
D E C E M B E R 1 9 9 6

WRL
Research Report 96/4

Optimizations
and Placements
with the
Genetic
Workbench

Silvio
Turrini

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There are two other research laboratories located in Palo Alto, the Network Systems
Lab (NSL) and the Systems Research Center (SRC). Another Digital research group is
located in Cambridge, Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, WRL-2
250 University Avenue
Palo Alto, California 94301 USA

Reports and technical notes may also be ordered by electronic mail. Use one of the fol-
lowing addresses:

Digital E-net: JOVE::WRL-TECHREPORTS

Internet: WRL-Techreports@decwrl.pa.dec.com

UUCP: decpa!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

Reports and technical notes may also be accessed via the World Wide Web:
http://www.research.digital.com/wrl/home.html.

Optimizations and Placements
with the Genetic Workbench

Silvio Turrini

December 1996

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

Abstract

The Genetic Workbench (GWB) is a software system built with the intent of
investigating evolutionary or non-standard algorithms applied to difficult com-
binatorial problems. The user is allowed to experiment with various techniques,
operators, parameters, strategies and compare the results. In particular the op-
timal placements of connected components or modules on a plane has been con-
sidered, but some of the strategies implemented in the GWB can be applied to
other permutation based problems as well. Techniques which generate the best
results have also been compared with one of the best commercial tools available,
TimberWolf ver. 7, which uses a special simulated annealing algorithm, to high-
light the strengths and weaknesses of the different methods. Most of the
strategies used in the GWB can be classified as evolutionary or rely on some im-
plementation of a genetic algorithm; this is the reason why the qualifier genetic
has been used to name the system. For the placement problem in particular,
results of running standard benchmarks are also shown at the end of this report.

i

1

What is the Genetic Workbench ?

The Genetic Workbench (GWB) is a system that lets users apply various optimization
techniques to specific problems in order to quickly determined the most efficient strategy or the
optimal set of parameters that work the best for the case under investigation. Four main
optimization engines are part of the tool and can be activated by the user and applied to the
problem either individually or in various combinations and order. The system has been written
in C++ and runs on DEC workstations and Alpha platforms [see Fig. 1] . Blocks delimited by a
solid line are fixed parts of the system and cannot be changed without rewriting the existing
code and recompiling the entire system. The shaded block delimited by a dashed line can be
changed or added to the system and describes the problem under investigation in terms of an
objective function with a certain number of parameters to be optimized. All the algorithms
(Clustering, Genetic Engine, etc. etc.) assume an order-base representation of the problem or,
as it will be clarified later in this report, can alternatively have a vector representation of its
parameters and use special transformations to map them into a permutation space. At this stage
of the project there is no sophisticated graphical user interface and options are provided by the
standard mechanism in Unix of command line options following the invocation of the program.
When dealing with the optimal placement problem, the system uses its own internal format, but
routines to interface more popular netlist formats, such as the one used by TimberWolf ver. 7
or higher, have also been developed and can be used for conversions.

Fig. 1 : block diagram of the system

Clustering
Genetic
 Engine

Simulated
Annealing
 Engine

Coordinator

Hill Climbers Objective Function

Output User Input

2

The diagram in Fig. 1 also shows the four main optimization engines that can be used to
optimize a specific objective function either independently or called and subsequently applied to
the problem in a user defined order. The engines that use genetic algorithms, simulated
annealing techniques and hill-climbers should be familiar to readers and researchers who work
in the optimization area and will be described in detail in the next chapters. Clustering
techniques are in general used in the first phase of the optimization process to reduce the
exploration space by grouping together solutions that share common features with the optimal
solution. Engines that are composable [see manual and following chapters], can be applied to
the objective function in an order requested by the user. For instance the clustering engine can
be applied first and on the resulting configuration a hill-climber can be called for further
optimization. Or a genetic algorithm combined with a hill-climber is applied first and further
hill-climbing performed on the best solution. Other combinations and optimization sequences
can be executed on user demand.

The Genetic Engine and general principles of the Genetic
Algorithms (GAs)

In this section the general principles of genetic algorithms (GAs) will be revisited very briefly
and problems specific to GWB will be discussed. For further and more detailed descriptions of
GAs, their applications and current developments, reading of [Gold89], [Davis91], are
strongly recommended.

Genetic algorithms were inspired by nature and they mimic some of the processes observed in
natural evolution. The basic concept is very simple: the problem to be optimized is encoded as
a sequence of bits (in the canonical form this is a binary encoding, but more convenient ones
are also used) which constitutes the chromosome. In the initial phase a random population of
chromosomes is generated and evaluated by measuring how worth every chromosome is in
the problem context. This measure is called fitness of the chromosome and describes how well
that particular structure encodes the solution of our problem. From this initial population new
chromosomes are created by mating pairs of them according to rules that mimic the natural
selection mechanism, where chromosomes that encode successful structures are allowed to
reproduce more often than those who do not. The way the new children are created is by using
two basic operators : crossover and mutation. The crossover operators basically copies parts
of the parents to the new structures and mutation randomly makes small changes to that
information. In other words, the reproduction needs an imperfect copy of the information from
the two parents. The new chromosomes are evaluated and inserted into the population in place
of some other individuals according to some rules (for instance they replace the worst
chromosomes in the old population). The simulated evolution continues until some rule says
that time is up and the best individual is returned as the best solution of the problem. The
process just described is the canonical GA using binary encoding and natural selection. From
this basic algorithm an incredible number of variations have been conceived, experimented and

3

studied, to better fit the nature of the problem under optimization. The selection mechanism,
the genetic operators, the encoding, the value of the control parameters, all of those and many
more, can drastically change how effective the GA is on a specific problem and there are in
practice very few rules that help the user during this process. This is the fundamental reason
why the GWB was developed, as an aid to speed up the process just described and to help to
experiment new ideas and make changes to any of the basic parts of the algorithm. Another
motivation to build the GWB was that order-based problems, such as placement, need special
representations and operators that are in general not supported in popular and commercially
available GAs packages. Figure 2 illustrate the three fundamental phases of a classic GA that
uses binary encoding and standard genetic operators.

 Random Population Crossover Mutation

 0 0 0 1

 1 0 1 1
 0 0 0 1 0 0 0 0 1 0 0 0
 1 1 1 1
 1 0 0 0 1 0 0 1 1 0 0 0

 1 0 0 1

Fig. 2 : the classic genetic algorithm

In the simple binary encoding scheme parameters are represented by a sufficient number of bits
and stringed together to form the chromosome. The order these parameters are present in the
chromosome might matter for some problems and the genetic operators the GA is using.
Because of that and in particular when chromosomes are very long, another genetic operator
called inversion, turns out to be useful in practice even if it requires additional overhead and
needs some special structure to be supported. In the GWB inversion has been implemented by
default and the probability that such operation takes place during reproduction is an additional
user controlled parameter. Inversion needs an extended representation where each gene has an
additional index associated with it which identifies its position in the string. This allows the
genes to be reordered every time the fitness of the chromosome needs to be evaluated. In other
words with this representation the fitness of the chromosome does not depend on the order of
its genes. When inversion takes place, all the genes between two sites randomly selected along
the chromosome are inversely reordered. (For example genes 1 2 3 4 5 before inversion, get
changed into 5 4 3 2 1). Finally, after inversion, crossover and mutation are applied to the
chromosome before its fitness is evaluated. For more information about inversion, readers are
invited to look at [Gold89] pages 166 -170.

mutation

Crossover site

1st parent

2nd parent

The crossover site is chosen randomly

child 1

child 2

selection

4

GAs in Placement and Order-Based Problems

One possible and natural way to encode order-based information into a linear chromosome is
to simply string together the “name” of the objects in the desired order. For simplicity, names
can be mapped to integers uniquely so that for instance the chromosome : 1 3 6 5 2 4 defines a
placement on a line of the object 1 followed by object 3, then object 6 and so on. On a plane
things are a little more complicated and better ways of representing a placement might be
conceived, but if a continuous linear structure is still what one wants to use, the chromosome
can be bent in order to “cover” all the objects allowed in a certain area. As an example see Fig.
3 on this page, where the darker connected line identifies the chromosome representing the
sequence of cells with various size : 1, 2, 3, ..., 25. In this case, a special placement routine
which knows about module sizes and maximum width, length and number of lines where these
module are supposed to be placed, will “bend” the chromosome at the right sites to meet the
requirements.

