
KA680CPU Module
Technical Manual
Order Number: EK-KA680-TM-001

First Edition, December 1991

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1991.

All Rights Reserved.

The postpaid Reader’s Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: DEC, DECnet, DEQNA, DSSI,
LPV11–SA, MicroVAX, PDP, Q–bus, Q22–bus, RRD50, RSTS, ThinWire, ULTRIX, UNIBUS, VAX,
VAXELN, VAXstation, VMS, VT, and the Digital logo.

This document was prepared using VAX DOCUMENT, Version 2.0.

Contents

Preface . xxiii

1 Overview

1.1 Introduction . 1–1
1.2 KA680 CPU Module . 1–2
1.2.1 The Central Processing Subsystem . 1–4
1.2.1.1 The NVAX Central Processing Unit (DC246) 1–4
1.2.1.2 The Cache Memory . 1–5
1.2.2 The System Support Subsystem . 1–5
1.2.2.1 The System Support Chip [SSC (DC511)] 1–5
1.2.2.2 The Firmware ROMs . 1–6
1.2.2.3 The Boot and Diagnostic Register . 1–6
1.2.2.4 The Station Address ROM . 1–6
1.2.3 The I/O Subsystem . 1–6
1.2.3.1 NVAX CP-bus Bus Adapter [NCA (DC243)] 1–6
1.2.3.1.1 DSSI Mass Storage Interface [SHAC (DC542)] 1–7
1.2.3.1.2 Ethernet Interface [SGEC (DC541)] . 1–7
1.2.3.1.3 Q22–bus Interface [CQBIC (DC527)] . 1–7
1.2.4 The Memory Control Subsystem . 1–7
1.2.4.1 NVAX Memory Controller [NMC (DC244)] 1–8
1.3 MS690 Memory Module . 1–8
1.4 H3604 Console Module . 1–8

2 Installation and Configuration

2.1 Installing the KA680 and MS690 Memory Modules 2–1
2.2 Module Configuration and Naming . 2–2
2.3 Mass Storage Configuration . 2–3
2.3.1 Changing the Node Name . 2–4
2.3.2 Changing the DSSI Unit Number . 2–5
2.3.3 Accessing RF-series Firmware in VMS Through DUP 2–6
2.3.3.1 Allocation Class . 2–6
2.4 DSSI Cabling, Device Identity, and Bus Termination 2–7
2.5 KA680 Connectors . 2–7

3 Central Processor

3.1 Processor State . 3–1
3.1.1 General-Purpose Registers . 3–1
3.1.2 Processor Status Longword . 3–2
3.1.3 Internal Processor Registers . 3–3
3.2 Process Structure . 3–23
3.3 Data Types . 3–23

iii

3.4 Instruction Set . 3–23
3.5 Memory Management . 3–24
3.5.1 Translation Buffer . 3–24
3.5.2 30-bit to 32-bit Physical Address Translations 3–26
3.5.3 Memory Management Control Registers . 3–28
3.6 Interrupts and Exceptions . 3–29
3.6.1 Interrupts . 3–29
3.6.1.1 Power Fail Interrupt . 3–33
3.6.1.2 Hard Error Interrupts . 3–34
3.6.1.3 Soft Error Interrupts . 3–34
3.7 Exceptions . 3–34
3.7.1 Arithmetic Exceptions . 3–35
3.7.2 Memory Management Exceptions . 3–36
3.7.3 Emulated Instruction Exceptions . 3–37
3.7.4 Vector Unit Disabled Fault . 3–39
3.7.5 Machine Check Exceptions . 3–39
3.7.6 Console Halts . 3–40
3.7.7 Kernel Stack Not Valid Exception . 3–41
3.8 System Control Block (SCB) . 3–41
3.9 System Identification . 3–44
3.9.1 System Identification Register . 3–44
3.9.2 System Identification Extension (SIE) Register (20040004) 3–45
3.10 CPU References . 3–46
3.10.1 Instruction-Stream Read References . 3–46
3.10.2 Ownership Read References . 3–47
3.10.3 Disown Write References . 3–48
3.10.4 Data-Stream Read References . 3–48
3.10.5 Write References . 3–48
3.11 NVAX Data/Address Lines (NDAL) . 3–48
3.11.1 NDAL Transactions . 3–48
3.11.1.1 Reads and Fills . 3–51
3.11.1.1.1 D-stream Read Requests (DREAD) . 3–51
3.11.1.1.2 I-stream Read Requests (IREAD) . 3–51
3.11.1.1.3 Ownership Read Requests (OREAD) . 3–51
3.11.1.1.4 Read Data Return Cycles (RDR0, RDR1, RDR2, RDR3) 3–52
3.11.1.1.5 Read Data Error Cycles (RDE) . 3–52
3.11.1.2 Writes . 3–52
3.11.1.2.1 Normal Write Transactions (WRITE) . 3–52
3.11.1.2.2 Disown Write Transactions (WDISOWN) 3–53
3.11.1.2.3 Write Data and Bad Write Data (WDATA,BADWDATA) 3–53
3.11.2 Cache Coherency . 3–53
3.11.3 VAX Architecturally-defined Interlocks . 3–55
3.11.3.1 Ownership and Interlock Transactions . 3–55
3.11.4 Errors . 3–55
3.11.4.1 Transaction Timeout . 3–55
3.11.4.2 Nonexistent Memory and I/O . 3–55

iv

4 KA680 Cache Memory Overview

4.1 Cacheable References . 4–2
4.2 Virtual Instruction Cache . 4–2
4.2.1 Virtual Instruction Cache Organization . 4–3
4.2.2 Virtual Instruction Cache Internal Processor Registers 4–4
4.2.2.1 VIC Virtual Memory Address Register (VMAR) - IPR 208 4–4
4.2.2.2 VIC TAG Register (VTAG) - IPR 209 . 4–5
4.2.2.3 VIC Data Register (VDATA) - IPR 210 . 4–6
4.2.2.4 VIC Control and Status Register (ICSR) - IPR 211 4–7
4.3 Primary Cache . 4–8
4.3.1 Primary Cache Organization . 4–8
4.3.2 Pcache Control . 4–9
4.3.3 Pcache Hit/Miss Determination . 4–12
4.3.3.1 Hit/Miss Determination by Tag Comparison 4–12
4.3.3.2 Conditions That Force Pcache Miss . 4–12
4.3.3.3 Conditions That Force Pcache Hit . 4–13
4.3.4 Pcache Behavior on Write Operations . 4–13
4.3.5 Pcache Replacement Algorithm . 4–13
4.3.6 Pcache Fill Operation . 4–14
4.3.7 Pcache Invalidate Operation . 4–14
4.3.8 Pcache IPR Summary . 4–15
4.3.8.1 PCADR - IPR 240 . 4–15
4.3.8.2 PCSTS - IPR 241 . 4–15
4.3.8.3 PCCTL - IPR 242 . 4–16
4.3.8.4 PCTAG - IPRs 0180000016 to 01801FE016 4–16
4.3.8.5 PCDAP - IPR 01C0000016 to 01C01FF816 4–17
4.3.9 Pcache IPR Access . 4–18
4.4 Backup Cache . 4–18
4.4.1 Write-back Cache and Ownership Concepts . 4–19
4.4.2 Backup Cache Overview . 4–19
4.4.3 Backup Cache Operating Modes . 4–20
4.4.4 NVAX Backup Cache Organization and Interface 4–21
4.4.5 Backup Cache Block Diagrams . 4–22
4.4.6 Backup Cache Data Block Allocation . 4–23
4.4.6.1 Read References . 4–23
4.4.6.2 Write References . 4–23
4.4.7 Effects of I/O Traffic on the Backup Cache . 4–23
4.4.8 Backup Cache Internal Processor Registers . 4–24
4.4.8.1 Bcache Control IPR (CCTL) . 4–28
4.4.8.2 Backup Cache Data ECC IPR (BCDECC) 4–32
4.4.8.3 Backup Cache Tag Store Error Registers (BCETSTS, BCETIDX,

BCETAG) . 4–33
4.4.8.3.1 Bcache Error Tag Status (BCETSTS) . 4–33
4.4.8.3.2 Bcache Error Tag Index (BCETIDX) . 4–35
4.4.8.3.3 Bcache Error Tag (BCETAG) . 4–36
4.4.8.4 Backup Cache Data RAM Error Registers (BCEDSTS, BCEDIDX,

BCEDECC) . 4–38
4.4.8.5 Bcache Error Data Status (BCEDSTS) . 4–38
4.4.8.5.1 Bcache Error Data Index (BCEDIDX) 4–40
4.4.8.6 Bcache Error Data ECC (BCEDECC) . 4–41
4.4.9 Fill Error Registers (CEFADR, CEFSTS) . 4–41
4.4.9.1 Bcache Error Fill Status (CEFSTS) . 4–42
4.4.9.2 Fill Error Address (CEFADR) . 4–45

v

4.4.10 NDAL Error Registers (NESTS, NEOADR, NEOCMD, NEDATHI,
NEDATLO, NEICMD) . 4–46

4.4.10.1 NDAL Error Status IPR (NESTS) . 4–46
4.4.10.2 NDAL Error Output Address IPR (NEOADR) 4–49
4.4.10.3 NDAL Error Output Command (NEOCMD) 4–49
4.4.10.4 NDAL Error Input Command (NEICMD) 4–50
4.4.10.5 NDAL Error Data High and NDAL Error Data Low (NEDATHI

and NEDATLO) . 4–50
4.4.11 Backup Cache Tag Store Access Through IPR Reads and Writes

(BCTAG) . 4–51
4.4.12 Backup Cache Deallocates Through IPR Access (BCFLUSH) 4–52
4.4.13 Bcache Abnormal Conditions . 4–53
4.4.13.1 NVAX Behavior When the Backup Cache is OFF 4–53
4.4.13.2 NVAX Behavior When the Backup Cache is in FORCE_HIT

Mode . 4–55
4.4.13.3 NVAX Behavior When the Backup Cache is in Error Transition

Mode . 4–55
4.4.14 How to Turn the Bcache Off . 4–57
4.4.15 How to Turn the Bcache On . 4–58
4.4.16 Backup Cache Errors . 4–58
4.4.16.1 Backup Cache Errors Incurred While in Error Transition

Mode . 4–61

5 KA680 Main Memory System

5.1 Overview of the NVAX Memory Subsystem Support Functions 5–1
5.1.1 The NMC Chip . 5–1
5.1.2 The GMX Chip . 5–2
5.2 Overview of NMC-supported NDAL Transactions 5–2
5.3 Overview of NMI Transactions . 5–2
5.4 NMC Architectural Overview . 5–2
5.4.1 NDAL Bus Interface Architecture . 5–3
5.4.1.1 The Non-Writeback Queues . 5–3
5.4.1.2 The Write-back Queue . 5–5
5.4.1.3 The OUT_QUE . 5–5
5.4.2 Memory Interface Architecture . 5–5
5.4.2.1 Data Memory Addressing . 5–6
5.4.2.2 Memory Set Organization . 5–6
5.4.2.3 Memory Configuration . 5–7
5.4.2.4 Ownership Bit Memory Organization and Addressing 5–8
5.4.3 NMI Transactions . 5–10
5.4.3.1 Refresh . 5–10
5.4.3.2 Signature Read . 5–10
5.4.3.3 Read/Write Transactions . 5–10
5.4.3.4 Nonexistent Memory Access . 5–11
5.4.4 Error Checking for Data Memory . 5–11
5.4.5 Error Checking for Ownership Bit Memory . 5–12
5.4.6 Memory Diagnostic Support . 5–12
5.4.6.1 Fast Diagnostic Mode . 5–13
5.4.6.2 Diagnostic Check Bit Mode . 5–13

vi

5.4.7 Ownership Bit Memory Diagnostic Support . 5–13
5.4.7.1 Reconstruction Mode . 5–14
5.4.7.2 Memory Test Mode with ECC . 5–14
5.4.7.3 Fast Memory Test Mode with ECC . 5–14
5.4.7.4 Memory Test Mode with Forced Check Bits 5–14
5.4.7.5 Fast Memory Test Mode with Forced Check Bits 5–14
5.4.8 I/O Section . 5–14
5.4.8.1 Registers . 5–15
5.4.8.1.1 Memory Configuration Registers (MEMCON0 -

MEMCON7) . 5–15
5.4.8.1.2 Memory Signature Registers (MEMSIG0 - MEMSIG7) 5–17
5.4.8.1.3 Error Address Information Register (MEAR) 5–17
5.4.8.1.4 Error Status Register (MESR) . 5–18
5.4.8.1.5 Mode Control and Diagnostic Status Register (MMCDSR) 5–21
5.4.8.1.6 O-bit Address and Mode Register (MOAMR) 5–25
5.4.8.1.7 O-bit Data Registers (MODRs) . 5–26
5.4.8.1.8 Clear Write Buffer Register (NMC_CSR20) 5–28
5.4.9 NMC Transaction Handling . 5–28
5.4.9.1 NMC Internal Arbitration . 5–29
5.4.9.2 Transaction Handler Datapath . 5–30
5.4.10 NMC Transactions . 5–30
5.4.10.1 Ownership Read . 5–30
5.4.10.2 Memory Read . 5–30
5.4.10.3 Memory Write . 5–30
5.4.10.4 Disown Write . 5–31
5.4.11 I/O Transactions . 5–31
5.4.12 NMC Error Handling . 5–31
5.4.13 NDAL Arbitration . 5–34
5.5 NMC Initialization . 5–35
5.5.1 Internal Register States . 5–35
5.5.2 Counter States . 5–35
5.6 Memory Subsystem Organization . 5–35
5.6.1 64-bit Interconnect . 5–35
5.6.2 GMX Chip . 5–36

6 KA680 I/O Subsystem

6.1 NCA Overview . 6–1
6.2 I/O System Configuration . 6–1
6.3 NCA Chip Architecture . 6–2
6.3.1 NCA Addressing . 6–4
6.3.2 NDAL Interface . 6–4
6.3.2.1 NDAL Slave Interface . 6–4
6.3.2.2 NDAL Master Interface . 6–5
6.3.3 CP1 and CP2 Interface . 6–6
6.3.3.1 CP Master Interface . 6–6
6.3.3.2 MT and NRA Timers . 6–7
6.3.3.3 CP Slave Interface . 6–7
6.3.4 Registers . 6–8
6.3.4.1 Control and Status Registers . 6–9
6.3.4.2 Error Status Register (CESR) . 6–9
6.3.4.3 Mode Control and Diagnostic Register (CMCDSR) 6–14
6.3.4.4 CP1 Slave Error Address Register (CSEAR1) 6–16
6.3.4.5 CP2 Slave Error Address Register (CSEAR2) 6–17

vii

6.3.4.6 CP1 IO Error Address Register (CIOEAR1) 6–18
6.3.4.7 CP2 IO Error Address Register (CIOEAR2) 6–19
6.3.4.8 NDAL Error Address Register (CNEAR) . 6–19
6.4 Interval Clock Registers . 6–20
6.4.1 Interval Clock Control and Status Register (ICCS) 6–20
6.4.2 Next Interval Count Register (NICR) . 6–21
6.4.3 Interval Count Register (ICR) . 6–21
6.5 NCA Transaction Handling . 6–21
6.5.1 IO Write . 6–22
6.5.2 IO Read . 6–22
6.5.3 Interrupt Vector Read . 6–24
6.5.4 Register Read . 6–25
6.5.5 Register Write . 6–25
6.5.6 CP1 DMA Read . 6–26
6.5.7 CP1 DMA Write . 6–27
6.5.8 CP2 DMA Read . 6–27
6.5.9 CP2 DMA Write . 6–29
6.6 NCA Error Handling . 6–30

7 The Console Line, TOY Clock

7.1 KA680 Console Serial Line . 7–1
7.1.1 Console Registers . 7–1
7.1.1.1 Console Receiver Control/Status Register (IPR 32) 7–1
7.1.1.2 Console Receiver Data Buffer (IPR 33) . 7–2
7.1.1.3 Console Transmitter Control/Status Register (IPR 34) 7–4
7.1.1.4 Console Transmitter Data Buffer (IPR 35) 7–5
7.1.2 Break Response . 7–6
7.1.3 Baud Rate . 7–6
7.1.4 Console Interrupt Specifications . 7–7
7.2 KA680 TOY Clock and Timers . 7–7
7.2.1 Time-of-Year Clock (TODR) - EPR 27 . 7–7
7.2.2 Programmable Timers . 7–8
7.2.2.1 Timer Control Registers (TCR0 and TCR1) 7–8
7.2.2.2 Timer Interval Registers (TIR0 and TIR1) 7–9
7.2.2.3 Timer Next Interval Registers (TNIR0 and TNIR1) 7–10
7.2.2.4 Timer Interrupt Vector Registers (TIVR0 and TIVR1) 7–10

8 KA680 Boot and Diagnostic Facility

8.1 Boot and Diagnostic Register (BDR) . 8–1
8.2 Diagnostic LED Register (DLEDR) . 8–4
8.3 EPROM Memory . 8–5
8.3.1 EPROM Address Space . 8–5
8.3.2 KA680 Resident Firmware Operation . 8–6
8.3.2.1 Power-Up Modes . 8–6
8.4 Battery Backed-up RAM . 8–6
8.5 KA680 Initialization . 8–6
8.5.1 Power-up Initialization . 8–7
8.5.2 Hardware Reset . 8–7
8.5.3 I/O Bus Initialization . 8–7
8.5.3.1 I/O Bus Reset Register (IPR 55) . 8–7
8.5.4 Processor Initialization . 8–7
8.5.4.1 Configuring the Local I/O Page . 8–7

viii

8.5.5 SSC Base Address Register (SSCBR) . 8–8
8.5.6 BDR Address Decode Match Register (BDMTR) 8–8
8.5.7 BDR Address Decode Mask Register (BDMKR) 8–9
8.5.8 SSC Configuration Register (SSCCR) . 8–9

9 KA680 Q22–bus Interface

9.1 Q22–bus to Main Memory Address Translation . 9–2
9.1.1 Q22–bus Map Registers (QMRs) . 9–3
9.1.2 Accessing the Q22–bus Map Registers . 9–5
9.1.3 The Q22–bus Map Cache . 9–6
9.2 CP to Q22–bus Address Translation . 9–7
9.3 Interprocessor Communications Facility . 9–8
9.3.1 Interprocessor Communication Register (IPCR) 9–8
9.3.2 Interprocessor Doorbell Interrupts . 9–9
9.4 Q22–bus Interrupt Handling . 9–10
9.5 Configuring the Q22–bus Map . 9–10
9.5.1 Q22–bus Map Base Address Register (QBMBR) 9–10
9.6 System Configuration Register (SCR) . 9–11
9.7 Error Reporting Registers . 9–12
9.7.1 DMA System Error Register (DSER) . 9–12
9.7.2 Q22–bus Error Address Register (QBEAR) . 9–14
9.7.3 DMA Error Address Register (DEAR) . 9–15
9.8 Q22–bus Interface Error Handling . 9–16

10 Network Interface

10.1 Ethernet Overview . 10–1
10.2 NI Station Address ROM (NISA ROM) . 10–3
10.3 Programming the SGEC . 10–3
10.3.1 Command and Status Registers . 10–4
10.3.2 Host Access to NICSRs . 10–4
10.3.2.1 Physical NICSRs . 10–5
10.3.2.2 Virtual NICSRs . 10–5
10.3.2.2.1 NICSR Write . 10–5
10.3.2.2.2 NICSR Read . 10–5
10.3.3 Vector Address, IPL, Sync/Async (NICSR0) . 10–5
10.3.4 Receive Polling Demand (NICSR2) . 10–8
10.3.5 Descriptor List Addresses (NICSR3, NICSR4) 10–9
10.3.6 Status Register (NICSR5) . 10–11
10.3.6.1 NICSR5 Status Report . 10–15
10.3.7 Command and Mode Register (NICSR6) . 10–16
10.3.8 System Base Register (NICSR7) . 10–21
10.3.9 Reserved Register (NICSR8) . 10–22
10.3.10 Watchdog Timers (NICSR9) . 10–22
10.3.11 Revision Number and Missed Frame Count (NICSR10) 10–24
10.3.12 Boot Message (NICSR11, 12, 13) . 10–25
10.3.13 Diagnostic Registers (NICSR14, 15) . 10–26
10.3.13.1 Diagnostic Breakpoint Address Register (NICSR14) 10–26
10.3.13.2 Monitor Command Register (NICSR15) . 10–26
10.3.14 Descriptors and Buffers Format . 10–28

ix

10.3.15 Receive Descriptors . 10–28
10.3.15.1 RDES0 Word . 10–29
10.3.15.2 RDES1 Word . 10–31
10.3.15.3 RDES2 Word . 10–32
10.3.15.4 RDES3 Word . 10–32
10.3.15.5 Receive Descriptor Status Validity . 10–33
10.3.16 Transmit Descriptors . 10–33
10.3.16.1 TDES0 Word . 10–34
10.3.16.2 TDES1 Word . 10–35
10.3.16.3 TDES2 Word . 10–37
10.3.16.4 TDES3 Word . 10–37
10.3.16.5 Transmit Descriptor Status Validity . 10–38
10.3.17 Setup Frame . 10–38
10.3.17.1 First Setup Frame . 10–38
10.3.17.2 Subsequent Setup Frame . 10–38
10.3.17.3 Setup Frame Descriptor . 10–39
10.3.17.4 Perfect Filtering Setup Frame Buffer . 10–40
10.3.17.5 Imperfect Filtering Setup Frame Buffer . 10–42
10.3.18 SGEC Operation . 10–46
10.3.18.1 Hardware and Software Reset . 10–46
10.3.18.2 Interrupts . 10–47
10.3.18.3 Startup Procedure . 10–47
10.3.18.4 Reception Process . 10–48
10.3.18.5 Transmission Process . 10–49
10.3.18.6 Loopback Operations . 10–51
10.3.18.7 DNA CSMA/CD Counters and Events Support 10–52

11 KA680 Mass Storage Interface

11.1 SHAC Introduction . 11–1
11.2 CI-DSSI Overview . 11–3
11.3 SHAC Registers . 11–5
11.3.1 CI Port Registers . 11–6
11.3.1.1 Port Queue Block Base Register (PQBBR) 11–6
11.3.1.2 Port Status Register (PSR) . 11–8
11.3.1.3 Port Error Status Register (PESR) . 11–11
11.3.1.4 Port Failing Address Register (PFAR) . 11–12
11.3.1.5 Port Parameter Register (PPR) . 11–13
11.3.1.6 Port Control Registers . 11–13
11.3.1.6.1 Port Command Queue 0 Control Register (PCQ0CR) 11–14
11.3.1.6.2 Port Command Queue 1 Control Register (PCQ1CR) 11–14
11.3.1.6.3 Port Command Queue 2 Control Register (PCQ2CR) 11–14
11.3.1.6.4 Port Command Queue 3 Control Register (PCQ3CR) 11–14
11.3.1.6.5 Port Datagram Free Queue Control Register (PDFQCR) 11–14
11.3.1.6.6 Port Message Free Queue Control Register (PMFQCR) 11–14
11.3.1.6.7 Port Status Release Control Register (PSRCR) 11–14
11.3.1.6.8 Port Enable Control Register (PECR) 11–14
11.3.1.6.9 Port Disable Control Register (PDCR) 11–15
11.3.1.6.10 Port Initialize Control Register (PICR) 11–15
11.3.1.6.11 Port Maintenance Timer Control Register (PMTCR) 11–15
11.3.1.6.12 Port Maintenance Timer Expiration Control Register

(PMTECR) . 11–15
11.3.1.6.13 Port Maintenance Control and Status Register (PMCSR) 11–15

x

11.3.2 SHAC Specific Registers . 11–16
11.3.2.1 SHAC Software Chip Reset Register (SSWCR) 11–17
11.3.2.2 SHAC Shared Host Memory Address (SSHMA) 11–17

12 KA680 Firmware

12.1 KA680 Firmware Overview . 12–1
12.2 Firmware Capabilities . 12–2
12.2.1 General Description . 12–3
12.2.2 Halt Code . 12–4
12.2.3 Halt Entry - Saving Processor State . 12–4
12.2.4 Halt Dispatch . 12–5
12.2.4.0.1 External Halts . 12–6
12.2.4.1 Halt Exit - Restoring Processor State . 12–7
12.2.5 Power-up . 12–8
12.2.5.1 Identifying the Console Device . 12–8
12.2.5.1.1 Mode Switch Set to "Test" . 12–9
12.2.5.1.2 Mode Switch Set to "Query" . 12–9
12.2.5.1.3 Mode Switch Set to "Normal" . 12–10
12.2.5.2 LED Codes . 12–11
12.2.6 Operating System Bootstrap . 12–12
12.2.6.1 Preparing for the Bootstrap . 12–12
12.2.6.1.1 Boot Devices . 12–14
12.2.6.1.2 Boot Flags . 12–15
12.2.6.2 Primary Bootstrap, VMB . 12–16
12.2.6.3 Device-Dependent Bootstrap Procedures . 12–18
12.2.6.3.1 Disk and Tape Bootstrap Procedure . 12–19
12.2.6.3.2 PROM Bootstrap Procedure . 12–20
12.2.6.3.3 Network Bootstrap Procedure . 12–20
12.2.7 Operating System Restart . 12–22
12.2.7.1 Locating the RPB . 12–23
12.2.8 Console Service . 12–23
12.2.8.1 Console Control Characters . 12–23
12.2.8.2 Console Command Syntax . 12–26
12.2.8.3 Console Command Keywords . 12–27
12.2.8.4 Console Command Qualifiers . 12–28
12.2.8.5 Console Numeric Expression Radix Specifiers 12–28
12.2.8.6 Command Address Specifiers . 12–29
12.2.8.7 Console Symbolic Addressing . 12–29
12.2.8.8 References to Processor Registers and Memory 12–33
12.2.9 Console Commands . 12–34

BOOT . 12–35
CONFIGURE . 12–37
CONTINUE . 12–38
DEPOSIT . 12–39
EXAMINE . 12–41
FIND . 12–44
HALT . 12–45
HELP . 12–46
INITIALIZE . 12–49
MOVE . 12–50
NEXT . 12–52

xi

REPEAT . 12–54
SEARCH . 12–55
SET . 12–58
SHOW . 12–62
START . 12–67
TEST . 12–68
UNJAM . 12–72
X - Binary Load and Unload . 12–73
XDELTA . 12–75
! - Comment . 12–78

12.3 Diagnostics . 12–83
12.3.1 Error Reporting . 12–84
12.3.2 Diagnostic Interdependencies . 12–85
12.3.3 Areas Not Covered . 12–85
12.4 Environment . 12–86
12.4.1 Users . 12–86
12.4.2 Hardware . 12–86
12.4.3 Software . 12–87
12.4.4 Services . 12–87
12.5 Internationalization . 12–88

A NVRAM Partitioning

A.1 SSC RAM Layout . A–1
A.1.1 Public Data Structures . A–1
A.1.2 Console Program MailBoX (CPMBX) . A–1
A.1.3 Firmware Stack . A–3
A.1.4 Diagnostic State . A–3
A.1.5 USER Area . A–3

B Data Structures

B.1 Halt Dispatch State Machine . B–1
B.2 RPB . B–4
B.3 VMB Argument List . B–8

C Error Messages

C.1 Machine Check Register Dump . C–1
C.2 Halt Code Messages . C–1
C.3 VMB Error Messages . C–3
C.4 Console Error Messages . C–4

D Machine State on Powerup

D.1 Main Memory Layout and State . D–1
D.1.1 Reserved Main Memory . D–1
D.1.1.1 PFN Bitmap . D–2
D.1.1.2 Scatter/Gather Map . D–2
D.1.1.3 Firmware "Scratch Memory" . D–2
D.1.2 Contents of Main Memory . D–3
D.2 Memory Controller Registers . D–3
D.2.1 On-chip Cache . D–3

xii

D.2.2 Translation Buffer . D–3
D.2.3 Halt-Protected Space . D–3

E MOP Support

E.1 Network "Listening" . E–1
E.2 MOP Counters . E–6

F Q22–bus Specification

F.1 Introduction . F–1
F.1.1 Master/Slave Relationship . F–2
F.2 Q22–bus Signal Assignments . F–2
F.3 Data Transfer Bus Cycles . F–5
F.3.1 Bus Cycle Protocol . F–6
F.3.2 Device Addressing . F–7
F.4 Direct Memory Access . F–17
F.4.1 DMA Protocol . F–17
F.4.2 Block Mode DMA . F–20
F.4.2.1 DATBI Bus Cycle . F–22
F.4.2.2 DATBO Bus Cycle . F–24
F.4.3 DMA Guidelines . F–25
F.5 Interrupts . F–25
F.5.1 Device Priority . F–26
F.5.2 Interrupt Protocol . F–27
F.5.3 Q22–bus 4-level Interrupt Configurations . F–31
F.6 Control Functions . F–32
F.6.1 Halt . F–32
F.6.2 Initialization . F–32
F.6.3 Power Status . F–32
F.7 Q22–bus Electrical Characteristics . F–32
F.7.1 Signal Level Specifications . F–33
F.7.2 Load Definition . F–33
F.7.3 120-Ohm Q22–bus . F–33
F.7.4 Bus Drivers . F–33
F.7.5 Bus Receivers . F–34
F.7.6 Bus Termination . F–34
F.7.7 Bus Interconnecting Wiring . F–35
F.7.7.1 Backplane Wiring . F–35
F.7.7.2 Intrabackplane Bus Wiring . F–35
F.7.7.3 Power and Ground . F–36
F.8 System Configurations . F–36
F.8.1 Power Supply Loading . F–39
F.9 Module Contact Finger Identification . F–39

G Specifications

G.1 Dimensions . G–1
G.2 KA680 Connectors . G–1
G.2.1 KA680 Backplane Connector . G–1
G.2.2 KA680 Console Connector (J2) . G–7
G.3 DC Power Consumption . G–12
G.4 Battery Back-up Specifications . G–12
G.5 Operating Conditions . G–12

xiii

G.6 Nonoperating Conditions (Fewer Than 60 Days) . G–13
G.7 Nonoperating Conditions (More Than 60 Days) . G–13
G.8 Mean Time Between Failures (MTBF) Estimate . G–13

H VAX Instruction Set

I Address Assignments

I.1 KA680 General Local Address Space Map . I–1
I.2 KA680 Detailed Local Address Space Map . I–2
I.3 External, Internal Processor Registers . I–5
I.4 Global Q22–bus Address Space Map . I–6

J Configurable Machine State

Index

Examples

2–1 Changing a DSSI Node Name . 2–4
2–2 Changing a DSSI Unit Number . 2–5
10–1 Perfect Filtering Buffer . 10–42
10–2 Imperfect Filtering Buffer . 10–43
10–3 Imperfect Filtering Setup Frame Buffer Creation C Program 10–44

Figures

1–1 KA680 Module in a System . 1–1
1–2 KA680 CPU Module . 1–2
1–3 KA680 CPU Module Component Side . 1–3
1–4 KA680 CPU Module Block Diagram . 1–4
1–5 H3604 Console Module Front . 1–9
2–1 Backplane . 2–2
3–1 General-Purpose Register . 3–1
3–2 Processor Status Longword . 3–2
3–3 IPR Address Space Decoding . 3–4
3–4 PTE and TB Format . 3–25
3–5 Translation Buffer Tag (TBTAG) - IPR 47 . 3–27
3–6 Translation Buffer Data (TBDATA) - IPR 59 . 3–27
3–7 Interrupt Priority Level Register (IPLR) - IPR 18 3–33
3–8 Software Interrupt Request Register (SIRR) - IPL 20 3–33
3–9 Software Interrupt Summary Register (SISR) - IPL 21 3–33
3–10 Power Fail Interrupt Stack Frame . 3–33
3–11 Hard Error Interrupt Stack Frame . 3–34
3–12 Soft Error Interrupt Stack Frame . 3–34
3–13 Arithmetic Exception Stack Frame . 3–36
3–14 Memory Management Exception Stack Frame 3–37
3–15 Instruction Emulation Trap Stack Frame . 3–38

xiv

3–16 Suspended Emulation Fault Stack Frame . 3–39
3–17 Generic Machine Check Stack Frame . 3–40
3–18 Console Saved PC and Saved PSL . 3–40
3–19 Kernel Stack Not Valid Stack Frame . 3–41
3–20 System Control Block Base Register (SCBB) - IPR 17 3–41
3–21 System Identification Register (SID) - IPR 62 3–45
3–22 System Identification Extension Register (SIE) 3–45
4–1 KA680 Cache/Memory Hierarchy . 4–1
4–2 VIC Cache Row Format . 4–3
4–3 VMAR Register . 4–4
4–4 VTAG Register . 4–5
4–5 VDATA Register . 4–6
4–6 ICSR Register . 4–7
4–7 Logical Pcache Organization . 4–9
4–8 Pcache Address Breakdown . 4–9
4–9 PCCTL Register . 4–10
4–10 PCADR Register . 4–15
4–11 PCSTS Register . 4–15
4–12 PCTAG Register . 4–16
4–13 PCDAP Register . 4–17
4–14 IPR Address Space Mapping . 4–18
4–15 Tags and Data for 128-Kilobyte Cache . 4–22
4–16 Address Used for 128-Kilobyte Cache . 4–22
4–17 IPR Address Space Decoding as Seen by Software 4–24
4–18 IPR Format of CCTL . 4–28
4–19 Format of the BCDECC . 4–32
4–20 IPR Format of BCETSTS . 4–33
4–21 Backup Tag Store Error Address IPR . 4–35
4–22 IPR Format of BCETAG . 4–36
4–23 Tag Store Error Correcting Code Matrix . 4–37
4–24 IPR Format of BCEDSTS . 4–38
4–25 BCEDIDX . 4–40
4–26 Format of the BCEDECC Register . 4–41
4–27 Backup Cache Data Store Error Correcting Code Matrix 4–41
4–28 IPR Format of CEFSTS . 4–42
4–29 IPR Format of CEFADR . 4–46
4–30 IPR Format of NESTS . 4–47
4–31 IPR Format of NEOADR . 4–49
4–32 IPR Format of NEOCMD . 4–49
4–33 IPR Format of NEICMD . 4–50
4–34 NEDATHI, Address Cycle Format . 4–50
4–35 NEDATLO, Address Cycle Format . 4–51
4–36 Backup Cache Tag Store IPR Addressing Format 4–51
4–37 IPR Format of the Backup Cache Tag Store . 4–51
4–38 Backup Cache Deallocate IPR Addressing Format 4–52
5–1 NDAL IN_QUEs in the NMC . 5–4
5–2 Data Memory Addressing . 5–6

xv

5–3 O-bit Port Addressing . 5–9
5–4 SEC/DED/SSD Code Used in the NMC . 5–12
5–5 Single Error Correcting Code for O-bit Memory 5–12
5–6 Memory Configuration Registers . 5–16
5–7 Error Address Information Register . 5–18
5–8 Error Status Register . 5–19
5–9 Mode Control and Diagnostic Status Register 5–22
5–10 O-bit Address and Mode Register . 5–25
5–11 O-bit Data Registers . 5–27
5–12 NMC Block Diagram . 5–29
5–13 Memory Organization with 64-bit Interconnect 5–37
6–1 NCA Block Diagram . 6–3
6–2 Error Status Register . 6–10
6–3 Mode Control and Diagnostic Status Register 6–14
6–4 CP1 Slave Error Address Register . 6–17
6–5 CP2 Slave Error Address Register . 6–17
6–6 CP1 IO Error Address Registers . 6–18
6–7 CP2 IO Error Address Registers . 6–19
6–8 NDAL Error Address Registers . 6–19
6–9 Interval Clock Control and Status Register . 6–20
7–1 Console Receiver Control/Status Register (IPR 3210 2016) 7–2
7–2 Console Receiver Data Buffer (IPR 3310 2116) 7–3
7–3 Console Transmitter Control/Status Register (IPR 3410 2216) 7–4
7–4 Console Transmitter Data Buffer (IPR 3510 2316) 7–6
7–5 Time-of-Year Clock (TODR) - (EPR 2710 1B16) 7–7
7–6 Timer Control Registers (TCR0 and TCR1) . 7–8
7–7 Timer Interval Registers (TIR0 and TIR1) . 7–10
7–8 Timer Next Interval Registers (TNIR0 and TNIR1) 7–10
7–9 Timer Interrupt Vector Registers (TIVR0 and TIVR1) 7–11
8–1 Boot and Diagnostic Register (BDR) . 8–1
8–2 Diagnostic LED Register (DLEDR) . 8–4
8–3 SSC Base Address Register (SSCBR) . 8–8
8–4 BDR Address Decode Match Register (BDMTR) 8–8
8–5 BDR Address Decode Mask Register (BDMKR) 8–9
8–6 SSC Configuration Register (SSCCR) . 8–9
9–1 Q22–bus Address Translation . 9–2
9–2 Q22–bus Map Register Format . 9–4
9–3 Q22–bus Map Cache Entry Format . 9–6
9–4 Interprocessor Communication Register (IPCR) 9–8
9–5 Q22–bus Map Base Address Register (QBMBR) 9–10
9–6 System Configuration Register (SCR) . 9–11
9–7 DMA System Error Register (DSER) . 9–13
9–8 Q22–bus Error Address Register (QBEAR) . 9–15
9–9 DMA Error Address Register (DEAR) . 9–15
10–1 Ethernet Packet Format . 10–2
10–2 Vector Address, IPL, Sync/Async (NICSR0) . 10–6
10–3 Polling Demand (NICSR1) . 10–7

xvi

10–4 NICSR2 Format . 10–8
10–5 Descriptor List Addresses Format . 10–10
10–6 NICSR5 Bits . 10–11
10–7 NICSR6 Format . 10–16
10–8 NICSR7 Format . 10–21
10–9 NICSR9 Format . 10–22
10–10 Revision Number and Missed Frame Count (VIRTUAL NICSR10) . . . 10–24
10–11 Boot Message . 10–25
10–12 NICSR14 Format . 10–26
10–13 NICSR15 Format . 10–27
10–14 Receive Descriptor Format . 10–29
10–15 Transmit Descriptor Format . 10–34
10–16 Setup Frame Descriptor Format . 10–39
10–17 Perfect Filtering Setup Frame Buffer Format 10–41
10–18 Imperfect Filtering Setup Frame Format . 10–43
11–1 Relationship of the DSSI to SCA and CI . 11–2
11–2 Port Queue Block Base Register (PQBBR) . 11–6
11–3 Port Queue Block Base Register (PQBBR) After Reset 11–7
11–4 Port Status Register (PSR) . 11–8
11–5 Port Error Status Register (PESR) . 11–11
11–6 Port Failing Address Register (PFAR) . 11–12
11–7 Port Parameter Register (PPR) . 11–13
11–8 Port Control Registers . 11–14
11–9 Port Maintenance Control And Status Register (PMCSR) 11–16
11–10 SHAC Software Chip Reset (SSWCR) . 11–17
11–11 SHAC Shared Host Memory Address (SSHMA) 11–17
12–1 KA680 Firmware Structural Components . 12–3
12–2 Console Banner . 12–8
12–3 Language Selection Menu . 12–9
12–4 Normal Diagnostic Countdown . 12–10
12–5 Abnormal Diagnostic Countdown . 12–10
12–6 Console Prompt . 12–10
12–7 Console Boot Display with No Default Boot Device 12–11
12–8 Memory Layout Prior to VMB Entry . 12–13
12–9 VMB Boot Flags (/R5:) . 12–15
12–10 Successful Automatic Bootstrap . 12–17
12–11 Memory Layout at VMB Exit . 12–18
12–12 Boot Block Format . 12–19
12–13 Locating the Restart Parameter Block . 12–23
12–14 Diagnostic Register Dump . 12–84
A–1 KA680 SSC NVRAM Layout . A–1
A–2 NVR0 (20140400) : Console Program MailBoX (CPMBX) A–2
A–3 NVR1 (20140401) . A–3
A–4 NVR2 (20140402) . A–3
D–1 Memory Layout after Power-up Diagnostics . D–1
F–1 DATI Bus Cycle . F–8
F–2 DATI Bus Cycle Timing . F–10

xvii

F–3 DATO or DATOB Bus Cycle . F–11
F–4 DATO or DATOB Bus Cycle Timing . F–13
F–5 DATIO or DATIOB Bus Cycle . F–15
F–6 DATIO or DATIOB Bus Cycle Timing . F–16
F–7 DMA Protocol . F–19
F–8 DMA Request/Grant Timing . F–20
F–9 DATBI Bus Cycle Timing . F–21
F–10 DATBO Bus Cycle Timing . F–22
F–11 Interrupt Request/Acknowledge Sequence . F–28
F–12 Interrupt Protocol Timing . F–30
F–13 Position-Independent Configuration . F–31
F–14 Position-Dependent Configuration . F–32
F–15 Bus Line Terminations . F–34
F–16 Single Backplane Configuration . F–37
F–17 Multiple Backplane Configuration . F–38
F–18 Typical Pin Identification System . F–39
F–19 Quad-Height Module Contact Finger Identification F–40
F–20 Typical Q22–bus Module Dimensions . F–41

Tables

1 Conventions . xxiv
3–1 General-Purpose Register Description . 3–2
3–2 Internal Process Register Definitions . 3–3
3–3 IPR Address Space Decoding . 3–5
3–4 Processor Registers . 3–7
3–5 Interrupt Priority Levels . 3–30
3–6 Exception Classes . 3–34
3–7 Arithmetic Exceptions . 3–36
3–8 Memory Management Exceptions . 3–36
3–9 Memory Management Exception Fault Parameter 3–37
3–10 Instruction Emulation Trap Stack Frame . 3–39
3–11 The System Control Block Format . 3–42
3–12 System Identification Register . 3–45
3–13 System Identification Extension Register Bits 3–46
3–14 NDAL Command Usage by NVAX . 3–50
3–15 NVAX Backup Cache Invalidates and Write-backs 3–54
4–1 VIC Attributes . 4–3
4–2 VMAR Register . 4–4
4–3 VTAG Register . 4–5
4–4 VDATA Register . 4–6
4–5 ICSR Register . 4–7
4–6 PCCTL Definition . 4–10
4–7 Pcache IPRs . 4–15
4–8 PCSTS Description . 4–16
4–9 Pcache Tag IPR Format . 4–17
4–10 Pcache Data Parity IPR Format . 4–17

xviii

4–11 Backup Cache Size and RAMs Used . 4–21
4–12 Tag and Index Interpretation Based on Cache Size 4–21
4–13 IPR Address Space Decoding - KA680 . 4–25
4–15 Bcache/NDAL Processor Registers . 4–26
4–15 Bcache/NDAL Processor Registers . 4–27
4–16 CCTL . 4–29
4–17 TAG_SPEED . 4–30
4–18 DATA_SPEED . 4–30
4–19 SIZE . 4–31
4–20 Bcache Tag Store Status IPR Format . 4–34
4–21 Interpretation of TS_CMD . 4–35
4–22 BCETAG IPR Format . 4–36
4–23 TAG Interpretation . 4–37
4–24 Bcache Data RAM Status IPR Format . 4–39
4–25 Interpretation of DR_CMD . 4–40
4–26 BCEDIDX Interpretation . 4–40
4–27 Fill Error Status IPR Format . 4–43
4–28 NESTS IPR Format . 4–47
4–29 NEOCMD IPR Format . 4–49
4–30 Bcache Tag IPR Format . 4–52
4–31 Tag and Index Interpretation for BCTAG IPR 4–52
4–32 Backup Cache Behavior During ETM . 4–56
4–33 Backup Cache State Changes During ETM . 4–57
4–34 Backup Cache ECC Errors and NVAX CPU Error Responses 4–59
4–35 Backup Cache ECC Error Handling During ETM 4–61
5–1 Memory Address Mapping for Data . 5–7
5–2 Memory Signature Configurations . 5–7
5–3 O-bit Port Address Mapping . 5–9
5–4 NMC Registers . 5–15
5–5 Memory Configuration Registers, MEMCON0-7 5–16
5–6 Error Address Information Register, MEAR . 5–18
5–7 Error Status Register, MESR . 5–19
5–8 Mode Control and Diagnostic Status Register, MMCDSR 5–22
5–9 O-bit Address and Mode Register, MOAMR . 5–26
5–10 O-bit Data Registers, MODR . 5–27
5–11 NDAL-related Errors and NMC Responses . 5–32
5–12 Memory-related Errors and NMC Responses . 5–33
5–13 NDAL Arbitration Priority . 5–34
6–1 NCA Addresses . 6–4
6–2 NCA CSR and Interval Timer Registers . 6–9
6–3 Error Status Register, CESR . 6–10
6–4 Mode Control and Diagnostic Status Register, CMCDSR 6–15
6–5 CP1 Slave Error Address Register, CSEAR1 . 6–17
6–6 CP2 Slave Error Address Register, CSEAR2 . 6–18
6–7 CP1 IO Error Address Register, CIOEAR1 . 6–18
6–8 CP2 IO Error Address Register, CIOEAR2 . 6–19
6–9 NDAL Error Address Register, CNEAR . 6–20

xix

6–10 Interval Clock Control and Status Register, ICCS 6–21
6–11 IO Read RDR number . 6–24
6–12 Interrupt Vector Read RDR Number . 6–25
6–13 CP1 DMA Memory Read Prefetching . 6–26
6–14 CP2 DMA Memory Read Prefetching . 6–28
6–15 NDAL-Related Errors and NCA Responses . 6–30
6–16 CP-Bus (CP1 and CP2 Buses) Related Errors and NCA Responses . . . 6–31
7–1 Console Registers . 7–1
7–2 Console Receiver Control/Status Register . 7–2
7–3 Console Receiver Data Buffer . 7–3
7–4 Console Transmitter Control/Status Register . 7–5
7–5 Console Transmitter Data Buffer . 7–6
7–6 Baud Rate Selection . 7–6
7–7 Timer Control Register Bit Descriptions . 7–9
8–1 Boot and Diagnostic Register Bit Description 8–2
8–2 Diagnostic LED Register Bit Descriptions . 8–4
8–3 Power-Up Modes . 8–6
8–4 SSC Configuration Register Bit Descriptions . 8–10
9–1 Q22–bus Map Register Addresses . 9–4
9–2 Q22–bus Map Register Bit Description . 9–5
9–3 Q22–bus Map Cache Entry Bit Description . 9–7
9–4 Interprocessor Communication Register Bit Description 9–8
9–5 System Configuration Register Bit Description 9–11
9–6 DMA System Error Register Bit Description . 9–14
10–1 Bit Access Modes . 10–4
10–2 NICSR0 Bits . 10–7
10–3 NICSR0 Access . 10–7
10–4 NICSR1 Bits . 10–8
10–5 NICSR1 Access . 10–8
10–6 NICSR2 Bits . 10–8
10–7 NICSR2 Access . 10–8
10–8 Descriptor List Addresses Bits . 10–10
10–9 NICSR3 Access . 10–10
10–10 NICSR4 Access . 10–10
10–11 NICSR5 Bits . 10–11
10–13 NICSR5 Access . 10–15
10–14 NICSR6 Bits . 10–16
10–15 NICSR6 Access . 10–21
10–16 NICSR7 Bits . 10–21
10–17 NICSR7 Access . 10–22
10–18 NICSR9 Bits . 10–23
10–19 NICSR9 Access . 10–24
10–20 NICSR10 Bits . 10–24
10–21 NICSR10 Access . 10–24
10–22 NICSR11,12,13 Bits . 10–25
10–23 NICSR11,12,13 Access . 10–25
10–24 NICSR14 Bits . 10–26

xx

10–25 NICSR14 Access . 10–26
10–26 NICSR15 Bits . 10–27
10–27 NICSR15 Access . 10–27
10–28 RDES0 Bits . 10–29
10–29 RDES1 Bits . 10–31
10–30 RDES2 Bits . 10–32
10–31 RDES3 Bits . 10–33
10–32 Receive Descriptor Status Validity . 10–33
10–33 TDES0 Bits . 10–34
10–34 TDES1 Bits . 10–35
10–35 TDES2 Bits . 10–37
10–36 TDES3 Bits . 10–37
10–37 Transmit Descriptor Status Validity . 10–38
10–38 Setup Frame Descriptor Bits . 10–39
10–39 NICSR Fields Not Reset to Zero . 10–46
10–40 Reception Process State Transitions . 10–49
10–41 Transmission Process State Transitions . 10–50
10–42 CSMA/CD Counters . 10–52
11–1 Port Queue Block Base Address Register (PQBBR) 11–6
11–2 Port Queue Block Base Address Register Bits After Reset 11–7
11–3 Port Status Register Bit Descriptions . 11–8
11–4 Port Error Status Register Bit Definitions . 11–11
11–5 Port Parameter Register Bit Descriptions (PPR) 11–13
11–6 Port Maintenance Control and Status Register (PMCSR) Bits 11–16
12–1 Halt Action Summary . 12–6
12–2 LED Codes . 12–11
12–3 KA680 Supported Boot Devices . 12–14
12–4 VMB Boot Flags . 12–15
12–5 Console Control Characters . 12–24
12–6 Command, Parameter, and Qualifier Keywords 12–27
12–7 Console Radix Specifiers . 12–28
12–8 Console Symbols Using Last Referenced Address 12–29
12–9 Console Symbols for General-Purpose Registers - /G 12–29
12–10 Console Symbols for Internal/External Processor Registers - /I 12–30
12–11 Console Symbols for VAX Physical I/O Space Registers - /P 12–31
12–12 Command Syntax . 12–34
12–13 Default Radix . 12–34
12–14 XDELTA Command Summary . 12–75
12–15 XDELTA Symbols . 12–76
12–16 Console Command Summary . 12–79
12–17 Console Qualifier Summary . 12–81
A–1 CPMBX NVR0 . A–2
A–2 CPMBX NVR1 . A–3
A–3 CPMBX NVR0 . A–3
B–1 Firmware State Transition Table . B–2
B–2 Restart Parameter Block Fields . B–4
B–3 VMB Argument List . B–8

xxi

C–1 HALT Messages . C–2
C–2 VMB Error Messages . C–3
C–3 Console Error Messages . C–4
E–1 KA680 Network Maintenance Operations Summary E–2
E–2 Supported MOP Messages . E–3
E–3 Ethernet and IEEE 802.3 Packet Headers . E–5
E–4 MOP Multicast Addresses and Protocol Specifiers E–5
E–5 MOP Counter Block . E–6
F–1 Data and Address Signal Assignments . F–2
F–2 Control Signal Assignments . F–3
F–3 Power and Ground Signal Assignments . F–4
F–4 Spare Signal Assignments . F–4
F–5 Data Transfer Operations . F–5
F–6 Bus Signals for Data Transfers . F–6
F–7 Bus Pin Identifiers . F–41
G–1 KA680 Console Connector (J2) Pinout . G–7

xxii

Preface

The KA680 CPU Module Technical Manual documents the functional, physical,
and environmental characteristics of the KA680 CPU module, and includes
information on the MS690 memory expansion modules.

Organization
The manual is divided into three parts.

Overview and Installation

• Chapter 1, ‘‘Overview,’’ introduces the KA680 CPU module, the MS690
memory module, and the H3604 console module, including module features
and specifications.

• Chapter 2, ‘‘Installation and Configuration,’’ describes the procedures for
installing and configuring the CPU, memory, and console modules in the
Q22–bus backplanes and system enclosures.

Architecture

• Chapter 3, ‘‘Central Processor,’’ describes the functions of the central
processing unit.

• Chapter 4, ‘‘KA680 Cache Memory Overview,’’ describes the operation of the
KA680 CPU module’s cache memory.

• Chapter 5, ‘‘KA680 Main Memory System,’’ describes the operation of the
KA680 CPU module’s main memory.

• Chapter 6, ‘‘KA680 I/O Subsystem,’’ describes the I/O system configuration,
along with the NCA chip architecture.

• Chapter 7, ‘‘The Console Line, TOY Clock,’’ describes the console serial line
and the time-of-year clock. The chapter also provides an overview of the
KA680 bus system.

• Chapter 8, ‘‘KA680 Boot and Diagnostic Facility,’’ describes the boot and
diagnostic registers, EPROM memory, battery backed-up RAM and hardware
initialization.

• Chapter 9, ‘‘KA680 Q22–bus Interface,’’ describes the interfaces the KA680
CPU module uses for the Q22–bus.

• Chapter 10, ‘‘ Network Interface,’’ describes the network interface of the
KA680.

• Chapter 11, ‘‘ KA680 Mass Storage Interface,’’ describes the interfaces the
KA680 CPU module uses for the mass storage bus.

xxiii

Firmware

• Chapter 12, ‘‘KA680 Firmware,’’ describes the entry dispatch code, boot
diagnostics, device booting sequence, console program, and console commands.

Appendices

• Appendix A, ‘‘NVRAM Partitioning,’’ describes how the KA680 firmware
partitions the SSC 1 Kb battery backed-up (BBU) RAM.

• Appendix B, ‘‘Data Structures,’’ describes the global data structures used by
the KA680 firmware.

• Appendix C, ‘‘ Error Messages ,’’ describes the error messages for the KA680,
including machine check register dumps, halt codes, VMB error messages,
and console error messages.

• Appendix D, ‘‘Machine State on Powerup,’’ describes the state of the KA680
after a power-up halt.

• Appendix E, ‘‘MOP Support,’’ describes the maintenance operation protocol
(MOP) support features in the KA680 firmware.

• Appendix F, ‘‘Q22–bus Specification,’’ describes the specifications for the
Q22–bus.

• Appendix G, ‘‘Specifications,’’ describes the physical, electrical, and
environmental characteristics of the KA680 CPU module.

• Appendix H, ‘‘VAX Instruction Set,’’ is a list of the VAX instructions, provided
for reference only.

• Appendix I, ‘‘Address Assignments,’’ provides a map of VAX memory space.

• Appendix J, ‘‘Configurable Machine State,’’ provides a list of all configurable
bits in the CPU module that are left after the successful completion of
power-up RAM diagnostics.

Conventions
The following table lists the conventions used in this manual.

Table 1 Conventions

Convention Meaning

<x:y> Represents a bit field, a set of lines, or signals, ranging from x through
y. For example, R0 <7:4> Indicates bits 7 through 4 in a general-
purpose register R0.

[x:y] Represents a range of bits, from y through x.

Return A label enclosed in a box represents a key (usually a control or a special
character key) on the keyboard (in this case, the return key).

Note Contains general information.

Caution Contains information to prevent damage to equipment.

n Indicates a variable.

[] Represents a console command element that is optional.

{} Represents a console command element.

... Represents a list of command elements.

CPU Refers to the NVAX central processor chip used in this design.

xxiv

Related Documents
The following documents are related to the KA680 CPU.

• Microcomputer Interfaces Handbook (EB-20175-20)

• Microcomputers and Memories Handbook (EB-18451-20)

• VAX Architecture Handbook (EB-19580-20)

• VAX–11 Architecture Reference Manual (EK-VAXAR-RM)

You can order these documents by phone or mail.

Continental USA and Puerto Rico

Call 800–258–1710 or mail to:

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

New Hampshire, Alaska, and Hawaii

Call 1-603-884-6660.

Outside the USA and Puerto Rico

Mail to:

Digital Equipment Corporation
Attn: Accessories and Supplies Business Manager
c/o Local Subsidiary or Digital-Approved Distributor

xxv

1
Overview

1.1 Introduction
This chapter briefly describes the KA680 CPU/memory subsystem.

The KA680 CPU module combines with the MS690 memory modules to form the
CPU/memory subsystem for the VAX 4000-500 product. The subsystem is housed
in the BA440 enclosure. The subsystem uses the DSSI bus to communicate with
mass storage devices and the Q22–bus to communicate with I/O devices. A single
KA680 CPU module can support up to four MS690 memory modules. Figure 1–1
is a block diagram of the CPU/memory subsystem’s major functions.

Figure 1–1 KA680 Module in a System

DSSI #1

Ethernet

Serial Line

Ribbon
Cable

DSSI #2

Q22-bus

Memory
Interconnect

H3604
Console
Module

 KA680
Processor
 Module

MS690
Memory
Module/s

Backplane Interconnect

The KA680 can be configured only as an arbiter CPU on the Q22–bus, where
it arbitrates bus mastership and fields bus interrupt requests and any on-board
interrupt requests. The module uses multiple levels of cache memory to maximize
performance. It is designed for use in high-speed, real-time applications and for
multiuser, multitasking environments.

The KA680 and the MS690 designs are implemented in fingerless quad-height
sized modules. Both use high-density, right angle connectors and mount in
dedicated slots in the backplane. The CPU uses a 270-pin backplane connector
while the memory module uses a 150-pin connector.

Overview 1–1

Overview
1.1 Introduction

The CPU module communicates with the memory modules across a memory
interconnect routed through the high-density connectors and the backplane. The
backplane connector also connects the subsystem with the Q22–bus and one DSSI
bus. There are no jumpers or switches to configure on the processor module.
Fuses are located on the H3604 console module. The KA680 connects to the
H3604 console module with a 100-pin ribbon cable. The console module contains
configuration switches, Ethernet and DSSI connectors, and an LED display.

1.2 KA680 CPU Module
Figure 1–2 is a photograph of the KA680 CPU Module.

Figure 1–2 KA680 CPU Module

photograph of the MS690 memory module

1–2 Overview

Overview
1.2 KA680 CPU Module

The major hardware components of the KA680 CPU module are listed below. The
chip identification numbers are shown in Figure 1–3.

� DC246 Central processor (NVAX)
� Cache RAMs A 128 KB backup cache –
� DC243 NDAL to CDAL I/O bus interface chip (NCA)
� DC244 Main memory controller, with ownership bit control (NMC)
� DC527 Q22–bus interface (CQBIC)
� DC541 Ethernet interface (SGEC)
� DC542 DSSI interface chips (2) (SHAC)
� DC511 System support chip (SSC)
� DC509 Clock (CCLK)
� Firmware ROMs (4) 512 KB; each 128 KB by 8, FLASH programmable –
� Console Connection 100-pin ribbon cable to the H3604 console module –
� Backplane Connection 270-pin ribbon cable to the backplane carrying signals for

the Q22–bus, the DSSI bus, and the memory interconnect
–

Figure 1–3 shows the positions of the major chips on the KA680.

Figure 1–3 KA680 CPU Module Component Side

B-CACHE

DC541

 DC511

 DC527

DC542
SGEC

SSC

CQBIC

SHAC

DC542
SHAC

NVAX

NCA

NMC

CLK

DC246

DC243

DC244(data store)

 BCache
(tag
store)

Console Connector

High Density Backplane Connector

Obit RAMs

E-net ROM

Firmware

 ROMs

Figure 1–4 shows the major functional blocks of the KA680 CPU module.

Overview 1–3

Overview
1.2 KA680 CPU Module

Figure 1–4 KA680 CPU Module Block Diagram

NVAX
 CPU

NCA SHAC1

 SHAC2

 CQBIC

 NMC

 Bcache

 VIC

 I&D

 NDAL CDAL 1

DSSI

Q22-bus

To Memory

DSSI

To Console Module

CDAL 2

 SGEC SSC

 ROM

Ethernet To Console Module

To BA440 disks

To BA440 Backplane

Functionally, the KA680 CPU module is divided into four major areas:

• The central processing subsystem

• The system support subsystem

• The I/O subsystem

• The memory control subsystem

The H3604 is described in Section 1.4.

1.2.1 The Central Processing Subsystem
The central processing subsystem includes the NVAX CPU chip with an integral
floating-point accelerator and a 3-level cache architecture. The RAM storage for
the third level of cache (backup cache) is located on the CPU module.

1.2.1.1 The NVAX Central Processing Unit (DC246)
The NVAX CPU (DC246) chip is the heart of the KA680 module. It executes the
VAX base instruction group as defined by the VAX Architecture Standard plus
the optional VAX vector instructions and the virtual machine instructions. A
complete listing of the instructions executed by the CPU is given in Appendix H.
The NVAX processor also supports full VAX memory management with demand
paging and a 4-gigabyte virtual address space.

For the rest of this document the NVAX CPU chip will be referred to simply as
the "CPU," or "central processor," or "NVAX."

The central processor supports the VAX base instruction set with the following
string instructions:

1–4 Overview

Overview
1.2 KA680 CPU Module

� CMPC3 � CMPC5 � LOCC
� MOVC3 � MOVC5 � SCANC
� SKPC � SPANC

The central processor provides the following subset of the VAX data types:
� Byte � Word � Longword
� Quadword � Character string � Variable-length bit field
� F-floating � G-floating � D-floating

Support for the remaining VAX data types can be provided through macrocode
emulation.

1.2.1.2 The Cache Memory
The KA680 processor module uses a 3-level cache architecture to maximize
performance. The first level of cache, referred to as the virtual instruction cache
(VIC), is 2 kilobytes (KB), and is located in the CPU chip. This cache handles
instructions only (no data references), and deals only with virtual addresses.
In this way, the CPU can obtain instruction information without the need for
virtual to physical address translation, thereby decreasing latency and improving
performance.

The second level of cache, referred to as the primary cache (Pcache), is 8 kilobytes
in size and is located in the CPU chip. This cache implements a write-through
instruction and data cache, and helps to reduce latency on access to instructions
that are not found in the VIC. The Pcache uses physical addresses.

The third level of cache, referred to as the backup cache (Bcache), stores
instruction and data, and is 128 KB in size. The Bcache is controlled by the
Bcache controller located in the CPU chip. The data and tag store memory for
this cache is located in SRAM chips on the KA680 module. The Bcache uses
physical addresses.

1.2.2 The System Support Subsystem
The system support subsystem handles the basic functions required to support
the console in a system environment. This subsystem contains the system
support chip (SSC), the firmware ROMs, the boot and diagnostic register, and the
station address ROM.

1.2.2.1 The System Support Chip [SSC (DC511)]
The SSC chip is in an 84-pin CERQUAD surface mount package. It provides
console and boot code support functions, operating system support functions,
timers, and the following features:

• ROM address decoding

• 1 KB battery backed-up RAM

• Halt-arbitration logic

• Console serial line

• VAX standard time-of-year clock with battery backup

• IORESET register

Overview 1–5

Overview
1.2 KA680 CPU Module

• Programmable CDAL bus timeout

• Two programmable timers

• Register controlling the diagnostic LEDs

1.2.2.2 The Firmware ROMs
Resident firmware ROM is located on four chips, each 128K by 8 bits of FLASH

�

programmable EPROMs, for a total of 512 KB of ROM. The firmware gains
control when the CPU halts, and contains programs that provide the following
services:

• Board initialization

• Power-up self-testing of the KA680 and MS690 modules

• Emulation of a subset of the VAX standard console (auto or manual bootstrap,
auto or manual restart, and a simple command language for examining or
altering the state of the processor)

• Booting from supported Q22–bus and DSSI devices

• Multilingual translation of key system messages

1.2.2.3 The Boot and Diagnostic Register
The boot and diagnostic register (BDR) allows the firmware and the operating
system to read KA680 configuration bits.

1.2.2.4 The Station Address ROM
The station address ROM contains the network hardware address of the system.
It is implemented in a 32 byte by 8 bit ROM (6331).

1.2.3 The I/O Subsystem
The I/O subsystem contains the following:

• CP-bus adapter

• DSSI mass storage interfaces

• An Ethernet interface

• A Q22–bus interface

1.2.3.1 NVAX CP-bus Bus Adapter [NCA (DC243)]
In order to provide buffering and connection to the I/O devices, the KA680 contains an NCA
(DC243). The NCA provides an interface between the NVAX NDAL bus and two CP-buses
where the the I/O device adapters reside. The CP-buses do not leave the KA680 module. As
a bus adapter, the NCA controls transactions between the higher performance NDAL bus and
the lower performance CP-buses. Each of the NCA’s CP-bus ports provides a CVAX compatible
peripheral bus for direct memory access (DMA) by peripheral devices. The NCA is in a 339-pin
PGA package.

�

A FLASH EPROM is a programmable read-only memory that uses electrical (bulk)
erasure rather than ultraviolet erasure.

1–6 Overview

Overview
1.2 KA680 CPU Module

1.2.3.1.1 DSSI Mass Storage Interface [SHAC (DC542)] The two shared-host
adapter chips (SHAC) implement the DSSI (Digital storage system interconnect)
bus interfaces. One SHAC interfaces to the system console module while the
other SHAC interfaces to the system backplane. The DSSI interface allows each
DSSI bus on the KA680 to transmit packets of data to, and receive packets from,
up to seven other DSSI devices. The SHAC facilitates scatter and gather mapping
along with internal FIFO buffering, and features parity protection during data
transfers to and from the CPU and main memory.

The DSSI bus improves system performance because it has a higher transfer rate
than the Q22–bus and it relieves the Q22–bus of disk traffic. The DSSI bus has
eight data lines, one parity line, and eight control lines. Controllers are built into
the integrated storage elements (ISEs), enabling many functions to be handled
without host or adapter intervention.

1.2.3.1.2 Ethernet Interface [SGEC (DC541)] The Ethernet interface handles
communications between the CPU module and other nodes on the Ethernet.
It is implemented with the second generation Ethernet controller chip (SGEC,
DC541) on-board network interface. Used in connection with the H3604 console
module, the SGEC allows the KA680 to connect to either a ThinWire or standard
Ethernet. It supports the Ethernet Data Link Layer and provides CP-bus parity
protection. The SGEC chip is in an 84-pin package. The chip facilitates scatter
and gather mapping along with dual internal FIFO buffering.

1.2.3.1.3 Q22–bus Interface [CQBIC (DC527)] The KA680 includes a Q22–bus
interface that allows communication between the KA680 and other devices on the
bus. It is implemented with the CP-bus to Q22–bus asynchronous adapter chip
(CQBIC, DC527). The CQBIC is in a 132-pin CERQUAD surface mount package.
The KA680 does not provide Q22–bus termination; the backplane provides the
termination resistors. The Q22–bus interface supports the following functions:

• Scatter/gather mapping functions

• Masked and unmasked longword reads and writes from CPU to the Q22–bus
memory and I/O space and the CQBIC registers

• Up to 16-word, block mode writes from Q22–bus to main memory

• Up to 2-word, block mode transfers between the CPU and Q22–bus devices

• Transfers from CPU to local Q22–bus memory space

1.2.4 The Memory Control Subsystem
This subsystem provides support for the KA680 memory subsystem. A key
feature of the KA680 memory subsystem is the use of ownership bits to maintain
a sense of ownership over each hexaword (32 bytes) of main memory. This
ownership mechanism serves the dual function of maintaining coherency between
main memory and the NVAX cache memory, as well as providing a secure
interlock mechanism for synchronization between NVAX and the I/O devices.

Overview 1–7

Overview
1.2 KA680 CPU Module

1.2.4.1 NVAX Memory Controller [NMC (DC244)]
The memory controller is implemented by the NVAX memory controller
chip (DC244). The NMC is an ECC1 memory controller. The NMC controls
transactions between the main memory and the NVAX, and between main
memory and any of the I/O devices (CQBIC, SGEC, and the two SHAC chips). In
addition, the NMC has a key role in maintaining main memory coherency with
the NVAX primary and backup caches through the use of ownership bits.

The NMC interfaces the NVAX and I/O subsystem with up to four memory
modules. The NMC controls access to shared memory locations through the
use of the ownership bits, thereby providing a reliable interlock mechanism for
memory that is shared between the NVAX and the I/O devices.

1.3 MS690 Memory Module
The MS690 is a double-sided memory board, in a 72-bitwide array (64-bit data
and 8-bit error correction code). Two versions will be offered; one implemented
with 1 Mb DRAM chips and another version using 4 Mb DRAM chips. The
version using 1 Mb DRAMs will contain 32 MB per module, and the version using
4 Mb DRAMs will contain 64 MB or 128 MB per module.

The module mounts in a dedicated memory backplane slot. It is fingerless and
uses a 150-pin high density, right angle connector to connect to the backplane.

1.4 H3604 Console Module
The H3604 console module (Figure 1–5) allows the KA680 CPU module to
interface to a serial line console device, a DSSI bus, and to the Ethernet. The
H3604 module is wide enough to cover the five slots dedicated to the KA680 and
its four MS690 modules. Five adhesive tags are included for the user to name the
modules in the respective slots.

1 ECC stands for error checking and correction.

1–8 Overview

Overview
1.4 H3604 Console Module

Figure 1–5 H3604 Console Module Front

Baud

300___________0
600___________1

1200__________2
2400__________3

4800__________4

9600__________5
19200_________6

38400_________7

Bus 1

Bus 0

Y

X

Language
Inquiry Switch

Baud Rate
Select Switch

HEX Display

DSSI
Connectors

Modified
Modular Jack

Halt Enable/
Disable Switch

Bus Node ID Plugs

Ethernet Connector
Switch

Standard Ethernet
Connector

ThinWire Ethernet
Connector

MLO-003896

The H3604 contains the following connectors to allow CPU communication:

• A console serial line with baud rate switch

• Two Ethernet connectors, with a switch to choose between them

• Two DSSI connectors (50-pin high density) that allow daisy chaining of one
DSSI bus; terminators for both DSSI connectors; and two DSSI BUS ID select
plugs

The H3604 also has four feature selection switches:

• Baud rate select switch for the serial console line.

• Power-up mode switch.

• Break enable/disable switch. This determines whether the CPU may be
"halted", causing execution to jump to the halt restart firmware. If halts are
enabled, then the CPU may be halted from the console keyboard in one of
two ways, depending on the setting of bit 15 of the SSC configuration register
(SSCCR<15>). Refer to Section 12.2.2 for more information regarding halts.
If this switch is set to the enable position (1), the system does not autoboot on
powerup. It enters console I/O mode and displays the >>> prompt.

• Ethernet connector switch to select the following:

A 15-conductor connector for standard Thickwire Ethernet cable.

A male BNC connector for a ThinWire Ethernet coaxial cable.
LEDs indicate the selected connector and valid +12 Vdc for that connector.

Overview 1–9

Overview
1.4 H3604 Console Module

In addition, the H3604 contains the following features:

• Console serial line drivers and receivers

• Hexadecimal display

• Battery charger and low-voltage detect

• 25.6 KHz TOY clock oscillator

• -9 V dc/dc converter

• Ethernet serial interface adapter chip (SIA)

• Fused current surge protection

The door of the H3604 contains a DSSI circuit fuse and two plugs. The fuse is to
protect against shorts from the accidental grounding of the DSSI cable power pin.
The external node ID plugs are used to select the host adapter numbers. Node
number 7 is preset to both of the SHAC DSSI bus controllers on the CPU board.
(The two DSSI buses are separate.)

There are two connectors from the H3604 to the internal BA440. One is a 4-pin
power connection to a small printed circuit card that inserts into the backplane
alongside the KA680. The other is the 100-pin connector to the KA680 CPU
module.

1–10 Overview

2
Installation and Configuration

This chapter describes how to install the KA680 in a system. It discusses the
following topics:

• Installing the KA680 and MS690 modules

• Configuring the KA680

• KA680 connectors

2.1 Installing the KA680 and MS690 Memory Modules
Note

You can use the KA680 and MS690 modules only in BA440 system
enclosures that use high-density backplane connector slots.

The KA680 CPU module and the MS690 memory modules must be installed
in the five rightmost backplane slots. Note that the KA680 module installs in
backplane slot J5, and the memory modules install in slots J4 through J1.

To install the KA680 and MS690 modules:

1. Install the KA680 CPU in slot J5 of the backplane.

2. Install MS690 memory modules in slots J4 through J1 next to to the KA680
CPU.

• If you only use one memory module , you can install it in any of the slots
J4 through J1.

• If you use more than one memory module, you must install the first
memory module in J4, the second in J3, and so on. Do not leave a gap
between memory modules.

3. Install a 100-pin ribbon cable between the KA680 CPU and the console
module.

Figure 2–1 shows the positions of the KA680 CPU and the memory modules in
the backplane.

Installation and Configuration 2–1

Installation and Configuration
2.1 Installing the KA680 and MS690 Memory Modules

Figure 2–1 Backplane

Mass Storage Devices
J30

J23
o
oJ28 o

o
o

J27 J21 J31 J20
o
o
o
o
o
o

o
o
o
o
o
o

o
o
o
o
o
o

Q22 |*|

o
o
o
o
o
o

o
o
o
o
o
o

J29

dssi

o
o
o

slot slot
11

J17

10 9 8 7 6 5 4 3 1

KA680 CPU
J5
|*|
|*| DSSI
|*|
|*|
|*|

J7

J6

*
*
*
*
*

*
*
*
*
*

*
*
*
*
*

J25
J26

MS680 Memory

J3 J2 J1

pwr

o
o

o
o console
o pwr

2

Modules

12

J19

J18 J16

J15 J13 J11 J9
*
*
*
*
*

*
*
*
*
*

*
*
*
*
*

*
*
*
*
*

J24

fan
power

|*|
|*|
|*|
|*|
|*|
|*|

* Q22* Q22*Q22*Q22*Q22* Q22 *
*
*
*
*

*
*
*

*
*
*
*

*
*
*

J4

supply

J22

o

J14 J12 J10 J8

*
*
*
*

*
*
*

*
*
*
*

*
*
*

*
*
*
*

*
*
*

*
*
*
*

*
*
*

|*|NMI*|NMI|NMI|NMI| o

*
*
*
*

*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

|*| |*| |*| |*| o
|*| |*| |*| |*| o
|*| |*| |*| |*| o
|*| |*| |*| |*| o
|*| |*| |*| |*|

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

|*|
|*|
|*|
|*|
|*|
|*|
|*|
|*|
|*|

* C/D* C/D*C/D*C/D*C/D* C/D *

|*| |*| |*| |*| o
|*| |*| |*| |*| o
|*| |*| |*| |*| o
|*| |*| |*| |*| o
|*| |*| |*| |*| o

*
*
*
*
*
*

2.2 Module Configuration and Naming
Each Q22–bus module in a system must use a unique device address and
interrupt vector. The device address is also known as the control and status
register (CSR) address. Most modules have switches or jumpers for setting the
CSR address and interrupt vector values. The value of a floating address depends
on what other modules are housed in the system.

2–2 Installation and Configuration

Installation and Configuration
2.2 Module Configuration and Naming

Set CSR addresses and interrupt vectors for a module as follows:

1. Determine the correct values for the module with the CONFIG command at
the console I/O prompt (>>>). The CONFIG utility eliminates the need to
boot the VMS operating system to determine CSRs and interrupt vectors.
Enter the CONFIG command, then HELP for the list of supported devices:
>>> CONFIG
Enter device configuration, HELP, or EXIT
Device, Number? HELP
Devices:

LPV11 KXJ11 DLV11J DZQ11 DZV11 DFA01
RLV21 TSV05 RXV21 DRV11W DRV11B DPV11
DMV11 DELQA DEQNA RQDX3 KDA50 RRD50
RQC25 KXXXX-DISK TQK50 TQK70 TU81E RV20
KXXXX-TAPE KMV11 IEQ11 DHQ11 DHV11 CXA16
CXB16 CXY08 VCB02 QDSS DRV11J DRQ3B
VSV21 IBQ01 IDV11A IDV11B IDV11C IDV11D
IAV11A IAV11B MIRA ADQ32 DTC04 DESQA
IGQ11

The LPV11–SA has two sets of CSR address and interrupt vectors. To
determine the correct values for an LPV11–SA, enter LPV11,2 at the DEVICE
prompt for one LPV11–SA, or enter LPV11,4 for two LPV11–SA modules.

2. See the KA680 CPU System Maintenance Manual for switch settings and CSR
and interrupt vector jumper settings for supported options.

2.3 Mass Storage Configuration
There is space for four mass storage devices—either three integrated storage
elements (ISEs) and one tape drive, or four ISEs. The ISEs are part of the Digital
storage system interconnect (DSSI) bus.

The DSSI bus is part of the backplane. The ISEs are part of the RF-series, and
they plug into the backplane to become part of the bus. Each ISE must have
its own unique DSSI node ID. The ISE receives its node ID from a plug on the
operator control panel (OCP) on the front panel.

The VMS operating system creates DSSI disk device names according to the
following scheme:

nodename $ DIA unit number

For example:
SUSAN$DIA3

You can use the device name for booting, as follows:
>>> BOOT SUSAN$DIA3

Installation and Configuration 2–3

Installation and Configuration
2.3 Mass Storage Configuration

You can access local programs in the RF-series ISE through the MicroVAX
diagnostic monitor (MDM), or through the VMS operating system and console
I/O mode SET HOST/DUP command. This command creates a virtual terminal
connection to the storage device and the designated local program using the
diagnostic and utilities protocol (DUP) standard dialog. Section 2.3.3 describes
the procedure for accessing DUP through the VMS operating system.

2.3.1 Changing the Node Name
Each ISE has a node name that is maintained in EPROM on board the controller
module. This node name is determined in manufacturing from an algorithm
based on the drive serial number. You can change the node name of the DSSI
device to something more meaningful by following the procedure in Example 2–1.
In the example, the node name for the ISE at DSSI node address 1 is changed
from R3YBNE to DATADISK.

Example 2–1 Changing a DSSI Node Name
>>> SHO DSSI
DSSI Node 0 (MDC)
-DIA0 (RF71)

DSSI Node 1 (R3YBNE) !The node name for this drive will be
-DIA1 (RF71) !changed from R3YBNE to DATADISK.

DSSI Node 7 (*)
>>>
>>> SET HOST/DUP/DSSI 1
Starting DUP server...
Copyright 1988 Digital Equipment Corporation
DRVEXR V1.0 D 5-NOV-1988 15:33:06
DRVTST V1.0 D 5-NOV-1988 15:33:06
HISTRY V1.0 D 5-NOV-1988 15:33:06
ERASE V1.0 D 5-NOV-1988 15:33:06
PARAMS V1.0 D 5-NOV-1988 15:33:06
DIRECT V1.0 D 5-NOV-1988 15:33:06
End of directory
Task Name? params
Copyright 1988 Digital Equipment Corporation

PARAMS> SHO NODENAME

Parameter Current Default Type Radix
--------- ---------------- ---------------- -------- -----
NODENAME R3YBNE RF71 String Ascii B

PARAMS> SET NODENAME DATADISK

PARAMS> WRITE !This command writes the change
!to EEPROM.

Changes require controller initialization, ok? [Y/(N)] Y

Stopping DUP server...
>>> SHO DSSI
DSSI Node 0 (MDC)
-DIA0 (RF71)

DSSI Node 1 (DATADISK) !The node name has changed from
-DIA1 (RF71) !R3YBNE to DATADISK.

DSSI Node 7 (*)

2–4 Installation and Configuration

Installation and Configuration
2.3 Mass Storage Configuration

2.3.2 Changing the DSSI Unit Number
By default, the ISE drive assigns the disk’s unit number to the same value as the
DSSI node address for that drive.

Example 2–2 shows how to change the unit number of a DSSI device. This
example changes the unit number for the RF71 drive at DSSI node address
1 from 1 to 50 (decimal). You must change two parameters: UNITNUM and
FORCEUNI. Changing these parameters overrides the default, which assigns the
unit number the same value as the node address.

Example 2–2 Changing a DSSI Unit Number
>>> SHO DSSI
DSSI Node 0 (MDC)
-DIA0 (RF71)

DSSI Node 1 (R3QJNE) !The unit number for this drive will be
-DIA1 (RF71) !changed from 1 to 50 (DIA1 to DIA50).

DSSI Node 7 (*)
>>>
>>> SET HOST/DUP/DSSI 1
Starting DUP server...
Copyright 1988 Digital Equipment Corporation
DRVEXR V1.0 D 5-NOV-1988 15:33:06
DRVTST V1.0 D 5-NOV-1988 15:33:06
HISTRY V1.0 D 5-NOV-1988 15:33:06
ERASE V1.0 D 5-NOV-1988 15:33:06
PARAMS V1.0 D 5-NOV-1988 15:33:06
DIRECT V1.0 D 5-NOV-1988 15:33:06
End of directory

Task Name? PARAMS
Copyright 1988 Digital Equipment Corporation

PARAMS> SHO UNITNUM

Parameter Current Default Type Radix
--------- ---------------- ---------------- -------- -----
UNITNUM 0 0 Word Dec U

PARAMS> SHO FORCEUNI

Parameter Current Default Type Radix
--------- ---------------- ---------------- -------- -----
FORCEUNI 1 1 Boolean 0/1 U

PARAMS> SET UNITNUM 50

PARAMS> SET FORCEUNI 0

PARAMS> WRITE !This command writes the changes to EEPROM.

PARAMS> EX
Exiting...

Task Name?

Stopping DUP server...
>>>
>>>SHO DSSI
DSSI Node 0 (MDC)
-DIA0 (RF71)

(continued on next page)

Installation and Configuration 2–5

Installation and Configuration
2.3 Mass Storage Configuration

Example 2–2 (Cont.) Changing a DSSI Unit Number

DSSI Node 1 (R3QJNE) !The unit number has changed
-DIA50 (RF71) !and the node ID remains at 1.

DSSI Node 7 (*)

2.3.3 Accessing RF-series Firmware in VMS Through DUP
You can also access the RF-series ISE firmware utilities from the VMS operating
system as well as through the console commands.

Use the VMS operating system to access the ISE firmware if you want to look
up or view parameter settings, but not change them. To change ISE parameter
settings, enter the ISE firmware through the console I/O mode SET HOST/DUP
command.

Load the FYDRIVER using the following commands in SYSGEN:
$ MCR SYSGEN
SYSGEN> LOAD FYDRIVER/NOADAPTER
SYSGEN> CONNECT FYA0/NOADAPTER
SYSGEN> EXIT
$

You can then access the ISE firmware utilities by using the following VMS
command:
$ SET HOST/DUP/SERVER=MSCP$DUP/TASK=PARAMS nodename

2.3.3.1 Allocation Class
When a KA680 system containing ISEs is configured in a cluster, either as a boot
node or a satellite node, you must assign the allocation class in VMS SYSGEN
and for the ISE matching nonzero values. To change the allocation class of the
ISE, use the following commands:
>>> SET HOST/DUP/DSSI <DSSI node number> PARAMS
Starting DUP server..

PARAMS> SET ALLCLASS <allocation class value>

PARAMS> WRITE
Changes require controller initialization, ok? [Y/N] Y

Stopping DUP server..
>>>

2–6 Installation and Configuration

Installation and Configuration
2.4 DSSI Cabling, Device Identity, and Bus Termination

2.4 DSSI Cabling, Device Identity, and Bus Termination
The ISEs in one particular BA440 enclosure are connected to the system
backplane and communicate internally over the backplane. There are no internal
DSSI cables. Externally, a 50-pin cable connects the DSSI bus to other devices,
either hosts or expanders.

There are two DSSI ports in the KA680 system. One DSSI port is routed along
the backplane and exits the enclosure at the left edge from a connector near the
ISE slots. The other DSSI port is configured by means of the DSSI connector on
the H3604 panel. If unused, DSSI connectors must be terminated.

There is no terminator on the KA680. The near-end termination is contained
on the backplane for the internal DSSI bus, and is provided by the pluggable
connectors for the external bus.

All DSSI devices on the same bus must have unique identifiers. On the face
of the H3604 console module, you can see the two DSSI bus node ID plugs
(Figure 1–5). These ID plugs provide an identity for each DSSI bus. Because the
DSSI controllers implemented by the SHAC chips on the KA680 CPU module are
separate, the two ID plugs may be identical.

2.5 KA680 Connectors
The KA680 CPU module uses two connectors, J1 and J2. J1 is a 270-pin
connector that mates with the backplane. J2 is the connector for the 100-pin
ribbon cable that goes to the console module. Users configure the KA680 through
the H3604 console module. Figure 1–3 shows the location of the connectors on
the KA680 module.

Installation and Configuration 2–7

3
Central Processor

The central processor of the KA680 supports the MicroVAX chip subset (plus six
additional string instructions) of the VAX instruction set, and datatypes and full
VAX memory management. It is implemented with a single VLSI chip called the
NVAX (DC246).

3.1 Processor State
The processor state consists of that portion of the state of a process stored in
processor registers rather than in memory. The processor state is composed of
sixteen general-purpose registers (GPRs), the processor status longword (PSL),
and the internal processor registers (IPRs).

Nonprivileged software can access the GPRs and the processor status word (bits
<15:00> of the PSL). The IPRs and bits <31:16> of the PSL can only be accessed
by privileged software. The IPRs are explicitly accessible only by the move to
processor register (MTPR) and move from processor register (MFPR) instructions,
which can be executed only while running in kernel mode.

3.1.1 General-Purpose Registers
The KA680 implements 16 general-purpose registers. as implemented per the
VAX Architecture Reference Manual These registers are used for temporary
storage, accumulators, and base and index registers for addressing. These
registers are denoted R0—R15. The bits of a register are numbered from the
right <0> through <31>. Figure 3–1 shows the general-purpose register format.
Table 3–1 describes the registers.

Figure 3–1 General-Purpose Register

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01323-TI0

Some of these registers have been assigned special meaning by the VAX–11
architecture:

Central Processor 3–1

Central Processor
3.1 Processor State

Table 3–1 General-Purpose Register Description

Register Register Name Mnemonic Description

R15 Program Counter PC The PC contains the address
of the next instruction byte
of the program.

R14 Stack Pointer SP The SP contains the address
of the top of the processor
defined stack.

R13 Frame Pointer FP The VAX–11 procedure call
convention builds a data
structure on the stack called
a stack frame. The FP
contains the address of the
base of this data structure.

R12 Argument Pointer AP The VAX–11 procedure
call convention uses a
data structure called an
argument. The AP contains
the address of the base of
this data structure.

Consult the VAX Architecture Reference Manual for more information on the
operation and use of these registers.

3.1.2 Processor Status Longword
The KA680 processor status longword (PSL) is implemented per the VAX
Architecture Reference Manual, which should be consulted for a detailed
description of the operation of this register. The PSL is saved on the stack
when an exception or interrupt occurs and is saved in the process control
block (PCB) on a process context switch. Bits <15:00> may be accessed by
nonprivileged software, while bits <31:16> may only be accessed by privileged
software. Processor initialization sets the PSL to 041F 000016. Figure 3–2 shows
the processor status longword format. Table 3–2 lists the bits and definitions.

Figure 3–2 Processor Status Longword

0001020304050607081516202122232425262728293031

LJ-01245-TI0

DV

FU

IV

T N Z V CIPL MBZ

CM

TP

MBZ

FPD

IS

Cur
Mod

PRV
Mod

MBZ

3–2 Central Processor

Central Processor
3.1 Processor State

Note

VAX Compatibility Mode instructions can be emulated by macrocode, but
the emulation software runs in native mode, so the CM bit is never set.

Table 3–2 explains the properties of each internal process register:

Table 3–2 Internal Process Register Definitions

PSL Data
Bit Name Definition

<31> CM Compatibility Mode. This bit always reads as zero, loading a one
into this bit is a NOP.

<30> TP Trace Pending.

<29:28> MBZ Must Be written as Zero.

<27> FPD First Part Done.

<26> IS Interrupt Stack.

<25:24> CUR Current Mode.

<23:22> PRV Previous Mode.

<21> MBZ Must Be written as Zero.

<20:16> IPL Interrupt Priority Level.

<15:8> MBZ Must Be written as Zero.

<7> DV Decimal Overflow trap enable. This read/write bit has no effect
on KA680 hardware; it can be used by macrocode that emulates
VAX decimal instructions.

<6> FU Floating Underflow fault enable.

<5> IV Integer Overflow trap enable.

<4> T Trace trap enable.

<3> N Negative condition code.

<2> Z Zero condition code.

<1> V Overflow condition code.

<0> C Carry condition code.

3.1.3 Internal Processor Registers
The processor registers that are implemented by the NVAX CPU chip, and those
that are required of the system environment, are logically divided into five
groups, as follows:

• Normal—Those IPRs that address individual registers in the NVAX CPU chip
or system environment.

• Bcache tag IPRs—The read/write block of IPRs that allow direct access to the
Bcache tags.

• Bcache deallocate IPRs—The write-only block of IPRs by which a Bcache
block may be deallocated.

• Pcache tag IPRs—The read/write block of IPRs that allow direct access to the
Pcache tags.

Central Processor 3–3

Central Processor
3.1 Processor State

• Pcache data parity IPRs—The read/write block of IPRs that allow direct
access to the Pcache data parity bits.

Each group of IPRs is distinguished by a particular pattern of bits in the IPR
address, as shown in Figure 3–3.

Figure 3–3 IPR Address Space Decoding

00070823242531

Normal IPR Address

LJ-01246-TI0

00040520212223242531

Bcache Tag IPR Address

00040520212223242531

Bcache Deallocate IPR Address

000405111213212223242531

Pcache Tag IPR Address

00040510111213212223242531

Pcache Data Parity IPR Address

SBZ 0 IPR Number

SBZ 1 0 X Bcache Tag Index

 SBZ

SBZ 1

0

Bcache Tag Deallocate Index

0

SBZ1 0 X

11SBZ SBZ SBZ

SBZSBZ SBZ

Pcache Tag Index

Pcache Tag Index1 1 1

Pcache Set Select (0=Left, L=Right)

Sublock Select

Pcache Set Select (0=Left, L=Right)

SBZ

03 02

16171819

16171819

0 0 0 0

0 0 0 0

3–4 Central Processor

Central Processor
3.1 Processor State

The numeric range for each of the four groups is shown in Table 3–3.

Table 3–3 IPR Address Space Decoding

IPR Group Mnemonic1
IPR Address Range
(hex) Contents

Normal – 00000000..000000FF2 256 individual IPRs

Bcache Tag BCTAG 01000000..0107FFE02 16K Bcache tag IPRs, each
separated by 20(hex) from the
previous one

Bcache Deallocate BCFLUSH 01400000..0147FFE02 16K Bcache tag deallocate
IPRs, each separated by
20(hex) from the previous
one

Pcache Tag PCTAG 01800000..01801FE02 256 Pcache tag IPRs, 128
for each Pcache set, each
separated by 20(hex) from the
previous one

Pcache Data Parity PCDAP 01C00000..01C01FF82 1024 Pcache data parity IPRs,
512 for each Pcache set, each
separated by 8(hex) from the
previous one

1The mnemonic is for the first IPR in the block.
2Unused fields in the IPR addresses for these groups should be zero. Neither hardware nor microcode
detects and faults on an address in which these bits are nonzero. Although noncontiguous address
ranges are shown for these groups, the entire IPR address space maps into one of these groups. If
these fields are nonzero, the operation of the CPU is UNDEFINED.

Note

The address ranges shown above are those used by the programmer.
When processing normal IPRs, the microcode shifts the IPR number left
by 2 bits for use as an IPR command address. This positions the IPR
number to bits <9:2> and modifies the address range as seen by the
hardware to 0..3FC, with bits <1:0>=00. No shifting is performed for the
other groups of IPR addresses.

Because of the sparse addressing used for IPRs in groups other than the normal
group, valid IPR addresses are not separated by one. Rather, valid IPR addresses
are separated by either 8 or 20(hex). For example, the IPR address for Bcache tag
0 is 01000000 (hex), and the IPR address for Bcache tag 1 is 01000020 (hex). In
this group, bits <4:0> of the IPR address are ignored, so IPR numbers 01000001
through 0100001F all address Bcache tag 0. Similarly, the IPR address for the
first subblock of Pcache data parity is 01C00000 (hex), and the IPR address for
the second subblock of Pcache data parity is 01C00008 (hex).

Processor registers in all groups except the normal group are processed entirely
by the NVAX CPU chip and will never appear on the NDAL (Section 3.11). This
is also true for a number of the IPRs in the normal group. IPRs in the normal
group that are not processed by the NVAX CPU chip are converted into I/O space
references and passed to the system environment via a read or write command on
the NDAL.

Central Processor 3–5

Central Processor
3.1 Processor State

Each of the 256 possible IPRs in the normal group are of longword length, so a
1 KB block of I/O space is required to convert each possible IPR to a unique I/O
space longword. This block starts at address E1000000 (hex). Conversion of an
IPR address to an I/O space address in this block is done by shifting the IPR
address left into bits <9:2>, filling bits <1:0> with zeros, and merging in the base
address of the block. This can be expressed by the equation

�����������
	������	����������������������
��� �"!$#%	��'&)(�*

The actual hardware implementation of this is different in that the IPR number
is shifted left by 2 bits, and bits <31:29,24> are set. There is no multiplying or
adding done as one might conclude from the equation.

Because many of the 256 possible IPRs in the normal group are processed entirely
by the NVAX CPU chip, the corresponding I/O space location in the 1 KB block is
never referenced as a result of an MTPR/MFPR to or from these IPRs. However,
note that a programmer can indeed reference these locations via an explicit
I/O space reference (for example, MOVL). References to this block of I/O space
locations with instructions other than MTPR/MFPR may result in UNDEFINED
behavior.

The processor registers implemented by the NVAX CPU are shown in Table 3–4.

Note

Many of the processor registers listed in Table 3–4 are used internally
by the microcode during normal operation of the CPU, and are not
intended to be referenced by software except during test or diagnosis of
the system. These registers are flagged with the notation ‘‘Testability
and diagnostic use only; not for software use in normal operation.’’
References by software to these registers during normal operation can
cause UNDEFINED behavior of the CPU.

3–6 Central Processor

Central Processor
3.1 Processor State

Table 3–4 Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Impl Cat I/O Address

Kernel Stack Pointer KSP 0 0 RW NVAX 1-1 –

Executive Stack Pointer ESP 1 1 RW NVAX 1-1 –

Supervisor Stack Pointer SSP 2 2 RW NVAX 1-1 –

User Stack Pointer USP 3 3 RW NVAX 1-1 –

Interrupt Stack Pointer ISP 4 4 RW NVAX 1-1 –

Reserved – 5 5 – – 3 E1000014

Reserved – 6 6 – – 3 E1000018

Reserved – 7 7 – – 3 E100001C

P0 Base Register P0BR 8 8 RW NVAX 1-2 –

P0 Length Register P0LR 9 9 RW NVAX 1-2 –

P1 Base Register P1BR 10 A RW NVAX 1-2 –

P1 Length Register P1LR 11 B RW NVAX 1-2 –

System Base Register SBR 12 C RW NVAX 1-2 –

System Length Register SLR 13 D RW NVAX 1-2 –

CPU Identification CPUID 14 E RW NVAX 2-1 –

Reserved – 15 F – – 3 E100003C

Process Control Block Base PCBB 16 10 RW NVAX 1-1 –

System Control Block Base SCBB 17 11 RW NVAX 1-1 –

Type:

R = Read-only register
RW = Read/write register
W = Write-only register

Impl(emented):

NVAX = Implemented in the NVAX CPU chip
System = Implemented in the system environment
Vector = Implemented in the optional vector unit or its NDAL interface

Cat(egory), class-subclass, where:

class is one of:

1 = Implemented per DEC Standard 032
2 = NVAX-specific implementation that is unique or different from the DEC Standard 032 implementation
3 = Not implemented internally; converted to I/O space read or write and passed to system environment

subclass is one of:

1 = Processed as appropriate by Ebox microcode
2 = Converted to Mbox IPR number and processed via internal IPR command
3 = Processed by internal IPR command, then converted to I/O space read or write and passed to system environment
4 = If virtual machine option is implemented, processed as in 1; otherwise, as in 3
5 = Processed by internal IPR command
6 = May be block decoded; reference causes UNDEFINED behavior
7 = Full interval timer may be implemented in the system environment. Subset ICCS is implemented in NVAX CPU
chip
8 = Converted to MFVP MSYNC

(continued on next page)

Central Processor 3–7

Central Processor
3.1 Processor State

Table 3–4 (Cont.) Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Impl Cat I/O Address

Interrupt Priority Level1 IPL 18 12 RW NVAX 1-1 –

AST Level1 ASTLVL 19 13 RW NVAX 1-1 –

Software Interrupt Request Register SIRR 20 14 W NVAX 1-1 –

Software Interrupt Summary Register1 SISR 21 15 RW NVAX 1-1 –

Reserved – 22 16 – – 3 E1000058

Reserved – 23 17 – – 3 E100005C

Interval Counter Control/Status ICCS 24 18 RW NCA 2-7 E1000060

Next Interval Count NICR 25 19 RW NCA 3-7 E1000064

Interval Count ICR 26 1A RW NCA 3-7 E1000068

Time of Year Register TODR 27 1B RW SSC 2-3 E100006C

Console Storage Receiver Status CSRS 28 1C RW SSC 2-3 E1000070

Console Storage Receiver Data CSRD 29 1D R SSC 2-3 E1000074

1Initialized on reset

Type:

R = Read-only register
RW = Read/write register
W = Write-only register

Impl(emented):

NVAX = Implemented in the NVAX CPU chip
System = Implemented in the system environment
Vector = Implemented in the optional vector unit or its NDAL interface

Cat(egory), class-subclass, where:

class is one of:

1 = Implemented per DEC Standard 032
2 = NVAX-specific implementation that is unique or different from the DEC Standard 032 implementation
3 = Not implemented internally; converted to I/O space read or write and passed to system environment

subclass is one of:

1 = Processed as appropriate by Ebox microcode
2 = Converted to Mbox IPR number and processed via internal IPR command
3 = Processed by internal IPR command, then converted to I/O space read or write and passed to system environment
4 = If virtual machine option is implemented, processed as in 1; otherwise, as in 3
5 = Processed by internal IPR command
6 = May be block decoded; reference causes UNDEFINED behavior
7 = Full interval timer may be implemented in the system environment. Subset ICCS is implemented in NVAX CPU
chip
8 = Converted to MFVP MSYNC

(continued on next page)

3–8 Central Processor

Central Processor
3.1 Processor State

Table 3–4 (Cont.) Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Impl Cat I/O Address

Console Storage Transmitter Status CSTS 30 1E RW SSC 2-3 E1000078

Console Storage Transmitter Data CSTD 31 1F W SSC 2-3 E100007C

Console Receiver Control/Status RXCS 32 20 RW SSC 2-3 E1000080

Console Receiver Data Buffer RXDB 33 21 R SSC 2-3 E1000084

Console Transmitter Control/Status TXCS 34 22 RW SSC 2-3 E1000088

Console Transmitter Data Buffer TXDB 35 23 W SSC 2-3 E100008C

Reserved – 36 24 – – 3 E1000090

Reserved – 37 25 – – 3 E1000094

Machine Check Error Register MCESR 38 26 W NVAX 2-1 –

Reserved – 39 27 – – 3 E100009C

Reserved – 40 28 – – 3 E10000A0

Reserved – 41 29 – – 3 E10000A4

Console Saved PC SAVPC 42 2A R NVAX 2-1 –

Console Saved PSL SAVPSL 43 2B R NVAX 2-1 –

Type:

R = Read-only register
RW = Read/write register
W = Write-only register

Impl(emented):

NVAX = Implemented in the NVAX CPU chip
System = Implemented in the system environment
Vector = Implemented in the optional vector unit or its NDAL interface

Cat(egory), class-subclass, where:

class is one of:

1 = Implemented per DEC Standard 032
2 = NVAX-specific implementation that is unique or different from the DEC Standard 032 implementation
3 = Not implemented internally; converted to I/O space read or write and passed to system environment

subclass is one of:

1 = Processed as appropriate by Ebox microcode
2 = Converted to Mbox IPR number and processed via internal IPR command
3 = Processed by internal IPR command, then converted to I/O space read or write and passed to system environment
4 = If virtual machine option is implemented, processed as in 1; otherwise, as in 3
5 = Processed by internal IPR command
6 = May be block decoded; reference causes UNDEFINED behavior
7 = Full interval timer may be implemented in the system environment. Subset ICCS is implemented in NVAX CPU
chip
8 = Converted to MFVP MSYNC

(continued on next page)

Central Processor 3–9

Central Processor
3.1 Processor State

Table 3–4 (Cont.) Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Impl Cat I/O Address

Reserved – 44 2C – – 3 E10000B0

Reserved – 45 2D – – 3 E10000B4

Reserved – 46 2E – – 3 E10000B8

Reserved – 47 2F – – 3 E10000BC

Reserved – 48 30 – – 3 E10000C0

Reserved – 49 31 – – 3 E10000C4

Reserved – 50 32 – – 3 E10000C8

Reserved – 51 33 – – 3 E10000CC

Reserved – 52 34 – – 3 E10000D0

Reserved – 53 35 – – 3 E10000D4

Reserved – 54 36 – – 3 E10000D8

I/O System Reset Register IORESET 55 37 W SSC 2-3 E10000DC

Memory Management Enable1 � 3 MAPEN 56 38 RW NVAX 1-2 –

Translation Buffer Invalidate All3 TBIA 57 39 W NVAX 1-1 –

Translation Buffer Invalidate Single3 TBIS 58 3A W NVAX 1-1 –

Reserved – 59 3B – – 3 E10000EC

Reserved – 60 3C – – 3 E10000F0

1Initialized on reset
3Change broadcast to vector unit if present

Type:

R = Read-only register
RW = Read/write register
W = Write-only register

Impl(emented):

NVAX = Implemented in the NVAX CPU chip
System = Implemented in the system environment
Vector = Implemented in the optional vector unit or its NDAL interface

Cat(egory), class-subclass, where:

class is one of:

1 = Implemented per DEC Standard 032
2 = NVAX-specific implementation that is unique or different from the DEC Standard 032 implementation
3 = Not implemented internally; converted to I/O space read or write and passed to system environment

subclass is one of:

1 = Processed as appropriate by Ebox microcode
2 = Converted to Mbox IPR number and processed via internal IPR command
3 = Processed by internal IPR command, then converted to I/O space read or write and passed to system environment
4 = If virtual machine option is implemented, processed as in 1; otherwise, as in 3
5 = Processed by internal IPR command
6 = May be block decoded; reference causes UNDEFINED behavior
7 = Full interval timer may be implemented in the system environment. Subset ICCS is implemented in NVAX CPU
chip
8 = Converted to MFVP MSYNC

(continued on next page)

3–10 Central Processor

Central Processor
3.1 Processor State

Table 3–4 (Cont.) Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Impl Cat I/O Address

System Identification SID 62 3E R NVAX 1-1 –

Translation Buffer Check TBCHK 63 3F W NVAX 1-1 –

IPL 14 Interrupt ACK5 IAK14 64 40 R SSC 2-3 E1000100

IPL 15 Interrupt ACK5 IAK15 65 41 R SSC 2-3 E1000104

IPL 16 Interrupt ACK5 IAK16 66 42 R SSC 2-3 E1000108

IPL 17 Interrupt ACK5 IAK17 67 43 R SSC 2-3 E100010C

Clear Write Buffer5 CWB 68 44 RW SSC 2-3 E1000110

Reserved – 69 45 – – 3 E1000114

Reserved – 70 46 – – 3 E1000118

Reserved – 71 47 – – 3 E100011C

5Testability and diagnostic use only; not for software use in normal operation

Type:

R = Read-only register
RW = Read/write register
W = Write-only register

Impl(emented):

NVAX = Implemented in the NVAX CPU chip
System = Implemented in the system environment
Vector = Implemented in the optional vector unit or its NDAL interface

Cat(egory), class-subclass, where:

class is one of:

1 = Implemented per DEC Standard 032
2 = NVAX-specific implementation that is unique or different from the DEC Standard 032 implementation
3 = Not implemented internally; converted to I/O space read or write and passed to system environment

subclass is one of:

1 = Processed as appropriate by Ebox microcode
2 = Converted to Mbox IPR number and processed via internal IPR command
3 = Processed by internal IPR command, then converted to I/O space read or write and passed to system environment
4 = If virtual machine option is implemented, processed as in 1; otherwise, as in 3
5 = Processed by internal IPR command
6 = May be block decoded; reference causes UNDEFINED behavior
7 = Full interval timer may be implemented in the system environment. Subset ICCS is implemented in NVAX CPU
chip
8 = Converted to MFVP MSYNC

(continued on next page)

Central Processor 3–11

Central Processor
3.1 Processor State

Table 3–4 (Cont.) Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Impl Cat I/O Address

Reserved – 72 48 – – 3 E1000120

Reserved – 73 49 – – 3 E1000124

Reserved – 74 4A – – 3 E1000128

Reserved – 75 4B – – 3 E100012C

Reserved – 76 4C – – 3 E1000130

Reserved – 77 4D – – 3 E1000134

Reserved – 78 4E – – 3 E1000138

Reserved – 79 4F – – 3 E100013C

Reserved – 80 50 – – 3 E1000140

Reserved – 81 51 – – 3 E1000144

Reserved – 82 52 – – 3 E1000148

Reserved – 83 53 – – 3 E100014C

Reserved – 84 54 – – 3 E1000150

Reserved – 85 55 – – 3 E1000154

Type:

R = Read-only register
RW = Read/write register
W = Write-only register

Impl(emented):

NVAX = Implemented in the NVAX CPU chip
System = Implemented in the system environment
Vector = Implemented in the optional vector unit or its NDAL interface

Cat(egory), class-subclass, where:

class is one of:

1 = Implemented per DEC Standard 032
2 = NVAX-specific implementation that is unique or different from the DEC Standard 032 implementation
3 = Not implemented internally; converted to I/O space read or write and passed to system environment

subclass is one of:

1 = Processed as appropriate by Ebox microcode
2 = Converted to Mbox IPR number and processed via internal IPR command
3 = Processed by internal IPR command, then converted to I/O space read or write and passed to system environment
4 = If virtual machine option is implemented, processed as in 1; otherwise, as in 3
5 = Processed by internal IPR command
6 = May be block decoded; reference causes UNDEFINED behavior
7 = Full interval timer may be implemented in the system environment. Subset ICCS is implemented in NVAX CPU
chip
8 = Converted to MFVP MSYNC

(continued on next page)

3–12 Central Processor

Central Processor
3.1 Processor State

Table 3–4 (Cont.) Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Impl Cat I/O Address

Reserved – 86 56 – – 3 E1000158

Reserved – 87 57 – – 3 E100015C

Reserved – 88 58 – – 3 E1000160

Reserved – 89 59 – – 3 E1000164

Reserved – 90 5A – – 3 E1000168

Reserved – 91 5B – – 3 E100016C

Reserved – 92 5C – – 3 E1000170

Reserved – 93 5D – – 3 E1000174

Reserved – 94 5E – – 3 E1000178

Reserved – 95 5F – – 3 E100017C

Reserved – 96 60 – – 3 E1000180

Reserved – 97 61 – – 3 E1000184

Reserved – 98 62 – – 3 E1000188

Reserved – 99 63 – – 3 E100018C

Type:

R = Read-only register
RW = Read/write register
W = Write-only register

Impl(emented):

NVAX = Implemented in the NVAX CPU chip
System = Implemented in the system environment
Vector = Implemented in the optional vector unit or its NDAL interface

Cat(egory), class-subclass, where:

class is one of:

1 = Implemented per DEC Standard 032
2 = NVAX-specific implementation that is unique or different from the DEC Standard 032 implementation
3 = Not implemented internally; converted to I/O space read or write and passed to system environment

subclass is one of:

1 = Processed as appropriate by Ebox microcode
2 = Converted to Mbox IPR number and processed via internal IPR command
3 = Processed by internal IPR command, then converted to I/O space read or write and passed to system environment
4 = If virtual machine option is implemented, processed as in 1; otherwise, as in 3
5 = Processed by internal IPR command
6 = May be block decoded; reference causes UNDEFINED behavior
7 = Full interval timer may be implemented in the system environment. Subset ICCS is implemented in NVAX CPU
chip
8 = Converted to MFVP MSYNC

(continued on next page)

Central Processor 3–13

Central Processor
3.1 Processor State

Table 3–4 (Cont.) Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Impl Cat I/O Address

Reserved for VM – 100 64 – – 3 E1000190

Reserved for VM – 101 65 – – 3 E1000194

Reserved for VM – 102 66 – – 3 E1000198

Reserved – 103 67 – – 3 E100019C

Reserved – 104 68 – – 3 E10001A0

Reserved – 105 69 – – 3 E10001A4

Reserved – 106 6A – – 3 E10001A8

Reserved – 107 6B – – 3 E10001AC

Reserved – 108 6C – – 3 E10001B0

Reserved – 109 6D – – 3 E10001B4

Reserved – 110 6E – – 3 E10001B8

Reserved – 111 6F – – 3 E10001BC

Reserved – 112 70 – – 3 E10001C0

Reserved – 113 71 – – 3 E10001C4

Reserved – 114 72 – – 3 E10001C8

Reserved – 115 73 – – 3 E10001CC

Reserved – 116 74 – – 3 E10001D0

Reserved – 117 75 – – 3 E10001D4

Type:

R = Read-only register
RW = Read/write register
W = Write-only register

Impl(emented):

NVAX = Implemented in the NVAX CPU chip
System = Implemented in the system environment
Vector = Implemented in the optional vector unit or its NDAL interface

Cat(egory), class-subclass, where:

class is one of:

1 = Implemented per DEC Standard 032
2 = NVAX-specific implementation that is unique or different from the DEC Standard 032 implementation
3 = Not implemented internally; converted to I/O space read or write and passed to system environment

subclass is one of:

1 = Processed as appropriate by Ebox microcode
2 = Converted to Mbox IPR number and processed via internal IPR command
3 = Processed by internal IPR command, then converted to I/O space read or write and passed to system environment
4 = If virtual machine option is implemented, processed as in 1; otherwise, as in 3
5 = Processed by internal IPR command
6 = May be block decoded; reference causes UNDEFINED behavior
7 = Full interval timer may be implemented in the system environment. Subset ICCS is implemented in NVAX CPU
chip
8 = Converted to MFVP MSYNC

(continued on next page)

3–14 Central Processor

Central Processor
3.1 Processor State

Table 3–4 (Cont.) Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Impl Cat I/O Address

Reserved – 118 76 – – 3 E10001D8

Reserved – 119 77 – – 3 E10001DC

Reserved – 120 78 – – 3 E10001E0

Reserved – 121 79 – – 3 E10001E4

Interrupt System Status Register INTSYS 122 7A RW NVAX 2-1 –

Performance Monitoring Facility Count PMFCNT 123 7B RW NVAX 2-1 –

Patchable Control Store Control Register PCSCR 124 7C WO NVAX 2-1 –

Ebox Control Register ECR 125 7D RW NVAX 2-1 –

Mbox TB Tag Fill5 MTBTAG 126 7E W NVAX 2-1 –

Mbox TB PTE Fill5 MTBPTE 127 7F W NVAX 2-1 –

Cbox Control Register CCTL 160 A0 RW NVAX 2-5 –

Reserved – 161 A1 – NVAX 2-6 –

Bcache Data ECC BCDECC 162 A2 W NVAX 2-5 –

Bcache Error Tag Status BCETSTS 163 A3 RW NVAX 2-5 –

Bcache Error Tag Index BCETIDX 164 A4 R NVAX 2-5 –

5Testability and diagnostic use only; not for software use in normal operation

Type:

R = Read-only register
RW = Read/write register
W = Write-only register

Impl(emented):

NVAX = Implemented in the NVAX CPU chip
System = Implemented in the system environment
Vector = Implemented in the optional vector unit or its NDAL interface

Cat(egory), class-subclass, where:

class is one of:

1 = Implemented per DEC Standard 032
2 = NVAX-specific implementation that is unique or different from the DEC Standard 032 implementation
3 = Not implemented internally; converted to I/O space read or write and passed to system environment

subclass is one of:

1 = Processed as appropriate by Ebox microcode
2 = Converted to Mbox IPR number and processed via internal IPR command
3 = Processed by internal IPR command, then converted to I/O space read or write and passed to system environment
4 = If virtual machine option is implemented, processed as in 1; otherwise, as in 3
5 = Processed by internal IPR command
6 = May be block decoded; reference causes UNDEFINED behavior
7 = Full interval timer may be implemented in the system environment. Subset ICCS is implemented in NVAX CPU
chip
8 = Converted to MFVP MSYNC

(continued on next page)

Central Processor 3–15

Central Processor
3.1 Processor State

Table 3–4 (Cont.) Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Impl Cat I/O Address

Bcache Error Tag BCETAG 165 A5 R NVAX 2-5 –

Bcache Error Data Status BCEDSTS 166 A6 RW NVAX 2-5 –

Bcache Error Data Index BCEDIDX 167 A7 R NVAX 2-5 –

Bcache Error ECC BCEDECC168 A8 R NVAX 2-5 –

Reserved – 169 A9 – NVAX 2-6 –

Reserved – 170 AA – NVAX 2-6 –

Fill Error Address CEFADR 171 AB R NVAX 2-5 –

Fill Error Status CEFSTS 172 AC RW NVAX 2-5 –

Reserved – 173 AD – NVAX 2-6 –

NDAL Error Status NESTS 174 AE RW NVAX 2-5 –

Reserved – 175 AF – NVAX 2-6 –

NDAL Error Output Address NEOADR 176 B0 R NVAX 2-5 –

Reserved – 177 B1 – NVAX 2-6 –

NDAL Error Output Command NEOCMD 178 B2 R NVAX 2-5 –

Reserved – 179 B3 – NVAX 2-6 –

Type:

R = Read-only register
RW = Read/write register
W = Write-only register

Impl(emented):

NVAX = Implemented in the NVAX CPU chip
System = Implemented in the system environment
Vector = Implemented in the optional vector unit or its NDAL interface

Cat(egory), class-subclass, where:

class is one of:

1 = Implemented per DEC Standard 032
2 = NVAX-specific implementation that is unique or different from the DEC Standard 032 implementation
3 = Not implemented internally; converted to I/O space read or write and passed to system environment

subclass is one of:

1 = Processed as appropriate by Ebox microcode
2 = Converted to Mbox IPR number and processed via internal IPR command
3 = Processed by internal IPR command, then converted to I/O space read or write and passed to system environment
4 = If virtual machine option is implemented, processed as in 1; otherwise, as in 3
5 = Processed by internal IPR command
6 = May be block decoded; reference causes UNDEFINED behavior
7 = Full interval timer may be implemented in the system environment. Subset ICCS is implemented in NVAX CPU
chip
8 = Converted to MFVP MSYNC

(continued on next page)

3–16 Central Processor

Central Processor
3.1 Processor State

Table 3–4 (Cont.) Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Impl Cat I/O Address

NDAL Error Data High NEDATHI 180 B4 R NVAX 2-5 –

Reserved – 181 B5 – NVAX 2-6 –

NDAL Error Data Low NEDATLO182 B6 R NVAX 2-5 –

Reserved – 183 B7 – NVAX 2-6 –

NDAL Error Input Command NEICMD 184 B8 R NVAX 2-5 –

Reserved – 185 B9 – NVAX 2-6 –

Reserved – 186 BA – NVAX 2-6 –

Reserved – 187 BB – NVAX 2-6 –

Reserved – 188 BC – NVAX 2-6 –

Reserved – 189 BD – NVAX 2-6 –

Reserved – 190 BE – NVAX 2-6 –

Reserved – 191 BF – NVAX 2-6 –

Reserved – 192 C0 – – 3 E1000300

Reserved – 193 C1 – – 3 E1000304

Reserved – 194 C2 – – 3 E1000308

Reserved – 195 C3 – – 3 E100030C

Type:

R = Read-only register
RW = Read/write register
W = Write-only register

Impl(emented):

NVAX = Implemented in the NVAX CPU chip
System = Implemented in the system environment
Vector = Implemented in the optional vector unit or its NDAL interface

Cat(egory), class-subclass, where:

class is one of:

1 = Implemented per DEC Standard 032
2 = NVAX-specific implementation that is unique or different from the DEC Standard 032 implementation
3 = Not implemented internally; converted to I/O space read or write and passed to system environment

subclass is one of:

1 = Processed as appropriate by Ebox microcode
2 = Converted to Mbox IPR number and processed via internal IPR command
3 = Processed by internal IPR command, then converted to I/O space read or write and passed to system environment
4 = If virtual machine option is implemented, processed as in 1; otherwise, as in 3
5 = Processed by internal IPR command
6 = May be block decoded; reference causes UNDEFINED behavior
7 = Full interval timer may be implemented in the system environment. Subset ICCS is implemented in NVAX CPU
chip
8 = Converted to MFVP MSYNC

(continued on next page)

Central Processor 3–17

Central Processor
3.1 Processor State

Table 3–4 (Cont.) Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Impl Cat I/O Address

Reserved – 196 C4 – – 3 E1000310

Reserved – 197 C5 – – 3 E1000314

Reserved – 198 C6 – – 3 E1000318

Reserved – 199 C7 – – 3 E100031C

Reserved – 200 C8 – – 3 E1000320

Reserved – 201 C9 – – 3 E1000324

Reserved – 202 CA – – 3 E1000328

Reserved – 203 CB – – 3 E100032C

Reserved – 204 CC – – 3 E1000330

Reserved – 205 CD – – 3 E1000334

Reserved – 206 CE – – 3 E1000338

Reserved – 207 CF – – 3 E100033C

VIC Memory Address Register VMAR 208 D0 RW NVAX 2-5 –

VIC Tag Register VTAG 209 D1 RW NVAX 2-5 –

VIC Data Register VDATA 210 D2 RW NVAX 2-5 –

Ibox Control and Status Register ICSR 211 D3 RW NVAX 2-5 –

Type:

R = Read-only register
RW = Read/write register
W = Write-only register

Impl(emented):

NVAX = Implemented in the NVAX CPU chip
System = Implemented in the system environment
Vector = Implemented in the optional vector unit or its NDAL interface

Cat(egory), class-subclass, where:

class is one of:

1 = Implemented per DEC Standard 032
2 = NVAX-specific implementation that is unique or different from the DEC Standard 032 implementation
3 = Not implemented internally; converted to I/O space read or write and passed to system environment

subclass is one of:

1 = Processed as appropriate by Ebox microcode
2 = Converted to Mbox IPR number and processed via internal IPR command
3 = Processed by internal IPR command, then converted to I/O space read or write and passed to system environment
4 = If virtual machine option is implemented, processed as in 1; otherwise, as in 3
5 = Processed by internal IPR command
6 = May be block decoded; reference causes UNDEFINED behavior
7 = Full interval timer may be implemented in the system environment. Subset ICCS is implemented in NVAX CPU
chip
8 = Converted to MFVP MSYNC

(continued on next page)

3–18 Central Processor

Central Processor
3.1 Processor State

Table 3–4 (Cont.) Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Impl Cat I/O Address

Ibox Branch Prediction Control Register5 BPCR 212 D4 RW NVAX 2-5 –

Reserved – 213 D5 – NVAX 2-6 –

Ibox Backup PC5 BPC 214 D6 R NVAX 2-5 –

Ibox Backup PC with RLOG Unwind5 BPCUNW 215 D7 R NVAX 2-5 –

Reserved – 216 D8 – NVAX 2-6 –

Reserved – 217 D9 – NVAX 2-6 –

Reserved – 218 DA – NVAX 2-6 –

Reserved – 219 DB – NVAX 2-6 –

Reserved – 220 DC – NVAX 2-6 –

Reserved – 221 DD – NVAX 2-6 –

Reserved – 222 DE – NVAX 2-6 –

Reserved – 223 DF – NVAX 2-6 –

5Testability and diagnostic use only; not for software use in normal operation

Type:

R = Read-only register
RW = Read/write register
W = Write-only register

Impl(emented):

NVAX = Implemented in the NVAX CPU chip
System = Implemented in the system environment
Vector = Implemented in the optional vector unit or its NDAL interface

Cat(egory), class-subclass, where:

class is one of:

1 = Implemented per DEC Standard 032
2 = NVAX-specific implementation that is unique or different from the DEC Standard 032 implementation
3 = Not implemented internally; converted to I/O space read or write and passed to system environment

subclass is one of:

1 = Processed as appropriate by Ebox microcode
2 = Converted to Mbox IPR number and processed via internal IPR command
3 = Processed by internal IPR command, then converted to I/O space read or write and passed to system environment
4 = If virtual machine option is implemented, processed as in 1; otherwise, as in 3
5 = Processed by internal IPR command
6 = May be block decoded; reference causes UNDEFINED behavior
7 = Full interval timer may be implemented in the system environment. Subset ICCS is implemented in NVAX CPU
chip
8 = Converted to MFVP MSYNC

(continued on next page)

Central Processor 3–19

Central Processor
3.1 Processor State

Table 3–4 (Cont.) Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Impl Cat I/O Address

Mbox P0 Base Register5 MP0BR 224 E0 RW NVAX 2-5 –

Mbox P0 Length Register5 MP0LR 225 E1 RW NVAX 2-5 –

Mbox P1 Base Register5 MP1BR 226 E2 RW NVAX 2-5 –

Mbox P1 Length Register5 MP1LR 227 E3 RW NVAX 2-5 –

Mbox System Base Register5 MSBR 228 E4 RW NVAX 2-5 –

Mbox System Length Register5 MSLR 229 E5 RW NVAX 2-5 –

Mbox Memory Management Enable5 MMAPEN 230 E6 RW NVAX 2-5 –

Mbox Physical Address Mode PAMODE 231 E7 RW NVAX 2-5 –

Mbox MME Address MMEADR 232 E8 R NVAX 2-5 –

Mbox MME PTE Address MMEPTE 233 E9 R NVAX 2-5 –

Mbox MME Status MMESTS 234 EA R NVAX 2-5 –

5Testability and diagnostic use only; not for software use in normal operation

Type:

R = Read-only register
RW = Read/write register
W = Write-only register

Impl(emented):

NVAX = Implemented in the NVAX CPU chip
System = Implemented in the system environment
Vector = Implemented in the optional vector unit or its NDAL interface

Cat(egory), class-subclass, where:

class is one of:

1 = Implemented per DEC Standard 032
2 = NVAX-specific implementation that is unique or different from the DEC Standard 032 implementation
3 = Not implemented internally; converted to I/O space read or write and passed to system environment

subclass is one of:

1 = Processed as appropriate by Ebox microcode
2 = Converted to Mbox IPR number and processed via internal IPR command
3 = Processed by internal IPR command, then converted to I/O space read or write and passed to system environment
4 = If virtual machine option is implemented, processed as in 1; otherwise, as in 3
5 = Processed by internal IPR command
6 = May be block decoded; reference causes UNDEFINED behavior
7 = Full interval timer may be implemented in the system environment. Subset ICCS is implemented in NVAX CPU
chip
8 = Converted to MFVP MSYNC

(continued on next page)

3–20 Central Processor

Central Processor
3.1 Processor State

Table 3–4 (Cont.) Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Impl Cat I/O Address

Reserved – 235 EB – NVAX 2-6 –

Mbox TB Parity Address TBADR 236 EC R NVAX 2-5 –

Mbox TB Parity Status TBSTS 237 ED RW NVAX 2-5 –

Reserved – 238 EE – NVAX 2-6 –

Reserved – 239 EF – NVAX 2-6 –

Reserved – 240 F0 – NVAX 2-6 –

Reserved – 241 F1 – NVAX 2-6 –

Mbox Pcache Parity Address PCADR 242 F2 R NVAX 2-5 –

Reserved – 243 F3 – NVAX 2-6 –

Mbox Pcache Status PCSTS 244 F4 RW NVAX 2-5 –

Reserved – 245 F5 – NVAX 2-6 –

Type:

R = Read-only register
RW = Read/write register
W = Write-only register

Impl(emented):

NVAX = Implemented in the NVAX CPU chip
System = Implemented in the system environment
Vector = Implemented in the optional vector unit or its NDAL interface

Cat(egory), class-subclass, where:

class is one of:

1 = Implemented per DEC Standard 032
2 = NVAX-specific implementation that is unique or different from the DEC Standard 032 implementation
3 = Not implemented internally; converted to I/O space read or write and passed to system environment

subclass is one of:

1 = Processed as appropriate by Ebox microcode
2 = Converted to Mbox IPR number and processed via internal IPR command
3 = Processed by internal IPR command, then converted to I/O space read or write and passed to system environment
4 = If virtual machine option is implemented, processed as in 1; otherwise, as in 3
5 = Processed by internal IPR command
6 = May be block decoded; reference causes UNDEFINED behavior
7 = Full interval timer may be implemented in the system environment. Subset ICCS is implemented in NVAX CPU
chip
8 = Converted to MFVP MSYNC

(continued on next page)

Central Processor 3–21

Central Processor
3.1 Processor State

Table 3–4 (Cont.) Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Impl Cat I/O Address

Reserved – 246 F6 – NVAX 2-6 –

Reserved – 247 F7 – NVAX 2-6 –

Mbox Pcache Control PCCTL 248 F8 RW NVAX 2-5 –

Reserved – 249 F9 – NVAX 2-6 –

Reserved – 250 FA – NVAX 2-6 –

Reserved – 251 FB – NVAX 2-6 –

Reserved – 252 FC – NVAX 2-6 –

Reserved – 253 FD – NVAX 2-6 –

Reserved – 254 FE – NVAX 2-6 –

Reserved – 255 FF – NVAX 2-6 –

Unimplemented – – 100–

00FFFFFF

– 3 –

See Table 3–3 – – 01000000–

FFFFFFFF

– 2 –

Type:

R = Read-only register
RW = Read/write register
W = Write-only register

Impl(emented):

NVAX = Implemented in the NVAX CPU chip
System = Implemented in the system environment
Vector = Implemented in the optional vector unit or its NDAL interface

Cat(egory), class-subclass, where:

class is one of:

1 = Implemented per DEC Standard 032
2 = NVAX-specific implementation that is unique or different from the DEC Standard 032 implementation
3 = Not implemented internally; converted to I/O space read or write and passed to system environment

subclass is one of:

1 = Processed as appropriate by Ebox microcode
2 = Converted to Mbox IPR number and processed via internal IPR command
3 = Processed by internal IPR command, then converted to I/O space read or write and passed to system environment
4 = If virtual machine option is implemented, processed as in 1; otherwise, as in 3
5 = Processed by internal IPR command
6 = May be block decoded; reference causes UNDEFINED behavior
7 = Full interval timer may be implemented in the system environment. Subset ICCS is implemented in NVAX CPU
chip
8 = Converted to MFVP MSYNC

3–22 Central Processor

Central Processor
3.2 Process Structure

3.2 Process Structure
A process is a single thread of execution. The context of the current process is
contained in the process control block (PCB), which is pointed to by the process
control block base register (PCBB). The KA680 implements these structures as
defined in VAX Architecture Reference Manual, which should be referenced for a
description of the PCB and the PCBB.

