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Abstract

We identify performance trends and design relationships between the following
components of the data memory hierarchy in a dynamically-scheduled processor:
the register file, the lockup-free data cache, the stream buffers, and the interface
between these components and the lower levels of the memory hierarchy.  Similar
performance was obtained from all systems having support for fewer than four
in-flight misses, irrespective of the register-file size, the issue width of the proces-
sor, and the memory bandwidth. While providing support for more than four in-
flight misses did increase system performance, the improvement was less than
that obtained by increasing the number of registers.  The addition of stream buf-
fers to the investigated systems led to a significant performance increase, with the
larger increases for systems having less in-flight-miss support, greater memory
bandwidth, or more instruction issue capability. The performance of these sys-
tems was not significantly affected by the inclusion of traffic filters, dynamic-
stride calculators, or the inclusion of the per-load non-unity stride-predictor and
the incremental-prefetching techniques, which we introduce. However, the in-
cremental prefetching technique reduces the bandwidth consumed by stream buf-
fers by 50% without a significant impact on performance.



1 Introduction

Dynamically-scheduled processors offer much greater tolerance for data-cache misses than do
statically-scheduled processors. This increased tolerance is provided by the ability to issue in-
structions in an order different from that in which they were fetched whenever a hazard prohibits
in-order issue. Cache misses may induce data and structural hazards that involve the instructions
that are waiting to be issued. The degree of tolerance represents a balance between the number
instructions that are not affected by such hazards, and the time required to resolve the miss. This
balance exists because the longer a cache miss takes to be resolved, the greater the number of
instructions that are required to hide it.

The time required to resolve a miss is determined by the bandwidth of the memory interface
that is situated between the data cache and the lower levels of the memory hierarchy, and by the
time required to fetch a data item once a request for it has been issued. The ability to hide a
cache miss is determined by the ability of the dynamic scheduler to issue unaffected instructions.
The likelihood that such instructions are available to the scheduler is determined by a number of
factors. Branch prediction is an important factor because its use allows the hardware to continue
fetching instructions from beyond a branch for which the direction or destination (address) is not
statically known. Speculative fetching of instructions provides the supply of (possibly) unaffected,
new instructions. These instructions can be made available to the dynamic scheduler if the required
hardware resources for processing the instructions are available.

In our system model (Figure 1), thedispatch queuestores the instructions from which the
dynamic scheduler chooses the instructions to issue next. To insert an instruction into the dispatch
queue, there must be an available entry, and, if the instruction names anarchitectural registeras a
destination, there must be aphysical registeravailable to rename the named architectural register.
If one of the required resources is not available, the process of inserting instructions must be stalled
until a resource is available.

The availability of dispatch-queue entries and physical registers is affected by the number of
miss-processing resources that are provided by the lockup-free datacache. The number of such
resources places a limit on the number of cache misses that can be serviced concurrently. If a
resource is required and none is available, the dynamic scheduler must stop issuing memory in-
structions until the required resource is available. Such stalls in the issuing of memory instructions
can quickly lead to a full dispatch queue and a decrease in the rate of forward progress.
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Figure 1: Overview of our dynamic scheduling implementation; only the data path is shown.
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In this paper, our goal is to provide insight into the effectiveness of hardware-based techniques
for reducing the apparent time cost of cache misses or increasing the tolerance for data-cache
misses. The memory-system components that we consider are the register file, the lockup-free
data cache, and thestream buffers[1], a technique for implementing hardware-based prefetching.
We also examine the interface between these components and the lower levels of the memory
hierarchy.

The presentation begins with a description of the lockup-freecache and stream buffer imple-
mentations we consider, followed by an overview in Section 3 of our system model and simulation
methodology. Then, we examine the performance of various lockup-free datacache organizations
in Section 4, and of various stream-buffer implementations in Section 5.

2 Hardware

This section describes, in the context of a dynamically-scheduled processor, the hardware that is
required to implement a lockup-free datacache and the stream buffer implementations that we
consider. A more complete discussion of these components is given in [2].

2.1 Lockup-free Cache

When the processor detects a data-cache miss, it must determine whether the cache-block contain-
ing the missing data is already being fetched, and it must resolve all pending cache misses when
this cache-block is returned from the lower levels of the memory hierarchy. This functionality is
provided bymiss status holding registers(MSHRs) [3], but for dynamically-scheduled processors,
additional functionality is required that is not present in statically-scheduled processors. This func-
tionality allows selective cache misses to be suppressed while allowing others to be completed,
thereby permitting the cancellation of speculatively executed memory instructions.

To provide the required functionality, we use a set of MSHRs and anaddress stack. The
MSHRs are used to determine whether a cache block is already being fetched, whereas the address
stack is used to resolve pending cache misses. As shown in Figure 2a, each MSHR has three
fields. The “block valid bit” indicates whether the cache block with the address stored in the
“block address” field is in the process of being fetched. When a data-cache miss is detected, the
MSHRs are associatively searched to determine whether the cache block is already being fetched.
If a match is detected, the cache miss is referred to as asecondary miss, whereas if no match
is detected, the miss is referred to as aprimary miss[3]. For a primary miss, a free MSHR is
allocated, the block address is written, the “block valid bit” set, and a fetch request for the cache
block is issued to the next level in the memory system. If there are no free MSHRs, no further
memory requests can be issued until an MSHR is released by the return of previously-requested
data; the load or store that caused thisstructural-hazard-induced stallwill be replayed subsequent
to the freeing of an MSHR.

When a cache-block is returned, an associative lookup of the MSHR structure is done to extract
the “destination bits” (Figure 2a). This information indicates whether the cache block is to be
returned to the data cache, the instruction cache, or perhaps neither because it is to be used to
resolve an access to an uncached memory location. Some information must be returned with
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Figure 2: Functional block diagram of the proposed lockup-freecache implementation that sup-
ports 16 in-flight memory accesses and five in-flight cache-block fetches.

the data to facilitate this lookup. Since dynamically-scheduled processors often support cache
consistency and thus have a mechanism for sending addresses to the processor from the memory
system, a reasonable choice is to have the memory return the fetch-request address along with
the data. After the destination bits are extracted, the cache-block is sent to the component that
requested a copy.

To resolve data-cache misses once a block is returned, the address stack is used. The address
stack (Figure 2b) is implemented as a fully associative buffer. After the hardware issues a load
or a store and calculates the physical address for the memory access, it writes this address into a
free address-stack entry, if there is one available. If there is no free entry, then a structural-hazard-
induced stall is mandated, and the instruction will be replayed subsequent to the freeing of an
entry. Once an address-stack entry is allocated, should the required data not be found in the cache,
the valid bit in the address stack for the instruction is set, and if necessary, a cache-block fetch is
initiated. When this block is returned from the lower levels of the memory system, at same time as
the hardware writes it into the cache, it does an associative lookup of all the entries in the address
stack. For each match, the control logic notes that the corresponding memory instruction can now
be replayed. In a complex and more costly design, the address-stack entry allocated to a memory
instructionM is freed onceM is completed. In a simpler and less costly design, the address-stack
entry is freed whenM is retired.

