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Abstract

Many of the caching mechanism in HTTP, especially in HTTP/1.0, depend on header
fields that carry absolute timestamp values.  Errors in these values could lead to undetected
cache incoherence, or to excessive cache misses. Using an extensive proxy trace, we looked
for HTTP responses exhibiting several different categories of timestamp-related errors.  A
significant fraction of these responses have detectable errors in timestamp-based header
fields.
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1. Introduction

The HTTP protocol allows proxies and clients to cache certain responses.  Caching improves
performance by reducing latency and bandwidth consumption, and may increase availability.
However, caching can lead to errors if a cache returns a response that is not consistent with the
response that would have been returned had no cache been present.  (This is referred to as a
failure of the cache’s ‘‘semantic transparency.’’)  For this reason, the HTTP protocol includes
several features intended to preserve the semantic transparency of caches.

Several of these features, especially in HTTP/1.0, depend on message header fields that carry
absolute timestamp values.  The use of absolute timestamps runs a risk if server, client, or proxy
clocks are set incorrectly. Errors in these timestamp values could lead to undetected cache in-
coherence, or to excessive cache misses.  The success of certain aspects of HTTP caching
depends on the accuracy of these clocks, as did some of the protocol design decisions for
HTTP/1.1. However, relatively little information has been published about the prevalence of
clock errors in actual Web usage.

We have obtained some information about clock errors in HTTP messages by studying an
extensive proxy trace.  We looked for HTTP responses exhibiting several different categories of
timestamp-related errors, some of which could lead to transparency failures; others might lead to
less use of caching than necessary.  We also identified several cases in which the problem may
not lie with an incorrect clock per se, but with the server software that generates the response
header fields.

The cache-related timestamps in HTTP suffer from an additional problem that can result in
transparency failures.  These timestamps, and in particular in the Last-Modified response header,
have a resolution of one second.  Thus, if the content associated with a URL changes twice
during one second, the Last-Modified mechanism cannot always detect this.  This lack of resolu-
tion can lead to transparency failures even when all clocks are precisely synchronized.  Because
our traces include cryptographic digests of the HTTP response bodies, we can detect such
failures, and therefore quantify their prevalence.

We will show that a significant fraction of the HTTP responses in our trace do indeed have
detectable errors in timestamp-based header fields.  For example, 38% of the Date headers show
times in the future, relative to the times at which they were logged on a system with an accurate
clock.

2. Prior and related work

Several previous studies have reported on various aspects of HTTP protocol correctness, and
on clock synchronization.

Krishnamurthy and Arlitt [3] studied what fraction of popular Web sites implement HTTP/1.1,
and of these, how well these servers appear to comply with RFC2616, the HTTP/1.1
specification [2]. They did not address any issues related to timestamp correctness or to correct
caching behavior.
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The Web Replication and Caching Working Group (WREC) of the Internet Engineering Task
Force (IETF) has cataloged a number of known problems with Web proxy caches [1]. The cur-
rent version does not list any problems related to timestamps in HTTP messages, although it
does point out that insufficient timestamp resolution in server and proxy logs can interfere with
log analysis.

Several studies have reported on time synchronization in the Internet, using the facilities
provided by the Network Time Protocol (NTP) [4]. The largest and most recent of these sur-
veys, by Minar [5], reports ‘‘a surprising number of bad timekeepers.’’ That is, many ostensibly
synchronized clocks are not.  This study did not look specifically at Web server clocks.

Wills and Mikhailov [7] studied a set of URLs taken from a proxy cache log, fetching multiple
versions of these URLs over a period of days.  This allowed them to compare the Last-Modified
timestamps on the responses, and MD5 digests of the response bodies, to detect when the Last-
Modified timestamps would give either non-transparent results, or would cause unnecessary
cache misses.  They found that a small fraction of potential transparency failures, as well as a
much larger fraction of unnecessary cache misses.

3. Trace collection

We obtained our traces at the Palo Alto, California proxy of Compaq Computer Corporation,
one of several firewall proxies serving the company.  The proxy is used for access control, not
for performance, and so is not set up as a cache.

The proxy runs version 1.1.20 of the Squid proxy software [6]. We modified Squid to com-
pute an MD5 digest for the body of each response, and to log these digest values in one of the
log files Squid already keeps (squid.store.log). We also augmented this log format to
include the connection duration, in milliseconds, as measured by the proxy.  These changes were
relatively simple, but Squid is a complex program and there may be a few error conditions in
which we could log the wrong digest value.