3.3 Data Types
The KA680 CPU supports the following subset of the VAX data types: The central
processor provides the following subset of the VAX data types:

� Byte � Word � Longword
� Quadword � Character string � Variable-length bit field
� F-floating � G-floating � D-floating

Support for the remaining VAX data types can be provided via macrocode
emulation.

3.4 Instruction Set
The KA680 CPU implements the following subset of the VAX instruction set types
in microcode.

� Integer arithmetic and logical � Address
� Variable length bit field � Control
� Procedure call � Miscellaneous
� Operating system support � F_floating
� G_floating � D_floating
� Queue � Character string

MOVC3
MOVC5
CMPC3 (See Note)
CMPC5 (See Note)
LOCC (See Note)
SCANC (See Note)
SKPC (See Note)
SPANC (See Note)

Note

* These instructions were in the microcode-assisted category on the
KA630-A (MicroVAX II), and therefore had to be emulated.

Central Processor 3–23

Central Processor
3.4 Instruction Set

The NVAX CPU provides special microcode assistance to aid the macrocode
emulation of the following instruction groups:

• Decimal string

• CRC

• EDITPC

The following instruction groups are not implemented, but may be emulated by
macrocode:

• Octaword

• Compatibility mode instructions

Appendix H lists the entire KA680 instruction set, indicating which instructions
have microcode assists to speed up macrocode emulation.

3.5 Memory Management
The KA680 implements full VAX Memory Management as defined in the VAX
Architecture Reference Manual. System space addresses are virtually mapped
through single-level page tables, and process space addresses are virtually
mapped through two-level page tables. See the VAX Architecture Reference
Manual for descriptions of the virtual-to-physical address translation process, and
the format for VAX page table entries (PTEs).

3.5.1 Translation Buffer
To reduce the overhead associated with translating virtual addresses to physical
addresses, the NVAX CPU chip employs a 96-entry, fully associative, translation
buffer (TB) for caching VAX PTEs. Each entry can store a PTE for translating
virtual addresses in either the VAX process space, or VAX system space. The
translation buffer is flushed whenever the following actions are performed:

• Memory management is enabled or disabled [for example, by writes to IPR 56
(MAPEN)].

• Any page table base or length registers are modified (for example, by writes
to IPRs 8 to 13).

• Writing to IPR 57 (TBIA).

In addition, individual TB entries may be flushed by writing to IPR 58 (TBIS).

Each entry in the translation buffer is divided into two parts: a 24-bit tag
register and a 27-bit PTE register. The tag register is used to store the virtual
page number (VPN) of the virtual page that the corresponding PTE register
maps, and a valid bit (TB.V) indicating that the tag contains a valid VPN. The
PTE register stores the 21-bit PFN field, the PTE.V bit, the PTE.M bit, and the
4-bit PROT field from the corresponding VAX PTE.

When MAPEN bit is set in the MAPEN IPR (IPR 56), memory management
is enabled and the CPU will perform VAX memory translation from virtual
addresses to physical addresses. The translation buffer is the mechanism by
which the NVAX performs quick virtual-to-physical address translations.

3–24 Central Processor

Central Processor
3.5 Memory Management

Figure 3–4 shows the format of a page table entry and a TB entry.

Figure 3–4 PTE and TB Format

00242526273031

Page Table Entry

V Prot M S Physical Page Frame Address

Where: V = Valid Bit
 Prot = Authorized Access Modes

0022232425282951525354

TB Entry

LJ-01247-TI0

TBV

TP

TP_BAR

Tag Prot M

DP

PFN

Where: = TB Entry Valid Bit

TP =
TP_BAR =
Tag =
Prot =
M =
DP =
PFN =

Even Tag Parity Bit
Compement of TP
Virtual Address<31:9>
Authorized Access Modes
Modify Bit
Even Parity for Validated PTE Field
Physical Page Frame Address

M = Modify Bit
S = Reserved Bit

Note that the TB entry stores all but three bits of the PTE field. The TB entry
does not store the S bit because it is not used, and the TB entry does not store the
upper two bits of the PTE PFN because these bits correspond to a larger physical
address space than NVAX CPU uses. The tag field stores the virtual page frame
address. The TBV bit indicates whether the corresponding entry is valid. If TBV
is set, then PTE<31> is valid because the TB only caches PTEs whose valid bits
are set.

During virtual-to-physical address translation, the contents of the 96 tag registers
are compared with the virtual page number field (bits <31:9>) of the virtual
address of the reference. If there is a match with one of the tag registers, and the
TB.V bit indicates the entry is valid, then a translation buffer "hit" has occurred,
and the contents of the corresponding PTE register are used for the translation.

Central Processor 3–25

Central Processor
3.5 Memory Management

If there is no match, the translation buffer does not contain the necessary VAX
PTE information to translate the address of the reference, and the PTE must be
fetched from memory. Upon fetching the PTE, the translation buffer is updated so
that subsequent references to the same page of memory will hit in the translation
buffer.

TB entries are allocated using an NLU (not-last-used) TB allocation pointer.
The update is achieved by replacing the entry that is selected by the replacement
pointer. The allocation pointer increments in round robin fashion whenever a new
buffer entry is loaded, such as after a TB miss. Because the allocation pointer is
guaranteed not to point to the last entry referenced, this scheme implements a
not-last-used allocation scheme.

The associativity of each TB entry is implemented by the use of comparators on
the TBV and tag fields. When a virtual address is to be translated, each TB tag
comparator, whose corresponding TBV bit is set, looks for a match between the
virtual page frame address and its corresponding tag. If no comparator finds
a match, a "TB miss" condition has occurred in that no TB entry contains a
translation for the specified address.

If one of the entries detects a match ("TB hit"), the PFN, PROT, and M fields of
the corresponding TB entry are read out of the TB and are used to complete the
address translation.

The PROT, and M fields, which are accessed along with the PFN, are used by
the memory management exception detection logic to determine ACV and M=0
conditions.

TB entries can be invalidated in the following ways:

• An entry can be invalidated by being displaced from the TB by allocation of
another PTE to the same TB entry.

• An entry can be invalidated by writing to the TBIS IPR (IPR 58). If the
specified TBIS virtual address matches a TB tag, the TBV bit corresponding
to the matched tag is cleared. Clearing the TBV bit invalidates the TB entry.

• All entries can be invalidated by writing to the TBIA IPR (IPR 57). This
command resets the TBV bit of every TB entry.

3.5.2 30-bit to 32-bit Physical Address Translations
When PAMODE=0, such as is mandatory with the KA680, the NVAX system is
configured such that only 30-bit physical addresses are processed at the program
level. This is done in two ways.

1. When the address translation logic receives a physical address from one of its
reference sources, the mapping is implemented by an address sign extension
scheme involving the upper three address bits. In this scheme, address bits
<31:30> are forced to the state of address<29>.

2. When the virtual/physical address tranlation logic receives a virtual address,
virtual address translation occurs normally without any sign extension of
the resulting physical address. This is possible because the corresponding
sign extension function is preprocessed on the upper three bits of page frame
address, which is written into the TB during the TB tag fill operation.

3–26 Central Processor

Central Processor
3.5 Memory Management

The following two figures show the register format of the TBTAG and TBDATA
IPRs. These two IPRs allow software to directly access the contents of the
translation buffer for diagnostic purposes.

Figure 3–5 Translation Buffer Tag (TBTAG) - IPR 47

000831 09

LJ-01248-TI0

Virtual Page Number (Write Only) :TBTAGMBZ

Figure 3–6 Translation Buffer Data (TBDATA) - IPR 59

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01249-TI0

PTE.M

PTE.PROT

PTE.V

(Write Only)

(Write Only)

(Write Only)

MBZ PTE.PFN (Write Only) :TBDATA

Diagnostic software may use IPR 47 (TBTAG) and IPR 59 (TBDATA) to test the
operation of the translation buffer. A write to TBTAG writes bits <31:9> of the
source data into the VPN field of the current tag location and clears the TB.V bit.
A subsequent write to TBDATA interprets the source data as a PTE and writes
PTE.V, PTE.M, PTE.PROT, and PTE.PFN into the current PTE location, sets the
TB.V bit, and increments the NLU pointer.

These registers are provided for diagnostic purposes only and should not be
written during normal operation. Writes to these registers must be done under
very controlled conditions to achieve the desired results. Specifically, the following
restrictions apply:

• The NLU pointer must be in a known state. A TBIA will initialize the NLU
pointer to the first location in the array.

• Memory management must be enabled during the use of TBTAG and
TBDATA because writing to MAPEN implicitly does a TBIA and resets
the NLU pointer.

• Data-stream and instruction-stream references during the use of TBTAG and
TBDATA must not be allowed to change the NLU pointer.

Note

The TBIS, TBIA, TBCHK, TBTAG, and TBDATA IPRs are write-only.
An MFPR instruction used to read any of these registers will cause the
NVAX CPU to initiate a reserved operand fault.

Central Processor 3–27

Central Processor
3.5 Memory Management

3.5.3 Memory Management Control Registers
There are four IPRs that control the memory management unit (MMU):

IPR 56 (MAPEN)
IPR 57 (TBIA)
IPR 58 (TBIS)
IPR 63 (TBCHK)

Memory management can be enabled/disabled via IPR 56 (MAPEN). Writing
0 to this register with an MTPR instruction disables memory management
and writing a 1 to this register with an MTPR instruction enables memory
management. Writes to this register flush the translation buffer. To determine
whether or not memory management is enabled, IPR 56 is read using the MFPR
instruction.

Translation buffer entries that map a particular virtual address can be
invalidated by writing the virtual address to IPR 58 (TBIS) using the MTPR
instruction.

Note

Whenever software changes a valid page table entry for the system or
current process region, or a system page table entry that maps any part
of the current process page table, all process pages mapped by the page
table entry must be invalidated in the translation buffer.

The entire translation buffer can be invalidated by writing a 0 to IPR 57 (TBIA)
using the MTPR instruction.

The translation buffer can be checked to see if it contains a valid translation for
a particular virtual page by writing a virtual address within that page to IPR 63
(TBCHK) using the MTPR instruction. If the translation buffer contains a valid
translation for the page, the condition code V bit (bit<1> of the PSL) is set.

Note

The TBIS, TBIA, and TBCHK IPRs are write-only. The operation of an
MFPR instruction from any of these registers is UNDEFINED.

There are three pairs of base and length registers that specify the base and
length of P0, P1, and S0 space:

• IPR 8(P0BR) and IPR 9(P0LR)

• IPR 10(P1BR) and IPR 11(P1LR)

• IPR 12(SBR) and IPR 13(SLR)

The base and length of the P0, P1, and S0 page tables may be changed by writing
the appropriate address or length to any of the following registers:

IPR 8 (P0BR)
IPR 9 (P0LR)
IPR 10 (P1BR)
IPR 11 (P1LR)
IPR 12 (SBR)

3–28 Central Processor

Central Processor
3.5 Memory Management

IPR 13 (SLR)

Whenever the location or size of the system map is changed by changing the SBR
(IPR 12) or SLR (IPR 13), the entire translation buffer must be cleared. The
NVAX CPU accomplishes this by flushing the TB on any change to SBR, SLR, or
P0BR, P1BR, P0LR, and P1LR.

When a process context is loaded with the LDPCTX instruction, all TB entries
that map process-space pages are automatically cleared. System-space mappings
are preserved.

There are two IPRs that are used by diagnostic software to test the translation
buffer:

IPR 47 (TBTAG) Format shown in Figure 3–5.
IPR 59 (TBDATA) Format shown in Figure 3–6.

For information regarding the use of the V, PROT, and M bit fields, consult the
VAX Architecture Reference Manual.

3.6 Interrupts and Exceptions
Both interrupts and exceptions divert execution from the normal flow of control.

An interrupt is caused by some activity outside the current process and typically
transfers control outside the process (for example, an interrupt from an external
hardware device). An exception is caused by the execution of the current
instruction and is typically handled by the current process (for example, an
arithmetic overflow).

3.6.1 Interrupts
Interrupts can be divided into two classes: nonmaskable and maskable.

Nonmaskable interrupts cause a halt via the hardware halt procedure. The
hardware halt procedure does the following:

• Saves the PC, PSL, MAPEN<0>, and a halt code in IPRs

• Raises the processor IPL to 1F

• Passes control to the resident firmware

The firmware dispatches the interrupt to the appropriate service routine based
on the halt code and hardware event indicators. Nonmaskable interrupts cannot
be blocked by raising the processor IPL, but can be blocked by running out of the
halt protected address space (except those nonmaskable interrupts that generate
a halt code of 3). Nonmaskable interrupts with a halt code of 3 cannot be blocked
because this halt code is generated after a hardware reset.

Maskable interrupts cause the following:

• The PC and PSL are saved.

• The processor IPL is raised to the priority level of the interrupt (except
for Q22–bus, mass storage, and network interface interrupts in which the
processor IPL is set to 17, independent of the level at which the interrupt was
received).

• The interrupt is dispatched to the appropriate service routine through the
system control block (SCB).

Central Processor 3–29

Central Processor
3.6 Interrupts and Exceptions

The various interrupt conditions for the KA680 are listed in Table 3–5 along with
their associated priority levels and SCB offsets. The reader should note that this
table is intended as a quick reference, and may not include all possible causes of
the various interrupts, specifically with regard to error conditions.

Table 3–5 Interrupt Priority Levels

Priority Level Interrupt Condition
SCB
Offset

Nonmaskable BDCOK and BPOK negated then asserted on Q22–bus (Powerup) *

– BDCOK negated then asserted while BPOK asserted on Q22–bus
(Powerup)

**

– BHALT asserted on Q22–bus **

– BREAK generated by the console device **

1F Unused –

1E BPOK negated on Q22–bus 0C

1D Backup cache addressing errors 60

– Backup cache uncorrectable data ECC errors on Bcache read for a
write that hits valid/owned

60

– NVAX read timeout or Read Data Error on Oread for a write after
the requested quadword has arrived

60

– Illegal length write transaction to memory or I/O 60

– Reserved command detected by memory or I/O during write
transaction

60

– Pending write times out waiting for disown write 60

– Disown write to unowned memory location 60

– Main memory NXM errors on writes 60

– NDAL parity errors on writes 60

– CP-bus NXM/TIMEOUT on a write 60

– Q22–bus NXM/NOSACK on a write 60

– Q22–bus NOGRANT on a write 60

– Uncorrectable memory errors during map read for Q22–bus
address translation

60

1C:1B Unused –

1A Correctable main memory errors 54

– Uncorrectable main memory errors 54

* These conditions generate a hardware halt procedure with a halt code of 3 (hardware reset).
** These conditions generate a hardware halt procedure with a halt code of 2 (external halt).

(continued on next page)

3–30 Central Processor

Central Processor
3.6 Interrupts and Exceptions

Table 3–5 (Cont.) Interrupt Priority Levels

Priority Level Interrupt Condition
SCB
Offset

– Correctable O-bit memory errors 54

– Pending read times out waiting for disown write 54

– No acknowledgement on returned read data from NMC 54

– NDAL data parity errors 54

– Primary cache tag or data parity errors 54

– Virtual instruction cache tag or data parity errors 54

– Backup cache addressing errors 54

– Backup cache correctable data ECC errors 54

– Backup cache uncorrectable data ECC errors 54

– Backup cache correctable tag ECC errors 54

– Backup cache uncorrectable data ECC errors 54

– Illegal length transaction to memory or I/O space 54

– Reserved command to memory or I/O space 54

– CP-bus parity errors on I/O read transactions 54

– CP-bus ERR_L signal asserted by I/O device during I/O read
transaction

54

– CP Bus NXM/TIMEOUTS errors on I/O reads 54

19:18 Unused –

17 BR7 L asserted Q22–bus
vector
plus
20016

16 Interval timer interrupt C0

– BR6 L asserted Q22–bus
vector
plus
20016

15 BR5 L asserted Q22–bus
vector
plus
20016

* These conditions generate a hardware halt procedure with a halt code of 3 (hardware reset).
** These conditions generate a hardware halt procedure with a halt code of 2 (external halt).

(continued on next page)

Central Processor 3–31

Central Processor
3.6 Interrupts and Exceptions

Table 3–5 (Cont.) Interrupt Priority Levels

Priority Level Interrupt Condition
SCB
Offset

14 Console Terminal F8,FC

– Programmable Timers 78,7C

– Mass storage interface one (DSSI port 1)(External) 108

– Mass storage interface two (DSSI port 2)(Internal) 104

– Network interface 10C

– Interprocessor doorbell 204

– BR4 L asserted Q22–bus
vector
plus
20016

13:10 Unused –

0F:01 Software interrupt requests 84-BC

* These conditions generate a hardware halt procedure with a halt code of 3 (hardware reset).
** These conditions generate a hardware halt procedure with a halt code of 2 (external halt).

Note

Because the Q22–bus does not allow differentiation between the four bus
grant levels (for example, a level 7 device could respond to a level 4 bus
grant), the KA680 CPU raises the IPL to 17 after responding to interrupts
generated by the assertion of either BR7_L, BR6_L, BR5_L, or BR4_L.
The KA680 maintains the IPL at the priority of the interrupt for all other
interrupts.

The interrupt system is controlled by three IPRs:

• IPR 18, the interrupt priority level register (IPLR) (Figure 3–7), is used for
loading the processor priority field in the PSL (bits<20:16>).

• IPR 20, the software interrupt request register (SIRR) (Figure 3–8), is used
for creating software interrupt requests.

• IPR 21, the software interrupt summary register (SISR) (Figure 3–9), records
pending software interrupt requests at levels 1 through 15.

The format of these registers is presented in Figure 3–7, Figure 3–8, and
Figure 3–9. Refer to the VAX Architecture Reference Manual for more information
on these registers.

3–32 Central Processor

Central Processor
3.6 Interrupts and Exceptions

Figure 3–7 Interrupt Priority Level Register (IPLR) - IPR 18

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01250-TI0

Ignored, Returns 0 :IPLRPSL<20:16>

Figure 3–8 Software Interrupt Request Register (SIRR) - IPL 20

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01251-TI0

Ignored :SIRRRequest

Figure 3–9 Software Interrupt Summary Register (SISR) - IPL 21

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01252-TI0

Pending Software Interrupts :SISR
12 3 4 5 6 7 8ABCDEF 9

MBZ

3.6.1.1 Power Fail Interrupt
Power fail interrupts are requested to report imminent loss of power to the CPU.
Power fail interrupts are requested via the PWRFL_L pin at IPL 1E (hex) and
are dispatched to the operating system through SCB vector 0C (hex).

The stack frame for a power fail interrupt is shown in Figure 3–10.

Figure 3–10 Power Fail Interrupt Stack Frame

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01317-TI0

:(SP)PC

PSL

Central Processor 3–33

Central Processor
3.6 Interrupts and Exceptions

3.6.1.2 Hard Error Interrupts
Hard error interrupts are requested to report an error that was detected
asynchronously with respect to instruction execution. This results in an interrupt
at IPL 1D (hex) to be dispatched through SCB vector 60 (hex). Typically, these
errors indicate that machine state has been corrupted and that retry is not
possible.

The stack frame for a hard error interrupt is shown in Figure 3–11.

Figure 3–11 Hard Error Interrupt Stack Frame

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01317-TI0

:(SP)PC

PSL

3.6.1.3 Soft Error Interrupts
Soft error interrupts are requested to report errors that were detected, but did
not affect instruction execution. This results in an interrupt at IPL 1A (hex) to be
dispatched through SCB vector 54 (hex).

The stack frame for a soft error interrupt is shown in Figure 3–12.

Figure 3–12 Soft Error Interrupt Stack Frame

0031

LJ-01253-TI0

:(SP)PC

PSL

3.7 Exceptions
The VAX architecture recognizes six classes of exceptions. Table 3–6 lists instances of exceptions
in each class.

Table 3–6 Exception Classes

Exception Class Instances

Arithmetic traps/faults Integer overflow trap
Integer divide-by-zero trap
Subscript range trap
Floating overflow fault
Floating divide-by-zero fault
Floating underflow fault

(continued on next page)

3–34 Central Processor

Central Processor
3.7 Exceptions

Table 3–6 (Cont.) Exception Classes

Exception Class Instances

Memory management exceptions Access control violation fault
Translation not valid fault
M=0 fault

Operand reference exceptions Reserved addressing mode fault
Reserved operand fault or abort

Instruction execution exceptions Reserved/privileged instruction fault
Emulated instruction faults
XFC fault
Change-mode trap
Breakpoint fault
Vector disabled fault

Tracing exceptions Trace fault

System failure exceptions Kernel-stack-not-valid abort
Interrupt-stack-not-valid halt
Console error halt
Machine check abort

A trap is an exception occuring at the end of the instruction that caused the
exception. Therefore, the PC saved on the stack is the address of the next
instruction that would normally have been executed.

A fault is an exception that occurs during an instruction. It leaves the registers
and memory in a consistent state so that elimination of the fault condition and
restarting the instruction will give correct results. After the instruction faults,
the PC saved on the stack points to the instruction that faulted.

An abort is an exception that occurs during an instruction. An abort leaves
the value of registers and memory UNPREDICTABLE so that the instruction
cannot necessarily be correctly restarted, completed, simulated, or undone. In
most instances, the NVAX microcode attempts to convert an abort into a fault by
restoring the state that was present at the start of the instruction, which caused
the abort.

The following sections describe only those exceptions that are unique to the
NVAX CPU, or where the VAX Architecture Reference Manual is not clear about
the implementation.

3.7.1 Arithmetic Exceptions
Arithmetic exceptions are detected during the execution of instructions that
perform integer or floating-point arithmetic manipulations. Whether the
exception is reported as a trap or a fault is a function of the specific event.
In any case, the exception is reported through SCB vector 34 (hex) with the stack
frame shown in Figure 3–13. Table 3–7 lists the exceptions reported by this
mechanism.

Central Processor 3–35

Central Processor
3.7 Exceptions

Figure 3–13 Arithmetic Exception Stack Frame

0031

LJ-01254-TI0

Type Code

PC

PSL

:(SP)

Table 3–7 Arithmetic Exceptions

Type Code

Decimal Hex Type Exception

1 1 Trap Integer overflow

2 2 Trap Integer divide-by-zero

7 7 Trap Subscript range

8 8 Fault Floating overflow

9 9 Fault Floating divide-by-zero

10 A Fault Floating underflow

3.7.2 Memory Management Exceptions
Memory management exceptions are detected during a memory reference and are
always reported as faults. The three memory management exceptions are listed
in Table 3–8. All three exceptions push the same frame on the stack, as shown
in Figure 3–14. The top longword of the stack frame contains a fault parameter
whose bits are described in Table 3–9.

Table 3–8 Memory Management Exceptions

SCB Vector Exception

20 (hex) Access control violation

24 (hex) Translation not valid

3C (hex) Modify fault

3–36 Central Processor

Central Processor
3.7 Exceptions

Figure 3–14 Memory Management Exception Stack Frame

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01255-TI0

M P L :SP

Some Virtual Address in the Faulting Page

PC

PSL

0 0

Table 3–9 Memory Management Exception Fault Parameter

Bit Mnemonic Meaning

0 L Length violation

1 P PTE reference

2 M Modify or write intent

3 0 Always 0

4 0 Always 0

3.7.3 Emulated Instruction Exceptions
The NVAX CPU implements the VAX base instruction group. For certain
instructions outside that group, the NVAX microcode provides support for
the macrocode emulation of instructions. There are two types of emulation
exceptions, depending on whether PSL<FPD> is set at the beginning of the
instruction.

If PSL<FPD>=0 at the beginning of the instruction, the exception is reported
through SCB vector C8 (hex) as a trap with the stack frame shown in
Figure 3–15. The longwords in the stack frame are described in Table 3–10.

Central Processor 3–37

Central Processor
3.7 Exceptions

Figure 3–15 Instruction Emulation Trap Stack Frame

0031

Opcode

Old PC

Specifier #1

2

3

4

5

6

7

8

PC

Specifier #

Specifier #

Specifier #

Specifier #

Specifier #

Specifier #

LJ-01256-TI0

PSL

Specifier #

:(SP)

3–38 Central Processor

Central Processor
3.7 Exceptions

Table 3–10 Instruction Emulation Trap Stack Frame

Location Use

Opcode Zero-extended opcode of the emulated instruction.

Old PC PC of the opcode of the emulated instruction.

Specifiers Address of the specified operand for specifiers of access type write
(.wx) or address (.ax). Operand value for specifiers of access type
read (.rx). For read-type operands whose size is smaller than a
longword, the remaining bits are UNPREDICTABLE. For those
instructions that do not have 8 specifiers, the remaining specifier
longwords contain UNPREDICTABLE values.

PC PC of the instruction following the emulated instruction.

PSL PSL saved at the time of the trap.

If PSL<FPD>=1 at the beginning of the instruction, the exception is reported
through SCB vector CC (hex) as a fault with the stack frame shown in
Figure 3–16. In this case, PC is that of the opcode of the emulated instruction.

Figure 3–16 Suspended Emulation Fault Stack Frame

0031

LJ-01257-TI0

PC

PSL

:(SP)

3.7.4 Vector Unit Disabled Fault
When the NVAX CPU attempts to issue a vector instruction to the optional vector
processor, it will result in this fault because the KA680 does not contain a vector
unit. There are no parameters for this exception (beside the usual PC/PSL pair).

3.7.5 Machine Check Exceptions
A machine check exception is reported through SCB vector 04 (hex) when the
NVAX CPU detects an error condition. The frame pushed on the stack for a
machine check indicates the type of error and provides internal state information
that may help identify the cause of the error. The generic machine check stack
frame is shown in Figure 3–17.

Central Processor 3–39

Central Processor
3.7 Exceptions

Figure 3–17 Generic Machine Check Stack Frame

0031

LJ-01258-TI0

Byte Count of Parameters, Excluding This Longword

PC

PSL

:(SP)

3.7.6 Console Halts
In certain microcode flows, the NVAX microcode may detect an inconsistency in
internal state, a kernel-mode HALT, or a system reset. In these instances, the
microcode initiates a hardware restart sequence, which passes control to the
console program.

When a hardware restart sequence is initiated, the NVAX microcode saves the
current CPU state, partially initializes the CPU, and passes control to the console
program at physical address E0040000 (hex).

During a hardware restart sequence, the stack pointer is saved in the appropriate
stack pointer IPR (0 through 4), the current PC is saved in IPR 42 (SAVPC), and
the current PSL, halt code, and validity flag are saved in IPR 43 (SAVPSL). The
format of SAVPC and SAVPSL are shown in Figure 3–18.

Figure 3–18 Console Saved PC and Saved PSL

0031

LJ-01259-TI0

0007081314151631

Saved PC

PSL<31:16> Halt Code PSL<7:0>

:SAVPC

:SAVPSL

MAPEN<0>
Ivalid SAVPSL if 1

Console halts are discusssed in detail in Appendix D.

3–40 Central Processor

Central Processor
3.7 Exceptions

3.7.7 Kernel Stack Not Valid Exception
A kernel stack not valid exception occurs when a memory management exception
is detected while attempting to push information on the kernel stack during
microcode processing of another exception. Note that a console halt with an error
code of ERR_INTSTK is taken if a memory management exception is encountered
while attempting to push information on the interrupt stack.

The kernel stack not valid exception is dispatched through SCB vector 08 (hex)
with the stack frame shown in Figure 3–19.

Figure 3–19 Kernel Stack Not Valid Stack Frame

0031

LJ-01260-TI0

PC

PSL

:(SP)

3.8 System Control Block (SCB)
The system control block (SCB) consists of two pages in main memory that contain the vectors
by which interrupts and exceptions are dispatched to the appropriate service routines. The SCB
is pointed to by IPR 17, the system control block base register (SCBB). The system control block
base format is shown in Figure 3–20. The description of the format is in Table 3–11.

Figure 3–20 System Control Block Base Register (SCBB) - IPR 17

0008293031 09

LJ-01261-TI0

MBZ Physical Longword Address of SCB MBZ

Central Processor 3–41

Central Processor
3.8 System Control Block (SCB)

Table 3–11 The System Control Block Format

SCB
Offset Interrupt/Exception Name Type

#
Params Notes

00 Passive Release Interrupt 0 IPL is raised to request IPL

04 Machine Check Abort 6 Parameters reflect machine state

08 Kernel Stack Not Valid Abort 0 Must be serviced on interrupt
stack

0C Power Fail Interrupt 0 IPL is raised to 1E

10 Reserved/Privileged Instruction Fault 0

14 Customer Reserved Instruction Fault 0 XFC instruction

18 Reserved Operand Fault/Abort 0 Not always recoverable

1C Reserved Addressing Mode Fault 0

20 Access Control Violation/Vector
Alignment Fault

Fault 2 Parameters are virtual address,
status code

24 Translation Not Valid Fault – 2 parameters are virtual address,
status code

28 Trace Pending (TP) Fault 0

2C Breakpoint Instruction Fault 0

30 Unused — — Compatibility mode in other VAX
systems

34 Arithmetic Trap/Fault 1 Parameter is type code

38-3C Unused — —

40 CHMK Trap 1 Parameter is sign-extended
operand word

44 CHME Trap 1 Parameter is sign-extended
operand word

48 CHMS Trap 1 Parameter is sign-extended
operand word

4C CHMU Trap 1 Parameter is sign-extended
operand word

50 Unused – –

54 Memory Soft Error Notification Interrupt 0 IPL is 1A

58-5C Unused – –

60 Memory Hard Error Notification Interrupt 0 IPL is 1D

64 Unused – –

68 Vector Unit Disabled Fault 0 Vector instructions

(continued on next page)

3–42 Central Processor

Central Processor
3.8 System Control Block (SCB)

Table 3–11 (Cont.) The System Control Block Format

SCB
Offset Interrupt/Exception Name Type

#
Params Notes

6C-74 Unused – –

78 Programmable Timer 0 Interrupt 0 IPL is 14

7C Programmable Timer 1 Interrupt 0 IPL is 14

80 Unused – –

84 Software Level 1 Interrupt 0

88 Software Level 2 Interrupt 0 Ordinarily used for AST delivery

8C Software Level 3 Interrupt 0 Ordinarily used for process
scheduling

90-BC Software Levels 4-15 Interrupt 0

C0 Interval Timer Interrupt 0 IPL is 16

C4 Unused – –

C8 Emulation Start Fault 10 Same mode exception, FPD =
0; parameters are opcode, PC,
specifiers

CC Emulation Continue Fault 0 Same mode exception, FPD = 1:
no parameters

108 Mass Storage Interface One
(DSSI PORT 1)

Interrupt 0 IPL is 14

104 Mass Storage Interface Two
(DSSI PORT 2)

Interrupt 0 IPL is 14

D8-DC Unused – –

F0 Network Interface Interrupt 0 IPL is 14

F4 Unused – –

F8 Console Receiver Interrupt 0 IPL is 15

FC Console Transmitter Interrupt 0 IPL is 15

204 Interprocessor Doorbell Interrupt 0 IPL is 14

Central Processor 3–43

Central Processor
3.8 System Control Block (SCB)

Vectors in the range of 100-FFFC are used to directly vector interrupts from the
external bus. The SCB vector index is determined from bits <15:2> of the value
supplied by external hardware.

The new PSL priority level is determined by either the external interrupt request
level that caused the interrupt or by bit <0> of the value supplied by external
hardware.

If bit<0> is 0, the new IPL level is determined by the interrupt request level
being serviced. IRQ<3> sets the IPL to 1716; IRQ<2>, 1616; IRQ<1>, 1516 ; and
IRQ<0>, 1416. If bit<0> of the value supplied by external hardware is 1, then the
new IPL is forced to 1716.

The ability to force the IPL to 1716 supports an external bus, such as the
Q22–bus, which cannot guarantee that the device generating the SCB vector
index is the device that originally requested the interrupt.

For example, the Q22–bus has four separate interrupt request signals that
correspond to IRQ<3:0> but only one signal to daisy chain the interrupt grant.
Furthermore, devices on the Q22–bus are ordered so that higher priority devices
are electrically closer to the bus master. If an IRQ<1> is being serviced, there is
no guarantee that a higher priority device will not intercept the grant.

Software must determine the level of the device that was serviced and set the IPL
to the correct value. Only device vectors in the range of 100 to FFFC16 should be
used, except by devices emulating console storage and terminal hardware.

3.9 System Identification
The KA680 firmware and operating system software references two registers
to determine the processor on which they are running. The first, the system
identification register (SID), is an internal processor register. The second, the
system identification extension register (SIE), is a firmware register located in
the KA680 EPROM.

3.9.1 System Identification Register
The system identification register (SID), IPR 62, is a read-only register
implemented in the NVAX CPU. This 32-bit, read-only register is used to
identify the processor type and its microcode revision level. The SID longword is
read from IPR 62 using the MFPR instruction. This longword value is processor-
specific. The format is shown in Figure 3–21. Bit definitions are listed in
Table 3–12.

3–44 Central Processor

Central Processor
3.9 System Identification

Figure 3–21 System Identification Register (SID) - IPR 62

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01262-TI0

CPU_Type Reserved Microcode Rev.

Table 3–12 System Identification Register

Field Name RW Description

<31:24> CPU_TYPE ro CPU type is the processor-specific identification code.

<23:8> reserved ro Reserved for future use.

<7:0> VERSION ro Version of the microcode.

3.9.2 System Identification Extension (SIE) Register (20040004)
The system identification extension register is an extension of the SID register
and is used to further differentiate between hardware configurations. The SID
register identifies which CPU and microcode are executing, and the SIE register
identifies what module and firmware revision are present. Note that the fields in
this register are dependent on SID<31:24>(CPU_TYPE).

By convention, all MicroVAX systems implement a longword at physical location
20040004 in the firmware EPROM for the SIE register. This 32-bit read-only
register is implemented in the KA680 ROM. Figure 3–22 shows the format of this
register. Table 3–13 lists the definitions of the register bits.

Figure 3–22 System Identification Extension Register (SIE)

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01263-TI0

Sys_Type Rev Level VariantSys_Sub_Type

Central Processor 3–45

Central Processor
3.9 System Identification

Table 3–13 System Identification Extension Register Bits

Field Name RW Description

31:24 SYS_TYPE ro This field identifies the type of system for a specific
processor.

01 : Q22–bus single processor system.

23:16 VERSION ro This field identifies the resident version of the firmware
EPROM encoded as two hexadecimal digits. For example,
if the banner displays V5.0, then this field is 50 (hex).

15:8 SYS_SUB_
TYPE

ro This field identifies the particular system subtype.

01 : KA650
02 : KA640
03 : KA655
04 : KA670
05 : KA660
06 : KA680

7:0 RESERVED This field is reserved

3.10 CPU References
All references by the CPU can be classified into one of the following groups:

• Instruction-stream (I-stream) read references.

• Data-stream (D-stream) read references.

• Ownership read (OREAD) references.

• Disown write (WDISOWN) references.

• Write references.

• Bad data write cycles (BADWDATA). See Section 4.4 for more information
regarding the use of BADWDATA.

3.10.1 Instruction-Stream Read References
An instruction stream (I-stream) reference is defined as a read reference to
acquire a VAX instruction. Furthermore, a VAX instruction consists of its
opcode, all operand specifiers, and any operands that are necessarily contiguous
with the rest of the instruction stream. Thus, the instruction stream includes
short literals, immediate-mode operands, absolute addresses in absolute mode
addressing, branch displacements, CALLx entry masks, and CASEx tables.
Except for immediate-mode operands and branch displacements, the instruction
stream does not include operands, even ones addressed relative to the PC. Except
for absolute addresses, the instruction stream does not include indirect addresses.
It also does not include EDITPC patterns. All instruction operands and indirect
addresses not considered to be within the instruction stream are considered data,
and are therefore accessed by the NVAX using D-stream read references.

The CPU has an instruction prefetcher for prefetching program instructions
from either cache or main memory. The prefetcher uses a 16-byte (4 longword)
instruction prefetch queue (IPQ). Whenever there is an empty longword in the
IPQ, and the prefetcher is not halted due to an error, the instruction prefetcher
will generate an aligned quadword I-stream read reference.

3–46 Central Processor

Central Processor
3.10 CPU References

3.10.2 Ownership Read References
The NVAX uses ownership read (OREAD) references to gain ownership of a
hexaword (32 bytes) block of memory. OREADs are defined only from memory
space; they are not used in I/O space.

The primary purpose for ownership reads on the KA680 CPU module is to
facilitate the use of a write-back caching scheme. The backup cache on the
KA680 CPU module uses a "write-back" scheme, whereby write transactions
to cached memory locations result in the modification of the cached copy only
(that is, the write transaction does not modify the actual memory location). This
substantially reduces the time required for the write transaction, resulting in a
corresponding improvement in system performance.

This presents a potential problem for memory locations, which may be shared
between the NVAX CPU and the I/O DMA devices, since the Bcache may contain
the only up-to-date copy of a location referenced by a DMA device. Because of
this, the KA680 memory subsystem utilizes the concept of memory ownership. In
this scheme, each hexaword (32 bytes) of main memory has associated with it an
ownership bit. These ownership bits reside on the KA680 CPU module and are
controlled by the NVAX memory controller chip (NMC). Whenever a device on the
module requests a transaction to main memory, the memory controller checks to
see if the hexaword containing the referenced location is owned by another device
(for example, the NVAX CPU or an I/O device). If it is owned, then the requested
transaction is pended until the owner of the hexaword relinquishes ownership of
that hexaword. In this way, the system can maintain memory consistency in the
presence of the NVAX CPU write-back cache.

The NVAX CPU will request ownership of memory locations in two general cases.
The first is when software attempts to write to a location that is not currently
cached in the Bcache AND owned by the CPU. In this case, the NVAX CPU will
issue an OREAD to the memory subsystem to acquire ownership of the referenced
hexaword. In this way, subsequent writes to the owned (and cached) location will
occur only in the cache, and will not update the contents of the actual memory
location. If another device wishes to access the owned hexaword, or if the CPU’s
Bcache determines that it must deallocate the cache block containing the owned
hexaword, then the NVAX CPU will perform a disown write (described below)
of the owned hexaword to memory. The disown write updates memory with the
potentially modified data, and signals the memory subsystem that the NVAX CPU
is relinquishing ownership of that hexaword.

The other case when the NVAX CPU will perform an OREAD to request
ownership of a hexaword is for VAX instructions that perform interlocked
read/modify/write operations on memory. The ownership mechanism is used in
this case to prevent I/O or Q22–bus devices from accessing the relevant memory
location in the middle of the read/modify/write operation.

When memory receives an ownership read, an "owned" bit corresponding to the
hexaword containing the referenced location is set in memory and the read data
is returned. Each hexaword in memory has an ownership bit. The NVAX backup
cache is organized by hexawords also, with an owned bit for each hexaword.
Memory clears the owned bit when a disown write of any length is received for an
owned block.

If the ownership bit is already set in memory when the OREAD arrives, data is
not returned immediately to the commander. Once the node that owns the data
performs a disown write to the owned block, the ownership bit is set in memory
and the data is returned to the commander.

Central Processor 3–47

Central Processor
3.10 CPU References

For more information regarding the use of ownership bits in the KA680 system,
refer to Chapter 5 and Section 4.4.2.

3.10.3 Disown Write References
The disown write (WDISOWN) transaction is the complement to the ownership
read. After the NVAX CPU successfully gains ownership of a block in memory,
it must relinquish ownership when another device (for example, a Q22–bus
DMA device) wants to access the block or when the Bcache needs to do a
deallocate. The NVAX CPU accomplishes this in a way transparent to software
by deallocating the owned hexaword from the Bcache and performing a disown
write to the memory with the latest copy of the data. The memory, which has
been monitoring the bus traffic, notices the disown write from the NVAX CPU
and clears the ownership bit in memory and writes the new data.

The NVAX CPU uses the disown write transaction of hexaword (32 bytes) length
to perform writebacks from the backup cache. This is transparent to software
except in the case of errors, when the logged information could indicate that an
error occured during a disown write transaction.

3.10.4 Data-Stream Read References
Data-stream (D-stream) references are defined as all read references that do not
fall under either OREAD or I-stream categories. Generally, D-stream references
are used by the NVAX CPU to read instruction operands and data from memory.
A more complete list of read references that qualify as D-stream is given below.

• Operand

• Page table entry (PTE)

• System control block (SCB)

• Process control block (PCB)

When interlocked instructions, such as branch on bit set and set interlock
(BBSSI) are executed, an OREAD/WDISOWN transaction pair is used to prevent
I/O devices from accessing the referenced location in the middle of the instruction.

3.10.5 Write References
Whenever data is stored or moved, and a WDISOWN transaction is not in order,
a normal WRITE reference is generated.

3.11 NVAX Data/Address Lines (NDAL)

3.11.1 NDAL Transactions
The following sections describe the set of NDAL transactions.

In order to maximize the bandwidth of the bus connecting the CPU to the memory
and I/O controllers, the NVAX chip set (NVAX, NMC, NCA) communicate over a
"pended" bus, the NDAL. The main feature of this bus is that devices requesting
read data do not tie up the bus while waiting for the return data. Rather, a
device will issue one of the "read" commands on the NDAL and then relinquish
control of the bus to other devices so that other transactions may be performed.
At the same time, the responder to the first device prepares to send back the data
associated with the read request. Because of the pended nature of the bus, the

3–48 Central Processor

Central Processor
3.11 NVAX Data/Address Lines (NDAL)

NDAL bus command set includes separate transactions for returning data from
an earlier read cycle. Table 3–14 shows the entire set of NDAL commands and
how they are used by NVAX.

In memory space, NVAX issues all reads with hexaword length. Normal writes to
memory space are always quadword length, and disown writes are quadword or
hexaword. When the cache is operating normally, disown writes are only issued
in hexaword length. When the cache is in error transition mode, NVAX issues
disown writes of both hexaword and quadword length. For a discussion of error
transition mode, refer to the section on the backup cache.

When the cache is off, NVAX issues only quadword disown writes. NVAX issues
quadword disown writes only as the result of a VAX interlocked instruction.

In I/O space, the ownership commands (OREAD and Disown Write) are not
defined at all. NVAX issues only quadword operations in I/O space. NVAX never
uses the BADWDATA command in I/O space.

Central Processor 3–49

Central Processor
3.11 NVAX Data/Address Lines (NDAL)

Table 3–14 NDAL Command Usage by NVAX

Address
Space Command

Used by
NVAX Length Length Length

QW OW HW

N/A Nop Yes – – –

N/A Reserved No – – –

Memory WRITE Yes Yes No No

Memory WDISOWN Yes Yes No Yes

Memory IREAD Yes No No Yes

Memory DREAD Yes No No Yes

Memory OREAD Yes No No Yes

Memory RDE No – – –

Memory WDATA Yes – – –

Memory BADWDATA Yes – – –

Memory RDR0 No – – –

Memory RDR1 No – – –

Memory RDR2 No – – –

Memory RDR3 No – – –

I/O WRITE Yes Yes No No

I/O WDISOWN No No No No

I/O IREAD Yes Yes No No

I/O DREAD Yes Yes No No

I/O OREAD No No No No

I/O RDE No – – –

I/O WDATA Yes – – –

I/O BADWDATA No – – –

I/O RDR0 No – – –

I/O RDR1 No – – –

I/O RDR2 No – – –

I/O RDR3 No – – –

3–50 Central Processor

Central Processor
3.11 NVAX Data/Address Lines (NDAL)

3.11.1.1 Reads and Fills
The read address cycle, which is recognized by one of the three read commands
(DREAD, IREAD, or OREAD), is decoded by the NDAL devices that are receiving
NDAL commands (only one of the NDAL chips may drive the bus at a time). The
one recognizing the address latches that address and command. This device is
the responder. The responder uses read data return (RDR) or read data error
(RDE) cycles to return the data. Reads and fills are described in the following
sections. The NVAX CPU never issues the RDR or RDE cycles, since it is never
a direct responder to a read cycle. For examples of when the NVAX CPU may
indirectly respond to a read transaction from the NCA, see the section on disown
writes.

3.11.1.1.1 D-stream Read Requests (DREAD) The NVAX CPU and the NCA
use the DREAD command to request data-stream data from a responder, either
memory or an I/O device. The NVAX CPU may issue DREAD cycles to the NMC
or NCA. The NCA may issue DREAD cycles only to the NMC.

3.11.1.1.2 I-stream Read Requests (IREAD) The IREAD command is used by
the NVAX CPU and the NCA to request instruction-stream data. The NVAX CPU
can request I-stream data from the NMC or the NCA. The NCA can request
I-stream data only from the NMC. For more information regarding the difference
between I-stream and D-stream references, see Section 3.10.

3.11.1.1.3 Ownership Read Requests (OREAD) The NVAX CPU and the NCA
use the OREAD command to gain ownership of a hexaword block of memory.
In addition to facilitating the write-back cache of the NVAX CPU, the memory
ownership concept is used to implement memory interlocks for VAX interlocked
instructions.

OREADs are only defined for memory space; they are not used in I/O space.

When memory receives an ownership read, an "owned" bit is set in memory and
the read data is returned. Each hexaword in memory has an owned bit. The
NVAX backup cache is organized by hexawords also, with an owned bit for each
hexaword. The memory controller clears the owned bit when a disown write of
any length is received at the same block.

If the ownership bit is already set in memory when the OREAD arrives, data
is not returned immediately to the NDAL commander. An example of this is
if an I/O device on one of the CP-buses attempts to access a buffer pointer in
main memory and the referenced location is owned by the NVAX CPU. In this
case, the NMC will notice that the ownership bit for the referenced hexaword
is set and will pend the transaction. Simultaneously, the NVAX CPU, which
constantly monitors the NDAL, has seen the reference to a location it owns, and
will therefore write back the owned hexaword with a WDISOWN cycle. The NMC
will then allow the original transaction from the NCA to complete. The opposite
situation is also possible where the NCA may own a location that the NVAX CPU
needs to access. The NCA does not have a write-back cache like the NVAX CPU,
but the NCA will use the OREAD/WDISOWN transaction pair when performing
interlocked references from I/O devices.

Central Processor 3–51

Central Processor
3.11 NVAX Data/Address Lines (NDAL)

Through this ownership mechanism, the OREAD/WDISOWN transactions
prevent access by the NCA (on behalf of I/O devices) to memory locations that
may have become stale. This occurs because the NVAX CPU has modified the
locations contents in the backup cache, but has not yet updated the actual
memory location.

During normal operation, the NVAX will aquire ownership, via an OREAD, of any
memory space location that it needs to modify. Since this process also allocates
a block in the backup cache for the referenced location, the NVAX CPU will
virtually never need to perform writes directly to memory. Rather, memory will
be modified with the updated values only when the associated Bcache block must
be written back to memory to make room in the Bcache, or because of an I/O
reference to an owned location. Note that I/O space references are never cached,
so writes to I/O space always appear on the NDAL.

3.11.1.1.4 Read Data Return Cycles (RDR0, RDR1, RDR2, RDR3) The Read
Data Return command is used in response to any read request, whether
IREAD, DREAD, or OREAD. Multiple cycles are necessary to transfer all the
quadwords in a given hexaword transaction, and the cycles are not required
to be consecutive. The commander, which has been monitoring the bus traffic
waiting for its return data, latches the information. The responder returns the
commander ID with the returned read data so the commander can recognize the
returned read data it requested.

Because the NDAL is a pended bus, multiple reads may be outstanding at a time.
Because read data return cycles do not have to occur contiguously, it is possible
for read data return cycles resulting from different read requests to take place in
an interleaved fashion.

3.11.1.1.5 Read Data Error Cycles (RDE) RDE is used to notify a commander
of a problem with read data that is being returned. For example, the NMC uses
this command when it encounters an uncorrectable read error while processing a
read request from the NVAX CPU or the NCA.

3.11.1.2 Writes
3.11.1.2.1 Normal Write Transactions (WRITE) These transactions are used to
move a pattern of bytes from an NDAL commander to one of the responders.

Parity must be correct for all bytes sent from any node because all three NVAX
chips check parity across the entire NDAL during every cycle.

If NVAX sees a write on the NDAL, it treats it as an invalidate request. In this
case, the NVAX will perform a lookup of the backup cache tag store to see if the
referenced location is contained in the backup cache. If it is, then the referenced
cache block is invalidated. If the cache block is marked as owned, then the
NVAX CPU also performs a write-back of the block to memory, since the data
may be the only copy of valid data for that memory location.

3–52 Central Processor

Central Processor
3.11 NVAX Data/Address Lines (NDAL)

3.11.1.2.2 Disown Write Transactions (WDISOWN) The disown write
transaction is the complement to the ownership read. After NVAX successfully
gains ownership of a hexaword block in memory, it must relinquish ownership if
an I/O device wants to access the block (through the NCA) or when the Bcache
needs to do a deallocate. The NVAX CPU accomplishes this by performing a
disown write to the memory with the latest copy of the backup cache data.
The memory, which has already pended the I/O device’s transaction, notices
that the CPU’s transaction is a disown write. This condition allows it to clear
the ownership bit in memory and to write the data as requested. Immediately
following this, the memory controller allows the pended I/O device’s transaction
to complete, since the referenced hexaword is no longer owned by the NVAX CPU.

NVAX uses the Disown Write command of hexaword length to perform write-
backs from the backup cache. When the cache is off, it uses quadword disown
writes to achieve the effect of a write unlock for VAX interlocked instructions. As
mentioned previously, the NCA also uses the OREAD/WDISOWN transaction pair
when accessing main memory on behalf of I/O devices that use interlocked bus
cycles.

3.11.1.2.3 Write Data and Bad Write Data (WDATA,BADWDATA) The Write
Data command is used during the data cycles of a write if the data is good.
If the data has been corrupted in some way, the command used is Bad Write
Data. An example of the use of BADWDATA is when the backup cache must
deallocate an owned block to make room for new data or because of an I/O
reference to that hexaword, and in the process of performing write-back, the
NVAX CPU encounters uncorrectable errors in the cached data. In this case, the
CPU will use the WDISOWN command, specifying the hexaword being disowned,
followed by four data cycles to transfer each of the four quadwords of data. The
bad quadword(s) will be marked through the use of the BADWDATA command
instead of the WDATA command.

When one quadword of a hexaword write disown is bad, the Bad Write Data
command is only used for that quadword. The Write Data command is used for
the good quadwords. The memory can use this information to distinguish which
quadword of a hexaword block is bad. In addition, a soft error interrupt may be
generated when a BADWDATA cycle is driven on the NDAL by the NCA.

3.11.2 Cache Coherency
Ownership reads and disown writes on the NDAL are intended to support the
NVAX CPU’s writeback cache by attaching an owner status to each block in
physical memory. A block in memory is defined as a hexaword, or 32 bytes.
Once the NVAX CPU owns a block, it may write it repeatedly without accessing
memory. A memory block may be owned either by the memory subsystem or
by the NVAX CPU, but not both at the same time. Ownership is passed from
memory to the NVAX CPU through an Ownership Read command. Ownership is
passed back to the memory through a Disown Write command from the CPU.

The ownership bits in the Bcache and in memory indicate which device owns the
block: the Bcache or the NMC. The ownership bit in the Bcache is set when it
owns the block and is clear when memory (NMC) owns the block. The ownership
bit in memory is set when the Bcache owns the block and clear when memory
owns the block. The ownership bit corresponding to a hexaword of memory may
also be set to indicate that the NCA owns the block. This is possible when the
NCA is accessing memory on behalf of an I/O device that is using interlocked
bus cycles on the CP-bus. In this case, the NCA will always follow the OREAD
transaction immediately with the WDISOWN transaction.

Central Processor 3–53

Central Processor
3.11 NVAX Data/Address Lines (NDAL)

Shared read-only access to a block is permitted only when memory owns it.
Otherwise, the block can only be read by the node that owns the block.

The NVAX can gain ownership and retain it for a very long time. The NVAX CPU
monitors the bus continuously for memory space read-type and write commands
to memory space by the NCA. When the CPU detects a request for a block that it
owns, it will perform the disown write to memory, allowing the original command
to complete successfully. Such NDAL transactions, which take place solely for
the purpose of maintaining the ownership protocol, are referred to as "cache
coherency transactions."

Table 3–15 shows what action is performed in the backup cache based upon the
state of the block in the cache when a particular command is driven onto the
NDAL by the NCA.

Table 3–15 NVAX Backup Cache Invalidates and Write-backs

NDAL Command Invalid Block Valid & Unowned Valid & Owned

IREAD,DREAD – – Write-back,
set Bcache to
valid-unowned
state

OREAD – Invalidate Write-back,
Invalidate

WRITE – Invalidate Write-back,
Invalidate

WDISOWN – – –

The I/O devices connected to the NCA through the CP-buses may cause the
NCA to access memory on their behalf. As these transactions go to memory,
the NVAX CPU recognizes them and performs the appropriate cache coherency
action. The NVAX CPU does not acknowledge the commands, since the memory
interface is the receiver for the transaction. The NVAX CPU distinguishes cycles
driven by devices other than itself by decoding the commander’s ID. The ID
is driven onto the NDAL along with the command, and recognizes those NCA
initiated cycles as cache coherency transactions.

3–54 Central Processor

Central Processor
3.11 NVAX Data/Address Lines (NDAL)

3.11.3 VAX Architecturally-defined Interlocks
A VAX interlocked instruction causes the generation of a read-lock and a write-
unlock, which are guaranteed to happen back-to-back. The NDAL does not
explicitly define interlocked transactions. Instead, the Ownership Read command
is used in place of Read Lock and the Disown Write command is used in place of
Unlock Write.

If the interlocked location is already owned in the backup cache, then there is no
need to issue an OREAD on the NDAL, and it is serviced directly by the Bcache.

It is also possible for I/O devices to cause the NCA to issue OREAD/WDISOWN
pairs on the NDAL for the purpose of performing interlocked access to VAX
memory.

3.11.3.1 Ownership and Interlock Transactions
The NVAX CPU does not support interlocks to I/O space. If software attempts to
perform an interlocked instruction on an I/O space address, the NVAX CPU will
use normal DREAD/WRITE accesses to complete the operation. No interlock is
provided.

3.11.4 Errors
The NDAL supports the detection of all single-bit and some multiple-bit
transmission-related error conditions on the NDAL_H, CMD_H, ID_H, and
PARITY_H lines by implementing parity across those lines. Additionally, the
NDAL allows commanders to recover from some memory and I/O-space read/write
class errors.

3.11.4.1 Transaction Timeout
The NVAX CPU and NCA implement timeout counters for each read that they
may have outstanding. The NVAX implements two timeout counters, one for each
possible outstanding read. If a read request times out, it is aborted by the NVAX
and a soft error interrupt is generated. Any missing read data return cycles will
eventually cause that read to timeout in the NVAX CPU. See Section 4.4.10 for
details on how timeout is handled.

Transaction timeout is not a normal occurrence and is expected to happen only on
serious system failures.

3.11.4.2 Nonexistent Memory and I/O
An address that is not implemented in memory on a particular system is known
as nonexistent memory. An I/O address of a device that is not present on a
particular system is known as nonexistent I/O. When software attempts to access
addresses that are nonexistent, an error interrupt will be generated.

Central Processor 3–55

4
KA680 Cache Memory Overview

The NVAX memory subsystem has a hierarchical structure. The VIC, Pcache,
Bcache, Main Memory, and finally the Mass Storage form the hierarchical
memory subsystem of the KA680. The hierarchical order of the levels of KA680
memory is shown in Figure 4–1.

Figure 4–1 KA680 Cache/Memory Hierarchy

VIC 2KB

Primary Cache 8KB

Backup Cache 128 KB

Main Memory

Mass Storage

For I-stream references, the memory hierarchy starts with the VIC, whereas for
D-stream references, the memory hierarchy starts with the Pcache.

References generated by the NVAX CPU are issued to the memory subsystem
at the first hierarchical level, as determined by the reference type (I-stream or
D-stream). The reference will then pass up through the hierarchy until it is
serviced by one of the layers. References serviced at lower layers take less time
than references that must pass to higher layers. For this reason, it is the intent
of the memory subsystem to service most references within the lower layers, thus
maximizing system performance.

By creating successively faster layers of memory hierarchy below the main
memory, the KA680 decreases the average amount of time required to access
information. Because each layer in the hierarchy tends to be smaller in size than
the next higher (slower) layer, there is the problem of allocating space at each
layer for storing references. Furthermore, care must be taken to ensure that the
state of the system is singularly and accurately represented by the combined
contents of the caches and main memory.

KA680 Cache Memory Overview 4–1

KA680 Cache Memory Overview

In the KA680, this issue is most critical between main memory and the backup
and primary caches, because main memory can be accessed by DMA devices
as well as the NVAX CPU. Furthermore, this problem is complicated by the
write-back nature of the backup cache. This write-back mechanism, while
significantly decreasing the latency of write operations, complicates the problem
of maintaining a coherent and consistent representation of main memory in DMA
traffic.

For example, during normal operation, the NVAX CPU and DMA devices will
share access to certain memory locations. In order to guarantee proper operation,
the KA680 provides hardware mechanisms to ensure that DMA updates to main
memory will be invalidated in the primary and backup caches. Furthermore, the
KA680 provides mechanisms to ensure that DMA traffic is presented with correct
data in the presence of the write-back cache. The following sections discuss each
of the caches and how they are used.

4.1 Cacheable References
Any reference that can be stored by the virtual instruction cache, or the primary
or backup caches, is called a cacheable reference. The primary and backup caches
store CPU read references to the VAX memory space (bit <29> of the physical
address = 0) only. They do not store references to the VAX I/O space.

Whenever the CPU generates a noncacheable reference, or a cacheable reference
not stored in any of the three caches, a single hexaword reference of the same
type is generated on the NDAL bus.

Whenever the CPU generates a cacheable reference that is stored in one of the
caches, no reference is generated on the NDAL bus.

4.2 Virtual Instruction Cache
Before any instruction can be executed, it must first be fetched from memory.
The NVAX CPU contains an instruction prefetcher, which fetches sequential
instructions ahead of the instruction currently being executed. This is done in an
attempt to reduce the effective access time of the instruction fetch by pipelining it
with decode and instruction execution. The instruction prefetcher maintains an
instruction prefetch queue (IPQ) of up to 16 bytes (4 longwords) of I-stream data.
In order to fill the IPQ, the prefetcher sends I-stream read requests to the virtual
instruction cache.

The virtual instruction cache (VIC) is a 2 KB, direct-mapped cache for caching
I-stream data. The VIC is located within the NVAX CPU chip. In order to
reduce the overhead associated with virtual-to-physical address translation, the
VIC caches references based on virtual addresses. In the event that the virtual
references made by the instruction prefetcher hit in the VIC, the I-stream data is
loaded from the VIC directly to the IPQ.

If the references made by the instruction prefetcher miss in the VIC, then the
VIC will issue an I-stream read request on behalf of the instruction prefetcher to
the next level of memory hierarchy: the primary cache.

4–2 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.2 Virtual Instruction Cache

4.2.1 Virtual Instruction Cache Organization
The VIC attributes are summarized in Table 4–1.

Table 4–1 VIC Attributes

Attribute Description

Cache Size 2 KB

Access Type Direct-mapped

Block Size 32 bytes

Subblock Size 8 bytes

Valid Bits 4 valid bits/cache block = 1 per subblock

Data Parity Bits 4 even parity bits/cache block = 1 per subblock

No. of Tags 64 tags

Tag Parity Bit 1 even parity bit per tag

Fill Algorithm Fill forward, random cycle allocate if no tag hit or data subblock
valid

Access Size 8 bytes

Bus Size 8 bytes

Prefetching None

Data Stored I-stream only

Virtual/Physical Virtual

The format of each cache row is shown in Figure 4–2. Each cache row stores a
22-bit tag with even parity for the tag, and four quadword subblocks, each with a
valid bit and an even parity bit that covers the data only. During a cache read,
the data, tags, valid and parity bits of the direct-mapped cache block are read.
The tag is compared to bits <31:10> of the virtual address. If the tag matches,
then the data is returned to the instruction prefetch queue. Otherwise, the
request has "missed" in the VIC, and the read request is forwarded to the Pcache.

Figure 4–2 VIC Cache Row Format

00010203630506000810631213001516176319200022232463262700292131 09

LJ-01264-TI0

P Tag V P V P V PV P

287 Bits

Sub-block
0 Data

Sub-block
1 Data

Sub-block
2 Data

Sub-block
3 Data

KA680 Cache Memory Overview 4–3

KA680 Cache Memory Overview
4.2 Virtual Instruction Cache

Macrocode Restriction

To avoid parity errors, the VIC tag arrays, including parity, must be
written with valid data and parity before enabling the VIC. The tag
values in bank 0 must be written with different values than the tag
values in bank 1 so that the tags from both banks do not simultaneously
produce a tag hit.

4.2.2 Virtual Instruction Cache Internal Processor Registers
The VIC contains four internal processor registers, which provide VIC control and
read/write access to the data and tag arrays.

Macrocode Restriction

The VIC_ENABLE bit of the ICSR IPR must be cleared before writing
to the other VIC IPRs VMAR, VDATA, or VTAG. Similarly, the VIC_
ENABLE bit of the ICSR IPR must be cleared before reading from the
VIC IPRs VDATA and VTAG.

4.2.2.1 VIC Virtual Memory Address Register (VMAR) - IPR 208

Figure 4–3 VMAR Register

LJ-01265-TI0

Addr

LW

:VMAR

00010203040506070810111213141516171819202122232425262728293031 09

ROW_INDEX

SUB_BLOCK

X X

Table 4–2 VMAR Register

Name Extent Type Description

LW 2 WO Longword select bit. Selects longword of
subblock for access to cache array.

SUB_BLOCK 4:3 RW Subblock select. Selects data subblock
for access to cache array; also latches
bits <4:3> of the virtual address on VIC
parity errors.

ROW_INDEX 10:5 RW Row select. Row index for read and
write access to cache array; also latches
bits <9:5> of a virtual address, which
resulted in a VIC parity error.

(continued on next page)

4–4 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.2 Virtual Instruction Cache

Table 4–2 (Cont.) VMAR Register

Name Extent Type Description

ADDR 31:11 RO Error address field. Latches tag portion
of the virtual address, which resulted in
a VIC parity error.

When the VIC is disabled, the VIC memory address register (VMAR) may be used
as an index for direct IPR access to the cache arrays. Bits <9:5> of this register
supply the cache row index, bit <10> selects the bank, bits <4:3> supply the cache
subblock, and bit <2> indicates the longword within a quadword address.

The VMAR IPR also latches and holds bits <31:3> of the virtual address of the
reference that resulted in a parity error on VIC array parity errors.

4.2.2.2 VIC TAG Register (VTAG) - IPR 209

Figure 4–4 VTAG Register

0003040708101131 09

LJ-01266-TI0

Tag 1 1 TP DP V :VTAG

Table 4–3 VTAG Register

Name Extent Type Description

V 3:0 RW Data valid bits. Supply data valid bits
on array read/writes.

DP 7:4 RW Data parity bits. Supply data parity on
array read/writes.

TP 8 RW Tag parity bit. Supplies tag parity on
tag array read/writes.

TAG 31:11 RW Tag. Supplies tag on tag array
read/writes.

The VTAG IPR provides read and write access to the cache tag array. An IPR
write to VTAG will write the tag, parity, and valid bits for the row indexed by
VMAR<9:5> and the bank selected by VMAR<10>. VTAG<31:10> are written to
the cache tag. VTAG<8> is written to the associated tag parity bit. VTAG<7:4>
are used to write the four data parity bits associated with the indexed cache
row. Similarly, VTAG<3:0> write the four data valid bits associated with the
cache row. VTAG<7:4> and VTAG<3:0> are the data parity and data valid bits,
respectively, for the four quadwords of data in the same row. VTAG<4> and
VTAG<0> correspond to the quadword of data addressed when address bits 4:3 =
00; VTAG<5> and VTAG<1> correspond to the quadword of data addressed when
address bits 4:3 = 01, and so forth.

KA680 Cache Memory Overview 4–5

KA680 Cache Memory Overview
4.2 Virtual Instruction Cache

4.2.2.3 VIC Data Register (VDATA) - IPR 210

Figure 4–5 VDATA Register

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01319-TI0

Data :VDATA

Table 4–4 VDATA Register

Name Extent Type Description

DATA 31:0 RW Data for data array reads and writes

The VDATA IPR provides read and write access to the cache data array. When
VDATA is written, the cache data array entry indexed by the VMAR IPR is
written with the IPR data. Since the IPR data is a longword, two accesses to
VDATA are required to read or write a quadword cache subblock.

Writes to VDATA with VMAR<2> = 0 simply accumulate the IPR data destined
for the low longword of a subblock in a scratch register internal to the
NVAX CPU. A subsequent write to VDATA with VMAR<2> = 1 triggers a cache
write to the subblock indexed by VMAR.

Reads to VDATA with VMAR<2> = 0 trigger a cache read to the subblock indexed
by VMAR. The low longword of a subblock is returned as IPR read data. A read
of VDATA with VMAR<2> = 1 returns the high longword of the subblock as IPR
data.

4–6 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.2 Virtual Instruction Cache

4.2.2.4 VIC Control and Status Register (ICSR) - IPR 211

Figure 4–6 ICSR Register

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01318-TI0

0 :ICSR

TPERR_0

DPERR_0

LOCK

ENABLE

0

Table 4–5 ICSR Register

Name Extent Type Description

ENABLE 0 RW,0 Enable bit. When set, allows cache
access to the VIC. Initializes to 0 on
system reset.

LOCK 2 WC Lock bit. When set, validates and
prevents further modification of the
error status bits in the ICSR and the
error address in the VMAR register.
When clear, indicates no VIC parity
error has been recorded and allows ICSR
and VMAR to be updated.

DPERR 3 RO Data error bit. When set, indicates data
parity error occurred in data array.

TPERR 4 RO Tag error bit. When set, indicates tag
parity error occurred in tag array.

The ICSR IPR provides control and status functions for the VIC. VIC tag and data
parity errors are latched in the read-only bits ICSR<4:3>, respectively. ICSR<2>
is set when a tag or data parity error occurs, and keeps the error status bits
and the VMAR IPR from being modified further. Writing a logic one to ICSR<2>
clears the lock bit and allows the error status to be updated. When ICSR<2> is
clear, the values in ICSR<4:3> are meaningless. When ICSR<2> is set, a VIC
parity error has occurred, and either ICSR<4> or ICSR<3> will be set. This
indicates that the parity error was either a tag parity error or a data parity error,
respectively. ICSR<4:3> cannot be cleared from software. ICSR<0> provides IPR
control of the VIC enable. It is cleared on system reset.

KA680 Cache Memory Overview 4–7

KA680 Cache Memory Overview
4.3 Primary Cache

4.3 Primary Cache
The Pcache is a 2-way set associative, read allocate, no-write allocate, write-
through, physical address cache of I-stream and D-stream data. It stores
8192 bytes (8K) of data and 256 tags corresponding to 256 hexaword blocks (1
hexaword = 32 bytes). Each tag is 20 bits wide, corresponding to bits <31:12> of
the physical address.

There are four quadword subblocks per block with a valid bit associated with
each subblock. The access size for both Pcache reads and writes is one quadword.
Byte parity is maintained for each byte of data (32 bits per block). One bit of
parity is maintained for every tag. The Pcache has a 1-cycle access and a 1-cycle
repetition rate for both reads and writes.

The Pcache represents the first level of D-stream memory hierarchy and the
second level of I-stream memory hierarchy in all NVAX computer systems.
Pcache entries must be invalidated in order to maintain cache coherency with
higher levels of the memory hierarchy. See Section 4.3.2 for more information on
the Pcache.

The Pcache is located within the NVAX CPU chip. Unlike the VIC, the Pcache
is based on physical addresses rather than virtual addresses. The Pcache
handles I-stream requests from the VIC, as well as D-stream requests for
instruction operands. The Pcache uses a write-through scheme for handling
writes to memory locations that are contained in the Pcache. In this scheme, the
write operation updates the contents of the Pcache, and the write operation is
propagated to the next level of memory hierarchy: the backup cache. The Pcache
is maintained as a strict subset of the backup cache.

4.3.1 Primary Cache Organization
Figure 4–7 shows the logical organization of the Pcache.

4–8 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.3 Primary Cache

Figure 4–7 Logical Pcache Organization

Right Bank

0: D/DPD/DPD/DPD/DPVBTagTPD/DPD/DPD/DPD/DPVBTagTPA

LJ-01267-TI0

Left Bank

1: D/DPD/DPD/DPD/DPVBTagTPD/DPD/DPD/DPD/DPVBTagTPA

2: D/DPD/DPD/DPD/DPVBTagTPD/DPD/DPD/DPD/DPVBTagTPA

127: D/DPD/DPD/DPD/DPVBTagTPD/DPD/DPD/DPD/DPVBTagTPA

.

.

.

Where: A =
TP =
Tag =
VB =
D/DP =

1 bit of even tag parity.
20 bits of tag address.
4 valid bits. each bit corresponds to 8 bytes of data.
8 bytes of data with 8 bits of even byte parity (72 total bits).

Allocation bit. Indicates whether the left of right bank was last allocated.

The Pcache is logically organized into 128 direct-mapped indexes, where each
index consists of two blocks, and each block consists of: 20-bit tag, 1-bit tag
parity, 4 valid bits, 256 bits of data, and 32 bits of data parity. In addition, each
index also contains a 1-bit allocation pointer.

The breakdown of address bits for Pcache decoding is shown below:

Figure 4–8 Pcache Address Breakdown

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01268-TI0

Tag Address Index Address

Sub-block Address

Where: Tag Address =
Index Address =
Sub-block Address =

Address 1 of 128 indexes.
Addresses 1 of 4 aligned quadwords within the hexaword data block.

Bits loaded into or compared with tag.

4.3.2 Pcache Control
The Pcache is controlled through the PCCTL internal processor register. This
IPR controls whether the Pcache is enabled or disabled, as well as controlling
the general mode of operation. As with other internal processor registers, it is
accessible through the MTPR and MFPR instructions. The following diagram
shows the organization of the PCCTL internal processor register.

KA680 Cache Memory Overview 4–9

KA680 Cache Memory Overview
4.3 Primary Cache

Figure 4–9 PCCTL Register

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01269-TI0

:PCCTL1 11

P_Enable

Bank_SEL

Force_HIT

I_Enable

D_Enable

Reserved

Reserved

Table 4–6 PCCTL Definition

Name Extent Type Description

D_ENABLE 0 RW,0 When set, enables Pcache for all
invalidate operations and for all
D-stream read/write/fill operations.
Qualified by other control bits.
When clear, forces a Pcache miss on
all Pcache D-stream read/write/fill
operations. Note, however, that an
ACV/TNV/M=0 condition overrides a
deasserted D_ENABLE because it will
force a Pcache hit condition with D_
ENABLE=0.

I_ENABLE 1 RW,0 When set, enables Pcache processing of
invalidate, I-stream read and I-stream
cache fills.
When clear, forces a Pcache miss on
I-stream read operations and prevents
state modification due to an I-stream
cache fill operation.
Note, however, that an ACV/TNV/M=0
condition overrides a deasserted I_
ENABLE because it will force a Pcache
hit condition with I_ENABLE=0.

FORCE_HIT 2 RW,0 When set, forces a Pcache hit on all
reads and writes when Pcache is enabled
for I- or D-stream operation.
This is used for diagnostic purposes so
that the cache data store can be directly
accessed.

BANK_SEL 3 RW,0 When set with FORCE_HIT=1, selects
the "right bank" of the addressed Pcache
index.

(continued on next page)

4–10 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.3 Primary Cache

Table 4–6 (Cont.) PCCTL Definition

Name Extent Type Description

When clear with FORCE_HIT=1, selects
the "left bank" of the addressed Pcache
index.
This bit is a don’t care when FORCE_
HIT=0.

P_ENABLE 4 RW,0 When set, enables detection of Pcache
tag and data parity errors.

When deasserted, disables Pcache parity
error detection.

Reserved 7:5 R,1 Unused. Read as ones.

Reserved 8 R,0 –

Reserved 9 R,0 Pcache redundancy bit. When set, this
bit indicates that one or more Pcache
redundant elements have been enabled.

Note that Pcache operation is further qualified by the state of PCSTS<0>. If
this bit is nonzero, Pcache operation is automatically forced to behave as if I_
ENABLE=0 and D_ENABLE=0, regardless of the actual state of I_ENABLE and
D_ENABLE. Effectively, this shuts down normal Pcache operation due to the
presence of a previous Pcache parity error.

Based on the bit definitions above, note that Pcache invalidate operations are
only disabled if both D_ENABLE=0 and I_ENABLE=0, or if PCSTS<0> is set.
Also note that Pcache IPR read and write operations are always unconditionally
enabled, regardless of the state of I_ENABLE or D_ENABLE, or PCSTS<0>.

If either D_ENABLE or I_ENABLE are to be toggled to the on state, the Pcache
array must be initialized prior to such action.

When the FORCE_HIT (force hit) bit is set and I-stream or D-stream operation is
enabled, all enabled memory space read and write references are forced to hit in
the Pcache. The BANK_SEL bit specifies which tag of the pair of tags addressed
is forced to hit. Thus when FORCE_HIT=1, the Pcache becomes a 4K direct-
mapped cache with all reads and writes forced to hit in the Pcache. Toggling
BANK_SEL causes the other half of the 8K Pcache to become accessible in this
direct mapped mode. Note that the FORCE_HIT bit only affects memory space
references. I/O space references still miss in the Pcache regardless of the state of
the FORCE_HIT bit.

The FORCE_HIT feature is designed to facilitate testing the Pcache data array
and to make diagnostic tests easily loadable within the Pcache by simple memory
write operations. When FORCE_HIT=0, the Pcache is configured as an 8K 2-way
set associative cache, no reads or writes are forced to hit, and the BANK_SEL bit
is a don’t care.

The P_ENABLE (parity enable) bit allows the detection of Pcache tag and data
parity errors to be enabled or disabled. If P_ENABLE=0, Pcache parity errors
will not be detected. Thus when P_ENABLE=0, no Pcache error will be recorded
in PCSTS, nor will they cause an error interrupt or machine check.

Note however, that when FORCE_HIT=1, Pcache tag parity is never checked
regardless of the state of P_ENABLE.

KA680 Cache Memory Overview 4–11

KA680 Cache Memory Overview
4.3 Primary Cache

4.3.3 Pcache Hit/Miss Determination

4.3.3.1 Hit/Miss Determination by Tag Comparison
For I-stream or D-stream reads or writes, the Pcache must determine if the
referenced data is present in its array. To do this, physical address bits <11:5>
are input to the Pcache row decoders in order to determine which one of the 128
direct-mapped indexes is being addressed. Subsequently, all 627 bits within the
addressed index are accessed by the assertion of the corresponding word line.
The two accessed tag values are simultaneously compared to physical address
bits<31:12>. A Pcache hit condition occurs when all of the following conditions
are simultaneously true:

• The contents of one of the two addressed tags matches the data on physical
address bits <31:12>.

• The valid bit corresponding to both the matched tag and to the addressed
quadword subblock (specified by physical address bits<4:3>) is set.

• The stored tag parity corresponding to the matched tag is the same as the
value calculated from bits <31:12>.

If an address match is detected on one of the tags and the valid bit that
corresponds to both the matched tag and the addressed subblock (specified by
physical address bits <4:3>) is set, then a Pcache hit condition has been detected
on the corresponding Pcache tag. The absence of the Pcache hit condition causes
a Pcache miss condition.

4.3.3.2 Conditions That Force Pcache Miss
The Pcache miss condition is forced to override the tag determination of hit/miss
described above when any one of the following conditions is satisfied:

• If PCSTS<0> is set, the Pcache miss condition is forced due to a previous
Pcache parity error.

• If an I-stream read or cache fill operation is accessing the Pcache and I_
ENABLE=0, the Pcache miss condition is forced.

• If a D-stream read or cache fill operation is accessing the Pcache and D_
ENABLE=0, the Pcache miss condition is forced.

• If a D-stream read lock operation is executing (such as for an interlocked
instruction), the Pcache miss condition is forced. This guarantees that the
read will propagate to the Bcache where memory ownership can be obtained
for synchronization purposes.

• If an I-stream cache fill operation is executing, but the reference is
noncacheable, the Pcache miss condition is forced.

• If a D-stream cache fill operation is executing, but the reference is
noncacheable, the Pcache miss condition is forced.

4–12 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.3 Primary Cache

4.3.3.3 Conditions That Force Pcache Hit
The Pcache hit condition is forced to override the tag determination of hit/miss
described above when any one of the following conditions is satisfied:

• If a read or write reference has a memory management fault or hard error
associated with it, a Pcache hit condition is forced. NOTE: This force hit
condition takes precedence over any force miss condition described
above.

• If the operation is a D-stream read, write or WRITE_UNLOCK, and D_
ENABLE=1 and FORCE_HIT=1, the Pcache hit condition is forced on the tag
corresponding to both the addressed Pcache index and the bank specified by
the BANK_SEL bit.

• If the operation is an I-stream read and I_ENABLE=1 and FORCE_HIT=1,
the Pcache hit condition is forced on the tag corresponding to both the
addressed Pcache index and the bank specified by the BANK_SEL bit.

4.3.4 Pcache Behavior on Write Operations
A Pcache write operation is initiated by a write or WRITE_UNLOCK reference.
A Pcache write begins by determining the Pcache hit or miss condition described
above. If a Pcache hit is detected, the data is selectively written into the
quadword corresponding to both the tag in which the hit occurred and to physical
address bits <4:3>. The data is selectively written according to the length
specified in the instruction causing the write. The corresponding data parity is
also written in the same manner for each corresponding byte that is written.

If a Pcache miss condition occurs, no Pcache write operation takes place.
However, the write reference is forwarded to the Bcache for processing regardless
of the hit/miss condition in the Pcache.

4.3.5 Pcache Replacement Algorithm
When a Pcache miss occurs during a read operation, it must be decided which one
of two blocks will be allocated for the subsequent Pcache fill sequence. When the
Pcache miss occurred because no validated tag field matched the read address,
the state of the corresponding allocation bit indicates which bank (left or right)
should be used for the resulting fill sequence. The value of each allocation bit
changes according to the "not-last-used" algorithm. That is, the allocation bit
always points to the bank within the index that was not last accessed.

When a read miss occurs because no validated tag field matched the read address,
the value of the allocation bit will be used as the bank select input during the
subsequent fill sequence. As each fill operation takes place (that is, as each
quadword comes back from memory), the allocation bit is written to point to the
other bank. This ensures that the next fill operation to this cache entry will be
written to the other bank. Also, during Pcache read or write operations, the value
of the allocation bit is set to point to the opposite bank that was just referenced
because this is now the new "not-last-used" bank.

The one exception to this algorithm occurs during an invalidate. Pcache
invalidates occur because of I/O activity in the system and the need to maintain
the Pcache as a strict subset of the Bcache. When a Pcache invalidate clears
the valid bits of a particular tag within an index, set the allocation bit to point
to the bank select used during the invalidate regardless of which bank was last
allocated. By doing so, it is guaranteed that the next allocated block within the
index will not displace any valid tag because the allocation bit points to the tag
that was just invalidated.

KA680 Cache Memory Overview 4–13

KA680 Cache Memory Overview
4.3 Primary Cache

4.3.6 Pcache Fill Operation
A Pcache fill operation is initiated by an I-stream or D-stream read operation that
missed in the Pcache. A fill is functionally identical to a Pcache write operation
from write reference except for the following differences:

• The bank within the addressed Pcache index is selected by the following
algorithm. If a validated tag field within the addressed index matches the
cache fill address, then the block corresponding to this tag is used for the fill
operation. If this is not true, then the value of the corresponding allocation
bit selects which block will be used for the fill.

• The first fill operation to a block causes all four valid bits of the selected bank
to be written so that the valid bit of the corresponding fill data is set and the
other three are cleared. All subsequent fills cause only the valid bit of the
corresponding fill data to be set.

• Any fill operation causes the fill address bits <31:12> to be written into the
tag field of the selected bank. Tag parity is also written in an analogous
fashion.

• A fill operation causes the allocation bit to be written with the complement of
the value it had at the time of the reference that missed and caused the fill
sequence.

• A fill operation forces every bit of the corresponding byte mask field to be set.
Thus, all eight bytes of fill data are always written into the Pcache array on a
fill operation.

4.3.7 Pcache Invalidate Operation
A Pcache invalidate operation is initiated by I/O activity to main memory and
the need to maintain the Pcache as a strict subset of the Bcache. During I/O
activity, the I/O devices may update main memory, which is cached in the Bcache
and possibly the Pcache. When such references occur, the caches must invalidate
their copies of the referenced memory location, because they are now stale. The
invalidate operation is interpreted as a NOP by the Pcache if the address does
not match either tag field in the addressed Pcache index. If a match is detected
on either tag, an invalidate will occur on that tag. Note that this determination
is made based only on a match of the tag field bits rather than on satisfying all
criteria for the Pcache hit condition (Pcache hit factors in valid bits and verified
tag parity into the equation).

When an invalidate is to occur, the four valid bits of the matched tag are written
with zeros and the allocation bit is written with the value of the bank select used
during the current invalidate operation.

Also note that an uncorrectable error, either in the Bcache or in main memory
during a cache fill sequence, causes the cache fill operation to be processed as if it
were an INVAL operation.

4–14 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.3 Primary Cache

4.3.8 Pcache IPR Summary
The following table summaries all IPRs associated with the Pcache:

Table 4–7 Pcache IPRs

Register Name IPR Address (in hex)

PCADR (quadword address of reference
causing Pcache parity error)

F0

PCSTS (status of Pcache parity error) F1

PCCTL (control state of Pcache
operation)

F2

PCTAG 01800000..01801FE0

PCDAP 01C00000..01C01FF8

4.3.8.1 PCADR - IPR 240

Figure 4–10 PCADR Register

0001020331

LJ-01270-TI0

Quadword Physical Address Associated with the Recorded Pcache Parity Error 0 :PCADR0 0

4.3.8.2 PCSTS - IPR 241

Figure 4–11 PCSTS Register

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01271-TI0

0 Reserved :PCSTS

PTE_ER

PTE_ER_WR

DPERR

LOCK

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LEFT_BANK

RIGHT_BANK

KA680 Cache Memory Overview 4–15

KA680 Cache Memory Overview
4.3 Primary Cache

Table 4–8 PCSTS Description

Name Extent Type Description

LOCK 0 WC,0 Lock bit. When set, validates
PCSTS<8:1> contents and prevents
modification of these fields.

When clear, invalidates PCSTS<8:1>
and allows these fields and PCADR to be
modified.

DPERR 1 RO Data error bit. When set, indicates a
Pcache data parity error.

RIGHT_BANK 2 RO Right bank tag error bit. When set,
indicates a Pcache tag parity error on
the right bank.

LEFT_BANK 3 RO Left bank tag error bit. When set,
indicates a Pcache tag parity error on
the left bank.

RESERVED 8:4 RO –

PTE_ER_WR 9 WC,0 Indicates a hard error on a data read
from a page table entry, which resulted
from a TB miss on a write or WRITE_
UNLOCK.

PTE_ER 10 WC,0 Indicates a hard error on a data read
from a page table entry.

4.3.8.3 PCCTL - IPR 242
See Figure 4–9 in Section 4.3.2 for information regarding the format and use of
this register.

4.3.8.4 PCTAG - IPRs 0180000016 to 01801FE016

Figure 4–12 PCTAG Register

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01272-TI0

1 P Valid Bits A :PCTAGTag 1 1 1 1 1

4–16 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.3 Primary Cache

Table 4–9 Pcache Tag IPR Format

Name Extent Type Description

A 0 RW Allocation bit corresponding to index of
this tag

Valid bits 4:1 RW Valid bits corresponding to the four data
subblocks
PCTAG<4> corresponds to uppermost
quadword in block
PCTAG<1> corresponds to lowermost
quadword in block

P 5 RW Even tag parity

Tag 31:12 RW Tag data

4.3.8.5 PCDAP - IPR 01C0000016 to 01C01FF816

Figure 4–13 PCDAP Register

00070810111213141516171819202122232425262728293031 09

LJ-01273-TI0

0 Data_Parity :PCDAP00000000000000000000000

Table 4–10 Pcache Data Parity IPR Format

Name Extent Type Description

DATA_PARITY 7:0 RW Even byte parity corresponding to
addressed quadword of data. Bit n
represents parity for byte n of addressed
quadword.

KA680 Cache Memory Overview 4–17

KA680 Cache Memory Overview
4.3 Primary Cache

4.3.9 Pcache IPR Access
For testability reasons, it is important to verify that every Pcache storage bit can
be read and written in both "0" and "1" states. The easiest way to do this is to
directly read and write every bit in the Pcache array. The data field is accessible
through reads and writes to addresses that hit in the Pcache. (The hit condition
can be forced through setting the FORCE_HIT bit in the PCCTL IPR.) The tag
field, tag parity, valid bits, and data parity are directly accessible through MTPR
and MFPR instructions to the Pcache IPRs defined below.

Figure 4–14 IPR Address Space Mapping

00070823242531

Normal IPR Address

LJ-01274-TI0

000405111213212223242531

Pcache TAG IPR Address

00010203040506070810111213141516171819202122232425262728293031 09

Pcache Date Parity IPR Address

SBZ 0 SBZ IPR Number

SBZ 1 SBZ B01 Pcache Index Address SBZ

Where B = 0 Select the Left Bank of the Specified Index
 1 Select the Right Bank of the Specified Index

Where B = 0 Select the Left Bank of the Specified Index
 1 Select the Right Bank of the Specified Index

SBA = Sublock Address Selection

SBZ SBZ SBZB Pcache index Address SBA1 1 1

The tag parity bit is included in the Pcache tag IPR format to allow the user to
write bad tag parity into the array in order to verify the tag parity logic. Further,
the valid bits and allocation bit are also included so that the Pcache can be
initialized to a known state.

The Pcache data parity allows the Pcache data parity to be directly read and
written for testability purposes.

4.4 Backup Cache
The following sections describe the organization and operation of the backup
cache.

4–18 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.4 Backup Cache

4.4.1 Write-back Cache and Ownership Concepts
There is one fundamental difference between a write-back cache, such as the
Bcache, and a write-through cache, such as the Pcache. When a write is received
by a write-through cache, the data may or may not be written into the cache, but
is always written to memory. When a write is received by a write-back cache, the
write is not necessarily forwarded to memory; the write may be done only into the
cache. The data is written back to memory only if another element in the system
needs that data, or if the block is displaced (deallocated) from the cache.

The NVAX backup cache is a write-back design in which a cache block may exist
in one of three states: invalid, valid-unowned, and valid-owned. A block that is
valid-unowned is a read-only copy of memory data. A block that is valid-owned
may be written by NVAX, and if it has been written since being put into the
cache, is the only up-to-date copy of the data in the system. The NVAX cache
makes no distinction between valid-owned blocks it has written and those it has
not written.

The KA680 system supports the concept of memory ownership by implementing
an ownership bit for every hexaword of main memory. When this memory
receives an ownership read (OREAD) for a hexaword (due to a Bcache write miss
or for VAX interlocked instructions), ownership is passed to the NVAX as the
data is returned from the memory subsystem. If another read request arrives for
that hexaword from a DMA device, memory does not return the data since the
hexaword is not owned by memory but by the NVAX. The NVAX CPU recognizes
the second read request as a cache coherence transaction and writes back the
data from its cache, using the Disown Write (WDISOWN) command. The memory
subsystem will then forward the data to the requesting DMA device.

During write operations, the NVAX CPU issues an OREAD to the memory
subsystem and receives ownership for blocks that miss in the Bcache. After
gaining ownership of the hexaword and allocating it into the Bcache, the
NVAX CPU performs the desired write to that block in the backup cache.
The NVAX CPU relinquishes ownership of the data by performing a WDISOWN
write-back of the block when it sees an access to that hexaword on the NDAL bus
from a DMA device.

4.4.2 Backup Cache Overview
The backup cache (Bcache) is direct-mapped, with quadword access size and a
hexaword (32 bytes) block size. The Bcache allocates on reads and writes, and
uses a write-back protocol. Bcache tags and cache data are stored in static RAMs
that reside on the CPU module. The NVAX CPU implements the control for the
Bcache tags and data.

The Bcache and Pcache communicate internally to the NVAX CPU in such a
way as to maintain the Pcache as a strict subset of the Bcache. This is done
through the use of "invalidate" commands sent automatically from the Bcache
to the Pcache whenever the Bcache must invalidate a block. The Bcache will
invalidate a block in response to DMA activity to the corresponding memory
location, or to make room in the cache for new data. In the case of Bcache
blocks that contain data for NVAX-owned memory locations, the process of
invalidating the block involves a write-back of the data contained in the cache
to the corresponding memory location. The write-back operation simultaneously
relinquishes ownership of the hexaword.

The flow of memory transactions within the NVAX CPU is as follows:

KA680 Cache Memory Overview 4–19

KA680 Cache Memory Overview
4.4 Backup Cache

I-stream read requests generated within the NVAX are first issued to the VIC.
If the data is found there, then the request is satisfied. If the request misses in
the VIC, then the request is forwarded to the Pcache. Since the VIC stores only
I-stream data, all D-stream requests bypass the VIC and start at the Pcache. If
the request hits in the Pcache, then the NVAX uses this data. Otherwise, the
request is forwarded to the Bcache. If the read request hits in the Bcache, then
the NVAX uses this data and simultaneously copies it into the Pcache to speed up
future references to this data. If the request misses in the Bcache as well, then
an IREAD or DREAD cycle is issued to the memory subsystem on the NDAL bus.
When the data comes back from the memory subsystem, the Pcache, Bcache, and
possibly the VIC each allocate a block and fill it with this data. Note that the
VIC caches only I-stream data. Likewise, reads that hit in the Bcache will also
cause fills in the Pcache, and if I-stream, the VIC as well.

Normal (that is, not disown writes) write transactions generated within the
NVAX CPU cause cache lookups in the Pcache and Bcache. If the location to be
written is found in the Bcache and is marked in the Bcache as owned by the
NVAX CPU, then the write transaction will update only the Bcache and Pcache
entries and will not be sent to the memory subsystem. Note that on writes,
the Pcache is updated only if the referenced location was already cached in the
Pcache.

If the location to be written is cacheable but is not currently cached in the
Bcache, or is cached but not marked as owned by the NVAX CPU, then
the NVAX CPU will issue an OREAD on the NDAL bus to gain ownership of
the location. When the memory subsystem returns the data corresponding to
the OREAD, the NVAX CPU will allocate a block in the Bcache if necessary,
and will set the corresponding ownership bit in the Bcache. The setting of this
ownership bit in the Bcache indicates to the NVAX CPU that it may freely update
the contents of the cache without compromising the consistency of memory. The
write transaction that initially caused the OREAD then completes, updating only
the Bcache and Pcache entries. Since the data is now owned by the NVAX CPU,
subsequent writes to that location will not result in NDAL cycles, since the data
is only updated in the cache. The resulting speedup of write transactions and
the conservation of NDAL bus bandwidth are the primary reasons for using the
write-back algorithm in the Bcache. Note that under normal conditions, the
memory ownership mechanism and the write-back nature of the Bcache is totally
transparent to software.

4.4.3 Backup Cache Operating Modes
The backup cache has four distinct modes of operation.

• Cache on. Normal operation.

• Cache off. Reset puts the backup cache into the OFF state. The backup cache
may be enabled/disabled (turned ON/OFF) by software through the Backup
Cache Control IPR. Cache off mode is described in Section 4.4.13.1.

• Force hit. This forces all memory space reads and writes forwarded to the
Bcache to hit in the Bcache. This mode is used for testing and initialization
purposes. Force hit mode is described in Section 4.4.13.2.

• Error transition mode. The Bcache enters error transition mode (ETM) upon
recognition of some error conditions or when put into ETM explicitly by an
IPR write. Error transition mode is described in Section 4.4.13.3.

4–20 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.4 Backup Cache

4.4.4 NVAX Backup Cache Organization and Interface
The NVAX backup cache is configurable based on the size and speed of the
cache RAMs used to implement the cache on the board. Because of this, the
configuration register must be written with the appropriate information based on
the size and speed of the Bcache RAM chips used on the KA680. This function is
performed by the console firmware.

The KA680 has a 128 kilobyte Bcache. The NVAX CPU provides a control register
by which it can be configured with the size of the Bcache. This is controlled by
the SIZE field in the CCTL register, as described in Section 4.4.8.1. Firmware
configures the NVAX CPU to operate with the amount of Bcache memory provided
on the module.

Table 4–11 Backup Cache Size and RAMs Used

Cache Size Tag RAM Size Data RAM Size Number of Tags
Valid Bits
Per Tag

128 kilobytes 4K x 4 16K x 4 4K 1

The cache has a block size of 32 bytes and has no subblocks. The data bus to the
cache is 8 bytes wide, so in order to read out an entire block, 4 accesses are done.
Each block contains 32 bytes of data and has associated with it a tag, a valid bit,
and an owned bit. ECC protection is provided on each quadword in the cache.
ECC protection is also provided on the tag store.

Each address bit serves either as an index bit or as a tag bit. Table 4–12 shows
how the bits are used.

Table 4–12 Tag and Index Interpretation Based on Cache Size

Cache Size Tag Bits Used Index Bits Used

128 kilobytes Tag<28:17> Index<16:5>

Note that bits <31:29> are "don’t cares" with respect to the mapping of tags and
index bits because the KA680 is operated with the NVAX CPU in 30-bit address
mode.

Bit <29> is a "don’t care" because cacheable references always have bit <29>=0.
For example, they are always in VAX memory space. With the NVAX CPU in
30-bit mode, Bit <29>=1 indicates I/O space references, which are not cacheable.

The NVAX CPU also requires software to program the backup cache speed as
dictated by the speed of the RAM chips used on the board. The TAG_SPEED and
DATA_SPEED fields of the Bcache control register, CCTL, are used to control the
number of NVAX cycles used by the Cbox to access the RAMs. These bit fields
are written by firmware with the values appropriate to the module configuration.

KA680 Cache Memory Overview 4–21

KA680 Cache Memory Overview
4.4 Backup Cache

4.4.5 Backup Cache Block Diagrams

Figure 4–15 and Figure 4–16 show the connections to the tag store and data
RAMs, and the way the address is used for the 128-kilobyte cache used on the
KA680.

Figure 4–15 Tags and Data for 128-Kilobyte Cache

TAG STORE

5 PARTS, 4K×4

Tag Index<16:5>

Tag<28:17>ECC<5:0>Owned BitValid Bit

DATA STORE

18 PARTS, 16K×4 (128KB)

Data Index<16:3>

Data<63:00>ECC<7:0>

Figure 4–16 Address Used for 128-Kilobyte Cache

0002030405181928293031

LJ-01276-TI0

X Tag-12 Bits Data and Tag Store Index-12 Bits

Used to Address Data Quadword Within Hexword
Unused for Tag Store

X X Unused

4–22 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.4 Backup Cache

4.4.6 Backup Cache Data Block Allocation
4.4.6.1 Read References

On cacheable read references that are not in the Pcache, the request is forwarded
to the Bcache internally to the NVAX CPU. If the requested quadword cannot be
found in the Bcache, a read request is sent from the NVAX CPU to the memory
subsystem. The length of the request is a hexaword, which is the same size as
the Bcache and Pcache block size. Before the request is sent, however, the Bcache
and Pcache each allocate a block for the new data. When the data returns from
memory, copies are made in both the Bcache and Pcache to reduce latency on
future references. Note that if the Bcache block being displaced by the new data
is valid and has its owned bit set, then the displaced block will be written back
to memory via a disown write transaction on the NDAL bus before the read for
the cache fill is issued. This updates the displaced hexaword in memory with
the possibly modified cached copy, and relinquishes ownership of that hexaword
location. Since the Bcache is direct-mapped, that is, it has only one bank, there is
no need to decide which bank to allocate for the fill.

4.4.6.2 Write References
The Bcache performs allocates on writes. Write references to cacheable memory
locations do not propagate directly out to memory unless the Bcache has
been disabled by clearing CCTL<ENABLE>. If the hexaword being written is
contained in the Bcache and is owned by the NVAX CPU, then the write is done
only to the Bcache entry. If the referenced hexaword is not in the Bcache, or if
it is in the Bcache but is not owned by the NVAX CPU, then ownership of the
hexaword will be obtained by issuing an ownership read on the NDAL bus to the
memory subsystem. Once ownership has been obtained, the write will proceed as
described above, updating only the Bcache.

Write references will update the Pcache only if the reference is already cached
there. The Pcache does not perform allocations on writes.

4.4.7 Effects of I/O Traffic on the Backup Cache
In the following paragraphs, the term "DMA device" or "DMA traffic" refer to the
Q22–bus, DSSI bus, or Ethernet interfaces.

The NVAX CPU monitors all DMA traffic to main memory. For each reference,
the NVAX CPU will check the contents of the backup cache to see if it contains
the hexaword being referenced. If the referenced hexaword is not in the Bcache,
then the NVAX CPU takes no further action. If, however, the referenced
hexaword is currently cached, the specific actions taken thereafter depend on
the type of DMA reference and whether the referenced hexaword is owned by the
NVAX CPU.

If the Bcache contains the hexaword referenced by the I/O device, but the Bcache
block is not marked as "owned," then the NVAX CPU will invalidate the Bcache
entry only if the DMA reference was a write. Note that in this case the Pcache
is also checked for the referenced hexaword, and the appropriate Pcache block
is invalidated if found. No cache entries are invalidated due to reads from DMA
devices.

If the Bcache contains the hexaword referenced by the I/O device, and the Bcache
block is marked as "owned," then two things happen. First, when the reference
from the DMA device is received by the memory subsystem, the reference will
be pended in the NMC memory controller because the referenced hexaword is

KA680 Cache Memory Overview 4–23

KA680 Cache Memory Overview
4.4 Backup Cache

not currently owned by the memory subsystem. Simultaneously, the NVAX CPU
determines that it owns the hexaword referenced by the DMA device, and will
write back the Bcache block to memory using an ndal disown write transaction
(WDISOWN), relinquishing ownership of the hexaword in the process. The
memory controller will respond to the disown write by updating the contents of
main memory with the value from the Bcache, then allowing the DMA reference
to complete.

4.4.8 Backup Cache Internal Processor Registers
The Bcache processor registers that are implemented by the NVAX CPU are
logically divided into three groups, as follows:

• Normal—Those IPRs that address individual registers in the NVAX CPU chip
or system environment.

• Bcache tag IPRs—The read-write block of IPRs that allow direct access to the
Bcache tags.

• Bcache deallocate IPRs—The write-only block of IPRs by which a Bcache
block may be deallocated.

Each group of IPRs is distinguished by a particular pattern of bits in the IPR
address, as shown in Figure 4–17.

Figure 4–17 IPR Address Space Decoding as Seen by Software

00070823242531

Normal IPR Address

LJ-01277-TI0

00040520212223242531

Bcache Tag IPR Address

00040520212223242531

Bcache Deallocate IPR Address

SBZ 0 IPR NumberSBZ

SBZ

SBZ

SBZ

SBZ

1 X Bcache Tag Index

Bcache Tag Deallocate Index

0 0

1 1 X0

16171819

16171819

0 0 0 0

0 0 0 0

4–24 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.4 Backup Cache

The numeric range for each of the three groups is shown in Table 4–13.

Table 4–13 IPR Address Space Decoding - KA680

IPR Group Mnemonic1
IPR Address Range
(hex) Contents

Normal – 00000000..000000FF 256 individual IPRs

Bcache Tag BCTAG 01000000..0101FFE02 4K Bcache tag IPRs, each
separated by 20(hex) from the
previous one

Bcache Deallocate BCFLUSH 01400000..0141FFE02 4K Bcache tag deallocate IPRs,
each separated by 20(hex)
from the previous one

1The mnemonic is for the first IPR in the block.
2Unused fields in the IPR addresses for these groups should be zero. Neither hardware nor microcode
detects and faults on an address in which these bits are nonzero, and they are ignored with respect to
the tag or data location that is accessed.

KA680 Cache Memory Overview 4–25

KA680 Cache Memory Overview
4.4 Backup Cache

Because of the sparse addressing used for IPRs in groups other than the normal
group, valid IPR addresses are not separated by one. Rather, valid IPR addresses
are separated by 20(hex). For example, the IPR address for Bcache tag 0 is
01000000 (hex), and the IPR address for Bcache tag 1 is 01000020 (hex). In
this group, bits <4:0> of the IPR address are ignored, so IPR numbers 01000001
through 0100001F all address Bcache tag 0.

Processor registers in all groups except the normal group are processed entirely
by the NVAX CPU chip and will never appear on the NDAL. This is also true for
a number of the IPRs in the normal group. IPRs in the normal group that are
not processed by the NVAX CPU chip are converted into I/O space references and
passed to the system environment via a Read or Write command on the NDAL.

The Bcache processor registers implemented by the NVAX CPU are are shown in
Table 4–15.

Table 4–15 Bcache/NDAL Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Impl Cat

Bcache Control Register CCTL 160 A0 RW NVAX 2-5

Reserved for NVAX – 161 A1 – NVAX 2-6

Bcache Data ECC BCDECC 162 A2 W NVAX 2-5

Bcache Error Tag Status BCETSTS 163 A3 RW NVAX 2-5

Bcache Error Tag Index BCETIDX 164 A4 R NVAX 2-5

Bcache Error Tag BCETAG 165 A5 R NVAX 2-5

Bcache Error Data Status BCEDSTS 166 A6 RW NVAX 2-5

Bcache Error Data Index BCEDIDX 167 A7 R NVAX 2-5

Bcache Error Data ECC BCEDECC 168 A8 R NVAX 2-5

Reserved for NVAX – 169 A9 – NVAX 2-6

Reserved for NVAX – 170 AA – NVAX 2-6

Fill Error Address CEFADR 171 AB R NVAX 2-5

Fill Error Status CEFSTS 172 AC RW NVAX 2-5

Reserved for NVAX – 173 AD – NVAX 2-6

NDAL Error Status NESTS 174 AE RW NVAX 2-5

Reserved for NVAX – 175 AF – NVAX 2-6

NDAL Error Output Address NEOADR 176 B0 R NVAX 2-5

Reserved for NVAX – 177 B1 – NVAX 2-6

NDAL Error Output Command NEOCMD 178 B2 R NVAX 2-5

Reserved for NVAX – 179 B3 – NVAX 2-6

NDAL Error Data High NEDATHI 180 B4 R NVAX 2-5

Reserved for NVAX – 181 B5 – NVAX 2-6

NDAL Error Data Low NEDATLO 182 B6 R NVAX 2-5

4–26 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.4 Backup Cache

Table 4–15 Bcache/NDAL Processor Registers

Number

Register Name Mnemonic (Dec) (Hex) Type Impl Cat

Reserved for NVAX – 183 B7 – NVAX 2-6

NDAL Error Input Command NEICMD 184 B8 R NVAX 2-5

Reserved for NVAX – 185 B9 – NVAX 2-6

Reserved for NVAX – 186 BA – NVAX 2-6

Reserved for NVAX – 187 BB – NVAX 2-6

Reserved for NVAX – 188 BC – NVAX 2-6

Reserved for NVAX – 189 BD – NVAX 2-6

Reserved for NVAX – 190 BE – NVAX 2-6

Reserved for NVAX – 191 BF – NVAX 2-6

Bcache Tag-KA680 (01000000 - 0101FFE0 HEX) BCTAG – – RW NVAX 2-5

Bcache Deallocate-KA680 (01400000 - 0141FFE0
HEX)

BCFLUSH – – W NVAX 2-5

If a write-only NVAX processor register is read, the Cbox returns
UNPREDICTABLE data. Reading an unimplemented NVAX processor register
returns UNPREDICTABLE data; if an unimplemented register is written, the
write is discarded and normal operation continues.

If software attempts to access an IPR, specifying an address that is not within the
NVAX block of IPR addresses, the reference will be converted to an I/O space read
or write. In this case, the NVAX merges the IPR address with E1000000 hex,
effectively adding the base I/O space address of the IPR block to the IPR address.
This is done in hardware by forcing bits <31:29> and bit <24> to 1s. (The other
upper bits are expected to be received as 0s.)

From this point on, the transaction is treated as an I/O space transaction by the
NVAX. It sends the request off-chip to the NDAL. When the data returns, it is not
cached by the NVAX. I/O space reads and writes are never cached in the primary
cache or the backup cache.

KA680 Cache Memory Overview 4–27

KA680 Cache Memory Overview
4.4 Backup Cache

4.4.8.1 Bcache Control IPR (CCTL)
CCTL is a read/write register that contains bits controlling the behavior of
the Bcache and related portions of the NVAX CPU. The bits are detailed in
Figure 4–18 and Table 4–16.

Figure 4–18 IPR Format of CCTL

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01278-TI0

SW_ETM

HW_ETM

SW_ECC

X X X X X X X X X X X X X XX X X X

FORCE_NDAL_PERR

ENABLE

TAG_SPEED

DATA_SPEED

SIZE

FORCE_HIT

 DISABLE_ERRORS

TIMEOUT_TEST

DISABLE_PACK

4–28 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.4 Backup Cache

Table 4–16 CCTL

Name Extent Type Description

ENABLE 0 RW,0 Turns the Bcache on and off.

TAG_SPEED 1 RW,0 Controls time NVAX allows to access the
tag RAMs.

DATA_SPEED 3:2 RW,0 Controls time NVAX allows to access the
data RAMs.

SIZE 5:4 RW,0 Selects between backup cache sizes.

FORCE_HIT 6 RW,0 Forces memory reads and writes to hit
in the backup cache.

DISABLE_ERRORS 7 RW,0 Disables all backup cache ECC errors.

SW_ECC 8 RW,0 Enables use of ECC check bits as given
by software for the tag and data.

TIMEOUT_TEST 9 RW,0 Puts the NDAL read timeout timers into
test mode.

DISABLE_PACK 10 RW,0 Disables the write packer.

FORCE_NDAL_PERR 16 RW,0 Forces a parity error in the command
field of the next outgoing NDAL
transaction.

SW_ETM 30 RW Used by software to put the backup
cache into ETM.

HW_ETM 31 WC Used by hardware to put the backup
cache into ETM.

ENABLE
When ENABLE=1, the backup cache is enabled for operation. When ENABLE=0,
the backup cache is off and all references are treated as misses and are not looked
up in the backup cache. When the backup cache is off, FORCE_HIT, SW_ETM,
and HW_ETM are ignored. System reset clears this bit so that the Bcache is off
when the chip is reset.

TAG_SPEED
The NVAX provides this bit to configure the NVAX to function properly with
Bcache tag RAM chips of various speeds. This bit will select the mode of Bcache
operation that corresponds to the speed of the RAM chips used on the module.

Note

Improper setting of these bits can prevent the NVAX CPU from
functioning properly.

This bit is cleared on system reset and should not be set to a value other than
that recommended in Table 4–17. Table 4–17 shows the relationship of the value
of TAG_SPEED and the access time of the tag RAMs, given in NVAX cycles. This
is the total RAM access time including internal NVAX processing time. Reset
clears this bit so that the tag access repetition rate is 3 cycles when the chip is
reset. See Appendix J.

KA680 Cache Memory Overview 4–29

KA680 Cache Memory Overview
4.4 Backup Cache

Table 4–17 TAG_SPEED

Tag Read Tag Write

TAG_SPEED (rep rate) (rep rate) Comments

0 3 Cycles 3 Cycles –

1 4 Cycles 4 Cycles May not be used when DATA_
SPEED=00

DATA_SPEED
The NVAX provides this bit to configure the NVAX to function properly with
Bcache data RAM chips of various speeds. This bit will select the mode of Bcache
operation that corresponds to the speed of the Bcache data RAM chips used on
the module.

Note

Improper setting of this bit can prevent the NVAX CPU from functioning
properly.

This bit is cleared on system reset and should not be set to a value other than
that recommended in Table 4–17. Table 4–18 shows the relationship of the value
of DATA_SPEED and the access time of the DATA RAMs, given in NVAX cycles.
This is the total RAM access time including internal NVAX processing time.
Reset clears this bit so that the Bcache data access repetition rate is 2 cycles
when the chip is reset.

Table 4–18 DATA_SPEED

Data Read Data Write

DATA_SPEED<1:0> (rep rate) (rep rate) Comments

00 2 Cycles 3 Cycles May not be used when
TAG_SPEED=1

01 3 Cycles 4 Cycles –

10 4 Cycles 5 Cycles –

11 Unused Unused –

SIZE
These two bits are used to program the size of the Bcache. Backup cache size
is programmed by using the SIZE bits, as shown in Table 4–19. These bits are
cleared on reset so that when the chip is reset, the correct setting is selected by
default.

Note

On the KA680, specifying any value other than that for the 128-kilobyte
cache is strictly forbidden, because it will prevent operation.

4–30 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.4 Backup Cache

Table 4–19 SIZE

SIZE<1:0> Backup Cache Size

00 128 kilobytes

FORCE_HIT
When FORCE_HIT is set, all memory references, both D-stream and I-stream
reads and writes, are forced to hit in the backup cache. The tag store state is not
changed but data is always read or written. Reset clears this bit.

The backup cache must be enabled when the cache is used in FORCE_HIT mode.

This mode provides the capability for directly accessing the Bcache data store,
and is expected to be used for testing purposes only.

DISABLE_ERRORS
When DISABLE_ERRORS is set, all ECC errors from the backup cache are
ignored. The backup cache data syndrome is loaded into the BCEDECC IPR on
every cache access; the behavior of BCETSTS, BCETIDX, BCETAG, BCEDSTS,
and BCEDIDX is unpredictable. This feature allows operation of the backup
cache even if the error detection and correction logic is faulty. It also allows
access to the backup cache syndrome for the purposes of testing the ECC logic.
Reset clears this bit.

SW_ECC
When SW_ECC is clear, the NVAX CPU generates correct ECC check bits for all
writes to the tag store and data RAMs. When SW_ECC is set, the NVAX does not
generate the check bits when the backup cache is written with data, but uses the
check bit values as specified by software in the BCDECC register.

When SW_ECC is set and the tag store is written using an IPR write to BCTAG,
the NVAX uses the check bits for the tag store as given through the IPR write.
The value of SW_ECC does not affect tag store transactions other than IPR
writes.

Reset clears this bit.

TIMEOUT_TEST
When TIMEOUT_TEST is set, the NVAX uses the internal clock to clock its read
timeout counter. When TIMEOUT_TEST is clear, the NVAX uses an internal
time base clock its timeout counters. Reset clears this bit. The effect of setting
this bit is to cause reads on the NDAL to timeout much sooner than they would if
this bit were clear. This is useful primarily for testing purposes. This bit should
not be set during normal operation.

DISABLE_PACK
The NVAX normally packs consecutive memory space writes to the same
quadword into one write, thereby saving Bcache or NDAL bus bandwidth,
depending on whether the referenced hexaword is cached. When DISABLE_
PACK is set, the NVAX does not pack quadword writes together. Instead, the
write packing logic inside the NVAX CPU passes every write directly to its
destination: either the Bcache or the memory subsystem. When the bit is clear,
the NVAX packs writes together to maximize performance. DISABLE_PACK is
intended for testing purposes only. Reset clears this bit.

KA680 Cache Memory Overview 4–31

KA680 Cache Memory Overview
4.4 Backup Cache

FORCE_NDAL_PERR
When a 1 is written to FORCE_NDAL_PERR, a parity error is caused in the
command field of the next outgoing NDAL transaction. Setting this bit causes
only one parity error. Another parity error will be produced with the bit is cleared
and set again by software.

Reset clears this bit.

SW_ETM
This is a software-writable bit to put the backup cache into error transition mode.
When the cache is on and software ascertains that the cache is producing errors,
it can set this bit in order to turn off the cache while ensuring cache coherency.
Software can then flush owned data through use of the Bcache deallocate IPR,
BCFLUSH. In this manner, the unique data can be extracted from the cache
before it is turned off completely.

HW_ETM
Hardware sets this bit when an uncorrectable error is detected in the backup
cache tag store or data RAMs, unless DISABLE_ERRORS is set. Hardware sets
the bit to put the backup cache into error transition mode.

Software clears HW_ETM by writing a 1 to it.

4.4.8.2 Backup Cache Data ECC IPR (BCDECC)

Figure 4–19 Format of the BCDECC

000102030405061011121314151617181920212225262728293031 09

LJ-01279-TI0

X X X X X X X X X X XX X X XX X X X X XX XECCHI ECCLOX

The ECCHI field corresponds to data check bits <7:4>. The ECCLO field
corresponds to data check bits <3:0>.

This register is written by software. It is a write-only register.

Software writes BCDECC using an MTPR instruction. The value in the register
is then used to explicitly write ECC into the data RAMs during any write of the
data RAMs, but only if SW_ECC is set in the control register. If SW_ECC is not
set, hardware ignores the value in BCDECC and generates the check bits to be
written using the ECC syndrome generator.

One use of BCDECC is to allow software to explicitly write bad ECC into the data
RAMs in order to test the Bcache error detection logic.

Reset does not affect this register.

4–32 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.4 Backup Cache

4.4.8.3 Backup Cache Tag Store Error Registers (BCETSTS, BCETIDX, BCETAG)
On some tag store errors, hardware overwrites the corrupted values so that they
cannot be diagnosed by reading the tag store directly. For this reason, there
are tag store error registers that hold the relevant data so that software can
understand the problem.

The tag store error registers are loaded when any tag store error occurs. The
status bits in BCETSTS indicate what sort of error happened. Correctable errors
are indicated by the CORR bit; the UNCORR and BAD_ADDR errors are both
uncorrectable errors.

If no error is yet logged in the registers, the registers are loaded when either a
correctable or an uncorrectable error occurs. Once the registers are loaded with
information from a correctable error, they are locked against further correctable
errors, and are only loaded again if an uncorrectable error happens. At this time,
either UNCORR or BAD_ADDR is set. The LOCK bit in BCETSTS is set as well.
In this way, information from the first correctable error is held in the registers,
and is only overwritten if an uncorrectable error happens later.

The error registers are cleared and unlocked by software. If the error registers
hold data from a noncorrectable error and yet another noncorrectable error
happens before the error registers are unlocked, the LOST_ERR bit is set. This
indicates to software that it does not have sufficient information in the error
registers to recover from all uncorrectable errors that have occurred.

4.4.8.3.1 Bcache Error Tag Status (BCETSTS) The BCETSTS register gives
the general status of an error in the tag store, indicating the transaction taking
place at the time and the type of error. The register is written by hardware and
read by software. Hardware does not clear the error bits in this register; this
must be done by software using write-one-to-clear to the bottom five bits of the
register.

Figure 4–20 IPR Format of BCETSTS

00010203040510111213141516171819202122232425262728293031 09

LJ-01280-TI0

X TS_CMDX X

LOCK

 CORR

UNCORR

BAD_ADDR

LOST_ADDR

KA680 Cache Memory Overview 4–33

KA680 Cache Memory Overview
4.4 Backup Cache

Table 4–20 Bcache Tag Store Status IPR Format

Name Extent Type Description

LOCK 0 WC Indicates that BCETSTS, BCETIDX,
and BCETAG are locked.

CORR 1 WC Indicates that a correctable ECC error
was encountered.

UNCORR 2 WC Indicates that an uncorrectable ECC
error was encountered.

BAD_ADDR 3 WC Indicates that an addressing error was
detected. This is an uncorrectable error.

LOST_ERR 4 WC Indicates that more than one
uncorrectable error occurred, which
was not recorded in the error registers.

TS_CMD 9:5 R Indicates what tag store command was
being processed at the time the error
occurred.

LOCK
Whenever the tag store error registers are locked due to an uncorrectable error,
the LOCK bit is set. At this time, either UNCORR or BAD_ADDR is also set to
indicate the type of uncorrectable error. When the LOCK bit is set, the BCETSTS,
BCETIDX, and BCETAG registers are all locked. Clearing the lock bit unlocks all
three registers. The LOCK bit is set by hardware and it is cleared by software. It
is a write-one-to-clear bit.

CORR
CORR is set when the tag store ECC decoder detects a correctable error. When
this occurs, the Bcache tag store error registers are loaded and are locked against
further correctable errors. They are not locked against an uncorrectable error
that follows.

If a correctable error is followed by an uncorrectable error, the CORR bit remains
set.

The CORR bit is set by hardware and it is cleared by software. It is a write-one-
to-clear bit.

UNCORR
UNCORR is set when the tag store ECC decoder detects an uncorrectable error.
When this occurs, the Bcache tag store error registers are loaded and locked.

The UNCORR bit and the BAD_ADDR bit are exclusive: only one of them is set
for a given error that sets the LOCK bit. If the other type of error occurs later,
the related bit is not set since the register is already locked. In this case, LOST_
ERR is set instead.

The UNCORR bit is set by hardware and it is cleared by software. It is a write-
one-to-clear bit.

BAD_ADDR
BAD_ADDR is set when the tag store ECC decoder detects an error in the address
bit, indicating some problem with the address lines going to the tag RAMs. This
is an uncorrectable error; thus, when it occurs, the Bcache Tag Store Error
registers are loaded and locked.

