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Abstract

Many optimization problems find a natural mapping in permutation spaces
where dedicated algorithms can be used during the optimization process.  Unfor-
tunately, some of the best and most effective techniques currently used can only
be applied to vectors (cartesian) spaces, where a concept of distance between dif-
ferent objects can be easily defined.  Examples of such techniques go from
simplest deepest descent hill climbers and the more sophisticated conjugate
gradient methods used in continuous spaces, to dynanic hill climbers or Genetic
algorithms (GAs) used in many large combinatorial problems. This paper
describes a general method that allows the best optimization techniques used in
vector spaces to be applied to all order based problems whose domain is a per-
mutation space.  It will also be shown how this method can be applied to a real
world problem, the optimal placement of interconnected cells (modules) on a
chip, in order to minimize the total length of their connections.  For this problem a
dynamic hill climber has been used as the optimization engine, but other tech-
niques that work in a multidimensional vector space can be applied as well.
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Cartesian and Permutation Spaces

Optimization problems where the domains of the parameters to be optimized take on sets of
independent values  are said to belong to cartesian, or vector spaces. Problems with domains
that are permutations of  elements are said to belong to permutation spaces. In the former case
the values that the parameters can take are independent from each other and the function to be
optimized can geometrically be represented in a multidimensional space with as many
dimensions as there are  parameters. In the latter case the order of the elements which
constitutes the n-tupla of values is what differentiate one input from another and the value of
any parameter at a given position in the n-tupla is clearly dependent on all the others.

Example 1 :

     A two variable function to optimize (cartesian continuous space) :

F(x, y) = (x - y )4 - (x - y)2   where  x ∈ [0 .. 5], y ∈ [1 .. 4]    [see Fig.1]

     A three variable function described by a permutation (discrete permutation space) :

          Q(x, y, z) = x ×  P(x) + y × P(y) + z × P(z)

                  where x ∈ [1 .. 3]  and P(x) = position of  x in the permutation.

[see Fig.2]

F(x, y)

Fig 1 :  values of F(x, y)
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Q(x, y, z) :

Q(1, 2, 3) = 1 + 4 + 9 = 14;     Q(1, 3, 2) = 1 + 6 + 6 = 13;    Q(2, 1, 3) = 2 + 2 + 9 = 13;
Q(2, 3, 1) = 2 + 6 + 3 = 11;     Q(3, 1, 2) = 3 + 2 + 6 = 11;    Q(3, 2, 1) = 3 + 4 + 3 = 10;

Q(1, 2, 2), Q(1,1, 3), Q(3, 3 ,2) ... etc. are all non-valid permutations

Fig 2 :  values of Q(x, y, z)

Workarounds when dealing with permutations

Regardless of which technique is used, dealing with vectors of parameters that must be
optimized it is easier than working with their permutations. When iterative algorithms are used
a few workarounds can be applied to overcome the problem :
 
 Penalty functions (it is a very popular technique used with genetic algorithms)
 where an input sequence is penalized the more it is “far” from a legal permutation.
 
 Example 2 :  Suppose we want to minimize a given objective function F(x) whose
                      parameters can take integer values in the range : 1 ... n..

          Moreover, say that F(x) takes values on the range : min ... max.
   A possible penalty function p(x) could be :

p(x) = 1 + number of  elements with the same value × min

       with a new modified objective function :
F*(x)  = p(x)× F(x)

    so that all legal permutations still have the old values and illegal ones
    are increasingly penalized according to the number of “wrong”  elements
    in the sequence.

 Only “legal” input values can be generated during the iterative process.
 
 For instance, in GAs special crossover and mutation operators are developed,  or in
 simulated annealing techniques only swapping is allowed between the elements of a
 permutation.
 