In the event that a mispredicted branch or an exception mandates the flushing ofM from the
processor as part of the flushing process, the address-stack entry held byM is invalidated. Thus, if
the instruction was waiting for a cache block to be fetched, when the block is returned, it is guar-
anteed that the action indicated byM will not be performed, because there is no matching entry in
the address stack. IfM is a load, the named physical register will not be written, whereas ifM is
a store, the data will not be written. In this way, the instructions affected by the branch mispredic-
tion or exception are suppressed while those preceding the faulting instruction can be completed
normally. This ability to easily suppress selective cache misses makes an address stack more at-
tractive for dynamically-scheduled processors than the more conventional methods for recording
information about primary and secondary misses [4].

Although not described in the literature, it is likely that lockup-freecaches are implemented
in this way by the MIPS R10000 [5] using the address queue and address stack, the PA-8000 [6]
using the memory buffer and the address-reorder buffer, and in the PowerPC 604 [7] and 620 [8]
using the load queue.
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2.2 Stream Buffers

A stream buffer is a hardware-based prefetching technique that can be used to prefetch and store
data that might be required to resolve future data cache misses. In this paper, we extend the model
described in [9] by including the provision for: (1) a new prefetch strategy, calledincremental
prefetching, which reduces the memory traffic generated by stream buffers, and (2) a new method
for dynamic calculation of strides, called theper-load stride predictor.

Memory-traffic filtering has been implemented using theallocation filter technique proposed
by Palacharla and Kessler [10]. This filter prevented a stream buffer from being allocated until
the second miss to a stream is detected. On the second miss, a stream buffer was allocated and it
began prefetching the block subsequent to the one corresponding to the second miss. Our proposed
incremental prefetchingtechnique differs from the allocation-filter technique in that it limits the
number of blocks fetched after a stream buffer has been allocated until the stream is found to be
useful. With incremental prefetching, when a stream buffer is first allocated, only one block is
fetched. If the block is then used to service a cache miss, the next two blocks are fetched. This
process of fetching the next2 � N blocks if one of the lastN was used to resolve a cache miss
continues until the stream buffer is reallocated.

Dynamic-stride prediction has been implemented using a scheme based on theminimum delta
scheme proposed by Palacharla and Kessler [10]. With this scheme, on a stream-buffer miss, the
allocation filter was applied to determine whether a unit-stride should be used. If there was a filter
miss, then the minimum signed difference between the miss address and the lastN miss addresses
was determined. This minimum delta, which may be positive or negative, was the stride. However,
if the strideS was smaller than the size of a cache block, then a unit stride was used with the same
sign asS. This strategy guards against the prefetch stream of a stream buffer overlapping with
itself. A stream buffer was allocated if the miss was the third miss in a series to blocks that were
separated by this stride. The stride predictor is shown in Figure 3, which depicts the enhanced
stream-buffer model.

We introduce theper-load stride predictor. It differs from the minimum-delta scheme in that
a stride is determined for a load instructionL by considering only the previous miss addresses
generated byL. This predictor is based on the scheme proposed by Fu et al. [11] for preloading the
data cache and is similar to the data prefetching scheme of Chen and Baer [12]. Our predictor uses
a fully associative buffer to record the last miss address forN static loads, along with the program-
counter address of each load. Thus, a stride prediction is based only on the past memory behavior
of the static load for which the prediction is being made. We also implement an enhancement to
provide the functionality of an allocation filter. With this enhancement, a stream buffer is allocated
with a unit stride the first time a memory instructionM is executed for which there is no entry in
the miss-address table and the required data (with addressA) is not in the data cache or a stream
buffer. Subsequently, a stream buffer is allocated only ifS = An�1 � An�2 = An � An�1, where
Ax is the address of the data for thexth stream-buffer miss generated byM . By default, a stream
buffer is not allocated on the second miss. As before, if the strideS is smaller than the size of a
cache block, then a unit stride is used with the same sign asS.
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Figure 3: The enhanced stream-buffer model. In this example, there are four stream buffers with
three entries each, and any one of the 12 entries can be used to supply the missing data for a cache
miss.

3 Simulation Methodology

This section describes our investigation methodology, the system model we assume, and our sim-
ulation framework. The methodology was selected to allow us to identify performance trends and
design relationships, rather than to estimate the performance of specific system designs.

3.1 System Model

Our system model implements a RISC superscalar processor whose instruction set is based on the
DEC Alpha instruction set. We assume that all instructions can be be speculatively executed, and
that the processor can issue 4 or 8 instructions per cycle. These issue widths are representative of
the current state-of-the art and future processors. The issue rules for the 4-way and 8-way issue
processors are given in rows 1 and 2 of Table 1. The processor has a standard four-stage execution
pipeline, and, with the exception of the execution stage (stage 3), all stages have a single-cycle
latency. The functional unit latencies are given in row 3 of Table 1.

In a clock cycle, the number of instructions that can be inserted into the dispatch queue is equal
to 1.5 times the maximum issue width of the processor, while the maximum number of instructions
that can be retired is exactly twice the issue width of the processor. Instructions are selected for
issuing using a greedy algorithm that issues the earliest instructions in fetch order first. Hardware
is included to dynamically disambiguate memory addresses so as to allow memory instructions to
issue before those occurring earlier in the program order. The register file includes a configurable
and equal number of integer and floating-point registers. The number of registers considered for
each issue width are given in Table 2a; this table also specifies the number of dispatch-queue
entries. The register file for the four-way issue processor has eight read ports and sufficient write
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instruction types
total integer floating point loads & control

# total multiply other total divide other stores flow
1 number issued 4 4 4 4 2 1 2 2 1
2 per cycle 8 8 8 8 4 2 4 4 2

3 latency in cycles 6 1 8/16 3 1y 1

Table 1: Instruction-issue rules and functional-unit latencies for the 4-way and 8-way issue pro-
cessors. All functional units are fully pipelined with the exception of the floating-point divider. The
divider is not pipelined and has an eight-cycle latency for 32-bit divides, and a 16-cycle latency for
64-bit divides.yThere is a single load-delay slot.

