
O C T O B E R 1 9 9 6

WRL
Research Report 96/3

Efficient Procedure
Mapping using
Cache Line Coloring

Amir H. Hashemi
David R. Kaeli
Brad Calder

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There are two other research laboratories located in Palo Alto, the Network Systems
Lab (NSL) and the Systems Research Center (SRC). Another Digital research group is
located in Cambridge, Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, WRL-2
250 University Avenue
Palo Alto, California 94301 USA

Reports and technical notes may also be ordered by electronic mail. Use one of the fol-
lowing addresses:

Digital E-net: JOVE::WRL-TECHREPORTS

Internet: WRL-Techreports@decwrl.pa.dec.com

UUCP: decpa!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

Reports and technical notes may also be accessed via the World Wide Web:
http://www.research.digital.com/wrl/home.html.

Efficient Procedure
Mapping using

Cache Line Coloring

Amir H. Hashemi
David R. Kaeli
Brad Calder

October 1996

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

Abstract

As the gap between memory and processor performance continues to
widen, it becomes increasingly important to exploit cache memory effec-
tively. Both hardware and software approaches can be explored to optimize
cache performance. Hardware designers focus on cache organization issues,
including replacement policy, associativity, block size and the resulting cache
access time. Software writers use various optimization techniques, including
software prefetching, data scheduling and code reordering. Our focus is on
improving memory usage through code reordering compiler techniques.

In this paper we present a link-time procedure mapping algorithm which
can significantly improve the effectiveness of the instruction cache. Our al-
gorithm produces an improved program layout by performing a color map-
ping of procedures to cache lines, taking into consideration the procedure
size, cache size, cache line size, and call graph. We use cache line coloring to
guide the procedure mapping, indicating which cache lines to avoid when
placing a procedure in the program layout. Our algorithm reduces on
average the instruction cache miss rate by 45% over the original mapping
and by 14% over the mapping algorithm of Pettis and Hansen.

i

1 Introduction

The increasing gap between processor and main memory speeds has forced computer designers to exploit

cache memories. A cache is smaller than the main memory and, if properly managed, can hold a major part

of the working set of a program [6]. The goal of memory subsystem designers is to improve the average

memory access time. Reducing the cache miss rate is one factor for improving memory access performance.

Cache misses occur for a number of reasons: cold start, capacity, and collisions [12]. A number of cache

line replacement algorithms have been proposed to reduce the number of cache collisions [2, 13, 17].

Instead of concentrating on cache organization we concentrate on the layout of a program on the memory

space. Bershad et.al. suggested remapping cache addresses dynamically to avoid conflict misses in large

direct-mapped caches [3]. An alternative approach is to perform code repositioning at compile or link-

time [8, 10, 11, 15, 18]. The idea is to place frequently used sections of a program next to each other in the

address space, thereby reducing the chances of cache conflicts while increasing spatial locality within the

program.

Code reordering algorithms for improved memory performance can span several different levels of gran-

ularity, from basic blocks, to loops, and to procedures. Research has shown that basic block reordering and

procedure reordering can significantly improve a program’s execution performance. Pettis and Hansen [11]

found that the reduction in execution time when using procedure reordering was around 8%, and the re-

duction in execution time for basic block reordering was around 12% on an HP-UX 825 architecture with

a 16K direct mapped unified cache. When both of the optimizations were applied together an average

improvement of 15% was achieved.

The mapping algorithm we propose in this paper improves upon prior work, particularly when a

program’s control flow graph is larger than the cache capacity. Since we are interested in dealing with

graphs that are larger than the target instruction cache, we concentrate our discussion in this paper on

reordering procedures. Even so, our algorithm can also be used with, and can benefit from, basic block

reordering and procedure splitting, as described later in x5.

Our research differs from prior research in procedure reordering because our algorithm uses the cache

size, cache line size, and the procedure size to perform a color mapping of cache lines to procedures. This

color mapping allows our algorithm to intelligently place procedures in the layout by preserving color

dependencies with a procedure’s parents and children in the call graph, resulting in fewer instruction cache

conflicts.

In this paper we will describe our algorithm and demonstrate its merit through trace-driven cache

simulation. In x2 we describe our color mapping algorithm and compare our algorithm with prior work

0Authors’ addresses: A.H. Hashemi and D.R. Kaeli are at the Department of Electrical and Computer Engineering, Northeastern
University, 318 Dana Research Center, Boston, MA 02115; B. Calder is at the Department of Computer Science and Engineering
0114, University of California, San Diego, 9500 Gilman Road, La Jolla CA 92093-0114.

1

in code reordering. The methodology used to gather our results is described in x3. In x4 we provide

quantitative results using our improved procedure ordering algorithm. We then discuss implications and

future work for our algorithm in x5, and we summarize our contributions in x6.

2 Procedure Mapping

In this section we describe our procedure mapping algorithm. For the following description, we will assume

that the instruction cache is direct mapped (in x5 we discuss how to apply our algorithm to set-associative

caches). The basic idea behind the algorithm is to treat the memory address space as two dimensional

by breaking up the address space into pieces that are equivalent to the size of the cache, and using the

cache blocks occupied by each procedure to guide the mapping. In contrast, previous research has treated

memory layout as a one dimensional address space. Employing a second dimension allows our algorithm to

intelligently avoid cache conflicts when mapping a procedure for the first time, and it provides the ability to

move procedures that have already been mapped in order to eliminate additional conflicts as they arise. To

avoid conflicts, we keep track of the colors each procedure is mapped to and a set of colors indicating which

colors are currently unavailable to that procedure. We will refer to this set of colors as the unavailable-set.

For a given procedure, the unavailable-set of colors represents the colors occupied (i.e., cache lines used)

by all of the immediate parents and children of that procedure in the call graph which have already been

mapped to cache lines. Our algorithm uses a call graph with weighted procedure call edges for indicating

the importance of mapping procedures next to each other. The algorithm concentrates on only eliminating

first-generation cache conflicts, which are the conflicts between a procedure and the immediate parents

and children of that procedure in the call graph. When mapping a procedure, our algorithm tries to avoid

cache conflicts by avoiding cache line colors in its unavailable-set. Once a procedure has been mapped, a

procedure can later be moved to a new location without causing cache conflicts, as long as it does not move

to a location (color) which is in its unavailable-set. In using the color mapping to place and move procedures

in this way, we are guaranteed that the new location will not increase the number of first-generation conflicts

for the procedures in our call graph.

One of the hurdles in a mapping algorithm where code is allowed to move after it has been already

mapped, is the problem of how to handle the empty space left behind by the moved procedures. If possible,

this gap should be filled since the program is laid out in a contiguous memory space. Therefore, moving

a procedure should be followed by filling the space left by the procedure with other procedures, otherwise

this can result in a chain of relocations that are hard to manage.

Studies of program behaviors show that 10% to 30% of a program accounts for 90% of its execution

time [5]. The rest of the code is not heavily exercised or is often not even executed. Our algorithm takes

advantage of this property by dividing each program into frequently executed (popular) and infrequently

2

C

A

B

D

F

G

E
100

90

80

70

40

0

0

Procedure # Cache Lines

A

B

A

C

D

E

F

G

1

1

2

2

2

1

2

Figure 1: Example call graph. Each node represents a procedure and each edge represents a procedure call.
The numbers associated with each edge indicates the number of times the procedure call was executed. The
table shows for each procedure how many cache lines is needed to hold the procedure.

executed (unpopular) procedures. The unpopular procedures are treated as fluff or glue, and are used to

fill the empty space left behind by moved procedures in our algorithm. We will not worry about conflicts

when positioning unpopular procedures, since these parts of a program do not significantly contribute to the

number of first level cache conflicts.

2.1 Cache Coloring Algorithm

We will now describe the details of our block coloring algorithm and use an example to demonstrate how to

layout procedures. Figure 1 presents an example call graph, containing 7 procedures A through G, where

nodes represent procedures and the edges represent procedure calls. Each edge contains a weight indicating

how many times that procedure was called. The Figure also contains a table indicating the number of cache

blocks each procedure occupies. In this example and algorithm description, we assume the instruction cache

is direct mapped and contains only 4 cache lines.

Figure 2 shows the steps taken by our algorithm in mapping the example call graph given in Figure 1.

