.’’

Norman P. Jouppi, Jonathan Bertoni, and David

W. Wall.

WRL Research Report 89/8, July 1989.

‘‘Architectural and Organizational Tradeoffs in the

Design of the MultiTitan CPU.’’

Norman P. Jouppi.

WRL Research Report 89/9, July 1989.

‘‘Integration and Packaging Plateaus of Processor

Performance.’’

Norman P. Jouppi.

WRL Research Report 89/10, July 1989.

‘‘A 20-MIPS Sustained 32-bit CMOS Microproces-

sor with High Ratio of Sustained to Peak Perfor-

mance.’’

Norman P. Jouppi and Jeffrey Y. F. Tang.

WRL Research Report 89/11, July 1989.

‘‘The Distribution of Instruction-Level and Machine

Parallelism and Its Effect on Performance.’’

Norman P. Jouppi.

WRL Research Report 89/13, July 1989.

‘‘Long Address Traces from RISC Machines:

Generation and Analysis.’’

Anita Borg, R.E.Kessler, Georgia Lazana, and David

W. Wall.

WRL Research Report 89/14, September 1989.

‘‘Link-Time Code Modification.’’

David W. Wall.

WRL Research Report 89/17, September 1989.

‘‘Noise Issues in the ECL Circuit Family.’’

Jeffrey Y.F. Tang and J. Leon Yang.

WRL Research Report 90/1, January 1990.

‘‘Efficient Generation of Test Patterns Using

Boolean Satisfiablilty.’’

Tracy Larrabee.

WRL Research Report 90/2, February 1990.

‘‘Two Papers on Test Pattern Generation.’’

Tracy Larrabee.

WRL Research Report 90/3, March 1990.

‘‘Virtual Memory vs. The File System.’’

Michael N. Nelson.

WRL Research Report 90/4, March 1990.

‘‘Efficient Use of Workstations for Passive Monitor-

ing of Local Area Networks.’’

Jeffrey C. Mogul.

WRL Research Report 90/5, July 1990.

‘‘A One-Dimensional Thermal Model for the VAX

9000 Multi Chip Units.’’

John S. Fitch.
WRL Research Report 90/6, July 1990.

‘‘1990 DECWRL/Livermore Magic Release.’’
Robert N. Mayo, Michael H. Arnold, Walter S. Scott,

Don Stark, Gordon T. Hamachi.

WRL Research Report 90/7, September 1990.

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

61

‘‘Pool Boiling Enhancement Techniques for Water at

Low Pressure.’’

Wade R. McGillis, John S. Fitch, William

R. Hamburgen, Van P. Carey.

WRL Research Report 90/9, December 1990.

‘‘Writing Fast X Servers for Dumb Color Frame Buf-

fers.’’

Joel McCormack.

WRL Research Report 91/1, February 1991.

‘‘A Simulation Based Study of TLB Performance.’’

J. Bradley Chen, Anita Borg, Norman P. Jouppi.

WRL Research Report 91/2, November 1991.

‘‘Analysis of Power Supply Networks in VLSI Cir-

cuits.’’

Don Stark.

WRL Research Report 91/3, April 1991.

‘‘TurboChannel T1 Adapter.’’

David Boggs.

WRL Research Report 91/4, April 1991.

‘‘Procedure Merging with Instruction Caches.’’

Scott McFarling.

WRL Research Report 91/5, March 1991.

‘‘Don’t Fidget with Widgets, Draw!.’’

Joel Bartlett.

WRL Research Report 91/6, May 1991.

‘‘Pool Boiling on Small Heat Dissipating Elements in

Water at Subatmospheric Pressure.’’

Wade R. McGillis, John S. Fitch, William
R. Hamburgen, Van P. Carey.

WRL Research Report 91/7, June 1991.

‘‘Incremental, Generational Mostly-Copying Gar-

bage Collection in Uncooperative Environ-

ments.’’
G. May Yip.

WRL Research Report 91/8, June 1991.

‘‘Interleaved Fin Thermal Connectors for Multichip

Modules.’’

William R. Hamburgen.

WRL Research Report 91/9, August 1991.

‘‘Experience with a Software-defined Machine Ar-

chitecture.’’

David W. Wall.

WRL Research Report 91/10, August 1991.

‘‘Network Locality at the Scale of Processes.’’

Jeffrey C. Mogul.

WRL Research Report 91/11, November 1991.

‘‘Cache Write Policies and Performance.’’

Norman P. Jouppi.

WRL Research Report 91/12, December 1991.

‘‘Packaging a 150 W Bipolar ECL Microprocessor.’’

William R. Hamburgen, John S. Fitch.

WRL Research Report 92/1, March 1992.

‘‘Observing TCP Dynamics in Real Networks.’’

Jeffrey C. Mogul.

WRL Research Report 92/2, April 1992.

‘‘Systems for Late Code Modification.’’

David W. Wall.

WRL Research Report 92/3, May 1992.

‘‘Piecewise Linear Models for Switch-Level Simula-

tion.’’

Russell Kao.

WRL Research Report 92/5, September 1992.

‘‘A Practical System for Intermodule Code Optimiza-

tion at Link-Time.’’

Amitabh Srivastava and David W. Wall.
WRL Research Report 92/6, December 1992.

‘‘A Smart Frame Buffer.’’

Joel McCormack & Bob McNamara.

WRL Research Report 93/1, January 1993.

