VAX Ada Language Reference Manual
Order Number: AA-EG29B-TE

May 1989

This manual represents the Digital-supplemented text of ANSI/MIL-STD-1815A-1983,
Reference Manual for the Ada Programming Language. Textual insertions (printed

in color) describe the Digital interpretation of implementation-dependent language
features, as well as allowed implementation-specific additions to the language (pragmas,
attributes, input-output features, and so on).

Revision/Update Information: This revised manual supersedes the VAX Ada
Language Reference Manual (Order No.
AA-EG29A-TE)

Operating System and Version: VMS Version 5.0 and higher
Software Version: VAX Ada Version 2.0

THIS PRODUCT CONFORMS
TO ANSI/MIL-STD-1815A AS
DETERMINED BY THE AJPO

UNDER ITS CURRENT
TESTING PROCEDURES

digital equipment corporation
maynard, massachusetts

First edition, February 1985
Revised, May 1989

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1985, 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader’s Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

Copyright 1985, 1989 Digital Equipment Corporation (insertions).

Copyright 1980, 1982, 1983 owned by the United States Government as represented
by the Under Secretary of Defense, Research and Engineering. All rights reserved.
Provided that notice of copyright is included on the first page, this document may be
copied in its entirety without alteration or as altered by (1) adding text that is clearly
marked as an insertion; (2) shading or highlighting existing text; (3) deleting examples.
Permission to publish other excerpts should be obtained from the Ada Joint Program
Office, OUSDRE(R&AT), the Pentagon, Washington, D.C. 20301, U.S.A.

The following are trademarks of Digital Equipment Corporation:

ALL—IN-1 EduSystem RT

DEC IAS ULTRIX
DEC/CMS MASSBUS UNIBUS
DEC/MMS PDP VAX

DECnet PDT VAXcluster
DECmate P/OS VMS
DECsystem-10 Professional vT
DECSYSTEM-20 Q-bus Work Processor
DECUS Rainbow VAXELN
DECwriter RSTS

DIBOL RSX dlilgi]t[a]1]

ZK3227

Contents

Preface e e e XV
New and Changed Features ionn. Xix
Chapter 1 Introduction
11 ScopeoftheStandard, 1-1
1.1.1 Extentofthe Standard 1-2
1.1.2 Conformity of an Implementation With the Standard 1-3
1.2 Structureofthe Standard, 1-3
1.3 Design Goalsand Sourcest 1-4
1.4 Language SUmMmMaryttt 1-5
1.4a VAX Ada e e e e 1-9
15 Method of Description and Syntax Notation 1-9
1.6 Classification of Errors i, 1-11
Chapter 2 Lexical Elements
241 Character Set. i, 2-1
2.2 Lexical Elements, Separators, and Delimiters 2-3
23 Identifiers e 2-5

24

25

2.6

27

238

29

2.10

Numeric Literals i e, 2-6

2.4.1 Decimal Literals i 2-6
2.4.2 Based Literals i 2-7
Character Literals 2-8
String Literals 2-8
CommeNnts e 2-9
Pragmas e e 2-10
Reserved Words. i 2-11
Allowable Replacements of Characters 2-12

Chapter 3

3.1

3.2

3.3

34

35

Declarations and Types

Declarations ittt 3-1
Objects and Named Numbers 3-3
3.2.1 Object Declarations 34
3.2.2 Number Declarations 3-7
Types and Subtypes 3-8
3.3.1 Type Declarations, 3-9
3.3.2 Subtype Declarations 3-1
3.3.3 Classification of Operations 3-12
Derived Types i e 3-13
Scalar TYpes e e 3-17
3.5.1 Enumeration Types 3-18
3.5.2 Character Typesttt ittt e e 3-19
3.5.3 Boolean Typest e 3-20
3.54 Integer Types i i e 3-20
3.5.5 Operations of Discrete Types 3-22
3.5.6 Real Types i i 3-25
357 Floating Point Types 3-27
3.5.7a Pragma LONG_FLOAT i i iiieenn 3-31
3.5.8 Operations of Floating Point Types 3-32
3.5.9 Fixed Point Types 3-34
3.5.10 Operations of Fixed Point Types 3-38

3.6 ATy TYPeS ot 3-40
3.6.1 Index Constraints and Discrete Ranges 342
3.6.2 Operations of Array Typesot 3-44
3.6.3 The Type Stringt 3-46
3.7 Record Types i e e 3-47
3.7.1 Discriminants. i 3-49
3.7.2 Discriminant Constraints 3-51
3.7.3 VariantParts 3-54
3.7.4 Operations of Record Types 3-56
3.8 ACCESS TYPES . . . i ittt e 3-57
3.8.1 Incomplete Type Declarations 3-58
3.8.2 Operations of Access Types, 3-60
3.9 Declarative Parts e e e e 3-61
Chapter 4 Names and Expressions
41 Names e e e e 41
411 Indexed Components i 4-2
4.1.2 Slices ... e e 4-3
4.1.3 Selected Components. i 4-5
4.1.4 Attributes 4-8
4.2 Literals e 4-9
43 Aggregates e e 4-10
4.3.1 Record Aggregateso, 4-11
43.2 Array Aggregates 4-12
4.4 EXPressions. e e 4-15
4.5 Operators and Expression Evaluation 4-17
4.5.1 Logical Operators and Short-circuit Control Forms 4-18
45.2 Relational Operators and Membership Tests 4-20
45.3 Binary Adding Operators 4-22
4.5.4 Unary Adding Operatorsc...cu.o... 4-24
455 Multiplying Operators 4-24
45.6 Highest Precedence Operators 4-28
45.7 Accuracy of Operations with Real Operands 4-29
4.6 Type CONVersionsttt it 4-31

4.7 Qualified Expressions 4-34
4.8 Allocators e e 4-36
4.9 Static Expressions and Static Subtypes 4-38
4.10 Universal Expressions0t 4-40
Chapter 5 Statements

5.1 Simple and Compound Statements—Sequences of Statements 5-1
5.2 Assignment Statement 5-3

5.2.1 Array Assignments e 5-5
53 HStatements 5-5
54 Case Statements 5-6
5.5 Loop Statements 5-9
5.6 Block Statements i, 5-11
5.7 ExitStatements 5-12
5.8 Return Statements 5-13
5.9 Goto Statements i, 5-14

Chapter 6 Subprograms

6.1 Subprogram Declarations 6-1
6.2 Formal Parameter Modes 6-3
6.3 Subprogram Bodies i, 6-5

6.3.1 Conformance Rules 6-7

6.3.2 Inline Expansion of Subprograms 6-8
6.4 Subprogram Calls, 6-9

6.4.1 Parameter Associations. 6-11

6.4.2 Default Parameters 6-12

vi

6.5 Function Subprograms 6-13
6.6 Parameter and Result Type Profile—Overloading of Subprograms . . . 6-14
6.7 Overloadingof Operators 6-15
Chapter 7 Packages

7.1 Package Structure 7-1
7.2 Package Specifications and Declarations 7-3
7.3 Package Bodies 7-4
74 Private Type and Deferred Constant Declarations 7-6

