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Abstract

Many HTTP resources (pages, graphics, etc.) are exact duplicates of other resources with
different URLs.  If an HTTP cache contains a duplicate of a requested resource, and could
detect this, it could avoid substantial network costs by returning the cached duplicate in
place of the requested URL.  Previous studies have shown that there is substantial duplica-
tion of content in both HTTP and FTP, and several protocols have been proposed to sup-
port efficient and safe duplicate suppression in HTTP.  We use traces covering millions of
HTTP requests to quantify the potential benefit of an HTTP duplicate-suppression exten-
sion. In particular, we show that the benefits vary depending on content-type, and that a
small fraction of Web servers account for most of the duplicated resources.
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1. Introduction

HTTP accounts for most of the bytes flowing over the Internet backbone (up to 75%, in one
study [45]). This bandwidth demand requires continued investment in link and switch capacity,
and leads to congestion, which increases user-perceived latency.  At the edges of the Internet,
which are often bandwidth-constrained, every extra byte transferred adds incremental delay; this
is a particular problem for home users, who do not yet have a cost-effective means to increase
bandwidth above 56Kbits/sec.

Many mechanisms have therefore been implemented or proposed to reduce Web-related
bandwidth requirements.  Above the HTTP level, for example, some designers have learned to
use simpler graphical elements, but the desire for richer user experiences usually prevails over
such pragmatism.  Some new content formats, such as Cascading Style Sheets [26] and HTML
macros [10], can increase the coding efficiency without reducing expressiveness, but other
emerging formats, such as MPEG-1 Layer 3 (MP3) audio [22], provide new bandwidth chal-
lenges. Thus, pressure remains to provide protocol-level mechanisms to conserve bandwidth.

At the HTTP level, such mechanisms include caching, cooperative caching, compression, and
support for partial transfers and differential cache updates (also known as delta encoding). These
all work on a scope of one URL at a time; for example, a Web cache hit results from a repeated
reference to a given URL.

Much of the Web’s content is duplicated: that is, the same content appears at more than one
URL. Duplication might be intentional (as with a mirror site) or casual (as with a logo or back-
ground image).  Some duplicates are only approximate; for example, at a mirror site, where the
displayed content is identical but some of the link targets have been adjusted [7]. Other dupli-
cates are exact byte-for-byte copies.  An earlier study showed that 18% of the data-carrying
responses in a trace were exact duplicates of a response for some other URL [9].

If it were possible to automatically eliminate the Internet transfer of all such duplicates by an
efficient protocol-level mechanism, this would measurably reduce bandwidth requirements, and
would often improve user-perceived latencies.  Several proposals have been made for HTTP
mechanisms to support duplicate suppression.  However, we know of no careful attempt to quan-
tify the benefit of these mechanisms.  Common sense also suggests that the benefits differ ac-
cording to context, yet there have been no prior attempts to identify the most important contexts.

In this paper, we use results from lengthy traces of a moderately large user community to
evaluate the performance of a proposed HTTP duplicate-suppression mechanism.  We limit our
study to the suppression of exact (byte-for-byte) duplicates.  Our trace analyses show that, with a
sufficiently large proxy cache, duplicate suppression could eliminate 5.4% of the responses (or
10.8% of the cache misses), and 6.2% of the Internet bytes transferred (8.9% of the cache-miss
bytes). We also found that some hosts experience duplication far more often than others, and
that the benefits vary significantly based on content-type.
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2. Motivation and context

There are three basic techniques to avoid sending bytes over a network: content simplification,
data compression, and caching.

Content simplification works, to a point. For example, Web designers can use common sense
to reduce page complexity, or special software tools to optimize image coding (e.g., [12]).
Transcoding proxies can reduce image complexity for transmission over slow links [17]. But
some content, such as medical images, broadcast-quality video, and executable software, cannot
be simplified without loss of meaning.

Data compression directly targets the transmission of redundant bits within a single transfer.
Existing general-purpose compression algorithms provide significant size reductions, typically
reducing text file sizes by a factor of three or more.  However, the bulk of Web-related bytes
transferred come from content-types, such as images, video, and audio, which are already
heavily compressed using highly efficient content-specific compression algorithms, and so the
net benefit of applying general-purpose compression to all Web traffic would be relatively
small [33]. The trend towards increased use of non-text media further reduces the potential for
general-purpose compression in HTTP.

With the increased transmission of new data types (such as Java byte codes and other
software), we expect to see progress made on new type-specific compression techniques. For
example, general-purpose algorithms can be tuned for improved compression of binaries [50],
and special-purpose compression algorithms based on parse trees can do even better [13]. Even
so, compression has its limits, and data types such as program binaries inevitably gain com-
plexity with time.

Caching, the third technique for bandwidth conservation, has been successfully applied in
many contexts, including the Web.  Most browsers include a cache, and many sites use Web
proxy caches to take advantage of the locality in a larger reference stream.  Most studies of Web
proxy caches report the hit ratio (HR) per resource and the weighted hit ratio (WHR), weighted
by the size of the response body; the bandwidth reduction ratio should be similar to the WHR,
although the WHR does not account for HTTP and other protocol header overheads1. Studies
have reported WHRs ranging from 14% to 36% (assuming an infinite cache size) [11, 14]; the
variations may be due to differences in user community, geography, or when the traces were
obtained. Reports generated from the NLANR caches [36] show actual WHRs vary tremen-
dously over short timescales.

It seems impossible to significantly increase hit ratios and weighted hit ratios above a certain
(if fuzzy) threshold, probably because of several intrinsic aspects of Web reference streams:

Uncachable resources: Some responses cannot be cached; for example, stock quotes, query
results, or electronic commerce ‘‘shopping baskets.’’  Other responses could be provided
from a cache, save for the serving site’s desire to gather demographic information or ad-

1A digression on terminology: some people prefer the term ‘‘document hit ratio’’ instead of ‘‘cache hit ratio’’
(although many Web resources are not really documents!).  Also, the terms ‘‘byte hit ratio’’ and ‘‘weighted hit
ratio’’ are used interchangeably.
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vertising revenue.  Many potentially-cachable resources actually change fairly rapidly [9],
which would lead to cache incoherence if response for these resources were allowed to be
cached.

Zipf’s law: The Web is so large that many pages will never be referenced more than once in
the reference stream seen by any one cache.  Studies have shown that page re-reference
frequencies (seen from the point of view of a proxy) follow a distribution similar to Zipf’s
law, in which the relative probability for a reference to the kth most popular page is
proportional to 1/k [6, 37]. This implies that in a large universe of pages, most of these
pages are extremely unlikely to be referenced twice in the same reference stream.  Most
cache hits come from a small set of resources, but many references are made to resources
outside this set.

Resource size distribution: Why is the weighted hit ratio almost always lower than the
simple hit ratio?  Williams et al. [48] observed that most references in their traces were
for small resources.  Breslau et al. [6], working from several trace sets, showed that there
is no strong correlation between resource size and access frequency, although the mean
size of popular resources is smaller than the mean for unpopular ones.  One possible ex-
planation for these observations is that a small set of small resources accounts for most of
the cache hits.

2.1. Squeezing more utility out of caching

Given the apparent limits on the performance of simple caches, researchers and vendors have
developed several techniques to extend the utility of Web caches.  If the basic principle of simple
‘‘re-use’’ caching is to exploit repeated references to entire cached responses, the basic principle
of these extended mechanisms is to exploit partial information present in caches.

Such mechanisms include:

Prefetching: If a cache can predict a user’s future references, and if there is spare bandwidth,
the cache can prefetch the expected resources.  When the prediction is correct and timely,
this can increase the WHR and reduce user-perceived latency [4, 25, 27, 39], but in-
evitably increases bandwidth requirements (because of false prefetches).  Prefetching thus
forces a cache operator to choose between improving latency and minimizing bandwidth
requirements.