The cache is divided into a set of colors, one color for each cache block. The four cache lines are given

the colors red, green, blue, and yellow. In Figure 2, the first column shows at each step which edge

or procedure is being processed. The second column shows which of the four edge processing cases the

current step corresponds to in our algorithm. The third column shows the current mapping of the processed

procedures and edges over the colored 4 block cache space. The last column shows the changes to the

unavailable-set of colors for the procedures being processed at each step. If a procedure spans multiple

3

Steps in Color
Mapping Algorithm

Unavailable-
Sets

E{b,y}, C{r,g},
A{y}, B{b}

(1)
(2)

Fill Space with
unpopular G

Fill Space with
unpopular F

C D (70)

A E (40)

E C (100)

A B (90)

B C (80)(3)

(4)

(5)

(6)

(7)

D{b,y}

A{r}, B{g,b,y}

A{r,g}, B{b,y}

E1 E2 C1 C2 BA

E1 E2 C2 A

E2 C1 C2 B A

C1 C2 B AD2D1

D2D1

E1 E2 C1 C2 B AD2D1 G1G2

G1

E1 E2 C1 C2 B AD1 G1G2

G2

color conflict with C when placing D, so leave a space

procedure A has color conflicts with E, so move A

red r green g blue b yellow y

cache size

 4 blocks

C1

E1

D2

F

B

E1 E2space

no conflicts

Case

I

II

III

IV

Figure 2: Procedure mapping using cache line coloring. The first column indicates the steps taken in our
color mapping algorithm and each edge and procedure processed at each step. The second column shows
which of the four edge processing cases the current step corresponds to in our algorithm. The third column
shows the address space divided into sizes equal to the instruction cache, and shows the mapping of the
program at each step. The instruction cache contains 4 blocks labeled: red, green, blue, and yellow. The
last column shows the unavailable-sets as they are changed for the procedures at each step in the algorithm.

4

cache lines (as does C in our example), it will generate multiple mappable elements (e.g., C1 and C2), as

is shown in Figure 2.

Our algorithm maintains three important pieces of state for each procedure: the number of cache lines

(colors) needed to hold the procedure, the cache colors used to map the procedure, and the unavailable-set

of colors which represents the cache lines where the procedure should not be mapped to. We do not actually

store the unavailable-set of colors. Instead, each procedure contains pointers to its parents and children in

the call graph. The unavailable-set of colors is then constructed for a procedure as needed by unioning all

the colors used to map each of the procedure’s parents and children, only if the edge joining the procedure

to the parent or child has already been processed in the algorithm.

Our algorithm starts by building a procedure call graph, similar to the one shown in Figure 1. Every

procedure in the program is represented by a node in the graph, and each edge between nodes represents

a procedure call. Multiple call sites to the same procedure from a single procedure are represented as a

single edge in our call graph. The edge values represent the number of times each edge (i.e., call path) was

traversed. The sum of the edge weights entering and exiting a node indicates the number of incoming and

outgoing procedure calls and this determines that procedure’s popularity.

After the call graph is built, the popularity of each procedure is considered. Based on popularity, the

graph is split into the popular procedures and edges and the unpopular procedures and edges. The popular

procedure set contains those procedures which are frequently a caller or a callee, and the popular edge

set contains the frequently executed procedure call edges. The unpopular procedures and edges are those

not included in the above two popular sets. Note, there is a difference between popular procedures and

time consuming procedures (procedures that consume a noticeable portion of a program’s overall execution

time). A time consuming procedure may be labeled unpopular because it rarely switches control flow to

another procedure. If a procedure rarely switches control flow, one does not have to worry about eliminating

cache conflicts between this procedure and the rest of the call graph. In the example in Figure 1, popular

procedures are A, B, C, D, andE, and the unpopular procedures are F andG since they are never executed.

The popular edges are A ! B, B ! C, C ! D, A ! E, and E ! C, and the unpopular edges are

E ! F and F ! G. The algorithm then sorts the popular edges in descending order using the edge

weights. The unpopular procedures are sorted by procedure size, and are used to fill in spaces created by

our color mapping.

After the program’s popularity has been decided, we process all of the popular edges starting with the

most frequently executed and ending with the least frequently executed. There are four possible cases

when processing an edge in our algorithm. The first case occurs when an edge connects two procedures

that have not yet been mapped. In this case, the two procedures are merged into a compound node.

The two procedures are placed next to each other in the layout and they are assigned cache line colors

starting at an arbitrary color (position). Each procedure is assigned the number of cache line colors equal

5

to (procedure0s size in bytes)=(cache line size in bytes). After the colors have been assigned, the

unavailable-set for each procedure includes the colors (cache lines) used by the other procedure at the other

end of the call edge. The remaining three cases encountered when processing an edge include: when the

call edge links two procedures in two different compound nodes, when the edge is between an unprocessed

procedure and a procedure in a compound node, and when the edge being processed is a call between two

procedures in the same compound node. The following four paragraphs discuss the details for the four edge

processing cases in our algorithm.

Case I: The first case, when an edge connects two unmapped procedures, is shown in the first two steps

of Figure 2. The algorithm starts with the heaviest edge (most heavily traversed) in the call graph’s set of

popular edges, E ! C, and forms a compound node E �C. This compound node is arbitrarily mapped to

the cache line colors. The unavailable-set of colors for E now includes blue and yellow (the colors C maps

to) and the unavailable-set for C now includes red and green (the colors E maps to). The second step in

Figure 2 processes the edge A! B between two unmapped procedures. The two procedures are combined

into a compound node, and their unavailable-sets are shown in the Figure. Note that the unavailable-set for

A does not include colors red and green, even though there is an edge A ! E in the call graph and node

E is mapped to the colors red and green. This is because the procedure’s unavailable-set only includes

parent and children procedures connected by edges that have been processed, and the edge A! E has not

yet been processed. We chose this restriction since the unavailable-set of colors is used to restrict where to

place procedures, and when placing a procedure, the procedure should only be restricted by the edges with

the heaviest (most important) weights.

Case II: The second case occurs when the edge being processed connects two procedures in different

compound nodes. For this case, the two compound nodes are merged together, concatenating the compound

node that is shorter in length (number of procedures) to the larger compound node. This is shown in step 3 of

Figure 2 for edge B ! C, which combines two compound nodes E�C and A�B. The compound nodes

both contain the same number of procedures, so we arbitrarily choose A � B to be the smaller compound

node. Our algorithm now decides where to map, and how to order, A�B since there are four possibilities:

A � B � E � C, B � A � E � C, E � C � A � B and E � C � B � A. The first decision to make is

on which side of compound node E � C should A � B be placed. This is decided by taking the shortest

mod(distance to procedure in compound node=cache size). For our example, the distance to C is used

and is calculated to be the distance in the number of cache line colors from the middle of procedureC to each

end of the compound node. From the mapping in step 1 of Figure 2, this distance is 1 cache line to the right

of C in the compound node E � C and 3 cache lines to the left of C in compound node E � C. Therefore

the algorithm decides to place A�B to the right of E�C. The mod(distance to procedure=cache size)

6

heuristic is used to increase the probability of being able to easily map the 2nd compound node to non-

conflicting cache colors. Note, that placing A � B to the right of E � C produces a mapping where no

cache conflicts occur, whereas if we would had chosen to put A � B on the left side of E � C this would

have caused a cache coloring conflict. The next decision our algorithm makes is in which order to place

A � B, either E � C � A � B or E � C � B � A. This is decided by choosing the ordering so the two

procedures connected by the edge being processed (i.e., B ! C) are closest to each other in the program

layout. Thus we arrive at a mapping of E � C � B � A. After this is decided, the algorithm makes sure

that the two nodes for the edge being processed, B and C, have no cache lines that conflict. This is done

by comparing the colors used by C with the colors used by B. If there is a conflict, the smaller compound

node is shifted away from the larger compound node until there is no longer a conflict. The space left in the

mapping will be filled with unpopular procedures. If a conflict cannot be avoided then the original location

is used. When the final position for the smaller compound node is determined, the algorithm goes through

each procedure and updates the colors (cache lines) used by each procedure. Notice that this changes the

unavailable-set of colors: A’s set of unavailable colors changes to red and B’s changes to green, blue and

yellow.

Case III: The third type of edge connects an unmapped procedure and a procedure in a compound node.

We process this case similarly to case II as described in the previous paragraph. In this situation, the

unmapped procedure is placed on either end of the compound node, which side is decided by using the

shortest mod(distance to procedure=cache size) heuristic as described above. Once a side is chosen,

the cache line colors used by the newly mapped procedure are checked against the colors used by its

corresponding procedure in the compound node. If there is a conflict, space is inserted in the address space

between the newly mapped procedure and the compound node until the newly mapped procedure can be

assigned colors which do not conflict. If this is not possible, the procedure is left at its original position,

adjacent to the compound node. Step 4 in Figure 2 shows this scenario. The algorithm next processes edge

C ! D, where C is contained in a compound node and D has not yet been mapped. The algorithm first

decides on which side of the compound node to place D. Since both of the distances to the middle of C are

the same (3 cache lines), the algorithm arbitrarily chooses a side and D is placed to the left of the compound

node. The colors used for D at this location are blue and yellow. This would create a conflict since those

colors overlap with the colors used by C. Therefore the algorithm shiftsD to the left until it finds a suitable

location (if possible) where D no longer conflicts with C. This location for D is found at the colors red

and green. This leaves a space in the compound node, as shown in step 4. If a space is created inside of

a compound node, the space is filled with the largest unpopular procedure which will fit. This is shown in

step 5 of Figure 2, where the space created by shifting D is filled with the unpopular procedure G.