7.41 Private Typesttt 7-7

7.4.2 Operations of a Private Type 7-8

7.4.3 Deferred Constants 7-1

74.4 Limited Types 7-12
75 Example of a Table Management Package 7-14
7.6 Example of a Text HandlingPackage 7-16

Chapter 8 Visibility Rules

8.1 Declarative Region 8—1
8.2 Scope of Declarations 8-3
8.3 Visibility 8—4
8.4 UseClausest 8-8
8.5 Renaming Declarations 8-11
8.6 The Package Standard 8-14
8.7 The Context of Overload Resolution 8-15

vii

Chapter 9 Tasks

9.1 Task Specifications and TaskBodies 9-2
9.2 Task Types and Task Objects 9-5
9.3 Task Execution—Task Activation 9-6
94 Task Dependence—Terminationof Tasks 9-8
9.5 Entries, Entry Calls, and Accept Statements 9-11
9.6 Delay Statements, Duration,and Time 9-14
9.7 Select Statements 9-17

9.7.1 Selective Waits 9-17

9.7.2 Conditonal Entry Calls 9-20

9.7.3 TmedEntryCalls 9-21
9.8 Priorities e e 9-22
9.8a Time Slicing. e 9-23
9.9 Task and Entry Attributes oL, 9-24
9.10 Abort Statements 9-25
9.11 Shared Variables, 9-27
9.12 Exampleof Tasking i, 9-30
9.12a Task Entries and VMS Asynchronous System Traps 9-32

Chapter 10 Program Structure and Compilation Issues

10.1 Compilation Units—Library Units 10-1

10.1.1 Context Clauses—With Clauses 104

10.1.2 Examples of Compilation Units 10-6
10.2 Subunits of CompilationUnits 10-8

10.2.1 Examples of Subunits L oo 10-9
10.3 Order of Compilation 10-12

viii

104 The Program Library 10-15
10.5 Elaborationof Library Units 10-15

10.6 Program Optimization 10-16

Chapter 11 Exceptions

1.1 Exception Declarations 11-1
1.2 ExceptionHandlers 11-5
13 Raise Statements 116
1.4 ExceptionHandling 11-7
11.4.1 Exceptions Raised During the Execution of Statements 11-7
11.4.2 Exceptions Raised During the Elaboration of Declarations . . . 11-10
1.5 Exceptions Raised During Task Communication 11-12
1.6 Exceptions and Optimization. 11-13
1.7 Suppressing Checks., 11-15
Chapter 12 Generic Units .
121 Generic Declarations 12-1
12.1.1 Generic Formal Objects 124
12.1.2 Generic Formal Types 12-5
12.1.3 Generic Formal Subprograms 12-7
121a PragmalINLINE_GENERIC, 12-8
12.1b Pragma SHARE GENERIC. 12-10
12.2 GenericBodies 12-11
123 Generic Instantiation 12-12
12.3.1 Matching Rules for Formal Objects 12-16
12.3.2 Matching Rules for Formal Private Types 12-16
12.3.3 Matching Rules for Formal Scalar Types 12-17
12.3.4 Matching Rules for Formal Array Types 12-18

12.3.5 Matching Rules for Formal Access Types. 12-19
12.3.6 Matching Rules for Formal Subprograms 12-20
12.4 Example of aGenericPackage 12-21
Chapter 13 Representation Clauses and Implementation-Dependent
Features
13.1 RepresentationClauses 13-1
13.2 LengthClauses i, 13-4
13.2a Pragma TASK STORAGE 13-8
13.2b Pragma MAIN_STORAGE 13-9
13.3 Enumeration RepresentationClauses. 13-10
134 Record RepresentationClauses. 13-11
13.5 Address Clauses ittt inninnnnnnn 13-16
13.5.1 Interrupts 13-18
13.6 Change of Representation., 13-19
13.7 The Package System 13-20
13.71 System-Dependent Named Numbers 13-22
13.7.2 Representation Attributes 13-23
13.7.3 Representation Attributes of Real Types 13-27
13.7a VAX Ada Additions to the Package System 13-29
13.7a.1 Properties of the Type ADDRESS. 13-30
13.7a.2 Enumeration Type for Identifying Type Classes 13-31
13.7a.3 Floating Point Type Declarations 13-32
13.7a.4 Asynchronous-System-Trap-Related Declarations 13-32
13.7a.5 Non-Ada Exception i 13-34
13.7a.6 VAX Hardware-Oriented Types and Functions 13-35
13.7a.7 Conventional Names for Unsigned Longwords 13-37
13.7a.8 Global Symbol Values i 13-38
13.7a.9 VAX Processor and Device Register Operations 13-38
13.7a.10 VAX Interlocked-Instruction Procedures 13-39
13.8 Machine Code Insertions 1341

13.9 Interface to Other Languages 13-43

13.9a VAX Ada Import and Export Pragmas 13-46
13.9a.1 Importing and Exporting Subprograms 1348
13.9a.1.1 Importing Subprograms 1348
13.9a.1.2 Controlling the Passing Mechanisms for Parameters
and Function Results 13-53
13.9a.1.3 Attribute for Optional Parameters in Imported VMS
Routines. 13-56
13.9a.1.4 Exporting Subprograms, 13-58
13.9a.2 Importing and Exporting Objects 13-61
13.9a.21 ImportingObjects., 13-62
13.9a.2.2 ExportingObjects. 13-63
13.9a.2.3 Importing and Exporting Objects with the Pragma
PSECT OBJECTt 13-64
13.9a.3 Importing and Exporting Exceptions 13-65
13.9a.3.1 Importing Exceptions 13-66
13.9a.3.2 Exporting Exceptions 13-67
13.10 Unchecked Programming 13-68
13.10.1 Unchecked Storage Deallocation 13-68
13.10.2 Unchecked Type Conversions 13-69

Chapter 14 Input-Output

141 External Filesand FileObjects 14-2
141a Elementsand Records, 14-6
14.1b Specification of the FORM Parameter in VAX Ada. 14-7
142 Sequential and Direct Files 14-8
14.2.1 File Management 14-9
14.2.2 Sequential Input-Output. 14-12
14.2.3 Specification of the Package Sequential_IO 14-13
14.2.4 Direct Input-Output., 14-14
14.25 Specification of the Package Direct 10 14-16
14.2a RelativeandIndexed Files 14-17
14.2a.1 File Management 14-20
14.2a.2 Relative Input-Output 14-21
14.2a.3 Specification of the Package Relative_IO 14-23
14.2a.4 Indexed Input-Output e e e 14-25
14.2a.5 Specification of the Package Indexed 10 14-28

