
D E C E M B E R 1 9 9 2

WRL
Technical Note TN-32

Design Tools for BIPS-0

Jeremy Dion
Louis Monier

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There is a second research laboratory located in Palo Alto, the Systems Research Cen-
ter (SRC). Other Digital research groups are located in Paris (PRL) and in Cambridge,
Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a technical note. We use this form for
rapid distribution of technical material. Usually this represents research in progress.
Research reports are normally accounts of completed research and may include material
from earlier technical notes.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, WRL-2
250 University Avenue
Palo Alto, California 94301 USA

Reports and notes may also be ordered by electronic mail. Use one of the following
addresses:

Digital E-net: DECWRL::WRL-TECHREPORTS

Internet: WRL-Techreports@decwrl.dec.com

UUCP: decwrl!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

Design Tools for BIPS-0

Jeremy Dion

Louis Monier

December, 1992

Abstract

The design of a 1 ns cycle-time microprocessor by a small team poses unique
problems in computer-aided design. In this paper, we describe a complete set
of tools which combines the obsession with performance of full custom design
with the ease of use of semi-custom design.

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

Table of Contents
1. Introduction 1
2. Design Capture 2
3. Interface to Simulators 3
4. Generation of Layout 4
5. Conclusion 7
6. Acknowledgements 7

References 8

1. Introduction

Researchers at Digital Equipment Corporation’s Western Research Laboratory are currently
designing BIPS-1, a single-chip ECL microprocessor with a 1 nanosecond cycle time. Using a
sub-micron BICMOS technology, this processor will be about 15mm on a side and will contain 4
million active devices. A major part of this project is the design of a comprehensive set of
computer-aided design tools. Early in the project we quickly determined that available commer-
cial and academic design tools would be inadequate. None scale to the sizes and performance
goals of a 1ns cycle time, 4M device processor, and none adequately exploit the advantages of
BICMOS technology.

The tools we have designed attempt to bridge a gulf between semi-custom and full custom
design. Most effort in commercial design tools concentrates on logic and layout synthesis for
semi-custom gate arrays, standard cell arrays and programmable arrays. Designs done this way
are highly modifiable, and can be done by small teams. But they suffer performance penalties
due to the use of restricted forms of circuits and the inevitable compromises of synthesized
layout. In a design style where wire delay must be accounted for in every block of logic and
memory, these tools remove too much control from the designer and are fundamentally inade-
quate.

At the other extreme of the design spectrum are the full custom tools used by the ever smaller
number of microprocessor design teams. These tools are built around the layout as a master
representation, and the layout editor as a main design tool. Such designs allow complete control
over all aspects of performance. Unfortunately, layout is a very rigid representation that is dif-
ficult to modify. It is also very vulnerable to design rule changes in the underlying technology.
Custom design teams need dozens of layout specialists for years.

Our tools attempt to bridge this gap in order to allow a small team of a dozen designers to
design a very high-performance microprocessor in a year. We have two main requirements. The
first is that there be no compromise on performance. Our tools allow us to control all aspects of
the processor’s circuits and layout. All tools work at the device level, not the gate level, and
there is no fixed gate library of circuits from which designers or synthesis tools must choose. Of
the billions of possible ECL gates, only those actually used by the design are synthesized, simu-
lated and laid out. The second requirement is that the design be modifiable. Large complicated
designs are created once, but modified forever. We needed a system permitting quick prototyp-
ing followed by incremental refinement. This would allow us to do early and continual
floorplanning, global performance tuning, and to track changes in technology. Clearly, this
design style requires extensive assistance from automatic tools.

We made several implementation choices that directed much of our efforts. These choices
were mainly of what not to do, since our end result was a working chip, not a perfect design
environment. Perhaps the most important decision was to represent circuits as programs.
Programs are simultaneously the most complicated and most modifiable descriptions we knew
of. We cast as much as possible of the design process as a problem in software development,
and use all the standard programming tools to change and debug our design. We decided to
develop many of our CAD tools as libraries which could be linked and run with the circuit
design. This precluded the use of almost all commercial tools, for which source code is not
available. A second decision was not to develop any new graphical editors. We relied on an

1

DESIGN TOOLS FOR BIPS-0 DECEMBER 1992

existing drawing editor, udraw, for circuit schematics, and an existing layout editor magic [7]
for examining layout and creating the small number of hand-drawn cells. We decided instead to
focus on two core problems; the representation of the circuit netlist as a data structure in the
program’s memory, and a set of custom-quality placement and routing tools.