Partial transfers: HTTP transfers can terminate in mid-stream due to network errors, users
clicking the ‘‘stop’’ button, or when users click on a link before the entire page is loaded.
In HTTP/1.0, the result of a partial transfer is not worth caching, but in HTTP/1.1, a cache
can fill in the missing data using a ‘‘range retrieval request’’ [16]. This creates utility for
partial cache entries.  (Unfortunately, we know of no published statistics for the
prevalence of partial transfers.)

Delta encoding: Douglis et al. [9] analyzed traces to find the rate at which Web resources
change. They showed that the distribution of time-since-last-modification generally has a
broad peak on the time scale of months, many frequently-referenced resources change
much more rapidly: on timescales of hours or days.  This means that responses for such
resources cannot be cached for very long.  However, the changes are often quite small,
which motivates the use of delta encoding [2, 20, 21, 33], in which the server sends just
the difference (or delta) between the cached version and the current version of a resource.
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2.2. Automatic duplicate suppression

The techniques for extending cache utility, discussed in section 2.1, do not exploit one pos-
sible mechanism for exploiting existing cache entries: if two distinct resources would generate
exactly identical responses, then a cache entry for one of them could be used to provide a cache
hit for a request referencing the other.  This technique is called duplicate suppression, and in
principle could avoid a lot of data transfer and the related latency.

In practice, its utility depends on:
1. A simple and efficient way to detect exact duplication.
2. A simple and efficient HTTP protocol extension to carry the necessary meta-

information.
3. A sufficient rate of duplication to justify deploying the protocol extension.

The first requirement is met by the use of a digest (or checksum) algorithm, such as MD5 [42],
for which it is difficult to generate identical digest values (‘‘collisions’’) for two different inputs.

Several protocols have been proposed to address the second requirement.  The first such
design, the ‘‘Distribution and Replication Protocol’’ (DRP) [19], proposed creating a special
Universal Resource Name (URN) out of the MD5 or SHA [35] digest for a resource.  A later
refinement of this proposal retains the traditional HTTP URL mechanism for naming resources,
and transmits the digest in a new HTTP header field [32]. We outline the protocol mechanism in
section 3.1.

2.3. Questions addressed by this study

The study presented in this paper addresses the third requirement: is the rate of duplication
actually sufficient to justify the use of a duplicate-suppression mechanism?  In particular, we
attempt to answer the following questions, with respect to a representative HTTP reference
stream:

• How frequently are duplicates seen?
• What fraction of responses are duplicates?  What fraction of response bytes

are in the duplicates?  What fraction of transfer time is spent on duplicates?

• In what contexts are duplicates most likely?
• Does the duplication rate depend on content type?  Does the duplication rate

depend on response size?  Are some servers more likely to generate dupli-
cates? Are some URLs, even if their content changes rapidly, more prone to
duplication than others?

• What are the implications for cache design?
• How large a cache is required? How long should a potential duplicate be

retained?

• What are the overheads?
• How many extra protocol-header bytes are sent?  How much time is spent

computing checksums?
We also address several more specific issues, including
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• The connection between advertising banners and duplication.

• The connection between mirror sites, DNS nicknames, and duplication.

In another publication [30], we report on:

• Whether caching based on HTTP’s Last-Modified header leads to accidental
incoherence.

3. Prior and related work

Even before the Web had become visible within the Internet research community, Danzig et
al. [8] had identified the problem of duplication among FTP sites, and suggested the use of
server-independent naming to avoid unnecessary transfers of duplicates.  They apparently were
the first to propose a form of Internet proxy caching.  They even used a simple (but not collision-
free) signature scheme to analyze their traces of FTP activity, although they apparently failed to
realize that a signature might be used as a server-independent name.  They also failed to report
on the frequency at which duplicate files were transferred using different filenames or
hostnames.

Santos and Weatherall propose and analyze a link-level duplicate-suppression mechanism
quite similar, in some ways, to the HTTP-level mechanism [44]. In their approach, a ‘‘compres-
sor’’ system is used on the sending side of a link, and a ‘‘decompressor’’ is used on the receiving
side. (In practice, these systems might be integrated into the routers, and would be duplicated for
a bidirectional link.)  The compressor stores each packet’s payload in its cache, and computes a
payload digest (using, e.g., MD5). If the identical payload was already in the cache, the com-
pressor sends a special ‘‘compressed’’ packet containing just the digest, rather than the original
payload. The decompressor therefore receives the first copy of a given payload in uncompressed
form, and subsequent copies in compressed form, and uses its own cache to map from digest
values back to payloads. This algorithm requires that both compressor and decompressor use
identical caching algorithms, and also includes mechanisms for resynchronizing the caches if a
packet be lost or one end is restarted.  Santos and Weatherall report bandwidth savings of about
20%, with relatively little overhead.  They also report an HTTP-specific duplication rate of about
26%, based on trace analysis.

The link-level approach has several advantages over an application-level approach.  It applies
to all applications using a given link, without any need to modify application code, and runs no
risk of affecting end-to-end semantics or cache coherence.  However, it also has several dis-
advantages. Running at link-level requires implementing the algorithm, and the associated cache
storage, at every link in the path where bandwidth is limited, and Internet paths tend to have
many hops2. Core Internet routers probably do not have the capacity to checksum or cache
every packet, so the link-level approach probably is not applicable to core links.  An end-to-end
solution avoids these two problems.

2Paxson reports that ‘‘the operational diameter of the Internet has grown beyond 30 hops’’ [40], although we are
unaware of any published study of the dynamic mean.
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The link-level approach has two other subtle problems specific to HTTP.  Although it avoids
most bandwidth-related delays when replication is detected, it still requires end-to-end com-
munication between client and server, which can add latency due to round-trip time and server
loading. Doing duplicate suppression in an HTTP-level cache close to the client, on the other
hand, avoids all of these delays.  The final problem is that the link-level approach requires exact
duplicate packet payloads, but the support for persistent connections and pipelining in HTTP/1.1
provides a strong incentive for packing of multiple responses into one packet, and without regard
for packet boundaries [38]. This may lead to unique packet payloads even with lots of HTTP-
level duplication, although it is also possible that HTML-level page compositions will be static
enough that substantial packet-level duplication persists.

Broder et al. [7] looked for syntactically similar documents in the Web, rather than byte-for-
byte identical ones.  They use a careful and quantifiable definition of similarity, although they do
not attempt to detect true semantic differences (such as changing ‘‘shall’’ to ‘‘shall not’’ in a
lengthy document).  Using a static sample of 30 million HTML and text documents taken from
the Web, they found 3.6 million ‘‘clusters’’ (12.3 million documents) of similar documents, in-
cluding 2.1 million clusters (5.3 million documents) where each cluster contained only identical
documents (after some canonicalizations).  Thus, in their static sample, about 18% of the docu-
ments were exact or near-exact duplicates, and about 41% were ‘‘similar’’ by their measure.
These results are consistent with the dynamic HTTP-response duplicate rate of 18% found by
Douglis et al. [9] and the dynamic HTTP packet-payload duplication rate of 26% reported by
Santos and Weatherall, although it is important to remember that each of these studies is looking
at distinctly different quantities.

The HTTP-level duplicate-suppression mechanism could, in principle, be used to substitute
‘‘sufficiently similar’’ responses instead of byte-for-byte identical ones, and so the high static
rate of similar documents reported by Broder et al., if representative of the dynamic rate, is en-
couraging. However, we have made no attempt to define ‘‘sufficiently similar’’ and so we can-
not evaluate the potential performance of this extension.

The DRP proposal [19] was apparently intended, in large part, to support binary software dis-
tribution, and its use of digest values as ‘‘content identifiers’’ allows the use of an appropriate
component independent of its (network) source.  Miller and Akala describe the use of ‘‘content-
derived names,’’ also based on digest values, in a software package management context, but do
not discuss the potential for bandwidth savings [29].