xi

14.2b Mixed-Type Input-Output 14-30
14.2b.1 File Management 14-30
14.2b.2 ftem Input-Output 14-31
14.2b.3 Sequential Mixed Input-Output 14-34
14.2b.4 Specification of the Package Sequential Mixed O 14-35
14.2b.5 Direct Mixed Input-Output 14-36
14.2b.6 Specification of the Package Direct_ Mixed 10 14-38
14.2b.7 Relative Mixed Input-Output. 1440
14.2b.8 Specification of the Package Relative_Mixed_IO 1443
14.2b.9 Indexed Mixed Input-Output 1445
14.2b.10 Specification of the Package Indexed_Mixed O 1448
143 Text Input-Output 14-50
14.3.1 File Managementcciiiiiinnnnn.. 14-53
14.3.2 Default Input and Output Files 14-54
14.3.3 Specification of Line and Page Lengths 14-55
14.3.4 Operations on Columns, Lines,and Pages 14-56
14.3.5 Getand PutProceduresc0ivu.n. 14-60
14.3.6 Input-Output of Characters and Strings 14-63
14.3.7 input-Output for Integer Types 14-65
14.3.8 Input-Output for Real Types 14-67
14.3.9 Input-Output for Enumeration Types 14-70
14.3.10 Specification of the Package Text IO 14-73
144 Exceptions in Input-Output 14-78
14.5 Specification of the Package 10_Exceptions 14-80
14.5a Specification of the Package Aux_IO_Exceptions 14-80
14.6 Low Level Input-Output 14-81
14.7 Example of Input-Output 14-82
14.7a Example of Additional VAX Ada Input-Output 14-83
Annex A Predefined Language Attributes

xii

Annex B Predefined Language Pragmas

Annex C Predefined Language Environment

Appendix D Glossary

Appendix E Syntax Summary

Appendix F Implementation-Dependent Characteristics

F.1 Implementation-Dependent Pragmas F-1
F.2 Implementation-Dependent Attributes. F-2
F.3 Specification of the Package System F-3
F.4 Restrictions on Representation Clauses F-7
F.5 Restrictions on Unchecked Type Conversions F-7
F.6 Conventions for Implementation-Generated Names Denoting
Implementation-Dependent Components in Record Representation
ClaUSeS e F-8
F.7 Interpretation of Expressions Appearing in Address Clauses F-8
F.8 Implementation-Dependent Characteristics of Input-Output
Packages i e e F—9
F.8.1 Additional VAX Ada Input-Output Packages F-9
F.8.2 Auxiliary Input-Output Exceptions F-9
F.8.3 Interpretation of the FORM Parameter. F—-10
F.8.4 Implementation-Dependent Input-Output Error Conditions F-10
F.9 Other Implementation Characteristics F-11
F.9.1 Definition of a Main Program F-11
F.9.2 Values of Integer Attributes F-12
F.9.3 Values of Floating Point Attributes F-12
F.9.4 Attributes of Type DURATION F-15

xiii

F.9.5 Implementation Limits

Appendix G Ada Language Interpretations

Xiv

Preface

The entire text of the Reference Manual for the Ada Programming Language
(ANSI/MIL-STD-1815A-1983, 1S0/8652-1987) is reprinted in this manual.
In addition, this manual contains VAX Ada implementation information and
Digital-supplied supplementary examples and text.

VAX Ada information appears in chapters 1, 2, 3, 4, 6, 9, 10, 11, 12, 13, and
14, Annexes A, B, and C, and Appendices D and F. Appendix G, added by
Digital for this edition of the VAX Ada Language Reference Manual, lists any
further interpretations of the standard Ada language that have been made
between the publication of the standard and the publication of this manual.
Footnotes referring to that appendix appear throughout this manual.

Intended Audience

This manual is intended for all programmers who are designing or imple-
menting applications using Ada. Its readers should understand the concepts
of programming in Ada and have some familiarity with the VMS operating
system.

Structure of This Document

This manual has fourteen chapters, three annexes, and four appendices.

e Chapter 1 contains a description of the Ada language standard, a lan-
guage overview, a characterization of VAX Ada, and a description of the
syntax notation.

e Chapter 2 provides detailed information on the lexical elements.

XV

Xvi

Chapter 3 describes Ada types and the rules for declaring constants,
variables, and named numbers. It gives the additional VAX Ada integer
and floating point types, and describes the VAX Ada pragma LONG_
FLOAT.

Chapter 4 gives the rules for names and expressions.

Chapter 5 gives the general rules that apply to all Ada statements, as
well as the syntax and semantics of most of those statements.

Chapter 6 gives the rules relating to subprograms, and notes the VAX
Ada implementation of the pragma INLINE.

Chapter 7 gives the rules relating to packages.

Chapter 8 gives the rules defining the scope of declarations, as well as
the rules defining the visibility of identifiers at various points in the text
of a program.

Chapter 9 explains Ada tasks. It also notes the VAX Ada implementation
of the pragma SHARED and describes the VAX Ada pragmas TIME_
SLICE and VOLATILE, as well as the VAX Ada pragma and attribute
AST_ENTRY.

Chapter 10 explains the overall structure of programs and the facilities
for separate compilation.

Chapter 11 defines the facilities for dealing with errors or exceptions
that arise during program execution. It notes the VAX Ada treatment of
the pragma SUPPRESS and presents the VAX Ada pragma SUPPRESS_
ALL.

Chapter 12 explains the use of generic units and the process of instan-
tiation. It also presents the VAX Ada pragmas INLINE_GENERIC and
SHARE_GENERIC.

Chapter 13 describes representation clauses and certain VAX Ada
features for systems programming. It describes the VAX Ada interpre-
tations of the pragma PACK, the attributes SIZE, STORAGE_SIZE, and
SMALL, and presents the VAX Ada pragmas MAIN_STORAGE and
TASK_STORAGE. It also gives the VAX Ada additions to the package
SYSTEM, the VAX Ada interpretations of the representation attributes
ADDRESS and SIZE, and describes the VAX Ada representation at-
tributes BIT and MACHINE_SIZE. Finally, chapter 13 presents the
VAX Ada interpretation of the pragma INTERFACE and describes the
VAX Ada pragmas IMPORT_FUNCTION, IMPORT_PROCEDURE,
IMPORT_VALUED_PROCEDURE, EXPORT_FUNCTION, EXPORT_
PROCEDURE, EXPORT_VALUED_PROCEDURE, IMPORT OBJECT,
EXPORT_OBJECT, PSECT_OBJECT, IMPORT _EXCEPTION, and
EXPORT_EXCEPTION.

e Chapter 14 gives detailed information on all input and output packages.
In addition to the standard input-output packages (SEQUENTIAL_IO,
DIRECT_IO, and TEXT _IO), it presents the VAX Ada input-output
packages (RELATIVE_IO, INDEXED_IO, SEQUENTIAL_MIXED_IO,
RELATIVE_MIXED_IO, INDEXED_MIXED_IO, and DIRECT_MIXED_
10) and the VAX Ada package AUX_IO_EXCEPTIONS.

e Annex A summarizes the language attributes.

e Annex B summarizes all pragmas and defines the pragmas IDENT,
LIST, OPTIMIZE, PAGE, and TITLE.

e Annex C presents the specification of the package STANDARD.

e Appendix D is a glossary of Ada terms. It is not part of the standard
definition of the Ada language.

e Appendix E contains a syntax summary of the Ada language. It is not
part of the standard definition of the Ada language.

o Appendix F lists the VAX Ada implementation-dependent characteristics.
It is not part of the standard definition of the Ada language.

e Appendix G presents summaries of any Ada language interpretations
made or recommended between the publication of the Reference Manual
for the Ada Programming Language and the publication of this edition of
the VAX Ada Language Reference Manual.