The full set of tools developed for this project also includes a switch-level bipolar timing
verifier, written by Ramsey Haddad following ideas in [6] adapted for ECL design, a switch-
level bipolar simulator, written by Russell Kao and other Stanford University students [2],
electrical rules and noise margin checkers, written by Don Stark [1], and extensions to the magic
layout editor [3]. These tools are beyond the scope of this paper.

2. Design Capture

There is no single best way to describe circuits and logic. For analog circuits such as RAMs,
schematic drawings of interconnected transistors are the most concise specification. For control
logic, Boolean equations allow easiest debugging. For cell generators, such as a parameterized
n-bit adder, a program is the most flexible representation. Rather than attempting to mix several
different forms of circuit description, we chose to use their greatest common divisor, the
program, and to translate schematics and Boolean equations into programs.

A circuit in our system is a C++ program. A procedure in this program is a cell generator. It
can take arbitrary parameters, and returns the netlist for the requested cell. Many such
generators take simple parameters, such as the amount of current drive to provide in the outputs,
but some are quite complicated. For example, as we realized that the design would require many
different adders, we implemented the adder generator to minimize the design effort. Our carry
look-ahead adder generator takes as parameters the number of bits to add or subtract, and the
number of bits in each look-ahead group, and returns an adder with the optimal-delay carry
chain. Similarly, instead of having a library of OR-gates, we have an OR-gate generator, to
which we pass the number of inputs, and a description of the outputs required. At this level, our
form of description is quite like other hardware description languages.

Another library of C++ functions provides the syntax of Boolean equations, which are exten-
sively used for control logic and for prototyping new blocks of logic. The library maps these
into valid ECL gates (such as n-input OR gates) and makes use of two-level series gating, free
inversion, and wired-OR. The result of calling a cell generator defined by Boolean equations is a
netlist identical to that which would be obtained by explicitly interconnecting a collection of
gates, flip-flops and multiplexors; we trust the equation mapper to make this translation on parts
of the circuit where precise selection of the gates used is not critical.

Two cell schematics are shown in figure 1. Schematics are translated into a program which is
the equivalent structural description of interconnected devices. This is done by analogy with
programming. Our "source code" is a drawing produced by a conventional drawing editor which
has no specialized knowledge of schematics, just as text editors have no knowledge of programs
or text documents. We use udraw, but any conventional drawing editor would suffice. We then
"compile" this drawing into C++ code using a drawing interpreter drip written by Ramsey Had-
dad, which interprets lines as wires, and names as labels of wires and devices. It uses only
visible cues in the drawing to parse it into devices and wires, and can put arbitrary code, such as

2

DESIGN TOOLS FOR BIPS-0 DECEMBER 1992

Inputs:
L1 a;
L2 b;
signal Gnd, Vee1,
 Vcs,Vr1, Vr2;

Layout: "Leaf"

in

ISrc

Vr1

b

Res
r1

r0
Gnd

Vr2
e

Npnb
c

e

Npn b
c

(p)

(p)

(p)(p)

CELL: SimpleAnd2

:Power* p = MHP();

EFa b

Outputs:
L1 out;

a
e

Npnb
c

e

Npn b
c

(p)(p)

(p)

out

Inputs:
L1(n) a;
L2 b;
signal Gnd, Vee1,
 Vcs,Vr1, Vr2;

Layout: "Leaf"

in

ISrc

Vr1

b

Res
r1

r0

Gnd

Vr2
e

Npnb
c

e

Npn b
c

(p)

(p)

(p)(p)

CELL: AndOr(int n, Power* p)

EFa b

Outputs:
L1 out;

a[i]
e

Npnb
c

e

Npn b
c

(p)(p)

(p)

out

:for (int i=0; i<n; i++)

Gnd

Internals:
signal bot;

bot bot

:// An example of cell parameterized
// by number of inputs, and power level

Figure 1: Cell schematics

loops and tests, into the generated program. The example on the right in figure 1 shows a cell
generator containing a for loop. The output of drip is a program identical (except for verbosity)
with one written by hand.