Fig. 3 : representation of placement of connected modules on a plane

One of the goals of an optimal placement is to minimize the total length of all connections
among modules and this is what is going to be the objective function we want to optimize. To
evaluate a chromosome then, after the placement routine has “unwound” the chromosome
according to the user specifications such as row length, cells at fixed locations, etc. etc., special
routines do the job given the coordinates x, y of each module and the graph which describes
how they are connected to each other. It turns out that many interesting order-based problems
can be represented by this simple structure : a linear chromosome carrying a sequence of

5

different objects. The relative order of these objects is what matters to the objective function,
so every new configuration is described by a permutation of the original chromosome. Now let
us see why whenever the order of different objects is important, the classic genetic operators,
crossover, mutation and inversion, cannot be applied the way they were originally defined. It
doesn’t take too long to convince ourselves that if a chromosome must uniquely determine a
permutation of some elements, when crossover takes place, some parts of the chromosome of
the two parents cannot be freely copied, otherwise the new children would carry instances of
the same objects. By the same token, mutation cannot change every object into any other also.
The example 1 shows illegal chromosomes that are generated if a classic crossover operator
(this is called 1-point crossover) is applied and how a specialized one (called partial matched
crossover or PMX) works fine instead. In some order-based problems there are also other
techniques which allow normal genetic operators to be used, but they are in general inefficient
and in the case where permutations of elements are considered, as in placement, they wouldn’t
work at all. Generally these methods either allow illegal chromosomes to be generated, but
they penalize them according to some criteria, or they try to reestablish the uniqueness of the
permutation after the crossover has taken place and degrade the fitness of the new
configuration by an amount proportional to the “damage” that had to be repaired. The GBW
does not use any of them and new crossover mutation and inversion operators that always
generate legal chromosomes have been implemented instead.

Example 1 :

1-point crossover

 parents children

 1 2 3 4 5 1 2 3 1 3 WRONG !
 illegal chromosomes

 2 5 4 1 3 2 5 4 4 5

 random site

 PMX

 1 2 3 4 5 4 2 5 1 3 O.K.
 legal chromosomes

 2 5 4 1 3 2 3 1 4 5
 4 1 and 5 3 are swapped

 random site

6

In the example of the previous page, during crossover, the randomly chosen site divides every
parent into two pieces : left side and right side. One child is generated by copying the leftmost
of parent1 and rightmost of parent2 the other child by copying the leftmost of parent2 and
rightmost of parent1. Clearly, illegal configurations are generated in this way. In the PMX,
elements at the left side of the random site indicate the swaps to be performed in order to
generate the children. In the case described in the example both swaps : 4 and 1, 5 and 3, take
place in the parents and generate the children. A mutation is simply implemented by swapping
with some small probability, defined by the user, two elements of the same chromosome
randomly chosen.

Genetic Options in the GWB

In the GWB a variety of reproduction strategies, genetic operators, mutations and control
parameters has been implemented and can be selected by the users. Only new ideas or non-
standard GAs techniques will be described here. Information about the more conventional
operators, selection strategies and techniques in general, can be found in good GAs literature
and in this paper wherever appropriate there will be pointers to the source of information.
More interested users of the system can also refer to the user manual for a detailed description
of some of the options and features of GWB.

Partial List of some of the GWB options :

Genetic operators and schemes followed by [*] will be explained in this section. For all the
others see references or [Gold89] , [Davis91] and any other good literature on GAs.

Reproduction strategies :
1. Generational Reproduction The entire population is replaced by a

 new one generated by using the classic
 reproduction scheme

2. Elitist The new population always has the

 best chromosome generated so far.

3. Steady State During reproduction new generated
 children replace the worst chromosome
 of the population.

4. CHC Parents are selected according to their

 diversity (Hamming distance in their
 genotype). When this diversity cannot
 be maintained any more, a new
 population is regenerated from the

7

 old one by changing only a small
 percentage of the genes in each
 chromosome.

5. Directional [StorPri95] Parents and children define a
 “direction” in the multidimensional
 search space and new chromosomes
 are generated along these directions.
 It’s a sort of discrete version of
 standard line optimization methods.

6. Simulating Annealing [MahGold92] This scheme uses simulated annealing

 combined with crossover and mutation.

7. Deterministic Crowding [Mahfoud95] This selection mechanism uses

phenotypic crowding to keep diversity
in small populations.

Selection schemes:
1. Scaling It is used to avoid premature

 convergence at the beginning of the run
 and to enhance selection at the end of
 the run.
 This is accomplished by scaling the
 chromosomes’ fitness proportionally
 to its difference from the average value.

2. Directional [KuoHwa93] This is the classic scheme where
 chromosomes’ fitness is compared to
 the population’s average.

3. Disruptive “ The best and worst chromosomes are
 selected with the same probability.

4. Boltzmann [MahGold92] A simulated annealing cooling schedule
 is applied to the selection procedure to
 improve diversity in the population and
 avoid premature convergence toward
 a local optima.

Genetic Operators (crossover) :
1. Partial Matched Crossover (PMX) These are extensively covered in all
2. Cycle Crossover (CX) books about GAs.
3. Order Crossover (OX)
4. Uniform Order Crossover (UOX) [Davis90]

Genetic Operators (mutation) :

8

1. Simple A simple swap of randomly selected
 genes.

2. Block Random groups of chromosomes are

 swapped.

3. Permutation [Davis90] A certain number of genes get

randomly permuted.

In the case a FITT transformation is used [*] additional operators are available :

Additional operators for transformed chromosomes :

1. 1-point crossover Extensively explained in classic GAs
 books.

2. 2-point crossover “

3. Uniform crossover “

4. 1-2-point crossover 1-point and 2-point crossover are both

 applied with a certain probability (user
 defined).

5. Reduce Surrogates [Genesis90] This is used to make the
 probability of destroying one
 particular schema [see Holland71]
 during crossover independent of
 its length.

In addition to the above, genetic operators and reproduction schemes can be combined with
hill-climbers, which can be applied to the best individuals of the final population, to the best
child after each reproduction iteration or to the entire population at start.

Hill-climbers [*] Only a brief description is given. For more details refer to the GWB
user manual.

1. Random Hill-climber
2. Random Inversion Hill-climber
3. Multiple operator Hill-climber
4. Dynamic Hill-climber
5. Net Hill-climber

9

All hill-climbers work under the assumption that an operator, such as swapping two elements
in a chromosome, or a combination of those operators, is applied to the chromosome first and
the new configuration evaluated. If the new value turns out to be better or the same of the
previous one, then the new chromosome becomes the one on which to continue to iterate the
procedure for a certain number of times.