7

Case IV: The fourth and final case to handle occurs when the edge being processed has both procedures

belonging to the same compound node. This is a very important case since the algorithm finally gets to use

the unavailable-set to avoid cache conflicts. If the colors used by the two procedures of the edge overlap

(conflict), then the procedure closest (in terms of cache lines) to either end of the compound node is moved

past the end of the compound node, creating a space or gap in the compound node where it use to be

located. This space will later be filled by an unpopular procedure or procedures. The unavailable-set for

the procedure that is moved past the end of the compound node is updated to include the colors of the

corresponding procedure left inside the compound node. The algorithm then checks to see if the current

colors used by the procedure conflict with any of its unavailable colors. If there is a conflict, the procedure

is shifted away from the compound node in the address space until there is no longer a conflict with its

unavailable-set of colors. If we are unable to find a non-conflicting location for the procedure, the original

location inside the compound node is used. This final scenario is shown in step 6 in Figure 2, where the edge

from A! E is processed and its two procedures are in the same compound node. In examining the colors

used by both A and E, we see that the two procedures’ colors conflict since they map to the same cache

block (green). The algorithm tries to eliminate this conflict by choosing to moveA, since it is the closest to

an end of the compound node. The algorithm movesA past the end of the compound node, mapping it to the

color blue. When checking A’s new mapping against its unavailable-set (red and green), no conflicts are

found, so this is an acceptable location for procedure A. Using the unavailable-set in this way guarantees

that previous mappings for A take precedence over the edge A ! E, because those mappings were more

important. Finally, since A was moved in step 6, it created a space in the compound node, as shown in

Figure 2. After any space is made inside of a compound node, that gap is filled with a procedure(s) from

the unpopular list. In our example, the remaining procedure F is used to fill the gap. We then arrive at the

final mapping as shown in step 7, which has no first-generation cache conflicts.

This process is repeated, until all of the edges in the popular set have been processed. Any remaining

procedures in the unpopular list are mapped using a simple depth-first traversal of the unpopular edges that

join these unpopular procedures. This can create several disjoint compound nodes. These nodes are then

ordered in the final layout, from the most frequently executed to the least frequently executed.

2.2 Comparison to Previous Work

There has been considerable work in the area of profile-driven program optimizations and procedure

reordering. We now discuss relevant previous work and how it relates to our algorithm.

8

2.2.1 Knowledge of Cache Size

McFarling examined improving instruction cache performance by not caching infrequently used instructions

and by performing code reordering compiler optimizations [10]. The mapping algorithm works at the basic

block level and concentrates on laying out the code based on loop structures in the program. The algorithm

constructs a control flow graph with basic block, procedure, and loop nodes. It then tries to partition the

graph, concentrating on the loop nodes, so that the height of each partitioned tree is less than the size of the

cache. If this is the case, then all of the nodes inside of the tree can be trivially mapped since they will not

interfere with each other in the cache. If this is not the case, then some nodes in the mapping might conflict

with others in the cache.

The notion of wanting the mapped tree size smaller than the cache size also applies to our algorithm

when we partition the call graph into popular and unpopular procedures and edges. Partitioning the the

call graph actually splits the graph into several disjoint subgraphs comprised of the popular procedures and

edges. This has the effect of breaking the call graph into smaller, and more manageable, pieces. If the sum

of all the procedure sizes in a subgraph is smaller than the size of the instruction cache, then there will be

no conflicting colors when laying out all of the procedures in the subgraph and the mapping can be done

trivially as suggested by McFarling. The benefit of our algorithm over McFarling’s is that instead of just

taking into consideration the cache size we also take into consideration the exact cache lines used by each

procedure in the mapping. This allows our algorithm to effectively eliminate first-generation cache conflicts,

even when the popular subgraph size is larger than the instruction cache, by using the color mapping and

the unavailable-set of colors.

Torrellas, Xia and Daigle [18] (TXD) also described an algorithm for code layout for operating system

intensive workloads. Their work takes into consideration the size of the cache and the popularity of code.

Their algorithm partitions the operating system code into executed and non-executed parts at the basic block

level. It then repeatedly creates sequences of basic blocks from the executed code. All the basic blocks

with weights above a threshold value are removed from the graph and put into a sequence, which is a list

of basic blocks. All the basic blocks in a sequence are then layed out together in the address space. The

threshold value is then lowered and the process is repeated until all the frequently executed basic blocks

have been put into sequences. Their algorithm takes into consideration the cache size by mapping the most

frequently executed sequence into a special area in the cache. The rest of the sequences are then mapped to

areas in the cache, avoiding this special area. This creates gaps in the program layout which are then filled

by the non-executed basic blocks. The TXD algorithm is designed for mapping operating system code to

increase performance, by keeping commonly used system code in the cache. Our algorithm is designed for

application code and tries to eliminate as many first-generation conflicts as possible. These two goals are

different and may champion the use of different algorithms. The techniques used by TXD, which work well

9

A C1B C2 D1 D2 E1 E2 F G1 G2

conflict

cache size
(4 blocks)

Figure 3: Procedure mapping for a greedy depth-first traversal of the call graph.

for operating system code, may not work as well to eliminate first-generation cache conflicts in application

code.

As described in x2.1, our algorithm uses unpopular procedures in a manner similar to how TXD uses

non-executed operating system basic blocks. We use the unpopular code in an application to fill in spaces

created when mapping procedures. The two approaches differ in that our algorithm uses the unpopular

procedures to try to eliminate cache conflicts for all popular procedures by performing a color mapping

that gives priority to the procedures that switch control flow the most in the call graph. In comparison,

TXD uses the non-executed code to eliminate cache conflicts for only some of the popular basic blocks: the

most frequently executed sequence(s). Keeping track of the colors used by each procedure, and using the

unavailable-set to eliminate as many conflicts as possible, makes our algorithm more general for eliminating

first-generation conflicts in application code.

Another technique used by TXD which works well for operating system code, but which may not work

as well for application code, is recursively breaking up the basic blocks into sequences using a threshold

value. This technique does not take into consideration the connectivity of the basic blocks in the sequence.

Therefore a sequence could be layed out together in the address space, with the basic blocks having little or

no temporal locality, and the basic blocks in one sequence could cause conflict misses with basic blocks in

another sequence. For application code, our coloring algorithm offers better performance over a recursive

threshold partitioning algorithm since we take into consideration the connectivity of the graph.

2.2.2 Procedure Mapping

Hwu and Chang described an algorithm for improving instruction cache performance using inlining, basic

block reordering, and procedure reordering compiler optimizations [8]. Their algorithm builds a call graph

with weighted call edges produced by profiling. For the procedure reordering, their algorithm processes the

call graph depth first, mapping the procedures to the address space in depth first order. Their depth-first

traversal is guided by the edge weights determined by the profile, where a heavier edge is traversed (layed

10

C1 C2 B AE1 E2

Chain E-C is placed next to B-A, since C-B satisfy the “closest is best” strategy

Important points of decision in the Pettis and Hansen algorithm

(1)
How to merge

chains
E-C and B-A?

G1

conflict

conflict

D2 C1 C2 B AE1 E2D1G2 F
Final

Mapping

B C
(80)

D2 C1 C2 B AE1 E2D1

The 2 possible locations for D. Both cause cache conflicts with C.(2)
Where to add
procedure D

in chain
E-C-B-A?

C D
(70)

Figure 4: Procedure mapping for the Pettis and Hansen greedy algorithm.

out) before an infrequently executed edge. In using the call graph shown in Figure 1, a depth-first traversal

following the most frequently executed edges would traverse the edges in order of A ! B, B ! C,

C ! D, A ! E, E ! C, E ! F , and F ! G. Figure 3 represents the final mapping achieved by their

algorithm. The drawback of this approach occurs when the depth-first traversal follows an unimportant path

in the control flow graph, which will then lay out unpopular procedures before considering procedures on a

more important path. This is seen in Figure 1 where their algorithm processes the edge C ! D before the

edge E ! C. This can create significant first-generation cache conflicts in the call graph, as seen by the

conflict between procedures E and C in Figure 3.

Pettis and Hansen [11] also described a number of techniques for improving code layout that include:

basic block reordering, procedure splitting, and procedure reordering. Their algorithm employs a closest-

is-best strategy to perform procedure reordering. The reordering starts with the heaviest executed call edge

in the program call graph. The two nodes connected by the heaviest edge will be placed next to each

other in the final link order. This is taken care of by merging the two nodes into a chain. The remaining

edges entering and exiting the chain node are coalesced. This process continues until the whole call graph

is merged into chains which can no longer be merged. Figure 4 shows the key points of the Pettis and

11

Hansen [11] procedure mapping algorithm when processing the call graph in Figure 1. Their algorithm

starts by processing edge E ! C, merging nodes E and C into a chain E � C. This is followed by edge

A ! B, where A and B are merged into a chain A � B. The next edge to be processed is B ! C. This

brings the algorithm to the first point shown in Figure 4, which is how to merge the chains E � C and

A�B. At this point their algorithm uses a closest-is-best heuristic, and chooses to place procedure B next

to C, since the edge B ! C has a stronger weight than A ! E. The next edge to be processed is from

C ! D. This means procedure D needs to be placed at the front or end of chain E �C �B �A. Figure 4

shows that, no matter which side of the chainD is placed, a first-generation cache conflict will occur withC.

