
EK-FP.730-TD-001

VAX-11/730
FP7 30 Floating-Point

Accelerator
Technical Description

Prepared by Educational Services
of

Digital Equipment Corporation

First Edition, May 1982

Copyright © 1982 by Digital Equipment Corporation

All Rights Reserved

The material in this manual is for informational purposes and is
subject to change without notice.

Digital Equipment Corporation assumes no responsibility for any
errors which may appear in this manual.

Printed in U.S.A.

This document was set on DIGITAL's DECset-8000 computerized
typesetting system.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL
DEC
PDP
DEC US
UNIBUS

DECsystem-IO
I DECSYSTEM-20

DIBOL
EDUSYSTEM
VAX
VMS

5/82-14

MASSBUS
OMNIBUS
OS/8
RSTS
RSX
IAS

CHAPTER 1

1.1
1.2
1.3
1.4
1.5
1.6
1.6. l
1.6.2
1.6.3
1.6.4
1.6.5
1.6.6

CHAPTER 2

2.1
2.2
2.2.l
2.2.2
2.3
2.4
2.4. l
2.4.2
2.4.3
2.4.4

CHAPTER 3

3.1
3.2
3.3
3.3. l
3.3.2
3.3.3
3.4
3.4. l
3.4.2
3.5
3.5. l
3.5.2

CONTENTS

INTRODUCTION

GENERAL... 1-1
RELATED DOCUMENTATION.. 1-1
PHYSICAL DESCRIPTION... 1-2
FUNCTIONAL DESCRIPTION... 1-2
DIAGNOSTIC FEATURES... 1-3
FLOATING-POINT NUMBERS AND ARITHMETIC............................ 1-3

Integers... 1-3
Floating-Point Numbers... 1-3
Normalization... 1-4
Floating-Point Notation.. 1-6
Floating-Point Addition and Subtraction... 1-6
Floating-Point Multiplication and Division.. 1-6

DAT A FORMATS

GENERAL... 2-1
FLOATING-POINT FORMATS... 2-1

Fraction.. 2-2
Exponent... 2-4

INTEGER FORMAT.. 2-7
FLOATING-POINT EXCEPTIONS... 2-7

Overflow 2-7
Underflow... 2-7
Divide-by-Zero ·.................. 2-7
Reserved Operand Fault... 2-7

INTERFACING

GENERAL... 3-1
INTERFACE SIGNALS.. 3-1
INTERFACE OPERATION .. 3-3

Op Code Decoding... 3-3
Operand Loading.. 3-4
Result Storing... 3-5

CPU FORCE/READ MICROADDRESS CONTROL.............................. 3-6
Force Microaddress Control... 3-6
Read Microaddress Control 3-7

ERROR REPORTING... 3-8
Parity.. 3-8
Condition Codes... 3-8

iii

CHAPTER4

4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.4.1
4.2.4.2
4.2.5
4.2.5.1
4.2.5.2
4.2.6

4.3
4.3. l
4.3.2
4.3.3

CHAPTERS

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.3
5.4
5.5
5.6
5.7
5.8
5.8.1
5.8.2
5.8.3
5.8.4
5.9
5.9.1
5.9.2
5.10

CHAPTER 6

6.1
6.2
6.3
6.4

INSTRUCTIONS AND ALGORITHMS

GENERAL... 4-1
ARITHMETIC INSTRUCTIONS... 4-2

Add/Subtract... 4-2
Compare (CMP) Instructions ... 4-10
Polynomial (POLY) Instruction ... 4-1 O
Divide (DIV) Instruction .. 4-12

DIV ... 4-12
DIVL Instruction .. 4-12

Multiply (MUL) Instruction .. 4-13
MUL Algorithm ... 4-13
MULL Instruction .. 4-14

Extended Precision Multiply and Integerize
(EMOD) ... 4-14

CONVERSION INSTRUCTIONS .. 4-15
Floating-Type-to-Integer Conversion .. 4-15
Integer-to-Floating-Type Conversion .. 4-17
Precision Conversion . 4-18

THEORY OF OPERATION

GENERAL... 5-1
DATA FLOW.. 5-3

Operand Fetching.. 5-3
Result Storing... 5-5
Aborts... 5-6
Exceptions or FPA Errors 5-6

TIMING... 5-7
INSTRUCTION DECODING ... 5-16
NEXT MICROADDRESS GENERATION ... 5-18
NEXT MICROADDRESS BRANCHING ... 5-20
CONTROL STORE .. 5-22
DATA MANIPULATION .. 5-31

2901 Four-Bit Slice ... 5-34
Exponent Data Path ... 5-34
Fraction Data Path ... 5-37
Sign Logic ... 5-37

MAINTAINABILITY FUNCTIONS .. 5-39
Force Microaddress .. 5-39
Read Microaddress ... 5-39

PARITY LOGIC ... 5-39

MICROCODE DESCRIPTIONS

GENERAL... 6-1
FIELD DEFINITIONS... 6-1
MACRODEFINITIONS... 6-1
MICROROUTINE .. 6-22

IV

APPENDIX A PROGRAMMED ARRAY LOGIC DEVICES (PALs)

A.I INTRODUCTION .. A-1
A.2 PIN DESIGNATIONS ... A-1
A.3 PAL FUNCTIONS.. A-1

APPENDIX B GLOSSARY

Figure No.

1-1
2-1
2-2
2-3
2-4
2-5

2-6
3-1
3-2
3-3
3-4
3-5
3-6
4-1
5-1
5-2
5-3
5-4
5-5

5-6

5-7

5-8
5-9
5-10

5-11

5-12
5-13
5-14
5-15

FIGURES

Title Page

FPA-11/730.. 1-4
Single Precision Data Format... 2-1
Double Precision Data Format... 2-1
Grand Data Format.. 2-2
Huge Data Format.. 2-3
Excess 80 Notation for Single and Double Precision
Format Exponents... 2-6
Integer Format.. 2-7
FPA-CPU Interface.. 3-1
Op Code Decoding.. 3-3
Operand Loading . 3-4
Result Storing... 3-5
Force Microaddress Control... 3-6
Read Microaddress Control.. 3-7
Add Flow.. 4-3
FPA-11/730 Block Diagram... 5-2
Single Format Loading... 5-4
Double Format Loading.. 5-5
Timing Logic 5-8
FPA Synchronization via Toggle Clock During CPU
PHO... 5-9
PFA Synchronization via Toggle Clock During CPU
PH 1 ... 5-10
FPA Synchronization via Toggle Clock During CPU
PH2 ... 5-11
Fast/Slow Cycle Gating ... 5-12
Fast Cycle Timing ... 5-13
FPA Synchronization via CPU Force Trap or Read
During FPA PHO .. 5-14
FPA Synchronization via CPU Force Trap or Read
During FPA PH l .. 5-15
Instruction Decoding .. 5-16
Op Code Instruction Decoding ... 5-17
Instruction Decoding MUX Signal Inputs ... 5-18
Microsequencer Logic .. 5-19

v

5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14

6-15
6-16

6-17
6-18
6-19
6-20
6-21
6-22
A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18

2909 Microprogram Sequencer 5-19
Control Store Logic 5-22
Control Store Microword .. 5-23
Data Path Logic .. 5-31
290 I Block Diagram 5-34
Exponent Data Path Logic ... 5-35
Sign Control PAL Logic ... 5-38
Force/Read Microaddress Control ... 5-40
Control Store Fields Checked by Parity Bit PO .. 5-41
Control Store Fields Checked by Parity Bit Pl .. 5-42
Field Definitions... 6-2
Literal Field.. 6-3
Micropointer Field.. 6-4
Branch Field 6-5
Extended Branch Field 6-6
Clock Field (Used to Clock Fast Cycle)... 6-7
Shift Field (Used to Set V and C Bits)... 6-8
Modify Field (Used to Enable Division)... 6-9
Modify Field (Used to Enable Multiplication) ... 6-10
RAM B Address Field 6-11
RAM A Address Field.. 6-12
Fraction ALU Source Operand (DQ) Field ... 6-13
Fraction ALU Function (R XOR S) Field ... 6-14
Fraction ALU Destination (Q-Register) Control
Field .. 6-15
Exponent Control (A-B) Field .. 6-16
Exponent ALU Destination (Q-Register) Control
Field .. 6-17
Parity Field PO.. 6-18
Parity Field Pl .. 6-19
Accelerator Sync Field ... 6-20
MACRO Definitions .. 6-21
Microcode Overview ... 6-23
Microcode ADD Flow .. 6-24
FPA PAL Types ... A-2
AND OR GATE ARRAY Details... A-3
Fusable Link Programming .. A-4
Integer Division Enabled for Data Shift in PAL.. A-5
Pin Designations... A-7
Hidden Bit PAL .. A-7
Input Enable PAL .. A-8
Data Shift in PAL... A-9
Extended Branch PAL .. A-10
Branch 3 PAL ... ·A-11
Branch 2 PAL ... A-12
Branch 1 PAL ... A-13
Branch 0 PAL ... A-14
Extended Function PAL ... A-15
Fraction Shift Control PAL. ... A-16
Exponent Control PAL ... A-17
Store Control PAL .. A-18
Condition Code PAL .. A-19

VI

A-19
A-20
A-21
A-22
A-23

Table No.

1-1
2-1
2-2
3-1
4-1
4-2
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9

Clock Control PAL ... A-20
Instruction PAL .. A-21
Parity PAL .. A-22
Multiply /Divide PAL ... A-23
Sign PAL .. A-24

TABLES

Title Page

Related Hardware Manuals.. 1-1
Fraction Sign and Magnitude Notation.. 2-2
Excess Notation Usage 2-7
Interface Signals... 3-2
FP A Instructions... 4-1
Add/Subtract Sign Calculation.. 4-9
Error Codes... 5-6
SIZE 1 :0 Encoding ... 5-16
Branch 1 :0 Encoding... 5-21
Extended Branching .. 5-22
Control Store Field .. 5-24
Exponent Working Register (RAM) Constants .. 5-36
Exponent Function Selection 5-36
Fraction Data Path Working Register Constants ... 5-37
Sign PAL Function Control Encoding .. 5-39

vii

1.1 GENERAL

CHAPTER 1
INTRODUCTION

The FPA-11 /730 floating-point accelerator (FPA) is a hardware option that performs all floating-point
arithmetic operations and converts data between integer and floating-point formats. Floating-point rep
resentation permits a greater range of number values than is possible with a 32-bit integer. The FPA
option accelerates execution of most floating-point instructions and a few integer instructions. Without
the FPA the floating-point instructions are executed by central processor unit (CPU) microcode, with
little hardware help. The FPA operates on single, double, grand, and huge data formats or types.

Functionally, the FPA is an integral part of CPU. It operates using the same address modes and the
same memory management facilities as the CPU. Floating-point processor instructions can reference
the CPU's general registers or any location in memory.

1.2 RELATED DOCUMENTATION
Table 1-1 lists all related documentation.

Table 1-1 Related Hardware Manuals

Title Comments

VAX-11 /730 Central Processor In microfiche library
Technical Description

V AX-11 Architecture Handbook Available in hard copy*

*This document can be ordered from:

Digital Equipment Corporation
444 Whitney Street
Northboro, MA 01532
Attention: Communication Services (N_R2/MI 5)
Customer Services Section

For information concerning microfiche libraries, contact:

Digital Equipment Corporation
Micropublishing Group, PK3-2/TI 2
129 Parker Street
Maynard, MA 01754

1-1

1.3 PHYSICAL DESCRIPTION
The FPA-1 l /730 consists of a standard hex module, containing mostly Schottky TTL logic. There are
no calibration adjustments, switches or controls.

1.4 FUNCTIONAL DESCRIPTION
The FPA-11/730 FPA is a hardware option available on the VAX-11/730 computer system. It can
perform floating-point addition, subtraction, multiplication, and division instructions.

The FPA, functioning in conjunction with the CPU, speeds the execution of floating-point arithmetic
instructions. FPA operations overlap CPU operations, allowing the CPU to proceed with other tasks
relating to the floating-point instruction, such as destination address calculation, while the FPA com
pletes the instruction. The CPU cannot overlap another instruction; it must wait for the FPA to com
plete the floating-point instruction. This overlap helps to speed program execution.

The FP A also speeds the execution of some integer arithmetic instructions. Operation of the FPA is
transparent to macro level software and main machine microcode.

The FPA can operate on a wide range of numbers. A floating-point number between 1.5 X 10-39 and
3.4 X 1038 can be represented. A single-precision number is accurate to 7-decimal digits, and a double
precision number to 16-decimal digits. The range of a grand operand is 8.9 X 10+307 to 1.11 X 1Q308.
The range of a huge operand is 5.94 X lQ4931 to 8.40 X 10-4933. The FPA can operate on 32-bit signed
integers from ~2,147,483,648 to 2,147,483,647, inclusive.

As a functional extension of the CPU, the FPA does not access memory data. The CPU must calculate
a memory address, access the address, and then transmit the data to the FPA. The CPU is also respon
sible for fetching and storing the FPA results. The FPA performs only the required floating-point or
integer operation on the properly formatted operands transmitted to it.

Basically, the FPA (Figure 1-1) consists of data path logic that processes operands, and a control store
that generates data processing control signals. The data path logic consists of 20 4-bit 2901 bit slices
(microprocessors).

M8389 FLOATING POINT ACCELERATOR

CENTRAL
PROCESSOR

I
I
I

OPERANDS

I OPERATION
I CODES

INSTRUCTION BUS

I
I
I

PORT
-----sus

INITIAL
FP

INSTRUCTION INSTR
DECODER

NEXT
MICRO
ADDRESS
SEQUENCER

(2909S) •

INCRE- DATA
MENTED ___ CONTROL

INSTR CONTROL SIGNALS

STORE

MICROPOINTE~ FIELD

Figure 1-1 FPA-11/730

l-2

DATA
PATH
LOGIC

(2901 MICRO
PROCESSORS)

TK-4947

Initially, the CPU sends the FPA an operation code that is decoded into a starting microaddress. An
FPA sequencer converts the instruction into an address for a control store PROM where data path logic
control signals are generated. This sets up the data path logic to receive the first data input via the Y
Bus.

The CPU then sends the FPA packed, normalized, floating-point data, including a sign bit, in the form
of 32-bit operands. These are buffered, and applied to the data path logic. The data path logic breaks
the number (operand) into parts (unpacks it) and performs operations required to carry out the instruc
tion on each part. Once the arithmetic result is achieved, the data path logic normalizes and packs the
results in accordance with control signals in the control store. The result is then buffered and returned
to the CPU in 32-bit segments via the Y-Bus.

As the FP A performs calculations, a micropointer field in the FP A control store points to the next mi
croaddress to be executed. This address is then latched in the 2909 microsequencer, which alters the
latched base microaddress by ORing selected status signals into it. The result is the next microaddress
for control store.

1.5 DIAGNOSTIC FEATURES
FPA diagnostics include a force/read function whereby the CPU can force an address into the FPA
control store or read the next address the microsequencer will apply to the control store. Diagnostics
check operation of the instruction decoding circuit, microsequencer, control store, and data path logic.
Two parity bits are used to perform error checks on the control store. If a parity error occurs, the FPA
traps to a parity error routine.

1.6 FLOATING-POINT NUMBERS AND ARITHMETIC

1.6.1 Integers
All data within a computer system can be represented in integer form. The numbers that can be repre
sented in a 32-bit machine range in magnitude from 0000000016 to FFFFFFFF16 (or from 010 to
4,294,967 ,295). However, integer form imposes some limitations. Only whole numbers can be repre
sented, i.e., no fraction or decimal parts. This imposes an accuracy limitation. Also, numbers greater
than 4,294,967 ,295 cannot be represented; this imposes a range limitation.

These limitations are imposed by the stationary position of the radix point (e.g., the decimal point in
base 10 notation, or the binary point in base 2 notation). An integer's radix point is usually omitted in
integer representation because it always marks the integer's least significant place. That is, there are
never any digits to the right of a radix point. For this reason, an integer is sometimes called a fixed
point number.

Integer notation, however, can be modified to overcome the range and accuracy limitations imposed by
the fixed radix point. This is done through the use of floating-point notation.

1.6.2 Floating-Point Numbers
Floating-point numbers, unlike integers, have no position restrictions imposed on their radix points. A
popular type of floating-point representation is called scientific notation. With scientific notation, a
floating-point number is represented by some basic value multiplied by the radix raised to some power.

1-3

Example 1

1,000,000

basic
value

J exponent

l.XJ06/

~radix
There are many ways to represent the same number in scientific notation, as shown in Example 2.

Example 2

Right-Shifts

512 512. x 100
51.2 x 101

5.12 x I 02
.512 x 103

Left-Shifts

512 = 512 x 100
5120 x 10-1

51200 x 10-2
512000 x 10-3

The convention chosen for representing floating-point numbers with scientific notation in the FPA re
quires that the radix point always be positioned to the left of the most significant digit in the basic value
(e.g., .512 X I 03 in the above example). This modified basic value is called a mantissa fraction.

Note that for each right-shift of the basic value, the exponent is incremented and for each left-shift the
exponent is decremented. The value of the number remains constant if the exponent is adjusted for each
shift of the basic value.

Additional examples of scientific notation are indicated in Example 3.

Example 3

Decimal
Notation

64
33
I /2(.5)
3/32(.09375)

Decimal
Scientific
Number

.64 x 102

.33 x 102

.5 x 100

.9375 x 10-1

1.6.3 Normalization

Binary
Notation

1000000.
100001.
0.1
0.00011

Hex
Notation

4016
2116
.816
. l 816

Hex
Scientific
Number

.4x 16-2

.21 x 16-2

.8 x 160

.18 x 160

There are many ways to represent a particular floating-point number using scientific notation. The con
vention chosen by VAX and the FPA requires the radix point to be to the left of the most significant bit
in the basic value, as in Example 4.

1-4

Example 4: Floating-Point Form

2910=111012=1 1101. x 20 1 1101. x 20
1110.1 x 21 11 1010. x 2-1

111.01 x 22 1 11 0100. x 2-2
.11101 11.101 x 23 1 1 10 1000. x 2-3
Fraction 1.1101 x 24 1 1 1 0 1 0000. x 2-4

Chosen .11101 x 25 11 1010 0000. x 2-5
5 Form .011101 x 26 1 1 1 01 00 0000. X 2-6
Exponent .0011 101 x 2 7 = 1 11 0 1000 0000. X 2-7

The process of ensuring that the first significant bit is directly to the right of the binary point is called
normalization. If the number is one or larger, it involves right-shifting the basic value and incrementing
the exponent until the most significant bit (MSB) (a one) is directly to the right of the binary point. If
the number is a fraction with leading zeros, the basic value is left-shifted and the exponent is decre
mented. Examples 5 and 6 show conversion 'of numbers to normalized form.

Example 5: Convert 7510 to a normalized binary number.

I . Integer conversion
7 51 o = 1 00 1 011 2

2. Floating-point form
I 00 1 01 l 2 = 100 1 01 12 X 20

3. Normalized form
Right-shift fraction 7 times
Increment exponent by 7

100 10112 x 20 = .100 1011 x 27

Fraction = .100 1011
Exponent = 7

Example 6: Convert 3/16 (.01875) to a normalized binary number.

I . Integer conversions
. 01 8 7 51 o = . 00112

2. Floating-point form
. 001 1 2 = . 00 1 12 X 2°

3. Normalized form
Left-shift fraction twice
Decrement exponent by 2

Fraction = .11
Exponent = - 2

1-5

1.6.4 Floating-Point Notation
Two FPA conventions are used to conserve memory space without losing accuracy, and to aid in hard
ware manipulation. The first convention is called the hidden bit. All numbers transferred between the
CPU and FPA are normalized floating-point numbers. This means that the first significant bit (always
a 1) is always directly to the right of the binary point. To conserve memory space and data lines, the
first significant bit is not stored or transmitted to the FP A. For example, the fraction part of the nor
malized binary number .11000 ... X 2-2 is stored and transmitted to the FPA as 100 The normalized
fraction of 1 /2 (.100 .. X 20) is stored and transmitted as 000 In both cases the first 1 (the hidden bit)
is added by hardware in the FP A. When the FPA transfers a normalized answer back to the CPU, the
hidden bit is not sent.

The second convention is exponent bias notation. The exponent portion of a floating-point number is
stored using excess 8016, 40016, or 400016 notation. This notation simplifies the hardware that manipu
lates the exponent during floating-point arithmetic operation. Excess 8016 exponent notation is obtained
by adding 100000002 (200s, 8016, or 12810) to 2s complement notation. This allows the exponent to be
stored as a positive value. ·

1.6.5 Floating-Point Addition and Subtraction
To perform floating-point addition or subtraction, the exponents of the two floating-point numbers in
volved must be aligned or equal. If they are not aligned, the fraction with the smaller exponent is right
shifted until they are. Each shift to the right is accompanied by an increment of the associated expo
nent. When the exponents are equal, the fractions can then be added or subtracted. The exponent value
indicates the number of places the binary point is to be moved to obtain the integer representation of
the number.

In Example 7, the number 710 is added to the number 4010 using floating-point representation. Note
that the exponents are first aligned and then the fractions are added. The exponent value dictates the
final location of the binary points.

Example 7: Floating-Point Addition

0.1010 0000 0000 000 x 26 = 2816 = 4010

+ 0 .1110 0000 0000 000 x 2 3 = 7 16 = 710

I. To align exponents, shift the fraction with the smaller exponent three places to the right and
increment the exponent by 3. Then add the two fractions.

0.1010 0000 0000 000 x 26 = 2816 = 4010

+0.0001 1100 0000 000 x 26 = 716 = 710 ..__,,
0.1011 1100 0000 000 X 26 = 2F16 = 4710

2. To find the integer value of the answer, move the binary point six places to the right.

010 1111. 0000 0000 0
~

1.6.6 Floating-Point Multiplication and Division
In floating-point multiplication, the fractions are multiplied and the exponents are added. In floating
point division, the fractions are divided and the exponents are subtracted. There is no requirement to
align the binary point in floating-point multiplication or division. Example 8 shows floating-point multi
plication; Example 9 shows division.

1-6

Example 8: Multiply 710 by 4010-

l . 0. 11 1 0000 X 2 3 = 7 = 7 1 o
x 0.1010000 x 26 = 2816 = 4010

1110000
0000
11100

.1000110000 X 29 (Result already in normalized form)

2. Move the binary point nine places to the right.

~.00000 = 11816 = 28010

Example 9: Divide I 51 o by 51 O·

1. .1111000 x 24
.1010000 x 23

1.10000
1o1ooog)1111000.000000

1010000
101000
101000

0

2. Exponent: 4-3 = 1

3. Result: 1.100000 X 21

Normalized Result: .1100000 X 2f
Normalized~ Normalized Exponent

Move binary point two places to the right.

1 1. 000000 = 3 16 = 310

1-7

2.1 GENERAL

CHAPTER 2
DATA FORMATS

The FPA requires its input data (operands) to be formatted. Formatting allows the FPA to process
operands in a meaningful way and produce correct results. There are five different formats for oper
ands inputted to the FPA: single (F), double (D), grand (G), huge (H) precision, plus integer. The FPA
output is in F, D, G, H, or integer format.

2.2 FLOATING-POINT FORMATS
Of the four floating-point formats (Figures 2-1 through 2-4), single (F) is 32 bits long. Double (D) and
grand (G) are 64 bits long and huge (H) is 128 bits long. The words contain fraction and exponent
fields, plus a sign bit. Figures 2-1 through 2-4 illustrate how the format is rearranged in the FP A.

DATA AS
STORED

31

FRACTION 2

161514 07 06 ()()

FRACTION 1 IN MEMORY ,..._ _________ ___,..,._.__ ____ ..,.,.. ____ _.