      Example 3 : In GAs a quite popular crossover operator is the so called
       Partial Matched crossover (PMX) first defined by Goldberg [Gold89].
                          The two chromosomes (parents) are aligned and two crossing sites are
                          randomly chosen along them. These two points define a matching section
                          which identifies the genes that will be exchanged (swapped) in each of the
                          parent. In the example on the next page [see Fig. 3]  the following elements
                          will be swapped : 2        2 ,  4        7,  7        4,  8        6   
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             1  2  4  7  8  3  5  6  string representing 1st  parent  permutation

             5  2  7  4  6  3  1  8  string representing 2nd  parent  permutation

      random crossover sites

               Elements in columns between crossover sites are swapped

             1  2  7  4  6  3  5  8  string representing 1st child  permutation

             5  2  4  7  8  3  1  6  string representing 2nd child  permutation

      random crossover sites

                              The new children are still legal permutations.

Fig. 3 : Partial Matched Crossover

This is an easy to implement order-based crossover, unfortunately the semantics of the
operation and its effectiveness depend on the problem; in many cases this operator can
be totally inadequate.

Both methods offer advantages and disadvantages, but most of the time they “obscure” the
problem by adding complexity to the algorithm and decreasing its effectiveness.

Transformed Spaces

The concept of analytical transformation has been a very successful one and it has been applied
to many difficult problems in physics and engineering as well. A typical example is the Fourier
Transform which allows a electric signal to be “transformed” from a time domain into a
frequency domain [see Fig. 4]. Some of the most complex operations that must be applied to
signals, become very simple in the corresponding space, so that they can be efficiently carried
out after the conversion has taken place . Convolution for example is a complex operation in
the time domain which has a correspondent simple one in the frequency domain. Once all the
work has been done in the transformed space, by using an inverse transformation the modified
signal is converted back to the time domain. The key to this technique is how fast the
transformation really is. If most of the computation is going in the forward and back conversion
of the signal, no much is gained by using this approach. In the case of the Fourier transform,
there was a real breakthrough when  Cooley and Tukey [CoTuk65] discover a new algorithm
with complexity O(n log n) instead of O(n2) of its more obvious implementation. With a much
faster transform (FFT) the techniques used in signal analysis and the wonderful things that now
signal processing can do really blossomed and we can certainly say that without such a fast
transform this area would not have enjoyed the incredible growth we see today.
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Fig. 4 : Fast Fourier Transform

We might think that such a clever idea could also be used in the permutation space.
Permutations could be mapped  into a vector space, with a O(n log n) transformation, so that
linear operations can be carried out on the corresponding vectors. To go back to the original
permutations another fast transformation must also be available. Surprisingly enough, a
mathematical object that fulfills our needs has already been described and an algorithm with
O(n log n) complexity already been suggested. For historical reasons this transformation takes
the name of Inversion Table and its description can be found in Knuth’s book  [Knuth73] but
as far as we know it has never been used for any of  purposes discussed here. In the book the
only use of the inversion table has been as a mathematical tool to prove theorems and
properties of permutations. Being the permutation space mapped into a vector space would
give us a way to measure distances between different sample points in the search space, which
is harder to do in the original permutation domain. One simple way this information can be
used during the search for optimal points is to identify interesting areas that look promising and
avoid the less successful ones. Almost all iterative methods that operate on large search spaces
use some heuristics to “guess” where the next good point to be sampled will be, based on
some measure that correlates previous samples. If our algorithms can operate in a vector space
there is already a well developed body of theories and practical solutions that can be applied to
our order-based problem directly. This is clearly not the only way this transformation could be
used. If the objective function we are optimizing has some special properties about its global
maximum and minimum and requires operations that have a simple mapping in the transformed
space, it is also conceivable to operate directly in the linear space and go back to the
permutation domain only after the optimization is finished.

The Inversion Table

One way of defining  the inversion table is :
given a permutation of n integers { a1, a2 ... an } from the ordered set { 1, 2 ... n },  its inversion
table { b1, b2 ... bn } is obtained by letting bj be the number of elements to the left of  element j
that are greater than j.

time frequency

FFT
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Example 4 :

the permutation   5  6  1  3  2  4  8  7   has the inversion table  2  3  2  2  0  0  1  0,
because to the left of element 1 there are two elements, 5 and 6, to the left of element 2
there are three elements, 5, 6 and 3 and so on. Notice that other simple definitions are
possible, such as counting all the elements on the right of j, or using less than instead of
greater than for the comparison. By this definition the last value must always be 0,
therefore only n - 1 components of the generated vector are meaningful.