This illustrates the main drawback of their approach, which is that the algorithm fails to monitor the chain

size. Therefore, once a chain becomes larger than the size of the instruction cache, the effectiveness of their

closest-is-best strategy and node merging strategy, decreases. In looking at the final mapping in Figure 4,

we see that the mapping has first-generation conflicts between procedures A and E, and procedures C and

D.

Our algorithm improves on the Hwu and Chang and the Pettis and Hansen procedure reordering

algorithms by keeping track of the cache lines (colors) used by each mapped procedure when performing

the procedure mapping. This allows us to effectively map procedures, eliminating cache conflicts even

when the compound node size grows larger than the instruction cache. Neither of their algorithms take

into consideration the attributes of the cache, such as cache size, line size, and associativity. They also do

not consider leaving spaces in their layout, which can be used to reduce the number of cache conflicts. As

shown in Figure 2, when using our color mapping algorithm, no first-generation cache conflicts occur for

the call graph shown in Figure 1. In comparison, Figure 3 and Figure 4 show that both the Hwu and Chang

and the Pettis and Hansen algorithms suffer from first-generation cache conflicts for the reasons discussed

above.

3 Methodology

To evaluate the performance of our algorithm, we modified gcc version 2.7.2 to use our new procedure

mapping algorithm when linking an application. This has restricted the type of applications we can examine

in this study to programs that can be compiled with gcc. Therefore, the programs we examined are from

the SPECInt95 suite, SPECInt92 suite, and three gnu applications.

We used trace driven simulation to quantify the instruction cache performance of our algorithm [9]. The

trace driven simulations were obtained using ATOM, an execution-driven simulation tool available from

Digital Equipment Corporation [16]. ATOM allows instrumentation of binaries on DEC Alpha processors

and can produce the necessary information about the frequency of procedure calls, procedure sizes, and the

program’s control flow graph. In our simulations we model a direct-mapped 8 kilobyte instruction cache

12

Instrs Traced Exe Size # Static Popular Procedures Unpopular Filler
Program Input in Millions K-Bytes Procs % Exe Size % Procs % Exe Size
li li input 6938 M 417 K 575 6% (24 K) 15% 0.5% (2 K)
m88ksim dcrand.lit 27942 M 557 K 460 7% (41 K) 9% 0.9% (5 K)
perl scrabbl 592 M 819 K 557 4% (20 K) 4% 0.6% (5 K)
espresso tial 1145 M 516 K 539 12% (60 K) 17% 0.5% (3 K)
eqntott int pri 3 2021 M 400 K 498 11% (46 K) 7% 0.8% (3 K)
bison objc parse 77 M 352 K 369 9% (32 K) 10% 1.0% (4 K)
flex fixit.l 24 M 492 K 668 11% (52 K) 8% 0.8% (4 K)
gzip gcc-2.7.2.tar 9242 M 344 K 140 3% (10 K) 21% 0% (0 K)

Table 1: Measured attributes of traced programs. The input is used to both profile the program and gather
performance results. The attributes include the number of instructions traced when simulating the program,
the executable size of the program, and the number of static procedures in the program. Also shown is the
percentage of the executable and the percentage of static procedures that the popular procedures account
for after partitioning the program into popular and unpopular procedures when using the color mapping
algorithm. The last column shows the percentage of unpopular procedures in terms of the size of the
executable that were used as fluff (to fill in spaces) in our color mapping algorithm.

with a 32 byte block size, similar to the size used for the DEC Alpha 21064 and DEC Alpha 21164 first-level

instruction cache. Therefore, in our color mapping, the number of colors is equal to 256, which is equal to

the number of direct mapped cache blocks.

Table 1 describes the static and dynamic attributes for the programs we studied. The first column

contains the program name, and the second column shows the input used to profile each program. The third

column shows the number of instructions traced for the input used. The fourth column shows the size of each

program in kilobytes, and the fifth column shows the number of static procedures in the program. The next

two columns show results for the popular procedures in the program as determined by our color mapping

algorithm described in x2.1. The sixth column shows the percentage of the executable that contains only the

popular procedures, and the seventh column shows the percentage of static procedures which are considered

popular. The final column shows the percentage of the executable which were unpopular procedures used

as filler to fill in spaces created in the color mapping (as described in x2.1). We used profile information to

guide the partitioning of the program into popular and unpopular parts. All the procedures and edges that

account for less than 1% of the switches in control flow in the call graph are labeled as unpopular. We can

see that by splitting each program into popular and unpopular sets, that the popular procedures make up

only 3% to 12% of the static executable size, and this accounts for 4% to 21% of the static procedures in the

program. Mapping these procedures correctly will eliminate most of the cache conflicts in the application

for the inputs we examined.

13

I-Cache Miss Rate Miss Rate Reduction Over # Instruction Cache Misses
Program Original P&H Color Original P&H Original P&H Color
li 1.4% 0.3% 0.3% 79% 0% 97,127,676 23,786,704 19,943,570
m88ksim 3.0% 1.7% 1.4% 53% 18% 838,249,456 475,008,025 391,183,079
perl 7.5% 4.7% 4.4% 41% 6% 44,378,149 27,810,306 26,035,180
espresso 0.9% 0.9% 0.5% 44% 44% 10,308,276 10,211,819 6,435,699
eqntott 0.2% 0.3% 0.1% 50% 66% 4,042,293 6,741,562 2,730,813
bison 1.5% 1.5% 1.1% 27% 27% 1,153,805 1,132,929 842,057
flex 2.2% 1.7% 1.7% 23% 0% 525,433 407,423 399,784
gzip 1.1% 0.0% 0.0% 99% 0% 101,667,137 33,950 29,370

Average 2.2% 1.4% 1.2%

Table 2: Instruction cache performance for the Original mapping, Pettis and Hansen (P&H) mapping, and
our Color mapping algorithm. The first three column shows the instruction cache miss rates. The next
two columns show the percent reduction in the miss rates when using our Color mapping algorithm in
comparison to the Original and P&H procedure mapping. The last three columns show the number of
instruction cache misses.

4 Results

To evaluate the performance of our color mapping algorithm we also implemented the Pettis and Hansen

algorithm described in Section x2.2. Table 2 shows the instruction cache miss rates for the original program,

the Pettis and Hansen algorithm, and our cache coloring algorithm. For the results shown, the same input

used in Table 1 was used for both profiling the program and gathering the results. The second column

provides the cache miss ratio for the Original program using the standard link order for the benchmark

executables as specified in the makefile provided with the programs. The next column indicates the cache

miss ratio after applying the Pettis and Hansen (P&H) algorithm. The fourth column, labeled Color, refers

to the new link order produced by our cache color mapping algorithm. The next two columns show the

percent reduction in the cache miss rate when using our algorithm in comparison to the original program

and the P&H mapping. The last three columns show the number of instruction cache misses for the original

program, P&H layout, and our color mapping. 1

As seen in Table 2, when using the color mapping algorithm the miss rate of the original program

is decreased on average by 45%, with reductions as high as 99% for gzip. In comparison to the P&H

algorithm our color mapping reduces the miss rate on average by 14%. The Table shows that in comparison

to P&H our algorithm provides a substantial reduction in the cache miss rate for the 4 programs m88ksim,

espresso, eqntott, and bison, provides a smaller improvement for perl, and has approximately

the same instruction cache miss ratio for li, flex, and gzip.

1Only averages are shown for the miss rate columns, since the averages for the other columns in the table are not meaningful.

14

Our algorithm performs better for programs like m88ksim, espresso, and bison because the size

of the popular call graph for these applications is larger than the size of the instruction cache. This allows

our algorithm to fully exploit cache line coloring, arriving at a layout that significantly reduces the number

of first-generation cache conflicts.

For programs such as flex and gzip, the reason why our algorithm and the P&H algorithm have

approximately the same miss rate can be seen by looking at the partitioning part of our algorithm. Here, the

program is partitioned into popular and unpopular procedures and edges. In performing this partitioning,

these programs are split into disjoint subgraphs where most of the subgraphs are smaller than the size of the

cache. Since these popular subgraphs easily fit within the instruction cache, we can arbitrarily map their

procedures. For example, gzip visits only a small number of very popular procedures when processing the

input file gcc-2.7.2.tar. This is seen in Table 1, where the size of the popular procedures for gzip

amount to only 10K (3% of the total executable size), and the simulated instruction cache size we used

is 8K. For applications where the popular subgraphs fit within the size of the instruction cache, our color

mapping algorithm and the Pettis and Hansen algorithm will have similar performance.