......................... ./;:::........//
-........ /.//

........ // .4" /
~./ ~? ~

/'/.......... ;:::;'.?"
......... ;:::........._~:;::::

.................. /.;;K.......... /
DATA AS <07/ 00 55.54/ ..._48 47/_ 32

~"::.."GED Is I EXPONENT ~ ... H ... l _F_R_A_cT_1_0N_1 _l.__ ___ FR_A_c_T1_o_N_2 ___ _

(HIDDEN BIT)

TK..SB22

Figure 2-1 Single Precision Data Format

DATA AS 31 1615 00 31 16 15 14 07 06 00
~~~~~ORY -,-F_R_A-CT-IO_N_4_..,..l_F_R_A_CT_l_ON_3 __ 1IFRACTION21sIEXPONENTIFRACTION11 

DATA AS 0...,1 _____ 00_ 55 54 48 47 32 31 1615 00 

ARRANGED r;i I EXPONENT I H FRACTION 1 FRACTION 2 FRACTION 3 FRACTION 4 
IN FPA L:J · · 

TK-5823 

Figure 2-2 Double Precision Data Format 

2-1 



16 15 00 31 16 15 14 04 03 00 
DATA AS 

31 

STORED I 
IN MEMORY 

FRACTION 4 FRACTION 3 I FRACTION 2 I s 'EXPONENT' FRACTION 1 I 

DATA AS 
INITIALLY 
STORED 
IN FPA 

01 

DATA AS 0 
REARRANGED S 
IN FPA 

EXPONENT 
DATA PATH 

FRACTION 
DATA PATH 

'EXPONENT' EXP H FRACTION 1 FRACTION 2 FRACTION 3 FRACTION 4 

I I I I 
I I I I I 
I 1 t I I 
I I 551 

_..,,.---~~--~~~---~~--~~~-

EXPONENT H FRACTION 1 FRACTION 2 FRACTION 3 FRACTION 4 

TK-5816 

Figure 2-3 Grand Data Format 

2.2.1 Fraction 
The fraction is a normalized magnitude, binary representation. Table 2-1 explains sign and magnitude 
notation of the fraction. Only a change of sign bit is required to change the sign of a number in sign and 
magnitude notation. Note that a positive number is the same in both notations. 

The fraction contains a binary number of the form: 

O.lXXXXX .... 

The first bit of the fraction is always a one because the fraction is normalized at the end of every in
struction. Normalization consists of aligning the MSB of the result with the MSB of the fraction and 
adjusting the exponent accordingly. For example: 

[.1 x 2**1] x [.1 x 2**3] = .01 x 2**4 

Normalize Result = .1 X 2**3 

The fraction contains a hidden bit. Since the MSB of every fraction is always a one, this bit is not stored 
in memory; this is the hidden bit. The FPA inserts this bit whenever it receives an operand. 

+2 

-2 

Table 2-1 Fraction Sign and Magnitude Notation 

2s Complement 
Notation 

000010 

111110 

Sign and Magnitude 
Notation 

000010 

100010 

2-2 



N 
I 

VJ 

31 1615 00 31 1615 00 31 1615 00 31 16 15 14 00 

~:6:E~s FRACTION 7 FRACTION 6 ( FRACTION 51 FRACTION 41 FRACTION 3 FRACTION 2 FRACTION 1 s EXPONENT 

IN MEMORY I ' \ \ \ \ \ -- --

II ~\\\ "\ \ \ \,\ -~~__-:::...~----·\ '\ \ \ _ __....* ____ \ \ \ \ 
I I\ ~\------"'\ ____ "' \\ \\ \ 
I \ \ --~----\ \' \\ '\\ 
l--~-w---=----- "\ \ ~~ \ '\ \ 

--=:-J55--- l I ) \ '\ \ '\ \ 

~N~i~A~~ y 0 1 1 EXPONENT r 1 h, FRACTION 1 
STORED I I u_ ------' ., I 
IN FPA I I --~-- ·- I 

I 1, EXPONENT I \ FRACTION II 

I I . DAT A I \ DAT A 
I I I PATH I \ PATH I 
I I I I \ I 
I I I 14 o I 55 \ 54 39 38 23 22 01 06 oo 01 oo 55 54 39 38 23 22 01 I 

DATA AS 0 
REARRANGED s I EXPONENT I H FRACTION 1 FRACTION 2 FRACTION 3 FRACTION 4 FRACTION 4 F4 F5 F6 F7 
IN FPA · · 

STORED IN ODD j 
STORED IN EVEN WORKING REGISTERS----------------i•woRKING REGISTERS I 

TK·5832 

Figure 2-4 Huge Data Format 



2.2.2 Exponent 
As Figure 2-I illustrates, an 8-bit exponent is used for single-(F) and double-(D) precision formats; an 
I I-bit exponent is used for grand (G) format (Figure 2-3); and a 15-bit exponent is used for huge (H) 
formats (Figure 2-4). 

The exponent contains a power of 2 and can be expressed in excess 80, 400, 4000 (according to data 
type) notation (bias). (Refer to Table 2-2.) The bias is added to a power of 2 to yield the exponent. -

Table 2-2 Excess Notation Usage 

Bias (HEX) 
(Hexadecimal) 

80 
400 

4000 

Data Type 

F,D 
G 
H 

Excess 80 / 400 / 4000 notation is used to store and handle the exponent portion of floating-point num
bers. The notations are used similarly; excess 80 notation is the 2s complement of the exponent plus 
I2810 or 8016· 

It is convenient to handle the exponent portion of the floating-point number in 2s complement notation. 
This- allows a wide range of both positive and negative exponents to be represented. However, in 2s 
complement notation, an overflow must occur to go from the least negative number to zero. To avoid 
this, the bias of 12810 is added to the 2s complement number. 

When multiply and divide operations are performed using floating-point numbers with excess 80 expo
nent notation (or 400 or 4000, as required), the resulting exponent must be adjusted by the bias to 
return the result to excess 8016 notation. When a multiplication is performed, exponents are added, and 
8016 must be subtracted from the result to return it to excess 80 notation. The following example ex
plains why 8016 must be subtracted from the exponent calculation during multiplication. 

Exponent A+ 8016 

~ 
Excess 8016 notation 

/ 
Exponent B + 8016 

Exponent A+ Exponent B + 10016 

Both exponent A and exponent Bare biased by 8016 yielding a bias of I0016· However, only a bias of 
8016 is desired in excess 8016 notation. 

2-4 



Multiplication Example 

2X3=6 

Fraction Exponent 

2 = 0.100 x 

3 = 0.110 x 

Fraction Calculation Exponent Calculation 

2 = 0.100 

3 =0.110 

1000 10416 

100 -8016 

6 = 0.011000 x 

Normalize the fraction by left-shifting one place and decreasing the exponent by 1. 

Fraction 

+ 
Exponent 
/ 

0.11000 x 83 = 6 

When a division is performed, exponents are subtracted and 8016 must be added (for excess 80 nota
tion) to the result to return it to excess 80 notation. To understand why 80 must be added to the expo
nent calculation during division, consider the following: 

Exponent A + 80 

Exponent B + 80 

Exponent A - Exponent B + 80 - 80 = Exponent A - Exponent B + 0 

However, since the result is to be in excess 80 notation, 8016 must be added to the exponent, yielding 
Exponent A - Exponent B + 80. 

2-5 



Division Example 

16/4 = 4 

Fraction 

16 = .10000 
4 = .10000 

x 
x 

Fraction Calculation 

1.000 
~)o 10000.000 

Exponent 

85 
83 

Exponent Calculation 

85 
-83 
-2 
+80 
82 

Normalize the fraction by right-shifting one place and incrementing the exponent. 

Fraction 

' .10000 x 
/xponent 

83 = 4 

Figure 2-5 shows the relationship between an 8-bit floating-point exponent in 2s complement notation, 
and exponents in excess 80 notation. 

Note that an exponent in excess 80 notation is obtained by simply adding 80 to the exponent in 2s 
complement notation. Thus, 8-bit exponents in excess 80 notation range from 0 to FF ( - 80 to + 7F). A 
number with an exponent of - 80 is treated by the FPA as 0. 

2's COMPLEMENT 

[ 

7F 

POSITIVE 

EXPONENTS I 

l 
FF 

NEGATIVE 

EXPONENTS l 
80 

MOST POSITIVE EXPO
NENT 

LEAST POSITIVE EXPO
NENT 

LEAST NEGATIVE EXPO
NENT 

MOST NEGATIVE EXPO
NENT 

POS 
EXP 

NEG 
EXP 

EXCESS 80 

n 
rr 

MOST POSITIVE 
EXPONENT 

LEAST POSITIVE 
EXPONENT 

LEAST NEGATIVE 
EXPONENT 

MOST NEGATIVE 
EXPONENT 

TK-6819 

Figure 2-5 Excess 80 Notation for Single and Double 
Precision Format Exponents 

2-6 



2.3 INTEGER FORMAT 
Integers processed by the FPA are 2s complement binary numbers (Figure 2-6). The MSB of the word 
received from memory is the sign bit. 

Words and bytes in integer format can be loaded into the FPA for conversion to F, D, G, or H format. 
Also, the FPA can perform store operations whereby F, D, G, or H formatted data is loaded into memo-
ry as words or bytes. · 

INTEGER (LONG WORD) 

AS STORED IN 
MEMORY 

WORD 1 

INTEGER 

WORD2 

00 

AS STORED IN THE FPA I I 
FRACTION DATA PATH INTEGER 

...._~~~~~~~~~~~~~~~--

TK-5818 

Figure 2-6 Integer Format 

2.4 FLOATING-POINT EXCEPTIONS 
The FP A monitors all operands and results for exceptional conditions. When the FPA senses one or 
more of these conditions, it informs the CPU via various bits and combinations of bits. Either one or 
both units begin special operations designed to minimize the effect of the condition. In some cases it 
stops the current FPA operation and returns the FPA to the instruction decoding (IRD) state where all 
logic and registers are cleared in anticipation of a new floating-point instruction. 

2.4.1 Overflow 
This exception occurs when the exponent is larger than the largest representable exponent for the data 
type, after normalizing and rounding. The destination in this case is unaffected and the condition codes, 
unpredictable. 

2.4.2 Underflow 
This exception occurs when the exponent is smaller than the smallest representable exponent for the 
data type after normalizing and rounding. If the floating underflow (FU) bit is set, the destination is 
unaffected and the condition codes (CCs) are unpredictable; otherwise, the result is zero. 

2.4.3 Divide-by-Zero 
This exception occurs when the divisor is a zero. The destination is unaffected and the CCs are unpre
dictable. 

2.4.4 Reserved Operand Fault 
This exception occurs when one of the operands is reserved. A reserved operand is a negative zero (sign 
bit = 1, exponent = 0). 

2-7 



3.1 GENERAL 

CHAPTER3 
INTERFACING 

The CPU sends the FPA an instruction that indicates what operation and data type (F, D, G, or H) is to 
be processed. The FPA then sets up its data path logic to perform the required operations. The CPU 
next loads data (32-bit operands) into the FPA data path logic. After the data is processed, the result is 
stored by the CPU. 

3.2 INTERFACE SIGNALS 
FPA-CPU interface signals are illustrated in Figure 3-1, and described in Table 3-1. Timing signals 
CPU P2 Hand PORT CLOCK Lare continually applied to the FPA. The CPU controls FPA operation 
via READ PORT L, SEL ACC IN H, READ ACC UPC L, TRAP ACC L, IRD STATE L, and CPU 
DATA AVAIL L. ACC SYNCH is the only FPA output (other than the result it puts in the Y-Bus) 
the FP A sends to the CPU. 

M8389 FPA 
1

Ma3;ol 
BUSY D31-00 H 

,----, 
CPU P2 H I M8394 

I wcs PORT CLOCK L 

L __ .J 
READ PORT L 

SEL ACC IN H 

READ ACCµPC 

CPU TRAP ACC L 

ACCSYNC H 

CPU DATA AVAIL L 

IRD STATE L 

BUS IB D07-00 H L __ 

NOTE: CPU-FPA 
INTERFACE (EXCEPT IB BUS) 
IS VIA PORT BUS 

CONTROL 

BRANCH 
LOGIC 

INSTR 
DECODING 

BUFFER 

MICRO 
ADDR 
SEQUEN-
CEA 

Figure 3-1 FP A-CPU Interface 

3-1 

DATA 
PATH 
LOGIC 

CONTROL 
STORE 

TK-4948 



Signal 

Y-BUS 

CPU P2 H 

PORTCLOCKL 

READ PORTL 

SELACC INH 

READ ACC UPC L 

TRAPACC L 

IB-BUS 

IRD STATE L 

CPU DATA AVAIL L 

ACCSYNCH 

Table 3-1 Interface Signals 

Description 

32-bit wide bus used for all data transfers to/from the CPU and the FPA. 

90 ns pulse used to synchronize the FP A to the CPU. The total 
microcycle for this clock is 270 ns. 

Basic 90 ns clock. 

Control line used by CPU to enable FPA tri-state output buffers. 

Signal used by the CPU to select the FPA. When asserted, enables the 
FPA to drive the Y-Bus for transfer of result data. 

CPU-generated signal. At the end of the microcycle in which it is issued, 
the FPA will stop its clocks so that its next microaddress (NUA) will not 
change. The next time the FPA asserts CPU RCV DATA L, the FPA will 
drive the Y-Bus with its next microaddress, and the FPA clocks will be 
restarted. 

Signal that forces the FPA to the microaddress present on the Y-Bus 
(9:0). Used to abort the FPA in cases of memory management aborts, 
interrupts, etc., and also used to invoke microdiagnostic routines in the 
FPA. 

Eight-bit wide op code bus. 

Signal that indicates to the FP A that data on the IB-Bus is an op code. 

CPU signal used for transmitting operands to the FPA. 

FPA-generated signal that indicates to the CPU that the FPA is ready. 
Also used for synchronizing FPA to the CPU for transmitting (data store) 
data, and for synchronizing transfer of operand data from the CPU 
during execution of a POLY instruction. 

3-2 



3.3 INTERFACE OPERATION 

3.3.1 Op Code Decoding 
Figure 3-2 illustrates the timing and functional flow that occurs when the FPA decodes an op code on 
the instruction bus (IB) during IRD ST ATE L. Within the FPA, the instruction decoding logic encodes 
the op code into an initial starting address for the microsequencer. The microsequencer then generates 
a microaddress for the control store. The control store generates output signals that control the data 
path logic to handle the operands that will be loaded into it from the Y-Bus. 

M8389 FPA 

YBUS BUFFER 

·--..., 
I M8394 CPU P2 H 

I wcs PORT CLOCK L 

L __ _J 

CONTROL f3\ OPCODE 
t-----------+----.i \.V DECODED 

(;;\CPU PUTS 
\VoPCODE 

ON IB BUSI 

CPU 

I 
IRD STATE L 

I 
L--

OPCODE 

NOTE: CPU - FPA INTERFACE 
(EXCEPT IB BUS) IS 
VIA PORT BUS 

IB BUS 

{.\CPU 
~ASSERTS 

IRD STATE L 

(';\ MICROADDRESS 
\::/GENERATED 

FOR CONTROL 
STORE 

DATA 
PATH 
LOGIC 

@ CONTROL STORE 
*CPU SENDS GENERATES FPA FPA SECOND OPCODE DATA PATH LOGIC OPCODE BYTE IF OPCODE 

SET-UP SIGNALS DECODE 2- BYTE OPC DECODE 

PO P2 PO Pl P2 

\ ~ 
I 
I OPCODE I .. 
I I ) ' t ( I r 

IB BUS _l __ o_Pc_o_o_E ____ _ 

I 
IRD STATE L --,..__ ____ ..., 

TK-5827 
*DECODE 
MICRO-
INSTRUCTION 

Figure 3-2 Op Code Decoding 

3-3 



3.3.2 Operand Loading 
Figure 3-3 illustrates the timing and functional flow that occurs when the CPU loads operands into the 
FPA. Initially, the CPU asserts CPU DATA AVAIL L, a synchronizing signal that indicates to the 
FPA that the CPU is putting an operand on the Y-Bus. Within the FPA, CPU DATA AVAIL Lis 
applied to the branch logic. 

The CPU DATA AVAIL L signal changes the next microaddress by ORing a one into the least signifi
cant bit (LSB). This causes the microsequencer to branch out of the loop it is in. While in this loop 
(which continually loads the FPA data path and branches on CPU DATA AVAIL L), the ACC SYNC 
signal is asserted. The CPU ignores the signal when passing data to the FPA except when passing a 
polynomial coefficient. 

{-;\ DATA FETCHED 

\::.; FROM \MORY 

r----, 
jM8394 

i OPERANDS 

I .---, 

M8389 FPA 

YBUS 

I 
I 
I 
I 

I 
I M8394 CPU P2 H 

I wcs [PORT CLOCK L 
--

I 
I CPU 

I 

I L __ J ~ 

..... CONTROL 

..... 
.... 
~ 

I ACC SYNCH 

~ 

/'A\ BUFFERED 
CJ DATA LOADED 

INTO EXPONENT, 
FRACTION DATA PATHS 

~ 

1 
BUFFER 

.---

) 

DATA 
PATH 
LOGIC I 

I 

~FPA~ 
\::..; ASSERTS I 

ACC 
SYNCH I 

CPU DATA AVAIL L 

I 
I 

~ 
BRANCH H 

~ LOGIC ~CONTROL~ 
MICRO STORE 

L.., ADDR 

I 
I 
I L_ __ J 

NOTE: CPU-FPA 

IB BUS ~ 
.... 

INSTR SEQUEN-

DECODING t---..i CER 

r 
E (EXCEPT IB BUS) INTERFAC 

IS VIA POR T BUS 

{::;\CPU ASSERTS 
\.V CPU DATA AVAIL L 

*MISC 
MICRO
INSTRUCTION 

*CPU 
SENDS 
OPERAND 

PO Pl 

Y BUS OPERAND 

I I 
CPU DATA AVAIL L l._ ____ ---'!r 

I 
ACCSYNCH~ 

Figure 3-3 Operand Loading 

3-4 

._____... 

TK-5831 



3.3.3 Result Storing 
Figure 3-4 illustrates the timing and functional flow that occurs when the FP A sends a result to the 
CPU. The CPU selects the FPA (since there may be other devices connected to the port bus) via SEL 
ACC IN H. The CPU then asserts READ PORT L. 

The FPA NANDs both SEL ACC IN and the inverse of READ PORT. When the result goes low, the 
branch logic ORs a one into the LSB of the next microaddress. This causes the FPA to branch out of 
the loop it was in (which continually passed the result back to the CPU and asserted ACC SYNCH H). 
The FPA will never drive the CPU Y-Bus unless both SEL ACC IN and READ PORT are asserted. 

I 

{;;\RESULT 
\::J SENT 

TO MEMORY 

\ 
RESULT 

I ,--.., 

M8389 FPA 

Y BUS 

I I I M8394 CPU P2 H 
(:;'\CPU -------
'-=/READS-!---__ I I wcs PORT CLOCK L 

FPA ! ~-_J 
I READ PORT L 

{.\CPU 
I SELACCINH 

\..V SELECTS~ 
FPA I CPU 

(";\CPU I 
~DESELECTS 

FPA 

(:;'\ FPA I 
\V ASSERTS 

SYNC I 
SIGNAL I 

I 
I L __ 

ACC SYNCH 

IB BUS 

NOTE: CPU - FPA INTERFACE 
(EXCEPT IB BUS) IS 
VIA PORT BUS 

*CPU 
SELECTS FPA 

PO P1 P2 

I 
SELACCINH y 

CONTROL 

INSTR 
DECODING 

**CPU 
GETS RESULT 

PO P1 

Y BUS 

I 
READ PORT L _=i _____ _ 

Figure 3-4 Result Storing 

3-5 

BUFFER 

MICRO 
ADDR 
SEQUEN
CER 

*CPU 

CONTROL 
STORE 

DESELECTS FPA 

PO P1 P2 

*MISC MICRO
INSTRUCTION 

**MOVE MICRO
INSTRUCTION 

DATA 
PATH 
LOGIC 

TK·5829 



3.4 CPU FORCE/READ MICROADDRESS CONTROL 
The CPU can inhibit operation of the FPA microaddress sequencer and force (load) a microaddress 
into the control store. This occurs when the CPU must abort a floating-point instruction due to a memo
ry management error or an interrupt. The CPU can also read the current microaddress that is applied 
to the control store. 

3.4.1 Force Microaddress Control 
Figure 3-5 illustrates the timing and functional flow that occurs when the CPU forces a microaddress 
into the control store. When the CPU asserts TRAP ACC L, the FPA microaddress sequencer output is 
inhibited and the FPA clocks are slowed (switch from 180 ns to 270 ns) and become synchronized with 
the CPU. Next, the CPU applies an address on the Y-Bus. This input is gated onto the BUS NUA 
(09:00) in the FPA and applied to the control store. 

~M-;3901 
I 
I 
I 
I 
I 
I 
I 
I CPU 

{.;\CPU 
\V PUTS 

MICROADDRESS 
ON Y BUS 

\ 
Y BUS 

,----, 
I M8394 CPU P2 H 

I wcs PORT CLOCK L 

L __ _J 

TRAP ACC L 

M8389 FPA 

CONTROL 

BUFFER 

{;\CPU 
v FORCES 

CONTROL STORE 
TO ADDRESS 7 

{.\CPU i------r---
\.:..J ASSERTS' -----------11---1----------+-+--------, 

TRAP I 
ACC L I 

I 
I 
I 
I 
L __ IB BUS 

NOTE: CPU - FPA INTERFACE 
(EXCEPT IB BUS) IS 
VIA PORT BUS 

BRANCH 
LOGIC 

INSTR 
DECODING 

CPU 
ASSERTS 
TRAPACC 

PO P1 

Y BUS MICROADDRESS 

I I 
TRAP ACC L l r 

MICRO 
ADDR 
SE OU EN-
CER 

Figure 3-5 Force Microaddress Control 

3-6 

r.;\OUTPUT 
\V INHIBITED 

DATA 
PATH 
LOGIC 

TK-5830 



3.4.2 Read Microaddress Control 
Figure 3-6 illustrates the timing and functional flow that occurs when the CPU reads the current FP A 
microaddress being applied to the control store. The CPU initially asserts READ ACC UPC L and 
then READ PORT L. These signals are gated in control logic in the FPA so the microaddress sequen
cer output is applied to the Y-Bus (after being buffered). 

{,;'\ FPA 
\::./ MICROADDRESS 

READ ONTO 

Y BUS M8389 FPA 

~ M83901 , ___ \ ________ _ 
Y BUS BUFFER I ~-~~~~~~~----~~~~~---t 

{;\ CPU I 
\V ASSERTS I 

READ PORT L 

{.;\CPU I 
\:..,,;ASSERTS I 

r---..., 
I M8394 ___ c_P_u_P_2 _H__. __ 

I WCS PORT CLOCK L 

L __ .J 

READ ACC µPC L.-, ----=---~READ ACC µPC 
SEL ACC IN H 

I CPU 

{,;\CPU ~ 
~ DEASSERTS ACC SYNCH 

SELACCINHI --......... ~~~~~~~----~~~~~~~~~---~~~~-

' {;\ FPA 
\V ASSERTS 

SYNC I 
SIGNAL I 

I 
I L __ 

NOTE: CPU - FPA INTERFACE 
(EXCEPT I B BUS) IS 
VIA PORT BUS 

IB BUS 

SEL ACC IN H 

READ ACC µPC L 

I 
_J 

I 
I 

INSTR 
DECODING 

*CPU NEEDS 
TO READ 
FPA 
MICROADDRESS 

PO P1 P2 

READ PORT L 

ACC SYNCH 

*MISC MICROINSTRUCTION 
**MOVE MICROINSTRUCTION 

MICRO 
ADDR 
SEQUEN
CER 

**CPU GETS 
FPA 
MICROADDRESS 

PO P1 P2 

Figure 3-6 Read Microaddress Control 

3-7 

CONTROL 
STORE 

*CPU DESELECTS 
FPA 

P1 P2 

DATA 
PATH 
LOGIC 

L 

TK-5828 



3.5 ERROR REPORTING 
The FPA contains microword parity error logic and condition code logic that report status/ errors to the 
CPU. 

3.5.1 Parity 
The FPA contains odd parity logic that monitors the control store for every microaddress the micro
address sequencer applies to it. If an error is detected, a 3-bit field is used to indicate (via the Y-Bus) 
what error(s) was detected. 

3.5.2 Condition Codes 
A condition code, programmable array logic (PAL in the FPA), is used to report errors (among other 
things) when operands are processed in the data path logic. These errors are: 

1. Reserved operand - negative zero 
2. Divide-by-zero 
3. Floating overflow 
4. Floating underflow 
5. Parity error 

3-8 



4.1 GENERAL 

CHAPTER4 
INSTRUCTIONS AND ALGORITHMS 

Table 4-1 lists the FPA instruction set. All of the arithmetic instructions require two operands which 
are stored in the FPA in temporary storage register locations TEMP 0 and TEMP 2. TEMP 0 corre
sponds to the sign of the first operand (OPI) and the content of exponent working register (EWR) ETO, 
and fraction working register (FWR) FTO. TEMP 2 corresponds to the sign of OP2 and EWR ET2, 
plus FWR FT2. 

Table 4-1 FP A Instructions 

Instruction Type Description 

ADD Arithmetic Add 
CMP Arithmetic Compare 
SUB Arithmetic Subtract 
POLY Arithmetic Polynomial 
DIV Arithmetic Divide 
MUL Arithmetic Multiply 
EMOD Arithmetic Extend modify 
MULL Arithmetic Multiply longword 
DIVL Arithmetic Divide longword 

CVTF, D, G, H - B Convert Convert from floating to byte 
CVTF,D,G,H-W Convert Floating to word 
CVT F, D, G, H - LW Convert Floating to longword 
CVT F, D, G, H - ROUNDED Convert Floating to longword Rounded 

CVT to F from D, G, or H Convert Convert D, G, D, or H to F 
Precision 

CVT to D from F or H Convert Convert F or H to D 
Precision 

CVT to G from H or F Convert Convert Hor F to G 
Precision 

CVT to H from F, D or G Convert Convert F, D, or G to H 
Precision 

CVT BYTE - F, D, G, H Convert Convert byte to floating 
CVT WORD - F, D, G, H Convert Convert word to floating 
CVTL WORD- F, D, G, H Convert Convert longword to floating 

4-1 



For arithmetic instruction using huge operands, the fraction part of the word requires two working reg
isters. FWR FTO and FWR FTI are used for OPI, and FWR FT2 and FWR FT3 for OP2. 

For the two FPA integer arithmetic instructions, operands are stored in FTO (D47:16) and FT2 
(D47:16). 

4.2 ARITHMETIC INSTRUCTIONS 

4.2.1 Add/Subtract 
Before two floating-point numbers can be added or subtracted, (Figure 4-1 ), the exponents must be 
made equal (prealigned). If they are not equal, the fraction with the smaller exponent must be right
shifted until the exponents are equal. For each right-shift made to- the fraction, the exponent is in
cremented. 

1. 

2. 

3. 

4. 

Exponents not 
aligned 

Smaller exponent 
prealigned 

Numbers added 

Result 