Associated Documents

The following VAX Ada and VMS documents contain information of interest
to Ada programmers.

VAX Ada Documentation

Developing Ada Programs on VMS Systems shows how to compile, link, run,
and debug Ada programs. It also gives information on the VAX Ada program
library manager and its commands and suggests ways of structuring and
managing Ada program libraries.

The VAX Ada Run-Time Reference Manual gives system-related information.
It presents information on VAX Ada storage allocation and object represen-
tations, and explains how to use operating system components external to
the language (for example, system services). It also explains how to use Ada
features related to the operating system (such as multitasking and input-
output), how to use code written in other VAX languages in an Ada program,
and how to improve the run-time performance of VAX Ada programs.

The VAX Ada Installation Guide gives step-by-step instructions for installing
the VAX Ada compiler and the VAX Ada HELP file.

The VAX Ada and VAXELN Ada Technical Summary characterizes VAX

Ada and VAXELN Ada by answering a series of questions familiar to the
general Ada community and published as the Ada-Europe Guidelines for
Ada compiler specification and selection.

VMS Documentation

The Guide to Using VMS or VMS General User’s Manual gives information
useful to those who are new to the VMS operating system. These man-
uals discuss using the terminal, creating and handling files, editing and
formatting, and specifying device, directory, and file names.

Other pertinent reference material can be found in the Guide to VMS File
Applications, VMS Run-Time Library Routines Volume, and Introduction to
VMS System Routines.

For a complete list of all documents in the VMS documentation set, see the
VMS Master Index.

Conventions

This manual uses the conventions described in section 1.5. The Ada lan-
guage syntax is described using a simple variant of Backus-Naur-Form.

Colored print distinguishes VAX Ada insertions.

xviii

New and Changed Features

The following features have changed or have been added to VAX Ada since
Version 1.0:

The DEC Multinational Character Set is allowed in VAX Ada comments
(see 2.7).

The size of a fixed point type is now determined by its delta and range,
and rounded up to an 8-, 16-, or 32-bit boundary (see 3.5.9 and 13.2).

The use of renamed subprograms is allowed with the pragmas INLINE,
INTERFACE, IMPORT_FUNCTION, IMPORT_PROCEDURE, and
IMPORT _VALUED_PROCEDURE (see 6.3.2, 13.9, and 13.9a.1.1).

The definitions or interpretations of the pragmas VOLATILE and
INTERFACE have been amended (see 9.11 and 13.9).

Support has been added for the pragma SHARED (see 9.11).

A procedure declared with the pragma EXPORT_VALUED_
PROCEDURE that has one formal out parameter that is of a
discrete type can be a main program (see 10.1 and Appendix F).
In response to Ada interpretation AI-00387, VAX Ada raises
CONSTRAINT _ERROR wherever the standard requires that
NUMERIC_ERROR be raised (see 11.1).

Support has been added for the pragma SUPPRESS (see 11.7).

Five new implementation defined pragmas—INLINE_GENERIC,
SHARE_GENERIC, MAIN_STORAGE, EXPORT_VALUED_
PROCEDURE, and IDENT—have been added (see 12.1a, 12.1b,
13.2b, 13.9a.1.4, and Annex B).

Record component values may be biased when a component clause
requires a very small component storage space (see 13.4).

Address clauses are allowed for objects (see 13.5).

Xix

XX

The enumeration literal VAXELN has been added to the type
SYSTEM.NAME (see 13.7). Also, an enumeration representation clause
has been added for this type (see 13.7 and Appendix F).

Two conversion operations—TO_UNSIGNED_LONGWORD and
TO_ADDRESS—have been added to the package SYSTEM (see 13.7a.6).

A function—IMPORT_VALUE—for importing link-time global symbols
has been added to the package SYSTEM (see 13.7a.8).

A number of hardware-related types and operations have been

added to the package SYSTEM: the type ALIGNED_WORD, and the
operations READ_REGISTER, WRITE_REGISTER, MFPR, MTPR,
ADD_INTERLOCKED, CLEAR_INTERLOCKED, SET_INTERLOCKED,
INSQ_STATUS, REMQ_STATUS, INSQHI, INSQTI, REMQHI, and
REMQTI (see 13.7a.9 and 13.7a.10).

A FIRST_OPTIONAL_PARAMETER option has been added to the
pragmas IMPORT_FUNCTION, IMPORT _PROCEDURE, and IMPORT_
VALUED_PROCEDURE (see 13.9a.1.1).

A RESULT_MECHANISM option has been added to the pragma
IMPORT_FUNCTION (see 13.9a.1.1).

The VAX Ada defined enumeration type RELATION_TYPE has been
respecified to accommodate the use of descending keys with indexed
input-output files (see 14.2a).

Length clauses have been added for the types STANDARD.CHARACTER
and STANDARD.DURATION (see Annex C).

The maximum number of characters in an identifier and a source line
has been increased to 255 (see Appendix F).

Chapter 1

Introduction

1 Ada is a programming language designed in accordance with requirements
defined by the United States Department of Defense: the so-called Steelman
requirements. Overall, these requirements call for a language with
considerable expressive power covering a wide application domain. As a
result, the language includes facilities offered by classical languages such
as Pascal as well as facilities often found only in specialized languages.
Thus the language is a modern algorithmic language with the usual control
structures, and with the ability to define types and subprograms. It also
serves the need for modularity, whereby data, types, and subprograms can
be packaged. It treats modularity in the physical sense as well, with a
facility to support separate compilation.

2 In addition to these aspects, the language covers real-time programming,
with facilities to model parallel tasks and to handle exceptions. It also
covers systems programming; this requires precise control over the
representation of data and access to system-dependent properties. Finally,
both application-level and machine-level input-output are defined.

1.1 Scope of the Standard

1 This standard specifies the form and meaning of program units written in
Ada. Its purpose is to promote the portability of Ada programs to a variety
of data processing systems.

1—1 Scope of the Standard 1.1

1.1.1 Extent of the Standard

10

1"

15

16

This standard specifies:

(a)
(b)
(c)

(d)

(e)

®

(g

The form of a program unit written in Ada.
The effect of translating and executing such a program unit.

The manner in which program units may be combined to form Ada
programs.

The predefined program units that a conforming implementation must
supply.

The permissible variations within the standard, and the manner in
which they must be specified.

Those violations of the standard that a conforming implementation is
required to detect, and the effect of attempting to translate or execute
a program unit containing such violations.

Those violations of the standard that a conforming implementation is
not required to detect.

This standard does not specify:

(h)

®

()

(k)

@

(m)

The means whereby a program unit written in Ada is transformed into
object code executable by a processor.

The means whereby translation or execution of program units is
invoked and the executing units are controlled.

The size or speed of the object code, or the relative execution speed of
different language constructs.