3.1. Proposed duplicate suppression protocol

Although our goal is to quantify the potential benefit of HTTP duplicate suppression, not to
critique the possible protocol designs, we describe a simplified protocol, in order to make the rest
of the paper more concrete. Complete specifications for several complete protocols are
available [19, 34].

Although users occasionally load Web pages by typing a URL, in most cases an HTTP trans-
fer is initiated when the browser software follows a link: either explicitly, when the user clicks
on an anchor, or implicitly, via an embedded image or a client script. Except in the relatively
infrequent case where a link leads to another server, the source of the linkage information is also
the source of the linked-to resource.
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Therefore, the same server often controls both the link information and its target. This allows
the server to provide meta-information about the link target as part of the linkage information.
(For example, HTML supports the HEIGHT and WIDTH attributes of an IMG tag, allowing the
browser to reserve screen space for an image before actually loading it.)  To support duplicate
suppression, the server could include in this meta-information an MD5 (or similar) digest of the
link target.

Because MD5 provides 128-bit digests, the probability of two randomly chosen, different ob-
jects having the same digest is approximately 2128, or about 1038. However, it is unclear if MD5
is truly immune to malicious subversion; see section 7 for more discussion.

As an alternative (or complement) to the possibility of a new HTML attribute, the digest value
could be transmitted in a structured type:  DRP introduces a new ‘‘index’’ content-type to
provide meta-information for a consistent set of link targets [19]; similarly, WEBDAV [18]
specifies a similar ‘‘collection’’ resource, whose state consists of a list of member URLs and an
extensible set of properties.

Assume therefore that, by some external mechanism, an HTTP client is about to make a re-
quest for a URL U, and the client already knows the MD5 digest value D for the proper response.
The client can therefore check its cache not only for an existing entry for U; it can also check its
cache for an existing entry with a digest value of D. Either cache entry should therefore be a
satisfactory substitute for getting a response from the actual server. (We defer, for a moment, the
problem of cache timeliness and certain other details.)

If the client’s local cache does not contain the target, it might send its request via a proxy
cache that does.  This request could be of the form ‘‘please send me either a response for URL
U, or a response with MD5 digest value D’’; if the proxy cache has a response cached under
either key, it can return the cache hit rather than forwarding the request to the server. Thus, once
the client knows the proper MD5 digest value, it can use both its own cache and a proxy’s cache
to find a duplicate with the same digest, rather than waiting for a response from the actual server.

HTTP caches can only avoid contacting the server if the cache entry in question hasn’t ex-
pired. HTTP servers can attach expiration information to responses (e.g., using the ‘‘Expires’’
header), and so should probably also indicate, along with the MD5 digest of a link’s target, the
time at which that digest might no longer be valid.  This should make the cached information
returned using duplicate suppression no less timely than that provided by standard HTTP cach-
ing.

Note that this protocol does not require the origin server to actually transmit a response digest
with each response.  In principle, these digests could be recomputed at the caches, although in
practice it might be more efficient for the server to transmit the value (since the server might
already have computed the digest when transmitting the meta-information).  The protocol also
does not require the transmission of an updated digest value with a status 304 (‘‘Not Modified’’)
response, since such a response by definition implies that the cached digest value has not
changed.

The complete specification of a duplicate suppression protocol would require attention to a
number of other issues, such as whether HTTP header information for a cached response (such as
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authentication information) can properly be associated with a duplicate-suppression response for
a different resource.  For the purposes of evaluating potential benefit, we ignore these details,
although in section 7 we discuss some aspects of security.

3.2. Duplicate suppression and cookies

Many Web applications rely on a browser mechanism that allows the server to store a small
amount of state at the client.  This state is known as a cookie. In the cookie protocol [24], an
HTTP server supplies a ‘‘Set-Cookie’’ header with a response.  The client browser then stores
the cookie value in a database keyed by the server host name, and returns the cookie on certain
subsequent requests to the same host, using a ‘‘Cookie’’ header.

The value supplied in a Set-Cookie response header is normally meant only for a single user,
and the response to a request containing a Cookie request header might depend on the user-
specific Cookie value.  Therefore, caching of responses with cookie-related headers (in either the
request or the response) can lead to semantic errors, including the accidental release of personal
information. The cookie specification explains how some of these issues can be resolved with-
out disabling caching, but many proxies simply refuse to cache cookied-related responses rather
than following complex (and possibly fallible) caching rules.

One study found that cookies are one of the more prevalent causes for uncachable responses:
Feldmann et al. [15] report on two traces where 19% and 30% of the responses were uncachable
due to cookies.  However, another study by Wolman et al. [49] reported only 4.4% of responses
as being uncachable due to cookies, and of those, only a tiny fraction would otherwise have been
cachable. It therefore remains unclear exactly how significantly the use of cookies decreases
cache performance.

Duplicate suppression might provide a way to increase the cachability of cookie-related
responses. We can start by observing that if a response is duplicated, then it probably is not
client-specific. But the cookie mechanism can give rise to ‘‘duplicate’’ responses (in this case,
sharing a URL but in response to different Cookie request headers). Remember that the client
sends a Cookie header on subsequent requests to a server that send a Set-Cookie response
header. So a client might send a Cookie header for a request on resource
http:/example.com/logo.gif, even if logo.gif itself has no client-specific value.

If the origin server supplies the client with a digest for a particular resource, this implies that
server is willing to let the client use any response with that digest in place of the requested
resource. So, duplicate suppression bypasses policies that restrict the use of cached responses
for requests with Cookier headers.  This is another example where the use of digest-based
naming helps ensure correct semantics without requiring duplicated transmission of data.

4. Trace collection

We obtained our traces at the Palo Alto, California proxy of Compaq Computer Corporation,
one of several firewall proxies serving the company.  The proxy is used for access control, not
for performance, and so is not set up as a cache.
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The proxy runs version 1.1.20 of the Squid proxy software [47]. We modified Squid to com-
pute an MD5 digest for the body of each response, and to log these digest values in one of the
log files Squid already keeps (squid.store.log). We also augmented this log format to
include the connection duration, in milliseconds, as measured by the proxy.  These changes were
relatively simple, but Squid is a complex program and there may be a few error conditions in
which we could log the wrong digest value.

Each squid.store.log entry also includes a timestamp (with roughly millisecond resolu-
tion), status information, the length of the response body, and the values of selected HTTP
response header fields:  ‘‘Date’’, ‘‘Last-Modified’’, ‘‘Expires’’, and ‘‘Content-Type’’.  Unfor-
tunately, it does not include the value, if any, of the ‘‘If-Modified-Since’’ request header; this
makes it impossible to completely model the behavior of a caching proxy.

The squid.store.log also does not include any kind of client identification.  We there-
fore cannot use these logs to study the potential for duplicate suppression in browser caches
(which would also require us to accurately model the contents of these caches, a near-impossible
task when we do not see the local references from these clients.)  Browser caches are usually
much smaller than proxy caches, so one might expect the potential for browser-local duplicate
suppression to be relatively small, but we will avoid further speculation on this point.

The log entries contain complete URLs with server host names (such as
http://www.compaq.com/), rather than server IP addresses.  A given name might resolve
to several IP addresses, allowing transparent server replication; we assume that any site with this
feature is internally consistent.

In some cases, several names resolve to a single IP address; for example, www.compaq.com
and compaq.com might actually be identical.  This can give rise to apparent duplicates, since
two URLs leading to the same server file will appear to be different.  From the point of view of
an HTTP cache, they are different URLs: HTTP/1.1 specifies the use of the name in the Host
header, rather than the server’s IP address, to determine server identity.  Therefore, we assume
that no proper HTTP cache would satisfy a request for compaq.com/home.html with a
cache entry for www.compaq.com/home.html.

The average log entry consumes about 169 bytes, or about 44 bytes after compression with
gzip. It is thus feasible to store many millions of log entries on a moderately large disk.

We collected a continuous trace covering 23 days from 17 October 1998 to 11 November
1998, inclusive. The trace includes 29,390,845 log entries, and occupies 1.2 GBytes in com-
pressed form.  The busiest day during the trace accounts for 1,936,315 log entries.