The mathematical expression of what has just been said is :

jab  = 
i

i j

=

=

∑
1

if (ai > aj) 1; else 0; Eq. 1

where :  0 <= b1 < n-1,    0 <= b2 < n - 2  ...  bn = 0;

Every bj can take values from a range than depends on its index j;  bj ∈ { 0 .. n - j }.
For the permutation in the example :

 b1 ∈ { 0 .. 7 } ,  b2 ∈ { 0 .. 6 }  ....  b7 ∈ { 0, 1 } ,  b8 ∈ { 0 }

               1

           12   21

123    132   312   321   231   213

Fig. 5 : Fast Inversion Table Transform

Figure 5 on this page, graphically suggests how  the FITT works. On the left there is one of the
trees that generates all possible permutations of three elements and on the right there is the
correspondent transformed vector space. Permutations of three elements in the example, are
uniquely converted into vectors of two components that take values on the ranges :  [0, 1, 2]
and  [0, 1] respectively. In other words a permutation space of  n elements is transformed into
a n - 1 dimensional discrete linear space. This is another way of looking at the inversion table,
as a convenient mapping between two spaces with different properties, more useful for
optimization purposes.

FITT

I2

I1

I1 ∈ [0, 1, 2]
I2 ∈ [0, 1]

0        1       2

1
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For an interesting paper about the inversion table and permutation encoding, see also
[Leino94], where an interesting application of  the inversion table, such as inversion of
programs as well as new algorithms, are also presented.

Algorithms for the Inversion Table

Algorithms to generate the inversion table from a permutation and back of complexity O(n2)
are simple implementations where a linked list is used as the basic data structure and insertions
and deletions are conveniently done. As pointed out in the previous chapters, given that the
most interesting optimization problems deal with a large number of parameters, only algorithms
O(n log n) or with better complexity performance can be efficiently used for this
transformations. In this chapter the basic algorithms and their implementations are presented
and described, for further details see [Knuth73]. Also, because the implementation of the FITT
and its inverse, written in C++, turned out to be quite simple and easy to understand, instead of
describing the algorithm using a mathematical formalism, supposedly more expressive, we
decided that the programming language itself was more descriptive and simpler than any
artificial notation. Therefore all the references to the algorithms will be directly done to the
C++ implementation itself, listed in appendix of this report. The FITT and its inverse has been
implemented in a C++ general class called InvTab  which apart from its constructor and
destructor has the two member functions decodeInv and encodeInv as the only public
interface. As expected, decodeInv and encodeInv  operate on permutations and vectors
respectively. The general structure used to process the data is still a linked list and is built and
initialized when the constructor of the class is invoked. In addition to the linked list, two arrays,
op, with pointers at the elements in the list and xs, which is used as a counter, are utilized
during the two transformations. Permutations are supposed to take integer values on the range
{ 1, 2 ... n } and vectors on the range { 0, 1 ... n-1 } with the last component always being zero.
Notice that each single element of the list, called item, is a record of two values, where digit
represent one element and space is the number of elements in front of it (on its left).

From permutations to vectors : { a1, a2 ... an }  Æ   { b1, b2 ... bn }

The implementation of a O(n log n) algorithm is much easier to understand in this case.
The operation required is to compute for each element at a given position in the permutation,
the total number of smaller integers that precede it on its left. In order to make this operation
efficient, a binary search tree is used to index all the elements ai, so that only log n levels must
be updated. Each bit of ai,  is accessed by an appropriate shift operation and the array xs is
updated according to the value of that bit. The array xs is initialized with zeros at each of the
log n iterations and op in the end will be pointing at the elements of  type item, whose space
field will be the index into the array of  { b1, b1 ... bn } and digit will contain the appropriate
value.
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A left shift of one position is necessary in this case, because elements in the permutation take
values on the range { 1, ... ,n } at positions { 0, ... ,n-1 }. The code is implemented in the
procedure encodeInv listed in appendix of this report.