(.123 x 10+s) + (.456 x 1o+f 

.123 x 10s 

.000456 x 10s 

.123456 x 105 

Smaller exponent 
requiring 
prealignment 

.000456 x 10s 

At the start of an addition or subtraction, the FPA determines which exponent of two operands is 
larger, or if they are equal. It does this by subtracting the exponent of OP2 from the exponent of OPl. 
If the exponents are unequal, the FPA then performs a range test. This test determines whether the 
larger exponent is so much larger than the smaller that prealignment/addition is unnecessary. This is 
true if the number of prealignment steps is greater than one, plus the number of bits in the fraction. 
(For example, for F instructions there are 24 bits in the fraction. If the difference in exponents is great
er than 25, prealignment is unnecessary.) 

Prior to prealignment, the FPA determines if the operation required is a summation or a difference. A 
summation occurs for ADD when the two operand signs are the same. Summation also occurs for SUB 
when the two signs are not the same. Then, if the operation to be performed is a difference, the smaller 
number is negated before prealignment. 

4-2 



2E1 

WAIT LOOP 

ADDX: 
201: YES (FPA INSTR) 

CLEAR FWR [OJ 
CALL [FET.FLT] 
FLOATING DATA 
TYPE FETCH ROUTINE, 

703 

SUBTRACT OP2 
EXPONENT FROM 
OP1 EXPONENT 
CALL [SUM DI Fl 
SUBROUTINE 

ADD EXCEPTION 

SET STATUS TO 
REFLECT THE 
EXCEPTION CONDITION 

GO TO EXCEPTION 
HANDLER(PART 
OF STORE ROUTINE) 

SET CONDITION 
CODE V, C AND V 
BIT IF OVERFLOW 

STORE ERROR 
CONDITION CODES 

OP1.EOO 

MOVE OP2 
TO OUTPUT 
REGISTER 
CLOCK SIGN 
OUT WITH 
WITH[OP2] 

CALL SET SIGN 

MISC 
ROUTINE 

CALL [RESEV.TST] 
RESERVE 
OPERAND TEST 
TO DETERMINE 
IF THE OPERAND 
THAT EQUALS 0 
IS A RESERVED 
OPERAND 

204: 

SET STATUS 
ENB STORE 

ADD.NO.EXCEP 

CLOCK CC 

202: 

ADD OP.EOO 

MOVE SECOND 
OPERAND 
TO Q REG 

CALL ADD.OP.O.TST 
SUBROUTINE TO 
DETERMINE 
WHICH OPERAND = O 

Figure 4-1 Add Flow (Sheet 1 of 6) 

4-3 

BOTH EO.O 

ADD.BOTH.O 

CLEAR RESULTS 
CLEAR FWR [FTO] 
CLEAR EWR [ETO] 
CLOCK SIGN OUT 
WITH [ZERO] 

STORE 
FLOATING 
RESULTS 
ROUTINE 

JUMP TO 
WAIT LOOP 

TK·5877 



DIFFERENCE 
PREALIGN 

MOVE OP2 FRACTION 
(FWR[FT2] )TO FQ 
FOR PREALIGNMENT 
SETUP 

NEGATE FQ 
lSMALLER FRACTION) 

SHIFT FQ RIGHT 
AND DECREMENT 
EXPONENT 
DIFFERENCE 

ADD FQ TO FWR [O] 

LONG 
NORMALIZE 

OP1>0P2 

CLOCK SIGN OUT 
WITH [OP2], JUMP 
TO S.PREALIGN 

SUM'-----...------' 
PREALIGN 

SHIFT FQ RIGHT 
AND DECREMENT 
EXPONENT 
DIFFERENCE 

SINGLE NORMALIZE 

ROUND TEST 

SUM.DIF 
SUBROUTINE 

SUB EQ FROM 
EWR [ET4] TO 
EWR [ET1] 
CONSTITUTES 
RANGE TEST; 
SUBTRACT THE 
NUMBER OF 
FRACTION BITS 
PLUS 1 FROM 
EXPONENT 
DIFFERENCE 

SUB EWR [ETO] FROM 
EWR [ET2] TO EQ 
SUBTRACT LARGER 
EXPONENT FROM 
SMALLER 

SUBTRACT THE 
EXPONENT DIFFER
ENCE FROM THE 
NUMBER OF BITS 
IN THE FRACTION 

MOVE OP1 FRACTION 
TO FQ 

MOVE OP2 TO 
XWR [O] 

CLOCK SIGN OUT 

WITH [OP2], RETURN 

OP2 EXP = OP1 EXP 

NO 

ADD FRACTIONS 

SHIFT RIGHT 
RESULTS, SHIFT 
IN [ONE], INCREMENT 
EXPONENT 
(E.G., NORMALIZE) 

ROUND 
TEST 

DIFPATH 
NO 

NEGATE SMALLER 
FRACTION (FQ) 

DIFFERENCE 
PREALIGN 

Figure 4-1 Add Flow (Sheet 2 of 6) 

4-4 

TK-5880 



YES 

NEGATE RESULT 
SIGN OUT GETS OP'S 
SIGN 

DIFPATH 
OPERANDS 
EQUAL 

SUB1"RACT 
OP1'S FRACTION 
FROM 
OP2'S FRACTION 

CALL SET SIGN 

MOVE RESULTANT 
EXPONENT TO EQ 

MOV RESULTANT 
FRACTION TO FQ 

SHF LEFT FQ DEC EQ 

MOVE EQ TO 
EWA [OJ AND 
FQTO FWR [OJ 

RND.TST 

YES 

CLEAR EXPONENT, 
SIGN OUT ~o 
RETURN 

TK-5921 

Figure 4-1 Add Flow (Sheet 3 of 6) 

4-5 



SET.SIGN: 

SIGN OUT+- 1 RETURN SIGN OUT+- 0 RETURN 

WHEN THE SET.SIGN SUBROUTINE IS CALLED 
SIGN OUT CONTAINS OPl'S SIGN. 

LONG NORM. 

DECREMENT EQ 
SHF LEFT FWRO 

RETURN 

Figure 4-1 Add Flow (Sheet 4 of 6) 

4-6 

TK·5878 



NEITHER 
CONDITION 
IS TRUE 

; THIS FLOW ONLY SHOWS THE SINGLE FLOW 

RND.TST 

WHAT SIZE 
IS THE DATA TYPE 

D G H F 

ADD THE SINGLE 
ROUND CONSTANT TO 
THE FRACTION 

CASE BRANCH: IS 
EXPONENT NEGATIVE 
OR ZERO 

....---------.--......_ _______ EXPONENT IS 
EXPONENT IS 
ZERO, UNDERFLOW 

NEGATIVE, 
UNDERFLOW 

PERFORM AN 
EXCEPTION RETURN 

PERFORM AN 
EXCEPTION RETURN 

Figure 4-1 Add Flow (Sheet 5 of 6) 

4-7 

NORMALIZE 
FRACTION 
OVERFLOW 

TK-0881 



INCREASE CLOCK 
SPEED 

RETURN 

; THIS ROUTINE FETCHES ALL 
FLOATING POINT DATA TYPES 
;ONLY F IS SHOWN. 

FET.FLT 

CLEAR 2N D OP'S WR 

CLOCK SIGN OUT 
WITH OP1'S SIGN 

1i------, 
I LOAD FWR [4] I I MIDDLE SECTION I 
I I 
I I 
I I 
L--- Y~_J 

INCREMENT 
FRACTION BIT COUNT 

ADD EXPONENTS 

INCREASE CLOCK 
SPEED 

RETURN +1 IF 
NEITHER 
OPERAND= 0 
ELSE RETURN 

TK-5879 

Figure 4-1 Add Flow (Sheet 6 of 6) 

4-8 



To prealign the fraction with the smaller exponent, the exponent difference is placed in the exponent Q
register (EQ) and the smaller fraction is placed in the fraction Q-register (FQ). FQ is right-shifted and 
EQ is decremented until it is zero, at which time the fraction is properly aligned for the addition. 

After prealignment, the numbers are added and then normalized. Normalization consists of aligning the 
MSB of the resultant fraction with the MSB of the fraction data path. 

The sign of the result is set according to Table 4-2. 

If the exponents are equal, the fractions are added when the operation is a summation, or subtracted 
when the operation is a difference. If the operation was a difference, the result must be tested for zero, 
in which case the answer is a zero. 

The result is rounded and tested for underflow or overflow after the addition and normalization have 
been performed. 

Table 4-2 Add/Subtract Sign Calculation 

Original Signs Resultant Sign 

OPI Sign OP2 Sign OPI > OP2 OP2 > OPI 

Add + + + + 

+ + 

+ + 

Sub + + + 
(OP2-0Pl) + 

+ + + 

+ 

4-9 



4.2.2 Compare (CMP) Instructions 
A compare (CMP) instruction compares two operands by subtracting the second operand from the first. 
The compare instruction loads the results in the condition codes, where 

N~l 

z~1 

v~o 

c~o 

CMP Algorithm: 

if 
if 

OPl is less than OP2 
OP2 = OPl 

1. If signs are not the same, then N ~ OPI sign, and the condition codes (CC) are stored. 

2. If signs are the same, subtract the exponents OPl EXP - OP2 EXP 

3. If OPl EXP > OP2 EXP N ~ OPl 's sign, store CCs. 
If OPl EXP < OP2 EXP N ~ Not [OPl 's sign], store CCs. 

4. If OPl EXP = OP2 EXP, subtract fraction 

5. If fraction = 0, the Z bit gets a one (Z ~ 1 ), store CCs. 

If MSB of fraction = 0 but fraction =/:= 0, the N bit gets the sign of OPl (N ~ OPl 's sign), 
store CCs. 

If MSB of fraction = I, N ~ Not [OPl 's sign], store CCs. 

4.2.3 Polynomial (POLY) Instruction 
The Polynominal (POLY) instruction evaluates a polynomial expression of the form 

where the largest possible degree of x is 31. Three operand specifiers are required. 

I. Arg - the argument, (e.g., x) 

2. Degree - the highest power x is to be raised to 

3. Tbladdr - the address of a table of coefficients. The first coefficient in the table is actually 
the last coefficient in the polynomial. 

The polynomial expression is calculated as follows: 

[[[c (d) * x + c (d-1)] * x + c (d-2)] * x .... + c (1)] - x +c(O) 

where c ( d) = the coefficient of the largest powers of x. 

4-10 



After the multiplication, more than the normal number of bits are kept for the addition: 

F: 31 bits 

D: 63 bits 

G: 63 bits 

H: 127 bits 

The next coefficient is then added to the product, the number is rounded, and exceptions are checked 
for. The next iteration is then initiated. 

The FPA executes the POLY instruction by performing a multiply /addition iteration and then passing 
the result back to the CPU. This automatically starts the next iteration. If the instruction is done, the 
CPU must abort the FP A. 

POLY Algorithm: 

Initialization 

I. Store argument in ET8, FT8 {FT9 for Huge). 
2. Store first coefficient in ET2, FT2. 
3. Sign out - OPI sign XOR OP2's sign. 

NOTE 
OPl sign reflects the sign of the argument. 

4. Go to POLY iteration. 

POLY Iteration 

I. Move argument to ETO, FTO, (FTl}. 
2. Call (MUL.ROUTINE). 
3. Fetch next coefficient and load into ET2, FT2 {FT3 for Huge). 
4. Call ADD routine. 
5. Round and test for exception. 
6. Truncate to data type, and store in ET2, FT2 {FT3). 
7. Store condition codes and results. 
8. Sign out - Sign out XOR OPl 's sign. 
9. Go to POLY iteration. 

NOTE 
If an underflow occurs at the end of a MUL/ ADD 
iteration, the partial results are cleared, and an error 
code is stored. If the FU bit is set, the CPU will 
abort the FP A. The FP A automatically starts the 
next iteration. For overflow, the FP A stores the er
ror code and stops execution. 

4-11 



4.2.4 Divide (DIV) Instruction 

4.2.4.1 DIV - For a divide operation the quotient -- OP2/0PI. 

DIV Algorithm: 

1. Sign -- OPI SIGN XOR OP2 sign. 
2. Clear FQ. 
3. Load EQ with the fraction bit count. 
4. Subtract the OPI fraction from the OP2 fraction and then go to a DIV loop. 

DIV Loop: 

If previous result was positive: 

a. Shift FQ left, shift in one. 
b. Subtract OPI from OP2. 
c. Decrement EQ; if NEQ.O go to DIV loop. 

If previous result was negative: 

a. Shift FQ left, shift in zero. 
b. Add OPI to OP2. 
c. Decrement EQ; if NEQ.O go to DIV loop. 

DIV Loop Ends. 

5. Normalize. 
6. Round. 
7. Set the condition code bits and store results. 

4.2.4.2 DIVL Instruction - The DIVL instruction is for division of an integer by a longword only. 

DIVL Algorithm: 

I. Since the integers can be in 2s complement form, it is necessary to check for negative num
bers. If an operand is negative, it is negated and ETI is incremented (it was initialized to 0). 
Thus, if ETl = I after both operands have been checked, and negated if necessary, then the 
result should be negative. 

2. Is dividend ~ the divisor? If not, then results = 0. 

3. Align the MSB of both dividend and divisor with FRAC47. Initialize EQ to I and increment 
EQ for each alignment shift the divisor requires over that of the dividend. This yields the 
loop count for the divide loop. 

4-12 



DIVIDE Loop: 

FQ 

[

FTO: 

+/-

FT2: 

DIVISOR 

DIVIDEND/REMAINDER 

TK-6445 

Subtract (ADD) the divisor from the dividend (remainder). The inversion of the sign bit of 
the result is the next quotient bit, and it also controls the ALU function. After the divide 
loop, ETI is examined. If ETI equals 1, the result is negated. Overflow is then checked by 
examining FRAC47 for positive numbers. If FRAC47 equals one for positive numbers, then 
an overflow occurred. 

4.2.5 Multiply (MUL) Instruction 

4.2.5.1 MUL Algorithm - The MUL instruction executes MULF, D, G and H. The MUL algorithm 
is as follows: 

1. Sign ~ OPl 's sign XOR OP2's sign. 

2. Place OPl (multiplier) in FQ. 

3. Clear FT4 (product register). 

4. Load EQ with the fraction bit count. 

5. Shift FQ right. 

NOTES 
• If LSB = 1, add OP2 to FT4 and shift right. 

• If LSB = 0, shift FT 4 right. 

6. Decrement EQ; If NEQ.O, go to 5. 

7. Move FT4 (product) to FTO. 

8. Normalize 
When the fraction is normalized, the exponent is adjusted at the same time. For every left
shift, the exponent is decremented; for every right-shift, the exponent is incremented. 

4-13 



9. Round 
The FPA always rounds the result of a floating-arithmetic operation. This is accomplished by 
adding a round constant to the result. The round constant depends on the data type, and will 
have a one in the bit position which is one less than the LSB. (For example, for F the round
ing constant will be all zeros, with a one in bit position 31 ). 

I 0. Set CCs and store. 

NOTE 
The LSB of the multiplier depends on the data type. 
The Multiply /Divide (MUL/DIV) PAL selects that 
LSB according to the data type. 

4.2.5.2 MULL Instruction - The FPA MULL instruction is an integer multiply for longwords only. 
An integer multiply involves basically the same algorithm as MUL float, except it uses the integer data 
path. 

47 16 CENTRAL 
FQ SOURCE 

FUNCTION 

47 16 

FT2 I 
FT4 

TK-6446 

The test for overflow is also different: FQ at the end of the multiply should be the sign extension of the 
sign bit (FRAC47) of FT4. If it is not, an overflow has occurred. 

4.2.6 Extended Precision Multiply and Integerize (EMOD) 
The main function of the EMOD instruction routine is to multiply the multiplier (mier) extension by 
the multiplicand (mand), set up to use the multiply loop subroutine for the remaining mier bits, and the 
CVT.FL T subroutine. This flow also contains the zero operand handler, condition code setting, and an 
exception handler. 

The EMOD operation is as follows: 

TEMP--

OPI OP2 OP3 

~ ' l (MIER#MIER.EXT)*(MAND) 

' (CONCATENATE) 

The MIER.EXT is a byte for F and D, 11 bits for grand (left-justified), and 15 bits for huge 
(left-justified). 

There are two results to this instruction: 

1. Fraction (same data type as instruction) 
2. Integer (longword) 

4-14 



The hardware is set up so that the multiplier extended (MIER.EXT) is loaded into bits 32:16 of FT4. A 
microcode function can force the MUL/DIV PAL to select Ql6 as the default LSB of the multiplier. 
Thus, the multiplier extension is multiplied and then OPl is multiplied. This <..Hows the MUL routine to 
be shared. 

The EMOD flow is as follows: 

I. Load FT4 into FQ - (MIER.EXT ~ FQ). 

2. EQ ~ loop count (8 = F, D, 11 = G, 15 = H). 

3. Set Q 16 default. 

4. Perform MUL loop until EQ = O; MUL loop is same as in MUL routine. 

5. FQ ~ FTO; FQ gets multiplier. 

6. EQ ~ integer bit count. 

7. Call MUL routine. 

8. Set up for integerize routine. 

9. Call integer routine. 

I 0. Normalize fraction. 

11. Round. 

12. Test for integer overflow. 

I 3. Set CCs and store. 

4.3 CONVERSION INSTRUCTIONS 

4.3.1 Floating-Type-to-Integer Conversion 
The two FPA instructions, CVT(F, D, G, H) to (B, W, L) CVTR(F, D, G, H, L) convert any floating 
data type to any integer data type. 

All of the conversion instructions are basically similar; the major difference for the various data types is 
the loop counts. 

If the floating-point number is too large to be represented in integer form, the V-bit will be set, and the 
integer results will reflect the least significant bits of the fraction. 

The CVT flow is as follows. 

1. Subtract the bias from the exponent; this will indicate the number of integer bits. 

EQ ~ ETO-ET4 

where ETO = exponent 
ET4 = exponent bias 

4-15 



2. If EQ is negative, there are no integer results. Store a 0. 

3. If EQ is not negative, test for overflow. 

EQ = ETO-ET4 (number of bits in the integer) 
E7 ~ ET6-EQ 

where ET6 = integer bit count (e.g., 32 for longword). 

4. If ET7 is not equal to or less than 0, go to convert loop. 

NOTE 
ET7 = fraction bit count (number of integer bits). 

5. If the number of integer-bits is greater than the integer bit count, the number is too large to 
fit in resultant data type. 

6. If ET7 ~ zero, then test for significance. (That is, will any integer bits show up in results?) 

ET7 ~ ET7-ET4 ET7 = number of integer bits in data type of results. 

ET4 = number of integer bits in results. 

7. If ET7 < 0, then the result = 0 and the V-bit should be set. 

If ET7 ~ 0, then the V-bit should be set; go to the convert loop. 

Convert Loop: Move FTO to FQ 

FQ = FRACTION 

FT4 

INTEGER 
DATA 
PATH 

TK-6444 

Right-shift FQ and FT4 the number of times specified by EQ, which contains the number of 
integer bits. 

At the end of the convert loop, the number must be aligned with the fraction data path by 12 
double shifts. 

4-16 



4.3.2 Integer-to-Floating Type Conversion 
The FPA CVT(B, W, L)(F, D, G, H) instruction converts integer to floating type data. 

Any integer data type can be converted to any floating data type without overflow or underflow. Be
cause the CVTLF convert instruction can lose significance, this particular convert instruction requires 
rounding. 

1. The integer is loaded into the integer data path 

55 4847 1615 0807 00 

FTOI .... ___ ____...l____;~--~--iA __ G __ ~~--T--H ___.l____; ___ ..._l __ __.I 

2. Integer MSB is aligned with FRAC55. 

For byte the MSB = 23 
For word the MSB = 31 
For longword the MSB = 47 

This requires: 

4 double left-shifts for longword. 
12 double left-shifts for word. 
16 double left-shifts for byte. 

TK-6443 

3. After the integer is aligned with FRAC55, the MSB is checked; if it equals I the number is 
negated and the sign bit is set. 

4. EQ f- Floating bias plus the number of integer bits in the integer data type. 

5. The number is normalized (and rounded if CVTLF), CCs set, and result stored. 

Example: CVTLF where LW = 4000000 

55 48 47 
1. Load FTO: 

2. Align FRAC 47 with FRAC 55: t 041 000000 1 oo 1 
TK-8511 

4-17 



3. Load EQ with bias plus number of integer bits: EQ .,_ 80 + 20. 

4. MSB of fraction = 0, therefore sign .,_ 0. 

5. Normalize fraction. 

EO: AO I 

) ··I lso---o I 
AFTER 5 SH I FTS. 

TK-8512 

4.3.3 Precision Conversion 
There are four FPA instructions that convert one floating-point data type to another. They are: 

• CVTF(D,G,H) 
• CVTD (F, H) 
• CVTG (F, H) 
• CVTH (F, D, G) 

To convert from one floating-type to another: 

1. Subtract the bias from the exponent, where the bias is the original bias. 

2. Add the new bias. 

3. Round, if necessary (e.g., CVTFD does not require rounding). 

4. Check for overflow or underflow. 

Example: CVTFG 4080 

55 32 31 00 

LOAD ETO: I 81 FTO: 110--olo--ol 
55 32 31 00 

SUBTRACT BIAS: I 01 no: 110--ojo--of 
55 32 31 00 

ADD NEW BIAS: I 401 FTO 110--ojo--ol 
TK-6442 

No overflow or underflow (not possible for this convert) 

Adjust grand number and store results: 4010 

4-18 



5.1 GENERAL 

CHAPTER 5 
THEORY OF OPERATION 

The major circuit in the FP-11/730 (Figure 5-1) is data path logic that processes variable length oper
ands. The operands are passed to the FPA from the CPU in 32-bit sections via the CPU Y-Bus. The 
FPA buffers the Y-Bus onto its BUS FPA. The data path consists of exponent and fraction sections 
(fields), plus sign and condition code control sections. The data path logic functions in accordance with 
control signals generated in a control store. 

Floating-point instructions to be processed by the FPA are received from the CPU via an IB-Bus as 
BUS IB 07:0 and are applied to an instruction decoding/encoding circuit. This circuit encodes a float
ing-point op code into an address that is applied to a microsequencer circuit, as DECODE ROM 4:0 H. 
The microsequencer then generates a target address (BUS NUA 9:0 H) that accesses a certain 48-bit 
microword in the control store. The accessed microword gets clocked with control store registers which 
produce signals that set up the data path logic for operand processing. 

During instruction execution for each control store microword access made, a 10-bit (CS9:0) micro
pointer field (UPF) in the 48-bit microword is applied to a register in the microsequencer. In most in
stances, the UPF is used in the microsequencer as the base for the next microaddress that will be gener
ated and applied to the control store. 

The five LSB of the 10-bit micropointer field that is applied to the microsequencer can be branched on, 
in accordance with status bits generated by the data path logic and instruction type signals. The two 
LSB ( 1 :0) of the micropointer field is normally branched on via a branch control circuit. An extended 
branch function allows status signals to be ORed in with the next three LSB bits ( 4:2) in the micro
pointer field. Thus, a maximum of five bits can be branched on. 

Parity logic in the FPA monitors each word accessed from the control store. If a parity error is detected 
the parity logic generates an output (FORCE ADDR LOW) that forces all ten of the microsequencer 
output lines to logical 0. This all-zero output is the starting address of a parity handler routine and is 
applied as the next microaddress to the control store. 

Two buffers in the FPA function as a force/read circuit used during diagnostics to read the micro
sequencer control store address (BUS MUA 9:0 H) output onto the Y-Bus (as BUS Y D9:0H) for sub
sequent checking in the CPU. The circuit is also used to force a CPU-generated microaddress (from the 
Y-Bus) into the control store as the next microaddress. These force/read operations are used to test the 
microsequencer, control store, and data path logic. The force function is also used to abort the FPA and 
to execute some instructions. 

5-1 



Vi 
I 

N 

32 
0<31:0> 

~ l--"""'32~--1 
::::> D<31:0> 
CXI 

jiN;-RU-;10; D~O~;- - i 
~ '-'.:;._ __ _., I 
~ ID<19:10> INSTR ENC<4:0> I 

10 
0<9:0> 

FPAA READ µADDR 

fPAR°ITY - - - - - -
I 
I PARITY 

CHECKER 
PARITY 
CONTROL 

4 

D<3:0> 

CD I SIZE<1 :O> I 10 

I BUS NUA <9:,0> I EMOD 
I 
L------

I 
FPAC IR CLK I 

B DECODE <7:0> 

Figure 5-1 

CSR 

FPAC DPI CLK 

}

CONTROL 
SIGNALS 

FPA-11/730 Block Diagram 

FRAC/EXP 
SHIFT 
CONTROL 

PAR ERR 

FORCE ADDA LOW 

IDA-TA PATH "LoGiC- - ...., 
I EXPONENT 15:B I 

2901 BIT-SLICE I 
I DATA PATH 

FPAM I 
I 

EXTOO RO 

I 
I 
I 
I 
I I ~~~D/STOR, I 
L..-------_J 

TK-4962 



5.2 DAT A FLOW 
The CPU fetches op codes, puts them on the IB-Bus, and after the FPA decodes them, it (FPA) jumps 
to a microcode routine which executes the instruction. The CPU next sends the FPA operands via the 
Y-Bus. The FPA then operates on the data input in accordance with the instruction decoded from the 
operation code on the IB-Bus. The FPA result is then put on the Y-Bus and sent to the CPU·. 

As the FPA data path logic operates on the operands, it continually sends status signals to branch logic. 
These signals effect branches that modify the microaddress, prior to gating the microaddress onto BUS 
NUA (09:00). 