(a) processor details
issue width # registers

4-way issue with 32- 48, 64, 96,
entry dispatch queue or 128
8-way issue with 64- 64, 96, 128,
entry dispatch queue or 256

(b) memory details
cache type abbrev. fetch spacing

lockup lk

mx 0
lockup-free fx 8

i

perfect p

(c) stream buffer details
# stride predictor traffic filters abbrev.

type Ns

1 no stream buffers N

2 unit none (baseline) Sb

3 incremental fetching Si

4 P&K allocation filters Sf

5 P&K filters & incremental Sf+i

6 min-delta 32 P&K allocation filters Ad

7 P&K filters & incremental Ad+i

8 none P

9 per-load 10 or stride filters Pf

10 32 incremental fetching Pi

11 incremental & stride filtersPf+i

Table 2: System designs. A system is defined by selecting specific parameters from the processor,
memory, and stream-buffer details tables.Ns in table (c) specifies the number of entries in the
table of miss addresses.

ports to prevent any write-port conflicts arising when registers are filled on the resolution of a cache
miss. For the eight-way issue processor, there is twice the number of ports.

The model implements precise exceptions, and uses a branch prediction scheme proposed by
McFarling [13] that comprises a bimodal predictor, a global history predictor, and a mechanism
to select between them. The prediction scheme is used to predict the direction of conditional
branches; all other control flow instructions are assumed to be 100% predictable.

The model includes separate instruction and data caches, and supports non-blocking loads and
non-blocking stores. Stores are assumed to be implemented using write-around (i.e., no-write-
allocate) and write-through policies with a write buffer situated between the data cache and lower
levels in the data memory hierarchy. Since our goal was to include only the important features
of a processor that affect the design of the register file and memory system, we assume that the
servicing of instruction cache misses does not delay the servicing of data cache misses. Hence, the
instruction cache has a fixed miss penalty. Furthermore, we assume that no memory bandwidth is
required to retire stores in the write buffer. This assumption prevents any stalls due to a full write
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buffer and prevents stores from delaying the servicing of cache fetches.
The data cache is assumed to be a 64 KByte two-way set associative cache that can be con-

figured to be lockup, lockup-free, or perfect; the perfect organization assumes a 100% hit rate.
These three organizations are listed in Table 2b. For the lockup-freecache, three types of in-flight
miss restrictions are considered. The most restrictive type, designatedmx, limits the number of
outstanding cache misses to be at mostx, wherex is an integer greater than zero. The second type,
designatedfx is less restrictive because it imposes no limit on the number of secondary misses.
Rather, it limits only the number of primary misses to be at mostx. A cache with this functionality
offers greater flexibility than one with the functionality offered bymx, and therefore has a more
aggressive implementation. Because a fetch request is required for each primary miss, the value
of x for thefx restriction also indicates the maximum number of outstanding cache-initiated fetch
requests. The third type, designatedi, is even less restrictive because it does not impose a limit
on the number of primary or secondary misses. In real processors, the value ofx for mx might
correspond to the number of address-stack entries, while the value ofx for fx might correspond to
the number of MSHRs.

Requests for blocks of data are sent via the memory interface to the next level in the memory
hierarchy. The memory interface returns the requested block in a constant number of cycles, called
thefetch latency; we assume a 32-cycle fetch latency. The bandwidth of the interface is constrained
by controlling the number of cycles between the launching of fetch requests. Afetch spacingof
zero allows requests to be launched as soon as they are submitted, and thus, corresponds to an
interface with a very large bandwidth. Afetch spacingof one allows the memory interface pipeline
to be full whereas a spacing equal to the fetch latency allows at most one in-flight fetch. Thus, the
time required to resolve a cache miss is not deterministic for non-zero fetch spacings but has a
lower bound equal to the fetch latency; Table 2b specifies the two fetch spacings that we consider.

The 10 stream-buffer implementations (rows 2-11 in Table 2c) each comprise eight, four-entry
stream buffers, and optional support for either memory-traffic filters, dynamic-stride prediction,
or both. The implementation with none of this optional hardware is referred to as thebaseline
implementation, and for notational convenience it is designated asSb. The abbreviations used for
the other implementations are given in the table. We assume that one cycle is required to extract a
block of data from a stream buffer.

When a block is returned to the cache, the cache line is written simultaneously with the writing
of the appropriate words into all registers with loads outstanding to this block (updating all pending
registers requires the multiple write ports mentioned above). Writing a register or a cache line is
assumed to take one cycle.

Figure 4 presents an overview of the just-described system model.

3.2 Simulation Framework

This study is based on execution-driven simulations using an object code instrumentation system
called ATOM [14], which is available for Alpha AXP workstations. The results presented corres-
pond to simulations of seven benchmarks, six from the SPEC92 suite and theappspbenchmark
from the NAS suite. The benchmarks are listed in Table 3 along with some run-time characterist-
ics for the four-way and eight-way issue processors. For each of the six SPEC92 benchmarks, one
of the official data sets was used (ref or small), and these are shown in Table 3 in column 2; for
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stream buffers (optional)

instruction cache

32 byte lines

non−overlapping prefetch paths
allocation filters (optional)
8 with unit/non−unit strides

branch predictor write buffer

assume no memory
bandwidth consumed

1−cycle hit latency
16−cycle miss penalty

1−cycle hit latency
lockup or lockup−free
with configurable MSHRs

32 Kbyte, 2−way set
associative

2048 bimodal and 2048
global 2−bit staturating
counters

12 Kbit cost
incorporating a bimodal
and a global predictor

64 Kbyte, 2−way set
associative, 32 byte lines

precise exceptions 

processor core

unified dispatch queue with dynamic memory
disambiguation and greedy oldest first scheduling

register renaming with variable register−file sizes
4/8−way issue

interface to rest of memory system

32−cycle fetch latency
0− or 8−cycle fetch spacing

data cache

Figure 4: Overview of machine model.

appsp, the data set that was used is described in the table caption. In all cases, the benchmarks
were compiled using the Alpha native C compiler with the global ucode optimizer enabled, and
the linker was directed to perform link-time optimizations.

The results in Table 3 are for a four-way issue processor and an eight-way issue processor.
Both systems had a lockup-free datacache with no in-flight-miss restrictions, and an eight-cycle
fetch spacing. The four-way issue processor had 64 registers (i.e., 64 integer and 64 floating point),
while the eight-way issue processor had 96 registers.

Column 3 gives the number of instructions in the trace for each benchmark, which is equi-
valent to the number that commit. (An instruction is said tocommitwhen it has completedand
all the instructions preceding it in program order have completed.) The number of committed
instructions does not necessarily equal the number of instructions that are executed due to mis-
predicted branches (exceptions are not modeled). The number of executed instructions is given
under columns 4 and 10 with columns 5 and 11 giving the number of loads. Both the number of
committed instructions and the number of executed instructions are dynamic instruction counts.