From vectors to permutations : { b1, b2 ... bn }  ÆÆ  { a1, a2 ... an }

If a string (list) of element of type item  such as α  = [m1, n1],  ...  ,[mn, nn]   and  an  empty
string ε  = 0  is given, we can define a binary composition ⊗   which takes two strings ( [m,
n]α  ) , ( [m’, n’ ] β  ) where α , β  are substrings without the first elements and creates a new
string according to the rules :

                                                                  ( [m, n](α  ⊗ ( [m’ - m, n’] β  ) )      if m≤ m’

( [m, n]α  ) ⊗   ( [m’, n’ ] β  )                                                Eq. 2

                                                         ( [m’, n’ ]( [m - m’ - 1, n] α )⊗ β  )  if m > m’

where ε  ⊗ α  =  α ⊗ ε   = α   and ⊗   is associative :α ⊗ ( β ⊗ γ ) = (α ⊗ β )⊗ γ

In this case it can be proved that  :

[b1, 1] ⊗  [b2, 2] ⊗  ... ⊗  [bn, n]  = [0, a1] [0, a2] ... [0, an]       Eq. 3

or in words : the composition of a list of elements whose space is the inversion table value and
digit goes from 1 to n, generates a list of elements whose digit field is the corresponding
element of the permutation. The time to evaluate the above composition can also be shown to
be O(n log n). Notice that because ⊗  is a composition, therefore it is also associative, the
expression on the left of Eq. 3, can be evaluated in any order. This is exactly what the private
member function called decode does when invoked by the user called decodeInv with an
inversion table as its input parameter. Notice that a divide and conquer recursive algorithm is
used on the initial input list of the expression to be evaluated (left side of Eq. 3). In each
iteration i the op[i] points to the result of the composition of the sub-strings that are being
evaluated according to the rules established in Eq. 2. The end of a string is identified by an
element with value 0 (empty string).

For example given the inversion table :

2  3  6  4  0  2  2  1  0

four iterations are needed to process an initial list of  9 elements :

[2, 1] ⊗  [3, 2] ⊗  [6, 3] ⊗  [4, 4] ⊗  [0, 5] ⊗  [2, 6] ⊗  [2, 7] ⊗  [1, 8] ⊗  [0, 9]
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• 1st pass  -  after we evaluate adjacent pairs :

[2, 1] [1, 2] ⊗  [4, 4] [1, 3] ⊗  [0, 5] [2, 6] ⊗  [1, 8] [0, 7] ⊗  [0, 9]

• 2nd pass  -  after we evaluate adjacent sub-strings with 2 elements each :

[2, 1] [1, 2] [1, 4] [1, 3] ⊗  [0, 5] [1, 8] [0, 6] [0, 7] ⊗  [0, 9]

• 3rd pass  -  after we evaluate adjacent sub-strings with 4 elements each :

[0, 5] [1, 1] [0, 8] [0, 2] [0, 6] [0, 4] [0, 7] [0, 3] ⊗  [0, 9]

• 4th pass -  will produce the resulting permutation :

   [0, 5] [0, 9] [0, 1] [0, 8] [0, 2] [0, 6] [0, 4] [0, 7] [0, 3]

which is :
5  9  1  8  2  6  4  7  3

Algorithms that use balanced trees, for instance red-black trees, can also be used instead of the
one presented here.
Moreover, if speed is a real concern, the recursive algorithm can also be rewritten in a iterative
form, which also saves memory during the evaluation of the sub-expressions.