To generate a netlist for the entire chip, we translate all schematics into C++. The C++ source
code is then compiled, as are the files containing Boolean equations and the hand-written cell
generators, and all are linked with the CAD libraries. We also include a main program which
calls the generator for the top-level cell of the chip.

To describe a complete microprocessor having 4 million devices, we use 25K lines of C++;
15K lines of CAD libraries are linked with the design, resulting in a 10MB executable. The chip
netlist is generated in a couple of minutes. An important point is that this netlist is hierarchical,
with shared cells. This means that the netlist distinguishes between a cell and an instance of the
cell. Cell sharing is provided by a programming convention in all cell generators. Each cell
generator stores its computed netlist in a cell cache before returning it to the caller. On sub-
sequent calls with identical parameters, the generator returns the cached netlist instead of creat-
ing a new copy. The advantages of a hierarchical netlist with shared cells are enormous, since all
aspects of a cell which are common between its many instances are shared. For instance, there is
exactly one RAM cell in the netlist, but thousands of instances of that cell. The RAM cell layout
is generated only once, but is then copied to many places in the chip layout. Cell sharing speeds
up layout generation by orders of magnitude.

3. Interface to Simulators

A netlist data structure in the virtual memory of a running program is a precise but useless
representation of a circuit. The CAD libraries contain procedures to enumerate this netlist and
produce input files for various simulators. We use spice for circuit simulation of analog circuits,
and bisim [2] for switch-level simulation of digital circuits. Each simulator requires its own
input file format, so there is a different enumerator of the circuit netlist for each simulator. Be-

3

DESIGN TOOLS FOR BIPS-0 DECEMBER 1992

cause both enumerations work from the same in-memory netlist, both are by definition consis-
tent. The spice enumerator is simple, and produces a hierarchical spice deck with the same cell
hierarchy as the original netlist. The only subtlety is in obeying the peculiar rules for legal spice
names of cells and wires, a common problem when interfacing with commercial tools.

Bisim is a switch-level simulator for BICMOS circuits written in conjunction with Stanford
University. It performs transistor-level simulation of ECL and CMOS circuits, and allows mixed-
mode simulation with behavioral models. Cells in the in-memory netlist can carry functional
models provided as C++ routines by the designer. In particular, a cell can both carry a functional
model, and be defined as an interconnection of instances of subcells. As part of the enumeration
which generates the bisim input files, the user selects the level of detail for simulation by
specifying which of the functional models should be used, and which ignored in favor of lower-
level models on subcells. The result of the enumeration is a flat bisim netlist at the level of
detail requested by the user, and a file of C++ functional models which need to be linked with
the simulator. Most of these functional models are at the gate level, because the library of
generators for ECL gates automatically attaches a functional model to each gate. Large memory
blocks carry hand-written functional models.

Results of simulations are examined with krono. This is a simple interactive graphical brow-
ser which can be used to examine the hierarchical netlist as well as log files produced by bisim.
An example of a debugging trace for a floating-point divider is shown in figure 2. Here time is
along the horizontal axis, and wire names from the original C++ source code are along the ver-
tical axis.

0 36Menu

Add

t_i_m_e

ck

fpDivEn

fpR

in

cycle

out

iterate

busy

cycle27

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

 1 0

 100000000000000000

 03 3b 03

 1f 1e 1c 18 11 03 06 0d 1b 17 0e 1d 1a 15 0a 14 08 10

 42182a

 0 1

 0 1

 0

Figure 2: Circuit and simulation browser

4. Generation of Layout

Layout generation is best seen as just another enumeration of the in-memory netlist. In the
same way that cells can carry functional models for simulation, cells can also carry layout
recipes which define how their layout is to be generated. A layout recipe is simply the name of a
C++ procedure, so this mechanism is general and extensible. As new styles of layout are
developed, they are described as new layout recipes which can be attached to cells. This recipe is
an integral part of the definition of the cell, and is specified by the designer just like the wires
defining the cell’s interface. If the same circuit needs to be laid out in two different ways, it is
described by a cell generator accepting the layout recipe as a parameter. Two different cells will
result from calls supplying different layout recipe arguments. They will have identical netlists,
but different layouts.