The form or contents of any listings produced by implementations; in
particular, the form or contents of error or warning messages.

The effect of executing a program unit that contains any violation that
a conforming implementation is not required to detect.

The size of a program or program unit that will exceed the capacity of
a particular conforming implementation.

Where this standard specifies that a program unit written in Ada has an
exact effect, this effect is the operational meaning of the program unit and
must be produced by all conforming implementations. Where this standard
specifies permissible variations in the effects of constituents of a program
unit written in Ada, the operational meaning of the program unit as a whole
is understood to be the range of possible effects that result from all these

1.1.1 Extent of the Standard 1-2

variations, and a conforming implementation is allowed to produce any of
these possible effects. Examples of permissible variations are:

The represented values of fixed or floating numeric quantities, and the
results of operations upon them.

The order of execution of statements in different parallel tasks, in the
absence of explicit synchronization.

1.1.2

Conformity of an Implementation With the Standard

1 A conforming implementation is one that:1

2 (a)

3 (b

4 (c)
5 (d)
6 (e)
7 ®

Correctly translates and executes legal program units written in Ada,
provided that they are not so large as to exceed the capacity of the
implementation.

Rejects all program units that are so large as to exceed the capacity of
the implementation.

Rejects all program units that contain errors whose detection is
required by the standard.

Supplies all predefined program units required by the standard.
Contains no variations except where the standard permits.

Specifies all such permitted variations in the manner prescribed by the
standard.

1.2 Structure of the Standard

1 This reference manual contains fourteen chapters, three annexes, three
appendices, and an index.

2 Each chapter is divided into sections that have a common structure.
Each section introduces its subject, gives any necessary syntax rules, and
describes the semantics of the corresponding language constructs. Examples
and notes, and then references, may appear at the end of a section.

3 Examples are meant to illustrate the possible forms of the constructs
described. Notes are meant to emphasize consequences of the rules
described in the section or elsewhere. References are meant to attract the
attention of readers to a term or phrase having a technical meaning defined
in another section.

1 See also Appendix G, AI-00325.

1-3

Structure of the Standard 1.2

The standard definition of the Ada programming language consists of the
fourteen chapters and the three annexes, subject to the following restriction:
the material in each of the items listed below is informative, and not part of
the standard definition of the Ada programming language:

® Section 1.3 Design goals and sources
* Section 1.4 Language summary
* The examples, notes, and references given at the end of each section

* Each section whose title starts with the word “Example” or “Examples”

1.3 Design Goals and Sources

1

Ada was designed with three overriding concerns: program reliability and
maintenance, programming as a human activity, and efficiency.

The need for languages that promote reliability and simplify maintenance is
well established. Hence emphasis was placed on program readability over
ease of writing. For example, the rules of the language require that program
variables be explicitly declared and that their type be specified. Since

the type of a variable is invariant, compilers can ensure that operations

on variables are compatible with the properties intended for objects of

the type. Furthermore, error-prone notations have been avoided, and the
syntax of the language avoids the use of encoded forms in favor of more
English-like constructs. Finally, the language offers support for separate
compilation of program units in a way that facilitates program development
and maintenance, and which provides the same degree of checking between
units as within a unit.

Concern for the human programmer was also stressed during the design.
Above all, an attempt was made to keep the language as small as possible,
given the ambitious nature of the application domain. We have attempted
to cover this domain with a small number of underlying concepts integrated
in a consistent and systematic way. Nevertheless we have tried to avoid
the pitfalls of excessive involution, and in the constant search for simpler
designs we have tried to provide language constructs that correspond
intuitively to what the users will normally expect.

Like many other human activities, the development of programs is becoming
ever more decentralized and distributed. Consequently, the ability to
assemble a program from independently produced software components

has been a central idea in this design. The concepts of packages, of private
types, and of generic units are directly related to this idea, which has
ramifications in many other aspects of the language.

1.3 Design Goals and Sources 14

No language can avoid the problem of efficiency. Languages that require
over-elaborate compilers, or that lead to the inefficient use of storage

or execution time, force these inefficiencies on all machines and on all
programs. Every construct of the language was examined in the light

of present implementation techniques. Any proposed construct whose
implementation was unclear or that required excessive machine resources
was rejected.

None of the above design goals was considered as achievable after the fact.
The design goals drove the entire design process from the beginning.

A perpetual difficulty in language design is that one must both identify
the capabilities required by the application domain and design language
features that provide these capabilities. The difficulty existed in this
design, although to a lesser degree than usual because of the Steelman
requirements. These requirements often simplified the design process by
allowing it to concentrate on the design of a given system providing a well
defined set of capabilities, rather than on the definition of the capabilities
themselves.

Another significant simplification of the design work resulted from earlier
experience acquired by several successful Pascal derivatives developed with
similar goals. These are the languages Euclid, Lis, Mesa, Modula, and Sue.
Many of the key ideas and syntactic forms developed in these languages
have counterparts in Ada. Several existing languages such as Algol 68
and Simula, and also recent research languages such as Alphard and Clu,
influenced this language in several respects, although to a lesser degree
than did the Pascal family.

Finally, the evaluation reports received on an earlier formulation (the
Green language), and on alternative proposals (the Red, Blue, and Yellow
languages), the language reviews that took place at different stages of

this project, and the thousands of comments received from fifteen different
countries during the preliminary stages of the Ada design and during the
ANSI canvass, all had a significant impact on the standard definition of the
language.

1.4 Language Summary

1

An Ada program is composed of one or more program units. These program
units can be compiled separately. Program units may be subprograms
(which define executable algorithms), package units (which define collections
of entities), task units (which define parallel computations), or generic
units (which define parameterized forms of packages and subprograms).
Each unit normally consists of two parts: a specification, containing the

Language Summary 1.4

information that must be visible to other units, and a body, containing the
implementation details, which need not be visible to other units.

2 This distinction of the specification and body, and the ability to compile units
separately, allows a program to be designed, written, and tested as a set of
largely independent software components.

3 An Ada program will normally make use of a library of program units
of general utility. The language provides means whereby individual
organizations can construct their own libraries. The text of a separately
compiled program unit must name the library units it requires.

4 Program Units

5 A subprogram is the basic unit for expressing an algorithm. There are
two kinds of subprograms: procedures and functions. A procedure is the
means of invoking a series of actions. For example, it may read data, update
variables, or produce some output. It may have parameters, to provide a
controlled means of passing information between the procedure and the
point of call.

6 A function is the means of invoking the computation of a value. It is similar
to a procedure, but in addition will return a result.

7 A package is the basic unit for defining a collection of logically related
entities. For example, a package can be used to define a common pool
of data and types, a collection of related subprograms, or a set of type
declarations and associated operations. Portions of a package can be hidden
from the user, thus allowing access only to the logical properties expressed
by the package specification.

8 A task unit is the basic unit for defining a task whose sequence of actions
may be executed in parallel with those of other tasks. Such tasks may
be implemented on multicomputers, multiprocessors, or with interleaved
execution on a single processor. A task unit may define either a single
executing task or a task type permitting the creation of any number of
similar tasks.