Performance Summary of the FITT
Implementation

Some simple tests have been run on the implementation listed in this report and on a Digital
Celebris Xl 6200 platform, a 200 Mhz Intel P6 system.
The code has been compiled with Microsoft Visual C++ ver. 4.2 and optimized for maximum
speed. No other special custom optimizations have been selected and the reported results are
averages over one thousand iterations on vectors with variable number of components of
randomly generated  values. Table 1 reports the execution times of decodeInv and encodeInv
on permutations and vectors with different numbers of elements.
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number of
elements

decodeInv (average time per
operation)

encodeInv (average time per
operation)

500 0.94 ms 0.83 ms
1000 2.14 ms 1.47 ms
2000 4.23 ms 3.13 ms
4000 9.23 ms 6.81 ms
8000 24.00 ms 15.54 ms

Table 1 : FITT execution times

The Dynamic Hill Climbing example

In this chapter a technique first introduced by Yuret and De la Maza [YuMaza] and normally
used to optimize objective functions of any kind in cartesian spaces where derivatives are not
available or impossible to determine, will be applied to a difficult ordering problem in VLSI :
the optimal placement in a plane of  connected circuits or modules of  various sizes. Usually
one of the goals is that the total length of all the connections among the different modules be
minimized, so that a given timing requirement can be met. Various algorithms using from
simulated annealing techniques to genetic algorithms or evolution strategies have been
conceived, carefully engineered and tuned to generate the best possible results. This example
does not show that dynamic hill climbing is a better algorithm than others, its only purpose is to
show that by using this approach we allow techniques that can only be used to optimize
functions in cartesian spaces to also deal with ordering problems in a natural way. The quality
of the final placement has been compared with the results obtained by running other two
optimizers : a sophisticated tool such as TimberWolf ver. 7 that uses simulated annealing
techniques and a genetic algorithms that has been implemented on a system developed here
[Turr96] as an optimization research tool. The dynamic hill climber itself has a very
straightforward implementation just to make the example possible, nevertheless the good
results that came out from this experiment show that optimization methods that work on linear
spaces can be extremely effective even when compared with problem specific highly engineered
tools. As a final note, only placements of  a limited number of  modules (few hundreds) have
been reported here.

If a real VLSI cell placement (tens of thousands of cells or more) has to be performed
clustering techniques [see Turr96 pag. 14 - 21] should be added no matter which optimization
algorithm is used. TimberWolf, in particular uses clustering by default, so the results provided
by this report always reflect the time improvement that comes from that.
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The Dynamic Hill Climbing algorithm

In this chapter dynamic hill climbing will only be briefly described, but readers interested in
more details can look at [YuMaz94]. The code has been also changed to allow the algorithm to
work in the discrete space generated by the FITT instead of a continuous one as originally
conceived by the authors. For our purposes the algorithm can be easily described by a two
nested loop structure. The outer loop which keeps exploring the search space as uniformly as
possible, is described in the simple pseudo-code of  [Fig. 6] by a loop that keep exploring the
space around a given starting point x.

X = {};  // empty set
for (i = 0; i  < maxOptima; ++localOtimum)
{

x = FarPoint(X); Fig. 6 : outer loop
X = X∪  LocalOptimize(f, x);

}

where f(x) is the function to optimize taking a vector x as its input and X is the set of
local optima already computed. FarPoint is a procedure which returns the new farthest
point from all the ones already in the set X. Finally the procedure LocalOptimize is
another loop structure which given the objective function f and a point x return the best
local optimal point, according to some rules.The loop keeps executing its body until
maxOptima new points have been generated, implementing the idea of the so called
iterative deepening by keeping exploring the space in increasing detail [see Fig.7.]