Random Hill-climber Elements in the chromosome at locations randomly
selected are swapped.

Random Inversion Hill-climber The same as before except that a genetic inversion is
applied first.

Multiple Operator Hill-climber Same as the random hill-climbers except that not
only a swap, but also right-shift and left-shift
operators are used. User parameters control the
amount of shift and the probability that these
operators are selected at every iteration.

Dynamic Hill-climber This can only be applied if FITT is used. See [*] and
[Yuret94]

Net Hill-climber This is specific to the placement problem.
Given a chromosome, one element (module) and one
of its nets are randomly chosen.
Then local moves of connected modules inside a given
window are tried in order to minimize
the net length.[see Fig. 4]

chromosome initial placement final placement

3 1 4 2 5 6

Fig. 4 : how a Net Hill-climber operates

net

 3 4 1

 6 5 2

 3 1 4

 6 5 2

window optimized

10

The FITT (Fast Inversion Table Transform)

In this chapter a brief description of a new technique applied to GAs will be given. For more
detailed information readers are referred to [Turr96]. This fast transform with its inverse are
O(n log n) algorithms which map permutation domains into multidimensional cartesian (vector)
domains and back. In GAs a chromosome which represents a permutation of n distinct
elements, can be transformed into a vector with n - 1 components and back. Using this idea
order-based problems, after being transformed, can be solved by GAs that use standard genetic
operators without introducing any more complexity. The inverse FITT is used every time the
chromosome needs to be evaluated and the objective function does not have correspondent
simple operations in the linear space. The Dynamic Hill-climber also uses this technique and has
been modified to work on discrete spaces instead of continuous ones as originally proposed by
its authors [MazYur94]

The Placement Problem and its Objective Function

One and perhaps the most difficult requirement for an optimal placement of connected modules
on a board or components on a chip is to minimize the total length of all the connections. Other
parameters such as density of wires, number of vias and prioritization of critical paths are also
important and can be implemented as simple modifications of the previously mentioned
objective function. For simplicity, all the examples and later the results reported here will have
the total length of all connections as the only objective function to be optimized. Specific
details such as how to handle separate unconnected circuits, non connected pins and many
other tedious problems that unfortunately are present in real circuits and tend to break standard
algorithms, have been fixed in the implementation to be able to run the suits of standard
benchmarks. The details of the implementation will not be considered here. As good
approximation of the objective function we like to minimize, the minimal spanning tree of the
graph that describes the entire network of circuits to be placed can be computed every time a
new placement is evaluated by executing a version of the popular Kruskal’s algorithm
[Krusk90]. Because this algorithm is somewhat expensive especially when dealing with large
circuits, most of the time further approximation for multiple connected nets is used instead. In
general, unless otherwise specified by the user, only one calculation of the minimal spanning
tree is performed out of a hundred approximated evaluations. The multiple connected nets are
approximated by using the popular method of computing half the perimeter of the net bounding
box [see Fig. 5].

Our experiments support the strategy of only one exact evaluation of the total net length out of
a hundred approximated ones, which turns out to be sufficient to avoid error propagation
problems that could fool the optimization procedure.

11

Fig. 5 : bounding box approximation

Every iteration of the method used to optimize a placement, has 4 main phases :

1. Change of representation (in a GA selection crossover and mutation are applied)
2. Cells are placed in rows.
3. The total net length is evaluated.
4. According to the value and some criteria, the new configurations are accepted or

discarded.

During the phase 2 the coordinates of the cells are computed and stored in appropriate fields of
the structure representing every single gene of the chromosome. In the GWB it has been
decided to have in every gene three integer fields which, in the placement problem, are used to
keep the cell name and the coordinates X and Y of the center of the cell. It turned out that with
a specialized algorithm, inversion can also be implemented without using one more field in the
gene structure. Also, in other order-based problems that have been investigated, this structure
seemed to be sufficient to keep all the information that was needed. In the event that additional
information stored in the genes is required, the code must be changed and the system
recompiled. A trivial example of that could be another placement problem, that instead of being
defined in a bidimensional space needs to be solved in the space where one more coordinate is
needed. The routine responsible for the placement also takes care of other user defined
constraints, such as placing certain cells at fixed locations, inserting feedthroughs and others
that are typical in VLSI or in circuit board design.

The Simulated Annealing Engine

Simulated annealing is the simplest of the engines in the GWB, where the least amount of
effort in experimenting and trying new solutions was applied. In fact, the real reason why such
an engine has been included in the GWB system is to be able to prove some results when
comparing the GBW techniques with TimberWolf. We also followed some of the ideas about
the cooling schedule from the paper about parallel Boltzman selection schemes for GAs [see

net
Bounding box

12

MahGold92]. TimberWolf uses a very elaborated simulated annealing cooling schedule that
they claim to be very efficient when applied to this problem. In addition to all sorts of tricks,
quadratic estimators, windowing operations and more, its cooling schedule is embedded in a
hierarchical clustering algorithm which run by default on top of simulated annealing engine. As
it will be shown later TimberWolf delivers very good results on the benchmarks we tried,
especially in circuits of large complexity, but our intuition was that they depended in largely on
the clustering and the incremental evaluation of the placement, rather than the special simulated
annealing schedule. To support this idea a simple cooling schedule was implemented and a
faster selection mechanism was used when changing the configuration in order to decrease the
time spent during the evaluation. The cooling schedule is based on the original Metropolis
algorithm and is controlled by three main temperatures : at the initial state of the placement, at
an intermediate point and at its final state.[see Fig. 6]. After a swap of two cells chosen
according some rules explained later, the new configuration is accepted with probability
expressed as a function of the difference in cost from the previous configuration and the one at
the current temperature. Temperatures are updated by multiplying them by constants computed
after some statistical analysis and considerations similar to those described in the paper about
Boltzmann selection [MahGold92]. The equations that relate p, the probability of accepting a
new configuration, the temperature and the cost of the placement are :

p(∆C) = 1, if (∆C ≥ 0)

p(∆C) = e

∆C
T

, if (∆C < 0)

where ∆C = Cnew - Cold , T = current temperature

Fig 6 : GWB cooling schedule

Let us take now a closer look at what happen during the evaluation of a placement of modules
of various sizes arranged by row on a plane [see Fig. 7]. A general observation about any
simulated annealing engine is that no matter which operation is used to update a configuration,
to be statistically meaningful, the number of changes and evaluations at each temperature must

Metropolis cooling schedule

Ts

Ti

Tf

p

T

Cooling schedule

 Ts = start temperature

 Ti = intermediate temperature

 Tf = final temperature

13

be very large, especially in VLSI placements where circuits contain a large number of cells or
modules. It goes without saying that if results are expected in a reasonable amount of time, the
modification itself and the evaluation of the new configuration must be as fast as possible.
Clearly the simplest operation that simulated annealing can use in order to preserve the
permutation is to swap randomly two cells and compute the cost of the new placement.
TimberWolf uses a fancier replacement policy and even one cell moves and rotations are tried,
but we will not consider that here. The problem with swapping cells of different sizes is
illustrated in Fig. 7. Because in a placement by row one of the user parameters is the maximum
length of each row where the cells are packed together, if the two elements to be swapped
belong to different rows, a large number of nets between the two gets shifted and must be
recalculated. It turns out that in almost all circuits there are many instances of the same type of
cells, for instance 2-input nand gates, 4-way multiplexers, flip-flops, etc.. which have the same
size. Therefore if we grouped together cells with the same size, when for instance, we needed
to change a configuration with a simple swap operation, we could pick the two from the same
group. This means that only nets that belong to the two cells need to be updated, no shifting
will occur between rows, cutting down the amount of computation necessary in each
evaluation. Clearly these restricted swaps will not allow a random and uniform sampling of the
search space for all possible legal configurations, so once in a while two cells which belong to
different sets, therefore with different sizes, will be tried also.