4–34 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.4 Backup Cache

The UNCORR bit and the BAD_ADDR bit are exclusive: only one of them is set
for a given error that sets the LOCK bit. If the other type of error occurs later,
the related bit is not set since the register is already locked. In this case, LOST_
ERR is set instead.

The BAD_ADDR bit is set by hardware and it is cleared by software. It is a
write-one-to-clear bit.

LOST_ERR
LOST_ERR indicates that after the first uncorrectable error was recorded in the
tag store error registers, an additional uncorrectable error occurred for which
state was not saved. LOST_ERR is set by hardware and is cleared by software.
It is a write-one-to-clear bit.

TS_CMD
The five bit field, TS_CMD, indicates what the tag store was doing when the error
was detected. Its values are listed in Table 4–21.

Table 4–21 Interpretation of TS_CMD

TS_CMD Name Tag Store Operation

00111 DREAD Data-stream tag lookup

00011 IREAD Instruction-stream tag lookup

00010 OREAD Ownership-read tag lookup for a write or a READ_
LOCK

01000 WUNLOCK Ownership-read tag lookup for a WRITE_UNLOCK

01101 R_INVAL Cache coherency tag lookup as the result of NDAL
DREAD or IREAD

01001 O_INVAL Cache coherency tag lookup as the result of NDAL
OREAD or WRITE

01010 IPR_DEALLOC Tag lookup for an explicit IPR deallocate operation

There are three tag store operations that do not cause any sort of errors: tag
store update after a fill, IPR write of the tag store, and IPR read of the tag store.
Thus, these commands will not appear in BCETSTS.

4.4.8.3.2 Bcache Error Tag Index (BCETIDX) This register is loaded and locked
when a tag store error occurs. If a correctable error is followed by a second error
that is not correctable, the register is loaded with information from the second,
more serious error. Except for this case, once it is locked, it is not changed until
software explicitly unlocks the register. This register is written by hardware and
read by software.

Figure 4–21 Backup Tag Store Error Address IPR

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01324-TI0

0Backup Cache Tag Store Address 0 0 0 0

KA680 Cache Memory Overview 4–35

KA680 Cache Memory Overview
4.4 Backup Cache

BCETIDX contains the complete hexaword address corresponding to a tag store
request that resulted in an error. Since the full address is saved, both the cache
index and the cache tag of the request are known. Thus, this register shows what
index was being accessed when the error occurred as well as showing what the
tag of the request was. Software can compare this tag with the actual tag read
from the RAMs, which is saved in BCETAG.

4.4.8.3.3 Bcache Error Tag (BCETAG) This register is loaded when a tag store
error occurs. It is locked when an uncorrectable error occurs on a tag store access.
Once the register is locked, it is not overwritten until it is unlocked by software.
BCETAG is written by hardware and read by software. It is a read-only register
from the software point of view.

The register holds the data that was read from the tag store and produced the
error, as shown in Figure 4–22.

Figure 4–22 IPR Format of BCETAG

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01281-TI0

Tag ECC 0 0 0 0 0 0 0 0 0

VALID

OWNED

Table 4–22 BCETAG IPR Format

Name Extent Type Description

VALID 9 RO Valid bit

OWNED 10 RO Ownership bit

ECC 16:11 RO ECC check bits

TAG 31:17 RO Backup cache tag

VALID
VALID is the bit read from the tag RAMs, which indicates whether the block is
valid in the Bcache.

OWNED
OWNED is the bit read from the tag RAMs, which indicates whether the Bcache
(NVAX) owns the memory hexaword contained in this Bcache block.

ECC
The ECC field contains the check bits as read from the tag RAMs during the
tag access that produced the error. The code used for tag ECC is shown in
Figure 4–23. The check bit marked with a "1" in each row is generated by a
parity tree whose inputs are the Tag, Valid, Owned, and AP (address parity) bits,
which are marked with a "1" in that row.

4–36 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.4 Backup Cache

Figure 4–23 Tag Store Error Correcting Code Matrix

171819202122232425262728293031

LJ-01282-TI0

APV0C0C1 C2 C3 C4 C5

S5

Syndrome

S2

S3

S4

01

Nibble 0 Nibble 1 Nibble 2 Nibble 3 Nibble 4

 Nibble 5, Three Bits Only

Not Stored

Even Parity - C0, C2, C3, C5
Odd Parity - C1, C4
Sn = (Generated Cn) XOR (Stored Cn)

Tag BitsGenerated Check Bits

0 0 0 0 0

0

0

0 0 0 0 0 0 0

0000 0 0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1

1 1

1

1 1

1 1 1

1 1 1

1

S0

S1

0 0 0 0

0 0

0

0

0

0 0

0

0 0

1

1

1 1 1

1 1

11 1

1 1

1 1 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1

1 1

00

00

00

1 1 1 1

1 1

1

1

1

11

1 1

1

1

1

1

1 1

1

1 1

1

0

00

0

0 0

0

00

0

0 0

In a tag store read operation, a nonzero syndrome indicates an error. If the
syndrome generated matches one of the columns in the matrix, the error is
correctable and the matching column indicates the bit to be corrected. Any
syndrome value that is nonzero and does not match a column in the matrix
indicates an uncorrectable error.

Odd parity is used for check bits 1 and 4 to protect against the all-zeros failure
mode. Otherwise, all-zeros would be a valid code word. The choice of odd and
even parity bits prevents all-ones from being a valid code word as well.

TAG
The TAG field of BCETAG is the cache tag as read from the tag RAMs. It must
be interpreted based on the cache size being used, as shown in Table 4–23. When
certain address bits are not used as tag bits for the cache size given, their value
in BCETAG is 0.

Table 4–23 TAG Interpretation

Cache Size Tag Bits Used Unused Tag Bits

128 KB (KA680) TAG<28:17> TAG<31:29>

KA680 Cache Memory Overview 4–37

KA680 Cache Memory Overview
4.4 Backup Cache

4.4.8.4 Backup Cache Data RAM Error Registers (BCEDSTS, BCEDIDX, BCEDECC)
The data RAM error registers hold data relevant to errors in the backup cache
data RAMs so that software can understand the problem.

BCEDSTS holds the general status of the problem. BCEDIDX holds the data
RAM index being used when the problem occurred. BCEDECC holds the
syndrome bits as calculated on the data, which was read from the RAMs when
the problem occurred.

If no error is yet logged in the data RAM error registers, the registers are loaded
when either a correctable or an uncorrectable error occurs. Once the registers are
loaded with information from a correctable error, they are locked against further
correctable errors, and are only loaded again if an uncorrectable error happens.
If an uncorrectable error happens, the LOCK bit in BCEDSTS is set and the
registers are not overwritten until software clears the error bits. In this way,
information from the first correctable error is held in the registers, and is only
overwritten if an uncorrectable error happens later.

If the registers are locked, any subsequent noncorrectable error causes the LOST_
ERR bit to be set, but does not modify any other information in the registers.
LOST_ERR indicates to software that it does not have sufficient information in
the error registers to recover from all uncorrectable errors that have occurred.

Of the backup cache data RAM error registers, only BCEDSTS is writable by
software. Software clears the error and LOCK bits, which re-enables all the data
RAM error registers to record the next error that occurs.

4.4.8.5 Bcache Error Data Status (BCEDSTS)

Figure 4–24 IPR Format of BCEDSTS

000102030405111213141516171819202122232425262728293031

LJ-01283-TI0

X DR_CMDX X X X X X X X X X X X X X X X X X X

060708

0 0 0

LOCK

CORR

UNCORR

 BAD_ADDR

 LOST_ERR

4–38 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.4 Backup Cache

Table 4–24 Bcache Data RAM Status IPR Format

Name Extent Type Description

LOCK 0 WC Lock bit. Indicates that the BCEDSTS,
BCEDIDX, and BCEDECC registers are
locked.

CORR 1 WC Indicates that a correctable ECC error
was encountered.

UNCORR 2 WC Indicates that an uncorrectable ECC
error was encountered.

BAD_ADDR 3 WC Indicates that an addressing error was
detected.

LOST_ERR 4 WC Indicates that a second, uncorrectable
error occurred; it was not recorded in the
error registers.

DR_CMD 11:8 R Indicates what command was being
processed at the time the error occurred.

The LOCK bit is set when an error that was not correctable has occurred. If the
CORR bit is set, the data ram error registers are locked unless an uncorrectable
error occurs. On an uncorrectable error, the LOCK bit is set and the registers are
permanently locked until unlocked by software.

LOCK
Whenever the data RAM error registers are loaded with an uncorrectable error,
the LOCK bit is set. At this time either UNCORR or BAD_ADDR is also set
to indicate the type of uncorrectable error. When the LOCK bit is set, the
BCEDSTS, BCEDIDX, and BCEDECC registers are all locked. Clearing the
lock bit unlocks all three registers. The LOCK bit is set by hardware and it is
cleared by software. It is a write-one-to-clear bit.

CORR
CORR is set when the data ECC decoder detects a correctable error. When this
occurs, the Bcache data error registers are loaded and locked against further
correctable errors. The CORR bit is set by hardware and it is cleared by software.
It is a write-one-to-clear bit.

UNCORR
UNCORR is set when the data ECC decoder detects an uncorrectable error. When
this occurs, the Bcache data error registers are loaded and locked. The UNCORR
bit is set by hardware and it is cleared by software. It is a write-one-to-clear bit.

BAD_ADDR
BAD_ADDR is set when the data ECC decoder detects an error in the address bit,
indicating some problem with the address lines going to the data RAMs. This is
an uncorrectable error; thus, when it occurs, the Bcache data error registers are
loaded and locked. The BAD_ADDR bit is set by hardware and it is cleared by
software. It is a write-one-to-clear bit.

LOST_ERR
LOST_ERR indicates that after the first uncorrectable error was recorded in the
data error registers, an additional uncorrectable error occurred for which state
was not saved. LOST_ERR is set by hardware and is cleared by software. It is a
write-one-to-clear bit.

KA680 Cache Memory Overview 4–39

KA680 Cache Memory Overview
4.4 Backup Cache

DR_CMD
The DR_CMD field indicates what the data RAMs were doing when the error was
detected. Its values are listed in Table 4–25.

Table 4–25 Interpretation of DR_CMD

DR_CMD<11:7> Name Data RAM Operation

0111 DREAD Data lookup for a D-stream read.

0011 IREAD Data lookup for an I-stream read.

0100 WBACK Data lookup for a write-back.

0010 RMW Data lookup for a read-modify-write. Done for
normal writes and WRITE_UNLOCKs.

There are two data RAM operations that do not cause any sort of errors: full
quadword writes and fills. Thus, these commands will not appear in BCEDSTS.

DR_CMD is only written by hardware. It is read-only for software.

4.4.8.5.1 Bcache Error Data Index (BCEDIDX) This register holds the index of
a data RAM transaction; it is loaded when an error is detected on a data RAM
access. The index loaded due to a correctable error is not overwritten unless an
uncorrectable error occurs afterwards. If an uncorrectable error occurs, BCEDIDX
is loaded and locked. BCEDIDX is unlocked by software; the LOCK bit is in the
BCEDSTS register.

BCEDIDX is read-only from software’s point of view.

Figure 4–25 BCEDIDX

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01284-TI0

0 Backup Cache Data RAM Index0 0 0 0 0 0 0 0 0 0 0 0 0

Undefined (KA680)

0 0

BCEDIDX must be interpreted based on the cache size being used, as shown in
Table 4–26. When certain address bits are not used as index bits for the cache
size given, their value in BCEDIDX is undefined.

Table 4–26 BCEDIDX Interpretation

Cache Size Index Bits Used Undefined Index Bits

128 KB (KA680) BCEDIDX<16:3> BCEDIDX<20:17>

4–40 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.4 Backup Cache

4.4.8.6 Bcache Error Data ECC (BCEDECC)
This register holds the syndrome as calculated on the backup cache data and
check bits, and is loaded when an error occurs on a data RAM access. Once
loaded, it follows the same lock rules that the other Bcache data error registers
follow. It is unlocked by software. The lock bit is in the BCEDSTS register.

When DISABLE_ERRORS is set, BCEDECC is loaded on every quadword read
from the cache. This provides a way of testing the ECC logic by reading the
results of the syndrome calculation.

BCEDECC is read-only from software’s point of view.

Figure 4–26 Format of the BCEDECC Register

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01325-TI0

X ECCHI ECCLOX X

The ECCHI field corresponds to syndrome bits <7:4>. The ECCLO field
corresponds to syndrome bits <3:0>.

The code used for data ECC is shown in Figure 4–27. The check bit (C), which is
marked with a "1" in each row, is generated by a parity tree whose inputs are the
data bits marked with a "1" in that row.

Figure 4–27 Backup Cache Data Store Error Correcting Code Matrix

DDDD

1101
1010
0111
0100
1111
1111
1011
0000

DDDD

0001
0010
1100
1111
0101
1010
1111
1111

0001
0010
1100
1111
1001
0110
0000
0000

0011
0100
1000
0001
0111
1101
0100
1111

1110
1011
0101
0010
0001
0100
1000
0000

DDDD DDDD DDDD DDDD

1101
1010
0111
0001
0100
1000
1101
1111

DDDD

1101
1010
0111
0001
0100
1000
0010
0000

DDDD

1100
1011
0111
0001
1000
0010
0100
0000

DDDD

0011
0100
1000
0001
0111
1101
1011
0000

DDDD

0010
0100
1001
0001
1101
1011
1000
1111

DDDD

0010
0100
1001
0001
1101
1011
0111
0000

DDDD

1101
1011
0110
0001
0010
0100
0111
1111

DDDD

1110
1011
0101
1111
0110
1001
1111
0000

DDDD

1010
1101
0111
0001
1000
0100
1101
1111

DDDD

1110
1101
0011
1111
0110
1001
0000
1111

D
6CCC

0100
1010
0001
1000
0000

1000
0000

CCCC

0000
0000
0000
1000
0100
0010
0001
0000

 DDD

0000
0000
0000
0100
0010
0001
0111
1111

A
P

1
1
1
0
1
1
0
0

S0
S1
S2
S3
S4
S5
S6
S7

AP is not stored in the RAMS.
Even parity - C0, C1, C2, C4, C5, C6
Odd parity - C3, C7
Sn = (Generated Cn) XOR (Stored Cn)

LJ-01286-TI0

0000

0 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

1 1 1 1 2 2 2 2 3 3 3 3 4 4 5 5 5 5 5 5
2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5
0 0 1 2 3 4 5 6 7 1 2 3

C 6 6 6

As in tag store ECC, any syndrome value not matching a column in the table
indicates an uncorrectable error. Odd parity is used in check bits 3 and 7 to
prevent all-ones and all-zeros from being valid code words.

4.4.9 Fill Error Registers (CEFADR, CEFSTS)
Some errors are related to outstanding reads to memory. These errors may be
diagnosed using the CEFSTS and CEFADR registers. CEFSTS holds general
information about the type of read outstanding; CEFADR holds the address of the
outstanding read.

KA680 Cache Memory Overview 4–41

KA680 Cache Memory Overview
4.4 Backup Cache

4.4.9.1 Bcache Error Fill Status (CEFSTS)
The CEFSTS register holds information related to a problem on a read that was
sent to memory. If a read request to memory times out or is terminated with an
error, the CEFSTS register and the CEFADR register are loaded and locked.

The register is read-write. Only the lowest five bits may be written, and then
only to clear them after an error. The lowest five bits are write-one-to-clear.

Figure 4–28 IPR Format of CEFSTS

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01287-TI0

RDLK

RDE

ID0

IREAD

OREAD

TO_MBOX

RIP

OIP

DNF

RDLK_FL_DONE

X X X X X X X X X X X X X X

LOCK

TIMEOUT

LOST_ERR

WRITE

COUNT

UNEXPECTED_FILL

REQ_FILL_DONE

4–42 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.4 Backup Cache

Table 4–27 Fill Error Status IPR Format

Name Extent Type Description

RDLK 0 WC Indicates that a READ_LOCK was in
progress.

LOCK 1 WC Indicates that an error occurred and
the register is locked.

TIMEOUT 2 WC Fill failed due to transaction timeout.

RDE 3 WC Fill failed due to read data error.

LOST_ERR 4 WC Indicates that more than one error
related to fills occurred.

ID0 5 RO NDAL identification bit for the read
request.

IREAD 6 RO This is an I-stream read from the
Mbox, which may be aborted.

OREAD 7 RO This is an outstanding OREAD.

WRITE 8 RO This read was done for a write.

TO_MBOX 9 RO Data is to be returned to the Mbox.

RIP 10 RO READ invalidate pending.

OIP 11 RO OREAD invalidate pending.

DNF 12 RO Do not fill - data not to be written into
the cache or validated when the fill
returns.

RDLK_FL_DONE 13 RO Indicates that the last fill for a READ_
LOCK arrived.

REQ_FILL_DONE 14 RO Indicates that the requested quadword
was successfully returned from the
NDAL.

COUNT 16:15 RO For a memory space transaction,
indicates how many of the fill
quadwords have been successfully
returned. For I/O space, is set to 11
when the transaction starts since only
one quadword will be received.

UNEXPECTED_FILL 21 RO Set to indicate that an unexpected fill
was received on the NDAL.

RDLK
RDLK is set to show that a READ_LOCK is in progress. This bit is write-one-to-
clear.

The effect of performing a write-one-to-clear to this bit is to clear the VALID bit
for an entry that had its RDLK bit set; this has the effect of clearing out the
FILL_CAM entry. This is the same action taken when a WRITE_UNLOCK is
received.

This bit is normally not read as a one by software, because the NVAX microcode
ensures that the READ_LOCK-WRITE_UNLOCK sequence is an indivisible
operation. If, however, the first quadword of a READ_LOCK is returned
successfully and then the transaction either times out or is terminated in read
data error (RDE), CEFSTS is loaded with the RDLK bit set.

KA680 Cache Memory Overview 4–43

KA680 Cache Memory Overview
4.4 Backup Cache

LOCK
The LOCK bit is set when a read transaction that has been sent to memory
terminates in read data error or in timeout. At the same time, all information
corresponding to the read is loaded from the FILL_CAM into the CEFSTS
register. When the LOCK bit is set, one of TIMEOUT, RDE, or UNEXPECTED_
FILL is also set to indicate the type of error. Once the LOCK bit is set, none of
the information in CEFSTS or CEFADR changes, with the possible exception of
LOST_ERR, until the LOCK bit is cleared.

Hardware sets the LOCK bit and software clears it by writing a one to that
location.

TIMEOUT
TIMEOUT is set when a read transaction that was sent to the NDAL times out
for some reason. When TIMEOUT is set, the LOCK bit is also set.

Hardware sets the TIMEOUT bit and software clears it by writing a one to that
location.

RDE
RDE (read data error) is set when a read transaction that was sent to the NDAL
terminates in RDE. This could happen because of an uncorrectable main memory
error, or in the case of I/O addresses, it could mean some type of I/O error. When
the RDE bit is set, the LOCK bit is also set.

Hardware sets the RDE bit and software clears it by writing a one to that
location.

LOST_ERR
The LOST_ERR bit is set when CEFSTS is already locked and another RDE,
TIMEOUT, or UNEXPECTED_FILL error occurs. This indicates to software that
multiple errors have happened and state has not been saved for every error.

Hardware sets the LOST_ERR bit and software clears it by writing a one to that
location.

ID0
ID0 corresponds to the NDAL signal, ID_H, which was issued with the read that
failed. According to NDAL protocol, the NVAX, as well as other NDAL devices,
may have up to two outstanding transactions. Since memory reads are pended,
the NVAX could have issued up to two read requests before the error occurred.
This bit tells software which of the two NDAL transactions is associated with the
error.

IREAD
IREAD indicates that the transaction in error was an IREAD.

OREAD
OREAD indicates that the transaction in error was an OREAD (ownership read);
the OREAD may have been done for a write, a READ_LOCK, or a read modify.

WRITE
WRITE indicates that the transaction in error was an OREAD done because of a
write request.

TO_MBOX
TO_MBOX indicates that data returning for the read was to be sent to the Mbox.
The Mbox is the part of the NVAX CPU that contains the virtual/physical address
translation logic as well as the Pcache.

4–44 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.4 Backup Cache

RIP
RIP (read invalidate pending) is set when the NVAX observes a DMA read
transaction on the NDAL to a memory location for which the NVAX is currently
acquiring ownership (that is, the OREAD transaction has already been sent to
the memory subsystem). This triggers a write-back of the block when the OREAD
fill data arrives; a valid copy of the data is kept in the cache.

OIP
OIP (OREAD invalidate pending) is set when a cache coherency transaction due
to an OREAD or a WRITE on the NDAL is requested for a block that has OREAD
fills outstanding at the time. This triggers a write-back and invalidate of the
block when the fill data arrives.

DNF
DNF (do not fill) is set when data for a read is not to be written into the Bcache.
This is the case when the cache is off, in ETM, or when the read is to I/O space.
The assertion of this bit prevents the block from being validated in the cache.

RDLK_FL_DONE
This bit is set in the fill cam when a READ_LOCK hits in the Bcache or the last
fill arrives from the BIU for a READ_LOCK. Once this is set, the corresponding
WRITE_UNLOCK is allowed to proceed. This overrides the FILL_CAM block
conflict on the WRITE_UNLOCK, which is inevitable since the READ_LOCK is
held in the FILL_CAM until the WRITE_UNLOCK is done.

REQ_FILL_DONE
This bit is set when the requested quadword of data was successfully received
from the NDAL. This information is provided to facilitate error handling.

COUNT
These two bits indicate how many of the expected four quadwords have been
returned successfully from memory for this read. If they are 00(BIN), no
quadwords have returned, if they are 01(BIN), one quadword has returned,
and so forth. If the entry was for a quadword read, the count bits are set to
11(BIN) when the reference is sent out.

UNEXPECTED_FILL
This bit is set to indicate that an RDE or RDR cycle was received on the NDAL
with an ID for which the FILL_CAM entry was not valid. When UNEXPECTED_
FILL is set, CEFSTS and CEFADR are loaded and locked.

4.4.9.2 Fill Error Address (CEFADR)
The CEFADR register holds the address of a fill that ended in an error condition.
It is loaded when an error is detected on a fill. It is a read-only register.

CEFADR is locked when CEFSTS is locked.

KA680 Cache Memory Overview 4–45

KA680 Cache Memory Overview
4.4 Backup Cache

Figure 4–29 IPR Format of CEFADR

0001020331

LJ-01288-TI0

0Fill Error Address 0 0

4.4.10 NDAL Error Registers (NESTS, NEOADR, NEOCMD, NEDATHI,
NEDATLO, NEICMD)

The NDAL error registers hold information related to NDAL errors. NESTS,
NDAL error status, holds error bits relating to any problems encountered.

NEOADR, NDAL error output address, holds the address corresponding to the
cycle that was in error. NEOCMD, NDAL error output command, holds the
command bits corresponding to the cycle in error.

NEDATHI, NDAL error data high longword, and NEDATLO, NDAL error data
low longword, hold the data from an NDAL cycle where NVAX detected a parity
error on the bus. NEICMD, NDAL error input command, holds the command bits
corresponding to a cycle with a parity error.

4.4.10.1 NDAL Error Status IPR (NESTS)
The NESTS register holds information about any errors that happened on the
NDAL. All six bits in this register are write-one-to-clear. Reset does not affect
this register. Powerup does not initialize the register.

4–46 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.4 Backup Cache

Figure 4–30 IPR Format of NESTS

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01289-TI0

X

NOACK

BADWDATA

LOST_OERR

PERR

ICON_PERR

LOST_PERR

X X

Table 4–28 NESTS IPR Format

Name Extent Type Description

NOACK 0 WC Indicates that an outgoing NVAX NDAL
cycle was not acknowledged by any of
the other NDAL devices. This bit locks
NEOADR and NEOCMD.

BADWDATA 1 WC Indicates that an outgoing NDAL
data cycle was accompanied by the
BADWDATA command. This bit locks
NEOADR and NEOCMD.

LOST_OERR 2 WC Indicates that multiple outgoing errors,
either NOACK or BADWDATA, were
detected.

PERR 3 WC Indicates that a parity error was
detected on the NDAL. This bit locks
NEDATHI, NEDATLO, AND NEICMD.

INCON_PERR 4 WC Inconsistent parity error. This means
that although NVAX detected a parity
error, some other device apparently
did not and acknowledged the NDAL
transaction.

LOST_PERR 5 WC Indicates that multiple NDAL parity
errors were detected.

NOACK
NOACK is set when NVAX detects that the NDAL signal "ACK_L" was not
asserted by any receiving device on the NDAL for an outgoing NVAX cycle. When
NOACK is set, NEOADR and NEOCMD are locked so that software can read
them to see what transaction was being attempted when the error occurred.

NOACK is set on any outgoing NVAX cycle that is not acknowledged, whether it
was an address cycle or a data cycle. The information that is locked in NEOADR
and NEOCMD corresponds to the address cycle of the transaction. For example,
if an outgoing write data cycle is not acknowledged, the address cycle for that
write operation is saved in NEOADR and NEOCMD.

KA680 Cache Memory Overview 4–47

KA680 Cache Memory Overview
4.4 Backup Cache

NOACK is not set if there was a previous BADWDATA. If a BADWDATA cycle is
NOACK’d, both BADWDATA and NOACK are set.

NOACK is cleared by write-one-to-clear.

BADWDATA
BADWDATA is set when the BIU receives data for a write-back from the cache
that had an uncorrectable ECC error, and thus is being issued on the NDAL with
the BADWDATA command. When BADWDATA is set, NEOADR and NEOCMD
are locked so that software can read them to retrieve the information about the
failure.

The address for the write operation is captured in NEOADR, and the command
information for the cycle is captured in NEOCMD.

NOACK is not set if there was a previous BADWDATA. If a BADWDATA cycle is
NOACK’d, both BADWDATA and NOACK are set.

LOST_OERR
LOST_OERR is set when NOACK or BADWDATA is already set and another one
of those errors occurred. It notifies software that state was saved only for the
first outgoing error.

LOST_OERR is cleared by a write-one-to-clear.

PERR
PERR is set when NVAX detects a parity error on the NDAL. When PERR is set,
NEDATHI, NEDATLO, and NEICMD are locked so that software can read them
to see what was on the NDAL when the error occurred.

Since NVAX calculates parity on every cycle, PERR will be set on both its own
transfers and the transfers of other devices that fail the parity check.

PERR is cleared by a write-one-to-clear.

INCON_PERR
INCON_PERR (inconsistent parity error) is set when an NDAL parity error
is detected on a cycle, which is also acknowledged with the NDAL signal
"ACK_L." This means that NVAX detected a parity error but some other device
acknowledged the transfer.

INCON_PERR is only set in conjunction with PERR. It is not set unless PERR is
set. If one NDAL parity error has already occurred, setting PERR, but INCON_
PERR was not set for that cycle, a subsequent cycle with an inconsistent parity
error will not cause INCON_PERR to be set.

INCON_PERR is cleared by a write-one-to-clear.

LOST_PERR
LOST_PERR is set when PERR is already set and another NVAX transfer fails
the parity check. LOST_PERR notifies software that multiple NVAX transfers
have failed the parity check; state was saved only for the first.

LOST_PERR is cleared by a write-one-to-clear.

4–48 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.4 Backup Cache

4.4.10.2 NDAL Error Output Address IPR (NEOADR)
The NEOADR register is loaded for every address cycle that the NVAX drives
onto the NDAL unless it is locked. It is loaded during the cycle when the
corresponding ACK_L should be asserted on the NDAL. It is locked when the
NOACK bit in the NESTS register is set.

When NEOADR is locked, it contains the address information for the first
transaction that failed. If it is read when it is not locked, it contains information
from the last address cycle that was acknowledged on the NDAL.

The format of NEOADR matches the low longword of the NDAL during an
address cycle.

NEOADR is read-only to software.

Figure 4–31 IPR Format of NEOADR

0031

LJ-01290-TI0

NDAL Address

4.4.10.3 NDAL Error Output Command (NEOCMD)
The NEOCMD register is loaded and locked exactly as NEOADR is loaded and
locked. The format of NEOCMD is similar to that of the high longword of the
NDAL during an address cycle. The high quadword byte enable positions are
NOT included, since NVAX only uses quadword byte-enabled transactions. The
NDAL ID and command are added in the lower seven bits of the longword.

Figure 4–32 IPR Format of NEOCMD

0003040607081516171819202122232425262728293031

LJ-01291-TI0

LEN X BYTE_EN 0 ID CMD X X X X X X X X X X X X X

Table 4–29 NEOCMD IPR Format

Name Extent Type Description

CMD 3:0 RO NDAL command as driven by NVAX
during the transaction.

ID 6:4 RO Commander ID as driven by NVAX
during the transaction.

BYTE_EN 15:8 RO Byte enable as driven by NVAX during
the transaction.

LEN 31:30 RO Length of the NDAL transaction.

KA680 Cache Memory Overview 4–49

KA680 Cache Memory Overview
4.4 Backup Cache

4.4.10.4 NDAL Error Input Command (NEICMD)
NEICMD, NEDATHI, and NEDATLO are loaded at the same time and they are
locked at the same time. They are all loaded when a parity error occurs; at this
time the PERR bit is set in NESTS, which locks the three registers. If a second
NDAL parity error happens, the registers are not loaded again. They are not
loaded again until after they are unlocked when software clears PERR.

NEICMD contains the NDAL signals CMD_H<3:0>, ID_H<2:0>, and PARITY_
H<2:0> from the failed transfer.

NEICMD is a read-only register.

Figure 4–33 IPR Format of NEICMD

000304060710111213141516171819202122232425262728293031 09

LJ-01292-TI0

X Parity ID CMDX X

PARITY
The PARITY field corresponds to the NDAL lines PARITY_H<2:0>.

ID
The ID field corresponds to the NDAL lines ID_H<2:0>.

CMD
The CMD field corresponds to the NDAL lines CMD_H<3:0>.

4.4.10.5 NDAL Error Data High and NDAL Error Data Low (NEDATHI and NEDATLO)
NEDATHI and NEDATLO behave similarly to NEICMD. They capture NDAL_
H<63:0> during a cycle with a parity error. NEDATHI contains the high longword
of data from the NDAL (NDAL_H<63:32>); NEDATLO contains the low longword
of data from the NDAL (NDAL_H<31:0>).

The format of NEDATHI and NEDATLO must be interpreted based on the CMD
found in NEICMD. If the CMD field shows that the cycle was a data cycle, the
registers contain two longwords of data. If the CMD field shows that the cycle
was an address cycle, the registers are in the format of an NDAL address cycle,
as shown in Figure 4–34 and Figure 4–35.

Figure 4–34 NEDATHI, Address Cycle Format

0007082324293031

LJ-01293-TI0

LEN Undefined BYTE_EN Undefined

4–50 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.4 Backup Cache

Figure 4–35 NEDATLO, Address Cycle Format

0031

LJ-01294-TI0

Address

4.4.11 Backup Cache Tag Store Access Through IPR Reads and Writes
(BCTAG)

Direct access to the backup cache tag store is provided to aid in error recovery
and diagnosis and to assist testing. These accesses work whether the cache is on
or off, in ETM or in force hit mode.

If there is a valid FILL_CAM entry for the same cache block that is being
accessed through an IPR read or write, the IPR read or write is stalled until the
fills return and the FILL_CAM entry is no longer valid.

When the backup cache tag store is being accessed through IPR reads and writes,
address bits <24:22> = 100 (BINARY). Address bits <18:5> (KA680) or <18:5>
(KA680) are used as the index into the tag store RAMs; these indicate which
backup cache location is to be written or read.

Figure 4–36 Backup Cache Tag Store IPR Addressing Format

000104051617181920212223242531

LJ-01295-TI0

SBZ 1 0 X BCtag Index SBZ0 0 0 0 0

The format for reading and writing the backup cache tag store as an IPR is
described in Figure 4–37 and Table 4–30.

Figure 4–37 IPR Format of the Backup Cache Tag Store

00010203040506070810111617181928293031 09

LJ-01296-TI0

X Tag ECC

VALID

OWNED

X X X X X X X X X X X

KA680 Cache Memory Overview 4–51

KA680 Cache Memory Overview
4.4 Backup Cache

Table 4–30 Bcache Tag IPR Format

Name Extent Type Description

VALID 9 RW Valid Bit

OWNED 10 RW Ownership Bit

ECC 16:11 RW1 ECC Check Bits

TAG 28:17 RW Tag Data

1The ECC bits are written from the value given in the MTPR instruction only if the SW_ECC bit of
the CCTL IPR is set. Otherwise, the Cbox generates and writes correct ECC for the tag, owned and
valid values.

Table 4–31 Tag and Index Interpretation for BCTAG IPR

Cache Size Tag Bits Used Index Bits Used

128 KB (KA680) TAG<28:17> Index<16:5>

The tag store must be initialized to a known state when the chip is powered up.
This is done through the MTPR instruction to BCTAG.

When the tag store is read, the ECC check bits are read out directly from the tag
store in the format shown. ECC is not checked on IPR accesses to the tag store;
no errors can occur during these accesses.

Some care must be taken if IPR reads of the tag store are done while other
transactions are in progress. The tag information read out may not be what
the programmer expects if cache misses or cache coherency transactions are in
progress on the block being read. For example, if a cache miss is in progress, the
new tag will be in the tag store but the valid and owned bits will be clear.

4.4.12 Backup Cache Deallocates Through IPR Access (BCFLUSH)
The backup cache deallocate IPR is a write-only register that software uses to
explicitly request the deallocation of a cache block. For example, this register
may be used when hardware has put the cache into ETM and software wants to
request write-back of the owned blocks to memory.

If there is a FILL_CAM entry for the same cache block that is being flushed, the
flush is stalled until the fills return and the FILL_CAM entry is no longer valid.

Figure 4–38 Backup Cache Deallocate IPR Addressing Format

000405181920212223242531

LJ-01297-TI0

SBZ 1 X0 Bcache Tag Deallocate Index SBZ

1 0 0

17 16

0 0

When BCFLUSH is written, the NVAX accesses the Bcache tag store. If the block
is invalid, no further action is taken. If the block is valid but not owned, the
NVAX invalidates the entry in the Bcache tag store, as well as the corresponding
Pcache entry if it exists. If the block is valid and owned, the NVAX invalidates

4–52 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.4 Backup Cache

the Pcache entry if it exists, performs a write-back of the Bcache data, and
invalidates the Bcache entry in the tag store.

This behavior takes place whether the cache is on, off, in ETM, or in FORCE_HIT
mode. In FORCE_HIT mode, BCFLUSH does a real lookup of the tag store and
does not force the access to hit. Software must take care not to force deallocates
when cache state is not consistent with the state of memory. For example, when
the cache is off, valid and owned bits may be set for blocks that are no longer
up-to-date with respect to memory.

When a deallocate is done, the VALID and OWNED bits will be cleared
as necessary, and the value of the stored TAG is modified. Its value is
UNPREDICTABLE. Correct ECC is stored on the tag store entry.

A BCFLUSH operation never changes the data stored in the data RAMs.

Errors are detected and reported during BCFLUSH operations.

The index given is interpreted as in Table 4–31, based on the size of the cache.

BCFLUSH may be used when the Bcache is on, because the Pcache is kept
a subset of the Bcache during these operations. However, new blocks may be
allocated due to memory reads and writes as the cache is being flushed.

4.4.13 Bcache Abnormal Conditions
This section describes the various modes of Bcache behavior as well as Cbox
response when it detects an error.

The Bcache has four operating states that are controlled by the following bits in
the CCTL register: ENABLE, FORCE_HIT, SW_ETM, and HW_ETM. The four
states are ON, OFF, ETM, and FORCE_HIT. The four states are determined and
prioritized as follows:

1. OFF. If the ENABLE bit is cleared in CCTL, the Bcache is OFF and those
conditions take precedence.

2. FORCE_HIT. If the ENABLE bit is set and FORCE_HIT is set, the Bcache is
in FORCE_HIT mode and those conditions take precedence.

3. ETM. If the ENABLE bit is set, FORCE_HIT is cleared, and either SW_ETM
or HW_ETM is set. The cache is in ETM mode and those conditions take
precedence.

4. ON. If the ENABLE bit is set and FORCE_HIT, SW_ETM, and HW_ETM are
cleared, the cache is ON.

The ON state is the normal operating condition of the cache. OFF, FORCE_HIT,
and ETM modes are described in the following sections.

4.4.13.1 NVAX Behavior When the Backup Cache is OFF
The backup cache may be off for two reasons: the chip has just powered up, or
software has disabled the cache by clearing the ENABLE bit in the Bcache control
register.

When the cache is off, no accesses to the backup cache are done. Errors are not
detected and cache state is UNCHANGED unless explicitly changed by software
through IPR reads and writes.

KA680 Cache Memory Overview 4–53

KA680 Cache Memory Overview
4.4 Backup Cache

When the backup cache is off, all cache lookups due to DMA cycles on the NDAL
are forwarded as invalidates to the Pcache, since the data may be valid in the
Pcache. All reads that miss in the Pcache go directly to the NDAL. Cache fills
returning from the memory subsystem are sent directly to the Pcache without
incurring the overhead of Bcache access. All writes go directly to the NDAL.

When the cache is off, VAX interlocked instructions that generate atomic
read/write pairs become hexaword ownership read/quadword disown write on
the NDAL.

All writes issued from NVAX when it is operating without a backup cache are of
quadword length. Memory reads are of hexaword length since the Pcache block
size is a hexaword. Even if the Pcache is off, a hexaword of data is returned to
the Mbox.

A VAX instruction that generates read references with modify intent normally
generates an OREAD on the NDAL if it misses in the Bcache. However, when the
Bcache is off, a normal DREAD is used on the NDAL.

4–54 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.4 Backup Cache

4.4.13.2 NVAX Behavior When the Backup Cache is in FORCE_HIT Mode
FORCE_HIT mode is intended to be used for testing purposes only. It is used
when the cache is enabled.

When FORCE_HIT is set, all memory space reads and writes to the Bcache, both
I-stream and D-stream, are forced to hit. Tag store state is not changed at all;
the data RAMs are accessed as if the tag store access produced an owned-valid
hit. DMA I/O references on the NDAL are treated as they are when the Bcache
is off. They are not looked up in the backup cache; they are all forwarded to the
Pcache as invalidates, and Bcache state is not changed as the result of the DMA
references.

When the Bcache is in FORCE_HIT mode, deallocates are not done. Even if the
tag matches and the VALID and OWNED bits are set, the block is not written
back. The implication of this is that if FORCE_HIT mode is being used, the
Bcache must be flushed of all owned blocks beforehand.

Tag store and data RAM ECC errors are detected in FORCE_HIT mode if
DISABLE_ERRORS in the CCTL register is not set, resulting in the usual
error handling.

As an example of the use of FORCE_HIT mode, suppose the ECC logic for the
data RAMs is to be tested. Put the cache in FORCE_HIT mode. Set SW_ECC in
the Bcache control register. Write the desired ECC into BCDECC. Do a write to
a memory location that maps to the desired Bcache block, and the location will
be written using ECC from BCDECC rather than from NVAX-generated ECC.
Suppose the ECC written is such that when the data is read, an ECC error will
be flagged.

Now perform a read of the same memory while FORCE_HIT is still set. The
read will result in a Bcache data ECC error, showing that the logic is working
correctly. The data RAM error registers may be read and will correspond to the
induced error.

4.4.13.3 NVAX Behavior When the Backup Cache is in Error Transition Mode
When the NVAX detects certain errors, it puts itself into error transition mode
(ETM).

The goals of the Bcache design during ETM are the following:

1. Preserve the state of the Bcache as much as possible for diagnostic software.

2. Honor references that hit owned blocks in the backup cache since this is the
only source of data in the system.

3. Respond to NDAL DMA references normally (that is, write-back owned
blocks that are referenced by DMA devices), and perform invalidates on
DMA-referenced cached unowned blocks.

Once the NVAX enters error transition mode, it remains in ETM until software
explicitly disables or enables the Bcache. To ensure Bcache coherency with
main memory, the Bcache must be completely flushed of valid blocks before it is
re-enabled because some data can become stale while the cache is in ETM.

Table 4–32 describes how the backup cache behaves while it is in ETM.

KA680 Cache Memory Overview 4–55

KA680 Cache Memory Overview
4.4 Backup Cache

Table 4–32 Backup Cache Behavior During ETM

Cache
—————————–Cache

Response——————————————-

Transaction Miss Valid Hit Owned Hit

CPU IREAD,DREAD Read from memory Read from memory Read from
cache

CPU READ_LOCK Read from memory Read from memory Force block
write-back,
read from
memory1

CPU Write Write to memory Write to memory Force block
write-back,
write to
memory1

CPU WRITE_
UNLOCK

Write to memory Write to memory Write to
cache1

Fill (from read started
before ETM)

—-Normal cache behavior—-

Fill (from read started
during ETM)

—-Do not update backup cache; return data to Mbox—-

NDAL DMA reference —-Normal cache behavior—-

1Done to preserve write ordering

Any reads or writes that do not hit valid-owned during ETM are sent to memory;
read data is retrieved from memory, and writes are written to memory, bypassing
the Bcache entirely.

The cache supplies data for IREADs, DREADs, and dread modifies that hit
valid-owned; this is normal cache behavior.

If a write hits a valid-owned block in the cache, the block is written back to
memory and the write is also sent to memory.

If a READ_LOCK hits valid-owned in the cache, a write-back of the block is
forced and the READ_LOCK is sent to memory (as an OREAD on the NDAL).

Data returning from the memory subsystem as the result of any type of read
originated before the Bcache entered ETM are processed in the usual fashion. If
the returning cache fill is a result of a write miss, the write data is merged, as
usual, as the requested fill returns. Fills caused by any type of read originated
during ETM are not written into the Bcache or validated in the tag store.

During ETM, the state of the cache is modified as little as possible. Table 4–33
shows how each transaction modifies the state of the cache.

4–56 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.4 Backup Cache

Table 4–33 Backup Cache State Changes During ETM

Cache
————————-Cache State

Modified—————————————–

Transaction Miss Valid Hit Owned Hit

CPU IREAD,DREAD None None None.

CPU READ_LOCK None None Clear
VALID and
OWNED;
change
TS_ECC
accordingly.

CPU Write None None Clear
VALID and
OWNED;
change
TS_ECC
accordingly.

CPU WRITE_
UNLOCK

None None Write new
data; change
DR_ECC
accordingly.

Fill (from read started
before ETM)

Write new TS_TAG, TS_VALID,
TS_OWNED, TS_ECC, DR_DATA, DR_ECC

Fill (from read started
during ETM)

———————————–None———————————-

NDAL DMA
transaction

—————-Clear VALID and OWNED;
change TS_ECC accordingly—————–

4.4.14 How to Turn the Bcache Off
Because the Bcache is a write-back cache, care must be taken to maintain cache
coherency when turning it off.

If the cache is running normally and software wishes to turn it off, it must do the
following:

1. Write to CCTL register to set SW_ETM. In this mode, the Bcache will not
allocate any new blocks and will send all DMA-caused Bcache lookups to the
Pcache as invalidates.

2. Use the BCFLUSH register to flush all owned blocks out of the cache.

3. Turn off the Bcache by writing the CCTL register to clear ENABLE and
SW_ETM simultaneously. If an error was encountered during the deallocate
process, HW_ETM may be set. If so, it should be cleared as well.

If the Bcache encounters an uncorrectable ECC error, the NVAX sets HW_ETM
in the CCTL register. If software wishes to turn off the cache, it must do the
following:

1. Use the BCFLUSH register to flush all owned blocks out of the cache.

2. Write CCTL to clear ENABLE and clear HW_ETM simultaneously. This
turns off the Bcache.

KA680 Cache Memory Overview 4–57

KA680 Cache Memory Overview
4.4 Backup Cache

If Bcache errors are occurring only in part of the cache, software may be able to
avoid the portion of the cache that is in error by disabling it through the use of
the SIZE field in CCTL. If part of the cache is failing, a smaller cache size may
be selected so that only part of the cache RAMs is being used. The cache must be
flushed before changing the cache size so that the tags are correct.

This works only if the smallest cache size is not being used, and if the failing
areas of cache do not fall within the range of the smaller cache size selected.

4.4.15 How to Turn the Bcache On
When NVAX powers up, garbage data is stored in the Bcache tags and data. This
would result in ECC errors if the cache were turned on immediately.

Through IPR writes, every Bcache tag store entry must be written with cleared
OWNED and VALID bits. The value written to the tag is irrelevant, as long as
correct ECC is written to the tag store.

Once the tag store has been initialized, the cache may be enabled by setting
ENABLE in the CCTL register.

It is not strictly necessary to initialize the Bcache data RAMs with correct ECC
on powerup. ECC errors in the data RAMs are ignored if the corresponding tag
store entry is invalid. Since data RAM ECC errors are not detected on fills, the
cache data is self-initializing.

FORCE_HIT mode may be used to initialize the Bcache data RAMs with correct
ECC. If full quadword writes are used, no data RAM errors will be detected
during this process, since the RAMs are written without being read first. If
partial quadword writes are used, errors will be detected because of the read-
modify-write that is necessary. If the programmer sets the DISABLE_ERRORS
bit in the CCTL register, the NVAX will ignore these errors.

If the Bcache is in ETM, it may be incoherent with respect to memory because
of how it treats writes that hit valid but not owned in the cache (Table 4–32). In
addition, the Pcache, if enabled, is no longer a subset of the backup cache. The
procedure for turning on the Pcache and the Bcache as described in this section
must be followed.

If the Bcache is operating normally and is turned off for some reason, the
programmer must ensure that when it is re-enabled, all the OWNED and VALID
bits are cleared.

4.4.16 Backup Cache Errors
In general, the NVAX logs as much state as possible concerning errors and
notifies the Ebox and/or Mbox that an error has occurred. For every error, the
NVAX does at least one of the following to notify software of the error: hard error
interrupt, soft error interrupt, or machine check exception. The backup cache
goes into error transition mode when it detects any uncorrectable error from the
cache RAMs.

4–58 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.4 Backup Cache

Table 4–34 Backup Cache ECC Errors and NVAX CPU Error Responses

General Problem Specific Situation and Action Taken by NVAX CPU

Correctable ECC
error in the data
RAMs

Read hit for write-
back or read hit for
deallocate IPR

Soft error interrupt. The data for the
write-back is corrected and the write-back
continues normally.

Read hit for Pcache
miss

Soft error interrupt.

Read for write hit Soft error interrupt. The corrected data is
merged with the write data and written
into the RAMs.

Miss No error is reported.

Uncorrectable ECC
error in the data
RAMs (includes
addressing errors)

Read for write-back
or deallocate IPR

Soft error interrupt, puts backup cache
into ETM. The data cycle command for the
NDAL is changed to BADWDATA and the
write-back continues normally.

VALID-OWNED or
VALID-UNOWNED
read for Pcache miss

Soft error interrupt, puts backup cache into
ETM.

VALID-OWNED
DREAD_LOCK, first
quadword fails

Soft error interrupt, puts backup cache into
ETM.

VALID-OWNED
DREAD_LOCK
for Pcache miss,
quadword other than
the first one fails

Soft error interrupt, puts backup cache into
ETM.

Read for write, valid-
owned hit, or write
unlock

Hard error interrupt, puts backup cache
into ETM. When the error is detected, write
data has already been merged with the
corrupted data.

The NVAX inverts three of the ECC
check bits (bits 3,6,7), which gives a
high probability that when the data is
read again, an uncorrectable error will be
detected.

Miss No error is reported.

Correctable ECC
error in the tag
store

Any read or write
except WUNLOCK;
hit or miss

NVAX takes a soft error interrupt, assumes
the transaction missed, and sends a READ
or an OREAD to memory. If the location
was owned, making a deallocate necessary,
the outgoing address is corrected for the
write-back.

Note that if the transaction actually hit-
owned, the READ or OREAD is sent to the
NDAL followed by a write-back of the same
block. The errored location is corrected by
hardware when the tag and valid bit are
written for the fill.

(continued on next page)

KA680 Cache Memory Overview 4–59

KA680 Cache Memory Overview
4.4 Backup Cache

Table 4–34 (Cont.) Backup Cache ECC Errors and NVAX CPU Error Responses

General Problem Specific Situation and Action Taken by NVAX CPU

DMA cache
coherence
transaction miss

Soft error interrupt. Hardware does not
correct the bad location; it may be done by
software.

DMA cache
coherence
transaction hit

Soft error interrupt. Writes the corrected
tag, valid, and owned bits back into the tag
store when invalidating the entry. Uses
corrected address for the write-back if
necessary.

Uncorrectable ECC
error in the tag
store (includes
addressing errors)

Read for Pcache miss Soft error interrupt. Backup cache put into
ETM. The read is sent to memory; if the
backup cache actually owned the block, the
read will time out.

Write Soft error interrupt. Backup cache put into
ETM. The OREAD for the write is sent to
memory. If the cache actually owned the
block, the read will time out and the write
will then be sent to memory. The write will
then time out as well unless error handling
software cleans up the problem.

If the cache did not own the block, the
OREAD will complete, the write will be
merged with it, and the merged data will
be written to the cache.

WRITE_UNLOCK No tag store lookup is done, so this case
does not occur.

DMA cache
coherence
transaction

Soft error interrupt. Backup cache put
into ETM. Transaction is treated as a
miss with regard to the backup cache; the
invalidate is forwarded to the Pcache if the
cache coherence transaction were due to an
OREAD or a WRITE.

4–60 KA680 Cache Memory Overview

KA680 Cache Memory Overview
4.4 Backup Cache

4.4.16.1 Backup Cache Errors Incurred While in Error Transition Mode
Table 4–35 describes error handling when the backup cache is already in ETM.

Note

The table below only describes ETM error cases that differ from error
handling when the cache is in normal mode.

Table 4–35 Backup Cache ECC Error Handling During ETM

General Problem Specific Situation and Action Taken by NVAX CPU

Uncorrectable ECC
error in the data
RAMs (includes
addressing errors)

Read for WRITE_
UNLOCK, VALID-
OWNED hit

Hard error interrupt. When the error
is detected, write data has already been
merged with the corrupted data.

The NVAX inverts three of the ECC
check bits (bits 3,6,7), which gives a
high probability that when the data is
read again, an uncorrectable error will be
detected.

Uncorrectable ECC
error in the tag
store (includes
addressing errors)

Write Soft error interrupt. The write is sent
to memory. If the cache actually owned
the block, the write will time out in the
memory interface unless software forces the
Cbox to disown the block.

If the cache did not own the block, the
system handles the write as it normally
does for a cache that is off.

WRITE_UNLOCK Soft error interrupt. The write is sent to
memory as a quadword length WDISOWN.
Since the READ_LOCK was done just
previously, memory always believes that
the Bcache owns the block.

In most cases, the cache itself does not have
a record of owning the block since a READ_
LOCK to an owned block during ETM
forces a write-back of the block. In these
cases, the WRITE_UNLOCK handling is
very consistent.

There is only one case where the cache
does own the block: if we entered ETM on
or after the READ_LOCK and before the
WRITE_UNLOCK. In this case, the cache
may contain previously written data that is
not now reflected into memory. This may
be handled by software.

KA680 Cache Memory Overview 4–61

5
KA680 Main Memory System

The main memory system is implemented in the NVAX memory controller chip
(NMC). The NMC communicates with the MS690 memory boards over the MS690
memory interconnect. Up to four MS690 memory boards are supported, for a
maximum of 512 MB of main memory.

The NMC serves as an interface between the NDAL and the NVAX memory
interconnect. The NMI is comprised of the set of signals leading from the NMC
to the memory modules, and provides a 64-bit path to the memory modules. The
arbiter for the NDAL is also built into the NMC.

5.1 Overview of the NVAX Memory Subsystem Support Functions
There are two chips that support the memory subsystem:

• The NVAX memory controller chip (NMC).

• The GMI memory interface chip (GMX).

5.1.1 The NMC Chip
The NMC controls and passes data to or from one, two, three, or four buffered
memory modules using a bank interleaved memory access. It responds to
commands from the CPU and the I/O adaptor (NCA). The NMC is never a
commander on the NDAL.

The memory interconnect to the NMC supports the MS690 64-bit memory
modules.

The MS690 memory module can have one or two banks of 1 Mb or 4 Mb DRAMs.
Each bank consists of 72-1 Mb or 72-4 Mb Fast page mode 100 ns RAS access
time DRAMs. Of the 72 RAMs, 64 are used to store data. The remaining 8 RAMs
are used for storing ECC bits.

A given memory module is always populated with only one size of DRAM chips.
The size of the memory bank is determined by reading the configuration from the
memory modules. A single memory module has two banks of memory in which
each bank is 16 MB or 64 MB for 1 Mb and 4 Mb DRAMs, respectively.

There is one ownership bit (O-bit) for each hexaword of data in memory. These
ownership bits are implemented on the CPU module and are distinct from the
MS690 memory boards. The CPU uses ownership reads (OREADs) to obtain
ownership of a hexaword of data that it wishes to modify. Interlocked reads
are also done as OREADs. I/O devices use OREADs to perform interlock read
transactions. The ownership bits are set as a result of OREADs issued on the
NDAL and are cleared by a disown write. The control signals for the O-bits are
provided by a separate port on the NMC.

KA680 Main Memory System 5–1

KA680 Main Memory System
5.1 Overview of the NVAX Memory Subsystem Support Functions

The CPU uses I-stream or D-stream reads to read locations that it will not
modify, and ownership reads to access locations it wishes to modify (when the
backup cache is on). The I/O devices use D-stream reads to do reads without
locks, and ownership read/disown write pairs to implement locked transactions.

5.1.2 The GMX Chip
The GMX is a 20-bit data multiplexer and transceiver that buffers DRAMs on
a memory module. It also includes support for a high-speed memory diagnostic
function. It is the interface between the CMOS NMI and the TTL DRAM array.

5.2 Overview of NMC-supported NDAL Transactions
The NDAL is a 64-bit pended, synchronous bus with multiplexed data and
address lines and centralized arbitration. All the components that interface to it
use four clock signals from the NVAX CPU chip. The NMC is the arbiter and the
default bus master. The following transactions are supported on the NDAL:

• IREAD, I-stream read.

• DREAD, D-stream read (no lock or ownership).

• OREAD, D-stream read ownership.

• RDE, read data error.

• WRITE, write masked (no disown or unlock).

• WDISOWN, disown write. These transactions use WDATA cycles to transmit
write data. If the data is in error, a BADWDATA cycle is used instead.

• RDR0,RDR1,RDR2,RDR3, read data return (0 to 3).

• NOP.

5.3 Overview of NMI Transactions
The NMC performs the following transactions on the NMI:

• Quadword, octaword, and hexword OREADs, IREADs, and DREADs

• Longword, quadword, octaword, and hexword WRITEs (masked, no disown or
unlock)

• Quadword and hexword disown writes

• Signature read

• Memory refresh

• Fast diagnostic test mode read or write

5.4 NMC Architectural Overview
The NVAX memory controller (NMC) serves as an interface between the NDAL
(NVAX data-address lines) and the memory subsystem over a private interconnect
(NMI), which is 64 bits. The NMC also serves as the arbiter for the nodes on the
NDAL. The NMC is made up of five major sections - the NDAL interface, the
memory interface, the control and status registers, the transactions handler, and
the NDAL arbiter. This section describes these five sections and their interaction.

5–2 KA680 Main Memory System

KA680 Main Memory System
5.4 NMC Architectural Overview

5.4.1 NDAL Bus Interface Architecture
The system has three nodes on the NDAL - the NMC, the NVAX CPU, and
the NCA (CP-bus adapter). The NVAX CPU and the NMC can do memory
transactions on the NDAL, but only the CPU can do I/O transactions. The NMC
services all memory transactions (address<31:29>= 000..110) and I/O transactions
written within its I/O space (address 2101 0000 - 2101 804C, 2100 0110). The
NMC supports the following transactions on the NDAL:

• OREAD - ownership read

• IREAD - I-stream read

• DREAD - D-stream read

• WDISOWN - disown write

• WRITE - masked write

Every transaction on the NDAL is decoded and loaded into an appropriate input
queue in the NMC. The NMC has four input queues; CPU_QUE, IO1_QUE, IO2_
QUE, and WB_QUE. The CPU_QUE, IO1_QUE, and IO2_QUE queues (these
will be collectively referred to as non-writeback queues, or NWB_QUEs) buffer up
non-writeback transactions - OREADs, IREADs, DREADs, WRITEs. All disown
writes (WDISOWN) are buffered in the writeback queue - WB_QUE. All four
queues have one entry each.

5.4.1.1 The Non-Writeback Queues
Every NWB_QUE entry contains an address packet, a data packet, a valid bit,
a pending bit, and two mark bits. Figure 5–1 illustrates the organization of the
NDAL IN_QUEs in the NMC.

The address packet consists of the following:

• Address - 32 bits

• Command - 4 bits

• Commander ID - 3 bits

• Byte mask - 16 bits

• Transfer length - 2 bits

The data packet in the IO1_QUE and IO2_QUE consists of 4 quadwords of data
and the corresponding parity information. The data packet in the CPU_QUE
consists of one quadword and the corresponding parity. The CPU_QUE data
packet is only one quadword wide because during normal operation, the only
writes coming from the NVAX CPU and going to memory will be write-backs,
which will go into the write-back queue. The CPU_QUE will only be used when
the Bcache is off or in error transition mode. In this case, the NVAX CPU writes
are all of quadword length.

KA680 Main Memory System 5–3

KA680 Main Memory System
5.4 NMC Architectural Overview

Figure 5–1 NDAL IN_QUEs in the NMC

I O 2 _ Q U E

CPU_QUE

A

A

D

D

D

D

D

DDDD

AAAA

A A A A

A

A

T

T T T T

R

R

NDAL NMC I N T E R N A L

DATAPATH

I O 1 _ Q U E

ADDDD

D

D

A

AAAA

A A A

T T T T

R

I O 2 _ V A L I D

IO1_MARK

CPU_MARK

I O 1 _ V A L I D

CPU_MARK

IO2_MARK

C P U _ V A L I D

IO1_MARK

IO2_MARK

I O 2 _ P E N D

I O 1 _ P E N D

CPU_PEND

WB_QUE

WB_VALID

A

D

D

R

A

T

A

D

A

T

A

D

A

T

A

D

A

T

A

D

I O 1 _ Q U E

CPU_MARK

I O 1 _ V A L I D

IO2_MARK

ADDDD

D

D

A

AAAA

A A A

T T T T

R

TIMER

TIMER

TIMER

The valid bit is set whenever a transaction is loaded into the queue. This
also asserts a request to an internal arbiter, SEL_TRANS, which selects the
transactions to be serviced by the NMC according to their priority. The valid bit
is set until the transaction can be completed in memory. Refer to Section 5.4.9.1
for details.

When a memory transaction is serviced, and the corresponding hexaword
is owned by another NDAL node, a pending bit is set in the NWB_QUE
corresponding to that memory transaction. This bit is set until the corresponding
disown write is received. Every NWB_QUE is also associated with a pending
timer that counts the number of cycles a transaction has been waiting for a
disown write.

Each NWB_QUE entry has two mark bits corresponding to the other two NWB_
QUEs. For instance, the CPU_QUE has two mark bits - IO1_MARK and IO2_
MARK; the IO1_QUE has mark bits CPU_MARK and IO2_MARK; and the IO2_
QUE has mark bits CPU_MARK and IO1_MARK. These mark bits are used to
preserve ordering of the NDAL transactions. Ordering of transactions on the
NDAL has to be preserved because not all devices use interlocked transactions for
synchronization; some devices use memory reads, IO reads/writes, or interrupts.
The NMC does not monitor all these synchronization events on the NDAL and
therefore has to maintain order of transactions to the same hexaword address.
This is done in the following way.

5–4 KA680 Main Memory System

KA680 Main Memory System
5.4 NMC Architectural Overview

When the NMC sees a non-writeback memory transaction on the NDAL from a
node, it performs a hexaword address compare between the incoming address
and the addresses stored in valid entries of the NWB_QUEs corresponding to
the other two commander nodes on the NDAL. If there is a match, the mark
bit corresponding to the commander ID of the incoming transaction is set in the
NWB_QUE that matched. The incoming transaction will not be serviced by the
NMC until all transactions marked for its ID have been serviced. For example,
the CPU does a read to hexaword H1. H1 is compared with the addresses in
IO1_QUE and IO2_QUE. Suppose address H1 corresponds to a valid address in
IO1_QUE. The CPU_MARK bit is set in IO1_QUE. The CPU read from H1 is not
serviced by the NMC until the transaction from IO1_QUE is done. In this way,
the ordering of NDAL transactions is maintained by the NMC.

5.4.1.2 The Write-back Queue
WB_QUE contains an address packet, a hexaword data packet, and a valid bit
similar to the NWB_QUEs.

When a memory space disown write (WDISOWN) happens on the NDAL, the
NMC compares the hexaword address of the disown write to valid addresses
in the NWB_QUEs. If there is a match, and the corresponding transaction is
pending, the transaction is selected for completion along with the disown write.
This is described in greater detail in Section 5.4.9. The NMC allows disown
writes to bypass non-writeback transactions.

WB_QUE is given the highest priority by the NMC, except when Q22–bus devices
are accessing main memory. In this case, the CP-bus connected to the CQBIC is
given highest priority. This is done to reduce the latency on Q22–bus transactions
to main memory.

5.4.1.3 The OUT_QUE
When a read is serviced by the NMC, data to be returned on the NDAL is loaded
into an "outgoing" data queue, the OUT_QUE. The OUT_QUE is unloaded when
the NDAL is granted to the NMC. It can store up to 6 entries; each entry consists
of 64 bits of data, the commander ID, error information, and the quadword
number. Parity is generated as the information is sent from the OUT_QUE into
the output pad latch. Data from the OUT_QUE is returned in the order in which
it was loaded; the requested data is always returned first. Data is not necessarily
returned in consecutive cycles.

5.4.2 Memory Interface Architecture
The NMC supports up to 128 MB of memory using 1 Mb DRAMs only and up to
512 MB of memory using 4 Mb DRAMs only. The minimum memory increment
is 16 MB with 1 Mb DRAMs and 64 MB with 4 Mb DRAMs. The maximum
available physical memory is divided into 8 sets. Each set is 16 MB if memory is
made up of 1 Mb DRAMs and 64 MB if memory is made up of 4 Mb DRAMs. The
NMC supports the use of 1 Mb DRAM-based memory modules with 4 Mb-based
memory modules in the same system.

The NMC supports a single error correcting/double error detecting/single symbol
detecting (SEC/DED/SSD) code on memory data. On the 64-bit MS690 memory
modules, 72 bits are implemented - 64 bits for data and 8 ECC check bits.

Every hexaword in memory has a corresponding ownership bit (O-bit) associated
with it. Single error correction on the O-bits is done by generating 4 ECC check
bits across 8 O-bits. Since the system can support up to 512 MB of main memory,
corresponding to 16M hexawords, there are 16M O-bits implemented on the CPU
module. The NMC provides a separate O-bit port to access the O-bit memory.

KA680 Main Memory System 5–5

KA680 Main Memory System
5.4 NMC Architectural Overview

The NMI supports 2-way memory interleaving. Pagemode operation of the
DRAMs is used within a transaction but not across transactions. The NMC
provides the basic control and timing for data memory and ownership bit memory.
For details about the organization of the memory modules and the NMI interface,
refer to Section 5.6.

5.4.2.1 Data Memory Addressing
The NVAX memory space ranges from address<31:29> = 000 to address<31:29>
= 110. The NVAX CPU is configured in 30-bit address mode; therefore, the
maximum memory space it can support is 512 MB (bits <31:30> are ignored).
Each set of memory can be mapped anywhere in this 512 MB of NVAX memory
space (see the following paragraph). If a set is made up of 1 Mb DRAMs (16
MB set), 24 bits of the address are required to reference a byte within the set.
Address bits <23:0> are used for this purpose. Address bits <28:24> are used to
select the appropriate set. These bits contain the base address of this set. If a
set is made up of 4 Mb DRAMs (64 MB set), 26 bits of the address are required
to reference a byte within the set. Address bits <25:0> are used for this purpose.
Address bits <28:26> are used to select the appropriate set. These bits contain
the base address of this set.

A set can therefore be configured to map to any value of bits 28:24 if it is made
up of 1 Mb DRAMs (bits 28:26 if it is made up of 4 Mb DRAMs). This base
address mapping is stored in a corresponding configuration register. When a
validated base address value matches the incoming address, the corresponding
set is selected for reading or writing. Refer to Section 5.4.2.3 and Table 5–1 for
further details.

5.4.2.2 Memory Set Organization
A memory set can be 16 MB or 64 MB. Each set on an MS690 memory module is
made up of two banks of 72 DRAMs each. These banks are quadword interleaved;
bit <3> of the address is used to select between even and odd banks. When bit
<3> is 0, the even bank is selected; when bit <3> is 1, the odd bank is selected.
Figure 5–2 illustrates this.

Figure 5–2 Data Memory Addressing

Odd Bank Even Bank

CASB (Address Bit 3 = 1) CASA (Address Bit 3 = 0)

RAS <0>
1M(4M) X 72

RAS <0>
1M(4M) X 72

LJ-01456-TI0

5–6 KA680 Main Memory System

KA680 Main Memory System
5.4 NMC Architectural Overview

The following table shows the NDAL to memory address mapping for 1 Mb and 4
Mb DRAMs.

Table 5–1 Memory Address Mapping for Data

DRAM Size Base Address Row Address<10:0> Column Address<10:0>

1M <31:24> <23:14> <13:4>

4M <31:26> <25, 23:14> <24, 13:4>

5.4.2.3 Memory Configuration
The NMC supports eight memory sets. Corresponding to each set is
a configuration register and a signature register (Section 5.4.8.1.1 and
Section 5.4.8.1.2). MEMCON0 and MEMSIG0 correspond to memory set 0,
MEMCON1 and MEMSIG1 correspond to memory set 1, and so on. By loading
the appropriate address in the corresponding configuration register, a set can be
mapped to any 16 MB (for 1 Mb DRAMs) or 64 MB (for 4 Mb DRAMs) segment
of the NVAX memory space. For instance, a base address of 0 in MEMCON7
would map bank set 7 to the lowest 16 MB (for 1 Mb DRAMs) or 64 MB (for 4 Mb
DRAMs) of NVAX memory space.

Memory banks can be made up of 1 Mb DRAMs or 4 Mb DRAMs. The size of
each memory bank can be obtained by using the following 2-step procedure:

1. Software reads the corresponding memory signature register (one of
MEMSIG0 - MEMSIG7). This would cause the NMC to read the signature of
the appropriate memory set and return it on the NDAL.

2. Software should then determine from this signature the type of memory set
on the selected module, and then program the memory configuration register
appropriately. Also stored in each memory configuration register is the base
address to which each memory set responds, and a valid bit to indicate that
the contents of the associated memory configuration register (MEMCON0 -
MEMCON7) is valid.

A signature of 11 (binary) indicates that the corresponding set is not present in
the system. The total number of sets in the system can be determined by keeping
count of the number of signatures with no sets. Having determined the number of
sets and their sizes, software can program the base addresses in the base address
registers.

The signatures that will be returned for each of the four possible memory
configurations a memory set may have are listed in Table 5–2.

Table 5–2 Memory Signature Configurations

Signature with 1 Mb DRAMs Signature with 4 Mb DRAMs

5248AA92 2D875565

WARNING

The NMC requires that all sets with 4 Mb DRAMs be mapped on aligned
64 MB boundaries. This is a requirement because of the way the row
and column addresses are generated from the incoming address. Refer to
Section 5.4.2.1 for details. To enable this, all bank sets of 4 Mb DRAMs
should be mapped to lower addresses than sets of 1 Mb DRAMs.

KA680 Main Memory System 5–7

KA680 Main Memory System
5.4 NMC Architectural Overview

For example, consider a system with two bank sets of memory, where the
first set is made up of 1 Mb DRAMs and the second is made up of 4 Mb
DRAMs. MEMCON2, which corresponds to set 2 (the 4M bank is on the
second memory module), should be mapped to base address <31:26> =
000000 and MEMCON0, which corresponds to set 0 (the 1M bank is on
the first memory module), should be mapped to base address <31:24> =
00000100. If the base addresses were programmed the other way, the 4M
set would start on an unaligned 4 MB boundary.

5.4.2.4 Ownership Bit Memory Organization and Addressing
During normal operation, the function of O-bit memory is totally transparent to
software. The O-bit memory serves to maintain a working record of ownership of
each hexaword of main memory to prevent simultaneous write access by both the
NVAX CPU and the NCA (acting on behalf of an I/O device). This is necessary
because of the write-back protocol used by the CPU’s Bcache.

Every hexaword in memory has one ownership bit associated with it. 16M O-bits
are implemented, thus supporting a maximum main memory of 512 MB.

O-bit memory is implemented on the CPU module. The NMC provides a separate
port for this O-bit memory. The organization and addressing of this memory
is different from that of the data memory. Eight O-bits are stored in every
O-bit memory location. The NMC accesses eight O-bits at a time, and based
on address<7:5>, decides which of the eight O-bits corresponds to the current
hexaword. This scheme requires two 1M banks of 8 O-bits each to support a total
of 16M O-bits; thus requiring six 1 Mb x 4 DRAMs. Each bank of O-bits has a
separate CAS. The O-bit memory addresses are independent of memory address
mapping. All O-bits are addressed using physical addresses from the NDAL.

Address bits <7:5> are used to select a particular O-bit in the 8-bit field. Address
bit<26> is used to select the O-bit bank. Address bits <28,27,25:8> are used to
address locations in the DRAMs.

Table 5–3 and Figure 5–3 illustrate the mapping scheme.

5–8 KA680 Main Memory System

KA680 Main Memory System
5.4 NMC Architectural Overview

Figure 5–3 O-bit Port Addressing

1M X 4
1M X 4 1M X 4

1M X 4

O_CAS_L<0>

O_CAS_L<1>

O _ M A < 9 : 0 >

O _ R A S _ L , O_WE_L

O _ M D < 3 : 0 >O _ M D < 7 : 4 >O _ M D < 1 1 : 8 >

(ADDRESS<26> = 0)

1M X 4

(ADDRESS<26> = 1)

1M X 4

OR
2 5 6 K X 4

OR

2 5 6 K X 4

OR

2 5 6 K X 4

OR

2 5 6 K X 4

OR

2 5 6 K X 4

OR

2 5 6 K X 4

Table 5–3 O-bit Port Address Mapping

Maximum Main Memory O-bit Row Address<9:0> 1
O-bit Column
Address<9:0>2

512 MB <28,25:17> <27,16:8>

1Address<26> determines the O-bit bank to be selected. If address<26> is 0, O_CAS_L<0> is asserted;
if address<26> is 1, O_CAS_L<1> is asserted.
2Address<7:5> are used to select one of the eight O-bits in the 8-bit field.

KA680 Main Memory System 5–9

KA680 Main Memory System
5.4 NMC Architectural Overview

5.4.3 NMI Transactions
The NMC supports the following transactions on the NMI:

• Refresh

• Signature read

• Data read

• Unmasked data write

• Masked data write

• Nonexistent memory access

5.4.3.1 Refresh
The NMC provides the mechanism to refresh the DRAMs for the data and
ownership memories. If 1 Mb DRAMs are used, every row has to be refreshed
once every 8 ms. If 4 Mb DRAMs are used, every row has to be refreshed
once every 16 ms. This means that the interval between refreshes of two
consecutive rows has to be 15.62 µs. When idle, the NMC generates a new
refresh transaction every 13.44 µs. If a refresh request happens during a
transaction, that transaction is completed before the refresh transaction is done
on the NMI. The NMC allows a margin of 2.18 µs over the DRAM specification
for this reason. The NMC has an internal refresh interval timer that initiates a
refresh transaction every 320 NDAL cycles. The NMC also provides the refresh
address for the DRAMs on the MA<10:0> lines. It contains a 10-bit binary
counter, the refresh address counter, which generates consecutive addresses for
every refresh. 1 Mb DRAMs need a 9-bit refresh address; 4 Mb DRAMs need a
10-bit refresh address. The 1 Mb DRAMs are thus refreshed at twice the rate of
the 4 Mb DRAMs.

An O-bit memory refresh is done along with a data memory refresh. Refresh
address <9:0> is mapped onto O_MA<9:0>.

5.4.3.2 Signature Read
A signature read transaction is initiated by doing a read to one of the memory
signature registers, MEMSIG0-7. On these transactions, there is no O-bit access.
Data received from the memory module is returned unchanged on the NDAL.

5.4.3.3 Read/Write Transactions
The NMC does quadword, octaword, or hexaword read transactions, and
longword, quadword, octaword, or hexaword write transactions on the NMI. The
NMI memory is quadword interleaved. Consecutive quadwords in 64-bit mode are
read/written from/to the even and odd banks of each memory set. A transfer on
the NMI is defined as one access from/to the DRAMs. A quadword transaction is
one transfer, an octaword two, and a hexaword four; a longword write transaction
is implemented as a read-modify-write. The requested data is always accessed
first. The NMC uses page mode of the DRAMs to do a multitransfer transaction
but it does not use page mode between two transactions.

• When the NMC starts a memory read transaction on the NMI, it
simultaneously issues an O-bit read of the ownership RAMs on the CPU
module. If the transaction is a memory read and the O-bit is set, the
transaction is kept pending. The read data is discarded and subsequent
transfers are aborted. (Refer to Section 5.4.9 for details.)

5–10 KA680 Main Memory System

KA680 Main Memory System
5.4 NMC Architectural Overview

• If the NDAL transaction being serviced is an unmasked write, the write
is done in parallel with an O-bit read. If the hexaword being written is
found to be owned, the write is aborted after the first transfer, and is kept
pending. (Refer to Section 5.4.9.) The first transfer can be done before it is
known whether the location is owned because even if it is owned, since the
NDAL transaction was an UNMASKED write, the entire hexaword will be
overwritten as soon as the disown write comes from the owner. Therefore, it
is all right to allow the first data transfer to take place to the memory before
it is known whether the location is owned.

• If the NDAL transaction is a masked write, a single transfer read is done
and the O-bit is read in parallel. If the write is not owned, it is completed by
merging the write data with the data from memory and writing it back. If the
write data is owned, it is aborted after the read and kept pending.

• If the NDAL transaction that is being serviced is a disown write, and it is
found to be unowned when the O-bit is read, an error is flagged but the write
is completed.

• If a write transaction has a completely masked transfer (all corresponding
byte masks are equal to 0; no bytes will be written), then the CAS
corresponding to that transfer is not asserted (that is, no write is done to
the DRAMs).

5.4.3.4 Nonexistent Memory Access
If the incoming address bits <28:24> (<28:26> for 4 Mb DRAMs) do not match any
of the programmed base addresses in the memory configuration register, the NMC
memory interface flags an error by returning read data error NDAL cycle on a
read or requesting a hard error interrupt (SCB offset=6016) on writes. In every
case, the NMC responds to the NDAL transaction regardless of the fact that it
is to nonexistent memory. This prevents errors in the NVAX CPU resulting from
NDAL timeouts on read transactions.

5.4.4 Error Checking for Data Memory
The NMC implements a single bit error correcting, double bit error detecting,
single symbol (nibble) error detecting (SEC/DED/SSD) code across 64 bits of
memory data (Figure 5–4). On memory write transactions, the NMC generates
ECC on the outgoing data and writes it into memory along with the data. On
memory read transactions, the NMC reads the memory data, generates the
corresponding ECC, compares the generated check bits with the incoming check
bits, and generates a syndrome. If the syndrome is a 0, there is no error in the
incoming data. If the syndrome matches a column in the code of Figure 5–4,
there is a correctable error in the corresponding data bit. The NMC returns the
corrected data. If the syndrome is not 0 and does not match any of the columns,
then the error is uncorrectable.

If, during a write transaction, there is a parity error in the NDAL data, or if
an illegal command is received on an NDAL write data cycle, or a BADWDATA
NDAL command (Section 3.11) is received on the NDAL, then the NMC forces
incorrect check bits in memory. This is done by inverting the three least
significant check bits. When, at a later stage, this data is read from memory,
an uncorrectable syndrome of 0716 will be received.

KA680 Main Memory System 5–11

KA680 Main Memory System
5.4 NMC Architectural Overview

Figure 5–4 SEC/DED/SSD Code Used in the NMC

DDDD

1101
1010
0111
0001
1111
1111
1110
0000

DDDD

0001
0010
1100
1111
1001
0110
0000
0000

0010

0000

1101
1010
0111
0001

1100
1011

0001

0100
0000

DDDD DDDD DDDD DDDD

1111

DDDD

0000

DDDD

0000

DDDD DDDD DDDD DDDD DDDD DDDD DDDD DCCC
6BBB

CCCC CDDD

S0
S1
S2
S3
S4
S5
S6
S7

LJ-01321-TI0

BBBB

0110
0001

1000
0100

0100
1000

0000

1101
1011

0111

1000
0010

0010

1110
1101
0011
1111
0110

0000

1001

0011
0100
1000
0001
0111
1101
1011

0010
0100
1001
0001
1101
1011
0111

0001
0010
1100
1111
1001
0110
1111
1111

1101
1011
0110
0001
0010
0100
0111
1111

1101
1010
0111
0001
0100
1000
1101
1111

1100
1011
0111
0001
1000
0010
1011
1111

1110
1101
0011
1111
0110
1001
0000
1111

0011
0100
1000
0001
0111
1101
0100
1111

0010
0100
1001
0001
1101
1011
1000
1111

0100
1010
0001
1000
0000
0000
1000
0000

0000
0000
0000
1000
0100
0010
0001
0000

0000
0000
0000
0100
0010
0001
0111
1111

S0, S1, S2, S4, S5, S6 ---- Even Parity

*S7 Depends on Data Bits <63:32> Only.

*

S3, S7 ---- Odd Parity

0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 4 5 6 7
0 0 0 0 1 1 1 1 2 2 2 2

0 1 2 3
2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5
8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

3 3 3 3 4 4 4 4 5 5 5 5 B 6 6 6
6 7 8 9 0 0 1 2 3 4 5 6 7 1 2 3

5.4.5 Error Checking for Ownership Bit Memory
The NMC supports single error correction across eight O-bits in memory. An
O-bit memory read/write accesses eight O-bits and four ECC check bits. During
an O-bit read transaction, the NMC generates the check bits on the incoming
O_MD<7:0> (the eight O-bits being read) and XORs them with the received check
bits, O_MD<11:8>. If the resulting syndrome is 0, there is no error in the data.
If the syndrome matches any of the columns in Figure 5–5, then the error is
correctable. This code does not detect all multiple bit errors. Other than single
bit errors the NMC detects the all 0s and all 1s failures on O_MD<11:0>.

Figure 5–5 Single Error Correcting Code for O-bit Memory

C C C C
B B B B
0 1 2 3 0 1 2 3 4 5 6 7

D D D D D D D D

S0
S1
S2
S3

LJ-01322-TI0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 1 1 0 1 0 0 1
1 1 0 1 0 1 1 0
1 0 1 1 0 1 0 1
0 1 1 1 1 0 1 0

5.4.6 Memory Diagnostic Support
The NMC facilitates data memory testing in two ways - fast diagnostic mode, and
diagnostic check bit mode. These modes can be used separately or simultaneously.

The NMC allows memory error detection to be disabled to allow testing the check
bit memory DRAMs. The NMC does not have to be in either of the two diagnostic
modes for memory error dectection to be disabled. It can be disabled by setting
MMCDSR<DIS_MEM_ERR_DETECT>.

WARNING

Both of these modes are for diagnostic purposes only; they should not be
set during normal system operation.

5–12 KA680 Main Memory System

KA680 Main Memory System
5.4 NMC Architectural Overview

5.4.6.1 Fast Diagnostic Mode
Fast diagnostic mode allows main memory to be tested at a fast rate by reading,
writing, and comparing locations from more than one memory bank at a time.
The NMC enters fast diagnostic mode when MMCDSR bit<FAST_DIAG_MODE>
is set. (Refer to Table 5–8.) The implementation of fast diagnostic mode is the
same as that in the PELE system. (Refer to the GMX specification.) When the
NMC is in fast diagnostic mode, it sets MODE_SEL<1> to "1" on every read
or write transaction. If at the same time the FDM second pass bit is set in
MMCDSR (Table 5–8), MODE_SEL<0> is also set to "1".

5.4.6.2 Diagnostic Check Bit Mode
Diagnostic check bit mode enables software to force an arbitrary value on the
data memory check bits. Diagnostic check bit mode can be entered by setting
MMCDSR bit<DIAG_CKB_MODE>. (Refer to Table 5–8.)

When diagnostic check bit mode is set, on a memory write transaction, the check
bit field in MMCDSR<MEM_DIAG_CKBS> is written to memory instead of the
check bits generated by the ECC logic. The check bits received on a memory
read transaction can be obtained by reading MMCDSR<MEM_DIAG_CKBS> or
MMCDSR<MEM_CHECK_BITS>, regardless of the value of MMCDSR<DIAG_
CKB_MODE>.

Memory tests using diagnostic check bit mode should be run from the ROM with
both the Pcache and Bcache off. This forces all memory reads to be of quadword
length and is required when using diagnostic check bit mode. The NMC only
logs the check bits corresponding to the first two transfers of a memory read
transaction. If software wants to read the memory check bits, it should read the
corresponding memory location and immediately follow it up with an MMCDSR
read. This is necessary to ensure that the read check bits loaded in MMCDSR
correspond to the correct read data. The NMC logs the diagnostic check bits on
any memory read transactions, including the read part of a masked write.

5.4.7 Ownership Bit Memory Diagnostic Support
The NMC provides 4K quadword aligned registers (O-bit data registers) to access
the O-bit memory in I/O space. These registers range from 2101 0000 - 2101
7FFF. The NMC supports a maximum of 2M O-bit locations. These locations
can be made up of 512 segments, where each segment consists of 4K O-bit
locations. One of the 4K NMC O-bit data registers corresponds to 512 possible
O-bit locations, one for each segment. The segment number can be specified in an
O-bit address and mode register. Bits <14:3> of the addresses of MODRs along
with the segment number in the O-bit address and mode register are used to
specify an O-bit location.

The address and mode register also contains a 3-bit mask field to specify a
particular O-bit within an O-bit memory location.

O-bit memory can be accessed in one of 5 modes - reconstruction mode, memory
test mode with ECC, memory test mode with forced check bits, fast memory test
mode with ECC, and fast memory test mode with forced check bits.

To perform a diagnostic operation on O-bit memory, software should load the
appropriate address and mode in the O-bit address and mode register (MOAMR),
and then do a read or a write to the appropriate O-bit data register. The different
O-bit diagnostic modes are described in the following sections.

KA680 Main Memory System 5–13

KA680 Main Memory System
5.4 NMC Architectural Overview

5.4.7.1 Reconstruction Mode
This mode allows software to change the value of a particular O-bit. The O-bit
address register should be loaded with the segment address corresponding to that
O-bit, the mask should be written, and the mode should be set to reconstruction.
Then, software should do a write transaction to the corresponding O-bit data
register. This would cause the NMC to do a read-modify-write transaction on
O-bit memory location and update the O-bit.

A read in this mode results in the entire O-bit field being returned on bits <11:0>.

5.4.7.2 Memory Test Mode with ECC
This mode allows software to overwrite the data part of an O-bit memory location
without the check bits. The check bits are generated by the ECC logic. A write to
an O-bit data register in this mode forces the data bits <7:0> to be written onto
the corresponding O-bit memory location.

A read in this mode results in the entire O-bit field being returned.

5.4.7.3 Fast Memory Test Mode with ECC
The fast memory test mode with ECC allows software to overwrite O-bit memory
data as in memory test mode with ECC. In this mode, two locations are written
and read. When a write is done to an O-bit I/O address in this mode, data from
bits <7:0> and <19:12> is written to two consecutive O-bit memory locations,
respectively.

A read of the O-bit data register in this mode returns data from two consecutive
O-bit locations in bits <11:0> and <23:12>, respectively.

5.4.7.4 Memory Test Mode with Forced Check Bits
This mode allows software to overwrite one entire O-bit memory location (eight
O-bits plus four check bits) with any desired pattern. A write to an O-bit
data register in this mode forces the data bits <11:0> to be written onto the
corresponding O-bit memory location.

A read of the O-bit data register in this mode results in a read of the
corresponding O-bit memory location. The data that is read from O-bit memory is
returned on bits <11:0>.

5.4.7.5 Fast Memory Test Mode with Forced Check Bits
The fast memory test mode with forced check bits allows software to overwrite
O-bit memory locations as in memory test mode with forced check bits. In this
mode, two locations are written and read. When a write is done to an O-bit
data register in this mode, data from bits <11:0> and <23:12> is written to two
consecutive O-bit memory locations, respectively.

A read of the O-bit register in this mode returns data from two consecutive O-bit
locations on bits <11:0> and <23:12>, respectively.

5.4.8 I/O Section
This section consists of the control and status registers (NMC_CSRs) and the
decoders for I/O and memory addresses. It does the following operations:

• CSR reads

• CSR writes

5–14 KA680 Main Memory System

KA680 Main Memory System
5.4 NMC Architectural Overview

• Clear write buffer

The I/O space of the NMC is defined as 2101 0000 - 2101 804C, 2100 0110 (hex);
the NMC acknowledges these I/O addresses only.

5.4.8.1 Registers
The NMC has 21 control and status registers (NMC_CSRs) that can be read
or written by the CPU. These CSRs are addressed as aligned longwords only.
Quadword reads or writes to NMC_CSRs are not supported.

In addition, it has 4K O-bit data registers, which are quadword-aligned.

All the NMC_CSRs are cleared on power-up reset, unless otherwise specified in
the following description. Write operations to read-only registers do not cause any
errors and are responded to as a normal operation; however, the operation does
not alter any NMC register contents. Table 5–4 lists all the registers and their
addresses. Included in this list is the clear write buffer register.

Table 5–4 NMC Registers

Number Name Address
No. of
Registers

MEMCON0-7 Memory Configuration Registers 2101 8000 - 801C 8

MEMSIG0-7 Memory Signature Registers 2101 8020 - 803C 8

MEAR Error Address Information Registers 2101 8040 1

MESR Error Status Register 2101 8044 1

MMCDSR Mode Control and Diagnostic Register 2101 8048 1

MOAMR O-bit Address and Mode Register 2101 804C 1

MEMCON0-19 NMC Registers 2101 8000 - 804C 20

MCWB Clear Write Buffer Register 2100 0110 1

MODRs O-bit Data Registers 2101 0000 - 7FFF 4K

5.4.8.1.1 Memory Configuration Registers (MEMCON0 - MEMCON7) The NMC
supports up to 8 memory sets of 16 MB with 1 Mb DRAMs and 64 MB with 4
Mb DRAMs. Each set is associated with one software programmable register.
Each register stores set specific information consisting of a set base address, a set
enable, and the set signature. These registers are written following a signature
read transaction from MEMSIG0-7 and the computation of the base addresses.
The following is a description of all the bit fields in these registers.

KA680 Main Memory System 5–15

KA680 Main Memory System
5.4 NMC Architectural Overview

Figure 5–6 Memory Configuration Registers

3 2 / 6 4 - B I T MODE

MEMCON0-7 : 2 1 0 1 8 0 0 0 - 2 1 0 1 8 0 1 C

01234567891 01 11 21 31 41 51 61 71 81 92 02 12 22 32 42 52 62 72 82 93 03 1

000000000000000000000

BASE ADDRESS V A L I D

SIGNATURE

BASE ADDRESS

00

Table 5–5 Memory Configuration Registers, MEMCON0-7

Register Field Bits
Type, Reset
State Description

Base Address
Valid / Set
Enable

31 RW, 0 This read/write bit indicates that the base address
programmed in bits <28:24> and the signature in bits
<2:1> are valid. This bit is cleared on powerup. It
should be set when the base address and the signature
are written to enable addressing of the set. In addition,
this bit may be used by diagnostics to selectively disable
sets.

Unused 30:29 MBZ, 0 This field reads as 0.

Base Address 28:24 RW, 0 Specifies the memory base address of the related set. If
the RAM size of the set is 1 Mb, then all 5 bits are used
in the address comparison. If the RAM size of the set
is 4 Mb, then only bits <28:26> are used in the address
comparison. In either case, all 5 bits can be read and
written. See Section 5.4.2.1 and Section 5.4.2.3 for
details on the use of the base address.

Unused 23:3 MBZ, 0 This field reads as 0.

RO—Read-only
RW—Read/write
WC—Write one-to-clear
MBZ—Read-only, read as 0

(continued on next page)

5–16 KA680 Main Memory System

KA680 Main Memory System
5.4 NMC Architectural Overview

Table 5–5 (Cont.) Memory Configuration Registers, MEMCON0-7

Register Field Bits
Type, Reset
State Description

Signature 2:1 RW, 0 Indicates the RAM size of the corresponding memory
set. It has to be written to by software after doing a
signature read of the corresponding set.

Value Configuration

00 Unassigned

01 RAM size 1 Mb

10 RAM size 4 Mb

11 Nonexistent bank

Must be 1 0 RW, 0 This bit must be set to a 1 by software. This bit, when
clear, specifies memory controller operation to be 32-
bit mode. when set, it indicates 64-bit mode. Since the
KA680 only supports 64-bit memory, this bit must be set
to a 1 by ROM software during power-up initialization
to enable operations with memory.

5.4.8.1.2 Memory Signature Registers (MEMSIG0 - MEMSIG7) Each set of
physical memory banks has a signature register associated with it. MEMSIG0
corresponds to set 0, MEMSIG1 to set 1, and so on. A read from any of these
registers causes the NMC to do a signature read transaction on the NMI to the
corresponding set. The information returned on a read to these registers should
be written by software to the appropriate bits in the corresponding memory
configuration register (MEMCON0-7). For instance, a read from MEMSIG0
would return the signature of memory set 0; this should be written by software to
MEMCON0.

The signature information includes the size of the DRAMs used to make up that
memory set and the width of memory data, if the set is present in memory. If the
set is not present, a value of FFFFFFFF (hexadecimal) is returned as read data.
During system power-up configuration and self-test, the ROM software reads
the signature values. Based on the signature that is returned read from each
MEMSIG register, the corresponding MEMCON register should be programmed
accordingly. Table 5–2 shows the two possible values that will be returned when
a MEMSIG register is read for an existing memory set.

5.4.8.1.3 Error Address Information Register (MEAR) When an error is logged
by the NMC in MESR, the corresponding address and commander ID are logged
in MEAR. This information is loaded by the first error and is not changed until
all the error bits are cleared. These registers are read-only and have valid
information only when an error bit is set in MESR.

KA680 Main Memory System 5–17

KA680 Main Memory System
5.4 NMC Architectural Overview

Figure 5–7 Error Address Information Register

0 LONGWORD ERROR ADDRESS

MEAR : 2 1 0 1 8 0 4 0

3 1 3 0 2 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

I D

Table 5–6 Error Address Information Register, MEAR

Register Field Bits
Type, Reset
State Description

Unused 31 MBZ, 0 This bit is unused and is read as 0.

ID 30:28 RO, 0 This field contains the ID of the commander
corresponding to the transaction in error. The ID is
logged on NDAL errors only; memory errors do not log
the ID.

Error Address 27:3 RO, 0 This field contains the hexaword address at which the
error occurred. This field is always logged.

Error Address 2:1 RO, 0 This field indicates the quadword at which the error
occurred.
This field is logged on memory errors.
This field is logged on NDAL write data parity errors,
and on NDAL illegal write command errors.
This field is not valid on unowned disown write errors
and disown write timeout errors. The address is valid
up to the hexaword only.
This field is not valid on nonexistent memory errors.

Error Address 0 RO, 0 This bit indicates the longword address of a memory
transaction with an error.
This bit is not valid on NDAL errors.

RO—Read-only
RW—Read/write
WC—Write one-to-clear

5.4.8.1.4 Error Status Register (MESR) The NMC reports error information in
MESR.

5–18 KA680 Main Memory System

KA680 Main Memory System
5.4 NMC Architectural Overview

Figure 5–8 Error Status Register

0 0 0

LOST_MEM_HARD_ERR

LOST_NDAL_SOFT_ERR

NDAL_ILLEGAL_WR_CMD

MEM_HARD_ERR

OB_CORR_ERR

MESR : 2 1 0 1 8 0 4 4

01234567891 01 11 21 31 41 51 61 71 81 92 02 12 22 32 42 52 62 72 82 93 03 1

OB_FATAL_ERR

OB_SYNDROME

LOST_MEM_SOFT_ERR

MEM_SOFT_ERR

MEM_SYNDROME

MEM_NXM

NDAL DATA P A R I T Y ERR

TRANS_TIM_OUT
DISOWN_UNOWNED
NO_ACK_ERR

LOST_NDAL_HARD_ERR
ERROR SUMMARY

BAD_NDAL_ERR
RESERVED_CMD

Table 5–7 Error Status Register, MESR

Register Field Bits
Type, Reset
State Description

Error Summary 31 RO, 0 This bit is "1" when any error is logged by the
NMC in this register. It is clear when all the
error bits are cleared.

LOST_NDAL_HARD_
ERR

30 WC, 0 This bit is set if a pending transaction times
out, a disown write is found to be unowned,
or a nonexistent address is received on the
NDAL, and MEAR cannot be loaded because
of a previous error that has not been cleared.

LOST_NDAL_SOFT_ERR 29 WC, 0 This bit is set if a an NDAL data parity
error or an illegal write command is detected
on the NDAL, and MEAR cannot be loaded
because of a previous error that has not been
cleared and soft error logging is enabled
(MMCDSR<EN_SOFT_ERR_LOG> is 1). This
bit is also logged if an NDAL data parity error
or an illegal write data command is detected
on the NDAL and soft error logging is disabled
(MMCDSR<EN_SOFT_ERR_LOG> is 0).

RO—Read-only
RW—Read/write
WC—Write one-to-clear
MBZ—Read-only, read as 0

(continued on next page)

KA680 Main Memory System 5–19

KA680 Main Memory System
5.4 NMC Architectural Overview

Table 5–7 (Cont.) Error Status Register, MESR

Register Field Bits
Type, Reset
State Description

NDAL_RESERVED_CMD 28 WC, 0 This bit is set when the NMC receives a
reserved command on the NDAL. The address
is not logged in MEAR.

BAD_NDAL_ERR 27 WC, 0 This bit is set when the NMC receives a
parity error on an NDAL address cycle or if it
receives an illegal length code on an otherwise
valid transaction. The address is not logged
in MEAR.

NO_ACK_ERR 26 WC, 0 This bit is set when the NMC does not receive
ACK_L when it returns read data on the
NDAL. The address is not logged in MEAR.

DISOWN_UNOWNED 25 WC, 0 This bit is set if the NMC receives a disown
write to an unowned location and MEAR can
be loaded with the address information.

PEND_TRANS_TIM_OUT 24 WC, 0 This bit is set when a pending transaction
times out waiting for the corresponding
disown write, and the address can be saved in
MEAR.

NDAL_ILLEGAL_WR_
CMD

23 WC, 0 This bit is set by the NMC when it receives a
command other than WDATA or BADWDATA
on the data part of an NDAL write, and
MEAR is free to load address information.

NDAL_DATA_PAR_ERR 22 WC, 0 This bit is set if a parity error is detected
on the NDAL during a data cycle of a write
transaction, and if MEAR is free to load the
address information.

Unused 21 MBZ, 0 This bit reads as 0.

MEM_NXM 20 WC, 0 This bit is set if the address received on
the NDAL is in memory space, but does not
match any of the programmed banks in the
NMC memory configuration registers. It is set
only if MEAR can be loaded with new address
information.

MEM_SYNDROME 19:12 RO, 0 This field stores the memory error syndrome
and is loaded when an ECC data memory
error is detected on the NMI. The syndrome is
logged only when the corresponding memory
error is not logged as a lost error.

MEM_HARD_ERR 11 WC, 0 This bit is set if an uncorrectable ECC error
occurred during a memory read transaction,
and if MEAR can be loaded with address
information.

MEM_SOFT_ERR 10 WC, 0 This bit is set if a correctable ECC error
occurred during a memory read or a masked
write transaction, or if an uncorrectable error
occurred during a masked write transaction,
and if MEAR can be loaded with address
information.

(continued on next page)

5–20 KA680 Main Memory System

KA680 Main Memory System
5.4 NMC Architectural Overview

Table 5–7 (Cont.) Error Status Register, MESR

Register Field Bits
Type, Reset
State Description

LOST_MEM_HARD_ERR 9 WC, 0 This bit is set if an uncorrectable ECC error
occurred during a memory read transaction,
and if MEAR could not be loaded with address
information because a previous error bit had
been logged in MESR.

OB_SYNDROME 8:5 RO, 0 This field stores the O-bit error syndrome
when an error is detected in O-bit memory
reads. The O-bit syndrome is logged only
when the corresponding O-bit error is not
logged as a lost error.

OB_CORR_ERR 4 WC, 0 This bit is set if a correctable O-bit memory
error occurred during an O-bit read
transaction, and if MEAR can be loaded with
address information.

OB_FATAL_ERR 3 WC, 0 This bit is set if the O-bit ECC logic detects a
syndrome of 1111(binary), indicating that the
incoming 12-bit O-bit data has an all 1s or all
0s failure. No address information is logged.

LOST_MEM_SOFT_ERR 2 WC, 0 This bit is set when: a correctable error occurs
during a memory read or a masked write
transaction, a correctable error occurs on an
O-bit read transaction, or an uncorrectable
data memory error occurs on a masked write
transaction, and a previous error has been
logged in MEAR and soft error logging is
enabled (MMCDSR<EN_SOFT_ERR_LOG> is
1). This bit is also set when: a correctable
error occurs during a memory read or a
masked write transaction, a correctable error
occurs on an O-bit read transaction, or an
uncorrectable data memory error occurs on
a masked write transaction and soft error
logging is disabled (MMCDSR<EN_SOFT_
ERR_LOG> is 0), irrespective of the state of
other error bits in MESR.

Unused 1:0 MBZ, 0 This field is unused.

5.4.8.1.5 Mode Control and Diagnostic Status Register (MMCDSR) NMC
operating modes are controlled by bits in this register. In addition, this register
is used for storing diagnostic status information. The following is a description of
all the bit fields in this register.

KA680 Main Memory System 5–21

KA680 Main Memory System
5.4 NMC Architectural Overview

Figure 5–9 Mode Control and Diagnostic Status Register

QBUS_ON_IO1

FLSH_BCACHE

MMCDSR : 2 1 0 1 8 0 4 8

01234567891 01 11 21 31 41 51 61 71 81 92 02 12 22 32 42 52 62 72 82 93 03 1

FRC_REFRESH
DIS_REFRESH

EN_SOFT_ERR_LOG

TIMEOUT_SCALER

MEM_DIAG_CHECKBITS

MEM_CHECKBITS

DIAG_CHECKBIT_MODE
FDM_SECOND_PASS
FAST_DIAG_MODE

FRC_WRONG_PAR_DATA_OUT
R E F _ I N T E R V A L _ S E L

FRC_WRONG_PAR_ADDR_IN
FRC_WRONG_PAR_DATA_IN

DIS_MEM_ERR_DETECT

0

Table 5–8 Mode Control and Diagnostic Status Register, MMCDSR

Register Field Bits
Type, Reset
State Description

FAST_DIAG_
MODE

31 RW, 0 This bit provides the mechanism for speeding
up initial diagnostic testing of memory. This bit
indicates to the NMC that it is in fast diagnostic
mode.

FDM_SECOND_
PASS

30 RW, 0 In a system with two sets of memory banks, fast
diagnostic mode has to be done in two passes.
This bit has to be set when the second pass of
the test has to be run. This bit is valid only when
MMCDSR<FAST_DIAG_MODE> is set.

DIAG_CKB_MODE 29 RW, 0 When set to 1, this bit enables the contents of
MMCDSR <MEM_DIAG_CKBS> to be driven onto
the check bit field of the memory data, instead of
the normal ECC check bits. When this bit is a 0,
the contents of MMCDSR<MEM_DIAG_CKBS>
are ignored during memory write transactions.
MMCDSR<MEM_DIAG_CKBS> should be valid
when this bit is set.

RO—Read-only
RW—Read/write
WC—Write one-to-clear

(continued on next page)

5–22 KA680 Main Memory System

KA680 Main Memory System
5.4 NMC Architectural Overview

Table 5–8 (Cont.) Mode Control and Diagnostic Status Register, MMCDSR

Register Field Bits
Type, Reset
State Description

QBUS_ON_IO1 28 RW, 0 This bit is used by the NMC to indicate on which CP-
bus the Q22–bus interface (CQBIC) resides. THIS
BIT IS CLEARED ON POWERUP AND MUST NOT
BE CHANGED.

EN_SOFT_ERR_
LOG

27 RW, 0 When this bit is a 0, NDAL and memory-related soft
errors are detected but no information is logged in
MEAR and MESR, and S_ERR_L is not asserted.
If the error happened on the NDAL, MESR<LOST_
NDAL_SOFT_ERR> is logged; if the error happened
in memory, the MESR<LOST_MEM_SOFT_ERR>
is logged. When this bit is 1, all the soft errors
are logged normally as described in the description
of MESR, and S_ERR_L is asserted whenever a
correctable error occurs. This bit does not affect
hard error logging.

FLUSH_BCACHE 26 RO, 0 When this bit is set by software, the NMC asserts
the CPU_WB_ONLY signal on the NDAL, which
informs the NVAX CPU to refrain from performing
non-writeback transactions on the NDAL. The
purpose of this bit is to allow the Bcache to be
flushed without creating excessive NDAL traffic
that might otherwise adversely affect the latency of
devices on CP1 and CP2 (namely, the Q22–bus).

Unused 25 RW, 0 –

MEM_DIAG_CKB 24:17 RW, 0 This field is ignored on memory write transactions
when diagnostic check mode (MMCDSR<DIAG_
CKB_MODE>) is cleared. During diagnostic check
bit mode, the bits in this field are written to memory
instead of the check bits generated by the ECC logic.
A read of MMCDSR returns the check bits
corresponding to the first transfer of a memory
read transaction that happened prior to this NMC_
CSR read. This field is loaded on memory reads or
masked write transactions.

MEM_CHECKBITS 16:9 RO, 0 This field contains the memory check bits
corresponding to the second transfer of a memory
read transaction that happened prior to this NMC_
CSR read. This field is loaded on memory reads or
masked write transactions.

TIMEOUT_
SCALER

8:7 RW, 0 This 2-bit field is used as a prescaler to the disown
write timeout counter.

Value Timer Count µs (36 ns) µs (42 ns)

00 2600 93.6 109.2

01 1600 57.6 67.2

10 800 28.8 33.6

11 400 14.4 16.8

(continued on next page)

KA680 Main Memory System 5–23

KA680 Main Memory System
5.4 NMC Architectural Overview

Table 5–8 (Cont.) Mode Control and Diagnostic Status Register, MMCDSR

Register Field Bits
Type, Reset
State Description

DIS_MEM_ERR 6 RW, 0 When this bit is 1, memory error detection and
correction is disabled. All memory error related
logging in MEAR and MESR is disabled. S_ERR_
L does not assert on correctable errors in memory
data; S_ERR_L does not assert on uncorrectable
errors in the read data of a masked write. A read
data error response is not returned on the NDAL
when uncorrectable errors occur in memory read
data.

REF_INT_SEL 5 RW, 0 When this bit is 1, the NMC uses an alternate
refresh interval for use in conjunction with NDAL
cycle times longer (slower) than 42 ns. Because
the KA680 and KA680 CPU modules operate at 42
ns NDAL cycle times or faster, this bit should not
be set by software because it will cause excessive
memory refresh cycles and subsequently reduce
system performance.

FRC_WRONG_
PAR_DATA_OUT

4 RW, 0 When set to 1, this bit forces the NDAL parity
generator to generate incorrect parity on the
command and ID field of a read data return cycle.
This will cause the commanders to not ACK the
response and timeout, waiting for the appropriate
data. The wrong parity is forced for one NMC
responder transaction only. This bit is self-clearing;
it is always read as 0. This bit is for test purposes
only and should not be set during normal system
operation.

FRC_WRONG_
PAR_ADDR_IN

3 RW, 0 When set to 1, this bit forces the NDAL parity
generator in the NMC to generate incorrect parity
on the command and ID field of an address cycle
addressed to it. This results in the NMC detecting
incorrect parity on incoming transactions, thus
causing it to not ACK the commander and assert S_
ERR_L. The wrong parity is forced for one NDAL
transaction (not a NOP) only. This bit is self-
clearing. It is always read as 0. This bit is for test
purposes only and should not be set during normal
system operation.

FRC_WRONG_
PAR_DATA_IN

2 RW, 0 When set to 1, this bit forces the NDAL parity
generator to generate incorrect parity on the
command and ID field of a write data. This causes
the NMC to respond to the cycle with ACK_L, but
assert S_ERR_L and force incorrect check bits in
memory data. The wrong parity is forced for one
NDAL data cycle only. This bit is self-clearing; it
is always read as 0. This bit is for test purposes
only and should not be set during normal system
operation.

(continued on next page)

5–24 KA680 Main Memory System

KA680 Main Memory System
5.4 NMC Architectural Overview

Table 5–8 (Cont.) Mode Control and Diagnostic Status Register, MMCDSR

Register Field Bits
Type, Reset
State Description

DIS_REFRESH 1 RW, 0 This bit, when set to 1, disables memory refresh
transactions, irrespective of the state of MMCDSR
<FRC_REFRESH>, the force refresh bit. It also
clears the refresh interval and address counters
to 0. This functionality has been added for test
purposes only and should not be used in normal
system operation.

FRC_REFRESH 0 RW, 0 When this bit is cleared to 0, the refresh control logic
behaves normally and refreshes are done on the NMI
when the refresh interval timer overflows. When
this bit is set to 1, it forces the memory interface of
the NMC to do continuous memory refreshes as long
as there are no requests for memory transactions.
If the memory is requested to do a read, write, or
signature read transaction, the stream of memory
refreshes is interrupted.

5.4.8.1.6 O-bit Address and Mode Register (MOAMR) This register, along with
the O-bit data register, facilitates initialization and testing of O-bit memory. This
register stores the address and mode of operation.

Figure 5–10 O-bit Address and Mode Register

IGNORE_OB_MODE

DIS_OB_ERR

O - B I T MASK

0000000000000 0 0

O - B I T SEGMENT ADDRESS

O - B I T OPERATION MODE

01234567891 01 11 21 31 41 51 61 71 81 92 02 12 22 32 42 52 62 72 82 93 03 1

MOAMR : 2 1 0 1 8 0 4 C

KA680 Main Memory System 5–25

KA680 Main Memory System
5.4 NMC Architectural Overview

Table 5–9 O-bit Address and Mode Register, MOAMR

Register Field Bits
Type, Reset
State Description

Unused 31:17 MBZ, 0 This field is read as 0.

Ignore O-bit Mode 16 RW,0 Setting this bit causes the memory controller
to ignore the state of the ownership bits when
processing memory transactions. This bit is for
diagnostic purposes only and should not be set under
normal conditions.

Disable O-bit
Errors

15 RW,0 Setting this bit causes the memory controller to
ignore any ECC errors in the O-bits when processing
memory transactions. This bit is for diagnostic
purposes only and should not be set under normal
conditions.

O-bit Segment
Address

14:6 RW, 0 This field contains the segment address
corresponding to the O-bit to be accessed.

O-bit Mask 5:3 RW, 0 This field contains the O-bit mask. It is used in
reconstruction mode to specify the O-bit to be
accessed.

O-bit Operation
Mode

2:0 RW, 0 This field indicates the mode of operation on a read
or write of the O-bit data registers. The following is
the assignment of bits<2:0> in this field.

Value O-bit Mode

000 Reconstruction mode

001 Unassigned

010 Memory test mode

011 Fast memory test mode

100 Unassigned

101 Unassigned

110 Memory test mode with forced check bits

111 Fast memory test mode with forced check
bits

RO—Read-only
RW—Read/write
WC—Write one-to-clear
MBZ—Read-only, read as 0

5.4.8.1.7 O-bit Data Registers (MODRs) There are 4K O-bit data registers; each
register corresponds to one of 512 O-bit memory locations. The NMC uses the
segment number provided in the O-bit address and mode register to determine
the appropriate O-bit location addressed. A read or write from/to an O-bit data
register causes the NMC to do a read/write from/to the O-bit memory location
whose segment number corresponds to the value in the O-bit address and mode
register.

5–26 KA680 Main Memory System

KA680 Main Memory System
5.4 NMC Architectural Overview

Figure 5–11 O-bit Data Registers

0 0 0 0 0 0 0

O - B I T F I E L D 1

O - B I T F I E L D 0

MODR : 2 1 0 1 0 0 0 0 - 2 1 0 1 7FFC

3 1 3 0 2 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

0

Table 5–10 O-bit Data Registers, MODR

Register Field Bits
Type, Reset
State Description

Unused 31:24 MBZ, 0 This field is read as 0.

O-bit Field 1 23:12 RW, 0 This field is used in fast memory test only. It
contains the O-bit field (O-bits + check bits) for
the second O-bit location to be read/written in fast
memory test mode.
When the force check bits mode is disabled in the
O-bit address and mode register, only bits <19:12> of
this field are valid.

RO—Read-only
RW—Read/write
WC—Write one-to-clear
MBZ—Read-only, read as 0

(continued on next page)

KA680 Main Memory System 5–27

KA680 Main Memory System
5.4 NMC Architectural Overview

Table 5–10 (Cont.) O-bit Data Registers, MODR

Register Field Bits
Type, Reset
State Description

O-bit Field 0 11:0 RW, 0 This field contains the value for the O-bit field to
be used in the first part of a fast O-bit test mode
transaction, memory test mode, and reconstruction
mode.
A read of MODRs returns the entire O-bit location in
fast memory test, memory test, and reconstruction
mode.
A write to this field in reconstruction mode requires
valid data in the appropriate O-bit only. A write to
this field in O-bit memory test or fast O-bit memory
test mode with the force check bits mode disabled
requires valid data in bits <7:0> only. A write to this
field in O-bit memory test or fast O-bit memory test
mode requires valid data in all 12 bits.

5.4.8.1.8 Clear Write Buffer Register (NMC_CSR20) The clear write buffer
register address, 2100 0110, is in the NVAX CPU IPR address range. It is
longword-aligned. A read or write to this register is required to flush any CPU
write buffers in the NMC. The NMC buffers up CPU writes in its CPU_QUE
and CPU disown writes in WB_QUE. Since the CPU_QUE of the NMC is one
deep and WB_QUE is given the highest priority by the NMC, all writes and
write-backs from the CPU that happened before a clear write buffer transaction
on the NDAL are completed in memory before the clear write buffer is serviced
by the NMC. Thus, the NMC does not need to take any special action on a clear
write buffer transaction. A read from NMC_CSR20 returns all zeros as the data;
a write does nothing.

5.4.9 NMC Transaction Handling
The previous sections in this chapter described the architecture and organization
of four major blocks in the NMC: the NDAL interface, the memory interface, the
O-bit interface, and the I/O interface. This section describes the fifth block in the
NMC, the transaction handler. Figure 5–12 illustrates the organization of these
five blocks.

5–28 KA680 Main Memory System

KA680 Main Memory System
5.4 NMC Architectural Overview

Figure 5–12 NMC Block Diagram

& P A R I T Y

PEND_BUF

WB_QUE

NDAL A R B I T E R

N_ARB

READ-MODIFY-WRITE

CONTROL
CONTROL OUT
I N

PAD LATCH

OUT_QUE

OUTPUT PAD LATCH

I N P U T PAD LATCH

GENERATOR

T I M I N G

MEMORY

SEQUENCER
I O

I O INTERFACE

TRANSACTION HANDLER

SEQUENCER
TRANSACTION

SEL_TRANS

CUR_BUF

& P A R I T Y
PAD LATCH

CPU_QUE

I O 2 _ Q U E

I O 1 _ Q U E

NDAL

NDAL INTERFACE

USED ON

MERGE

LATCH
+

LOGIC

CORRECTION

DATA

MEMORY INTERFACE

READ
ECC

WRITE
ECC

O - B I T ADDRESS

CONTROL
&

WR_DATA

ADDRESS

REGISTERS

O - B I T INTERFACE

O - B I T I O ADDRESS

MD

MA
ADDRESS

MUX

ECC LOGIC

CONTROL

I N T E R V A L
&

ADDRESS
REFRESH

The transaction handler consists of an internal arbiter. The data path of the
transaction handler includes a current transaction buffer and one pending
transaction buffer. These blocks are described in greater detail in the following
sections.

5.4.9.1 NMC Internal Arbitration
Transactions loaded into the IN_QUEs of the NDAL interface of the NMC are
selected for servicing by an internal arbiter. This internal arbiter can get up to
four requests, one from each of the three NWB_QUEs, and one from WB_QUE.
In the absence of memory accesses from the Q22–bus, the WB_QUE is given
the highest priority, and the three NWB_QUEs are given equal priority; they
are serviced in round-robin. When Q22–bus devices are accessing main memory,
IO2_QUE is given a higher priority over WB_QUE (which helps reduce Q22–bus
latency), and transactions from IO1_QUE and CPU_QUE are not selected unless
they are marked.

KA680 Main Memory System 5–29

KA680 Main Memory System
5.4 NMC Architectural Overview

5.4.9.2 Transaction Handler Datapath
When a transaction is selected for processing by the NMC, the information from
the corresponding NMC’s IN_QUE entry is loaded into the current transaction
buffer, CUR_BUF. CUR_BUF contains all the information that an IN_QUE entry
contains.

When a disown write transaction is received on the NDAL, and there is a
transaction pending to the same hexaword in one of the NWB_QUEs, the address
information and data (writes only) for that transaction are loaded into a "pending
buffer"- PEND_BUF, and the corresponding pending, valid, and mark bits for that
entry are cleared.

5.4.10 NMC Transactions
This section describes how the various transactions are handled by the NMC.

5.4.10.1 Ownership Read
When an ownership read transaction is received in CUR_BUF, the data read and
the O-bit read are started in parallel.

If the corresponding O-bit is not set, indicating that the hexaword can be owned
by the requesting commander, the hexaword of data is loaded into the OUT_
QUE as it is received from memory with the requested quadword loaded first.
The O-bit is set by the memory interface after it checks the memory data for
errors. The O-bit is only set when there are no uncorrectable errors in the
requested memory data or the O-bit field. As a performance enhancement, the
O-bit interface unconditionally sets the O-bit after every OREAD transaction; if
later a memory data uncorrectable error is found, the original state of the O-bit is
restored. The corresponding IN_QUE entry is cleared as soon as the transaction
handler determines that the hexaword is not owned.

If the corresponding O-bit is set, indicating that the hexaword is owned by
another device, the "pending bit" is set in the appropriate NWB_QUE, the
pending timer for that queue is started, and the read is aborted on the NMI.

5.4.10.2 Memory Read
The flow for the memory read is the same as that of the OREAD, the only
difference being that the O-bit is not set at the end of the read.

5.4.10.3 Memory Write
On a memory write transaction, the data write and the O-bit read are done in
parallel, instead of reading the O-bit first and doing the write only if the O-bit is
cleared. Starting the write and the O-bit read in parallel saves time on writes
that are not owned.

If the hexaword is not owned (the corresponding O-bit is clear), the write is
completed. The corresponding IN_QUE entry is cleared as soon as the transaction
handler finds out that the transaction is not owned.

If the hexaword is owned (the corresponding O-bit is set), the write is aborted
(after one transfer on an unmasked write, or after the read part of a masked
write), the corresponding pending bit is set, and the pending timer is started.
At this point, some of the data corresponding to the aborted write is written to
memory. This results in an apparent memory incoherency. However, since the
corresponding hexaword is owned by some other node, the data in memory is stale
anyway and has to be updated. The disown write flow ensures the coherence of
memory.

5–30 KA680 Main Memory System

KA680 Main Memory System
5.4 NMC Architectural Overview

5.4.10.4 Disown Write
Disown writes can be quadword or hexaword writes. A quadword disown write
may be a write unlock from the NCA on behalf of an I/O device, or it could be
from the CPU (when the Bcache is off or in error transition mode). The CPU
may also do a quadword disown write instead of a hexaword disown if it has
seen one of the other commanders do a hexaword write to the same location;
in this case, it masks out all the data. The reason for this optimization is as
follows: if the CPU owns a hexaword of memory, and it sees on the NDAL a
hexaword write transaction (from the NCA) to that location, then according to
NDAL protocol it must relinquish ownership of the hexword via a disown write
transaction (WDISOWN). Recall, however, that the hexaword write from the
NCA will be queued up in the NMC, waiting for the WDISOWN from the CPU.
Since whatever value the CPU specifies in the WDISOWN would be immediately
overwritten by the NCA’s pending hexaword write, the CPU saves three NDAL
cycles by only writing a quadword of data with the WDISOWN transaction.

When the NMC’s transaction sequencer receives a disown write, it checks the
state of the pending bits in the NWB_QUEs to see if there are any pending reads
or writes to that hexaword.

If there are no pending transactions, the memory write and an O-bit read are
started in parallel. If the hexaword is not owned, an error is flagged but the data
write is completed. If the O-bit is set, the write is completed and the O-bit is
cleared. The corresponding IN_QUE entry is cleared as soon as the O-bit read is
complete.

If a write is pending to the same hexaword, the IN_QUE entry corresponding to
the pending write is cleared by the transaction handler. Merging of data occurs
according to the byte masks of the pending write, and the data is written to
memory. The data in memory is overwritten by the merged data, and memory
coherence is preserved.

If the pending transaction is a read, and the disown write is a hexaword, read
data is returned as the disown write is written to memory. If the disown write
is a quadword, the read is done from memory, and the write data is merged with
the appropriate quadword and returned on the NDAL. If the pending transaction
is a normal memory read, the O-bit is cleared at the end of the disown write. If
the pending transaction is a ownership read, the O-bit is set at the end of the
disown write if no uncorrectable memory errors have been found in the requested
quadword.

5.4.11 I/O Transactions
The NMC supports I/O reads or writes to its internal registers only. No ownership
protocol is supported on I/O addresses. Ownership reads or disown writes to I/O
space are treated as normal reads and writes.

5.4.12 NMC Error Handling
Errors in the NMC can be of two types—NDAL-related errors and memory-related
errors. These are described in the following tables.

KA680 Main Memory System 5–31

KA680 Main Memory System
5.4 NMC Architectural Overview

Table 5–11 NDAL-related Errors and NMC Responses

Description of Error Specific Situation Action Taken by NMC

NMC detects a parity
error on an NDAL cycle

Presumed address cycle,
not an NMC write data
cycle

Soft error interrupt on reads, both
hard and soft error interrupt on writes;
MESR<BAD_NDAL_ERR> logged. No
address information is logged.

Presumed data cycle
on a write; address has
been received previously

Soft error interrupt; logs the error
in MESR<NDAL_DATA_PAR_ERR>.
Memory write is done and incorrect
check bits are forced in memory data.
CSR writes are aborted, no write is
done, soft error interrupt. Quadword
address and commander ID are logged
in MEAR.

NMC detects an illegal
length on an NDAL
address cycle to its
address space

Presumed address cycle ACK_L not asserted; S_ERR_L
asserted; MESR<BAD_NDAL_ERR>
logged. No address information is
logged.

NMC detects a reserved
command on an NDAL
cycle

Presumed address cycle Soft error interrupt on reads to NMC,
hard error interrupt on writes to NMC;
MESR<RESERVED_CMD> is logged.
No address information is logged.

Illegal write data CMD Data cycles on writes Write for the specified length is done;
incorrect check bits are loaded in
memory for the quadword with the
incorrect command; soft error interrupt.
Error logged in MESR<ILLEGAL_WR_
CMD>. On CSR write transactions, a
soft error interrupt is requested, and
the write is aborted. Quadword error
address and commander ID are logged.

No acknowledgement
when requested read
data is returned by the
NMC

IREAD, DREAD Soft error interrupt is requested; logs
the error in MESR<NO_ACK_ERR>.
No address logged; the corresponding
commander should log the address
information. All read data is returned.

OREAD Soft error interrupt is requested; logs
the error in MESR<NO_ACK_ERR>.
No address information is logged; the
corresponding commander should log
address information. All read data is
returned. Does not affect the setting of
the O-bit.

Pending transaction
times out waiting for
disown write

Write Hard error interrupt is requested; logs
the error information in MESR<PEND_
TRANS_TIM_OUT>. Hexaword address
and ID are logged. Transaction is
aborted.

Read Read data error transaction returned
on requested quadword. Log the
error information in MESR<PEND_
TIM_OUT>. Hexaword address and
commander ID are logged.

(continued on next page)

5–32 KA680 Main Memory System

KA680 Main Memory System
5.4 NMC Architectural Overview

Table 5–11 (Cont.) NDAL-related Errors and NMC Responses

Description of Error Specific Situation Action Taken by NMC

Disown write to an
unowned location

WDISOWN Hard error interrupt requested. Do
the write. Pending transactions
will be completed. Log the error
in MESR<DISOWN_UNOWNED>.
Hexaword address and commander ID
are logged.

Nonexistent memory
address

Read Read data error returned on requested
data. Error logged in MESR<MEM_
NXM>. Hexaword address and
commander ID are logged.

Write Hard error interrupt is requested.
Error logged in MESR<MEM_NXM>.
Hexaword address and commander ID
are logged.