Table 2 shows that for eqntott, the instruction cache miss rate when applying the P&H mapping is

larger than the miss rate of the original mapping. This effect occurs for two reasons. One reason is the

poor choice made by the P&H algorithm when merging chains that sum to a size larger than the instruction

cache, creating cache conflicts within the newly merged chain. The second reason is that both our algorithm

and the P&H algorithm only model first-generation conflicts in the call graphs. The call graph used in this

study only models the frequency of procedure calls between a procedure and its direct children. It does

not model the temporal locality between a procedure and all of the procedures that it can possibly reach in

the call graph, and any of these reachable procedures can cause cache conflicts. This emphasizes the fact

that finding an optimal mapping to minimize conflicts is NP-complete [10]. In the next section we suggest

further optimizations to our algorithm in order to address misses beyond first-generation cache conflicts.

The results in Table 2 are all gathered using the same input that was also used to profile the program. An

important issue involving profiled-based optimizations is how well does a single input capture the typical

behavior of future runs of the program. Several researchers have investigated this problem and have found

that programs have predictable behavior between different inputs [4, 7, 19]. Even so, care must be taken

when choosing the inputs to guide optimizations. In this vein, we took a few of the optimized programs used

to produce the results in Table 2 and ran them using different inputs. Table 3 shows the cache miss rates for

these programs using different inputs. For these different inputs, the results show that a similar reduction

in miss rate of 45% is achieved when comparing our color mapping algorithm to the original layout, and

the reduction in miss rate for our algorithm when compared to P&H is about the same at 15%. In general,

when examining different inputs our algorithm still shows significant reductions in the original instruction

cache miss ratios, while consistently showing an advantage over P&H.

15

I-Cache Miss Rate # Instruction Cache Misses
Program Input Original P&H Color Original P&H Color
li li short 1.2% 0.3% 0.3% 19,590,740 4,947,711 4,165,895
m88ksim dhry.lit 4.3% 2.9% 2.3% 2,165,135,958 1,435,239,250 1,144,552,965
espresso Z5xp1 1.3% 1.3% 0.9% 383,390 377,091 256,792

bca 0.2% 0.2% 0.1% 1,306,820 1,255,329 681,001
cps 0.4% 0.4% 0.3% 2,514,798 2,471,459 1,659,891
dc1 2.6% 2.5% 2.1% 23,570 22,917 19,306
mlp4 1.1% 1.1% 0.8% 944,483 930,846 659,793
opa 0.6% 0.6% 0.4% 883,401 867,858 644,822
ti 0.5% 0.5% 0.3% 3,874,952 3,769,353 2,691,281

bison c-parse.y 1.7% 1.7% 1.3% 816,872 800,556 604,087
flex unfixit.l 2.7% 2.1% 2.1% 327,781 254,345 250,005
gzip bison-1.25.tar 1.1% 0% 0% 4,152,085 33,950 1,961

Average 2.0% 1.3% 1.1%

Table 3: Instruction cache performance using multiple inputs for the Original mapping, Pettis and Hansen
(P&H) mapping, and our Color mapping algorithm. In calculating the overall average, a value for
espresso is included only once, which is the average miss rate for espresso on all of the inputs
shown.

To examine the impact procedure reordering optimizations have on the performance of these programs,

Figures 5 and 6 show the estimated performance in instructions issued per cycle (IPC) for the original

program, P&H mapping, and our color algorithm for two different architectures. The higher the IPC the

better. For these results we assume each instruction takes one cycle to execute, and that the only pipeline

stalls are due to misses in the instruction cache. Figure 5 shows a conservative estimate of performance using

a single issue architecture with a small (5 cycle) first-level instruction cache miss penalty. Figure 6 shows

an aggressive 4-way issue architecture with a larger (10 cycle) first-level instruction cache miss penalty.

The results in Figure 5 show that for a conservative architecture our color mapping algorithm increases the

IPC on average by 5% when compared to the original mapping, and by 1% when compared to P&H. The

results in Figure 6 show that for a more aggressive architecture that our color mapping algorithm increases

the IPC on average by 26% when compared to the original mapping, and by 6% when compared to P&H.

These two graphs show the potential increase in performance when using our algorithm. As seen in the two

figures, the performance for our algorithm is the same for li, flex, and gzip when compared to P&H for

the reasons discussed in the previous paragraphs. For programs like m88ksim, espresso, and bison

which have larger more complicated call graphs, the figures show that the increase in performance for our

algorithm is 2% to 13% when compared to P&H.

One issue to consider with our algorithm is that in order to avoid first-generation cache conflicts our

color mapping will insert space into compound nodes as described in x2.1. This space is later filled with

unpopular procedures. This could possibly have two adverse effects. The first is, if no unpopular procedure

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

li m88ksim perl espresso eqntott bison flex gzip

In
st

ru
ct

io
ns

 Is
su

ed
 P

er
 C

yc
le

Original
P&H
Color

Figure 5: Instructions issued per cycle for a single issue architecture, with an 8K direct mapped instruction
cache which has a 5 cycle cache miss penalty.

0

0.5

1

1.5

2

2.5

3

3.5

4

li m88ksim perl espresso eqntott bison flex gzip

In
st

ru
ct

io
ns

 Is
su

ed
 P

er
 C

yc
le

Orignal
P&H
Color

Figure 6: Instructions issued per cycle for a 4-way issue processor with an 8K direct mapped instruction
cache which has a 10 cycle cache miss penalty.

17

can be found when trying to fill a space, then this could result in an increase in the executable size. For the

programs we examined this was never an issue. As seen in Table 1, on average only 8% of the procedures

were labeled as popular, leaving more than enough unpopular procedures to fill in any gaps that were created

by the color mapping algorithm. The second effect is that the size of the working set of the program may

increase due to the algorithm filling spaces in the compound nodes with unpopular procedures. From our

results we do not believe this will be an issue, but further investigation is needed. When performing the

color mapping for the programs we examined, on average only 3K worth of unpopular procedures were

used as filler and inserted into the popular color mapping, as seen in Table 1. Since the average size for all

of the popular procedures in a program was 33K, this increases the size of the popular mapping section of

the address space by only 8%.

5 Discussion and Future Work

In this section we discuss how to apply our color mapping algorithm to associative caches, describe how

our algorithm can benefit from basic block reordering and procedure splitting, and describe future work on

how to improve the performance of our algorithm by using more information on temporal locality to guide

the mapping.

5.1 Color Mapping for Associative Caches

In this paper only described our algorithm as applied to direct mapped caches and examined its performance

for an 8K direct mapped instruction cache. Our algorithm can easily be applied to set-associative instruction

caches. To accomplish this, we treat the associativity of the cache as another dimension in the mapping of

the address space. For associative caches our algorithm breaks up the address space into chunks, equal in

size to (the number of cache sets � the cache line size). Therefore, the number of sets represents the

number of available colors in the mapping. The color mapping algorithm can then be applied as described

in x2.1, with only a few minor changes. The algorithm changes slightly to keep track of the number of

times each color (set) appears in the procedure’s unavailable-set of colors. Therefore, mapping a procedure

to a color (set) does not cause any conflicts as long as the number of times that color (set) appears in the

unavailable-set of colors is less than the degree of associativity of the cache. This effectively turns the

unavailable-set into a multiset, which allows each color to appear in the set up to the associativity of the

cache.

18

5.2 Color Mapping with Basic Block Reordering and Procedure Splitting

The results in x4 do not show the full potential of our coloring algorithm, since our algorithm can benefit

from other code reordering techniques such as basic block reordering and procedure splitting [8, 11]. Our

color mapping algorithm can benefit from basic block reordering because once the basic blocks have been

aligned and condensed into the first part of the procedure, the cache line colors used by the frequently

executed basic blocks are the only colors we have to worry about when performing the procedure mapping.

Using basic block profiling, each procedure would contain two sets of cache colors: those for the important

portions of the procedure, and those for the unimportant. Then the only basic blocks we need to worry about

in the unavailable-set of colors are the important basic blocks.

Performing procedure splitting can also be used to improve the performance of our color mapping

algorithm. This can be achieved by performing procedure splitting to help reduce the coloring constraints

between different procedures. For example, if half of a procedure X , X1, calls a procedure Y , and the

other half of the procedure X , X2, calls procedure Z, then finding a location for X in the color mapping

as described in x2.1 will have to try and avoid the colors used by both Y and Z. If procedure splitting is

performed so thatX is split into two separate procedures X1 and X2, then this can help reduce the coloring

constraints on X . After procedure X is split intoX1 and X2, the color mapping for X1 only needs to avoid

colors used by X2 and Y , and the color mapping for X2 needs to only avoid colors used by X1 and Z.

This can help free up coloring constraints for very large procedures and procedures that have a significant

number of different call destinations.

5.3 Using Improved Temporal Locality Data

Our color mapping algorithm, as described in x2.1, concentrates on eliminating conflicts between edges in

the control flow graph. For our results, these edges happen to be first-generation cache conflicts because the

graph edges represent the call edges between a procedure and its direct parents and children. Our algorithm

can easily be applied to more detailed forms of profile and trace information by adding extra edges between

procedures, treating these edges as a second set of procedure call edges in our color mapping algorithm.

These additional edges, with the appropriate weights, can then be used in the unavailable-set of colors in

order to further eliminate cache conflicts.