Fig. 8 : swapping cells of different sizes in a placement by row

The length of all the
nets that belong to the
cells marked must be
recalculated.

The two cells
are going to be
swapped

14

As we anticipated, the results of several experiments on various circuits support the policy that
at least one out of a hundred iterations requires swapping cells of different sizes, but in the
GWB this can also be changed on demand. No windowing mechanism or special estimators
have been added to improve the selection phase before the iteration of the new placements and
the results reported later will reflect the simple implementation just described.

Clustering

In the placement problem, clustering is a technique which aggregates different cells according
to some specific objectives. One objective, for instance, can be to group together cells that
share many connections, because they need to be placed the best, in order to minimize the total
net-length. Another way to see clustering is that once these groups of cells that share some
properties are formed, other optimization engines can be applied to them as if they were single
macro cells. Anybody can see here that clustering, if effectively done, can dramatically improve
any optimization procedure that can be now applied to a smaller number of groups of cells.
Once the groups are optimally placed, then the same engine can optimize placements inside
each single cluster of cells, assuming that the two phases to a certain degree are independent of
each other. Clearly there are dependencies and perfect clustering cannot be expected by any
technique invented so far, but to anticipate one of the conclusions of this report, this seems to
be the only known method that allows the large placements needed in VLSI to be performed in
a reasonable amount of time and with good quality. As previously said TimberWolf combines
clustering with simulated annealing and in the version we tested they could not be separated or
disabled independently. Clustering is the part of the GWB least developed and where more
work needs to be done to fully exploit the potential that these techniques seem to have. Before
describing the new approach that we used in the GWB a general observation that motivated it
should be articulated and explained. Almost every placement we know of have some optional
constraints that must be satisfied such as cells placed at fixed locations or oriented in some
way. The reason is that circuits have inputs and outputs so somehow they have to
communicate with the external world through preferred buses and wires located at fixed
coordinates. Even if an entire chip is asked to be placed by one of this tool and not only parts
of it, signals must be connected to the external pads, which implicitly defines preferred areas
where the input and output cells must be located. So every placement starts with a set of
constraints and might be thought as a multi-phase process where connected elements are
optimally placed relative to the constraints defined in the previous phase. These partial
placements are clearly done according to a greedy algorithm and we cannot certainly say there
is a global view of the entire process. Nonetheless even without additional optimizations, the
selection strategy used to place connected cells according to the constraints of the previous
configurations by itself produced results that are sometimes better than either GAs or other
methods. Moreover, because a complete evaluation of the total net length is not needed during
the phases just described, this algorithm is extremely fast: at least 3 orders of magnitude faster
than other techniques we experimented.

15

The PQ Clustering

The name of PQ clustering we use comes from the Priority Queue, which is the structure used
to operate the selection of the elements that are placed one by one during the process. In order
for the priority queue to know which element to pay attention to and knowing that we want to
cluster together cells that will only have minimum length nets, we introduce this general idea
also used by other tools : during the partial placements, cells which share the larger number of
connections will be grouped together. By using this approach we form clusters around cells at
the fixed locations, optimized for the maximum number of intra-connections and minimum
number of inter-connections. In reality things are a little more complex, because of the multi-
pin nets real circuits have to deal with. In order to solve this problem we borrowed an idea
used in TimberWolf as well as other clustering methods. The definition for strength of a
connection is needed : the strength w of a net connected to n pins is the reciprocal of n - 1.
Or in mathematical notation :

 w =
1

1n −
strength of a net connected to n pins

[see Fig. 9] where some examples of connections and their strengths are shown.

Fig. 9 : strength of various connections

Notice that by this definition every point to point connection has the maximum strength of one.
We can then think of our circuit as described by nets with weights associated to them, which

Total w = 11 / 6

Cell with 3 nets

16

are the strengths we just defined. Cells to be placed are kept in a priority queue and new cells
are selected from this pool according to the strength of their connections. In general, every cell
can have multiple nets connected to it, therefore the value stored in the priority queue will be
the sum of the weights of all its nets. The simplest implementation the PQ clustering algorithm
can be summarized as follows :

Phase1 - All cells at fixed locations are pushed into the PQ.

Phase 2 - The cell with the highest strength is extracted from PQ , placed in a row and
 the cells connected to it examined.

 The new connected cells, that are not in PQ already, are pushed into the
 stack and their strength computed, if they are already in the stack the strength

 of the new connection is added to the previous value.

Phase 3 - Phase 1 and 2 are iterated, placing cells and forming new rows when the
 maximum length of the current row is reached, until PQ is emptied.

Fig. 10 : PQ clustering by row

Phase 1 - Cells at fixed locations are pushed into PQ

Phase 2 - Connected cells, if new, are pushed into PQ otherwise their
total strength is updated

Phase 3 - Keep going until PQ is empty

17

An illustration of the simple procedure is also shown in Fig. 10. After this procedure we are left
with a certain number of rows (clusters) that can be placed by an optimization engine such as
GAs, a hill-climber, or anything the user decides to use. If not specified otherwise, the GWB
iterates by default a hill-climber for ten times the average number of cells in a row.

As it will be apparent from the results reported in the next chapter, PQ clustering is very fast
with large VLSI placements if compared to any other methods used in the GWB and
TimberWolf as well. The quality of the final placement is also very good if compared to other
methods in the GWB, but worse than TimberWolf, especially when placing very large circuits.
One of the reasons is that the cells extracted from the PQ are placed close to each other in the
same row until its maximum length is reached; clearly clusters optimized in only one dimension
are built in this way. A two-dimensional approach should be used instead, but at the time this
code was written we did not have any good ideas of how to implement an algorithm that could
take the second dimension into account. Some new ideas came up recently, but they have not
been implemented yet so for now we have no results to show how much better quality and
faster placements can be generated on large applications by exploiting these new methods.
Our intuition is that they should improve greatly the quality without slowing down the
execution time substantially.

Placement results

TimberWolf ver.7 was available to us only in executable form for a DecStation 5000, therefore
the GWB was also tested on the same platform with 300 Mbytes of memory. Also, execution
times for the GWB are between 3 - 4 times faster for the version running on the AlphaStation
400, 4/233 than the ones reported here and used for the comparison with TimberWolf. In the
first set of tables TimberWolf results are the best obtained out of ten runs on the same circuit
meanwhile the results for the GWB are the worst also out of ten runs with a specific
optimization method. On average, the difference between the best and worst runs is between 5
- 10 % on all the circuits we tried, on both the GWB and TimberWolf. Moreover, for the
GWB only the best combinations of genetic algorithm and hill-climber have been reported and
they don’t include any clustering up front, meanwhile TimberWolf always does clustering when
the circuit to be optimized has more than a few hundreds cells. Results from the GWB
simulating annealing engine have also been reported to compare our different approach with
the one used by TimberWolf. The netlists of the circuits that have been tested are either from
the standard benchmark used by the CAD community or generated at WRL [see Fig. 11] from
real circuits and complexities that go from a few cells to a few thousands. In separate tables the
results of PQ clustering has been also provided. As already explained the execution times
suggest that further research on better bidimensional cluster placement should be undertaken in
the future if a truly VLSI placement with hundreds of thousands of cells is sought.