Table 5–12 Memory-related Errors and NMC Responses

Description of Error Specific Situation Action Taken by NMC

NMC detects an
uncorrectable data
memory error

Owned reads,
Owned masked writes

The NMC does not flag any errors and does not log
any bits in this case. A memory transaction to a
location that is found to be owned is not completed
until the corresponding disown write happens. The
data in memory is stale, and the disown write may
overwrite it, thus writing correct data over the stale
data with errors. No error will be logged in this
case. If the disown write does not overwrite this
location (quadword disown), then the uncorrectable
data memory error is found again, and will be
flagged and logged this time.

Memory reads (not
owned)

Read data error is returned on that transfer;
subsequent transfers are aborted. Error is logged in
MESR<MEM_HARD_ERR>. Longword address is
logged.

OREADs (not owned) Read data error is returned on that transfer;
subsequent transfers are aborted. Error is logged
in MESR<MEM_HARD_ERR>. Longword address
is logged. O-bit not set if error occurred on the
requested quadword.

Masked memory disown
writes

S_ERR_L is asserted; the write corresponding to
that transfer does not happen. If a read is pending
to that location, RDE is returned on the read. In
this case, no error interrupt is requested. Error is
logged in MESR<MEM_SOFT_ERR>. Longword
address is logged.

Masked memory writes,
no disown (not owned)

Soft error interrupt is requested; the write
corresponding to that transfer does not happen.
Error is logged in MESR<MEM_SOFT_ERR>.
Longword address is logged.

(continued on next page)

KA680 Main Memory System 5–33

KA680 Main Memory System
5.4 NMC Architectural Overview

Table 5–12 (Cont.) Memory-related Errors and NMC Responses

Description of Error Specific Situation Action Taken by NMC

NMC detects a fatal
O-bit error

All transactions An O-bit fatal error is flagged when the NMC
does an O-bit read transaction that has an error
syndrome of 1111 (binary). This syndrome is
received if the O-bit read returns all 0s or all 1s
in the 12-bit field. When this error happens, the
NMC requests a hard error interrupt, and logs
MESR<OB_FATAL_ERR> bit. No address is logged,
and the transactions are completed as if there were
no error.

NMC detects a
correctable data memory
error

Memory reads Data is corrected and returned on the NDAL. Soft
error interrupt requested. Data is not changed in
memory. Error is logged in MESR<MEM_CORR_
ERR>. Longword address is logged.

Masked memory writes Soft error interrupt is requested; read data is
corrected and merged with write data and retired
to memory. Error is logged in MESR<MEM_CORR_
ERR>. Longword address is logged.

NMC detects a
correctable error in
O-bit field

Read, writes Soft error interrupt is requested. Error is logged
in MESR<OB_CORR_ERR>. Hexaword address is
logged in MEAR.

5.4.13 NDAL Arbitration
The three nodes on the NDAL request the bus whenever they have a transaction
to perform on the NDAL. A commander could initiate a transaction or a responder
could be responding to a pending transaction. The NMC is a responder only, the
NVAX CPU is a commander only, and the NCA can be both a commander and
responder, although not during the same transaction. The NMC contains the
arbiter (N_ARB) for the NDAL. Arbitration is done in parallel with data transfer
cycles using a set of lines dedicated specifically for arbitration. They are detailed
in this section.

The NMC request is asserted a cycle before quadword read data is loaded into the
OUT_QUE. The N_ARB priority scheme is discussed in this section.

When WB_QUE is full, the N_ARB does not grant the bus to any node except the
NMC.

When a non-writeback transaction is recieved by the NMC, the WB_ONLY signal
corresponding to that commander is asserted. N_ARB does not grant the bus to
that node for the next cycle.

The NMC is given the highest priority by N_ARB. The two I/O ports of the NCA
are given the second priority; they are serviced with a round-robin scheme. The
NVAX CPU has the lowest priority. Table 5–13 indicates the priority of the NDAL
arbiter.

Table 5–13 NDAL Arbitration Priority

Priority Node

1 NMC

2 IO1, IO2

3 CPU

5–34 KA680 Main Memory System

KA680 Main Memory System
5.4 NMC Architectural Overview

The NMC request is never ignored by N_ARB. If no node requests the NDAL, the
NMC is given the grant (it is the default bus master of the NDAL).

5.5 NMC Initialization

5.5.1 Internal Register States
The following list describes the state of each NMC_CSR when NDAL_RESET_L
asserts.

• Memory configuration registers (MEMCON0 - MEMCON7) :
These registers are cleared to 0.

• Memory signature registers (MEMSIG0 - MEMSIG7) :
These registers are virtual registers in the NMC and have no power-up value.

• Error address information register (MEAR) :
This register is cleared to 0.

• Error status register (MESR) :
This register is cleared to 0.

• Mode control and diagnostic status register (MMCDSR):
This register is cleared to 0.

• O-bit address and mode register (MOAMR):
This register is cleared to 0.

• O-bit data registers (MODRs):
These registers are virtual registers in the NMC and have no value on reset.

5.5.2 Counter States
The following list describes the state of all the counters in the NMC when NDAL_
RESET_L asserts.

• Pending transaction timers :
These timers are cleared to the ZERO state: the prescaler is also cleared to 0
so that the timeout interval is 2600 cycles.

• Refresh interval timer:
This timer is cleared to the ZERO state.

• Refresh address counter:
This counter is cleared to 0 so that the first refresh address after NDAL_
RESET_L deasserts is 0.

5.6 Memory Subsystem Organization
The NMC supports a 64-bit memory interconnect.

5.6.1 64-bit Interconnect
The memory subsystem consists of up to four memory modules having up to four
72-bit banks each (64 bits data and 8 bits ECC). There can be a total of up to 16
banks of memory. The memory banks are 2-way interleaved. This requires that
each module has an even number of banks. The following discussion refers to
bank pairs. The module organization is shown in Figure 5–13.

KA680 Main Memory System 5–35

KA680 Main Memory System
5.6 Memory Subsystem Organization

Up to 512 MB of ECC memory can be supported by the KA680 when using
memory modules populated with 4 Mb DRAMs. KA680 memory systems can
also contain a mixture of 4 Mb and 1 Mb based memory modules, although the
maximum memory will be lower than 512 MB when one or more 1 Mb based
modules are used.

The NVAX memory space is mapped to the physical memory using the memory
configuration registers in the NMC. The NMC requires that all bank pairs with
4 Mb DRAMs be mapped on aligned 64 MB boundaries. To enable this, all bank
pairs with 4 Mb DRAMs should be mapped to addresses lower than the 1 Mb
DRAMs.

5.6.2 GMX Chip
Each memory module has four transceiver chips (GMX) that perform data
multiplexing between the NMI bus and the DRAM array. The GMX chips
also perform other functions such as memory signature read and fast memory
diagnostics.

Each GMX has four data bus ports—BMD0A<19:0>, BMD0B<19:0>,
BMD1A<19:0>, and BMD1B<19:0>. On the MS690 memory modules, all the
GMX’s BMD lines are connected to one bank of DRAMs each. Thus, 64-bit MS690
memory boards have four GMX chips to handle the 72 data and ECC bits.

5–36 KA680 Main Memory System

KA680 Main Memory System
5.6 Memory Subsystem Organization

Figure 5–13 Memory Organization with 64-bit Interconnect

M A < 1 0 : 0 >

CASA_H

CASB_H

RAS_TIME_H

1

X
M
N

2

X
M
N

WE_H

I

M

N

RASTIME

BUFFER &
D R I V E

CASB

BUFFER &
D R I V E

R A S _ T I M E _ L

CASB_L

CASA

BUFFER &
D R I V E

MA

BUFFER &
D R I V E

CASA_L

MA

CASA_L

CASB_L

C O N F I G < 2 : 0 >

R A S _ T I M E _ L

B A N K _ S E L < 3 : 1 >

M O D E _ S E L < 1 : 0 >

SE_H

M D < 7 1 : 3 6 >

B I D I [0] < 1 : 0 >

B I D O [0] < 1 : 0 >

CASA_L

CASB_L

C O N F I G < 2 : 0 >R A S _ T I M E _ L

B A N K _ S E L < 3 : 1 >

M O D E _ S E L < 1 : 0 >

SE_H

M D < 3 5 : 0 >

B I D I [0] < 1 : 0 >

B I D O [0] < 1 : 0 >

WE

BUFFER &
D R I V E

WE_L

B
A

N
K

0 B

B
A

N
K

1 B

B
A

N
K

0 A

B
A

N
K

1 A

WE_L

WE_L

B M D B < 7 1 : 3 6 >

B M D A < 7 1 : 3 6 >

R A S _ E N _ L < 1 : 0 >

R A S _ E N _ L < 1 : 0 >

B M D B < 3 5 : 0 >

B M D A < 3 5 : 0 >

R A S _ E N _ L < 1 : 0 >

RAS1_L

RAS0_L

[O R]

RAS1_L

RAS0_L

[O R]
(T O A L L RAMS)

R A S _ E N _ L < 1 : 0 >

R A S _ T I M E _ L

X

2

X

2

KA680 Main Memory System 5–37

6
KA680 I/O Subsystem

The I/O subsystem is controlled by the NVAX I/O adapter chip (NCA). The NCA
is a 339-pin custom VLSI chip packaged in a PGA package. The NCA functions
as a bidirectional bus adapter between the NDAL and two CVAX-compatible
peripheral buses : the CP1-bus on port 1 and the CP2-bus on port 2. On the
NDAL, the NCA supports the NVAX CPU chip and the NVAX memory controller
chip (NMC). On the CP1-bus and CP2-bus, the NCA supports the shared host
adapter chip (SHAC), the second generation Ethernet controller (SGEC), the
system support chip (SSC), and the CMOS Q22–bus adapter chip (CQBIC).

6.1 NCA Overview
The NCA provides a bidirectional interface between the NDAL and two CVAX-
compatible peripheral (CP) buses: the CP1-bus on NCA port 1 and the CP2-bus
on NCA port 2. The NVAX CPU, the NVAX memory controller (NMC), and the
NCA are connected to the NDAL bus.

The CP1 and CP2 are CVAX-compatible peripheral (CP) buses for the system’s
DMA I/O devices and program-controlled I/O devices.

The NCA supports the CQBIC, the SSC, the SGEC, and two SHACs on the CP
buses.

6.2 I/O System Configuration
The I/O bus configuration used on the KA680 is shown in Chapter 1. In this
configuration, the Q22–bus, SSC, and the console firmware ROMs reside on the
CP2-bus of the NCA. They are isolated in this manner in order to minimize the
latency incurred when the KA680 is responding to Q22–bus transactions as a
slave.

KA680 I/O Subsystem 6–1

KA680 I/O Subsystem
6.3 NCA Chip Architecture

6.3 NCA Chip Architecture
The NCA serves as a bidirectional adapter between the NVAX DAL (NDAL) and
two CVAX peripheral buses (CP1 on port 1 and CP2 on port 2). The four major
functional blocks of the NCA chip are listed below:

• NDAL interface (Section 6.3.2)

• CP1 interface (Section 6.3.3)

• CP2 interface (Section 6.3.3)

• Registers (Section 6.3.4)

Figure 6–1 shows the organization of the NCA.

The following sections describe each functional block and its interactions, and the
NCA addressing. A discussion on error handling is also included at the end of
this section.

The NDAL and CP1 and CP2 interface sections are further divided into master
and slave subsections. Information transfer between the different sections of
the NCA occurs via two buses—TO_NDAL and TO_CDAL. TO_NDAL transfers
information to the NDAL interface from both CP-bus interfaces. The TO_CDAL
transfers information from the NDAL interface to other sections of the chip. In
addition, there are two more buses : TO_CP1 and TO_CP2, which transfer NVAX
initiated I/O transactions information to the respective CP-bus interface.

6–2 KA680 I/O Subsystem

KA680 I/O Subsystem
6.3 NCA Chip Architecture

Figure 6–1 NCA Block Diagram

QWDATA

NCA_CSR6
NCA_CSR5
NCA_CSR4
NCA_CSR3
NCA_CSR2
NCA_CSR1
NCA_CSR0

A
D

D
R

E
S

S
Q

W
D

A
T

A
1

I N D A L
PORT1

T IMER
PROGRAMMABLE

RECEIVE

I C R
N I C R
I C C S

GEN
P A R I T Y

GEN/CHK
P A R I T Y

GEN/CHK
P A R I T Y

NDAL MASTER

NDAL SLAVE

PORT2

QWDATA

V A L I D B I T S
FOR EVERY
LONGWORD

CP2_DAL

I N P U T PAD

CP1_ IORBUF

CP1_RBUF

CP1_MEMRD

CP1_WBUF

A
D

D
R

E
S

S
Q

W
D

A
T

A
1

Q
W

D
A

T
A

2

CP2_WBUF

CP2_MEMRD

CP2_RBUF

CP2_ IORBUF

TO_NDAL

NDAL

TRANSMIT
BUFFER

BUFFER

CSR
CONTROL

REGISTERS

CONTROL

MASTER

ADDRESS

CONTROL

SLAVE

PAD LATCH

I N P U T PAD
& P A R I T Y

IO_RW

NRA

TIMER

MT

TIMER

OUTPUT PAD OUTPUT PAD

I N P U T PAD

NRA

TIMER

CP1

MASTER

CONTROL

SLAVE

CONTROL

MASTER

CONTROL

SLAVE

CONTROL

Q
W

D
A

T
A

2

CP2

INTERFACE

CP1_DAL

CP1

INTERFACE

INTERFACE

REGISTER

NDAL

INTERRUPT

HANDLER

NDAL

A R B I T E R

CP1
MASTER

MT

TIMER

SLAVE

CP2
MASTER

CP2
SLAVE

KA680 I/O Subsystem 6–3

KA680 I/O Subsystem
6.3 NCA Chip Architecture

TERMINOLOGY

For the rest of this manual, the following terms are commonly used to
refer to NCA ports.

• CP1—means port 1 of the NCA where CP1-bus is connected

• CP2—means port 2 of the NCA where CP2-bus is connected

• CP—means both CP1 and CP2

6.3.1 NCA Addressing
The NCA responds to addresses on the NDAL that access devices on the CP1-bus,
CP2-bus, or internal registers in the NCA. These addresses and their destinations
are summarized in Table 6–1.

Table 6–1 NCA Addresses

Address Range (hex) Destination

2000 0000 - 2000 3FFF CP2 device addresses

2000 4000 - 2000 FFFF CP1 device addresses

2001 0000 - 20FF FFFF CP2 device addresses

2100 0000 - 2100 005F Not Acknowledged

2100 0060 - 2100 0063 SRM ICCS Register

2100 0064 - 2100 0067 SRM NICR Register

2100 0068 - 2100 006B SRM ICR Register

2100 006C - 2100 00FF Not Acknowledged

2100 0100 - 2100 010F Interrupt Vector Read addresses

2100 0110 - 2101 FFFF Not Acknowledged

2102 0000 - 2102 001F NCA internal registers

2102 0020 - 2102 FFFF Not Acknowledged

2103 0000 - 2103 FFFF CP2 device addresses if IO2_ID_EN is set, else Not
Acknowledged

2104 0000 - 27FF FFFF CP1 device addresses

2800 0000 - 2FFF FFFF CP2 device addresses

3000 0000 - 3FFF FFFF CP2 device addresses if IO2_ID_EN is set, else Not
Acknowledged

6.3.2 NDAL Interface
The NDAL interface section is made up of the NDAL master and slave interface
subsections.

6.3.2.1 NDAL Slave Interface
The NCA’s NDAL slave interface continuously monitors the NDAL for
transactions addressed to the NCA. Parity is checked on the NDAL<63:0>,
CMD_H<3:0>, and ID_H<2:0> for valid parity. If there is no parity error and the
transaction is addressed to the NCA, the NCA acknowledges with the assertion of
ACK_L. The information is then placed into one of the following queues : IO_RW,
CP1_RBUF, or CP2_RBUF. IO_RW queue is described below and the other two
buffers are described in their respective sections.

6–4 KA680 I/O Subsystem

KA680 I/O Subsystem
6.3 NCA Chip Architecture

• IO_RW - IO_RW is a 4-entry deep queue that holds the transactions
addressed to the NCA I/O space ports 1 and 2. Each entry contains quadword
address, quadword data (for I/O write only), a valid bit, a port ID (CP1
or CP2), and a transaction token. The IO_RW is a common pool of I/O
transactions for both port 1 and port 2. An I/O transaction is stored into
the IO_RW queue whenever an entry becomes "empty." The CP1 and CP2
interfaces examine the IO_RW entries to determine if there is a pending
transaction for their ports. This is accomplished by the valid bit, the port
ID, and the transaction token. Since the IO_RW is 4-entry deep, two bits
are maintained as the token. The token of each entry is compared with the
expected token of each CP port controllor. When there is a match in any one
of the four entries, the port controllor initiates the transaction on the bus. By
doing so, CP1 and CP2 are operated independently and the utilization of the
queue is optimized. The expected token of CP1 (CP2) is incremented (mod 4)
after each transaction.
When the IO_RW queue has four valid entries (queue is full), the IO1_
SUPPRESS_L signal is asserted to the NMC, which asserts the CPU_
WB_ONLY to the NVAX CPU. The NVAX CPU is then expected to perform
WDISOWN operations only on the NDAL (that is, the NVAX CPU will not
drive any transactions on the NDAL other than WDISOWNs). This prevents
the NCA IO_RW queue from overflowing.

Note

The NCA supports only longword and quadword transactions to the I/O
space.

6.3.2.2 NDAL Master Interface
The NDAL master interface is responsible for initiating DMA read and write
operations on the NDAL, as well as returning I/O read data to the CPU. The
information for all NDAL master transactions comes from the CP1, CP2, and
register sections. The following is the list of transactions and the buffers from
which the transactions are initiated:

• CP1 DMA write (CP1_WBUF)

• CP1 DMA read (CP1_MEMRD)

• CP1 I/O read data return (CP1_IORBUF)

• CP2 DMA write (CP2_WBUF)

• CP2 DMA read (CP2_MEMRD)

• CP2 I/O read data return (CP2_IORBUF)

• CSR read data return (TRANSMIT BUFFER)

The master control block in the NDAL master interface contains the bus interface
and arbitration units. The bus interface unit requests NDAL bus ownership when
any of the NDAL master buffers contains valid information, and sequences the
transaction when the NCA is granted the ownership of the NDAL.

KA680 I/O Subsystem 6–5

KA680 I/O Subsystem
6.3 NCA Chip Architecture

The arbitration unit follows a fixed priority for initiating transactions on
the NDAL when more than one transaction is pending. The CP1 and CSR
transactions are arbitrated in the following priority, from highest to lowest :

1. CP1 memory read

2. CP1 memory write

3. CP1 I/O read data return

4. CSR and SRM interval timer read data return

The CP2 transactions are arbitrated in the following priority, from highest to
lowest :

1. CP2 memory read

2. CP2 memory write

3. CP2 I/O read data return

Note

The NCA only initiates one transaction for each NDAL bus grant;
however, it may retain bus ownership for additional NDAL cycles to
return I/O, CSR, or VAX interval timer read data after completing the
original transaction. This is to prevent the lower priority transaction from
starving.

6.3.3 CP1 and CP2 Interface
Because both the CP1 and CP2 interfaces are copies of each other, the two
interfaces will be discussed as CP.

The CP interface section is made up of the master and slave interface subsections.

6.3.3.1 CP Master Interface
The CP master interface is responsible for initiating I/O read and write operations
on the CP buses. Address and/or data information for these transactions comes
from the IO_RW queue of the NDAL slave section.

CP_IORBUF - CP_IORBUF is a single entry buffer that holds I/O read data
returned from the CP bus. It holds up to a quadword of data and has a valid bit.
When the buffer is valid, CP_IORBUF sends a request to the NDAL master
arbitration unit. When the transaction is granted to the CP_IORBUF, the
quadword data, the command bits, the ID bits, and the parity bits are driven
onto the NCA’s internal TO_NDAL bus and then onto the NDAL when IO1_
GRANT_L is asserted by the NMC.

6–6 KA680 I/O Subsystem

KA680 I/O Subsystem
6.3 NCA Chip Architecture

6.3.3.2 MT and NRA Timers
The CP master interface also contains the "no response abort" (NRA) and master
transaction (MT) timers. The NRA timer times out 2 µs (assuming 70 ns CP-bus
cycle) after the NCA initiates an I/O transaction on the CP-bus. If the NRA timer
times out before the NCA receives a response from an I/O device, the NCA aborts
the transaction on the CP-bus (no response abort). The MT timer has 4 settings
: 144, 1440, 14400, and 144000 cycles, which translate to 10.08 µs, 100.8 µs,
1.008 ms, and 10.08 ms for 70 ns CP-bus cycle time. During an I/O transaction
initiated by the CP master interface to the CP-bus, the timer times out if the
master interface does not receive any response.

The purpose of the MT and NRA timers is to prevent either of the CP-buses from
becoming "hung" due to hardware or software errors. The NRA timer prevents a
CP-bus from hanging due to a software error in which an access to a nonexistent
I/O address is attempted. Each of the devices on the CP-bus with the exception of
the SSC asserts a "not_me" signal during such accesses. When all the "not_me"
signals on the CP-bus are asserted, external logic generates an NRA input to
the NCA, to inform it that none of the devices on the corresponding CP-bus have
claimed ownership of the issued address. Since the SSC does not implement a
"not_me" signal, the NCA will wait 2 µs to give the SSC a chance to respond to
the transaction before the NRA timer expires. If the SSC does not complete the
transaction within this time, then a no response abort takes place and the I/O
transaction is terminated.

The purpose of the MT timer is to prevent either of the CP-buses from becoming
"hung" in the situation when a hardware error has occurred. In such cases, it is
possible that one of the chips connected to the CP-bus in question could fail to
assert its "not_me" signal, indicating that it intends to respond to the transaction.
If the chip in question fails to respond to the transaction, presumably due to a
hardware failure, the MT timer will expire, thus aborting the I/O transaction and
preventing the associated CP-bus from becoming "hung."

6.3.3.3 CP Slave Interface
The CP slave interface responds to DMA transactions on the CP-bus. This
subsection features three queues:

• CP_WBUF - CP_WBUF is a 2-entry deep queue that holds the DMA write
transaction information. Each entry contains one quadword address and two
quadword data elements, together with a valid bit. The address element
contains information for setting up the NVAX address cycle while the data
element contains the write data and a BDATA bit, which is set if bad parity
is found in the corresponding quadword of write data on the CP bus. The
entry is validated when the DMA address and all the DMA write data have
been loaded into CP_WBUF. When the contents of one or more entries is
valid, a request is sent to the NDAL arbitration unit. The CP_WBUF entry is
invalidated when the write transaction corresponding to this entry is initiated
on the NDAL.

• CP_MEMRD - On DMA reads, the slave interface places the read address
in CP_MEMRD, a quadword address buffer that holds the information for
setting up the NDAL address cycle. The valid bit for this buffer is set after
ensuring that the DMA read address does not hit in CP_WBUF. If the DMA
read address hits in CP_WBUF, the validation of the CP_MEMRD entry is
held off until CP_WBUF is flushed. When the valid bit is set, a request is
sent to the NDAL arbitration unit.

KA680 I/O Subsystem 6–7

KA680 I/O Subsystem
6.3 NCA Chip Architecture

• CP_RBUF - This buffer holds the DMA memory read data that it receives
from the NDAL slave interface. This is a hexword data buffer that is
organized as longwords (that is, every longword contains a valid bit). The
NCA prefetches (programmable) DMA memory read data up to an octaword.
As the requested read data is returned to the DMA device on the CP-bus, the
associated valid bit is cleared.

As a CP-bus slave, the NCA accepts all transactions addressed in the memory
space. The NCA will signal an error to the CP-bus master on DMA transactions
addressed in VAX I/O space.

6.3.4 Registers
This section describes the NCA’s internal registers. The NCA has seven control
and status registers (NCA_CSR) and three interval clock registers. These ten
registers are longword-aligned. The NCA supports only I/O write to one register
per transaction by the NVAX CPU. However, quadword read by the NVAX CPU
of two NCA registers per transaction is allowed.

All the registers are cleared on power-up reset, unless otherwise specified in the
following description. Write operations to read-only registers do not cause any
errors and are responded to as normal operations; however, the operations do not
alter any of the register contents.

The register block also contains a receive buffer and a transmit buffer. The
receive buffer is used to store the register address in register read (and data, if
register write). The transmit buffer is used to store the read data of a register
read transaction while the register block is waiting to return the data to the
NDAL. If the I/O address happens to be NCA’s CSR or interval timer address,
the NCA’s CSR control logic sequences the read or write to the appropriate
register. On reads, the read data together with the CMD and ID is placed in the
transmit buffer and the valid bit is set in the transmit buffer. Once this occurs,
the transmit buffer sends a request to the NDAL arbitration unit in the NDAL
master interface. When the NCA is granted the mastership of the NDAL, the
data, CMD, and ID are driven onto NDAL. On writes, the write data is written
into the appropriate register.

6–8 KA680 I/O Subsystem

KA680 I/O Subsystem
6.3 NCA Chip Architecture

Table 6–2 NCA CSR and Interval Timer Registers

Number Name Address
No. of
Registers

CESR Error status register 2102 0000 1

CMCDSR Mode control and diagnostic register 2102 0004 1

CSEAR1 CP1 slave error address register 2102 0008 1

CSEAR2 CP2 slave error address register 2102 000C 1

CIOEAR1 CP1 I/O error address register 2102 0010 1

CIOEAR2 CP2 I/O error address register 2102 0014 1

CNEAR NDAL error address register 2102 0018 1

ICCS Interval clock control status register 2100 0060 1

NICR Next interval count register 2100 0064 1

ICR Interval count register 2100 0068 1

1 NCA_
CSR7-10

Interrupt acknowledge registers 2100 0100 -
010F

4

1These are virtual registers and they are read-only.

6.3.4.1 Control and Status Registers
The NCA has seven CSRs, the functions of which are decribed below.

6.3.4.2 Error Status Register (CESR)
The NCA reports error information in CESR.

KA680 I/O Subsystem 6–9

KA680 I/O Subsystem
6.3 NCA Chip Architecture

Figure 6–2 Error Status Register

NDAL RESERVED CMD

CP2 DMA LOST ERROR

0

NDAL CP2 TIMEOUT ERROR
NDAL CP1 TIMEOUT ERROR

NDAL P A R I T Y ERROR

CESR : 2 1 0 2 0 0 0 0

1234567891 01 11 21 31 41 51 61 71 81 9 0

CP1 NON-EX ISTENT I O ERROR
CP1 I O ERROR
CP1 I O READ P A R I T Y ERROR

CP1 DMA P A R I T Y ERROR

CP2 NON-EX ISTENT I O ERROR
CP2 I O ERROR
CP2 I O READ P A R I T Y ERROR
CP2 BUS ERROR
CP2 DMA P A R I T Y ERROR
CP2 I O LOST ERROR

000

3 1 3 0 2 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0

NDAL NO ACK ERROR

NDAL I L L _ L E N G T H

ERROR SUMMARY

CP1 PREL
CP2 PREL
NDAL PREL

CP1 BUS ERROR

CP1 DMA LOST ERROR
CP1 I O LOST ERROR

NDAL LOST ERROR
RDR NO ACK ERROR

CP2 MT TIMEOUT ERROR

CP1 MT TIMEOUT ERROR

Table 6–3 Error Status Register, CESR

Register Field Bit
Type, Reset
State Description

Error Summary 31 RO, 0 This bit is "1" when any error is logged by the
NCA in this register, with the exception of
CESR<25>, which does not affect this bit. It
is cleared when all the error bits are cleared.

Unused 30:28 MBZ, 0 These bits are read as 0.

RDR NO_ACK Error 27 WC, 0 This bit is set if NCA does not receive ACK_L
when it is initiating an RDRx to the NDAL. No
address is logged when this bit is set.

NDAL Lost Error 26 WC, 0 This bit is set if an error condition described in
CESR<23:21> occurs and CESR<21> is already
set. When this bit is set, CNEAR contains the
address of the previous error condition that has
not been cleared at the time the current error
condition happens. It is possible that this bit
is set but all the error bits in CESR<23:21>
are cleared because of the asynchronous events.
When this happens, the CNEAR may contain an
invalid address.

RO—Read-only
RW—Read/write
WC—Write one-to-clear
MBZ—Read-only, read as 0

(continued on next page)

6–10 KA680 I/O Subsystem

KA680 I/O Subsystem
6.3 NCA Chip Architecture

Table 6–3 (Cont.) Error Status Register, CESR

Register Field Bit
Type, Reset
State Description

NDAL Reserved cmd 25 WC, 0 This bit is set when the NDAL interface detects
a reserved command during any NDAL cycle and
this bit is not already set. No address is logged
when this bit is set.

NDAL Ill_length 24 WC, 0 This bit is set when the NDAL interface detects
an illegal length during an NDAL transaction
addressed to the NCA and when this bit is not
already set. No address is logged when this bit is
set.

NDAL CP2 Timeout Error 23 WC, 0 This bit is set if not all requested read data
is returned from the memory within the
NDAL cycles specified by the NDAL timer
prescaler (CMCDSR<11:10>) for the DMA read
transactions initiated on the CP2-bus, and this
bit is not already set.

NDAL CP1 Timeout Error 22 WC, 0 This bit is set if not all requested read data
is returned from the memory within the
NDAL cycles specified by the NDAL timer
prescaler (CMCDSR<11:10>) for the DMA read
transactions initiated on the CP1-bus, and this
bit is not already set.

NDAL NO_ACK Error 21 WC, 0 This bit is set if no ACK_L is received during
an NCA-initiated memory transaction and
this bit is not already set. CNEAR contains
the error address when this bit is set and
CMCDSR<23:22> are not set.

NDAL Parity Error 20 WC, 0 This bit is set if NCA detects an NDAL parity
error on any NDAL cycles and this bit is not
already set. No address is logged when this bit is
set.

Unused 19 MBZ, 0 This bit is read as 0.

NDAL PREL 18 WC, 0 This bit is set when there is no XA (that is,
CMCDSR<8> is set) present and there is no
pending interrupts at both the CP1 and CP2 port
at the priority level indicated by the interrupt
vector read on the NDAL. No address is logged
when this bit is set.

CP2 PREL 17 WC, 0 This bit is set when an interrupt vector read is
initiated on the CP2-bus and either CP2_ERR_L
is asserted or CP2 master transaction (MT) timer
times out. In either case, the NCA returns to the
NDAL with RDR and NDAL bit<33,01> set to 1.
No address is logged when this bit is set.

RO—Read-only
RW—Read/write
WC—Write one-to-clear
MBZ—Read-only, read as 0

(continued on next page)

KA680 I/O Subsystem 6–11

KA680 I/O Subsystem
6.3 NCA Chip Architecture

Table 6–3 (Cont.) Error Status Register, CESR

Register Field Bit
Type, Reset
State Description

CP1 PREL 16 WC, 0 This bit is set when an interrupt vector read is
performed on the CP1-bus and either CP1_ERR_
L is asserted or CP1 master transaction (MT)
timer times out. In either case, the NCA returns
to the NDAL with RDR and NDAL bit<33,01> set
to 1. No address is logged when this bit is set.

CP2 MT Timeout Error 15 WC, 0 This bit is set if the I/O read or write transaction
initiated by the NCA to the CP2-bus causes
the CP2 master transaction (MT) timer to time
out and this bit is not already set. CIOEAR2
contains the I/O error address when this bit is set
and CESR<10:8> are not set.

CP2 DMA Lost Error 14 WC, 0 This bit is set if CESR<12> is already set and
either a DMA device initiates an I/O transaction
on the CP2-bus or the CP2 interface detects a
parity error on a DMA write data. When this bit
is set, CSEAR2 contains an address for a previous
error that has not been cleared at the time the
current error condition happens. It is possible
that this bit is set but the error bit in CESR<12>
is cleared because of the asynchronous events.
When this happens, the CSEAR2 may contain an
invalid address.

CP2 IO Lost Error 13 WC, 0 This bit is set if any bit in CESR<15,10:8>
is already set and any of the error conditions
described in CESR<15,10:8> occurs. When this
bit is set, CIOEAR2 contains an address for a
previous error that has not been cleared at the
time the current error condition happens. It is
possible that this bit is set but all the error bits
in CESR<15,10:8> are cleared because of the
asynchronous events. When this happens, the
CIOEAR2 may contain an invalid address.

CP2 DMA Parity Error 12 WC, 0 This bit is set if the NCA detects a parity error
in the DMA write data on the CP2-bus. CSEAR2
contains the DMA write address when this bit is
set.

CP2 Bus Error 11 WC, 0 This bit is set if a DMA device on the CP2-bus
initiates an I/O transaction or a transaction with
one of the reserved commands. No address is
logged when this bit is set.

CP2 IO Read Parity Error 10 WC, 0 This bit is set if the NCA detects a parity error
in the I/O read data on the CP2-bus. CIOEAR2
contains the I/O error address when this bit is set
and CESR<15,9:8> are not set.

RO—Read-only
RW—Read/write
WC—Write one-to-clear
MBZ—Read-only, read as 0

(continued on next page)

6–12 KA680 I/O Subsystem

KA680 I/O Subsystem
6.3 NCA Chip Architecture

Table 6–3 (Cont.) Error Status Register, CESR

Register Field Bit
Type, Reset
State Description

CP2 IO Error 9 WC, 0 This bit is set if an NCA-initiated transaction,
read or write, on the CP2-bus results in CP2_
ERR_L assertion. CIOEAR2 contains the
I/O error address when this bit is set and
CESR<15,10,8> are not set.

CP2 Nonexistent IO Error 8 WC, 0 This bit is set if CP2_NRA timer times out and
CP2_NRA pin is asserted on an NCA-initiated I/O
transaction on the CP2-bus. CIOEAR2 contains
the I/O error address when this bit is set and
CESR<15,10:9> are not set.

CP1 MT Timeout Error 7 WC, 0 This bit is set if the I/O read or write transaction
initiated by the NCA to the CP1-bus causes the
CP1 master transaction (MT) timer to times
out and this bit is not already set. CIOEAR1
contains the I/O error address when this bit is set
and CESR<2:0> are not set.

CP1 DMA Lost Error 6 WC, 0 This bit is set if CESR<4> is already set and
either a DMA device initiates an I/O transaction
on the CP1-bus or the CP1 interface detects a
parity error on a DMA write data. When this
bit is set, CSEAR1 contains an address for a
previous error that has not been cleared at the
time the current error condition happens. It is
possible that this bit is set but the error bit in
CESR<4> is cleared because of the asynchronous
events. When this happens, the CSEAR1 may
contain an invalid address.

CP1 IO Lost Error 5 WC, 0 This bit is set if any bit in CESR<7,2:0> is
already set and any of the error conditions
described in CESR<7,2:0> occurs. When this
bit is set, CIOEAR1 contains an address for a
previous error that has not been cleared at the
time the current error condition happens. It
is possible that this bit is set but all the error
bits in CESR<7,2:0> are cleared because of the
asynchronous events. When this happens, the
CIOEAR1 may contain an invalid address.

CP1 DMA Parity Error 4 WC, 0 This bit is set if the NCA detects a parity error
in the DMA write data on the CP1-bus. CSEAR1
contains the DMA write address when this bit is
set.

CP1 Bus Error 3 WC, 0 This bit is set if a DMA device on the CP1-bus
initiates an I/O transaction or a transaction with
one of the reserved commands. No address is
logged when this bit is set.

RO—Read-only
RW—Read/write
WC—Write one-to-clear
MBZ—Read-only, read as 0

(continued on next page)

KA680 I/O Subsystem 6–13

KA680 I/O Subsystem
6.3 NCA Chip Architecture

Table 6–3 (Cont.) Error Status Register, CESR

Register Field Bit
Type, Reset
State Description

CP1 IO Read Parity Error 2 WC, 0 This bit is set if the NCA detects a parity error
in the I/O read data on the CP1-bus. CIOEAR1
contains the I/O error address when this bit is set
and CESR<7,1:0> are not set.

CP1 IO Error 1 WC, 0 This bit is set if an NCA-initiated transaction,
read or write, on the CP1-bus results in CP1_
ERR_L assertion. CIOEAR1 contains the
I/O error address when this bit is set and
CESR<7,2,0> are not set.

CP1 Nonexistent IO Error 0 WC, 0 This bit is set if CP1_NRA timer times out and
CP1_NRA pin is asserted on an NCA-initiated I/O
transaction on the CP1-bus. CIOEAR1 contains
the I/O error address when this bit is set and
CESR<7,2:1> are not set.

RO—Read-only
RW—Read/write
WC—Write one-to-clear
MBZ—Read-only, read as 0

6.3.4.3 Mode Control and Diagnostic Register (CMCDSR)
The NCA operating modes are controlled by information in this register. In
addition, this register is used for storing diagnostic status information. The
following is a description of all the bit fields in the register.

Figure 6–3 Mode Control and Diagnostic Status Register

NDAL T IMER PRESCALER

0 0 0 0

CQBIC MODE

CP2 I V R T IMER PRESCALER
CP1 I V R T IMER PRESCALER

CP2 INTERRUPT
CP1 INTERRUPT

I O 2 I D ENABLE

2 02 22 3 2 12 72 8 2 6 2 5 2 42 93 03 1

0 0

FORCE WRONG CP2 BUS P A R I T Y

FORCE WRONG NDAL SLAVE P A R I T Y
FORCE WRONG NDAL MASTER P A R I T Y
FORCE WRONG CP1 BUS P A R I T Y

ENABLE PREFETCH
FORCE WRITE BUFFER H I T
FORCE CP2 BUS OWNER
FORCE CP1 BUS OWNER

01234567891 01 11 21 7 1 6 1 5 1 4 1 31 81 9

CMCDSR : 2 1 0 2 0 0 0 4

0 0

6–14 KA680 I/O Subsystem

KA680 I/O Subsystem
6.3 NCA Chip Architecture

Table 6–4 Mode Control and Diagnostic Status Register, CMCDSR

Register Field Bit
Type, Reset
State Description

Unused 31:24 MBZ, 0 This field reads as 0.

CP2 Pending Interrupt 23:20 RO, 0 This 4-bit field shows the presence of interrupts at
IPL 17, 16, 15, and 14, respectively, on the CP2-bus.

CP1 Pending Interrupt 19:16 RO, 0 This 4-bit field shows the presence of interrupts at
IPL 17, 16, 15, and 14, respectively, on the CP1-bus.

CP2 MT Timer
Prescaler

15:14 RW, 11 This 2-bit field is used as a prescaler to the CP2
master transaction timer. The CP2 MT timer has 4
settings: 00 (binary) = 144 cycles, 01 (binary) = 1440
cycles, 10 (binary) = 14400 cycles, and 11 (binary) =
144000 cycles.

CP1 MT Timer
Prescaler

13:12 RW, 11 This 2-bit field is used as a prescaler to the CP1
master transaction timer. The CP2 MT timer has 4
settings: 00 (binary) = 144 cycles, 01 (binary) = 1440
cycles, 10 (binary) = 14400 cycles, and 11 (binary) =
144000 cycles.

NDAL Timeout
Prescaler

11:10 RW, 0 This 2-bit field is used as a prescaler for the NDAL
transaction pending timers. These timers should
always time out after the NMC pending timers time
out. The NDAL timer prescaler has 4 settings: 00
(binary) = 3200 cycles, 01 (binary) = 2000 cycles, 10
(binary) = 1000 cycles, and 11 (binary) = 500 cycles.

CQBIC Mode 9 RW, 0 When set, this bit indicates that CQBIC (Q–bus
adapter) is present on the CP2-bus.

IO2 ID Enable 8 RW, 0 When set, this bit enables the NCA to use IO2
ID when initiating CP2 DMA transactions on the
NDAL. This bit should be set if there is no XA in the
NVAX system.

Force Wrong CP2 Bus
Parity

7 RW, 0 When set to 1, this bit causes the CP2 port to
generate wrong data parity on the incoming and
outgoing data. The NCA clears this bit after it
initiates or responds to one CP2-bus transaction.
This bit is for test purposes only and should not be
set during normal operation.

Force Wrong CP1 Bus
Parity

6 RW, 0 When set to 1, this bit causes the CP1 port to
generate wrong data parity on the incoming and
outgoing data. The NCA clears this bit after it
initiates or responds to one CP-bus transaction. This
bit is for test purposes only and should not be set
during normal operation.

RO—Read-only
RW—Read/write
WO—Write-only, read as 0
WC—Write one-to-clear
MBZ—Read-only, read as 0

(continued on next page)

KA680 I/O Subsystem 6–15

KA680 I/O Subsystem
6.3 NCA Chip Architecture

Table 6–4 (Cont.) Mode Control and Diagnostic Status Register, CMCDSR

Register Field Bit
Type, Reset
State Description

Force Wrong NDAL
Master Parity

5 RW, 0 When set to 1, this bit forces the NCA NDAL master
parity generator to generate incorrect parity in the
command field in the address cycle (or data cycle if
read data return) of the next NCA-initiated NDAL
transaction. This bit is self-cleared by the NCA after
it has initiated one NDAL transaction. This bit is
for test purposes only and should not be set during
normal system operation.

Force Wrong NDAL
Slave Parity

4 RW, 0 When set to 1, this bit forces the NDAL slave
parity generator to generate incorrect parity on
any NDAL cycle. This emulates parity errors in all
PARITY_H<2:0>. The NCA asserts S_ERR_L and
sets CESR<NDAL_PARITY_ERROR> every cycle
as long as this bit is set. This bit is self-cleared by
the NCA after it has responded to one valid NDAL
transaction addressed to the NCA other than a read
data return. This bit is for test purposes only and
should not be set during normal system operation.

Enable Prefetch 3 RW, 0 When set to 1, this bit enables the CP1 and CP2
ports to perform data prefetching on DMA read
transactions. This is set to 1 during powerup when
CP_RESET_L is asserted.

Force Write Buffer Hit 2 RW, 0 When set to 1, this bit forces all DMA read addresses
from CP1 and CP2 ports to hit any valid element
in the CP1_WBUF and CP2_WBUF queues,
respectively. This bit should be set for diagnostic
purposes only.

Force CP2 Bus Owner 1 RW, 1 When set to 1, the NCA asserts CP2_DMR_L to
become the CP2-bus master regardless of whether
there is an I/O transaction pending in the NCA
or not. This bit is set to 1 during powerup when
CP_RESET_L is asserted, and must be cleared by
software to allow normal I/O transactions to take
place.

Force CP1 Bus Owner 0 RW, 1 When set to 1, the NCA asserts CP1_DMR_L to
become the CP1-bus master regardless of whether
there is an I/O transaction pending in the NCA
or not. This bit is set to 1 during powerup when
CP_RESET_L is asserted, and must be cleared by
software to allow normal I/O transactions to take
place.

RO—Read-only
RW—Read/write
WO—Write-only, read as 0
WC—Write one-to-clear
MBZ—Read-only, read as 0

6.3.4.4 CP1 Slave Error Address Register (CSEAR1)
When either CESR<3> or CESR<4> is set because of a CP1-bus slave error
condition, the corresponding octaword address is logged in this register. The
content remains valid until both error bits are cleared. This register is read-only
and contains valid information only when either of CESR<4:3> is set.

6–16 KA680 I/O Subsystem

KA680 I/O Subsystem
6.3 NCA Chip Architecture

Figure 6–4 CP1 Slave Error Address Register

OCTAWORD ERROR ADDRESS

CSEAR1 : 2 1 0 2 0 0 0 8

0

00

3 1 3 0 2 12 32 52 72 9 2 8 2 6 2 4 2 2 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 12 0

0000

Table 6–5 CP1 Slave Error Address Register, CSEAR1

Register Field Bit
Type, Reset
State Description

Unused 31:30 MBZ, 0 These bits read as 0.

Error Address 29:4 RO, 0 These bits contain the CP1 slave octaword address.

Unused 3:0 MBZ, 0 These bits read as 0.

RO—Read-only
RW—Read/write
WC—Write one-to-clear
MBZ—Read-only, read as 0

6.3.4.5 CP2 Slave Error Address Register (CSEAR2)
When either CESR<10> or CESR<11> is set because of a CP2-bus slave error
condition, the corresponding octaword address is logged in this register. The
content remains valid until both error bits are cleared. This register is read-only
and contains valid information only when either of CESR<11:10> is set.

Figure 6–5 CP2 Slave Error Address Register

0 0 0 0OCTAWORD ERROR ADDRESS

CSEAR2 : 2 1 0 2 0 0 0 C

0

00

3 1 3 0 2 12 32 52 72 9 2 8 2 6 2 4 2 2 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 12 0

KA680 I/O Subsystem 6–17

KA680 I/O Subsystem
6.3 NCA Chip Architecture

Table 6–6 CP2 Slave Error Address Register, CSEAR2

Register Field Bit
Type, Reset
State Description

Unused 31:30 MBZ, 0 These bits read as 0.

Error Address 29:4 RO, 0 These bits contain the CP2 slave octaword address.

Unused 3:0 MBZ, 0 These bits read as 0.

RO—Read-only
RW—Read/write
WC—Write one-to-clear
MBZ—Read-only, read as 0

6.3.4.6 CP1 IO Error Address Register (CIOEAR1)
When any of CESR<7, 2:0> is set because of an error condition in an NCA-
initiated I/O transaction on the CP-bus, the corresponding address and ID are
logged in this register. The content remains valid until all CESR<7, 2:0> bits are
cleared. This register is read-only and contains valid information only when any
of the error bits is set.

Figure 6–6 CP1 IO Error Address Registers

I D

3 1 3 0 2 0 1234567891 01 11 21 31 41 51 61 71 81 92 22 42 62 82 9 2 7 2 5 2 3 2 1 0

CIOEAR1 : 2 1 0 2 0 0 1 0

I O ERROR ADDRESS

Table 6–7 CP1 IO Error Address Register, CIOEAR1

Register Field Bit
Type, Reset
State Description

Commander ID 31:29 RO, 0 These bits contain the commander ID corresponding to
the I/O transaction that resulted in the error condition.

Error Address 28:0 RO, 0 These bits contain the address corresponding to the I/O
transaction that resulted in the error condition.

RO—Read-only
RW—Read/write
WC—Write one-to-clear
MBZ—Read-only, read as 0
MBO—Read-only, read as 1

6–18 KA680 I/O Subsystem

KA680 I/O Subsystem
6.3 NCA Chip Architecture

6.3.4.7 CP2 IO Error Address Register (CIOEAR2)
When any of CESR<7, 10:8> is set because of an error condition in an NCA-
initiated I/O transaction on the CP2-bus, the corresponding address and ID are
logged in this register. The content remains valid until all CESR<7, 10:8> bits
are cleared. This register is read-only and contains valid information only when
any of the error bits is set.

Figure 6–7 CP2 IO Error Address Registers

2 0 1234567891 01 11 21 31 41 51 61 71 81 92 22 42 62 82 9 2 7 2 5 2 3 2 13 1 3 0 0

CIOEAR2 : 2 1 0 2 0 0 1 4

I O ERROR ADDRESSI D

Table 6–8 CP2 IO Error Address Register, CIOEAR2

Register Field Bit
Type, Reset
State Description

Commander ID 31:29 RO, 0 These bits contain the commander ID corresponding to
the I/O transaction that resulted in the error condition.

Error Address 28:0 RO, 0 These bits contain the address corresponding to the I/O
transaction that resulted in the error condition.

RO—Read-only
RW—Read/write
WC—Write one-to-clear
MBZ—Read-only, read as 0
MBO—Read-only, read as 1

6.3.4.8 NDAL Error Address Register (CNEAR)
When any of CESR<23:21> is set because of an error condition in an NCA-
initiated NDAL transaction, the corresponding address and ID are logged in this
register. The content remains valid until all CESR<23:21> bits are cleared. This
register is read-only and contains valid information only when any of the error
bits is set.

Figure 6–8 NDAL Error Address Registers

NDAL ERROR ADDRESS

CNEAR : 2 1 0 2 0 0 1 8

03 03 1 2 12 32 52 72 9 2 8 2 6 2 4 2 2 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 12 0

I D

KA680 I/O Subsystem 6–19

KA680 I/O Subsystem
6.3 NCA Chip Architecture

Table 6–9 NDAL Error Address Register, CNEAR

Register Field Bit
Type, Reset
State Description

Commander ID 31:29 RO, 0 These bits contain the commander ID corresponding to
NCA-initiated NDAL transaction that resulted in the
error condition.

Error Address 28:0 RO, 0 These bits contain the address corresponding to NCA-
initiated NDAL transaction that resulted in the error
condition.

RO—Read-only
RW—Read/write
WC—Write one-to-clear
MBZ—Read-only, read as 0

6.4 Interval Clock Registers
The interval clock is used for accounting, for time-dependent events, and to
maintain the software date and time. The NVAX CPU implements the interrupt
at IPL 22 programmed interval only (that is, the interval timer increments at 1
µs intervals). The interval timer consists of three registers and a counter. For
information on the interval clock, refer to the VAX Architecture Reference Manual.

6.4.1 Interval Clock Control and Status Register (ICCS)
The ICCS is a 32-bit register containing the control and status information for the
interval timer. Figure 6–9 shows the format of the ICCS register, and Table 6–10
lists the bit decriptions.

Figure 6–9 Interval Clock Control and Status Register

ERROR

INTERRUPT
INTERRUPT ENABLE
S I N G L E STEP
TRANSFER

RUN

MBZMBZ

I C C S : E 1 0 0 0 0 6 0

03 03 1 2 12 32 52 72 9 2 8 2 6 2 4 2 2 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 12 0

6–20 KA680 I/O Subsystem

KA680 I/O Subsystem
6.4 Interval Clock Registers

Table 6–10 Interval Clock Control and Status Register, ICCS

Register Field Bit
Type, Reset
State Description

Error 31 RW, 0 This bit is set when ICR overflows and if interrupt is
already set. This bit indicates an unacknowledgement
from the CPU. This bit is write one-to-clear.

Unused 30:8 RO, 0 These bits read as 0.

Interrupt 7 RW, 0 This bit is set when the ICR (Section 6.4.3) overflows.
This bit is write one-to-clear.

Interrupt Enable 6 RW, 0 When set, an interrupt request is generated every time
interrupt is set. When clear, no interrupt is requested.
Similarly, if interrupt is already set and interrupt
enable is set, an interrupt request is generated. This bit
is cleared on powerup.

Single Step 5 RW, 0 When run is cleared, each time this bit is set, the ICR is
incremented by 1. This bit should not be set when run
is set, otherwise the consequence is unpredictable. This
bit is cleared at powerup.

Transfer 4 RW, 0 When set, the content of NICR (Section 6.4.2) is
transferred to ICR. This bit is write-only. This bit
should not be set when run is set; otherwise, the
consequence is unpredictable.

Unused 3:1 RO, 0 These bits read as 0.

Run 0 RW, 0 When set, ICR increments every 1 µs. This bit is cleared
on powerup.

RO—Read-only
RW—Read/write
WC—Write one-to-clear
MBZ—Read-only, read as 0

6.4.2 Next Interval Count Register (NICR)
The NICR is a 32-bit register holding the initial count value for the ICR register.
When ICR overflows, the contents of NICR are loaded into ICR. This is a
read/write register. This register is set to the value FFFFD8F0 (hex) (10 ms)
upon powerup.

6.4.3 Interval Count Register (ICR)
The ICR is a 32-bit register holding the current count of the interval timer. The
content of ICR is incremented by 1 every 1 µs when ICCS<0> is set, or every time
ICCS<5> is set. When ICR overflows or when ICCS<4> is set , the content of
NICR is loaded into this register. This register is read-only. This register is set to
the value FFFFD8F0 (hex) (10 ms) upon powerup.

6.5 NCA Transaction Handling
This section describes the NCA behavior by tracing the flow of transactions
through the functional units of the chip. There are seven types of transactions
supported by the NCA:

• IO write

• IO read

KA680 I/O Subsystem 6–21

KA680 I/O Subsystem
6.5 NCA Transaction Handling

• Interrupt vector read

• Register read

• Register write

• DMA read

• DMA write

6.5.1 IO Write
IO write transactions are initiated by the NVAX CPU on the NDAL. IO write
can be WRITE or WDISOWN operations to addresses assigned to the CP1 or
CP2 ports (Table 6–1). WDISOWN is treated as WRITEs. The data length for
IO writes is always quadword, but could be masked on longword alignment.
A quadword write is performed as two longword writes on the CP-bus in two
separate CP-bus grants.

The address on the NDAL is latched and decoded by the NDAL slave interface
to determine if the NVAX CPU is addressing the CP1 or CP2 ports. If it is an
address to one of the ports, and there is no parity error, the NCA acknowledges
the NDAL transaction and begins to process it. The address and the port ID are
latched in the IO_RW queue. The data is latched from the NDAL during the data
cycle that follows. Again, parity is calculated and checked. If there is no parity
error on the data, then the data is latched in the IO_RW queue and the valid bit
for the entry is set. If a parity error is detected, then a soft error interrupt will be
requested, the transaction is ignored, and the valid bit of the entry of the IO_RW
queue is not set.

If the NDAL address is not within the NCA address space, it is ignored by the
NCA. If it is within the NCA address space but a parity error is detected, or
if the address is outside the NCA address space and a parity error is detected,
then ACK_L is not asserted. Instead, a soft error interrupt is requested to notify
the NVAX CPU of the error. In addition, the NDAL parity error bit is set in
CMCDSR.

If the IO write is for port 1 (port 2), then CP1_RBUF (CP2_RBUF) is invalidated.
Depending on the byte masks of the IO write, the transaction will require either
one or two longword writes on the associated CP-bus. The CP1_IORBUF (CP2_
IORBUF) is flushed before the IO write can proceed on CP1 (CP2) port; that is,
any previous IO read must be forwarded to the NDAL interface before the IO
write can proceed. After CP1_IORBUF (CP2_IORBUF) has been flushed, the
NCA initiates the transaction on the CP1 (CP2) bus.

The lower longword of the quadword is initiated first on the CP-bus, unless the
byte masks corresponding to the lower longword are all 0s. Then if the byte
masks corresponding to the upper longword are not all 0s, the IO write for the
upper longword is initiated on the CP-bus. If the byte masks corresponding to the
lower longword are all 0s, then the IO write for the upper longword is initiated
on the CP-bus regardless of the value of the byte masks for the upper longword.

6.5.2 IO Read
IO read transactions are initiated by the NVAX CPU on the NDAL. IO reads can
be caused by NDAL IREAD, DREAD, or OREAD operations to addresses assigned
to the CP1 and CP2 ports (Table 6–1). As in IO writes, the data length is always
a quadword, and may be masked. OREADs are treated as DREAD operations.

6–22 KA680 I/O Subsystem

KA680 I/O Subsystem
6.5 NCA Transaction Handling

IO reads are handled the same way as IO writes on the NDAL slave interface,
except that no data is latched in the IO_RW queue. If the address is within the
NCA address space, then the valid bit for the entry is set. A quadword read is
performed as two longword reads on the CP-bus in two separate CP bus grants.

If the IO read is for port 1 (port 2), then CP1_RBUF (CP2_RBUF) is invalidated.
Depending on the byte masks of the IO read, the transaction can either be one
or two longword reads. The CP1_IORBUF (CP2_IORBUF) is flushed before
the IO read can proceed on CP1 (CP2) port; that is, any previous IO read must
be forwarded to the NDAL interface before the next IO read can proceed. When
CP1_IORBUF (CP2_IORBUF) has been flushed, the NCA initiates the transaction
on the CP1 (CP2) bus. An IREAD will result in an I-stream read, and an OREAD
or DREAD will result in a D-stream read on the CP1 (CP2) bus.

The lower longword of the quadword is initiated first on the CP-bus, unless the
byte masks for this longword are all 0s. In this case, the upper longword read
happens first. If the byte masks for the lower longword are all 0s, then the upper
longword is initiated on the CP-bus regardless of the value of the upper longword
byte masks.

As the read data is returned on the CP1 (CP2) bus, it is stored in the CP1_
IORBUF (CP2_IORBUF) queue in the CP1 (CP2) port. When all the read data
has been returned, a request is sent to the NCA’s arbitration unit of the NDAL
master interface.

The NCA NDAL master interface arbitrates with the other NDAL devices for
mastership of the NDAL. When NDAL bus ownership has been granted, the
NCA initiates a read data return cycle (RDR) and drives the data from the CP1_
IORBUF (CP2_IORBUF) onto the NDAL to complete the read.

The RDR number is determined by the NDAL address of the IO read. Table 6–11
shows how the RDR number is calculated.

KA680 I/O Subsystem 6–23

KA680 I/O Subsystem
6.5 NCA Transaction Handling

Table 6–11 IO Read RDR number

NDAL<4:3> RDR Number Comments

00 (binary) RDR0 Quadword 0 of a hexaword

01 (binary) RDR1 Quadword 1 of a hexaword

10 (binary) RDR2 Quadword 2 of a hexaword

11 (binary) RDR3 Quadword 3 of a hexaword

6.5.3 Interrupt Vector Read
An interrupt vector read appears on the NDAL as a DREAD, IREAD, or OREAD
to one of four longwords within the range E100 0100 to E100 010F (hex). The
address must be longword-aligned. Interrupt vector reads are initiated by the
NVAX CPU in response to an assertion of one of the NVAX CPU’s interrupt
lines (IRQ<3:0>). The read address identifies the level of the interrupt being
serviced. The read data length is always a quadword, which is masked to a single
longword. The NCA expects the NVAX CPU to provide the proper byte mask
information; that is, the byte mask should either be 03 (hex) or 30 (hex).

IRQ<3:0>can be asserted only by the NCA, which asserts these signals on behalf
of devices on either of the two CP-buses.

The interrupt vector read cycle starts in the NCA when the NDAL slave interface
detects a read address cycle on the NDAL. The address is latched and decoded to
determine if it is an interrupt vector address. If it is an interrupt vector address,
and there is no parity error, the NCA acknowledges the NDAL transaction. The
address is then latched in the IO_RW queue.

The address decoder determines the destination of the read. If one of the CP
ports has an interrupt of the proper level pending, then the read is directed to
that port. If both ports have interrupts pending at that level, then the CP2 port
will receive the interrupt vector read. If neither port has an interrupt, then the
NCA will abort the vector read transaction.

If the interrupt vector read is directed to either of the two CP ports, the ID of
that port is latched in the IO_RW queue together with the address, and the valid
bit of the entry is set.

If the IO read is for port 1 (port 2), then CP1_RBUF (CP2_RBUF) is invalidated.
The CP1_IORBUF (CP2_IORBUF) is also flushed before the read can proceed on
CP1 (CP2) port. This is done because any previous IO read must be forwarded
to the NDAL interface before the interrupt vector read can proceed. When CP1_
IORBUF (CP2_IORBUF) is flushed, the NCA initiates the transaction on the CP1
(CP2) bus.

As the read data is returned on the CP1 (CP2) bus, it is stored in the CPx_
IORBUF queue in the CP1 (CP2) port. A request is sent to the arbitration unit of
the NDAL master interface.

The NCA NDAL master interface arbitrates for the NDAL mastership after the
request is received. When NDAL bus ownership is granted, the NCA initiates a
read data return (RDR) cycle and drives the data from the CP1_IORBUF (CP2_
IORBUF) onto the NDAL to complete the read.

The RDR number for interrupt vector read is determined in Table 6–12.

6–24 KA680 I/O Subsystem

KA680 I/O Subsystem
6.5 NCA Transaction Handling

Table 6–12 Interrupt Vector Read RDR Number

NDAL<31:0> RDR Number

2100 0000 (IPL 14) RDR0

2100 0100 (IPL 15) RDR0

2100 1000 (IPL 16) RDR1

2100 1100 (IPL 17) RDR1

NOTE

If the NCA initiates an I/O transaction (IO reads, IO writes, or interrupt
vector reads) and the CP master transaction timer times out, the NCA
will terminate the transaction. No error will be logged.

6.5.4 Register Read
Register read can be a read to NCA’s CSR registers or to the VAX standard
interval timer registers. Register read transactions are initiated by the
NVAX CPU on the NDAL. They appear as DREAD, IREAD, or OREAD
operations, and the data length is always a quadword (1 data transfer).

The read transaction starts in the NCA when the NDAL slave interface detects
a read address cycle on the NDAL. The address is latched on the NCA, and a
decoder determines if it is the NCA’s register address. If there is a match, and
there is no parity error, the NCA acknowledges the NDAL cycle.

The NCA address decoder determines that the destination of the read is the
register block. The address is then latched in the receive buffer. The NCA always
returns the register data corresponding to the quadword address regardless of
the byte mask value. The quadword data is stored in the transmit buffer. When
the read data is ready, a request is forwarded to the arbitration unit of the NCA’s
NDAL master interface.

The NCA then arbitrates with the other NDAL devices for control of the NDAL.
When it becomes bus master, it initiates a read data return cycle and drives the
data onto the NDAL to complete the read.

6.5.5 Register Write
Register write transactions are initiated by the NVAX CPU on the NDAL. They
appear as either WRITE or WDISOWN operations and the write data length is
always a quadword, but only one longword data is written in the appropriate
register at a time.

The register write transaction starts in the NCA when the NDAL slave interface
detects a write address cycle on the NDAL. The address is latched by the NCA,
and a decoder determines if it is the NCA’s register address. If there is a match,
and there is no parity error, the NCA acknowledges the NDAL transaction.

The NCA address decoder determines if the destination of the write is the
register block. The address and the write data are then latched in the receive
buffer. The address indicates the quadword boundary while the mask field of the
lower longword selects the proper longword. If the mask field is not all 0s, then
the write data on NDAL<31:0> is written into the NCA register on the lower

KA680 I/O Subsystem 6–25

KA680 I/O Subsystem
6.5 NCA Transaction Handling

longword address. If the mask field is all 0s, then the data on NDAL<63:32> is
written into the NCA register on the upper longword address.

6.5.6 CP1 DMA Read
CP1 DMA reads are initiated by I/O devices that reside on the CP1-bus. DMA
reads are supported by the NCA to memory address space only. All DMA reads to
VAX I/O address space are terminated by the NCA by asserting the CP1_ERR_L
signal on the CP1-bus. DMA reads can be longword (2 words), quadword (4
words), hexword (6 words), or octaword (8 words) on the CP1-bus.

When the NCA’s prefetch enable bit is set, the NCA will respond to DMA ready
cycles to main memory by prefetching sequential locations in anticipation of
future requests to these memory locations by DMA devices. Table 6–13 shows the
prefetch scheme the NCA uses.

Table 6–13 CP1 DMA Memory Read Prefetching

CP1 Read Data Length Data Length Requested

Longword Quadword

Quadword Octaword

Hexword Octaword

Octaword Hexaword

When a DMA read happens on the CP1-bus, the address is latched in the CP1_
MEMRD buffer. The NCA compares the address with the previous DMA read
address. If they are within the same hexaword boundary, then the current
requested read data might be in the CP1_RBUF. The NCA then checks if all the
requested longwords are in the CP1_RBUF. If this is also true, then the NCA
will not forward the DMA read request to the NDAL master interface. Instead,
the CP1 slave interface returns the read data onto the CP1-bus directly from the
CP1_RBUF. As each longword is driven onto the CP1-bus, the valid bit of the
corresponding longword is cleared.

If the DMA read address is not within the same hexaword boundary of the
previous DMA read, or if not all the requested read data is in the CP1_RBUF,
then the CP1 slave interface will forward the read request to the NDAL master
interface and all entries in the CP1_RBUF will be invalidated.

It is possible for the NCA to receive a new DMA read transaction on the CP1-bus
before all the prefetch data of the previous DMA read has been received. If the
current DMA read is within the same hexaword as the previous read but not all
the requested longword data is in the CP1_RBUF, then the CP1 slave interface
will wait until all the prefetch is completed. Once all the prefetched data has
returned, the read data will return from the CP1_RBUF, thus avoiding the need
to forward the DMA read request to the NDAL. If the current hexaword DMA
read address does not match the previous one, the DMA read request will be
forwarded to the NDAL master interface, since the data in CP1_RBUF is for a
different hexaword address.

It is possible that a DMA read address matches a DMA write transaction waiting
in the CP1_WBUF. If the addresses are within the same hexaword boundary,
then the DMA read request is stalled until the DMA write has completed on the
NDAL.

6–26 KA680 I/O Subsystem

KA680 I/O Subsystem
6.5 NCA Transaction Handling

If the DMA read is a lock operation, then any outstanding DMA writes waiting
in CP1_WBUF are flushed before the read request is sent to the NDAL master
interface.

The NCA gives higher priority to DMA reads than writes if both are pending in
the CP1 slave interface so that the DMA read operations will not hold up the
CP1-bus (DMA writes are dump-and-run).

When the NDAL master interface receives a DMA request from the CP1 slave
interface, the NCA arbitrates for the NDAL on behalf of the CP1-bus. When
NDAL mastership is granted to the NCA for this transaction, the DMA read
address is forwarded to the NDAL interface and driven onto the NDAL. Some
time later, data is returned from the memory. Each quadword of data is latched
in the NDAL interface and in CP1_RBUF. According to NDAL protocol, the first
quadword returned on the NDAL is guaranteed to be the requested quadword.

As the data becomes available in CP1_RBUF, it is driven onto the CP1-bus. As
each longword of data is returned on the CP1-bus, the corresponding entry is
invalidated in CP1_RBUF. When all the requested data has been returned, the
transaction completes on the CP1-bus. The NCA is now ready to receive new
DMA transactions on the CP1-bus. The nonrequested data is kept in CP1_RBUF
as prefetch data.

The prefetch data in the CP1_RBUF is invalidated under the following conditions:

• DMA memory write or write-unlock on the CP1-bus to any memory address

• DMA memory read with different hexaword address or the prefetch data does
not contain all the requested longword data

• DMA memory read-lock on the CP1-bus to any memory address

• I/O transaction on the CP1-bus initiated by the NCA

6.5.7 CP1 DMA Write
CP1 DMA writes are initiated by I/O devices that reside on the CP1-bus. DMA
writes are supported by the NCA only to VAX memory space; that is, NOT to VAX
I/O space. All DMA writes to VAX I/O space are terminated by the NCA with
the assertion of the CP1-bus signal CP1_ERR_L. DMA write can be longword,
quadword, hexword, or octaword on the CP1-bus. Longword and quadword writes
are performed as quadword writes on the NDAL, and hexword and octaword
writes are performed as octaword writes on the NDAL. Writes can be masked or
unmasked.

When a DMA write happens on the CP1-bus, the address and data are latched
in the CP1_WBUF. A DMA write on the CP1-bus causes the CP1_RBUF to be
invalidated. When the address and write data are ready, the NCA will arbitrate
for the NDAL on behalf of the CP1-bus. Once the NDAL has been granted to the
NCA, the write is initiated on the NDAL and the transaction completes.

6.5.8 CP2 DMA Read
CP2 DMA reads are initiated by I/O devices that reside on the CP2-bus. DMA
reads are supported by the NCA to VAX memory space only. All DMA reads to
VAX I/O space are terminated by the NCA by asserting the CP2-bus signal CP2_
ERR_L. The NCA supports DMA reads originating on the CP2-bus of longword,
quadword, hexword, or octaword length.

KA680 I/O Subsystem 6–27

KA680 I/O Subsystem
6.5 NCA Transaction Handling

When NCA prefetching is enabled, the NCA will prefetch read data by requesting
more data from the system main memory than originally requested on the
CP2-bus. Table 6–14 shows the prefetch scheme the NCA uses.

Table 6–14 CP2 DMA Memory Read Prefetching

CP2 Read Data Length Data Length Requested on NDAL

Longword Quadword

Quadword Octaword

Hexword Octaword

Octaword Hexaword

When a DMA read happens on the CP2-bus, the address is latched in the CP2_
MEMRD buffer. The NCA compares the address with the previous DMA read
address. If they are within the same hexaword boundary, then the current
requested read data might be in the CP2_RBUF. The NCA then checks whether
all the requested longwords are in the CP2_RBUF. If this is also true, then the
NCA will not forward the DMA read request to the NDAL master interface.
Instead, the CP2 slave interface returns the read data onto the CP2-bus directly
from the CP2_RBUF. As each longword is driven onto the CP2-bus, the valid bit
of the corresponding longword is cleared.

If the DMA read address is not within the same hexaword boundary of the
previous DMA read or not all the requested read data is in the CP2_RBUF, then
the CP2 slave interface forwards the read request to the NDAL master interface,
and all entries in the CP2_RBUF are invalidated.

It is possible for the NCA to receive a new DMA read transaction on the CP2-bus
when not all the prefetch data of the previous DMA read has been received. If
the current DMA read is within the same hexaword as the previous read but
not all the requested longword data is in the CP2_RBUF, then the CP2 slave
interface will wait until all the prefetch is completed. Once all the prefetched
data has returned, the read data will return from the CP2_RBUF, thus avoiding
the need to forward the DMA read request to the NDAL. If the current hexaword
DMA read address does not match the previous one, the DMA read request will
be forwarded to the NDAL master interface, since the data in CP2_RBUF is for a
different hexaword address.

It is possible that a DMA read address matches a DMA write transaction waiting
in the CP2_WBUF. If the addresses are within the same hexaword boundary,
then the DMA read request is stalled until the DMA write has completed on the
NDAL.

If the DMA read is a lock operation, then any outstanding DMA writes waiting
in CP2_WBUF are flushed before the read request is sent to the NDAL master
interface.

The NCA gives higher priority to DMA reads than writes if both are pending in
the CP2 slave interface so that the DMA read operations will not hold up the
CP2-bus (DMA writes are dump-and-run).

The CQBIC is the only DMA device on the CP2-bus. Therefore, when a DMA
longword read occurs on the CP2-bus as the transaction is forwarded to the
NDAL, the NCA asserts the QBUS_TRANS_L signal to the NDAL arbiter in the
NMC. The assertion of this signal causes a modification of the NDAL arbitration

6–28 KA680 I/O Subsystem

KA680 I/O Subsystem
6.5 NCA Transaction Handling

priority such that the CP2-bus (CQBIC) has the highest priority on the NDAL.
This is done to reduce the latency on memory reads by Q22–bus devices.

Once asserted, the NCA will continue to assert QBUS_TRANS_L for TBD cycles
after the read data is returned from the NMC on the NDAL, or until any of the
following conditions happen on the CP2-bus:

1. The longword memory read is followed by a memory write.

2. The longword memory read is followed by a longword memory read.

3. The longword memory read is followed by a quadword memory read.

In case 1, QBUS_TRANS_L is deasserted after the memory write completes on
the CP2-bus. In case 2, QBUS_TRANS_L is kept asserted for another TBD cycle
after the read data for the second longword memory read is returned from the
NMC. In case 3, QBUS_TRANS_L is deasserted when the quadword memory read
address and command are pushed onto the NDAL.

When the NDAL master interface receives a DMA request from the CP2 slave
interface, a bus request is asserted on the NDAL. When the bus grant is received,
the DMA read address is forwarded to the NDAL interface and driven onto the
NDAL. Later, data is returned from the memory. Each quadword of data is
latched in the NDAL interface and then CP2_RBUF. According to NDAL protocol,
the first quadword returned on the NDAL is guaranteed to be the requested
quadword.

As the data becomes available in CP2_RBUF, it is driven onto the CP2-bus. As
each requested longword is driven onto the CP2-bus, the corresponding CP2_
RBUF entry is invalidated. When all the requested data has been returned, the
transaction completes on the CP2-bus. The NCA is now ready to receive new
DMA transactions on the CP2-bus. The nonrequested data is kept in CP2_RBUF
as prefetch data.

The prefetch data in the CP2_RBUF is invalidated under the following conditions:

• DMA memory write or write-unlock on the CP2-bus to any memory address

• DMA memory read with different hexaword address or the prefetch data does
not contain all the requested longword data

• DMA memory read-lock on the CP2-bus to any memory address

• I/O transaction on the CP2-bus initiated by the NCA

6.5.9 CP2 DMA Write
CP2 DMA writes are initiated by I/O devices that reside on the CP2-bus. DMA
writes are supported by the NCA to VAX memory space only. All DMA writes to
VAX I/O space are terminated by the NCA by asserting the CP2-bus CP2_ERR_L
signal. The NCA supports DMA writes on the CP2-bus of longword, quadword,
hexword, or octaword length. Longword and quadword writes are performed as
quadword writes on the NDAL, and hexword and octaword writes are performed
as octaword writes on the NDAL. Writes can be masked or unmasked.

When a DMA write happens on the CP2-bus, the address and data are latched
in the CP2_WBUF. A DMA write on the CP2-bus causes the CP2_RBUF to be
invalidated. When the address and all write data have been latched by the NCA,
a DMA write request is sent to the NCA’s NDAL master interface. The NCA
will then arbitrate for the NDAL on behalf of the CP2-bus DMA device (CQBIC).
When the NDAL is granted to the NCA, the write is initiated on the NDAL,
thereby completing the DMA write transaction.

KA680 I/O Subsystem 6–29

KA680 I/O Subsystem
6.6 NCA Error Handling

6.6 NCA Error Handling
Errors in the NCA can be of two types - NDAL-related errors and CP-bus related
errors. These errors are described in the following tables.

Table 6–15 NDAL-Related Errors and NCA Responses

Description of Error Specific Situation Action Taken by NCA

NCA detects a parity
error on any NDAL cycle

Error in CMD<3:0>
or ID<2:0>

No ACK_L; set CESR<NDAL_PARITY_ERROR>;
asserts S_ERR_L.

Address cycle, error
on NDAL<63:0>

No ACK_L; set CESR<NDAL_PARITY_ERROR>;
asserts S_ERR_L.

Data cycle, error on
NDAL<63:0>

No ACK_L; set CESR<NDAL_PARITY_ERROR>;
asserts S_ERR_L. If DMA read, then NDAL CP timer
will eventually time out and CP-bus interface assert
CP_ERR_L if not all requested data is received.

ACK_L is not received
when NCA is master

Address cycle Assert H_ERR_L if DMA write; set CESR<NACK>.
Log address in CNEAR. If DMA read, then asserts
CP_ERR_L to abort.

Data cycle If DMA write, then asserts H_ERR_L; set
CESR<NACK>. Log address in CNEAR. If read
data return, then asserts S_ERR_L; set CESR<RDR_
NACK>.

NCA detects illegal
length to NCA
addressing space

Address cycle Asserts S_ERR_L; no ACK_L; set CESR<ILL_
LENGTH>; no address log.

NCA detects reserved
command on any NDAL
cycle

Address or data cycle No ACK_L; set CESR<RESERVE_CMD>; no address
log.

Read data return error NDAL CP timer
times out before all
data is returned

Set CESR<CP_TIMEOUT_ERROR>; log address in
CNEAR. If CP-bus is still waiting for data, assert CP_
ERR_L to abort.

Receive RDE If data is requested on CP-bus, assert CP_ERR_L;
otherwise, ignore data returned.

Interrupt vector read
error

No interrupts
pending at that
level and XA is not
present

Set CESR<NCA_PREL>; return with RDR and NDAL
bit<33,1> set to 1.

6–30 KA680 I/O Subsystem

KA680 I/O Subsystem
6.6 NCA Error Handling

Table 6–16 CP-Bus (CP1 and CP2 Buses) Related Errors and NCA Responses

Description of Error Specific Situation Action Taken by NCA

NCA detects a parity
error on CP-bus

DMA write data
cycle

Set CESR<CP_DMA_PAR_ERR>; log address in
CSEAR1 or CSEAR2. Perform BADWDATA operation
on NDAL; asserts S_ERR_L.

IO read data cycle Set CESR<CP_IO_READ_PAR_ERR>; return RDE on
NDAL. Log address in CIOEAR1 or CIOEAR2.

Interrupt vector read
data cycle

Set CESR<CP_IO_READ_PAR_ERR>, return RDE on
NDAL. Log address in CIOEAR1 or CIOEAR2.

Invalid DMA address NCA receives IO
space address

Asserts CP_ERR_L; set CESR<CP_BUS_ERR>; no
address logging.

Reserved command NCA receives
reserved command

Asserts CP_ERR_L; set CESR<CP_BUS_ERR>; no
address logging.

CP_ERR_L is asserted
when NCA is master

IO read Set CESR<CP_IO_ERR>; return RDE to NDAL. Log
address in CIOEAR1 or CIOEAR2.

IO write Assert H_ERR_L; set CESR<CP_IO_ERR>. Log
address in CIOEAR1 or CIOEAR2.

Interrupt vector read Set CESR<CP_PREL>; return RDR with NDAL
bit<33,1> set to 1.

No response abort IO read Set CESR<CP_NXIO>; return RDE on NDAL. Log
address in CIOEAR1 or CIOEAR2.

IO write Assert H_ERR_L; set CESR<CP_NXIO>. Log address
CIOEAR1 or CIOEAR2.

Interrupt vector read No action; the NCA will continue to wait for the read
data or until either the CP MT timer times out or
the assertion of CP_ERR_L before terminating the
transaction.

CP MT timer times out Interrupt vector read Terminates CP-bus transaction by deasserting CP_AS_
L and CP_DS_L. Return RDR with NDAL bit<33,1> set
to 1; set CESR<CP_PREL>.

IO read Terminates CP-bus transaction by deasserting CP_AS_
L and CP_DS_L. Set CESR<CP_MT_TIMEOUT>; log
address in CIOEAR1 or CIOEAR2.

IO write Asserts H_ERR_L; terminates CP bus transaction by
deasserting CP_AS_L and CP_DS_L. Set CESR<CP_
MT_TIMEOUT>; log address in CIOEAR1 or CIOEAR2.

KA680 I/O Subsystem 6–31

7
The Console Line, TOY Clock

7.1 KA680 Console Serial Line
The console serial line provides the KA680 processor with a full-duplex, RS-423
EIA, serial line interface, which is also RS-232-C compatible. The only data
format supported is 8-bit data with no parity and one stop bit. The four internal
processor registers (IPRs) that control the operation of the console serial line
are a superset of the VAX console serial line registers described in the VAX
Architecture Reference Manual.

7.1.1 Console Registers
There are four registers associated with the console serial line unit. They
are implemented in the SSC chip and are accessed as IPRs 32-35. Refer to
Table 7–1.

Table 7–1 Console Registers

IPR Number Register Name Mnemonic

Dec Hex

32 20 Console Receiver Control/Status RXCS

33 21 Console Receiver Data Buffer RXDB

34 22 Console Transmit Control/Status TXCS

35 23 Console Transmit Data Buffer TXDB

7.1.1.1 Console Receiver Control/Status Register (IPR 32)
The console receiver control/status register (RXCS), internal processor register
32, is used to control and report the status of incoming data on the console serial
line. The format is shown in Figure 7–1. Table 7–2 lists the bit descriptions.

The Console Line, TOY Clock 7–1

The Console Line, TOY Clock
7.1 KA680 Console Serial Line

Figure 7–1 Console Receiver Control/Status Register (IPR 3210 2016)

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01300-TI0

MBZ

RX DONE

RX IE

MBZ

Table 7–2 Console Receiver Control/Status Register

Data Bit Name Description

<31:8> MBZ These bits read as zeros; writes
have no effect.

<7> RX DONE Receiver done. Read-only. Writes
have no effect. This bit is set
when an entire character has been
received and is ready to be read
from the RXDB register. This bit
is automatically cleared when the
RXDB register is read. It is also
cleared on powerup and on the
negation of DCOK.

<6> RX IE Receiver interrupt enable.
Read/write. When set, this bit
causes an interrupt to be requested
at IPL14 with an SCB offset of F8
if RX DONE is set. When cleared,
interrupts from the console receiver
are disabled. This bit is cleared on
powerup and on the negation of
DCOK.

<5:0> Unused These bits read as zeros. Writes
have no effect.

7.1.1.2 Console Receiver Data Buffer (IPR 33)
The console receiver data buffer (RXDB), internal processor register 33, is used to
buffer incoming data on the serial line and capture error information. The format
is shown in Figure 7–2. Bit descriptions are listed in Table 7–3.

7–2 The Console Line, TOY Clock

The Console Line, TOY Clock
7.1 KA680 Console Serial Line

Figure 7–2 Console Receiver Data Buffer (IPR 3310 2116)

0007081011121314151631

LJ-01301-TI0

MBZ

ERR

OVR ERR

FRM ERR

MBZ

RCV BRK

MBZ

Received Data Bits

Table 7–3 Console Receiver Data Buffer

Data Bit Name Description

<31:16> MBZ These bits always read as zero.
Writes have no effect.

<15> ERR Error. Read-only. Writes have no
effect. This bit is set if RBUF <14>
or <13> is set. It is clear if these
two bits are clear. This bit cannot
generate a program interrupt.
Cleared on powerup and on the
negation of DCOK.

<14> OVR ERR Overrun error. Read-only. Writes
have no effect. This bit is set if a
previously received character was
not read before being overwritten
by the present character. Cleared
by reading the RXDB, on powerup,
and on the negation of DCOK.

<13> FRM ERR Framing error. Read-only. Writes
have no effect. This bit is set
if the present character did not
have a valid stop bit. Cleared by
reading the RXDB, on powerup,
and on the negation of DCOK.
Error conditions are updated
when the character is received.
Error conditions remain
present until the character
is read, at which point the
error bits are cleared.

<12> MBZ This bit always reads as zero.
Writes have no effect.

(continued on next page)

The Console Line, TOY Clock 7–3

The Console Line, TOY Clock
7.1 KA680 Console Serial Line

Table 7–3 (Cont.) Console Receiver Data Buffer

Data Bit Name Description

<11> RCV BRK Received break. Read-only. Writes
have no effect. This bit is set at
the end of a received character
for which the serial data input
remained in the space condition for
20 bit times. Cleared by reading
the RXDB, on powerup, and on the
negation of DCOK.

<10:8> MBZ These bits always read as zero.
Writes have no effect.

<7:0> Received Data Bits Read-only. Writes have no effect.
These bits contain the last received
character.

7.1.1.3 Console Transmitter Control/Status Register (IPR 34)
The console transmitter control/status register (TXCS), internal processor register
34, is used to control and report the status of outgoing data on the console serial
line. The format is shown in Figure 7–3. Bit descriptions are listed in Table 7–4.

Figure 7–3 Console Transmitter Control/Status Register (IPR 3410 2216)

000102030506070831

LJ-01302-TI0

XMIT BRK

MBZ

MAINT

TX IE

TX RDY

MBZMBZ

7–4 The Console Line, TOY Clock

The Console Line, TOY Clock
7.1 KA680 Console Serial Line

Table 7–4 Console Transmitter Control/Status Register

Data Bit Name Description

<31:8> MBZ These bits read as zeros. Writes
have no effect.

<7> TX RDY Transmitter ready. Read-only.
Writes have no effect. This bit
is cleared when TXDB is loaded,
and set when TXDB can receive
another character. This bit is set
on powerup and on the negation of
DCOK.

<6> TX IE Transmitter interrupt enable.
Read/write. When set, this bit
causes an interrupt to be requested
at IPL14 with an SCB offset of FC
if TX RDY is set. When cleared,
interrupts from the console receiver
are disabled. This bit is cleared on
powerup and on the negation of
DCOK.

<5:3> MBZ These bits read as zeros. Writes
have no effect.

<2> MAINT Maintenance. Read/write. This bit
is used to facilitate a maintenance
self-test. When MAINT is set,
the external serial output is set
to MARK and the serial output is
used as the serial input. This bit
is cleared on powerup and on the
negation of DCOK.

<1> Unused This bit reads as zero. Writes have
no effect.

<0> XMIT BRK Transmit break. Read/write. When
this bit is set, the serial output
is forced to the space condition
after the character in TXDB<7:0>
is sent. While XMIT BRK is
set, the transmitter will operate
normally, but the output line will
remain low. Thus, software can
transmit dummy characters to time
the break. This bit is cleared on
powerup.

7.1.1.4 Console Transmitter Data Buffer (IPR 35)
The console transmitter data buffer (TXDB), internal processor register 35,
is used to buffer outgoing data on the serial line. The format is shown in
Figure 7–4. Table 7–5 lists the bit descriptions.

The Console Line, TOY Clock 7–5

The Console Line, TOY Clock
7.1 KA680 Console Serial Line

Figure 7–4 Console Transmitter Data Buffer (IPR 3510 2316)

00070831

LJ-01303-TI0

Transmitted
Data Bits

MBZ

Table 7–5 Console Transmitter Data Buffer

Data Bit Name Description

<31:8> MBZ Read as 0. Writes have no effect.

<7:0> Transmitted Data Bits Write-only. These bits are used
to load the character to be
transmitted on the console serial
line.

7.1.2 Break Response
The console serial line unit recognizes a break condition, which consists of 20
consecutively received space bits. If the console detects a valid break condition,
the RCV BRK bit is set in the RXDB register. If the break was the result of
20 consecutively received space bits, the FRM ERR bit is also set. If halts
are enabled, the KA680 will halt and transfer program control to the console
firmware ROM location E004 000016 when the RCV BRK bit is set. RCV BRK
is cleared by reading RXDB. Another mark followed by 20 consecutive space bits
must be received to set RCV BRK again.

7.1.3 Baud Rate
The receive and transmit baud rates are always identical and are controlled by
the SSC configuration register bits <14:12>.

The user selects the desired baud rate through the baud rate select signals, which
are received from an external 8-position switch mounted on the console module
(H3604). The KA680 firmware must read this code from boot and diagnostic
register bits <6:4>, compliment and then load it into SSC configuration register
bits <14:12>.

Table 7–6 shows the baud rate selection, the corresponding code as read in the
boot and diagnostic register bits <6:4>, and the inverted code that should be
loaded into SSC configuration register bits <14:12>.

Table 7–6 Baud Rate Selection

Baud Rate BDR<6:4> SSC<14:12>

300 111 000

600 110 001

(continued on next page)

7–6 The Console Line, TOY Clock

The Console Line, TOY Clock
7.1 KA680 Console Serial Line

Table 7–6 (Cont.) Baud Rate Selection

Baud Rate BDR<6:4> SSC<14:12>

1200 101 010

2400 100 011

4800 011 100

9600 010 101

19200 001 110

38400 000 111

7.1.4 Console Interrupt Specifications
Both the console serial line receiver and transmitter generate interrupts at IPL
14. The receiver interrupts with a vector of F816, while the transmitter interrupts
with a vector of FC16.

7.2 KA680 TOY Clock and Timers
The KA680 clocks include time-of-year clock (TODR), a subset interval clock
(subset ICCS), as defined in the VAX Architecture Reference Manual, and two
additional programmable timers modeled after the VAX standard interval clock.

7.2.1 Time-of-Year Clock (TODR) - EPR 27
The time-of-year clock (TODR) forms an unsigned 32-bit binary counter that
is driven from a 100 Hz oscillator, so that the least significant bit of the
clock represents a resolution of 10 milliseconds, with less than .0025% error.
The register counts only when it contains a nonzero value. This register is
implemented in the SSC chip. The format is shown in Figure 7–5.

Figure 7–5 Time-of-Year Clock (TODR) - (EPR 2710 1B16)

0031

LJ-01304-TI0

Number 10ms Intervals Since Setting

The time-of-year clock is maintained during power failure by battery backup
circuitry that interfaces, via the external connector, to a set of batteries mounted
on the CPU console module. The TODR will remain valid for more than 162
hours when using the NiCad battery pack (3 batteries in series) mounted on the
I/O distribution insert panel.

The SSC configuration register contains a battery low (BLO) bit which, if set after
initialization, the TODR is cleared, and will remain at zero until software writes
a nonzero value into it.

The Console Line, TOY Clock 7–7

The Console Line, TOY Clock
7.2 KA680 TOY Clock and Timers

Note

After writing a nonzero value into the TODR, software should clear the
BLO bit by writing a one to it.

7.2.2 Programmable Timers
The KA680 features two programmable timers. Although they are modeled after
the VAX standard interval clock, they are accessed as I/O space registers (rather
than as internal processor registers) and a control bit has been added that stops
the timer upon overflow. If so enabled, the timers will interrupt at IPL 14 upon
overflow. The interrupt vectors are programmable and are set to 78 and 7C by the
firmware. The KA680 firmware uses these timers. They are not preserved
across console activity.

Each timer is composed of four registers:

Timer n control register
Timer n interval register
Timer n next interval register
Timer n interrupt vector register

The timer number (0 or 1) is represented by n.

7.2.2.1 Timer Control Registers (TCR0 and TCR1)
The KA680 has two timer control registers: one for controlling timer 0 (TCR0),
and one for controlling timer 1 (TCR1). TCR0 is accessible at address 2014
010016, and TCR1 is accessible at 2014 011016. These registers are implemented
in the SSC chip. Figure 7–6 shows the format. Table 7–7 lists the bit
descriptions.

Figure 7–6 Timer Control Registers (TCR0 and TCR1)

0001020304050607083031

LJ-01305-TI0

RUN

MBZ

STP

MBZ

XFR

SGL

IE

INT

ERR

MBZ

7–8 The Console Line, TOY Clock

The Console Line, TOY Clock
7.2 KA680 TOY Clock and Timers

Table 7–7 Timer Control Register Bit Descriptions

Date Bit Name Description

<31> ERR Error. Read/write to clear. This bit is set whenever
the timer interval register overflows and the INT bit
is already set. Thus, the ERR bit indicates a missed
overflow. Writing a one to this bit clears it. Cleared on
powerup.

<30:8> MBZ Read as zeros, must be written as zeros.

<7> INT Read/write to clear. This bit is set whenever the timer
interval register overflows. If IE is set when INT is set,
an interrupt is posted at IPL 14. Writing a one to this
bit clears it. Cleared on powerup.

<6> IE Read/write. When this bit is set, the timer will interrupt
at IPL 14 when the INT bit is set. Cleared on powerup.

<5> SGL Read/write. Setting this bit causes the timer interval
register to be incremented by one if the RUN bit is
cleared. If the RUN bit is set, then writes to the SGL bit
are ignored. This bit is always read as zero. Cleared on
powerup.

<4> XFR Read/write. Setting this bit causes the timer next
interval register to be copied into the timer interval
register. This bit is always read as zero. Cleared on
powerup.

<3> MBZ Read as zeros, must be written as zeros.

<2> STP Read/write. This bit determines whether the timer stops
after an overflow when the RUN bit is set. If the STP
bit is set at overflow, the RUN bit is cleared by the
hardware at overflow and counting stops. Cleared on
powerup.

<1> MBZ Read as zeros, must be written as zeros.

<0> RUN Read/write. When set, the timer interval register is
incremented once every microsecond. The INT bit is
set when the timer overflows. If the STP bit is set at
overflow, the RUN bit is cleared by the hardware at
overflow and counting stops. When the RUN bit is
clear, the timer interval register is not incremented
automatically. Cleared on powerup.

7.2.2.2 Timer Interval Registers (TIR0 and TIR1)
The KA680 has two timer interval registers: one for timer 0 (TIR0), and one for
timer 1 (TIR1). TIR0 is accessible at address 2014 010416, and TIR1 is accessible
at 2014 011416.

The timer interval register is a read-only register containing the interval count.
When the RUN bit is 0, writing a 1 increments the register. When the RUN
bit is 1, the register is incremented once every microsecond. When the counter
overflows, the INT bit is set, and an interrupt is posted at IPL14 if the IE bit
is set. Then, if the RUN and STP bits are both set, the RUN bit is cleared and
counting stops. Otherwise, the counter is reloaded. The maximum delay that
can be specified is approximately 1.2 hours. This register is cleared on powerup.
Figure 7–7 shows the format.

The Console Line, TOY Clock 7–9

The Console Line, TOY Clock
7.2 KA680 TOY Clock and Timers

Figure 7–7 Timer Interval Registers (TIR0 and TIR1)

0031

LJ-01306-TI0

Timer Interval Register

7.2.2.3 Timer Next Interval Registers (TNIR0 and TNIR1)
The KA680 has two timer next interval registers: one for timer zero (TNIR0),
and one for timer one (TNIR1). TNIR0 is accessible at address 2014 010816, and
TNIR1 is accessible at 2014 011816. These registers are implemented in the SSC
chip. The format is shown in Figure 7–8.

This read/write register contains the value written into the timer interval register
after overflow, or in response to a one written to the XFR bit. This register is
cleared on powerup.

Figure 7–8 Timer Next Interval Registers (TNIR0 and TNIR1)

0031

LJ-01307-TI0

Timer Next Interval Register

7.2.2.4 Timer Interrupt Vector Registers (TIVR0 and TIVR1)
The KA680 has two timer interrupt vector registers: one for timer zero (TIVR0),
and one for timer one (TIVR1). TIVR0 is accessible at address 2014 010C16, and
TIVR1 is accessible at 2014 011C16. These registers are implemented in the SSC
chip and are set to 7816 and 7C16, respectively, by the resident firmware. The
format is shown in Figure 7–9.

This read/write register contains the timer’s interrupt vector. Bits <31:10> and
<1:0> are read as zeros and must be written as zeros. When TCRn<6> (IE) and
TCRn<7> (INT) transition to one, an interrupt is posted at IPL14. When a timer’s
interrupt is acknowledged, the content of the interrupt vector register is passed
to the CPU, and the INT bit is cleared. Interrupt requests can also be cleared by
clearing either the IE or INT bit. This register is cleared on powerup.

7–10 The Console Line, TOY Clock

The Console Line, TOY Clock
7.2 KA680 TOY Clock and Timers

Figure 7–9 Timer Interrupt Vector Registers (TIVR0 and TIVR1)

0001021031 09

LJ-01308-TI0

MBZ Interrupt Vector MBZ

Note

Note that both timers interrupt at the same IPL (IPL14) as the console
serial line unit. When multiple interrupts are pending, the console serial
line has priority over the timers, and timer 0 has priority over timer 1.

The Console Line, TOY Clock 7–11

8
KA680 Boot and Diagnostic Facility

The KA680 boot and diagnostic facility features two registers, 512 KB of flash
programmable read-only memory (FEPROM), and 1 KB of battery backed up
RAM. The EPROM and battery backed up RAM may be accessed with longword,
word, or byte references.

8.1 Boot and Diagnostic Register (BDR)
The boot and diagnostic register is a longword-wide register located in the VAX
I/O page at physical addresses 2008 4000 - 2008 407C16. It can be accessed by
KA680 software, but not by external Q22–bus devices. The BDR allows the boot
and diagnostic firmware as well as the operating system to read various KA680
configuration bits.

The low byte and upper word of the BDR present the same information in each of
the 32 successive longwords. The second byte (bits <15:8>) provides a byte of the
LAN station address in each successive longword. Note that only the first eight
bytes contain the station address. The next 24 bytes are provided for testing
purposes. Figure 8–1 shows the format for the boot and diagnostic register.
Table 8–1 describes the bits in the register.

Figure 8–1 Boot and Diagnostic Register (BDR)

00010203040607081516181923242627293031

LJ-01309-TI0

DSSI1

BDR_CD

BRS_CD

HLT_ENB

DSSI2

CABLE_OK

ETHER_BOOT

RESERVED

MAN_TEST_MODE

STATION_ADDRESSRESERVED

RESERVED

KA680 Boot and Diagnostic Facility 8–1

KA680 Boot and Diagnostic Facility
8.1 Boot and Diagnostic Register (BDR)

Table 8–1 Boot and Diagnostic Register Bit Description

Data Bit Name Description

<31> ETHER_BOOT Enable Ethernet remote boot. This bit reflects the
current setting of the enable Ethernet remote boot
jumper found on the console module (H3604).
If this bit is zero, remote Ethernet boots are
enabled. If this bit is one, remote Ethernet boots
requests are ignored.

<30> CABLE_OK Console module cable OK. When this bit is zero,
there is a high probability that the console module
cable is functioning correctly.

If this bit is one, the console module cable is either
malfunctioning or plugged in the wrong orientation.
This bit is determined by sending a signal out to the
console module over one path and reading it back
down another on the cable.

<29:27> Reserved Reserved.

<26:24> DSSI1 This field contains the DSSI node number for the
external DSSI bus (the bus that is accessed through
the console module).

<23:19> Reserved Reserved.

<18:16> DSSI2 This field contains the DSSI node number for the
internal DSSI bus (the bus that is accessed through
the backplane connector).

<15:8> STATION_ADDRESS The KA680’s hardware LAN station address
EPROM is accessed by reading the BDR several
times at successive addresses. The encoding for the
station address is as follows:
BDR + 00: SA byte 0
BDR + 04: SA byte 1
BDR + 08: SA byte 2
BDR + 0C: SA byte 3
BDR + 10: SA byte 4
BDR + 14: SA byte 5
BDR + 18: Checksum byte 0
BDR + 1C: Checksum byte 1
The last 24 bytes are provided for testing purposes.

(continued on next page)

8–2 KA680 Boot and Diagnostic Facility

KA680 Boot and Diagnostic Facility
8.1 Boot and Diagnostic Register (BDR)

Table 8–1 (Cont.) Boot and Diagnostic Register Bit Description

Data Bit Name Description

<7> HLT ENB Halt enable, read-only. Writes have no effect. This
bit reflects the state of break enable switch on the
console module (H3604). The assertion of this signal
enables the halting of the CPU upon detection of a
console break condition.
On a powerup, the KA680 resident firmware reads
the HLT ENB bit to decide whether to enter the
console emulation program (HLT ENB set) or to
boot the operating system (HLT ENB clear).
On the execution of of a HALT instruction while
in kernel mode, the resident firmware reads the
HLT ENB bit to decide whether to enter the console
emulation program (HLT ENB set) or to restart the
operating system (HLT ENB clear).

<6:4> BRS CD Baud rate select—read-only. Writes have no effect.
These three bits originate from the console module
(H3604) baud rate select switch. They reflect
the setting of the the baud rate as shown in the
following table:

BDR<6:4> Baud Rate

111 300

110 600

101 1200

100 2400

011 4800

010 9600

001 19200

000 38400

<3> MAN_TEST_MODE Manufacturing test mode. Read-only. Writes have
no effect. When this bit is set, the KA680 is in
normal run mode.

When cleared (by grounding a test point on the
backplane), the KA680 is in manufacturing test
mode. In this mode, special diagnostic test scripts
can be run on the console.

<2> RESERVED Reserved.

<1:0> BDG_CD Boot and diagnostic code—read-only. Writes have
no effect. This 2-bit field reflects the setting of
the power-up mode switch on the console module
(H3604).

The KA680 firmware programs use BDG_CD <1:0>
to determine the power-up mode as shown in the
following table:

(continued on next page)

KA680 Boot and Diagnostic Facility 8–3

KA680 Boot and Diagnostic Facility
8.1 Boot and Diagnostic Register (BDR)

Table 8–1 (Cont.) Boot and Diagnostic Register Bit Description

Data Bit Name Description

BDR<1:0> Power-Up Mode

11 Run

10 Language inquiry

01 Test

00 Unused

8.2 Diagnostic LED Register (DLEDR)
The diagnostic LED register (DLEDR), address 2014 003016, is implemented in
the SSC chip and contains four read/write bits that control the external LED
display. A zero in a bit lights the corresponding LED; all four bits are cleared
on powerup and on the negation of DCOK to provide a power-up lamp test.
Figure 8–2 shows the register format. Table 8–2 lists the bit descriptions.

Figure 8–2 Diagnostic LED Register (DLEDR)

00030431

LJ-01310-TI0

MBZ DSPL

Table 8–2 Diagnostic LED Register Bit Descriptions

Data Bit Name Description

<31:4> MBZ Read as zeros, must be written as zeros.

<3:0> DSPL Display. Read/write. These four bits update an external LED
display. Writing a zero to a bit lights the corresponding LED.
Writing a one to a bit turns its LED off. The display bits are
cleared (all LEDs are lit) on powerup and on the negation of
DCOK.

8–4 KA680 Boot and Diagnostic Facility

KA680 Boot and Diagnostic Facility
8.3 EPROM Memory

8.3 EPROM Memory
The KA680 has 512 KB of flash EPROM memory for storing code for the following
functions:

Board initialization
Board self-tests
Boot code
VAX standard console emulation

EPROM memory may be accessed via byte, word, and longword references. The
EPROM is organized as a 512K x 8-bit array. CP-bus parity is neither checked
nor generated on EPROM references.

Note

The EPROM size must be set in the SSC configuration register before
attempting to reference outside the first 8 KB block of the local EPROM
space (E004 0000 - E004 1FFF16).

8.3.1 EPROM Address Space
Only the first 256 KB of the 512 KB of ROM can be read in the region E004
0000 - E007 FFFF16. By appropriate programming of the SSC’s programmable
address strobe 0 match and mask registers, all 512 KB of ROM can be read at the
locations programmed by the user. Care must be taken, however, to ensure that
the I/O address space chosen for the EPROM’s alternate address space is allowed
by the NCA’s address map, and does not conflict with any other I/O devices on
the module. When this is done, the lower 256 KB of the ROM’s alternate address
space is a copy of the 256 KB that appears at E004 0000 - E007 FFFF.

Note

There is no concept of halt unprotect space (as used on previous Q22-
based MicroVAX systems) on the KA680.

Any I-stream read from the EPROM space places the KA680 in halt mode.
The Q22–bus SRUN signal is deasserted, causing the front panel RUN light to
extinguish and the CPU is protected from further halts.

Writes and D-stream reads to any address space have no effect on run mode/halt
mode status.

Note

The logic that controls halt mode/run mode can only detect I-stream
references to addresses mapped to CP2.

KA680 Boot and Diagnostic Facility 8–5

KA680 Boot and Diagnostic Facility
8.3 EPROM Memory

8.3.2 KA680 Resident Firmware Operation
The KA680 CPU module’s 512 KB of EPROM contain the resident firmware,
which can be entered by transferring program control to location E004 000016.

Appendix C lists the various halt conditions that cause the KA680 to transfer
program control to location E004 000016.

When running, the resident firmware provides the services expected of a VAX–11
console system. In particular, the following services are available:

• Automatic restart or bootstrap following processor halts or initial powerup.

• An interactive command language allowing the user to examine and alter the
state of the processor.

• Diagnostic tests executed on powerup that check out the CPU, the memory
system, the Q22–bus map, the SHAC, and the SGEC.

• Support of video or hardcopy terminals as the console terminal.

8.3.2.1 Power-Up Modes
The boot and diagnostic EPROM programs use boot and diagnostic code <1:0> to
determine the power-up modes shown in Table 8–3.

Table 8–3 Power-Up Modes

Code Power-up Mode

11 Run (factory setting). If the console terminal supports the multinational
character set (MCS), the user will be prompted for language if the time-of-
year clock battery backup has failed, or SSC RAM is corrupted or uninitialized
(1st powerup). Full startup diagnostics are run.

01 Language inquiry. If the console terminal supports MCS, the user will be
prompted for language on every powerup and restart. Full startup diagnostics
are run.

10 Test. EPROM programs run wraparound serial line unit (SLU) tests.

00 Unused.

8.4 Battery Backed-up RAM
The KA680 contains 1 KB of battery backed-up static RAM, located in the SSC,
for use as a console "scratchpad." This RAM supports byte, word, and longword
references. Read operations take 700 ns to complete, while write operations
require 600 ns. The RAM is organized as a 256 X 32-bit (one longword) array.
The array appears in a 1 KB block of the VAX I/O page at addresses 2014 0400 -
2014 07FF16. This array is not protected by parity, and CP-bus parity is neither
checked nor generated on reads or writes to this RAM.

8.5 KA680 Initialization
The VAX architecture defines three kinds of hardware initialization:

• Power-up initialization

• I/O bus initialization

• Processor initialization

8–6 KA680 Boot and Diagnostic Facility

KA680 Boot and Diagnostic Facility
8.5 KA680 Initialization

8.5.1 Power-up Initialization
Power-up initialization is the result of the restoration of power and includes a
hardware reset, a processor initialization, and I/O bus initialization, as well as
the initialization of several registers defined in the VAX Architecture Reference
Manual.

8.5.2 Hardware Reset
A hardware reset occurs on powerup or the negation of DCOK. A hardware reset
causes the hardware halt procedure to be initiated with a halt code of 03. It
also initializes some IPRs and most I/O page registers to a known state. Those
IPRs affected by a hardware reset are noted in Section 3.1.3. The effect that a
hardware reset has on I/O space registers is documented in the description of the
register.

8.5.3 I/O Bus Initialization
An I/O bus initialization occurs on powerup, the negation of DCOK, or as the
result of an MTPR to IPR 55 (IORESET) or console UNJAM command. An I/O
bus initialization clears the IPCR and DSER, and causes the Q22–bus interface
to acquire both the CP-bus and Q22–bus, then assert the Q22–bus BINIT signal.
The assertion of BINIT on the Q22–bus has no effect on the KA680.

8.5.3.1 I/O Bus Reset Register (IPR 55)
The I/O bus reset register (IORESET), IPR 5510, is implemented in the SSC chip.
An MTPR of any value to IORESET causes an I/O bus initialization. Note that
the SGEC and SHACs are not reset by MTPRs to IPR 55.

8.5.4 Processor Initialization
A processor initialization occurs on powerup, the negation of DCOK, as the result
of a console INITIALIZE command, and after a halt caused by an error condition.

In addition to initializing those registers defined in the VAX Architecture
Reference Manual, the KA680 firmware must also configure main memory,
the local I/O page, and the Q22–bus map during a processor initialization.

8.5.4.1 Configuring the Local I/O Page
The following registers control the configuration of the KA680 local I/O page.
They are unique to CPU designs that use the SSC and they must be configured
by the firmware during a processor initialization:

• SSC base address register

• BDR address decode match register

• BDR address decode mask register

• SSC configuration register

• CP bus timeout register

KA680 Boot and Diagnostic Facility 8–7

KA680 Boot and Diagnostic Facility
8.5 KA680 Initialization

8.5.5 SSC Base Address Register (SSCBR)
The SSC base address register, address 2014 000016, controls the base addresses
of a 2 KB block of the local I/O space, which includes the following:

• The battery backed-up RAM

• The registers for the programmable timers

• The BDR address decode match and mask registers

• The diagnostic LED register

• A set of diagnostic registers that allow several external processor registers to
be accessed via I/O page addresses

This read/write register is set to 2014 000016 on powerup and on the negation
of DCOK. Bits SSCBR<31:30,10:0> are unused. They read as zeros, and must
be written as zeros. SSCBR<29> is read as one and must be written as one.
This register should also be set to 2014 000016 by firmware during processor
initialization. The SSCBR has the format shown in Figure 8–3.

Figure 8–3 SSC Base Address Register (SSCBR)

00010203040506070810111213141516171819202122232425262728293031 09

LJ-01457-TI0

MBZ 1 Base Address Bits <28:11> MBZ

8.5.6 BDR Address Decode Match Register (BDMTR)
The BDR address decode match register, address 2014 014016, controls the
base address of the BDR. This read/write register is cleared on powerup and
on the negation of DCOK. BDMTR<31:30,1:0> are unused. They read as zeros,
and must be written as zeros. This register should be set to 2008 400016 by
firmware during processor initialization. The BDMTR has the format shown in
Figure 8–4.

Figure 8–4 BDR Address Decode Match Register (BDMTR)

000102293031

LJ-01312-TI0

MBZ Base Address Match Bits<29:2> MBZ

8–8 KA680 Boot and Diagnostic Facility

KA680 Boot and Diagnostic Facility
8.5 KA680 Initialization

8.5.7 BDR Address Decode Mask Register (BDMKR)
The BDR address decode mask register, address 2014 014416, controls the range
of addresses to which the BDR responds. (An example is the number of copies
of the BDR that appear in the physical address space.) This read/write register
is cleared on powerup and on the negation of DCOK. Bits BDMKR<31:30,1:0>
are unused. They read as zeros, and must be written as zeros. This register
should should be set to 0000 007C 16 (32 copies of the BDR) by firmware during
processor initialization, because successive bytes of the KA680’s LAN station
address ROM are read using the BDR. The BDMKR has the format shown in
Figure 8–5.

Figure 8–5 BDR Address Decode Mask Register (BDMKR)

000102293031

LJ-01313-TI0

MBZ Base Address Mask Bits<29:2> MBZ

8.5.8 SSC Configuration Register (SSCCR)
The SSC configuration register, address 2014 001016, controls the set-up
parameters for the console serial line, programmable timers, EPROM, TOY
clock, and BDR. The format is shown in Figure 8–6. Table 8–4 contains a list of
the bit descriptions.

Figure 8–6 SSC Configuration Register (SSCCR)

00020306071112141516181920222324252627283031

LJ-01314-TI0

BLO

MBZ

IVD

IPL LVL SEL

RSP CTP
BDR EN

MBZ

MBZ

MBZ

CT BAUD SEL

HALT PROT SPACE

EPROM SIZE SEL

04

0 MBZ

KA680 Boot and Diagnostic Facility 8–9

KA680 Boot and Diagnostic Facility
8.5 KA680 Initialization

Table 8–4 SSC Configuration Register Bit Descriptions

Data Bit Name Description

<31> BLO Battery low. Read/write. If the battery voltage goes below threshold while
the module is powered down, this bit is set on powerup, after the assertion of
DCOK after the assertion of POK.

Once set, this bit can only be cleared by software writing it as one. If this bit
is set, then the TOY clock will be cleared by powerup and and by the negation
of DCOK.

<30:28> MBZ Read as zeros, must be written as zeros.

<27> IVD Interrupt vector disable. Read/write. When set, the console serial line
and programmable timers will not respond to interrupt acknowledge
cycles. Cleared on powerup, by the negation of DCOK, and by a processor
initialization.

<26> MBZ Read as zeros, must be written as zeros.

<25:24> IPL_LVL_
SEL

IPL level select read/write. These bits are used to specify the IPL level of
interrupt acknowledge cycle to which the console serial line and programmable
timers respond.

These bits must be cleared [programmed to 00 (binary)] for the console serial
line and programmable timers to respond to interrupt acknowledge cycles that
they generated (IPL 14). These bits are cleared on powerup, by the negation of
DCOK, and by a processor initialization.

<23> RSP ROM speed. Read/write. This bit is used to select the EPROM access time.
This bit must be set for the KA680 EPROMs to run at maximum speed. This
bit is cleared on powerup and by the negation of DCOK. It must be set to one
by a processor initialization.

<22:20> ROM_
SIZE_SEL

EPROM address space size select. Read/write. These bits control the size of
the range of addresses to which the EPROM responds.

These bits must be set to 101 (binary) because the KA680 contains 256 KB
of EPROM, yielding an address range of 256 KB (E004 0000 - E007 FFFF16).
These bits are cleared on powerup and by the negation of DCOK, yielding an
address range of 8 KB (E004 0000 - E004 1FFF16).

These bits must be set to the proper value during processor initialization.

<18:16> HALT
PROT
SPACE

EPROM halt protect address space size select. Read/write. These bits control
the size of the halt mode address range.

These bits must be set to 101 (binary) because the KA680 contains 256 KB
of EPROM, yielding a halt mode address range of 256 KB (E004 0000 - E007
FFFF16). These bits are cleared on powerup and by the negation of DCOK,
yielding a halt mode address range of 8 KB (E004 0000 - E004 1FFF16).

These bits must be set to the proper value by a processor initialization. Note
that any instruction fetch from the EPROM puts the KA680 in halt protect
mode.

(continued on next page)

8–10 KA680 Boot and Diagnostic Facility

KA680 Boot and Diagnostic Facility
8.5 KA680 Initialization

Table 8–4 (Cont.) SSC Configuration Register Bit Descriptions

Data Bit Name Description

<15> CTP Control P enable. Read/write. When this bit is set, a CTRL/P typed at the
console causes the CPU to be halted, if halts are enabled (BDR<7> set). When
this bit is cleared, a BREAK typed at the console causes the CPU to be halted,
if halts are enabled (BDR<7> set). This bit is cleared on powerup and by the
negation of DCOK.

<14:12> CT BAUD
SELECT

Console terminal baud rate select. Read/write. These bits are used to select
the baud rate of the console terminal serial line.
They are cleared on powerup and by the negation of DCOK. They should be
loaded from compliment of BDR<6:4> by the processor initialization code. The
bit encodings correspond to selected baud rates as shown in the following table:

SSCCR<14:12> Baud Rate

000 300

001 600

010 1200

011 2400

100 4800

101 9600

110 19200

111 38400

<11:7> MBZ Read as zero, must be written as zero.

<6:4> BDR EN Read/write. These bits are used to enable the BDR. They are cleared on
powerup and by the negation of DCOK. These bits must be set to 111 (binary)
by a processor initialization to enable the BDR.

<3> MBZ Read as zero, must be written as zero.

<2:0> MBZ Read as zero, must be written as zero.

KA680 Boot and Diagnostic Facility 8–11

9
KA680 Q22–bus Interface

The KA680 includes a Q22–bus interface implemented via a single VLSI chip called the CQBIC.
It contains a CP CP-bus to Q22–bus interface that supports the following:

• A programmable mapping function (scatter-gather map) for translating 22-bit,
Q22–bus addresses into 29-bit CP addresses that allows any page in the
Q22–bus memory space to be mapped to any page in main memory.

• A direct mapping function for translating 29-bit CP addresses in the local
Q22–bus address space and local Q22–bus I/O page into 22-bit, Q22–bus
addresses.

• Masked and unmasked longword reads and writes from the CPU to the
Q22–bus memory and I/O space, and the Q22–bus interface registers.
Longword reads and writes of the local Q22–bus memory space are buffered
and translated into 2-word, block mode transfers on the Q22–bus. Longword
reads and writes of the local Q22–bus I/O space are buffered and translated
into two, single-word transfers on the Q22–bus.

• Up to 16-word, block mode writes from the Q22–bus to main memory. These
words are buffered then transferred to main memory using two asynchronous
DMA octaword transfers. For block mode writes of fewer than sixteen words,
the words are buffered and transferred to main memory using the most
efficient combination of octaword, quadword, and longword asynchronous
DMA transfers. The maximum write bandwidth for block mode references
is 3.3 MB/s. Block mode reads of main memory from the Q22–bus cause the
Q22–bus interface to perform an asynchronous DMA quadword read of main
memory and buffer all four words. Therefore, on block mode reads, the next
three words of the block mode read can be delivered without any additional
CP cycles. The maximum read bandwidth for Q22–bus block mode references
is 2.4 MB/s. Q22–bus burst mode DMA transfers result in single-word reads
and writes of main memory.

• Transfers from the CPU to the local Q22–bus memory space, that result in
the Q22–bus map translating the address back into main memory (local-miss,
global-hit transactions).

The Q22–bus interface contains several registers for Q22–bus control and
configuration, interprocessor communication, and error reporting.

The interface also contains Q22–bus interrupt arbitration logic that recognizes
Q22–bus interrupt requests BR7-BR4, and translates them into CPU interrupts
at levels 17-14.

The Q22–bus interface detects Q22–bus "no sack" timeouts, Q22–bus interrupt
acknowledge timeouts, Q22–bus nonexistent memory timeouts, and main memory
errors on DMA accesses from the Q22–bus and Q22–bus device parity errors.

KA680 Q22–bus Interface 9–1

KA680 Q22–bus Interface
9.1 Q22–bus to Main Memory Address Translation

9.1 Q22–bus to Main Memory Address Translation
On DMA references to main memory, the 22-bit, Q22–bus address must be
translated into a 29-bit main memory address (Figure 9–1). This translation
process is performed by the Q22–bus interface using the Q22–bus map. This
map contains 8192 mapping registers, (one for each page in the Q22–bus memory
space), each of which can map a page (512 bytes) of the Q22–bus memory
address space into any of the 1024K pages in main memory. Since local I/O space
addresses cannot be mapped to Q22–bus pages, the local I/O page is inaccessible
to devices on the Q22–bus. Figure 9–1 shows how Q22–bus addresses are
translated into main memory addresses.

Figure 9–1 Q22–bus Address Translation
2
1 9 8 0

Q22−bus Address

Extract to select
map register

V Mapping Register

1
9

2
8

Physical Address of Main Memory

0

8 0

3
1

0

9

ESB90P0041

At powerup, the Q22–bus map registers, including the valid bits, are undefined.
External access to main memory is disabled so long as the interprocessor
communication register LM EAE bit is cleared. The Q22–bus interface monitors
each Q22–bus cycle and responds if the following three conditions are met:

1. The interprocessor communication register LM EAE bit is set.

2. The valid bit of the selected mapping register is set.

3. During read operations, the mapping register must map into existent main
memory, or a Q22–bus timeout occurs. (During write operations, the Q22–bus
interface returns Q22–bus BRPLY before checking for existent local memory;
the response depends only on conditions 1 and 2 above).

9–2 KA680 Q22–bus Interface

KA680 Q22–bus Interface
9.1 Q22–bus to Main Memory Address Translation

Note

In the case of local-miss, global-hit, the state of the LM EAE bit is
ignored.

If the map cache does not contain the needed Q22–bus map register, then the
Q22–bus interface will perform an asynchronous DMA read of the Q22–bus map
register before proceeding with the Q22–bus bus DMA transfer.

9.1.1 Q22–bus Map Registers (QMRs)
The Q22–bus map contains 8192 registers that control the mapping of Q22–bus
addresses into main memory. Each register maps a page of the Q22–bus memory
space into a page of main memory. These registers are implemented in a 32 KB
block of main memory, but are accessed through the CQBIC chip via a block of
addresses in the I/O page.

The local I/O space address of each register was chosen so that register address
bits <14:2> are identical to Q22–bus address bits <21:9> of the Q22–bus page
that the register maps. Table 9–1 lists the register addresses.

KA680 Q22–bus Interface 9–3

KA680 Q22–bus Interface
9.1 Q22–bus to Main Memory Address Translation

Table 9–1 Q22–bus Map Register Addresses

Register Address Q22–bus Addresses Mapped

Hexadecimal Octal

2008 8000 00 0000–00 01FF 00 000 000–00 000 777

2008 8004 00 0200–00 03FF 00 001 000–00 001 777

2008 8008 00 0400–00 05FF 00 002 000–00 002 777

2008 800C 00 0600–00 07FF 00 003 000–00 003 777

2008 8010 00 0800–00 09FF 00 004 000–00 004 777

2008 8014 00 0A00–00 0BFF 00 005 000–00 005 777

2008 8018 00 0C00–00 0DFF 00 006 000–00 006 777

2008 801C 00 0E00–00 0FFF 00 007 000–00 007 777

.

.

.

.

.

.

.

.

.

2008 FFF0 3F F800–3F F9FF 17 774 000–17 774 777

2008 FFF4 3F FA00–3F FBFF 17 775 000–17 775 777

2008 FFF8 3F FC00–3F FDFF 17 776 000–17 776 777

2008 FFFC 3F FA00–3F FFFF 17 776 000–17 777 777

The Q22–bus map registers (QMRs) have the format shown in Figure 9–2.

Figure 9–2 Q22–bus Map Register Format

3
1

3
0

2
0

1
9 0

MBZ A28 − A9V

ESB90P0043

9–4 KA680 Q22–bus Interface

KA680 Q22–bus Interface
9.1 Q22–bus to Main Memory Address Translation

Table 9–2 describes the bits in the Q22–bus map register.

Table 9–2 Q22–bus Map Register Bit Description

Data Bit Name Description

<31> V Valid. Read/write. When a Q22–bus map register is
selected by bits <21:9> of the Q22–bus address, the valid bit
determines whether mapping is enabled for that Q22–bus
page.

If the valid bit is set, the mapping is enabled, and Q22–bus
addresses within the page controlled by the register are
mapped into the main memory page determined by bits
<28:9>.

If the valid bit is clear, the mapping register is disabled,
and the Q22–bus interface does not respond to addresses
within that page. This bit is undefined on powerup and the
negation of DCOK.

<30:20> Unused These bits always read as zeros and must be written as
zeros.

<19:0> A28-A9 Address bits <28:9> read/write. When a Q22–bus map
register is selected by a Q22–bus address, and if that
register’s valid bit is set, then these 20 bits are used as
main memory address bits.

Q22–bus address bits <8:0> are used as main memory
address bits <8:0>. These bits are undefined on powerup
and the negation of DCOK.

9.1.2 Accessing the Q22–bus Map Registers
Although the CPU accesses the Q22–bus map registers with aligned, longword
references to the local I/O page (addresses 2008 8000 - 2008 FFFC16), the map
actually resides in a 32 KB block of main memory. The starting address of
this block is controlled by the contents of the Q22–bus map base register. The
Q22–bus interface also contains a 16-entry, fully associative, Q22–bus map cache
to reduce the number of main memory accesses required for address translation.

Note

The system software must protect the pages of memory that contain the
Q22–bus map from direct accesses that will corrupt the map or cause
the entries in the Q22–bus map cache to become stale. Either of these
conditions will result in the incorrect operation of the mapping function.

When the CPU accesses the Q22–bus map through the local I/O page addresses,
the Q22–bus interface reads or writes the map in main memory. The Q22–bus
bus interface does not have to gain Q22–bus mastership when accessing the
Q22–bus map. Because these addresses are in the local I/O space, they are not
accessible from the Q22–bus.

KA680 Q22–bus Interface 9–5

KA680 Q22–bus Interface
9.1 Q22–bus to Main Memory Address Translation

On a Q22–bus map read by the CPU, the Q22–bus interface decodes the local I/O
space address (2008 8000 - 2008 FFFC16). If the register is in the Q22–bus map
cache, the Q22–bus interface will internally resolve any conflicts between CPU
and Q22–bus transactions (if both are attempting to access the Q22–bus map
cache entries at the same time), then return the data. If the map register is
not in the map cache, the Q22–bus interface will force the CPU to retry, acquire
the CP- bus, and perform an asynchronous DMA read of the map register. On
completion of the read, the CPU is provided with the data when its read operation
is retried. A map read by the CPU does not cause the register that was read to
be stored in the map cache.

On a Q22–bus map write by the CPU, the Q22–bus interface latches the data.
On completion of the CPU write, it acquires the CP- bus and performs an
asynchronous DMA write to the map register. If the map register is in the
Q22–bus map cache, then the CAMValid bit for that entry will be cleared to
prevent the entry from becoming stale. A Q22–bus map write by the CPU does
not update any cached copies of the Q22–bus map register.