The average number of instructions per cycle (IPC) for each benchmark and each issue width
are given in columns 6, 7, 12, and 13. Theissue IPC, given in columns 6 and 12, is the ratio of
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bench- data com- 4-way issue 8-way issue
mark set mit issue instr. IPC % load miss issue instr. IPC % load miss

instr. total load issue commit pri. sec. total load issue commit pri. sec.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

appsp notea 319 320 68 1:58 1:57 6:0 6:8 322 68 2:44 2:42 6:0 7:6

compressref 86 111 25 1:63 1:27 11:9 3:5 139 31 2:34 1:45 10:7 3:1

hydro2d noteb 237 238 54 1:45 1:44 12:6 21:1 240 55 2:52 2:49 12:5 36:4

mdljdp2 small 291 317 47 1:74 1:60 2:3 0:4 352 53 2:84 2:34 2:1 1:9

su2cor small 417 432 106 1:88 1:81 8:4 8:1 445 109 2:63 2:46 8:2 14:3

swm256 ref 377 378 97 1:77 1:76 6:6 2:6 379 97 2:92 2:92 6:6 10:3

tomcatv ref 910 911 247 1:63 1:63 11:2 21:1 911 248 2:40 2:40 11:2 28:4

Table 3: Dynamic statistics for each benchmark for both issue widths. Columns 3, 4, 5, 10, and 11
give instruction counts in millions; columns 8, 9, 14, and 15 give the primary and secondary data-
cache miss rates for load instructions. Notes: (a)appspwas run for 50 iterations with a 12x12x12
grid; (b) hydro2dwas run for 15 iterations rather than the 400 specified in the official “ref” data
set.

the number of instructions that areissuedto the total (simulated) run time; the issue IPC measures
the rate at which instructions are dispatched to the functional units. In our system model, the
difference between the issue IPC and the maximum issue width is due to the dependences in the
code and the number and type of functional units. Thecommit IPC, given in columns 7 and 13, is
the ratio of the number of instructions thatcommitto the total run time. The difference between
the issue IPC and the commit IPC is due to instructions that are incorrectly speculatively executed
when following mispredicted branches.

The statistics presented in the table show that the benchmarks generate enough data-cache be-
havior to affect the performance of the memory-system implementations that we consider. First,
the data presented in column 3 suggests that each trace contains a significant number of instruc-
tions, and second, the data presented in columns 4 to 5, 8 to 11, and 14 to 15 suggest that the
benchmarks have significant data-cache behavior.

4 In-flight Cache Misses

To evaluate the design and performance implications of data-cache misses with different num-
bers of in-flight-miss resources, we evaluated performance for the system-design space listed in
Tables 2a and 2b. Figures 5a and 5b respectively present the (overall) average commit IPC1 ob-
tained by the benchmarks on the systems with the four-way and eight-way issue processors. In
both of these figures, coordinate(c; r : s) gives the average commit IPC for a processor having
a cache designc, a register-file sizer and a fetch spacings. The cache designs are mapped on

1The (overall) average commit IPC is calculated for each system configuration by first computing the average
commit IPC for each benchmark for that system. The per-benchmark average commit IPC is equal to the total number
of instructions that are committed when the benchmark is run divided by the total number of (simulated) clock cycles
required to run it. Then, these per-benchmark averages are combined using an arithmetic average to obtain the reported
(overall) average commit IPC. The commit IPC values for each benchmark are given in Section A.1.
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cache configuration physical registers
ip lk 64

96
128
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Figure 5: Average commit IPC of all benchmarks for their (simulated) execution on the investigated
systems. The commit IPC values are represented graphically by the height of the bars in the 3-
dimensional bar charts, and are given explicitly in the table below each chart.

10



the left-to-right axis with the less restrictive designs located to the left. The register-file sizes and
fetch spacings are mapped on the front-to-back axis, with the larger register files located towards
the back. For each register-file size, the IPC values for a zero cycle fetch spacing are behind those
for an eight-cycle fetch spacing. Thus, the coordinates to the left and towards the back represent
more aggressive system implementations.

Examination of the data presented in Figure 5 suggests a number of important relationships.
These relationships are discussed below beginning with the relationship between performance,
number of registers, and support for in-flight misses.

Consider the commit IPC values given in Figure 5a corresponding to the use of a lockup-free
cache with no restrictions on in-flight misses, that is, coordinates(c =i; r : s). Observe that the
average commit IPC increases with the size of the register file. Furthermore, the rate of increase
decreases at larger sizes. For instance, for a fetch spacing of eight cycles, doubling the size from 48
to 96 yields an improvement of 70%, while doubling the size from 64 to 128 yields an improvement
of only 36%. In general, an increase in the number of registers permits more instructions to be
in some stage of execution, thereby better utilizing the available hardware, and thus improving
performance. However, this correlation between more registers and better performance is less
pronounced for the systems with less support for in-flight misses. For example, if four in-flight
fetches are permitted,(c = f4; r : s), doubling the size from 48 to 96 yields an improvement of
68% while doubling the size from 64 to 128 yields an improvement of 35%. If the support for
misses is further reduced by allowing only four in-flight misses,(c = m4; r : s), the improvement
percentages are 53% and 25%, respectively.

The data presented in Figure 5a also suggests that system performance is more heavily affected
by increasing the number of registers than providing support beyond four in-flight misses. For
example, consider the system(c = m4; r = 64 : s = 8), that is, one with support for four in-
flight misses, 64 registers, and an eight-cycle fetch spacing. Compared to this baseline system, one
having twice the number of registers(c = m4; r = 128 : s = 8) will perform 25% better, while
one with no restrictions on in-flight misses(c = i; r = 64 : s = 8) will perform only 5% better.

The above noted relationships between performance, number of registers, and support for in-
flight misses are in part due to the increase in the number of structural-hazard-induced stalls that
occur when the amount of in-flight miss support is reduced. To illustrate this increase in stalls,
Figure 6a presents the percentage of (simulated) clock cycles in which such stalls occur in the
systems using the four-way issue processors with an eight-cycle fetch spacing. In the figure, the
percentages for each in-flight miss restriction are given by the seven curves as a function of the
number of registers2. For instance, with 64 registers, the percentage for each in-flight miss restric-
tion is: 5% forf4, 18% form4, 19% forf2, 34% form2, 43% forf1, 49% form1, and 62% for a
lockup cache.

The significant difference in the above percentages betweenfx andmx restrictions for the same
value ofx is due to the benchmarks requiring significant amounts of secondary-miss support. This
requirement is suggested by the miss rates presented in Figure 6b. As can be observed, while the
primary miss rates for all systems having a given number of registers are sufficiently similar that
the data points are coincident, there are significant differences in the secondary-miss rates. With
less support for in-flight misses, the load instructions that correspond to these secondary misses
must instead be held in the dispatch queue. Moreover, because memory instructions cannot be

2These percentages represent the average of the percentages for each benchmark.
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Figure 6: Statistics for load-induced cache misses for the four-way issue processors using an eight-
cycle fetch spacing. Each figure contains a curve for each of the seven in-flight miss restrictions
that were investigated.

issued during a structural-hazard-induced stall, the dispatch queue will tend to fill up with memory
instructions for which the data is already in the data cache. Thus, the rate at which entries are
freed and new instructions are inserted will decrease as the stall progresses. Together, these two
effects reduce the demand for registers and the performance gains that accompany increasing the
number of registers. As the data in Figure 6 suggests, this reduction is more significant with larger
numbers of registers because the secondary miss rates are larger, and because structural-hazard-
induced stalls occur for a greater percentage of the (simulated) run-time.