Fig. 7 : more iterations more local optima, better exploration

Let us concentrate now on the LocalOptimize, the code of which is shown in Fig. 8. Essentially
the idea is to have a starting point x and a probing vector, v, whose length grows and shrinks
depending on the value of the function at the new point : better points are rewarded, the vector
length grows, worse point are penalized and v srinks. The coordinates of the best point so far
are given by  x + v. Directions are randomly tried for a maximum of maxIter iterations with |v|
vector length, until a better point is found. As we said before, if the new value is better than the
previous one, the probing vector doubles in length and further regions of the space will be
searched, otherwise the vector length is halved and regions closer to the local best optimum are
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sampled. To approximate and follow better the ridges in the mutidimensional search space,
another vector u keeps the previous successful direction which made an improvement, is
linearly combined with vector v [see Fig. 9] and the new promising direction, u + v , is tried
out. The loop stops when the size of vector v decreases to a given minimum and the best
solution is returned.

while( |v| >= threshold)
{

iter = 0;
while ( f(x + v) >= f(x)  &&  iter < maxIter)
{

v= randomVector(v);  ++iter;
}
if ( f(x + v) > f(v))
    v = v / 2;
else  if( iter == 0) Fig. 8 : LocalOptimize
      {

x = x + v;  u = u + v;  v = 2 v;
     }

               else if( f(x + u + v) < f(v))
                     {

             x = x + v + u;  u = u + v;  v = 2 u;
                    }
                   else { x = x + v;  u = v;  v = 2 v; }
}

The code in Fig. 8 is used to minimize the value of a given objective function  f(x) until |v|  gets
smaller than a fixed threshold. In particular this algorithm is now integral part of the Genetic
Workbench (GWB) [Turr96], a system developed at the Western Research Laboratory of
Digital Equipment Corporation for experimenting optimization techniques on order-based
problems. The results reported in the next chapter have been collected by running the GWB on
circuits of various complexity and with increasing number of modules and connections.

Fig. 9 :  three cases illustrated (1 - no change in direction, 2 - successful try, 3 - failure)

O.K.

u

v
u

v NO

u

v

u

v

u,v u,v
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The system has been extensively used on some problems and placement in particular so that the
objective function and the utilities used to handle real circuits were already in place. Placements
were described by a permutation of integers used to identify instances of cells to be placed on a
predefined area on a plane. A routine was called to compute the actual coordinates of the cells
by placing them in rows according to rules and constraints specified by the user. Every time the
evaluation of the new placement was requested by the algorithm the inverse of the FITT would
transform the vector back into a permutation and the placement routine just mentioned was
called. The cost was approximated by computing the minimal spanning tree of the graph
representing the connectivity of the circuit. So in this particular example the FITT is only used
to allow a general algorithm like DHC to optimize an order-based problem such as the one
described. For some other problems a better use of the transformed vectors is also possible if
operations in the vector space are simpler than the ones in the permutation domain and the
transformation preserves  miniminality (or maximality) of the specific objective function.

Results

The results reported here are worst cases out of several runs of placements of real circuits with
a relatively small number of cells that go from 28 to a maximum of 200. For this comparison
two other candidates have been considered : the best genetic algorithm that has been developed
for this specific problem under the Genetic Workbench [Turr96] and a commercial tool,
TimberWolf  ver. 7. Because TimberWolf was provided in executable form for a DecStation
5000, all the algorithms have been tested on the same platform. The quality of a placement has
only been judged in terms of cost of the total length of all the connections. In order to do that
consistently through all the examples an algorithm that computes the minimal spanning tree of
the graph representing the circuit connections has been used. The execution time is also the
only other parameter that has been used to compare different techniques. It should also be
taken into account that TimberWolf was using a clustering algorithm in conjunction with a
special simulated annealing schedule which dramatically improved the performance of the tool.

Legend : DHC = Dynamic Hill Climber
               all values are in the form of :  cost / time in seconds  [read smaller better]

 # cells (size) Genetic DHC TimberWolf
28 cells 1624 / 400.0 1700 / 10.0 1813 / 54.2
96 cells 415 / 980.0 460 / 78.0 512 / 70.0
100 cells 552 / 1020.0 580 / 89.0 680 / 66.0
144 cells 980 / 2015.0 1118 / 280.0 1200 / 170.0
200 cells 1400 / 4000.0 1380 / 360.0 1480 / 210.0

Table 1 :  comparison of DHC with other two specialized algorithms
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Notice that the quality of the placements are always better for Dynamic Hill Climbing (DHC)
than for TimberWolf and despite the lack of any kind of optimization in the case of DHC, even
the execution times are not that different. For these examples the genetic algorithm produced
the lowest cost placements, but the worst running times.