Each squid.store.log entry also includes a timestamp (with roughly millisecond resolu-
tion), status information, the length of the response body, and the values of selected HTTP
response header fields:  ‘‘Date’’, ‘‘Last-Modified’’, ‘‘Expires’’, and ‘‘Content-Type’’.  Unfor-
tunately, it does not include the value, if any, of the ‘‘If-Modified-Since’’ request header; this
makes it impossible to completely model the behavior of a caching proxy.

The log entries contain complete URLs with server host names (such as
http://www.compaq.com/), rather than server IP addresses.  A given name might resolve
to several IP addresses, allowing transparent server replication; we assume that any site with this
feature is internally consistent.

The average log entry consumes about 169 bytes, or about 44 bytes after compression with
gzip. It is thus feasible to store many millions of log entries on a moderately large disk.

We collected a continuous trace covering covering 90 days from 1 January 1999 through 31
March 1999. This trace includes 125,259,641 log entries, and occupies 5.1 GBytes in com-
pressed form.  The busiest day during the trace accounts for 2,085,909 log entries.
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4. Trace analysis

We wrote a program to analyze a trace.  It starts by parsing the extended
squid.store.log format, skipping over unusable log entries.  These include malformed
entries, aborted transfers, all HTTP methods other than ‘‘GET’’, and all HTTP response status
codes other than 200 (the normal success code, where the response carries the entire body of the
resource value).

The program also skips a relatively small set of responses which match both the URL and
MD5 digest of a previous response, but which have different content-type or content-length
values (according to the log entries).  Since it should not be possible to generate the same MD5
digest if the length varies, we believe that these ‘‘impossible’’ values represent failed transfers
that are not indicated as such in the log.  A review of the Squid sources reveals several possible
places where a transfer could be aborted without being logged as such (this is our fault, not a bug
in Squid).  Some of the content-type mismatches may reflect a changed content-type assignment
at the server, perhaps because of a misconfiguration, but we also try to skip these to avoid con-
fusing the results.

From the 125,259,641 log log entries in our trace, this winnowing process yielded 79,441,708
entries (about 63%) usable for our analysis.

The entire trace included useful responses from 459,225 distinct server host names.  Our logs
include approximately 25,000 unique clients.

The analysis program uses each entry to create one or more nodes in an ad hoc database. For
example, a record for each unique MD5 digest Di is stored in a hash table. This record serves as
the head of a list of nodes each representing a tuple (Di, URLj), where URLj is a distinct URL
with at least one response matching digest Di. Each such node contains back-pointers to a nodes
describing URLj in more detail, and itself serves as the head of a list of nodes with per-entry
information (such as elapsed time).

Once the database has been created, the linkages between the various nodes allow the analysis
program to traverse the database in various orders, collecting statistical information about the
responses described in the trace.

4.1. Cache simulation

Although we obtained our trace at a non-caching proxy, our analysis program attempts to
simulate the behavior of a caching proxy, which allows us to detect cases where a real cache
might suffer from transparency failure.  However, we use an atypical approach to HTTP cache
simulation.

A typical HTTP cache uses two mechanisms to increase the likelihood that it will provide
accurate responses:

1. Expiration times: If the server provides an ‘‘Expires’’ header, the cache assumes
that the response can be used until that deadline, without refreshing it from the
server. Otherwise, some caches estimate an expiration time, based on the ‘‘Last-
Modified’’ time and other parameters.
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2. Revalidation: If a cache entry has expired, the cache checks with the server to see
if the entry is still valid.  It does this check by sending a GET request with an
‘‘If-Modified-Since’’ header including the ‘‘Last-Modified’’ date from the cached
response; if the resource is unmodified, the server responds with a status code of
304 (‘‘Not modified’’).

At a proxy cache, which acts as both client and server, the picture is more complicated.  For
example, a proxy that receives a GET request with an ‘‘If-Modified-Since’’ header might find in
its cache a matching and unexpired entry (and should return a 304 response), or a more recent
unexpired entry (and should return a 200 response), or it might have to forward the request
towards the ‘‘origin server’’ (the master server for the resource).