For certain of our analyses, we also used a longer trace, covering 90 days from 1 January 1999
through 31 March 1999.  This trace includes 125,259,641 log entries, and occupies 5.1 GBytes in
compressed form.  The busiest day during the trace accounts for 2,085,909 log entries.
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5. Trace analysis

We wrote a program to analyze a trace.  It starts by parsing the extended
squid.store.log format, skipping over unusable log entries.  These include malformed
entries, aborted transfers, all HTTP methods other than ‘‘GET’’, and all HTTP response status
codes other than 200 (the normal success code, where the response carries the entire body of the
resource value).

The program also skips a relatively small set of responses which match both the URL and
MD5 digest of a previous response, but which have different content-type or content-length
values (according to the log entries). Since it should not be possible to generate the same MD5
digest if the length varies, we believe that these ‘‘impossible’’ values represent failed transfers
that are not indicated as such in the log.  A review of the Squid sources reveals several possible
places where a transfer could be aborted without being logged as such (this is our fault, not a bug
in Squid).  Some of the content-type mismatches may reflect a changed content-type assignment
at the server, perhaps because of a misconfiguration, but we also try to skip these to avoid con-
fusing the results.

From the 29,390,845 log entries in our 23-day trace, this winnowing process yielded
18,802,027 entries (about 64%) usable for our analysis. For the 90-day trace, winnowing yielded
79,441,708 usable entries (about 63%).

The analysis program uses each entry to create one or more nodes in an ad hoc database. For
example, a record for each unique MD5 digest Di is stored in a hash table. This record serves as
the head of a list of nodes each representing a tuple (Di, URLj), where URLj is a distinct URL
with at least one response matching digest Di. Each such node contains back-pointers to a nodes
describing URLj in more detail, and itself serves as the head of a list of nodes with per-entry
information (such as elapsed time).  If the list associated with Di contains at least two elements,
this implies that the trace contains a duplicated response with that digest value.

Once the database has been created, the linkages between the various nodes allow the analysis
program to traverse the database in various orders, collecting statistical information about the
responses described in the trace.  For example, the program can iterate over a list of all known
servers, and thereby discover which servers are most susceptible to duplication.

The analysis program keeps its database in main memory.  A database with tens of millions of
entries requires a significant amount of RAM to avoid excessive paging; this program cannot
feasibly analyze arbitrarily long traces. While the memory requirements vary somewhat with the
analysis requested, because of the creation of auxiliary data structures, we found that analysis of
our 23-day trace required about 2080 MBytes of program memory.  This is not simply a problem
for simulation, since a practical implementation of duplicate suppression would require a cache
to keep the necessary index structures in main memory.  Fortunately, this probably represents a
generous upper bound on the incremental memory use of duplicate suppression, since roughly
half of that 2080 MBytes is used for storing information that is only useful for simulation (such
as event timestamps), and another quarter is already needed for caching (such as URLs).  In
practice, support for duplicate suppression would probably require about 24 to 32 additional
main-memory bytes per cache entry, for MD5 digests and several pointers.
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Analysis of the 90-day trace required over 7400 MBytes of program memory.  Because we
had no systems available with more than 8 GB of RAM, this set a practical upper limit on the
feasible trace length.

We note one important shortcoming of our analysis.  In actual use, the duplicate suppression
mechanism described in section 3.1 requires that client has received meta-information (e.g., a
digest value) from the server S for a URL U before it can generate a request for U that might be
duplicate-suppressed by a proxy cache.  That is, the client must have made at least one prior
reference to a resource on S3 before the reference to U. Since our logs do not contain client
identities, we cannot simulate this step, and so we assume that the client might learn the meta-
information by magic, if necessary.  This assumption is acceptable, because our intent is to find
the upper bound on the performance of duplicate suppression.

5.1. Cache simulation

Although we obtained our trace at a non-caching proxy, our analysis program attempts to
simulate the behavior of a caching proxy, since duplicate suppression implies the use of a cache.
We must also avoid crediting the duplicate suppression algorithm with ‘‘hits’’ that would have
been provided anyway by a normal cache.  However, we use an atypical approach to HTTP
cache simulation.

A typical HTTP cache uses two mechanisms to increase the likelihood that it will provide
accurate responses:

1. Expiration times: If the server provides an ‘‘Expires’’ header, the cache assumes
that the response can be used until that deadline, without refreshing it from the
server. Otherwise, some caches estimate an expiration time, based on the ‘‘Last-
Modified’’ time and other parameters.

2. Revalidation: If a cache entry has expired, the cache checks with the server to see
if the entry is still valid.  It does this check by sending a GET request with an
‘‘If-Modified-Since’’ header including the ‘‘Last-Modified’’ date from the cached
response; if the resource is unmodified, the server responds with a status code of
304 (‘‘Not modified’’).

At a proxy cache, which acts as both client and server, the picture is more complicated.  For
example, a proxy that receives a GET request with an ‘‘If-Modified-Since’’ header might find in
its cache a matching and unexpired entry (and should return a 304 response), or a more recent
unexpired entry (and should return a 200 response), or it might have to forward the request
towards the ‘‘origin server’’ (the master server for the resource).

The HTTP caching mechanisms do not guarantee that caches provide accurate (that is, cache-
coherent) responses, for several reasons:  The expiration time might be too optimistic, or the
Last-Modified timestamp might be wrong (perhaps due to clock skew), or the source might be
modified twice during one second (a condition not detectable with the one-second resolution of
the ‘‘Last-Modified’’ header).  On the other hand, the use of timestamps to check validity
eliminates certain possibilities for cache hits, especially for dynamic resources.  HTTP/1.1 intro-

3Or to another server S’ that speaks for S.
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duces a new ‘‘entity tag’’ mechanism to avoid some of these problems [16], but Squid 1.1.20
does not understand entity tags, and so these do not appear in our logs.

Instead of trying to emulate an HTTP cache (partly because our traces lack ‘‘If-Modified-
Since’’ header values), we simulate a ‘‘perfect coherency’’ cache, where a request seen for a
cached URL will always miss if the origin server would return a different value, and will always
hit if the origin server would generate the exact same value.  We use the MD5 digest values from
our logs, and the fact that our logs (unlike those of a true cache) contain an origin-server
response for every request.  This allows us to test, on every request, whether the origin server’s
response is identical to what would have been cached (we assume no MD5 collisions).

While a perfect coherency cache does not generate exactly the same set of hits as a normal
HTTP cache, we believe that it generally will see a slightly higher hit rate (because of the poten-
tial for hits after an entry has expired, and because of the potential for hits on dynamic resour-
ces). This gives us a more conservative estimate of the value of duplicate suppression, by in-
creasing the apparent performance of the baseline (no duplicate suppression) case.

If one assumes an infinite cache, the perfect coherency simulation is also trivial to implement
in our analysis program: if any two responses for URLj have the same digest value Di, then the
second is a cache hit.  If a response for URLj arrives with a unique digest value, then it represents
a cache miss.  We decided not to simulate finite caches for other reasons (chiefly, the need to
choose and implement a realistic replacement policy), so we avoid the complexity of simulating
a finite perfect-coherency cache.

We did, however, simulate two different kinds of infinite cache.  In the simpler version, no
cache entry is ever deleted.  In the more realistic version, used for most of our results, a cache
entry is deleted if a newer entry is created for the given URL.

Because our trace was made at a non-caching proxy, we must consider how the use of an
infinite cache affects the processing of client requests carrying ‘‘If-Modified-Since’’ headers.  If
a traced request received a 304 (i.e., not modified) response, then a real caching proxy should
also return 304: either because it has no cache entry and forwarded the request, or because it has
a coherent entry with the proper Last-Modified date (it should not have an entry with a newer
Last-Modified date).  If a traced ‘‘If-Modified-Since’’ request received a 200 response, then a
cache would also return a 200 response, except in cases of coherency failure (not, alas, impos-
sible).