The trend of decreasing performance with less lockup-free support is more pronounced with
the systems having eight-way issue processors. Data supporting this trend is presented in Figure 5.
Observe that there is less variance in the commit IPC values when more restrictions are imposed
on in-flight misses in the systems with four-way issue processors (Figure 5a) than in the systems
with eight-way issue processors (Figure 5b). This trend occurs because the performance of systems
with wider-issue processors is more sensitive to the design of the memory system. The cause of
this increased sensitivity is the ability to issue more instructions per cycle, which tends to reduce
the number of clock cycles between the issuing of load instructions. As a result, at any point in the
execution of an application, there tends to be a greater number of in-flight fetches and secondary
misses.

Additional insight into this difference between the two issue widths is suggested by the differ-
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Figure 7: Average commit IPC for systems using either a four-way or an eight-way issue pro-
cessor and either no stream buffers (N ) or the baseline stream-buffer implementation (Sb). The
dotted lines connect the data points of each benchmark for each cache implementation. The un-
filled circles indicate the IPC for each benchmark obtained with the use of a lockup-free cache
having no in-flight miss restrictions, while the filled circles indicate the overall average IPC for all
benchmarks. The squares indicate similar information but with the use of the lockup cache.

ential in the commit IPC values when the fetch spacing is reduced from 8 cycles to 0 cycles. As
shown by the data in Figure 5, when the fetch spacing is reduced, there is greater variance in the
commit IPC values for the eight-way issue processors, and in particular, for systems with greater
support for in-flight misses and a larger number of physical registers.

In summary, a number of observations can be drawn from the above discussion, and these are
presented in Section 6.

5 Stream Buffer Implications

To investigate the design and performance implications of stream buffers, the system model was
augmented to include the stream-buffer models described in Section 2.2. The system model was
then used to evaluate the behavior of the benchmarks on a number of systems that were chosen to
capture the behavior at several representative points in the large design space.

5.1 Baseline Stream Buffers

For clarity in presenting key observations, consider first the performance implications of including
the baseline stream-buffer implementation in 16 of the systems listed in Table 2. The performance
of the benchmarks on the resulting 32 systems (16 without stream buffers and 16 with stream
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buffers) is presented in Figure 7. This figure gives the average commit IPC for each benchmark as
a function of the issue width of the processor, the size of the register files, the type of data cache,
the fetch spacing, and the optional use of stream buffers. The lockup-freecache had no restrictions
on the number of in-flight misses (typei). The columns withN at their base (e.g., the column
marked by1 ) give the commit IPC values for systems without stream buffers, while those withSb

at the base (e.g., the column marked with2 ) give the commit IPC for systems with stream buffers.
One important observation is that if stream buffers are included in a system, there is an over-

all performance gain, with this gain being bigger for systems having lockup caches and a larger
number of registers. To illustrate this relationship, consider the columns marked with1 and 2 in
Figure 7 that correspond to the performance obtained on systems with 48 registers, a fetch spacing
of eight cycles, and a four-way issue processor. Comparison of the relative position of the data
points in these two columns shows that the data points are generally higher in the second column.
The average increase in IPC for systems with the lockup-freecache (the filled circles) is 0.35, while
for systems with the lockup cache (the filled squares), the average increase is 0.46. Expressed as
speedup ratios, these increases correspond to a speedup of 1.29 for the systems with a lockup-free
cache and a speedup of 1.51 for systems with a lockup cache.

The more significant speedup for systems with a lockup cache is a consequence of the hardware
being blocked from issuing memory instructions during stalls induced by structural hazards. For
systems with this type of cache, stream buffers enhance the performance because they significantly
reduce the effective cache-miss penalty. Systems with lockup-free caches, however, can issue
unrelated memory instructions during such stalls, and, thus, are both less sensitive to the effective
cache-miss penalty, and more tolerant of cache misses. The amount of tolerance such systems
have is a function of the number of physical registers, because the number of registers determines
how many instructions can be simultaneously in execution. Thus, with more registers, the speedup
obtained with stream buffers will decrease. As illustrated in Figure 7, when the number of physical
registers is increased from 48 to 64 (columns3 and 4 ), the speedup for systems with lockup-free
caches drops to 1.25, while the speedup for systems with lockup caches rises to 1.58.

The above observations suggest that if a system can support a large number of in-flight misses,
it is more beneficial to increase the number of registers than it is to include stream buffers. To
illustrate this phenomenon, consider again the same four system configurations. When a lockup-
free cache is used, a 32% performance improvement is obtained by increasing the number of
registers from 48 to 64, but an improvement of only 29% is obtained by using stream buffers.
On the other hand, when a lockup cache is used, a 14% performance improvement is obtained by
increasing the number of registers from 48 to 64, but an improvement of 51% is obtained by using
stream buffers.

The performance gains achieved with stream buffers are a result of the buffers prefetching a
significant number of cache blocks that are used to resolve cache misses. Table 4 presents data
to quantify the frequency at which cache misses were anticipated. This table provides: (1) the
run-time speedup due to the use of the stream buffers (column 2); (2) the primary data-cache miss
rate (column 3); (3) the percentage of primary misses resolved using data either present in a stream
buffer, or for which a fetch request had already been launched (column 4); and (4) the number
of cache blocks used to resolve one of these misses as a percentage of the total number of cache
blocks returned by the memory system in response to a fetch request from a stream buffer (column
5). Ignoringcompressfor the moment, observe that 18% to 98% of the blocks prefetched by the
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stream buffers (column 5) are used to resolve 29% to 77% of primary misses (column 4).
The statistics presented in the table are sensitive to the number of physical registers. If the

number is increased, there is little change in both the number of primary misses, and the number
of times data is fetched in response to a stream buffer request. But, there is a significant drop
in the number of misses for which the missing data is actually present in a stream buffer. This
drop is largely due to the increase in the issue IPC that accompanies the increase in the number
of registers. This increase in the issue IPC reduces the time between successive cache misses, and
thus reduces the time available for prefetching.Compress, however, as already noted, does not
benefit from stream buffers. Rather, as shown in Figure 7 by the curves labeled “26”, for a fetch
spacing of 8 cycles and a four-way issue processor with 48 registers, its performance decreases by
4% when run on the systems having the lockup cache, and by 5% when run on the systems having
the lockup-freecache. This performance decrease is a result of the stream buffers prefetching
mostly un-needed cache blocks, thereby delaying the launching of fetch requests that are needed
to service cache misses. On these systems, less than 0.2% of primary cache misses are resolved
using prefetched cache blocks. The percentages are much higher for the other benchmarks, as
shown in Table 4 by the data given in column 4.