The HTTP caching mechanisms do not guarantee that caches provide accurate (that is, cache-
coherent) responses, for several reasons:  The expiration time might be too optimistic, or the
Last-Modified timestamp might be wrong (perhaps due to clock skew), or the source might be
modified twice during one second (a condition not detectable with the one-second resolution of
the ‘‘Last-Modified’’ header).  On the other hand, the use of timestamps to check validity
eliminates certain possibilities for cache hits, especially for dynamic resources.  HTTP/1.1 intro-
duces a new ‘‘entity tag’’ mechanism to avoid some of these problems [2], but Squid 1.1.20 does
not understand entity tags, and so these do not appear in our logs.

Instead of trying to emulate an HTTP cache (partly because our traces lack ‘‘If-Modified-
Since’’ header values), we simulate a ‘‘perfect coherency’’ cache, where a request seen for a
cached URL will always miss if the origin server would return a different value, and will always
hit if the origin server would generate the exact same value.  We use the MD5 digest values from
our logs, and the fact that our logs (unlike those of a true cache) contain an origin-server
response for every request.  This allows us to test, on every request, whether the origin server’s
response is identical to what would have been cached (we assume no MD5 collisions).

While a perfect coherency cache does not generate exactly the same set of hits as a normal
HTTP cache, we believe that it generally will see a slightly higher hit rate (because of the poten-
tial for hits after an entry has expired, and because of the potential for hits on dynamic resour-
ces). However, this effect is largely irrelevant for the purposes of this study, since we do not
actually report cache hit rates.

If one assumes an infinite cache, the perfect coherency simulation is also trivial to implement
in our analysis program: if any two responses for URLj have the same digest value Di, then the
second is a cache hit.  If a response for URLj arrives with a unique digest value, then it represents
a cache miss.  We decided not to simulate finite caches for other reasons (chiefly, the need to
choose and implement a realistic replacement policy), so we avoid the complexity of simulating
a finite perfect-coherency cache.  However, in our simulation a cache entry is deleted if a newer
entry is created for the given URL.

5. Results of error analyses

We applied several analyses to our traces, each of which looks for anomalies in the
timestamp-related HTTP response headers.
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5.1. Date skew

Every HTTP response should include a Date header, showing the time at which the response
was originally generated.  HTTP/1.1 makes this an explicit requirement, but some older servers
do not always send a Date header.  In our trace, approximately 89% of the useful trace entries
included a parsable Date header.

Because our proxy server uses NTP to synchronize its own clock to an absolute reference
(with an accuracy of several milliseconds), we can compare the Date headers recorded in the
trace with the corresponding trace timestamps, to see if the servers that generated these Date
headers had properly synchronized clocks.
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Figure 5-1: Apparent errors in HTTP Date response headers

Figure 5-1 shows two distributions on one graph.  The horizontal axis shows the absolute
value of the apparent ‘‘error,’’ calculated as the difference between the received Date header and
the trace entry timestamp.  The mark on the vertical axis shows that about 62% of the Date
values were within about 1 second (the best-case measurement accuracy) of the correct time.

The square marks show the distribution for Date values that were older than the timestamp;
these are not necessarily erroneous, since the response in question could have been stored for
some time in an intermediate cache.  (Some of the short-term errors could also be due to
response transfer time.)  However, we believe that some of these ‘‘Date < timestamp’’ values are
indeed erroneous, although this kind of error will not cause HTTP caches to return stale values.

The circular marks, however, represent real errors: Date values that appear to be in the future.
One can ascribe some of the short-term errors to minor clock mis-synchronization, but a large
fraction (about 1%) are exactly one hour fast, and a modest fraction (about 0.1%) are about a day
fast. A very small set of Date headers (below the y-axis threshold for this log-log graph) have
even larger errors, ranging up to years or even decades.

It may be hard to tell from the distribution in figure 5-1 just what fraction of HTTP Date
header values are seriously in error.  Figure 5-2 shows the cumulative distribution of the error for
impossible Date values; that is, Date values that are still in the future when received by the trac-
ing system.
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Figure 5-2: Apparent future-date errors in HTTP Date response headers (cumulative)

A total of 38% of the Date values are at least one second in the future.  More significantly,
22% are at least 60 seconds in the future, and 1.5% are at least an hour in the future.  However,
only 0.01% are a day or more in the future.  It appears that while many server sites set their
clocks sloppily, and some sites seem to be confused about their time zone (or whether daylight
savings is in effect), most sites do make some effort to set a plausible clock time.