Our logs contain enough information to discover if a traditional HTTP cache would in fact
have yielded a non-coherent response, either because the Last-Modified date matches but the
response isn’t identical, or because the expiration deadline is too optimistic. We report else-
where on the results of this analysis [30].

6. Results

In this section, we present the results of our trace analyses.



A TRACE-BASED ANALYSIS OF DUPLICATE SUPPRESSION IN HTTP

13

6.1. Overall trace statistics

Our 23-day trace included 29,390,845 individual log entries. Of these, 19,119,669 (65%) had
a response status of 200 (i.e., carried a full response body).  Table 6-1 shows the distribution of
the most common status codes; we ignore all but the status-200 responses in our analysis.

Code Meaning Count Fraction
200 OK 19119669 65.05%
204 No Content 833008 2.83%
206 Partial Content 42035 0.14%
301 Moved Permanently 432914 1.47%
302 Found [Redirect] 1503323 5.11%
304 Not Modified 6538793 22.25%
400 Bad Request 413291 1.41%
404 Not Found 409474 1.39%
500 Internal Server Error 54123 0.18%

Table 6-1: Distribution of response status codes

Our analysis program ignored an additional 317,648 log entries (1.1% of the total) because of
various consistency checks.  This included just 4,104 entries skipped because two responses with
the same MD5 digest and URL had different lengths or content-types.  This left 18,802,021
‘‘useful’’ responses, containing just over 200 GBytes of data (not counting HTTP headers), and
representing about 32.4 million seconds of total service time.  (Of course, most of these transfers
took place in parallel; the total clock time covered by the trace is under 2 million seconds.)  The
mean service time was about 1.5 seconds, and the mean response body size was about 9.5
Kbytes.
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Figure 6-1: Daily statistics (23-day trace)

The request load in these traces varies considerably from day to day, with weekend use about
20%-25% of the mid-week load.  Figure 6-1 shows the total request rate, sampled at 24-hour
intervals. It also shows the variation in the rate of ‘‘useful’’ entries (with respect to our
analysis), and the rate at which new entries would be added to a infinite perfect-coherency cache.
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Figure 6-2: Daily statistics (90-day trace)

This rate shows a general decrease over time, but may be at or near an asymptote by the end of
our trace, implying that even an infinite cache would have reached a limiting miss-rate after
several weeks of operation.  In fact, a similar graph for the 90-day trace (figure 6-2) shows no
obvious long-term trend in the arrival of new cache entries.

6.2. Frequency of duplication

Over the entire 23-day trace, our infinite cache stored 95 GBytes in 5,788,702 entries, assum-
ing that it kept just one entry per URL.  (An infinite cache that stored all past entries for every
URL would have required 138 GBytes in 9,172,918 entries.)

Our infinite perfect-coherency cache simulation encountered 9,333,219 cache misses.  There-
fore, there were 9,468,802 cache hits, for a hit ratio of 50.4%.  This ratio is higher than has
usually been reported for real caches, presumably because our perfect-coherency cache would
store some responses normally not marked as cachable.  (If one calculates the hit ratio using the
total number of requests, rather than the total number of body-carrying responses, as the
denominator, the result is 32.2%.  Note that calculation accounts for all of the status 304 ‘‘Not
Modified’’ responses seen in the trace.)

For bandwidth reduction, the simple cache hit ratio matters less than the byte-weighted hit
ratio, which was 30.4% over the entire trace.  In other words, the infinite perfect-coherency
cache would eliminate 30.4% of the server response bytes, compared to a non-caching proxy.
(In this case, the status 304 ‘‘Not Modified’’ responses are negligible, since they never carry
response bodies, and their response headers are typically small.)

Had the duplicate-suppression mechanism been applied to every eligible request, it would
have avoided 1,006,324 of the retrievals in our trace, or 5.4% in addition to the cache-hit ratio of
50.4%. Duplicate-suppression ‘‘hits’’ always take the place of cache misses, rather than cache
hits, so their benefit always adds to the benefit of simple caching.

When weighted by the number of bytes transferred, best-case duplicate suppression could
eliminate 6.2% of the server response bytes, in addition to the bandwidth savings provided by
simple caching.
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Of the 5,788,702 URLs in the trace, 1,503,822 (25.9%) were the subject of at least one cache
hit. 943,807 (16.3%) were duplicated under a different URL.

Since duplicate suppression requires the use of a cache of prior response, all of our analyses
assume that the cache is also used in the traditional manner.  However, in theory one could use
the cache contents only for duplicate-suppression, and otherwise have no cache hits.  Applying
this scenario to our trace would increase the number of requests where duplicate suppression
(rather than simple caching) would apply, to 16.9% of the status-200 responses (rather than
5.4%). The byte-weighted ratio increases to 13.5% (rather than 6.2%).  In other words, almost
17% of the response bodies in our trace are identical to a prior response for some different URL
(but possibly also identical to a prior response for the same URL).

Figures 6-3 and 6-4 show the unweighted cache-hit ratio and duplicate-suppression ratios,
sampled at 24-hour intervals. They also show the unweighted ‘‘total’’ ratio (including both
cache hits and duplicate-suppression ‘‘hits’’).  Figures 6-5 and 6-6 show the corresponding byte-
weighted ratios.  Note that the unweighted and weighted figures use slightly different vertical
scales, for clarity.

The weighted cache-hit ratio is much lower than the unweighted cache-hit ratio, but the
weighted duplicate-suppression ratio is actually higher than the unweighted duplicate-
suppression ratio.  Therefore, the net bandwidth improvement due to duplicate suppression is
more significant than one would expect from the unweighted ratios.
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Figure 6-3: Daily ratios (23-day trace)

The cache hit and duplicate suppression ratios in all of figures 6-3 through 6-6 show an initial
increase from a cold-cache start, but then the curves level off.  The graphs for the 90-day trace
seem to show a slightly increasing trend even many after weeks, and linear regressions confirm
that there is a small, nearly negligible, positive slope.  However, these regressions have relatively
poor correlation coefficients.  Table 6-2 shows the results of the regressions, both over the entire
90-day trace and over the final 45 days (i.e., treating the first 45 days as a cache warmup period).
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Figure 6-4: Daily ratios (90-day trace)
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Figure 6-5: Daily ratios, weighted by response size in bytes (23-day trace)
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Figure 6-6: Daily ratios, weighted by response size in bytes (90-day trace)
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Dependent variable Interval Slope
(% per day)

Correlation
coefficient

cache-hit ratio all 90 days 0.144 0.642

cache-hit ratio final 45 days 0.007 0.044

duplication ratio all 90 days 0.001 0.076

duplication ratio final 45 days 0.010 0.359

weighted cache-hit ratio all 90 days 0.105 0.559

weighted cache-hit ratio final 45 days 0.047 0.238

weighted duplication ratio all 90 days 0.039 0.591

weighted duplication ratio final 45 days 0.033 0.286

Table 6-2: Linear regressions for figures 6-4 and 6-6

6.3. Contexts where duplication is most likely

The unweighted duplication ratio never gets much above 6%, on a daily basis, which implies
that it might not be worth the extra protocol overhead. This statistic, however, is calculated over
all responses in our trace, but one might expect that some sets of resources are far more likely
than others to be subject to duplication.  If so, one could limit the protocol overhead of duplicate
suppression to these contexts, and concentrate the effort where the benefits justify the costs.

Scheme Total
refs

Cache
hits

Duplicates Total
Mbytes

Cache hit
ratio

Weighted
HR

Dup
ratio

Weighted
DR

All 18802021 9468802 1006324 205310 0.50 0.30 0.054 0.062

http: 18779187 9464698 1005334 174833 0.50 0.30 0.054 0.055

ftp: 22834 4104 990 30476 0.18 0.35 0.043 0.106

Table 6-3: Overall duplication statistics, by scheme

Most of the traced references are to ‘‘http:’’ URLs, but a small fraction are to ‘‘ftp:’’ URLs.
In table 6-3, we show results broken down by URL scheme.  The FTP URLs show a slightly
lower duplication ratio (DR), but a higher weighted DR.  FTP transfers average two orders of
magnitude longer than HTTP transfers, and the difference in weighted DRs may reflect frequent
duplication of some especially long FTP transfers (such as software downloads).  Although FTP
transfers are now nearly insignificant to the overall network load, duplicate suppression might be
quite beneficial for these downloads.