A second important relationship that is suggested by the data of Figure 7 is the performance
insensitivity of the systems to the bandwidth of the interface. When the fetch spacing is reduced
from 8 cycles to 0 cycles, with the exception ofcompress, the commit IPC values change relatively
little. This observation suggests that even with a fetch spacing of 8 cycles, contention for the
memory interface is not significant. One result of this lack of contention is that with an 8-cycle
fetch spacing, when a stream buffer is re-allocated, 95 times out of 100, all of its entries contain
valid data. Consequently, when the fetch spacing is reduced to zero cycles, there will not be a large
increase in the amount of prefetched data, and hence, only small performance gains are likely.
When the fetch spacing is changed to 0 cycles, the least significant change in the speedup ratios is
an increase from 1.29 to 1.33 with 48 registers and a lockup-freecache, and the most significant
change is an increase from 1.58 to 1.67 with 64 registers and a lockup cache. These speedup ratios
are given in Table 5 under the column heading “4-way”. Like the other benchmarks,compress
performs better with a fetch spacing of 0 cycles, but unlike the other benchmarks, it does not

bench- speed- primary misses SB
mark up % % resolved % blocks

by SB used
(1) (2) (3) (4) (5)

appsp 1:09 6:0 28:9 18:1
compress 0:95 12:9 0:2 0:1
hydro2d 1:70 12:6 77:3 97:7
mdljdp2 1:06 2:4 60:6 48:5
su2cor 1:32 8:7 53:1 63:8
swm256 1:36 6:7 44:7 29:3
tomcatv 1:64 11:2 71:6 98:4

Table 4: Effectiveness of the baseline stream-buffer implementation when used in a 4-way issue
processor with 48 registers and an 8-cycle fetch spacing.
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cache fetch 4-way 8-way
type spacing # registers # registers

48 64 64 128

lockup 8 1:51 1:58 1:70 1:87
0 1:57 1:67 1:80 2:15

lockup- 8 1:29 1:24 1:30 1:18
free 0 1:33 1:28 1:38 1:29

Table 5: Average speedup in (simulated) run-time for all benchmarks due to the use of the baseline
stream-buffer configurations.

achieve a speedup greater than one. This phenomenon is shown in Figure 7 by the curves near the
bottom whose right-most data points are labeled with “26”. Observe that when a fetch spacing of
0 cycles is used, the curves are nearly horizontal.

When the baseline stream buffers are used in systems with an eight-way issue processor and
64 dispatch queue entries, the same trends as those noted for the four-way issue processors occur,
but the differences tend to be greater. The increased significance is a consequence of the eight-
way issue processor issuing and committing more instructions per cycle thereby resulting in a
compression of time. This temporal compression not only reduces the time between the occurrence
of cache misses, but also increases the number of secondary cache misses and the instruction cost
of servicing all cache misses.

5.2 Memory Traffic and Dynamic Strides

Although the baseline stream-buffer implementation improves the performance of six of the bench-
marks, the basic design can be augmented to reduce the possible negative impact of excess memory
traffic, unit strides, and the possibility of flushing useful data from a stream buffer when it is real-
located. To counter the negative impact of stream buffers, the enhancements listed in Table 2c can
be employed.

The results obtained from the simulated execution of the benchmarks on these systems show
a number of common relationships, and these will be illustrated using thesu2corbenchmark and
its execution on 60 systems. These 60 systems had an eight-way issue processor, 64 physical
registers and a fetch spacing of 8 cycles. Figure 8a presents the average commit IPC values for
these executions, while Figure 8b presents the total number of cache blocks that were supplied by
the memory interface. In both figures, each of the curves for the four data-cache configurations (i,
f2, f1, andk) includes a data point for the 15 stream-buffer implementations. The stream-buffer
implementations are listed along the horizontal axes using the abbreviations given in Table 2c.
However, the abbreviations used for the designs based on the per-load scheme (e.g.,Pf ) also
include a suffix (e.g., 10) to indicate the number of entries in the missed-load buffer.

An important relationship suggested by the data presented in Figure 8a is that the enhancements
to the baseline stream-buffer implementation have at best a small effect on performance, with this
effect being more significant for the systems with less aggressive cache configurations. For ex-
ample, when the implementations are used with the lockup cache (typelk), there are pronounced
variations in commit IPC values, but when the implementations are used with the lockup-freecache

16



N S
b S
i

A
f

A
f+

i
A

d
A

d+
i

P
−

10
P

−
32

P
i−

10
P

i−
32

P
f−

10
P

f−
32

2.5

2.0

1.5

1.0

0.5

0.0

lockup free: no restrictions (i)

lockup free: max 2 in−flight fetches (f2)

lockup free: max 1 in−flight fetch (f1)
lockup (lk)

N S
b S
i

A
f

A
f+

i
A

d
A

d+
i

P
−

10
P

−
32

P
i−

10
P

i−
32

P
f−

10
P

f−
32

cache blocks (millions)

0

2

4

6

8

10

12

14

18

20

22

16

 avg commit IPC

(a) performance (i.e., average commit IPC) (b) total number of cache blocks 

P
f+

i−
32

P
f+

i−
10

P
f+

i−
10

P
f+

i−
32

Figure 8: Performance ofsu2corand the total number of cache blocks supplied by the memory
interface when it was run on systems using one of the 15 stream-buffer implementations.

having no in-flight miss restrictions (typei), the commit IPC values vary very little. The increased
performance sensitivity of the more restrictive cache configurations to the stream-buffer imple-
mentation is due to two factors. First, systems with more support for in-flight misses have greater
tolerance for cache misses. Thus, whether a stream-buffer implementation improves performance
by correctly prefetching data that is missing from the cache, or degrades performance by tying
up the memory interface with misfetched data, the overall performance impact, be it positive or
negative, will be smaller.

Second, systems with more support for in-flight misses tend to require fewer clock cycles to
execute an application. Hence, there are fewer clock cycles available for prefetching data, and
there is a reduction in the number of clock cycles between the detection of cache misses for which
the missing data has not been prefetched. As a result of these two effects, systems with less
restrictive cache configurations tend to fetch fewer cache blocks from the memory interface. This
trend is suggested by the relative positions of the curves in Figure 8b. The performance differential
between the stream-buffer implementations is a reflection of the ability of an implementation to
correctly prefetch data and to hold on to the data until it is required. Thus, the implementations
with some form of filtering give better performance (Figure 8a) and generate less memory traffic
(Figure 8b).

When the number of physical registers is increased and/or the bandwidth-limit on the memory
interface is removed, data similar to that presented in Figure 8 is obtained. Due to space con-
straints, this data is not presented, but the following two relationships are nonetheless noted; the
corresponding data is presented in [15].