Appendix

// -----  Class definitions  -----
// -----  invTable.h  -----

#if !defined(TRANSFORM_DEF)
#define TRANSFORM_DEF

// Version described in D. Knuth's book (book 3 - exercise on permutations)

typedef struct item * pitem;
typedef int *  pGene;

struct item
{

int    space;
int    digit;
pitem  next;

};

class InvTab
{
private:
    pitem   __fastcall decode(pitem, pitem);
    int        max; // max vector length
    int      lim; // 2^lim <= max < 2^(lim+1)
    pitem * op;
    int   * xs;
    pitem    pList;
public:
    InvTab(int = 8);
   ~InvTab();
    void __fastcall decodeInvTab(pGene, pGene);
    void __fastcall encodeInvTab(pGene, pGene);
};

// -----  Inline implementations in the same translation unit (next page)  -----
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inline pitem __fastcall InvTab::decode(pitem p1, pitem p2)  // recursive implementation
{
    pitem pT;

    if (!p1) return p2;
    else

if (!p2) return p1;
else
{

if (p1->space <= p2->space)
{

p2->space = p2->space - p1->space;
p1->next = decode(p1->next, p2);

}
else
{

pT = p1;
p1 = p2;
p2 = pT;
p2->space -= (p1->space + 1);
p1->next = decode(p2, p1->next);

}
return p1;

}
}

inline void __fastcall InvTab::decodeInvTab(pGene p, pGene q)
{
    pitem pT;
    int i, j, k, l;

    pT = op[0] = pList;
    for (i = 0; i < max;)     // build and initialize the internal list
    {
        pT->space = p[i];
        pT->digit = ++i;
        pT->next = 0;
        op[i] = ++pT;
    }
    for (l = 1, k = 2; l < max; l *= 2, k *= 2)
        for (i = 0, j = l; j < max; i += k, j += k)
            op[i] = decode(op[i], op[j]);
    pT = op[0];
    for (i = 0; i < max; ++i, pT = pT->next)     // copy result

q[i] = pT->digit;
}
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inline void __fastcall InvTab::encodeInvTab(pGene p, pGene q)
{
    pitem pT;
    int i, j, k, s, r;

    pT = op[0] = pList;
    for (i = 0; i < max;)     // initialize the internal list
    {
        pT->space = p[i];
        pT->digit = 0;
        op[++i] = ++pT;
    }
    for (k = lim; k >= 0; --k)
    {
        for (j = 0; j <= (max >> (k + 1)); ++j) xs[j] = 0;
        for (j = 0; j < max; ++j)
        {
            r = (op[j]->space >> k) % 2;
            s = op[j]->space >> (k + 1);
            if (r) ++xs[s]; else op[j]->digit += xs[s];
        }
    }
    for (i = 0; i < max; ++i)
    {
        q[op[i]->space - 1] = op[i]->digit;
    }
}

#endif

// -----  more invTab.cpp on the next page  -----



16

// ----- invTable.ccp  -----

#include <iostream.h>
#include <stdlib.h>
#include <math.h>
#include "transform_1.h"

InvTab::InvTab(int s) : max(s)
{
    pitem pT1, pT2;

    if (s != 0)
    {
        op = new pitem [max + 1];                        // create list of items

pT1 = pList = new item [max + 1];
op[0] = pT1;
for (int i = 0; i < max; ++i)
{

pT2 = pT1 + 1;
pT1->next = pT2;
pT1 = pT2;

}
pT1->next = 0;

        xs = new int [max / 2 + 1];
        lim = int(log(double(max)) / log(2.0));
    }
    else
    {
        op = 0;
        xs = 0;
    }
}

InvTab::~InvTab()
{

    if (xs != 0) delete [] xs;
    if (op != 0)
    {

delete [] pList;
delete [] op;

    }
}
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