We then broke down the results by content-type. Table 6-4 lists the ten most frequently-
referenced content-types.  Table 6-5 lists the ten content-types with the highest duplication
ratios, excluding any content-type with fewer than 1000 total references.  The ‘‘image/gif’’ type
is the only one that shows up in both tables, making it the most obvious choice for general-
purpose servers.  (The rare ‘‘image/jpg’’ seems to be a non-standard name for ‘‘image/jpeg’’.)
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Content-type Total
refs

Cache
hits

Dups Total
Mbytes

Cache
hit

ratio

WHR Dup
ratio

WDR

image/gif 9687564 6907047 691492 35800 0.71 0.57 0.071 0.096

text/html 4897223 1154558 166949 51235 0.24 0.17 0.034 0.013

image/jpeg 2498656 919973 112300 30022 0.37 0.26 0.045 0.040

application/octet-stream 1066245 69426 14577 49112 0.07 0.36 0.014 0.118

text/plain 330130 257981 8494 4019 0.78 0.56 0.026 0.029

application/x-javascript 152154 78252 6367 150 0.51 0.70 0.042 0.027

audio/x-pn-realaudio 31285 15893 115 1181 0.51 0.16 0.004 0.003

unknown 18928 8255 166 104 0.44 0.17 0.009 0.000

text/css 15396 13735 447 36 0.89 0.92 0.029 0.000

application/zip 10913 3054 523 6621 0.28 0.14 0.048 0.046

WHR = byte-weighted cache hit ratio; WDR = byte-weight duplication ratio

Table 6-4: Duplication statistics for 10 most frequent Content-types

However, several audio- and video-related content-types show significant duplication ratios, and
sites with such content might also benefit from automatic duplicate suppression.

Content-type Total
refs

Cache
hits

Dups Total
Mbytes

Cache
hit

ratio

WHR Dup
ratio

WDR

audio/x-midi 3216 1420 488 62 0.44 0.31 0.152 0.129

audio/midi 5219 1822 783 129 0.35 0.28 0.150 0.155

image/x-xbitmap 4569 1766 536 4 0.39 0.25 0.117 0.000

image/jpg 1053 616 120 7 0.58 0.43 0.114 0.000

application/java-vm 3936 2634 434 17 0.67 0.65 0.110 0.118

audio/basic 3853 1578 312 2719 0.41 0.05 0.081 0.005

video/mpeg 1458 299 105 3051 0.21 0.14 0.072 0.048

image/gif 9687564 6907047 691492 35800 0.71 0.57 0.071 0.096

application/x-director 1405 651 85 194 0.46 0.51 0.060 0.046

video/x-msvideo 1050 173 61 1921 0.16 0.14 0.058 0.066

WHR = byte-weighted cache hit ratio; WDR = byte-weight duplication ratio

Table 6-5: Duplication statistics, 10 Content-types with highest DR

Table 6-6 list the eleven content-types with the highest weighted duplication ratios, again ex-
cluding any content-type with fewer than 1000 total references (we show eleven types to include
the popular ‘‘image/jpeg’’). Here, several types commonly used for software distribution show
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Content-type Total
refs

Cache
hits

Dups Total
Mbytes

Cache hit
ratio

WHR Dup
ratio

WDR

audio/midi 5219 1822 783 129 0.35 0.28 0.150 0.155

audio/x-midi 3216 1420 488 62 0.44 0.31 0.152 0.129

application/octet-stream 1066245 69426 14577 49112 0.07 0.36 0.014 0.118

application/java-vm 3936 2634 434 17 0.67 0.65 0.110 0.118

app’n/x-zip-compressed 2501 344 78 4835 0.14 0.14 0.031 0.100

image/gif 9687564 6907047 691492 35800 0.71 0.57 0.071 0.096

video/x-msvideo 1050 173 61 1921 0.16 0.14 0.058 0.066

video/mpeg 1458 299 105 3051 0.21 0.14 0.072 0.048

application/zip 10913 3054 523 6621 0.28 0.14 0.048 0.046

application/x-director 1405 651 85 194 0.46 0.51 0.060 0.046

image/jpeg 2498656 919973 112300 30022 0.37 0.26 0.045 0.040

WHR = byte-weighted cache hit ratio; WDR = byte-weight duplication ratio

Table 6-6: Duplication statistics, 11 Content-types with highest WDR

up, especially ‘‘application/octet-stream’’, which is also in the top four by reference frequency.
This seems to confirm the intuition behind the DRP proposal, that software components are often
duplicated.

We counted the number of duplicates we saw for each URL, over the entire trace.  Almost
84% of the URLs were never involved in duplication; 16% were duplicated exactly once, and
0.15% were duplicated exactly twice. In other words, very few URLs are duplicated more than
once. However, figure 6-7, which plots the cumulative fraction of the total number of distinct
duplicate responses as a function of the number of duplicates per URL, shows that some highly-
duplicated URLs account for most of the duplication.  In fact, half of all duplicate responses
come from URLs that give rise to at least 406 different duplicate responses.
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Figure 6-7: Static frequency of replication
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Figure 6-8: Distribution of response lengths

We also looked at the effect of response length on cache-hit and duplication patterns.  Figure
6-8 shows the byte-weighted cumulative distributions of response lengths for all responses, for
cache-hit responses, and for cache-miss duplicate responses.  Generally, cache-hit and duplicates
responses are smaller than for the entire trace set.  This would seem to contradict our results
showing that the byte-weighted duplication ratio is higher than the unweighted DR.  However,
figure 6-8 reveals that a somewhat larger fraction of duplicated response bytes are from espe-
cially long responses.  This is especially significant because a large fraction (31.3%) of the
response bytes in the trace are carried in responses longer than 1 MByte, even though these ac-
count for only 0.075% of the responses.  While only 0.058% of the duplicated responses are over
1 MByte, this accounts for 46.4% of the duplicated bytes.

Taking the results in figures 6-7 and 6-8 together, we see that if one limited duplicate suppres-
sion only to a small set of frequently-duplicated resources, or a small set of very lengthy resour-
ces, one would still see most of the available bandwidth savings. We have not done an analysis
to determine if these two sets overlap or are complementary.

6.3.1. Duplication or mirroring?

One might guess that a lot of the apparent ‘‘duplication’’ in our traces comes from intentional
mirror sites.  For example, a site might be mirrored in geographically separate locations, or
might be split across numerous servers for scalability.  Use of DNS nicknames (e.g.,
‘‘www.cnn.com’’ for ‘‘cnn.com’’) can lead to apparent mirroring, even though the two names
resolve to the same server.  Because traditional HTTP caching uses the URL as the lookup key,
mirrored responses would not result in cache hits, but do result in duplication hits, so the use of
mirroring does not, in itself, argue against duplicate suppression.  It might even suggest contexts
in which duplicate suppression is particularly useful.

We re-analyzed our traces using two transformations on the URLs.  In the first, we treated two
URLs as identical if one could be transformed into the other by removing a host name prefix
(‘‘www[^-\.]*\.’’, to use UNIX-style regular expression syntax); e.g., we treated
‘‘www.cnn.com’’ and ‘‘cnn.com’’ as identical.  In the second, if a set of responses with a given
MD5 digest all had the same URL except for the hostname part, we treated these as mirrored
responses for one resource, rather than duplicate responses for multiple resources.  For example,
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in this transformation we would treat ‘‘example.com/logo.gif’’ and ‘‘example.org/logo.gif’’ as
mirrors if the responses had identical digests. (HTTP terms ‘‘/logo.gif’’ the abs_path of these
URLs.)