9.1.3 The Q22–bus Map Cache
To speed up the process of translating Q22–bus address to main memory
addresses, the Q22–bus interface utilizes a fully associative, 16-entry, Q22–bus
map cache that is implemented in the CQBIC chip.

The cached copy of the Q22–bus map register is used for the address translation
process. If the required map entry for a Q22–bus address (as determined by
bits <21:9> of the Q22–bus address) is not in the map cache, then the Q22–bus
interface uses the contents of the map base register to access main memory and
retrieve the required entry. After obtaining the entry from main memory, the
valid bit is checked. If it is set, the entry is stored in the cache and the Q22–bus
cycle continues. Figure 9–3 shows the format. Table 9–3 contains a description of
the Q22–bus map cache entry bits.

Figure 9–3 Q22–bus Map Cache Entry Format

3
3

3
2

2
0

1
9 0

Q22−BUS ADR <21:9> A28 − A9CV

ESB90P0044

9–6 KA680 Q22–bus Interface

KA680 Q22–bus Interface
9.1 Q22–bus to Main Memory Address Translation

Table 9–3 Q22–bus Map Cache Entry Bit Description

Data Bit Name Description

<33> CAMValid When a mapping register is selected by a Q22–bus address, the CAMValid
bit determines whether the cached copy of the mapping register for that
address is valid.
If the CAMValid bit is set, the mapping register is enabled, and addresses
within that page can be mapped. If the CAMValid bit is clear, the
Q22–bus interface must read the map in local memory to determine if
the mapping register is enabled.

This bit is cleared on powerup, the negation of DCOK, setting the
QMCIA (Q22–bus map cache invalidate all) bit in the interprocessor
communication register, writes to IPR 55 (IORESET), by a write to the
Q22–bus map base register, or by writing to the QMR that is being
cached.

<32:20> QBUS ADR These bits contain the Q22–bus address bits <21:9> of the page that this
entry maps. This is the content addressable field of the 16-entry cache for
determining if the map register for a particular Q22–bus address is in the
map cache. These bits are undefined on powerup.

<19:0> Address bits
A28-A9

When a mapping register is selected by a Q22–bus address, and if that
register’s CAMValid bit is set, then these 20 bits are used as main
memory address bits 28 through 9. Q22–bus address bits 8 through 0 are
used as local memory address bits 8 through 0. These bits are undefined
on powerup.

9.2 CP to Q22–bus Address Translation
CPbus addresses within the local Q22–bus I/O space, addresses 2000 0000 - 2000

1FFF16, are translated into Q22–bus I/O space addresses by using bits <12:0> of
the CP- bus address as bits <12:0> of the Q22–bus address and asserting BBS7.
Q22–bus address bits <21:13> are driven as zeros.

CP- bus addresses within the local Q22–bus memory space, addresses 3000 0000
- 303F FFFF 16, are translated into Q22–bus memory space addresses by using
bits <21:0> of the CP- bus address as bits <21:0> of the Q22–bus address.

KA680 Q22–bus Interface 9–7

KA680 Q22–bus Interface
9.3 Interprocessor Communications Facility

9.3 Interprocessor Communications Facility
The KA680 can only be configured as a Q22–bus arbiter.

The KA680 interprocessor communication facility allows other processors on
the Q22–bus to request program interrupts from the KA680 without using the
Q22–bus interrupt request lines. It also controls external access to local memory
(via the Q22–bus map).

9.3.1 Interprocessor Communication Register (IPCR)
The interprocessor communication register is a 16-bit register residing in the
Q22–bus I/O page address space, and can be accessed by any device that can
become Q22–bus master (including the KA680 itself). The IPCR is implemented
in the CQBIC chip and is byte accessible, meaning that a write byte instruction
can write to either the low or high byte without affecting the other byte.
Figure 9–4 shows the format. Table 9–4 describes the bits.

Figure 9–4 Interprocessor Communication Register (IPCR)

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

M
B
Z

MBZ

DMA QME

QMCIA
AUX HLT

DBI IE

LM EAE
DBI RQ

MBZ

ESB90P0045

Table 9–4 Interprocessor Communication Register Bit Description

Data Bit Name Description

<15> DMA QME DMA Q22–bus address space memory error. Read/write to clear. This bit
indicates that an error occurred when a Q22–bus device was attempting
to read main memory.

It is set if DMA system error register bit DSER<4> (MAIN MEMORY
ERROR) is set, or the CP timer expires. The MAIN MEMORY ERROR
bit indicates that an uncorrectable error occurred when an external device
(or CPU) was accessing the KA680 local memory.

(continued on next page)

9–8 KA680 Q22–bus Interface

KA680 Q22–bus Interface
9.3 Interprocessor Communications Facility

Table 9–4 (Cont.) Interprocessor Communication Register Bit Description

Data Bit Name Description

The CP timer expiring indicates that the memory controller did not
respond when the Q22–bus interface initiated a DMA transfer. This bit is
cleared by writing a one to it, on powerup, by the negation of DCOK, by
writes to IPR 55 (IORESET), and whenever DSER<4> is cleared.

<14> QMCIA Q22–bus map cache invalidate all. Write-only. Writing a one to this bit
clears the CAMValid bits in the cached copy of the MAP. This bit always
reads as zero. Writing a zero has no effect.

<13:09> Unused Read as zeros. Must be written as zeros.

<8> AUX HLT Auxiliary halt. Read-only. When this bit is set, it has no effect on the
operation of the on-board CPU. This bit is cleared on powerup, by the
negation of DCOK, and by writes to IPR 55 (IORESET). Note: This
bit should never be set because the processor does not support
auxiliary mode.

<7> Unused Read as zero. Must be written as zero.

<6> DBI IE Doorbell interrupt enable. Read/write when the KA680 is Q22–bus
master. Read-only when another device is Q22–bus master. When set,
this bit enables interprocessor doorbell interrupt requests via IPCR<0>.
Cleared on powerup, by the negation of DCOK, and writes to IPR 55
(IORESET).

<5> LM EAE Local memory external access enable. Read/write when the KA680 is
Q22–bus master. Read-only when another device is Q22–bus master.
When set, this bit enables external access to local memory (via the
Q22–bus map). Cleared on powerup and by the negation of DCOK.

<4:1> Unused Read as zeros. Must be written as zeros.

<0> DBI RQ Doorbell interrupt request. Read/write. If IPCR<6> (DBI IE) is set,
setting this bit generates a doorbell interrupt request. If IPCR<6> is
clear, setting this bit has no effect. Clearing this bit has no effect. DBI
RQ is cleared when the CPU grants the doorbell interrupt request. DBI
RQ is held clear whenever DBI IE is clear. This bit is cleared on powerup
and the negation of DCOK.

9.3.2 Interprocessor Doorbell Interrupts
If the interprocessor communication register DBI IE bit is set, any Q22–bus
master can request an interprocessor doorbell interrupt by writing a one into
IPCR bit <0>.

The interrupt vector is 20416 and the interrupt priority is 1416. This IPL is
the same as BR4 on the Q22–bus. The interprocessor doorbell is the third
highest priority IPL 14 device, directly after the console serial line unit and the
programmable timers.

Note

Following an interprocessor doorbell interrupt, the KA680 CPU sets the
IPL to 14. The IPL is set to 17 for external Q22–bus BR4 interrupts.

KA680 Q22–bus Interface 9–9

KA680 Q22–bus Interface
9.4 Q22–bus Interrupt Handling

9.4 Q22–bus Interrupt Handling
The KA680 responds to interrupt requests BR7-4 with the standard Q22–bus
interrupt acknowledge protocol (DIN followed by IAK). The console serial line
unit, the programmable timers, and the interprocessor doorbell request interrupt
at IPL 14 and have priority over all Q22–bus BR4 interrupt requests. After
responding to any interrupt request BR7-4, the CPU sets the processor priority
to IPL 17. All BR7-4 interrupt requests are disabled unless software lowers the
interrupt priority level.

Interrupt requests from the KA680 interval timer are handled directly by the
CPU. Interval timer interrupt requests have a higher priority than BR6 interrupt
requests. After responding to an interval timer interrupt request, the CPU sets
the processor priority to IPL 16. Thus, BR7 interrupt requests remain enabled.

9.5 Configuring the Q22–bus Map
The KA680 implements the Q22–bus map in an 8K longword (32 KB) block of
main memory. This map must be configured by the KA680 firmware during a
processor initialization by writing the base address of the uppermost 32 KB block
of good main memory into the Q22–bus map base register. The base of this map
must be located on a 32 KB boundary.

Note

This 32 KB block of main memory must be protected by the system
software. The only access to the map should be through local I/O page
addresses, 2008 8000 - 2008 FFFC 16.

9.5.1 Q22–bus Map Base Address Register (QBMBR)
The Q22–bus map base address register, address 2008 001016, controls the main
memory location of the 32 KB block of Q22–bus map registers. This read/write
register is accessible by the CPU on a longword boundary only. Bits <31:29,14:0>
are unused and should be written as zeros, and will return zeros when read.
Figure 9–5 shows the format.

A write to the map base register will flush the Q22–bus map cache by clearing
the CAMValid bits in all the entries.

The contents of this register are undefined on powerup and the negation of
DCOK, and are not affected by BINIT being asserted on the Q22–bus.

Figure 9–5 Q22–bus Map Base Address Register (QBMBR)

3
1

2
9

2
8

1
5

1
4 0

MAP BASE MBZMBZ

ESB90P0046

9–10 KA680 Q22–bus Interface

KA680 Q22–bus Interface
9.5 Configuring the Q22–bus Map

Figure 9–6 System Configuration Register (SCR)

000103040607081011121314151631 09

LJ-01315-TI0

POK

MBZ

AUX

MBZ MBZ

BHALT ENB

Must Be Zero

Page Prefetch Disable

Action on DCOK Negation

Doorbell Offset Select

Must Be Zero

Must Be Zero

9.6 System Configuration Register (SCR)
The system configuration register, address 2008 000016, contains the processor
number that determines the address of the IPCR register, a BHALT enable bit,
a power OK flag, and an AUX flag. Figure 9–6 shows the format. Table 9–5
describes the bits in the system configuration register.

The system configuration register (SCR) is longword, word, and byte accessible.
Programmable option fields are cleared on powerup and by the negation of DCOK
when SCR<7> is clear.

Table 9–5 System Configuration Register Bit Description

Data Bit Name Description

<31:16> Unused Read as zeros. Must be written as zeros.

<15> POK Power OK. Read-only. Writes have no effect. This bit is set if the Q22–bus
BPOK signal is asserted and clear if it is negated. This bit is cleared on
powerup and by the negation of DCOK.

<14> BHALT EN BHALT enable. Read/write. This bit controls the effect the Q22–bus
BHALT signal has on the CPU. When set, asserting the Q22–bus BHALT
signal will halt the CPU and assert DSER<15>. When cleared, the
Q22–bus BHALT signal will have no effect. This bit is cleared on powerup
and by the negation of DCOK.

(continued on next page)

KA680 Q22–bus Interface 9–11

KA680 Q22–bus Interface
9.6 System Configuration Register (SCR)

Table 9–5 (Cont.) System Configuration Register Bit Description

Data Bit Name Description

<10> AUX Auxiliary. Read-only. Writes have no effect. This bit defines auxiliary
and arbiter mode of operation of the KA680. When read as a zero, arbiter
mode is selected, and when read as a one, auxiliary mode is selected.
Because the KA680 can only be configured as an arbiter, this bit should
always read as zero.

<9:8> Unused Read as zeros. Must be written as zeros.

<7> ACTION
ON DCOK
NEGATION

Read/write. When cleared, the Q22–bus interface asserts SYSRESET
(causing a hardware reset of the board and control to be passed to the
resident firmware via the hardware halt procedure with a halt code of 3)
when DCOK is negated on the Q22–bus. When set, the Q22–bus interface
asserts HALCYON (causing control to be passed to the resident firmware
via the hardware halt procedure with a halt code of 2) when DCOK is
negated on the Q22–bus. Cleared on powerup and the negation of DCOK.

<6:4> Unused Read as zeros. Must be written as zeros.

<3:1> Unused Read as zeros. Must be written as zeros.

<0> Unused Read as zero. Must be written as zero.

9.7 Error Reporting Registers
There are three registers associated with Q22–bus interface error reporting:

• The DMA system error register (DSER)

• The Q22–bus error address register (QBEAR)

• The DMA error address register (DEAR)

These registers are located in the local VAX I/O address space and can only
be accessed by the local processor. The DSER is implemented in the CQBIC
chip and it logs main memory errors on DMA transfers, Q22–bus parity errors,
Q22–bus nonexistent memory errors, and Q22–bus no-grant. The QBEAR
contains the address of the page in Q22–bus space that caused a parity error
during an access by the local processor. The DEAR contains the address of the
page in local memory, which caused a memory error during an access by an
external device or the processor during a local-miss, global-hit transaction. An
access by the local processor that the Q22–bus interface maps into main memory
will provide error status to the processor when the processor does a retry for a
read local-miss, global-hit, or by an interrupt in the case of a local-miss, global-hit
write.

9.7.1 DMA System Error Register (DSER)
The DSER (address 2008 000416) is a longword, word, or byte accessible
read/write register available to the local processor. The bits in this register
are cleared to zero on powerup, by the negation of DCOK, and by writes to IPR
55 (IORESET). All bits are set to one to record the occurrence of an event. They
are cleared by writing a one; writing zeros has no effect.

The format of the DMA system error register is shown in Figure 9–7. Table 9–6
describes the bits in the system error register.

9–12 KA680 Q22–bus Interface

KA680 Q22–bus Interface
9.7 Error Reporting Registers

Figure 9–7 DMA System Error Register (DSER)

0001020304050607081314151631

LJ-01316-TI0

MBZ 0MBZ 0 0

Q22-Bus BHALT Detected

Q22-Bus DCOK Negation Detected

Master DMA NXM

Must be Zero

Q22-Bus PE

Main Memory Error

Lost Error Bit

No Grant

Must be Zero

KA680 Q22–bus Interface 9–13

KA680 Q22–bus Interface
9.7 Error Reporting Registers

Table 9–6 DMA System Error Register Bit Description

Data Bit Name Description

<31:16> Unused Read as zeros. Must be written as zeros.

<15> Q22-BUS BHALT DETECTED Read/write to clear. This bit is set when the Q22–bus
interface detects that the Q22–bus BHALT line was
asserted and SCR<14> (BHALT ENABLE) is set.
Cleared by writing a one, writes to IPR 55 (IORESET),
on powerup, and the negation of DCOK.

<14> Q22-BUS DCOK NEGATION
DETECTED

Read/write to clear. This bit is set when the Q22–bus
interface detects the negation of DCOK on the Q22–bus
and SCR<7> (ACTION ON DCOK NEGATION) is set.
Cleared by writing a one, writes to IPR 55 (IORESET),
on powerup, and the negation of DCOK.

<13:8> Unused Read as zeros. Must be written as zeros.

<7> MASTER DMA NXM Read/write to clear. This bit is set when the CPU
performs a demand Q22–bus read cycle or write cycle
that does not reply after 10 µs. During interrupt
acknowledge cycles, or request read cycles, this bit is
not set. Cleared by writing a one, on powerup, by the
negation of DCOK, and by writes to IPR 55 (IORESET).

<6> Unused Read as zero. Must be written as zero.

<5> Q22–bus PARITY ERROR Read/write to clear. This bit is set when the CPU
performs a Q22–bus demand read cycle that returns
a parity error. During interrupt acknowledge cycles or
request read cycles, this bit is not set. Cleared by writing
a one, on powerup, by the negation of DCOK, and by
writes to IPR 55 (IORESET).

<4> MAIN MEMORY ERROR Read/write to clear. This bit is set if an external Q22–bus
device or local-miss, global-hit receives a memory error
while reading local memory. The IPCR<15> reports the
memory error to the external Q22–bus device. Cleared
by writing a one, on powerup, by the negation of DCOK,
and by writes to IPR 55 (IORESET).

<3> LOST ERROR Read/write to clear. This bit indicates that an error
address has been lost because of DSER<7,5,4,0> having
been previously set and a subsequent error of either type
occurs, which would have normally captured an address
and set either DSER<7,5,4,0> flag. Cleared by writing a
one, on powerup, by the negation of DCOK, and by writes
to IPR 55 (IORESET).

<2> NO GRANT TIMEOUT Read/write to clear. This bit is set if the Q22–bus does
not return a bus grant within 10 ms of the bus request
from a CPU demand read cycle or write cycle. During
interrupt acknowledge or request read cycles, this bit is
not set. Cleared by writing a one, on powerup, by the
negation of DCOK, and by writes to IPR 55 (IORESET).

<1:0> Unused Read as zeros. Must be written as zeros.

9.7.2 Q22–bus Error Address Register (QBEAR)
The Q22–bus error address register, address 2008 000816, is a read-only,
longword-accessible register that is implemented in the CQBIC chip. Its contents
are valid only if DSER<5> (Q22-BUS PARITY ERROR) is set, or if DSER<7>
(MASTER DMA NXM) is set.

9–14 KA680 Q22–bus Interface

KA680 Q22–bus Interface
9.7 Error Reporting Registers

Reading this register when DSER<5> and DSER<7> are clear will return
undefined results. Additional Q22–bus parity errors that could have set
DSER<5> or Q22–bus timeout errors that could have caused DSER<7> to
set, will cause DSER<3> to set.

The QBEAR contains the address of the page in Q22–bus space that caused a
parity error during an access by the on-board CPU, which set DSER<5>, or a
master timeout, which set DSER<7>.

Q22–bus address bits <21:9> are loaded into QBEAR bits <12:0>. QBEAR bits
<31:13> always read as zeros.

Figure 9–8 Q22–bus Error Address Register (QBEAR)

3
1

1
3

1
2 0

MBZ Q22−bus
Address Bits <21:9>

ESB90P0049

Figure 9–9 DMA Error Address Register (DEAR)

3
1

2
0

1
9 0

MBZ MAPPED Q22−BUS
Address Bits <28:9>

ESB90P0050

Note

This is a read-only register. If a write is attempted, a hard error (IPL 1D)
will be generated.

9.7.3 DMA Error Address Register (DEAR)
The DMA error address register, address 2008 000C16, is a read-only, longword-
accessible register that is implemented in the CQBIC chip. It contains valid
information only when DSER<4> (MAIN MEMORY ERROR) is set .

The DEAR contains the map translated address of the page in local memory
that caused a memory error or nonexistent memory error. This occurred during
an access by an external device or the Q22–bus interface for the CPU during a
local-miss, global-hit transaction or Q22–bus map access.

The contents of this register are latched when DSER<4> is set. Additional main
memory errors or nonexistent memory errors have no effect on the DEAR until
software clears DSER<4>.

Mapped Q22–bus address bits <28:9> are loaded into DEAR bits <19:0>. DEAR
bits <31:20> always read as zeros.

KA680 Q22–bus Interface 9–15

KA680 Q22–bus Interface
9.7 Error Reporting Registers

Note

This is a read-only register. If a write is attempted, a hard error (IPL 1D)
will be generated.

9.8 Q22–bus Interface Error Handling
The Q22–bus interface does not generate or check parity.

The Q22–bus interface checks all CPU references to Q22–bus memory and I/O
spaces to ensure that nothing but masked and unmasked longword accesses are
attempted. Any other type of reference will cause a machine check abort to be
initiated.

The Q22–bus interface maintains several timers to prevent incomplete accesses
from hanging the system indefinitely. They include: a 10 µs nonexistent memory
timer for accesses to the Q22–bus memory and I/O spaces, a 10 µs "no sack" timer
for acknowledgement of Q22–bus DMA grants, and a 10 ms "no grant" timer for
acquiring the Q22–bus.

If there is a nonexistent memory (NXM) error (10 µs timeout) while accessing
the Q22–bus on a demand read reference, bit DSER<7> is set, the address of the
Q22–bus page being accessed is captured in QBEAR<12:0>, and a machine check
abort is initiated.

If there is an NXM error on a prefetch read, or an interrupt acknowledge vector
read, then the prefetch or interrupt acknowledge reference is aborted but no
information is captured and no machine check occurs.

If there is an NXM error on a masked write reference, then DSER<7> is set, the
address of the Q22–bus page being accessed is captured in QBEAR<12:0>, and an
interrupt is generated at IPL 1D through vector 6016.

If the Q22–bus interface does not receive an acknowledgement within 10 µs after
it has granted the Q22–bus, the grant is withdrawn, no errors are reported, and
the Q22–bus interface waits 500 ns to clear the Q22–bus grant daisy chain before
beginning arbitration again.

If the Q22–bus interface tries to obtain Q22–bus mastership on a CPU demand
read reference, and does not obtain it within 10 ms, DSER<2> is set, and a
machine check abort is initiated.

The Q22–bus interface also monitors Q22–bus signals BDAL<17:16> while
reading information over the Q22–bus so that parity errors detected by the device
being read are recognized.

If a parity error is detected by another Q22–bus device on a CPU demand read
reference to Q22–bus memory or I/O space, then DSER<5> is set, the address of
the Q22–bus page being accessed is captured in QBEAR<12:0>, and a machine
check abort is initiated.

If a parity error is detected by another Q22–bus device on a prefetch request
read by the CPU, the prefetch is aborted, DSER<5> is set, and the address of the
Q22–bus page being accessed is captured in QBEAR<12:0>, but no machine check
is generated.

9–16 KA680 Q22–bus Interface

KA680 Q22–bus Interface
9.8 Q22–bus Interface Error Handling

The Q22–bus interface also monitors the backplane BPOK signal to detect power
failures. If BPOK is negated on the Q22–bus, a power-fail trap is generated,
and the CPU traps through vector 0C16. The state of the Q22–bus BPOK signal
can be read from SCR<15>. The Q22–bus interface continues to operate after
generating the power-fail trap, until DCOK is negated.

KA680 Q22–bus Interface 9–17

10
Network Interface

The includes a network interface that is implemented via the second generation
Ethernet controller chip (SGEC). When used in conjunction with the cover
panel, this interface allows the to be connected to either a ThinWire or standard
Ethernet network. It supports the Ethernet data link layer as specified in the
VAX Architecture Reference Manual. The SGEC also supports CP-bus parity
protection.

10.1 Ethernet Overview
Ethernet is a serial bus that can support up to 1,024 nodes with a maximum
separation of 2.8 kilometers (1.7 miles). Data is passed over the Ethernet in
Manchester-encoded format at a rate of 10 million bits per second in variable-
length packets. Each packet has the format shown in Figure 10–1.

Network Interface 10–1

Network Interface
10.1 Ethernet Overview

Figure 10–1 Ethernet Packet Format

6 bytes

6 bytes

2 bytes

Destination Address

Source Address

Type

46..1500 bytes
~
~

.

.

.

.

.

~
~

4 bytes CRC Check Code

Data

ESB90P0051

The minimum size of a packet is 64 bytes, which implies a minimum data length
of 46 bytes. Packets shorter than this are called runt packets and are treated
as erroneous when received by the network controller.

All nodes on the Ethernet have equal priority. The technique used to control
access to the bus is carrier sense, multiple access, with collision detection (CSMA
/CD). To access the bus, devices must first wait for the bus to clear (no carrier
sensed). Once the bus is clear, all devices that want to access the bus have
equal priority (multiaccess), so they all attempt to transmit. After starting
transmission, devices must monitor the bus for collisions (collision detection). If
no collision is detected, the device may continue with transmission. If a collision
is detected, then the device waits for a random amount of time and repeats the
access sequence.

Ethernet allows point-to-point communication between two devices, as well as
simultaneous communication between multiple devices. To support these two
modes of communication, there are two types of network addresses, physical and
multicast. These two types of addresses are both 48 bits (6 bytes) long and are
described below.

Physical address: The unique address associated with a particular station on
the Ethernet, which should be distinct from the physical address of any other
station on any other Ethernet.

Multicast address: A multidestination address associated with one or more
stations on a given Ethernet (sometimes called a logical address). There are two
kinds of multicast addresses:

10–2 Network Interface

Network Interface
10.1 Ethernet Overview

Multicast-group address: An address associated by higher level convention to
a group of logically related stations.

Broadcast address: A predefined multicast address that denotes the set of all
the stations on the Ethernet.

Bit 0 (the least significant bit of the first byte) of an address denotes the type:
it is 0 for physical addresses and 1 for multicast addresses. In either case, the
remaining 47 bits form the address value. A value of 48 ones is always treated as
the broadcast address.

The hardware address of the module is determined at the time of manufacture
and is stored in the network interface station address ROM. Because every device
that is intended to connect to an Ethernet network must have a unique physical
address, the bit pattern blasted into the network interface station address ROM
must be unique for each . The multicast addresses to which the will respond
are determined by the multicast address filter mask in the network interface
initialization block.

10.2 NI Station Address ROM (NISA ROM)
The network interface includes a bytewide, 32-byte, socketted ROM called the
network interface station address ROM. One byte of this ROM appears in the
second byte of each of 32 consecutive longwords in the address range 2008 4000
- 2008 407C16. Bytes one, three, and four of each longword are defined in the
boot diagnostic register (Section 9.1). The second byte of the first six longwords
contain the 48-bit network physical address (NPA) of the . The low-order byte in
the remaining 26 longwords are used for testing. This address range is read-only.
Writes to this address range will

10.3 Programming the SGEC
The operation of the SGEC is controlled by a program in host memory called
the port driver. The SGEC and the port driver communicate through two data
structures: network interface command and status registers (NICSRs)
located in the SGEC and mapped in the host I/O address space, and through
descriptor lists and data buffers (collectively called host communication
area in host memory.

The NICSRs are used for initialization, global pointers, commands, and global
errors reporting, while the host memory resident structures handle the actions
and statuses related to buffer management.

The SGEC can be viewed as two independent, concurrently executing processes:
reception and transmission. After the SGEC completes its initialization
sequence, these two processes alternate between three states: STOPPED,
RUNNING, or SUSPENDED. State transitions occur as a result of port driver
commands (writing to an NICSR) or various external events occurrences. Some of
the port driver commands require the referenced process to be in a specific state.

A simple programming sequence of the chip may be summarized as:

1. After power on (or reset), verifying the self test completed successfully.

2. Writing NICSRs to set major parameters such as system base register,
interrupt vector, address filtering mode, and so on.

3. Creating the transmit and receive lists in memory and writing the NICSRs to
identify them to the SGEC.

Network Interface 10–3

Network Interface
10.3 Programming the SGEC

4. Placing a setup frame in the transmit list, to load the internal reception
address filtering table.

5. Starting the reception and transmission processes, placing them in the
RUNNING state.

6. Waiting for SGEC interrupts. NICSR5 contains all the global interrupt status
bits.

7. Remedying the suspension cause, if either of the reception or transmission
processes enter the SUSPENDED state.

8. Issuing a Tx Poll Demand command, to return the transmission process to
the RUNNING state. In addition, to remedy the reception process suspension
cause, an Rx Poll Demand could be issued to return the reception process to
the RUNNING state.
If the Rx Poll Demand is not issued, the reception process will return to
the RUNNING state when the SGEC receives the next recognized incoming
frame.

The following sections contain detailed programming and state transition
information.

10.3.1 Command and Status Registers
The SGEC contains 16 command and status registers, which may be accessed by
the host.

10.3.2 Host Access to NICSRs
The SGEC’s NICSRs are located in VAX I/O address space.

The NICSRs must be longword-aligned and can only be accessed using
longword instructions. The address of NICSRx is the base address plus 4x
bytes. For example, if the base address is 2000 8000, then the address of NICSR2
is 2000 8008. In the following paragraphs, NICSR bits are specified with several
access modes. The different access modes for bits are as follows:

Table 10–1 Bit Access Modes

Bit Marked Meaning

0 Reserved for future expansion - ignored on write, read as ‘‘0’’

1 Reserved for future expansion - ignored on write, read as ‘‘1’’

R Read-only, ignored on write

R/W Read or write

W Write-only, unpredictable on read

R/W1 Read, or clear by writing a ‘‘1’’ - writing with a ‘‘0’’ has no effect

In order to save chip real estate, yet not tie up the host bus for extended periods
of time, the 16 NICSRs are subdivided into two groups:

1. Physical NICSRs - 0 through 7, 15

2. Virtual NICSRs - 8 through 14

The group in which the NICSR is part, determines the way the host will access it.

10–4 Network Interface

Network Interface
10.3 Programming the SGEC

10.3.2.1 Physical NICSRs
These registers are physically present in the chip. Host access to these NICSRs
is by a single instruction (for example, MOVL). There is no host perceivable delay
and the instruction completes immediately. Most commonly used SGEC features
are contained in the physical NICSRs.

10.3.2.2 Virtual NICSRs
These registers are not physically present in the SGEC and are incarnated by
the on-chip processor. Accesses to SGEC functions implied by these registers may
take up to 20 µseconds. In order not to tie up the host bus, virtual NICSR access
requires several steps by the host.

NICSR5<DN> is used to synchronize access to the virtual NICSRs: after the first
virtual NICSR access, the SGEC deasserts NICSR5<DN> until it will complete
the action.

Note

Accessing the virtual NICSRs, without polling first on the NICSR5<DN>
reassertion, will cause unpredictable results.

10.3.2.2.1 NICSR Write To write to a virtual NICSR, the host takes the
following actions:

1. Issues a write NICSR instruction. Instruction completes immediately, but the
data is not yet copied by the SGEC.

2. Waits for NICSR5<DN>. No SGEC virtual NICSR may be accessed before
NICSR5<DN> asserts.

10.3.2.2.2 NICSR Read To read a virtual NICSR, the host takes the following
actions:

1. Issues a read NICSR instruction. Instruction completes immediately, but no
valid data is sent to the host.

2. Waits for NICSR5<DN>. No SGEC virtual NICSR may be accessed before
NICSR5<DN> asserts.

3. Reissues a read NICSR instruction to the same NICSR as in step 1. The host
receives valid data.

10.3.3 Vector Address, IPL, Sync/Async (NICSR0)
Because the SGEC may generate an interrupt on parity errors during host writes
to NICSRs, this register must be the first one written by the host. The format is
shown in Figure 10–2 and the bit description is given in Table 10–2.

Network Interface 10–5

Network Interface
10.3 Programming the SGEC

Figure 10–2 Vector Address, IPL, Sync/Async (NICSR0)

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

I/O Address: 2000 8000
(16)

IP

SA

Must Be One IV − Interrupt Vector 1 1

Longword Read/Write Access

ESB90P0052

Note

A parity error during NICSR0 host write may cause a host system crash
due to an erroneous interrupt vector. To prevent a crash, NICSR0 must
be written as follows while the IPL (to which the SGEC is assigned) is
disabled:

1. Write NICSR0.

2. Read NICSR0.

3. Compare value read to value written. If values do not match, repeat
the procedure starting with step 1.

4. Read NICSR5 and examine NICSR5<ME> for pending parity
interrupt. Should an interrupt be pending, write NICSR5 to clear
it.

10–6 Network Interface

Network Interface
10.3 Programming the SGEC

Table 10–2 NICSR0 Bits

Bit Name Access Description

<31:30> IP R/W Interrupt priority - the VAX interrupt priority
level to which the SGEC will respond.

IP IPL (hex)

00 14

01 15

10 16

11 17

Although the SGEC has only one interrupt
request pin, that pin might be wired to any of the
four IRQ pins on the host. The value in IP should
be 1416 for the KA690.

<29> SA R/W Sync/Async - This bit determines the SGEC
operating mode when it is the bus master. When
set, the SGEC will operate as a synchronous
device and when clear, the SGEC will operate as
an asynchronous device.

<15:00> IV R/W Interrupt vector - During an interrupt
acknowledge cycle for an SGEC interrupt, this is
the value that the SGEC will drive on the host
bus CDAL<31:0> pins (CDAL pins <1:0> and
<31:16> are set to ‘‘0’’). Bits <1:0> are ignored
when NICSR0 is written, and set to ‘‘1’’ when
read.

Table 10–3 NICSR0 Access

Value after RESET: 1FFF0003 hex

Read access rules: None

Write access rules: The IPL to which the SGEC is assigned must be DISABLED

The Polling Demand NICSR (NICSR1) is used by the port driver to tell the SGEC
that it put a packet on the transmit or receive list. The format is shown in
Figure 10–3 and the bit description is in Table 10–4.

Figure 10–3 Polling Demand (NICSR1)

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

PD
I/O Address: 2000 8004

(16)

Must Be One

Longword Write Only Access

ESB90P0053

Network Interface 10–7

Network Interface
10.3 Programming the SGEC

Table 10–4 NICSR1 Bits

Bit Name Access Description

<31:01> MBZ – Must be one. This field is reserved for future
expansion. Write as ONE.

<00> PD W Tx Polling Demand - Checks the transmit list for
frames to be transmitted.
The PD value is meaningless.

Table 10–5 NICSR1 Access

Value after RESET: Not applicable

Read access rules: None

Write access rules: Tx process SUSPENDED

10.3.4 Receive Polling Demand (NICSR2)

Figure 10–4 NICSR2 Format

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

PD
I/O Address: 2000 8008

(16)

Must Be One

ESB90P0054

Table 10–6 NICSR2 Bits

Bit Name Access Description

<31:01> MBO – Must be one. This field is reserved for future
expansion. Write as ONE.

<00> PD W Rx Polling Demand - Checks the receive list for
receive descriptors to be acquired.
The PD value is meaningless.

Table 10–7 NICSR2 Access

Value after RESET: Not applicable

Read access rules: None

Write access rules: Rx process SUSPENDED

10–8 Network Interface

Network Interface
10.3 Programming the SGEC

10.3.5 Descriptor List Addresses (NICSR3, NICSR4)
The two descriptor list address registers are identical in function, one being used
for the transmit buffer descriptors and one being used for the receive buffer
descriptors. In both cases, the registers are used to point the SGEC to the start
of the appropriate buffer descriptor list.

The descriptor lists reside in VAX physical memory space and must be
longword-aligned.

Note

For best performance, it is recommended that the descriptor lists be
octaword-aligned.

Transmit List

If the transmit descriptor list is built as a ring (the chain descriptor
points at the first descriptor of the list), the ring must contain, at least,
two descriptors in addition to the chain descriptor.

Initially, these registers must be written before the respective Start
command is given (see Section 10.3.7), or the respective process will remain
in the STOPPED state. New list head addresses are only acceptable while the
respective process is in the STOPPED or SUSPENDED state. Addresses written
while the respective process is in the RUNNING state are ignored and discarded.

If the host attempts to read any of these registers before ever writing to them,
the SGEC responds with unpredictable values.

Network Interface 10–9

Network Interface
10.3 Programming the SGEC

Figure 10–5 Descriptor List Addresses Format

3
1

3
0 2 1 0

Start of Receive List − RBA NICSR3

NICSR4

I/O Address: 2000 800C
(16)

(16)

MBZ

3
0 2

MBZ

0

Start of Transmit List − TBA

Longword Read/Write Access

8010

3
1 1

I/O Address: 2000

MBZ MBZ

Longword Read/Write Access

ESB90P0055

Table 10–8 Descriptor List Addresses Bits

Bit Name Access Description

<31:30> MBZ – Must be zero. Ignored on writes, read as zero.

<29:00> RBA or TBA R/W Address of the start of the receive list (NICSR3)
or transmit list (NICSR4). This is a 30-bit VAX
physical address.

Note

The descriptor lists must be longword-aligned.

Table 10–9 NICSR3 Access

Value after RESET: Unpredictable

Read access rules: None

Write access rules: Rx process STOPPED or SUSPENDED

Table 10–10 NICSR4 Access

Value after RESET: Unpredictable

Read access rules: None

Write access rules: Tx process STOPPED or SUSPENDED

10–10 Network Interface

Network Interface
10.3 Programming the SGEC

After NICSR3 or NICSR4 is written, the new address is readable from the written
NICSR. However, if the SGEC status did not match the related write access rules,
the new address does not take effect and the written information is lost, even if
the SGEC matches the right condition later.

10.3.6 Status Register (NICSR5)
This register contains all the status bits the SGEC reports to the host.
Figure 10–6 shows the register format and Table 10–11 describes the register
bits.

Figure 10–6 NICSR5 Bits

3
1

3
0

2
9

2
6

2
5

2
4

2
3

2
2

2
1

1
9

1
8

1
7

1
6

1
5 7 6 5 4 3 2 1 0

SS MBO MUST BE ONE

IS
TI
RI
RU
ME
RW
TW

BO
DN
SF
ID

I/O Address: 2000 8014

Read/Write One to Clear
Bits <31:16> Read Only

TS RS

(16)

OM

Longword Access with:

Bits <16:0>

ESB90P0056

Table 10–11 NICSR5 Bits

Bit Name Access Description

<31> ID R Initialization done - When set, indicates the
SGEC has completed the initialization (reset
and self-test) sequences, and is ready for further
commands.
When clear, indicates the SGEC is performing
the initialization sequence and ignoring all
commands.
After the initialization sequence completes, the
transmission and reception processes are in the
STOPPED state.

(continued on next page)

Network Interface 10–11

Network Interface
10.3 Programming the SGEC

Table 10–11 (Cont.) NICSR5 Bits

Bit Name Access Description

<30> SF R Self-test failed - When set, indicates the SGEC
self-test has failed.
The self-test completion code bits indicate the
failure type.

<29:26> SS R Self-test status - The self-test completion code,
according to the following table, is only valid if
SF is set.

Value Meaning

0001 ROM error

0010 RAM error

0011 Address filter RAM error

0100 Transmit FIFO error

0101 Receive FIFO error

0110 Self-test loopback error

Information

Self-test takes 25
ms to complete after
hardware or software
RESET.

<25:24> TS R Transmission process state - Indicates the current
state of the transmission process, as follows:

Value Meaning

00 STOPPED

01 RUNNING

10 SUSPENDED

Section 10.3.18.5 explains the transmission
process operation and state transitions.

<23:22> RS R Reception process state - Indicates the current
state of the reception process, as follows:

Value Meaning

00 STOPPED

01 RUNNING

10 SUSPENDED

Section 10.3.18.4 explains the reception process
operation and state transitions.

(continued on next page)

10–12 Network Interface

Network Interface
10.3 Programming the SGEC

Table 10–11 (Cont.) NICSR5 Bits

Bit Name Access Description

<18:17> OM R Operating mode - These bits indicate the current
SGEC operating mode, as follows:

Value Meaning

00 Normal operating mode.

01 Internal loopback - Indicates the
SGEC is disengaged from the
Ethernet wire.
Frames from the transmit list are
looped back to the receive list,
subject to address filtering.
Section 10.3.18.6 explains this
mode of operation.

10 External loopback - Indicates the
SGEC is working in full-duplex
mode.
Frames from the transmit list are
transmitted on the Ethernet wire
and also looped back to the receive
list, subject to address filtering.
Section 10.3.18.6 explains this
mode of operation.

11 Reserved for diagnostics

<16> DN R Done - When set, indicates the SGEC has
completed a requested virtual NICSR access.
After a reset, this bit is set.

<15:8> MBO – Must be one - This field is reserved. Writes are
ignored, read as one.

<7> BO R/W1 Boot_Message - When set, indicates that the
SGEC has detected a boot_message on the serial
line and has set the external pin BOOT_L.

<6> TW R/W1 Transmit watchdog timer interrupt - When
set, indicates the transmit watchdog timer has
timed out, indicating the SGEC transmitter was
babbling. The transmission process is aborted
and placed in the STOPPED state. (Also reported
into the Tx descriptor status TDES0<TO> flag).

<5> RW R/W1 Receive watchdog timer interrupt - When set,
indicates the receive watchdog timer has timed
out, indicating that some other node is babbling
on the network.
Current frame reception is aborted, and
RDES0<LE> and RDES0<LS> will be set. Bit
NICSR5<RI> will also set. The reception process
remains in the RUNNING state.

(continued on next page)

Network Interface 10–13

Network Interface
10.3 Programming the SGEC

Table 10–11 (Cont.) NICSR5 Bits

Bit Name Access Description

<4> ME R/W1 Memory error - Is set when any of the followings
occur:

• SGEC is the CP-bus master and the ERR_L
pin is asserted by external logic (generally
indicative of a memory problem).

• Parity error detected on a host to SGEC
NICSR write or SGEC read from memory.

When a memory error is set, the reception and
transmission processes are aborted and placed
in the STOPPED state.

Note

At this point, it is
mandatory that the
port driver issue a
Reset command and
rewrite all NICSRs.

<3> RU R/W1 Receive buffer unavailable - When set, indicates
that the next descriptor on the receive list is
owned by the host and could not be acquired by
the SGEC.
The reception process is placed in the
SUSPENDED state. Section 10.3.18.4 explains
the reception process state transitions. Once
set by the SGEC, this bit will not be set again
until the SGEC encounters a descriptor it cannot
acquire.
To resume processing receive descriptors, the host
must flip the ownership bit of the descriptor and
can issue the Rx Poll Demand command. If no
Rx Poll Demand is issued, the reception process
resumes when the next recognized incoming
frame is received.

<2> RI R/W1 Receive interrupt - When set, indicates that a
frame has been placed on the receive list. Frame-
specific status information was posted in the
descriptor. The reception process remains in the
RUNNING state.

(continued on next page)

10–14 Network Interface

Network Interface
10.3 Programming the SGEC

Table 10–11 (Cont.) NICSR5 Bits

Bit Name Access Description

<1> TI R/W1 Transmit interrupt - When set, indicates one of
the following:

• Either all the frames in the transmit list
have been transmitted (next descriptor
owned by the host), or a frame transmission
was aborted due to a locally induced
error. The port driver must scan the list
of descriptors to determine the exact cause.
The transmission process is placed in the
SUSPENDED state. Section 10.3.18.5
explains the transmission process state
transitions. To resume processing transmit
descriptors, the port driver must issue the
Poll Demand command.

• A frame transmission completed, and
TDES1<IC> was set. The transmission
process remains in the RUNNING state,
unless the next descriptor is owned by the
host or the frame transmission aborted
due to an error. In the latter cases, the
transmission process is placed in the
SUSPENDED state.

<0> IS R/W1 Interrupt summary - The logical ‘‘OR’’ of NICSR5
bits 1 through 6.

Table 10–13 NICSR5 Access

Value after RESET: 0039FF00 hex

Read access rules: None

Write access rules: NICSR5<07:01> bits cleared by 1, others bits not writable

10.3.6.1 NICSR5 Status Report
The status register NICSR5 is split into two words:

• The high word, which contains the global status of the SGEC as the
initialization status, the DMA and operation mode, and the receive and
transmit process states.

• The low word, which contains the status related to the receive and transmit
frames.

Any change of the NICSR5 bits <ID>, <SF>, <OM> or <DN>, which is always the
result of a host command, is reported without an interrupt.

Any process state change initiated by a host command NICSR6<ST> or
NICSR6<SR> is reported without an interrupt.

In the above two cases, the driver must poll on NICSR5 to get the acknowledge
of its command (for example, polling on <ID, SF> after Reset or polling on <TS>
after a START_TX command).

Network Interface 10–15

Network Interface
10.3 Programming the SGEC

Any process state change initiated by the SGEC activity is immediately
followed by at least one of the NICSR5<6:1> interrupts and the interrupt_
summary NICSR5<IS>.

The SGEC 16-bit internal processor updates the 32-bit NICSR5 register in two
phases: the high word is modified first, then the low word is written, which
generates an interrupt to the host. In this case, the driver must scan first the
NICSR5 low word to get the interrupt status, then the NICSR high word to get
the related process state. For example, <TI> interrupt with <TS> = SUSPENDED
reports an end of transmission due to a Tx descriptor unavailable.

If the host polls on the process state change, it may detect a change without
interrupt, due to the small time window separating the NICSR5 high word and
low word updates.

Maximum time window is 4 * Tcycles of the host clock.

10.3.7 Command and Mode Register (NICSR6)
This register is used to establish operating modes and for port driver commands.

Figure 10–7 NICSR6 Format

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

I/O Address: 2000 8018

R
E

I
E

r BL Must
be ONE

(16)

B
E

S
E

r r r Must
be ONE

S
T

S
R

OM D
C

F
C

r r P
B

AF r

Longword Read/Write Access

r = reserved

ESB90P0057

Table 10–14 NICSR6 Bits

Bit Name Access Description

<31> RE R/W Reset command - Upon being set, the SGEC will abort all processes
and start the reset sequence. After completing the reset and self-test
sequence, the SGEC will set bit NICSR5<ID>. Clearing this bit has no
effect.

Note

The NICSR6<RE> value is unpredictable
on read after hardware reset.

<30> IE R/W Interrupt enable mode - When set, setting of NICSR5 bits 1 through 6
will cause an interrupt to be generated.

(continued on next page)

10–16 Network Interface

Network Interface
10.3 Programming the SGEC

Table 10–14 (Cont.) NICSR6 Bits

Bit Name Access Description

<29> r – Reserved

<28:25> BL R/W Burst limit mode - Specifies the maximum number of longwords to be
transferred in a single DMA burst on the host bus.
When NICSR6<SE> is cleared, permissible values are 1,2,4,8. When
SE is set, the only permissible values are 1 and 4; a value of 2 or 8 is
respectively forced to 1 or 4.
After initialization, the burst limit is set to 1.

<24:21> MBO – This field is reserved. Writes are ignored, read as one.

<20> BE R/W Boot_message enable mode - When set, enables the boot_message
recognition. When the SGEC recognizes an incoming boot message
on the serial line, NICSR5<BO> is set and the external pin BOOT_L is
asserted for a duration of 6*Tcycles (of the host clock).

<19> SE R/W Single_cycle enable mode - When set, the SGEC transfers only a single
longword or an octaword in a single DMA burst on the host bus.

<18:12> MBO – Must be one. This field is reserved. Writes are ignored, read as one.

<11> ST R/W Start/Stop Transmission command - When set, the transmission process
is placed in the RUNNING state, the SGEC checks the transmit list at
the current position for a frame to transmit (the address set by NICSR4
or the position retained when the Tx process was previously stopped).
If it does not find a frame to transmit, the transmission process enters
the SUSPENDED state. The Start Transmission command is honored
only when the transmission process is in the STOPPED state. The first
time this command is issued, an additional requirement is that NICSR4
has already been written to, or the transmission process will remain in
the STOPPED state.
When cleared, the transmission process is placed in the STOPPED state
after completing transmission of the current frame. The next descriptor
position in the transmit list is saved, and becomes the current position
after transmission is restarted.
The Stop Transmission command is honored only when the transmission
process is in the RUNNING or SUSPENDED states.
Refer to Section 10.3.18.5 for more information.

(continued on next page)

Network Interface 10–17

Network Interface
10.3 Programming the SGEC

Table 10–14 (Cont.) NICSR6 Bits

Bit Name Access Description

<10> SR R/W Start/Stop Reception command - When set, the reception process is
placed in the RUNNING state, and the SGEC attempts to acquire a
descriptor from the receive list and process incoming frames.
Descriptor acquisition is attempted from the current position in the list
(the address set by NICSR3 or the position retained when the Rx process
was previously stopped). If no descriptor can be acquired, the reception
process enters the SUSPENDED state.
The Start Reception command is honored only when the reception
process is in the STOPPED state. The first time this command is issued,
an additional requirement is that NICSR3 has already been written to,
or the reception process will remain in the STOPPED state.
When cleared, the reception process is placed in the STOPPED state
after completing reception of the current frame. The next descriptor
position in the receive list is saved, and becomes the current position
after reception is restarted. The Stop Reception command is honored
only when the reception process is in the RUNNING or SUSPENDED
states.
Refer to Section 10.3.18.4 for more information.

(continued on next page)

10–18 Network Interface

Network Interface
10.3 Programming the SGEC

Table 10–14 (Cont.) NICSR6 Bits

Bit Name Access Description

<9:8> OM R/W Operating mode - These bits determine the SGEC main operating mode.

Value Meaning

00 Normal operating mode.

01 Internal loopback - The SGEC will loop back buffers
from the transmit list. The data will be passed from the
transmit logic back to the receive logic. The receive logic
will treat the looped frame as it would any other frame,
and subject it to the address filtering and validity check
process.

10 External loopback - The SGEC transmits normally
and in addition, will enable its receive logic to its own
transmissions. The receive logic will treat the looped
frame as it would any other frame, and subject it to the
address filtering and validity check process.

11 Reserved for diagnostic

(continued on next page)

Network Interface 10–19

Network Interface
10.3 Programming the SGEC

Table 10–14 (Cont.) NICSR6 Bits

Bit Name Access Description

<7> DC R/W Disable data chaining mode - When set, no data chaining will occur
in reception; frames, longer than the current receive buffer, will be
truncated. RDES0<FS,LS> will always be set. The frame length
returned in RDES0<FL> will be the true length of the nontruncated
frame while RDES0<BO> will indicate that the frame has been
truncated due to buffer overflow.
When clear, frames too long for the current receive buffer will be
transferred to the next buffer(s) in the receive list.

<6> FC R/W Force collision mode - This bit allows the collision logic to be tested. The
chip must be in internal loopback mode for FC to be valid. If FC is
set, a collision will be forced during the next transmission attempt. This
will result in 16 transmission attempts with excessive collision reported
in the transmit descriptor.

<5:4> MBO Must be one. This field is reserved. Writes are ignored, read as one.

<3> PB R/W Pass bad frames mode - When this bit is set, the SGEC will pass frames
that have been damaged by collisions or are too short due to premature
reception termination. Both events should have occurred within the
collision window (64 bytes), or other errors will be reported.
When clear, these frames will be discarded and never show up in the
host receive buffers.

Note

Pass bad frames is subject the address
filtering mode. For example, to monitor
the network, this mode must be set
together with the promiscuous address
filtering mode.

<2:1> AF R/W Address filtering mode - These bits define the way incoming frames will
be address filtered:

Value Meaning

00 Normal - Incoming frames will be filtered according to
the values of the <HP> and <IF> bits of the setup frame
descriptor.

01 Promiscuous - All incoming frames will be passed to the
host, regardless of the <HP> bit value.

10 All multicast - All incoming frames with multicast
address destinations will be passed to the host. Incoming
frames with physical address destinations will be filtered
according to the <HP> bit value.

11 Unused - Reserved.

<0> MBO – Must be one. This field is reserved. Writes are ignored, read as one.

10–20 Network Interface

Network Interface
10.3 Programming the SGEC

Table 10–15 NICSR6 Access

Value after RESET: 83E0F000 hex or 03E0F000 hex

Read access rules: None

Write access rules:

<RE, IE, BE> Unconditional

<BL, SE, OM> Rx and Tx processes STOPPED

<FC> Rx and Tx processes STOPPED, Internal_Loopback
mode

<DC, PB, AF> Rx STOPPED

Start_Receive <SR>=1 Rx STOPPED and NICSR3 initialized

Start_Transmit <ST>=1 Tx STOPPED and NICSR4 initialized

Stop_Receive <SR>=0 Rx RUNNING or SUSPENDED

Stop_Transmit <ST>=0 Tx RUNNING or SUSPENDED

After NICSR6 is written, the new value is readable from NICSR6. However, if
the SGEC status does not match the related write access rules, the new mode
setting and command do not take effect and the written information is lost, even
if the SGEC matches the right condition later.

10.3.8 System Base Register (NICSR7)
This NICSR contains the physical starting address of the VAX system page table.
This register must be loaded by host software before any address translation
occurs so that memory will not be corrupted.

Figure 10–8 NICSR7 Format

3
1

3
0

2
9 2 1 0

MBZ System Base Address

801C
(16)

I/O Address: 2000

MBZ

Longword Read/Write Access

ESB90P0058

Table 10–16 NICSR7 Bits

Bit Name Access Description

<31:30> MBZ – Must be zero. Read as zero. Writes are ignored.

(continued on next page)

Network Interface 10–21

Network Interface
10.3 Programming the SGEC

Table 10–16 (Cont.) NICSR7 Bits

Bit Name Access Description

<29:00> SB R/W System base address - The physical starting
address of the VAX system page table. Not
used if VA (virtual addressing) is cleared in all
descriptors.
This register should be loaded only once
after a reset. Subsequent modifications of
this register at any other time may cause
unpredictable results.

Table 10–17 NICSR7 Access

Value after RESET: Unpredictable

Read access rules: None

Write access rules: Writing once after initialization

10.3.9 Reserved Register (NICSR8)
This entire register is reserved.

10.3.10 Watchdog Timers (NICSR9)
The SGEC has two timers that restrict the length of time in which the chip can
receive or transmit.

Figure 10–9 NICSR9 Format

3
1

1
6

1
5 0

RECEIVE TIME−OUT − RT TRANSMIT TIME−OUT − TT

I/O Address: 2000 8024
(16)

Longword Read/Write Access

ESB90P0059

10–22 Network Interface

Network Interface
10.3 Programming the SGEC

Table 10–18 NICSR9 Bits

Bit Name Access Description

<31:16> RT R/W Receive watchdog timeout - The receive watchdog
timer protects the host CPU against babbling
transmitters on the network. If the receiver stays
on for

���������
cycles of the serial clock, the SGEC

will cut off reception and set the NICSR5<RW>
bit. If the timer is set to zero, it will never time
out.
The value of RT is an unsigned integer. With
a 10 MHz serial clock, this provides a range
of 72 µs to 100 ms. The default value is 1250
corresponding to 2 ms.
The Rx watchdog timer is programmed only while
the reception process is in the STOPPED state.

Note

An Rx watchdog
value between 1 and
44 is forced to the
minimum time_out
value of 45 (72 µs).

<15:00> TT R/W Transmit watchdog timeout - The transmit
watchdog timer protects the network against
babbling SGEC transmissions, on top of any
such circuitry present in tranceivers. If the
transmitter stays on for

�	�
�����
cycles of the

serial clock, the SGEC will cut off the transmitter
and set the NICSR5<TW> bit.
If the timer is set to zero, it will never time out.
The value of TT is an unsigned integer. With
a 10 MHz serial clock, this provides a range
of 72 µs to 100 ms. The default value is 1250
corresponding to 2 ms.
The Tx watchdog timer is programmed only while
the transmission process is in the STOPPED
state.

Note

A Tx watchdog value
between 1 and 44
is forced to the
minimum time_out
value of 45 (72 µs).

Network Interface 10–23

Network Interface
10.3 Programming the SGEC

Table 10–19 NICSR9 Access

Value after RESET: 00000000 hex

Read access rules: None

Write access rules:

Rx watchdog timer Rx process STOPPED

Tx watchdog timer Tx process STOPPED

These watchdog timers are enabled by default. These timers will assume the
default values after hardware or software resets.

10.3.11 Revision Number and Missed Frame Count (NICSR10)
This register contains a missed frame counter and SGEC identification
information.

Figure 10–10 Revision Number and Missed Frame Count (VIRTUAL NICSR10)

3
1

2
0

1
9

1
8

1
7

1
6

1
5 0

MBZ RN MFC

I/O Address: 2000 802C
(16)

Longword Read Only Access

ESB90P0060

Table 10–20 NICSR10 Bits

Bit Name Access Description

<31:21> MBZ – Must be zero. Read as zero. Writes are ignored.

<20:16> RN R Chip revision number - This stores the revision
number for this particular SGEC.

<15:00> MFC R Missed frame count - Counter for the number of
frames that were discarded and lost because host
receive buffers were unavailable. The counter is
cleared when read by the host.

Table 10–21 NICSR10 Access

Value after RESET: 00030000 hex

Read access rules: Missed_frame counter cleared by read

Write access rules: Not applicable

10–24 Network Interface

Network Interface
10.3 Programming the SGEC

10.3.12 Boot Message (NICSR11, 12, 13)
These registers contain the boot message VERIFICATION and PROCESSOR
fields. The format is shown in Figure 10–11 and the bit descriptions are in
Table 10–22.

Figure 10–11 Boot Message

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

NICSR11
20000802C

NICSR12
20008030

NICSR13
20008034

VERIFICATION VRF <31:00> 16

16

Longword Read/Write Access

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

VERIFICATION VRF <63:32>

16

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

0|0|0|0|0|0|0|0|0|0|0|0|0 0|0|0 0|0|0|0|0|0|0|0| PROCESSOR PRC

ESB90P0061

Table 10–22 NICSR11,12,13 Bits

Bit Name Access Description

NICSR11 <31:00> VRF<31:00> R/W Boot message verification field <31:00>

NICSR12 <31:00> VRF<63:32> R/W Boot message verification field <63:32>

NICSR13 <07:00> PRC R/W Boot message processor field

Note

The least significant bit of the verification field (VRF<0>) corresponds to
the first incoming bit of the verification field in the serial boot message.

Table 10–23 NICSR11,12,13 Access

Value after RESET: 00000000 hex for each of NICSR11,NICSR12,NICSR13

Read access rules: None

Write access rules: Boot message disabled (<NICSR6<BE> = 0)

Network Interface 10–25

Network Interface
10.3 Programming the SGEC

10.3.13 Diagnostic Registers (NICSR14, 15)
These registers are reserved for diagnostic features.

10.3.13.1 Diagnostic Breakpoint Address Register (NICSR14)
This register is virtual CSR. It contains the breakpoint address that will cause
the internal CPU to jump to a patch address. Figure 10–12 shows the format
of the register. Table 10–24 lists the bits and descriptions. This register can be
loaded only in diagnostic mode (NICSR6 <OM>=<11>).

Figure 10–12 NICSR14 Format

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

BREAKPOINT ADDRESS
(CRA) (BPA)

B
E

CODE RESTART ADDRESS

ESB90P0062

Table 10–24 NICSR14 Bits

Bit Name Type Description

<31> BE R/W When set, breakpoint enabled.

<30:16> CRA R/W Code restart address - The first address in the
internal RAM where the internal processor will
jump after a breakpoint occurred.

<15:0> BPA R/W Breakpoint address - The internal processor
address at which the program will halt and jump
to the RAM loaded code.

Note

This register, in conjunction with the diagnostic descriptors, allows
software patches.

Table 10–25 NICSR14 Access

Value after RESET: 0000000016

Read access rules: None

Write access rules: Diagnostic mode

Violation: Addressing NICSR14 while NICSR5<DN> is deasserted

10.3.13.2 Monitor Command Register (NICSR15)
This register is a physical CSR. It contains the bits that will select the internal
test block operation mode. Figure 10–13 shows the format of the register.
Table 10–26 lists the bits and descriptions.

10–26 Network Interface

Network Interface
10.3 Programming the SGEC

Figure 10–13 NICSR15 Format

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

ADDRESS/DATA S
T

QAD B
S

MBZ

ESB90P0063

Table 10–26 NICSR15 Bits

Bit Name Type Description

<31:16> ADDR/DATA R/W Before the "Examine" cycle, it points to the
location to be read. Three cycles after the
assertion of <ST>, it contains the read data.

<15> ST W Start read - When set, starts the "Examine" cycle:
the data addressed by CSR<31:16> is fetched
and stored into the same register field. Reset by
hardware at the end of operation.

<14:13> QAD W Quad selects bits - These bits define the specific
four bits of the internal Data_bus or Address_
bus, which are monitored on the external test
pins BM_L/TEST<3:0>. Meaningful only in test
mode (TSM=1).
The 2-bit code is interpreted as follows.

QAD Data Address

00 <03:00> <03:00>

01 <07:04> <07:04>

10 <11:08> <11:08>

11 <15:12> 0, IOP_WR_L,<13:12>

<12> BS W Bus select - When reset, the internal Data_bus
is monitored on the external test pins BM_L
/TEST<3:0>. When set, the monitoring is applied
on the internal Address_bus. Meaningful only in
test mode (TSM=1).

<11:0> MBZ – Must be zero.

Table 10–27 NICSR15 Access

Value after RESET: 00000FFF16

Read access rules: None

Write access rules: Reserved for DEBUGGING

Violation: Setting <ST> with "random" SGEC internal address

Network Interface 10–27

Network Interface
10.3 Programming the SGEC

10.3.14 Descriptors and Buffers Format
The SGEC transfers frame data to and from receive and transmit buffers in host
memory. These buffers are pointed to by descriptors, which are also resident in
host memory.

There are two descriptor lists: one for receive and one for transmit. The starting
address of each list is written into NICSRs 3 and 4, respectively. A descriptor list
is a forward-linked (either implicitly or explicitly) list of descriptors, the last of
which may point back to the first entry, thus creating a ring structure. Explicit
chaining of descriptors, through setting xDES1<CA>, is called descriptor
chaining. The descriptor lists reside in VAX physical memory address space.

Note

The SGEC first reads the descriptors, ignoring all unused bits regardless
of their state. The only word the SGEC writes back is the first word
(xDES0) of each descriptor. Unused bits in xDES0 will be written as ‘‘0.’’
Unused bits in xDES1 - xDES3 may be used by the port driver and the
SGEC will never disturb them.

A data buffer can contain an entire frame or part of a frame, but it cannot contain
more than a single frame. Buffers contain only data; buffer status is contained
in the descriptor. The term data chaining is used to refer to frames spanning
multiple data buffers. Data chaining can be enabled or disabled, in reception,
through NICSR6<DC>. Data buffers reside in VAX memory space, either physical
or virtual.

Note

The virtual-to-physical address translation is based on the assumption
that PTEs are locked in the host memory during the time the SGEC owns
the related buffer.

Note

For best performance in virtual addressing mode, PPTE vectors must not
cross a page of the PPTE table.

10.3.15 Receive Descriptors
The receive descriptor format is shown in Figure 10–14, and described in the
following paragraphs.

10–28 Network Interface

Network Interface
10.3 Programming the SGEC

Figure 10–14 Receive Descriptor Format

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RDES0

RDES1

RDES2

RDES3

Buffer Size u Page Offset

BUFFER SVAPTE/Physical Address

0 − SGEC writes as ZERO
u − Ignored by the SGEC on read, never written

O
W

V
A

V
T

Frame Length
E
S

L
E

DT R
F

B
O

F
S

L
S

T
L

C
S

F
T

0 T
N

D
B

C
E

O
F

C
A

u

u

u

u

u

ESB90P0064

10.3.15.1 RDES0 Word
RDES0 word contains received frame status, length, and descriptor ownership
information.

Table 10–28 RDES0 Bits

Bit Name Description

<31> OW Own bit - When set, indicates the descriptor is owned by the SGEC.
When cleared, indicates the descriptor is owned by the host. The
SGEC clears this bit upon completing processing of the descriptor
and its associated buffer.

<30:16> FL Frame length - The length in bytes of the received frame.
Meaningless if RDES0<LE> is set.

<15> ES Error summary - The logical ‘‘OR’’ of RDES0 bits OF, CE, TN, CS,
TL, LE, and RF.

<14> LE Length error - When set, indicates a frame truncation caused by one
of the following:

• The frame segment does not fit within the current buffer and the
SGEC does not own the next descriptor. The frame is truncated.

• The receive watchdog timer expired. NICSR5<RW> is also set.

(continued on next page)

Network Interface 10–29

Network Interface
10.3 Programming the SGEC

Table 10–28 (Cont.) RDES0 Bits

Bit Name Description

<13:12> DT Data type - Indicates the type of frame the buffer contains, according
to the following table:

Value Meaning

00 Serial received frame

01 Internally looped back frame

10 Externally looped back frame, serial received frame 1

<11> RF Runt frame - When set, indicates this frame was damaged by a
collision or premature termination before the collision window
had passed. Runt frames will be passed on to the host only if
(NICSR6<PB>) is set. Meaningless if RDES0<OF> is set.

<10> BO Buffer overflow - When set, indicates that the frame has been
truncated due to a buffer too small to fit the frame size. This bit may
be set only if data chaining is disabled (NICSR6<DC> = 1).

<09> FS First segment - When set, indicates this buffer contains the first
segment of a frame.

<08> LS Last segment - When set, indicates this buffer contains the last
segment of a frame and status information is valid.

<07> TL Frame too long - When set, indicates the frame length exceeds the
maximum Ethernet specified size of 1518 bytes.

Note

Frame too long is only a frame length
indication and does not cause any
frame truncation.

<06> CS Collision seen - When set, indicates the frame was damaged by a
collision that occurred after the 64 bytes following the SFD.

<05> FT Frame type - When set, indicates the frame is an Ethernet type
frame (Frame Length_Field > 1500). When clear, indicates the frame
is an IEEE 802.3 type frame. Meaningless for runt frames < 14
bytes.

<04> 0 Zero. SGEC writes as zero.

<03> TN Translation not valid - When set, indicates that a translation error
occurred when the SGEC was translating a VAX virtual buffer
address. It will only set if RDES1<VA> was set. The reception
process remains in the RUNNING state and attempts to acquire the
next descriptor.

1The SGEC does not differentiate between the loopback and the serial received frames. Therefore, this information is
global and reflects only NICSR6<OM>.

(continued on next page)

10–30 Network Interface

Network Interface
10.3 Programming the SGEC

Table 10–28 (Cont.) RDES0 Bits

Bit Name Description

<02> DB Dribbling bits - When set, indicates the frame contained a noninteger
multiple of eight bits. This error will be reported only if the number
of dribbling bits in the last byte is greater than two. Meaningless if
RDES0<CS> or RDES0<RF> is set.
The CRC check is performed independent of this error; however,
only whole bytes are run through the CRC logic. Consequently,
received frames with up to six dribbling bits will have this bit
set, but if <CE> (or another error indicator) is not set, these
frames should be considered valid:

CE DB Error

0 0 None

0 1 None

1 0 CRC error

1 1 Alignment error

<01> CE CRC Error - When set, indicates that a CRC error has occurred on
the received frame.

<00> OF Overflow - When set, indicates received data in this descriptor’s
buffer was corrupted due to internal FIFO overflow. This will
generally occur if SGEC DMA requests are not granted before the
internal receive FIFO fills up.

10.3.15.2 RDES1 Word

Table 10–29 RDES1 Bits

Bit Name Descriptor

<31> CA Chain address - When set, RDES3 is interpreted as another
descriptor’s VAX physical address. This allows the SGEC to process
multiple, non-contiguous descriptor lists and explicitly "chain" the
lists. Note that contiguous descriptors are implicitly chained.
In contrast to what is done for an Rx buffer descriptor, the SGEC
clears neither the ownership bit RDES0<OW> nor one of the other
bits of RDES0 of the chain descriptor after processing.
To protect against infinite loop, a chain descriptor pointing back to
itself, is seen as owned by the host, regardless of the ownership bit
state.

(continued on next page)

Network Interface 10–31

Network Interface
10.3 Programming the SGEC

Table 10–29 (Cont.) RDES1 Bits

Bit Name Descriptor

<30> VA Virtual addressing - When set, RDES3 is interpreted as a virtual
address. The type of virtual address translation is determined by the
RDES1<VT> bit. The SGEC uses RDES3 and RDES2<Page Offset>
to perform a VAX virtual address translation process to obtain the
physical address of the buffer. When clear, RDES3 is interpreted as
the actual physical address of the buffer:

VA VT Addressing Mode

0 x Physical

1 0 Virtual - SVAPTE

1 1 Virtual - PAPTE

<29> VT Virtual type - In case of virtual addressing (RDES1<VA> = 1),
indicates the type of virtual address translation. When set, the
buffer address RDES3 is interpreted as an SVAPTE (system virtual
address of the page table entry). When clear, the buffer address is
interpreted as a PAPTE (physical address of the page table entry).
Meaningful only if RDES1<VA> is set.

<28:0> u Unused. Ignored by the SGEC on reads. Never written.

10.3.15.3 RDES2 Word

Table 10–30 RDES2 Bits

Bit Name Descriptor

<31> u Unused. Ignored by the SGEC on reads. Never written.

<30:16> BS Buffer size - The size, in bytes, of the data buffer.

Note

Receive buffer size must be an even
number of bytes.

<15:9> u Unused. Ignored by the SGEC on reads. Never written.

<08:00> PO Page offset - The byte offset of the buffer within the page. Only
meaningful if RDES1<VA> is set.

Note

Receive buffers must be word-aligned.

10.3.15.4 RDES3 Word

10–32 Network Interface

Network Interface
10.3 Programming the SGEC

Table 10–31 RDES3 Bits

Bit Name Descriptor

<31:00> SV/PV/PA SVAPTE/PAPTE/Physical address - When RDES1<VA> is set, RDES3
is interpreted as the address of the page table entry and is used in
the virtual address translation process. The type of the address,
system virtual address (SVAPTE) or physical address (PAPTE), is
determined by RDES1<VT>. When RDES1<VA> is clear, RDES3 is
interpreted as the physical address of the buffer. When RDES1<CA>
is set, RDES3 is interpreted as the VAX physical address of another
descriptor.

Note

Receive buffers must be word-aligned.

10.3.15.5 Receive Descriptor Status Validity
The following table summarizes the validity of the receive descriptor status bits
regarding the reception completion status:

Table 10–32 Receive Descriptor Status Validity

Reception Rx Status Report

Status RF TL CS FT DB CE (ES,LE,BO,DT,FS,LS,FL,TN,OF)

Overflow X V X V X X V

Collision after 512 bits V V V V X X V

Runt frame V V V V X X V

Runt frame < 14 bytes V V V X X X V

Watchdog timeout V V X V X X V

V - Valid
X - Meaningless

10.3.16 Transmit Descriptors
The transmit descriptor format is shown in Figure 10–15, and described in the
following paragraphs.

Network Interface 10–33

Network Interface
10.3 Programming the SGEC

Figure 10–15 Transmit Descriptor Format

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Coll.
Count

TDES0

TDES1

TDES2

TDES3

u

0 − SGEC writes as "0"
u − Ignored by the SGEC on read, never written

O
W

V
A

DT A
C

F
S

TDR

I
C

V
T

E
S

T
O

0 L
E

L
O

N
C

L
C

E
C

H
F

T
N

U
F

D
E

C
A

u

Buffer Size

L
S u

Page Offsetu

BUFFER SVAPTE/Physical Addressu

ESB90P0065

10.3.16.1 TDES0 Word
TDES0 word contains transmitted frame status and descriptor ownership
information.

Table 10–33 TDES0 Bits

Bit Name Description

<31> OW Own bit - When set, indicates the descriptor is owned by the SGEC. When cleared,
indicates the descriptor is owned by the host. The SGEC clears this bit upon completing
processing of the descriptor and its associated buffer.

<29:16> TDR Time domain reflectometer - This is a count of bit time and is useful for locating a fault
on the cable using the velocity of propagation on the cable. Only valid if TDES0<EC> is
also set. Two excessive collisions in a row and with the same or similar (within 20) TDR
values indicate a possible cable open.

<15> ES Error summary - The logical ‘‘OR’’ of UF, TN, EC, LC, NC, LO, LE, and TO.

<14> TO Transmit watchdog timeout - When set, indicates the transmit watchdog timer has timed
out, indicating the SGEC transmitter was babbling. The interrupt NICSR5<TW> is set
and the transmission process is aborted and placed in the STOPPED state.

<13> MBZ Must be zero. SGEC writes as zero.

<12> LE Length error - When set, indicates one of the following:

• Descriptor unavailable (owned by the host) in the middle of data chained descriptors.

• Zero length buffer in the middle of data chained descriptors.

• Setup or diagnostic descriptors (Data type TDES1<DT> <> 0) in the middle of data
chained descriptors.

• Incorrect order of first_segment TDES1<FS> and last_segment TDES1<LS>
descriptors in the descriptor list.

• The Transmission process enters the SUSPENDED state and sets NICSR5<TI>.

(continued on next page)

10–34 Network Interface

Network Interface
10.3 Programming the SGEC

Table 10–33 (Cont.) TDES0 Bits

Bit Name Description

<11> LO Loss of carrier - When set, indicates loss of carrier during transmission (possible short
circuit in the Ethernet cable).
Meaningless in internal loopback mode (NICSR5<OM>=1).

<10> NC No carrier - When set, indicates the carrier signal from the transceiver was not present
during transmission (possible problem in the transceiver or transceiver cable).
Meaningless in internal loopback mode (NICSR5<OM>=1).

<09> LC Late collision - When set, indicates frame transmission was aborted due to a late
collision. Meaningless if TDES0<UF>.

<08> EC Excessive collisions - When set, indicates that the transmission was aborted because 16
successive collisions occurred while attempting to transmit the current frame.

<07> HF Heartbeat fail - When set, indicates heartbeat collision check failure (the transceiver
failed to return a collision pulse as a check after the transmission). Some tranceivers do
not generate heartbeat, and will always have this bit set. If the transceiver does support
it, it indicates transceiver failure. Meaningless if TDES0<UF>.

<06:03> CC Collision count - A 4-bit counter indicating the number of collisions that occurred before
the transmission attempt succeeded or failed. Meaningless when TDES0<EC> is also
set.

<02> TN Translation not valid - When set, indicates that a translation error occurred when the
SGEC was translating a VAX virtual buffer address. It may only set if TDES1<VA> was
set. The transmission process enters the SUSPENDED state and sets NICSR5<TI>.

<01> UF Underflow error - When set, indicates that the transmitter has truncated a message due
to data late from memory. UF indicates that the SGEC encountered an empty transmit
FIFO while in the midst of transmitting a frame. The transmission process enters the
SUSPENDED state and sets NICSR5<TI>.

<00> DE Deferred - When set, indicates that the SGEC had to defer while trying to transmit a
frame. This condition occurs if the channel is busy when the SGEC is ready to transmit.

10.3.16.2 TDES1 Word

Table 10–34 TDES1 Bits

Bit Name Descriptor

<31> CA Chain address - When set, TDES3 is interpreted as another
descriptor’s VAX physical address. This allows the SGEC to process
multiple, non-contiguous descriptor lists and explicitly "chain" the
lists. Note that contiguous descriptors are implicitly chained.
In contrast to what is done for an Rx buffer descriptor, the SGEC
clears neither the ownership bit TDES0<OW> or one of the other
bits of TDES0 of the chain descriptor after processing.
To protect against infinite loop, a chain descriptor pointing back to
itself, is seen as owned by the host, regardless of the ownership bit
state.

(continued on next page)

Network Interface 10–35

Network Interface
10.3 Programming the SGEC

Table 10–34 (Cont.) TDES1 Bits

Bit Name Descriptor

<30> VA Virtual addressing - When set, TDES3 is interpreted as a virtual
address. The type of virtual address translation is determined by the
TDES1<VT> bit. The SGEC uses TDES3 and TDES2<Page Offset>
to perform a VAX virtual address translation process to obtain the
physical address of the buffer. When clear, TDES3 is interpreted as
the actual physical address of the buffer:

VA VT Addressing Mode

0 x Physical

1 0 Virtual - SVAPTE

1 1 Virtual - PAPTE

<29:28> DT Data type - Indicates the type of data the buffer contains, according
to the following table:

Value Meaning

00 Normal transmit frame data

10 Setup frame - Explained in Section 10.3.17.

11 Diagnostic frame

<27> AC Add CRC disable - When set, the SGEC will not append the CRC to
the end of the transmitted frame. To take effect, this bit must be set
in the descriptor where FS is set.

Note

If the transmitted frame is shorter
than 64 bytes, the SGEC will add the
padding field and the CRC regardless
of the <AC> flag.

<26> FS First segment - When set, indicates the buffer contains the first
segment of a frame.

<25> LS Last segment - When set, indicates the buffer contains the last
segment of a frame.

<24> IC Interrupt on completion - When set, the SGEC will set NICSR5<TI>
after this frame has been transmitted. To take effect, this bit must
be set in the descriptor where LS is set.

<23> VT Virtual type - In case of virtual addressing (TDES1<VA> = 1),
indicates the type of virtual address translation. When set, the
buffer address TDES3 is interpreted as an SVAPTE (system virtual
address of the page table entry). When clear, the buffer address is
interpreted as a PAPTE (physical address of the page table entry).
Meaningful only if TDES1<VA> is set.

<22:0> u Unused. Ignored by the SGEC on reads. Never written.

10–36 Network Interface

Network Interface
10.3 Programming the SGEC

10.3.16.3 TDES2 Word

Table 10–35 TDES2 Bits

Bit Name Descriptor

<31> u Unused. Ignored by the SGEC on reads. Never written.

<30:16> BS Buffer size - The size, in bytes, of the data buffer. If this field is
0, the SGEC will skip over this buffer and ignore it. The frame
size is the sum of all BS fields of the frame segments (between and
including the descriptors having TDES1<FS> and TDES1<LS> set.)

Note

If the port driver wishes to suppress
transmission of a frame, this field
must be set to 0 in all descriptors
comprising the frame and prior to the
SGEC acquiring them. If this rule is
not adhered to, corrupted frames might
be transmitted.

<08:00> PO Page offset - The byte offset of the buffer within the page. Only
meaningful if TDES1<VA> is set.

Note

Transmit buffers may start on
arbitrary byte boundaries.

10.3.16.4 TDES3 Word

Table 10–36 TDES3 Bits

Bit Name Descriptor

<31:00> SV/PV/PA SVAPTE/PAPTE/Physical address - When TDES1<VA> is set, TDES3
is interpreted as the address of the page table entry and is used
in the virtual address translation process. The type of the address
system virtual address (SVAPTE) or physical address (PAPTE), is
determined by TDES1<VT>. When TDES1<VA> is clear, TDES3 is
interpreted as the physical address of the buffer. When TDES1<CA>
is set, TDES3 is interpreted as the VAX physical address of another
descriptor.

Note

Transmit buffers may start on
arbitrary byte boundaries.

Network Interface 10–37

Network Interface
10.3 Programming the SGEC

10.3.16.5 Transmit Descriptor Status Validity
Table 10–37 summarizes the validity of the transmit descriptor status bits
regarding the transmission completion status:

Table 10–37 Transmit Descriptor Status Validity

Transmission Tx Status Report

Status LO NC LC EC HF CC (ES,TO,LE,TN,UF,DE)

Underflow X X V V X V V

Excessive collisions V V V V V X V

Watchdog timeout X V X X X V V

Internal loopback X X V V X V V

V - Valid
X - Meaningless

10.3.17 Setup Frame
A setup frame defines SGEC Ethernet destination addresses. These addresses
will be used to filter all incoming frames. The setup frame is never transmitted
over the Ethernet, nor looped back to the receive list. While the setup frame is
being processed, the receiver logic will temporarily disengage from the Ethernet
wire. The setup frame size is always 128 bytes and must be wholly contained in
a single transmit buffer. There are two types of setup frames:

1. Perfect filtering addresses (16) list

2. Imperfect filtering hash bucket (512) heads + one physical address

10.3.17.1 First Setup Frame
A setup frame must be queued (placed in the transmit list with SGEC
ownership) to the SGEC before the reception process is started, except for when
the SGEC operates in promiscuous reception mode.

Note

The self-test completes with the SGEC address filtering table fully set to
"0." A reception process started without loading a setup frame will reject
all the incoming frames except those with a destination physical address
= 000000h.

10.3.17.2 Subsequent Setup Frame
Subsequent setup frames may be queued to the SGEC regardless of the reception
process state. The only requirement for the setup frame to be processed is that
the transmission process be in the RUNNING state. The setup frame will be
processed after all preceding frames have been transmitted and after the current
frame reception, if any, is completed.

The setup frame does not affect the reception process state but during the setup
frame processing, the SGEC is disengaged from the Ethernet wire.

10–38 Network Interface

Network Interface
10.3 Programming the SGEC

10.3.17.3 Setup Frame Descriptor
The setup frame descriptor format is shown in Figure 10–16, and described in the
following paragraphs.

Figure 10–16 Setup Frame Descriptor Format

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

SDES0

SDES1

SDES2

SDES3

MBZ MBZ

DT
u

u

0 − SGEC writes as "0"
u − Ignored by the SGEC on read, never written

O
W

u u
I
F

H
P

I
C

Setup Buffer Physical Address

E
S

0 S
E

u

u

o

Buffer Sizeu

ESB90P0066

Table 10–38 Setup Frame Descriptor Bits

Word Bit Name Description

SDES0 <13> SE Setup error - When set, indicates the setup frame
buffer size is not 128 bytes.

<15> ES Error summary - Set when SE is set.

<31> OW Own bit - When set, indicates the descriptor is
owned by the SGEC. When cleared, indicates
the descriptor is owned by the host. The SGEC
clears this bit upon completing processing of the
descriptor and its associated buffer.

SDES1 <24> IC Interrupt on completion - When set, the SGEC
will set NICSR5<TI> after this setup frame has
been processed.

<25> HP Hash/perfect filtering mode - When set, the
SGEC will interpret the setup frame as a hash
table, and do an imperfect address filtering. The
imperfect mode is useful when there are more
than 16 multicast addresses to listen to.
When clear, the SGEC will do a perfect address
filter of incoming frames according to the
addresses specified in the setup frame.

(continued on next page)

Network Interface 10–39

Network Interface
10.3 Programming the SGEC

Table 10–38 (Cont.) Setup Frame Descriptor Bits

Word Bit Name Description

<26> IF Inverse filtering - When set, the SGEC will do
an inverse filtering; the SGEC will receive the
incoming frames with destination address not
matching the perfect addresses, and will reject
the frames with destination address matching
one of the perfect addresses.
Meaningful only for Perfect_filtering
(SDES1<HP>=0), while Promiscuous and
All_Multicast modes are not selected
(NICSR6<AF>=0).

<29:28> DT Data type - Must be 2 to indicate setup frame.

SDES2 <30:16> BS Buffer size - Must be 128.

SDES3 <29:1> PA Physical address - Physical address of setup
buffer.

Note

Setup buffer must be
word-aligned.

10.3.17.4 Perfect Filtering Setup Frame Buffer
This section describes how the SGEC interprets a setup frame buffer when
SDES1<HP> is clear.

The SGEC can store 16 (full 48 bits Ethernet) destination addresses. It will
compare the addresses of any incoming frame to these, and regarding the status
of Inverse_Filtering flag SDES1<IF>, will reject the following:

• Those that do not match, if SDES1<IF> = 0

• Those that match, if SDES1<IF> = 1

The setup frame must always supply all 16 addresses. Any mix of physical and
multicast addresses can be used. Unused addresses should be duplicates of one of
the valid addresses. The addresses are formatted as shown in Figure 10–17.

10–40 Network Interface

Network Interface
10.3 Programming the SGEC

Figure 10–17 Perfect Filtering Setup Frame Buffer Format

31 16 15 0 bit

Bytes <3:0> PERFECT ADDRESS_00 Physical/Multicast bit
<7:4> xxxxxxxxxxxxxxx|

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

xxxxxxxxxxxxxxx|
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

xxxxxxxxxxxxxxx|
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

xxxxxxxxxxxxxxx|
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

xxxxxxxxxxxxxxx|
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

xxxxxxxxxxxxxxx|
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

xxxxxxxxxxxxxxx|
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

xxxxxxxxxxxxxxx|

~
~

<123:120>
<127:124>

~
~

.

.

.

PERFECT ADDRESS_01

xxxxxx = don’t care

PERFECT ADDRESS_02

PERFECT ADDRESS_03

PERFECT ADDRESS_04

PERFECT ADDRESS_05

PERFECT ADDRESS_13

PERFECT ADDRESS_14

PERFECT ADDRESS_15

ESB90P0067

Network Interface 10–41

Network Interface
10.3 Programming the SGEC

The low-order bit of the low-order bytes is the address’s multicast bit.

Example 10–1 illustrates a perfect filtering setup buffer (fragment).

Example 10–1 Perfect Filtering Buffer
Ethernet addresses to be filtered:�

A8-09-65-12-34-76
09-BC-87-DE-03-15
.
.
.

Setup frame buffer fragment:�
126509A8
00007634
DE87BC09
00001503
.
.
.

�
Two Ethernet addresses written according to the DEC STD 134 specification
for address display.

�
Those two addresses as they would appear in the buffer.

10.3.17.5 Imperfect Filtering Setup Frame Buffer
This section describes how the SGEC interprets a setup frame buffer when
SDES1<HP> is set.

The SGEC can store 512 bits, serving as hash bucket heads, and one physical
48-bit Ethernet address. Incoming frames with multicast destination addresses
will be subjected to the imperfect filtering. Frames with physical destination
addresses will be checked against the single physical address.

For any incoming frame with a multicast destination address, the SGEC
applies the standard Ethernet CRC function to the first six bytes containing
the destination address. It then uses the most significant nine bits of the result
as a bit index into the table. If the indexed bit is set, the frame is accepted. If it
is cleared, the frame is rejected.

This filtering mode is called imperfect because multicast frames not addressed to
this station may slip through; however, it will still cut down the number of frames
with which the host will be presented.

The format for the hash table and the physical address is shown in Figure 10–18.

10–42 Network Interface

Network Interface
10.3 Programming the SGEC

Figure 10–18 Imperfect Filtering Setup Frame Format

31 16 15 0 bit

bytes <3:0> HASH_FILTER_00
HASH_FILTER_01

HASH_FILTER_14
HASH_FILTER_15

<7:4>
.
.
.

<63:60>

<67:64>
<71:68>

<75:72>

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

xxxxxxxxxxxxxxxx|
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

PHYSICAL ADDRESS Physical/Multicast bit

<127:120>

xxxxxx = don’t care

ESB90P0068

Bits are sequentially numbered from right to left and down the table. For
example, if CRC (destination address)<8:0> = 33, the SGEC will examine bit
#1 in the second longword.

Example 10–2 illustrates an imperfect filtering setup frame buffer.

Example 10–2 Imperfect Filtering Buffer
Ethernet addresses to be filtered:�

25-00-25-00-27-00
A3-C5-62-3F-25-87
D9-C2-C0-99-0B-82
7D-48-4D-FD-CC-0A
E7-C1-96-36-89-DD
61-CC-28-55-D3-C7
6B-46-0A-55-2D-7E

�
A8-12-34-35-76-08

Setup frame buffer:�
00000000
10000000
00000000
00000000
00000000
40000000
00000080
00100000

(continued on next page)

Network Interface 10–43

Network Interface
10.3 Programming the SGEC

Example 10–2 (Cont.) Imperfect Filtering Buffer
00000000
10000000
00000000
00000000
00000000
00010000
00000000
00400000�
353412A8
00000876

�
Ethernet multicast addresses written according to the DEC STD 134
specification for address display.

�
An Ethernet physical address.

�
The first part of an imperfect filter setup frame buffer with set bits for the

�

multicast addresses.
�

The second part of the buffer with the
�

physical address.

Example 10–3 shows a C program to compute the hash bucket heads and create
the resulting setup frame buffer.

Example 10–3 Imperfect Filtering Setup Frame Buffer Creation C Program
#include <stdio>

unsigned int imperfect_setup_frame[128/4], /* The setup buffer - 128 */
/* bytes */

address[2],
crc[33]; /* CRC residue vector */

main()
{

int i, hash;
/* */
/* This program accepts 48 bits Ethernet addresses and builds a Setup frame */
/* buffer for imperfect filtering. */
/* */
/* Addresses must be entered in hexadecimal. The multicast bit is the least */
/* significant bit of the least significant digit of the first 32 bits. */
/* Non-multicast addresses are ignored. */
/* */
/* Input is terminated by keying CTRL/Z after which the program prints out */
/* the buffer. */
/* */
main_loop:

/* Prompt user for the Ethernet address */
printf("\n\n Enter the first 32 bits (HEX) - ");
if (scanf("%x", &address[0]) == EOF)

{

printf("\n\n Imperfect Setup buffer printout\n");
for (i=0; i < 128/4; i++)

printf("%08X\n", imperfect_setup_frame[i]);
exit(1);

}

(continued on next page)

10–44 Network Interface

Network Interface
10.3 Programming the SGEC

Example 10–3 (Cont.) Imperfect Filtering Setup Frame Buffer Creation C
Program

printf("\n Enter the remaining 16 bits (HEX) - ");
scanf("%x",&address[1]);

/* Ignore non multicast addresses */
if ((address[0] & 1) == 0)

goto main_loop;

/* Compute the hash function */
hash = address_crc(address[0],address[1]);

/* Set the appropriate bit in the Setup buffer */
imperfect_setup_frame[hash/32] =

imperfect_setup_frame[hash/32] | 1 << hash%32;

goto main_loop;
}

int address_crc(unsigned int lsb32 , unsigned int msb16)
{

int j,hash = 0;

/* Set CRC to all 1’s */

for (j=0; j < 33; j++)
crc[j] = 1;

/* Compute the address CRC by running the CRC 48 steps */

for (j=0; j < 32; j++)
nextstate(lsb32 & 1<<j ? 1 : 0);

for (j=0; j < 16; j++)
nextstate(msb16 & 1<<j ? 1 : 0);

/* Extract 9 most significant bits from the CRC residue */

for (j=24; j < 33; j++)
hash = hash<<1 | crc[j];

return hash;
}

nextstate(dat)
int dat;
{

int i,mean;
mean = crc[32] ^ dat;
for(i=32;i>=2;i--) crc[i]=crc[i-1];
crc[27] = crc[27] ^ mean;
crc[24] = crc[24] ^ mean;
crc[23] = crc[23] ^ mean;
crc[17] = crc[17] ^ mean;
crc[13] = crc[13] ^ mean;
crc[12] = crc[12] ^ mean;
crc[11] = crc[11] ^ mean;
crc[9] = crc[9] ^ mean;
crc[8] = crc[8] ^ mean;
crc[6] = crc[6] ^ mean;
crc[5] = crc[5] ^ mean;
crc[3] = crc[3] ^ mean;
crc[2] = crc[2] ^ mean;
crc[1] = mean;

Network Interface 10–45

Network Interface
10.3 Programming the SGEC

10.3.18 SGEC Operation
10.3.18.1 Hardware and Software Reset

The SGEC responds to two types of reset commands: a hardware reset
through the RESET_L pin, and a software reset command triggered by setting
NICSR6<RE>. In both cases, the SGEC aborts all ongoing processing and
starts the reset sequence. The SGEC restarts and reinitializes all internal states
and registers. No internal states are retained, no descriptors are owned, and all
the host visible registers are set to ‘‘0,’’ except where otherwise noted.

Note

The SGEC does not explicitly disown any owned descriptor; therefore,
descriptors’ owned bits might be left in a state indicating SGEC
ownership.

Table 10–39 indicates the NICSR fields that are not set to ‘‘0’’ after reset:

Table 10–39 NICSR Fields Not Reset to Zero

Field Value

NICSR3 Unpredictable

NICSR4 Unpredictable

NICSR5<DN> 1

NICSR6<BL> 1

NICSR6<RE> Unpredictable after hardware reset

1 after software reset

NICSR7 Unpredictable

NICSR9 RT = TT = 1250

After the reset sequence completes, the SGEC executes the self-test procedure to
do basic checking.

If the self-test completes successfully, the SGEC initializes the SGEC, and sets
the initialization done flag NICSR5<ID>.

At the first failure detected in one of the basic tests executed in the self_test
routine, the test is aborted and the self_test failure NICSR5<SF> is set together
with the self_test error status NICSR5<SS>, which indicates the failure reason.

Information

The self-test takes 25 ms to complete after hardware or software reset.

If the initialization completes successfully, the SGEC is ready to accept further
host commands. Both the reception and transmission processes are placed in the
STOPPED state.

Successive reset commands (either hardware or software) may be issued. The
only restriction is that SGEC NICSRs should not be accessed during a 1 µs period
following the reset. Access during this period will result in a CP-bus timeout

10–46 Network Interface

Network Interface
10.3 Programming the SGEC

error. Access to SGEC NICSRs during the self-test are permitted; however, only
NICSR5 reads should be performed.

10.3.18.2 Interrupts
Interrupts are generated as a result of various events. NICSR5 contains all the
status bits that may cause an interrupt, provided NICSR6<IE> is set. The port
driver must clear the interrupt bits (by writing a ‘‘1’’ to the bit position), to enable
further interrupts from the same source.

Interrupts are not queued, and if the interrupting event reoccurs before the
port driver has responded to it, no additional interrupts will be generated. For
example, NICSR5<RI> indicates one or more frames were delivered to host
memory. The port driver should scan all descriptors from its last recorded
position to the first SGEC owned one.

An interrupt will be generated only once for simultaneous, multiple interrupting
events. It is the port driver responsibility to scan NICSR5 for the interrupt
cause(s). The interrupt will not be regenerated, unless a new interrupting event
occurs after the host acknowledged the previous one, and provided the port
driver cleared the appropriate NICSR5 bit(s). For example, NICSR5<TI> and
NICSR5<RI> may both set, the host acknowledges the interrupt, and the port
driver begins executing by reading NICSR5. Now NICSR5<RU> sets. The port
driver writes back its copy of NICSR5, clearing NICSR5<TI> and NICSR5<RI>.
After the host IPL is lowered below the SGEC level, another interrupt will be
delivered with the NICSR5<RU> bit set.

Should the port driver clear all NICSR5 set interrupt bits before the interrupt
has been acknowledged, the interrupt will be suppressed.

10.3.18.3 Startup Procedure
A sequence of checks and commands must be performed by the port driver to
prepare the SGEC for operation.

1. Wait for the SGEC to complete its initialization sequence by polling on
NICSR5<ID> and NICSR5<SF>. (Refer to Section 10.3.6 for details.)

2. Examine NICSR5<SF> to find out whether the SGEC passed its self-test. If
it did not, it should be replaced. (Refer to Section 10.3.6 for details.)

3. Write NICSR0 to establish system configuration dependent parameters.
(Refer to Section 10.3.3 for details.)

4. If the port driver intends to use VAX virtual addresses, NICSR7 must be
written to identify the system page table to the SGEC. (Refer to Section 10.3.8
for details.)

5. If the port driver wishes to change the default settings of the watchdog
timers, it must write to NICSR9. (Refer to Section 10.3.10 for details.)

6. The port driver must create the transmit and receive descriptor lists, then
write to NICSR3 and NICSR4 to provide the SGEC with the starting address
of each list. The first descriptor on the transmit list will usually contain a
setup frame. (Refer to Section 10.3.5 for details.)

7. Write NICSR6 to set global operating parameters and start the transmission
and reception processes. The reception and transmission processes enter
the RUNNING state and attempt to acquire descriptors from the respective
descriptor lists, and begin processing incoming and outgoing frames. (Refer
to Section 10.3.7 for details.) The reception and transmission processes are
independent of each other and can be started and stopped separately.

Network Interface 10–47

Network Interface
10.3 Programming the SGEC

Caution

If address filtering (either perfect or imperfect) is desired, the reception
process should be started only after the setup frame has been processed.

8. The port driver now waits for any SGEC interrupts. If either the reception
or transmission processes were SUSPENDED, the port driver must issue the
Poll Demand command after it has rectified the suspension cause.

10.3.18.4 Reception Process
While in the RUNNING state, the reception process polls the receive descriptor
list, attempting to acquire free descriptors. Incoming frames are processed and
placed in acquired descriptors’ data buffers, while status information is written
to the descriptor RDES0 words. The SGEC always tries to acquire an extra
descriptor in anticipation of incoming frames. Descriptor acquisition is attempted
under the following conditions:

• Immediately after being placed in the RUNNING state through setting of
NICSR6<SR>.

• The SGEC begins writing frame data to a data buffer pointed to by the
current descriptor.

• The last acquired descriptor chained (RDES1<CA> = 1) to another descriptor.

• A virtual translation error was encountered (RDES0<TN>) while the SGEC
was translating the buffer base address of the acquired descriptor.

As incoming frames arrive, the SGEC strips the preamble bits and stores the
frame data in the receive FIFO. Concurrently, it performs address filtering
according to NICSR6 fields AF, HP, and its internal filtering table. If the frame
fails the address filtering, it is ignored and purged from the FIFO. Frames that
are shorter than 64 bytes, due to collision or premature termination, are also
ignored and purged from the FIFO unless NICSR6<PB> is set.

After 64 bytes have been received, the SGEC begins transferring the frame
data to the buffer pointed to by the current descriptor. If data chaining is
enabled (NICSR6<DC> clear), the SGEC will write frame data overflowing the
current data buffer into successive buffer(s). The SGEC sets the RDES0<FS> and
RDES0<LS> in the first and last descriptors, respectively, to delimit the frame.
Descriptors are released (RDES0<OW> bit cleared) as their data buffers fill up or
the last segment of a frame has been transferred to a buffer.

The SGEC sets RDES0<LS> and the RDES0 status bits in the last descriptor it
releases for a frame. After the last descriptor of a frame is released, the SGEC
sets NICSR5<RI>.

This process is repeated until the SGEC encounters a descriptor flagged as owned
by the host. After filling up all previously acquired buffers, the reception sets
NICSR5<RU> and enters the SUSPENDED state. The position in the receive list
is retained.

Any incoming frames while in this state will cause the SGEC to fetch the current
descriptor in the host memory. If the descriptor is now owned by the SGEC, the
reception reenters the RUNNING state and starts the frame reception.

If the descriptor is still owned by the host, the SGEC increments the missed
frames counter (NICSR10<MFC>) and discards the frame.

10–48 Network Interface

Network Interface
10.3 Programming the SGEC

Table 10–40 summarizes the reception process state transitions and resulting
actions:

Table 10–40 Reception Process State Transitions

From State Event To State Action

STOPPED Start Reception command. RUNNING Receive polling begins from last
list position or from the the
list head if this is the first Start
command issued, or if the receive
descriptor list address (NICSR3)
was modified by the port driver.

RUNNING SGEC attempts acquisition of a
descriptor owned by the host.

SUSPENDED NICSR5<RU> is set when the
last acquired descriptor buffer
is consumed. Position in list
retained.

RUNNING Stop Reception command. STOPPED Reception process is STOPPED
after the current frame, if any,
is completely transferred to
data buffer(s). Position in list
retained.

RUNNING Memory or host bus parity error
encountered.

STOPPED Reception is cut off and
NICSR5<ME> is set.

RUNNING Reset command. STOPPED Reception is cut off.

SUSPENDED Rx Poll Demand or incoming
frame and available descriptor.

RUNNING Receive polling resumes from
last list position or from the list
head if NICSR3 were modified
by the port driver.

SUSPENDED Stop Reception command. STOPPED None.

SUSPENDED Reset command. STOPPED None.

10.3.18.5 Transmission Process
While in the RUNNING state, the transmission process polls the transmit
descriptor list for any frames to transmit. Frames are built and transmitted
on the Ethernet wire. Upon completing frame transmission (or giving up),
status information is written to the TDES0 words. Once polling starts, it
continues (in sequential or descriptor chained order) until the SGEC encounters a
descriptor flagged as owned by the host, or an error condition. At this point, the
transmission process is placed in the SUSPENDED state and NICSR5<TI> is set.

NICSR5<TI> will also be set after completing transmission of a frame that has
TDES1<IC> set in its last descriptor. In this case, the transmission process
remains in the RUNNING state.

Frames may be data chained and span several buffers. Frames must be delimited
by TDES1<FS> and TDES1<LS> in the first and last descriptors, respectively,
containing the frame. While in the RUNNING state, as the transmission process
starts, it first expects a descriptor with TDES1<FS> set. Frame data transfer
from the host buffer to the internal FIFO is initiated. Concurrently, if the current
frame has TDES1<LS> clear, the transmission process attempts to acquire the
next descriptor. It expects TDES1<FS> and TDES1<LS> to be clear, indicating
an intermediary buffer, or TDES1<LS> to be set, indicating the end of the frame.
After the last buffer of the frame has been transmitted, the SGEC writes back
final status information to the TDES0 word of the descriptor having TDES1<LS>
set, optionally sets NICSR5<TI> if TDES1<IC> were set, and repeats the process

Network Interface 10–49

Network Interface
10.3 Programming the SGEC

with the next descriptor(s). Actual frame transmission begins after at least 72
bytes have been transferred to the internal FIFO, or a full frame is contained
in the FIFO. Descriptors are released (TDES0<OW> bit cleared) as soon as the
SGEC finishes processing them.

Transmit polling suspends under the following conditions:

• The SGEC reaches a descriptor with TDES0<OW> clear. To resume, the port
driver must give descriptor ownership to the SGEC and issue a Poll Demand
command.

• The TDES1<FS> and TDES1<LS> are incorrectly paired or out of order.
TDES0<LE> will be set.

• A frame transmission is given up due to a locally induced error. The
appropriate TDES0 bit is set.

The transmission process enters the SUSPENDED state and sets NICSR5<TI>.
Status information is written to the TDES0 word of the descriptor causing the
suspension. The position in the transmit list, in all the above cases, is retained.
The retained position is that of the descriptor following the last descriptor closed
(set to host ownership) by the SGEC.

Note

The SGEC does not automatically poll the Tx descriptor list, and the port
driver must explicitly issue a Tx Poll Demand command after rectifying
the suspension cause.

The following table summarizes the transmission process state transitions:

Table 10–41 Transmission Process State Transitions

From State Event To State Action

STOPPED Start Transmission command. RUNNING Transmit polling begins
from the last list position
or from the head of the
list if this is the first Start
command issued, or if
the transmit descriptor
list address (NICSR4)
was modified by the port
driver.

RUNNING SGEC attempts acquisition of a
descriptor owned by the host.

SUSPENDED NICSR5<TI> is set.
Position in list retained.

RUNNING Out of order delimiting flag
(TDES0<FS> or TDES0<LS>)
encountered.

SUSPENDED TDES0<LE> and
NICSR5<TI> are set.
Position in list retained.

RUNNING Frame transmission aborts due to a
locally induced error.

SUSPENDED Appropriate TDES0 and
NICSR5<TI> bits are set.
Position in list retained.

(continued on next page)

10–50 Network Interface

Network Interface
10.3 Programming the SGEC

Table 10–41 (Cont.) Transmission Process State Transitions

From State Event To State Action

RUNNING Stop Transmission command. STOPPED Transmission process
is STOPPED after the
current frame, if any, is
transmitted. Position in
list retained.

RUNNING Transmit watchdog expires. STOPPED Transmission is cut off
and NICSR5<TW>,
TDES0<TO> are set.
Position in list retained.

RUNNING Memory or host bus parity error
encountered.

STOPPED Transmission is cut off
and NICSR5<ME> is set.

RUNNING Reset command. STOPPED Transmission is cut off.

SUSPENDED Tx Poll Demand command. RUNNING Transmit polling resumes
from last list position
or from the list head if
NICSR4 were modified by
the port driver.

SUSPENDED Stop Transmission command. STOPPED None.

SUSPENDED Reset command. STOPPED None.

10.3.18.6 Loopback Operations
The SGEC supports two loopback modes:

• Internal loopback
This mode generally is used to verify correct operations of the SGEC internal
logic. While in this mode, the SGEC will take frames from the transmit list
and loop them back, internally, to the receive list. The SGEC is disengaged
from the Ethernet wire while in this mode.

• External loopback
This mode generally is used to verify correct operations up to the Ethernet
cable. While in this mode, the SGEC will take frames from the transmit list
and transmit them on the Ethernet wire. Concurrently, the SGEC listens to
the line that carries its own transmissions and places incoming frames in the
receive list.

Note

Caution should be exercised in this mode as transmitted frames are
placed on the Ethernet wire. Furthermore, the SGEC does not check
the origin of any incoming frames; consequently, frames not necessarily
originating from the SGEC might make it to the receive buffers.

In either of these modes, all the address filtering and validity checking rules
apply. The port driver needs to take the following actions:

1. Place the reception and transmission processes in the STOPPED state. The
port driver must wait for any previously scheduled frame activity to cease.
This is done by polling the TS and RS fields in NICSR5.

Network Interface 10–51

Network Interface
10.3 Programming the SGEC

2. Prepare appropriate transmit and receive descriptor lists in host memory.
These may follow the existing lists at the point of suspension, or may be new
lists that will have to be identified to the SGEC by appropriately writing
NICSR3 and NICSR4.

3. Write to NICSR6<OM> according to the desired loopback mode, and place the
transmission and reception processes in the RUNNING state through Start
commands.

4. Respond and process any SGEC interrupts, as in normal processing.

To restore normal operations, the port driver must execute step 1, then write the
OM field in NICSR6 with ‘‘00.’’

10.3.18.7 DNA CSMA/CD Counters and Events Support
This section describes the SGEC features that support the port driver in
implementing and reporting the specified counters and events 1.

Table 10–42 CSMA/CD Counters

Counter SGEC Feature

Time since counter creation Supported by the host driver.

Bytes received Port driver must add up the RDES0<FL> fields of all
successfully received frames.

Bytes sent Port driver must add up the TDES2<BS> fields of all
successfully transmitted buffers.

Frames received Port driver must count the successfully received frames
in the receive descriptor list.

Frames sent Port driver must count the successfully transmitted
frames in the transmit descriptor list.

Multicast bytes received Port driver must add up the RDES0<FL> fields of all
successfully received frames with multicast address
destinations.

Multicast frames received Port driver must count the successfully received frames
with multicast address destinations.

Frames sent, initially deferred Port driver must count the successfully transmitted
frames with TDES0<DE> set.

Frames sent, single collision Port driver must count the successfully transmitted
frames with TDES0<CC> equal to 1.

Frames sent, multiple collisions Port driver must count the successfully transmitted
frames with TDES0<CC> greater than 1.

Send failure- Excessive collisions Port driver must count the transmit descriptors having
TDES0<EC> set.

Send failure- Carrier check failed Port driver must count the transmit descriptors having
TDES0<LC> set.

Send failure- Short circuit Two successive transmit descriptors with the No_
carrier flag TDES0<NC> set, indicates a short circuit.

(continued on next page)

1 Specified in the DNA Maintenance Operations (MOP) Functional Specification, Version
T.4.0.0, 28 January 1988.

10–52 Network Interface

Network Interface
10.3 Programming the SGEC

Table 10–42 (Cont.) CSMA/CD Counters

Counter SGEC Feature

Send failure- Open circuit Two successive transmit descriptors with the
Excessive_collisions flag TDES0<EC> set with the
same Time domain reflectometer value TDES0<TDR>,
indicate an open circuit.

Send failure- Remote Failure to Defer Flagged as a late collision TDES0<LC> in the transmit
descriptors.

Receive failure- Block Check Error Port driver must count the receive descriptors having
RDES0<CE> set with RDES0<DB> cleared.

Receive failure- Framing Error Port driver must count the receive descriptors having
both RDES0<CE> and RDES0<DB> set.

Receive failure- Frame too long Port driver must count the receive descriptors having
RDES0<TL> set.

Unrecognized frame destination Not applicable.

Data overrun Port driver must count the receive descriptors having
RDES0<OF> set.

System buffer unavailable Reported in the Missed_frame counter
NICSR10<MFC>. (Refer to Table 10–20.)

User buffer unavailable Not applicable.

Collision detect check failed Port driver must count the transmit descriptors having
TDES0<HF> set.

CSMA/CD specified events can be reported by the port driver based on the above
table. The Initialization Failed event is reported through NICSR5<SF>.

Network Interface 10–53

11
KA680 Mass Storage Interface

The KA680 contains a DSSI bus interface, which is implemented with the single
host adapter chip (SHAC). This interface allows the KA680 to transmit packets
of data to, and receive packets of data from, up to seven other DSSI devices
(typically RF-type disk drives and TF-type streaming tape drives). It should also
be noted that the SHAC supports CP-bus parity protection.

11.1 SHAC Introduction
SHAC (single host adapter chip) is a single-chip, VLSI version of an SCA port
that uses a DSSI bus as the physical interconnect. Another SCA realization, CI,
has defined a port driver/port interface, which has been used to connect VAX
systems in clusters. DSSI has adopted the same interface so that the same VMS
port driver will be able to drive either a CI port or SHAC. The SHAC can be used
to connect a host to any other device that can communicate through the CI-DSSI
protocol. In particular, it provides a solution to the following:

• The problem of interfacing a group of mass-storage device controllers
(MSDCs) to a VAX system.

• The problem of interfacing several VAX systems to a common group of MSDCs
and, if higher level protocols support this option, to one another.

Where two or more VAX systems connect to a group of MSDCs (or to one another)
through DSSI, each has a SHAC or another DSSI port. When a group of MSDCs
connect to the DSSI bus, the controllers provide both the bus interface and the
intelligent control required to respond to the CI commands received over the
DSSI.

On the 1-byte wide DSSI bus, both the MSDCs and the VAX systems
communicate at high speed, with a 4 to 5 MB/s burst transfer rate. The SHAC
handles the problem of providing effective, efficient, and reliable interfacing
between this DSSI bus and the CPU , having direct host memory access (DMA)
over the host’s 32-bit wide, 16 MB/s CP-bus. All communications between those
connected to the DSSI will follow the CI protocol, with the DSSI protocols
providing handshaking in the transactions.

Structural parameters limit the number of possible combinations that can be
realized with DSSI and SHAC.

• A single DSSI bus has room for eight nodes, which may be partitioned among
host adapters (for example, SHACs) and MSDCs.

• Up to four SHACs can be installed on a single host bus.

• Because there must be a host, there can be up to seven MSDCs on a single
DSSI.

KA680 Mass Storage Interface 11–1

KA680 Mass Storage Interface
11.1 SHAC Introduction

The SHAC provides a small amount of buffering (1.2 KB) on chip to improve bus
utilization on both sides, but the SHAC is designed to pass data from one bus to
the other as rapidly as the two buses permit. DMA services to and from the main
memory reside in the SHAC, which responds to requests for transfers between
the host and the remote nodes.

The SHAC is operated by an on-chip RISC that obtains its code and internal
data from on-chip RAM and ROM. The RAM will be loaded from main memory
during both initialization and as circumstances require during normal run time.
With this capability, it can read in new code and data from the main memory and
adapt its behavior to new circumstances. This will permit inexpensive upgrades
of SHACs after they are installed in the field. Furthermore, it will allow the
SHAC to store infrequently accessed code in main memory, providing more
capability than could be included in on-chip ROM.

The overall communication architecture under which the SHAC works is Digital’s
systems communications architecture (SCA). In this general architecture, four
layers are defined, as shown in Figure 11–1. The architecture can be realized in
a variety of ways. Two of the lowest two levels in the diagram are CI (computer
interconnect) and DSSI (Digital storage system interconnect). They share the
same lowest host layer (CI port driver) but have distinctly different physical
interconnects. The layers between the port driver and the DSSI bus itself can
be realized at both board and chip level, and products at both levels are being
designed in Digital. The SHAC is a chip-level product connecting the host bus to
the DSSI bus, and is controlled by the CPU through a CI port driver. It accepts
and delivers CI-defined packets over the DSSI bus. Layers above the port driver
are invisible to SHAC.

Figure 11–1 Relationship of the DSSI to SCA and CI

SCA

3. I/O Applications
(SYSAP)

CI DSSI

1b. CI Port Driver
S
H
A
C

1a. DSSI Port

2. System Communications
(SCS)

1a. CI Port

0b. DSSI Data Link

1. Port/Port Driver
(PDP)

0b. CI Data Link

0a. DSSI bus

0. Physical Interconnect
(PI)

0a. CI bus

ESB90P0079

The port driver maintains a set of seven queues in its system space. Four of
these contain commands for the SHAC to execute. The priority of the command
is determined by the queue it is on; order is determined by the position in the
queue. Another queue contains all the responses for the host (from the SHAC or
the remote nodes). There are two also queues of "empty envelopes" for the host
and the SHAC to use to stuff with commands and responses, and then to queue
them on the other queues.

11–2 KA680 Mass Storage Interface

KA680 Mass Storage Interface
11.1 SHAC Introduction

These "envelopes" are simply standard-sized "queuable" blocks of host memory.
All commands and responses are copied into one of these standard-sized blocks.
Included in the header on each block are a pair of queue pointers (for a doubly
linked queue) and various standard identifiers that specify what is contained in
the block, and how much of the block represents the actual command or response.
To be visible, a block must be on a queue where pointers from other elements or
the queue header show its presence. Once a block is removed from a queue, it is
visible only to the entity that removed it.

The SHAC’s principal task is in accepting and delivering "mail" to other nodes.
Externally (for example, on DSSI), the SHAC deals only in standard CI formats.
Internally, the SHAC deals with the envelopes just described and with blocks
of data. Because DSSI deals with bytes and the CP-bus deals in longwords, the
SHAC must frequently do byte alignment tasks during transcription.

The SHAC deals with the port driver in the virtual address mode, unloading from
the CPU the obligation to do virtual-to-physical address translation and to be
aware of page crossings in virtually contiguous blocks of information. The SHAC
supports full virtual address translation including the use of global I/O pages (to
a depth of 1).

The rest of this SHAC overview section describes a typical set of steps that the
SHAC covers in serving its role as the CI port with "mail" in both directions.

11.2 CI-DSSI Overview
At startup, the host provides the SHAC with a number of pointers to internal
host structures. One of them, the port queue block (PQB), contains pointers and
data on all the queues that the host maintains for CI. The SHAC uses this data
to carry on its normal business in the following way.

If traffic is not coming in on the DSSI bus, the SHAC goes to the highest
command queue that has something enqueued. Choices are CMDQ0..CMDQ3,
with 3 being most urgent. It dequeues an element from the queue and examines
its header to see what it must do with the queue entry. It could be a command for
the SHAC or an item to be delivered to one of the nodes on the DSSI. A command
might be an order to deliver a block of data to a remote node. An item to be
delivered would be either a datagram or a message.

A datagram is a "one-sided" communication—that is, one that will be sent
without any assurance of either receipt or reply. An obvious application for such
a communication is a request for the party at the other node to identify itself.
If the host does not know if anything is out there, it must transmit its request
without expectation. For this or any similar purpose, it employs a datagram. All
datagrams are of lengths guaranteed to fit in a datagram envelope.

A message is a "two-sided" communication used when a virtual circuit (an
established formal relationship) between members of the bus exist. Once such
a virtual circuit is established, the host(s) understand how to make requests of
the other side. Such a request could be an order for a data transfer in either
direction. The message itself (move data) is contained in a command (deliver
this message to ...). All messages are of lengths guaranteed to fit in a message
envelope. Messages are always delivered sequentially to a given node—that is, in
the order in which they were enqueued on a particular queue. While the SHAC
supports retries if a message fails to get through, once the retry limit is reached

KA680 Mass Storage Interface 11–3

KA680 Mass Storage Interface
11.2 CI-DSSI Overview

without successful delivery, SHAC returns the command to the host, marking it
as undeliverable, and then breaks the virtual circuit to that node.

A full transaction might go something like this:

1. The host queues a message for node 3 (for example, a disk controller) to
copy a block of 16 KB from host memory, starting at location X and to be
stored in location Y on disk. The queues are doubly linked, so at the top of
every envelope there is a forward link FLINK and a backward link BLINK.
Enqueuing involves putting link values into the new element’s FLINK and
BLINK, and making the previous last element’s FLINK and the queue
header’s BLINK point to the new element.

2. When this message gets to the head of the queue, the SHAC dequeues it 1,
reads the header, and finds that it should "dial up" node 3. To do this, the
SHAC goes through the DSSI protocols, contending for the DSSI bus and
then, if successful in getting bus, specifying node 3 as the target. These steps
are called arbitration and selection.

3. Node 3 responds by asking for the DSSI command (command-out phase). In
this phase, the SHAC tells node 3 how many bytes are coming and repeats
the identification information to confirm a proper selection. Node 3 then tells
the SHAC to switch to the data-out phase. The SHAC sends a pair of CI
header bytes to identify what type of message this is, and then proceeds to
transmit the actual message read from the message block in host memory.
The step-by-step details of the transfer are handled by hardware in the
SHAC, which permits simultaneous, buffered reading and writing on the
two buses to which the SHAC is connected. Upon proper completion of the
transmission, node 3 responds with a 1-byte acknowledgment of success
(parity and check-sum proper and no other errors).

4. The SHAC is still holding the only pointer to the message block in host
memory. It returns this to the host in one of two ways. If the host has
requested a "return receipt," the SHAC puts the block on the response queue
RSPQ to indicate proper delivery. This is where the port driver software in
the host will look for responses.
Alternatively, the SHAC simply puts it back on the MFREEQ, which holds
the standard envelopes for messages. At this point, the single message has
been delivered and the message envelope is back in circulation.

5. After whatever delay node 3 needed to process the message, it contends for
the bus and upon winning it, selects the SHAC as its target. It then sends
a standard CI message as above telling the SHAC to transmit the required
data. In general, the SHAC does not do this immediately, because it is obliged
to handle traffic according to position in the queue and according to queue
priority. Instead, it takes an empty envelope from MFREEQ, writes into it
the message it is receiving, and puts it on the proper CMDQ as specified in
the message it just received.

6. When that message gets to the head of its queue, the SHAC dequeues it
once more, carries out its command (in transmissions of 4 KB whenever
possible—a 4 KB transmission takes about 1 ms on the DSSI), possibly
interleaving other transmissions of higher priority to this node or any priority
to other nodes, until the last byte is sent. Once the SHAC has completed this
operation, it returns the message block to the MFREEQ.

1 Note that the SHAC ends up holding the only pointer to the dequeued block of memory
that constitutes the queue element. The port driver no longer "knows" where it is.

11–4 KA680 Mass Storage Interface

KA680 Mass Storage Interface
11.2 CI-DSSI Overview

7. Node 3 has put its data on the disk and must report to the host the successful
completion of the transaction. Again, it contends for the bus and upon
winning, specifies the SHAC as its target. Then it sends a message to the
port driver through the SHAC, confirming the successful transaction. The
SHAC dequeues another free envelope and writes this message into that
block. Then it queues it on the host’s RSPQ. Except for higher level responses
in the host, that concludes a whole transaction.

The enqueue/dequeue operations represent a considerable portion of the effort in
delivering a message or datagram. To minimize this effort, the SHAC caches a
small number of the envelopes (that is, it hangs onto the pointers to the memory
blocks) as they become free in its normal activity. It only fetches an envelope
from the free queues when its own supply has disappeared, and it only returns
them to the free queues when it has a full supply (four of a type). By this and
other attention to effort reduction and traffic conservation, the SHAC attempts to
optimize its rate of doing useful work.

11.3 SHAC Registers
The CPU communicates directly with the SHAC chip through a set of device
registers in each SHAC. These registers occupy a 1-page (512-byte) region in I/O
address space, aligned on a page boundary.

All the registers are longword registers. They may be accessed only through
longword operations.

In addition to the access restrictions listed for specific registers, no register other
than SHAC software chip reset (SSWCR) may be read or written while certain
chip intialization functions are being executed. The results of such an access
during the 100 milliseconds following a reset (powerup or a write to SSWCR),
or during the 50 microseconds following a MIN-bit (PMCSR<0>) reset, are
unpredictable.

The registers can be divided into two categories:

• The CI port registers defined in the CI Port Architecture
specification

• The SHAC specific registers

KA680 Mass Storage Interface 11–5

KA680 Mass Storage Interface
11.3 SHAC Registers

11.3.1 CI Port Registers

11.3.1.1 Port Queue Block Base Register (PQBBR)
SHAC I/O Address: 2000 404816

This port queue block base register (PQBBR) contains the uppermost bits of the
physical address of the base of the port queue block (PQB). After a reset, the
PQBBR is loaded by the SHAC with configuration information. This information
remains in the PQBBR until the PQBBR is written with the address of the port
queue block. Figure 11–2 shows the format. Table 11–1 lists the bit descriptions.

PQBBR is writable only when the port is in the disabled or disabled/maintenance
state and readable anytime (except during chip initialization).

Figure 11–2 Port Queue Block Base Register (PQBBR)

3
1

2
1

2
0 0

MBZ PQB Base <29:9>

Longword Read/Write Access.

ESB90P0069

Table 11–1 Port Queue Block Base Address Register (PQBBR)

Data Bit Name Description

<31:21> MBZ Read as zero, must be written as zero.

<20:0> PQB Base
<29:9>

This field contains the uppermost bits of the physical
address of the base of the port queue block (PQB). Note
that the PQB must be page-aligned, so the remaining
bits of the address are assumed to be zero.

11–6 KA680 Mass Storage Interface

KA680 Mass Storage Interface
11.3 SHAC Registers

Following chip reset, PQBBR contains the configuration shown in Figure 11–3.
The bit descriptions are listed in Table 11–2.

Figure 11–3 Port Queue Block Base Register (PQBBR) After Reset

3
1

2
4

2
3

1
6

1
5 8 7 0

HW Ver. FW Ver. SHM Ver. Maint ID

ESB90P0070

Table 11–2 Port Queue Block Base Address Register Bits After Reset

Data Bit Name Description

<31:24> HW Ver. Hardware version. The hardware version of the SHAC
that is greater than zero.

<23:16> FW Ver. Firmware version. The firmware version of the SHAC
that is greater than zero.

<15:8> SHW Ver. Shared host memory version. The shared host memory
version of the SHAC, which is zero until the shared
host memory data area has been read. Thereafter, it is
greater than zero.

<7:0> Maint ID CI port maintenance ID. The CI port maintenance ID
should always be 2216.

KA680 Mass Storage Interface 11–7

KA680 Mass Storage Interface
11.3 SHAC Registers

11.3.1.2 Port Status Register (PSR)
SHAC I/O Address: 2000 404C16

The port status register (PSR) contains a status report. If interrupts are enabled,
for example (PMCSR<2>) set, the port interrupts the CPU each time that it
writes to this register. Once an interrupt is requested by the port, the value of
PSR is fixed and is not changed until the CPU releases it by writing the port
status release control register (PSRCR). The port status register format is shown
in Figure 11–4 and the bit descriptions are in Table 11–3.

PSR is read-only and may be read anytime by the port driver, except during chip
initialization. Its value following a write to it is unpredictable.

Figure 11–4 Port Status Register (PSR)

3
1

3
0

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5 8 7 6 5 4 3 2 1 0

MBZ

RQA
MFQE
PDC
PIC
DSE
MSE
MTE
MISC
SHME
SMPE
ISN
DE
QDE
II
ME

Longword Read Only Access.