4

DESIGN TOOLS FOR BIPS-0 DECEMBER 1992

The layout process is a bottom-up, batch process. No interaction from the designer is required,
since all the information needed to generate the layout is in the netlist and in the layout recipes.
Layout happens in the same way for all cells. First, the subcells are laid out recursively. Then the
layout recipe is followed to place the subcells and to route any connections which are not made
by abutment. Finally, connectivity checks are made to detect shorts and opens.

The recursion ends at leaf cells, which do not depend on layout of the subcells. Leaf cells can
either be hand-drawn or synthesized. Hand-drawn layouts are created with our layout editor.
They are used for tricky analog cells such as pads and voltage references, or for memory cells,
where the gain in density is compelling. Very few of the cells in our design are hand-drawn, but
they constitute well over half of the 4 million devices in the final layout. Figure 3 shows the
layout of a pair of register file cells.

Figure 3: A typical hand-drawn cell

All other leaf cells are synthesized. Typically, these cells are at the gate level, containing up to
fifty transistors. A general cell synthesizer produces finished layout given the netlist of devices, a
set of templates for devices, and a vertical pitch. The placement uses no hints from the designer,
but selects positions of the transistors and resistors which maximizes the use of polysilicon inter-
connect. The resulting placement is very close to the density of hand designs. In part this is due
to the regularity of current trees in ECL logic and the similar sizes of bipolar devices. Routing of
leaf cells is done first in polysilicon. The connections which cannot be made in the planar
polysilicon routing are given contacts to first-level metal, and then the router is called again to
finish the routing using the metal layers. Placement and routing for a typical leaf cell takes under
a minute on a DECStation 5000/200.

This style of leaf cell synthesis may be contrasted with semi-custom design. In our system
there is no cell library, and we cannot predict in advance which 300 of the enormous number of
legal ECL gates will actually be used. The particular gate selection is determined by the
parameters passed to the gate generator procedures during creation of the netlist. Each distinct
gate is made exactly once - because of the sharing enforced by the cell cache during netlist
generation - and is instantiated one or more times. During layout generation therefore, each
unique ECL gate is placed and routed exactly once, and that layout is shared among the many
instances. Figure 5 shows a flip-flop with a 10-input integrated multiplexor after placement and
routing. Figure 4 shows the same cell without the wiring added by the router.

For non-leaf cells, the designer must choose a layout recipe which suits his purpose. This will
depend on how the cell is to fit in the floorplan of the chip. Layout recipes vary over the

5

DESIGN TOOLS FOR BIPS-0 DECEMBER 1992

Figure 4: A leaf cell after placement

Figure 5: The same leaf cell after routing

spectrum of greater convenience to greater control. At the convenience end, a fully automatic
placer based on conjugate gradient [5] is used to generate layout for blocks of control logic. At
the control end, designers use a collection of recipes based on corner alignment of subcells to
specify placement to the last micron (e.g. "place the lower left corner of the cache at the upper
left corner of the data path").

A large fraction of the development effort was spent on a general router based on a hybrid
maze/line search principles [4]. An important point about the router is that it is used in each cell
of the design to complete connections not made by placement. In general therefore, the router is
adding wires to cells on top of wires already routed in the subcells. Routing over the top of active
logic is one of the characteristics of custom VLSI, and is largely responsible for its density. For
this reason conventional channel routers - which route only over unobstructed rectangular chan-
nels - were unacceptable. The router reads design rules from the same file used by the layout
editor and the design rule checker. It can generate routing with minimum dimensions and
clearances from obstacles on all wiring layers simultaneously. There is only one router, and it is
used repeatedly at all levels of the design, from routing polysilicon in the leaf cells to making
millimeter-length connections at the chip level. Figure 6 shows the search structures used by the
router to make a connection in a leaf cell.