During an FPA-CPU data transfer, the CPU aborts the FPA if certain conditions occur. Also, during 
the data transfer the FPA reports exceptions or error conditions to the CPU via the Y-Bus until the data 
transfer has completed. 

5.2.1 Operand Fetching 
When the operands are being fetched, the FPA data path logic is conditioned to operate on data that 
will appear on the Y-Bus. Initially, an operation code decoded from the IB-Bus addresses a decode 
ROM in the FPA instruction register. The result is a 5-bit field that is applied to a 2909 micro
sequencer. The microsequencer then generates a BUS NUA 9:0 output that is applied to the control 
store PROM. The microword selected from the PROM causes a 48-bit field (microword) to select cer
tain CSR data path control signals. The signals effect the following conditions: 

1. The 290ls in both the fraction and exponent data paths are set up to clear the exponent work
ing register EWR (0) and fraction working register FWR (0) so that the first operand (OPl) 
to appear on the Y-Bus can be loaded into them. 

2. A load signal will be set to enable loading of the EWRs and FWRs. This signal is the result of 
certain values of CLK and MOD fields in the microword accessed from the control store 
PROM. 

NOTE 
The load signal is always cleared at the beginning of 
every instruction. 

3. Another BUS NUA 9:0 input applied to the control store PROM will access the appropriate 
fetch routine. In the FPA microcode th.is would appear as: 

CALL (FET.FL T) 
or 

CALL (INT.FLT) 

Once in the fetch routine, a microword will executes that continually loads a data path logic working 
register (WR) until the CPU asserts CPU DATA AV AIL L. 

5-3 



Figures 5-2 and 5-3 illustrate how an operand is loaded into the data path logic. For those instructions 
whose operands are more than one longword (D, G, or H), the FPA will become synchronized with the 
CPU on the first section, and then expect the remaining longwords to be passed in every other micro
cycle that follows, without further synchronization. 

31 16 15 14 07 06 00 

[FRACTION 2I s IExPIFRACTION ~ 

l BUS FPA 015 J SIGN PAL ] 1 FPAC 

~;;O~ITT I 
I DATA PATH 

I I 
I ~- --- I BUS FPA D14:07 
,~ 

I 
L---..J 

if=RA9cTI9oN", 
DATA IN CTL 

I DATA PATH 

BUS FPA PAL INP I HIGH 
D6:0 (HIDDEN BIT) D55:48 FRACTION 

I 
FPAL I 

FPAL 
MID2 

BUS FPA 031:16 _L FRACTION 
T~ 

I FPAK 

I 
MID 
FRACTION 

I FPAJ 

I LOW 

I 
FRACTION 

I FPAH 
FRACTION 

I EXTENSION 

I FPAF 

L----J 
TK-5821 

Figure 5-2 Single Format Loading 

After all data has been fetched the FPA clock speed will be increased from 270 ns to 180 ns. This 
increase occurs at the beginning of an instruction execution routine. 

Because the exponent of grand and huge data is not totally aligned with the exponent data path, part of 
it must be loaded into the fraction data path. This part must later be shifted into the exponent data 
path. A grand adjust microroutine will adjust both operands simultaneously. This is accomplished by 
placing OP2 into the exponent Q-register (EQ) and into the fraction Q-register (FQ), and then shifting 
both EQ and FQ while shifting working registers EWR (0) and FWR (0), which contain OPl. A frac
tion shift control circuit will then direct the MSB of FQ and FWR (0) to the shift-left inputs of EQ and 
EWR (0). 

5-4 



31 1615 00 31 16 15 1407 06 00 

[ FRACTION 4 I FRACTION 3 ] [FRACTION 2I s IExPJFRACTION ~ 

1 BUS FPA D15 J SIGN PAL 

J l 
FPAC 

lfx;Q;;EN'T, 
I DATA PATH I 
I 1----- I 

BUS FPA D14:7 1 I 
.~ I 
L-----' 
~---~ I FRACTION 

DATA IN CTL 
I DATA PATH 

BUS FPA INP HIGH 
D6-0 PAL 

D55:48 1 .... FRACTION (HIDDEN BIT) 

I FPAL FPAL I MID2 
BUS FPA D31:16 _I_ FRACTION 

f 

I FPAK 
MID 

BUS FPA D15:00 1 FRACTION z . 
I FPAJ 

I LOW 
BUS FPA D31 :16 FRACTION 

NOTE:v 

T~ 

FPAH 
I FRACTION 

LOADED DURING I EXTENSION 
SECOND LOAD 

I FPAF 

L---.J 
TK-5820 

Figure 5-3 Double Format Loading 

Only one huge word can be adjusted at a time because both the fraction working register (FWR) and 
the fraction Q-register (FQ) are needed to shift one huge fraction. The lower half of a huge fraction is 
initially loaded into FQ and the high half is placed in a temporary FWR. A left-shift is then performed 
and the MSB of the FQ is directed into the left-shift input for the temporary FWR. The MSB of the 
FWR is then directed into the EWR. Because of this, seven shifts are required for adjustment of a huge 
word. 

After grand or huge operands are adjusted, OPI EQ 0 and OP2 EQ 0 flags are set in the branch 3 
PAL. For F and D operands this is done automatically as the sign bits are clocked. However, this can
not be done with G and H operands because part of the exponents for these data types is loaded into the 
fraction data path. 

5.2.2 Result Storing 
When the CPU finishes passing operands and probing the destination address, it gets ready to accept 
the condition code (by asserting READ PORT L) and then loops until the FPA asserts ACC SYNC H 
or an interrupt occurs. If an interrupt occurs the CPU usually aborts the FPA and services the inter
rupt. 

5-5 



The FP A performs a similar function when storing data. It stores the condition codes and performs a 
branch that will loop until the CPU asserts READ PORT L. The FPA also asserts ACC SYNC in this 
word. 

The FPA must adjust the results during a store operation. This means shifting out of the hidden bit and 
performing the required number of shifts for the exponent into the fraction data path. The FPA will 
also ensure that a data path logic load signal is not asserted. 

5.2.3 Aborts 
The CPU aborts the FPA for: 

1. Interrupts 
2. Memory management errors 
3. Illegal address mode 
4. End of a POLY instruction 

The CPU aborts the FPA by forcing microaddress 7 into the FPA control store. This starts a routine 
that initializes some FPA registers and puts the FPA in a wait loop. 

5.2.4 Exceptions or FPA Errors 
For the FPA-CPU data flow interface there are error conditions the FPA must indicate to the CPU. 

1. Overflow (exception) 
2. Underflow (exception) 
3. Reserved operand 
4. Divide-by-zero 
5. Parity error 

If any of the error conditions occur, the FPA sets the C-bit in the condition codes, which is the LSB of 
the FPA output on the Y-Bus. Because the CPU examines this bit first during a result store operation 
the bit will immediately go to an error handler routine whenever it is set by the FP A. In the CPU the 
error handler receives a longword error code from the FP A. This error code, in conjunction with the 
condition codes, is used by the CPU to determine what exception occurred in the FPA. The error codes 
are constructed by FPA microcode and sent to the CPU. The values of the error codes are listed in 
Table 5-1. 

Code 

0 
0 
7F80 
FF80 
X-Xl (LSB= I) 

Table 5-1 Error Codes 

Error 

Overflow if V-bit = I 
Underflow if V-bit = 0 
Reserved operand 
Divide-by-zero 
Parity error 

5-6 



After the FPA passes the error code to the CPU via the Y-Bus, it sets up for the next instruction and 
then goes to a wait loop. However, if a parity error occurs the FPA stays in microword 1, and the CPU · 
must then force the FPA to start again. 

5.3 TIMING 
The FP A operates with 180 ns and 270 ns cycle times. The fast 180 ns cycle time is the normal FPA 
cycle time and is used during instruction execution. The slower 270 ns cycle time is used when the FPA 
is waiting for operands or instructions from the CPU, or when it is storing results to the CPU. Timing 
logic (Figure 5-4) consists of a clock generator PAL and NAND gates. Figures 5-6 through 5-11 illus
trate FPA timing. 

The timing logic generates DPO CLK L, DPl CLK L, and REG CLK L which are applied to control 
store, data path logic, branch logic, and control logic. Although these clocks are produced by three 
separate NAND gates (for loading purposes), they are generated identically. The timing logic also gen
erates IR CLK L and IR CLK H which are applied to instruction decoding logic. A 45 ns TRISTATE 
DISA H output, which occurs at the start of every timing cycle, disables FPA transceivers to prevent 
them from being simultaneously enabled. 

In the timing logic (Figure 5-4) the clock generator PAL generates either SLOW PATH ENAB H or 
FAST PATH ENAB H, plus FP PHl and CPU PHO H (Figures 5-5 and 5-6). These are applied to 
gates used for selection of a 270/180 ns cycle time. Clock PAL inputs ENB CLK (1) H and BASIC 
CLOCK H (memory controller PORT CLOCK L) inputs are used to generate DPl CLK L, DPO CLK 
L, and REG CLK L. BASIC CLOCK His also used for generation of IR CLK Hand IR CLK L. 

When FAST CYCLE L is not asserted the slow path is enabled. During slow path operation the clock 
generator PAL generates SLOW PATH ENB, and the CPU P2 H clock (Figure 5-7) controls when the 
FPA clocks are asserted (Figure 5-8). 

Figure 5-8 illustrates fast/slow cycle gating. During normal fast path gating (Figure 5-9) in the timing 
logic, when TRAP ACC or READ ACC UPC are not asserted by the CPU, FP PHl and FAST PATH 
ENAB H are used to generate CLK ENB H. 

If the CPU asserts TRAP ACC Lor READ ACC UPC L, and the CPU is operating in PHI, FP PHl 
H and FAST PATH ENB H from the clock PAL are used to generate CLK ENB H (Figure 5-8). 

When the CPU asserts READ ACC UPC L, the clock generator PAL generates CLOCK OFF that 
disables the fast and slow path gates. This prevents the FPA registers from being clocked. 

Also, a fast signal (internal to the clock generator PAL) is cleared when the CPU asserts TRAP ACC 
L. This ensures that the FPA clocks will be restarted in synchronization with the CPU. 

The READ ACC UPC L input to the timing logic also causes BUS NUA from the microsequencer to 
be sent to the CPU when CPU RCV DATA Lis asserted. 

When the CPU asserts FORCE UADDR L, the FAST CYCLE signal (internal to the clock generator 
PAL) is reset, and the FPA fast cycle is stretched (as required) so that, at the end of the current cycle, 
the FPA will be in synchronization with the CPU. 

Figures 5-10 and 5-11 illustrate slow path timing with the FPA synchronized with the CPU. This can 
occur when the FPA slows its clocks (via microcode function) or when the CPU asserts TRAP ACC L 
or READ ACC UPC L. Either signal will slow the FP A clocks until they are synchronized with the 
CPU. 

5-7 



Vl 
I 

00 

FROM 
CPU 

CPU P2 H 

TRAP ACC L 

READ ACC µPC L 

PORT CLOCK L 

CPU RCV DATA L 

EXTEND CLK (1) H 

ENB CLK (1) H 

..... C_L_OC_K_.., SLOW PATH ENB HI 

GEN 
PAL 

FPAC 

FP PH1 H 

FAST PATH ENB H 

CPU PHO H 

L 
CLK OFF (1) L 

TO 
FORCE/READ 
LOGIC 

t--C_L_R _ST_A_T_E_L_TO 

EXT FUNCTION 
CONTROL PAL 

ri; CLQ';K - -

I FPAC 

I IRD +FORCE H L ___ _ 

Figure 5-4 Timing Logic 

DPO, DP1, CLK L REG CLK L 

_ _J 

TRISTATE 
DISA L 

IR CLK H 

IR CLK L 

TK-4955 



FPA 

FPA 

I· ONE CPU CYCLE ~1 
TO T90 T180 T270 

CPUPO_J I 

CPU P1 

CPU P2 

MEMORY CTLRI 
PORT CLOCK 

FP PH 0 

FAST PATH 
ENB 

SLOW PATH 
ENB 

CLKENB~ I \ 
DP1, 0 CLK L 
REG CLK L 

FAST 
CYCLE L~ TOGGLE CLOCK 

OCCURS HERE 

Figure 5-5 FPA Synchronization via Toggle Clock 
During CPU PHO 

___ r 

'""'"---

•TK-4959 



Vl 
I 

0 

FPA 

FPA 

r 1o111------- ONE CPU CYCLE-------..i~ 
To T90 _____ ___.! T180 

CPU PO__J I I 

CPU Pl---------' 

CPU P2 

MEMORY CTLR 
PORT CLK ----,._ __ _, 

FP PH 0--------" 
FAST PATH _______ _ 

ENB 

SLOW PATH 
ENB 

CLKENB _j 

DPl,O CLK L-----. 
REG CLK L 

'~------'' 

T270 

I 

'--~--------'' 

.______,! 

'----
FAST .---------------------------------
CYCLE L·--------"'-TOGGLE CLOCK 

OCCURS HERE 

Figure 5-6 FPA Synchronization via Toggle Clock 
During CPU PH 1 

TK-4960 



u. 
I 

14-------0NE CPU CYCLE------"" I· 
TO T90 T180 T270 

CPUPO_j 

CPU P1 

CPU P2 

MEMORY 
CTLR PORT CLK---, 

FPA 

_tffi_ 

FP PHO· 

FAST PATH 
ENB 

SLOW PATH 
ENB 

CLK ENB 

DP1,0 CLK L 
REG CLK L 

FAST 
CYCLE L --------------'\_TOGGLE CLOCK 

OCCURS HERE 

Figure 5-7 FPA Synchronization via Toggle Clock 
During CPU PH2 

L 

L 

TK-4963 



["'§> NStlSO NS°G~iNG - - - - , 
~~C_P_U_P_2_H~~~~~~--i FPAC 

I SLOW PATH ENB H I 
I 

FP PH 1 H 
FAST PATH ENB H 
CPU PH 0 H 

BASIC CLOCK H 
A. NORMAL FAST PATH GATING 

I 210 Nsi1aO"'Ns"'GAT100 - -
CPU P2 H 

I SLOW PATH ENB H 

I 
(TRAP ACC +READ ACC UPC) 

I FP PH1 H 

FAST PATH ENB H 
CPU PHO H 

L __ _ 
BASIC CLOCK H 

B. FAST PATH GATING DURING ASSERTION OF 
TRAP ACC LOR READ ACC UPC L 

~o Nsi180Ns <Wm - - - -
I SLOW PATH ENB H 

FPAC 

FP PH1 H 
FAST PATH ENB H 
CPU PHO H 

L __ 
C. SLOW PATH GATING 

BASIC CLOCK H 

Figure 5-8 Fast/Slow Cycle Gating 

5-12 

DP1 CLK L 
DPO CLK L 
REG CLK L 

DP1 CLK L 
DPOCLK L 
REG CLK L 

DP1 CLK L 
DPO CLK L 
REG CLK L 

TK-5817 



I· ONE CPU CYCLE 
.. , T270 

TO T10 

CPUPO__J I 
T180 

I 

CPU Pl 

CPU P2 

MEMORY CTLR--, 
PORT CLOCK I 

FPPHO__J 

FP PH 1 

Vl 
I FAST PATH ENB 

VJ 

SLOW PATH ENB 

CLK ENB 

DP1,0 CLK I 
.1. ..1 180 NS 180 NS 180 NS REG CLK .. 

FAST CYCLE FAST CYCLE FAST CYCLE 

TK-4958 

Figure 5-9 Fast Cycle Timing 



Vi 
I 

FPA 

I Nl4>-------0NE CPU CYCLE-------1 

TO T90 T180 T270 

CPUPO_J 

CPU P1-------.... 

CPU P2 

MEMORY CTLR---, 
PORT CLOCK .... ---

FPPHO__j 

TRAP ACC H + 
READ ACC UPC H-----

FPA 

CLK ENB-------_. 

FAST PATH------................ """" 
ENB H 

SLOW PATH 
ENB H 

DP0,1 CLK L----------------
REG CLK L 

Figure 5-10 FPA Synchronization via CPU Force Trap or Read 
During FPA PHO 

L_ 

L_ 

L_ 

TK-4964 



Vl 
I 

Vl 

FPA 

I ... ·------ONE CPU CYCLE ------·I 
TO T90 

CPUPO_j 

CPU Pl-------

CPU P2 

MEMORY CTLR 
PORT CLOCK ---, ___ _ 

FP PH O__J 

T180 T270 

TRAP ACC H + 
READ ACC UPC H ----

FPA 

CLK ENB 
FAST PATH _______ _ 

ENB H 

SLOW PATH 
ENBH --------

DP0,1 CLK L-----------------. 
REG CLK L 

Figure 5-11 FPA Synchronization via CPU Force Trap or Read 
During FPA PHI 

L 

L 
L 

TK-4965 



5.4 INSTRUCTION DECODING 
The FPA instruction decoding logic (Figure 5-12) decodes a floating-point instruction (received on the 
IB-Bus) into: 1) a 5-bit starting offset address for the microsequencer logic and 2) a 2-bit data size code 
(SIZE 1 :0 H). The data size code indicates to the control logic the data type size (F, D, G or H) that 
will be received from the CPU via the IB-Bus, and also causes the FPA to be set up to process data type 
operands. Instruction decoding is performed via a ROM, an extended function control, and a multi
plexer. 

At the start of a floating-point routine, an operation code (BUS IB D7:0 H) is applied, as the address to 
a 512 X 8 ROM (Figure 5-12). The ROM output is DECODE ROM 7:0 Hand causes the micro
sequencer to generate a microaddress (BUS NUA 9:0 H) for control store. This is the starting address 
of the FPA routine in the control store (see Table 5-1 and Figure 5-13). At the ROM output, DECODE 
ROM 6:0 is applied to a multiplex latch that is controlled by IRD STATE Land IR CLK H. The latch 
outputs are INSTR ENC 4:0 Hand SIZE 1:0 H. 

At the latch output the SIZE 1 :0 H lines are decoded with the data type (F, D, G, or H) that will be 
received from the CPU via the Y-Bus. Table 5-2 explains SIZE field decoding. 

OPERAND 
DECODE 
ROM 

DECODE 
ROM 

BUS 18 D<07:00> (OP CODE) 7:0 H 

DECODE 
ROM 
4:0H 

(512 X8) 
FPAA 

FROM -----EXTEND 
Y-BUS BUS FPA D18 H EXTENDED FUNC(1) H 
XCVR FUNCTION 

FROM FORCE UADDR 
CONTROL 

FORCE/R EAD.....;(;....;.1 )_H __ _ 

CONTROL 

FPAA 

IRD STATE L 
FROM{ 
CPU TRAP ACC L 

FROM IR CLK L 
CONTROL-----.--

SIZE 1:0 H 
Value 

0 
1 
2 
3 

DECODE ROM 07 H 

I RD+ FORCE H 

IR CLK L 

MULTIPLEXER 
LATCH 

FPAA 

FROM BUS FPA D17:10 H 
Y-BUS 
XCVR 

Figure 5-12 Instruction Decoding 

Table 5-2 SIZE 1:0 Encoding 

Data Type 
Indicated 

F (Single-precision) 
D (Double-precision) 
G (Grand) 
H (Huge) 

5-16 

TO 
NEXT 
MICROADDRESS 
GENERATION 

INSTR ENC 
4:0 H 

SIZE 1:0 H 

TO 
INSTRUCTION 
DECODE 
PAL'S 

TO 
CONTROL 

TK-4962 



0 

FROM { 
CPU 

INSTRUCTION 
PC ODE DECODING 

~ LOGIC 

BUS IB D7:0 H ~ r ID BUS FPAA 

v 
IRD STATE L 

~ 1• "' ·' 
.. ~ yl "' 
~ ~ l ·~ ,. 
JI .. 

.ll •' 

·' 
~ I 
.~ I 

·' I 
" I ·' , 
~ .. 
1 ... 
\ ·' 1 ,, 

I 
I 
I 

I l 

(A ., ,, 
A 

I 
I 

, . 
~ ., 
·' 
·• 
1 
I 

" I 
1 .~ 

1 l 

i ~ 

(I I 
\ 
1 I 
,1 " ) ' \ ' 
I I 
t) " " 
:;, .. 
\ ·' 
·' •' 
lJ •' 

ADDRESS 

231 
239 

241 
249 
251 
259 

261 
269 
271 
279 

281 
289 
291 

2C1 
201 
2E1 
2F1 

DECODE ROM 4 H /!: 
DECODE ROM 3 H 7 
DECODE ROM 2 H 7 
DECODE ROM 1 H 7 
DECODE ROM 0 H 7 
~ 001[l EROM

0 
~ -:::=-

"'~ r 

• JIJ 1 
,.,,L 7]914 
!''•01) I 3915 
CVT r,o,~,H-•>! , 3916 
CVT P',O,G,M••>• 'Hl 7 
c 'JT ,. , 0, -;, f-l••>t.11 13918 
CVT r , 0 , •'; , H • • > t."' POU~OE:) JJCl19 

c·rr To ,. troll' n,c; H 13920 or 
("IT To 0 t !' ·~..., rr rt 1H21 or 
c 'IT To G ~ !' O"' ·~ or r 13922 

C"IT To ~ fr"'" r,n G '392 3 or 
C'IT dYTt••>l",0,c;,ri 

13924 

C'IT :.IOPD••>r,o,G.H 
392'5 
'926 c·1r L worio-·>r,o,~,rf 1:n 

"4 1.1LL ,8 
O[Vt. 
II: <TE'IO[O t)p COCE cro1 
rlOT A'f rP~ INHPUCTIO'I 

MICRO-
SEQUENCER 
FPAA 

....... 2909 
BUS NUA ...... 
9:8 H 

PULLUP AH 
E1 

~ 

~ 

2909 BUS NUA 
_.. 

BUS NUA I 
9:0 H __J 

fCoNTROL1 
STORE I 

PULLUP AH 

7011 
ADD,F'l..TI 

E2 
7:4 H . 

2909 
BUS NUA 

_.. 
3:0 H 

...... E3 

...... 

ADD SECTION OF MICROCODE 

OP sue In1truet1on 

tOGGLE LClllD, 
CLJ:l f\l.'Rtf'TOJ, 
CAl..LlF'ET,fLT] 

1 
I 
I 

L ___ _J 

v1ro,o• 

1Return fro~ tht rET,rLT 1uoroutlne1 one ot t 
GQfil 

A.t'O,'JP,E0,01 
~av EWPlET2l TO tQ, 

MOV rwPtP'T2l TO ro, 
BPANCH[OPl ,EQ,O • :JP2,EO,OJ, 

-;r,;A/AOD ,:JP ,O, TST 

•Peturn from tne fET,fLT 1uDrout1r 
d:lli5 

fiDO,OP,NE,01 
TQGGLl. LOAD, 

SUEi EWll l ET'" 

TK·5834 

Figure 5-13 Op Code Instruction Decoding 



Figure 5-14 illustrates the latch signal inputs during normal and diagnostic checks operation. During 
microdiagnostic operation the CPU causes BUS FPA Dl7:10 to clock through the instruction decoding 
circuit multiplexer to check its operation. Clocking is enabled by BUS FPA D 18 H and TRAP ACC L, 
which causes IRD + FORCE H to be ANDed in the FPA clock generator with CPU P2 H to produce 
IR CLK H. If IRD STATE Lis not asserted, it then selects BUS FPA Dl 7:10 to be loaded into the 
instruction register. BUS FPA Dl 7:10 then causes INSTR ENC 4:0 H and size (1:0) to be output 
from the instruction register. 

The EXTENDED FUNC (1) H output of the extended function control is asserted when the operation 
code on the IB-Bus indicates an extended op code is on the IB-Bus. This is applied to the decode ROM 
and alters the ROM address during the next instruction decode state. 

.----, 
L-1 L-~ 

L--v MUX 
FPAA INSTR ENC 

DECODE 
ROM ROM6:0 H 
FPAA 

IRD STATE L 
SEL 

IR CLK L 
CLK 

A. MUX NORMAL SIGNAL INPUT 

BUS FPA D17:10 H 

r--1 
MUX 
FPAA 

I 1------" 
I 1------v l __ J IRD STATE H SEL 

IA CLK H 
CLK 

INSTR ENC 
4:0 H 

SIZE 
1:0 H 

B. MUX DIAGNOSTIC SIGNAL INPUT 

TK·5B26 

Figure 5-14 Instruction Decoding MUX Signal Inputs 

5.5 NEXT MICROADDRESS GENERATION 
The FPA microsequencer logic (Figure 5-15) generates a sequence of 10-bit microaddress outputs (as 
BUS NUA 9:0 H) that are applied to the control store. They cause the control store to generate data 
path logic setup control signals for operand processing. 

The microsequencer logic (Figure 5-15) consists of three 2909 4-bit microprogram sequencers, plus con
trol circuitry. Although the three 2909 chips could generate 12 output bits, they are configured in the 
FPA to generate only a 10-bit output. This is all that is required to access the control words contained in 
the control store. 

The microsequencer has two data inputs. One is a direct input driven at the start of an FPA operation 
by DECODE ROM 4:0 H from the instruction decoding logic. The other input is a register input that is 
driven by a 10-bit micropointer field (CS9:0 H) from the control store. This input can be branched 
upon. 

The three 2909 microprogram sequencers (Figure 5-16) contain a four-input multiplexer that is used to 
select: 

1. an address register 
2. the direct inputs 
3. a microprogram counter 
4. a stack file 

as the source for the next microinstruction base address. The selection is done via encoding on two 
output lines of address select logic (Figure 5-15). The encoding is controlled via a UBCTL 4:2 (1) H 
input from the FPA in the FPA branch logic. 

5-18 



FROM 
CONTROL 

CS9:0 H 

STORE --~~~~~~~--~ 

2909 
MICROPROGRAM 
SEQUENCER 

TO 
ADDR/
HOLDING 
REG 

FPAA 
,----1 
I I 
I (FIG. 5-16) I 

__ D_E_c_o_D_E_R_o_M_4_:o_H __ .i To I I L ____ J 
MUX 

FORCE 
UADDR (0) H OUTPUT 

TO r----, 
ENABLE 

OUTPUT I I 
TRISTATE CONTROL I (FIG. 5-16) I DISABLE L 

I I 
}"OR" I 

EXT BRAN 3: 1 H INPUTS 
L ___ j 

FORCE LOW UADDR L TO ,----, 
OUTPUT 

I I CONTROL I UBCTRL 4:2 (1) H 
ADDRESS l (FIG. 5-16) I 
SELECT I I LOGIC 

IRD STATE L TO I I 
LIT CLK 2 L 

FPAA MUX 
L ___ _J 

EXTEND CLK (1) H 

BUS NUA9:0 H 

Figure 5-15 Microsequencer Logic 

ADDR REG 
CS <g:O> REGISTER 

INPUT 
AR 

DECODE ROM 4:0H D 

STACK 
POINTER 
& 
FILE 

MICRO 
PC 

BRANCH 

INCRE
MENTER 

FORCE ADDA 
LOW 

Figure 5-16 2909 Microprogram Sequencer 

5-19 

TO 
CONTROL 
STORE 

TK-5825 

NUA<9:0> 

TK-4945 



The 2909 address register consists of four D-type, edge-triggered flip-flops enabled by DPO CLK L 
from the FPA timing logic. Because the register (REG EN) lines are hard-wired to logic ground (Fig
ure 5-13), new data is entered into the register on the low-to-high transition of DPO CLK. The address 
register output is available at the multiplexer in the 2909 as a source for the next microinstruction 
address (microaddress NUA 9-0 H). 

The direct input to the multiplexer is driven by DECODE ROM 4-0 H from the instruction decoding 
logic. This input is used for the next microaddress in the IRD state. 

The CN input to the 2909s causes the microprogram register in the 2909s to sequentially increment on 