ESB90P0071

Table 11–3 Port Status Register Bit Descriptions

Data Bit Name Description

<31> MTE Maintenance error. When set, the port has detected an
implementation specific error (or hardware status condition).
The source of the error may be more accurately determined from
the other bits in the upper word of this register (PSR) and the
contents of other registers. Also, when set, the port is in the
uninitialized state (port is nonfunctional). Maintenance errors
normally indicate a severe SHAC hardware or software failure.

<30:22> MBZ Read as zero, writes have no effect.

(continued on next page)

11–8 KA680 Mass Storage Interface

KA680 Mass Storage Interface
11.3 SHAC Registers

Table 11–3 (Cont.) Port Status Register Bit Descriptions

Data Bit Name Description

<21> II Illegal interrupt. When set, this bit indicates a SHAC internal
error, detected when the SHAC’s microprocessor received an
interrupt from an invalid source. This causes ME (PSR<31>)
to set and the port to enter the uninitialized state (port is
nonfunctional).

<20> QDE QUIP detected error. When set, this bit indicates a SHAC
internal error detected when the SHAC’s microprocessor (QUIP)
was given an invalid instruction. This causes ME (PSR<31>)
to set and the port to enter the uninitialized state (port is
nonfunctional).

<19> DE Diagnostic error. When set, an error was detected while the
SHAC was running its internal self-test. This causes ME
(PSR<31>) to set and the port to enter the uninitialized state
(port is nonfunctional).

<18> ISN Illegal segment number. When set, this indicates a SHAC
internal error in which it attempted to load a nonexistent
external segment from the SHAC shared host memory.
This causes ME (PSR<31>) to set and the port to enter the
uninitialized state (port is nonfunctional).

<17> SMPE Slave mode parity error. This bit is set by the occurrence of a
parity error during a CPU access of a SHAC device register.
This causes ME (PSR<31>) to set and the port to enter the
uninitialized state (port is nonfunctional).

<16> SHME Share host memory error. This bit is set by the occurrence of an
error involving the SHAC shared host memory. This causes ME
(PSR<31>) to set and the port to enter the uninitialized state
(port is nonfunctional).

<15:8> MBZ Read as zero, writes have no effect.

<7> MISC Miscellaneous. When set, this bit indicates that the port
microcode has detected one of the miscellaneous errors and
the port is about to enter the disabled/maintenance state. The
actual error code is stored in the port error status register.

<6> ME Maintenance timer expiration. When set, the maintenance timer
has expired. The port is in the uninitialized/maintenance state.

<5> MSE Memory system error. When set, the port has encountered an
uncorrectable data or nonexistent memory error in referencing
memory. Port is in the disabled or disabled/maintenance
state. See the port failing address register (PFAR) for further
information.

<4> DSE Data structure error. When set, the port has encountered
an error in a port data structure (for example, queue entry,
PQB, BDT, or page table). Port is in the disabled or disabled
/maintenance state. See the port error status register (PESR)
and the port failing address register (PFAR) for further
information. Note that errors in queue structures leave the
queues locked.

<3> PIC Port initialization complete. When set, the port has completed
internal initialization. The port is in the disabled or disabled
/maintenance state.

(continued on next page)

KA680 Mass Storage Interface 11–9

KA680 Mass Storage Interface
11.3 SHAC Registers

Table 11–3 (Cont.) Port Status Register Bit Descriptions

Data Bit Name Description

<2> PDC Port disable complete. When set, the port is in the disabled or
disabled/maintenance state.

<1> MFQE Message free queue empty. When set, the port attempted to
remove an entry from the message free queue (MFREEQ) and
found it empty. Port processing of commands continues, and the
MFREEQ may not be empty at the time the port driver gets
control.

<0> RQA Response queue available. When set, this bit indicates port has
inserted an entry on an empty response queue.

11–10 KA680 Mass Storage Interface

KA680 Mass Storage Interface
11.3 SHAC Registers

11.3.1.3 Port Error Status Register (PESR)
SHAC I/O Address: 2000 405016

The port error status register (PESR) indicates the type of error that resulted
in a DSE (PSR<4>) or an MISC (PSR<7>) error. Figure 11–5 shows the format.
Table 11–4 lists the bit descriptions.

PESR is read-only by the CPU and valid only after either a DSE or MISC error,
or after certain ME (PSR<31>) and DE (PSR<19>) errors. Its value at any other
time, or following a write to it, is unpredictable.

Figure 11–5 Port Error Status Register (PESR)
3
1

1
6

1
5 0

MEC DEC

Longword Read Only Access

ESB90P0072

Table 11–4 Port Error Status Register Bit Definitions

Data Bit Name Description

<31:16> MEC Miscellaneous error code. This code comprises two
fields: bits <31:24> define the the module within the
SHAC code where the error occurred, and bits <23:16>
contain the specific error that occurred. These codes are
implementation-specific.

<15:0> DEC Data structure error code.

KA680 Mass Storage Interface 11–11

KA680 Mass Storage Interface
11.3 SHAC Registers

11.3.1.4 Port Failing Address Register (PFAR)
SHAC I/O Address: 2000 405416

The format for the port failing address register is shown in Figure 11–6.

After a DSE, MSE, and ME or DE error (as indicated by PSR), or after a response
with buffer memory system error status, the port failing address register (PFAR)
contains the memory address at which the failure occurred. The address may
be the exact failing address, an address in the same page as the exact failing
address or, in the case of DSE, an address in some part of the data structure. For
DSE, PFAR contains a virtual address or offset, while for MSE interrupts and
buffer memory system errors, PFAR contains a physical address. For ME, the
interpretation of the address is error-dependent.

Because the port continues command execution and packet processing after buffer
memory system errors, the PFAR is overwritten if subsequent errors occur. For
DSE, MSE, and ME errors the PFAR is effectively fixed because the port enters
the disabled, disabled/maintenance, or uninitialized state.

PFAR is read-only by the CPU and is readable after a DSE, MSE, or ME or DE
errors or after a response with buffer memory system error status. Its value at
any other time, or following a write to it, is unpredictable.

Figure 11–6 Port Failing Address Register (PFAR)3
1 0

Failing Address

Longword Read Only Access

ESB90P0073

11–12 KA680 Mass Storage Interface

KA680 Mass Storage Interface
11.3 SHAC Registers

11.3.1.5 Port Parameter Register (PPR)
SHAC I/O Address: 2000 405816

The port parameter register (PPR) contains port implementation parameters and
the port number. The value of the PPR is set by the port during initialization
and is valid after a PIC (PSR <3>) interrupt. Its value at any other time, or
following a write to it, is unpredictable. PPR is read only by the CPU . The port
parameter register format is shown in Figure 11–7. The bit descriptions are listed
in Table 11–5.

Figure 11–7 Port Parameter Register (PPR)

3
1

2
9

2
8

1
6

1
5

1
4 8 7 0

CSZ IBUF_LEN ISDI PORT_NO

Longword Read Only Access

0

ESB90P0074

Table 11–5 Port Parameter Register Bit Descriptions (PPR)

Data Bit Name Description

<31:29> CSZ Cluster size. For SHAC, this value always is zero,
indicating a maximum of 16 ports on the DSSI bus.
(Note that the DSSI architecture only allows up to 8
ports on the bus, but 16 is the smallest size defined for
the CSZ field.)

<28:16> IBUF_LEN Internal buffer length. This field indicates the size
of internal buffers available for message and data
transfers. Maximum data packet = IBUF_LEN - 16
bytes. Maximum message or datagram length = IBUF_
LEN. For SHAC, the value is 4112 101016.

<15> MBZ Read as zero, writes have an unpredictable effect.

<14:8> ISDI Implementation-specific diagnostic information.
The bits in this field contain information about the
local adapter’s link layer configuration. For SHAC, the
definitions of these bits are read as zero.

<7:0> Port_NO Port number. This is the same as the SHAC’s DSSI ID.

11.3.1.6 Port Control Registers
The port control registers are 32-bit registers that are write-only by the CPU . To
invoke the function provided by any of the control registers, the CPU writes a one
to the register.

The result of writing any other value to any of these registers is unpredictable.
The value read from any of them is also unpredictable. The format for the port
control registers is shown in Figure 11–8.

KA680 Mass Storage Interface 11–13

KA680 Mass Storage Interface
11.3 SHAC Registers

Figure 11–8 Port Control Registers

3
1 1 0

MBZ

MBO
Longword Write Only Access

ESB90P0075

11.3.1.6.1 Port Command Queue 0 Control Register (PCQ0CR) SHAC I/O
Address: 2000 408016

When the port driver inserts an entry in an empty CMDQ0, the port driver
writes PCQ0CR to initiate port execution of the command queue. PCQ0CR can
be written only when the port is in the enabled or enabled/maintenance state.
Writing to PCQ0CR when the port is in any other state has no effect.

11.3.1.6.2 Port Command Queue 1 Control Register (PCQ1CR) SHAC I/O
Address: 2000 408416 Same as PCQ0CR, except refers to CMDQ1.

11.3.1.6.3 Port Command Queue 2 Control Register (PCQ2CR) SHAC I/O
Address: 2000 408816 Same as PCQ0CR, except refers to CMDQ2.

11.3.1.6.4 Port Command Queue 3 Control Register (PCQ3CR) SHAC I/O
Address: 2000 408C16 Same as PCQ0CR, except refers to CMDQ3.

11.3.1.6.5 Port Datagram Free Queue Control Register (PDFQCR) SHAC I/O
Address: 2000 409016 When the port driver inserts an entry on the DFREEQ
and the latter was previously empty, the port driver writes PDFQCR to indicate
the availability of DFREEQ entries. PDFQCR can be written only if the port is in
the enabled or enabled/maintenance state. Writing to PDFQCR when the port is
in any other state has no effect.

11.3.1.6.6 Port Message Free Queue Control Register (PMFQCR) SHAC I/O
Address: 2000 409416 Same as PDFQCR, except refers to MFREEQ.

11.3.1.6.7 Port Status Release Control Register (PSRCR) SHAC I/O Address:
2000 409816 After the port driver has received an interrupt and read the PSR, it
returns the PSR to the port by writing PSRCR.

11.3.1.6.8 Port Enable Control Register (PECR) SHAC I/O Address: 2000
409C16 The port driver enables the port by writing PECR. PECR is ignored if
the port is in the uninitialized, uninitialized/maintenance, enabled, or enabled
/maintenance state.

11–14 KA680 Mass Storage Interface

KA680 Mass Storage Interface
11.3 SHAC Registers

11.3.1.6.9 Port Disable Control Register (PDCR) SHAC I/O Address: 2000
40A016 The port driver disables the port by writing PDCR. When the port is
disabled, the port sets PDC (PSR <2>), and if interrupts are enabled, requests
an interrupt. PDCR is ignored if the port is in the uninitialized, uninitialized
/maintenance, disabled, or disabled/maintenance state.

11.3.1.6.10 Port Initialize Control Register (PICR) SHAC I/O Address:
2000 40A416 The port driver initializes the port by writing PICR. When the
initialization is complete, the port sets PDC (PSR <2>) and requests an interrupt
if interrupts are enabled. As part of the initialization, the maintenance timer is
set to expire in 100 seconds.

11.3.1.6.11 Port Maintenance Timer Control Register (PMTCR) SHAC I/O
Address: 2000 40A816 The port driver forces the maintenance timer to reset
its expiration time by writing the PMTCR. If the PMTCR is not written again
before the expiration time, the port will enter the uninitialized/maintenance
state setting MTE (PSR <6>), and request an interrupt if interrupts are enabled.
PMTCR is ignored if the maintenance timer is not running.

11.3.1.6.12 Port Maintenance Timer Expiration Control Register (PMTECR)
SHAC I/O Address: 2000 40AC16 The port driver forces a maintenance-timer-
expiration interrupt by writing the PMTECR. This register may be written only
when the port is in the enabled, enabled/maintenance, disabled, and disabled
/maintenance states, and only while the maintenance timer is not disabled.

11.3.1.6.13 Port Maintenance Control and Status Register (PMCSR) SHAC
I/O Address: 2000 405C16 The port maintenance control and status register
(PMCSR) is used for maintenance level control and status reporting. The CI Port
specification defines all but the two least significant bits. The format is shown in
Figure 11–9 and the bit descriptions are listed in Table 11–6.

The bits can be divided into the following categories:

• Status bits - Set by the port to report various conditions. They are cleared
by maintenance initialization or clearing the condition in another register.
PMCSR does not include any status bits at this time.

• Function control bits are read/write by the port driver only. They are clear on
a reset.
These bits are divided into two classes:

1. Init: This type of bit invokes a function (for example, initialization) by
setting it. It always reads as zero, except while the function is active.

2. Enable/disable: This type of bit causes an activity or state to exist while
the bit is set. Clearing the bit stops the activity or changes the state.
The bit always reads the most recently written value. The bit is never
changed by the port.

KA680 Mass Storage Interface 11–15

KA680 Mass Storage Interface
11.3 SHAC Registers

Figure 11–9 Port Maintenance Control And Status Register (PMCSR)

3
1 5 4 3 2 1 0

RESERVED

MIN
MTD
IE
SIMP
HAC

Longword Read/Write Access

ESB90P0076

Table 11–6 Port Maintenance Control and Status Register (PMCSR) Bits

Data Bit Name Description

<31:5> RESERVED These bits are reserved. They should not be written;
reads return unpredictable results.

<4> HAC Host access feature. This bit must be zero, except for
diagnostic purposes. This is an enable/disable class
control bit.

<3> SIMP Simple SHAC mode. Must be zero, except for diagnostic
purposes. This is an enable/disable class control bit.

<2> IE Interrupt enable. When set, interrupts from the port to
the CPU are enabled. Power-up state is clear (interrupts
disabled). This is an enable/disable class control bit.

<1> MTD Maintenance timer disable. Read/write by CPU . If set,
the maintenance timer is turned off. Timer is set to the
initial value and suspended. If clear, timer functions
normally. Power-up state is clear (timer enabled). This
is an enable/disable class control bit.

<0> MIN Maintenance init. Writing a one to this bit resets the
port. Upon completion, the port is in the uninitialized
state and MIN is clear. Writing a zero to this bit has no
effect. It always reads as zero, except while the reset
function is active.
Although maintenance init resets the port, it is not
equivalent to a write to the SHAC software chip reset
register. In particular, the SHAC shared host memory
address is not reset by maintenance init.

11.3.2 SHAC Specific Registers
These registers, which are not defined in the CI port architecture, are used for
additional maintenance level control.

11–16 KA680 Mass Storage Interface

KA680 Mass Storage Interface
11.3 SHAC Registers

11.3.2.1 SHAC Software Chip Reset Register (SSWCR)
SHAC I/O Address: 2000 403016

When the CPU writes FFFF FFFF16 to the SHAC software chip reset register
(SSWCR), a chip reset is performed. The result is equivalent to that of the
hardware chip reset that occurs following system powerup. On completion,
all device registers are reset to their power-up state, and the port is in the
uninitialized state. The format is shown in Figure 11–10.

SSWCR is write-only by the CPU and may be written to at any time. Its value
when read is unpredictable. The result, if other than FFFF FFFF16, is written to
SSWCR as undefined.

Figure 11–10 SHAC Software Chip Reset (SSWCR)

3
1 0

MUST BE ONE

Longword Write Only Access

ESB90P0077

11.3.2.2 SHAC Shared Host Memory Address (SSHMA)
SHAC I/O Address: 2000 404416

The format for the SHAC shared host memory address is shown in Figure 11–11.

Figure 11–11 SHAC Shared Host Memory Address (SSHMA)

3
1

3
0

2
9 4 3 0

SSHMA<29:4> MBZ

Longword Read/Write Access

MBZ

ESB90P0078

Following chip reset, the CPU writes the physical address of the shared host
memory header into the SHAC shared memory address register (SSHMA). The
area must be octaword-aligned and contiguous in physical memory.

SSHMA is read/write by the CPU , but may be written only when the port is in
the uninitialized state. Writing when the port is in any other state can produce
unpredictable results.

KA680 Mass Storage Interface 11–17

12
KA680 Firmware

12.1 KA680 Firmware Overview
This chapter describes the KA680 functional firmware. The firmware is VAX–11
code, which resides in FEPROM on the KA680 module. Typically KA680 firmware
gains control whenever the on-board CPU "halts," or more precisely, performs
a "processor restart" operation. However, portions of the firmware can also be
invoked by applications through a public subroutine linkage.

When the KA680 firmware is running, it provides services expected of a standard
VAX console subsystem. In particular, the following services are available:

• Automatic restart or bootstrap of customer application images at powerup, on
reset, or conditionally after processor halts

• Diagnostic tests executed both at powerup and by request, which verify the
correct operation of the CPU and memory modules

• Operator interface providing complete examination or modification of the
processor state

A more detailed description of the major components of the KA680 is provided in
Section 12.2, and a structural diagram of the KA680 firmware is shown in Figure
12–1.

Throughout this chapter, "firmware" is a generic term describing all program
code located in the KA680 FEPROM. Sometimes it is referred to as either the
"boot ROM," "diagnostics ROM," or "console ROM," depending on context. Each
major element of the firmware is referred to by other terms (for instance, the boot
program as "VMB" or "primary bootstrap," the ROM-based diagnostic program
as the "diagnostic" or "self-test," and the operator interface as the "console" or
"console program").

Certain terminology and conventions are used throughout this chapter. With one
exception, numbers (unless otherwise indicated or implied) are decimal. Eight-
digit numbers throughout this document are hexadecimal longwords, typically
representing VAX 32-bit addresses or data. Where there is ambiguity, the radix is
explicitly stated. For instance, 72 is assumed to be decimal and for clarity can be
written as 72 (dec). However, alternate representations for 72 are 1001000 (bin)
for binary, 110 (oct) for octal, or 48 (hex) for hexadecimal. On the other hand,
E0040000 is the hexadecimal address or the base of the firmware FEPROM.

Ranges of integers are expressed as a pair of numbers separated by a colon and
are always inclusive. For example, 7:4 specifies the range of integers from 7 to 4
(namely, 7, 6, 5, and 4).

KA680 Firmware 12–1

KA680 Firmware
12.1 KA680 Firmware Overview

A bit field or position within a register or data structure follows the structure
name and is enclosed in angle brackets. The associated field name (if defined)
typically follows the field definition and appears in parentheses. For instance,
PSL<20:16> (IPL) represents the 5-bit field for the interrupt priority level in the
processor status longword.

12.2 Firmware Capabilities
The KA680 firmware provides the following services:

• Diagnostics that test all components on the board and verify the module is
working correctly

• Automatic/manual bootstrap of an operating system following processor halts.

• Automatic/manual restart of an operating system following processor halts.

• An interactive command language that allows the user to examine and alter
the state of the processor

• Support of various terminals and devices as the system console

• Multilanguage support for displaying critical system messages and handling
LK201 country-specific keyboards

The remainder of this section describes in detail the functions and external
characteristics of the KA680 firmware.

12–2 KA680 Firmware

KA680 Firmware
12.2 Firmware Capabilities

12.2.1 General Description
The KA680 firmware is comprised of several major functional blocks of code. The
halt entry code is invoked following system halts, resets, or severe errors. This
code is responsible for saving the machine state and transferring control to the
halt dispatcher code. The halt dispatcher code determines the nature of the
halt, then transfers control to the appropriate subcode. The halt exit code is
invoked whenever a transition is desired from a halted state to the running state.
This code performs a restoration of the saved context prior to the transition.
Figure 12–1 illustrates this, and these functions are discussed in detail in Section
12.2.2.

Figure 12–1 KA680 Firmware Structural Components

Firmware

Halt Entry Halt Dispatch Halt Exit

System
Restart

System Console
ServiceDiagnostics Bootstrap

ROM Based

The ROM-based diagnostics consist of an initial power-up test and a series
of functional component diagnostics invoked by a diagnostic executive. These
functions are described in Section 12.2.5 on powerup, and in Section 12.3 on
diagnostics.

Depending on the nature of the halt and the hardware context, the firmware
attempts either an operating system restart (discussed in Section 12.2.7), a
bootstrap operation (described in Section 12.2.6), or transitions to console I/O
mode (covered in Section 12.2.8).

KA680 Firmware 12–3

KA680 Firmware
12.2 Firmware Capabilities

12.2.2 Halt Code
The main purpose of the halt code is to save the state of the machine on halt
entry, invoke the dispatcher, and restore the state of the machine on exit to
program I/O mode. It is comprised of halt entry, halt dispatch, and halt exit
codes.

12.2.3 Halt Entry - Saving Processor State
The entry code, residing at physical address E0040000, is executed whenever the
KA680 halts. The value that the program counter contained when the processor
was halted is saved in IPR 42 (PR$_SAVPC). On a powerup, the PR$_SAVPC
register value is undefined.

The processor will halt for a variety of reasons. The reason for the halt is stored
in PR$_SAVPSL<13:8>(RESTART_CODE), IPR 43. A complete list of the halt
reasons and the associated console messages can be found in Table C–1 in
Appendix C.

After a halt, the firmware first saves the current LED code, then writes an "E"
to the diagnostic LEDs. This action occurs within several instructions after the
firmware has been invoked. The intent of saving the LED code is to let the user
know that at least some instructions have been successfully executed.

The KA680 firmware unconditionally saves the contents of the following registers
on any halt:

• R0 through R15, the general-purpose registers

• PR$_SAVPSL, the saved PSL register

• PR$_SCBB, the system control block base register

• DLEDR, the diagnostic LED register

Note

The SSC programmable timer registers are not saved. In some cases,
such as bootstrap, the timers are used by the firmware and previous
"time" context is lost.

Several registers are unconditionally set to predetermined values by the firmware
on any halt, processor init, or bootstrap. This action ensures that the firmware
itself can run and protects the board from physical damage.

The following is a list of registers that fall into this category:

• The SSC configuration register (SSCCR)

• The SSC address match and mask registers (ADxMCH & ADxMSK)

• The CDAL bus timeout control register (CBTCR)

• The SSC timer interrupt vector registers (TIVRx)

Whenever the halt entry code is invoked, the firmware sets the console serial line
baud rate based on the value read from the BDR and extends the halt protection
from 8 KB to 512KB to include all of the FEPROM.

12–4 KA680 Firmware

KA680 Firmware
12.2 Firmware Capabilities

12.2.4 Halt Dispatch
The action taken by the firmware on a halt is dependent primarily on the
following information:

• The state of BREAK enable switch BDR<7>(HALT_ENABLE)

• The state of the console program mailbox, CPMBX<1:0>(HALT_ACTION)

• The user-defined halt action (SET HALT)

• The halt code, PR$_SAVPSL<13:8>(RESTART_CODE)

In general, the BREAK enable switch governs whether or not a BREAK condition
from the console serial line is recognized by the KA680. This switch also
determines the default action taken on a powerup or other internal halt condition.
By default, if BREAKs are enabled, the firmware invokes the console emulation
code. If BREAKs are disabled, the firmware attempts a recovery operation.

The console program mailbox, CPMBX<1:0>(HALT_ACTION), is used by
operating systems to override the BREAK enable switch. It is used to instruct the
firmware to invoke the console service, attempt to restart the operating system,
or reboot the system following a halt, regardless of the setting of the BREAK
enable switch. (See Figure A–2.)

The user-defined halt action invoked by using the SET HALT console command
(refer to the description of the SET command in Section 12.2.9 is an alternative
way to specify a default halt action. This feature allows users to specify
autobooting on powerups, even when BREAKs are enabled. For HALT
instructions and error halt conditions, it is similar in function to the console
program mailbox but has lower precedence and is only used when the console
program mailbox is 0. This provides the user with a mechanism to specify what
action should be taken in the event that the operating system or user application
does not set the console program mailbox.

The halt (or restart) code is automatically deposited in PR$_
SAVPSL<13:8>(RESTART_CODE) on any halt condition. This field indicates
the cause of the halt, and for the purpose of dispatching, collapses into three
categories.

02: External halts
03: Reset/powerup
xx: All other values—(HALT instruction and all error halts)

Table 12–1 summarizes the action taken on all halt conditons, except external
halts, which are described in Section 12.2.4.0.1. The actual halt dispatch state
machine is described in detail in Section B.1 of Appendix B.

KA680 Firmware 12–5

KA680 Firmware
12.2 Firmware Capabilities

Table 12–1 Halt Action Summary

Halt Code=
3

BREAK
Enable
Switch

User-
Defined
Halt Action

Console
Program
Mailbox Action(s)

T 1 0,1,3 x Diagnostics, console

T 1 2,4 x Diagnostics, if success boot, if
either fail console

T 0 x x Diagnostics, if success boot, if
either fail console

F 1 0 0 Console

F 0 0 0 Restart, if this fails boot, if that
fails console

F x 1 0 Restart, if it fails console

F x 2 0 Boot, if it fails console

F x 3 0 Console

F x 4 0 Restart, if this fails boot, if that
fails console

F x x 1 Restart, if it fails console

F x x 2 Boot, if it fails console

F x x 3 Console

"T" TRUE—indicates a reset or power-up condition
"F" FALSE—indicates a HALT instruction or error halt condition
"x" DON’T CARE—indicates that the condition is "don’t care"

Because the KA680 does not support battery backed-up main memory, an
operating system restart operation is not attempted on a powerup.

12.2.4.0.1 External Halts Several conditions can trigger an external halt and
different actions are taken, depending on the condition.

An external halt can be caused by one of the following conditions.

1. A BREAK condition on the system console serial line, if the BREAK enable
switch is set to "enabled." In this case, BDR<7>(HALT_ENABLE) = 1 and the
console code is invoked. Control-P may be established as the "BREAK"
condition by using the SET CONTROLP ENABLE console command.

2. The assertion of the BHALT line on the Q22–bus causes an external halt if
the SCR<14>(BHALT_ENABLE) bit in the CQBIC is set. As a result, the
console code is invoked.

3. The negation of DCOK on the Q22–bus, if the SCR<7>(DCOK_ACTION) bit
is set, causes an external halt (by default, this bit is clear). As a result, the
console code is invoked.

4. Recognition of a valid MOP BOOT message by an appropriately
initialized SGEC, if the REMOTE_BOOT_ENABLE jumper is in place
[BDR<31>(REMOTE_BOOT_ENABLE) = 1]. As a result, a bootstrap is
attempted. If that fails, the console is entered.

12–6 KA680 Firmware

KA680 Firmware
12.2 Firmware Capabilities

Note

The firmware does not initialize the SGEC for this operation. The
operating system must set up the SGEC to support this feature.

Note

The switch labeled "RESTART" negates DCOK. The DCOK bit may also
be negated by the DEQNA sanity timer, or any other Q22–bus module
that chooses to implement the Q22–bus restart/reboot protocol. Because
the SCR<7>(DCOK_ACTION) bit is cleared on powerup, the default
consequence to deasserting DCOK is to generate a processor restart.
Hence, pushing the "RESTART" button typically initiates a power-up
sequence and destroys system state.

12.2.4.1 Halt Exit - Restoring Processor State
When the firmware exits, it uses the currently defined saved context. This context
is initially determined by what was saved when the firmware code was invoked.
However, this context may be modified by console commands, or automatic
operations such as an automatic bootstrap on powerup.

When restoring the context, the firmware will flush the CPU internal cache if
enabled, and invalidate all translation buffer entries via the internal processor
register PR$_TBIA, IPR 57.

In restoring the context, the console pushes the user’s PSL and PC onto the user’s
interrupt stack, then executes a return from exception or interrupt instruction
(REI) from that stack. This implies that the user’s interrupt stack pointer (ISP)
is valid before the firmware can exit. This is done automatically on a bootstrap.
However, it is suggested that the stack pointer (SP) be set to a valid memory
location before issuing the START or CONTINUE command. Furthermore, the
user should validate the system control block base register (SCBB or PR$_SCBB)
prior to executing a NEXT command, because the firmware uses the trace trap
vector for this function. At powerup, the user ISP is set to 200 (hex) and the
system control block base register is undefined.

KA680 Firmware 12–7

KA680 Firmware
12.2 Firmware Capabilities

12.2.5 Power-up
This section describes the sequence of events that occurs on power-up.

At power-up, the KA680 firmware performs actions that are unique to the power-
up condition. Among these actions are the following: locating and identifying a
console device, language query, and the diagnostic countdown. Certain actions
are dependent on the state of the "mode" switch on the H3604-SA. The mode
switch panel which has three settings:

12.2.5.1 Identifying the Console Device
After powerup, the firmware attempts to determine what type of console device
is present so that the device may be used to display further diagnostic progress.
Normally, this is the device attached to the console serial line cable, and the
firmware sends the "device attributes escape sequence" (<ESC>[c) across the
cable. This action determines the type of terminal attached and the functions it
supports. Terminals that do not respond to the device attributes request correctly
are assumed to be hard copy devices.

Once a console device has been identified, the firmware displays the KA680
banner message, which contains the processor name, the version of the firmware,
and the version of the VMB code as explained in Figure 12–2.

Figure 12–2 Console Banner

KA680−A V 4.0, VMB 2.12

minor release of VMB

major release of VMB

minor release of firmware

major release of firmware

type of release : X − engineering release
T − field test release
V − volume release

processor variant :

processor type

A − time sharing

The banner message contains the processor name, the version of the firmware,
and the version of VMB. The letter code in the firmware version indicates if the
firmware is engineering release, field test release, or volume release. The first
digit indicates the major release number and the trailing digit indicates the minor
release number.

Next, if the designated console device supports DEC Multinational Character Set
(MCS) and either the battery failed during power failure or the "mode" switch is
set to "query," the firmware prompts for the console language. The firmware first
displays the language selection menu shown in Figure 12–3 in Section 12.2.5.1.2.

After the language query, the firmware invokes the ROM-based diagnostics, and
eventually displays the console prompt.

12–8 KA680 Firmware

KA680 Firmware
12.2 Firmware Capabilities

12.2.5.1.1 Mode Switch Set to "Test" If the mode switch is set to "test,"
the console serial line external loopback test is executed at the end of the IPT.
An external loopback connector should be inserted in the serial line
connector on the H3604-SA panel prior to cycling power to invoke this
test. The purpose of this test is to verify that the console serial line connections
from the KA680 through the H3604-SA panel are intact.

During this test, the firmware toggles between two states, active and passive,
each a few seconds long and each displaying a different number on the LEDs.

During the active state (about 3 seconds long), the LEDs are set to "6." In this
state, the firmware reads the baud rate and mode switch, then transmits and
receives a character sequence. If the mode switch has been moved from the "test"
position, the firmware exits the test and continues as if on a normal powerup.

During the passive state (about 7 seconds long), the LEDs are set to "3."

If the firmware detects an error (parity, framing, overflow, or no characters), the
firmware "hangs" with a "6" on the LEDs.

12.2.5.1.2 Mode Switch Set to "Query" If the mode switch is set to "query" (or
the firmware detects that the battery failed during a power loss), the firmware
queries the user for a language that is used for displaying critical system
messages.

The language selection menu is shown in Figure 12–3.

Figure 12–3 Language Selection Menu

1) Dansk
2) Deutsch (Deutschland/Österreich)
3) Deutsch (Schweiz)
4) English (United Kingdom)
5) English (United States/Canada)
6) Español
7) Français (Canada)
8) Français (France/Belgique)
9) Français (Suisse)
10) Italiano
11) Nederlands
12) Norsk
13) Português
14) Suomi
15) Svenska
(1..15):

The user may select from one of the eleven supported languages. If no response
is received within 30 seconds, the language defaults to English KEEP>((United
States/Canada).) For those languages that do not have a unique keyboard, Figure
12–3 displays supported country-specific keyboard variants in parentheses.
Language inquiry is performed only if the console device supports DEC
MCS. Any console device that does not support DEC MCS, such as a
VT100, defaults to English (United States/Canada).

After completing language inquiry, the firmware proceeds as if the mode switch
were set to "normal," as described in Section 12.2.5.1.3.

KA680 Firmware 12–9

KA680 Firmware
12.2 Firmware Capabilities

12.2.5.1.3 Mode Switch Set to "Normal" If the mode selected is "normal,"
then the next step in the power-up sequence is to execute the bulk of ROM-
based diagnostics. In addition to the message text, a "countdown" is displayed to
indicate diagnostic test progress. A successful diagnostic countdown is shown in
Figure 12–4.

Figure 12–4 Normal Diagnostic Countdown

Performing normal system tests.
66..65..64..63..62..61..60..59..58..57..56..55..54..53..52..51..
50..49..48..47..46..45..44..43..42..41..40..39..38..37..36..35..
34..33..32..31..30..29..28..27..26..25..24..23..22..21..20..19..
18..17..16..15..14..13..12..11..10..09..08..07..06..05..04..03..
Tests completed.

In the case of diagnostic failures, a diagnostic register dump is performed similar
to the one shown in Figure 12–5. The remaining diagnostics execute and the
countdown continues. For a detailed description of the register dump, refer to
Section 12.3.

Figure 12–5 Abnormal Diagnostic Countdown

Performing normal system tests.
66..65..64..63..62..61..60..59..58..57..56..55..54..53..52..51..
50..49..48..47..46..45..44..43..42..41..40..39..38..37..36..35..
34..33..32..31..30..29..28..27..26..25..24..23..22..21..20..19..
18..17..16..15..14..13..12..11..

?5F 2 0E FF 0000 0000 02 ; SUBTEST_5F_0E, DE_SGEC.LIS

P1=00000000 P2=00000000 P3=5839FF00 P4=00000000 P5=00000000
P6=00000000 P7=00000000 P8=00000000 P9=0000080A P10=00000003
r0=00000054 r1=20084019 r2=00004206 r3=00000000 r4=00000000
r5=1FFFFFFC r6=C0000003 r7=20008000 r8=00004000 EPC=00000000
10..09..08..07..06..05..04..03..
Normal operation not possible.

If the diagnostics have successfully completed and halts are enabled, the firmware
displays the console prompt and enters "console I/O" mode.

Figure 12–6 Console Prompt

>>>

If the diagnostics have successfully completed and halts are disabled, the
firmware attempts to boot an operating system.

12–10 KA680 Firmware

KA680 Firmware
12.2 Firmware Capabilities

Figure 12–7 Console Boot Display with No Default Boot Device

Loading system software.
No default boot device has been specified.
Devices:
-DIA0 (RF70)
-DIA1 (RF70)
-MUA0 (TK70)
-EZA0 (08-00-2B-03-82-78)
Device? [EZA0]:

(BOOT/R5:0 EZA0)

2..
-EZA0

12.2.5.2 LED Codes
In addition to the console diagnostic countdown, a hexadecimal value is displayed
on the diagnostic LEDs on the module and the H3604-SA panel. The purpose of
the LED display is to improve fault isolation when there is no console terminal,
or when the hardware is incapable of communicating with the console terminal.
Table 12–2 lists all LED codes and the associated actions performed at powerup.
The LED code is changed before the corresponding test or action is performed.

Table 12–2 LED Codes

LED
Value Actions

F Initial state on powerup, no code has executed

E Entered ROM space, some instructions have executed

D Waiting for power to stabilize (POK)

C SSC RAM, SSC registers, and ROM checksum tests

B O-bit memory, interval timer, and virtual mode tests

A FPA tests

9 Backup cache, primary cache, and memory tests

8 NMC, NCA, memory, and I/O interaction tests

7 CQBIC (Q22–bus) tests

6 Console loopback tests

5 SHAC DSSI subsystem tests

4 SGEC Ethernet subsystem tests

3 "Console I/O" mode

2 Control passed to VMB

1 Control passed to secondary bootstrap

0 "Program I/O" mode, control passed to operating system

KA680 Firmware 12–11

KA680 Firmware
12.2 Firmware Capabilities

12.2.6 Operating System Bootstrap
Bootstrapping is the process by which an operating system loads and assumes
control of the system. The KA680 supports bootstrap of the following operating
systems: VAX/VMS and VAXELN. Additionally, the KA680 will boot MDM
diagnostics and any user application image that conforms to the boot formats
described in this section.

On the KA680 a bootstrap occurs whenever a BOOT command is issued at
the console or whenever the processor halts and the conditions specified in the
Table 12–1 for automatic bootstrap are satisfied.

12.2.6.1 Preparing for the Bootstrap
Prior to dispatching to the primary bootstrap (VMB), the firmware initializes the
system to a known state. The initialization sequence follows:

1. Check the console program mailbox "bootstrap in progress" bit
[CPMBX<2>(BIP)]. If it is set, bootstrap fails.

2. If this is an automatic bootstrap, print the message "Loading system
software." on the console terminal.

3. Set CPMBX<2>(BIP).

4. Validate the page frame number (PFN) bitmap. If PFN bitmap checksum is
invalid, then:

a. Perform an UNJAM .

b. Perform an INIT .

c. Retest memory and rebuild PFN bitmap.

5. Validate the boot device name. If none exists, supply a list of available devices
and prompt user for a device. If no device is entered within 30 seconds, use
EZA0.

6. Write a form of this BOOT request including the active boot flags and boot
device on the console: for example, "(BOOT/R5:0 DUA0)".

7. Initialize the Q22–bus scatter/gather map.

a. Set IPCR<8>(AUX_HLT).

b. Clear IPCR<5>(LMEAE).

c. Perform an UNJAM .

d. Perform an INIT .

e. If an arbiter, map all vacant Q22–bus pages to the corresponding page in
local memory and validate each entry if that page is "good."

f. Set IPCR<5>(LMEAE).

8. Search for a 128 KB contiguous block of good memory as defined by the PFN
bitmap. If 128 KB cannot be found, the bootstrap fails.

9. Initialize the general purpose registers.

R0 = Address of descriptor of the boot device name, or 0 if none specified
R2 = Length of PFN bitmap in bytes
R3 = Address of PFN bitmap
R4 = Time of day from PR$_TODR at powerup
R5 = Boot flags

12–12 KA680 Firmware

KA680 Firmware
12.2 Firmware Capabilities

R10 = Halt PC value
R11 = Halt PSL value (without halt code and map enable)
AP = Halt code
SP = Base of 128 KB good memory block + 512
PC = Base of 128 KB good memory block + 512
R1, R6, R7, R8, R9, FP = 0

10. Copy the VMB image from FEPROM to local memory beginning at the base
of the 128 KB good memory block + 512.

11. Exit from the firmware to memory-resident VMB.

On entry to VMB, the processor is running at IPL 31 on the interrupt stack with
memory management disabled. Also, local memory is partitioned as shown in
Figure 12–8.

Figure 12–8 Memory Layout Prior to VMB Entry

0

Base

Base+512(SP,PC)

PFN bitmap

QMR base

Top of Memory

. Potential "bad" memory .

256 pages for VMB
128KB block of
"good" memory
(page aligned)

n pages
size in pages n = (# of MB)/2)

32 pages

.

.

.

Reserved for RPB, initial stack

.

.

.

64 pages

.

VMB image

.

Balance of 128KB block
to be used for SCB, stack,
and the secondary bootstrap.

Unused memory

PFN bitmap
(always on page boundary and

Firmware "scratch memory"
(always 16KB)

Q22−Bus Scatter/Gather Map
(always on 32KB boundary)

Potential "bad" memory

KA680 Firmware 12–13

KA680 Firmware
12.2 Firmware Capabilities

12.2.6.1.1 Boot Devices The KA680 firmware passes the address of a
descriptor of the boot device name to VMB through R0. This device name used
for the bootstrap operation is one of the following:

• The local Ethernet device, if no default boot device has been specified

• The default boot device specified at initial powerup or via a SET BOOT
command

• The boot device name explicitly specified in a BOOT command line

The device name may be any arbitrary character string, with a maximum length
of 17 characters. Longer strings cause an error message to be issued to the
console. Otherwise, the console makes no attempt at interpreting or validating
the device name. The console converts the string to uppercase letters, and passes
to VMB the address of a string descriptor for the device name in R0.

Table 12–3 correlates the boot device names expected in a BOOT command with
the corresponding supported devices.

Table 12–3 KA680 Supported Boot Devices

Boot Name1 Controller Type Device Type(s)

Disk:

[node$]DIAn On-board DSSI RF31, RF35, RF71, RF72

DUcn RQDX3 MSCP RD52, RD53, RD54, RX33, RX50

KDA50 MSCP RA70, RA80, RA81, RA82, RA90,
RA92

KFQSA MSCP RF31, RF35, RF71, RF72

KLESI RC25

DLcn RLV12 RL01, RL02

DKcnnn KZQSA RRD42

Tape:

[node$]MIAn On-board DSSI TF85, TF857

MUcn TQK50 MSCP TK50

TQK70 MSCP TK70

KFQSA MSCP TF70

KLESI TU81E

MKcnnn KZQSA TLZ04

Network:

EZA0 On-board Ethernet —–

XQcn DELQA —–

DESQA —–

1 Boot device names consist of a 2-letter device code (minimum), followed by a single-character
controller letter (A...Z), and terminating in a device unit number (0...65535). DSSI device names may
optionally include a node prefix, consisting of either a node number (0...7) or a node name (a string of
up to 8 characters), terminating in a "$".

(continued on next page)

12–14 KA680 Firmware

KA680 Firmware
12.2 Firmware Capabilities

Table 12–3 (Cont.) KA680 Supported Boot Devices

Boot Name1 Controller Type Device Type(s)

PROM:

PRA0 MRV11 —–

PRB0 On-board EPROM —–

1 Boot device names consist of a 2-letter device code (minimum), followed by a single-character
controller letter (A...Z), and terminating in a device unit number (0...65535). DSSI device names may
optionally include a node prefix, consisting of either a node number (0...7) or a node name (a string of
up to 8 characters), terminating in a "$".

Table 12–3 presents a definitive list of boot devices that the KA680
supports. However, the KA680 will likely boot other devices that adhere
to the MSCP standards.

12.2.6.1.2 Boot Flags The action of VMB is qualified by the value passed to
it in R5. R5 contains boot flags that specify conditions of the bootstrap. The
firmware passes to VMB either the R5 value specified in the BOOT command or
the default boot flag value specified with a SET BFLAG command.

Figure 12–9 shows the location of the boot flags used by VMB in the boot flag
longword and describes each flag’s function.

Figure 12–9 VMB Boot Flags (/R5:)

3
1

2
8 9 8 6 5 4 3 0

TOPSYS H S I B D B C

Table 12–4 VMB Boot Flags

Field Name Description

<31:28> RPB$V_TOPSYS This field can be any value from 0 through F. This flag
changes the top-level directory name for the system disks
with multiple operating systems. For example, if TOPSYS
is 1, the top-level directory name is [SYS1...]. This does
not apply to network bootstraps.

<9> RPB$V_HALT Halt during bootstrap. When this bit is set, VMB halts
on entry to VMB before transferring control to the loaded
image, and potentially in the loaded image.

<8> RPB$V_SOLICT File name solicit. When this bit is set, VMB prompts the
operator for the name of the application image file. A
maximum of a 39-character file specification is allocated at
RPB$T_FILE. Only 16 characters are utilized in both
tape boot and network MOP V3 booting.

<6> RPB$V_HEADER Image header. If this bit is set, VMB transfers control to
the address specified by the file’s image header. If this bit
is not set, VMB transfers control to the first location of the
load image.

(continued on next page)

KA680 Firmware 12–15

KA680 Firmware
12.2 Firmware Capabilities

Table 12–4 (Cont.) VMB Boot Flags

Field Name Description

<5> RPB$V_BOOBPT Bootstrap breakpoint. If this flag is set, a breakpoint
instruction is executed in VMB and control is transferred
to XDELTA prior to boot.

<4> RPB$V_DIAG Diagnostic bootstrap. When this bit is set,
the load image requested over the network is
[SYS0.SYSMAINT]DIAGBOOT.EXE.

<3> RPB$V_BBLOCK Secondary bootstrap from bootblock. When this bit is
set, VMB reads logical block number 0 of the boot device
and tests it for conformance with the boot block format.
If in conformance, the block is executed to continue the
bootstrap. No attempt to perform a Files–11 bootstrap is
made.

<0> RPB$V_CONV Conversational bootstrap.

12.2.6.2 Primary Bootstrap, VMB
Virtual memory boot (VMB) is the primary bootstrap for booting VAX processors.
On the KA680, VMB is resident in the firmware and is copied into main memory
before control is transferred to it. VMB then loads the secondary bootstrap image
and transfers control to it.

In certain cases, such as VAXELN, VMB actually loads the operating system
directly. However, in this chapter, "secondary bootstrap" refers to any VMB
loadable image.

VMB inherits a well-defined environment and is responsible for further
initialization. The following summarizes the operation of VMB:

1. Initialize a 2-page SCB on the first page boundary above VMB.

2. Allocate a 3-page stack above the SCB.

3. Initialize the restart parameter block (RPB). Refer to Table B–2.

4. Initialize the secondary bootstrap argument list. Refer to Table B–3 in
Appendix D.

5. If not a PROM boot, locate a minimum of 3 consecutive valid QMRs.

6. Write "2" to the diagnostic LEDs and display "2.." on the console to indicate
that VMB is searching for the device.

7. Optionally, solicit from the console a "Bootfile: " name.

8. Write the name of the boot device from which VMB will attempt to boot on
the console (for example, "-DUA0").

9. Copy the secondary bootstrap from the boot device into local memory above
the stack. If this fails, the bootstrap fails.

10. Write "1" to the diagnostic LEDs and display "1.." on the console to indicate
that VMB has found the secondary bootstrap image on the boot device and
has loaded the image into local memory.

11. Clear CPMBX<2>(BIP) and CPMBX<3>(RIP).

12. Write "0" to the diagnostic LEDs and display "0.." on the console to indicate
that VMB is now transferring control to the loaded image.

12–16 KA680 Firmware

KA680 Firmware
12.2 Firmware Capabilities

13. Transfer control to the loaded image with the following register usage:

R5 = Transfer address in secondary bootstrap image
R10 = Base address of secondary bootstrap memory
R11 = Base address of RPB
AP = Base address of secondary boot parameter block
SP = Current stack pointer

If the bootstrap operation fails, VMB relinquishes control to the console by
halting with a HALT instruction. VMB makes no assumptions about
the location of Q22–bus memory. However, VMB searches through
the Q22–bus map registers (QMRs) for the first QMR marked "valid."
VMB requires a minimum of 3 and a maximum of 129 contiguous "valid"
maps to complete a bootstrap operation. If the search exhausts all map
registers or there are fewer than the required number of "valid" maps,
a bootstrap cannot be performed. It is recommended that a suitable
block of Q22–bus memory address space be available (unmapped to other
devices) for proper operation.

Figure 12–10 shows a sample console display of a successful automatic bootstrap.

Figure 12–10 Successful Automatic Bootstrap

Loading system software.
(BOOT/R5:0 DUA0)

2..
-DUA0
1..0..

After a successful bootstrap operation, control is passed to the secondary
bootstrap image with the memory layout as shown in Figure 12–11.

KA680 Firmware 12–17

KA680 Firmware
12.2 Firmware Capabilities

Figure 12–11 Memory Layout at VMB Exit

0

Base

Base+512(SP,PC)

Next page

Next page+1024

Next page+2560

PFN bitmap

QMR base

Top of Memory

. Potential "bad" memory .

256 pages for VMB
128KB block of
"good" memory
(page aligned)

− − − − − − − − − − − − − − − − − − −

n pages
size in pages n = (# of MB)/2)

32 pages

.

.

.

Reserved for RPB, initial stack

.

.

.

64 pages

.

VMB image

.

SCB (2 pages)

Stack (3 pages)

Secondary bootstrap image
(potentially exceeds block)

Unused memory

PFN bitmap
(always on page boundary and

Firmware "scratch memory"
(always 16KB)

Q22−Bus Scatter/Gather Map
(always on 32KB boundary)

Potential "bad" memory

In the event an operating system has an extraordinarily large secondary
bootstrap that overflows the 128 KB of "good" memory, VMB loads the remainder
of the image in memory above the "good" block. However, if there are not enough
contiguous "good" pages above the block to load the remainder of the image, the
bootstrap fails.

12.2.6.3 Device-Dependent Bootstrap Procedures
As mentioned earlier, the KA680 supports bootstrapping from a variety of boot
devices. The following sections describe the various device-dependent boot
procedures.

12–18 KA680 Firmware

KA680 Firmware
12.2 Firmware Capabilities

12.2.6.3.1 Disk and Tape Bootstrap Procedure The disk and tape bootstrap
supports Files–11 lookup (supporting only the ODS level 2 file structure) or
the boot block mechanism (used in PROM boot, also). Of the standard Digital
operating systems, VMS and ELN use the Files–11 bootstrap procedure and
ULTRIX-32 uses the boot block mechanism.

VMB attempts a Files–11 lookup unless the RPB$V_BBLOCK boot flag
is set. If VMB determines that the designated boot disk is a Files–11
volume, it searches the volume for the designated boot program, usually
[SYS0.SYSEXE]SYSBOOT.EXE. However, VMB can request a diagnostic image
or prompt the user for an alternate file specification (Section 12.2.6.1.2). If the
boot image cannot be found, VMB fails.

If the volume is not a Files–11 volume or the RPB$V_BBLOCK boot flag was set,
the boot block mechanism proceeds as follows:

1. Read logical block 0 of the selected boot device (this is the boot block).

2. Validate that the contents of the boot block conform to the boot block format
(Figure 12–12).

3. Use the boot block to find and read in the secondary bootstrap.

4. Transfer control to the secondary bootstrap image (the same as for a Files–11
boot).

The format of the boot block must conform to that shown in Figure 12–12.

Figure 12–12 Boot Block Format

3
1

2
4

2
3

1
6

1
5 0

BB+0:

BB+(2*n)+0:

BB+(2*n)+8:

BB+(2*n)+12:

BB+(2*n)+16:

BB+(2*n)+20:

1 n any value

low LBN

(The next segment is also used as a PROM "signature block".)

CHK k

any value, most likely 0

size in blocks of the image

load offset

sum of the previous three longwords

3
1

2
4

2
3

1
6

1
5 0

1) the 18(hex) indicates this is a VAX instruction set
2) 18(hex) + "k" = the one’s complement of "CHK"

high LBN

offset into image to start

Where:

18(Hex)

KA680 Firmware 12–19

KA680 Firmware
12.2 Firmware Capabilities

12.2.6.3.2 PROM Bootstrap Procedure The PROM bootstrap uses a variant of
the boot block mechanism. VMB searches for a valid PROM "signature block," the
second segment of the boot block defined in Figure 12–12. If PRA0 is the selected
"device," then VMB searches through Q22–bus memory on 16 KB boundaries.
If the selected "device" is PRB0, VMB checks the top 4096-byte block of the
FEPROM.

At each boundary, VMB :

1. Validates the readability of that Q22–bus memory page

2. If readable, checks to see if it contains a valid PROM signature block

If verification passes, the PROM image will be copied into main memory and
VMB will transfer control to that image at the offset specified in the PROM boot
block. If not, the next page will be tested.

Note that it is not necessary that the boot image actually reside in
PROM. Any boot image in Q22–bus memory space with a valid signature
block on a 16 KB boundary is a candidate. Indeed, auxiliary bootstrap
assumes that the image is in shared memory.

The PROM image is copied into main memory in 127 page "chunks" until the
entire PROM is moved. All destination pages beyond the primary 128 KB block
are verified to make sure they are marked good in the PFN bitmap. The PROM
must be copied contiguously, and if all required pages cannot fit into the memory
immediately following the VMB image, the boot fails.

12.2.6.3.3 Network Bootstrap Procedure Whenever a network bootstrap is
selected on a KA680, the VMB code makes continuous attempts to boot from
the network. VMB uses the DNA maintenance operations protocol (MOP) as the
transport protocol for network bootstraps and other network operations. (Refer
to Appendix E for a complete description of supported MOP functions during
bootstrap.) Once a network boot has been invoked, VMB turns on the designated
network link and repeats load attempts until either a successful boot occurs, a
fatal controller error occurs, or VMB is halted from the operator console.

The KA680 supports the load of a standard operating system, a diagnostic image,
or a user-designated program via network bootstraps. The default image is the
a standard operating system; however, a user may select an alternate image by
setting either the RPB$V_DIAG bit or the RPB$V_SOLICT bit in the boot flag
longword R5. Note that the RPB$V_SOLICT bit has precedence over the RPB$V_
DIAG bit. If both bits are set, then the solicited file is requested. (Refer to Figure
12–9 for the usage of these bits.)

VMB accepts a maximum of 39 characters for a file specification for
solicited boots. However, MOP V3 only supports a 16-character file name.
If the network server is running VMS, the following defaults apply to
the file specification: the directory MOM$LOAD: and an extension .SYS.
Therefore, the file specification need only consist of the file name if the
default directory and extension attributes are used.

The KA680 VMB uses the MOP program load sequence for bootstrapping
the module and the MOP "dump/load" protocol type for load-related message
exchanges. The types of MOP message used in the exchange are listed in
Table E–1 and Table E–2 in Appendix E.

12–20 KA680 Firmware

KA680 Firmware
12.2 Firmware Capabilities

• VMB, the requester, starts by sending a REQ_PROGRAM message in the
appropriate envelope (Table E–3 in Appendix E) to the MOP "dump/load"
multicast address (Table E–4 in Appendix E). It then waits for a response
in the form of a VOLUNTEER message from another node on the network,
the MOP load server. If a response is received, then the destination address
is changed from the multicast address to the node address of the server.
The same REQ_PROGRAM message is retransmitted to the server as an
acknowledge, which initiates the load.

• Next, VMB begins sending REQ_MEM_LOAD messages in response to any of
the following:

A MEM_LOAD message, while there is still more to load

A MEM_LOAD_w_XFER, if it is the end of the image

A PARAM_LOAD_w_XFER, if it is the end of the image and operating
system parameters are required

• The "load number" field in the load messages is used to synchronize the load
sequence. At the beginning of the exchange, both the requester and server
initialize the load number. The requester only increments the load number
if a load packet has been successfully received and loaded. This forms the
acknowledge to each exchange. The server will resend a packet with a specific
load number until it sees a request with the load number incremented. The
final acknowledge is sent by the requester and has a load number equivalent
to the load number of the appropriate LOAD_w_XFER message + 1.

• Because the request for load assistance is a MOP "must transact" operation,
the network bootstrap continues indefinitely until a volunteeer is found.
The REQ_PROGRAM message is sent out in bursts of eight at 4-second
intervals, the first four in MOP Version 4 IEEE 802.3 format and the last
four in MOP Version 3 Ethernet format. The backoff period between bursts
doubles each cycle from an initial value of four seconds, to eight seconds...
up to a maximum of five minutes. However, to reduce the likelihood of many
nodes posting requests in lock-step, a random "jitter" is applied to the backoff
period. The actual backoff time is computed as (.75+(.5*RND(x)))*BACKOFF,
where 0<=x<1.

KA680 Firmware 12–21

KA680 Firmware
12.2 Firmware Capabilities

12.2.7 Operating System Restart
An operating system restart is the process of bringing up the operating system
from a known initialization state following a processor halt. This procedure is
often called restart or warmstart, and should not be confused with a processor
restart, which results in firmware entry.

On the KA680, a restart occurs if the conditions specified in Table 12–1 are
satisfied.

To restart a halted operating system, the firmware searches system memory for
the restart parameter block (RPB), a data structure constructed for this purpose
by VMB. (Refer to Table B–2 in Appendix B for a detailed description of this data
structure.) If a valid RPB is found, the firmware passes control to the operating
system at an address specified in the RPB.

The firmware keeps a "restart in progress" (RIP) flag in CPMBX, which it uses
to avoid repeated attempts to restart a failing operating system. An additional
"restart in progress" flag is maintained by the operating system in the RPB.

The firmware uses the following algorithm to restart the operating system:

1. Check CPMBX<3>(RIP). If it is set, restart fails.

2. Print the message "Restarting system software." on the console terminal.

3. Set CPMBX<3>(RIP).

4. Search for a valid RPB. If none is found, restart fails.

5. Check the operating system RPB$L_RSTRTFLG<0>(RIP) flag. If it is set,
restart fails.

6. Write "0" on the diagnostic LEDs.

7. Dispatch to the restart address, RPB$L_RESTART, with :

SP = The physical address of the RPB plus 512
AP = The halt code
PSL = 041F0000
PR$_MAPEN = 0

If the restart is successful, the operating system must clear CPMBX<3>(RIP).

If restart fails, the firmware prints "Restart failure." on the system console.

12–22 KA680 Firmware

KA680 Firmware
12.2 Firmware Capabilities

12.2.7.1 Locating the RPB
The RPB is a page-aligned control block, which can be identified by the first three
longwords. The format of the RPB "signature" is shown in Figure Figure 12–13.
(Refer to Table B–2 in Appendix B for a complete description of the RPB.)

Figure 12–13 Locating the Restart Parameter Block

RPB: +00

+04

+08

physical address of the RPB

checksum of first 31 longwords of restart routine

physical address of the restart routine

The firmware uses the following algorithm to find a valid RPB:

1. Search for a page of memory that contains its address in the first longword.
If none is found, the search for a valid RPB has failed.

2. Read the second longword in the page (the physical address of the restart
routine). If it is not a valid physical address, or if it is zero, return to step 1.
The check for zero is necessary to ensure that a page of zeros does not pass
the test for a valid RPB.

3. Calculate the 32-bit twos-complement sum (ignoring overflows) of the first
31 longwords of the restart routine. If the sum does not match the third
longword of the RPB, return to step 1.

4. A valid RPB has been found.

12.2.8 Console Service
By definition, the KA680 is "halted" whenever the console program is running
and the triple angle prompt ">>>" is displayed on the console terminal. When
the processor is halted, the firmware provides most of the services of a standard
VAX console through the device that is designated as the system console. The
firmware also implements several commands not defined in the VAX Architecture
Reference Manual. For a summary of the console commands, see Table 12–16.

12.2.8.1 Console Control Characters
In console I/O mode, several characters have special meanings.

KA680 Firmware 12–23

KA680 Firmware
12.2 Firmware Capabilities

Table 12–5 Console Control Characters

Keyboard
Key Control Character Meaning

RETURN Carriage Return Ends a command line. No action is taken on a
command until after it is terminated by a carriage
return. A null line terminated by a carriage
return is treated as a valid, null command. No
action is taken, and the console reprompts for
input. Carriage return is echoed as carriage
return, line feed.

X Delete Character When the operator types rubout, the console
deletes the character that the operator previously
typed. What appears on the console terminal
depends on whether the terminal is a video
terminal or a hard copy terminal.
For hard copy terminals, when a rubout is
typed, the console echoes with a backslash
("<backslash>"), followed by the character being
deleted. If the operator types additional rubouts,
the additional characters deleted are echoed.
When the operator types a nonrubout character,
the console echoes another backslash, followed
by the character typed. The result is to echo
the characters deleted, surrounding them with
backslashes.
For video terminals, when RUBOUT is typed, the
previous character is erased from the screen, and
the cursor is restored to its previous position.
The console does not delete characters past the
beginning of a command line. If the operator
types more rubouts than there are characters
on the line, the extra rubouts are ignored. If a
RUBOUT is typed on a blank line, it is ignored.

Ctrl/A Control-A or F14 Toggle insertion/overstrike mode for command
line editing. By default, the console powers up to
overstrike mode.

(continued on next page)

12–24 KA680 Firmware

KA680 Firmware
12.2 Firmware Capabilities

Table 12–5 (Cont.) Console Control Characters

Keyboard
Key Control Character Meaning

Ctrl/B Control-B or up_arrow
(or down_arrow)

Recall previous command(s). Command recall is
only operable if sufficient memory is available.
This function may then be enabled and disabled
using the SET RECALL command.

Ctrl/C Control-C Causes the console to echo ^C and to abort
processing of a command. Control-C has no effect
as part of a binary load data stream. Control-C
reenables output stopped by Control-O.

Ctrl/D Control-D or left_
arrow

Moves the cursor left one position.

Ctrl/E Control-E Moves the cursor to the end of the line.

Ctrl/F Control-F or right_
arrow

Moves the cursor right one position.

Ctrl/H Control-H,
BACKSPACE or F12

Moves the cursor to the beginning of the line.

Ctrl/O Control-O Causes the console to throw away transmissions
to the console terminal until the next Control-O is
entered.
Control-O is echoed as ^O<CR> when it disables
output, but is not echoed when it reenables
output. Output is reenabled if the console prints
an error message, or if it prompts for a command
from the terminal.
Displaying a REPEAT command does not reenable
output. When output is reenabled for reading
a command, the console prompt is displayed.
Output is also enabled by Control-S.

Ctrl/Q Control-Q Causes the output to the console terminal to
resume. Additional control-Qs are ignored.
Control-S and control-Q are not echoed.

Ctrl/S Control-S Stops output to the console terminal until control-
Q is typed. Control-S and Control-Q are not
echoed.

Ctrl/U Control-U The console echoes ^U<CR>, and deletes the
entire line. If Control-U is typed on an empty
line, it is echoed, and the console prompts for
another command.

Ctrl/R Control-R Causes the console to echo <CR><LF> followed by
the current command line. This function can be
used to improve the readability of a command line
that has been heavily edited.
When Control-C is typed as part of a command
line, the console deletes the line as it does with
Control-U.

BREAK BREAK If the console is in console I/O mode, BREAK is
equivalent to Control-C and is echoed as "^C".

KA680 Firmware 12–25

KA680 Firmware
12.2 Firmware Capabilities

Note

If the local console is in program I/O mode and halts are disabled, BREAK
is ignored. If the console is in program I/O mode and halts are enabled,
BREAK causes the processor to halt and enter console I/O mode.

Control characters are typed by pressing the character key while holding down
the control key.

If an unrecognized control character (ASCII code less than 32 decimal or between
128 and 159 decimal) is typed, it is echoed as up arrow followed by the character
with ASCII code 64 greater. For example, BEL (ASCII code 7) is echoed as "^G",
because capital G is ASCII code 7+64=71. When a control character is deleted
with rubout, it is echoed the same way. After echoing the control character, the
console processes it like a normal character. Commands with control characters
are invalid unless they are part of a comment, and the console will respond with
an error message.

12.2.8.2 Console Command Syntax
The console accepts commands of lengths up to 80 characters. It responds to
longer commands with an error message. The count does not include rubouts,
rubbed out characters, or the terminating carriage return.

Commands may be abbreviated. Abbreviations are formed by dropping characters
from the end of a keyword, as long as the resulting keyword is still unique. Most
commands can be uniquely expressed with their first characters.

Multiple adjacent spaces and tabs are treated as a single space by the console.
Leading and trailing spaces and tabs are ignored. Tabs are echoed as spaces.

Command qualifiers can appear after the command keyword, or after any symbol
or number in the command. A qualifier is any contiguous set of non- whitespace
characters, and is started with a slash (ASCII code 47 decimal).

All numbers (addresses, data, counts) are in hexadecimal. Note, though, that
symbolic register names number the registers in decimal. The console does not
distinguish between upper- and lowercase either in numbers or in commands;
both are accepted.

12–26 KA680 Firmware

KA680 Firmware
12.2 Firmware Capabilities

12.2.8.3 Console Command Keywords
The KA680 firmware implements a variant of the VAX console command set.
The only commands defined in the VAX SRM and not supported by the KA680
are MICROSTEP, LOAD, and @. The CONFIGURE, HELP, MOVE, SEARCH
and SHOW commands have been added to the command set to facilitate system
debugging and access to system parameters. In general, however, the KA680
console is similar to other VAX consoles.

Table 12–6 lists command and qualifier keywords.

Table 12–6 Command, Parameter, and Qualifier Keywords

Command Keywords

Processor Control Data Transfer Console Control

B*OOT D*EPOSIT CONF*IGURE

C*ONTINUE E*XAMINE F*IND

H*ALT M*OVE R*EPEAT

I*NITIALIZE SEA*RCH SET

N*EXT X SH*OW

S*TART T*EST

U*NJAM XDELTA

SET & SHOW Parameter Keywords

BO*OT BF*L(A)G DE*VICE

DS*SI ET*HERNET HA*LT

H*OST L*ANGUAGE M*EMORY

Q*BUS R*ECALL RL*V12

U*QSSP VERS*ION T*RANSLATION

Qualifier Keywords

Data Control Address Space Control
Command
Specific

/B /G /IN*STRUCTION

/W /I /NO*T

/L /P /R5: or /

/Q /V /RP*B or /ME*M

/N: /M /F*ULL

/ST*EP: /U /DU*P or
/MA*INTENANCE

/WR*ONG — /DS*SI or
/U*QSSP

/DI*SK or /T*APE

(continued on next page)

KA680 Firmware 12–27

KA680 Firmware
12.2 Firmware Capabilities

Table 12–6 (Cont.) Command, Parameter, and Qualifier Keywords

Qualifier Keywords

Data Control Address Space Control
Command
Specific

/SE*RVICE

"*" indicates the minimal number of characters that are required to uniquely identify the keyword.

A complete summary of the console commands is provided in Table 12–16
following the command descriptions.

12.2.8.4 Console Command Qualifiers
All qualifers in the console command syntax are global. That is, they may appear
in any place on the command line after the command keyword.

All qualifiers have unique meanings throughout the console, regardless of the
command. For example, the "/B" qualifier always means byte.

Table 12–17 is a summary of the qualifers recognized by the KA680 console.

12.2.8.5 Console Numeric Expression Radix Specifiers
By default, the console treats any numeric expression used as an address or a
datum as a hexadecimal integer. The user may override the default radix by
using one of the specifiers listed in Table 12–7.

Table 12–7 Console Radix Specifiers

Form 1 Form 2 Radix

%b ^b Binary

%o ^o Octal

%d ^d Decimal

%x ^x Hexadecimal, default

For instance, the value 19 is by default hexadecimal, but it may also be
represented as %b11001, %o31, %d25, and %x19 (or in the alternate form as
^b11001, ^o31, ^d25, and ^x19).

12–28 KA680 Firmware

KA680 Firmware
12.2 Firmware Capabilities

12.2.8.6 Command Address Specifiers
Several commands take an address or addresses as arguments. In the context
of the console, an address has two components, the address space, and the offset
into that space. The console supports six address spaces: physical memory (/P
qualifier), virtual memory (/V qualifier), general-purpose registers (/G qualifier),
internal processor registers (/I qualifier), protected memory (/U qualifier), and the
PSL (/M qualifier).

The address space that the console references is inherited from the previous
console reference, unless explicitly specified. The initial address space reference
is physical.

12.2.8.7 Console Symbolic Addressing
The KA680 console supports symbolic references to addresses. A symbolic
reference simultaneously defines the address space for a given symbol. Table 12–8
lists the symbols that use the last referenced address and address space to
compute the effective address. Table 12–9, Table 12–10, and Table 12–11 list the
symbolic addresses supported by the console grouped according to address space.

Table 12–8 Console Symbols Using Last Referenced Address

"*" The last location successfully referenced in an EXAMINE or DEPOSIT
command.

"+" The location immediately following the last location successfully referenced
in an EXAMINE or DEPOSIT command.
For references to physical or virtual memory spaces, the location
referenced is the last address, plus the size of the last reference (1 for
byte, 2 for word, 4 for longword, 8 for quadword). For other address
spaces, the address is the last address referenced plus one.

"-" The location immediately preceding the last location successfully
referenced in an EXAMINE or DEPOSIT command.
For references to physical or virtual memory spaces, the location
referenced is the last address minus the size of this reference (1 for byte,
2 for word, 4 for longword, 8 for quadword). For other address spaces, the
address is the last address referenced minus one.

"@" The location addressed by the last location successfully referenced in an
EXAMINE or DEPOSIT command.

Table 12–9 Console Symbols for General-Purpose Registers - /G

Symbol Address Symbol Address Symbol Address Symbol Address

R0 00 R4 04 R8 08 R12 (AP) 0C

R1 01 R5 05 R9 09 R13 (FP) 0D

R2 02 R6 06 R10 0A R14 (SP) 0E

R3 03 R7 07 R11 0B R15 (PC) 0F

/M - Processor Status Longword

PSL — — — — —

KA680 Firmware 12–29

KA680 Firmware
12.2 Firmware Capabilities

Table 12–10 Console Symbols for Internal/External Processor Registers - /I

Symbol Address Symbol Address Symbol Address Symbol Address

pr$_ksp 00 pr$_pcbb 10 pr$_rxcs 20 —- 30

pr$_esp 01 pr$_scbb 11 pr$_rxdb 21 —- 31

pr$_ssp 02 pr$_ipl 12 pr$_txcs 22 —- 32

pr$_usp 03 pr$_astlv 13 pr$_txdb 23 —- 33

pr$_isp 04 pr$_sirr 14 —- 24 —- 34

—- 05 pr$_sisr 15 —- 25 —- 35

—- 06 —- 16 pr$_mcesr 26 —- 36

—- 07 —- 17 —- 27 pr$_ioreset 37

pr$_p0br 08 pr$_iccs 18 —- 28 pr$_mapen 38

pr$_p0lr 09 pr$_nicr 19 —- 29 pr$_tbia 39

pr$_p1br 0A pr$_icr 1A pr$_savpc 2A pr$_tbis 3A

pr$_p1lr 0B pr$_todr 1B pr$_savpsl 2B —- 3B

pr$_sbr 0C —- 1C —- 2C —- 3C

pr$_slr 0D —- 1D —- 2D —- 3D

—- 0E —- 1E —- 2E pr$_sid 3E

—- 0F —- 1F —- 2F pr$_tbchk 3F

pr$_ecr 7D —- —- —- —- —- —-

pr$_cctl A0 pr$_neoadr B0 pr$_vmar D0 —- F0

—- A1 —- B1 pr$_vtag D1 —- F1

(continued on next page)

12–30 KA680 Firmware

KA680 Firmware
12.2 Firmware Capabilities

Table 12–10 (Cont.) Console Symbols for Internal/External Processor Registers - /I

Symbol Address Symbol Address Symbol Address Symbol Address

pr$_bcdecc A2 pr$_neocmd B2 pr$_vdata D2 pr$_pcadr F2

pr$_bcetsts A3 —- B3 pr$_icsr D3 —- F3

pr$_bcetidx A4 pr$_nedathi B4 —- D4 pr$_pcsts F4

pr$_bcetag A5 —- B5 —- D5 —- F5

pr$_bcedsts A6 pr$_nedatlo B6 —- D6 —- F6

pr$_bcedidx A7 —- B7 pr$_pamode E7 —- F7

pr$_bcedecc A8 pr$_neicmd B8 —- E8 pr$_pcctl F8

pr$_cefadr AB —- B9 —- E9 —- F9

pr$_cefsts AC —- BA pr$_tbadr EC —- FA

pr$_nests AE —- BB pr$_tbsts ED —- FB

pr$_bctag 01000000 pr$_bcflush 01400000 pr$_pctag 01800000 pr$_pcdap 01C00000

Table 12–11 Console Symbols for VAX Physical I/O Space Registers - /P

Symbol Address Symbol Address Symbol Address Symbol Address

qbio 20000000 qbmem 30000000 qbmbr 20
080010

—- —-

rom 20040000 —- —- bdr 20084004 —- —-

scr 20080000 dser 20080004 qbear 20
080008

dear 2008000C

ipcr0 20001f40 ipcr1 20001f42 ipcr2 20001f44 ipcr3 20001f46

ssc_ram 20140400 ssc_cr 20140010 ssc_cbtcr 20140020 ssc_dledr 20140030

ssc_ad0mat 20140130 ssc_ad0msk 20140134 ssc_ad1mat 20140140 ssc_ad1msk 20140144

ssc_tcr0 20140100 ssc_tir0 20140104 ssc_tnir0 20140108 ssc_tivr0 2014010c

ssc_tcr1 20140110 ssc_tir1 20140114 ssc_tnir1 20140118 ssc_tivr1 2014011c

nicsr0 20008000 nicsr1 20008004 nicsr2 20008008 nicsr3 2000800C

nicsr4 20008010 nicsr5 20008014 nicsr6 20008018 nicsr7 2000801C

—- 20008020 nicsr9 20008024 nicsr10 20008028 nicsr11 2000802C

nicsr12 20008030 nicsr13 20008034 nicsr14 20008038 nicsr15 2000803C

sgec_setup 20008000 sgec_txpoll 20008004 sgec_rxpoll 20008008 sgec_rba 2000800C

sgec_tba 20008010 sgec_status 20008014 sgec_mode 20008018 sgec_sbr 2000801C

—- 20008020 sgec_wdt 20008024 sgec_mfc 20008028 sgec_verlo 2000802C

sgec_verhi 20008030 sgec_proc 20008034 sgec_bpt 20008038 sgec_cmd 2000803C

shac1_sswcr 20004030 shac1_sshma 20004044 shac1_pqbbr 20004048 shac1_psr 2000404c

(continued on next page)

KA680 Firmware 12–31

KA680 Firmware
12.2 Firmware Capabilities

Table 12–11 (Cont.) Console Symbols for VAX Physical I/O Space Registers - /P

Symbol Address Symbol Address Symbol Address Symbol Address

shac1_pesr 20004050 shac1_pfar 20004054 shac1_ppr 20004058 shac1_pmcsr 2000405C

shac1_pcq0cr 20004080 shac1_pcq1cr 20004084 shac1_pcq2cr 20004088 shac1_pcq3cr 2000408C

shac1_pdfqcr 20004090 shac1_
pmfqcr

20004094 shac1_psrcr 20004098 shac1_pecr 2000409C

shac1_pdcr 200040A0 shac1_picr 200040A4 shac1_pmtcr 200040A8 shac1_
pmtecr

200040AC

shac2_sswcr 20004230 shac2_sshma 20004244 shac2_pqbbr 20004248 shac2_psr 2000424c

shac2_pesr 20004250 shac2_pfar 20004254 shac2_ppr 20004258 shac2_pmcsr 2000425C

shac2_pcq0cr 20004280 shac2_pcq1cr 20004284 shac2_pcq2cr 20004288 shac2_pcq3cr 2000428C

shac2_pdfqcr 20004290 shac2_
pmfqcr

20004294 shac2_psrcr 20004298 shac2_pecr 2000429C

shac2_pdcr 200042A0 shac2_picr 200042A4 shac2_pmtcr 200042A8 shac2_
pmtecr

200042AC

shac_sswcr 20004230 shac_sshma 20004244 shac_pqbbr 20004248 shac_psr 2000424c

shac_pesr 20004250 shac_pfar 20004254 shac_ppr 20004258 shac_pmcsr 2000425C

shac_pcq0cr 20004280 shac_pcq1cr 20004284 shac_pcq2cr 20004288 shac_pcq3cr 2000428C

shac_pdfqcr 20004290 shac_pmfqcr 20004294 shac_psrcr 20004298 shac_pecr 2000429C

shac_pdcr 200042A0 shac_picr 200042A4 shac_pmtcr 200042A8 shac_pmtecr 200042AC

nmccwb 21000110 —- —- —- —- —- —-

memcon0 21018000 memcon1 21018004 memcon2 21018008 memcon3 2101800c

memcon4 21018010 memcon5 21018014 memcon6 21018018 memcon7 2101801c

memsig8 21018020 memsig9 21018024 memsig10 21018028 memsig11 2101802c

memsig12 21018030 memsig13 21018034 memsig14 21018038 memsig15 2101803c

mear 21018040 mser 21018044 nmcdsr 21018048 moamr 2101804C

cear 21020000 ncadsr 21020004 csear1 21020008 csear2 2102000c

cpioea1 21020010 cpioar2 21020014 ndear 21020018 —- —-

12–32 KA680 Firmware

KA680 Firmware
12.2 Firmware Capabilities

12.2.8.8 References to Processor Registers and Memory
The KA680 console is implemented in VAX macrocode executing from FEPROM.
Actual processor registers cannot be modified by the console command interpreter.
When the console is entered, the console saves the processor registers in console
memory and all command references to them are directed to the corresponding
saved values, not to the registers themselves.

When the console reenters program I/O mode, the saved registers are restored
and any changes become operative only then. References to processor memory
are handled normally. The binary load and unload command can not reference
the console memory pages.

The following registers are saved by the console, and any direct reference to these
registers will be intercepted by the console and the access will be to the saved
copies:

• R0...R15 - The general-purpose registers (GPRs)

• PR$_IPL - The interrupt priority level register (IPL)

• PR$_SCBB - The system control block base register (SCBB)

• PR$_ISP - The interrupt stack pointer (ISP)

• PR$_MAPEN - The memory management enable register (MAPEN)

• PR$_ECR - Ebox control register (ECR)

The following registers are also saved, yet may be accessed directly via console
commands. Writing values to these registers may make the console inoperative.

• PR$_SAVPC - The halt PC (SAVPC)

• PR$_SAVPSL - The halt PSL (PSL)

• ADxMCH/ADxMSK - The SSC address decode and match registers (BDMTR,
BDMKR)

• SSCCR - The SSC configuration register

• DLEDR - The SSC diagnostic LED register

KA680 Firmware 12–33

KA680 Firmware
12.2 Firmware Capabilities

12.2.9 Console Commands
The following sections define the commands accepted by the console when the
KA680 is in console I/O mode. The following conventions are used to describe
command syntax:

Syntax Conventions
The following conventions are used to describe command syntax:

Table 12–12 Command Syntax

[] Enclose optional command elements.

{ } Enclose a command element.

... Indicates a series of command elements.

The console allows you to override the default radix by using the following
commands:

Table 12–13 Default Radix

%d Decimal (for example, %d1234)

%x Hexadecimal (for example, %xFEEBFCEA)

%b Binary (for example, %b1001)

%o Octal (for example, %o1070)

The following is an example of a console EXAMINE command that specifies a
decimal value for the /N qualifier:

>>>EX/L/P/N:%d1023 0

12–34 KA680 Firmware

BOOT

BOOT

Format

BOOT [qualifier] [{boot_device}[:]]

Qualifiers

/R5:{boot_flags}
Boot flags is a 32-bit hex value that is passed to VMB in R5. No interpretation
of this value is performed by the console. Refer to Figure 12–9 for the bit
assignments of R5. A default boot flags longword may be specified using the SET
BFLAG command and displayed with the SHOW BFLAG command.

/{boot_flags}
Equivalent to the form above.

Arguments

[{boot_device}]
The boot device name may be any arbitrary character string, with a maximum
length of 17 characters. Longer strings cause a "VAL TOO BIG" error message
to be issued from the console. Otherwise, the console makes no attempt at
interpreting or validating the device name. The console converts the string to
all uppercase, and passes to VMB a string descriptor to this device name in
R0. A default boot device may be specified using the SET BOOT command and
displayed with the SHOW BOOT command. The factory default is the Ethernet
device, EZA0.

Description

The console initializes the processor and transfers execution to VMB. VMB
attempts to boot the operating system from the specified device or the default
boot device if none is specified.

If a list of devices is specified, VMB attempts to boot from each device, in turn,
and then transfers control to the first successfully booted image. In a list,
network devices should always be placed last because network bootstraps only
terminate if a fatal hardware error occurs or an image is successfully loaded.

The console qualifies the bootstrap operation by passing a boot flags to VMB in
R5. A more detailed description of the bootstrap process and how the default
bootstrap device is determined is described in Section 12.2.6.

In case either the qualifiers or the device name is absent, the corresponding
default value is used. Explicitly stating the boot flags or the boot device overrides
the current default value for the current boot request, but does not change the
corresponding default value in NVRAM.

There are three mechanisms by which the default boot device and and boot flags
may be set.

1. The operating system may write a default boot device and flags into the
appropriate locations in NVRAM (Appendix A).

2. The user may explicitly set the default boot device and boot flags with the
console SET BOOT and SET BFLAG commands, respectively.

KA680 Firmware 12–35

BOOT

3. The console will prompt the user for the default boot device if any of the
following conditions are met:

• The power-up mode switch is set to "query" mode.

• The console detects that the battery failed; therefore, the contents of
NVRAM are no longer valid.

• The console detects that the default boot device has not been explicitly
set by the user. Either a previous device query timed out and defaulted
to EZA0 or neither (1) nor (2) has been performed. Simply stated, the
console will prompt the user on every powerup for a default boot device,
until such a request has been satisfied.

On powerup, if no default boot device is specified in NVRAM, the console issues a
list of potential bootable devices and then queries the user for a device name. If
no device name is entered within 30 seconds, EZA0 is used. However, EZA0 does
not become the "default" boot device.

Examples

>>>show boot
DUA0
>>>show bflag
0
>>>b ! Boot using default boot flags and device.
(BOOT/R5:0 DUA0)

2..
-DUA0

>>>bo EZA0 ! Boot using default boot flags and specified device.
(BOOT/R5:0 EZA0)

2..
-EZA0

>>>boot/10 ! Boot using specified boot flags and default device.
(BOOT/R5:10 DUA0)

2..
-DUA0

>>>boot /r5:220 EZA0 ! Boot using specified boot flags and device.
(BOOT/R5:220 EZA0)

2..
-EZA0

>>>boot dia0,mua0,eza0
(BOOT/R5:0 DIA0,MUA0,EZA0)

2..

12–36 KA680 Firmware

CONFIGURE

CONFIGURE

Format

CONFIGURE

Qualifiers

None.

Arguments

None.

Description

CONFIGURE is similar to the VMS SYSGEN CONFIG utility. This feature
simplifies system configuration by providing information that is typically
available only with a running operating system.

The CONFIGURE command invokes an interactive mode that permits the user to
enter Q22–bus device names, then generates a table of Q22–bus I/O page device
CSR addresses and device vectors.

Examples

>>>configure
Enter device configuration, HELP, or EXIT
Device,Number? help
Devices:
LPV11 KXJ11 DLV11J DZQ11 DZV11 DFA01
RLV12 TSV05 RXV21 DRV11W DRV11B DPV11
DMV11 DELQA DEQNA DESQA RQDX3 KDA50
RRD50 RQC25 KFQSA-DISK TQK50 TQK70 TU81E
RV20 KFQSA-TAPE KMV11 IEQ11 DHQ11 DHV11
CXA16 CXB16 CXY08 VCB01 QVSS LNV11
LNV21 QPSS DSV11 ADV11C AAV11C AXV11C
KWV11C ADV11D AAV11D VCB02 QDSS DRV11J
DRQ3B VSV21 IBQ01 IDV11A IDV11B IDV11C
IDV11D IAV11A IAV11B MIRA ADQ32 DTC04
DESNA IGQ11 DIV32 KIV32 DTCN5 DTC05
KWV32 KZQSA M7577 LNV24 M7576 DEQRA
Numbers:
1 to 255, default is 1
Device,Number? kda50
Device,Number? kfqsa
Device is ambiguous
Device,Number? kfqsa-disk
Device,Number? kfqsa-tape
Device,Number? cxy08
Device,Number? cxa16
Device,Number? exit

Address/Vector Assignments
-772150/154 KDA50
-760334/300 KFQSA-DISK
-774500/260 KFQSA-TAPE
-760500/310 CXY08
-760520/320 CXA16
>>>

KA680 Firmware 12–37

CONTINUE

CONTINUE

Format

CONTINUE

Qualifiers

None.

Arguments

None.

Description

The processor begins instruction execution at the address currently contained in
the program counter. Processor initialization is not performed. The console enters
program I/O mode. Internally, the CONTINUE command pushes the user’s PC
and PSL onto the user’s ISP, and then executes an REI instruction. This implies
that the user’s ISP is pointing to some valid memory.

Examples

>>>continue
>>>

12–38 KA680 Firmware

DEPOSIT

DEPOSIT

Format

DEPOSIT [qualifier_list] {address} {data} [{data}...]

Qualifiers

/B
The data size is byte.

/W
The data size is word.

/L
The data size is longword.

/Q
The data size is quadword.

/G
The address space is the general-purpose register set, R0 through R15. The data
size is always long.

/I
The address space is internal processor registers (IPRs). These are the registers
only accessible by the MTPR and MFPR instructions. The data size is always
long.

/M
The address space is the processor status longword (PSL).

/P
The address space is physical memory.

/V
The address space is virtual memory. All access and protection checking occur.
If the access would not be allowed to a program running with the current PSL,
the console issues an error message. Virtual space DEPOSITs cause the PTE<M>
bit to be set. If memory mapping is not enabled, virtual addresses are equal to
physical addresses.

/U
Access to console private memory is allowed. This qualifier also disables virtual
address protection checks. On virtual address writes, the PTE<M> bit will not
be set if the /U qualifier is present. This qualifier is not inherited, and must be
respecified on each command.

/N:{count}
The address is the first of a range. The console deposits to the first address,
then to the specified number of succeeding addresses. Even if the address is
the symbolic address "-", the succeeding addresses are at larger addresses.
The symbolic address specifies only the starting address, not the direction
of succession. For repeated references to preceding addresses, use REPEAT
DEPOSIT - <DATA>.

KA680 Firmware 12–39

DEPOSIT

/STEP:{size}
The number to add to the current address. Normally this defaults to the data
size, but is overridden by the presence of this qualifier. This qualifier is not
inherited.

/WRONG
The ECC bits for this data are forced to the value of 3. (ECC bits of 3 will always
generate a double bit error.)

Arguments

{address}
A longword address that specifies the first location into which data is deposited.
The address can be any legal address specifier as defined in Section 12.2.8.6.

{data}
The data to be deposited. If the specified data is larger than the deposit data size,
the console ignores the command and issues an error response. If the specified
data is smaller than the deposit data size, it is extended on the left with zeros.

[{data}]
Additional data to be deposited (up to a maximum of six values).

Description

Deposits the data into the address specified. If no address space or data size
qualifiers are specified, the defaults are the last address space and data size
used in a DEPOSIT, EXAMINE, MOVE, or SEARCH command. After processor
initialization, the default address space is physical memory, the default data size
is a longword, and the default address is zero. If conflicting address space or data
sizes are specified, the console ignores the command and issues an error response.

Examples

>>>d/p/b/n:1FF 0 0 ! Clear first 512 bytes of physical memory.

>>>d/v/l/n:3 1234 5 ! Deposit 5 into four longwords starting at
virtual memory address 1234.

>>>d/n:8 R0 FFFFFFFF ! Loads GPRs R0 through R8 with -1.

>>>d/n:200 - 0 ! Starting at previous address, clear 513 bytes.

>>>d/l/p/n:10/s:200 0 8 ! Deposit 8 in the first longword of
the first 17 pages in physical memory.

>>>

12–40 KA680 Firmware

EXAMINE

EXAMINE

Format

EXAMINE [qualifier_list] [{address}]

Qualifiers

/B
The data size is byte.

/W
The data size is word.

/L
The data size is longword.

/Q
The data size is quadword.

/G
The address space is the general-purpose register set, R0 through R15. The data
size is always long.

/I
The address space is internal processor registers (IPRs). These are the registers
only accessible by the MTPR and MFPR instructions. The data size is always
long.

/M
The address space is the processor status longword (PSL).

/P
The address space is physical memory. Note that when virtual memory is
examined, the address space and address in the response are the translated
physical address.

/V
The address space is virtual memory. All access and protection checking occur.
If the access would not be allowed to a program running with the current PSL,
the console issues an error message. If memory mapping is not enabled, virtual
addresses are equal to physical addresses.

/M
The address space and display are the PSL. The data size is always long.

/U
Access to console private memory is allowed. This qualifier also disables virtual
address protection checks. This qualifier is not inherited, and must be respecified
with each command.

/N:{count}
The address is the first of a range. The console deposits to the first address,
then to the specified number of succeeding addresses. Even if the address is
the symbolic address "-", the succeeding addresses are at larger addresses.
The symbolic address specifies only the starting address, not the direction

KA680 Firmware 12–41

EXAMINE

of succession. For repeated references to preceding addresses, use "REPEAT
EXAMINE - <DATA>".

/STEP:{size}
The number to add to the current address. Normally this defaults to the data
size, but is overridden by the presence of this qualifier. This qualifier is not
inherited.

/WRONG
ECC errors on this read access to main memory are ignored. Also, if specified,
the ECC bits actually read are displayed in parentheses following the datum. In
the case of quadword and octaword data, the ECC bits shown apply to the most
significant longword only.

/INSTRUCTION
Disassemble and display the VAX Macro-32 instruction at the specified address.

Arguments

[{address}]
A longword address that specifies the first location to be examined. The address
can be any legal address specifier as defined in Section 12.2.8.6. If no address is
specified, "+" is assumed.

Description

Examines the contents of the memory location or register specified by the address.
If no address is specified, "+" is assumed. The display line consists of a single
character address specifier, the hexadecimal physical address to be examined, and
the examined data also in hexadecimal.

EXAMINE uses the same qualifiers as DEPOSIT. However, the /WRONG qualifier
will cause EXAMINEs to ignore ECC errors on reads from physical memory.
Additionally, the EXAMINE command supports an /INSTRUCTION qualifier,
which will disassemble the instructions at the current address.

12–42 KA680 Firmware

EXAMINE

Examples

>>>ex pc ! Examine the PC.
G 0000000F FFFFFFFC

>>>ex sp ! Examine the SP.
G 0000000E 00000200

>>>ex psl ! Examine the PSL.
M 00000000 041F0000

>>>e/m ! Examine PSL another way.
M 00000000 041F0000

>>>e r4/n:5 ! Examine R4 through R9.
G 00000004 00000000
G 00000005 00000000
G 00000006 00000000
G 00000007 00000000
G 00000008 00000000
G 00000009 801D9000

>>>ex pr$_scbb ! Examine the SCBB, IPR 17.
I 00000011 2004A000

>>>e/p 0 ! Examine local memory 0.
P 00000000 00000000

>>>ex /ins 20040000 ! Examine 1st byte of EPROM.
P 20040000 11 BRB 20040019

>>>ex /ins/n:5 20040019 ! Disassemble from branch.
P 20040019 D0 MOVL I^#20140000,@#20140000
P 20040024 D2 MCOML @#20140030,@#20140502
P 2004002F D2 MCOML S^#0E,@#20140030
P 20040036 7D MOVQ R0,@#201404B2
P 2004003D D0 MOVL I^#201404B2,R1
P 20040044 DB MFPR S^#2A,B^44(R1)

>>>e/ins ! Look at next instruction.
P 20040048 DB MFPR S^#2B,B^48(R1)

>>>

KA680 Firmware 12–43

FIND

FIND

Format

FIND [qualifier-list]

Qualifiers

/MEMORY
Search memory for a page-aligned block of good memory, 128 KB in length. The
search looks only at memory that is deemed usable by the bitmap. This command
leaves the contents of memory unchanged.

/RPB
Search all physical memory for a restart parameter block. The search does not
use the bitmap to qualifiy which pages are looked at. The command leaves the
contents of memory unchanged.

Arguments

None.

Description

The console searches main memory starting at address zero for a page-aligned
128 KB segment of good memory, or a restart parameter block (RPB). If the
segment or block is found, its address plus 512 is left in SP (R14). If the segment
or block is not found, an error message is issued, and the contents of SP are
preserved. If no qualifier is specified, /RPB is assumed.

Examples

>>>ex sp ! Check the SP.
G 0000000E 00000000

>>>find /mem ! Look for a valid 128KB.
>>>ex sp ! Note where it was found.
G 0000000E 00000200

>>>find /rpb ! Check for valid RPB.
?2C FND ERR 00C00004 ! None to be found here.
>>>

12–44 KA680 Firmware

HALT

HALT

Format

HALT

Arguments

None.

Description

This command has no effect and is included for compatibility with other consoles.

Examples

>>>halt ! Pretend to halt.
>>>

KA680 Firmware 12–45

HELP

HELP

Format

HELP

Qualifiers

None.

Arguments

None.

Description

This command has been included to help the console operator answer simple
questions about command syntax and usage.

Examples
>>>help

Following is a brief summary of all the commands supported by the console:

UPPERCASE denotes a keyword that you must type in
| denotes an OR condition
[] denotes optional parameters
<> denotes a field specifying a syntactically correct value
.. denotes one of an inclusive range of integers
... denotes that the previous item may be repeated

Valid qualifiers:
/B /W /L /Q /INSTRUCTION
/G /I /V /P /M
/STEP: /N: /NOT
/WRONG /U

12–46 KA680 Firmware

HELP

Valid commands:
BOOT [/R5:<boot_flags> | /<boot_flags>] [<boot_device>[:]]
CONFIGURE
CONTINUE
DEPOSIT [<qualifiers>] <address> [<datum> [<datum>]]
EXAMINE [<qualifiers>] [<address>]
FIND [/MEMORY | /RPB]
HALT
HELP
INITIALIZE
MOVE [<qualifiers>] <address> <address>
NEXT [count]
REPEAT <command>
SEARCH [<qualifiers>] <address> <pattern> [<mask>]
SET BFL(A)G <boot_flags>
SET BOOT <boot_device>
SET CONTROLP <0..1 | DISABLED | ENABLED>
SET HALT <0..4 | DEFAULT | RESTART | REBOOT | HALT | RESTART_REBOOT>
SET HOST/DUP/DSSI/BUS<0..1> <node_number> [<task>]
SET HOST/DUP/UQSSP </DISK | /TAPE> <controller_number> [<task>]
SET HOST/DUP/UQSSP <physical_CSR_address> [<task>]
SET HOST/MAINTENANCE/UQSSP/SERVICE <controller_number>
SET HOST/MAINTENANCE/UQSSP <physical_CSR_address>
SET LANGUAGE <1..15>
SET RECALL <0..1 | DISABLED | ENABLED>
SHOW BFL(A)G
SHOW BOOT
SHOW DEVICE
SHOW DSSI
SHOW ETHERNET
SHOW HALT
SHOW LANGUAGE
SHOW MEMORY [/FULL]
SHOW RECALL
SHOW RLV12
SHOW QBUS
SHOW UQSSP
SHOW SCSI
SHOW TRANSLATION <physical_address>
SHOW VERSION
START <address>
TEST [<test_code> [<parameters>]]
UNJAM
X <address> <count>

>>>

Examples

>>>help

Following is a brief summary of all the commands supported by the console:

UPPERCASE denotes a keyword that you must type in
| denotes an OR condition
[] denotes optional parameters
<> denotes a field specifying a syntactically correct value
.. denotes one of an inclusive range of integers
... denotes that the previous item may be repeated

Valid qualifiers:
/B /W /L /Q /INSTRUCTION
/G /I /V /P /M
/STEP: /N: /NOT
/WRONG /U

KA680 Firmware 12–47

HELP

Valid commands:
BOOT [[/R5:]<boot_flags>] [<boot_device>]
CONFIGURE
CONTINUE
DEPOSIT [<qualifiers>] <address> <datum>

[<datum>...]
EXAMINE [<qualifiers>] [<address>]
FIND [/MEMORY | /RPB]
HALT
HELP
INITIALIZE
MOVE [<qualifiers>] <address> <address>
NEXT [<count>]
REPEAT <command>
SEARCH [<qualifiers>] <address> <pattern>

[<mask>]
SET BFLG <boot_flags>
SET BOOT <boot_device>
SET CONTROLP <0..1 | DISABLED | ENABLED>
SET HALT <0..4 | DEFAULT | RESTART | REBOOT | HALT | RESTART_REBOOT>
SET HOST/DUP/DSSI/BUS:<0..1> <node_number>

[<task>]
SET HOST/DUP/UQSSP </DISK | /TAPE> <controller_number>

[<task>]
SET HOST/DUP/UQSSP <physical_CSR_address> [<task>]
SET HOST/MAINTENANCE/UQSSP/SERVICE <controller_number>
SET HOST/MAINTENANCE/UQSSP <physical_CSR_address>
SET LANGUAGE <1..15>
SET RECALL <0..1 | DISABLED | ENABLED>
SHOW BFLG
SHOW BOOT
SHOW CONTROLP
SHOW DEVICE
SHOW DSSI
SHOW ETHERNET
SHOW HALT
SHOW LANGUAGE
SHOW MEMORY [/FULL]
SHOW QBUS
SHOW RECALL
SHOW RLV12
SHOW SCSI
SHOW TRANSLATION <physical_address>
SHOW UQSSP
SHOW VERSION
START <address>
TEST [<test_code> [<parameters>]]
UNJAM
X <address> <count>

12–48 KA680 Firmware

INITIALIZE

INITIALIZE

Format

INITIALIZE

Qualifiers

None.

Arguments

None.

Description

A processor initialization is performed. The following registers are initialized, as
specified in the VAX Architecture Standard.

PSL — 041F0000
IPL — 1F
ASTLVL — 4
SISR — 0
ICCS — bits <6> and <0> are clear, the rest are unpredictable
RXCS — 0
TXCS — 80
MAPEN — 0
CPU cache — flushed
instruction buffer — unaffected
console previous reference — longword, physical, address 0
TODR — unaffected
main memory — unaffected
general registers — unaffected
halt code — unaffected
bootstrap in progress flag — unaffected
internal restart in progress flag — unaffected

The KA680 firmware performs the following additional initialization:

The CDAL bus timer is initialized.
The address decode and match registers are initialized.
The programmable timer interrupt vectors are initialized.
The BDR registers are read to determine the baud rate, and then the SSCCR
is configured accordingly.
All error status bits are cleared.

Examples

>>>init
>>>

KA680 Firmware 12–49

MOVE

MOVE

Format

MOVE [qualifier-list] {src_address} {dest_address}

Qualifiers

/B
The data size is byte.

/W
The data size is word.

/L
The data size is longword.

/Q
The data size is quadword.

/P
The address space is physical memory.

/V
The address space is virtual memory. All access and protection checking occur.
If the access would not be allowed to a program running with the current PSL,
the console issues an error message. Virtual space MOVEs cause the destination
PTE<M> bit to be set. If memory mapping is not enabled, virtual addresses are
equal to physical addresses.

/U
Access to console private memory is allowed. This qualifier also disables virtual
address protection checks. On virtual address writes, the PTE<M> bit will not
be set if the /U qualifier is present. This qualifier is not inherited, and must be
respecified on each command.

/N:{count}
The address is the first of a range. The console deposits to the first address,
then to the specified number of succeeding addresses. Even if the address is
the symbolic address "-", the succeeding addresses are at larger addresses.
The symbolic address specifies only the starting address, not the direction of
succession.

/STEP:{size}
The number to add to the current address. Normally this defaults to the data
size, but is overriden by the presence of this qualifier. This qualifier is not
inherited.

/WRONG
On reads, ECC errors on the access of data in main memory are ignored. On
writes, the ECC bits for this data are forced to the value of 3. (ECC bits of 3 will
always generate a double bit error.)

12–50 KA680 Firmware

MOVE

Arguments

{src_address}
A longword address that specifies the first location of the source data to be copied.

{dest_address}
A longword address that specifies the destination of the first byte of data. These
addresses may be any legal address specifier as defined in Section 12.2.8.6. If no
address is specified, "+" is assumed.

Description

The console copies the block of memory starting at the source address to a block
beginning at the destination address. Typically, this command is used with the
/N: qualifier to transfer large blocks of data. The destination will correctly reflect
the contents of the source, regardless of the overlap between the source and the
data.

The MOVE command actually performs byte, word, longword, and quadword
reads and writes as needed in the process of moving the data. Moves are
supported for the physical and virtual address spaces only.

Examples

>>>ex /n:4 0 ! Observe destination.
P 00000000 00000000
P 00000004 00000000
P 00000008 00000000
P 0000000C 00000000
P 00000010 00000000

>>>ex /n:4 200 ! Observe source data.
P 00000200 58DD0520
P 00000204 585E04C1
P 00000208 00FF8FBB
P 0000020C 5208A8D0
P 00000210 540CA8DE

>>>move /n:4 200 0 ! Move the data.
>>>ex /n:4 0 ! Observe the destination.
P 00000000 58DD0520
P 00000004 585E04C1
P 00000008 00FF8FBB
P 0000000C 5208A8D0
P 00000010 540CA8DE

>>>

KA680 Firmware 12–51

NEXT

NEXT

Format

NEXT {count}

Qualifiers

None.

Arguments

{count}
A value representing the number of macroinstructions to execute.

Description

The NEXT command causes the processor to "step" the specified number of
macroinstructions. If no count is specified, "single-step" is assumed. The console
then enters "Spacebar Step Mode". In this mode, subsequent spacebar strokes
initiate single steps and a carriage return forces a return to the console prompt.

The console uses the trace and trace pending bits in the PSL, and the SCB trace
pending vector, to implement the NEXT function. This creates the following
restrictions on the usage of the NEXT command:

• If memory management is enabled, the NEXT command works if and only if
the first page in SSC RAM is mapped somewhere in S0 (system) space.

• The NEXT command, due to the instructions executed in implementation,
does not work where time-critical code is being executed.

• The NEXT command elevates the IPL to 31 for long periods of time
(milliseconds) while single-stepping over several commands.

• Unpredictable results occur if the macroinstruction being stepped over
modifies the SCBB, or the trace trap entry. This means that the NEXT
command cannot be used in conjunction with other debuggers. This also
implies that the user should validate PR$_SCCB before using the NEXT
command.

12–52 KA680 Firmware

NEXT

Examples

>>>dep 1000 50D650D4 ! Create a simple program.
>>>dep 1004 125005D1
>>>dep 1008 00FE11F9
>>>ex /instruction /n:5 1000 ! List it.
P 00001000 D4 CLRL R0
P 00001002 D6 INCL R0
P 00001004 D1 CMPL S^#05,R0
P 00001007 12 BNEQ 00001002
P 00001009 11 BRB 00001009
P 0000100B 00 HALT

>>>dep pr$_scbb 200 ! Set up a user SCBB...
>>>dep pc 1000 ! ...and the PC.
>>>
>>>n ! Single step...
P 00001002 D6 INCL R0 ! SPACEBAR
P 00001004 D1 CMPL S^#05,R0 ! SPACEBAR
P 00001007 12 BNEQ 00001002 ! SPACEBAR
P 00001002 D6 INCL R0 ! CR

>>>n 5 ! ...or multiple step the program.
P 00001004 D1 CMPL S^#05,R0
P 00001007 12 BNEQ 00001002
P 00001002 D6 INCL R0
P 00001004 D1 CMPL S^#05,R0
P 00001007 12 BNEQ 00001002

>>>n 7
P 00001002 D6 INCL R0
P 00001004 D1 CMPL S^#05,R0
P 00001007 12 BNEQ 00001002
P 00001002 D6 INCL R0
P 00001004 D1 CMPL S^#05,R0
P 00001007 12 BNEQ 00001002
P 00001009 11 BRB 00001009

>>>n
P 00001009 11 BRB 00001009

>>>

KA680 Firmware 12–53

REPEAT

REPEAT

Format

REPEAT {command}

Qualifiers

None.

Arguments

{command}

Description

The console repeatedly displays and executes the specified command. The
repeating is stopped by the operator typing Control-C. Any valid console command
can be specified for the command with the exception of the REPEAT command.

Examples

>>>repeat ex pr$_todr ! Watch the clock.
I 0000001B 5AFE78CE
I 0000001B 5AFE78D1
I 0000001B 5AFE78FD
I 0000001B 5AFE7900
I 0000001B 5AFE7903
I 0000001B 5AFE7907
I 0000001B 5AFE790A
I 0000001B 5AFE790D
I 0000001B 5AFE7910
I 0000001B 5AFE793C
I 0000001B 5AFE793F
I 0000001B 5AFE7942
I 0000001B 5AFE7946
I 0000001B 5AFE7949
I 0000001B 5AFE794C
I 0000001B 5AFE794F
I 0000001B 5^C

>>>

12–54 KA680 Firmware

SEARCH

SEARCH

Format

SEARCH [qualifier_list] {address} {pattern} [{mask}]

Qualifiers

/B
The data size is byte.

/W
The data size is word.

/L
The data size is longword.

/Q
The data size is quadword.

/P
The address space is physical memory. Note that when virtual memory is
examined, the address space and address in the response are the translated
physical address.

/V
The address space is virtual memory. All access and protection checking occur.
If the access would not be allowed to a program running with the current PSL,
the console issues an error message. If memory mapping is not enabled, virtual
addresses are equal to physical addresses.

/U
Access to console private memory is allowed. This qualifier also disables virtual
address protection checks. This qualifier is not inherited, and must be respecified
with each command.

/N:{count}
The address is the first of a range. The first access is to the address specified,
then subsequent accesses are made to succeeding addresses. Even if the address
is the symbolic address "-", the succeeding addresses are at larger addresses.
The symbolic address specifies only the starting address, not the direction of
succession.

/STEP:{size}
The number to add to the current address. Normally this defaults to the data
size, but is overridden by the presence of this qualifier. This qualifier is not
inherited.

/WRONG
ECC errors on read accesses to main memory are ignored.

/NOT
Inverts the sense of the match.

KA680 Firmware 12–55

SEARCH

Arguments

{start_address}
A longword address that specifies the first location subject to the search. This
address can be any legal address specifier as defined in Section 12.2.8.6. If no
address is specified, "+" is assumed.

{pattern}
The target data.

[{mask}]
A longword containing the bits in the target that are to be "masked" out.

Description

The SEARCH command finds all occurrences of a pattern, and reports the
addresses where the pattern was found. If the /NOT qualifier is present, all
addresses where the pattern did not match are reported.

The command accepts an optional mask that indicates don’t care bits. For
example, to ignore bit 0 in the comparison, specify a mask of 1. The mask, if not
present, defaults to 0.

Conceptually, a match condition occurs if the following condition is true:

(pattern AND NOT mask) EQUALS (data AND NOT mask)

where: pattern -- is the target data.
mask -- is the optional don’t care bitmask (which defaults to 0).
data -- is the data (byte, word, long, quad) at the current address.

The command reports the address if the match condition is true, and there is no
/NOT qualifier, or if the match condition is false and there is a /NOT qualifier.
Stating this in a tabular form:

/NOT Qualifier Match Condition Action
-------------- --------------- ------

absent true report address
absent false no report
present true no report
present false report address

The address is advanced by the size of the pattern (byte, word, long, or quad),
unless overridden by the /STEP qualifier.

12–56 KA680 Firmware

SEARCH

Examples

>>>dep /p/l/n:1000 0 0 ! Clear some memory.
>>>
>>>dep 300 12345678 ! Deposit some "search" data.
>>>dep 401 12345678
>>>dep 502 87654321
>>>
>>>search /n:1000 /st:1 0 12345678 ! Search for all occurrences...
P 00000300 12345678 ! ...of 12345678 on any byte...
P 00000401 12345678 ! ...boundary.

>>>search /n:1000 0 12345678 ! Then try on longword...
P 00000300 12345678 ! ...boundaries.

>>>search /n:1000 /not 0 0 ! Search for all non-zero...
P 00000300 12345678 ! ...longwords.
P 00000400 34567800
P 00000404 00000012
P 00000500 43210000
P 00000504 00008765

>>>search /n:1000 /st:1 0 1 FFFFFFFE ! Search for "odd" longwords...
P 00000502 87654321 ! ...on any boundary.
P 00000503 00876543
P 00000504 00008765
P 00000505 00000087

>>>search /n:1000 /b 0 12 ! Search for all occurrences...
P 00000303 12 ! ...of the byte 12.
P 00000404 12

>>>search /n:1000 /st:1 /w 0 FE11 ! Search for all words which...
>>> ! ...could be interpreted as...
>>> ! ...a "spin" (10$: brb 10$).
>>> ! Note, none found.

KA680 Firmware 12–57

SET

SET

Format

SET {parameter} {value}

Qualifiers

-
Depends on the parameters used

Arguments

None.

Description

Sets the indicated console parameter to the indicated value. The following are
console parameters and their acceptable values:

Parameters

BFL(A)G
Sets the default R5 boot flags. The value must be a hexadecimal number of up to
8 hex digits.

BOOT
Sets the default boot device. The value must be a valid device name or device list
as specified in Section 12.2.9, Console Commands (on the BOOT command).

CONTROLP
Sets Control-P as the console halt condition, instead of a BREAK. Values of
1 or ENABLED set Control-P recognition. Values of 0 or DISABLED set
BREAK recognition. In either case, the setting of the BREAK Enable switch
will determine whether or not a halt will occur.

HALT
Sets the user-defined halt action. Acceptable values are 0 through 4 or the ordinal
keywords DEFAULT, RESTART, REBOOT, HALT, and RESTART_REBOOT. Refer
to Table 12–1 for usage.

HOST
Invokes the DUP or MAINTENANCE driver on the selected node. Only SET
HOST /DUP accepts a value parameter. The hierarchy of the SET HOST
qualifiers listed below suggests the appropriate usage. Each qualifier only
supports the additional qualifiers at levels below it.

/DUP
Uses the DUP protocol to examine/modify parameters of a device on either of the
DSSI buses or the Q22–bus. The optional value for SET HOST /DUP is a "task"
name for the selected DUP driver to execute.

12–58 KA680 Firmware

SET

Note

The KA680 DUP driver only supports "SEND DATA IMMEDIATE"
messages, and those devices that also support them.

/BUS
Selects the desired KA680 DSSI bus. A value of 0 selects DSSI bus 0 (internal
backplane bus). A value of 1 selects DSSI bus 1 (external console module bus).

/DSSI Node
Selects the DSSI node, where "node" is a number from 0 to 7.

/UQSSP
Selects the Q22–bus device using one of the following three methods.

/DISK n — Specifies the disk controller number, where "n" is from 0 to
255. (The resulting fixed address for n=0 is 20001468 and the floating
rank for n>0 is 26.)
/TAPE n — Specifies the tape controller number, where "n" is from 0

to 255. (The resulting fixed address for n=0 is 20001940 and the floating
rank for n>0 is 30.)
csr_address — Specifies the Q22–bus I/O page CSR address for the

device.

/MAINTENANCE
Uses the MAINTENANCE protocol to examine/modify KFQSA EEPROM
configuration parameters. Note that SET HOST /MAINTENANCE does not
accept a "task" value.

/UQSSP —

/SERVICE n — Specifies the KFQSA controller number "n" of a KFQSA
in service mode, where "n" is from 0 to 3. (The resulting fixed address of
a KFQSA in service mode is 20001910+4*n.)
csr_address — Specifies the Q22–bus I/O page CSR address for the

KFQSA.

LANGUAGE
Sets console language and keyboard type. If the current console terminal does not
support the Digital Multinational Character Set (MCS), then this command has
no effect and the console remains in English message mode. Acceptable values
are 1 through 15 and have the following meaning:

1) Dansk
2) Deutsch (Deutschland/Österreich)
3) Deutsch (Schweiz)
4) English (United Kingdom)
5) English (United States/Canada)
6) Español
7) Français (Canada)
8) Français (France/Belgique)
9) Français (Suisse)
10) Italiano
11) Nederlands
12) Norsk
13) Português

KA680 Firmware 12–59

SET

14) Suomi
15) Svenska

RECALL
Sets command recall state to either ENABLED (1) or DISABLED (0).

Arguments

None.

Examples

>>>
>>>set bflag 220
>>>
>>>set boot EZA0
>>>
>>>set controlp disabled
>>>
>>>set halt reboot
>>>
>>>set host /dup/dssi/bus:1 0
Starting DUP server...

DSSI Bus 1 Node 0 (SUSAN)
Copyright © 1990 Digital Equipment Corporation
DRVEXR V1.0 D 5-JUL-1990 15:33:06
DRVTST V1.0 D 5-JUL-1990 15:33:06
HISTRY V1.0 D 5-JUL-1990 15:33:06
ERASE V1.0 D 5-JUL-1990 15:33:06
PARAMS V1.0 D 5-JUL-1990 15:33:06
DIRECT V1.0 D 5-JUL-1990 15:33:06
End of directory

Task Name? params
Copyright © 1990 Digital Equipment Corporation

PARAMS> stat path

ID Path Block Remote Node DGS_S DGS_R MSGS_S MSGS_R
-- ------------ --------------- ---------- ---------- ---------- ------

0 PB FF811ECC Internal Path 0 0 0 0
6 PB FF811FD0 KFQSA KFX V1.0 0 0 0 0
1 PB FF8120D4 KAREN RFX V101 0 0 0 0
4 PB FF8121D8 WILMA RFX V101 0 0 0 0
5 PB FF8122DC BETTY RFX V101 0 0 0 0
2 PB FF8123E0 DSSI1 VMS V5.0 0 0 14328 14328
3 PB FF8124E4 3 VMB BOOT 0 0 61 61

PARAMS> exit
Exiting...

Task Name?

Stopping DUP server...
>>>
>>>set host /dup/dssi/bus:1 0 params
Starting DUP server...

DSSI Bus 1 Node 0 (SUSAN)
Copyright © 1990 Digital Equipment Corporation

PARAMS> show node

12–60 KA680 Firmware

SET

Parameter Current Default Type Radix
--------- ---------------- ---------------- -------- -----
NODENAME SUSAN RF30 String Ascii B

PARAMS> show allclass

Parameter Current Default Type Radix
--------- ---------------- ---------------- -------- -----
ALLCLASS 1 0 Byte Dec B

PARAMS> exit
Exiting...

Stopping DUP server...
>>>
>>>set host /maint/uqssp 20001468
UQSSP Controller (772150)

Enter SET, CLEAR, SHOW, HELP, EXIT, or QUIT
Node CSR Address Model
0 772150 21
1 760334 21
4 760340 21
5 760344 21
7 ------ KFQSA ------
? help
Commands:

SET <node> /KFQSA set KFQSA DSSI node number
SET <node> <CSR_address> <model> enable a DSSI device
CLEAR <node> disable a DSSI device
SHOW show current configuration
HELP print this text
EXIT program the KFQSA
QUIT don’t program the KFQSA

Parameters:
<node> 0 to 7
<CSR_address> 760010 to 777774
<model> 21 (disk) or 22 (tape)

? set 6 /kfqsa
? show
Node CSR Address Model
0 772150 21
1 760334 21
4 760340 21
5 760344 21
6 ------ KFQSA ------
? exit
Programming the KFQSA...
>>>
>>>set language 5
>>>
>>>set recall 1
>>>

KA680 Firmware 12–61

SHOW

SHOW

Format

SHOW {parameter}

Qualifiers

-
Depends on the specific parameter.

Parameters

BFL(A)G
Shows the default R5 boot flags.

BOOT
Shows the default boot device.

CONTROLP
Shows the current state of Control-P halt recognition, either ENABLED or
DISABLED.

DEVICE
Shows a list of all devices in the system.

HALT
Shows the user-defined halt action. One of the following keywords are displayed:
DEFAULT, RESTART, REBOOT, HALT, or RESTART_REBOOT. Refer to
Table 12–1 for usage.

DSSI
Shows the status of all nodes that can be found on the DSSI busses. For each
node on the DSSI bus, the console displays the node number, the node name,
and the boot name and type of the device, if available. The command does not
indicate the "bootability" of the device.

The node that issues the command reports a node name of "*".

The device information is obtained from the "media type" field of the MSCP
command GET UNIT STATUS. In case the node is not running or is not capable
of running an MSCP server, then no device information is displayed.

ETHERNET
Shows the hardware Ethernet address for all Ethernet adapters that can be
found. Displays as blank if no Ethernet adapter is present.

LANGUAGE
Shows the console language and keyboard type. Refer to the corresponding SET
LANGUAGE command for the meaning.

MEMORY
Shows main memory configuration on a board-by-board basis. Also reports the
addresses of bad pages, as defined by the bitmap.

/FULL

12–62 KA680 Firmware

SHOW

Shows the normally inaccessible areas of memory, such as the PFN bitmap
pages, the console scratch memory pages, and the Q22–bus scatter/gather
map pages.

QBUS
Show all Q22–bus I/O addresses that respond to an aligned word read. For each
address, the console displays the address in the VAX I/O space in hex, the address
as it would appear in the Q22–bus I/O space in octal, and the word data that was
read in hex.

This command may take several minutes to complete, so the user may want to
issue a Control-C to terminate the command. The command disables the scatter
/gather map for the duration of the command.

RECALL
Shows the current state of command recall, either ENABLED or DISABLED.

RLV12
Shows all RL01 and RL02 disks that appear on the Q22–bus.

SCSI
Shows any SCSI devices in the system.

TRANSLATION
Shows any virtual addresses that map to the specified physical address. The
firmware uses the current values of page table base and length registers to
perform its search (it is assumed that page tables have been properly built).

UQSSP
Shows the status of all disks and tapes that can be found on the Q22–bus that
support the UQSSP protocol. For each such disk or tape on the Q22–bus, the
console displays the controller number, the controller CSR address, and the boot
name and type of each device connected to the controller. The command does not
indicate the "bootability" of the device.

The device information is obtained from the "media type" field of the MSCP
command GET UNIT STATUS. In case the node is not running or is not capable
of running an MSCP server, then no device information is displayed.

VERSION
Show the current version of the firmware.

Qualifiers

-
On a per parameter basis.

KA680 Firmware 12–63

SHOW

Arguments

None.

Description

Displays the console parameter indicated.

Examples

>>>
>>>show bflag
00000220
>>>
>>>show boot
EZA0
>>>
>>>show device
DSSI Bus 0 Node 7 (*)

DSSI Bus 1 Node 0 (SUSAN)
-DIA0 (RF30)

DSSI Bus 1 Node 1 (KAREN)
-DIA1 (RF30)

DSSI Bus 1 Node 4 (WILMA)
-DIA4 (RF30)

DSSI Bus 1 Node 5 (BETTY)
-DIA5 (RF30)

DSSI Bus 1 Node 6 (*)

DSSI Node 6 (KFQSA)

SCSI Adapter 0 (761300), SCSI ID 7
-DKA100 (DEC RZ31 (C) DEC)
-DKA300 (MAXTOR XT-8000S)

UQSSP Disk Controller 0 (772150)
-DUA0 (RF30)

UQSSP Disk Controller 1 (760334)
-DUB1 (RF30)

UQSSP Disk Controller 2 (760340)
-DUC3 (RF30)

UQSSP Disk Controller 3 (760344)
-DUD4 (RF30)

Ethernet Adapter
-EZA0 (08-00-2B-03-82-78)
>>>
DSSI Bus 0 Node 7 (*)

DSSI Bus 1 Node 0 (SUSAN)
-DIA0 (RF30)

DSSI Bus 1 Node 1 (KAREN)
-DIA1 (RF30)

DSSI Bus 1 Node 4 (WILMA)
-DIA4 (RF30)

12–64 KA680 Firmware

SHOW

DSSI Bus 1 Node 5 (BETTY)
-DIA5 (RF30)

DSSI Bus 1 Node 6 (*)

DSSI Node 6 (KFQSA)

<>>>show ethernet
Ethernet Adapter
-EZA0 (08-00-2B-03-82-78)
>>>
>>>show halt
Reboot
>>>show language
English (United States/Canada)
>>>
>>>show memory
Memory 0: 00000000 to 003FFFFF, 4MB, 0 bad pages

Total of 4MB, 0 bad pages, 98 reserved pages
>>>
>>>show memory /full
Memory 0: 00000000 to 003FFFFF, 4MB, 0 bad pages

Total of 4MB, 0 bad pages, 98 reserved pages

Memory Bitmap
-003F3C00 to 003F3FFF, 2 pages

Console Scratch Area
-003F4000 to 003F7FFF, 32 pages

Qbus Map
-003F8000 to 003FFFFF, 64 pages

Scan of Bad Pages
>>>
>>>show qbus
Scan of Qbus I/O Space
-200000DC (760334) = 0000 (300) RQDX3/KDA50/RRD50/RQC25/KFQSA-DISK
-200000DE (760336) = 0AA0
-200000E0 (760340) = 0000 (304) RQDX3/KDA50/RRD50/RQC25/KFQSA-DISK
-200000E2 (760342) = 0AA0
-200000E4 (760344) = 0000 (310) RQDX3/KDA50/RRD50/RQC25/KFQSA-DISK
-200000E6 (760346) = 0AA0
-20001468 (772150) = 0000 (154) RQDX3/KDA50/RRD50/RQC25/KFQSA-DISK
-2000146A (772152) = 0AA0
-20001F40 (777500) = 0020 (004) IPCR

KA680 Firmware 12–65

SHOW

Scan of Qbus Memory Space
>>>
>>>show rlv12
>>>
>>>show scsi
SCSI Adapter 0 (761300), SCSI ID 7
-DKA100 (DEC RZ31 (C) DEC)
-DKA300 (MAXTOR XT-8000S)
>>>
>>>show translation 1000
V 80001000
>>>
>>>show uqssp
UQSSP Disk Controller 0 (772150)
-DUA0 (RF30)

UQSSP Disk Controller 1 (760334)
-DUB1 (RF30)

UQSSP Disk Controller 2 (760340)
-DUC4 (RF30)

UQSSP Disk Controller 3 (760344)
-DUD5 (RF30)
>>>
>>>show version
KA680 V4.0, VMB 2.13
>>>

12–66 KA680 Firmware

START

START

Format

START [{address}]

Qualifiers

None.

Arguments

[{address}]
The address at which to begin execution. This is loaded in the user’s PC.

Description

The console starts instruction execution at the specified address. If no address is
given, the current PC is used. If memory mapping is enabled, macroinstructions
are executed from virtual memory, and the address is treated as a virtual
address. The START command is equivalent to a DEPOSIT to PC followed by a
CONTINUE. No INITIALIZE is performed.

Examples

>>>start 1000

KA680 Firmware 12–67

TEST

TEST

Format

TEST [{test_number} [{test_arguments}]]

Qualifiers

None.

Arguments

{test_number}
A 2-digit hexadecimal number specifying the test to be executed.

{test_arguments}
Up to five additional test arguments. These arguments are accepted but no
meaning is attached to them by the console. For the interpretation of these
arguments, consult the test specification for the individual test.

Description

The console invokes a diagnostic test program specified by the test number. If a
test number of 0 is specified, the power-up script is executed. The console accepts
an optional list of up to five additional hexadecimal arguments.

A more detailed explanation of the diagnostics may be found in Section 12.3.