9 Declarations and Statements

10 The body of a program unit generally contains two parts: a declarative part,
which defines the logical entities to be used in the program unit, and a
sequence of statements, which defines the execution of the program unit.

1 The declarative part associates names with declared entities. For example,
a name may denote a type, a constant, a variable, or an exception. A
declarative part also introduces the names and parameters of other nested

1.4 Language Summary 1-6

13

14

15

18

subprograms, packages, task units, and generic units to be used in the
program unit.

The sequence of statements describes a sequence of actions that are to

be performed. The statements are executed in succession (unless an exit,
return, or goto statement, or the raising of an exception, causes execution to
continue from another place).

An assignment statement changes the value of a variable. A procedure call
invokes execution of a procedure after associating any actual parameters
provided at the call with the corresponding formal parameters.

Case statements and if statements allow the selection of an enclosed se-
quence of statements based on the value of an expression or on the value of
a condition.

The loop statement provides the basic iterative mechanism in the language.
A loop statement specifies that a sequence of statements is to be executed
repeatedly as directed by an iteration scheme, or until an exit statement is
encountered.

A block statement comprises a sequence of statements preceded by the
declaration of local entities used by the statements.

Certain statements are only applicable to tasks. A delay statement delays
the execution of a task for a specified duration. An entry call statement

is written as a procedure call statement; it specifies that the task issuing
the call is ready for a rendezvous with another task that has this entry.
The called task is ready to accept the entry call when its execution reaches
a corresponding accept statement, which specifies the actions then to be
performed. After completion of the rendezvous, both the calling task and the
task having the entry may continue their execution in parallel. One form
of the select statement allows a selective wait for one of several alternative
rendezvous. Other forms of the select statement allow conditional or timed
entry calls.

Execution of a program unit may encounter error situations in which normal
program execution cannot continue. For example, an arithmetic computation
may exceed the maximum allowed value of a number, or an attempt may

be made to access an array component by using an incorrect index value.

To deal with such error situations, the statements of a program unit can be
textually followed by exception handlers that specify the actions to be taken
when the error situation arises. Exceptions can be raised explicitly by a
raise statement.

Language Summary 1.4

19

20

21

22

23

24

25

26

27

Data Types

Every object in the language has a type, which characterizes a set of values
and a set of applicable operations. The main classes of types are scalar types
(comprising enumeration and numeric types), composite types, access types,
and private types.

An enumeration type defines an ordered set of distinct enumeration literals,
for example a list of states or an alphabet of characters. The enumeration
types BOOLEAN and CHARACTER are predefined.

Numeric types provide a means of performing exact or approximate nu-
merical computations. Exact computations use integer types, which denote
sets of consecutive integers. Approximate computations use either fixed
point types, with absolute bounds on the error, or floating point types, with
relative bounds on the error. The numeric types INTEGER, FLOAT, and
DURATION are predefined.

Composite types allow definitions of structured objects with related compo-
nents. The composite types in the language provide for arrays and records.
An array is an object with indexed components of the same type. A record is
an object with named components of possibly different types. The array type
STRING is predefined.

A record may have special components called discriminants. Alternative
record structures that depend on the values of discriminants can be defined
within a record type.

Access types allow the construction of linked data structures created by

the evaluation of allocators. They allow several variables of an access type
to designate the same object, and components of one object to designate the
same or other objects. Both the elements in such a linked data structure and
their relation to other elements can be altered during program execution.

Private types can be defined in a package that conceals structural details
that are externally irrelevant. Only the logically necessary properties
(including any discriminants) are made visible to the users of such types.

The concept of a type is refined by the concept of a subtype, whereby a user
can constrain the set of allowed values of a type. Subtypes can be used to
define subranges of scalar types, arrays with a limited set of index values,
and records and private types with particular discriminant values.

1.4 Language Summary 1-8

28

29

30

31

Other Facilities

Representation clauses can be used to specify the mapping between types
and features of an underlying machine. For example, the user can specify
that objects of a given type must be represented with a given number

of bits, or that the components of a record are to be represented using a
given storage layout. Other features allow the controlled use of low level,
nonportable, or implementation-dependent aspects, including the direct
insertion of machine code.

Input-output is defined in the language by means of predefined library
packages. Facilities are provided for input-output of values of user-defined
as well as of predefined types. Standard means of representing values in
display form are also provided.

Finally, the language provides a powerful means of parameterization of
program units, called generic program units. The generic parameters can be
types and subprograms (as well as objects) and so allow general algorithms
to be applied to all types of a given class.

1.4a VAX Ada

All of the language elements specified by the ANSI or ISO standard
definition for the Ada language are provided by VAX Ada. In addition,
VAX Ada implements certain options and makes certain interpretations,

as permitted by the standard. Material has been inserted throughout this
manual to describe and explain these permitted options and interpretations.
The term “VAX Ada” and colored print are used to distinguish the VAX Ada
material.

1.5 Method of Description and Syntax Notation

1

The form of Ada program units is described by means of a context-free
syntax together with context-dependent requirements expressed by narrative
rules.

The meaning of Ada program units is described by means of narrative rules
defining both the effects of each construct and the composition rules for
constructs. This narrative employs technical terms whose precise definition
is given in the text (references to the section containing the definition of a
technical term appear at the end of each section that uses the term).

Method of Description and Syntax Notation 1.5

3 All other terms are in the English language and bear their natural meaning,
as defined in Webster’s Third New International Dictionary of the English
Language.

4 The context-free syntax of the language is described using a simple variant
of Backus-Naur-Form. In particular,

5 (a) Lower case words, some containing embedded underlines, are used to
denote syntactic categories, for example:

adding operator

6 Whenever the name of a syntactic category is used apart from the
syntax rules themselves, spaces take the place of the underlines (thus:
adding operator).

7 (b) Boldface words are used to denote reserved words, for example:
array

8 (c) Square brackets enclose optional items. Thus the two following rules
are equivalent.

return [expression];
return; | return expression;

return_statement ::
return_statement :

9 (d) Braces enclose a repeated item. The item may appear zero or more
times; the repetitions occur from left to right as with an equivalent
left-recursive rule. Thus the two following rules are equivalent.

term ::
term ::

factor {multiplying operator factor}
factor | term multiplying operator factor

10 (e) A vertical bar separates alternative items unless it occurs immediately
after an opening brace, in which case it stands for itself:

letter_or digit ::= letter | digit
component_association ::=
[choice {| choice} =>] expression

n (f) If the name of any syntactic category starts with an italicized part,
it is equivalent to the category name without the italicized part. The
italicized part is intended to convey some semantic information. For
example type_name and task_name are both equivalent to name alone.

1.5 Method of Description and Syntax Notation 1-10

12

13

Note:

The syntax rules describing structured constructs are presented in a form
that corresponds to the recommended paragraphing. For example, an if
statement is defined as

if statement ::=
if condition then
sequence_of_ statements
{elsif condition then
sequence_of_ statements}
[else
sequence_of_ statements]
end if;

Different lines are used for parts of a syntax rule if the corresponding
parts of the construct described by the rule are intended to be on different
lines. Indentation in the rule is a recommendation for indentation of the
corresponding part of the construct. It is recommended that all indentations
be by multiples of a basic step of indentation (the number of spaces for the
basic step is not defined). The preferred places for other line breaks are
after semicolons. On the other hand, if a complete construct can fit on one
line, this is also allowed in the recommended paragraphing.