the next DPO CLK cycle with the current NUA 9-0 H output, plus 1. 

The stack (file) content can also be used as the source for the next microaddress. The stack is used to 
provide return address linkage when executing microsubroutines. The stack contains a built-in pointer 
(SP) that always points to the last file word written. This allows stack reference operations (looping) to 
be performed without a push or pop. 

The SP operates as an up/down counter with separate PUSH and FILE ENB inputs. When the FILE 
ENB input is low and the PUSH input to the 2909s is high, a push operation is enabled. This causes the 
stack pointer to increment and the file to be written with the micro-PC, which contains the address of 
the current microinstruction, plus 1. 

If the FILE ENB input to the 2909s is low and PUSH control is low, a stack pop operation occurs. This 
implies the usage of the return linkage during this cycle and thus a return from the subroutine. The 
return address is the calling address, plus 1. The next low-to-high DPO CLK transition will cause the SP 
to be decremented. If FILE ENB is high, no action is taken by the SP regardless of any other input. 

The stack pointer linkage is such that any combination of pushes, pops or stack references can be 
achieved. Only microinstruction subroutines can be performed. Since the stack is 4 words deep, up to 
four microsubroutines can be nested. 

The FORCE ZERO input applied to the 2909 microproogram sequencers is used to force the 10 BUS 
NUA 9:0 H outputs of the sequencer to zero. When FORCE LOW UADDR L is asserted in the 
force/read logic, all 10 outputs are low regardless of any other inputs (except OUTPUT ENABLE). 
Each BUS NUA output bus also has [at the 2909 tristate output (Y3-)] separate OR logic that permits 
a logical 1 to be forced at each BUS NUA 9:0 output. This allows branching to different micro
instructions on programmed conditions. 

5.6 NEXT MICROADDRESS BRANCHING 
Branching is performed on status signals from the data path logic and instruction signals. The signals 
cause either BUS NUA 1 :0 H or BUS NUA 4:0 H at the microsequencer output to be affected. The 
branch logic consists of a status register and five PALs. Four of the PALs are used for normal branch
ing on the two low NUA bits, and all of the PALs are used during extended branching. 

Status signals from the data path logic are applied to the status register. They are clocked by DPO CLK 
L, and then appear as inputs for the branching PALs. The PALs are controlled via UBCTL 4:0 ( 1) H 
from the control store. This field selects which status bit or combination of bits, will be directed onto 
the BRANCH 1 :0 H output lines of the PALs. Table 5-3 lists signals selected by the branch control 
field. 

Extended branching affects NUA 4:2 of the microsequencer output. This branching is sometimes used 
for wide branches, and is selected by the CLK CTL and MOD fields in the control store. Of UBCTL 
branch control bits 4:2, the upper two bits ( 4:3) determine what type of extended branch is to be taken. 
Table 5-4 lists the extended branches. 

5-20 



Table 5-3 Branch 1 :0 Encoding 

UBCTL 
4:0 (1) H Branch P ALs Output 
Value (Hex) Lines 

BRANl BRANO Special Conditions 

0 EXPCOUT GRAND 
I SIGN OUT HUGE 
2 CPU DATA AVAIL SINGLE ASSERT OPTION SYNC 
3 CPU DATA AVAIL ADD+ SUB ASSERT OPTION SYNC 
4 FRACCOUT EXTFUNC 
5 OPl SIGN EMOD 
6 FRAC55 F3 SINGLE 
7 OP2 SIGN ADD+ SUB 

8 EXPCOUT EXP15 F3 
9 SIGN OUT OP2=0 
A CPU DATA AVAIL ZERO 
B CPU DATA AVAIL ZERO 
c OP2 SIGN (OPl + OP2)/ =0 
D OPI SIGN (OPl + OP2)/ =0 
E FRAC55 F3 0 
F FRACCOUT EXP15 F3 
10 MUL II FRAC55 Q3 
I I F47.F3 · EXTOO QO 
I2 FRAC(55:00) =0 DIV 13 
I3 FRAC(47:I6) =0 ZERO 
I4 FRAC(55:00) =0 CPU RCVDATA 
IS ZERO ZERO NULL BRANCH 
I6 ZERO CPU RCVDATA OPTION SYNC 
I7 FRAC(55:7) =0 ZERO 

I8 EXPONENT=O EXP15 F3 
19 OPI =0 OP2=0 
IA ZERO ZERO CALL SUBROUTINE 
IB SUMPATH ZERO 
IC ZERO (OPI + OP2)/ =0 RETURN FROM 

SUBROUTINE 
ID ZERO (OPI + OP2)/ =0 RETURN FROM 

SUBROUTINE 
IE ZERO ZERO RETURN FROM 

SUBROUTINE 
IF ZERO EXP15 F3 RETURN FROM 

SUBROUTINE 

5-21 



UBCTL 4:3 (l) H 
Value 

0 
1 
2 
3 

5.7 CONTROL STORE 

Table 5-4 Extended Branching 

BRAN4 

DOUBOPER 
SIZE! 
DOUBOPER 
INSTRENC2 

Extend Branch Bits 

BRAN3 

ADD+ SUB 
SIZEO 
ADD+ SUB 
INSTRENCl 

BRAN2 

FRAC31-EXT00=0 
FRAC(31:0) =0 
ZERO 
INSTRENCO 

During floating-point calculations a sequence of microinstructions (data control signals) is accessed 
from control store (Figure 5-17) and applied to the data path logic. After operands from the Y-Bus are 
loaded into the data path logic, the latter then operates on the data input in accordance with the com
mands it receives from the control store. The FPA control store consists of a PROM and several regis
ters. 

FROM 
CONTROL 
LOGIC 

ENB LITERAL L 

REG CLK L 

DPI CLK L 

CONTROL 
STORE 
PROM cs 00-47 H 

FPAN 

MICROWORD 
FIG. 5-18 

CS9:0 H 

CS 14:10 H 

CS 19:18 H 

CS 47:20 H 

CS 9:0 H 

MICRO-
POINTER 
FIELD 
FPAD 

FPAC 

BRANCH UBCTL 4:0 (1) H 

CONTROL 
FPAD 

CLOCK LIT CLK 2 L 

CONTROL 
FPAD CLK CTL 2:0 (1) H 

SHIFT 
CONTROL SHF 0 (1) H 
FPAE 

TO 
SH 2 

TO 
NEXT 
MICROADDRESS 
GENERATION 

LITERAL 
CONTROL 

UPF 9:0 (1) H 

TO 
NEXT 
MICROADDRESS 
GENERATION 

r CONTROL 
LOGIC 

Figure 5-1 7 Control Store Logic (Sheet 1 of 2) 

5-22 

TO 
Y-BUS 
XCVR 

TO 
PARITY 
LOGIC 

TK-4951 



The control store PROM contains 1 K 48-bit microwords. Each of the microwords contains a 2-bit par
ity field. When the control store PROM is addressed with BUS NUA 9:0 H from the microsequencer, 
the total 48-bit microword PROM output is applied to control store registers. These registers then gen
erate data path logic control signals, plus a micropointer field that is applied to the microsequencer. 
Figure 5-18 illustrates the microword accessed from the PROM. Table 5-5 explains the fields in the 
microword. 

(.) 
z 
>-en~ 
(.) 
(.) 

<t: P1 PO 

47 46 45 

EXPONENT 
CONTROL 

44 39 38 

>-
u. !- ICROPOINTER-

FRACTION RAMA RAM B Ci u.. 
BRANCH 

~ 

0 J: ~LITERAL-CONTROL ADDRESS ADDRESS ~ tJ) CLOCK CONTROL 

30 29 26 25 22 21 20 19 18 17 15 14 10 09 08lo1 00 

~ 

CONTROL STORE MICROWORD 

CONTROL STORE 

PROM CONTROL 
CS 47:00 H 

~ ~~~~iTERS 
FPAN v 

TK-5838 

Figure 5-18 Control Store Microword 

5-23 



cs 

47 

46 

45 

44:43 

42:39 

Function 

ACC SYNC 

Parity bit P 1 

Parity bit 0 

Exponent destination 
control field (EXP 
DST) 

Exponent data path 
control (EXP CTL) 

Table S-S Control Store Field 

Description 

Option synchronization signal 

Parity bit for checking CS<14:13>, CS<36:30>, CS<39>, CS<44:43> and CS<l2:10>. 

Parity for checking CS<8:0>, CS<l7:15>, CS<21:18> and CS<39:37>. 

Controls the destination of the ALU output. Normally, the ALU's output can be clocked into ei
ther the working register (WR) or Q-register. 

EXP DST<l:O> 

00 
01 
10 
11 

Destination 

Q-register 
Working register (WR) 
Right-shift and write the WR 
Left-shift and write the WR 

This field encodes the 2901 ALU functions for both the source and destination. Most of the func
tions can be clocked into the working register (WR) or Q-register, depending on the exponent 
destination code. The functions marked with an asterisk(*) can be clocked into the working regis
ter (WR) only. 

EXP CTL<3:0> Function EXP CTL<3:0> Function 

0000 Dor 0 1000 Q-1 
0001 B-A 1001 Q+l 
0010 A-B 1010 A 
0011 B+A 1011 Q 
0100 AORB 1100 0 
0101 AANDB 1101 SHIFT 
0110 A-Q 1110 A+8+1 
0111 A + B + FRAC COUT 1111 NOOP 



cs 

38:30 

29:26 

25:22 

21:20 

Function 

Fraction data path 
control (FBAC CTL) 

A address field 
(A ADDR) 

B address field 
(B ADDR) 

Modification field 
(MOD) 

Table S-S Control Store Field (Cont) 

Description 

This field directly corresponds with the 2901 signals I 11 :8. 

This field addresses the A port of the 2901 's working register (WR) from both the exponent and 
fraction data path. If the clock field equals clock sign out, then the lower 3 bits of the A address 
control which function the sign out flip-flop is clocked with. 

A ADDR<2:0> 

000 
001 
010 
011 
100 
101 
110 
111 

SIGN OUT Gets: 

OPl SIGN 
OP2 SIGN 
OPI SIGN XOR OP2 SIGN 
OPI SIGN XOR SIGN OUT 
ZERO 
ONE 
ZERO 
ONE 

This field addresses the B port of the 2901 's WR for both the exponent and fraction data path. 
This is the write back address. 

This field extends the use of other fields, as well as enabling special functions. 

1. MOD<l:0>=00 
2. MOD<l:0>=01 
3. MOD<l:O>=lO 
4. MOD<l:O>=ll 

Noop 
Extend clock field 
Enable MUL/DIV 
Enable load or store 

The clock extend function doubles the functions that can be performed by the clock field. 

The enable MUL/DIV mod field enables some conditional logic for multiple and divide. The op 
code control determines what is actually enabled. 



cs Function 

19:18 Shift field (SHF) 

Table 5-5 Control Store Field (Cont) 

Description 

The enable load or store field makes it possible to load or store sections of the fraction and expo
nent data path. Whether a store or load is performed is determined by the load signal which is set 
by a clock code. The actual section to be loaded or stored is determined by the shift field. 

This field has many different functions, depending on the operation being executed. 

LOAD 

1. 

2. 

3. 

4. 

STORE 

The SHF field determines what section is loaded. 

SHF=OO First floating 
Load: SIGN EXP<7:0> FRAC<55:32> 

SHF=Ol Mod load: EXT<7:0> 

SHF = 10 Second floating load or integer load or integer load 

FRAC<31:16> or FRAC<55:00> depending on whether or not an integer is being 
loaded. If an integer is bt;ing loaded the lower 16 bits must be masked out by the mi
crocode. 

SHF= 11 Third huge load: EXT<7:0> FRAC<55:32> 

1. SHF=OO First word store: SIGN#EXP<7:0> =FRAC<55:32> 

2. SHF = 01 Condition code store 

3. SHF = 10 Second word store: FRAC<31 :00> 

4. SHF= 11 Huge store: EXT<7:0>#FRAC<55:32> 

SHIFTS - The shift field also determines what is shifted into the exponent QO and RO, FRAC55 
Q3 and R3 and EXTOO QO and RO. 



VI 
I 

N 
......) 

cs Function 

Table S-S Contr.ol Store Field (Cont) 

Description 

Right-Shift - The shift field controls what is shifted into the MSB of the fraction data path. 

SHF<l:O> FRAC55 Q3 FRAC55 R3 

00 
01 
10 
11 

EXPONENT QO EXPONENT RO 
EXTENSION RO FRAC COUT 
ZERO EXTOOROSAVE 
EXTENSION RO ZERO 

When the clock field equals alter fraction shift, the shift field is extended to include: 

00 
01 
10 
11 

EXTENSION RO EXPONENT RO 
ONE ONE 
ZERO EXTOO RO SA VE 
ZERO ZERO 

Left-Shift - when performing a left-shift, the shift field determines what is shifted into both the 
fraction and exponent. 

SHF<l:O> EXPONENT FRACTION 

QO RO QO RO 

00 FRAC55 Q3 FRAC55 Q3 ZERO ZERO 
OlZERO ZERO ZERO FRAC55 R3 SY 
lOONE ONE ONE ONE 
11 FRAC55 Q3 FRAC55 R3 QIN FRAC55 Q3 

The last selection is for huge alignment shift; with the high part of the huge word in a QR and the 
low part in FQ it is possible to shift the entire huge word at once. Upon completion the huge word 
will be in FWR 55 - Ext 0 and FQ 55:7. Note that Qin drives the lower extension bit in the Q
register; this is always a zero for nondivide shifts. 



cs Function 

17:15 Clock control field 

Table 5-5 Control Store Field (Cont) 

Description 

This field can perform up to 11 functions when used in conjunction with the clock extend mod 
function. 

MOD not equal to clock extend. 

1. CLK CTL=OOO Enable clock for OPl =0 & OP2=0 

This enables the clocks of two flip-flops (internal to a PAL) that indicate which, if any, of 
the operands are zero. The OP2=0 flip-flop is loaded with the EXP=O signal, while the 
OPl =0 flip-flop is loaded with OP2=0. 

2. CLK CTL=OOl Clock Huge R3 Save 

This clock code saves FRAC55 R3 until the next time it is clocked by this code. This is 
Y1 needed to save R3 for huge divide. 
N 
00 

3. CLK CTL=OlO Null 

4. CLK CTL = 011 Alter fraction shift 

With this code, in conjunction with the shift field, it is possible to shift a one and zero into 
the MSB of the fraction SP and Q-register. 

5. CLK CTL= 100 Clock sign out 

This code enables the resultant sign flip-flop to be clocked. What function gets clocked into 
it is determined by the low three bits of the A address field. 

6. CLK CTL= 101 Clock OP2 sign 

This signal enables the clocking of the second operand's sign bit. 



cs Function 

Table 5-5 Control Store Field (Cont) 

Description 

7. CLTCTL=llO ClockCC 

This clocks the condition codes. The shift bits will set the V and C bits; this is for an error 
condition. Normally both shift bits should be cleared. 

8. CLK CTL= 111 Clock OPl sign 

This signal enables the clocking of the first operand's sign bit. 

MOD= Extended clock function 

1. CLK CTL=OOO Toggle Alter Store 

This inverts the normal store from a floating store to an integer store, and vice versa. This is 
to be used for EMOD. 

2. CLK CTL = 001 Clock fast cycle 

This toggles the fast clock flip-flop. When this flip-flop is set, the cycle time is 180 ns; when 
clear it is 270 ns, in synchronization with the CPU. 

3. CLK CTL=OlO Enable Literal 

This enables an eight-bit literal onto the FPA BUS D 14 - 007. This can be loaded into the 
exponent data path and the fraction datapath. When loading a constant into the fraction 
data path, the constant is loaded into EXT <6:0> and FRAC<30:23> simultaneously. In 
most cases it is desired to load the extension with a constant; the other sections should be 
masked out. 

4. CLK CTL=Ol 1 Toggle load flip-flop 

This clock code sets the load flip-flop, so when the MOD field equals a load or store, the 
hardware interrupts it as a load. This signal clears the next time this code is asserted. The 
load signal is initialized to a zero by the FORCE UADDR signal. 



Vl 
I 

w 
0 

cs 

14: 10 

9:0 

Function 

Branch control field 
(BCTL) 

Micropointer field 
(UPF) 

Table 5-5 Control Store Field (Cont) 

Description 

5. CLK CTL= 100 Clock sign out 

This code enables the resultant sign flip-flop to be clocked. 

6. CLK CTL= 101 Alter CIN 

7. 

This clock enable forces the next state's fraction carry in to equal the current state's fraction 
carry out. This is used for huge addition. 

CLK CTL= 110 Default Q16 

The code sets a bit which forces the multiplication logic to select FRAC 16 QO as the LSB of 
the multiplier. This is used to multiply the mier extension. This signal is initialized to zero 
by the FORCE UADDR signal. 

8. CLK CTL = 111 Extended Branch 

This code extends the branch from 2 to 5 bits wide. (See the sequencer section for the actual 
branches.) 

This field selects what status bits are to be ORed in with the UPF to generate 
the next microaddress (NUA). See the sequencer section for specific branches. 

This field specifies the next microaddress. The UPF can be altered by the branch field. 

The lower 8 bits of this field serve as a literal field. When this function is used, the UPC must be 
used to address the control store. 



S.8 DATA MANIPULATION 
Floating-point operands that the CPU passes into the FPA are processed in data path logic (Figure 5-
19) that manipulates the data (per control store output signals) until a result is sent to the CPU. As 
Figure 5-19 illustrates, the data path logic consists of exponent and fraction sections. All of the sections 
consist of 2901 4-bit slices. 

FROM OUTPUT ENABLE 
CONTROL--·-------. 

fFRACiioN'DATAPATH - - - - - I 
FROM {.o..;1 8;;.-:o,___ __ --.----+---..... HIGH FRACTION 

LOGIC 

CONTROL 

STORE A,B AOOR 3:0 H 

FROM _____ _ 

Y-BUS BUS FPA 0 31 :00 H XCVR.._ ____ _ 

FROM 
BRANCH 
LOGIC 

TO 
Y-BUS BUS FPA D 15:08 H 
XCVR 

FROM {EXT OUTPUT ENB L 
CONTROL 
LOGIC _DP_O_C_LK_L -------1 

FROM L' B:OH 
CONTROL 
STORE LOW A/B AOOR 3:0H 

MIO 2 FRACTION 

MIO FRACTION 

LOW FRACTION-

FPA L 
E93,94 
(SAME AS SH1, E86) 

FPAK 
E90,101,91,102 
(SAME AS SH1,E86) 

FPAJ 
E92, 100, 89, 99 
(SAME AS SHl, E86) 

FPA H 
EBB, 9B, B7, 97 
(SAME AS SHl, EB6) 

FPA F 
E96 
(SAME AS SH 1, EB61 

FPA F 
E95 
(SAME AS SHl, EB6) 

Figure 5-19 Data Path Logic (Sheet 1 of 3) 

5-31 

031:16 H 

15:00 

31:16 

015:12H 

011:B H 

BUS FPA 
031:00 H 

TO 
Y-BUS 
XCVR 

TK-4954 



FROM 
CPU 

CPU P2 H 

TRAP ACC L 

READ ACC µPC L 

PORT CLOCK L 

CLOCK 
GEN 
PAL 

CPU RCV DATA L 
FPAC 

EXTEND CLK (1) H 

ENB CLK (1) H 

BASIC CLOCK H 
CLK 

SLOW PATH ENB HI 

FP PH1 H 

FAST PATH ENB H 

CPU PHO H 

L --
CLK OFF (1) L 

TO 
FORCE/READ 

CLR STATE L 
LOGIC 

TO 
EXT FUNCTION 
CONTROL PAL 

ri;ci:OCK - -

I FPAC 

I IRD +FORCE H L ___ _ 

Figure 5-19 Data Path Logic (Sheet 2 of 3) 

DPO, DP1, CLK L REG CLK L 

_ _J 

TRISTATE 
DISA L 

IR CLK H 

IR CLK L 

TK-4955 



FROM 
CONTROL 
LOGIC { 

DP1 CLK L 

EXP 7:0 ENB L 

17,8 (1) H 

f'4-err °'MiCROPROcESSOR - - - - - ~M 706- - - - - - - - - - - - - - - - -, 

I• 2901 

11 r i;~ 
) 

I OREG/REG I _1'"" STACK 
"V 

I 1 DATA INPUT a 
MUX -) CARRY GENERATE G I SELECT REGISTER I-

11 8:6 BIT I-
CARRY PROPAGATE P 

111 
SHIFTER i--

ALU r jV_ ~ DESTINA· I- MUX 
TION 

f ~~ ~ ) 
ALU MSB F3 

11 DECODER LATCH ¥ 

I' 
) ~ Fl 

F(0+1+2+3) = 0 
"V 

RAM 
MUX j. (REG-

"' STACK) I-

f PONENTDATAPATH - - - - - - - - - - - - - - - - - - I 

FROM 
CONTROL 
STORE 

Ll:.-~ 
~~ --,, ~ BIT 

L-.,1 SHIFTER 
~ 

~v v ALU 
"'Y 

Oj ~ 

FROM 
Y-BUS 

EXP AB ADDR 3:0 H 

I 2:0 

l BUS FPA D 14:7 
1 

EXP CODE w] 
~EXPONENT FRO:VR { 

CONTROL 
STORE FRAC 

.~ 

DECODE 
PAL 

FPAM 

EXTEND 
CLK (1) H -ENS 

.~ 

FROM { 
CONTROL 
LOGIC 

CIN EXT 
00 H 

TO 
SH 2 

f--

a 

A PORT SELECT 
B"l'OR~HT 

~ 
LATCH ~ 

CENTRAL PROCESSOR CLOCK CP 

~ ~ 
MUX 

MUX 
14:11 

ALU INPUT 
BUS FPA 

ALU INPUT l D8-14 
SELECT I 2:0 v y 3:0 ... 

-. OPERAND J 
SELECT 

_fALU OUTPUT.L 
DRIVER ~:11~ 

ALU FUNCTl_Q_N SELECT I 5:3 

11' TO I, 1DESTINATIOJ 
DECODER A ~U 

11 OUTPUT ENABLE OE 

¥ •I xcv 

IL --------------~----::U ---------------
..... r--------

r ~ FPAM 

10:7 ) E83 D10:8 
(SAME AS EB6) n 00' Jl 

Figure 5-19 Data Path Logic (Sheet 3 of 3) 



5.8.1 2901 Four-Bit Slice 
The 2901 consists of a working register (RAM) (Figure 5-20), Q register, arithmetic logic unit (ALU), 
and control circuitry. 

y 

OUTPUT MUX 

ALU 
R S 

SOURCE MUX 

DIRECT 
DATA A B 
INPUT RAM 

WORK Q REGISTER 
REGISTERS 

TK-4942 

Figure 5-20 2901 Block Diagram 

Working Register - The working register (WR) is the scratchpad area where results of arithmetic and 
logical operations can be stored. 

Arithmetic Logic Unit (ALU) - The ALU is the data path component used to perform FPA arithmet
ic/logical operations, per commands in the control store output. The R inputs are applied to the ALU 
via a 3-input multiplexer, the inputs of which are direct data inputs, the output of the RAM A-port, and 
a zero. The ALU S input includes the RAM A- and B-ports, Q-register outputs, and a zero. 

ALU output data (F) can be routed to the Q-register or WR, or multiplexed with the A-port output 
data from WR to drive the FPA bus. The ALU function decode determines the arithmetic or logical 
function to be performed, while the ALU destination decode determines which of the indicated regis
ters the data is routed to, or whether it will be a data output of the device itself. 

Q-Register - The Q-register is loaded from the ALU and is used to accumulate the quotient during 
division routines. It also functions as a temporary storage register. The Q-register output can be loaded 
back into itself, anad shifted right or left as during fraction, multiplication, and division operations. 

5.8.2 Exponent Data Path 
The exponent data path (Figure 5-21) is used for exponent operations, loop counting, and overflow and 
underflow testing. The exponent data path consists of four 4-bit microprocessors, each containing 16 
working registers (WR). All 16 WRs are addressed via EXP A/B ADDR 3:0 from the control store. 
Some of the WRs contain constants which are listed in Table 5-6. 

5-34 



Vi 
I 

w 
Vi 

CS<19:18> 
CS<43> 

EXTEND CLK 

F RAC <18: 17> 
EXTOO QO 

EXTOO RO SAVE 

EXP 
+ 
FRAC 
SHIFT 
CTL 

r;9;-Bl~LI~ 
DATA PATH FPAM 

RAM 
SHIFTER RAM 

Q 

SHIFTER 

L __ 

CS<21 > _,,--------..... 

Q 
REG 

CARRY-IN 

CS<20> 
EXPONENT 
DECODE 

CS<17:15> 
CLOCK 
ENABLE 
DECODER 

-------------.., 

ALU 
FUNCTION CTL 

SOURCE 
OPERAND CTL 

DESTINATION 
CTL 

PORT A,B RAM 
ADDRESS 

CLOCK 

CS<29:22>-------' 

DPICLK--------------" 

Figure 5-21 Exponent Data Path Logic 

8 
D<14:8> 
EXPO Y 

<( 

8 fr 
D<14:7> ~ 

al 

TK-4953 



WR Address 

F 
E 
D 
c 
B 
A 
9 
3 

Table 5-6 Exponent Working Register (RAM) Constants 

Constant 

7FFF 
0400 
07FF 
OOFF 
4000 
0000 
0001 

18 

Use 

Huge maximum exponent 
Grand bias 
Grand maximum exponent 
Float and double maximum exponent 
H-bias 
Zero constant 
One constant 
Fraction bit count 

The exponent data path source, ALU, and bit 16 of the exponent destination field 06:8) are controlled 
by a decoding of EXP CODE 3:0 (1) H from the control store. Because of this, all of the 2901 functions 
(Table 5-7) are not available. 

EXP CODE 3:0 (l) H 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1110 
1110 
1111 

Table 5-7 Exponent Function Selection 

5-36 

Function Selected 

DORO 
B-A 
A-B 
B+A 
AORB 
AANDB 
A-Q 
A + B + FRAC COUT 
Q-1 
Q+l 
A 
Q 
0 
SHIFT 
A+B=l 
NOOP 



5.8.3 Fraction Data Path 
The fraction data path consists of 16 2901s and, therefore, is 64 bits wide. This width accommodates· 
loading of huge operands. The fraction data path (Figure 5-19) consists of high fraction (55:32), middle 
fraction (31:00), and integer fraction (47:16) sections, plus an extension data path EXT (7:0). 

The fraction data path is controlled by Is:o and A, B ADDR 3:0 H from the control store. Bits Is:o 