5.2. Impossible Last-Modified values

If an HTTP origin server is willing to let a response be stored in a cache, it may supply a
Last-Modified response header giving the timestamp at which the resource was most recently
modified. A cache can later validate a stored response by asking the server (using the If-
Modified-Since request header) whether the resource has been changed since the Last-Modified
value for the cache entry.  Most recent implementations require strict timestamp equality in order
to consider a cache entry as valid, but some early implementors tried to infer additional infor-
mation from the Last-Modified value.

One would not expect the Last-Modified value in a response to be any newer than the
response’s Date value.  In practice, many server implementations obtain these values from dif-
ferent clocks: for example, an HTTP server that mounts a remote file system via NFS would
obtain a file’s modification timestamp from the file server’s clock, not from its own.  As long as
the file-modification timestamp is consistent, this should cause no problem for strict-timestamp-
equality cache validation, but it might cause problems for other uses.

71% of the useful references in the trace had parsable Last-Modified headers.  Figure 5-3
shows that all but about 0.3% of these were reasonable, with most of the remaining dates off
either by about 4 minutes, or by somewhat less than a year.  It may be that a small set of servers
accounts for these two spikes in the distribution.  In any case, unreasonable Last-Modified dates
are rare, but they are seen in practice.



ERRORS IN TIMESTAMP-BASED HTTP HEADER VALUES

7

1 1e+09
Last-Modified header apparent error (sec.)

10 100 1000 10000 100000 1e+06 1e+07 1e+08
0.9965

1.0005

0.997

0.9975

0.998

0.9985

0.999

0.9995

1
C

um
ul

at
iv

e 
fr

ac
tio

n 
of

 r
ef

er
en

ce
s

One minuteOne minute One hourOne hour 1 day1 day 1 wk1 wk 1 month1 month 1 year1 year 1 decade1 decade

Figure 5-3: Apparent errors in HTTP Last-Modified response headers

5.3. Apparent coherency failures using Last-Modified

Implicit in the use of the Last-Modified and Get-Modified-Since headers is the expectation
that if the Last-Modified value for a URL has not changed, then the value of the URL has itself
not changed. The presence of a Last-Modified header is also an implicit signal that the origin
server is willing to have the response cached, since otherwise the header has little practical sig-
nificance.

Because our traces include both Last-Modified values and MD5 digests, when the trace in-
cludes two or more responses for a URL, we can check each but the first response to see if it
represents a coherency failure.  That is, we can check for cases where the Last-Modified values
match, but the response bodies themselves do not.

Note that such coherency failures do not necessarily represent implementation errors; some
such errors will occur because of event sequences that cannot be safely handled by the HTTP/1.0
protocol. For example, if a resource changes twice or more during one second, two different
instances may have identical Last-Modified timestamps.

Among all of the responses in the trace carrying a Last-Modified header (71% of the useful
references), 36% had no predecessor with the same Last-Modified value.  Mostly there was ei-
ther no predecessor at all, or a predecessor with a different value, but in a few cases the previous
response might have omitted the Last-Modified header.

61% of the responses with Last-Modified headers were coherent; that is, they had both the
same Last-Modified value and the same MD5 digest as a prior response for the same URL.  This
might not have been the immediately prior response, however.

About 3% of the responses with Last-Modified headers were incoherent; that is, they had the
same Last-Modified value as a prior response for the same URL, but not the same MD5 digest.
This seems like a surprisingly high rate of coherency failure, but it is possible that in many of
these cases, the responses are semantically equivalent. For example, they might be equivalent
except for a randomly chosen advertising banner.
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HTTP/1.1 [2] makes a distinction between ‘‘weak’’ and ‘‘strong’’ cache validators.  For a
strong validator, the protocol absolutely requires that identical validators imply identical
response values. The evidence from our traces suggest that Last-Modified dates should
definitely be treated as weak validators.