1.6 Classification of Errors

1-11

The language definition classifies errors into several different categories:

(a) Errors that must be detected at compilation time by every Ada
compiler.

These errors correspond to any violation of a rule given in this
reference manual, other than the violations that correspond to (b)

or (c) below. In particular, violation of any rule that uses the terms
must, allowed, legal, or illegal belongs to this category. Any program
that contains such an error is not a legal Ada program; on the other
hand, the fact that a program is legal does not mean, per se, that the
program is free from other forms of error.

(b) Errors that must be detected at run time by the execution of an Ada
program.

The corresponding error situations are associated with the names of
the predefined exceptions. Every Ada compiler is required to generate
code that raises the corresponding exception if such an error situation
arises during program execution. If an exception is certain to be raised

Classification of Errors 1.6

in every execution of a program, then compilers are allowed (although
not required) to report this fact at compilation time.

6 (¢) Erroneous execution.

7 The language rules specify certain rules to be obeyed by Ada programs,
although there is no requirement on Ada compilers to provide either
a compilation-time or a run-time detection of the violation of such
rules. The errors of this category are indicated by the use of the word
erroneous to qualify the execution of the corresponding constructs. The
effect of erroneous execution is unpredictable.

8 (d) Incorrect order dependences.

9 Whenever the reference manual specifies that different parts of a given
construct are to be executed in some order that is not defined by the
language, this means that the implementation is allowed to execute
these parts in any given order, following the rules that result from that
given order, but not in parallel. Furthermore, the construct is incorrect
if execution of these parts in a different order would have a different
effect. Compilers are not required to provide either compilation-time
or run-time detection of incorrect order dependences. The foregoing
is expressed in terms of the process that is called execution; it applies
equally to the processes that are called evaluation and elaboration.

10 If a compiler is able to recognize at compilation time that a construct is
erroneous or contains an incorrect order dependence, then the compiler
is allowed to generate, in place of the code otherwise generated for the
construct, code that raises the predefined exception PROGRAM_ERROR.
Similarly, compilers are allowed to generate code that checks at run time
for erroneous constructs, for incorrect order dependences, or for both. The
predefined exception PROGRAM_ERROR is raised if such a check fails.

1.6 Classification of Errors 1-12

Chapter 2

Lexical Elements

The text of a program consists of the texts of one or more compilations.

The text of a compilation is a sequence of lexical elements, each composed
of characters; the rules of composition are given in this chapter. Pragmas,
which provide certain information for the compiler, are also described in this
chapter.

References: character 2.1, compilation 10.1, lexical element 2.2, pragma 2.8

2.1 Character Set

The only characters allowed in the text of a program are the graphic
characters and format effectors. Each graphic character corresponds to

a unique code of the ISO seven-bit coded character set (ISO standard
646), and is represented (visually) by a graphical symbol. Some graphic
characters are represented by different graphical symbols in alternative
national representations of the ISO character set. The description of the
language definition in this standard reference manual uses the ASCIT
gra;l)hical symbols, the ANSI graphical representation of the ISO character
set.

graphic_character ::= basic_graphic character
| lower_case_letter | other_ special_character

basic_graphic character ::=
upper_case_letter | digit
| special_character | space_character

basic_character ::=
basic_graphic_character | format_effector

1 See also Appendix G, AI-00339.

Character Set 2.1

2.1

10

11

The basic character set is sufficient for writing any program. The characters
included in each of the categories of basic graphic characters are defined as
follows:

(a) wupper case letters ABCDEFGHIJKLMNOPQRSTUVW

XYZ
(b) digits0123456789
(c) special characters "#& * ()*+,—-./:;<=>_ |

(d) the space character

Format effectors are the ISO (and ASCII) characters called horizontal
tabulation, vertical tabulation, carriage return, line feed, and form feed.

The characters included in each of the remaining categories of graphic
characters are defined as follows:

(e) lower caselettersabcdefghijklmnopqrstuvwxyz
(f) other special characters! $%? @[\ 1A {} ~

Allowable replacements for the special characters vertical bar (|), sharp
(#), and quotation (") are defined in section 2.10.

Notes:

The ISO character that corresponds to the sharp graphical symbol in the
ASCII representation appears as a pound sterling symbol in the French,
German, and United Kingdom standard national representations. In any
case, the font design of graphical symbols (for example, whether they are in
italic or bold typeface) is not part of the ISO standard.

The meanings of the acronyms used in this section are as follows: ANSI
stands for American National Standards Institute, ASCII stands for
American Standard Code for Information Interchange, and ISO stands
for International Organization for Standardization.

The following names are used when referring to special characters and other
special characters:

symbol name symbol name

" quotation > greater than

sharp - underline

& ampersand | vertical bar

’ apostrophe ! exclamation mark

Character Set)

16

symbol name symbol name
(left parenthesis $ dollar
) right parenthesis % percent
* star, multiply ? question mark
+ plus @ commercial at
, comma [left square bracket
- hyphen, minus \ back-slash
. dot, point, period 1 right square bracket
/ slash, divide A circumflex
colon) grave accent
; semicolon { left brace
< less than } right brace
= equal ~ tilde

2.2 Lexical Elements, Separators, and Delimiters

2-3

1

The text of a program consists of the texts of one or more compilations. The
text of each compilation is a sequence of separate lexical elements. Each
lexical element is either a delimiter, an identifier (which may be a reserved
word), a numeric literal, a character literal, a string literal, or a comment.
The effect of a program depends only on the particular sequences of lexical
elements that form its compilations, excluding the comments, if any.

In some cases an explicit separator is required to separate adjacent lexical
elements (namely, when without separation, interpretation as a single
lexical element is possible). A separator is any of a space character, a format
effector, or the end of a line. A space character is a separator except within a
comment, a string literal, or a space character literal. Format effectors other
than horizontal tabulation are always separators. Horizontal tabulation is a
separator except within a comment.

The end of a line is always a separator. The language does not define what
causes the end of a line. However if, for a given implementation, the end of
a line is signified by one or more characters, then these characters must be
format effectors other than horizontal tabulation. In any case, a sequence of
one or more format effectors other than horizontal tabulation must cause at
least one end of line.

Lexical Elements, Separators, and Delimiters 2.2

In VAX Ada, source files are read using VAX Record Management Services
(RMS). Each RMS record is considered to contain at least one line, and

the end of a line is implied by the record boundary. If the record returned
by RMS contains a sequence of one or more format effectors other than
horizontal tabulation, the sequence is interpreted as the end of the line.
However, no characters, other than a space or a horizontal tabulation
character, are allowed in a record following a format effector sequence if the
sequence occurs in a comment.

4 One or more separators are allowed between any two adjacent lexical
elements, before the first of each compilation, or after the last. At least
one separator is required between an identifier or a numeric literal and an
adjacent identifier or numeric literal.