select the fraction function and A, B ADDR 3:0 H control scratchpads. The low and middle fraction 
sections are loaded directly from the FPA data bus. Part of the high fraction section (55:48) is loaded 
with data that passes through the hidden bit PAL. 

Of the 16 64-bit working registers (RAM) in the fraction data path, seven contain constants as listed in 
Table 5-8. 

BR Address 

E 
F 
G 
c 
B 
A 
09 

Table 5-8 Fraction Data Path Working Register Constants 

Constant 

0000000000004000 
0000000000000080 
0000000000000400 
0000008000000000 
OOOOOOOOOOOOOOFF 
OOOOOOOlFFFFFFFF 
OOOOOOOOOOFFFFFF 

Use 

Huge round 
Double round 
Grand round 
Floating round 
Ext mask 
Mid frac and ext mask 
Integer mask 

The FPA internal 32-bit bus (BUS FPA D31 :00) is not wide enough to load the entire 64-bit wide frac
tion data path. Working registers in the fraction data path are, therefore, loaded in sections. Whenever 
the working registers are loaded, the control fields are set up to perform 

WR(X) ~ D or 0. 

Also, sections of the fraction data path can be forced to NOOP (no operation) by forcing 17 to the 
fraction 2901 'slow. This changes a write WR function to a NOOP. The control store microword deter
mines which sections are written via the modify and shift (MOD and SHF) fields. 

5.8.4 Sign Logic 
The FPA indicates to the CPU, via BUS FPA 015 H, what the resultant sign of the operation is. Sign 
logic consists of a PAL that is clocked with data from the FPA control logic. 

5-37 



The sign PAL (Figure 5-22) latches the sign of the first and second operands, the resultant sign (SIGN 
OUT), and a SUMPATH signal that indicates whether a sum or a difference operation is to be per
formed from an ADD or SUBtract instruction. The sign PAL contains a SIGN OUT register (resultant 
sign) that can be loaded with: 

1. First operand's sign (OPl) 
2. Second operand's sign (OP2) 
3. First operand's sign XOR second operand's sign 
4. First operand's sign XOR SIGN OUT 
5. One 
6. Zero 

BUS FPA 015 

REG CLK 
ENB CLK 7 

D Q -~.---OPl SIGN 

ENB EXP 

BUS FPA 015 

CTL 
LOGIC t------D Qt---"---SIGNOUT 

REG,CLK 
ENB CLK 5 

REG CLK c 
ENB CLK 9----,__~~ 

D Q OP2SIGN 
EXP A ADDA <02:00> 

FPAC 

Figure 5-22 Sign Control PAL Logic 

TK-4944 

For most instructions performed by the FPA, the sign bits of the first and second operands are loaded 
into the PAL OPl and OP2 flip-flops, during operand load routines. The SIGN OUT flip-flop in the 
PAL is then clocked with the resultant sign. 

When the FPA processes a POLY instruction, the OPl flip-flop in the PAL is loaded with the argument 
sign. Once loaded, it remains the same throughout the instruction. The OP2 flip-flop in the PAL is 
loaded each time with the coefficient sign. The PAL SIGN OUT flip-flop then contains the current 
resultant's sign. The sign PAL receives POLY Hand EXP A ADDR 2:0 H inputs. It generates BUS 
FPA D15 H, SUMPATH (1) H, OP 1, 2 SIGN (1) H, and SIGN OUT (1) H outputs. The POLY H 
signal is from the FPA branch logic, and EXP A ADDR 2:0 His generated in the control store. BUS 
FPA Dl5 His sent to the CPU and the other outputs [SUMPATH (1) H, OPl, 2, SIGN (1) H, SIGN 
OUT (1) H] are applied to the FPA branch logic. The sign PAL SIGN OUT function is controlled via 
the control store EXP A ADDR 2:0 H output. The functions selected, via encoding of this field, are 
listed in Table 5-9. 

5-38 



Table 5-9 Sign PAL Function Control Encoding 

EXP A ADDR 2:0 H 
Octal Value 

0 
1 
2 
3 
4 
5 
£. 
u 

7 

5.9 MAINTAINABILITY FUNCTIONS 

SIGN OUT PAL Signal 

OPI SIGN 
OP2 SIGN 
OPI SIGN XOR OPS SIGN 
OPI SIGN XOR SIGN OUT 
ZERO 
ONE 
ZERO 
ONE 

The FPA contains logic that enables the CPU to force the FPA to any microaddress. This is done via a 
TRAP ACC L or READ ACC UPC L signal, and microaddress force/read logic that consists of a 
force/read control, transceiver enable, and bus transceiver. 

5.9.1 Force Microaddress 
When the CPU generates TRAP ACC L the microaddress force/read logic (Figure 5-23) generates 
FORCE UADDR (1) H. This is used to inhibit the microsequencer output. The CPU applies an ad
dress to the Y-Bus transceiver as BUSY 009:00 H. The BUS NUA 9:0 H output of the FPA micro
address force/read logic is then applied to the control store in lieu of the inhibited microsequencer BUS 
NUA 9:0 H output. 

5.9.2 Read Microaddress 
During microdiagnostics the microaddress read logic is used to read the microsequencer BUS NUA 9:0 
H output onto the Y-Bus for subsequent transmission to the CPU. During a force read operation (Fig
ure 5-23) the CPU asserts READ ACC UPC L. This inhibits operation of the FPA clocks. It also places 
the microsequencer BUS NUA 9:0 H output onto the FPA data bus via the microaddress force/read 
logic bus transceiver. The next time the CPU generates RCV DATA L, the BUS NUA 9:0 H output 
will be applied to the Y-Bus as BUS Y 09:0 H. The RCV DATA L signal will also restart the FPA 
clocks. 

5.10 PARITY LOGIC 
Parity is checked on each 48-bit microword that the microsequencer accesses from the control store. 
There are only two parity bits and each corresponds to certain sections of the microword. Figures 5-24 
and 5-25 illustrate which fields are checked by the parity bits. The parity logic consists of three parity 
checkers, a PROM and a parity control PAL. The sum of the parity bit and the bits in the field that it 
covers should be even. 

5-39 



A. FORCE M ICROADDRESS 

TRISTATE DISA L 

CPU PHO H ..., 

CLOCK OFF (1) ' ..... 

FROM [ 
CONTROL 
LOGIC 

FROM 
CPU 

TRAPACC L 

B. READ MIC ROADDRESS 

TRISTATE DISA L 

CPU PHO H 

CLOCK OFF (1) L..,i 

FROM [ 
CONTROL 
LOGIC 

FROM 
CPU 

READ ACC PC L --

FORCE/ 
READ 
CONTROL 

FPAA 

FORCE/ 
READ 
CONTROL 

FPAA 

_1'. 

[ BUS FPA D00-09H ~ 

~ 
XCVR 
ENABLE 

ENABLE 
FPAA ...... 

FORCE/READ c 
UADDR (1) H 

BUS FPA D00-09H 

" 
...... XCVR 

ENABLE 

ENABLE 
FPAA ...... 

FORCE/READ r-:1 
UADDR (1) H 

---

BUS 
XCVR 

FPAA 

TO 
MICROADDRESS 
SEQUENCER 

BUS 
XCVR 

BUS NUA 00-09 H ~ 
TO 
CONTROL 
STORE 

FPAA K BUS NUA 00-09 H] 

" 
FROM 
MICROADDRESS 
SEQUENCER 

TO 
--- MICROADDRESS 

SEQUENCER 

TK-4949 

Figure 5-23 Force/Read Microaddress Control 

When a parity error is detected the parity logic generates a FORCE LOW UADDR L output that 
drives the microsequencer NUA 9:0 H output to logical 0. This starts a parity handler routine that 
simply loops in microaddress 0, continuously storing the parity error. The CPU initially interprets this 
as an exception and asks for an error code. The FP A then passes the error code. The FP A passes the 
parity error again which the CPU interprets as a parity error. The FPA must be forced out of the error 
routine by the CPU. 

The parity control PAL output is BUS FPA 03:0 Hand FORCE LOW UADDR L. Of the 4-bit field 
output, BUS FPA 000 will be set to logical 1 whenever parity error 1 or 0 is detected. This bit informs 
the CPU that a parity error has occurred. 

The error bits that become set in the parity control PAL will remain set on the BUS FPA 03:0 H 
output lines until cleared by FORCE UADDR (1) H. They are placed on the BUS FPA bus by the 
READ UADDR (1) H signal. 

5-40 



>
t::: 
a: 

u <t z a.. 
>-(/)~ 
u 
u 
<t Pl PO 

47 46 45 44 

EXPONENT FRACTION 
CONTROL CONTROL 

39 38 37J36 

ACCSYNC H 

UPF <8:0> H 

FROM CLK CTL 2:0 (1) H 
CONTROL 
STORE SHF 1:0(1) H 

MOD 1:0(1) H 

FRAC I 8:7 (1) H 

>-u.. I-
RAMA RAM B 0 u.. 

0 :I ADDRESS ADDRESS ~ (/') CLOCK 

30 29 26 25 22 21 20 19 18 17 15 

FIELDS CHECKED 
BY PO 

PARITY 
GEN 
FRAC 

PROM 
FPAE 

PARITY 
GEN 
FPAD 

PARITY 
GEN 
FPAD 

ODD 
PARITY 
ROM H 

PARITY 1, 0, (1) H 

FORCE/READ UADDR (1) H 

REG CUC L 

TRISTATE DISA L 

(PO) 

(P1) 

(P1) 

PARITY 
OUTPUT 
ENABLE 

PARITY 
CONTROL 
PAL 

FPAD 

PAR ERR H 

14 

BRANCH 
CONTROL 

BUS FPA 
03:0 H 

FORCE LOW 
UADDR L 

Figure 5-24 Control Store Fields Checked by Parity Bit PO 

-MICROPOINTER-

~LITERAL--+ 

10 o9lo_8Jo1 00 

TK·5836 



>
!:::: 
a: 

u <( 
z ii. 

~ ,...-/'--.. 
u 
u 
<( Pl PO 

47 46 45 44 

EXPONENT 
CONTROL 

FROM 
CONTROL 
STORE 

FRACTION 
CONTROL 

39 38 37b6 

UBCTL 4:3 (1) H 

FRAC 16:0 

EXP CODE 4 (1) H 

EXP I 7,8 (1) H 

UPF 09 H 

EXP A, B ADDR 3:0 H 
EXP CODE 1, 2, 3 (1) H 

RAMA RAM B 
ADDRESS ADDRESS 

>
LL 

Ci 
0 
:: 

I-
LL 

r 
(/) 

30 29 26 25 22 21 20 19 18 

FIELDS CHECKED 
BY P1 

PARITY 
GEN 
FPAC 

PROM 
FPAE 

PARITY 
GEN 
FPAD 

PARITY 
GEN 
FPAD 

PARITY 1, 0, (1) H 

FORCE/READ UADDR (1) H 

REG CLK L 

PARITY 
CONTROL 
PAL 

TRISTATE DISA L 
PARITY 
OUTPUT 
ENABLE 

PAR ERR H 

BRANCH 
CLOCK CONTROL 

17 15 14 

BUS FPA 
D 3:0 H 

d12 

FORCE LOW 
UADDR L 

Figure 5-25 Control Store Fields Checked by Parity Bit Pl 

MICROPOINTER 

~LITERAL------. 

10 09JoJ01 00 



6.1 GENERAL 

CHAPTER 6 
MICROCODE DESCRIPTIONS 

The FPA microlisting consists of a definitions file followed by microcode routines. The definitions file 
defines the microfield and macros. The macros equate a mnemonic statement such as ADD, with a 
particular set of microfields that will perform the operation specified. 

6.2 FIELD DEFINITIONS 
Figure 6-1 explains the first four lines of FPA microcode and illustrates field locations in the 48-bit 
control store microword. 

Figures 6-2 through 6-19 explain the fields. 

6.3 MACRODEFINITIONS 
The FPA macrodefinitions consist of symbols, the value of which is one or more field value (Figure 6-2 
through 6-19) and/or macros. The macrodefinitions shown consist of a line containing a macro name 
followed by a string in quotations which specifies the values of one or more of the microcode fields. 

MNEG FWR[] to FQ "FSRC/O.A, FALU/R.MINUS, FSHF/LOADQ,FA.ADRS/@/" 

Macros may include square brackets ([]) which open a microcode field but do not give it a particular 
value. The desired field value is inserted inside the brackets whenever this macro is used. 

Headers generally located at the beginning of each macro describe what the macro does. 

Figure 6-20 shows a section of the macrodefinitions file. 

6-1 



°' I 
N 

LINE Jl .PTOL 
NUMBER 12 L.Hexa1ec:111a1 

READING ,Lt ST 
RIGHT-TO-LEFT~Jl •"'idth/48 

/
1~1cro Pointer Field CUPf) • f~1s specities tne 

ALL FIELD VALUES 
INDICATED IN 
HEXADECIMAL 

>
!:: 
a: 
~ 

CONTROL STORE 
MICROWORD IS 
48 BITS WIDE 

(.) 
z 
>-Cl),...-""'-.. 

>u. 
i5 

I-
(.) EXPONENT FRACTION RAMA RAM B 

u. 
0 

ASSEMBLY DIRECTIVE 
INDICATIVE TO LIST 

base address ot toe 

BRANCH 
14--- MICROPOINTER ~ 

(.) 
CONTROL CONTROL ADDRESS ADDRESS 

:c CLOCK ~LITERAL--. <( P1 PO :?! Cl) CONTROL 

47 46 45 44 39 38 30 29 26 25 22 21 20 19 18 17 15 14 10 09 0Jo1 00 

) 
CONTROL STORE MICROWORD 

CONTROL STORE • CONTROL PROM CS 47:00 H 

"" 
STORE 
REGISTERS 

l=PAN v 

TK-5399 

Figure 6-1 Field Definitions 



47 4645 38 30 

MICROPOINTER FIELD (UPF) 9:0 (7:0 LITERAL) 

-----. BUSNUA 
MICRO 9:0 H 

CS9:0 H 
SEQUENCER.._ _ __,, 

FPAA 

CONTROL STORE MICROWORD 

25 22 

NOTE: FOR LITERAL 
1. MOD FIELD= 01 

(EXTEND CLOCK FIELD) 
2. CLK FIELD= 010 
3. UPC IN MICROSEOUENCER 

IS USED TO ADDRESS THE 
CONTROL STORE 

4. LITERAL (BUS FPA D14:7H) 
CAN BE LOADED INTO 
EXPONENT OR FRACTION 
DATA PATH (FRAC 30:23. 
EXT 6:0) 

CONTROL STORE 

PROM 

FPAN 
CS9:0 

cs 17:15 

cs 21 :20 

I
I CONT~~-;-

REGISTERS 

I 
UPF,LIT 
REG 

FPAC, 
FPAD 

CLK 
REG 

CLK CTL 2:0(1) H 
FPAD 

MOD 
REG 

FPAC 

EXTEND 
CLK H 

FPAD 

Figure 6-2 Literal Field 

(LITERAL) 
UPF 7:0 H 

CLOCK 
FIELD 
DECODER 

FPAC 

(16 

ENB 
LITERAL 

EXTENDED CLK H 

EXPONENT DATA PATH 

BUS ____ FPA 

BUFFER D14:7 H EXPONENT 

FPAL 

DATA 
PATH 
LOGIC 

ENB 
LITERAL 



47 

MICROPOINTER FIELD (UPF) 9:0 

CONTROL STORE 

MICRO 
CS 9:0H SEQUENCER 

FPAA 

CONTROL STORE MICROWORD 

rr.I CONTROL STORE 
REGISTERS 

I 
I 

UPF 
REG 

FPAC, 
FPAD 

---, 
'1 DATA I 

10 oo oo I 
I UPF I 1 

PATH I 
I CONTROL I 
I REGISTERS I 
L ___ J 

TK-5404 

Figure 6-3 Micropointer Field 

6-4 



r11 rBrancn control rield csct~) • Tni1 field is used to OR in status 
:14 Jbits 1nto the lower 2 Dits ot the UPF, 
;15 1~ith Part1cu1ar va1ue1 of the MOD and CLK CTL titldS th15 
rt6 rbrancn field can be extended to the lower 5 bits Of the UPr. 
'11 
118 acr~1=<141to>,,oetault•15 

9 
:20 EXP COUT#GPANO•O 

GRA~D•O 
EXP,COUT•O 
SIG~' ,ouruwr.,.. 
SlGN,OUT.,. 
HUGE•• CONTROL 

....-~~~~~~~~~~~~~---'B~R~A~N~C~H..;_;._F~IE~L=D~(~CTS1_4_:1_0~)~~~-tSTORE 

UBCTL~(1) H 

,zo EXP.COUT#GRAND •0 ~ 
INSTRUCTION 
DECODING 
LOGIC 

FPAA 

\ ,-...... 
SIZE 1,0 H 

DATA PATH EXP COUT H 
LOGIC (STATUS SIGNALS) 

(FRACTION, 
EXPONENT) 

STATUS 
REGISTER EXP COUT SAVE H 

FPAC 

BRANCH 
LOGIC 

FPAB 

Figure 6-4 Branch Field 

BRANCH 1,0 H 

47 

MICRO 
SEQUENCER 

BUS NUA 9-0 H 

FPAA \ 
CS9:0 H (UPF) 

00 

CONTROL STORE MICROWORD 

MASKED 
BITS 
,....-.... 

09 08 07 06 05 04 03 02 01 00 

I I I I I I I I ~ 
MICROSEQUENCER 
BUS NUA 9:0 H 
OUTPUT 

TK-5412 



;13 
;14 
;15 
;16 
;17 
;18 
;19 

(;20 
;21 
;22 
;23 
;24 
;25 

;88 
;89 
;90 
;91 
;92 
;93 
;94 
;95 
;96 
;97 
;98 
;99 
;100 

;THE EXTENDED BRANCH FIELD ORs IN STATUS BITS INTO NUA BITS <4:2>. 
;SINCE THIS FIELD OVERLAPS THE NORMAL BRANCH CONTROL FIELD THERE 
;IS SOME LIMITATION ON WHAT EXTENDED BRANCHES CAN BE PERFORMED 
;AT THE SAME TIME AS A NORMAL BRANCH. 
;EXT.BCTL/=<14:13>,.DEFAULT=2,.VALIDITY=<EOL[<CLKl><CLK/EXT.BRA 

INSTR.DECODE.O=O 
SIZE1#SIZEO#FRAC31-0.EQ0=1 
SIZE=1 
DOUB.OPE R#I NS_E NC1 #0=2 
DOUB.OPER2=2 
DOUB.OPER#ADD+SUB=2 
INSTR. DECODE=3 EXTEND CLK (1) H 

4-0 H 

l> 

EXTEND BRAN 2,3,4 H 

UBCTL 4-2 (1) H 
FPA 

CONTROL 

;BRANCH CONTROL FIELD (BCTL) -THIS FIELD IS USED TO OR IN STATUS 
;BITS INTO THE LOWER 2 BITS OF THE UPF. 

i.-------~~~~--~-t--B_R_A_N_C_H_F_IE_L_D_(C~S_14_:_10_) ___ -tSTORE 

;WITH PARTICULAR VALUES OF THE MOD AND CLK CTL FIELDS THIS 
;BRANCH FIELD CAN BE EXTENDED TO THE LOWER 5 BITS OF THE UPF. 

BCTL/=<14: 10>,.DEFAULT=15 

EXP. COUT#G RAND=O) 

GRAND=O -----
EXP.COUT=O ,,....------------. 
SIGN.OUT#HUGE :20 
SIGN.OUT= 
HUGE=1 

EXP.COUT #GRAND= 0 

\ 
r"'\ 

SIZE 1,0 H 

INSTRUCTION 
DECODING 
LOGIC 

INSTR ENC 4-0 H 
FPAA 

DATA PATH EXP GOUT H STATUS 
LOGIC (STATUS SIGNALS) REGISTER EXP GOUT SAVE H 

(FRACTION, 
EXPONENT) FPAC 

BRANCH 
LOGIC 

FPAB 

Figure 6-5 Extended Branch Field 

BRANCH 
1,0H 

47 

MICRO 
SEQUENCER 

BUS NUA 9-0 H 

FPAA \ 

00 

CONTROL STORE MICROWORD 

EXTENDED NORMAL 
BRANCH BRANCH 
MASKED MASKED 
BITS BITS 

~"" 09 08 07 06 05 04 03 02 01 00 

11111~ 
MICROSEQUENCE 
BUS NUA 9:0 H 
OUTPUT 



47 

FPAN 

(CLK 

T' 
CS21:20 H 
(MOD 
FIELD) 

, 11J 
1113 
1114 
, 115 

1Tnt cloCK field enable• a number of clOck and 1pecial functions. The 
1f1tld 1'111 different mean1no1 dtPendin; O'I the 1100 field. 

11 to 
1117 
, 11 s 
r 119 

ll'"' 
'121 
1122 
1 Ul 
JIH 
I 12~ 
r 126 
I 127 
, 1211 
, 129 
1 llli' 
, 131 
, ll2 

r Ill 

.srr /EXT. VAL•<, EQL C<Ol!Ot'I>, <"OD/EXT .CLK>l > 

CLKl•<17115>,.DE~AULT•2 

CLK ,llp I EQ, 0•"'· I VALIUITlC•<. NOT [EXT. VAL]> 
CLIC, HUGE ,Rl•l,, VALIDITY•< ,NOT [EXT, VAL]> 
EXT ,FRAC ,SHF•l1, VALIDITY•<, NOT CEXT, VAL l > 
CLK •SIGN ,OUT•4,, VALIDITY•<• ~OT [EXT• VAL)> 
CLK, OP2 ,SIGNaS,, VALIDITY•<• <'lOT [EXT, VAL]> 
CLK,CC•61 1 VALIDITY•<,~OTCEXT.VAL)> 
Ct.IC ,OP1 ,SIGr.•71 •VALIDITY•<. NOT [l:.XT, VAL.]> 
T G STORP.:a0,, VALIDlTY•<EXT VA > 
CLK FAST•1, VALIOIT <Y.XT V~L> 

N J • ,,VALIDITY•< XT,VA > 

oG,LOAD•l,, VALIDITY•<EXT, VAL> 
ALTER.CIN•51 1 VALIOITY•<EXT VAL> 
TOG, FORCE32a61, VALIDITYa<E ·r, VAL> 

EXT I BRANll7,. v ALID lTY=<EXT. v 

0 

CLK CTL 2-0 (1) H CLOCK 

NOTE: MOD FIELD (CS21:20)=01 
TO EXTEND CLK FIELD 
FUNCTION (<EXT.VAL>) 

Ii CLOCK 
ENB CLK 1 L GENERATOR t------------ FIELD 

EXTEND EXTEND EXTEND 

._D_E_c_o_o_E_R_, I 
~6~~~ CLK H ~~~~:i-ER t--+---E_X_T_E_N_D_C_L_K_(_1)_H __ 

FPAC FPAD 

NOTE: CLK FIELD
0

(CS 17:15) = 001 
TO SELECT 180 NS (FAST) 
CYCLE TIME VIA CLOCK 
GENERATOR PAL FAST 
CLOCK FLIP FLOP 

FPAC 

Figure 6-6 Clock Field (Used to Clock Fast Cycle) 

relock the OP1 and OP2 equal 0 rr, 
1Thl1 1tores FRAC55 Rl untill nuoe div 11 r• 
rExtend the fraction shift functions 
1Clock re1ultant 1ion Fr, 
1Clock the 2nd operand'• •ion FF 
relock th• condition eodu 
1Clock the tat operand'• s1qn FF, 
1Chan;e a floatino store to an inte;er •tore 
01•t iast s~ted <evc:ie at i8Fns) 
' nabl• a 1 teral on to thePA bu1 

1Tociol• the i·oad H 
1rract1on.c1n • Frac Cout save 
1To;qle the rr whien fore•• LSB of mier to • 

1Extend tne branch field to 5 



°' I 
00 

47 

CONTROL STORE 

PROM 

FPAN 

SHIFT 
FIELD 
REG 

FPAE 

J 135 
: I 3& 

: '" J1313 
: 119 
:140 
:HI 

: 194 
: 195 
: l 9b 
J '97 
: l 9El 
J 199 

SHF1 (1) H 

SHF0(1)H 

ENB CCL 
(STORE CC) 

1Tn~ shift field has many ditteren~ usesJ it controls a nu~oer 
:ot snifting functions1 wnat is shifted into the LSB of tne 
,exponent and tne extension data path and wnat is shifted into the MSB 
sot tnP. fraction dat~ patn, It also eontrols what section ot 
1tne data path 1s loaded, 

•The sn1ft field 1s also used to set the v and c b ts 

SFT:c1•<191!8>,,VALin1T1=<.~QL[<CLKl>,<:LK/C K,cc>J> 
C=l 
V•2 
V,C:l 

0 

CONDITION CODE 
CONTROL PAL 

FPAH 
BUS FPA 
001 H 

BUS FPA 
DOH 

Figure 6-7 Shift Field (Used to Set V and C Bits) 



47 

J 114 
I tl5 
I Ob 
I 01 
I 'l~ 
109 

CONTROL STORE 
CONTROL STORE MICROWORD 

0 

PROM 

FPAN 

MrJD/= 211 ,,oetauit=o 

EXT,CLKs1 
(1'\uL,DlV•2) 

LOAO,ST:sl 

~Tn1= e11tend1 tne e1oc1e Ulld 
( Ena le tne)~UL or(orv iosie) 

1Enable tne load or store Ioslc, 

_s_u_s_1B_D_7_-0_H_., INSTRUCTION 
DECODE 
LOGIC 

FPAA 

INSTR ENC 4-0 H 

SIZE 1,0H 

INSTRUCTION 
PAL 

FPAB 

DIVH 

MUL/DIV PAL 

FPAE 

INTEGER H SELECT 
CONTROL 

DATA FRAC13H~~~~-......,.1--~-~~~ 
FROM r :::~~:.~~AVE H 

PATH FRAC~OUTH~~~~-+~~~~~-H~~ 

LOGIC HUGE R3 SV H 

FRACCOUTH~~~~-+~~~~~H 

FRAC 13H 

DIVl3L 

Figure 6-8 Modify Field (Used to Enable Division) 

I 
I 
I 
I 

ENB 
DIV 
L 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

ol\t 
13 (1) L 

I 
~-...J 

MUL/
DIV 
MUX 

FPAE 

SEL 

(DIV) 
FRAC 
13 H 

TO 
DATA 
PATH 
LOGIC 

TK-5418 



11~1 ;The modify fUld Cl'ODl ut1r1 the tunctton ot 1omt ot tne 
1 h'2 1otn i 1 1 l f ti h er f elds, It also eneb es 1pee a une ons sue 81 

111-!3 JM!JL and OJV, CONTROL STORE 
CONTROL STORE MICROWORD n---1 ...... ONTROL 

I STORE 

22 21 2019 0 l REGISTERS I 
l ] PROM 

CS 31, 30H 

1 I 
L( FPAN ~I ··~ 'rL11L M~D r--

<21t20>, ,DtflUl t•0 J 1 I I I EXT Ct..K•t 1Th11 extends the eloe~ field 
(Mi.!L:ozv•2) (1 Enable the MUL) or DIV a::aID ~ ENB MUL LOA0,ST•3 1£nable the load or store loqie, 

INSTRUCTION MULH 
~)~r.-

PAL 

FPAB I 
I BUS IB D7-0H INSTRUCTION 

DECODE MUL/DIV PAL FPAE 

I LOGIC 
INSTR ENC 4-0 H _... I 

FPAA 
INTEGER H SELECT I I ..._ CONTROL 

I SIZE 1, 0 H I -0161E DEFAULT H 

47 

MOO/ 

0-.. 
I 

-- I MUL 

FROM 
11 (1)H 

L l --
~~;~ ~ FRAC1600H ~MIERLSBH LOGIC FRAC3200H 

0 

FRACOOOOH r 
EXTOOOOH I 

I I 
I I 
I I 

I v ~ _J 

Figure 6-9 Modify Field (Used to Enable Multiplication) 

MUL/-
DIV 
MUX 

·FPAE 

(MUL) 
FRAC 

~ 
TO 
DATA 
PATH 
LOGIC 

TK-5417 



47 26 25 22 21 

RAM B ADDRI 

1 
CONTROL STORE 

PROM REG 

FPAN 
CS25:22 H 

FPAD 

°' I 

0 

] 

CS25:22 = 0000 

EXP B ADDR 3:0 H 
EXPONENT 
DATA 
PATH 

EXP B 
FRACTION ADDA 3:0 H B ADDR 3:0 H 
DATA 
PATH 

FPAD 

: 2!) 2 
: 253 
:251 :Tne ~ address tiel1 addresses bOtn tne exponent an1 traction 
1255 101ta oatn•s scratcn pad. T~o detlnltlons Will be qtven tor tnrs 
:2Sb 1t1e11 so tnat the asse~bler can tlaq any conflicts. 
I 2 .. 7 
:1~8 f~.~~RSt:<25l22>reDEfAULTsO 

l t59 

r:T7,:2 
ET3:3 
~;T4: 4 
fT5=5 
f!:Tb=b 
ET7:7 
ET8:8 
'lNE:'l 

u:Ro="" 
~.a111s=ofl 
fCl •. •AXsOC 
G•''AX=OD 
G.R1r;s=or: 
H • :~AX=Of 

L.-"TTf+-----{f T 0: I) 

F"T\:I 
fT2:2 
fT3: ! 
fT4=4 
fT5=5 
r·Tb:& 
l~T ,"1ASK:7 
fT8:8 
F'T9:9 
fLT, ·~451<:1)A 
r'.XT,"A5~=0f\ 

f,l<ND:OC 
G.RND:OO 
0, R''D=OE 
.; • fl~(l:()f 

EXPONENT TEMPORARY STORAGE 
REGISTER (SCRATCH PAD/RAM) 
ETO ADDRESSED 

1 zero constant 
1Hu~e traction o1t count 
rGrand traction bit count 
1Douole traction bit count 
1f1oat1n1 tract1on ~it count 
1 "lax nuge exponent 

JMaX orand exoonent 
r ~ax f, D exoonent 
1Hu;re oias 
1Grand oias 
r f, o 0111s 

FRACTION TEMPORARY STORAGE 
REGISTER (SCRATCH PAD/RAM) 
FTO ADDRESSED 

:lnte~er ~aSK rract5 tnru EKt0 eq one, 
1noatinC1 mds1< friiC31 tnru i::xtO 
:Extens1on ~as1< Ext<7:n>:1•s, 
r~uqe round constant, 
,~ouble round constant, 
:Grand roun1 eonstant, 
1floatlnq round ~onstant • 

Figure 6-10 RAM B Address Field 



N 

47 30 29 26 25 7 RAMAADDR I~ 

I SIGN FUNCTION I 
L EXPONENT. FRACTIO~ 

RAM A ADDRESS 

00 
: 200 
l 2'l, 
1202 
I 20 3 

.paoe 

1Tne A address fi•ld addresses ootn tne exponent and fraction data patn•s 
1scratcn Pads. Tne lower 3 b1ts also deter~1ne1 wnat gets cloc~ed tnto 
:tne resultant siqn register, 
~A,llDRS/=<29126>,,DEfAULT=O 

.-----rlH't'l"-------<ETO•Ot~----EXPONENTTEMPORARYSTORAGE 
t z t REGISTER (SCRATCH PAD/RAM) 

E: T 2: 2 ETO ADDRESSED 
l::Tl=3 

CONTROL STORE 

:209 
: 21 •l 

'211 
: .! 1 2 
: 2 1 3 
'}14 
: 21 s 
: 21 b 
I 21 I 
; 21R 
: 219 
I 2 71' 
;2'!1 
: 222 
: 2 2 3 
: ;i24 
1225 
'22& 

E!4:4 
ET5:5 
~~T6:6 

n1:1 
ETl!:B 
nt-E:9 
Zl:.:RO=OA 
He8JAS=06 
FD. 1~Ax=oc 
G."1l\X:OD 
G,tlIASi:::OE 
HeMAX•Or 

rZero constal'lt 
1Huqe traction bit count 
1Grand traction oit eount 
10ouole fraction oit count 
1Float1ng tract1on oit count 
1Max nuge exponent 

PROM 

FPAN 

REG 

CS29:26 H 
FPAD 

EXP A ADDA 3:0 H 

EXP A ADDA 2:0 H SIGN 
CONTROL 
PAL 
FPAC 
rSiG°N, 

_s_u_s_F_P_A_D_1_5 _H_(o_P_1_s_1G_N_l __ 1 our 

L£..F_.J 

i-----E~X~P~A......_A_D_D_A_3_:_0_H_--t~ ~~~~NENT 
PATH 

EXPA 
ADDR 3:0 H A ADDA 3:0 H FRACTION 

~-----.. DATA 
PATH 

FPAD 

cs 29:26 = 0000 

1~ax ~rand exponent 
,~ax v,o exponent 
1 tiuqe bin 
1Grand t:iias 
n·,o 01as 

FA,~UllS/:<2912&>,.DEFAULT:O 

'----rl'tt-----~ FT0•01-----FRACTION TEMPORARY STORAGE 

BUS FPA D15 H 
(OP1 SIGN) 

J22R 