Examples

>>>
>>>unjam ! Use UNJAM and INIT to ensure a consistent state.
>>>init ! Warning...this has the same effect as a powerup!
>>> ! Execute the power-up diagnostic script.
>>>test 0
66..65..64..63..62..61..60..59..58..57..56..55..54..53..52..51..
50..49..48..47..46..45..44..43..42..41..40..39..38..37..36..35..
34..33..32..31..30..29..28..27..26..25..24..23..22..21..20..19..
18..17..16..15..14..13..12..11..10..09..08..07..06..05..04..03..
>>>
>>> ! Show the diagnostic state.
>>>
>>>t fe

Bitmap=01FF2000, Length=00002000, Checksum=FFFF, Busmap=01FF8000
Test_number=00, Subtest=00, Loop_Subtest=00, Error_type=00
Error_vector=0000, Severity=02, Last_exception_PC=00000000
Total_error_count=0005, Led_display=0C, Console_display=03, save_mchk_code=00
parameter_1=00000000 2=00000000 3=00000000 4=00000000 5=00000000
parameter_6=00000001 7=0001EA0F 8=0001EEE5 9=0001EC72 10=00000000
previous_error=00C04200, FE014100, FE014100, FE014100
Flags=FFFF C200 443E BCache_Disable=06 KA680, 128KB BC, 14.0 ns
Return_stack=201406A4, Subtest_pc=20056514, Timeout=00030D40
>>>
>>> ! Display the CPU registers.
>>>
>>>t 9c

12–68 KA680 Firmware

TEST

SBR=01FB8000 SLR=00002021 SAVPC=20047ECC SAVPSL=20047ECC BCETSTS=00000000
SCBB=20053E00 P0BR=80000000 P0LR=00100A80 P1BR=00000000 BCETIDX=00000000
P1LR=00000000 SID=13001401 TODR=9614FD28 ICCS=00000000 BCEDSTS=00000700
ECR=000000CA MAPEN=00000000 BDMTR=20084000 BDMKR=0000007C BCEDIDX=00000008
TCR0=00000000 TIR0=00000000 TNIR0=00000000 TIVR0=00000078 BCEDECC=00000000
TCR1=00000001 TIR1=200775AD TNIR1=0000000F TIVR1=0000007C NEDATHI=00000000
RXCS=00000000 RXDB=0000000D TXCS=00000000 TXDB=00000030 NEDATLO=00000000
SCR=0000D000 DSER=00000000 QBEAR=0000000F DEAR=00000000 CESR=00000000

QBMBR=01FF8000 BDR=3CF808AB DLEDR=0000000C SSCCR=00D55570 CMCDSR=0000C108
CBTCR=00004000 IPCR0=0000 CSEAR1=00000000 CSEAR2=00000000 CIOEAR1=010FC000
PCSTS=FFFFF800 PCADR=FFFFFFF8 PCCTL=FFFFFC13 ICSR=00000001 CIOEAR2=000002C0
CCTL=00000007 BCETAG=00000000 VMAR=000007E0 CNEAR=00000000
NESTS=00000000 CEFSTS=00019200 NEOADR=E005BFC0 NEOCMD=8000FF04 NEICMD=00000000
DSSI_1=03 (BUS_1) PQBBR_1=03060022 PMCSR_1=00000000 SSHMA_1=00008A20

PSR_1=00000000 PESR_1=00000000 PFAR_1=00000000 PPR_1=00000000
DSSI_2=07 (BUS_0) PQBBR_2=03060022 PMCSR_2=00000000 SSHMA_2=0000CA20

PSR_2=00000000 PESR_2=00000000 PFAR_2=00000000 PPR_2=00000000
NICSR0=1FFF0003 3=00004030 4=00004050 5=8039FF00 6=83E0F000 7=00000000
NICSR9=04E204E2 10=00040000 11=00000000 12=00000000 13=00000000 15=0000FFFF
NISA=08-00-2B-16-01-

EA MEAR=08406010_ADD=21018040 MESR=000FF000
MEMCON_0:3; 0=80000003, 1=81000003, 2=00000007, 3=00000007 MMCDSR=01111000
MEMCON_4:7; 4=00000007, 5=00000007, 6=00000007, 7=00000007 MOAMR=00000000
>>>
>>> ! List all of the diagnostic tests.
>>>
>>>t 9e

Test
Address Name Parameters

20053E00 SCB
20054E14 De_executive

30 20063AD0 Memory_Init_Bitmap *** mark_Hard_SBEs ******
31 20064264 Memory_Setup_CSRs **********
32 20064D60 NMC_registers **********
33 20064EFC NMC_powerup **
34 2005B714 SSC_ROM *
35 20067AF8 B_Cache_diag_mode bypass_test_mask *********
37 2006849C Cache_w_Memory bypass_test_mask *********
3F 200644EC Mem_FDM_Addr_shorts *** cont_on_err ******
40 200626B8 Memory_count_pages First_board Last_bd Soft_errs_allowed *******
41 200564FC Board_Reset *
42 2005A3B0 Chk_for_Interrupts *****
46 2006782C P_Cache_diag_mode bypass_test_mask *********
47 20063FF0 Memory_Refresh start_a end incr cont_on_err time_seconds *****
48 2006185C Memory_Addr_shorts start_add end_add * cont_on_err pat2 pat3 ****
49 200634D4 Memory_FDM *** cont_on_err ******
4A 200631E0 Memory_ECC_SBEs start_add end_add add_incr cont_on_err ******
4B 20061F8C Memory_Byte_Errors start_add end_add add_incr cont_on_err ******
4C 20062B70 Memory_ECC_Logic start_add end_add add_incr cont_on_err ******
4D 200616DC Memory_Address start_add end_add add_incr cont_on_err ******
4E 20061D90 Memory_Byte start_add end_add add_incr cont_on_err ******
4F 200628BC Memory_Data start_add end_add add_incr cont_on_err ******
51 2005A870 FPA *******
52 2005ABB0 SSC_Prog_timers which_timer wait_time_us ***
53 2005AE80 SSC_TOY_Clock repeat_test_250ms_ea Tolerance ***
54 2005A486 Virtual_Mode *********
55 2005B036 Interval_Timer *****
56 2005FF1C SHAC_LPBCK ********
58 20060798 SHAC_RESET dssi_bus port_number time_secs
59 2005F064 SGEC_LPBCK_ASSIST time_secs **
5C 2005F5CC SHAC shac_number *******
5F 2005E350 SGEC loopback_type no_ram_tests ******
60 2005DD4B SSC_Console_SLU start_BAUD end_BAUD ******
63 2005B5B8 QDSS_any input_csr selftest_r0 selftest_r1 ******

KA680 Firmware 12–69

TEST

80 20065330 CQBIC_memory bypass_test_mask *********
81 2005B21A Qbus_MSCP IP_csr ******
82 2005B3DF Qbus_DELQA device_num_addr ****
83 200577DE QZA_Intlpbck1 controller_number ********
84 20058E98 QZA_Intlpbck2 controller_number *********
85 20056A24 QZA_memory incr test_pattern controller_number *******
86 20056EE0 QZA_DMA Controller_number main_mem_buf ********
87 2005A0DC QZA_EXTLPBCK controller_number ****
90 2005AB2E CQBIC_registers *
91 2005AAC4 CQBIC_powerup **
99 200650F8 Flush_Ena_Caches dis_flush_virtual dis_flush_backup dis_flush_primary
9A 2005D064 INTERACTION pass_count disable_device ****
9B 20064F7C Init_memory_16MB *
9C 2005B7DE List_CPU_registers *
9D 2005E11C Utility Expnd_err_msg get_mode init_LEDs clr_ps_cnt
9E 2005B1EC List_diagnostics *
9F 20060D30 Create_A0_Script **********
C1 200566D0 SSC_RAM_Data *
C2 200568A6 SSC_RAM_Data_Addr *
C5 2005E23E SSC_registers *
C6 20056614 SSC_powerup *********

12–70 KA680 Firmware

TEST

Test
Address Name Parameters

D0 20067400 V_Cache_diag_mode bypass_test_mask *********
D2 20065A5C O_Bit_diag_mode bypass_test_mask *********
DA 200682C4 PB_Flush_Cache **********
DB 200661F0 Speed print_speed *********
DC 20064490 NO_Memory_present ********
DD 200669A0 B_Cache_Data_debug start_add end_add add_incr *******
DE 20066558 B_Cache_Tag_Debug start_add end_add add_incr *******
DF 20065E30 O_BIT_DEBUG start_add end_add add_incr seg_incr ******

Scripts
Description

A0 User defined scripts
A1 Powerup tests, Functional Verify, continue on error, numeric countdown
A3 Functional Verify, stop on error, test # announcements
A4 Loop on A3 Functional Verify
A5 Address shorts test, run fastest way possible
A6 Memory tests, mark only multiple bit errors
A7 Memory tests
A8 Memory acceptance tests, mark single and multi-bit errors, call A7
A9 Memory tests, stop on error
>>>

KA680 Firmware 12–71

UNJAM

UNJAM

Format

UNJAM

Qualifiers

None.

Arguments

None.

Description

An I/O bus reset is performed. This is implemented by writing 1 to IPR 55.
Additionally, the SGEC and SHAC chips are explicitly software reset because
PR$_IORESET has no effect on them.

Examples

>>>unjam
>>>

12–72 KA680 Firmware

X - Binary Load and Unload

X - Binary Load and Unload

Format

X {address} {count} <CR> {line_checksum} {data} {data_checksum}

Qualifiers

None.

Arguments

None.

Description

The X command is for use by automatic systems communicating with the console.
It is not intended for use by operators.

The console loads or unloads (that is, writes to memory, or reads from memory)
the specified number of data bytes, starting at the specified address through the
console serial line, regardless of which device is serving as the system console.

If bit 31 of the count is clear, data is to be received by the console, and deposited
into memory. If bit 31 of the count is set, data is to be read from memory and
sent by the console. The remaining bits in the count are a positive number
indicating the number of bytes to load or unload.

The console accepts the command upon receiving the carriage return. The next
byte the console receives is the command checksum, which is not echoed. The
command checksum is verified by adding all command characters, including the
checksum and separating whitespace (but not including the terminating carriage
return or rubouts or characters deleted by rubout), into an 8-bit register initially
set to zero. If no errors occur, the result is zero. If the command checksum is
correct, the console responds with the input prompt and either sends data to the
requester or prepares to receive data. If the command checksum is in error, the
console responds with an error message. The intent is to prevent inadvertent
operator entry into a mode where the console is accepting characters from the
keyboard as data, with no escape mechanism possible.

If the command is a load (bit 31 of the count is clear), the console responds
with the input prompt, then accepts the specified number of bytes of data for
depositing to memory, and an additional byte of received data checksum. The
data is verified by adding all data characters and the checksum character into
an 8-bit register initially set to zero. If the final contents of the register is non-
zero, the data or checksum are in error, and the console responds with an error
message.

If the command is a binary unload (bit 31 of the count is set), the console
responds with the input prompt, followed by the specified number of bytes of
binary data. As each byte is sent, it is added to a checksum register initially set
to zero. At the end of the transmission, the 2’s complement of the low byte of the
register is sent.

KA680 Firmware 12–73

X - Binary Load and Unload

If the data checksum is incorrect on a load, or if memory errors or line errors
occur during the transmission of data, the entire transmission is completed
and the console issues an error message. If an error occurs during loading, the
contents of the memory being loaded are unpredictable.

Echo is suppressed during the receiving of the data string and checksums.

To avoid treating flow control characters from the terminal as valid command line
checksums, all flow control is terminated at the reception of the carriage return
terminating the command line.

It is possible to control the console serial line through the use of the control
characters (Control-C, Control-S, Control-O, etc.) during a binary unload. It is
not possible during a binary load because all received characters are valid binary
data.

Data being loaded with a binary load command must be received by the console
at a rate of at least one byte every 60 seconds. The command checksum that
precedes the data must be received by the console within 60 seconds of the
carriage return that terminates the command line. The data checksum must
be received within 60 seconds of the last data byte. If any of these timing
requirements are not met, the console aborts the transmission by issuing an error
message and prompting for input.

The entire command, including the checksum, can be sent to the console as a
single burst of characters at the console serial line’s specified character rate. The
console is able to receive at least 4 KB of data with a single X command.

12–74 KA680 Firmware

XDELTA

XDELTA

Format

XDELTA

Qualifiers

/CONTINUE
Enter XDELTA in "step" mode.

Arguments

None.

Description

The KA680 XDELTA debugger is a subset of the VMS XDELTA debug
utility. Although a command summary appears in Table 12–14, consult the
VMS DELTA/XDELTA Utility Manual for a complete description of supported
commands.

Table 12–14 XDELTA Command Summary

Command Description

[m Set Display Mode
[x][,y]/ Open Location and Display Contents in Prevailing Width Mode
[x][,y]! Open Location and Display Contents in Instruction Mode
LINEFEED Close Current Location, Open Next Location
ESCAPE Close Location, Open and Display Previous Location
TAB Close Location, Open and Display Indirect Location
[x][,y]" Open Location and Display Contents in ASCII Mode
RETURN Close Current Location
[z][,n][,d][,c];B Breakpoint
;P Proceed from Breakpoint
[g];G Go
S Step Instruction
O Step Instruction Over Subroutine
’string’ Deposit ASCII String
c;E Execute Command String
l,b;X Load Base Register

(continued on next page)

KA680 Firmware 12–75

XDELTA

Table 12–14 (Cont.) XDELTA Command Summary

Command Description

expression= Display Value of Expression using +, -, *, %, and @

The following list describes XDELTA command parameters represented in the table by lowercase letters:

m : Display mode, either B(byte), W(word), or L(longword)
x : Address of location to be displayed
y : Last address of a range (beginning with address x) to be displayed
z : Breakpoint address
n : Number of the breakpoint (2..8)
c : Address of an XDELTA command string to be executed (on breakpoint)
d : Address of location to be displayed on breakpoint
g : Address at which to begin execution
l : Address to deposit in base register
b : Number of base register (0..F)

Square brackets [] around a parameter indicate that it is optional.

Table 12–15 XDELTA Symbols

Symbol Description

. Current address, the address of the current location.
Q The last value displayed.
Xn Base registers n, 0 to F, used to reference data structures.
Rn General-purpose register n, 0 to F, RF+4 is the PSL.
Pn Internal processor register n.
G System space address prefix; that is, G2E is equivalent to 8000002E.
H Process control region address prefix; that is, H2E is equivalent to 7FFE002E.

When the console XDELTA command is executed, control is passed to the
ROM based XDELTA utility. XDELTA diplays the current user PC address (if
defined, else 20040000) and the instruction at that location and then awaits a
command. In this mode of operation, XDELTA instruction stepping and program
executions are disabled. However, it is possible to examine machine state and set
breakpoints in a user program.

Using ;P in this context returns control to the console. The CONTINUE
command may then be used run the user program. If an XDELTA breakpoint
is encountered, the address and instruction are displayed and XDELTA awaits
further commands. At this point normal XDELTA debugging may proceed,
including single-stepping and running the user program.

Alternatively, XDELTA/CONTINUE can be used to trace trap into a user program
at the address specified by the PC. Using this option enables single-stepping
program execution, and the complete services of the firmware XDELTA utility.

Users should keep in mind that the XDELTA facility utilizes both the trace trap
and breakpoint vectors of the active SCB. If XDELTA is to be used to debug a
program that establishes its own SCB, the trace trap (SCB+28) and breakpoint
(SCB+2C) vectors should be copied from the firmware SCB to the user’s SCB.

12–76 KA680 Firmware

XDELTA

Examples

>>>ex/p/ins/n:9 1200
P 00001200 9E MOVAB L^0000121D,R0
P 00001207 DB MFPR S^#22,R1
P 0000120A EF EXTZV S^#07,S^#01,R1,R1
P 0000120F 13 BEQL 00001207
P 00001211 9A MOVZBL (R0)+,R1
P 00001214 13 BEQL 0000121B
P 00001216 DA MTPR R1,S^#23
P 00001219 11 BRB 00001207
P 0000121B 01 NOP
P 0000121C 00 HALT

>>>ex pc
G 0000000F 00001200

>>>xdelta
Stepping is disabled...

00001200/MOVAB L^0000121D,R0 S
EH?
.;B;P
>>>continue

1 BRK AT 00001200
00001200/MOVAB L^0000121D,R0 S
00001207/MFPR S^#22,R1 S
0000120A/EXTZV S^#07,S^#01,R1,R1 ;P
XLOAD succeeded loading XTEST.EXE!

?06 HLT INST
PC = 0000121D

>>>dep pc 1200
>>>xdelta/continue

00001200/MOVAB L^0000121D,R0 S
00001207/MFPR S^#22,R1 S
0000120A/EXTZV S^#07,S^#01,R1,R1 ;P
XLOAD succeeded loading XTEST.EXE!

?06 HLT INST
PC = 0000121D

>>>

KA680 Firmware 12–77

! - Comment

! - Comment

Format

!

Qualifiers

None.

Arguments

None.

Description

The comment command character is used to include optional text, which you can
use to identify a command line or add descriptions. It can appear anywhere on
the command line. All characters following the comment character are ignored.

Examples

>>>! The console ignores this line.
>>>

12–78 KA680 Firmware

KA680 Firmware
! - Comment

Table 12–16 Console Command Summary

Command Qualifiers Argument Other(s)

BOOT /R5:{boot_flags} /{boot_flags} [{boot_device}] —

CONFIGURE — — —

CONTINUE — — —

DEPOSIT /B /W /L /Q — /G /I /V /P /M /U
/N:{count} /STEP:{size} /WRONG

{address} {data} [{data}]

EXAMINE /B /W /L /Q — /G /I /V /P /M /U
/N:{count} /STEP:{size} /WRONG
/INSTRUCTION

[{address}] —

FIND /MEM /RPB — —

HALT — — —

HELP — — —

INITIALIZE — — —

MOVE /B /W /L /Q — /V /P /U
/N:{count} /STEP:{size} /WRONG

{src_address} {dest_address}

NEXT — [{count}] —

REPEAT — {command} —

SEARCH /B /W /L /Q — /V /P /U
/N:{count} /STEP:{size} /WRONG
/NOT

{start_address} {pattern} [{mask}]

SET BFL(A)G — {bitmap} —

SET BOOT — {device_string} —

SET CONTROLP — {0/1} —

SET HALT — {halt_action} —

SET HOST /DUP /DSSI /BUS:{0/1} {node_number} [{task}]

SET HOST /DUP /UQSSP {/DISK ! /TAPE }
/DUP /UQSSP

{controller_
number}
{csr_address}

[{task}]
[{task}]

SET HOST /MAINTENANCE /UQSSP /SERVICE
/MAINTENANCE /UQSSP

{controller_
number}
{csr_address}

SET LANGUAGE — {language_type} —

SET RECALL — {0/1} —

SHOW BFL(A)G — — —

SHOW BOOT — — —

SHOW CONTROLP — — —

SHOW DEVICE — — —

SHOW DSSI — — —

SHOW ETHERNET — — —

SHOW HALT — — —

SHOW LANGUAGE — — —

SHOW MEMORY /FULL — —

(continued on next page)

KA680 Firmware 12–79

KA680 Firmware
! - Comment

Table 12–16 (Cont.) Console Command Summary

Command Qualifiers Argument Other(s)

SHOW QBUS — — —

SHOW RECALL — — —

SHOW RLV12 — — —

SHOW SCSI — — —

SHOW
TRANSLATION

— {phys_address} —

SHOW UQSSP — — —

SHOW VERSION — — —

START — {address} —

TEST — {test_number} [{parameters}]

UNJAM — — —

X — {address} {count}

XDELTA /CONTINUE — —

12–80 KA680 Firmware

KA680 Firmware
! - Comment

Table 12–17 Console Qualifier Summary

Data Control

/B Byte, legal for memory references only.

/W Word, legal for memory references only.

/L Longword, the default for GPR and IPR references.

/Q Quadword, legal for memory references only.

/N:{count} Specifies number of additional operations.

/STEP:{size} Overrides the default step incrementing size with the value specified for the current
reference.

/WRONG On writes, uses the value of 3, which always generates double bit errors. Ignores
ECC errors on reads of main memory.

Address Space Control

/G General-purpose registers

/I Internal processor registers

/V Virtual memory

/P Physical memory, both VAX memory and I/O spaces

/U Protected memory (ROMs, SSC RAM, PFN bitmap, etc.)

/M Machine state (PSL)

(continued on next page)

KA680 Firmware 12–81

KA680 Firmware
! - Comment

Table 12–17 (Cont.) Console Qualifier Summary
Command-Specific

/INSTRUCTION EXAMINE command only. Disassembles the instruction at address specified.

/NOT SEARCH command only. Inverts the sense of the match.

/R5:{boot_flags},
/{boot_flags}

BOOT command only. Specifies a function bitmap to pass to VMB through R5. Refer
to Figure 12–9 for a bit description of R5. Either form of the command is acceptable.

/RPB, /MEM FIND command only. Searches for valid RPB or good block of memory.

/DUP, /DSSI,
/UQSSP,
/DISK, /TAPE,
/MAINTENANCE,
/SERVICE

SET HOST command only. Refers to command description for usage.

/CONTINUE XDELTA command only. Enters XDELTA step mode at current PC.

Nomenclature for Table 12–16 and Table 12–17 :

UPPERCASE denotes the command or qualifier keyword.
{} denotes a mandatory item that must be syntactically correct.
[] denotes an optional item.
! denotes an "or" condition.

And

boot_flags, count, size, address, and parameters denote hex longword values.
boot_device denotes a legal boot device name.
csr_address denotes a Q22–bus I/O page CSR address.
controller_number denotes a controller number from 0 to 255.
halt_action denotes the value of the user-defined halt action from 0 to 4.
language_type denotes the language value, from 1 to 15.
command denotes a console command other than REPEAT.
data, pattern, and mask denote hex values of the current size.
test_number denotes hex byte test number.

12–82 KA680 Firmware

KA680 Firmware
12.3 Diagnostics

12.3 Diagnostics
The ROM-based diagnostics constitute the bulk of the firmware on the KA680.
These diagnostics run automatically on powerup and can be executed interactively
as a whole, or as individual tests using the TEST command. (See Section
Section 12.2.9, Console Commands.) This section summarizes the operation of the
ROM-based diagnostics.

The purpose of the ROM-based diagnostics is multifaceted:

1. During powerup, they determine if enough of the KA680 is working to allow
the console to run.

2. During the manufacturing process, they verify that the board was correctly
built.

3. In the field, they verify that the board is operational and able to report all
detected errors.

4. They allow sophisticated users and field service technicians to run individual
diagnostics interactively, with the intent of isolating errors to the FRU (field
replaceable unit).

To accommodate these requirements, the diagnostics are designed as a collection
of individual parameterized tests. A data structure, called a script, and a
program, called the diagnostic executive, orchestrate the running of these tests in
the right order with the right parameters.

A script is a data structure that points to various tests. There are several
scripts, one for the field and several for manufacturing, depending where on the
manufacturing line the board is. Sophisticated users may also create their own
scripts interactively. Additionally, the script contains other information:

• What parameters need to be passed to the test.

• What is to be displayed, if anything, on the console.

• What is to be displayed, if anything, on the LED.

• What to do on errors (halt, loop, or continue).

• Where the tests may be run from. For example, there are certain tests that
can only be run from the FEPROM. Other tests are PIC (position independent
code), and may be run from FEPROM or main memory in the interests of
execution speed.

The diagnostic executive "interprets" scripts to determine what tests are to
be run. There are several built-in scripts on the KA680 that are used for
manufacturing, power-up, and Digital Services personnel. The diagnostic
executive automatically invokes the correct script based on the current
environment of the KA680. Any script can be explicitly run with the TEST
command from the console terminal.

The diagnostic executive is also responsible for controlling the tests so that when
errors occur, they can be caught and reported to the user. The executive also
ensures that when the tests are run, the machine is left in a consistent and
well-defined state.

KA680 Firmware 12–83

KA680 Firmware
12.3 Diagnostics

12.3.1 Error Reporting
Before a console is established, the only error reporting is via the KA680
diagnostic LEDs (and any LEDs on other boards). Once a console has been
established, all errors detected by the diagnostics are also reported by the
console. When possible, the diagnostics issue an error summary on the console.

For example, Figure 12–14 shows a typical error display.

Figure 12–14 Diagnostic Register Dump

?9A 2 02 FF 0000 0000 01 ; SUBTEST_9A_02, DE_INTERACTION.LIS (1)

P1=00000002 P2=00000000 P3=00004000 P4=00008000 P5=0000C000 (2)
P6=00000000 P7=00000002 P8=00000002 P9=84004000 P10=00001FFF (3)
r0=00000054 r1=00000040 r2=00000000 r3=0000C524 r4=00000014 (4)
r5=30002800 r6=0000C4E0 r7=20008000 r8=00004000 EPC=20057BBD (5)

Normal operation not possible.

?42 2 C0 FF 00D4 0000 00 ; SUBTEST_42_C0, DE_Chk_for_Interrupts.LIS

P1=00000003 P2=00FC00C0 P3=000000D4 P4=00000000 P5=00000000
P6=21020020 P7=00000000 P8=00000000 P9=FFFFFFFF P10=00000002
r0=000000C0 r1=0000002E r2=00000042 r3=20140778 r4=20059FA8
r5=20059FCB r6=200680C7 r7=00000000 r8=00000008 EPC=2005A047

SCBB=20053A00 TODR=0446A76E ECR=000000CA LIS_ADD=009F
SCR=0000D000 DSER=00000000 QBEAR=0000000A DEAR=00000000

QBMBR=01FF8000 BDR=38FB08AB SSCCR=00D55570 IPCR0=0020
NCAERR=00000000 NCAMODE=0000C108 CP1SEA=00000000 CP2SEA=00000000
CP1IOEA=010FC000 CP2IOEA=1015C400 NDALEA=00000000 MAPEN=00000000
PCSTS=FFFFF800 PCADR=FFFFFFF8 PCCTL=FFFFFE13
ICSR=00000001 VMAR=000007E0 VTAG=20041200 VDATA=FFC13101
CCTL=00000007 BCETSTS=00000000 BCETIDX=00000000 BCETAG=00000000

BCEDSTS=00000700 BCEDIDX=00000008 CEFSTS=00019200 BCEDECC=00000000
CEFADR=F015C400 NESTS=00000000 NEOADR=E005C7E8 NEOCMD=8000FF04
NEICMD=00000000 NEDATHI=00000000 NEDATLO=00000000 OBITMODE=00000340
NMCMODE=09115C20 NMCEA=08406010_____ADD=21020040 NMCERR=000FF000
MEMCON_0:7; 0=80000003, 1=81000003
2=00000007, 3=00000007, 4=00000007, 5=00000007, 6=00000007, 7=00000007

In Figure 12–14, the numbers in parentheses on the right side refer to lines of
the display and are not a part of the diagnostic dump. The information on these
lines is summarized below.

1. Test summary containing six hexadecimal fields.

a. ?9A, test identifies the diagnostic test.

b. 2, severity is the level of a test failure, as dictated by the script. A
severity level 2 error causes the display of this 5-line error printout, and
halts an autoboot to console I/O mode. A severity level 1 error displays
the first line of the error printout, but does not interrupt an autoboot.
Most tests have a severity level of 2.

c. 02, subtestlog is a number, that in conjunction with listing files, isolates
to within a few instructions where the diagnostic detected the error.

d. FF, de_error is a code with which the diagnostic executive signals the
diagnostic’s state and any illegal behavior. This field indicates a condition
that the diagnostic expects on detecting a failure. The possible codes are:

FF - Normal error exit from diagnostic
FE - Unanticipated interrupt

12–84 KA680 Firmware

KA680 Firmware
12.3 Diagnostics

FD - Interrupt in cleanup routine
FC - Interrupt in interrupt handler
FB - Script requirements not met
FA - No such diagnostic
EF - Unanticipated exception in executive

e. 0000, vector is the SCB vector (if nonzero) through which an unexpected
exception or interrupt trapped when the de_error field indicates an
unexpected exception or interrupt (FE or EF).

f. 0000, count is the number of previous errors that have occurred.

g. 01, loop_subtest is an additional subtestlog generated out of the context
of the current test as specified by the current test number and subtestlog.
Usually these logs occur in common subroutines called from a diagnostic
test.

h. SUBTEST_9A_02, subtest_symbol is a unique symbol that identifies the
most recent subtestlog entry in the listing file.

i. DE_INTERACTION.LIS, listing_file is the name of the listing file that
contains the failed diagnostic.

2. P1...P5 are the first five parameters containing diagnostic state.

3. P6...P10 are the last five parameters containing diagnostic state.

4. R0...R4 are the first five GPRs at the moment the error was detected.

5. R5...R8 are additional GPRs and EPC is PC at the time of the error.

The use of parameters and registers varies with each test. The appropriate listing
file should be consulted for interpretation of these parameters and registers in
determining diagnostic state.

12.3.2 Diagnostic Interdependencies
When running tests interactively on an individual basis, users should be aware
that certain tests may be dependent on some state set up from a previous test. In
general, tests should not be run out of order.

12.3.3 Areas Not Covered
The goal has been to achieve the highest possible coverage on the KA680 and
the memory boards. However, the testing of the KA680 while running with
memory management turned on is minimal. Also, due to the way the firmware is
implemented (a polled environment running at IPL 31), the testing of interrupts
is not extensive.

These diagnostics are not intended to be used as system level tests. There are
no tests to completely verify that access to the Q22–bus will work. Thus, a disk,
a controller, the backplane, or portions of the CQBIC may be faulty, and the
diagnostics may not detect the fault. Such a fault may result later as an inability
to boot.

KA680 Firmware 12–85

KA680 Firmware
12.4 Environment

12.4 Environment
The following is a description of the intended environment in which KA680
firmware will be used. This environment includes not only the surrounding
hardware, but also the field of use.

12.4.1 Users
Engineering, Manufacturing, Digital Services, and customers will use this
program to test, configure, and boot their KA680 modules. This firmware will be
used to provide both an easy means to bootstrap a KA680 based system and to
detect and isolate system malfunctions.

Of these users, all but customers are assumed to be computer "sophisticates."
While this will often be true of customers as well, no such assumption is made.
Target customers include both sophisticated users who can use and understand
all the features provided by the firmware, as well as unsophisticated users who
know little about computers.

Users are not assumed to speak English. The console program can be configured
to output critical console messages in either English, French, German, Spanish,
Italian, Norwegian, Dutch, Swedish, Finnish, Danish, or Portuguese. When the
module powers up without a specified language, KA680 prompts the user for the
language to be used to display critical system messages. The selected language
is recorded in battery backed-up RAM in order to retain the preferred language
when the system is powered down.

12.4.2 Hardware
The firmware described in this document resides on the KA680 module. The
KA680 is an NVAX based Q22–bus CPU module with off-board expansion
memory. Additionally, the KA680 is specifically designed to consolidate other
"system" components on a single module. In particular, the KA680 has an on-
board Ethernet adapter for network communications and integral DSSI ports for
connection of mass storage devices. The KA680 provides a local serial I/O port for
support of a standard VAX console.

The KA680 continues to support communications with other Q22–bus modules
through its Q22–bus interface consisting of a scatter/gather map, a direct map of
the Q22–bus I/O page and memory through VAX I/O space, and interprocessor
communication registers. Because the KA680 processor is intended to be the
Q22–bus arbiter, the use of the KA680 as an auxiliary processor is unsupported.

The KA680 provides a maximum of 512KB of FEPROM for the firmware. The
firmware resides on the KA680 module in four 128KB FEPROM, located at
the VAX restart location in I/O space at physical address E0040000. Unlike its
predecessors, the KA680 firmware image appears only once in I/O space and the
entire image runs halt-protected.

Note

All public call-in routines in the ROMs also run halt-protected and exit
through SSC RAM so that halt protection is turned off when returning
to the caller. Unsupported call-ins to ROM utilities may result in halt
protection forced outside the FEPROM extent.

12–86 KA680 Firmware

KA680 Firmware
12.4 Environment

For the firmware to operate, the processor must be functioning to the point of
executing instructions from the firmware FEPROM. This assumes that the NVAX
core set of chips is operating correctly.

The firmware uses the KA680 module LEDs and a console terminal to display
diagnostic progress, display error conditions, and indicate the current mode of
operation. Additionally, the console terminal is used as the primary operator
interface when in console I/O mode.

Note

A console terminal is not required for operation because the module can
be configured to bootstrap automatically. However, in most scenarios, a
console terminal is a recommended part of a standard configuration.

12.4.3 Software
The KA680 firmware runs standalone, and does not require other software
products for normal operation in "console I/O mode." However, in most situations,
an operating system (or other image) is loaded in KA680 local memory and
control is transferred to it. When the operating system is running, the processor
is in "program I/O mode." (The terms console I/O mode and program I/O mode
refer to the context and usage of the console terminal.)

The KA680 will support the Digital standard operating systems: VMS and
VAXELN. Additionally, the firmware will support bootstrap of MDM and other
diagnostics images. Furthermore, the console will support communication with
an APT host in manufacturing environments via the console serial line.

12.4.4 Services
The KA680 firmware is an integral part of the module and does not require
installation or support services. However, if an ECO is required, it may be
applied in the field by the customer.

KA680 Firmware 12–87

KA680 Firmware
12.5 Internationalization

12.5 Internationalization
Most firmware message text is either multilingual or language-independent. The
messages displayed on powerup and system failures are multilingual. Depending
on user preference, these messages are output in either English, French, German,
Italian, Portuguese, Spanish, Dutch, Danish, Finnish, Norwegian, or Swedish.
All other messages are language-independent; they are constructed of short,
language-insensitive abbreviations rather than readable sentences.

Numeric status displays on the processor LEDs facilitate the diagnosis of failing
processors in a language-independent manner.

The operation of the console is independent of the user’s line voltage or frequency.

The console supports the Digital Multinational Character Set (MCS). This
support extends to: displaying foreign language messages with MCS, accepting
and echoing MCS characters, and accepting a device attributes report (console
queries the terminal to determine if it is a CRT or not) using the C1 control
characters of MCS. However, all console commands must be entered using the
ANSI subset.

If the terminal does not support MCS, the console uses English message texts.

The console program uses four characters that are National Replacement
Characters (NRCs): the caret "^", the backslash "\", and the left and right square
brackets "[", "]". The caret is used by the console to denote control characters.
The backslash is used to delimit text deletions when editing console input. The
square brackets are used to denote directory specifications when the user directs
the bootstrap to solicit a secondary bootstrap file name. No provision is made for
terminals that replace any of these characters on output; however, use of angle
brackets "<" and ">" for directory specifications on input is acceptable.

12–88 KA680 Firmware

A
NVRAM Partitioning

This appendix describes how the KA680 firmware partitions the SSC 1 KB
battery backed-up (BBU) RAM.

A.1 SSC RAM Layout
The KA680 firmware uses the 1 KB of NVRAM on the SSC for storage of
firmware-specific data structures and other information that must be preserved
across power cycles. This NVRAM resides in the SSC chip starting at address
20140400. The NVRAM should not be used by the operating systems except
as documented below. This NVRAM is not reflected in the bitmap built by the
firmware.

Figure A–1 KA680 SSC NVRAM Layout

20140400

201407FC

Public Data Stuctures
(CPMBX, etc.)

Service Vectors

Rsvd for Customer Use

Firmware Stack

Diagnostic State

A.1.1 Public Data Structures
The following is a list of the public data structures in NVRAM used by the
console.

Fields that are desginated as reserved and/or internal use should not be written
because there is no protection against such corruption.

A.1.2 Console Program MailBoX (CPMBX)
The Console Program MailBoX (CPMBX) is a software data structure located at
the beginning of NVRAM (20140400). The CPMBX is used to pass information
between the KA680 firmware and diagnostics, VMB, or an operating system. It
consists of three bytes (referred to here as NVR0, NVR1, and NVR2).

NVRAM Partitioning A–1

NVRAM Partitioning
A.1 SSC RAM Layout

Figure A–2 NVR0 (20140400) : Console Program MailBoX (CPMBX)

7 6 5 4 3 2 1 0

NVR0 LANGUAGE RIP BIP HLT_ACT

Table A–1 CPMBX NVR0

Field Name Description

7:4 LANGUAGE This field specifies the current selected language for displaying
halt and error messages on terminals that support MCS.

3 RIP If set, a restart attempt is in progress. This flag must be cleared
by the operating system if the restart succeeds.

2 BIP If set, a bootstrap attempt is in progress. This flag must be
cleared by the operating system if the bootstrap succeeds.

1:0 HLT_ACT Processor halt action - This field, in conjunction with the
conditions specified in Table 12–1, is used to control the
automatic restart/bootstrap procedure. HLT_ACT is normally
written by the operating system.

0 : Restart; if that fails, reboot; if that fails, halt.
1 : Restart; if that fails, halt.
2 : Reboot; if that fails, halt.
3 : Halt.

A–2 NVRAM Partitioning

NVRAM Partitioning
A.1 SSC RAM Layout

Figure A–3 NVR1 (20140401)

7 6 5 4 3 2 1 0

NVR1 MCS CRT

Table A–2 CPMBX NVR1

Field Name Description

2 MCS If set, indicates that the attached terminal supports
Multinational Character Set. If clear, MCS is not supported.

1 CRT If set, indicates that the attached terminal is a CRT. If clear,
indicates that the terminal is hard copy.

Figure A–4 NVR2 (20140402)

7 6 5 4 3 2 1 0

NVR2 KEYBOARD

Table A–3 CPMBX NVR0

Field Name Description

7:0 KEYBOARD This field indicates the national keyboard variant in use.

A.1.3 Firmware Stack
This area contains the stack that is used by all the firmware (except VMB, which
has its own built-in stack).

A.1.4 Diagnostic State
This area is used by the firmware-resident diagnostics. It is not documented here.

A.1.5 USER Area
The KA680 console reserves the last longword (address 201407FC) of the NVRAM
for customer use. This location is not tested by the console firmware. Its value is
undefined.

NVRAM Partitioning A–3

B
Data Structures

This appendix contains definitions of key global data structures that are used by
the KA680 firmware.

B.1 Halt Dispatch State Machine
The KA680 halt dispatcher determines what actions the firmware will take on
halt entry, based on the machine state. The dispatcher is implemented as a
state machine, which uses a single bitmap control word and the transition table
(Table B–1) to process all halts. The transition table is sequentially searched for
matches with the current state and control word. If there is a match, a transition
occurs to the next state.

The control word is comprised of the following information.

• Halt Type, used for resolving external halts. Valid only if Halt Code is 00.

000 : Power-up state
001 : Halt in progress
010 : Negation of Q22–bus DCOK
011 : Console BREAK condition detected
100 : Q22–bus BHALT
101 : SGEC BOOT_L asserted (trigger boot)

• Halt Code, compressed form of SAVPSL<13:8>(RESTART_CODE).

00 : RESTART_CODE = 2, external halt
01 : RESTART_CODE = 3, power-up/reset
10 : RESTART_CODE = 6, halt instruction
11 : RESTART_CODE = any other error halts

• Mailbox Action, passed by an operating system in CPMBX<1:0>(HALT_
ACTION).

00 : Restart, boot, halt
01 : Restart, halt
10 : Boot, halt
11 : Halt

• User Action, specified with the SET HALT console command.

000 : Default
001 : Restart, halt
010 : Boot, halt
011 : Halt
100 : Restart, boot, halt

• HEN, BREAK (halt) enable switch, BDR<7>.

• ERR, error status.

• TIP, trace in progress.

Data Structures B–1

Data Structures
B.1 Halt Dispatch State Machine

• DIP, diagnostics in progress.

• BIP, bootstrap in progress CPMBX<2>.

• RIP, restart in progress CPMBX<3>.

Table B–1 Firmware State Transition Table

Current
State

Next
State

Halt
Type

Halt
Code

Mailbox

Action
User
Action

HEN-ERR-TIP-
DIP-BIP-RIP

Perform conditional initialization.1

ENTRY –>RESET INIT xxx 01 xx xxx x - x - x - x - x - x

ENTRY –>BREAK INIT 011 00 xx xxx x - x - x - x - x - x

ENTRY –>TRACE INIT xxx 10 xx xxx x - 0 - 1 - x - x - x

ENTRY –>OTHER INIT xxx xx xx xxx x - x - x - x - x - x

Perform common initialization. 2

RESET INIT –>INIT xxx xx xx xxx x - x - x - x - x - x

BREAK
INIT

–>INIT xxx xx xx xxx x - x - x - x - x - x

TRACE INIT –>INIT xxx xx xx xxx x - x - x - x - x - x

OTHER
INIT

–>INIT xxx xx xx xxx x - x - x - x - x - x

Check for external halts. 3

INIT –>BOOTSTRAP 010 00 xx xxx 0 - x - x - x - x - x

INIT –>BOOTSTRAP 101 00 xx xxx x - x - x - x - x - x

INIT –>HALT xxx 00 xx xxx x - x - x - x - x - x

Check for pending (NEXT) trace. 4

INIT –>TRACE xxx 10 xx xxx x - x - 1 - x - x - x

TRACE –>EXIT xxx 10 xx xxx x - 0 - 1 - x - x - x

TRACE –>HALT xxx xx xx xxx x - x - x - x - x - x

Check for bootstrap conditions. 5

INIT –>BOOTSTRAP xxx 01 xx xxx 0 - 0 - 0 - 0 - 0 - 0

1 Perform a unique initialization routine on entry. In particular, powerups, BREAKs, and TRACEs
require special initialization. Any other halt entry performs a default initialization.
2 After performing conditional initialization, complete common initialization.
3 Halt on all external halts, except:

If DCOK (unlikely) and halts are disabled, bootstrap.
If SGEC remote trigger, bootstrap.

4 Unconditionally enter the TRACE state if the TIP flag is set and the halt was due to a HALT
instruction. From the TRACE state the firmware exits if TIP is set and ERR is clear; otherwise, it
halts.
5 Bootstrap,

If powerup and halts are disabled.
If powerup and halts are enabled and user action is 2 or 4.
If not powerup and mailbox is 2.
If not powerup, mailbox is 0, and user action is 2.
If not powerup, restart failed, mailbox is 0, and user action is 0 or 4.

(continued on next page)

B–2 Data Structures

Data Structures
B.1 Halt Dispatch State Machine

Table B–1 (Cont.) Firmware State Transition Table

Current
State

Next
State

Halt
Type

Halt
Code

Mailbox

Action
User
Action

HEN-ERR-TIP-
DIP-BIP-RIP

INIT –>BOOTSTRAP xxx 01 xx 010 1 - 0 - 0 - 0 - 0 - 0

INIT –>BOOTSTRAP xxx 01 xx 100 1 - 0 - 0 - 0 - 0 - 0

INIT –>BOOTSTRAP xxx 1x 10 xxx x - 0 - 0 - 0 - 0 - 0

INIT –>BOOTSTRAP xxx 1x 00 010 x - 0 - 0 - 0 - 0 - 0

INIT –>BOOTSTRAP xxx 1x 00 100 x - 0 - 0 - 0 - 0 - 1

INIT –>BOOTSTRAP xxx 1x 00 100 x - 1 - 0 - 0 - 0 - x

INIT –>BOOTSTRAP xxx 1x 00 000 0 - 0 - 0 - 0 - 0 - 1

RESTART –>BOOTSTRAP xxx 1x 00 000 0 - 1 - 0 - 0 - 0 - x

Check for restart conditions. 6

INIT –>RESTART xxx 1x 01 xxx x - 0 - 0 - 0 - 0 - 0

INIT –>RESTART xxx 1x 00 001 x - 0 - 0 - 0 - 0 - 0

INIT –>RESTART xxx 1x 00 100 x - 0 - 0 - 0 - 0 - 0

INIT –>RESTART xxx 1x 00 000 0 - 0 - 0 - 0 - 0 - 0

Perform common exit processing, if
no errors. 7

BOOTSTRAP –>EXIT xxx xx xx xxx x - 0 - x - x - x - x

RESTART –>EXIT xxx xx xx xxx x - 0 - x - x - x - x

HALT –>EXIT xxx xx xx xxx x - 0 - x - x - x - x

Exception transitions, just halt. 8

INIT –>HALT xxx xx xx xxx x - x - x - x - x - x

BOOT –>HALT xxx xx xx xxx x - x - x - x - x - x

REST –>HALT xxx xx xx xxx x - x - x - x - x - x

HALT –>HALT xxx xx xx xxx x - x - x - x - x - x

TRACE –>HALT xxx xx xx xxx x - x - x - x - x - x

EXIT –>HALT xxx xx xx xxx x - x - x - x - x -
x

6 Restart the operating system if not powerup and:

If mailbox is 1.
If mailbox is 0 and user action is 1 or 4.
If mailbox is 0, user action is 0, and halts are disabled.

7 Exit after halts, bootstrap, or restart. The exit state transitions to program I/O mode.
8 Guard block that catches all exception conditions. In all cases, just halt.
"x" is used in this table to indicate a "don’t care" field.

A transition to a "next state" occurs if a match is found between the control
word and a "current state" entry in the table. The firmware does a linear search
through the table for a match. Therefore, the order of the entries in the transition
table is important. The control longword is reassembled before each transition
from the current machine state. The state machine transitions are shown in
Table B–1.

Data Structures B–3

Data Structures
B.2 RPB

B.2 RPB
VMB typically utilizes the low portion of memory unless there are bad pages in
the first 128 KB. The first page in its block is used for the RPB (restart parameter
block) through which it communicates to the operating system. Usually, this is
page 0.

VMB will initialize the restart parameter block (RPB) as follows:

Table B–2 Restart Parameter Block Fields

(R11)+ Field Name Description

00: RPB$L_BASE Physical address of base of RPB.

04: RPB$L_
RESTART

Cleared.

08: RPB$L_
CHKSUM

-1

0C: RPB$L_
RSTRTFLG

Cleared.

10: RPB$L_HALTPC R10 on entry to VMB (HALT PC).

10: RPB$L_
HALTPSL

PR$_SAVPSL on entry to VMB (HALT PSL).

18: RPB$L_
HALTCODE

AP on entry to VMB (HALT CODE).

1C: RPB$L_BOOTR0 R0 on entry to VMB.

Note

The field RPB$W_R0UBVEC,
which overlaps the high order
word of RPB$L_BOOTR0, is set
by the boot device drivers to the
SCB offset (in the second page of
the SCB) of the interrupt vector
for the boot device.

20: RPB$L_BOOTR1 VMB version number. The high-order word of the version is
the major ID and the low-order word is the minor ID.

24: RPB$L_BOOTR2 R2 on entry to VMB.

28: RPB$L_BOOTR3 R3 on entry to VMB.

(continued on next page)

B–4 Data Structures

Data Structures
B.2 RPB

Table B–2 (Cont.) Restart Parameter Block Fields

(R11)+ Field Name Description

2C: RPB$L_BOOTR4 R4 on entry to VMB.

Note

The 48-bit booting node address
is stored in RPB$L_BOOTR3
and RPB$L_BOOTR4 for
compatibility with VAXELN
V1.1. (This field is initialized
this way only when performing a
network boot.)

30: RPB$L_BOOTR5 R5 on entry to VMB.

34: RPB$L_IOVEC Physical address of boot driver’s I/O vector of transfer
addresses.

38: RPB$L_IOVECSZ Size of BOOT QIO routine.

3C: RPB$L_FILLBN LBN of secondary bootstrap image.

40: RPB$L_FILSIZ Size of secondary bootstrap image in blocks.

44: RPB$Q_PFNMAP The PFN bitmap is a array of bits where each bit has the
value "1" if the corresponding page of memory is valid, or
the value "0" if the corresponding page of memory contains
a memory error. Through use of the PFNMAP, the operating
system can avoid memory errors by avoiding known bad pages
altogether. The memory bitmap is always page-aligned, and
describes all the pages of memory from physical page #0 to
the high-end of memory, but excluding the PFN bitmap itself
and the Q–bus map registers. If the high byte of the bitmap
spans some pages available to the operating system and some
pages of the PFN bitmap itself, the pages corresponding to
the bitmap itself will be marked as bad pages. The first
longword of the PFNMAP descriptor contains the number
of bytes in the PFNMAP; the second longword contains the
physical address of the bitmap.

4C: RPB$L_PFNCNT Count of "good" pages of physical memory, but not including
the pages allocated to the Q22–bus scatter/gather map, the
console scratch area, and the PFN bitmap at the top of
memory.

50: RPB$L_SVASPT 0.

54: RPB$L_CSRPHY Physical address of CSR for boot device.

58: RPB$L_CSRVIR 0.

5C: RPB$L_ADPPHY Physical address of ADP (really the address of QMRs - ^x800
to look like a UBA adapter).

60: RPB$L_ADPVIR 0.

64: RPB$W_UNIT Unit number of boot device.

66: RPB$B_DEVTYP Device type code of boot device.

(continued on next page)

Data Structures B–5

Data Structures
B.2 RPB

Table B–2 (Cont.) Restart Parameter Block Fields

(R11)+ Field Name Description

67: RPB$B_SLAVE Slave number of boot device.

68: RPB$T_FILE Name of secondary bootstrap image (defaults to
[SYS0.SYSEXE]SYSBOOT.EXE). This field (up to 40 bytes) is
overwritten with the input string on a "solicit" boot.

Note

1 : For VAX VMS, the RPB$T_
FILE must contain the root
directory string "SYSn." on a
non-network bootstrap. This
string is parsed by SYSBOOT
(that is, SYSBOOT does not use
the high nibble of BOOTR5).
2 : The RPB$T_FILE is
overwritten to contain the boot
node name for compatibility with
VAXELN V1.1. (This field is
initialized this way only when
performing a network boot.)

90: RPB$B_
CONFREG

Array (16 bytes) of adapter types (NDT$_UB0 - UNIBUS).

A0: RPB$B_
HDRPGCNT

Count of header pages.

A1: RPB$W_
BOOTNDT

Boot adapter nexus device type. Used by SYSBOOT and
INIADP (OF SYSLOA) to configure the adapter of the boot
device (changed from a byte to a word field in Version 12 of
VMB).

B0: RPB$L_SCBB Physical address of SCB.

BC: RPB$L_
MEMDSC

Count of pages in physical memory including both good and
bad pages. The eight high bits of this longword contain the
TR number, which is always zero for KA680.

C0: RPB$L_
MEMDSC+4

PFN of the first page of memory. This field is always zero for
KA680, even if page #0 is a bad page.

Note

No other memory descriptors are
used.

104: RPB$L_BADPGS Count of "bad" pages of physical memory.

(continued on next page)

B–6 Data Structures

Data Structures
B.2 RPB

Table B–2 (Cont.) Restart Parameter Block Fields

(R11)+ Field Name Description

108: RPB$B_
CTRLLTR

Boot device controller number biased by 1. In VAX VMS,
this field is used by INIT (in SYS) to construct the boot
device’s controller letter. A zero implies this field has not
been initialized; else if initialized, A=1, B=2, etc. (This field
was added in Version 13 of VMB.)

nn: — The rest of the RPB is zeroed.

Data Structures B–7

Data Structures
B.3 VMB Argument List

B.3 VMB Argument List
The VMB code will also initialize an argument list as follows (the address of the
argument list is passed in the AP):

Table B–3 VMB Argument List

(AP)+ Field Name Description

04: VMB$L_
FILECACHE

Quadword file name.

0C: VMB$L_LO_PFN PFN of first page of physical memory (always zero, regardless
of where 128 KB of "good" memory starts).

10: VMB$L_HI_PFN PFN of last page of physical memory.

14: VMB$Q_
PFNMAP

Descriptor of PFN bitmap. First longword contains count of
bytes in bitmap. Second longword contains physical address
of bitmap. (Same rules as for RPB$Q_PFNMAP listed above.)

1C: VMB$Q_UCODE Quadword.

24: VMB$B_
SYSTEMID

48-bit (actually, a quadword is allocated) booting node address
initialized when performing a network boot. This field is
copied from the target system address parameter of the
parameters message. (The DECnet HIORD value is added if
the field were two bytes.)

2C: VMB$L_FLAGS Set as needed.

30: VMB$L_CI_
HIPFN

Cluster interface high PFN.

34: VMB$Q_
NODENAME

Boot node name that is initialized when performing a network
boot. This field is copied from the target system name
parameter of the parameters message.

3C: VMB$Q_
HOSTADDR

Host node address (this value is initialized only when booting
over the network). This field is copied from the host system
address parameter of the parameters message.

44: VMB$Q_
HOSTNAME

Host node name (this value is initialized only when
performing a network boot). This field is copied from the
host system name parameter of the parameters message.

4C: VMB$Q_TOD Time of day (this value is initialized only when performing a
network boot). The time of day is copied from the first eight
bytes of the host system time parameter of the parameters
message. (The time differential values are NOT copied.)

54: VMB$L_XPARAM Pointer to data retrieved from request of the parameter file.

58: — The rest of the argument list is zeroed.

B–8 Data Structures

C
Error Messages

The error messages issued by the KA680 firmware fall into three categories: halt
code messages, VMB error messages, and console messages.

C.1 Machine Check Register Dump
Some error conditions, such as machine check, generate an error summary
register dump preceding the error message. For example, examining a
nonexistent memory location results in the following display:

>>>ex /p/l 7fffff0 ! Examine non-existent memory.

MESR=801FF000 MEAR=11FFFFF9 MMCDSR=01111000 MOAMR=00000000
CESR=00000000 CMCDSR=0000C108 CSEAR1=00000000 CSEAR2=00000000
CIOEAR1=010FC000 CIOEAR2=000002C0 CNEAR=00000000 ICSR=00000001
PCSTS=FFFFF800 PCADR=FFFFFFF8 TBSTS=C00000E0 TBADR=00000000
NESTS=00000000 NEOADR=E014066C NEOCMD=8000F005 NEICMD=00000000
NEDATHI=00000000 NEDATLO=00000000 CEFSTS=0000022A CEFADR=07FFFFF0
BCETSTS=00000000 BCETIDX=00000000 BCETAG=00000000 BCEDSTS=00000700
BCEDIDX=00000008 BCEDECC=00000000 CBTCR=00004000 DSER=00000000
QBEAR=0000000F DEAR=00000000 IPCR0=0000 ECR=000000CA
?7D MACHINE CHECK 80060000 00000000 20047ECC 20047EBD 20047EB9 B0110080

>>>

C.2 Halt Code Messages
Except on powerup, which is not treated as an error condition, the following halt
messages are issued by the firmware whenever the processor halts.

For example, if the processor encounters a HALT instruction while in kernel
mode, the processor halts and the firmware displays the following before entering
console I/O mode:

?06 HLT INST
PC = 800050D3

The number preceding the halt message is the "halt code." This number is
obtained from SAVPSL<13:8>(RESTART_CODE), IPR 43, which is saved on any
processor restart operation.

Error Messages C–1

Error Messages
C.2 Halt Code Messages

Table C–1 HALT Messages

Code Message Description

?02 EXT HLT External halt caused by either console BREAK condition, Q22–bus
BHALT_L, or DBR<AUX_HLT> bit, was set while enabled.

?03 ——- Power-up, no halt message is displayed. However, the presence of
the firmware banner and diagnostic countdown indicates the reason
for this halt.

?04 ISP ERR In attempting to push state onto the interrupt stack during an
interrupt or exception, the processor discovered that the interrupt
stack was mapped NO ACCESS or NOT VALID.

?05 DBL ERR The processor attempted to report a machine check to the operating
system, and a second machine check occurred.

?06 HLT INST The processor executed a HALT instruction in kernel mode.

?07 SCB ERR3 The SCB vector had bits <1:0> equal to 3.

?08 SCB ERR2 The SCB vector had bits <1:0> equal to 2.

?0A CHM FR ISTK A change mode instruction was executed when PSL<IS> was set.

?0B CHM TO ISTK The SCB vector for a change mode had bit <0> set.

?0C SCB RD ERR A hard memory error occurred while the processor was trying to read
an exception or interrupt vector.

?10 MCHK AV An access violation or an invalid translation occurred during machine
check exception processing.

?11 KSP AV An access violation or invalid translation occurred during processing
of a kernel stack not valid exception.

?12 DBL ERR2 Double machine check error. A machine check occurred while trying
to service a machine check.

?13 DBL ERR3 Double machine check error. A machine check occurred while trying
to service a kernel stack not valid exception.

?19 PSL EXC51 PSL<26:24> = 5 on interrupt or exception.

?1A PSL EXC61 PSL<26:24> = 6 on interrupt or exception.

?1B PSL EXC71 PSL<26:24> = 7 on interrupt or exception.

?1D PSL REI51 PSL<26:24> = 5 on an REI instruction.

?1E PSL REI61 PSL<26:24> = 6 on an REI instruction.

?1F PSL REI71 PSL<26:24> = 7 on an REI instruction.

?3F MICROVERIFY
FAILURE

Microcode power-up self-test failed.

1For the last six cases, the VAX architecture does not allow execution on the interrupt stack while in a mode other than
kernel. In the first three cases, an interrupt is attempting to run on the interrupt stack while not in kernel mode. In the
last three cases, an REI instruction is attempting to return to a mode other than kernel and still run on the interrupt
stack.

C–2 Error Messages

Error Messages
C.3 VMB Error Messages

C.3 VMB Error Messages
The following errors are issued by VMB.

Table C–2 VMB Error Messages

Code Message Description

?40 NOSUCHDEV No bootable devices found.

?41 DEVASSIGN Device is not present.

?42 NOSUCHFILE Program image not found.

?43 FILESTRUCT Invalid boot device file structure.

?44 BADCHKSUM Bad checksum on header file.

?45 BADFILEHDR Bad file header.

?46 BADIRECTORY Bad directory file.

?47 FILNOTCNTG Invalid program image format.

?48 ENDOFFILE Premature end of file encountered.

?49 BADFILENAME Bad file name given.

?4A BUFFEROVF Program image does not fit in available memory.

?4B CTRLERR Boot device I/O error.

?4C DEVINACT Failed to initialize boot device.

?4D DEVOFFLINE Device is off line.

?4E MEMERR Memory initialization error.

?4F SCBINT Unexpected SCB exception or machine check.

?50 SCB2NDINT Unexpected exception after starting program image.

?51 NOROM No valid ROM image found.

?52 NOSUCHNODE No response from load server.

?53 INSFMAPREG The Q22–bus map initialization failed.

?54 RETRY No devices bootable, retrying.

?55 IVDEVNAM Invalid device name.

?56 DRVERR Drive error.

Error Messages C–3

Error Messages
C.4 Console Error Messages

C.4 Console Error Messages
These error messages are issued in response to a console command that has
error(s).

Table C–3 Console Error Messages

Code Message Description

?61 CORRUPTION The console program database has been corrupted.

?62 ILLEGAL REFERENCE Illegal reference. Either the requested reference would violate
virtual memory protection, the address is not mapped, the reference
is invalid in the specified address space, or the value is invalid in the
specified destination.

?63 ILLEGAL COMMAND The command string cannot be parsed.

?64 INVALID DIGIT A number has an invalid digit.

?65 LINE TOO LONG The command was too large for the console to buffer. The message is
issued only after receipt of the terminating Return.

?66 ILLEGAL ADRRESS The address specified falls outside the limits of the address space.

?67 VALUE TOO LARGE The value specified does not fit in the destination.

?68 QUALIFIER CONFLICT Qualifier conflict (for example, two different data sizes are specified
for an EXAMINE command).

?69 UNKNOWN QUALIFIER The switch is unrecognized.

?6A UNKNOWN SYMBOL The symbolic address in an EXAMINE or DEPOSIT command is
unrecognized.

?6B CHECKSUM The command or data checksum of an X command is incorrect. If
the data checksum is incorrect, this message is issued, and is not
abbreviated to "Illegal command."

?6C HALTED The operator entered a HALT command.

?6D FIND ERROR A FIND command failed either to find the RPB or 128 KB of good
memory.

?6E TIME OUT During an X command, data failed to arrive in the time expected (60
seconds).

?6F MEMORY ERROR A machine check occurred with a code indicating a read or write
memory error.

?70 UNIMPLEMENTED Unimplemented function.

?71 NO VALUE QUALIFIER Qualifier does not take a value.

?72 AMBIGUOUS
QUALIFIER

There were not enough unique characters to determine the qualifier.

?73 VALUE QUALIFIER Qualifier requires a value.

?74 TOO MANY
QUALIFIERS

Too many qualifiers supplied for this command.

?75 TOO MANY
ARGUMENTS

Too many arguments supplied for this command.

?76 AMBIGUOUS
COMMAND

There were not enough unique characters to determine the
command.

?77 TOO FEW ARGUMENTS Insufficient arguments supplied for this command.

?78 TYPEAHEAD
OVERFLOW

The typeahead buffer overflowed.

(continued on next page)

C–4 Error Messages

Error Messages
C.4 Console Error Messages

Table C–3 (Cont.) Console Error Messages

Code Message Description

?79 FRAMING ERROR A framing error was detected on the console serial line.

?7A OVERRUN ERROR An overrun error was detected on the console serial line.

?7B SOFT ERROR A soft error occurred.

?7C HARD ERROR A hard error occurred.

?7D MACHINE CHECK A machine check occurred.

Error Messages C–5

D
Machine State on Powerup

This appendix describes the state of the KA680 after a power-up halt.

The descriptions in this section assume a machine with no errors, the machine
has just been turned on, and only the power-up diagnostics have been run. The
state of the machine is not defined if individual diagnostics are run or during any
other halts other than a power-up halt (SAVPSL<13:8>(RESTART_CODE) = 3).

The following sections describe data structures that are guaranteed to be constant
over future versions of the KA680 firmware. Placement and/or existence of any
other structure(s) is not implied.

D.1 Main Memory Layout and State
Main memory is tested and initialized by the firmware on powerup. Figure D–1
is a diagram of how main memory is partitioned after diagnostics.

Figure D–1 Memory Layout after Power-up Diagnostics

0

PFN bitmap

QMR base

Top of Memory

.

.

.

.

.

.

.

.

Available system memory
(pages potentially good or bad)

n pages
size in pages n = (# of MB)/2)

32 pages

. .

PFN bitmap
(always on page boundary and

64 pages

Firmware "scratch memory"
(always 16KB)

Q22−Bus Scatter/Gather Map
(always on 32KB boundary)

Potential "bad" memory

D.1.1 Reserved Main Memory
In order to build the scatter/gather map and the bitmap, the firmware attempts to
find a physically contiguous page-aligned 176 KB block of memory at the highest
possible address that has no multiple bit errors. Single bit errors are tolerated in
this section.

Machine State on Powerup D–1

Machine State on Powerup
D.1 Main Memory Layout and State

Of the 176 KB, the upper 32 KB are dedicated to the Q22–bus scatter/gather
map, as shown in Figure F-1. Of the lower portion, up to 128 KB at the bottom
of the block is allocated to the PFN (page frame number) bitmap. The size of
the PFN bitmap is dependent on the extent of physical memory. Each bit in
the bitmap maps one page (512 bytes) of memory. The remainder of the block
between the bitmap and scatter/gather map (a minimum of 16 KB) is allocated
for the firmware.

D.1.1.1 PFN Bitmap
The PFN bitmap is a data structure that indicates which pages in memory are
deemed usable by operating systems. The bitmap is built by the diagnostics as
an outcome of the memory tests on powerup. The bitmap always starts on a page
boundary. The bitmap requires 1 KB for every 4 MB of main memory; hence, an 8
MB system requires 2 KB, 16 MB requires 4 KB, 32 MB requires 8 KB, and a 64
MB requires 16 KB. The bitmap does not map itself or anything above it. There
may be memory above the bitmap that has both good and bad pages.

Each bit in the PFN bitmap corresponds to a page in main memory. There is
a one-to-one correspondence between a page frame number (origin 0) and a bit
index in the bitmap. A one in the bitmap indicates that the page is "good" and
can be used. A zero indicates that the page is "bad" and should not be used. By
default, a page is flagged "bad" if a multiple bit error occurs when referencing
the page. Single bit errors, regardless of frequency, will not cause a page to be
flagged "bad."

The PFN bitmap is protected by a checksum stored in the NVRAM. The checksum
is a simple byte wide, two’s complement checksum. The sum of all bytes in the
bitmap and the bitmap checksum should result in zero. Operating systems that
modify the bitmap are encouraged to update this checksum to facilitate diagnosis
by service personnel.

D.1.1.2 Scatter/Gather Map
On powerup, the scatter/gather map is initialized by the firmware to map to the
first 4 MB of of main memory. Main memory pages will not be mapped if there
is a corresponding page in Q22–bus memory, or if the page is marked bad by the
PFN bitmap.

On a processor halt other than powerup, the contents of the scatter/gather map is
undefined, and is dependent on operating system usage.

Operating systems should not move the location of the scatter/gather map, and
should access the map only on aligned longwords through the local I/O space of
20088000 to 2008FFFC, inclusive. The Q22–bus map base register, (QMBR) is set
up by the firmware to point to this area, and should not be changed by software.

D.1.1.3 Firmware "Scratch Memory"
This section of memory is reserved for the firmware. However, it is used only
after successful execution of the memory diagnostics and initialization of the PFN
bitmap and scatter/gather map. This memory is primarily used for diagnostic
purposes.

D–2 Machine State on Powerup

Machine State on Powerup
D.1 Main Memory Layout and State

D.1.2 Contents of Main Memory
The contents of main memory are undefined after the diagnostics have run.
Typically, nonzero test patterns will be left in memory.

The diagnostics will "scrub" all main memory so that no power-up induced errors
remain in the memory system. On the KA680 memory subsystem, the state of
the ECC bits and the data bits are undefined on initial powerup. This can result
in single and multiple bit errors if the locations are read before written, because
the ECC bits are not in agreement with their corresponding data bits. An aligned
longword write to every location (done by diagnostics) eliminates all power-up
induced errors.

D.2 Memory Controller Registers
The KA680 firmware assigns bank numbers to the MEMCONn registers in
ascending order, without attempting to disable physical banks that contain
errors. High order unused banks are set to zero. Error loggers should capture
the following bits from each MEMCONn register:

MEMCONn <31> (bank enable bit). Since the firmware always assigns banks in
ascending order, knowing which banks are enabled is sufficient information to
derive the bank numbers. MEMCONn <1:0> (bank usage). This field determines
the size of the banks on the particular memory board.

Additional information should be captured from the NMCDSR, MOAMR, MSER,
and MEAR as needed.

D.2.1 On-chip Cache
The CPU on-chip cache is tested during the power-up diagnostics, flushed,
and then turned on. The cache is also turned on by the BOOT and the INIT
command.

D.2.2 Translation Buffer
The CPU translation buffer is tested by diagnostics on powerup, but is not used
by the firmware because it runs in physical mode. The translation buffer can be
invalidated by using PR$_TBIA, IPR 57.

D.2.3 Halt-Protected Space
On the KA680, halt-protected space spans the 512 KB FEPROM from E0040000
to E007FFFF. The firmware always runs in halt-protected space. When passing
control to the bootstrap, the firmware exits the halt-protected space. Therefore,
if halts are enabled, and the halt line is asserted, the processor will halt before
booting.

Machine State on Powerup D–3

E
MOP Support

This appendix describes the maintenance operation protocol (MOP) support
features in the KA680 firmware.

E.1 Network "Listening"
While the KA680 is waiting for a load volunteer during bootstrap, it "listens" on
the network for other maintenance messages directed to the node and periodically
identifies itself at the end of each 8- to 12-minute interval prior to a bootstrap
retry. In particular, this "listener" supplements the MOP functions of the VMB
load requester typically found in bootstrap firmware and supports:

• A remote console server that generates COUNTERS messages in response to
REQ_COUNTERS messages, unsolicited SYSTEM_ID messages every 8 to 12
minutes, and solicited SYSTEM_ID messages in response to REQUEST_ID
messages as well as recognition of BOOT messages.

• A loopback server that responds to Ethernet LOOPBACK messages by
echoing the message to the requester.

• An IEEE 802.2 responder that replies to both XID and TEST messages.

During network bootstrap operation, the KA680 complies with the requirements
defined in the "NI Node Architecture Specification" for a primitive node. The
firmware listens only to MOP "Load/Dump," MOP "Remote Console," Ethernet
"Loopback Assistance," and IEEE 802.3 XID/TEST messages (listed in
Table E–4) directed to the Ethernet physical address of the node. All other
Ethernet protocols are filtered by the network device driver.

The MOP functions and message types that are supported by the KA680 are
summarized in the following tables.

MOP Support E–1

MOP Support
E.1 Network "Listening"

Table E–1 KA680 Network Maintenance Operations Summary

Function Role Transmit Receive

MOP Ethernet and IEEE 802.3 Messages 1

Dump Requester —– —–

Server —– —–

Load Requester REQ_PROGRAM2 to solicit VOLUNTEER

REQ_MEM_LOAD to solicit & ACK MEM_LOAD

or MEM_
LOAD_
w_XFER

or PARAM_
LOAD_w_
XFER

Server —– —–

Console Requester —– —–

Server COUNTERS in response to REQ_
COUNTERS

SYSTEM_ID3 in response to REQUEST_
ID

BOOT

Loopback Requester —– —–

Server LOOPED_DATA4 in response to LOOP_DATA

IEEE 802.2 Messages5

Exchange ID Requester —– —–

Server XID_RSP in response to XID_CMD

Test Requester —– —–

Server TEST_RSP in response to TEST_CMD

1 All unsolicited messages are sent in Ethernet (MOP V3) and IEEE 802.2 (MOP V4) until the MOP
version of the server is known. All solicited messages are sent in the format used for the request.
2The initial REQ_PROGRAM message is sent to the dumpload multicast address. If an assistance
VOLUNTEER message is received, then the responder’s address is used as the destination to repeat
the REQ_PROGRAM message and for all subsequent REQ_MEM_LOAD messages.
3SYSTEM_ID messages are sent every 8 to 12 minutes to the remote console multicast address. On
receipt of a REQUEST_ID message, they are sent to the initiator.
4LOOPED_DATA messages are sent in response to LOOP_DATA messages. These messages are
actually in Ethernet LOOP TEST format, not in MOP format. When sent in Ethernet, frames omit
the additional length field (padding is disabled).
5IEEE 802.2 support of XID and TEST is limited to Class 1 operations.

E–2 MOP Support

MOP Support
E.1 Network "Listening"

Table E–2 Supported MOP Messages

Message Type Message Fields

DUMP/LOAD

MEM_LOAD_w_
XFER

Code
00

Load #
nn

Load addr
aa-aa-aa-aa

Image data
None

Xfer addr
aa-aa-aa-aa

MEM_LOAD Code
02

Load #
nn

Load addr
aa-aa-aa-aa

Image data
dd-...

REQ_PROGRAM Code
08

Device
25 LQA
49
SGEC

Format
01 V3
04 V4

Program

02
Sys

SW ID 3

C-17 1

C-128 2

If C[1]
>00 Len
00 No
ID
FF OS
FE
Maint

Procesr
00 Sys

Info
(see SYSTEM_ID)

REQ_MEM_LOAD Code
0A

Load #
nn

Error
ee

PARM_LOAD_w_
XFER

Code
14

Load #
nn

Prm typ
01
02
03
04
05
06
00 End

Prm len
I-16
I-06
I-16
I-06
0A
08

Prm val
Target name 1

Target addr 1

Host name 1

Host addr 1

Host time 1

Host time 2

Xfer addr
aa-aa-aa-aa

VOLUNTEER Code
03

1MOP V3.0 only.
2MOP x4.0 only.
3Software ID field is loaded from the string stored in the 40-byte field, RPB$T_FILE, of the RPB on a solicited boot.

(continued on next page)

MOP Support E–3

MOP Support
E.1 Network "Listening"

Table E–2 (Cont.) Supported MOP Messages
REMOTE CONSOLE

REQUEST_ID Code
05

Rsrvd
xx

Recpt #
nn-nn

SYSTEM_ID Code
07

Rsrvd
xx

Recpt #
nn-nn
or
00-00

Info type
01-00 Version
02-00 Functions
07-00 HW addr
64-00 Device
90-01 Datalink
91-01 Bufr size

Info len
03
02
06
01
01
02

Info value
04-00-00
00-59
ee-ee-ee-ee-ee-ee
25 or 49
01
06-04

REQ_COUNTERS Code
09

Recpt #
nn-nn

COUNTERS Code
0B

Recpt #
nn-nn

Counter block

BOOT 4 Code
06

Verification
vv-vv-vv-vv-vv-vv-
vv-vv

Procesr
00 Sys

Control
xx

Dev ID
C-17

SW ID3

(see
REQ_
PROGRAM)

Script
ID2

C-128

LOOPBACK

LOOP_DATA Skpcnt

nn-nn

Skipped bytes
bb-...

Function
00-02 Forward
data

Forward addr
ee-ee-ee-ee-ee-ee

Data
dd-...

LOOPED_DATA Skpcnt

nn-nn

Skipped bytes
bb-...

Function
00-01 Reply

Recpt #
nn-nn

Data
dd-...

IEEE 802.2

XID_CMD/RSP Form
81

Class
01

Rx window size (K)
00

TEST_CMD/RSP Optional data.

2MOP x4.0 only.
3Software ID field is loaded from the string stored in the 40-byte field, RPB$T_FILE, of the RPB on a solicited boot.
4A BOOT message is not verified, because in this context, a boot is already in progress. However, a received BOOT
message will cause the boot backoff timer to be reset to it’s minimum value.

E–4 MOP Support

MOP Support
E.1 Network "Listening"

Table E–3 Ethernet and IEEE 802.3 Packet Headers

Ethernet MOP Message Format (MOP V3)

Dest_address Src_address Prot Len MOP msg Pad CRC

dd-dd-dd-dd-dd-
dd

ss-ss-ss-ss-ss-
ss

60-01 nn-
nn

dd-... xx-... cc-
cc

60-02 nn-
nn

dd-...

90-00 dd-...

IEEE 802.3 SNAP SAP MOP Message Format (MOP V4)

Dest_address Src_address Len DSAP SSAP Ctl P_ID MOP_
msg

CRC

dd-dd-dd-dd-dd-
dd

ss-ss-ss-ss-ss-
ss

nn-nn AA AA 03 08-00-2B-60-01
08-00-2B-60-02
08-00-2B-90-00

dd-... cc-
cc

IEEE 802.3 XID/TEST Message Format (MOP V4)

Dest_address Src_address Len DSAP SSAP Ctl 1 Data CRC

dd-dd-dd-dd-dd-
dd

ss-ss-ss-ss-ss-
ss

nn-nn aa bb cc ff-tt-ss (XID)
Optional data (TEST)

cc-
cc

1XID and TEST messages are identified in the IEEE 802.2 control field with binary 101x1111 and
111x0011, respectively. "x" denotes the Poll/Final bit that gets echoed in the response.

Table E–4 MOP Multicast Addresses and Protocol Specifiers

Function Address IEEE Prefix 1 Protocol Owner

Dump/Load AB-00-00-01-00-00 08-00-2B 60-01 Digital

Remote Console AB-00-00-02-00-00 08-00-2B 60-02 Digital

Loopback Assistance CF-00-00-00-00-00 2 08-00-2B 90-00 Digital

1MOP 4.0 only.
2Not used.

MOP Support E–5

MOP Support
E.2 MOP Counters

E.2 MOP Counters
The following counters are kept for the Ethernet boot channel. All counters are unsigned
integers. V4 counters roll over on overflow. All V3 counters "latch" at their maximum value
to indicate overflow. Unless otherwise stated, all counters include both normal and multicast
traffic. Furthermore, they include information for all protocol types. Frames received and bytes
received counters do not include frames received with errors. Table E–5 displays the byte lengths
and ordering of all the counters in both MOP Versions 3.0 and 4.0.

Table E–5 MOP Counter Block

V3 V4

Name Off Len Off Len Description

TIME_SINCE_
CREATION

00 2 00 16 Time since last zeroed. The time
that has elapsed since the counters
were last zeroed. Provides a frame
of reference for the other counters by
indicating the amount of time they
cover. For MOP V3, this time is the
number of seconds. MOP V4 uses the
UTC binary relative time format.

Rx_BYTES 02 4 10 8 Bytes received. The total number
of user data bytes successfully received.
This does not include Ethernet data link
headers. This number is the number of
bytes in the Ethernet data field, which
includes any padding or length fields
when they are enabled. These are bytes
from frames that passed hardware
filtering. When the number of frames
received is used to calculate protocol
overhead, the overhead plus bytes
received provides a measurement of the
amount of Ethernet bandwidth (over
time) consumed by frames addressed to
the local system.

Tx_BYTES 06 4 18 8 Bytes sent. The total number of user
data bytes successfully transmitted.
This does not include Ethernet data
link headers or data link generated
retransmissions. This number is the
number of bytes in the Ethernet data
field, which includes any padding or
length fields when they are enabled.
When the number of frames sent is
used to calculate protocol overhead, the
overhead plus bytes sent provides a
measurement of the amount of Ethernet
bandwidth (over time) consumed by
frames sent by the local system.

(continued on next page)

E–6 MOP Support

MOP Support
E.2 MOP Counters

Table E–5 (Cont.) MOP Counter Block

V3 V4

Name Off Len Off Len Description

Rx_FRAMES 0A 4 20 8 Frames received. The total number
of frames successfully received. These
are frames that passed hardware
filtering. Provides a gross measurement
of incoming Ethernet usage by the local
system. Provides information used to
determine the ratio of the error counters
to successful transmits.

Tx_FRAMES 0E 4 28 8 Frames sent. The total number of
frames successfully transmitted. This
does not include data link generated
retransmissions. Provides a gross
measurement of outgoing Ethernet
usage by the local system. Provides
information used to determine the
ratio of the error counters to successful
transmits.

Rx_MCAST_BYTES 12 4 30 8 Multicast bytes received. The
total number of multicast data bytes
successfully received. This does not
include Ethernet data link headers.
This number is the number of bytes in
the Ethernet data field. In conjunction
with total bytes received, provides a
measurement of the percentage of this
system’s receive bandwidth (over time)
that was consumed by multicast frames
addressed to the local system.

Rx_MCAST_FRAMES 16 4 38 8 Multicast frames received. The
total number of multicast frames
successfully received. In conjunction
with total frames received, provides a
gross percentage of the Ethernet usage
for multicast frames addressed to this
system.

Tx_INIT_DEFFERED 1A 4 40 8 Frames sent, 1 initially deferred.
The total number of times that a frame
transmission was deferred on its first
transmission attempt. In conjunction
with total frames sent, measures
Ethernet contention with no collisions.

Tx_ONE_COLLISION 1E 4 48 8 Frames sent 1, single collision. The
total number of times that a frame was
successfully transmitted on the second
attempt after a normal collision on
the first attempt. In conjunction with
total frames sent, measures Ethernet
contention at a level where there are
collisions but the backoff algorithm still
operates efficiently.

1Only one of these three counters will be incremented for a given frame.

(continued on next page)

MOP Support E–7

MOP Support
E.2 MOP Counters

Table E–5 (Cont.) MOP Counter Block

V3 V4

Name Off Len Off Len Description

Tx_MULTI_COLLISION 22 4 50 8 Frames sent1, multiple collisions.
The total number of times that a frame
was successfully transmitted on the
third or later attempt after normal
collisions on previous attempts. In
conjunction with total frames sent,
measures Ethernet contention at a
level where there are collisions and the
backoff algorithm no longer operates
efficiently. NO SINGLE FRAME IS COUNTED
IN MORE THAN ONE OF THE ABOVE THREE
COUNTERS.

TxFAIL_COUNT 26 2 - - Send failure count. 2 The total
number of times a transmit attempt
failed. Each time the counter is
incremented, a type of failure is
recorded. When read-counter function
reads the counter, the list of failures is
also read. When the counter is set to
zero, the list of failures is cleared. In
conjunction with total frames sent,
provides a measure of significant
transmit problems. TxFAIL_BITMAP
contains the possible reasons.

TxFAIL_BITMAP 2C 2 - - Send failure reason bitmap. 2

This bitmap lists the types of transmit
failures that occurred as summarized
below.

0 - Excessive collisions
1 - Carrier detect failed
2 - Short circuit
3 - Open circuit
4 - Frame too long
5 - Remote failure to defer

TxFAIL_EXCESS_COLLS - - 58 8 Send failure - Excessive collisions.
Exceeded the maximum number of
retransmissions due to collisions.
Indicates an overload condition on
the Ethernet.

TxFAIL_CARIER_CHECK - - 60 8 Send failure - Carrier check failed.
The data link did not sense the receive
signal that is required to accompany
the transmission of a frame. Indicates
a failure in either the transmitting or
receiving hardware. Could be caused by
either transceiver, transceiver cable, or
a babbling controller that has been cut
off.

1Only one of these three counters will be incremented for a given frame.
2V3 send/receive failures are collapsed into one counter with bitmap indicating which failures
occurred.

(continued on next page)

E–8 MOP Support

MOP Support
E.2 MOP Counters

Table E–5 (Cont.) MOP Counter Block

V3 V4

Name Off Len Off Len Description

TxFAIL_SHRT_CIRCUIT - - 68 8 Send failure - Short circuit. 3 There
is a short somewhere in the local area
network coaxial cable, or the transceiver
or controller/transceiver cable has
failed. This indicates a problem either
in local hardware or global network.
The two can be distinguished by
checking to see if other systems are
reporting the same problem.

TxFAIL_OPEN_CIRCUIT - - 70 8 Send failure - Open circuit. 3 There
is a break somewhere in the local area
network coaxial cable. This indicates
a problem either in local hardware
or global network. The two can be
distinguished by checking to see if
other systems are reporting the same
problem.

TxFAIL_LONG_FRAME - - 78 8 Send failure - Frame too long. 3

The controller or transceiver cut off
transmission at the maximum size.
This indicates a problem with the local
system. Either it tried to send a frame
that was too long or the hardware cutoff
transmission too soon.

TxFAIL_REMOTE_
DEFER

- - 80 8 Send failure - Remote failure to
defer. 3 A remote system began
transmitting after the allowed window
for collisions. This indicates either
a problem with some other system’s
carrier sense or a weak transmitter.

RxFAIL_COUNT 2A 2 - - Receive failure count. 2 The total
number of frames received with some
data error. Includes only data frames
that passed either physical or multicast
address comparison. This counter
includes failure reasons in the same
way as the send failure counter. In
conjunction with total frames received,
provides a measure of data-related
receive problems. RxFAIL_BITMAP
contains the possible reasons.

RxFAIL_BITMAP 2C 2 - - Receive failure reason bitmap. 2

This bitmap lists the types of receive
failures that occurred as summarized
below.

0 - Block check failure
1 - Framing error
2 - Frame too long

2V3 send/receive failures are collapsed into one counter with bitmap indicating which failures
occurred.
3Always zero.

(continued on next page)

MOP Support E–9

MOP Support
E.2 MOP Counters

Table E–5 (Cont.) MOP Counter Block

V3 V4

Name Off Len Off Len Description

RxFAIL_BLOCK_CHECK - - 88 8 Receive failure - Block check error.
A frame failed the CRC check. This
indicates several possible failures, such
as EMI, late collisions, or improperly
set hardware parameters.

RxFAIL_FRAMING_ERR - - 90 8 Receive failure - Framing error.
The frame did not contain an integral
number of 8-bit bytes. This indicates
several possible failures, such as
EMI, late collisions, or improperly
set hardware parameters.

RxFAIL_LONG_FRAME - - 98 8 Receive failure - Frame too long.3
The frame was discarded because it
was outside the Ethernet maximum
length and could not be received.
This indicates that a remote system
is sending invalid length frames.

UNKNOWN_
DESTINATION

2E 2 A0 8 Unrecognized frame destination.
The number of times a frame was
discarded because there was no portal
with the protocol type or multicast
address enabled. This includes frames
received for the physical address,
the broadcast address, or a multicast
address.

DATA_OVERRUN 30 2 A8 8 Data overrun. The total number of
times the hardware lost an incoming
frame because it was unable to keep
up with the data rate. In conjunction
with total frames received, provides a
measure of hardware resource failures.
The problem reflected in this counter is
also captured as an event.

NO_SYSTEM_BUFFER 32 2 B0 8 System buffer unavailable3 The
total number of times no system buffer
was available for an incoming frame. In
conjunction with total frames received,
provides a measure of system buffer-
related receive problems. The problem
reflected in this counter is also captured
as an event. This can be any buffer
between the hardware and the user
buffers (those supplied on Receive
requests). Further information as
to potential different buffer pools is
implementation-specific.

3Always zero.

(continued on next page)

E–10 MOP Support

MOP Support
E.2 MOP Counters

Table E–5 (Cont.) MOP Counter Block

V3 V4

Name Off Len Off Len Description

NO_USER_BUFFER 34 2 B8 8 User buffer unavailable. 3 The
total number of times no user buffer
was available for an incoming frame
that passed all filtering. These are the
buffers supplied by users on Receive
requests. In conjunction with total
frames received, provides a measure of
user buffer-related receive problems.
The problem reflected in this counter is
also captured as an event.

FAIL_COLLIS_DETECT - - C0 8 Collision detect check failure. The
approximate number of times that
collision detect was not sensed after a
transmission. If this counter contains a
number roughly equal to the number of
frames sent, either the collision detect
circuitry is not working correctly or the
test signal is not implemented.

3Always zero.

MOP Support E–11

F
Q22–bus Specification

This appendix describes the specifications for the Q22–bus.

F.1 Introduction
The Q22–bus, also known as the extended LSI–11 bus, is the low-end member of
Digital’s bus family.

The Q22–bus consists of 42 bidirectional and 2 unidirectional signal lines. These
form the lines along which the processor, memory, and I/O devices communicate
with each other.

Addresses, data, and control information are sent along these signal lines, some
of which contain time-multiplexed information. The lines are divided as follows:

• 16 multiplexed data/address lines — BDAL<15:00>

• 2 multiplexed address/parity lines — BDAL<17:16>

• 4 extended address lines — BDAL<21:18>

• 6 data transfer control lines — BBS7, BDIN, BDOUT, BRPLY, BSYNC,
BWTBT

• 6 system control lines — BHALT, BREF, BEVNT, BINIT, BDCOK, BPOK

• 10 interrupt control and direct memory access control lines — BIAKO, BIAKI,
BIRQ4, BIRQ5, BIRQ6, BIRQ7, BDMGO, BDMR, BSACK, BDMGI

In addition, a number of power, ground, and space lines are defined for the bus.
Refer to Table F–1 for a detailed description of these lines.

The discussion in this appendix applies to the general 22-bit physical address
capability. All modules used with the KA680 CPU module must use 22-bit
addressing.

Most Q22–bus signals are bidirectional and use terminations for a negated
(high) signal level. Devices connect to these lines by way of high-impedance bus
receivers and open collector drivers. The asserted state is produced when a bus
driver asserts the line low.

Although bidirectional lines are electrically bidirectional (any point along the
line can be driven or received), certain lines are functionally unidirectional.
These lines communicate to or from a bus master (or signal source), but not
both. Interrupt acknowledge (BIAK) and direct memory access grant (BDMG)
signals are physically unidirectional in a daisy-chain fashion. These signals
originate at the processor output signal pins. Each is received on device input
pins (BIAKI or BDMGI) and is conditionally retransmitted through device output
pins (BIAKO or BDMGO). These signals are received from higher priority devices
and are retransmitted to lower priority devices along the bus, establishing the
position-dependent priority scheme.

Q22–bus Specification F–1

Q22–bus Specification
F.1 Introduction

F.1.1 Master/Slave Relationship
Communication between devices on the bus is asynchronous. A master/slave
relationship exists throughout each bus transaction. Only one device has control
of the bus at any one time. This controlling device is called the bus master, or
arbiter. The master device controls the bus when communicating with another
device on the bus, called the slave.

The bus master (typically the processor or a DMA device) initiates a bus
transaction. The slave device responds by acknowledging the transaction in
progress and by receiving data from, or transmitting data to, the bus master.
Q22–bus control signals transmitted or received by the bus master or bus slave
device must complete the sequence according to bus protocol.

The processor controls bus arbitration (that is, which device becomes bus master
at any given time). A typical example of this master-slave relationship is a disk
drive as master, transferring data to memory as slave. Communication on the
Q22–bus is interlocked so that, for certain control signals issued by the master
device, there must be a response from the slave in order to complete the transfer.
It is the master/slave signal protocol that makes the Q22–bus asynchronous. The
asynchronous operation precludes the need for synchronizing with, and waiting
for, clock pulses.

Since completion of the bus cycle by the bus master requires response from the
slave device, each bus master must include a timeout error circuit that aborts the
bus cycle if the slave does not respond to the bus transaction within 10 µs. The
actual time before a timeout error occurs must be longer than the reply time of
the slowest peripheral or memory device on the bus.

F.2 Q22–bus Signal Assignments
Table F–1 lists the data and address signal assignments. Table F–2 lists
the control signal assignments. Table F–3 lists the power and ground signal
assignments. Table F–4 lists the spare signal assignments.

Table F–1 Data and Address Signal Assignments

Data and Address Signal Pin Assignment

BDAL0 AU2

BDAL1 AV2

BDAL2 BE2

BDAL3 BF2

BDAL4 BH2

BDAL5 BJ2

BDAL6 BK2

BDAL7 BL2

BDAL8 BM2

BDAL9 BN2

BDAL10 BP2

BDAL11 BR2

(continued on next page)

F–2 Q22–bus Specification

Q22–bus Specification
F.2 Q22–bus Signal Assignments

Table F–1 (Cont.) Data and Address Signal Assignments

Data and Address Signal Pin Assignment

BDAL12 BS2

BDAL13 BT2

BDAL14 BU2

BDAL15 BV2

BDAL16 AC1

BDAL17 AD1

BDAL18 BC1

BDAL19 BD1

BDAL20 BE1

BDAL21 BF1

Table F–2 Control Signal Assignments

Control Signal Pin Assignment

Data Control

BDOUT AE2

BRPLY AF2

BDIN AH2

BSYNC AJ2

BWTBT AK2

BBS7 AP2

Interrupt Control

BIRQ7 BP1

BIRQ6 AB1

BIRQ5 AA1

BIRQ4 AL2

BIAKO AN2

BIAKI AM2

DMA Control

BDMR AN1

BSACK BN1

BDMGO AS2

BDMGI AR2

(continued on next page)

Q22–bus Specification F–3

Q22–bus Specification
F.2 Q22–bus Signal Assignments

Table F–2 (Cont.) Control Signal Assignments

Control Signal Pin Assignment

System Control

BHALT AP1

BREF AR1

BEVNT BR1

BINIT AT2

BDCOK BA1

BPOK BB1

Table F–3 Power and Ground Signal Assignments

Power and Ground Pin Assignment

+5 B (battery) or +12 B (battery) AS1

+12 B BS1

+5 B AV1

+5 AA2

+5 BA2

+5 BV1

+12 AD2

+12 BD2

+12 AB2

–12 AB2

–12 BB2

GND AC2

GND AJ1

GND AM1

GND AT1

GND BC2

GND BJ1

GND BM1

GND BT1

Table F–4 Spare Signal Assignments

Spare Pin Assignment

SSpare1 AE1

SSpare3 AH1

(continued on next page)

F–4 Q22–bus Specification

Q22–bus Specification
F.2 Q22–bus Signal Assignments

Table F–4 (Cont.) Spare Signal Assignments

Spare Pin Assignment

SSpare8 BH1

SSpare2 AF1

MSpareA AK1

MSpareB AL1

MSpareB BK1

MSpareB BL1

PSpare1 AU1

ASpare2 BU1

F.3 Data Transfer Bus Cycles
Data transfer bus cycles, executed by bus master devices, transfer 32-bit words
or 8-bit bytes to or from slave devices. In block mode, multiple words can be
transferred to sequential word addresses, starting from a single bus address.
Table F–5 lists the data transfer bus cycles.

Table F–5 Data Transfer Operations

Bus Cycle Definition

Function (with
respect to the bus
master)

DATI Data word input Read

DATO Data word output Write

DATOB Data byte output Write/byte

DATIO Data word input/output Read-modify-write

DATIOB Data word input/byte output Read-modify-write
byte

DATBI Data block input Read block

DATBO Data block output Write block

The bus signals listed in Table F–6 are used in the data transfer operations
described in Table F–5.

Q22–bus Specification F–5

Q22–bus Specification
F.3 Data Transfer Bus Cycles

Table F–6 Bus Signals for Data Transfers

Signal Definition Function

BDAL<21:00> L 22 data/address lines BDAL<15:00> L are
used for word and byte
transfers. BDAL<17:16>
L are used for extended
addressing, memory parity
error (16), and memory
parity error enable (17)
functions. BDAL<21:18>
L are used for extended
addressing beyond 256
Kbytes.

BSYNC L Bus cycle control Indicates bus transaction
in progress.

BDIN L Data input indicator Strobe signals.

BDOUT L Data output indicator Strobe signals.

BRPLY L Slave’s acknowledge of bus cycle Strobe signals.

BWTBT L Write/byte control Control signals.

BBS7 I/O device select Indicates address is in the
I/O page.

Data transfer bus cycles can be reduced to five basic types: DATI, DATO(B),
DATIO(B), DATBI, and DATBO. These transactions occur between the bus
master and one slave device selected during the addressing part of the bus cycle.

F.3.1 Bus Cycle Protocol
Before initiating a bus cycle, the previous bus transaction must have been
completed (BSYNC L negated) and the device must become bus master. The bus
cycle can be divided into two parts – addressing and data transfer.

• During addressing, the bus master outputs the address for the desired slave
device, memory location, or device register. The selected slave device responds
by latching the address bits and holding this condition for the duration of the
bus cycle until BSYNC L becomes negated.

• During the data transfer, the actual data transfer occurs.

F–6 Q22–bus Specification

Q22–bus Specification
F.3 Data Transfer Bus Cycles

F.3.2 Device Addressing
Device addressing of a data transfer bus cycle comprises an address setup and
deskew time, and an address hold and deskew time. During address setup and
deskew time, the bus master does the following operations:

• Asserts BDAL<21:00> L with the desired slave device address bits

• Asserts BBS7 L if a device in the I/O page is being addressed

• Asserts BWTBT L if the cycle is a DATO(B) or DATBO bus cycle

During this time, the address (BBS7 L) and BWTBT L signals are asserted at
the slave bus receiver for at least 75 ns before BSYNC goes active. Devices in
the I/O page ignore the 9 high-order address bits BDAL<21:13>, and instead,
decode BBS7 L along with the 13 low-order address bits. An active BWTBT L
signal during address set-up time indicates that a DATO(B) or DATBO operation
follows, while an inactive BWTBT L indicates a DATI, DATBI, or DATIO(B)
operation.

The address hold and deskew time begins after BSYNC L is asserted.

The slave device uses the active BSYNC L bus received output to clock BDAL
address bits BBS7 L, and BWTBT L into its internal logic. BDAL<21:00> L,
BBS7 L, and BWTBT L remain active for 25 ns minimum after the BSYNC L bus
receiver goes active. BSYNC L remains active for the duration of the bus cycle.

Memory and peripheral devices are addressed similarly, except for the way the
slave device responds to BBS7 L. Addressed peripheral devices must not decode
address bits on BDAL<21:13> L. Addressed peripheral device can respond to a
bus cycle when BBS7 L is asserted (low) during the addressing of the cycle.

When asserted, BBS7 L indicates that the device address resides in the I/O
page (the upper 4K address space). Memory devices generally do not respond
to addresses in the I/O page; however, some system applications may permit
memory to reside in the I/O page for use as DMA buffers, read-only memory
bootstraps, and diagnostics.

DATI
The DATI bus cycle (Figure F–1) is a read operation. During DATI, data is
input to the bus master. Data consists of 16-bit word transfers over the bus.
During data transfer of the DATI bus cycle, the bus master asserts BDIN L 100
ns minimum after BSYNC L is asserted. The slave device responds to BDIN L
active as follows:

• Asserts BRPLY L between 0 ns (minimum) and 8 ns (maximum, to avoid bus
timeout) after receiving BDIN L, and 125 ns (maximum) before BDAL bus
driver data bits are valid

• Asserts BDAL<21:00> L with the addressed data and error information 0 ns
(minimum) after receiving BDIN, and 125 ns (maximum) after assertion of
BRPLY

Q22–bus Specification F–7

Q22–bus Specification
F.3 Data Transfer Bus Cycles

Figure F–1 DATI Bus Cycle

Bus Master
(Processor or Device)

Address Device or Memory

address

Asserts BBS7 if the address

is in the I/O page

Asserts BSYNC L

Request Data

 BDAL>21:00>L

Negate BBS7 L

 Assert BDIN L

Terminate Input Transfer

Terminate Bus Cycle

 Negate BSYNC L

Decode Address

 Store "Device Selected"

Input Data

 Assert BRPLY L

Operation Completed

 Negate BRPLY L

Slave
Memory Device

LJ-00176-TI0

Remove the address from

Accept data and respond

by negating BDIN L

operation

Place data on BDAL <15:00> L

Asserts BDAL <21:00>L with

F–8 Q22–bus Specification

Q22–bus Specification
F.3 Data Transfer Bus Cycles

When the bus master receives BRPLY L, it does the following:

• Waits at least 200 ns deskew time, then accepts input data at BDAL<17:00>
L bus receivers. BDAL <17:16> L are used for transmitting parity errors to
the master

• Negates BDIN L 200 ns (minimum) to 2 µs (maximum) after BRPLY L goes
active

The slave device responds to BDIN L negation by negating BRPLY L and
removing read data from BDAL bus drivers. BRPLY L must be negated 100 ns
(maximum) before removing read data. The bus master responds to the negated
BRPLY L by negating BSYNC L.

Conditions for the next BSYNC L assertion are as follows:

• BSYNC L must remain negated for 200 ns (minimum).

• BSYNC L must not become asserted within 300 ns of previous BRPLY L
negation.

Figure F–2 shows DATI bus cycle timing.

Note

When BSYNC L is continuously asserted, the bus master retains control
of the bus and the previously addressed slave device remains selected.
This is done for DATIO(B) bus cycles where DATO or DATOB follows
a DATI without BSYNC L negation and a second device addressing
operation. Also, a slow slave device can hold off data transfers to itself by
keeping BRPLY L asserted, which causes the master to keep BSYNC L
asserted.

Q22–bus Specification F–9

Q22–bus Specification
F.3 Data Transfer Bus Cycles

Figure F–2 DATI Bus Cycle Timing

T ADDR R Data

150 NS
Minimum

100 NS
Minimum

200 NS
Maximum

100 NS Minimum
8 uS Maximum

Clock Data

300 NS Minimum

(4) (4) (4)

(4)

(4)

(4) (4) (4)

(4)

(4)

(4)

(4)

200 NS Minimum

200 NS Minimum
200 NS

Minimum

150 NS
Minimum

100 NS Minimum

R ADDR T Data

25 NS

Minimum
125 NS Maximum 100 NS Maximum

0 NS Minimum

75 NS

Minimum

0 NS

Minimum
200 NS Maximum 150 NS

Minimum

300 NS Minimum

75 NS Minimum

25 NS Minimum

LJ-00177-TI0

TIMING AT SLAVE DEVICE

TIMING AT MASTER DEVICE

T R DAL

T SYNC

T DIN

R RPLY

TBS7

T WTBT

R/T DAL

R SYNC

R DIN

T RPLY

R BS7

R WTBT

NOTES:

1. Timing shown at master and slave device bus
 driver inputs and bus receiver outputs.

2. Signal name prefixes are defined below:
 T=Bus Driver Input
 R=Bus Receiver Output

3. Bus driver output and bus receiver input
 signal names include a "B" prefix.

4. Don’t care condition.

F–10 Q22–bus Specification

Q22–bus Specification
F.3 Data Transfer Bus Cycles

DATOB
DATOB (Figure F–3) is a write operation. Data is transferred in 32-bit words
(DATO) or 8-bit bytes (DATOB) from the bus master to the slave device. The data
transfer output can occur after the addressing part of a bus cycle when BWTBT L
has been asserted by the bus master, or immediately following an input transfer
part of a DATIOB bus cycle.

Figure F–3 DATO or DATOB Bus Cycle

Bus Master

 Assert BDAL <21:00> L with

in the I/O Page

Assert BSYNC L

Output Data

 BDAL <21:00> L and negate BBS7 L

 Negate BWTBT L unless DATOB

 Place data on BDAL <15:00> L

Assert BDOUT L

Terminate Output Transfer

 Negate BDOUT L (and BWTBT L

 if in a DATOB bus cycle)

Terminate Bus Cycle

 Negate BSYNC L

Slave
(Memory or Device)

Decode Address

 Store "Device Selected"

 operation

Take Data

 Assert BRPLY L

Operation Completed

 Negate BRPLY L

LJ-00178-TI0

(Processor or Device)

Address device/memory

address and

Assert BBS7 L if address is

Assert BWTBT L (write cycle)

Remove the address from

Remove data from BDAL <15:00> L

Receive data from BDAL lines

The data transfer part of a DATOB bus cycle comprises a data set-up and deskew
time, and a data hold and deskew time.

During the data set-up and deskew time, the bus master outputs the data on
BDAL<15:00> L at least 100 ns after BSYNC L assertion. BWTBT L remains
negated for the length of the bus cycle. If the transfer is a byte transfer, BWTBT
L remains asserted. If it is the output of a DATIOB, BWTBT L becomes asserted
and lasts the duration of the bus cycle.

Q22–bus Specification F–11

Q22–bus Specification
F.3 Data Transfer Bus Cycles

During a byte transfer, BDAL<00> L selects the high or low byte. This occurs in
the addressing part of the cycle. If asserted, the high byte (BDAL<15:08> L) is
selected; otherwise, the low byte (BDAL<07:00> L) is selected. An asserted BDAL
16 L at this time forces a parity error to be written into memory if the memory
is a parity-type memory. BDAL 17 L is not used for write operations. The bus
master asserts BDOUT L at least 100 ns after BDAL and BDWTBT L bus drivers
are stable. The slave device responds by asserting BRPLY L within 10 µs to avoid
bus timeout. This completes the data set-up and deskew time.

During the data hold and deskew time, the bus master receives BRPLY L and
negates BDOUT L, which must remain asserted for at least 150 ns from the
receipt of BRPLY L before being negated by the bus master. BDAL<17:00> L bus
drivers remain asserted for at least 100 ns after BDOUT L negation. The bus
master then negates BDAL inputs.

During this time, the slave device senses BDOUT L negation. The data is
accepted and the slave device negates BRPLY L. The bus master responds by
negating BSYNC L. However, the processor does not negate BSYNC L for at least
175 ns after negating BDOUT L. This completes the DATOB bus cycle. Before
the next cycle, BSYNC L must remain unasserted for at least 200 ns. Figure F–4
shows DATOB bus cycle timing.

F–12 Q22–bus Specification

Q22–bus Specification
F.3 Data Transfer Bus Cycles

Figure F–4 DATO or DATOB Bus Cycle Timing

T ADDR

150 NS
Minimum

100 NS
Minimum100 NS Minimum

300 NS Minimum

(4) (4)

(4) (4)

(4) (4)

(4)

200 NS Minimum

0 NS Minimum

R ADDR R Data

25 NS Maximum

100 NS Minimum75 NS

Minimum
150 NS

Minimum

300 NS Minimum

75 NS Minimum

25 NS Minimum

T Data

(4) (4)

(4) (4)

175 NS

Minimum

100 NS Minimum

150 NS Minimum

100 NS
Minimum100 NS Minimum

150 NS
Minimum

8 uS

Maximum

150 NS

Minimum

25 NS Maximum

25 NS Maximum

25 NS
Minimum

150 NS

Minimum

25 NS Minimum

(4) Assertion=Byte

75 NS

Minimum
25 NS Minimum

TIMING AT MASTER DEVICE

TIMING AT SLAVE DEVICE

T DAL

T BS7

T WTBT

R/T DAL

R SYNC

R DIN

T RPLY

R BS7

R WTBT

T SYNC

T DOUT

R RPLY

LJ-00179-TI0

NOTES:

1. Timing shown at requesting device bus driver
 inputs and bus receiver outputs.

2. Signal name prefixes are defined below
 T=Bus Driver Input
 R=Bus Receiver Output

3. Bus driver output and bus receiver input
 signal names include a "B" prefix.

4. Don’t care condition.

Q22–bus Specification F–13

Q22–bus Specification
F.3 Data Transfer Bus Cycles

DATIOB
The protocol for a DATIOB bus cycle (Figure F–5) is identical to the addressing
and data transfer part of the DATI and DATOB bus cycles. After addressing the
device, a DATI cycle is performed as explained in the DATI section; however,
BSYNC L is not negated. BSYNC L remains active for an output word or byte
transfer (DATOB). The bus master maintains at least 200 ns between BRPLY L
negation during the DATI cycle and BDOUT L assertion. The cycle is terminated
when the bus master negates BSYNC L, as described for DATOB. Figure F–6
shows the DATIOB bus cycle timing.

F–14 Q22–bus Specification

Q22–bus Specification
F.3 Data Transfer Bus Cycles

Figure F–5 DATIO or DATIOB Bus Cycle

LJ-00180-TI0

(Processor or Device)

 Assert BDAL <21:00> L with

 Assert BBS7 L if the

Assert BSYNC L

Request Data

 BDAL <21:00> L

 Assert BDIN L

Terminate Input Transfer

Output Data

Assert BWTBT L if an output

Assert BDOUT L

Terminate Output Transfer

 Negate BDOUT L

Terminate Bus Cycle

 Negate BSYNC L

(and BWTBT L if N

Slave

(Memory or Device)

Decode Address

 Store "Device Selected"

 operation

Input Data

 Assert BRPLY L

Complete Input Transfer

 Negate BRPLY L

Take Data

 Assert BRPLY L

Operation Completed

 Negate BRPLY L

Bus Master

Address device memory

address

address is in the I/O page

Remove the address from

Accept data and respond by

terminating BDIN L

byte transfer

Remove data from BDAL lines

A DATIOB bus cycle)

Place data on BDAL <15:00> L

Remove data

Receive data from BDAL lines

Place output data on BDAL <15:00> L

Q22–bus Specification F–15

Q22–bus Specification
F.3 Data Transfer Bus Cycles

Figure F–6 DATIO or DATIOB Bus Cycle Timing

T ADDR R Data

150 NS
Minimum

100 NS
Minimum

200 NS Maximum

100 NS Minimum

(4) (4) (4)

(4)

(4)(4)

200 NS

Minimum

100 NS Minimum

T Data

25 NS Minimum

75 NS Minimum

75 NS Minimum

25 NS Minimum

LJ-00309-TI0

(4)

175 NS
Minimum

200 NS
Minimum

200 NS
Minimum

300 NS
Minimum

150 NS
Minimum

R ADDR T Data

Maximum

(4) (4) (4)R Data(4)

100 NS

25 NS

Minimum

25 NS Minimum

100 NS
Minimum

150 NS
Minimum

150 NS Maximum

75 NS Minimum 25 NS Minimum 25 NS Minimum

Assertion=Byte

(4)

(4)

TIMING AT MASTER DEVICE

TIMING AT SLAVE DEVICE

150 NS Minimum 0 NS Minimum

150 NS Minimum

100 NS Minimum

(4) Assertion=Byte

150 NS
Minimum 300 NS

Minimum

R/T DAL

T SYNC

T DOUT

T DIN

R RPLY

T BS7

T WTBT

R/T DAL

R SYNC

R DOUT

RDIN

T RPLY

R BS7

T WTBT

NOTES:

125 NS
Maximum

100 NS Minimum

1. Timing shown at requesting device bus
 driver inputs and bus receiver outputs.

2. Signal name prefixes are defined below:
 T=Bus Driver Input
 R=Bus Receiver Output

3. Bus driver output and bus receiver input
 signal names include a "B" prefix.

4. Don’t care condition.

F–16 Q22–bus Specification

Q22–bus Specification
F.4 Direct Memory Access

F.4 Direct Memory Access
The direct memory access (DMA) capability allows direct data transfer between
I/O devices and memory. This is useful when using mass storage devices (for
example, disks) that move large blocks of data to and from memory. A DMA
device needs to be supplied with only the starting address in memory, the
starting address in mass storage, the length of the transfer, and whether the
operation is read or write. When this information is available, the DMA device
can transfer data directly to or from memory. Since most DMA devices must
perform data transfers in rapid succession or lose data, DMA devices are given
the highest priority.

DMA is accomplished after the processor (normally, bus master) has passed
bus mastership to the highest priority DMA device that is requesting the bus.
The processor arbitrates all requests and grants the bus to the DMA device
electrically closest to it. A DMA device remains bus master until it relinquishes
its mastership. The following control signals are used during bus arbitration:

• BDMGI L DMA grant input

• BDMGO L DMA grant output

• BDMR L DMA request line

• BSACK L bus grant acknowledge

F.4.1 DMA Protocol
A DMA transaction can be divided into the following three phases:

• Bus mastership acquisition phase

• Data transfer phase

• Bus mastership relinquishment phase

During the bus mastership acquisition phase, a DMA device requests the bus by
asserting BDMR L. The processor arbitrates the request and initiates the transfer
of bus mastership by asserting BDMGO L.

The maximum time between BDMR L assertion and BDMGO L assertion is DMA
latency. This time is processor-dependent. BDMGO L/BDMGI L is one signal
that is daisy-chained through each module in the backplane.

BDMGO L/BDMGI L is driven out of the processor on the BDMGO L pin, enters
each module on the BDMGI L pin, then exits on the BDMGO L pin. This signal
passes through the modules in descending order of priority, until it is stopped by
the requesting device. The requesting device blocks the output of BMDGO L and
asserts BSACK L. If BDMR L is continuously asserted, the bus hangs.

During the data transfer phase, the DMA device continues asserting BSACK L.
The actual data transfer is performed as described earlier.

The DMA device can assert BSYNC L for a data transfer 250 ns (minimum) after
it received BDMGI L and its BSYNC L bus receiver is negated.

During the bus mastership relinquishment phase, the DMA device gives up
the bus by negating BSACK L. This occurs after completing (or aborting) the
last data transfer cycle (BRPLY L negated). BSACK L can be negated up to a
maximum of 300 ns before negating BSYNC L.

Q22–bus Specification F–17

Q22–bus Specification
F.4 Direct Memory Access

Note

If multiple data transfers are performed during this phase, consideration
must be given to the use of the bus for other system functions, such as
memory refresh (if required).

Figure F–7 shows the DMA protocol, and Figure F–8 shows DMA request/grant
timing.

F–18 Q22–bus Specification

Q22–bus Specification
F.4 Direct Memory Access

Figure F–7 DMA Protocol

LJ-00182-TI0

KDJ11-E Processor
(Memory is Slave)

Grant Bus Control

Assert BDMGO L and

generated BSYNC L for
the duration of the
DMA operation.

Terminate Grant
Sequence
 Negate BDMGO L and

to be completed.

Resume Processor
Operation

Bus Master
(Controller)

Request Bus
 Assert BDMR L

Acknowledge Bus
 Mastership
 Receive BDMG
 Wait for negation of
 BSYNC L and BRPLY L
 Assert BSACK L

Execute a DMA Data
Transfer

transfer up to 4 words

Negate BDMR L

Wait 4 S or until

Near the end of the
current bus cycle

inhibit new processor

(BRPLY L is negated).

invalidate cache if
cache hit.

Enable processor-
generated BSYNC L
(processor is bus
master) or issue
another grant if BDMR
L is asserted.

wait for DMA operation

Monitor the transaction to

of data as described

(no sooner than

Address memory and

for DATI or DATO bus
cycles.

Release the bus by
terminating BSACK L

negation of last BRPLY L)
and BSYNC L

another FIFO transfer
is pending before
requesting bus again.

Q22–bus Specification F–19

Q22–bus Specification
F.4 Direct Memory Access

Figure F–8 DMA Request/Grant Timing

LJ-00183-TI0

DMA Latency

Second

Request

0 NS Minimum

250 NS Minimum 300 NS Maximum

250 NS Minimum

300 NS Minimum

100 NS Maximum
0 NS Minimum
0 NS Minimum

ADDR Data

0 NS Minimum

T DMR

R DMG

T SACK

R/T SYNC

R/T RPLY

T DAL

(ALSO BS7

WTBT,REF)

NOTES:

1. Timing shown at requesting device bus driver
 inputs and bus receiver outputs.

2. Signal name prefixes are defined below
 T=Bus Driver Input
 R=Bus Receiver Output

3. Bus driver output and bus receiver input
 signal names include a "B" prefix.

F.4.2 Block Mode DMA
For increased throughput, block mode DMA can be implemented on a device for
use with memories that support this type of transfer. In a block mode transaction,
the starting memory address is asserted, followed by data for that address, and
data for consecutive addresses.

By eliminating the assertion of the address for each data word, the transfer rate
is almost doubled.

There are two types of block mode transfers, DATBI (input) and DATBO (output).

• Section F.4.2.1 describes the DATBI bus cycle (Figure F–9).

• Section F.4.2.2 describes the DATBO bus cycle (Figure F–10).

F–20 Q22–bus Specification

Q22–bus Specification
F.4 Direct Memory Access

Figure F–9 DATBI Bus Cycle Timing

LJ-00310-TI0

T DMR

R DMG

T SACK

0 NS
Min

T/R DAL
T ADDR R DATA R DATA

0 NS
Min

R/T
SYNC

T DIN

R RPLY

R REF

T BS7

T WTBT

R/T DAL

R SYNC

R DIN

T RPLY

T REF

R BS7

R WTBT

150 NS
Min

100 NS Min

100 NS
Min

150 NS
Min

300 NS
Max200 NS

Min

50 NS Max

Timing at Master Device
T = Bus Driver Input
R = Bus Receiver Output

50 NS Max

R ADDR T DATA

125 NS Max 100 NS Max

T DATA

Timing at Slave Device
T = Bus Driver Input
R = Bus Receiver Output

Q22–bus Specification F–21

Q22–bus Specification
F.4 Direct Memory Access

Figure F–10 DATBO Bus Cycle Timing

LJ-00311-TI0

T DMR

R DMG

T SACK

0 NS
Min

T/R DAL
T ADDR T DATA T DATA

0 NS
Min

R/T
SYNC

T DOUT

R RPLY

R REF

T BS7

T WTBT

R DAL

R SYNC

R DOUT

T RPLY

T REF

R BS7

R WTBT

150 NS
Min

100 NS Min

150 NS
Min

300 NS
Max

Timing at Master Device
T = Bus Driver Input
R = Bus Receiver Output

R ADDR R DATA

0 NS Min

R DATA

Timing at Slave Device
T = Bus Driver Input
R = Bus Receiver Output

Undefined

Undefined

100 100
NS NS

100
 NS

F.4.2.1 DATBI Bus Cycle
Before a DATBI block mode transfer can occur, the DMA bus master device must
request control of the bus. This occurs under conventional Q22–bus protocol.

A block mode DATBI transfer is executed as follows:

• Address device memory. The address is asserted by the bus master on
TADDR<21:00> along with the negation of TWTBT. The bus master asserts
TSYNC 150 ns (minimum) after gating the address onto the bus.

• Decode the address. The appropriate memory device recognizes that it
must respond to the address on the bus.

F–22 Q22–bus Specification

Q22–bus Specification
F.4 Direct Memory Access

• Request the data. The address is removed by the bus master from
TADDR<21:00> 100 ns (minimum) after the assertion of TSYNC. The bus
master asserts the first TDIN 100 ns (minimum) after asserting TSYNC. The
bus master asserts TBS7 50 ns (maximum) after asserting TDIN for the first
time. TBS7 remains asserted until 50 ns (maximum) after the assertion of
TDIN for the last time. In each case, TBS7 can be asserted or negated as
soon as the conditions for asserting TDIN are met. The assertion of TBS7
indicates the bus master is requesting another read cycle after the current
read cycle.

• Send the data. The bus slave asserts TRPLY between 0 ns (minimum) and
8000 ns (maximum, to avoid a bus timeout) after receiving RDIN. The bus
slave asserts TREF concurrent with TRPLY if, and only if, it is a block mode
device that can support another RDIN after the current RDIN. The bus slave
gates TDATA<15:00> onto the bus 0 ns (minimum) after receiving RDIN and
125 ns (maximum) after the assertion of TRPLY.

Note

Block mode transfers must not cross 16-word boundaries.

• Terminate the input transfer. The bus master receives stable
RDATA<15:00> from 200 ns (maximum) after receiving RRPLY until 20
ns (minimum) after the negation of RDIN. (The 20 ns minimum represents
total minimum receiver delays for RDIN at the slave and RDATA<15:00> at
the master.) The bus master negates TDIN 200 ns (minimum) after receiving
RRPLY.

• Operation completed. The bus slave negates TRPLY 0 ns (minimum) after
receiving the negation of RDIN. If RBS7 and TREF are both asserted when
TRPLY negates, the bus slave prepares for another DIN cycle. RBS7 is stable
from 125 ns after RDIN is received until 150 ns after TRPLY negates. If
TBS7 and RREF were both asserted when TDIN negated, the bus master
asserts TDIN 150 ns (minimum) after receiving the negation of RRPLY and
continues with the timing relationship in send data above. RREF is stable
from 75 ns after RRPLY asserts until 20 ns (minimum) after TDIN negates.
(The 0 ns minimum represents total minimum receiver delays for RDIN at
the slave and RREF at the master.)

Note

The bus master must limit itself to no more than eight transfers, unless
it monitors RDMR. If the bus master monitors RDMR, it may perform up
to 16 transfers as long as RDMR is not asserted at the end of the seventh
transfer.

• Terminate the bus cycle. If both RBS7 and TREF were not asserted when
TRPLY negated, the bus slave removes TDATA<15:00> from the bus 0 ns
(minimum) and 100 ns (maximum) after negating TRPLY. If TBS7 and RREF
were not both asserted when TDIN negated, the bus master negates TSYNC
250 ns (minimum) after receiving the last assertion of RRPLY and 0 ns
(minimum) after the negation of that RRPLY.

Q22–bus Specification F–23

Q22–bus Specification
F.4 Direct Memory Access

• Release the bus. The DMA bus master negates TSACK 0 ns after negation
of the last RRPLY. The DMA bus master negates TSYNC 300 ns (maximum)
after it negates TSACK. The DMA bus master must remove RDATA<15:00>,
TBS7, and TWTBT from the bus 100 ns (maximum) after clearing TSYNC.

At this point the block mode transfer is complete, and the bus arbitration logic
in the CPU enables processor-generated TSYNC or issues another bus grant
(TDMGO) if RDMR is asserted.

F.4.2.2 DATBO Bus Cycle
Before a block mode transfer can occur, the DMA bus master device must request
control of the bus. This occurs under conventional Q22–bus protocol.

A block mode DATBO transfer is executed as follows:

• Address device memory. The address is asserted by the bus master on
TADDR<21:00> along with the aasertion of TWTBT. The bus master asserts
TSYNC 150 ns (minimum) after gating the address onto the bus.

• Decode address. The appropriate memory device recognizes that it must
respond to the address on the bus.

• Send data. The bus master gates TDATA<15:00> along with TWTBT 100 ns
(minimum) after the assertion of TSYNC. TWTBT is negated. The bus master
asserts the first TDOUT 100 ns (minimum) after gating TDATA<15:00>.

Note

During DATBO cycles, TBS7 is undefined.

• Receive data. The bus slave receives stable data on RDATA<15:00> from 25
ns (minimum) before receiving RDOUT until 25 ns (minimum) after receiving
the negation of RDOUT. The bus slave asserts TRPLY 0 ns (minimum) after
receiving RDOUT. The bus slave asserts TREF concurrent with TRPLY if, and
only if, it is a block mode device that can support another RDOUT after the
current RDOUT.

Note

Block mode transfers must not cross 16-word boundaries.

• Terminate the output transfer. The bus master negates TDOUT 150 ns
(minimum) after receiving RRPLY.

• Operation completed. The bus slave negates TRPLY 0 ns (minimum) after
receiving the negation of RDOUT. If RREF were asserted when TDOUT
negated and if the bus master wants to transfer another word, the bus master
gates the new data on TDATA<15:00> 100 ns (minimum) after negating
TDOUT. RREF is stable from 75 ns (maximum) after RRPLY asserts until
20 ns (minimum) after RDOUT negates. (The 20 ns minimum represents
minimum receiver delays for RDOUT at the slave and RREF at the master.)
The bus master asserts TDOUT 100 ns (minimum) after gating new data on
TDATA<15:00> and 150 ns (minimum) after receiving the negation of RRPLY.
The cycle continues with the timing relationship in receive data above.

F–24 Q22–bus Specification

Q22–bus Specification
F.4 Direct Memory Access

Note

The bus master must limit itself to no more than eight transfers unless
it monitors RDMR. If the bus master monitors RDMR, it may perform up
to 16 transfers as long as RDMR is not asserted at the end of the seventh
transfer.

• Terminate the bus cycle. If RREF were not asserted when RRPLY negated
or if the bus master has no additional data to transfer, the bus master
removes data on TDATA<15:00> from the bus 100 ns (minimum) after
negating TDOUT. If RREF were not asserted when TDOUT negated, the
bus master negates TSYNC 275 ns (minimum) after receiving the last RRPLY
and 0 ns (minimum) after the negation of the last RRPLY.

• Release the bus. The DMA bus master negates TSACK 0 ns after negation
of the last RRPLY. The DMA bus master negates TSYNC 300 ns (maximum)
after it negates TSACK. The DMA bus master must remove TDATA, TBS7,
and TWTBT from the bus 100 ns (maximum) after clearing TSYNC.

At this point the block mode transfer is complete, and the bus arbitration logic
in the CPU enables processor-generated TSYNC or issues another bus grant
(TDMGO) if RDMR is asserted.

F.4.3 DMA Guidelines
The following is a list of DMA guidelines:

• Systems with memory refresh over the bus must not include devices that
perform more than one transfer per acquisition.

• Bus masters that do not use block mode are limited to four DATI, four DATO,
or two DATIO transfers per acquisition.