18

circuit # cells # nets # pins
fish100 100 180 360
fish1000 1000 1930 3860

p1 752 831 2821
p2 2907 2961 11038

biomed 6417 5711 20943
avqsmall 21854 22116 76167
avqslarge 25114 25376 82687

industrial_2 12142 12949 47909
industrial_3 15059 21808 68044

Fig. 10 : some of the standard benchmarks

Genetic algorithms : the winner

The best results consistently generated over all the possible combinations of parameter values,
selection strategies, genetic operators and hill-climbing techniques have been obtained by
running a combination of a GA and a net-hill-climber previously described with the following
parameters :

selection scheme : steady-state elitist with replacement of the worst
 two individuals of the population

genetic cross-over operator : Uniform Order-based cross-over (UOX) with
 probability pc = 0.8 [see Davis90, pages 80 - 81]

genetic mutation operator : simple swap with probability pswap = 0.8.
This correspond to the standard mutation rate per
gene proportional to the inverse of the number of

cells (chromosome length) or pm cells
≅

08.

#
[Ex. 100 cells : pm ≅ 0.008]

hill-climber : net-hill climber with a window 3 columns high
 and 4 times as large as the minimum cell width.

 Net hill-climbing was applied to the best individual
 after cross-over, mutation and inversion.

Inversion : with probability pi = 0.3

population size : 100 individuals if not otherwise specified

19

The other strategy that performed almost as good as the one reported was a GA that used
Deterministic Crowding [see Mahfould95, pag. 139 - 152], as the selection mechanism during
the run. Boltzmann selection also did very well in terms of quality of placement by been able to
keep the chromosome diversity in the population until the end of the run, but it required much
larger execution times. Our opinion is that this selection mechanism can be effectively used for
the placement problem and this representation only if the GA is running on a multiprocessor
system [MahGold92]. The population size has been limited to 100 individuals for the circuits in
Table 1 and 200 individuals for the circuits in Table 2, if not otherwise specified.

Hill-Climbers : the winner

All the hill-climbers in the GWB accept a new configuration only if its fitness is superior or
equal to the previous one after certain operations have been performed. The general problem
with hill-climbers is that they only explore locally and they do not keep any global information
that can be used during the search for the optimum. They can only generate new configurations
that are better, or with the same cost, than the previous ones. Simulated annealing can be seen
in this context as a particular hill-climber that sometimes, based on statistical measures, decides
to accept a worst configuration with a probability that at the beginning is very high and at the
end of the run becomes almost negligible. Another way of looking at simulating annealing is as
an almost random search at the beginning and a straight hill-climber in the end. For this reason
hill-climbers in the GWB can be used in combination with regular GAs or other techniques that
allow global optimization, to improve and accelerate convergence toward local optima, once
interesting regions of the search space have been identified. The two techniques that turned out
to be the most successful during the experiments with the GWB where :

1. dynamic operator change : multiple operations that applied to the old
 configuration generate the new one are allowed.
 They are randomly or deterministically changed
 during the run.

2. transformation from
 permutation into vectors
 and back : this allows techniques successfully used in linear

 (vector) spaces to be applied to order-based
 problems, such as placement in our case.
 A distance between points in the search space
 can be defined in the transformed space allowing
 a more effective search.

In one of the hill-climbers that belong to the first category we just described, three operators
are allowed :

20

 1. swapping randomly chosen cells (same and different sizes)
 2. shifting-right by a certain amount a randomly chosen cell
 3. same as the previous one, but shifting-left instead.

Each operator is used until a certain number of iterations has been reached or when no
improvement has been reported for too many iterations. The other technique is of more general
use and allows algorithms such as Dynamic Hill-Climbing (DHC) to be applied to order-based
problems. In the GWB the DHC algorithm [see MazYur94 and Yuret94] used for optimizing
continuos functions has been adapted to work also in the discrete spaces generated by
transforming permutations into multidimensional vectors. Readers interested in the details of
the algorithm in addition to the De La Maza and Yuret’s suggested paper should also refer to
the author’s technical report [Turr96] available on the Web too. From the tables, results show
that DHC performs quite well even if compared with the combined clustering and simulated
annealing algorithm in TimberWolf. Because DHC showed constantly better results than any
other hill-climber we tried, in the tables only the DHC results have been reported.

Simulated Annealing : results

The results indicate that it is actually clustering that is providing very good results and not so
much the elaborated annealing schedule that TimberWolf uses. In fact the simple simulated
annealing schedule implemented in the GWB with the addition of the group selection scheme
used to swap, most of the time, cells with the same size, performs even better than TimberWolf
on small circuits. In larger circuits the effect of clustering is clearly overwhelming.

Clustering : results

In the last two tables the results of comparing PQ clustering with TimberWolf are shown. The
only purpose is to show the execution times of the PQ-clustering are more than 3 order of
magnitude better than TimerWolf special clustering and annealing. The quality of placement is
not bad either for circuit of medium size, but is clearly not as good as TimberWolf for larger
sizes. As mentioned before, a better strategy for optimizing the clusters in the two dimensions
instead of by row only, in our opinion should produce much better placements and should be at
least investigated in the future.

21

Legend : genetic : the best GWB Genetic Algorithm; DHC : Dynamic Hill-Climber

SA : GWB Simulated Annealing; TW : TimberWolf ver. 7

all values are in the form of : cost / time [read smaller, better],
 the solution with the lowest cost will be shown with shading

algorithm 28 cells (c/t) 100 cells (c/t) 200 cells (c/t)
genetic 1624 / 400.0 pop1 552 / 1020.0 pop2 1400 / 4000 pop3

DHC 1700 / 10.2 580 / 100.0 1380 / 380.0
SA 1700 / 11.0 552 / 40.0 1100 / 170.0
TW 1814 / 54.0 680 / 65.0 1480 / 200.0

pop1 : 100 individuals; pop2 : 600 individuals; pop3 : 1200 individuals

Table 1 : placement (all without clustering)

Algorithm 752 cells (c/t) 1,000 cells(c/t) 2,907 cells(c/t)
genetic 3050000 / 5100 pop4 too large population too large population
DHC 1120000 / 2200 140350 / 9850 too much time
SA 789000 / 620 785450 / 1560 6003450 / 5100
TW 821000 / 899.7 839850 / 1883 4009870 / 3672

pop4 : 2000 individuals; too large population means impractical

Table 2 : placement (only TW with clustering)

algorithm 752 cells (c/t) 1,000 cells (c/t) 2,907 cells (c/t) 6417 cells (c/t)
PQ clust. only 109000 / 3.1 1010200 / 1.12 5400000 / 4.2 6160072 / 10.1

TW SA + clust. 821000 / 899.7 839850 / 1883 341000 / 3672 3222672 / 9120

But, look at the difference in execution time !

Table 3 : just clustering (TW + SA)

22

How close the optimal solution is ?

In order to have at least the feeling of how close the solution generated by one of the best
engine is to the real absolute optimum, in the last table [Tab. 4] a medium size circuit with
1000 gates and a highly symmetrical structure (a fishnet structure) has been automatically
generated. The optimal solution ,with all the symmetrical ones, was known by construction as
well as its cost. The experiment consisted on running TimberWolf allowing the simulated
engine to operate for an increasing number of seconds and see how well the results were
approaching the known optimal placement. The cost of the optimal placement was of 520,000
units and from the table one can see that even after more than 19 hours and a half the job was
running on a DecStation 5000, the solution produced was still almost 35 % worse than the real
global optimum. Needless to say that larger circuits performed even worse than that. If not for
anything else this simple result is showing that optimized placements produced by the best tools
available today are far from being acceptable even for circuits of modest size and more research
and better methods should be sought.

all values are in the form of : cost (time) [read smaller, better]

1,000 cells cost (t = 1883s) cost (t = 7252s) cost (t = 71203s)
TimberWolf ver. 7 839,850 812,240 698,600

Table 4 : TW cost and running time

Conclusions

A few general conclusions can be drawn from the results of this research :

• Clustering, maybe combined with some other optimization technique, seems to be a good
way for dealing with large placements required in VLSI and there is space for
improvements.