The call graph and profiles we used to guide the mappings do not provide enough information to determine

the temporal locality for a depth greater than one procedure call (first-generation) in the graph. Even for

first-generation misses, a call graph does not provide exact information about temporal locality. Therefore,

our algorithm tries to remove the worse case number of first-generation misses. For example, in Figure 1, we

know that since the edgeC! Dwas executed 70 times, that ifC andD had overlapping cache lines, then the

call toD and the return toC could in the worst case cause ((70+70)�number of overlapping cache lines)

19

misses. For future work we are using control flow analysis of the program’s structure to indicate if all the

calls from C ! D were done during one invocation of C or whether they were spread out over several

invocations, similar to the control flow analysis used by McFarling [10]. We are also using control flow

analysis to determine how much of procedure C can actually overlap with procedure D, so we only have to

include those cache lines in D’s unavailable-set of colors. This will help provide more accurate temporal

locality information for first-generation conflicts, but it does not provide the additional temporal locality

information we would like for deeper paths in the call graph.

When profiling just the call edges, there is no way to get a good indication of temporal locality for a

path longer than one procedure call edge. For example, in Figure 1 we have no way of knowing for the call

edge C ! D how many of the procedure calls to D came down the path through procedure B and how

many went through procedure E, nor do we know how much temporal locality there is between B and D or

E and D. Some of this information can be obtained by using full path profiling, which would allow one to

know the frequency of each path [1, 20], although full path profiling still does not provide optimal temporal

locality information. One way to obtain additional information on temporal locality is to store the full trace

of a program. Capturing, storing, and processing a full trace can be very time and space consuming, but

efficient techniques have been proposed to capture and process this information in a compact form, such as

the gap model proposed by Quong [14]. We plan on investigating the use of full path profiling and the gap

model with our color mapping algorithm in order to eliminate additional cache conflicts for deeper paths in

the call graph.

6 Conclusions

The performance of the cache-based memory system is critical in today’s processors. Research has shown

that compiler optimizations can significantly reduce this latency, and every opportunity should be taken by

the compiler to do so.

The contribution of this paper is a new algorithm for procedure mapping which takes into consideration

the call graph, procedure size, cache size, and cache line size. An improved algorithm is achieved by

keeping track of the cache blocks (colors) used by each procedure as it is mapped, in order to avoid cache

conflicts. This color mapping allows our algorithm to intelligently place unmapped procedures, and to

efficiently move a procedure that has already been mapped, by preserving prior color dependencies with that

procedure’s parents and children in the call graph. This provides our main advantage over prior work, in

that we can accurately map procedures in a popular call graph even if the size of the graph is larger than the

size of the instruction cache. This ability is very important, especially for applications which have large and

complicated control flow graphs, which result in large instruction cache miss rates due to conflict misses.

Our results showed that we were able to reduce the cache miss rate on average by 45% over the original

20

procedure mapping. In comparison to prior work, our algorithm reduced the cache miss rate on average

14% below that of the Pettis and Hansen algorithm [11].

In this study we concentrated on applying our color mapping algorithm to procedure reordering. Our

algorithm can be combined and benefit from other code reordering techniques such as basic block reordering,

taking into consideration looping structures, and procedure splitting. These are topics of future research.

In this paper we also concentrated on the performance achieved using call edge profiles to guide the

optimizations in order to eliminate first-generation cache conflicts. We are currently investigating how

to apply our algorithm to use full path profiling and other trace collection techniques in order to collect

improved temporal locality information. We are also examining how to apply our color mapping algorithm

to statically formed call graphs using static program estimation.

Acknowledgments

We would like to thank Amitabh Srivastava and Alan Eustace for providing ATOM, which greatly simpli-

fied our work, and Jeffrey Dean, Alan Eustace, Waleed Meleis, and Russell Quong for providing useful

suggestions and comments on this paper. Brad Calder was supported by Digital Equipment Corporation’s

Western Research Lab. David Kaeli was supported by an NSF CAREER Program award No. 9501172.

References

[1] T. Ball and J. Larus. Efficient path profiling. In 29th International Symposium on Microarchitecture,

December 1996.

[2] L. Belady. A study of replacement algorithms for a virtual-storage computer. IBM Systems Journal,

5(2):78–101, 1966.

[3] B.N. Bershad, D. Lee, T.H, Romer, and J.B. Chen. Avoiding conflict misses dynamically in large

direct-mapped caches. In Six International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 158–170, October 1994.

[4] B. Calder, D. Grunwald, and A. Srivastava. The predictability of branches in libraries. In 28th

International Symposium on Microarchitecture, pages 24–34, Ann Arbor, MI, November 1995. IEEE.

[5] B. Calder, D. Grunwald, and B. Zorn. Quantifying behavioral differences between C and C++ programs.

Journal of Programming Languages, 2(4), 1994.

[6] P.J. Denning and S. C. Schwartz. Properties of the working-set model. Communications of the ACM,

15(3):191–198, March 1972.

21

[7] J. A. Fisher and S. M. Freudenberger. Predicting conditional branch directions from previous runs

of a program. In Proceedings of the Fifth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS-V), pages 85–95, Boston, Mass., October

1992. ACM.

[8] W.W. Hwu and P.P. Chang. Achieving high instruction cache performance with an optimizing compiler.

In 16th Annual International Symposium on Computer Architecture, pages 242–251. ACM, 1989.

[9] D. Kaeli. Issues in trace-driven simulation. Lecture Notes in Computer Science No. 729, Performance

Evaluation of Computer and Communication Systems,L. Donatiello and R. Nelson eds., Springer-

Verlag, 1993, pp. 224-244., 1990.

[10] S. McFarling. Program optimization for instruction caches. In Proceedings of the Third International

Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS

III), pages 183–191, April 1989.

[11] K. Pettis and R.C. Hansen. Profile guided code positioning. In Proceedings of the ACM SIGPLAN ’90

Conference on Programming Language Design and Implementation, pages 16–27. ACM, ACM, June

1990.

[12] S.A. Przybylski. Cache Design: A Performance-Directed Approach. Morgan Kaufmann, San Mateo,

CA, 1990.

[13] T.R. Puzak. Analysis of cache replacement-algorithms. Ph.D. Dissertation, University of Mas-

sachusetts, Amherst MA, 1985.

[14] R.W. Quong. Expected I-cache miss rates via the gap model. In 21st Annual International Symposium

on Computer Architecture, pages 372–383, April 1994.

[15] A.D. Samples and P.N. Hilfinger. Code reorganization for instruction caches. Techical Report

UCB/CSD 88/447, October 1988.

[16] A. Srivastava and A. Eustace. ATOM: A system for building customized program analysis tools.

In Proceedings of the Conference on Programming Language Design and Implementation, pages

196–205. ACM, 1994.

[17] J.G. Thompson. Efficient analysis of caching systems. Ph.D. Dissertation, University of California,

Berkeley, 1987.

22

[18] J. Torrellas, C. Xia, and R. Daigle. Optimizing instruction cache performance for operating system

intensive workloads. In Proceedings of the First International Symposium on High-Performance

Computer Architecture, pages 360–369, January 1995.

[19] D.W. Wall. Predicting program behavior using real or estimated profiles. In Proceedings of the ACM

SIGPLAN ’91 Conference on Programming Language Design and Implementation, pages 59–70,

Toronto, Ontario, Canada, June 1991.

[20] C. Young, N. Gloy, and M.D. Smith. A comparative analysis of schemes for correlated branch

prediction. In 22nd Annual International Symposium on Computer Architecture, pages 276–286, June

1995.

23

24

WRL Research Reports

‘‘Titan System Manual.’’ Michael J. K. Nielsen. ‘‘Compacting Garbage Collection with Ambiguous

WRL Research Report 86/1, September 1986. Roots.’’ Joel F. Bartlett. WRL Research Report

88/2, February 1988.
‘‘Global Register Allocation at Link Time.’’ David

W. Wall. WRL Research Report 86/3, October ‘‘The Experimental Literature of The Internet: An

1986. Annotated Bibliography.’’ Jeffrey C. Mogul.
WRL Research Report 88/3, August 1988.

‘‘Optimal Finned Heat Sinks.’’ William
R. Hamburgen. WRL Research Report 86/4, ‘‘Measured Capacity of an Ethernet: Myths and

October 1986. Reality.’’ David R. Boggs, Jeffrey C. Mogul,
Christopher A. Kent. WRL Research Report

‘‘The Mahler Experience: Using an Intermediate
88/4, September 1988.

Language as the Machine Description.’’ David
W. Wall and Michael L. Powell. WRL ‘‘Visa Protocols for Controlling Inter-Organizational

Research Report 87/1, August 1987. Datagram Flow: Extended Description.’’