Wills and Mikhailov [7], in their similar analysis, used a smaller trace, which would therefore
be more susceptible to cold-cache effects.  They report results only for two subsets of their trace,
one including resources referenced at least 100 times, and the other including resources
referenced between 20 and 99 times.  They found only 0.05% of the references in the former
subset, and 0.73% of those in the latter subset, exhibit ‘‘weak’’ Last-Modified times (i.e., the
Last-Modified value remains the same, but the MD5 digest changes).  It might be possible to
infer, from their results and ours, that the weakness of the Last-Modified validator decreases
with increasing popularity.

5.3.1. Effects of limited timestamp resolution

The Last-Modified header has a resolution of 1 second.  Therefore, even a correctly im-
plemented server can generate equal Last-Modified values for different content if a file is up-
dated more than once during a second.  In a pair of responses that exhibit this problem, the Date
header value and the Last-Modified value would have to be identical for at least the first
response. This is because the first Date header should be generated after the first Last-Modified
time, and before the second Last-Modified time, and the two Last-Modified times are equal in
this case.

In our trace, errors caused by the limited resolution of the Last-Modified header seem to be
quite rare.  Among all pairs of responses, for a given URL, where both carried Last-Modified
errors, only 0.01% appear to have suffered from a coherency error (same Last-Modified value,
different MD5 digest) that could have been caused by the limited resolution. Only 0.2% of the
coherency errors could be ascribed to this effect. While one might expect a slightly higher ratio
in a trace representing many more clients, and thus more frequent references to individual URLs,
it appears that the limited timestamp resolution is an insignificant contributor to coherency er-
rors.

5.4. Apparently premature Expirations

An origin server may assign an expiration time (via the Expires header, or the HTTP/1.1
‘‘Cache-Control: max-age’’ directive), after which time a cache is expected to revalidate a stored
response before using it.  Servers usually assign expiration times heuristically, guessing how
long it might be before the resource is changed.

A server has an incentive to assign a conservative expiration time.  This is in no way a
protocol error, since the alternative would be to allow inappropriate caching, but it may be inter-
esting to determine how often this conservative policy causes cache misses.  Because our traces
include both Expires values and MD5 digests, we can sometimes determine whether a cached
response expires before the response value changes.

Unfortunately, we can only make this check when receiving a subsequent response for the
same URL (i.e., when processing a subsequent request).  This means that we cannot detect all of
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the cases where the expiration time is too conservative, but only those where a reference in our
trace would ‘‘sample’’ this status.

We start by measuring the distribution of the effective maximum age for the responses in our
trace. In HTTP/1.1, the ‘‘Cache-control: max-age’’ directive explicitly specifies the maximum
allowable age of a cached value (at which point it becomes stale); in HTTP/1.0, as implemented
by Squid 1.1.20, an effective max-age value can be calculated as the difference of the Expires
and Date headers, for those responses that include both.  (This ignores the possibility of a broken
server clock.)

13.9% of the useful response included an Expires header, but only 7% of the responses carried
both Expires and Date headers.  That is, the HTTP/1.1 rule requiring servers to send Date seems
not to be universally observed.  A detailed analysis of the responses carrying an Expires header
but no Date header reveals that a small number of very popular servers account for most of these
anomalous headers.  These servers might be running specialized software.
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Figure 5-4: Effective max-age values for responses

Figure 5-4 shows the cumulative distributions for the effective max-age values, computed in
three ways: for responses with both Expires and Date, the difference between those headers; for
responses with only Expires, the difference between the Expires value and the log-entry time-
stamp; and the union of the two sets (which have no intersection).

Of the set of responses with both Expires and Date headers, 41% (2.8% of all responses) were
‘‘pre-expired.’’ (A pre-expired response may be stored in a cache, but the cache needs to
revalidate the response before using it for a subsequent request.)  This includes 17% of that set
where the Expires and Date headers were set equal (the most straightforward way to mark a
response as pre-expired).  It is somewhat surprising that such a large fraction of the responses
carrying Expires headers do so to inhibit caching, but this may be an effective way of ensuring
that HTTP/1.0 caches do not violate HTTP/1.1 caching rules.