As rectangles are generated by the router, they are attached to the appropriate nets in the net-
list, just like all other rectangles of geometry. The geometry is thus maintained in an extracted
form, distributed over the netlist, and the geometry for any net can be found quickly by an
enumeration of the netlist. This permits incremental checks as each cell layout is finished, and
early detection of shorts or opens. An electrical short of two nets is usually a sign of overlapping

6

DESIGN TOOLS FOR BIPS-0 DECEMBER 1992

QUIT

NEXT-CELL

NEXT-CONNEC

NEXT-SEGME

VIEW-ALL

M2-GRID

M3-GRID

GRID-AXIS

REDISPLAY

RETRIEVES

INSERTS

PS

Figure 6: Router in action

subcells in an incorrect placement. Opens usually result from creating a routing problem which is
too difficult. Both of these problems are solved by editing the layout recipe for the cell, and
never by editing the layout directly. In this way we maintain the rule that all information needed
to generate the complete is recorded on the netlist.

5. Conclusion

This set of tools has been under development for three years, and has been proven in the
design of BIPS-0, an earlier bipolar processor. The layout generation of this complete 700,000-
device circuit took 10 hours, which allowed one complete iteration per day.

On our current processor project, these tools allow a team of a dozen people to design, test,
and layout a complex high-performance microprocessor in one year.

6. Acknowledgements

This work grew out of earlier work on CMOS design tools at XEROX PARC [8], and on
printed circuit board tools at WRL [4]. The authors would like to thank Neil Wilhelm, Jean
Vuillemin and Bertrand Serlet for convincing them that the solution to the hardest circuit design
problems lies in ambitious computer-aided design tools.

7

DESIGN TOOLS FOR BIPS-0 DECEMBER 1992

References
[1] Don Stark.

Analysis of Power Supply Networks in VLSI Circuits.
WRL Research Report 91/3, Digital Equipment Western Research Laboratory, 1991.

[2] Russel Kao, Bob Alverson, Mark Horowitz and Don Stark.
Bisim: A Simulator for Custom ECL Circuits.
In IEEE International Conference on Computer-Aided Design, pages 62-65. Santa Clara,

California, November, 1988.

[3] Robert N. Mayo, Michael H. Arnold, Walter S. Scott, Don Stark, Gordon T. Hamachi.
1990 DECWRL/Livermore Magic Release.
WRL Research Report 90/7, Digital Equipment Western Research Laboratory, 1990.

[4] Jeremy Dion.
Fast Printed Circuit Board Routing.
WRL Research Report 88/1, Digital Equipment Western Research Laboratory, 1988.

[5] Jurgen M. Kleinhans, Georg Sigl, Frank M. Johannes, and Kurt J. Antreich.
GORDIAN: VLSI Placement by Quadratic Programming and Slicing Optimization.
IEEE Transactions on Computer-aided Design 10(3):356-365, March, 1991.

[6] Jouppi, N. P.
Timing Analysis and Performance Improvement of MOS VLSI Designs.
IEEE Transactions on Computer Aided Design 6(4):650-665, 1987.

[7] J. Ousterhout, G. Hamachi, R. Mayo, W. Scott, and G.S. Taylor.
The Magic VLSI Layout System.
IEEE Design and Test of Computers 2(1):19-30, February, 1985.

[8] Louis Monier.
Layout Generation Through Parameterized Schematics.
In 7th Australian Microelectronics Conference, pages 157-164. Sydney, May, 1988.

8

DESIGN TOOLS FOR BIPS-0 DECEMBER 1992

List of Figures
Figure 1: Cell schematics 3
Figure 2: Circuit and simulation browser 4
Figure 3: A typical hand-drawn cell 5
Figure 4: A leaf cell after placement 6
Figure 5: The same leaf cell after routing 6
Figure 6: Router in action 7

ix