Deborah Estrin, Jeffrey C. Mogul, Gene
‘‘The Packet Filter: An Efficient Mechanism for

Tsudik, Kamaljit Anand. WRL Research
User-level Network Code.’’ Jeffrey C. Mogul,

Report 88/5, December 1988.
Richard F. Rashid, Michael J. Accetta. WRL

Research Report 87/2, November 1987. ‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’

Joel F. Bartlett. WRL Research Report 89/1,
‘‘Fragmentation Considered Harmful.’’ Christopher

January 1989.
A. Kent, Jeffrey C. Mogul. WRL Research

Report 87/3, December 1987. ‘‘Optimal Group Distribution in Carry-Skip Ad-

ders.’’ Silvio Turrini. WRL Research Report
‘‘Cache Coherence in Distributed Systems.’’

89/2, February 1989.
Christopher A. Kent. WRL Research Report

87/4, December 1987. ‘‘Precise Robotic Paste Dot Dispensing.’’ William
R. Hamburgen. WRL Research Report 89/3,

‘‘Register Windows vs. Register Allocation.’’ David
February 1989.

W. Wall. WRL Research Report 87/5, December

1987. ‘‘Simple and Flexible Datagram Access Controls for

Unix-based Gateways.’’ Jeffrey C. Mogul.
‘‘Editing Graphical Objects Using Procedural

WRL Research Report 89/4, March 1989.
Representations.’’ Paul J. Asente. WRL

Research Report 87/6, November 1987. ‘‘Spritely NFS: Implementation and Performance of

Cache-Consistency Protocols.’’ V. Srinivasan
‘‘The USENET Cookbook: an Experiment in

and Jeffrey C. Mogul. WRL Research Report
Electronic Publication.’’ Brian K. Reid. WRL

89/5, May 1989.
Research Report 87/7, December 1987.

‘‘Available Instruction-Level Parallelism for Super-
‘‘MultiTitan: Four Architecture Papers.’’ Norman

scalar and Superpipelined Machines.’’ Norman
P. Jouppi, Jeremy Dion, David Boggs, Michael

P. Jouppi and David W. Wall. WRL Research
J. K. Nielsen. WRL Research Report 87/8, April

Report 89/7, July 1989.
1988.

‘‘A Unified Vector/Scalar Floating-Point Architec-
‘‘Fast Printed Circuit Board Routing.’’ Jeremy

ture.’’ Norman P. Jouppi, Jonathan Bertoni,
Dion. WRL Research Report 88/1, March 1988.

and David W. Wall. WRL Research Report
89/8, July 1989.

25

‘‘Architectural and Organizational Tradeoffs in the ‘‘1990 DECWRL/Livermore Magic Release.’’

Design of the MultiTitan CPU.’’ Norman Robert N. Mayo, Michael H. Arnold, Walter
P. Jouppi. WRL Research Report 89/9, July S. Scott, Don Stark, Gordon T. Hamachi.
1989. WRL Research Report 90/7, September 1990.

‘‘Integration and Packaging Plateaus of Processor ‘‘Pool Boiling Enhancement Techniques for Water at

Performance.’’ Norman P. Jouppi. WRL Low Pressure.’’ Wade R. McGillis, John
Research Report 89/10, July 1989. S. Fitch, William R. Hamburgen, Van

P. Carey. WRL Research Report 90/9, December
‘‘A 20-MIPS Sustained 32-bit CMOS Microproces-

1990.
sor with High Ratio of Sustained to Peak Perfor-

mance.’’ Norman P. Jouppi and Jeffrey ‘‘Writing Fast X Servers for Dumb Color Frame Buf-

Y. F. Tang. WRL Research Report 89/11, July fers.’’ Joel McCormack. WRL Research Report

1989. 91/1, February 1991.

‘‘The Distribution of Instruction-Level and Machine ‘‘A Simulation Based Study of TLB Performance.’’

Parallelism and Its Effect on Performance.’’ J. Bradley Chen, Anita Borg, Norman
Norman P. Jouppi. WRL Research Report P. Jouppi. WRL Research Report 91/2, Novem-

89/13, July 1989. ber 1991.

‘‘Long Address Traces from RISC Machines: ‘‘Analysis of Power Supply Networks in VLSI Cir-

Generation and Analysis.’’ Anita Borg, cuits.’’ Don Stark. WRL Research Report 91/3,

R.E.Kessler, Georgia Lazana, and David April 1991.

W. Wall. WRL Research Report 89/14, Septem-
‘‘TurboChannel T1 Adapter.’’ David Boggs. WRL

ber 1989.
Research Report 91/4, April 1991.

‘‘Link-Time Code Modification.’’ David W. Wall.
‘‘Procedure Merging with Instruction Caches.’’

WRL Research Report 89/17, September 1989.
Scott McFarling. WRL Research Report 91/5,

‘‘Noise Issues in the ECL Circuit Family.’’ Jeffrey March 1991.

Y.F. Tang and J. Leon Yang. WRL Research
‘‘Don’t Fidget with Widgets, Draw!.’’ Joel Bartlett.

Report 90/1, January 1990.
WRL Research Report 91/6, May 1991.

‘‘Efficient Generation of Test Patterns Using
‘‘Pool Boiling on Small Heat Dissipating Elements in

Boolean Satisfiablilty.’’ Tracy Larrabee. WRL
Water at Subatmospheric Pressure.’’ Wade

Research Report 90/2, February 1990.
R. McGillis, John S. Fitch, William

‘‘Two Papers on Test Pattern Generation.’’ Tracy R. Hamburgen, Van P. Carey. WRL Research

Larrabee. WRL Research Report 90/3, March Report 91/7, June 1991.
1990.

‘‘Incremental, Generational Mostly-Copying Gar-

‘‘Virtual Memory vs. The File System.’’ Michael bage Collection in Uncooperative Environ-

N. Nelson. WRL Research Report 90/4, March ments.’’ G. May Yip. WRL Research Report

1990. 91/8, June 1991.

‘‘Efficient Use of Workstations for Passive Monitor- ‘‘Interleaved Fin Thermal Connectors for Multichip
ing of Local Area Networks.’’ Jeffrey C. Mogul. Modules.’’ William R. Hamburgen. WRL

WRL Research Report 90/5, July 1990. Research Report 91/9, August 1991.

‘‘A One-Dimensional Thermal Model for the VAX ‘‘Experience with a Software-defined Machine Ar-
9000 Multi Chip Units.’’ John S. Fitch. WRL chitecture.’’ David W. Wall. WRL Research

Research Report 90/6, July 1990. Report 91/10, August 1991.

26

‘‘Network Locality at the Scale of Processes.’’ ‘‘Fluoroelastomer Pressure Pad Design for

Jeffrey C. Mogul. WRL Research Report 91/11, Microelectronic Applications.’’ Alberto
November 1991. Makino, William R. Hamburgen, John

S. Fitch. WRL Research Report 93/7, November
‘‘Cache Write Policies and Performance.’’ Norman

1993.
P. Jouppi. WRL Research Report 91/12, Decem-

ber 1991. ‘‘A 300MHz 115W 32b Bipolar ECL Microproces-

sor.’’ Norman P. Jouppi, Patrick Boyle,
‘‘Packaging a 150 W Bipolar ECL Microprocessor.’’

Jeremy Dion, Mary Jo Doherty, Alan Eustace,
William R. Hamburgen, John S. Fitch. WRL

Ramsey Haddad, Robert Mayo, Suresh Menon,
Research Report 92/1, March 1992.

Louis Monier, Don Stark, Silvio Turrini, Leon
‘‘Observing TCP Dynamics in Real Networks.’’ Yang, John Fitch, William Hamburgen, Rus-

Jeffrey C. Mogul. WRL Research Report 92/2, sell Kao, and Richard Swan. WRL Research
April 1992. Report 93/8, December 1993.

‘‘Systems for Late Code Modification.’’ David ‘‘Link-Time Optimization of Address Calculation on
W. Wall. WRL Research Report 92/3, May a 64-bit Architecture.’’ Amitabh Srivastava,
1992. David W. Wall. WRL Research Report 94/1,

February 1994.‘‘Piecewise Linear Models for Switch-Level Simula-

tion.’’ Russell Kao. WRL Research Report 92/5, ‘‘ATOM: A System for Building Customized
September 1992. Program Analysis Tools.’’ Amitabh Srivastava,

Alan Eustace. WRL Research Report 94/2,‘‘A Practical System for Intermodule Code Optimiza-
March 1994.tion at Link-Time.’’ Amitabh Srivastava and

David W. Wall. WRL Research Report 92/6, ‘‘Complexity/Performance Tradeoffs with Non-
December 1992. Blocking Loads.’’ Keith I. Farkas, Norman

P. Jouppi. WRL Research Report 94/3, March‘‘A Smart Frame Buffer.’’ Joel McCormack & Bob
1994.McNamara. WRL Research Report 93/1,

January 1993. ‘‘A Better Update Policy.’’ Jeffrey C. Mogul.
WRL Research Report 94/4, April 1994.‘‘Recovery in Spritely NFS.’’ Jeffrey C. Mogul.

WRL Research Report 93/2, June 1993. ‘‘Boolean Matching for Full-Custom ECL Gates.’’