First, concerning the number of physical registers and the amount of support for in-flight
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misses, for systems using the typei lockup-freecache, the performance impact of the stream-
buffer implementation is even smaller if the number of physical registers is increased. Increasing
the number of registers allows more instructions to be simultaneously in some stage of execution,
which increases the tolerance for cache misses, and decreases the number of clock cycles required
to run the application. Thus, when the number of registers is increased, the commit IPC varies less
for the various stream buffer implementations, and the number of blocks fetched from the memory
system decreases. However, for the systems with restrictive cache configurations, increasing the
number of registers increases the performance sensitivity to the stream buffer implementations. A
larger number of registers increases the percentage of clock cycles in which memory instructions
cannot be issued (Figure 6a), thus increasing the performance sensitivity to the effective cache-miss
latency. Because the performance impact of such stalls is a function of their duration, stream-buffer
implementations that are better at lowering the effective cache-miss latency give better perform-
ance. Furthermore, the implementations that perform better generate less memory traffic because
there is less time to prefetch the data.

Second, concerning the bandwidth of the memory interface, removal of the bandwidth limit
leads to a more pronounced difference in the relative performance obtained with the stream-buffer
implementations. When memory bandwidth is not limited, the stream-buffer implementations that
are more beneficial are those that are better at prefetching and holding onto data that is subsequently
required to resolve a cache miss. Thus, while the techniques for filtering stream-buffer allocations
have a positive performance impact, the incremental prefetching technique, which serves only
to reduce memory bandwidth requirements, has no significant performance impact. However,
incremental prefetching reduces the bandwidth consumed by stream buffers by 50%.

Finally, several comments concerning all the benchmarks3 should be made. On systems with a
type i lockup-freecache, the stream-buffer enhancements had less than a 5% impact on perform-
ance with the exception ofswm256. Furthermore, these enhancements had little impact on the
performance ofmdljdp2andhydro2dirrespective of the cache organization, while they signific-
antly degraded the performance oftomcatvif in-flight miss restrictions existed.Appsp, su2cor, and
swm256performed best if the system included one of the following two sets of mutually exclusive
enhancements: (1) the PK-allocation filters, and optionally, the min-delta stride predictor; or (2)
the per-load stride predictor with filtering, and optionally, incremental prefetching. Finally, for all
the systems considered and all benchmarks, the stream-buffer implementations with PK-allocation
filters or stride filters generated between 1.5 and 4.2 times less memory traffic. In most cases, the
per-load stride predictor with stride filtering generated the least amount of memory traffic.

6 Conclusions

In this paper, we have presented an investigation and analysis of the design of the register file and
the other levels of the data memory hierarchy. This analysis has focused on identifying perform-
ance trends and design relationships. The components we considered affect the apparent time-cost
of servicing cache misses and the tolerance for data-cache misses. The following conclusions can
be drawn from the analysis.

First, similar performance was obtained from all systems having support for fewer than four

3The data for these benchmarks is given in Section A.2.

18



in-flight misses, irrespective of the register-file size, the issue width, and the memory bandwidth.
While increasing the hardware support for in-flight misses beyond this point did increase system
performance, for the configurations considered, the improvement was less than that obtained by
increasing the number of registers.

Second, systems with a greater amount of support for in-flight misses require a greater propor-
tion of the support to be for secondary misses, since the secondary miss rate tends to increase as
the amount of in-flight-miss support is increased. Additional registers should also be provided to
offset the increase in the average register lifetime that is a result of the ability to support a larger
number of in-flight misses.

Third, system performance is relatively unaffected by the bandwidth of the memory interface
if the processor can issue a maximum of only four instructions per cycle. But, when the issue
width is increased to eight, the bandwidth of the memory interface has a more significant impact
on performance, especially in systems with support for at least four in-flight fetches. While the
performance sensitivity to the bandwidth is small for all but the most aggressive systems, the
reported percentages represent a lower bound due to the assumption that neither the instruction
cache nor the write buffer use the memory interface. If these two components were to compete for
the bandwidth of the interface, contention would increase, which would increase the performance
sensitivity to the bandwidth. The rate of this increase would be greater for systems with the eight-
way issue processor since wider issue processors generate more traffic in a given time period
than narrower issue processors. Nonetheless, if stream buffers are not included in the system, the
bandwidth is unlikely to be a significant factor for the less aggressive systems and the benchmarks
discussed in this paper.

Fourth, the addition of stream buffers to a system leads to a more significant performance
increase for systems having either more restrictive lockup-freecaches, more memory bandwidth,
or more instruction issue capability. For the systems investigated, the design of the lockup-free
cache had the greatest impact on performance, and the bandwidth of the memory interface had the
least impact. Increasing the number of registers results in a more significant performance increase
with systems having a lockup cache but a less significant increase with systems having a lockup-
free cache. The increase is larger for the systems with the eight-way issue processors.

Fifth, system performance is not significantly affected when stream buffers are used that have
traffic filters and dynamic-stride calculators. This observation is not surprising since the perform-
ance of the benchmarks is at best 16% better when the memory interface has an infinite bandwidth.
In other words, contention for the interface is not a significant problem. This observation also sug-
gests that the address stream generated by cache misses when each benchmark is run is dominated
by interleaved unit-stride streams. Thus, the cost of supporting dynamic-stride calculation is not
warranted for these seven benchmarks. However, in spite of the similar performance of many of
the enhanced stream-buffer implementations, the cost of those that have traffic filters is probably
warranted since the system model does not take into account all possible sources of memory traffic.
The exact type of filter would have to be determined when a specific system is being considered. A
larger set of benchmarks would also be required, as well as including all of the traffic effects into
the model.

Finally, the incremental-prefetching technique we introduce reduces the bandwidth consumed
by stream buffers by half with little performance loss.
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A Results for Commit IPC and Memory Blocks

A.1 Implications of In-flight Data-cache Misses

This section presents the average commit IPC as a function of the support for in-flight data-cache
misses for each benchmark for its (simulated) execution on the investigated systems (see Sec-
tion 3). These commit IPC values are presented graphically in Figures 9-15 by the height of the
bars in the 3-dimensional bar charts, and are given explicitly in the table below each chart. The
following table gives the figure for each benchmark.

Benchmark Figure
appsp 9
compress 10
hydro2d 11
mdljdp2 12
su2cor 13
swm256 14
tomcatv 15

A.2 Implications of Stream Buffers

This section presents the average commit IPC for each benchmark and the total number of cache
blocks supplied by the memory interface when the benchmark was run on systems using one of
the 15 stream-buffer implementations. These simulation results correspond to those which are
given in Figure 8 forsu2cor, but include the impact of changing the issue width, the number of
registers, and the fetch spacing. These results were obtained by simulating the execution of each
benchmark on 480 systems. However, for several benchmarks, only a subset of the systems were
considered because these benchmarks achieved similar performance on a number of the systems.
The following table gives the figures for each benchmark.