: :>29 
: 2 j ,) 

; 231 
: 232 
PH 
1214 
: 2 35 
:23o 
;237 
: 21R 
1219 
,240 
I ;>4 \ 

1242 
I 243 
I 244 
1245 

1247 
124R 
'249 
:25J 
: 2'51 

Figure 6-11 

ru • 1 REGISTER (SCRATCH PAD/RAM) 
ft2=2 FTO ADDRESSED 
fT3=3 
rt4=4 
F'T5=5 
F'T&:b 
I "IT 1 '1ASK:7 
l"T!l•ll 
F'T9:9 
rLT,IA1>5K:OA 
EXTe"1ASK:013 
F, ll~1 D•OC 

G, R~;D:OD 
OoR'>i[)"'OE 
~.R•rrl•OF' 

Pt•O 
ZERO•l 
OF1 ,XClR.OP21:2 
su.xo11,0P1=1 
1P2•4 
Q,Jfi::5 

RAM A Address Field 

1Inte~er mas~ Frac1s tnru Exto eQ one. 
1rloating mas~ rrac31 tnru KxtO eq one. 
JExtension mas~ Ext<'1~>=1•s, 
1Huqe round eonstal'lt, 
1Douole round constant. 
1Grand round constant. 
1Floating round col'lstal'lt, 

1Sign out qets 1st operand's siqn, 
J 1g out qets 2nd operand's siqn, 

1Res ltant si~n XOR 1st operand•s s1Qn • tor PolY, 

TK-5406 



47 39 38 30 29 0 

I I FRAC I I 

~~ ~~ 
I FSHF FALU I FSRC I 

0\ 
I 

12cn 1The fraction rnlcro bl ts could be 1111 one f1e111, but. to rneke 1t 
12ci.R 1rnore workable 1t will be broken uP into l sePerate fleld1, which 
1299 1correspond with the 2901• fleld1, 
1 Jo I 1 These rnlcrobits ere 1111•rted low, 
1302 FSRC1•<321JO>,,OEFAULT•l 
1304 A,Q•7 
1108 O,h1 
130Cl O A•2 

CS32:30 .. 001-_J:!..,i~µ:.!!.~-----i o t.l• l 

EXPONENT DATA PATH 
(4 2901 4-BIT MICROPROCESSORS) 

2901 

Q REG/REG STACK 
DATA INPUT 
SELECT ------. 
16-8 ALU 

•-+----'DESTINATION 
DECODER 

A PORT SELECT 

B PORT SELECT 

CENTRAL PROCESSOR CLOCK CP 

DIRECT DATA INPUT D3:0 

ALU INPUT SELECT 10-2 ALU INPUT 
OPERAND ...... ~~~~~~~~~~~~~~ 
SELECT 

ALU FUNCTION SELECT 13-5 ALU 
FUNCTION 
DECODER 

OUTPUT ENABLE OE 

Figure 6-12 Fraction ALU Source Operand (DQ) Field 

DRIVER 



47 39 38 30 29 

FRAC 

FSHF 

0-.. 
I 

FSRC 

cs 35:33 = 001 

1297 :Tl'>e tr.\Ction 1111cro t>its eoul<i ,.,. all one field, but to '!laJCe 1t 
129~ lll'Off' •orl(aole it will. oe nroken up into l seperate tielas, wnlch 
129~ 1eorrespond w1tn t~e 29~1& fiel<is. 

MICROBITS 35:33 ARE ASSERTED LOW 
1314 fALVl•<l~lll>,.otFAULl•~ 
1lto AD0=4 
1317 s.~INUS,R•5 
1319 P.MINUS.5•6 
1319 OR:? 
• 37•• 
13 
I 322 

FRACTION DATA PATH 
( 16 2901 4-BIT MICROPROCESSORS) 

2901 

0 REG/REG STACK 
DATA INPUT 
SELECT -----
16-8 ALU 

-+-----!DESTINATION 
DECODER 

A PORT SELECT 

B PORT SELECT 

CENTRAL PROCESSOR CLOCK CP 

ALUINPUTSELECTI0-2 

DIRECT DATA INPUT D3:0 

ALU INPUT 
OPERAND 
SELECT 

ALU FUNCTION SELECT 13-5 ALU OUTPUT 
>-r----'"'-r-t--+--------------_.. DESTINATIONi-----------1 1---------.i 

DECODER 

OUTPUT ENABLE OE 

FRPC 13 H 

Figure 6-13 Fraction ALU Function (R XOR S) Field 

DRIVER 

TK-5411 



47 39 38 30 29 

FRAC 

FALU 

FPAE 

00 

I FSRC I 

FRAC 18H 

: 315 
: Pb 
: l2 / 
1128 
: l lQ 
1Hn 
: Bl 
: 132 
I l Jl 
:lH 
: jj~ 

1 rne frdetion 11'1cro otts could oe all one tteld, out to '"ilKe 1t 
pore •OrKaote it •Ill o@ "rol(en uP into ! seperdte fields, •nleh 
J('orrespond wit!'> the 29015 tields. 

: -11croott lo ls asserte<i lo•, 
f~Hfl:<Jd:J&>, .DEfAlJLT:u 

cs 38:36 = 001 

FRACTION DATA PATH 
( 16 2901 4-BIT MICROPROCESSORS) 

2901 

Q REG/REG STACK 
DATA INPUT 
SELECT....----...., 

ALU 

r-------+-F_RA_C_l7_H-r-...._-+-+-16_-8_...,.~~~TINATION 
DECODER 

FRAC6H 

Figure 6-14 

A PORT SELECT 

8 PORT SELECT 

CENTRAL PROCESSOR CLOCK CP 

DIRECT DATA INPUT D3:0 

ALU INPUT SELECT 10-2 ALU INPUT 
OPERAND 
SELECT 

ALU FUNCTION SELECT 13-5 

OUTPUT ENABLE OE 

ALU 
FUNCTION 
DECODER 

MUX 
INHIBITED 
OUTPUT 
=O 

MUX 
A 

D 

Fraction ALU Destination (Q-Register) Control Field 

MUX 

DRIVER 



°' I 

47 45 44 

'/) 
44 

I EXP DST 

CONTROL 
STORE 

EXP 

39 38 

39 

EXPCTL I 

FROM FIG. 

6-16 { (PART OF 
EXP ALU 
DST FIELD) 

00 

cs 42:39 = 0010 

EXPONENT DATA PATH 

I 3 ~ 8 
;Jl9 
1140 
1Hl 
I 3 i 2 
!343 

H 
15 

1lne exponent data path 1s part1a11v :ontrolled bV an encoded t1el~ 
1F'our Dits are encodedJ tnese b1ts co'ltrol the source 
1se1ects, ALU tunctton and tne lowest Dit ot tne dest1nat1on 
I fl el d 
~:XI' •:: Tl,/ :o< 4 2 I 3 q > 1 • DE f A I Jl, T: 0 f 

1F'UN::TJON JS D OR 0 

(4 2901 4-BIT MICROPROCESSORS) 

18 

17 

2901 

Q REG/REG STACK 
DATA INPUT 

EXP _____ 
16 

~i~ECT .. A_L_U----. 

7~DHE 3: ~~~ODE _..__.. ___ ___,g~~61~::10N 

PAL 

FPAM 

12:0 

15:3 

A PORT SELECT 

8 PORT SELECT 

CENTRAL PROCESSOR CLOCK CP 

DIRECT DATA INPUT D3:0 

ALUINPUTSELECTI0-2 ALU INPUT 
OPERAND 
SELECT 

ALU FUNCTION SELECT 13-5 

OUTPUT ENABLE OE 

ALU 
FUNCTION 
DECODER 

Figure 6-15 Exponent Control (A-B) Field 

DRIVER 



°' I 

47 45 44 

'/) EXP 

44 43 42 

I EXPDST I 

PROM 

FPAN 

39 38 

39 

EXPCTL I 

EXP 18 H 

()() : 3&7 
: 36] 
: H14 
f)h5 

I )fib 
']b7 
: lflq 
I H19 

1Tne upper tNo bits ot the exponent control c1s, 17) 
1co~e 1irectlY from tne microword, These bits control tne destliation1 no~ever, 
r1t 5houtd ~e remem~ered that tne lower ~it ot the destlnatlon 
:tleld 1s ~enerated by tne encoded tield so there 1s a llmitatlon 
ron Nndt tne ~est1nat1on is, 

r: XP, nsr 1=<44 1 4 3>,, tn:f A 111, r=n 

,,n ~ 

......---- B=t. -----0 REGISTER LOADED 
CS43:44=00 "HrR:~ WITH ALU OUTPUT 

EXPONENT DATA PATH 
(4 2901 4- BIT MICROPROCESSORS) 

2901 
FPAM 

Q REG/REG STACK 
DATA INPUT 
SELECT.--------. 
16-8 ALU 

ALU 

r-......-~~---.~+--+----tDESTl NATION 
DECODER 

A PORT SELECT 

B PORT SELECT 

CENTRAL PROCESSOR CLOCK CP 

DIRECT DATA INPUT D3:0 

ALUINPUTSELECTI0-2 ALU INPUT 
OPERAND 
SELECT 

ALU FUNCTION SELECT 13-5 

OUTPUT ENABLE OE 

ALU 
FUNCTION 
DECODER 

B 

MUX 
INHIBITED 
OUTPUT 
=O 

MUX 
A 

D 

MUX 
INHIBITED 
OUTPUT 
=O 

Figure 6-16 Exponent ALU Destination (Q-Register) Control Field 

R 
MUX 

DRIVER 



°' I 

00 

ACC 
SYNC 

u... 

i~ EXPONENT FRACTION RAMA RAM B i5 BRANCH f---MICROPOINTER 

jp1lpo 
0 SHIFT CLOCK 

CONTROL CONTROL ADDRESS ADDRESS ~ CONTROL r LITERAL 

47146145 44 39 38 371 30 29 26 25 22 2120 19 18 17 15 14 10 09[00!01 

l ~ 
\. 

I J 

NOTE SET WHEN 
BUS FPA 003 PO ERROR 
NOT USED FOR IS DETECTED 

~ 
PARITY 

L CONTROL STORE SET WHEN 
PARITY ERROR 

03 IS DETECTED CS7:0 H REG UPF 7:0 H t>ARITY 

lolol1l1J 
.. -- LOGIC 

CS8 H _.. UPF 8 (1) H 
~ 

FPAC, D, E 
BUS FPA 03:0 H / 

CS17:15 H CLK CTL2:0 (1) H 
PROM ~ 

FPAN CS19:18 H_,., SHF1:0 (1) H _.. 

r----1 CS21:20 H MOD1:0 (1) H 
~ -- FORCE LOW UADDR L TO CS38:37 H__. FRAC 18:7 (1) H _.. ~ 

MICROSEQUENCER FORCES NEXT 
CS47 H ...,i ACCSYNC H ...... MICROADDRESS - SEQUENCER OUTPUT CS45 H ...... PARITY 0 (1) H 

FORCE/READ UADDR (1) H_,., 
TO ALL ZEROES 
TO SELECT PARITY 

REG CLK L -- HANDLER ROUTINE 

TRISTATE DISA L 
IN CONTROL STORE .. 

:3A7 rTne following two oits drP the parity oits1 tney are definP.d 
:388 150 tnat their default value is even parity tor their Q1ven t1eln 5 , 
:389 
t3gO PAR00/=<20J22> 
:391 PARJtl=<42:40> 
;392 PAR02/=<9> 
1393 ,SET/PAR 1 CK2:<,PAPlTYl<PAROOl>,<PAP01/>,<PAR02/>J> 
1394 PAPl0/:<14:13> 
;3Q5 PARJl/=<31>130> 
;396 PAR121=<J9> 
:397 PAR131=<4~:43> 

JJ98 P~R14/=<t2110> 
:~99 ,SET/PAP,C~1=<,PARITYl<PARlO/>,<PARltl>,<PARt21>,<PAR1J/>,<PAR14t>)> 
JtOO P1/:<4o>,,nEfAULT:<,XOR[PAR,CK2,PAR,CK1J> 
1401 PA~2o/=<AsO> 

1402 PAR21/=<t7:15> 
1403 PAR221=<2111H> 
J404 PAR231=<38137> 
1405 PAR24/=<47> 
1406 ,S ARITYO=<,PARITYl<PAR201>,<PAR21/>,<PAR22/> 1 <PAR2l/>,<~~R241>)> 
J40/ Ol:<tS> ,OEFAULT:<,NOT[PARlTYOJ> 

Figure 6-1 7 Parity Field PO 

--.... 
00 

TK-5401 



' 

CONTROL 

~ 

PROM 
FPAN 

._____. 

a-, 
I 

EXPONENT 
CONTROL 

l 
• STOREcs9 

CS12:10 H 

CS14:13 H_.. 

CS25:22 H 
~ 

CS29:26 H_.. 

CS30 L .... 
CS31L 

CS32 L .... 
CS33 .. 
CS34 

' 

FRACTION 
CONTROL 

I 

~ 
REG 

CS35 .. 
CS36 

CS40 .... 
CS41 

CS42 

CS43 

CS44 .... 
CS46 

.....______. 

I 

1 
UPF 9 H 

UBCTL 2:0 .... 
UBCTL4:3 .... 

EXP B ADDR 3:0 H .. 
EXP A ADDR 3:0 H .... 

FRAC 10 L 

FRAC CTLl L 

FRAC 12 (1) L .... 
FRAC CTL 3 L ..... 
FRAC 14 (1) L 

FRAC 15 (1) L 

FRAC 16 (1) L 

EXP CODE 1 (1) H .... 
EXP CODE 2 (1) H 

EXP CODE 3 (1) H 

EXPl7(0H .... 
EXP 18 (1) H 

PARITY 1.J.1) H 

FORCE/READ UADDR (1) H.:. 
REG CLK L 

TRISTATE DISA L 

j.--MICROPOINTER-----1 

I f--uTERAL---j 

10jogloa jo1 ool 

' J 
NOTE: BUS FPA D03 SE TWHEN P1 ERROR 

DETECTED 

PARITY 
LOGIC 

FPAC, D, E 

NOT USED FOR IS 
PARITY 

~03 j 
00 

SET WHEN PARITY 
..,....-ERROR IS DETECTED 

I 11 I 

~ 
--~' 

BUS FPA D3:0 H 
~ 

FORCE LOW UADDR L TO 

137'.i 
r 37b 
1377 
I 378 
I 379 
1380 
I 381 
I 3112 
I 383 
I J84 
1385 
'38b 
1317 
13811 
1l89 
'391:1 
'391 
1392 
1393 

~ICROSEQUENCER 

1The fol 
110 tl'let 

FORCES NEXT MICROADDRESS 
SEQUENCER OUTPUT TO ALL ZEROS TO 
SELECT PARITY HANDLER 
ROUTINE IN CONTROL STORE 

lowin9 two bits ere tr1e parity blts1 tnev are defined 
their deteult value is even oarity tor tl'leir Oiven fields, 

PAPfl0/•< 
PAR01 I•< 

29122> 
42140> 

PAR02/a<9> 
•SET /PAP .CK2•< •PARITY [<PAR01cl/>, <PAR01/> 1 <PAR02/>] > 
PA~tl!/11<14113> 
PAP 11 /m<l613~> 
PA1<12/8Cl9> 
PAR111•<4414l> 
PAR14/8C1211~> 
;SET /PAR ,CIC 1•< •PARITY [<PAR 101>, <PAR 111> 1 <PAR121>, <PAR! 3/>, <PAR! 4/> l > 

( 11•<i6>1J.DEFAULT8< •XOR [PAP ,CK2, PAR ,CK 1 l > 
PAR20/m<810> 'I 
PAR2tl•<17I15>J 
PAP221•<2 t I 1 !!>" 
PAPH/•<39137> 
P0/•<45>, ,DEll'AIJLT•< • NO'P [•PARITY [<PAll21'/> 1 <PAP21 I>, <PAR221>, <PAR2l/>] 1 > 

Figure 6-18 Parity Field P 1 



°' I 

N 
0 

47 46 00 

11 

f 

1Tl"le accelerator sync signal will ce setup so that 1t 111111 OP 
1asserte1 whenever tl"le oranel"\ eontrol field eQ~als: 2, 3 or lb, 
~!l•<IH1J> 
1!31•<ll:!O> 
,SET/l:IRANO:< ,CASI:: [<B1/>J0f lo,o, 1,01 > 
• SET /i:!R A ~11 =<, c Asf l <Bl/> 1 or lo, o, o, o. o, o, 1, 11 J > 
.sr,r /!!IOIJ2:< .cAs~: [<Bl/> J Ot' (I, o, 0, 0 J > 
0 SET/BliA'O:<.CASE(<Bl/>JOf [Q, 011'1I101 ll101!1] > 
,S~T/AVA!L•<,AND[8RAN2,BRAN3]> 

SET /RCV•<. um [BRAt.I), BRAN 11) 
-.;,;;;.;;..:..;;_;_...;~:..:..:•....;<.,;.4;..7>._, , r>ErAUl·T=<, OJ< I A VA J L, RC V l > 

ACCSYNCH~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--' 
BIT 

PROM 

REG 
BUS NUA 9:0 H CS47 H ACCSYNCH TO 

CPU 

FPAN FPAD 

TK·5397 

Figure 6-19 Accelerator Sync Field 



°' I 
N 

Micro•2 .1 1A c 34) 
MACRO DEFINITIONS 

911:39 16•NOV•1979 

t396 0 PAGE "MACRO DEFINITIONS" 
r397 .roe "Fraction Data Path Control Macros" 

DESCRIPTIVE : 398 
MACRO ---.:_~?~{'The fOllowtng group of macros controls the fraction data path. There 
HEADER ~ rare one, two and three operand macros. rn the two operand macros the 2nd operand 

:401 ris also the destination. In the three operand instruction the 3rd operand 
t402 :is the destination. rraction scratch pad locations and the Q reqister 
t 40 3 tare preeeeded bV an F. EN QUOTED 
r 404 MACRO VALUE 
t 405 NULL "P'SHF /NOOp, EXP.CTL/NOOp" JI 
r406 
r407 tMNEG is a 2's comp. macro. r ',_. __ ...,...... ___ , ___ _,._ __ ....... .----"---... 

MACR0-----, ... 4we:we--· MNEG FWR [ J TO FQ 
r409 NEG FQ 
t410 MNEG f'WR[) TD FWR[] 
:411 MNEG FQ TO FWR[] 
:412 NEG HUGE FWR[) 

"rSRc10.A,fALUIR.MINUS.S,FSHr/LOAo,Q,FA.AoRS/~1" 
"FSRC/0 0 0,FALU/R,MINUS 0 S,FSHF/LOAD,O" 
"FSRC/0 0 A,FALU/R,MtNUS,S,FSHF/WRT,8,FA,ADRS/'t'FB,AORS/~2" 
"FSRC/0 0 Q,FALU/R,MINUS 0 S,FSHF/WRT,B,FB,ADRS/'l" 
"FSRC/0 0 B,FALU/R,MINUS,S,FSHF/WRT.B,FB 0 ADRSl@1,CLK/ALTER,CIN 

:413 
:414 

:40R 

ADD SHFL 

aoo SHFL FWR[] To FWRC] + FCoUT "FSRCIA.A,FALU/ADD,FSHF/SHFL.B,FA.ADRS/@t,FB.An~ 

"'ltlf.G f'.olR [ l TO fQ 

MOVE AND NEGATE CONTENT 
OF FRACTION 
WORKING REGISTER 
TO FRACTION 
Q REGISTER 

CONTROL STORE 
WORD 
FIELD VALUES 

"" ' ' r-"'-'I "" "fSRcto.A,fALUIR.~INUS,S,f5Hf/LnAo.Q,fA,AoRS/~1" 

"-..,-1 "-..,-1 "-..,-1 
FIG.6-12 FIG.6-13 FIG.6-14 FIG.6-11 

FIELD NAMES IN 
CONTROL STORE 
WORD 

Figure 6-20 MACRO Definitions 

TK-5833 



6.4 MICROROUTINE 
Figure 6-21 illustrates an overview of the FPA microcode. The NULL task for the FPA is the wait loop. 
This microword does nothing except jump to itself. When an IRD signal is issued by the CPU, the FPA 
will jump to an IRD target as determined by the op code on the IB-Bus and the IRD ROM. The IRD 
target for instructions not executed by the FPA is the wait loop. 

Each instruction class calls either an integer or floating fetch routine, depending on the data type of the 
operand(s). 

After the operand(s) is fetched the instruction will execute. For the floating-point instruction, each in
struction class has more than one instruction; the data type and instruction class determine the specific 
instruction being executed. For each instruction class there is usually one common flow with separate 
branches for individual data types. For example, ADD F, D, and G have a common flow; ADD H 
branches away from this common flow because it requires two cycles to add a huge (H) word. 

At the end of the execution a store routine is jumped to; the store routine jumped to depends on what 
data type is being stored. 

There are two routines that the CPU forces via the TRAP ACC signal: the initialization and abort 
routines. 

The initialization routine generates a number of constants which are stored permanently in some of the 
FPA's WRs. This routine is forced upon power up. 

The abort routine is forced by the CPU when the CPU must stop execution of the current instruction. 
The abort sequence sets up some constants for the next instruction and goes to the wait loop. 

Figure 6-22 illustrates an ADDition instruction; the ADD flow illustrates the basic flow for all floating 
arithmetic instructions. The IRD target for ADDX is 201, as shown in the figure. The PET.FLT rou
tine is called from this IRD target. The FET.FLT routine determines the data type, and fetch and 
appropriate operands. It also sets up some data type depended constants. 

Whenever the exponent is loaded in the FET.FLT routine, a flag is set if the exponent is zero; there are 
two exponent = 0 flags (one for each operand). When the FET.FLT routine is through, it branches on 
the signal (OP1.AND.OP2) .NE.O .. This branch will OR a one into the LSB of the return address if 
neither operand is zero. In the case of the ADD instructions, the calling address is 201, the normal 
return address is 202, and the return address for the case where neither operand is zero, is 203. 

If one or both of the operands are zero, a reserved operand check is performed. If neither are reserved 
operands, then the nonzero operand (or a zero, if both are zero) is moved to the output WR, and the 
store routine is jumped to. 

If neither operand is zero, an execution routine is called; this routine performs all the necessary pre
alignment shifts, additions and normalization shifts. Then the RND.TST routine is called, (in the case 
of ADD it is actually jumped to, to save a state) and will round the result and check for overflow or 
underflow. The RND.TST routine has two return addresses: one address indicates that no exception 
occurred; the other indicates that an exception did occur. 

The two return addresses are generated by ORing a particular status condition into the two LSBs of the 
return address. In the case of ADDX, the two return addresses are 207 and 204. 

The exception return jumps to an exception handler. This routine determines what exception occurred, 
generates the proper error code, and passes the code to the CPU. 

The no exception return sets the condition codes and jumps to the store routine. 

6-22 



229: 

DIVL 
SETUP 

CALL 
INT FLT 

228: I 

°' I 
N 
VJ 

231: 

MULL 
SETUP 

CALL 

3 SEPARATE 
IRD 
TARGETS 

CUTXB: 
CUTXW: 
CUTXLW: 
<:FTUP 

CALL 
INT FET INT FET 

259: 

4 SEPARATE 
IRD 
TARGETS 

CUTRXLW: 
SETUP 

CALL 
FET FLT 

THESE CONVERTS HAVE SEPARATE FLOWS, 
AS WELL AS IRD TARGETS. THESE SEPARATE 
FLOWS EVENTUALLY CONVERGE TO ONE 
FLOW FOR EACH CONVERT CLASS. 

CPU FORCES 
ADDRESS 10 

3 SEPARATE 
IRD 
TARGETS 

261: 
269: 
271: 
279: 
CUTFX· CVTXB: 
CUTDX: CVTXW: 
CUTGX: 

CVTXLW: CUTHX: 
SETUP SETUP 

CALL CALL 
FETFLT FETFLT 

I 293: 

THE HARDWARE FORCES THIS 
ROUTINE WHEN A PARITY ERROR 
OCCURS. 

0: PARITY 
ERROR 
HANDLER 

Figure 6-21 

201: 

ADD: 
SETUP 

CALL 
INT FET 

203: I 

RETURN 

ADD 
EXECUTION 

211: 

CMP 

AN INSTRUCTION THAT 
IS NOT EXECUTED BY 
THE FPA BRANCHES 
DIRECTLY BACK TO THE 
WAIT LOOP 

219: 

SUB 
SETUP SETUP 

CALL CALL 
FET FLT FET FLT 

213: I 218: I 

RETURN RETURN 

Microcode Overview 

221: 201: 

POLY DIVL 
SETUP SETUP 

CALL CALL 
FET FLT FET FLT 

223: I 2D3: 

RETURN RETURN 

2C1: 

MULL 
SETUP 

CALL 
FET FLT 

2C3: I 

RETURN 

MUL 
EXECUTION 

239: 

EMOD 
SETUP 

CALL 
FET FLT 

238: I 

RETURN 

EMOD 
EXECUTION 



RESERVED OPERAND 
TEST ROUTINE 

CREATE RESERVED 
OPERAND ERROR 
CODE 

GO TO EXCEPTION 
HANDLER 

NO 

201 

r-----_J 

RETURN 

202: 
OPERAND=O 
RETURN 

CALL RESERVED 
OPERAND TEST 
ROUTINE 

L---------, 
MOV NON ZERO 
OPERAND 
TO OUTPUT WR 

GOTO STORE 
ROUTINE 

ADD: 
SETUP 

CALL 

FET FLT 

207 

L- ---..., 
203: 

OPERAND =O 
RETURN 

CALL EXECUTION 
ROUTINE 

.---_J 

CALL 
RND.TST 

EXCEPTION 
RETURN 

NON EXCEPTION 
RETURN 

GO TO EXCEPTION 
HANDLE 

GO TO STORE 
ROUTINE 

Tl<-6824 

Figure 6-22 Microcode ADD Flow 

6-24 



A.1 INTRODUCTION 

APPENDIX A 
PROGRAMMED ARRAY LOGIC 

Programmed array logic (PAL) devices used in the FPA are logic arrays that contain a programmable 
AND OR GATE ARRAY comprised of fusable links. Before a PAL is used in the FPA, it is elec
trically configured and inserted in a PAL programmer that modifies it for particular circuit functions. 
The programming burns certain links in the array. 

Figure A-1 shows the three FPA PAL types and explains the PAL type designator. All three PAL types 
contain an output circuit (register or inventer) connected to an AND OR GATE ARRAY. The arrays 
are identical before programming. 

NOTE 
Additional information on all P ALs described in this 
section can be obtained on microfiche. 

Figure A-2 shows AND OR GATE ARRAY details. Figure A-3 shows how fusable links (Fl through 
F4) in an array can be programmed for a particular function. Figure A-4 illustrates how a particular 
function (integer division) is enabled for the data shift in control PAL. 

A.2 PIN DESIGNATIONS 
Figure A-5 illustrates PAL designated (D}, input/output (I/O pins are dashed}, and register pin (R) 
designations. 

NOTES 
1. A slash (/) indicates signal is asserted low. 

2. A dash (-) indicates pin has I/ 0 function. 

A.3 PAL FUNCTIONS 
Figures A-5 through A-23 illustrate the FPA PALs. The Boolean equations for the PALs can be found 
on microfiche. 

A-1 



NUMBER OF ARRAY INPUTS ::=---J OUTPUT TYPE L =ACTIVE LOW 
PROGRAMMABLE ARRAY LOGIC FAMILY---=::i_ _i,. J_r NUMBER OF R =REGISTERED 

PAL 16 L 8 OUTPUTS 

:> 
I 

N 

10 

TK-6277 

Figure A-1 FP A PAL Types 



r------------, 

I IP JJ -h ~JJ 
I ...J-< --l--" I v ] 

:B=f l t __,.., ::r 

~] I 
t l 

~ 11 I ~1·1 'I~ <;; 

I If Q I ~r1 -t ~ _l 

I ::J-{=r---_:J 
:R 'Iv J 

I --t5---> J 
I :R 1 

i /?J I 
t 

~ ... 

:R +1 I ~jv I 
L ____________ _:"J 

-E 
-IT ,,____ 

-IT I---

8 I---

[I ....._ 
........ 
-,.. 

~ ....._ 

[z: ,,____ 

~ I---

I---G1 
rm 

1 

AND 
OR 
GATE 
ARRAY 

1 

FPAE 
PAL16L8 

R)c 

R>c1 
R>c1 
R>c1 
R>o1 
R>c1 
R>c1 
R>c 

Figure A-2 AND OR GATE ARRAY Details 

A-3 

~ 

s 
till 
s 
s 
s 
s 
till 
fill 
s 

TK-6258 



INPUT 1 

INPUT2 

A 

B 

A 

B 

F8 

A, UNPROGRAMMEDPAL 

F4 

B. PROGRAMMED PAL 

C. EQUIVALENT LOGIC 

UNPROGRAMMED 
FUSES (LINKS) 

OUTPUT 

LINKS BLOWN FOR 
XOR FUNCTION 

AB V AB 

ABV AB 

AB VA B 

TK-6255 

Figure A-3 Fusable Link Programming 

A-4 



FOR 
INTEGER 
DIVISION 

ENBL DOUB DIV L _r:_- - - - - - - - - - -_::i 
T 

I 
QIN 

2 
H I 

...... "" 
TL~ 

I 
FRAC47 F3 SA~ EJ __._ 

T£ 
I 

Hl 
.,..~ 

ENB INT DIV 
4 

NOT 
USED 

5 

EXPI7 (1) 
6 

I 
I 
I 

12_ 

J 
l .. 
I L 

I 
d .. 

,-----4~ 
ENB DIV F 

7 

I 
I 

l6-

I 
I 

:>. l 
8 

NOT 

USED g 

..... l 
~ Tl 
~ 
~,_,Iv 
H~ 

~ 1 -r 
..... I 
H~ "] 
§-it~ 
t:~ l 

--<' I 

EXP15 03 H 

9 1 

E XP15 R3 H 
8 1 

HEO-F ~ - 1 
I-' 

~ 1 
~ 

RACOOQO H 
7 

..... __._ 

§~ ~ A I 
~_J_ 

I-' l_J 
I-' r-1 ] t::: 
I-' ..... 

--<' -1-..... I 

FRACOO ROH 
16 

FRAC16QQ H 
15 

~ ttr-§~~ 1 
...... ~..:. 

FRAC16 ROH 
14 

§ tJ H r-- I' H...--
H 

.... 
-5.. 

t::: 

FRAC32 OOH 
13 

H PP--
E~ 1 

FRAC32 ROH 
2 

t:: ... 1 
3: T 11 (NOT USED) ·-L _____________ J 

Figure A-4 Integer Division Enabled for Data Shift in PAL 
(Sheet 1 of 2) 

A-5 

TK-6272 



T: 
P: 
N: 
D: 

S: 

SV_H INT_DIV_H 

B: 

ENB INT DIV H 

E: 

PAL16L8 
23-035J-01 
DAVID STONER 
30-MAY-80 

/DOUB_DIV _L OIN_H F3_SV _HINT _DIV _H NC EXP _17 _H /ENB_DIVF _L NC NC GND 
NC 32_RO_H 32_QO_H 16RO_H 16QO_H OORO_H OOQO_H EXP _R3_H EXP _03_H VCC 

32_QO_H 16QO_H 

IF [DOUB_DIV _L) /OORO_H:=VCC 

IF [DOUB_DIV_L) /OOQO_H:=/QIN_H 

IF [ENB_DIVF _L] /32_RO_H:=VCC 

IF [ENB_DIVF _L /32_QO_H:=/QIN_H 

IF [/EXP _17 -HJ /EXP _R3_H :=VCC 

IF [EXP _ 17 

IF [EXP _17_H] /EXP _Q3_H:=VCC 

END OF EQUATIONS 

NOTES% 

NOTES: 

DATA SHIFT IN CONTROL PAL 

FRAC16 QOH 

FRAC47 F3 SAVE H 

TK-6271 

Figure A-4 Integer Division Enabled for Data Shift in PAL 
(Sheet 2 of 2) 

A-6 



2 
DO 

3 D1 
4 

D2 

16R4 

R 

R 

R 

OUTPUT 
(R =REGISTER) 
PINS 

DESIGNATED 5 
D3 R 

INPUT 
PINS 

BUS FPA DOO H 

BUS FPA DOl H 

BUS FPA D02 H 

BUS FPA D03 H 

BUS FPA D04 H 

BUS FPA 005 H 

BUS FPA D07 H 

BUS FPA 008 H 

1/0 
PINS 

6 
D4 

7 
D5 

8 
D6 

9 
D7 

l 
------ 1/0 

1/0 

-- ----1/0 

------110 

CLOCK 
11 

ENABLE 

NOTES: 1. SLASH(1) 
INDICATES SIGNAL 
IS ASSERTED LOW 

} 1/0 PINS 

2. DASH (-) INDICATES 
PIN HAS 1/0 FUNCTION 

TK-6254 

Figure A-5 Pin Designations 

FPAL 
PAL16L8 

--~~~~, ,~~~~~ 

AND 
OR 
GATE 
ARRAY 

20 vcc 

INP D55 H 

INP D54 H 

INP D53 H 

INP D52 H 

INP D51 H 

INP D50 H 

INP D49 H 

THIS PAL SERVES AS A MUX TO DIRECT THE HIDDEN BIT TO THE 
CORRECT BIT POSITION AS DETERMINED BY THE DATA SIZE. 

Figure A-6 Hidden Bit PAL 

A-7 

TK-6264 



MOD1 <1> H 

MODO<l>H 

SHF1 <1>H 

SHFO<l>H 

SIZE 1 H 

SIZE 0 H 

INTEGER H 

FPAL 
PAL16L8 