Prefix
stripped

Mirrors treated
as dups

Dup
ratio

Weighted DR

1 No Yes 0.054 0.062

2 No No 0.010 0.012

3 Yes Yes 0.049 0.059

4 Yes No 0.007 0.009

Table 6-7: Effects of mirroring and aliasing
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Figure 6-9: Duplication frequency by host

Table 6-7 shows the effects of these two transformations, individually and together, on the
duplication ratio and weighted DR.  Clearly, a substantial fraction (81%) of the ‘‘duplicates’’
probably are mirrored, at least on a per-URL basis. On the other hand, only 9% of the ‘‘dupli-
cates’’ disappear when we ignored a leading ‘‘www*’’ prefix, indicating that most of the dupli-
cates are not simply the result of DNS nicknames.

6.3.2. Duplication frequency by host

We computed, for each server hostname seen in the traces, the frequency with which its URLs
experience duplication.  Figure 6-9 plots the results; the upper curve shows all 138,595 hosts in
the trace, while the lower one shows just those hosts with at least 1000 references (2028 hosts, or
1.5% of the total).  Note that the vertical axis is a log scale; the vast majority of hosts ex-
perienced no duplication. In the upper curve, there are spikes at 100%, 50%, 33%, etc., cor-
responding to hosts seen just one, two, three, etc. times during the trace; while most of these
seldom-seen hosts experience no duplication, any duplication at all for a host seen, say, twice
means that it has a ‘‘duplication frequency’’ of at least 50%.

The lower curve, for frequently-referenced hosts, avoids these artifacts.  It shows that while a
small number of such hosts experience frequent duplication, for most hosts the duplication rate is
either zero, or on the order of a few per cent.
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6.3.3. Additional results

We looked at the number of different URLs associated with each MD5 digest (i.e., each
unique response body value).  For each of 619 digest values, we found responses with at least
100 URLs; the most frequently duplicated response was seen with 8191 different URLs.  In only
three of those 619 sets of URLs did we see the same abs_path for every member of the set; most
other frequently-duplicated responses are seen under a variety of abs_paths, suggesting that they
are not the result of mirroring.

Inspection of these URLs reveals three major categories for frequently-duplicated responses:
advertising banners, simple graphic elements (such as dots, icons, etc.), and ‘‘affiliation logos’’
(such as a Netscape logo).  Indeed, ad banners accounted for most of the frequently-duplicated
responses, which suggests that there might be some resistance to the use of automatic duplicate
suppression: ad placement services depend on seeing as many references as possible, and do not
appreciate HTTP caching.

6.4. Effect of duplicate suppression on latency

Our traces included total durations for each request. We can project the latency saved by
caching or duplicate suppression, if one assumes a constant transfer time for a given response-
length from a given URL.  Table 6-8 shows the projected fraction of time saved, for caching and
for duplicate suppression; we include breakdowns by scheme and for the ten most frequent
content-types.

The results in table 6-8, when compared to those in tables 6-3 and 6-4, suggest that the latency
savings are roughly proportional to the weighted DR, but do vary in some specific cases.

6.5. Implications for cache design

Since infinite caches are still hard to obtain, we tried to discover how long a cache would have
to retain an entry before it paid off, either for duplicate suppression or simple caching.  Figure
6-10 shows the distribution of cache-entry ages for the 23-day trace, measured at the instant of
either a cache hit or a duplicate-suppression using a given entry.  The distributions show peaks at
various multiples of one day, suggesting that periodic access patterns result in both cache hits
and duplication hits.  (We cannot explain the dip at about 9 hours.)

Figure 6-3 showed that the cache-hit ratio increased for at least several weeks, while the
duplication ratio leveled off after just a few days.  Figure 6-10 shows that cache entries useful for
duplicate suppression tend to be younger than those involved in cache hits.  For duplicate sup-
pression, the median is about 900 sec., and the 90th percentile is about 25 hours.  For caching,
the median is about 2000 sec., and the 90th percentile is about 2.3 days.  So, in general, retaining
a cache entry pays off more quickly (if at all) for duplicate suppression than for caching, and so
we suspect that with the right replacement policy, a moderately large cache would deliver most
of the available benefits.

Figure 6-10 shows a steep drop in the age distributions past about one week.  This is probably
an artifact of the 23-day trace length, since by construction it excludes most cache-to-use inter-
vals longer than a fraction of the trace length.  The distribution for the 90-day trace, in figure
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Total
refs

Cache
hits

Duplicates Total
transfer

time (secs)

Time
saved by
caching

Time
saved by
duplicate

suppression

All 18802021 9468802 1006324 32398818 0.36 0.059

By scheme

http: 18779187 9464698 1005334 28643899 0.37 0.058

ftp: 22834 4104 990 3754919 0.31 0.067

Top 10 content-types

image/gif 9687564 6907047 691492 9018443 0.61 0.093

text/html 4897223 1154558 166949 8695820 0.22 0.021

image/jpeg 2498656 919973 112300 4597560 0.27 0.042

application/octet-stream 1066245 69426 14577 4847410 0.34 0.095

text/plain 330130 257981 8494 560865 0.50 0.040

application/x-javascript 152154 78252 6367 60659 0.55 0.050

audio/x-pn-realaudio 31285 15893 115 162854 0.39 0.003

unknown 18928 8255 166 37651 0.20 0.006

text/css 15396 13735 447 8891 0.88 0.026

application/zip 10913 3054 523 1181521 0.26 0.061

Table 6-8: Projected transfer time savings (as fraction of actual time)
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Figure 6-10: Cache entry age distributions (23-day trace)

6-11, is similar, except that it shows a much more gradual decline at ages above one week.  Even
so, only 6.7% of the cache hits, and 3.9% of the duplicate suppressions, come from responses
that have been in the cache for more than a week.

We also looked at the byte-weighted age distributions for both traces. Figures 6-12 and 6-13
show that the byte-weighted distributions, compared to the unweighted age distributions in
figures 6-10 and 6-11, are biased towards higher ages.  That is, if bandwidth conservation is
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Figure 6-11: Cache entry age distributions (90-day trace)
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Figure 6-12: Byte-weighted cache entry age distributions (23-day trace)
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Figure 6-13: Byte-weighted cache entry age distributions (90-day trace)

important, it might be necessary to cache responses for longer than would be necessary simply to
avoid HTTP requests.

Table 6-9 summarizes the median and 90th percentile points for the various age distributions.
One would expect the values for the 90-day trace to be more reliable, since the 23-day trace
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suffers more from cold-cache and measurement-window effects.  The table shows that duplicate
suppression generally pays off with younger cache entries than does traditional caching, if either
pays off at all.

Distribution Trace
length

Median 90th
percentile

Cache-hit responses 23 days 1995 sec. 2.3 days

Cache-hit bytes 23 days 10000 sec. 3.7 days

Dup responses 23 days 891 sec. 24.8 hours

Dup bytes 23 days 11220 sec. 2.6 days

Cache-hit responses 90 days 4467 sec. 4.6 days

Cache-hit bytes 90 days 28184 sec. 7.3 days

Dup responses 90 days 1413 sec. 2.3 days

Dup bytes 90 days 14125 sec. 7.3 days

Table 6-9: Medians and 90th percentiles for age distributions

As noted in section 5.1, our infinite cache simulation could either retain just the most recent
entry for each URL, or all past entries.  One might expect that the latter would give more oppor-
tunities for duplicate suppression, by providing a large pool of possible duplicates.  However, it
also artificially increases the cache hit ratio, because it decreases the chances of a coherency
miss. (This might be viewed as a simulation bug, since existing HTTP caches cannot discover if
an older response is now coherent again, but the proposed delta-encoding extension [32] does
provide a means for doing so.)  With fewer cache hits, there are more chances for duplicate
suppression to pay off.  In any event, the difference in hit ratios is insignificant, but the retain-
all-entries cache consumes 45% more storage than a ‘‘realistic’’ infinite cache.  This suggests
that the retain-all-entries policy is neither necessary for good duplicate suppression, nor desirable
for a practical (finite-cache) implementation.