• For the simple genetic representation described, genetic algorithms are the slowest and
require large populations if they run on single processor architectures. They do deliver
good quality placements for circuit of small complexity and can be used in those cases.

• New techniques that work on vectors, instead of permutations, should be investigated
considering that the new method based on analytic transformations (FITT) showed very
promising results with a simple hill-climbing algorithm and could be used for this purpose.

• Smarter schemes can do better than sophisticated annealing cooling schedules.

23

References

Davis90 “Handbook of Genetic Algorithms” by Lawrence Davis, Van Nostrand
Reinhold 1991.

Genitor93 Genetic free package from University of Colorado
FTP : ftp.cs.colostate.edu:/pub/GENITOR.tar
see Chapter 4.1 for reference.

Gold89 “Genetic Algorithms in Search Optimization & Machine Learning”, David
E. Goldberg, Addison-Wesley, 1989.

Holland71 “Processing and processors for schemata” in E. L. Jacks (Ed.), Associative
 information processing (pp. 127-146). New York: American Elsevier.

Krusk90 “Introduction to Algorithms”, by Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest, editor McGrow Hill, MIT Press, 1990,
pages 504 - 505.

KuoHwa93 “A Genetic Algorithm with Disruptive Selection” from the 5th Proceedings on
Genetic Algorithms by Stephanie Forrest 1993, pag. 65 - 69.

MahGold92 “Parallel Recombinative Simulated Annealing : A Genetic Algorithm
IlleGAl report n. 93006 July 1993 by Samir W. Mahfoud & David E.
Goldberg.

Mahfoud95 “Niching Methods for Genetic Algorithms” by Samir W. Mahfoud at
University of Illinois Urbana-Champaign, 1995.

MazYur94 “Dynamic Hill Climbing”, article on AI Expert, March 1994, pag. 26-31.

StorPri95 “Differential Evolution - A simple and efiicient adaptive scheme for global
optimization over continuous spaces”, by Rainer Storn and Kenneth Price,
1995, International Computer Institute, Berkeley.

Turr96 “Optimization in Permutation Spaces”, by Silvio Turrini, WRL Technical
Report 96/1, Digital Equipment Corporation, Western Research
Laboratory.
[http://www.research.digital.com/wrl/techreports/abstracts/96.1.html]

Yuret94 “From Genetic Algorithms To Efficient Optimization” by Deniz Yuret at
Massachusetts Institute Of Technology Master in Science in Electrical
Engineering and Computer Science 1994.

WRL Research Reports

‘‘Titan System Manual.’’ Michael J. K. Nielsen. ‘‘Compacting Garbage Collection with Ambiguous

WRL Research Report 86/1, September 1986. Roots.’’ Joel F. Bartlett. WRL Research Report

88/2, February 1988.
‘‘Global Register Allocation at Link Time.’’ David

W. Wall. WRL Research Report 86/3, October ‘‘The Experimental Literature of The Internet: An

1986. Annotated Bibliography.’’ Jeffrey C. Mogul.
WRL Research Report 88/3, August 1988.

‘‘Optimal Finned Heat Sinks.’’ William
R. Hamburgen. WRL Research Report 86/4, ‘‘Measured Capacity of an Ethernet: Myths and

October 1986. Reality.’’ David R. Boggs, Jeffrey C. Mogul,
Christopher A. Kent. WRL Research Report

‘‘The Mahler Experience: Using an Intermediate
88/4, September 1988.

Language as the Machine Description.’’ David
W. Wall and Michael L. Powell. WRL ‘‘Visa Protocols for Controlling Inter-Organizational

Research Report 87/1, August 1987. Datagram Flow: Extended Description.’’

Deborah Estrin, Jeffrey C. Mogul, Gene
‘‘The Packet Filter: An Efficient Mechanism for

Tsudik, Kamaljit Anand. WRL Research
User-level Network Code.’’ Jeffrey C. Mogul,

Report 88/5, December 1988.
Richard F. Rashid, Michael J. Accetta. WRL

Research Report 87/2, November 1987. ‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’

Joel F. Bartlett. WRL Research Report 89/1,
‘‘Fragmentation Considered Harmful.’’ Christopher

January 1989.
A. Kent, Jeffrey C. Mogul. WRL Research

Report 87/3, December 1987. ‘‘Optimal Group Distribution in Carry-Skip Ad-

ders.’’ Silvio Turrini. WRL Research Report
‘‘Cache Coherence in Distributed Systems.’’

89/2, February 1989.
Christopher A. Kent. WRL Research Report

87/4, December 1987. ‘‘Precise Robotic Paste Dot Dispensing.’’ William
R. Hamburgen. WRL Research Report 89/3,

‘‘Register Windows vs. Register Allocation.’’ David
February 1989.

W. Wall. WRL Research Report 87/5, December

1987. ‘‘Simple and Flexible Datagram Access Controls for

Unix-based Gateways.’’ Jeffrey C. Mogul.
‘‘Editing Graphical Objects Using Procedural

WRL Research Report 89/4, March 1989.
Representations.’’ Paul J. Asente. WRL

Research Report 87/6, November 1987. ‘‘Spritely NFS: Implementation and Performance of

Cache-Consistency Protocols.’’ V. Srinivasan
‘‘The USENET Cookbook: an Experiment in

and Jeffrey C. Mogul. WRL Research Report
Electronic Publication.’’ Brian K. Reid. WRL

89/5, May 1989.
Research Report 87/7, December 1987.

‘‘Available Instruction-Level Parallelism for Super-
‘‘MultiTitan: Four Architecture Papers.’’ Norman

scalar and Superpipelined Machines.’’ Norman
P. Jouppi, Jeremy Dion, David Boggs, Michael

P. Jouppi and David W. Wall. WRL Research
J. K. Nielsen. WRL Research Report 87/8, April

Report 89/7, July 1989.
1988.

‘‘A Unified Vector/Scalar Floating-Point Architec-
‘‘Fast Printed Circuit Board Routing.’’ Jeremy

ture.’’ Norman P. Jouppi, Jonathan Bertoni,
Dion. WRL Research Report 88/1, March 1988.

and David W. Wall. WRL Research Report
89/8, July 1989.

24

‘‘Architectural and Organizational Tradeoffs in the ‘‘1990 DECWRL/Livermore Magic Release.’’

Design of the MultiTitan CPU.’’ Norman Robert N. Mayo, Michael H. Arnold, Walter
P. Jouppi. WRL Research Report 89/9, July S. Scott, Don Stark, Gordon T. Hamachi.
1989. WRL Research Report 90/7, September 1990.

‘‘Integration and Packaging Plateaus of Processor ‘‘Pool Boiling Enhancement Techniques for Water at

Performance.’’ Norman P. Jouppi. WRL Low Pressure.’’ Wade R. McGillis, John
Research Report 89/10, July 1989. S. Fitch, William R. Hamburgen, Van

P. Carey. WRL Research Report 90/9, December
‘‘A 20-MIPS Sustained 32-bit CMOS Microproces-

1990.
sor with High Ratio of Sustained to Peak Perfor-

mance.’’ Norman P. Jouppi and Jeffrey ‘‘Writing Fast X Servers for Dumb Color Frame Buf-

Y. F. Tang. WRL Research Report 89/11, July fers.’’ Joel McCormack. WRL Research Report

1989. 91/1, February 1991.