While many responses are pre-expired, how many of the remainder expire too soon?  When-
ever we see two responses in the trace for a specific URL with the same MD5 digest value, we
can infer that the resource has not changed in the interim.  (This assumption is questionable,
because the resource could have temporarily changed to a different value, but we ignore this bug
in our analysis.)  If the expiration time for the previous response has passed, then we can call this
a prematurely expired response.
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Figure 5-5: Distributions for prematurely-expired responses

Figure 5-5 shows the cumulative distributions of several values for pre-expired responses.
The distribution marked ‘‘effective max-age’’ shows the calculated max-age values for pre-
expired cached responses.  (This includes only those responses with positive max-ages; 60.3% of
these responses had negative or zero max-ages.)  The distribution marked ‘‘time since previous
ref.’’ shows the inter-arrival times for requests to identical URLs, in cases where the previous
response has expired prematurely. The median of this distribution is about 1400 seconds
(roughly half an hour).

The distribution marked ‘‘time since expiration’’ shows the amount of time that has passed
since the previous response expired, measured at the moment when a new response is received
with the same MD5 digest value.  The median of this distribution is over 25,000 seconds (almost
seven hours), much larger than the median of the interarrival times; this is because many pre-
expired responses have Expires values much older than their Date values.

Of course, premature expirations do not lead to coherency failures, and it may be necessary to
underestimate the expiration time of a response in order to prevent coherency failures from un-
expected modifications.  Premature expirations do, however, reduce the efficacy of HTTP
caches.

5.5. Over-optimistic Expirations

While setting an excessively conservative expiration time does not result in a transparency
failure, setting an excessively generous expiration can cause incorrect caching.  We can detect
some instances of this error: when we see two responses in the trace for the same URL, but with
different MD5 digests, if the expiration time of the former response has not passed when the
latter response arrives, then that expiration time is too optimistic.

Out of all of the usable entries in our trace, 5,041,078 (6.3%) were for a URL where we had
seen a previous response with a different MD5 digest.  That is, in these cases, an unexpired
cached response would be incoherent.

Of these potentially incoherent cache entries, 2,528,560 (3.2% of all entries) had already ex-
pired by the time that the newer response arrived.  However, 2,512,518 (also 3.2% of the com-
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plete set) had not yet expired, and so could have been used in error.  (Typically, any response
carrying an Expires header is presumed to be cachable.)

It may seem remarkable that 3.2% of the requests in our trace would have received ‘‘wrong’’
responses, had a sufficiently large proxy cache been in use.  However, it appears that many of
these apparent incoherencies are harmless.  For example, a popular and cachable HTML page
may change, on every reference, the embedded URL for an advertising banner.  A client of a
caching proxy sees the right content, but perhaps not the right advertisement.

Unfortunately, because our trace logs contain only the MD5 digest values, and not the in-
dividual HTML files themselves, it is not possible to verify that this kind of harmless in-
coherency is, in fact, the main cause the high rate of ‘‘wrong’’ responses.  In some cases, there
might indeed be true incoherencies.

Note that the rate of responses with over-optimistic expiration dates is about the same as the
rate of responses whose Last-Modified headers are incoherent (see section 5.3).  These sets may
have considerable overlap; for example, a server that sets a lengthy expiration period for an
HTML response while continually changing the embedded advertising image might not update
the Last-Modified value for each ad banner change.
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Figure 5-6: Remaining time until expiration for changed responses

Figure 5-6 shows the distribution of the time remaining until expiration for potentially in-
coherent cached responses, measured at the time of the subsequent request.  (These are the
responses that carry Expires headers and that differ from what the origin server actually returned
at the time of the subsequent requests.)  The distribution is generally similar to the effective
max-age distribution shown in figure 5-4.  However, the max-age distribution has some density
at values above a few days, while figure 5-6 does not.  This implies that sites which assign
over-optimistic expiration times (whether by accident or on purpose) are making some attempt to
limit the duration of potential incoherency.

6. Summary and Conclusions

We found that 38% of HTTP responses in our traces have impossible HTTP Date header
values, and that 0.3% had impossible Last-Modified values, either of which errors could lead to
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transparency failures.  We also found that the Last-Modified header gives an incorrect assurance
of coherency in about 3% of the responses, and that the Expires header is optimistic in roughly
3% of the responses.  Not all of these errors lead to transparency failures, and not all trans-
parency failures are significant.  However, the prevalence of obviously incorrect clock settings
should encourage HTTP implementors to avoid using protocol mechanism based on absolute
timestamps, in favor of newer HTTP/1.1 mechanisms that tolerate clock skew.

Server operators (and, probably, proxy cache operators) need to do a better job of setting their
clocks.
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