6.6. Protocol and computation overheads

The benefits of duplicate suppression are offset by several overhead costs. We evaluated
those costs to determine if they overwhelm the benefits.

6.6.1. CPU costs

The computation of a reasonably secure message digest requires significant CPU time com-
pared to many other typical per-message operations. For duplicate suppression, servers could
attach an digests to every response they send (which might have other benefits), or caches could
compute digests when storing a cache entry.  The latter shifts load from servers to caches, and
slightly reduces network traffic.  More significant, it moves the digest computation off of the
critical path for latency (it can be done during idle CPU time), so it should not directly offset the
benefits of duplicate suppression.
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Even so, digest computation adds load, but apparently not enough to worry about.  One
study [5] showed that a 90 MHz Pentium can compute MD5 digests at 136 Mbits/sec., or SHA-1
digests at 55 Mbits/sec.  We measured a different MD5 implementation [46] on a 333 MHz
Pentium-II, which yielded 335 Mbits/sec for 5000-byte messages.  On a 500 MHz AlphaServer
ES40 (21264 CPU), that implementation reached 386 Mbits/sec for 5000-byte messages.  We
would expect digest performance to continue to improve with processor clock rates.

We also used DCPI [1] to profile the CPU time used by our modified Squid proxy; the MD5
computation consumed about 2.4% of the total non-idle CPU time (including user-mode and
kernel-mode time), implying that digest computation costs are negligible. Squid is not normally
considered a fast proxy, but its primary inefficiency lies in the way it misuses the disks [28],
which does not significantly affect CPU time (and in any case, our installation does not use a
disk cache).  Also, we used a modified version of Squid that avoid one particular CPU scaling
error [31] and a modified kernel that avoid several CPU scaling problems [3].

Although the digest computation can be done off the cache’s critical path, a cache participat-
ing in duplicate suppression must still maintain and use an additional lookup table.  Lookups
using a digest instead of a URL would not occur on every request, but the digest-based lookup
table would have to be updated whenever a new response-body is received (or perhaps only
when a response carrying a Digest header is received). This update, while not directly on a
critical path, might represent a modest overhead during periods of heavy load.  Note, however,
that because duplicate suppression is a performance optimization, an overloaded cache could
simply drop these updates, without harming correctness.

6.6.2. Message-length costs

Proposed duplicate suppression protocols add message-length overhead in two places: the
meta-information headers passed from server to client, and the meta-information passed from
client to proxy cache.  Both include a message digest value (possibly naming the specific algo-
rithm), and some syntactical overhead, on the order of 10 bytes or less per digest.  If we assume
the use of MD5, the 128-bit digests are encoded in HTTP headers as 24-byte strings; a 160-bit
digest, such as SHA-1, would yield 28-byte encodings.  So, the total encoded overhead would be
under 40 bytes.

Note that the overhead need not include any contribution from a response message digest
transmitted by the server with the relevant response itself.  This is because (as discussed in sec-
tion 3.1) the caches can recompute the digest locally.  However, server-transmitted response
digests have benefits independent of the duplicate suppression protocol: they are useful for end-
to-end checking of other HTTP mechanisms, such as Range retrievals and delta encoding, so one
might want to transmit them anyway.  Therefore, we do not count these digests as part of the
overhead of duplicate suppression.

Estimating the ratio of overhead to benefit requires some guesswork, for three reasons:
1. A server might supply meta-information for many resources never actually

referenced in a trace, leaving us no way to quantify the upper bound.
2. A server might not send duplicate-suppression headers unless the information had

good chance of paying off.
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3. Our traces do not include size information for HTTP headers.
In the most optimistic scenario, overhead would only be incurred for those references where
duplicate suppression definitely pays off, for a lower bound of about 77 MBytes of meta-
information, or just 0.6% of the simulated savings from duplicate suppression.  In a more pes-
simistic scenario, every client request would be 40 bytes longer, and the server-supplied meta-
information might be about the same order of magnitude, adding 1434 Mbytes of total meta-
information, or about 11.2% of the simulated savings.

The worst-case scenario, in which a server would transmit meta-information for far too many
resources, could clearly swamp any savings available from duplicate suppression.  That does not
make the mechanism useless; it does mean that server implementors must be prudent about how
it is used.

We expect that if duplicate-suppression is limited to those cases where it has at least a small
chance of paying off, then the message-length overheads will remain significantly smaller than
the bandwidth savings.  Note, however, that the savings occur only on the server-to-proxy path,
while some of the overheads accrue on the client-to-proxy path, which complicates the tradeoff.

7. Security considerations

The duplicate suppression mechanism analyzed in this paper could be spoofed.  An attacker
would have to arrange for a proxy cache to contain an entry with the same digest value as a
targetted response, but with a different response body value.  In other words, the attacker needs
to find a digest collision.

Security is not the main topic of this paper, but because countermeasures to the creation of
digest collisions might change the size of, or cost of computing, a digest value, we briefly ad-
dress this issue.

There is no known way to create MD5 collisions, short of brute-force search.  However, there
is some suspicion that MD5 is not collision-proof.  To quote from Robshaw’s 1996 analysis [43],

• ‘‘collisions for the compression function of MD5 have been demonstrated, though
[not] for the full MD5’’

• ‘‘more, possibly very complex, analytical work is required in designing an attack for
MD5’’

• ‘‘collisions for [MD5] have not yet been discovered but this advance should be ex-
pected’’

Even if an attacker could find an MD5 collision, a practical attack would have to generate a false
response body that has at least a plausible resemblance to the targetted response.  If spoofing
results in gibberish, it enables a denial-of-service attack but not a way to spread misinformation.

If MD5 turns out to be insufficient, Robshaw suggests that several alternatives exist. For ex-
ample, the use of HMAC [23] could be used without a secret key to strengthen MD5.  This
would generate the same number of digest bits (i.e., would add no additional network overhead),
but would approximately double the computation costs.  SHA-1 [35] or RIPEMD-160 [41], with
their longer digest lengths (160 bits instead of 128 bits) also should be stronger than MD5, but
would increase network overhead and roughly triple the computation cost.  RIPEMD-128 (same
digest length as MD5, but slower) might also be acceptable.
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8. Future work

With slight additional effort, one could analyze these traces to answer several additional ques-
tions. For example, what fraction of duplicates are local to one server (i.e., have different URLs
but the same hostname)?  One could also model the effect of limited cache sizes and realistic
replacement algorithms, to see if this changes the utility of duplicate suppression.

A trace-based simulation study of just one site might not give a representative picture of the
benefits of duplicate suppression.  This study should be replicated at other sites, and especially
with other user communities.

It would also be helpful to study the performance of deployed systems using the DRP
protocol [19], which uses signatures to name resources.

9. Summary and Conclusions

Our trace analysis suggests that HTTP duplicate suppression would yield modest, but not neg-
ligible, savings in Internet bandwidth consumption and latency.  Since these benefits are strictly
in addition to those provided by other HTTP caching techniques, duplicate suppression may
prove useful in increasing the efficiency of HTTP caches.  Duplicate suppression seems to reach
its full potential using less cache space than regular HTTP caching, and so the relative benefits
may in fact be greater for realistic cache sizes than for our simulated infinite cache.

Duplicate suppression imposes computational and message-length overheads, but these appear
to be minimal compared to the benefits.

Duplicate suppression certainly works better in some contexts than in others. It pays off best
for multimedia, program binaries, and images, and worst for text (including HTML). Any trend
towards greater use of Web-based multimedia and software distribution, especially the use of
reusable software components, should increase the utility of duplicate suppression.  However, its
utility in reducing the bandwidth required for GIF image transmission may require resolution of
the deep conflict between caching and ad-impression counting.
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