~~~~~, ,~~~~~ 

AND
OR
GATE
ARRAY

20 vcc

ENB INT MUL H

ENB DOUB DIV L

DIV H FORCE UADDR <1> L

FRAC55 Y H

GND 10

THIS PAL ENABLES VARIOUS DRIVERS WHICH DRIVE SOME OF THE
RAM3-RAMO AND 03-QO BUSES FOR MULTIPLY AND DIVIDE.

Figure A-7 Input Enable PAL

A-8

TK-6263

ENB DOUB DIV L

QIN H

FRAC47 F3 SAVE H

ENB INT DIV H

EXP I7 <1> H

ENB DIVF L

FPAE
PAL16L8

....-~~~~- ~~~~~-

AND
OR
GATE
ARRAY

20 vcc

EXP15 Q3 H

EXP15 R3 H

FRACOO QO H

FRACOO ROH

FRAC16 QO H

FRAC16 ROH

FRAC32 QO H

FRAC32 ROH

THIS PAL SIMPLY ENABLES QIN ONTO THE CORRECT RAMO, 00 INPUTS.

Figure A-8 Data Shift m PAL

J\-9

TK-6269

DIV 13 (1) L

SIZE 0 H

ENB DIV (1) L

INSTR ENC 02 H

INSTR ENC 01 H

INSTR ENC 00 H

EXTEND CLK (1) H

EXT <7:0> EO 0 H

EXTEND BRAN L

FPAA
PAL16L8

--~~~~~ ,~~~~~

20 vcc

GND 10

AND
OR
GATE
ARRAY

THIS PAL GENERATES THREE OUTPUT SIGNALS.

EXTEND BRAN 3 H

QIN H

SIZE 1 H

EXTEND BRAN 2 H

INSTR ENC 03H

UBCTL 3 (1) H

EXTEND BRAN 1 H

INSTR ENC 04 H

Figure A-9 Extended Branch PAL

A-10

TK-6270

REG CLK L

UBCTL4 <1> H

UBCTL 3<1> H

UBCTL 2 <1> H

UBCTL 1 <1> H

UBCTL0<1>H

EXP EQ 0 H

EXP15 F3 H

SUMPATH <1> H

GND 10

FPAB
PAL16R4

--~~~~~~-- ,--~~~~~~---

AND
OR
GATE
ARRAY

20 vcc

~~1------------!l~/O::..._a 18 BRANCH1H

OPl EQO <1>H

OP2 EOO <1> H

EXP15 F3 SV H

~1--..,--4---~~__;1~10~ 13 .__N/_c __________ __

1/0 ENB OP= 0 CLK L
121-+-------------

THIS PAL GENERATES BOTH LOWER BRANCH BITS; IT ALSO LATCHES
A NUMBER OF STATUS SIGNALS.

TK.S275

Figure A-10 Branch 3 PAL

A-11

UBCTL4<1>H

UBCTL3<1>H

UBCTL2<1>H

UBCTL1 <1> H

UBCTLO<l>H

FRAC <55:48> = 0 SV H

FRAC <47:32> = 0 SV H

FRAC<31:16> =-OSV H

FRAC<15:0>=0SV H

GND 10

FPAB
PAL16L8

--~~~~- ~~~~~-

AND
OR
GATE
ARRAY

20 vcc

BRANCH 1 H

ACCSYNC H

PUSH L

FILE ENB L

FRAC47 F3 SAVE H

MULil <1>1 H

EXT <7:0> = 0 SV H

THIS PAL GENERATES THE BRANCH 1 SIGNAL.
TK-6268

Figure A-11 Branch 2 PAL

A-12

UBCTL4<1> H

UBCTL3<1> H

UBCTL2<1> H

UBCTLl <1> H

UBCTLO <1> H

CPU RCV DATA L

OP2 SIGN <1> H

OPl SIGN <1> H

CPU DATA AVAIL L

FPAB
PAL16L8

--~~~~- ~~~~~-

vcc 20 vcc

AND
OR
GATE
ARRAY

EXP COUT SAVE H

EXT 00 00 SAVE H

FRAC55 03 SAVE H

DIVI3<1> L

FRAC COUT SAVE H

FRAC55 F3SAVE H

SIGN OUT <1> H
GND 10 GND

THIS PAL GENERATES BOTH OF THE LOWER TWO BRANCH BITS FOR
CERTAIN UBCTL VALUES.

Figure A-12 Branch 1 PAL

A-13

TK-6262

UBCTL4<1> H

UBCTL3<1> H

UBCTL2<1> H

UBCTL1 <1> H

UBCTL0<1> H

SIZE 1 H

SIZE 0 H

INSTR ENC 04 H

INSTR ENC 03 H

AND
OR
GATE
ARRAY

FPAB

PAL 16L8

20 vcc

INSTR ENC 02 H
GND 10 '--~~~~~~~~111--~~~~~~~~~

THIS PAL WILL GENERATE THE LOWEST BRANCH BIT FOR THOSE UBCTL
FIELD WHOSE UPPER TWO BITS ARE 0.

Figure A-13 Branch 0 PAL

A-14

TK-6265

REG CLK L

CLK CTL2 <1> H

CLK CTL 1 <1> H

CLK CTLO <1> H

EXTEND CLK <1> H

FRAC55 R3 SAVE H

SIZE 1 H

SIZE 0 H

SH Fl <1> H

GND 10

AND
OR
GATE
ARRAY

THIS PAL CONTAINS 3 TOGGLE TYPE FLIP FLOPS; THEY ARE

TOGGLED BY CERTAIN CLOCK CODES. IT ALSO CONTROLS THE DATA
IN PAL AND THE CLOCK OF THE OPl=O AND OP2=0 FLAGS.

Figure A-14 Extended Function PAL

A-15

ENB OP= 0 CLK L

ALTER INT STORE H

HUGE R3 SV H

016 DEFAULT H

LD SELO H

TK-6274

SH Fl <1> H

SHFO<l>H

EXP 17<1>H

EXTEND CLK <1> H

ENB CLK 3 L

FRACI8 <1> H

FRAC 17 <1> H

EXTOOQO H

EXTOO RO SAVE H

GND 10

FPAM

PAL16L8
--~~~~- ~~~~~-

20 vcc

AND
OR
GATE
ARRAY

"-----------111 N/C

FRAC55 R3 H

SHIFT QR

SHIFT FR

FRAC55 Q3 H

EXPIS<l>H

EXTOO ROH

ENB MUL SHF H

THIS PAL CONTROLS w-tAT IS SHIFTED INTO THE MSBs OF THE FRACTION DATA PATH (RAM 3,
03), AND WHAT IS SHIFTED INTO THE LSBs OF THE EXPONENT DATA PATH (FAMO. QO).

TK-6266

Figure A-15 Fraction Shift Control PAL

A-16

FRACI4 H

FRACI3 H

FRAC COUT SAVE H

EXP CODE 3 <1> H

EXP CODE 2 <1> H

EXP CODE 1 <1> H

EXP CODE 0 <1> H

ENB CLK5 L

EXTEND CLK <1> H

GND 10

FPAM
PAL16L8

----~-~ 1----~

AND
OR
GATE
ARRAY

20 vcc

EXPl6 <1> H

EXPI5<1> H

EXPI4 <1> H

EXP 13 <1> H

EXPI2 <1> H

EXPil <1> H

"----------t11 N/C

THE EXPONENT CONTROL PAL DECODES A MICROFIELD 4 BITS WIDE TO
CONTROL EXP 16-0. THE PAL MAPS THE 4 BIT FIELD INTO A 7 BIT FIELD.

Figure A-16 Exponent Control PAL

A-17

TK-6267

MOD1 <1>H

MOD0<1>H

SHF1 <1>H

SHF0<1> H

LOADH

TRISTATE DISA L

ALTER INT H

FPAL
PAL16L8

..-~~~~, ,~~~~~

AND
OR
GATE
ARRAY

20 vcc

EXT OUT ENB L

ENB FRAC <15:0> L

ENB FRAC <31:16> L

ENB FRAC <47:32> L

EXP<7:0>ENB L

ENB FRAC <55:48> L

READ UADDR <1> H ENB CCL

PAR ERR H ALLOW CPU Y BUSH

FORCE UADDR <1> H
GND 10

THIS PAL ENABLES THE SELECTED BIT SLICE GROUP ONTO THE BUS
FPA DURING A STORE OPERATION.

Figure A-17 Store Control PAL

A-18

TK-6257

REG CLK L

FPAH
PAL 16R4

20 vcc

ALTER INT H ENB LITERAL L

FRAC <47:32> = 0 SV H

FRAC <31:16>=0 SV H

EXP EQO SV H BUS FPA D02 H

FRAC 47 F3 SAVE H

AND
OR
GATE
ARRAY

SIGN OUT <1> H BUS FPA 000 H

ENB CLK6 L

EXTEND CLK <1> H

GND 10

THIS PAL STORES THE CONDITION CODES, WHICH WILL BE PASSED TO
THE CPU. CC BITS N AND Z ARE SET ACCORDING TO VARIOUS
STATUS CONDITIONS; CC BITS C AND V ARE EXPLICITLY SET BY
THE MICROCODE AS ERROR FLAGS TO THE CPU. THE PAL ALSO
GENERATES THE LITERAL ENABLE.

Figure A-18 Condition Code PAL

A-19

ENB CLK2 L

ENB CCL

TK-6276

CLOCK

GND 10

FPAC
PAL16R6

20 vcc

SLOW PATH ENB H

.XJ~~___.~~~~l/_0--1 12 FASTPATHENBH

THE CLOCK PAL CONTROLS THE CLOCKS FOR THE FPA; IT WILL ENABLE THE CPU TO CLOCK THE FPA
IF FAST IS NOT SET, OTHERWISE THE FPA WILL GENERATE ITS OWN CLOCKS.

TK-6253

Figure A-19 Clock Control PAL

A-20

UBCTL2<1> H

UBCTL1 <1> H

UBCTL0<1> H

INSTR ENC 04 H

INSTR ENC03 H

INSTR ENC 02 H

INSTR ENC 01 HQ

INSTR ENC 00 H

FPAB
PAL16L8

--~~~~-... --~~~--.

AND
OR
GATE
ARRAY

20 vcc

ENB CP LOAD L

READ UADDR <1> H

INTEGER H

LOAD H ODD PAR UBCTL <2:0> H

PAR ERR H
GND 10

THIS INSTRUCTION PAL GENERATES A NUMBER OF INSTRUCTION
SPECIFIC SIGNALS NEEDED FOR CONTROL AND BRANCHES.

Figure A-20 Instruction PAL

A-21

TK-6256

REG CLK L

FPAD
PAD 16R4

20 vcc

ODD PARITY FORCE LOW UADDR L

ODD PAR UPF H

ODD PARITY ROM H BUS FPA D03 H

READ UADDR <1> H BUS FPA D02 H
AND
OR
GATE
ARRAY

ODD PAR UBCTL <2:0> H BUS FPA D01 H

FORCE UADDR <1> H BUS FPA DOO H

PARITY 2 <1> H

PARITY 1 <1> H

PARITY 0 <1> H

OUTEN
GND 10

THE PARITY PAL CHECKS THE 2 GROUPS OF MICROBITS FOR A PARITY
ERROR. IF ONE IS FOUND, A FLAG IS SET TO INDICATE WHAT PARITY
ERROR OCCURED. ONCE THIS IS DONE MICROADDRESS ZERO IS FORCED.
THIS MICROWORD WILL LOOP ON ITSELF, CONSTANTLY PLACING THE
PARITY ERROR ON THE BUS FPA; BUS FPA DOO IS THE OR OF THE
THREE PARITY BITS.

Figure A-21 Parity PAL

A-22

TK-6261

EMOD H

SIZE 1 H

SIZE 0 H

INTEGER H

F RAC55 R3 SA VE H

016 DEFAULT H

FRACl3 H

FRAC16 QO H

FRAC32 QO H

FPAE
PAL16L8

--~~~~- ,~~~~~

AND
OR
GATE
ARRAY

20 vcc

MIER LSB H

EXTOO QO H

FRAC47 F3 SAVE H

HUGE R3SV H

FRACCOUT H

DIV 13 L

GND 10 ---~~~~~~~~11 --~F_R_A_c_oo~o_o_H~~~~

THIS PAL PERFORMS THE CONDITIONAL CONTROL FOR BOTH MULTIPLY
AND DIVIDE.

Figure A-22 Multiply /Divide PAL

A-23

TK-6259

FPAC
PAL16R4

REG CLK L
20 vcc

ENB CLKS L POLY H
19

ENB CLK4 L
18

EXPAADDR2 H

EXP <7:0> ENB L SUMPATH <1> H

CLK

EXPAADDR1 H OP1 SIGN <1> H
Q AND D

OR
GATE

CLK ARRAY

EXPAADDRO H OP2 SIGN <1> H

ADD+SUB H

ADD H

ENB CLK7 L

D

SIGN OUT <1> H
D

CLK Q

FPA D15 H

EXTEND CLK <1> H
12

GND 10

THIS PAL STORES THE SIGN OF BOTH OPERANDS, THE RESULTANT
SIGN AND A SIGNAL CALLED SUMPATH, WHICH INDICATES WHETHER A
SUM OR DIFFERENCE IS TO BE EXECUTED FOR THE ADD AND SUBTRACT
INSTRUCTIONS.

Figure A-23 Sign PAL

A-24

TK-6260

Algorithm

ACC

ACC SYNC

ALU

Bias

Branch Control
Field

BUS FPA

BUS NUA

Clock

Clock Field

CMP

CSR

CVT

APPENDIX B
GLOSSARY

Set of processes (procedure) FPA performs to solve a floating-point prob
lem in a finite number of steps.

Accelerator.

Accelerator synchronization bit (CS47, Figure 6-19) asserted whenever
branch control field (CS14:10, Figure 6-4) equals 2, 3, or 16. ACC
SYNCH indicates to CPU that FPA is ready.

Arithmetic logic unit contained in data path logic and in microaddress
sequencer.

Excess notation.

Five-bit field (CS14:10, Figure 6-4) used to OR in status bits into the
lower 2 bits of the micropointer field (UPF). With particular values of the
MOD and CLK CTL fields, the branch control field can be extended to
the lower 5 bits of the UPF.

Internal 32-bit wide FPA bus.

Next microaddress bus. Located at output of microaddress sequencer.

Normally 180 ns when FPA is processing operands; 270 ns when FPA is
synchronized with CPU.

Three-bit field (CS 17: 15, Figure 6-6) used to enable a number of clock
and special functions.

Compare instruction (Figure 6-21).

Control store register.

Conversion instruction (Figure 6-21) used to convert one data type to an
other.

B-1

D

Divide-by-Zero

DIVL

EMOD

Exception

Excess Notation

Exponent

EXP CTL Field

EXP DST Field

Exponent Data Path

Extended Op Code

FALU Field

Force

F

FPA

FP AA through FP AN

Fraction Data Path

FRAC Field

Fraction

FRSC Field

FSHF Field

64-bit double format.

Exception (error) condition that occurs when the divisor is a zero. For this
condition the destination is unaffected and the condition codes are unpre
dictable.

Longword division instruction (Figure 6-23).

Extended precision multiply and integerize (Figure 6-21).

Error condition that occurs during operand processing; reported to the
CPU via the Y-Bus.

Bias (80,400,4000) used to store and handle the exponent portion of float
ing-point numbers.

Contains power of 2 in a bias format. Is an 8-bit value for single (F) and
double (D), 11-bit value for grand (G), and a 15-bit value for huge (H)
data formats.

CS 44:39 (Figure 6-15).

Exponent destination control field (Figure 6-16).

16-bit wide data path.

Op code equal to FD; used to extend the VAX instruction code beyond
the normal 8-bits of the IB-Bus.

Fraction ALU function field (Figure 6-13).

CPU inhibits operation of FP A microaddress sequencer and then writes
(forces) a microaddress into control store via the Y-Bus.

32-bit long single format.

Floating-point accelerator.

FP A schematic logic diagrams.

64-bit wide data path.

Fraction control field (Figure 6-1).

Normalized, magnitude binary representation with sign and magnitude
notation.

Fraction ALU source operand field (Figure 6-12).

Fraction ALU destination control field (Figure 6-14).

B-2

G

Grand Format

Guard Bits

Hidden Bit

H

Huge Format

IB-Bus

Integer Data Path

IRD

Literal (LIT)
Field

Load

LSB

Microaddress

Micropointer
Field (UPF)

Microword

MIER

MOD Field

MSB

MUL

Normalization

Op Code

Grand format.

64-bit longword format.

Bits used to save the LSBs of an operand that have been shifted out of the
fraction and are required for precision reasons.

Because MSB of fractions stored in memory is always a logical one, CPU
does not send this bit. Therefore, FPA inserts a one into this bit into MSB
of every fraction whenever it receives an operand from the CPU.

Huge.

128-bit longword.

Instruction bus used for transfer of op codes to FP A.

Fraction data path 47:16.

Instruction decoding state.

8-bit field (CS7:0, Figure 6-2) control store applies to microaddress se
quencer.

CPU sends FPA operands.

Least significant bit.

10-bit field normally generated by FPA microaddress sequencer (or
forced by CPU) to select required data path setup signals during operand
processing.

10-bit field (CS9:0, Figure 6-3) that specifies the base of the next micro
address of the microaddress sequencer.

10-bit microaddress word applied to control store.

Multiplier.

Two-bit modify field (CS21 :20, Figure 6-8) used to extend use of other
fields and also enable special functions.

Most significant bit.

Shortword multiplication instruction (Figure 6-21).

Alignment of fraction resultant with fraction data path MSB.

Eight-bit operation code field that indicates what operation (instruction)
must be performed on operands received on the Y-Bus.

B-3

Operand

Overflow

PAL

Parity Field

POLY

Prealignment

Probing

PROM

RAM A Field

RAM B Field

Range Test

ROM

Rounding

RTOL

Save

SHF (Shift) Field

Size Field

Status Register

Store

SUB

Summation

Data received on the Y-Bus that is to be operated on.

Exception (error) that occurs when exponent of floating-point number is
larger than the largest representable exponent for the data type after nor
malization and rounding have been performed.

Programmable array logic.

Two-bit field (CS46:45, Figures 6-17, 6-18) used to check for control
store errors.

Polynomial instruction (Figure 6-23).

Exponents are made equal (prealigned) prior to addition or subtraction of
two floating-point numbers.

Process of determining if address is accessible.

Programmable read-only memory.

Four-bit field (CS29:26, Figure 6-11) used to address the scratch pad of
both the exponent and fraction data paths.

Four-bit field (CS25:22, Figure 6-10) used to address scratch pad of both
the exponent and fraction data paths.

Test performed on exponents prior to addition or subtraction of two float
ing-point numbers to determine if prealignment/addition is required.

Read-only memory.

Adding a one to the most significant guard bit.

Right-to-left-reading (Figure 6-1).

Signal name suffix that indicates signal name in question (e.g., EXT RO
SA VE H) was generated in the previous cycle.

Two-bit field (CS19:18, Figure 6-7) that controls a number of shifting
functions.

Two-bit field output of instruction decoding logic. Field value indicates
size (F, D, G, or H) of operand to be received from CPU on Y-Bus.

Branch logic register that receives status signals from data path logic.

FP A result sent to CPU.

Subtract instruction (Figure 6-21).

Addition of two numbers when sign of both operands are the same.

B-4

Trap

Underflow

UPF

Y-Bus

CPU traps (halts) FPA at current microaddress so that it can be read out
to the Y-Bus.

Exception (error) condition that occurs when the exponent of a floating
point number is smaller than the smallest representable exponent for the
data type, after normalization and rounding have been performed.

Micropointer field.

32-bit wide FPA-CPU operand interface bus.

B-5

V AX-11 /730 FP730 FP A
Technical Description
EK-FP730-TD-001

Reader's Comments

Your comments and suggestions will help us in our continuous effort to improve the quality and
usefulness of our publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well
written, etc? Is it easy to use?----------------------------~

What faults or errors have you found in the manual?--------------------

Does this manual satisfy the need you think it was intended to satisfy? ____________ _

Does it satisfy your needs?----------Why?------------------

Please send me the current copy of the Documentation Products Directory, which contains information
on the remainder of DIGITAL's technical documentation.

Name------------------Street------------------
Title CitY------------------
Company State/Country ______________ _

Department ZiP-------------------

Additional copies of this document are available from:

Digital Equipment Corporation
Accessories and Supplies Group
P.O. Box CS2008
Nashua, New Hampshire 03061

Attention: Documentation Products
Telephone: 1-800-258-1710

Order No. __ E_K_-_F_P_7_3_0-_T_D_-_O_O_l ____ _

---------------------~M~~---------------------

-----------------Do Not Tear - Fold Here and Staple

~amaoma

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD, MA.

POSTAGE WILL BE PAID BY ADDRESSEE

Digital Equipment Corporation
Educational Services/Quality Assurance
12 Crosby Drive, BU/EOB
Bedford, MA 01730

111111 No Postage
Necessary

if Mailed in the
United States

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	B-01
	B-02
	B-03
	B-04
	B-05
	replyA
	replyB