‘‘The Distribution of Instruction-Level and Machine ‘‘A Simulation Based Study of TLB Performance.’’

Parallelism and Its Effect on Performance.’’ J. Bradley Chen, Anita Borg, Norman
Norman P. Jouppi. WRL Research Report P. Jouppi. WRL Research Report 91/2, Novem-

89/13, July 1989. ber 1991.

‘‘Long Address Traces from RISC Machines: ‘‘Analysis of Power Supply Networks in VLSI Cir-

Generation and Analysis.’’ Anita Borg, cuits.’’ Don Stark. WRL Research Report 91/3,

R.E.Kessler, Georgia Lazana, and David April 1991.

W. Wall. WRL Research Report 89/14, Septem-
‘‘TurboChannel T1 Adapter.’’ David Boggs. WRL

ber 1989.
Research Report 91/4, April 1991.

‘‘Link-Time Code Modification.’’ David W. Wall.
‘‘Procedure Merging with Instruction Caches.’’

WRL Research Report 89/17, September 1989.
Scott McFarling. WRL Research Report 91/5,

‘‘Noise Issues in the ECL Circuit Family.’’ Jeffrey March 1991.

Y.F. Tang and J. Leon Yang. WRL Research
‘‘Don’t Fidget with Widgets, Draw!.’’ Joel Bartlett.

Report 90/1, January 1990.
WRL Research Report 91/6, May 1991.

‘‘Efficient Generation of Test Patterns Using
‘‘Pool Boiling on Small Heat Dissipating Elements in

Boolean Satisfiablilty.’’ Tracy Larrabee. WRL
Water at Subatmospheric Pressure.’’ Wade

Research Report 90/2, February 1990.
R. McGillis, John S. Fitch, William

‘‘Two Papers on Test Pattern Generation.’’ Tracy R. Hamburgen, Van P. Carey. WRL Research

Larrabee. WRL Research Report 90/3, March Report 91/7, June 1991.
1990.

‘‘Incremental, Generational Mostly-Copying Gar-

‘‘Virtual Memory vs. The File System.’’ Michael bage Collection in Uncooperative Environ-

N. Nelson. WRL Research Report 90/4, March ments.’’ G. May Yip. WRL Research Report

1990. 91/8, June 1991.

‘‘Efficient Use of Workstations for Passive Monitor- ‘‘Interleaved Fin Thermal Connectors for Multichip
ing of Local Area Networks.’’ Jeffrey C. Mogul. Modules.’’ William R. Hamburgen. WRL

WRL Research Report 90/5, July 1990. Research Report 91/9, August 1991.

‘‘A One-Dimensional Thermal Model for the VAX ‘‘Experience with a Software-defined Machine Ar-
9000 Multi Chip Units.’’ John S. Fitch. WRL chitecture.’’ David W. Wall. WRL Research

Research Report 90/6, July 1990. Report 91/10, August 1991.

25

‘‘Network Locality at the Scale of Processes.’’ ‘‘Fluoroelastomer Pressure Pad Design for

Jeffrey C. Mogul. WRL Research Report 91/11, Microelectronic Applications.’’ Alberto
November 1991. Makino, William R. Hamburgen, John

S. Fitch. WRL Research Report 93/7, November
‘‘Cache Write Policies and Performance.’’ Norman

1993.
P. Jouppi. WRL Research Report 91/12, Decem-

ber 1991. ‘‘A 300MHz 115W 32b Bipolar ECL Microproces-

sor.’’ Norman P. Jouppi, Patrick Boyle,
‘‘Packaging a 150 W Bipolar ECL Microprocessor.’’

Jeremy Dion, Mary Jo Doherty, Alan Eustace,
William R. Hamburgen, John S. Fitch. WRL

Ramsey Haddad, Robert Mayo, Suresh Menon,
Research Report 92/1, March 1992.

Louis Monier, Don Stark, Silvio Turrini, Leon
‘‘Observing TCP Dynamics in Real Networks.’’ Yang, John Fitch, William Hamburgen, Rus-

Jeffrey C. Mogul. WRL Research Report 92/2, sell Kao, and Richard Swan. WRL Research
April 1992. Report 93/8, December 1993.

‘‘Systems for Late Code Modification.’’ David ‘‘Link-Time Optimization of Address Calculation on
W. Wall. WRL Research Report 92/3, May a 64-bit Architecture.’’ Amitabh Srivastava,
1992. David W. Wall. WRL Research Report 94/1,

February 1994.‘‘Piecewise Linear Models for Switch-Level Simula-

tion.’’ Russell Kao. WRL Research Report 92/5, ‘‘ATOM: A System for Building Customized
September 1992. Program Analysis Tools.’’ Amitabh Srivastava,

Alan Eustace. WRL Research Report 94/2,‘‘A Practical System for Intermodule Code Optimiza-
March 1994.tion at Link-Time.’’ Amitabh Srivastava and

David W. Wall. WRL Research Report 92/6, ‘‘Complexity/Performance Tradeoffs with Non-
December 1992. Blocking Loads.’’ Keith I. Farkas, Norman

P. Jouppi. WRL Research Report 94/3, March‘‘A Smart Frame Buffer.’’ Joel McCormack & Bob
1994.McNamara. WRL Research Report 93/1,

January 1993. ‘‘A Better Update Policy.’’ Jeffrey C. Mogul.
WRL Research Report 94/4, April 1994.‘‘Recovery in Spritely NFS.’’ Jeffrey C. Mogul.

WRL Research Report 93/2, June 1993. ‘‘Boolean Matching for Full-Custom ECL Gates.’’

Robert N. Mayo, Herve Touati. WRL Research‘‘Tradeoffs in Two-Level On-Chip Caching.’’
Report 94/5, April 1994.Norman P. Jouppi & Steven J.E. Wilton. WRL

Research Report 93/3, October 1993. ‘‘Software Methods for System Address Tracing:

Implementation and Validation.’’ J. Bradley‘‘Unreachable Procedures in Object-oriented
Chen, David W. Wall, and Anita Borg. WRLPrograming.’’ Amitabh Srivastava. WRL
Research Report 94/6, September 1994.Research Report 93/4, August 1993.

‘‘Performance Implications of Multiple Pointer‘‘An Enhanced Access and Cycle Time Model for
Sizes.’’ Jeffrey C. Mogul, Joel F. Bartlett,On-Chip Caches.’’ Steven J.E. Wilton and Nor-
Robert N. Mayo, and Amitabh Srivastava.man P. Jouppi. WRL Research Report 93/5,
WRL Research Report 94/7, December 1994.July 1994.

‘‘How Useful Are Non-blocking Loads, Stream Buf-‘‘Limits of Instruction-Level Parallelism.’’ David
fers, and Speculative Execution in Multiple IssueW. Wall. WRL Research Report 93/6, November
Processors?.’’ Keith I. Farkas, Norman1993.
P. Jouppi, and Paul Chow. WRL Research
Report 94/8, December 1994.