Robert N. Mayo, Herve Touati. WRL Research‘‘Tradeoffs in Two-Level On-Chip Caching.’’
Report 94/5, April 1994.Norman P. Jouppi & Steven J.E. Wilton. WRL

Research Report 93/3, October 1993. ‘‘Software Methods for System Address Tracing:

Implementation and Validation.’’ J. Bradley‘‘Unreachable Procedures in Object-oriented
Chen, David W. Wall, and Anita Borg. WRLPrograming.’’ Amitabh Srivastava. WRL
Research Report 94/6, September 1994.Research Report 93/4, August 1993.

‘‘Performance Implications of Multiple Pointer‘‘An Enhanced Access and Cycle Time Model for
Sizes.’’ Jeffrey C. Mogul, Joel F. Bartlett,On-Chip Caches.’’ Steven J.E. Wilton and Nor-
Robert N. Mayo, and Amitabh Srivastava.man P. Jouppi. WRL Research Report 93/5,
WRL Research Report 94/7, December 1994.July 1994.

‘‘How Useful Are Non-blocking Loads, Stream Buf-‘‘Limits of Instruction-Level Parallelism.’’ David
fers, and Speculative Execution in Multiple IssueW. Wall. WRL Research Report 93/6, November
Processors?.’’ Keith I. Farkas, Norman1993.
P. Jouppi, and Paul Chow. WRL Research
Report 94/8, December 1994.

27

‘‘Drip: A Schematic Drawing Interpreter.’’ Ramsey ‘‘Efficient Procedure Mapping using Cache Line

W. Haddad. WRL Research Report 95/1, March Coloring.’’ Amir H. Hashemi, David R. Kaeli,
1995. and Brad Calder. WRL Research Report 96/3,

October 1996.
‘‘Recursive Layout Generation.’’ Louis M. Monier,

Jeremy Dion. WRL Research Report 95/2, ‘‘Optimizations and Placement with the Genetic

March 1995. Workbench.’’ Silvio Turrini. WRL Research

Report 96/4, November 1996.
‘‘Contour: A Tile-based Gridless Router.’’ Jeremy

Dion, Louis M. Monier. WRL Research Report

95/3, March 1995.

‘‘The Case for Persistent-Connection HTTP.’’

Jeffrey C. Mogul. WRL Research Report 95/4,

May 1995.

‘‘Network Behavior of a Busy Web Server and its

Clients.’’ Jeffrey C. Mogul. WRL Research

Report 95/5, October 1995.

‘‘The Predictability of Branches in Libraries.’’ Brad
Calder, Dirk Grunwald, and Amitabh
Srivastava. WRL Research Report 95/6, October

1995.

‘‘Shared Memory Consistency Models: A Tutorial.’’

Sarita V. Adve, Kourosh Gharachorloo. WRL

Research Report 95/7, September 1995.

‘‘Eliminating Receive Livelock in an Interrupt-driven

Kernel.’’ Jeffrey C. Mogul and
K. K. Ramakrishnan. WRL Research Report

95/8, December 1995.

‘‘Memory Consistency Models for Shared-Memory

Multiprocessors.’’ Kourosh Gharachorloo.
WRL Research Report 95/9, December 1995.

‘‘Register File Design Considerations in Dynamically

Scheduled Processors.’’ Keith I. Farkas, Nor-
man P. Jouppi, Paul Chow. WRL Research

Report 95/10, November 1995.

‘‘Optimization in Permutation Spaces.’’ Silvio
Turrini. WRL Research Report 96/1, November

1996.

‘‘Shasta: A Low Overhead, Software-Only Approach

for Supporting Fine-Grain Shared Memory.’’

Daniel J. Scales, Kourosh Gharachorloo, and
Chandramohan A. Thekkath. WRL Research

Report 96/2, November 1996.

28

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’ Brian ‘‘Cache Replacement with Dynamic Exclusion.’’

K. Reid and Christopher A. Kent. WRL Tech- Scott McFarling. WRL Technical Note TN-22,

nical Note TN-4, September 1988. November 1991.

‘‘TCP/IP PrintServer: Server Architecture and Im- ‘‘Boiling Binary Mixtures at Subatmospheric Pres-

plementation.’’ Christopher A. Kent. WRL sures.’’ Wade R. McGillis, John S. Fitch, Wil-
Technical Note TN-7, November 1988. liam R. Hamburgen, Van P. Carey. WRL

Technical Note TN-23, January 1992.
‘‘Smart Code, Stupid Memory: A Fast X Server for a

Dumb Color Frame Buffer.’’ Joel McCormack. ‘‘A Comparison of Acoustic and Infrared Inspection

WRL Technical Note TN-9, September 1989. Techniques for Die Attach.’’ John S. Fitch.
WRL Technical Note TN-24, January 1992.

‘‘Why Aren’t Operating Systems Getting Faster As

Fast As Hardware?.’’ John Ousterhout. WRL ‘‘TurboChannel Versatec Adapter.’’ David Boggs.
Technical Note TN-11, October 1989. WRL Technical Note TN-26, January 1992.

‘‘Mostly-Copying Garbage Collection Picks Up ‘‘A Recovery Protocol For Spritely NFS.’’ Jeffrey
Generations and C++.’’ Joel F. Bartlett. WRL C. Mogul. WRL Technical Note TN-27, April

Technical Note TN-12, October 1989. 1992.

‘‘Characterization of Organic Illumination Systems.’’ ‘‘Electrical Evaluation Of The BIPS-0 Package.’’

Bill Hamburgen, Jeff Mogul, Brian Reid, Alan Patrick D. Boyle. WRL Technical Note TN-29,

Eustace, Richard Swan, Mary Jo Doherty, and July 1992.

Joel Bartlett. WRL Technical Note TN-13, April
‘‘Transparent Controls for Interactive Graphics.’’

1989.
Joel F. Bartlett. WRL Technical Note TN-30,

‘‘Improving Direct-Mapped Cache Performance by July 1992.

the Addition of a Small Fully-Associative Cache
‘‘Design Tools for BIPS-0.’’ Jeremy Dion & Louis

and Prefetch Buffers.’’ Norman P. Jouppi.
Monier. WRL Technical Note TN-32, December

WRL Technical Note TN-14, March 1990.
1992.

‘‘Limits of Instruction-Level Parallelism.’’ David
‘‘Link-Time Optimization of Address Calculation on

W. Wall. WRL Technical Note TN-15, Decem-
a 64-Bit Architecture.’’ Amitabh Srivastava

ber 1990.
and David W. Wall. WRL Technical Note

‘‘The Effect of Context Switches on Cache Perfor- TN-35, June 1993.

mance.’’ Jeffrey C. Mogul and Anita Borg.
‘‘Combining Branch Predictors.’’ Scott McFarling.

WRL Technical Note TN-16, December 1990.
WRL Technical Note TN-36, June 1993.

‘‘MTOOL: A Method For Detecting Memory Bot-
‘‘Boolean Matching for Full-Custom ECL Gates.’’

tlenecks.’’ Aaron Goldberg and John
Robert N. Mayo and Herve Touati. WRL

Hennessy. WRL Technical Note TN-17, Decem-
Technical Note TN-37, June 1993.

ber 1990.
‘‘Piecewise Linear Models for Rsim.’’ Russell Kao,

‘‘Predicting Program Behavior Using Real or Es-
Mark Horowitz. WRL Technical Note TN-40,

timated Profiles.’’ David W. Wall. WRL Tech-
December 1993.

nical Note TN-18, December 1990.

29

‘‘Speculative Execution and Instruction-Level Paral-

lelism.’’ David W. Wall. WRL Technical Note

TN-42, March 1994.

‘‘Ramonamap - An Example of Graphical Group-

ware.’’ Joel F. Bartlett. WRL Technical Note

TN-43, December 1994.

‘‘ATOM: A Flexible Interface for Building High Per-

formance Program Analysis Tools.’’ Alan Eus-
tace and Amitabh Srivastava. WRL Technical

Note TN-44, July 1994.

‘‘Circuit and Process Directions for Low-Voltage

Swing Submicron BiCMOS.’’ Norman
P. Jouppi, Suresh Menon, and Stefanos
Sidiropoulos. WRL Technical Note TN-45,

March 1994.

‘‘Experience with a Wireless World Wide Web

Client.’’ Joel F. Bartlett. WRL Technical Note

TN-46, March 1995.

‘‘I/O Component Characterization for I/O Cache

Designs.’’ Kathy J. Richardson. WRL Tech-

nical Note TN-47, April 1995.

‘‘Attribute caches.’’ Kathy J. Richardson, Michael
J. Flynn. WRL Technical Note TN-48, April

1995.

‘‘Operating Systems Support for Busy Internet Ser-

vers.’’ Jeffrey C. Mogul. WRL Technical Note

TN-49, May 1995.

‘‘The Predictability of Libraries.’’ Brad Calder,
Dirk Grunwald, Amitabh Srivastava. WRL

Technical Note TN-50, July 1995.

WRL Research Reports and Technical Notes are available on the World Wide Web, from
http://www.research.digital.com/wrl/techreports/index.html.

30