Benchmark Figure
commit IPC blocks fetched

appsp 16 17
compress 18 19
hydro2d 20 21
mdljdp2 22 23
su2cor 24 25
swm256 26 27
tomcatv 28 29
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Figure 9: Average commit IPC ofappspfor its (simulated) execution on the investigated systems.
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Figure 10: Average commit IPC ofcompressfor its (simulated) execution on the investigated
systems.

23



avg IPC

0

0.5

1

1.5

2

2.5

physical registers
64

96
128

256

cache configuration

ip lkf4 m4 f2 m2 f1 m1

avg IPC

fs
pa

ce

0

8

0

8

0

8

0

8

256

128

96

64
# 

re
gs

p i f4 m4 f2 m2 f1 m1 lk

fetch
spacing = 0
fetch
spacing = 8

IPC

(c,r:s)

cache
# registers
& spacing

Legend

p i f4 m4 f2 m2 f1 m1 lk

0

8

0

8

0

8

0

8

fs
pa

ce

0

8

256

128

96

64

# 
re

gs

48

IPC values for each cache configuration IPC values for each cache configuration

0

8
48

(a) 4−way issue processors (b)  8−way issue processors

5.07
3.85 3.22 1.84 2.03 1.38 1.05 1.02

0.98
3.17 3.16 1.74 2.03 1.32 1.05 1.02

4.92
3.21 2.86 1.76 1.95 1.36 1.05 1.01

0.97
2.78 2.78 1.68 1.95 1.31 1.05 1.01

4.44
2.67 2.55 1.71 1.89 1.33 1.03 1.00

0.96
2.49 2.49 1.65 1.89 1.29 1.03 1.00

3.27
1.69 1.68 1.43 1.51 1.17 0.95 0.92

0.88
1.62 1.62 1.39 1.48 1.13 0.95 0.92

2.66
2.14 2.09 1.52 1.67 1.23 1.02 0.95

0.88
2.05 2.05 1.50 1.66 1.19 1.02 0.95

2.64
2.04 1.99 1.49 1.62 1.21 1.01 0.94

0.88
1.96 1.96 1.47 1.62 1.18 1.01 0.94

2.32
1.49 1.48 1.30 1.36 1.10 0.92 0.88

0.84
1.44 1.44 1.27 1.35 1.07 0.92 0.88

1.83
1.05 1.05 1.00 1.00 0.93 0.80 0.78

0.75
1.02 1.02 0.98 0.99 0.91 0.80 0.78

physical registers
48

64
96

128

cache configuration

i lkf4 m4 f2 m2 f1 m1p

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
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Figure 12: Average commit IPC ofmdljdp2for its (simulated) execution on the investigated sys-
tems.
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Figure 13: Average commit IPC ofsu2corfor its (simulated) execution on the investigated systems.
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Figure 14: Average commit IPC ofswm256for its (simulated) execution on the investigated sys-
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Figure 16: Average commit IPC values forappsp.
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Figure 17: Memory blocks fetched byappsp.
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Figure 18: Average commit IPC values forcompress.
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Figure 19: Memory blocks fetched bycompress.
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Figure 20: Average commit IPC values forhydro2d.
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Figure 21: Memory blocks fetched byhydro2d.
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Figure 22: Average commit IPC values formdljdp2.
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Figure 23: Memory blocks fetched bymdljdp2.

36



4−way issue processors

N

Si
Sb

Af
Af+i

Ad
Ad+i
P−10
P−32

Pi−10
Pi−32
Pf−10
Pf−32

Pf+i−10
Pf+i−32

(a
) 

48
  r

eg
is

te
rs

, f
et

ch
 s

pa
ci

ng
 =

 8

N

Si
Sb

Af
Af+i

Ad
Ad+i
P−10
P−32

Pi−10
Pi−32
Pf−10
Pf−32

Pf+i−10
Pf+i−32

(b
) 

64
 r

eg
is

te
rs

, f
et

ch
 s

pa
ci

ng
 =

 8

N

Si
Sb

Af
Af+i

Ad
Ad+i
P−10
P−32

Pi−10
Pi−32
Pf−10
Pf−32

Pf+i−10
Pf+i−32

(c
) 

48
  r

eg
is

te
rs

, f
et

ch
 s

pa
ci

ng
 =

 0

N

Si
Sb

Af
Af+i

Ad
Ad+i
P−10
P−32

Pi−10
Pi−32
Pf−10
Pf−32

Pf+i−10
Pf+i−32

(d
) 

64
 r

eg
is

te
rs

, f
et

ch
 s

pa
ci

ng
 =

 0

C
om

m
it 

IP
C

N

Si
Sb

Af
Af+i

Ad
Ad+i
P−10
P−32

Pi−10
Pi−32
Pf−10
Pf−32

Pf+i−10
Pf+i−32

(e
) 

64
 r

eg
is

te
rs

, f
et

ch
 s

pa
ci

ng
 =

 8

N

Si
Sb

Af
Af+i

Ad
Ad+i
P−10
P−32

Pi−10
Pi−32
Pf−10
Pf−32

Pf+i−10
Pf+i−32

(f
) 

12
8 

re
gi

st
er

s,
 fe

tc
h 

sp
ac

in
g 

=
 8

N

Si
Sb

Af
Af+i

Ad
Ad+i
P−10
P−32

Pi−10
Pi−32
Pf−10
Pf−32

Pf+i−10
Pf+i−32

(g
) 

64
 r

eg
is

te
rs

, f
et

ch
 s

pa
ci

ng
 =

 0

N

Si
Sb

Af
Af+i

Ad
Ad+i
P−10
P−32

Pi−10
Pi−32
Pf−10
Pf−32

Pf+i−10
Pf+i−32

(h
) 

12
8 

re
gi

st
er

s,
 fe

tc
h 

sp
ac

in
g 

=
 0

C
om

m
it 

IP
C

8−way issue processor

lo
ck

up
 c

ac
he

at
 m

os
t  

2 
in

−
fli

gh
t f

et
ch

es
 (

f2
)

no
 r

es
tr

ic
tio

ns
 o

n 
 in

−
fli

gh
t f

et
ch

es
 (

i)

at
 m

os
t 1

 in
−

fli
gh

t f
et

ch
 (

f1
)

lo
ck

up
−

fr
ee

 c
ac

he

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

4.
5

4.
0

3.
5

3.
0

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

Figure 24: Average commit IPC values forsu2cor.
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Figure 25: Memory blocks fetched bysu2cor.
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Figure 26: Average commit IPC values forswm256.
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Figure 27: Memory blocks fetched byswm256.
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Figure 28: Average commit IPC values fortomcatv.
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Figure 29: Memory blocks fetched bytomcatv.
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