26

‘‘Drip: A Schematic Drawing Interpreter.’’ Ramsey ‘‘Efficient Procedure Mapping using Cache Line

W. Haddad. WRL Research Report 95/1, March Coloring.’’ Amir H. Hashemi, David R. Kaeli,
1995. and Brad Calder. WRL Research Report 96/3,

October 1996.
‘‘Recursive Layout Generation.’’ Louis M. Monier,

Jeremy Dion. WRL Research Report 95/2, ‘‘Optimizations and Placement with the Genetic

March 1995. Workbench.’’ Silvio Turrini. WRL Research

Report 96/4, November 1996.
‘‘Contour: A Tile-based Gridless Router.’’ Jeremy

Dion, Louis M. Monier. WRL Research Report

95/3, March 1995.

‘‘The Case for Persistent-Connection HTTP.’’

Jeffrey C. Mogul. WRL Research Report 95/4,

May 1995.

‘‘Network Behavior of a Busy Web Server and its

Clients.’’ Jeffrey C. Mogul. WRL Research

Report 95/5, October 1995.

‘‘The Predictability of Branches in Libraries.’’ Brad
Calder, Dirk Grunwald, and Amitabh
Srivastava. WRL Research Report 95/6, October

1995.

‘‘Shared Memory Consistency Models: A Tutorial.’’

Sarita V. Adve, Kourosh Gharachorloo. WRL

Research Report 95/7, September 1995.

‘‘Eliminating Receive Livelock in an Interrupt-driven

Kernel.’’ Jeffrey C. Mogul and
K. K. Ramakrishnan. WRL Research Report

95/8, December 1995.

‘‘Memory Consistency Models for Shared-Memory

Multiprocessors.’’ Kourosh Gharachorloo.
WRL Research Report 95/9, December 1995.

‘‘Register File Design Considerations in Dynamically

Scheduled Processors.’’ Keith I. Farkas, Nor-
man P. Jouppi, Paul Chow. WRL Research

Report 95/10, November 1995.

‘‘Optimization in Permutation Spaces.’’ Silvio
Turrini. WRL Research Report 96/1, November

1996.

‘‘Shasta: A Low Overhead, Software-Only Approach

for Supporting Fine-Grain Shared Memory.’’

Daniel J. Scales, Kourosh Gharachorloo, and
Chandramohan A. Thekkath. WRL Research

Report 96/2, November 1996.

27

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’ Brian ‘‘Cache Replacement with Dynamic Exclusion.’’

K. Reid and Christopher A. Kent. WRL Tech- Scott McFarling. WRL Technical Note TN-22,

nical Note TN-4, September 1988. November 1991.

‘‘TCP/IP PrintServer: Server Architecture and Im- ‘‘Boiling Binary Mixtures at Subatmospheric Pres-

plementation.’’ Christopher A. Kent. WRL sures.’’ Wade R. McGillis, John S. Fitch, Wil-
Technical Note TN-7, November 1988. liam R. Hamburgen, Van P. Carey. WRL

Technical Note TN-23, January 1992.
‘‘Smart Code, Stupid Memory: A Fast X Server for a

Dumb Color Frame Buffer.’’ Joel McCormack. ‘‘A Comparison of Acoustic and Infrared Inspection

WRL Technical Note TN-9, September 1989. Techniques for Die Attach.’’ John S. Fitch.
WRL Technical Note TN-24, January 1992.

‘‘Why Aren’t Operating Systems Getting Faster As

Fast As Hardware?.’’ John Ousterhout. WRL ‘‘TurboChannel Versatec Adapter.’’ David Boggs.
Technical Note TN-11, October 1989. WRL Technical Note TN-26, January 1992.

‘‘Mostly-Copying Garbage Collection Picks Up ‘‘A Recovery Protocol For Spritely NFS.’’ Jeffrey
Generations and C++.’’ Joel F. Bartlett. WRL C. Mogul. WRL Technical Note TN-27, April

Technical Note TN-12, October 1989. 1992.

‘‘Characterization of Organic Illumination Systems.’’ ‘‘Electrical Evaluation Of The BIPS-0 Package.’’

Bill Hamburgen, Jeff Mogul, Brian Reid, Alan Patrick D. Boyle. WRL Technical Note TN-29,

Eustace, Richard Swan, Mary Jo Doherty, and July 1992.

Joel Bartlett. WRL Technical Note TN-13, April
‘‘Transparent Controls for Interactive Graphics.’’

1989.
Joel F. Bartlett. WRL Technical Note TN-30,

‘‘Improving Direct-Mapped Cache Performance by July 1992.

the Addition of a Small Fully-Associative Cache
‘‘Design Tools for BIPS-0.’’ Jeremy Dion & Louis

and Prefetch Buffers.’’ Norman P. Jouppi.
Monier. WRL Technical Note TN-32, December

WRL Technical Note TN-14, March 1990.
1992.

‘‘Limits of Instruction-Level Parallelism.’’ David
‘‘Link-Time Optimization of Address Calculation on

W. Wall. WRL Technical Note TN-15, Decem-
a 64-Bit Architecture.’’ Amitabh Srivastava

ber 1990.
and David W. Wall. WRL Technical Note

‘‘The Effect of Context Switches on Cache Perfor- TN-35, June 1993.

mance.’’ Jeffrey C. Mogul and Anita Borg.
‘‘Combining Branch Predictors.’’ Scott McFarling.

WRL Technical Note TN-16, December 1990.
WRL Technical Note TN-36, June 1993.

‘‘MTOOL: A Method For Detecting Memory Bot-
‘‘Boolean Matching for Full-Custom ECL Gates.’’

tlenecks.’’ Aaron Goldberg and John
Robert N. Mayo and Herve Touati. WRL

Hennessy. WRL Technical Note TN-17, Decem-
Technical Note TN-37, June 1993.

ber 1990.
‘‘Piecewise Linear Models for Rsim.’’ Russell Kao,

‘‘Predicting Program Behavior Using Real or Es-
Mark Horowitz. WRL Technical Note TN-40,

timated Profiles.’’ David W. Wall. WRL Tech-
December 1993.

nical Note TN-18, December 1990.

28

‘‘Speculative Execution and Instruction-Level Paral-

lelism.’’ David W. Wall. WRL Technical Note

TN-42, March 1994.

‘‘Ramonamap - An Example of Graphical Group-

ware.’’ Joel F. Bartlett. WRL Technical Note

TN-43, December 1994.

‘‘ATOM: A Flexible Interface for Building High Per-

formance Program Analysis Tools.’’ Alan Eus-
tace and Amitabh Srivastava. WRL Technical

Note TN-44, July 1994.

‘‘Circuit and Process Directions for Low-Voltage

Swing Submicron BiCMOS.’’ Norman
P. Jouppi, Suresh Menon, and Stefanos
Sidiropoulos. WRL Technical Note TN-45,

March 1994.

‘‘Experience with a Wireless World Wide Web

Client.’’ Joel F. Bartlett. WRL Technical Note

TN-46, March 1995.

‘‘I/O Component Characterization for I/O Cache

Designs.’’ Kathy J. Richardson. WRL Tech-

nical Note TN-47, April 1995.

‘‘Attribute caches.’’ Kathy J. Richardson, Michael
J. Flynn. WRL Technical Note TN-48, April

1995.

‘‘Operating Systems Support for Busy Internet Ser-

vers.’’ Jeffrey C. Mogul. WRL Technical Note

TN-49, May 1995.

‘‘The Predictability of Libraries.’’ Brad Calder,
Dirk Grunwald, Amitabh Srivastava. WRL

Technical Note TN-50, July 1995.

WRL Research Reports and Technical Notes are available on the World Wide Web, from
http://www.research.digital.com/wrl/techreports/index.html.

29