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

62

‘‘Recovery in Spritely NFS.’’

Jeffrey C. Mogul.

WRL Research Report 93/2, June 1993.

‘‘Tradeoffs in Two-Level On-Chip Caching.’’

Norman P. Jouppi & Steven J.E. Wilton.

WRL Research Report 93/3, October 1993.

‘‘Unreachable Procedures in Object-oriented

Programing.’’

Amitabh Srivastava.

WRL Research Report 93/4, August 1993.

‘‘An Enhanced Access and Cycle Time Model for

On-Chip Caches.’’

Steven J.E. Wilton and Norman P. Jouppi.

WRL Research Report 93/5, July 1994.

‘‘Limits of Instruction-Level Parallelism.’’

David W. Wall.

WRL Research Report 93/6, November 1993.

‘‘Fluoroelastomer Pressure Pad Design for

Microelectronic Applications.’’

Alberto Makino, William R. Hamburgen, John

S. Fitch.

WRL Research Report 93/7, November 1993.

‘‘A 300MHz 115W 32b Bipolar ECL Microproces-

sor.’’

Norman P. Jouppi, Patrick Boyle, Jeremy Dion, Mary

Jo Doherty, Alan Eustace, Ramsey Haddad,

Robert Mayo, Suresh Menon, Louis Monier, Don

Stark, Silvio Turrini, Leon Yang, John Fitch, Wil-

liam Hamburgen, Russell Kao, and Richard Swan.

WRL Research Report 93/8, December 1993.

‘‘Link-Time Optimization of Address Calculation on

a 64-bit Architecture.’’

Amitabh Srivastava, David W. Wall.

WRL Research Report 94/1, February 1994.

‘‘ATOM: A System for Building Customized
Program Analysis Tools.’’

Amitabh Srivastava, Alan Eustace.

WRL Research Report 94/2, March 1994.

‘‘Complexity/Performance Tradeoffs with Non-

Blocking Loads.’’

Keith I. Farkas, Norman P. Jouppi.

WRL Research Report 94/3, March 1994.

‘‘A Better Update Policy.’’

Jeffrey C. Mogul.

WRL Research Report 94/4, April 1994.

‘‘Boolean Matching for Full-Custom ECL Gates.’’

Robert N. Mayo, Herve Touati.

WRL Research Report 94/5, April 1994.

AN ENHANCED ACCESS AND CYCLE TIME MODEL FOR ON-CHIP CACHES

63

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’

Brian K. Reid and Christopher A. Kent.

WRL Technical Note TN-4, September 1988.

‘‘TCP/IP PrintServer: Server Architecture and Im-

plementation.’’

Christopher A. Kent.

WRL Technical Note TN-7, November 1988.

‘‘Smart Code, Stupid Memory: A Fast X Server for a

Dumb Color Frame Buffer.’’

Joel McCormack.

WRL Technical Note TN-9, September 1989.

‘‘Why Aren’t Operating Systems Getting Faster As

Fast As Hardware?’’

John Ousterhout.

WRL Technical Note TN-11, October 1989.

‘‘Mostly-Copying Garbage Collection Picks Up

Generations and C++.’’

Joel F. Bartlett.

WRL Technical Note TN-12, October 1989.

‘‘The Effect of Context Switches on Cache Perfor-

mance.’’

Jeffrey C. Mogul and Anita Borg.

WRL Technical Note TN-16, December 1990.

‘‘MTOOL: A Method For Detecting Memory Bot-

tlenecks.’’

Aaron Goldberg and John Hennessy.
WRL Technical Note TN-17, December 1990.

‘‘Predicting Program Behavior Using Real or Es-
timated Profiles.’’

David W. Wall.

WRL Technical Note TN-18, December 1990.

‘‘Cache Replacement with Dynamic Exclusion’’

Scott McFarling.
WRL Technical Note TN-22, November 1991.

‘‘Boiling Binary Mixtures at Subatmospheric Pres-

sures’’

Wade R. McGillis, John S. Fitch, William

R. Hamburgen, Van P. Carey.

WRL Technical Note TN-23, January 1992.

‘‘A Comparison of Acoustic and Infrared Inspection

Techniques for Die Attach’’

John S. Fitch.

WRL Technical Note TN-24, January 1992.

‘‘TurboChannel Versatec Adapter’’

David Boggs.

WRL Technical Note TN-26, January 1992.

‘‘A Recovery Protocol For Spritely NFS’’

Jeffrey C. Mogul.

WRL Technical Note TN-27, April 1992.

‘‘Electrical Evaluation Of The BIPS-0 Package’’

Patrick D. Boyle.

WRL Technical Note TN-29, July 1992.

‘‘Transparent Controls for Interactive Graphics’’

Joel F. Bartlett.

WRL Technical Note TN-30, July 1992.

‘‘Design Tools for BIPS-0’’

Jeremy Dion & Louis Monier.

WRL Technical Note TN-32, December 1992.

‘‘Link-Time Optimization of Address Calculation on

a 64-Bit Architecture’’

Amitabh Srivastava and David W. Wall.
WRL Technical Note TN-35, June 1993.

‘‘Combining Branch Predictors’’

Scott McFarling.

WRL Technical Note TN-36, June 1993.

‘‘Boolean Matching for Full-Custom ECL Gates’’
Robert N. Mayo and Herve Touati.

WRL Technical Note TN-37, June 1993.