• Block mode bus masters that do not monitor BDMR are limited to eight
transfers per acquisition.

• If BDMR is not asserted after the seventh transfer, block mode bus masters
that do monitor BDMR may continue making transfers until the bus slave
fails to assert BREF, or until they reach the total maximum of 16 transfers.
Otherwise, they stop after eight transfers.

F.5 Interrupts
The interrupt capability of the Q22–bus allows an I/O device to temporarily
suspend (interrupt) current program execution and divert processor operation to
service the requesting device. The processor inputs a vector from the device to
start the service routine (handler). Like the device register address, hardware
fixes the device vector at locations within a designated range below location
001000. The vector indicates the first of a pair of addresses. The processor reads
the contents of the first address, the starting address of the interrupt handler.
The contents of the second address is a new processor status word (PS).

The new PS can raise the interrupt priority level, thereby preventing lower-level
interrupts from breaking into the current interrupt service routine. Control is
returned to the interrupted program when the interrupt handler is ended. The
original interrupted program’s address (PC) and its associated PS are stored on
a stack. The original PC and PS are restored by a return from interrupt (RTI
or RTT) instruction at the end of the handler. The use of the stack and the

Q22–bus Specification F–25

Q22–bus Specification
F.5 Interrupts

Q22–bus interrupt scheme can allow interrupts to occur within interrupts (nested
interrupts), depending on the PS.

Interrupts can be caused by Q22–bus options or the KA680 CPU. Those interrupts
that originate from within the processor are called traps. Traps are caused by
programming errors, hardware errors, special instructions, and maintenance
features.

The following Q22–bus signals are used in interrupt transactions:

Signal Definition

BIRQ4 L Interrupt request priority level 4

BIRQ5 L Interrupt request priority level 5

BIRQ6 L Interrupt request priority level 6

BIRQ7 L Interrupt request priority level 7

BIAKI L Interrupt acknowledge input

BIAKO L Interrupt acknowledge output

BDAL<21:00> Data/address lines

BDIN L Data input strobe

BRPLY L Reply

F.5.1 Device Priority
The Q22–bus supports the following two methods of device priority:

• Distributed arbitration — Priority levels are implemented on the hardware.
When devices of equal priority level request an interrupt, priority is given to
the device electrically closest to the processor.

• Position-defined arbitration — Priority is determined solely by electrical
position on the bus. The closer a device is to the processor, the higher its
priority.

F–26 Q22–bus Specification

Q22–bus Specification
F.5 Interrupts

F.5.2 Interrupt Protocol
Interrupt protocol on the Q22–bus has three phases:

• Interrupt request

• Interrupt acknowledge and priority arbitration

• Interrupt vector transfer phase

The interrupt request phase begins when a device meets its specific conditions for
interrupt requests. For example, the device is ready, done, or an error occurred.
The interrupt enable bit in a device status register must be set. The device then
initiates the interrupt by asserting the interrupt request line(s). BIRQ4 L is
the lowest hardware priority level and is asserted for all interrupt requests for
compatibility with previous Q22–bus processors. The level at which a device is
configured must also be asserted. A special case exists for level 7 devices that
must also assert level 6. The following list gives the interrupt levels and the
corresponding Q22–bus interrupt request lines. For an explanation, refer to
Section F.5.3.

Interrupt Level Lines Asserted by Device

4 BIRQ4 L

5 BIRQ4 L, BIRQ5 L

6 BIRQ4 L, BIRQ6 L

7 BIRQ4 L, BIRQ6 L, BIRQ7 L

Figure F–11 shows the interrupt request/acknowledge sequence.

Q22–bus Specification F–27

Q22–bus Specification
F.5 Interrupts

Figure F–11 Interrupt Request/Acknowledge Sequence

LJ-00184-TI0

Processor

Strobe Interrupts
 Assert BDIN L

Grant Request

Receive Vector and
Terminate Request

 Negate BDIN L and BIAKO L

Process the Interrupt

Device

Initiate Request
 Assert BIRQ L

Receive BDIN L
 Store "Interrupt Sending"

Receive BIAKI L

 BIAKO L

 Assert BRPLY L
 Negate BIRQ L

Complete Vector Transfer

 Negate BRPLY L

Pause and assert BIAKO L

Input vector address

Save interrupted program
PC and PS on stack

vector address location

Execute interrupt service
routine for the device

Load new PC and PS from

in device.

Receive BIAKI L and inhibit

Place vector on BDAL <15:00> L

Remove vector from BDAL bus

The interrupt request line remains asserted until the request is acknowledged.

During the interrupt acknowledge and priority arbitration phase, the processor
acknowledges interrupts under the following conditions:

• The device interrupt priority is higher than the current PS<7:5>.

• The processor has completed instruction execution and no additional bus
cycles are pending.

The processor acknowledges the interrupt request by asserting BDIN L, and 150
ns (minimum) later asserting BIAKO L. The device electrically closest to the
processor receives the acknowledge on its BIAKI L bus receiver.

At this point, the two types of arbitration must be discussed separately. If the
device that receives the acknowledge uses the 4-level interrupt scheme, it reacts
as follows:

F–28 Q22–bus Specification

Q22–bus Specification
F.5 Interrupts

• If not requesting an interrupt, the device asserts BIAKO L and the
acknowledge propagates to the next device on the bus.

• If the device is requesting an interrupt, it must check that no higher-level
device is currently requesting an interrupt. This is done by monitoring
higher-level request lines. The following table lists the lines that need to be
monitored by devices at each priority level:

Device Priority Level Line(s) Monitored

4 BIRQ5, BIRQ6

5 BIRQ6

6 BIRQ7

7 –

In addition to asserting levels 7 and 4, level 7 devices must drive level 6. This
is done to simplify the monitoring and arbitration by level 4 and 5 devices. In
this protocol, level 4 and 5 devices need not monitor level 7 because level 7
devices assert level 6. Level 4 and 5 devices become aware of a level 7 request
because they monitor the level 6 request. This protocol has been optimized
for level 4, 5, and 6 devices, since level 7 devices are very seldom necessary.

• If no higher-level device is requesting an interrupt, the acknowledge is
blocked by the device. (BIAKO L is not asserted.) Arbitration logic within the
device uses the leading edge of BDIN L to clock a flip-flop that blocks BIAKO
L. Arbitration is won and the interrupt vector transfer phase begins.

• If a higher-level request line is active, the device disqualifies itself and asserts
BIAKO L to propagate the acknowledge to the next device along the bus.

Signal timing must be considered carefully when implementing four-level
interrupts (Figure F–12).

Q22–bus Specification F–29

Q22–bus Specification
F.5 Interrupts

Figure F–12 Interrupt Protocol Timing

LJ-00185-TI0

T IRQ

R DIN

R 1AKI

T RPLY

T DAL

R SYNC

R BS7

100 NS Maximum

Interrupt Latency
Minus Service Time

150 NS
Minimum

125 NS Maximum

(4) Vector (4)

(Unasserted)

(Unasserted)

NOTES:

1. Timing shown at requesting device bus driver
 inputs and bus receiver outputs.

2. Signal name prefixes are defined below
 T=Bus Driver Input
 R=Bus Receiver Output

3. Bus driver output and bus receiver input
 signal names include a "B" prefix.

4. Don’t care condition.

If a single-level interrupt device receives the acknowledge, it reacts as follows:

• If not requesting an interrupt, the device asserts BIAKO L and the
acknowledge propagates to the next device on the bus.

• If the device was requesting an interrupt, the acknowledge is blocked using
the leading edge of BDIN L, and arbitration is won. The interrupt vector
transfer phase begins.

The interrupt vector transfer phase is enabled by BDIN L and BIAKI L. The
device responds by asserting BRPLY L and its BDAL<15:00> L bus driver inputs
with the vector address bits. The BDAL bus driver inputs must be stable within
125 ns (maximum) after BRPLY L is asserted. The processor then inputs the
vector address and negates BDIN L and BIAKO L. The device then negates
BRPLY L and 100 ns (maximum) later removes the vector address bits. The
processor then enters the device’s service routine.

Note

Propagation delay from BIAKI L to BIAKO L must not be greater than
500 ns per Q22–bus slot. The device must assert BRPLY L within 10 µs
(maximum) after the processor asserts BIAKI L.

F–30 Q22–bus Specification

Q22–bus Specification
F.5 Interrupts

F.5.3 Q22–bus 4-level Interrupt Configurations
If you have high-speed peripherals and desire better software performance, you
can use the 4-level interrupt scheme. Both position-independent and position-
dependent configurations can be used with the 4-level interrupt scheme.

Figure F–13 shows the position-independent configuration. This allows peripheral
devices that use the 4-level interrupt scheme to be placed in the backplane in
any order. These devices must send out interrupt requests and monitor higher-
level request lines as described. The level 4 request is always asserted from a
requesting device regardless of priority. If two or more devices of equally high
priority request an interrupt, the device physically closest to the processor wins
arbitration. Devices that use the single-level interrupt scheme must be modified,
or placed at the end of the bus, for arbitration to function properly.

Figure F–13 Position-Independent Configuration

LEVEL 4

DEVICE

LEVEL 6

DEVICE
LEVEL 5

DEVICE

LEVEL 7

DEVICE
CPU

BIRQ 4 (LEVEL 4 INTERRUPT REQUEST)

BIRQ 5 (LEVEL 5 INTERRUPT REQUEST)

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST)

BIRQ 7 (LEVEL 7 INTERRUPT REQUEST)

M A - X 0 6 1 5 - 8 9

BIAK (INTERRUPT ACKNOWLEDGE) BIAK BIAK BIAK

Figure F–14 shows the position-dependent configuration. This configuration is
simpler to implement. A constraint is that peripheral devices must be inserted
with the highest priority device located closest to the processor, and the remaining
devices placed in the backplane in decreasing order of priority (with the lowest
priority devices farthest from the processor). With this configuration, each device
has to assert only its own level and level 4. Monitoring higher-level request lines
is unnecessary. Arbitration is achieved through the physical positioning of each
device on the bus. Single-level interrupt devices on level 4 should be positioned
last on the bus.

Q22–bus Specification F–31

Q22–bus Specification
F.5 Interrupts

Figure F–14 Position-Dependent Configuration

DEVICE DEVICE
LEVEL 5

DEVICE

LEVEL 4

DEVICE
CPU

BIRQ 4 (LEVEL 4 INTERRUPT REQUEST)

BIRQ 5 (LEVEL 5 INTERRUPT REQUEST)

BIRQ 7 (LEVEL 7 INTERRUPT REQUEST)

M A - X 0 6 1 6 - 8 9

BIAK (INTERRUPT ACKNOWLEDGE) BIAK BIAK BIAKLEVEL 7 LEVEL 6

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST)

F.6 Control Functions
The following Q22–bus signals provide control functions:

Signal Definition

BREF L Memory refresh (also block mode DMA)

BHALT L Processor halt

BINIT L Initialize

BPOK H Power OK

BDCOK H DC power OK

F.6.1 Halt
Assertion of BHALT L for at least 25 ns interrupts the processor, which stops
program execution and forces the processor unconditionally into console I/O mode.

F.6.2 Initialization
Devices along the bus are initialized when BINIT L is asserted. The processor
can assert BINIT L as a result of executing a reset instruction as part of a power-
up or power-down sequence. BINIT L is asserted for approximately 10 µs when
reset is executed.

F.6.3 Power Status
Power status protocol is controlled by two signals, BPOK H and BDCOK H. These
signals are driven by an external device (usually the power supply).

F.7 Q22–bus Electrical Characteristics
Section F.7.1 lists the input and output logic levels for Q22–bus signals.

F–32 Q22–bus Specification

Q22–bus Specification
F.7 Q22–bus Electrical Characteristics

F.7.1 Signal Level Specifications
The signal level specifications for the Q22–bus are as follows:

Input Logic Level
TTL logical low
TTL logical high

Output Logic Level
TTL logical low
TTL logical high

0.8 Vdc (maximum)
2.0 Vdc (minimum)

0.4 Vdc (maximum)
2.4 Vdc (minimum)

F.7.2 Load Definition
AC loads make up the maximum capacitance allowed per signal line to ground. A
unit load is defined as 9.35 pF of capacitance. DC loads are defined as maximum
current allowed with a signal line driver asserted or unasserted. A unit load is
defined as 210 µA in the unasserted state.

F.7.3 120-Ohm Q22–bus
The electrical conductors interconnecting the bus device slots are treated as
transmission lines. A uniform transmission line, terminated in its characteristic
impedance, propagates an electrical signal without reflections. Since bus drivers,
receivers, and wiring connected to the bus have finite resistance and nonzero
reactance, the transmission line impedance is not uniform, and introduces
distortions into pulses propagated along it. Passive components of the Q22–bus
(such as wiring, cabling, and etched signal conductors) are designed to have a
nominal characteristic impedance of 120 ohms.

The maximum length of interconnecting cable, excluding wiring within the
backplane, is limited to 4.88 m (16 ft).

F.7.4 Bus Drivers
Devices driving the 120-ohm Q22–bus must have open collector outputs and meet
the following specifications:

DC Specifications

• Output low voltage when sinking 70 mA of current is 0.7 V (maximum).

• Output high leakage current when connected to 3.8 Vdc is 25 µA (even if no
power is applied, except for BDCOK H and BPOK H).

• These conditions must be met at worst-case supply temperature, and input
signal levels.

AC Specifications

• Bus driver output pin capacitance load should not exceed 10 pF.

• Propagation delay should not exceed 35 ns.

• Skew (difference in propagation time between slowest and fastest gate) should
not exceed 25 ns.

• Transition time (from 10% to 90% for positive transition—rise time, from 90%
to 10% for negative transition—fall time) must be no faster than 10 ns.

Q22–bus Specification F–33

Q22–bus Specification
F.7 Q22–bus Electrical Characteristics

F.7.5 Bus Receivers
Devices that receive signals from the 120-ohm Q22–bus must meet the following
requirements:

DC Specifications

• Input low voltage is 1.3 V (maximum).

• Input high voltage is 1.7 V (minimum).

• Maximum input current when connected to 3.8 Vdc is 80 µA (even if no power
is applied).

These specifications must be met at worst-case supply voltage, temperature, and
output signal conditions.

AC Specifications

• Bus receiver input pin capacitance load should not exceed 10 pF.

• Propagation delay should not exceed 35 ns.

• Skew (difference in propagation time between slowest and fastest gate) should
not exceed 25 ns.

F.7.6 Bus Termination
The 120-ohm Q22–bus must be terminated at each end by an appropriate
terminator, as shown in Figure F–15. This is to be done as a voltage divider
with its Thevenin equivalent equal to 120 ohms and 3.4 V (nominal). This type
of termination is provided by an REV11-A refresh/boot/terminator, BDV11-AA,
KPV11-B, TEV11, or by certain backplanes and expansion cards.

Figure F–15 Bus Line Terminations

+5 V

178

383
1%

120
Bus Line
Termination

250
Bus Line
Termination

330

680

+5 V

LJ-00188-TI0

Each of the several Q22–bus lines (all signals whose mnemonics start with the
letter B) must see an equivalent network with the following characteristics at
each end of the bus:

F–34 Q22–bus Specification

Q22–bus Specification
F.7 Q22–bus Electrical Characteristics

Bus Termination Characteristic Value

Input impedance
(with respect to ground)

120 ohms +5%, –15%

Open circuit voltage 3.4 Vdc +5%

Capacitance load Not to exceed 30 pF

Note

The resistive termination can be provided by the combination of two
modules. (The processor module supplies 220 ohms to ground. This,
in parallel with another 220-ohm card, provides 120 ohms.) Both
terminators must reside physically within the same backplane.

F.7.7 Bus Interconnecting Wiring
The following sections give specific information about bus interconnecting wiring.

F.7.7.1 Backplane Wiring
The wiring that connects all device interface slots on the Q22–bus must meet the
following specifications:

• The conductors must be arranged so that each line exhibits a characteristic
impedance of 120 ohms (measured with respect to the bus common return).

• Cross talk between any two lines must be no greater than 5 percent. Note
that worst-case cross talk is manifested by simultaneously driving all but one
signal line and measuring the effect on the undriven line.

• DC resistance of the signal path, as measured between the near-end
terminator and the far-end terminator module (including all intervening
connectors, cables, backplane wiring, and connector-module etch) must not
exceed 20 ohms.

• DC resistance of the common return path, as measured between the near-
end terminator and the far-end terminator module (including all intervening
connectors, cables, backplane wiring and connector-module etch) must not
exceed an equivalent of 2 ohms per signal path. Thus, the composite signal
return path dc resistance must not exceed 2 ohms divided by 40 bus lines,
or 50 milliohms. Note that although this common return path is nominally
at ground potential, the conductance must be part of the bus wiring. The
specified low impedance return path must be provided by the bus wiring as
distinguished from the common system or power ground path.

F.7.7.2 Intrabackplane Bus Wiring
The wiring that connects the bus connector slots within one contiguous backplane
is part of the overall bus transmission line. Owing to implementation constraints,
the nominal characteristic impedance of 120 ohms may not be achievable.
Distributed wiring capacitance in excess of the amount required to achieve the
nominal 120-ohm impedance may not exceed 60 pF per signal line per backplane.

Q22–bus Specification F–35

Q22–bus Specification
F.7 Q22–bus Electrical Characteristics

F.7.7.3 Power and Ground
Each bus interface slot has connector pins assigned for the following dc voltages.
The maximum allowable current per pin is 1.5 A. +5 Vdc must be regulated to 5
percent, with a maximum ripple of 100 mV pp. +12 Vdc must be regulated to 3
percent, with a maximum ripple of 200 mV pp.

• +5 Vdc — Three pins (4.5 A maximum per bus device slot)

• +12 Vdc — Two pins (3.0 A maximum per bus device slot)

• Ground — Eight pins (shared by power return and signal return)

Note

Power is not bused between backplanes on any interconnecting bus cables.

F.8 System Configurations
Q22–bus systems can be divided into two types:

• Systems containing one backplane

• Systems containing multiple backplanes

Before configuring any system, three characteristics for each module in the
system must be identified.

• Power consumption — +5 Vdc and +12 Vdc are the current requirements.

• AC bus loading — The amount of capacitance a module presents to a bus
signal line. AC loading is expressed in terms of ac loads, where one ac load
equals 9.35 pF of capacitance.

• DC bus loading—The amount of dc leakage current a module presents to a
bus signal when the line is high (undriven). DC loading is expressed in terms
of dc loads, where one dc load equals 210 µA (nominal).

Power consumption, ac loading, and dc loading specifications for each module are
included in the Microcomputer Interfaces Handbook.

Note

The ac and dc loads and the power consumption of the processor module,
terminator module, and backplane must be included in determining the
total loading of a backplane.

Rules for configuring single backplane systems are as follows:

• When using a processor with 220-ohm termination, the bus can accommodate
modules that have up to 20 ac loads before additional termination is required
(Figure F–16). If more than 20 ac loads are included, the other end of the bus
must be terminated with 120 ohms. Then, up to 35 ac loads may be present.

• With 120-ohm processor termination, up to 35 ac loads can be used without
additional termination. If 120-ohm bus termination is added, up to 45 ac
loads can be configured in the backplane.

• The bus can accommodate modules up to 20 dc loads (total).

F–36 Q22–bus Specification

Q22–bus Specification
F.8 System Configurations

• The bus signal lines on the backplane can be up to 35.6 cm (14 in) long.

Figure F–16 Single Backplane Configuration

LJ-00189-TI0

 Backplane Wire

35.6 CM (14 IN) Maximum

120

3.4 V

+

-

KDJ11-B

Processor

35 AC Loads

20 DC Loads

Optional

120/240

+

-

3.4 V

Term

One

Unit

Load

One

Unit

Load

One

Unit

Load

Rules for configuring multiple backplane systems are as follows:

• Figure F–17 shows that up to three backplanes can make up the system.

• The signal lines on each backplane can be up to 25.4 cm (10 in) long.

• Each backplane can accommodate modules that have up to 22 ac loads.
Unused ac loads from one backplane may not be added to another backplane
if the second backplane loading exceeds 22 ac loads. It is desirable to load
backplanes equally, or with the highest ac loads in the first and second
backplanes.

• DC loading of all modules in all backplanes cannot exceed 20 loads.

• Both ends of the bus must be terminated with 120 ohms. This means
the first and last backplanes must have an impedance of 120 ohms. To
achieve this, each backplane can be lumped together as a single point. The
resistive termination can be provided by a combination of two modules in
the backplane – the processor providing 220 ohms to ground in parallel with
an expansion paddle card providing 250 ohms to give the needed 120-ohm
termination.
Alternately, a processor with 120-ohm termination would need no additional
termination on the paddle card to attain 120 ohms in the first box. The
120-ohm termination in the last box can be provided in two ways: the
termination resistors may reside on either the expansion paddle card, or
on a bus termination card (such as the BDV11).

• The cable(s) connecting the first two backplanes is 61 cm (2 ft) or more in
length.

Q22–bus Specification F–37

Q22–bus Specification
F.8 System Configurations

Figure F–17 Multiple Backplane Configuration

LJ-00312-TI0

 Backplane Wire

35.6 CM (14 IN) Maximum

120

3.4 V

+

-

Processor

One

Unit

Load

One

Unit

Load

One

Unit

Load

One

Unit

Load

Backplane Wire

25.4 CM (10 IN) Maximum

20 AC Loads Max

Cable

20 AC Loads Max

120
3.4 V

One

Unit

Load

One

Unit

Load

Backplane Wire

25.4 CM (10 IN) Maximum

Additional
Cables and
Backplane

Cable/Term

20 AC Loads Max

Notes:
 1. Two cables (max) 4.88 M (16 FT) (Max)

 2. 20 DC loads total (max).
total length.

Cable Cable

F–38 Q22–bus Specification

Q22–bus Specification
F.8 System Configurations

• The cable(s) connecting the second backplane to the third backplane is 122
cm (4 ft) longer or shorter than the cable(s) connecting the first and second
backplanes.

• The combined length of both cables cannot exceed 4.88 m (16 ft).

• The cables used must have a characteristic impedance of 120 ohms.

F.8.1 Power Supply Loading
Total power requirements for each backplane can be determined by obtaining
the total power requirements for each module in the backplane. Obtain separate
totals for +5 V and +12 V power. Power requirements for each module are
specified in the Microcomputer Interfaces Handbook.

When distributing power in multiple backplane systems, do not attempt to
distribute power through the Q22–bus cables. Provide separate, appropriate
power wiring from each power supply to each backplane. Each power supply
should be capable of asserting BPOK H and BDCOK H signals according to
bus protocol; this is required if automatic power-fail/restart programs are
implemented, or if specific peripherals require an orderly power-down halt
sequence. The proper use of BPOK H and BDCOK H signals is strongly
recommended.

F.9 Module Contact Finger Identification
All of Digital’s plug-in modules use the same contact finger (pin) identification
system. A typical pin is shown in Figure F–18.

Figure F–18 Typical Pin Identification System

LJ-00313-TI0

Slot (Row) Identifier

"Slot B"
Pin Identifier

"Pin E"

Module Side Identifier

"Side 2" (Solder Side)

BE2

The Q22–bus is based on the use of quad-height modules that plug into a 2-slot
bus connector. Each slot contains 36 lines (18 lines on both the component side
and the solder side of the circuit board).

Slots, row A, and row B include a numeric identifier for the side of the module.
The component side is designated side 1 and the solder side is designated side 2,
as shown in Figure F–19.

Q22–bus Specification F–39

Q22–bus Specification
F.9 Module Contact Finger Identification

Figure F–19 Quad-Height Module Contact Finger Identification

AV2

BA2

BV2

CA2

CV2

DA2

DV2

Row A

Row B

Row C

Row D

Pin

AA1

AV1

BA1

BV1

CA1

CV1

DA1

DV1

Pin

AA2

Side 2

Solder Side

Side 1

Component Side

LJ-00175-TI0

J11

Letters ranging from A through V (excluding G, I, O, and Q) identify a particular
pin on a side of a slot. Table F–7 lists and identifies the bus pins of the quad-
height module. A bus pin identifier ending with a 1 is found on the component
side of the board, while a bus pin identifier ending with a 2 is found on the solder
side of the board.

The positioning notch between the two rows of pins mates with a protrusion on
the connector block for correct module positioning.

Figure F–20 represents the dimensions for a typical Q22–bus module.

F–40 Q22–bus Specification

Q22–bus Specification
F.9 Module Contact Finger Identification

Figure F–20 Typical Q22–bus Module Dimensions

10.457
(Quad Hgt)

+
-

.015

.020

219
+.010- 2.000

Typ

+- .002

2.750

5.250

8.000

2.437
+.015
.020

(Single Hgt)
-

5.187
(Double Hgt)

.018+

.020-

128 Dia .001
.004 Handle Holes+

-

180 Typ
.061
.010

+- Bottom of fingers
to top of handle
8.94
5.50

.010+-

.010+-

(Ext Lgth)
(Std Lgth)

8.430 .010
(Ext Lgth)

2.312
(Single Hgt)

.

7.438
(Ext Lgth)

.

4.930
(Std Lgth)

.063

.010

.156

.010

.563

+-

+-
.010+-

.625 Typ
.007

.725 Typ
.007+-+-

.

5.062
(Double Hgt)

.

10.312
(Quad Hgt)

.

3.938
(Std Lgth)

.

8.000

5.250

2.750

1.00

2.850

5.348

8.097

.010+-

.010+-

.010+-

.010+-

.125 Typ

.080 Typ

.258

.140 Typ

.510 Typ
2 PL 2.240

Typ
.005+-

2.125 Typ
(17 Equal Spaces)

Notes

Dimensions given in inches

Dimensions denoted by are for
max useable circuit area

Unless otherwise specified all
dimensions are .005 in+-

Double Width

Component Limit

Conductive - .834 in

Nonconductive - .875 in

Single Width

Component Limit

Conductive - .343 in

Nonconductive - .375 in

.056

.063

Maximum Height of
Soldered Component
Leads

LJ-00314-TI0

.

+-

Table F–7 Bus Pin Identifiers

Bus Pin Signal Definition

AA1 BIRQ5 L Interrupt request priority level 5.

AB1 BIRQ6 L Interrupt request priority level 6.

AC1 BDAL16 L Extended address bit during addressing protocol;
memory error data line during data transfer
protocol.

AD1 BDAL17 L Extended address bit during addressing protocol;
memory error logic enable during data transfer
protocol.

AE1 SSPARE1
(alternate +5 B)

Special spare — Not assigned or bused in Digital’s
cable or backplane assemblies. Available for user
connection. Optionally, this pin can be used for
+5 V battery (+5 B) back-up power to keep critical
circuits alive during power failures. A jumper is
required on Q22–bus options to open (disconnect)
the +5 B circuit in systems that use this line as
SSPARE1.

(continued on next page)

Q22–bus Specification F–41

Q22–bus Specification
F.9 Module Contact Finger Identification

Table F–7 (Cont.) Bus Pin Identifiers

Bus Pin Signal Definition

AF1 SSPARE2 Special spare — Not assigned or bused in Digital’s
cable or backplane assemblies. Available for user
interconnection. In the highest priority device
slot, the processor can use this pin for a signal to
indicate its run state.

AH1 SSPARE3
SRUN

Special spare — Not assigned or bused
simultaneously in Digital’s cable or backplane
assemblies; available for user interconnection. An
alternate SRUN signal can be connected in the
highest priority set.

AJ1 GND Ground — System signal ground and dc return.

AK1 MSPAREA Maintenance spare — Normally connected
together on the backplane at each option location
(not a bused connection).

AL1 MSPAREB Maintenance spare — Normally connected
together on the backplane at each option location
(not a bused connection).

AM1 GND Ground — System signal ground and dc return.

AN1 BDMR L DMA request — A device asserts this signal to
request bus mastership. The processor arbitrates
bus mastership between itself and all DMA
devices on the bus. If the processor is not bus
master (it has completed a bus cycle and BSYNC
L is not being asserted by the processor), it
grants bus mastership to the requesting device
by asserting BDMGO L. The device responds by
negating BDMR L and asserting BSACK L.

AP1 BHALT L Processor halt — When BHALT L is asserted
for at least 25 µs, the processor services the halt
interrupt and responds by halting normal program
execution. External interrupts are ignored but
memory refresh interrupts in Q22–bus operations
are enabled if W4 on the M7264 and M7264-YA
processor modules is removed and DMA request
/grant sequences are enabled. The processor
executes the ODT microcode, and the console
device operation is invoked.

(continued on next page)

F–42 Q22–bus Specification

Q22–bus Specification
F.9 Module Contact Finger Identification

Table F–7 (Cont.) Bus Pin Identifiers

Bus Pin Signal Definition

AR1 BREF L Memory refresh — Asserted by a DMA device.
This signal forces all dynamic MOS memory units
requiring bus refresh signals to be activated for
each BSYNC L/BDIN L bus transaction. It is also
used as a control signal for block mode DMA.

Caution

The user must avoid
multiple DMA data
transfers (burst or hot
mode) that could delay
refresh operation if
using DMA refresh.
Complete refresh
cycles must occur
once every 1.6 ms if
required.

AS1 +12 B or +5 B +12 Vdc or +5 V battery back-up power to keep
critical circuits alive during power failures.
This signal is not bused to BS1 in all Digital
backplanes. A jumper is required on all Q22–bus
options to open (disconnect) the back-up circuit
from the bus in systems that use this line at the
alternate voltage.

AT1 GND Ground — System signal ground and dc return.

AU1 PSPARE 1 Spare — Not assigned. Customer usage not
recommended. Prevents damage when modules
are inserted upside down.

AV1 +5 B +5 V battery power — Secondary +5 V power
connection. Battery power can be used with
certain devices.

BA1 BDCOK H DC power OK — A power supply generated signal
that is asserted when the available dc voltage is
sufficient to sustain reliable system operation.

BB1 BPOK H Power OK — Asserted by the power supply 70
ms after BDCOK is negated when ac power
drops below the value required to sustain power
(approximately 75% of nominal). When negated
during processor operation, a power-fail trap
sequence is initiated.

BC1 SSPARE4
BDAL18 L
(22-bit only)

Special spare in the Q22–bus — Not assigned.
Bused in 22-bit cable and backplane assemblies.
Available for user interconnection.

(continued on next page)

Q22–bus Specification F–43

Q22–bus Specification
F.9 Module Contact Finger Identification

Table F–7 (Cont.) Bus Pin Identifiers

Bus Pin Signal Definition

BD1 SSPARE5
BDAL19 L
(22-bit only)

Caution

These pins
may be used by
manufacturing as
test points in some
options.

BE1 SSPARE6
BDAL20 L

In the Q22–bus, these bused address lines are
address lines <21:18>. Currently not used during
data time.

BF1 SSPARE7
BDAL21 L

In the Q22–bus, these bused address lines are
address lines <21:18>. Currently not used during
data time.

BH1 SSPARE8 Special spare — Not assigned or bused in Digital’s
cable and backplane assemblies. Available for
user interconnection.

BJ1 GND Ground — System signal ground and dc return.

BK1
BL1

MSPAREB
MSPAREB

Maintenance spare — Normally connected
together on the backplane at each option location
(not a bused connection).

BM1 GND Ground — System signal ground and dc return.

BN1 BSACK L This signal is asserted by a DMA device in
response to the processor’s BDMGO L signal,
indicating that the DMA device is bus master.

BP1 BIRQ7 L Interrupt request priority level 7.

BR1 BEVNT L External event interrupt request — When
asserted, the processor responds by entering a
service routine through vector address 1008. A
typical use of this signal is as a line time clock
(LTC) interrupt.

BS1 +12 B +12 Vdc battery back-up power (not bused to AS1
in all Digital backplanes).

BT1 GND Ground — System signal ground and dc return.

BU1 PSPARE2 Power spare 2 — Not assigned a function and not
recommended for use. If a module is using
–12 V (on pin AB2) and, if the module is
accidentally inserted upside down in the
backplane, –12 Vdc appears on pin BU1.

BV1 +5 +5 V power — Normal +5 Vdc system power.

AA2 +5 +5 V power — Normal +5 Vdc system power.

(continued on next page)

F–44 Q22–bus Specification

Q22–bus Specification
F.9 Module Contact Finger Identification

Table F–7 (Cont.) Bus Pin Identifiers

Bus Pin Signal Definition

AB2 –12 –12 V power — –12 Vdc power for (optional)
devices requiring this voltage. Each Q22–bus
module that requires negative voltages contains
an inverter circuit that generates the required
voltage(s). Therefore, –12 V power is not required
with Digital’s options.

AC2 GND Ground — System signal ground and dc return.

AD2 +12 +12 V power — +12 Vdc system power.

AE2 BDOUT L Data output — When asserted, BDOUT implies
that valid data is available on BDAL<0:15> L
and that an output transfer, with respect to the
bus master device, is taking place. BDOUT L is
deskewed with respect to data on the bus. The
slave device responding to the BDOUT L signal
must assert BRPLY L to complete the transfer.

AF2 BRPLY L Reply — BRPLY L is asserted in response
to BDIN L or BDOUT L and during IAK
transactions. It is generated by a slave device
to indicate that it has placed its data on the
BDAL bus or that it has accepted output data
from the bus.

AH2 BDIN L Data input — BDIN L is used for two types of bus
operations.

• When asserted during BSYNC L time, BDIN
L implies an input transfer with respect
to the current bus master, and requires a
response (BRPLY L). BDIN L is asserted
when the master device is ready to accept
data from the slave device.

• When asserted without BSYNC L, it indicates
that an interrupt operation is occurring. The
master device must deskew input data from
BRPLY L.

AJ2 BSYNC L Synchronize — BSYNC L is asserted by the bus
master device to indicate that it has placed an
address on BDAL<0:17> L. The transfer is in
process until BSYNC L is negated.

AK2 BWTBT L Write/byte — BWTBT L is used in two ways to
control a bus cycle.

• It is asserted at the leading edge of BSYNC L
to indicate that an output sequence (DATO or
DATOB), rather than an input sequence, is to
follow.

• It is asserted during BDOUT L, in a DATOB
bus cycle, for byte addressing.

(continued on next page)

Q22–bus Specification F–45

Q22–bus Specification
F.9 Module Contact Finger Identification

Table F–7 (Cont.) Bus Pin Identifiers

Bus Pin Signal Definition

AL2 BIRQ4 L Interrupt request priority level 4 — A level 4
device asserts this signal when its interrupt
enable and interrupt request flip-flops are set. If
the PS word bit 7 is 0, the processor responds by
acknowledging the request by asserting BDIN L
and BIAKO L.

AM2
AN2

BIAKI L
BIAKO L

Interrupt acknowledge — In accordance with
interrupt protocol, the processor asserts BIAKO L
to acknowledge receipt of an interrupt. The bus
transmits this to BIAKI L of the device electrically
closest to the processor. This device accepts the
interrupt acknowledge under two conditions.

• The device requested the bus by asserting
BIRQn L (where n= 4, 5, 6 or 7).

• The device has the highest priority interrupt
request on the bus at that time.

If these conditions are not met, the device asserts
BIAKO L to the next device on the bus. This
process continues in a daisy-chain fashion until
the device with the highest interrupt priority
receives the interrupt acknowledge signal.

AP2 BBS7 L Bank 7 select — The bus master asserts this
signal to reference the I/O page (including that
part of the page reserved for nonexistent memory).
The address in BDAL<0:12> L when BBS7 L is
asserted is the address within the I/O page.

AR2
AS2

BDMGI L
BDMGO L

Direct memory access grant — The bus arbitrator
asserts this signal to grant bus mastership to a
requesting device, according to bus mastership
protocol. The signal is passed in a daisy chain
from the arbitrator (as BDMGO L) through the
bus to BDMGI L of the next priority device (the
device electrically closest on the bus).

This device accepts the grant only if it requested
to be the bus master (by a BDMR L). If not, the
device passes the grant (asserts BDMGO L) to the
next device on the bus. This process continues
until the requesting device acknowledged the
grant.

Caution

DMA device transfers
must not interfere
with the memory
refresh cycle.

(continued on next page)

F–46 Q22–bus Specification

Q22–bus Specification
F.9 Module Contact Finger Identification

Table F–7 (Cont.) Bus Pin Identifiers

Bus Pin Signal Definition

AT2 BINIT L Initialize — This signal is used for system reset.
All devices on the bus are to return to a known,
initial state; that is, registers are reset to zero,
and logic is reset to state 0. Exceptions should
be completely documented in programming and
engineering specifications for the device.

AU2
AV2

BDAL0 L
BDAL1 L

Data/address lines — These two lines are part of
the 16-line data/address bus over which address
and data information are communicated. Address
information is first placed on the bus by the
bus master device. The same device then either
receives input data from, or outputs data to, the
addressed slave device or memory over the same
bus lines.

BA2 +5 +5 V power — Normal +5 Vdc system power.

BB2 –12 –12 V power (voltage not supplied) — –12 Vdc
power for (optional) devices requiring this voltage.

BC2 GND Ground — System signal ground and dc return.

BD2 +12 +12 V power — +12 V system power.

BE2
BF2
BH2
BJ2
BK2
BL2
BM2
BN2
BP2
BR2
BS2
BT2
BU2
BV2

BDAL2 L
BDAL3 L
BDAL4 L
BDAL5 L
BDAL6 L
BDAL7 L
BDAL8 L
BDAL9 L
BDAL10 L
BDAL11 L
BDAL12 L
BDAL13 L
BDAL14 L
BDAL15 L

Data/address lines — These 14 lines are part of
the 16-line data/address bus.

Q22–bus Specification F–47

G
Specifications

This appendix describes the physical, electrical, and environmental characteristics
of the KA680 CPU module.

G.1 Dimensions
The KA680 and MS690 are quad-height modules with the following dimensions:

Height - 10.457 +.015/ -.020 inches

Length - 8.430 +.010/ -.010 inches

Width - .375 inches maximum (nonconductive)
.343 inches maximum (conductive)

Note

Width, as defined for Digital modules, is the height of components above
the surface of the module.

G.2 KA680 Connectors
The KA680 has two connector interfaces: the 270-pin backplane connector and the 100-pin
console module connector.

G.2.1 KA680 Backplane Connector
The pinout of the KA680’s 270-pin backplane connector is as follows:

Pin Signal Name

001 SH2_DATA <7> L

002 GROUND

003 SH2_DATA <6> L

004 SH2_DATA <5> L

005 + 5V

006 SH2_DATA <4> L

007 SH2_DATA <3> L

008 VM12VOLTSL1

Specifications G–1

Specifications
G.2 KA680 Connectors

Pin Signal Name

009 SH2_DATA <2> L

010 SH2_DATA <1> L

011 GROUND

012 SH2_DATA <0>

013 SH2_DP L

014 V12VOLTS1

015 SH2_BSY L

016 SH2_ACK L

018 SH2_RST L

019 SH2_SEL L

021 SH2_CD L

022 SH2_REQ L

023 GROUND

024 SH2_IO L

026 + 5V

027 BIRQ L<5>

028 BIRQ L<6>

029 VD3A

030 BDAL L<16>

031 BDAL L<17>

033 BDOUT L

034 SRUN L

035 GROUND

036 BRPLY L

037 BDIN L

039 BSYNC L

040 BWTBT L

042 BIRQ L<4>

045 BDMR L

046 BIAKO L

047 GROUND

048 BHALT L

049 BBS7 L

050 + 5V

051 BREF L

054 BDMGO L

055 BINIT L

056 VM12VOLTSL2

057 BDAL L<0>

058 BDAL L<1>

G–2 Specifications

Specifications
G.2 KA680 Connectors

Pin Signal Name

059 GROUND

060 BDCOK

061 BPOK

062 V12VOLTS2

063 BDAL L<18>

064 BDAL L<19>

066 BDAL L<20>

067 BDAL L<2>

069 BDAL L<21>

070 BDAL L<3>

071 GROUND

072 BDAL L<4>

073 BDAL L<5>

074 + 5V

075 BDAL L<6>

076 BDAL L<7>

077 VD3B

078 BDAL L<8>

079 BSACK L

081 BDAL L<9>

082 BIRQ L<7>

083 GROUND

084 BDAL L<10>

085 BEVENT L

087 BDAL L<11>

088 BDAL L<12>

090 BDAL L<13>

091 BDAL L<14>

093 BDAL L<15>

094 TRST

095 GROUND

096 MD<0>

097 MD<1>

098 + 5V

099 MD<2>

100 MD<3>

101 V12VOLTS3

102 MD<4>

103 MD<5>

105 MD<6>

Specifications G–3

Specifications
G.2 KA680 Connectors

Pin Signal Name

106 MD<7>

107 GROUND

108 MD<8>

109 MD<9>

111 MD<10>

112 MD<11>

114 MD<12>

115 MD<13>

117 MD<14>

118 MD<15>

119 GROUND

120 MD<16>

121 MD<17>

122 + 5V

123 MD<18>

124 MD<19>

125 VD3C

126 MD<20>

127 MD<21>

129 MD<22>

130 MD<23>

131 GROUND

132 MD<24>

133 MD<25>

135 MD<26>

136 MD<27>

138 MD<28>

139 MD<29>

141 MD<30>

142 MD<31>

143 GROUND

144 MD<64>

145 MD<65>

146 + 5V

147 MD<66>

148 MD<67>

149 V12VOLTS4

150 MD<68>

151 MD<69>

152 GROUND

G–4 Specifications

Specifications
G.2 KA680 Connectors

Pin Signal Name

153 MD<70>

154 NO CONNECTION

155 GROUND

156 CASA_H

157 CASB_H

160 SE_H

161 GROUND

162 WE_H

163 RAS_TIME_H

165 BANK_SEL<0>

167 GROUND

168 BANK_SEL<1>

169 BANK_SEL<2>

170 + 5V

171 BANK_SEL<3>

172 MODE_SEL<0>

173 VD3D

176 GROUND

177 MODE_SEL<1>

178 MA<0>

179 GROUND

180 MA<1>

181 MA<2>

182 + 5V

183 NMCJTDI

184 NMCJTDO

186 MA<3>

187 MA<4>

188 GROUND

189 MA<5>

190 MA<6>

191 GROUND

192 NMCJTMS

193 NMCJTCK

195 MA<7>

197 GROUND

198 MA<8>

199 NCAJTDI

201 NCAJTDO

202 NCAJTMS

Specifications G–5

Specifications
G.2 KA680 Connectors

Pin Signal Name

203 GROUND

204 MA<9>

205 NCAJTCK

206 + 5V

207 MA<10>

209 VD3E

211 MD<32>

213 MD<33>

214 MD<34>

215 GROUND

216 MD<35>

217 MD<36>

219 MD<37>

220 MD<38>

221 GROUND

222 MD<39>

223 MD<40>

225 MD<41>

226 MD<42>

227 GROUND

228 MD<43>

229 MD<44>

230 + 5V

231 MD<45>

232 MD<46>

233 GROUND

234 MD<47>

235 MD<48>

237 MD<49>

238 MD<50>

239 GROUND

240 MD<51>

243 MD<52>

244 MD<53>

245 GROUND

246 MD<54>

247 MD<55>

249 MD<56>

250 MD<57>

251 GROUND

G–6 Specifications

Specifications
G.2 KA680 Connectors

Pin Signal Name

252 MD<58>

253 MD<59>

254 + 5V

255 MD<60>

256 MD<61>

257 VD3F

258 MD<62>

259 MD<63>

260 NO CONNECTION

261 MD<71>

263 GROUND

264 NVAX_JTDI

265 NVAX_JTDO

267 NVAX_JTMS

268 NVAX_JTCK

270 TSTPHIIN

G.2.2 KA680 Console Connector (J2)
The 100-pin console connector provides the connection between the KA680 and
the H3604 console module. Table G–1 lists the J2 pinouts.

Table G–1 KA680 Console Connector (J2) Pinout

Pin Signal Name Usage Meaning

1 GND Ground Signal Ground.

2 - 3 SH1_DATA<0> L DSSI DSSI #1 Data Bus Bit 0.

4 GND Ground Signal Ground.

5 - 6 SH1_DATA<1> L DSSI DSSI #1 Data Bus Bit 1.

7 GND Ground Signal Ground.

8 - 9 SH1_DATA<2> L DSSI DSSI #1 Data Bus Bit 2.

10 GND Ground Signal Ground.

11 - 12 SH1_DATA<3> L DSSI DSSI #1 Data Bus Bit 3.

13 GND Ground Signal Ground.

14 - 15 SH1_DATA<4> L DSSI DSSI #1 Data Bus Bit 4.

16 GND Ground Signal Ground.

17 - 18 SH1_DATA<5> L DSSI DSSI #1 Data Bus Bit 5.

19 GND Ground Signal Ground.

20 - 21 SH1_DATA<6> L DSSI DSSI #1 Data Bus Bit 6.

22 GND Ground Signal Ground.

23 - 24 SH1_DATA<7> L DSSI DSSI #1 Data Bus Bit 7.

(continued on next page)

Specifications G–7

Specifications
G.2 KA680 Connectors

Table G–1 (Cont.) KA680 Console Connector (J2) Pinout

Pin Signal Name Usage Meaning

25 GND Ground Signal Ground.

26 - 27 SH1_DP L DSSI DSSI #1 Data Bus Parity
Line.

28 GND Ground Signal Ground.

29 - 30 SH1_ACK L DSSI This signal is driven by
an initiator to indicate
an acknowledgment for a
REQ/ACK data transfer
handshake.

31 GND Ground Signal Ground.

32 - 33 SH1_RST L DSSI DSSI Pin RESET.

34 GND Ground Signal Ground.

35 - 36 SH1_SEL L DSSI DSSI Pin SELECT A
signal. Used by the
initiator to select a target.

37 GND Ground Signal Ground.

38 - 39 SH1_C/D L DSSI Pin Command/Data. A
signal driven by a target
that indicates whether
control or data information
is on the data bus.
Asserted (low) indicates
control.

40 GND Ground Signal Ground.

41 - 42 SH1_REQ L DSSI REQUEST. A signal driven
by a target to indicate a
request for a REQ/ACK
data transfer handshake.

43 GND Ground Signal Ground.

44 - 45 SH1_I/O L DSSI Input/output. A signal
driven by a target that
controls the direction of
data movement on the data
bus with respect to the
initiator. Asserted (low)
indicates input.

46 GND Ground Signal Ground.

47 - 48 SH1_BSY L DSSI BUSY. This is an "OR-tied"
signal indicating the bus is
being used.

49 GND Ground Signal Ground.

50 GND Ground Signal Ground.

51 GND Ground Signal Ground.

52 GND Ground Signal Ground.

(continued on next page)

G–8 Specifications

Specifications
G.2 KA680 Connectors

Table G–1 (Cont.) KA680 Console Connector (J2) Pinout

Pin Signal Name Usage Meaning

53 TXD H Ethernet Console Terminal Data
Out. This signal outputs
serial character data
from the console terminal
transmitter.

54 GND Ground Signal Ground.

55 RXD H Ethernet Console Terminal Data
In. This signal inputs
serial character data to the
console terminal receiver.

56 GND Ground Signal Ground.

57 TB25K H Console This is the 25.6 KHz
oscillator from the H3604
console module, which
supplies the timebase for
the time-of-year (TOY)
clock.

58 GND Ground Signal Ground.

59 TDATA H Ethernet This is the transmit data
signal.

60 GND Ground Signal Ground.

61 XMTEN H Ethernet This is the transmit enable
signal.

62 GND Ground Signal Ground.

63 RCAR H Ethernet This is the receive enable
signal.

64 GND Ground Signal Ground.

65 COL H Ethernet Collision Detect.

66 GND Ground Signal Ground.

67 RDATA H Ethernet RECEIVE DATA.

68 GND Ground Signal Ground.

69 TCLK H Ethernet Transmit Clock.

70 GND Ground Signal Ground.

71 RCLK H Ethernet Receive Clock.

72 GND Ground Signal Ground.

73 BITRATE <2> L Console Bit rate field bit 2.

74 BITRATE <1> L Console Bit rate field bit 1.

75 BITRATE <0> L Console Bit rate field bit 0.

76 LEDCODE <3> L Console This is bit 3 (MSB) of the
LED code going to the
hexadecimal display on the
console module.

(continued on next page)

Specifications G–9

Specifications
G.2 KA680 Connectors

Table G–1 (Cont.) KA680 Console Connector (J2) Pinout

Pin Signal Name Usage Meaning

77 LEDCODE <2> L Console This is bit 2 of the
LED code going to the
hexadecimal display on the
console module.

78 LEDCODE <1> L Console This is bit 1 of the
LED code going to the
hexadecimal display on the
console module.

79 LEDCODE <0> L Console This is bit 0 (LSB) of the
LED code going to the
hexadecimal display on the
console module.

80 VDDI H Console This pin is in the battery
back-up supply for the SSC
TOY clock.

81 DSSI1_UID <2> L DSSI DSSI #1 Node
Identification (ID) number
bit 2 (MSB).

82 DSSI1_UID <1> L DSSI DSSI #1 Node
Identification (ID) number
bit 1.

83 DSSI1_UID <0> L DSSI DSSI #1 Node
Identification (ID) number
bit 0 (LSB).

84 DSSI2_UID <2> L DSSI DSSI #2 Node
Identification (ID) number
bit 2 (MSB).

85 DSSI2_UID <1> L DSSI DSSI #2 Node
Identification (ID) number
bit 1.

86 DSSI2_UID <0> L DSSI DSSI #2 Node
Identification (ID) number
bit 0 (LSB).

87 BOOTDIAG<1> L Console Boot and Diagnostic Code
bit 1.

88 BOOTDIAG<0> L Console Boot and Diagnostic Code
bit 0.

89 ENBHALT L Console The HALT ENABLE Bit.

90 BTRYBAD H Console This is the battery bad
signal that comes from the
console module and goes to
the battery sense circuitry.

91 NC – –

92 NC – –

93 NC – –

94 NC – –

95 NC – –

(continued on next page)

G–10 Specifications

Specifications
G.2 KA680 Connectors

Table G–1 (Cont.) KA680 Console Connector (J2) Pinout

Pin Signal Name Usage Meaning

96 NC – –

97 NC – –

98 NC – –

99 NC – –

100 CABLE_OK_IN L Console This pin is used to indicate
if the cable is properly
installed.

Specifications G–11

Specifications
G.3 DC Power Consumption

G.3 DC Power Consumption
The KA680 CPU and MS690 memory module power requirements are as follows:

+---+
| | Current (Amps) | Power | Q22-Bus Loads |
| Module | | (Watts) |---------------|
| | +5 Vdc | +3.3 Vdc| +12 Vdc | -12 Vdc | (total) | ac | dc |
|---|
| MS690-BA | 5.3 A | 0.0 A | 0.0 A | 0.0 A | 26.5 W | 0 | 0 |
|------------ --|
| MS690-CA | 4.2 A | 0.0 A | 0.0 A | 0.0 A | 21.0 W | 0 | 0 |
|---|
| MS690-DA | 6.4 A | 0.0 A | 0.0 A | 0.0 A | 32.0 W | 0 | 0 |
|---|
| KA680-AA(3)| 2.8 A | 3.2 A | 0.0 A | 0.0 A | 24.6 W | 4 | 1 |
|---|
| KA680-AA(4)| 4.8 A | 3.2 A | 1.6 A | 0.0 A | 53.8 W | 4 | 1 |
+---+

NOTE: 1) MS690 Current and Wattage values are unique depending on option.
2) Memory modules are in dedicated slots 4 through 1.
3) Power data includes CPU module only.
4) Power power data includes CPU module, H3604 & Backplane power.

G.4 Battery Back-up Specifications
When dc power is supplied to the KA680 module, it charges the external batteries
from +5 volts through a 240-ohm resistor.

When dc power is removed from the KA680 module, it drains the external
batteries at a rate of 1.0 milliampere.

Note

These batteries supply power to the KA680 time-of-year clock and SSC
RAM only. There is no battery backup for the memory system.

G.5 Operating Conditions
The KA680 module will meet or exceed the requirements for operation in a DEC
Standard 102 Class B system environment. This includes an allowed 5°C rise for
box preheating of the air.

TEMPERATURE

+5°C to +45°C (+40°F to +113°F) with a rate of change no greater than 20°C ±2°C
(36°F ±4°F) per hour at sea level. The maximum temperature must be derated by
1.8°C per 1000 meters (1°F per 1000 feet) above sea level.

HUMIDITY

10% to 95% noncondensing, with a maximum wet bulb temperature of 32°C
(90°F) and a minimum dew point temperature of 2°C (36°F).

ALTITUDE

G–12 Specifications

Specifications
G.5 Operating Conditions

Up to 2,400 meters (8,000 feet) with a rate of change no greater than 300 meters
per minute (1000 feet per minute).

AIRFLOW

The airflow required to meet these specifications is 200 lfm.

G.6 Nonoperating Conditions (Fewer Than 60 Days)
TEMPERATURE

-40°C to +66°C (-40°F to +151°F) with a rate of change no greater than 11°C ±2°C
(20°F ±4°F) per hour at sea level. The maximum temperature must be derated by
1.8°C per 1000 meters (1°F per 1000 feet) above sea level.

HUMIDITY

Up to 95% noncondensing.

ALTITUDE

Up to 4,900 meters (16,000 feet) with a rate of change no greater than 600 meters
per minute (2000 feet per minute).

G.7 Nonoperating Conditions (More Than 60 Days)
TEMPERATURE

+5°C to +60°C (-40°F to +140°F) with a rate of change no greater than 20°C ±2°C
(36°F ±4°F) per hour at sea level. The maximum temperature must be derated by
1.8°C per 1000 meters (1°F per 1000 feet) above sea level.

HUMIDITY

10% to 95% noncondensing, with a maximum wet bulb temperature of 32°C
(90°F) and a minimum dew point temperature of 2°C (36°F).

ALTITUDE

Up to 2,400 meters (8,000 feet) with a rate of change no greater than 300 meters
per minute (1000 feet per minute).

G.8 Mean Time Between Failures (MTBF) Estimate
The estimated module failure rate for the KA680 is one error per 322,000 hours
at 32°C.

The estimated failure rate at 32°C for the MS690 memory modules are as follows:

Module MTBF (Hours)
--
MS690-BA (32 MB) 210,000 (With ECC off)
MS690-BA 417,000 (With ECC on)
MS690-CA (64 MB) 118,000 (With ECC off)
MS690-CA 426,000 (With ECC on)

Specifications G–13

H
VAX Instruction Set

The information in this appendix is for reference only.
The standard notation for operand specifiers is:

<name>.<access type><data type>

where:

1. Name is a suggested name for the operand in the context of the
instruction. It is the capitalized name of a register or block
for implied operands.

2. Access type is a letter denoting the operand specifier access
type.

a = address operand
b = branch displacement
m = modified operand (both read and written)
r = read-only operand
v = if not "Rn", same as a, otherwise R[n+1]’R[n]
w = write-only operand

3. Data type is a letter denoting the data type of the operand.

b = byte
d = d_floating
f = f_floating
g = g_floating
l = longword
q = quadword
v = field (used only in implied operands)
w = word
* = multiple longwords (used only in implied operands)

4. Implied operands, that is, locations accessed by the
instruction, but not specified in an operand, are denoted by
curly braces {}.

The abbreviations for condition codes are:

* = conditionally set/cleared
- = not affected
0 = cleared
1 = set

The abbreviations for exceptions are:

VAX Instruction Set H–1

VAX Instruction Set

rsv = reserved operand fault
iov = integer overflow trap
idvz = integer divide by zero trap
fov = floating overflow fault
fuv = floating underflow fault
fdvz = floating divide by zero fault
dov = decimal overflow trap
ddvz = decimal divide by zero trap
sub = subscript range trap
prv = privileged instruction fault

Integer Arithmetic and Logical Instructions

Opcode Instruction N Z V C Exceptions
------ ----------- ------- ----------

58 ADAWI add.rw, sum.mw * * * * iov

80 ADDB2 add.rb, sum.mb * * * * iov
C0 ADDL2 add.rl, sum.ml * * * * iov
A0 ADDW2 add.rw, sum.mw * * * * iov

81 ADDB3 add1.rb, add2.rb, sum.wb * * * * iov
C1 ADDL3 add1.rl, add2.rl, sum.wl * * * * iov
A1 ADDW3 add1.rw, add2.rw, sum.ww * * * * iov

D8 ADWC add.rl, sum.ml * * * * iov

78 ASHL cnt.rb, src.rl, dst.wl * * * 0 iov
79 ASHQ cnt.rb, src.rq, dst.wq * * * 0 iov

8A BICB2 mask.rb, dst.mb * * 0 -
CA BICL2 mask.rl, dst.ml * * 0 -
AA BICW2 mask.rw, dst.mw * * 0 -

8B BICB3 mask.rb, src.rb, dst.wb * * 0 -
CB BICL3 mask.rl, src.rl, dst.wl * * 0 -
AB BICW3 mask.rw, src.rw, dst.ww * * 0 -

88 BISB2 mask.rb, dst.mb * * 0 -
C8 BISL2 mask.rl, dst.ml * * 0 -
A8 BISW2 mask.rw, dst.mw * * 0 -

89 BISB3 mask.rb, src.rb, dst.wb * * 0 -
C9 BISL3 mask.rl, src.rl, dst.wl * * 0 -
A9 BISW3 mask.rw, src.rw, dst.ww * * 0 -

93 BITB mask.rb, src.rb * * 0 -
D3 BITL mask.rl, src.rl * * 0 -
B3 BITW mask.rw, src.rw * * 0 -

94 CLRB dst.wb 0 1 0 -
D4 CLRL{=F} dst.wl 0 1 0 -
7C CLRQ{=D=G} dst.wq 0 1 0 -
B4 CLRW dst.ww 0 1 0 -

91 CMPB src1.rb, src2.rb * * 0 *
D1 CMPL src1.rl, src2.rl * * 0 *
B1 CMPW src1.rw, src2.rw * * 0 *

98 CVTBL src.rb, dst.wl * * 0 0
99 CVTBW src.rb, dst.wl * * 0 0
F6 CVTLB src.rl, dst.wb * * * 0 iov
F7 CVTLW src.rl, dst.ww * * * 0 iov
33 CVTWB src.rw, dst.wb * * * 0 iov
32 CVTWL src.rw, dst.wl * * 0 0

H–2 VAX Instruction Set

VAX Instruction Set

97 DECB dif.mb * * * * iov
D7 DECL dif.ml * * * * iov
B7 DECW dif.mw * * * * iov

86 DIVB2 divr.rb, quo.mb * * * 0 iov,idvz
C6 DIVL2 divr.rl, quo.ml * * * 0 iov,idvz
A6 DIVW2 divr.rw, quo.mw * * * 0 iov,idvz

87 DIVB3 divr.rb, divd.rb, quo.wb * * * 0 iov,idvz
C7 DIVL3 divr.rl, divd.rl, quo.wl * * * 0 iov,idvz
A7 DIVW3 divr.rw, divd.rw, quo.ww * * * 0 iov,idvz

7B EDIV divr.rl, divd.rq, quo.wl, rem.wl * * * 0 iov,idvz

7A EMUL mulr.rl, muld.rl, add.rl, prod.wq * * 0 0

96 INCB sum.mb * * * * iov
D6 INCL sum.ml * * * * iov
B6 INCW sum.mw * * * * iov

92 MCOMB src.rb, dst.wb * * 0 -
D2 MCOML src.rl, dst.wl * * 0 -
B2 MCOMW src.rw, dst.ww * * 0 -

8E MNEGB src.rb, dst.wb * * * * iov
CE MNEGL src.rl, dst.wl * * * * iov
AE MNEGW src.rw, dst.ww * * * * iov

90 MOVB src.rb, dst.wb * * 0 -
D0 MOVL src.rl, dst.wl * * 0 -
7D MOVQ src.rq, dst.wq * * 0 -
B0 MOVW src.rw, dst.ww * * 0 -

9A MOVZBW src.rb, dst.wb 0 * 0 -
9B MOVZBL src.rb, dst.wl 0 * 0 -
3C MOVZWL src.rw, dst.ww 0 * 0 -

84 MULB2 mulr.rb, prod.mb * * * 0 iov
C4 MULL2 mulr.rl, prod.ml * * * 0 iov
A4 MULW2 mulr.rw, prod.mw * * * 0 iov

85 MULB3 mulr.rb, muld.rb, prod.wb * * * 0 iov
C5 MULL3 mulr.rl, muld.rl, prod.wl * * * 0 iov
A5 MULW3 mulr.rw, muld.rw, prod.ww * * * 0 iov

DD PUSHL src.rl, {-(SP).wl} * * 0 -

9C ROTL cnt.rb, src.rl, dst.wl * * 0 -

D9 SBWC sub.rl, dif.ml * * * * iov

82 SUBB2 sub.rb, dif.mb * * * * iov
C2 SUBL2 sub.rl, dif.ml * * * * iov
A2 SUBW2 sub.rw, dif.mw * * * * iov

83 SUBB3 sub.rb, min.rb, dif.wb * * * * iov
C3 SUBL3 sub.rl, min.rl, dif.wl * * * * iov
A3 SUBW3 sub.rw, min.rw, dif.ww * * * * iov

95 TSTB src.rb * * 0 0
D5 TSTL src.rl * * 0 0
B5 TSTW src.rw * * 0 0

8C XORB2 mask.rb, dst.mb * * 0 -
CC XORL2 mask.rl, dst.ml * * 0 -
AC XORW2 mask.rw, dst.mw * * 0 -

8D XORB3 mask.rb, src.rb, dst.wb * * 0 -
CD XORL3 mask.rl, src.rl, dst.wl * * 0 -
AD XORW3 mask.rw, src.rw, dst.ww * * 0 -

VAX Instruction Set H–3

VAX Instruction Set

Address Instructions

Opcode Instruction N Z V C Exceptions
------ ----------- ------- ----------

9E MOVAB src.ab, dst.wl * * 0 -
DE MOVAL{=F} src.al, dst.wl * * 0 -
7E MOVAQ{=D=G} src.aq, dst.wl * * 0 -
3E MOVAW src.aw, dst.wl * * 0 -

9F PUSHAB src.ab, {-(SP).wl} * * 0 -
DF PUSHAL{=F} src.al, {-(SP).wl} * * 0 -
7F PUSHAQ{=D=G} src.aq, {-(SP).wl} * * 0 -
3F PUSHAW src.aw, {-(SP).wl} * * 0 -

Variable Length Bit Field Instructions

Opcode Instruction N Z V C Exceptions
------ ----------- ------- ----------

EC CMPV pos.rl, size.rb, base.vb, {field.rv}, src.rl * * 0 * rsv

ED CMPZV pos.rl, size.rb, base.vb, {field.rv}, src.rl * * 0 * rsv

EE EXTV pos.rl, size.rb, base.vb, {field.rv}, dst.wl * * 0 - rsv

EF EXTZV pos.rl, size.rb, base.vb, {field.rv}, dst.wl * * 0 - rsv

F0 INSV src.rl, pos.rl, size.rb, base.vb, {field.wv} - - - - rsv

EB FFC startpos.rl, size.rb, base.vb, {field.rv}, findpos.wl 0 * 0 0 rsv
EA FFS startpos.rl, size.rb, base.vb, {field.rv}, findpos.wl 0 * 0 0 rsv

Control Instructions

Opcode Instruction N Z V C Exceptions
------ ----------- ------- ----------

9D ACBB limit.rb, add.rb, index.mb, displ.bw * * * - iov
F1 ACBL limit.rl, add.rl, index.ml, displ.bw * * * - iov
3D ACBW limit.rw, add.rw, index.mw, displ.bw * * * - iov

F3 AOBLEQ limit.rl, index.ml, displ.bb * * * - iov

F2 AOBLSS limit.rl, index.ml, displ.bb * * * - iov

1E BCC{=BGEQU} displ.bb - - - -
1F BCS{=BLSSU} displ.bb - - - -
13 BEQL{=BEQLU} displ.bb - - - -
18 BGEQ displ.bb - - - -
14 BGTR displ.bb - - - -
1A BGTRU displ.bb - - - -
15 BLEQ displ.bb - - - -
1B BLEQU displ.bb - - - -
19 BLSS displ.bb - - - -
12 BNEQ{=BNEQU} displ.bb - - - -
1C BVC displ.bb - - - -
1D BVS displ.bb - - - -

E1 BBC pos.rl, base.vb, displ.bb, {field.rv} - - - - rsv
E0 BBS pos.rl, base.vb, displ.bb, {field.rv} - - - - rsv

E5 BBCC pos.rl, base.vb, displ.bb, {field.mv} - - - - rsv
E3 BBCS pos.rl, base.vb, displ.bb, {field.mv} - - - - rsv
E4 BBSC pos.rl, base.vb, displ.bb, {field.mv} - - - - rsv
E2 BBSS pos.rl, base.vb, displ.bb, {field.mv} - - - - rsv

E7 BBCCI pos.rl, base.vb, displ.bb, {field.mv} - - - - rsv
E6 BBSSI pos.rl, base.vb, displ.bb, {field.mv} - - - - rsv

H–4 VAX Instruction Set

VAX Instruction Set

E9 BLBC src.rl, displ.bb - - - -
E8 BLBS src.rl, displ.bb - - - -

11 BRB displ.bb - - - -
31 BRW displ.bw - - - -

10 BSBB displ.bb, {-(SP).wl} - - - -
30 BSBW displ.bw, {-(SP).wl} - - - -

8F CASEB selector.rb, base.rb, limit.rb, displ.bw-list * * 0 *
CF CASEL selector.rl, base.rl, limit.rl, displ.bw-list * * 0 *
AF CASEW selector.rw, base.rw, limit.rw, displ.bw-list * * 0 *

17 JMP dst.ab - - - -

16 JSB dst.ab, {-(SP).wl} - - - -

05 RSB {(SP)+.rl} - - - -

F4 SOBGEQ index.ml, displ.bb * * * - iov

F5 SOBGTR index.ml, displ.bb * * * - iov

Procedure Call Instructions

Opcode Instruction N Z V C Exceptions
------ ----------- ------- ----------

FA CALLG arglist.ab, dst.ab, {-(SP).w*} 0 0 0 0 rsv

FB CALLS numarg.rl, dst.ab, {-(SP).w*} 0 0 0 0 rsv

04 RET {(SP)+.r*} * * * * rsv

Miscellaneous Instructions

Opcode Instruction N Z V C Exceptions
------ ----------- ------- ----------

B9 BICPSW mask.rw * * * * rsv

B8 BISPSW mask.rw * * * * rsv

03 BPT {-(KSP).w*} 0 0 0 0

00 HALT {-(KSP).w*} - - - - prv

0A INDEX subscript.rl, low.rl, high.rl, size.rl, indexin.rl, * * 0 0 sub
indexout.wl

DC MOVPSL dst.wl - - - -

01 NOP - - - -

BA POPR mask.rw, {(SP)+.r*} - - - -

BB PUSHR mask.rw, {-(SP).w*} - - - -

FC XFC {unspecified operands} 0 0 0 0

VAX Instruction Set H–5

VAX Instruction Set

Queue Instructions

Opcode Instruction N Z V C Exceptions
------ ----------- ------- ----------

5C INSQHI entry.ab, header.aq 0 * 0 * rsv

5D INSQTI entry.ab, header.aq 0 * 0 * rsv

0E INSQUE entry.ab, pred.ab * * 0 *

5E REMQHI header.aq, addr.wl 0 * * * rsv

5F REMQTI header.aq, addr.wl 0 * * * rsv

0F REMQUE entry.ab, addr.wl * * * *

Operating System Support Instructions

Opcode Instruction N Z V C Exceptions
------ ----------- ------- ----------

BD CHME param.rw, {-(ySP).w*} 0 0 0 0
BC CHMK param.rw, {-(ySP).w*} 0 0 0 0
BE CHMS param.rw, {-(ySP).w*} 0 0 0 0
BF CHMU param.rw, {-(ySP).w*} 0 0 0 0

Where y=MINU(x, PSL<CURRENT_MODE>)

06 LDPCTX {PCB.r*, -(KSP).w*} - - - - rsv, prv

DB MFPR procreg.rl, dst.wl * * 0 - rsv, prv

DA MTPR src.rl, procreg.rl * * 0 - rsv, prv

0C PROBER mode.rb, len.rw, base.ab 0 * 0 -
0D PROBEW mode.rb, len.rw, base.ab 0 * 0 -

02 REI {(SP)+.r*} * * * * rsv

07 SVPCTX {(SP)+.r*, PCB.w*} - - - - prv

Floating-Point Instructions

Opcode Instruction N Z V C Exceptions
------ ----------- ------- ----------

60 ADDD2 add.rd, sum.md * * 0 0 rsv,fov,fuv
40 ADDF2 add.rf, sum.mf * * 0 0 rsv,fov,fuv
40FD ADDG2 add.rg, sum.mg * * 0 0 rsv,fov,fuv

61 ADDD3 add1.rd, add2.rd, sum.wd * * 0 0 rsv,fov,fuv
41 ADDF3 add1.rf, add2.rf, sum.wf * * 0 0 rsv,fov,fuv
41FD ADDG3 add1.rg, add2.rg, sum.wg * * 0 0 rsv,fov,fuv

71 CMPD src1.rd, src2.rd * * 0 0 rsv
51 CMPF src1.rf, src2.rf * * 0 0 rsv
51FD CMPG src1.rg, src2.rg * * 0 0 rsv

H–6 VAX Instruction Set

VAX Instruction Set

6C CVTBD src.rb, dst.wd * * 0 0
4C CVTBF src.rb, dst.wf * * 0 0
4CFD CVTBG src.rb, dst.wg * * 0 0
68 CVTDB src.rd, dst.wb * * * 0 rsv, iov
76 CVTDF src.rd, dst.wf * * 0 0 rsv, fov
6A CVTDL src.rd, dst.wl * * * 0 rsv, iov
69 CVTDW src.rd, dst.ww * * * 0 rsv, iov
48 CVTFB src.rf, dst.wb * * * 0 rsv, iov
56 CVTFD src.rf, dst.wd * * 0 0 rsv
99FD CVTFG src.rf, dst.wg * * 0 0 rsv
4A CVTFL src.rf, dst.wl * * * 0 rsv, iov
49 CVTFW src.rf, dst.ww * * * 0 rsv, iov
48FD CVTGB src.rg, dst.wb * * * 0 rsv, iov
33FD CVTGF src.rg, dst.wf * * 0 0 rsv,fov,fuv
4AFD CVTGL src.rg, dst.wl * * * 0 rsv, iov
49FD CVTGW src.rg, dst.ww * * * 0 rsv, iov
6E CVTLD src.rl, dst.wd * * 0 0
4E CVTLF src.rl, dst.wf * * 0 0
4EFD CVTLG src.rl, dst.wg * * 0 0
6D CVTWD src.rw, dst.wd * * 0 0
4D CVTWF src.rw, dst.wf * * 0 0
4DFD CVTWG src.rw, dst.wg * * 0 0

6B CVTRDL src.rd, dst.wl * * * 0 rsv, iov
4B CVTRFL src.rf, dst.wl * * * 0 rsv, iov
4BFD CVTRGL src.rg, dst.wl * * * 0 rsv, iov

66 DIVD2 divr.rd, quo.md * * 0 0 rsv,fov,fuv,
fdvz

46 DIVF2 divr.rf, quo.mf * * 0 0 rsv,fov,fuv,
fdvz

46FD DIVG2 divr.rg, quo.mg * * 0 0 rsv,fov,fuv,
fdvz

67 DIVD3 divr.rd, divd.rd, quo.wd * * 0 0 rsv,fov,fuv,
fdvz

47 DIVF3 divr.rf, divd.rf, quo.wf * * 0 0 rsv,fov,fuv,
fdvz

47FD DIVG3 divr.rg, divd.rg, quo.wg * * 0 0 rsv,fov,fuv,
fdvz

72 MNEGD src.rd, dst.wd * * 0 0 rsv
52 MNEGF src.rf, dst.wf * * 0 0 rsv
52FD MNEGG src.rg, dst.wg * * 0 0 rsv

70 MOVD src.rd, dst.wd * * 0 - rsv
50 MOVF src.rf, dst.wf * * 0 - rsv
50FD MOVG src.rg, dst.wg * * 0 - rsv

64 MULD2 mulr.rd, prod.md * * 0 0 rsv,fov,fuv
44 MULF2 mulr.rf, prod.mf * * 0 0 rsv,fov,fuv
44FD MULG2 mulr.rg, prod.mg * * 0 0 rsv,fov,fuv

65 MULD3 mulr.rd, muld.rd, prod.wd * * 0 0 rsv,fov,fuv
45 MULF3 mulr.rf, muld.rf, prod.wf * * 0 0 rsv,fov,fuv
45FD MULG3 mulr.rg, muld.rg, prod.wg * * 0 0 rsv,fov,fuv

62 SUBD2 sub.rd, dif.md * * 0 0 rsv,fov,fuv
42 SUBF2 sub.rf, dif.mf * * 0 0 rsv,fov,fuv
42FD SUBG2 sub.rg, dif.mg * * 0 0 rsv,fov,fuv

63 SUBD3 sub.rd, min.rd, dif.wd * * 0 0 rsv,fov,fuv
43 SUBF3 sub.rf, min.rf, dif.wf * * 0 0 rsv,fov,fuv
43FD SUBG3 sub.rg, min.rg, dif.wg * * 0 0 rsv,fov,fuv

VAX Instruction Set H–7

VAX Instruction Set

73 TSTD src.rd * * 0 0 rsv
53 TSTF src.rf * * 0 0 rsv
53FD TSTG src.rg * * 0 0 rsv

Microcode-Assisted Emulated Instructions

The NVAX CPU provides microcode assistance for the macrocode
emulation of these instructions. The CPU processes the operand specifiers,
creates a standard argument list, and invokes an emulation routine to
perform emulation.

Opcode Instruction N Z V C Exceptions
------ ----------- ------- ----------

20 ADDP4 addlen.rw, addaddr.ab, sumlen.rw, sumaddr.ab * * * 0 rsv, dov

21 ADDP6 add1len.rw, add1addr.ab, add2len.rw, add2addr.ab, * * * 0 rsv, dov
sumlen.rw, sumaddr.ab

F8 ASHP cnt.rb, srclen.rw, srcaddr.ab, round.rb, * * * 0 rsv, dov
dstlen.rw, dstaddr.ab

35 CMPP3 len.rw, src1addr.ab, src2addr.ab * * 0 0

37 CMPP4 src1len.rw, src1addr.ab, src2len.rw, src2addr.ab * * 0 0

0B CRC tbl.ab, inicrc.rl, strlen.rw, stream.ab * * 0 0

F9 CVTLP src.rl, dstlen.rw, dstaddr.ab * * * 0 rsv, dov
36 CVTPL srclen.rw, srcaddr.ab, dst.wl * * * 0 rsv, iov

08 CVTPS srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab * * * 0 rsv, dov
09 CVTSP srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab * * * 0 rsv, dov

24 CVTPT srclen.rw, srcaddr.ab, tbladdr.ab, * * * 0 rsv, dov
dstlen.rw, dstaddr.ab

26 CVTTP srclen.rw, srcaddr.ab, tbladdr.ab, * * * 0 rsv, dov
dstlen.rw, dstaddr.ab

27 DIVP divrlen.rw, divraddr.ab, divdlen.rw, divdaddr.ab, * * * 0 rsv,dov,ddvz
quolen.rw, quoaddr.ab

38 EDITPC srclen.rw, srcaddr.ab, pattern.ab, dstaddr.ab * * * * rsv, dov

39 MATCHC objlen.rw, objaddr.ab, srclen.rw, srcaddr.ab 0 * 0 0

34 MOVP len.rw, srcaddr.ab, dstaddr.ab * * 0 0

2E MOVTC srclen.rw, srcaddr.ab, fill.rb, tbladdr.ab, * * 0 *
dstlen.rw, dstaddr.ab

2F MOVTUC srclen.rw, srcaddr.ab, esc.rb, tbladdr.ab, * * * *
dstlen.rw, dstaddr.ab

25 MULP mulrlen.rw, mulraddr.ab, muldlen.rw, muldaddr.ab, * * * 0 rsv, dov
prodlen.rw, prodaddr.ab

22 SUBP4 sublen.rw, subaddr.ab, diflen.rw, difaddr.ab * * * 0 rsv, dov

23 SUBP6 sublen.rw, subaddr.ab, minlen.rw, minaddr.ab, * * * 0 rsv, dov
diflen.rw, difaddr.ab

H–8 VAX Instruction Set

I
Address Assignments

This appendix provides a map of the VAX memory space.

I.1 KA680 General Local Address Space Map

VAX Memory Space

Address Range Contents
----------------- ------------

0000 0000 - 1FFF FFFF Local Memory Space (512 MB)

VAX I/O Space

Address Range Contents
----------------- ------------

2000 0000 - 2000 1FFF Local Q22-bus I/O Space (8 KB)
2000 2000 - 2003 FFFF Reserved Local I/O Space (248 KB)

2008 0000 - 201F FFFF Local Register I/O Space (1.5 MB)

2020 0000 - 23FF FFFF Reserved Local I/O Space (62.5 MB)
2400 0000 - 27FF FFFF Reserved Local I/O Space (64 MB)
2008 0000 - 2BFF FFFF Reserved Local I/O Space (64 MB)
2C08 0000 - 2FFF FFFF Reserved Local I/O Space (64 MB)

3000 0000 - 303F FFFF Local Q22-bus Memory Space (4 MB)
3040 0000 - 33FF FFFF Reserved Local I/O Space (60 MB)
3400 0000 - 37FF FFFF Reserved Local I/O Space (64 MB)

3800 0000 - 3BFF FFFF Reserved Local I/O Space (64 MB)
3C00 0000 - 3FFF FFFF Reserved Local I/O Space (64 MB)

E004 0000 - E007 FFFF Local ROM Space

Address Assignments I–1

Address Assignments
I.2 KA680 Detailed Local Address Space Map

I.2 KA680 Detailed Local Address Space Map

Local Memory Space (up to 512 MB) 0000 0000 - 1FFF FFFF
Q22-bus Map - Top 32 KB of Main Memory

VAX I/O Space

Local Q22-bus I/O Space 2000 0000 - 2000 1FFF
Reserved Q22-bus I/O Space 2000 0000 - 2000 0007
Q22-bus Floating Address Space 2000 0008 - 2000 07FF
User Reserved Q22-bus I/O Space 2000 0800 - 2000 0FFF
Reserved Q22-bus I/O Space 2000 1000 - 2000 1F3F
Interprocessor Comm Reg 2000 1F40
Reserved Q22-bus I/O Space 2000 1F44 - 2000 1FFF

Local Register I/O Space 2000 2000 - 2003 FFFF

Reserved Local Register I/O Space 2000 4000 - 2000 402F
SHAC1 SSWCR 2000 4030
Reserved Local Register I/O Space 2000 4034 - 2000 4043
SHAC1 SSHMA 2000 4044
SHAC1 PQBBR 2000 4048
SHAC1 PSR 2000 404C
SHAC1 PESR 2000 4050
SHAC1 PFAR 2000 4054
SHAC1 PPR 2000 4058
SHAC1 PMCSR 2000 405C
Reserved Local Register I/O Space 2000 4060 - 2000 407F
SHAC1 PCQ0CR 2000 4080
SHAC1 PCQ1CR 2000 4084
SHAC1 PCQ2CR 2000 4088
SHAC1 PCQ3CR 2000 408C
SHAC1 PDFQCR 2000 4090
SHAC1 PMFQCR 2000 4094
SHAC1 PSRCR 2000 4098
SHAC1 PECR 2000 409C
SHAC1 PDCR 2000 40A0
SHAC1 PICR 2000 40A4
SHAC1 PMTCR 2000 40A8
SHAC1 PMTECR 2000 40AC
Reserved Local Register I/O Space 2000 40B0 - 2000 422F

I–2 Address Assignments

Address Assignments
I.2 KA680 Detailed Local Address Space Map

KA680 DETAILED LOCAL ADDRESS SPACE MAP (Cont.)

SHAC2 SSWCR 2000 4230
Reserved Local Register I/O Space 2000 4234 - 2000 4243
SHAC2 SSHMA 2000 4244
SHAC2 PQBBR 2000 4248
SHAC2 PSR 2000 424C
SHAC2 PESR 2000 4250
SHAC2 PFAR 2000 4254
SHAC2 PPR 2000 4258
SHAC2 PMCSR 2000 425C
Reserved Local Register I/O Space 2000 4260 - 2000 427F
SHAC2 PCQ0CR 2000 4280
SHAC2 PCQ1CR 2000 4284
SHAC2 PCQ2CR 2000 4288
SHAC2 PCQ3CR 2000 428C
SHAC2 PDFQCR 2000 4290
SHAC2 PMFQCR 2000 4294
SHAC2 PSRCR 2000 4298
SHAC2 PECR 2000 429C
SHAC2 PDCR 2000 42A0
SHAC2 PICR 2000 42A4
SHAC2 PMTCR 2000 42A8
SHAC2 PMTECR 2000 42AC
Reserved Local Register I/O Space 2000 42B0 - 2000 7FFF

NICSR0 - Vector Add, IPL, Sync/Async 2000 8000
NICSR1 - Polling Demand Register 2000 8004
NICSR2 - Reserved 2000 8008
NICSR3 - Receiver List Address 2000 800C
NICSR4 - Transmitter List Address 2000 8010
NICSR5 - Status Register 2000 8014
NICSR6 - Command and Mode Register 2000 8018
NICSR7 - System Base Address 2000 801C
NICSR8 - Reserved 2000 8020*
NICSR9 - Watchdog Timers 2000 8024*
NICSR10- Reserved 2000 8028*
NICSR11- Rev Num & Missed Frame Count 2000 802C*
NICSR12- Reserved 2000 8030*
NICSR13- Breakpoint Address 2000 8034*
NICSR14- Reserved 2000 8038*
NICSR15- Diagnostic Mode & Status 2000 803C
Reserved Local Register I/O Space 2000 8040 - 2003 FFFF

Q-22 Bus Local Register I/O Space 2008 0000 - 201F FFFF
DMA System Configuration Register 2008 0000
DMA System Error Register 2008 0004
DMA Master Error Address Register 2008 0008
DMA Slave Error Address Register 2008 000C
Q22-bus Map Base Register 2008 0010
Reserved Local Register I/O Space 2008 0014 - 2008 00FF

Error Status Register Reg 32 2008 0180
Memory Error Address Reg 33 2008 0184
I/O Error Address Reg 34 2008 0188
DMA Memory Error Address Reg 35 2008 018C

DMA Mode Control and
Diagnostic Status Register Reg 36 2008 0190

Reserved Local Register I/O Space 2008 0194 - 2008 3FFF

Boot and Diagnostic Reg (32 Copies) 2008 4000 - 2008 407C

Reserved Local Register I/O Space 2008 4080 - 2008 7FFF

Address Assignments I–3

Address Assignments
I.2 KA680 Detailed Local Address Space Map

NCA CSRs

Error Status Register 2102 0000
Mode Control and Diagnostic Reg 2102 0004
CP1 Slave Error Address Register 2102 0008
CP2 Slave Error Address Register 2102 000C
CP1 IO Error Address Register 2102 0010
CP2 IO Error Address Register 2102 0014
NDAL Error Address Register 2102 0018

Local UVROM Space E004 0000 - E007 FFFF
VAX System Type Register (In ROM) E004 0004
Local UVROM - (Halt-Protected) E004 0000 - E007 FFFF

I–4 Address Assignments

Address Assignments
I.2 KA680 Detailed Local Address Space Map

**
The following addresses allow those KA680 internal processor
registers that are implemented in the SSC chip (external, internal
processor registers) to be accessed via the local I/O page. These
addresses are documented for diagnostic purposes only and should
not be used by nondiagnostic programs.

Time-Of-Year Register 2014 006C

Console Storage Receiver Status 2014 0070*
Console Storage Receiver Data 2014 0074*
Console Storage Transmitter Status 2014 0078*
Console Storage Transmitter Data 2014 007C*
Console Receiver Control/Status 2014 0080
Console Receiver Data Buffer 2014 0084
Console Transmitter Control/Status 2014 0088
Console Transmitter Data Buffer 2014 008C
Reserved Local Register I/O Space 2014 0090 - 2014 00DB

I/O Bus Reset Register 2014 00DC
Reserved Local Register I/O Space 2014 00E0

Reserved Local Register I/O Space 2014 00FC - 2014 00FF

* These registers are not fully implemented, accesses yield
unpredictable results.

**

Local Register I/O Space (Cont.)
Timer 0 Control Register 2014 0100
Timer 0 Interval Register 2014 0104
Timer 0 Next Interval Register 2014 0108
Timer 0 Interrupt Vector 2014 010C
Timer 1 Control Register 2014 0110
Timer 1 Interval Register 2014 0114
Timer 1 Next Interval Register 2014 0118
Timer 1 Interrupt Vector 2014 011C
Reserved Local Register I/O Space 2014 0120 - 2014 012F

BDR Address Decode Match Register 2014 0140
BDR Address Decode Mask Register 2014 0144
Reserved Local Register I/O Space 2014 0138 - 2014 03FF

Battery Backed-Up RAM 2014 0400 - 2014 07FF
Reserved Local Register I/O Space 2014 0800 - 201F FFFF

Reserved Local I/O Space 2020 0000 - 2FFF FFFF

Local Q22-bus Memory Space 3000 0000 - 303F FFFF

Reserved Local Register I/O Space 3040 0000 - 3FFF FFFF

I.3 External, Internal Processor Registers
Several of the internal processor registers (IPRs) on the KA680 are implemented in the NCA
or SSC chip rather than the CPU chip. These registers are referred to as external, internal

Address Assignments I–5

Address Assignments
I.3 External, Internal Processor Registers

processor registers and are listed below.
IPR # Register Name Abbrev.
===== ============= ======
27 Time-of-Year Register TOY

28 Console Storage Receiver Status CSRS*
29 Console Storage Receiver Data CSRD*
30 Console Storage Transmitter Status CSTS*
31 Console Storage Transmitter Data CSDB*

32 Console Receiver Control/Status RXCS
33 Console Receiver Data Buffer RXDB
34 Console Transmitter Control/Status TXCS
35 Console Transmitter Data Buffer TXDB

55 I/O System Reset Register IORESET

* These registers are not fully implemented, accesses yield
unpredictable results.

I.4 Global Q22–bus Address Space Map

Q22-bus Memory Space

Q22-bus Memory Space (Octal) 0000 0000 - 1777 7777

Q22-bus I/O Space (BBS7 Asserted)

Q22-bus I/O Space (Octal) 1776 0000 - 1777 7777
Reserved Q22-bus I/O Space 1776 0000 - 1776 0007
Q22-bus Floating Address Space 1776 0010 - 1776 3777
User Reserved Q22-bus I/O Space 1776 4000 - 1776 7777
Reserved Q22-bus I/O Space 1777 0000 - 1777 7477
Interprocessor Comm Reg 1777 7500
Reserved Q22-bus I/O Space 1777 7502 - 1777 7777

I–6 Address Assignments

J
Configurable Machine State

The KA680 CPU module has many control registers that need to be configured
for proper operation of the module. The following list shows the normal state
of all configurable bits in the CPU module as they are left after the successful
completion of power-up ROM diagnostics.
NCA:

NCA_CSR1: Mode Control and Diagnostic Status Register (2102 0004)

15:14: CP2 MT Timer Prescaler
11 = 144000 cycles* - needed for CQBIC 10 ms No Grant

timeout

13:12: CP1 MT Timer Prescaler
00 = 144 cycles - minimum for passive releases, no

cycle should take longer than this

11:10: NDAL Timeout Prescaler
00 = 3200 cycles* - this is longer than both NCA and

NMC transactions timeouts, preserves timeout
order

9: QBUS_TRANS enable (formerly CQBIC_PRESENT)
0 = QBUS_TRANS signal disabled* -

8: IO2 ID enable
1 = enabled

7: Force wrong CP2 bus parity
0 = off* - diagnostic use only

6: Force wrong CP1 bus parity
0 = off* - diagnostic use only

5: Force wrong NDAL master parity
0 = off* - diagnostic use only

4: Force wrong NDAL slave parity
0 = off* - diagnostic use only

3: Enable prefetch
1 = enable CP bus prefetch on DMA reads

2: Force write buffer hit
0 = off* - diagnostic use only

1: Force CP2 bus owner
0 = disabled - diagnostic use only

0: Force CP1 bus owner
0 = disabled - diagnostic use only

ICCS: Interval Clock Control and Status Register (2100 0060)

NOTE: VMS sets ICCS, NICR to proper values

6: Interrupt enable
0 = disabled*

Configurable Machine State J–1

Configurable Machine State

5: Single step
0 = off*

4: Transfer
0 = disabled*

0: Run - increment every 1 µs
0 = do not increment*

NICR: Next Interval Count Register (2100 0064)
31:0 Initial count value for ICR (FFFFD8F0* (10 ms))

NMC:

MEMCON0-7: Memory Configuration Registers (2101 8000 through 2101 801C)

NOTE: Diagnostics set these registers based on available memory

31: Base Address Valid
0 = not valid*
1 = valid

28:24: Base Address (0 on reset)
1 MB RAM - all address bits used
4 MB RAM - only <28:26> used

2:1 RAM size
00 = 1 MB RAM*
01 = 1 MB RAM
10 = 4 MB RAM
11 = nonexistent bank

0: Mode
1 = 64-bit mode

MMCDSR : Mode Control and Diagnostic Status Register (2101 8048)
31: Fast Diagnostic Mode (FDM)

0 = disabled* - diagnostic use only

30: FDM Second pass
0 = disabled* - diagnostic use only

29: Diagnostic Checkbit mode
0 = disabled* - diagnostic use only

28: QBus on I01
0 = QBus on IO2*

27: Enable soft error log (NDAL & memory related)
0 = disabled* - VMS enables this

26: Flush BCache
0 = don’t flush*

24:17: Memory diagnostic check bits
0 - meaningful only in diagnostic check mode* (may or

may not be read as 0)

8:7: NDAL Timeout Scaler
00 = 2600 cycles* - maximum, to preserve timeout order

6: Disable memory error
0 = memory errors deteted and corrected*

5: Refresh interval timer select
0 = 328 cycles*

4:2: Force wrong parity on NDAL transactions
0 = off* - diagnostic use only

1: Disable memory refresh
0 = memory refreshed*

J–2 Configurable Machine State

Configurable Machine State

0: Force refresh
0 = normal refresh*

MOAMR : O-bit Address and Mode Register (2101 804C)
16: Ignore O-bit mode

0 = O-bits checked*

15: Disable O-bit error
0 = O-bit errors detected*

14:6: O-bit segment address (0*) - meaningful only during
O-bit data register access

5:3: O-bit mask (0*) - meaningful only during O-bit data
register access

2:0: O-bit operation mode
000 = reconstruction mode* - meaningful only during

O-bit data register access

MODR : O-bit Data Registers (2101 0000 through 2101 7FFF)
23:12: O-bit field 1 (0*) - used only during Fast Memory test

11:0: O-bit field 0 (0*) - used only during Fast O-bit test
mode

NVAX:

CPUID: CPU ID Register (IPR E)

7:0: CPU identifcation = 0 (for single processor config.)

SID: System Identification Register (IPR 3E)
NOTE: This register may only be written by microcode

31:24: CPU type - 13hex (NVAX code)

13:8: Patch revision

7:0: Microcode revision

ICSR: IBox Control and Status Register (IPR D3)
0: VIC enable

1 = enabled

ECR: EBox Control Register (IPR 7D)
13: FBox test enable

0 = disabled* - diagnostic use only

7: Interval time mode
1 = full CPU implemented interval timer

5: S3 stall timeout
0 = counts cycles w/ timeout_enable asserted* (~3 sec)

3: FBox stage 4 bypass
1 = enabled - result from stage 3 passed directly to

FBox output interface (improves FBox latency)

2: S3 external time base timeout
0 = disabled* - use internal time base

1: FBox enable
1 = enabled

0: Vector present
0 = no* - no vector option available at this time

MMAPEN: Memory Map Enable Register (IPR E6)
0: Memory map enable

0 = disabled* - VMS enables this

Configurable Machine State J–3

Configurable Machine State

PAMODE: Physical Address Mode Register (IPR E7)
0: Physical address mode

0 = 30-bit physical address space*

PCCTL: PCache Control Register (IPR F8)
8: PCache Electrical disable

0 = PCache enabled*

7:5 MBox performance monitor mode
0 - diagnostic use only*

4: PCache error enable
1 = enables PCache error detection

3: Bank select during force hit mode
0 = left bank selected if force hit mode enabled*

- diagnostic use only

2: Force hit
0 = disabled* - diagnostic use only

1: I_enable
1 = enable PCache for IREAD, INVAL, I_CF commands

0: D_enable
1 = enable PCache for INVAL, D-stream read/write/fill

commands

CCTL: CBox Control Register (IPR A0)
30: Software ETM

0 = disabled* - diagnostic use only

16: Force NDAL parity error
0 = off* - diagnostic use only

15:11: Performance monitoring BCache access and hit type
0 - configures BCache for performance monitoring* -

meaningful only during performance monitoring

10: Disable CBox write packer
0 = write packer enabled* - improves write latency

9: Read timeout counter test
0 = test disabled* - use external time base for read

timeout counter

8: Software ECC
0 = use correct ECC*

7: Disable BCache errors
0 = BCache errors detected*

6: Force Hit
0 = disabled* - diagnostic use only

5:4: BCache size
00 = 128 KB* (KA680)

3:2: Data store speed
01 = 3 cycle read, 4 cycle write

1: Tag store speed
1 = 4 cycle read, 4 cycle write

0: Enable BCache
1 = enabled

CQBIC:

SCR: System Configuration Register (2008 0000)

14: Halt enable
1 = BHALT to CQBIC HALTIN pin to cause halts

J–4 Configurable Machine State

Configurable Machine State

12: Page prefetch disable
1 = map prefetch disabled - historical latency reasons

7: Restart enable
0 = QBus restart causes ARB power-up reset*

3:1: ICR offset address select bits
0 = no effect (AUX mode not supported)*

ICR: Interprocessor Communication Register (2000 1F40)
8: AUX Halt

0 = no halt (AUX mode not supported)

6: ICR interrupt enable
0 = interprocessor interrupts disabled - only

uniprocessor config. allowed

5: Local memory external access enable
0 = external access disabled* - VMS will configure map

QBMBR: Q-Bus Map Base Address Register (2008 0010)
28:15: address where 8K QBus mapping register are located

(undefined at reset) - VMS will configure map

SHAC:

NOTE: All SHAC registers are subsequently configured by VMS driver

PQBBR: Port Queue Block Base Register (2000 4048)
20:0: upper bits of physical address of base of Port Queue

block. Contains HW version, FW version, shared host
memory version and CI port maintenance ID at power-up.

PPR: Port Parameter Register (2000 4058)
31:29: Cluster size. For SHAC value = 0.

28:16: Internal buffer length = 0* (For SHAC value = 1010 hex)

7:0: Port number. Same as SHAC’s DSSI ID.

PMCSR: Port Maintenance Control and Status Register (2000 405C)
2: Interrupt enable

0 = disabled*

1: Maintenance timer disable
0 = enabled*

SGEC:

NOTE: All SGEC registers are susequently configured by VMS driver

NICSR0: Vector Address, IPL, Synch/Asynch Register (2000 8000)
31:30: Interrupt priority

00 = 14*

29: Synch/Asynch bus master operating mode
0 = asynchronous*

15:0: Interrupt vector = 0003hex*

NICSR6: Command and Mode Register (2000 8018)
30: Interrupt enable

0 = disabled*

28:25: Burst limit mode
maximum number of longwords transferred in a single DMA
burst. 1*,2,4,8 when NICSR <19>is clear;

1*,4 when set.

20: Boot message enable mode
0 = disabled*

Configurable Machine State J–5

Configurable Machine State

19: Single cycle enable mode
0 = disabled*

11: Start/Stop transmission command
0 = SGEC transmission process in stopped state*

10: Start/Stop reception command
0 = SGEC reception process in stopped state*

9:8: Operating mode
00 = normal mode*

7: Disable data chaining mode
0 = frames too long for current receive buffer will be

transferred to the next buffer(s) in receive list*

6: Force collision mode (internal loopback mode only)
0 = no collision*

3: Pass bad frames mode
0 = bad frames discarded*

2:1: Address filtering mode
00 = normal mode*

NICSR7: System Base Register (2000 801C)
29:0: System base address - physical starting address of the

VAX system page table (unpredictable after reset)

NICSR9: Watchdog Timers Register (2000 8024)
31:16: Receive watchdog timeout

0 = never timeout*
default = 1250 = 2 ms
range = 72 µs (45) to 100 ms

15:0: Transmit watchdog timeout
0 = never timeout*
default = 1250 = 2 ms
range = 72 µs (45) to 100 ms

SSC:

SSCBAR: SSC Base Address Register (2014 0000)

29:0 20140000 = Base address*

SSCCR: SSC Configuration Register (2014 0010)
27: Interrupt vector disable

0 = interrupt vector enabled*

25:24: IPL Level
00 = 14*

23: ROM access time
0 = 350 ns*

22:20: ROM size
101 = 256 KB

18:16: Halt protected space
101 = 20040000 - 2007FFFF (historical)

15: Control P enable
0 = only 20 spaces recognized as break* (historical)

14:12: Terminal UART baud rate
101 = 9600 (historical)

6: Programmable address strobe 1 ready enable (for BDR)
1 = ready asserted after address strobe

5:4: Programmable address strobe 1 enable (for BDR)
11 = read enabled, write enabled

J–6 Configurable Machine State

Configurable Machine State

2: Programmable address strobe 0 ready enable
0 = no ready after address strobe* - not used by Omega

1:0: Programmable address strobe 0 enable
00 = read disabled, write disabled* - not used by Omega

RXCS: Console Receiver Control and Status Register (2014 0080)
6: Interrupt enable

0 = disabled* - polled in console mode

TXCS: Console Transmitter Control and Status Register (2014 0088)
6: Interrupt enable

0 = disabled*

2: Loopback enable
0 = disabled* - diagnostic use only

0: Break transmit
0 = terminate SPACE condition*

SSCBT: SSC Bus Time Out Register (2014 0020)
23:0: Bus timeout interval = 4000hex (16.384 ms)

range = 1 to FFFFFF (1 µs to 16.77 s)

ADS0MAT: Programmable Address Strobe 0 Match Register (2014 0130)
29:2: Match address

0 = disabled* - not used

ADS0MAS: Programmable Address Strobe 0 Mask Register (2014 0134)
29:2: Mask address bits - not used

ADS1MAT: Programmable Address Strobe 1 Match Register (2014 0140)
29:2: Match address = 20084000 (for BDR)

ADS1MAS: Programmable Address Strobe 1 Mask Register (2014 0144)
29:2: Mask address bits = 7C (for BDR)

T1CR: Programmable Timer 0 Control Register (2014 0100)
6: Interrupt enable

0 = disabled*

2: STP
0 = run after overflow*

0: RUN
0 = counter not running* (historical)

T1CR: Programmable Timer 1 Control Register (2014 0110)
6: Interrupt enable

0 = disabled*

2: STP
0 = run after overflow*

0: RUN
1 = counter incrementing every microsecond (historical)

TNIR: Programmable Timer Next Interval Registers (2014 0108,
2014 0118)

31:0: Timer next interval count (use 2’s complement)
range = 0* to 1.2 hours

T0IV: Programmable Timer 0 Interrupt Vector Register (2014 010C)
9:2: Timer interrupt vector = 78hex

T1IV: Programmable Timer 1 Interrupt Vector Registers (2014 011C)
9:2: Timer interrupt vector = 7Chex

TOY: Time of Year Register (2014 006C)
31:0: Number of 10 ms intervals since written

Configurable Machine State J–7

Configurable Machine State

DLEDR: Diagnostic LED Register (2014 0030)
3:0: Display bits

0 = LEDs on* (historical)

J–8 Configurable Machine State

Index

A
Address

Q22–bus <21:9>, 9–7
Addresses

descriptor list, 10–9
filtering mode, 10–20
mulitcast, 10–2
of NICSRx, 10–4
physical, 10–2
system base, 10–22

Address Translation
CDAL to Q22–bus, 9–7
Q22–bus, 9–2

Algorithm
to find a valid RPB, 12–23
to restart operating system, 12–22

Areas not covered, 12–85

B
Babbling SGEC Transmissions, 10–23
Backplane Connections, G–1
Backplane Connectors Used, 1–3
Backplane wiring, F–35
Bits

cleared on power-up
DMA QME, 9–9

cleared on powerup
ACTION ON DCOK NEGATION, 9–12
AUX HLT, 9–9
BHALT EN, 9–11
CAMValid, 9–7
DBI IE, 9–9
LM EAE, 9–9
LOST ERROR, 9–14
MAIN MEMORY ERROR, 9–14
NO GRANT TIMEOUT, 9–14
POK, 9–11
Q22-BUS DCOK NEGATION DETECTED,

9–14
SCR, 9–11

NICSR access modes, 10–4
RPB$V_DIAG, 12–20
RPB$V_SOLICT, 12–20
undefined on powerup

A28-A9, 9–5

Bits
undefined on powerup (cont’d)

QBMBR register, 9–10
QBUS ADR, 9–7
V, 9–5

BLINK
definition of, 11–4

Block mode DMA, F–20
BOOT, 12–12, 12–15, 12–35
BOOT AND DIAGNOSTIC FACILITY, 8–1

Battery Backed-up RAM, 8–6
Boot and Diagnostic Register, 8–1
Diagnostic LED Register, 8–4
EPROM Memory, 8–5
Initialization, 8–6

Boot Block Format, 12–19
Boot Devices, 12–14

names, 12–14
supported, 12–14

Boot Flags, 12–15
RPB$V_BBLOCK, 12–19

Boot Message
from the SGEC, 10–13

Boot Message Enable Mode, 10–17
Bootstrap

automatic
sample output, 12–17

conditions, 12–12, 12–15
definition of, 12–12
device names, 12–35
disk and tape, 12–19
failure, 12–12
initialization, 12–12
memory layout, 12–13
memory layout after successful bootstrap,

12–17
network, 12–20
preparing for, 12–12
primary, 12–16
PROM, 12–20
secondary, 12–16

control passed to, 12–17
supported, 12–87

BREAK
ignored, 12–26

Broadcast Address, 10–3

Index–1

Buffer Format, 10–28
Buffers

perfect filtering setup frame, 10–40
Burst Limit Mode

SGEC, 10–17
Burst Transfer Rate, 11–1
Bus cycle protocol, F–6
Bus drivers, F–33
Bus Grant

unreturned, 9–14
Bus interconnecting wiring, F–35
Bus length (DSSI), 2–7
Bus receivers, F–34
Bus termination, F–34

C
Cabling

DSSI, 2–7
ISE, 2–7

Cache
backup/secondary/second level, 1–5
on the CQBIC, 9–6
primary/first-level, 1–5
Q22–bus interface, 9–5
virtual instruction, 1–5

Cache Memory
Overview, 4–1

Central Processing Unit, 1–4
CENTRAL PROCESSING UNIT (CPU), 3–1

CPU References, 3–46
Data Types, 3–23
General Purpose Registers

see also REGISTERS
Instruction Set, 3–23
Internal Processor Registers

see also REGISTERS
Interrupts

Priority Level, 3–30
Intruction_Stream Read,, 3–46
Memory Management Control Register, 3–28
Processor State, 3–1
Processor Status Longword, 3–2
Process Structure, 3–23
Software Interrupt Summary Register

Definition of, 3–32
System Control Block, 3–41

Format of, 3–42
System Identification, 3–44
Translation Buffer, 3–27
Write References, 3–48

CENTRAL PROCESSING UNIT(CPU)
Data-Stream Read, 3–48
Disown Write, 3–48
Ownership Read, 3–47
Program Counter

Definition of, 3–2

Central Processor, 3–1
Chip Revision Number

SGEC, 10–24
CI-DSSI Overview, 11–3

arbitration and selection, 11–4
command-out phase, 11–4
move data, 11–3
RSPQ, 11–4

Clock
host maximum time window, 10–16

Collision
force mode, 10–20

Command
qualifier

definition of, 12–26
Command Address Specifiers, 12–29
Commands

BOOT, 12–35
! - Comment, 12–78
CONFIGURE, 12–37
CONTINUE, 12–38
DEPOSIT, 12–39
EXAMINE, 12–41
FIND, 12–44
HALT, 12–45
HELP, 12–46
INITIALIZE, 12–49
MOVE, 12–50
NEXT, 12–52
REPEAT, 12–54
SEARCH, 12–55
SET, 12–58
SHOW, 12–62
START, 12–67
TEST, 12–68
UNJAM, 12–72
X Binary Load/Unload, 12–73
XDELTA, 12–75

!- Comment, 12–78
Configuration, 2–1 to 2–7

DSSI, 2–3
CONFIGURE, 12–37
CONFIGURE command, 2–3
Console

command
keywords, 12–27
qualifiers, 12–28

commands, 12–34, 12–79
syntax, 12–26
VAX not supported, 12–27

numeric expression radix specifiers, 12–28
qualifiers, 12–81
services provided, 12–1
symbolic references, 12–29

CONSOLE
Serial Line, 7–1

Console Registers, 7–1

Index–2

Console Connector, G–7
Console Control Characters, 12–23
Console Error Messages

invalid characters, 12–26
Console I/O mode, 12–87
Console Module, 1–8
Console Program Mode, 12–87
Console Symbolic Addressing, 12–29
CONTINUE, 12–38

in restoring context, 12–7
Control functions, F–32
CQBIC, 1–7

cache, 9–6
Cycles

asynchronous DMA read, 9–3
demand Q22–bus read, 9–14

D
DEAR, see DMA Error Address Register
DMA Error Address Register, see Registers
DMA System Error Register, see Registers
Data Buffers, 10–3
Data Chaining

disable mode, 10–20
datagram

definition of, 11–3
Data transfer bus cycles, F–5
DATBI bus cycle, F–22
DATBO bus cycle, F–24
DC243, 1–6
DC244, 1–8
DC246, 1–4
DC527, 1–7
DC541, 1–7
DC542, 1–7
DEPOSIT, 12–39
Descriptor Chaining

defintion of, 10–28
Descriptor List

address registers, 10–9
definition of, 10–28
format, 10–28
setup frame, 10–39

Descriptor Lists, 10–3
Device addressing, F–7
Device Dependent Bootstrap Procedures, 12–18
Device priority, F–26
Diagnostic Executive

as used for error reporting, 12–83
definition of, 12–83

Diagnostic Interdependancies, 12–85
Diagnostics, 12–83
Digital’s Systems Communications Architecture,

11–2
Direct memory access, F–17

DMA guidelines, F–25
DMA protocol, F–17
DNA CSMA/CD, 10–52
DNA Maintenance Operations Protocol (MOP),

12–20
Doorbell Interrupt Requests, 9–9
DSSI

as related to SCA, 11–2
bus length, 2–7
bus termination, 2–7
cabling, 2–7
configuration, 2–3
drive order, 2–3
node ID, 2–3
node name, changing, 2–4
unit number, changing, 2–5

DSSI Bus Interface, 11–1

E
Empty Envelopes

definition of, 11–2
Environment, 12–86
EPROM

mapping, 12–86
Errors

main memory read, 9–8
memory, 9–14, 10–14
messages

console, 12–26
incorrect boot device name, 12–14

non-recoverable, 9–8
Q22–bus address space, 9–8
Q22–bus parity, 9–14
reported before console is established, 12–84
SGEC address filter RAM, 10–12
SGEC parity, 10–14
SGEC RAM, 10–12
SGEC ROM, 10–12
SGEC self-test loopback error, 10–12
SGEC transmit FIFO error, 10–12

ERR_L, 10–14
Ethernet

control access technique, 10–2
multicast address

definition of, 10–2
node priority, 10–2
Overview, 10–1
physical address

definition of, 10–2
types of network addresses, 10–2

Ethernet connector, 1–8
Ethernet Interface, 1–7
EXAMINE, 12–41
Examples

Imperfect Filtering Buffer, 10–43
perfect filtering buffer, 10–42

Index–3

Exception
definition of, 3–29

F
Files–11 lookup, 12–19
FIND, 12–44
Firmware

block diagram, 12–3
internationalization, 12–88
overview, 12–1
reasons for invocation, 12–1
services, 12–87
terminology, 12–1

Firmware ROMs, 1–6
Flags

POWER AUX, 9–11
POWER OK, 9–11
restart in progress, 12–22

FLINK
definition of, 11–4

Formats
Buffers, 10–28
Descriptor, 10–28

G
Good Memory, 12–18

H
H3602

Ethernet connect options, 10–1
H3604, 1–8
Halt, F–32

auxiliary, 9–9
definition of, 12–23
dispatch, B–1
dispatch code, 12–5
entry code, 12–4
exit code, 12–7
external, 12–6
information saved on a, 12–4
registers set to pre_determined value on a,

12–4
HALT, 12–45

on bootstrap failure, 12–17
Halt Actions

restoring context, 12–7
summary, 12–5

Halt Code_3, 9–12
Hard Error

caused by writing the QBEAR, 9–15
Hardware, 12–86
Hardware Reset, 9–12
HELP, 12–46
Hit

global, 9–3

Host Communication Area, 10–3
Host System Crash Note, 10–6

I
I/O buses, 1–6
Imperfect Filtering Buffer, 10–43
Imperfect Filtering Setup Frame Buffer, 10–42
INIT, 12–12
Initialization, F–32

following a processor halt, 12–22
prior to bootstrap, 12–12
SGEC, 10–11

INITIALIZE, 12–49
Installation, 2–1 to 2–7
Instructions

Return From Interrupt or Exception (REI),
12–7

Interprocessor Communication Facility, 9–8
Interrupt

BR7-4 disabled, 9–10
doorbell request, 9–9
priority, 10–7
Receive Watchdog Timer, 10–13
SGEC Transmit Watchdog Timer, 10–13
SGEC vector, 10–7

Interrupt protocol, F–27
Interrupts, 3–29, F–25

definition of, 3–29
SGEC, 10–47

Interrupts and Exceptions, 3–29
Interval Timer Interrupt Request, 9–10
Intrabackplane bus wiring, F–35
IPCR, see Interprocessor Communication Register,

9–8
IPL 14, 9–9
IPL_14, 10–7
IPL_15, 10–7
IPL_16, 10–7
IPL_17, 9–9, 10–7
IPL_17-14, 9–1
IPL_31, 12–13

K
KA680 Cache

Memory Hierarchy, 4–1
KA680 CPU Module

photograph, 1–2

L
Languages

list of, 12–86
Load definition, F–33
Load NUmber Field, 12–21
Local Memory Partitioning, 12–13

Index–4

Lost Error Address, 9–14

M
Main Memory

starting address, 9–5
Manchester-encoded Format, 10–1
Mapping Registers

enabling, 9–7
Mass Storage Interface, 1–7
Memory

Cacheable References, 4–2
external access to, 9–9
host communication area, 10–3
Primary Cache

Overview, 4–8
Q22–bus address translation, 9–2
Virtual Instruction Cache, 4–2

MEMORY, 5–1
Backup Cache

Data Block Allocation, 4–23
DMA Effects, 4–23
External Process Registers, 4–24
Overview, 4–19

Primary Cache, 4–8
Organization, 4–8

Memory Control, 1–8
Memory Control Subsystem, 1–7
Memory Management, 3–24
Memory Module, 1–8
message

definition of, 11–3
MICSR2, 10–8
Miss

local, 9–3
Missed Frame Count, 10–24
modes

pass bad frames, 10–20
Modes

address filtering, 10–20
auxiliary note, 9–9
auxiliary select, 9–12
boot message enable, 10–17
console I/O, 12–87
disable data chaining, 10–20
force collision, 10–20
program, 12–87
SGEC operating, 10–13
single cycle enable, 10–17

Mode Switch, 12–8
query, 12–9

Module
configuration, 2–2
order, in backplane, 2–1

Module contact finger identification, F–39
MOM$LOAD, 12–20
MOP functions, E–2

MOP program load sequence, 12–20
MOVE, 12–50
MS690, 1–8
Multicast Address Filter Mask, 10–3
Multicast-group Address, 10–3

N
NI Command and Mode Registers, see Registers
NISA, see Network Interface Station Address

ROM
Network Bootstrap

synchronizing the load sequence, 12–21
Network Interface, 10–1
Network Interface Station Address ROM, 10–3
Network listening, E–1
NEXT, 12–52

in restoring context, 12–7
NICSR

read, 10–5
write, 10–5

NICSRs, 10–3
Normal, 12–8
NVAX

memory subsytem, 4–1
NVRAM

CPMBX, A–1
partitioning, A–1

O
OCP

cabling, 2–7
120-Ohm Q22–bus, F–33
Operating Modes

for port driver commands, 10–16
Operating System (OS)

restarting a halted, 12–22
Operating System Restart

defintion of, 12–22
Operating Systems, 12–87
Operator console panel

See OCP
Overview

Ethernet, 10–1

P
Port Command Queue 0 Control Register, see

Registers
Port Command Queue 1 Control Register, see

Registers
Port Command Queue 2 Control Register, see

Registers
Port Command Queue 3 Control Register, see

Registers

Index–5

Port Datagram Free Queue Control Register, see
Registers

Port Disable Control Register ,see Registers
Port Enable Control Register ,see Registers
Port Error Status Register, see Registers
Port Failing Address Register, see Registers
Port Initialize Control Register ,see Registers
Port Maintenance Control and Status Register, see

Registers
Port Maintenance Timer Control Register ,see

Registers
Port Maintenance Timer Expiration Control

Register ,see Registers
Port Message Free Queue Control Register ,see

Registers
Port Parameter Register, see Registers
Port Status Register, see Registers
Port Status Release Control Register, see Registers
Page Frame Number Bitmap, 12–20
Parity

error address, 9–15
pass Bad Frames Mode, 10–20
Perfect Filtering Buffer

example, 10–42
Perfect Filtering Setup Frame Buffer, 10–40
PFN bitmap, 12–12
Physical NICSRs, 10–5
Pointers

Interrupt Stack(ISP), 12–7
Port Driver

definition of, 10–3
Power Loss, 12–9
Power status, F–32
Power supply loading, F–39
power-up

memory layout, D–1
Power-up

diagnostics, 12–83
mode switch, 12–8
OS restart not supported, 12–6

PR$_SAVPC, 12–4
PR$_SAVPSL, 12–4
PR$_TBIA, 12–7
PRA0, 12–20
Primary Bootstrap, 12–16
PROCESS

Definition of, 3–23
Processor Initialization

and the Q22–bus map, 9–10
Processor Number

as contained in the SCR, 9–11
Programing

SGEC, 10–3
PROGRAMMABLE TIMERS, 7–8
Public Call-in Routines, 12–86

Q
Q22–bus Error Address Register, see Registers
Q22–bus

address space error, 9–8
error handling, 9–16
interface, 9–1

cache, 9–5
interprocessor communications facility,

9–8
supported functions, 9–1

interrupt handling, 9–10
map, 9–2
map cache, 9–6
map configuration, 9–10
mapping, 9–3

see also Registers, Q22–bus Map Register
enable, 9–5
protecting note, 9–5

Q22–bus electrical characteristics, F–32
Q22–bus four-level interrupt configurations, F–31
Q22–bus Interface, 1–7
Q22–bus Map Cache

flushing, 9–10
Q22–bus Memory

and VMB, 12–17
Q22–bus signal assignments, F–2
Query, 12–8
Queued

definition of, 10–38

R
Read

NICSR, 10–5
Receive

buffer unavailable, 10–14
Receive Descriptors, 10–28 to 10–33
Receive Interrupt, 10–14
Receive Polling Demand, 10–8
Receive Watchdog Timer Interrupt, 10–13
Reception

start/stop, 10–18
References

DMA to main memory, 9–2
to Processor Registers and Memory, 12–33

Registers, 6–8
Boot Message

NICSR11, 10–25
NICSR12, 10–25
NICSR13, 10–25

CI port, 11–6
Diagnostic Breakpoint (NICSR14), 10–26
DMA Error Address, 9–15
DMA System Error, 9–12
error reporting, 9–12
for Q22–bus control, 9–1

Index–6

Registers (cont’d)
initializing the general-purpose, 12–12
Interprocessor Communication, 9–2, 9–8
IPR 55, 9–7
Monitor Command, 10–26
Monitor Command(NICSR15), 10–26
Network Interface, 10–3
NI Command and Mode (NICSR6), 10–16
NICSR5 status report, 10–15
Polling Demand (NICSR1), 10–7
Port Command Queue 0 Control, 11–14
Port Command Queue 1 Control, 11–14
Port Command Queue 2 Control, 11–14
Port Command Queue 3 Control, 11–14
port control, 11–13
Port Datagram Free Queue Control, 11–14
Port Disable Control, 11–15
Port Enable Control, 11–14
Port Error Status, 11–11
Port Failing Address, 11–12
Port Initialize Control, 11–15
Port Maintenance Control and Status, 11–15
Port Maintenance Timer Control, 11–15
Port Maintenance Timer Expiration Control,

11–15
Port Message Free Queue Control, 11–14
Port Parameter, 11–13
Port Status, 11–8
Port Status Release Control, 11–14
Q22–bus Error Address, 9–14
Q22–bus Map, 9–3

accessing, 9–5
cached copy, 9–6

Q22–bus Map Base Address, 9–10
Q22–bus Map Registers, 9–2, 12–17
Revision Number and Missed Frame Count

(NICSR10), 10–24
saved by the console, 12–33
SGEC command and status, 10–4
SGEC status, 10–11
SHAC, 11–5
SHAC Shared Host Memory Address, 11–17
SHAC Software Chip Reset, 11–17
SHAC specific, 11–16
system base (NICSR7), 10–21
System Configuration, 9–11
Time-Of-Year Clock, 7–7

REGISTERS
General Purpose, 3–1
Internal Processor, 3–1, 3–3
processor, 3–1

Registers Port Queue Block Base, 11–6
REPEAT, 12–54
REQ_MEM_LOAD, 12–21
REQ_PROGRAM, 12–21
Reset

SGEC, 10–46

Restart, 12–22
Restart Parameter Block (RPB)

RIP flag, 12–22
Revision Number, 10–24
RF-series disk drive

access to firmware through DUP, 2–6
cabling, 2–7

RPB
initialization, B–4

RPB Signature Format, 12–23
Runt Packets

definition of, 10–2

S
SCR, see System Configuration Register
SGEC, see Second Generation Ethernet Controller
SHAC, see Single Host Adapter Chip
SHAC Shared Host Memory Address, see Registers
SHAC Software Chip Reset Register, see Registers
Status Register, see Registers
System Configuration Register,see Registers
SCA

as related to DSSI, 11–2
Scatter-gather

mapping, 9–1
Script

definition of, 12–83
SEARCH, 12–55
Secondary Bootstrap, 12–16
Second Generation Ethernet Controller, 10–1

burst limit mode, 10–17
command and status registers, 10–4
determining operating mode, 10–7
internal processor updates, 10–16
interrupt enable mode, 10–16
loopback modes, 10–51
operating mode, 10–13
physical NICSRs, 10–5
processes, 10–3
programming sequence example, 10–3
reception process, 10–12, 10–48
reset, 10–16, 10–46
self test, 10–16
self-test timing note, 10–12
startup procedure, 10–47
states, 10–3
transmission process, 10–12, 10–49
virtual NICSRs, 10–5

Selecting
Q22–bus map register, 9–5

Self-test
SGEC, 10–12

SET, 12–58
Setup Frame, 10–38

first, 10–38
subsequent, 10–38

Index–7

SGEC, 1–7
SHAC, 1–7
SHOW, 12–62
Signal level specifications, F–33
Signature Block

PROM, 12–20
Single Cycle Enable Mode, 10–17
Single Host Adapter Chip (SHAC)

its role as a CI port, 11–3
on chip buffering, 11–2
on chip RISC, 11–2
principal tasks, 11–3

Socketted ROM, 10–3
Software, 12–87
START, 12–67

in restoring context, 12–7
Start/Stop Reception, 10–18
Start/Stop Transmission, 10–17
System Base Address, 10–22
System configurations, F–36
System Support Subsystem, 1–5

T
TBIA, 12–7
Test, 12–8
TEST, 12–68
Test Mode

SGEC, 10–27
Timeout

as detected by the Q22–bus interface, 9–1
Timers

Q22–bus interface NO GRANT, 9–16
Q22–bus interface nonexistent memory, 9–16
Q22–bus interface NO SACK, 9–16
that restrict XMIT/RECV time, 10–22

Translation Buffer, 3–24
Transmission

start/stop, 10–17
Transmission Process State Transitions, 10–50
Transmit Descriptor, 10–33 to 10–38

built as a ring, 10–9
Transmit Interrupt, 10–15
Transmit Polling Demand, 10–7

Transmit watchdog timer interrupt, 10–13

U
Undeliverable Message, 11–4
UNJAM, 12–12, 12–72
Users, 12–86

V
Valid Maps, 12–17
VAX–11 code, 12–1
VAXELN

and VMB, 12–16
VAX system page table, 10–21
Vector_204, 9–9
VIC

Data Register, 4–6
Tag Register, 4–5

VIC Cache Row Format, 4–3
Virtual Instruction Cache

Internal Processor Registers, 4–4
Virtual Instruction Cache Organization, 4–3
Virtual Memory Address

Register, 4–4
Virtual Memory Boot (VMB), 12–16

definition of, 12–16
Virtual NICSRs, 10–5
VOLUNTEER, 12–21

W
Warmstart, 12–22
Watchdog Timer

SGEC, 10–23
Write

NICSR, 10–5

X
X - Binary Load and Unload, 12–73
XDELTA, 12–75

Index–8