5 A delimiter is either one of the following special characters (in the basic
character set)

& ()¥+,—./:;<= |

6 or one of the following compound delimiters each composed of two adjacent
special characters
= . F = = >= <= << >> <

7 Each of the special characters listed for single character delimiters is a
single delimiter except if this character is used as a character of a compound
delimiter, or as a character of a comment, string literal, character literal, or
numeric literal.

8 The remaining forms of lexical element are described in other sections of
this chapter.

Notes:

9 Each lexical element must fit on one line, since the end of a line is a separa-
tor. The quotation, sharp, and underline characters, likewise two adjacent
hyphens, are not delimiters, but may form part of other lexical elements.

10 The following names are used when referring to compound delimiters:

delimiter name
=> arrow
double dot
o double star, exponentiate

= assignment (pronounced: “becomes”)

2.2 Lexical Elements, Separators, and Delimiters 24

1

delimiter name

/= inequality (pronounced: “not equal”)
>= greater than or equal

<= less than or equal

<< left label bracket

>> right label bracket

<> box

References: character literal 2.5, comment 2.7, compilation 10.1, format effector
2.1, identifier 2.3, numeric literal 2.4, reserved word 2.9, space character 2.1, special
character 2.1, string literal 2.6

2.3 Identifiers

1

2-5

Identifiers are used as names and also as reserved words.

identifier ::=
letter {[underline] letter or_digit}
letter or digit ::= letter | digit

letter ::= upper_case_letter | lower_case_letter

All characters of an identifier are significant, including any underline
character inserted between a letter or digit and an adjacent letter or digit.
Identifiers differing only in the use of corresponding upper and lower case
letters are considered as the same.

Examples:

COUNT X get_symbol Ethelyn Marion
SNOBOL_4 X1 PageCount STORE_NEXT_ITEM
Note:

No space is allowed within an identifier since a space is a separator.

References: digit 2.1, lower case letter 2.1, name 4.1, reserved word 2.9, separator
2.2, space character 2.1, upper case letter 2.1

Identifiers 2.3

2.4 Numeric Literals

There are two classes of numeric literals: real literals and integer literals.
A real literal is a numeric literal that includes a point; an integer literal is
a numeric literal without a point. Real literals are the literals of the type
universal_real. Integer literals are the literals of the type universal_integer.

numeric_literal ::= decimal literal | based_literal

References: literal 4.2, universal_integer type 3.5.4, universal_real type 3.5.6

2.4.1 Decimal Literals

1

A decimal literal is a numeric literal expressed in the conventional decimal
notation (that is, the base is implicitly ten).

decimal_ literal ::= integer [.integer] [exponent]

integer ::= digit {[underline] digit}

exponent ::= E [+] integer | E - integer
An underline character inserted between adjacent digits of a decimal literal
does not affect the value of this numeric literal. The letter E of the exponent,

if any, can be written either in lower case or in upper case, with the same
meaning.

An exponent indicates the power of ten by which the value of the decimal
literal without the exponent is to be multiplied to obtain the value of the
decimal literal with the exponent. An exponent for an integer literal must
not have a minus sign.

Examples:

12 0 1E6 123_456 -- integer literals
12.0 0.0 0.456 3.14159 26 -~ real literals
1.34g-12 1.0E+6 -- real literals with exponent

Notes:

Leading zeros are allowed. No space is allowed in a numeric literal, not even
between constituents of the exponent, since a space is a separator. A zero
exponent is allowed for an integer literal.

References: digit 2.1, lower case letter 2.1, numeric literal 2.4, separator 2.2,
space character 2.1, upper case letter 2.1

2.4.1 Decimal Literals 2-6

2.4.2 Based Literals

1

A based literal is a numeric literal expressed in a form that specifies the
base explicitly. The base must be at least two and at most sixteen.

based_literal ::=
base # based_integer [.based_integer] # [exponent]

base ::= integer

based_integer ::=
extended _digit {[underline] extended_digit}

extended_digit ::= digit | letter

An underline character inserted between adjacent digits of a based literal
does not affect the value of this numeric literal. The base and the exponent,
if any, are in decimal notation. The only letters allowed as extended digits
are the letters A through F for the digits ten through fifteen. A letter in a
based literal (either an extended digit or the letter E of an exponent) can be
written either in lower case or in upper case, with the same meaning.

The conventional meaning of based notation is assumed; in particular the
value of each extended digit of a based literal must be less than the base.
An exponent indicates the power of the base by which the value of the based
literal without the exponent is to be multiplied to obtain the value of the
based literal with the exponent.2

Examples:

2#1111 11114 164FF# 016#0FF# -- integer literals
-- of value 255

16#E4#E1L 2#1110_0000# -- integer literals
-— of value 224

16#F.FF#E+2 2#1.1111_1111_111#E11 -- real literals

-— of value 4095.0

References: digit 2.1, exponent 2.4.1, letter 2.3, lower case letter 2.1, numeric
literal 2.4, upper case letter 2.1

2 See also Appendix G, AI-00008.

2-7

Based Literals 2.4.2

2.5 Character Literals

1 A character literal is formed by enclosing one of the 95 graphic characters
(including the space) between two apostrophe characters. A character literal
has a value that belongs to a character type.

2 character literal ::= ’'graphic_character’

3 Examples:

Y rxr rrr r o

4 References: character type 3.5.2, graphic character 2.1, literal 4.2, space
character 2.1

2.6 String Literals

1 A string literal is formed by a sequence of graphic characters (possibly none)
enclosed between two quotation characters used as string brackets.

2 string literal ::= "{graphic_character}"

3 A string literal has a value that is a sequence of character values cor-
responding to the graphic characters of the string literal apart from the
quotation character itself. If a quotation character value is to be represented
in the sequence of character values, then a pair of adjacent quotation char-
acters must be written at the corresponding place within the string literal.
(This means that a string literal that includes two adjacent quotation
characters is never interpreted as two adjacent string literals.)

4 The length of a string literal is the number of character values in the
sequence represented. (Each doubled quotation character is counted as a
single character.)

5 Examples:
"Message of the day:"

-- an empty string literal
" "An menn -— three string literals of length 1

"Characters such as $, %, and } are allowed in string literals"

2.6 String Literals 2-8

Note:

A string literal must fit on one line since it is a lexical element (see 2.2).
Longer sequences of graphic character values can be obtained by catenation
of string literals. Similarly catenation of constants declared in the package
ASCII can be used to obtain sequences of character values that include
nongraphic character values (the so-called control characters). Examples of
such uses of catenation are given below:

"FIRST PART OF A SEQUENCE OF CHARACTERS " &
"THAT CONTINUES ON THE NEXT LINE"

"sequence that includes the" & ASCII.ACK & "control character"

References: ascii predefined package C, catenation operation 4.5.3, character
value 3.5.2, constanrt 3.2.1, declaration 3.1, end of a line 2.2, graphic character 2.1,
lexical element 2.2

2.7 Comments

A comment starts with two adjacent hyphens and extends up to the end of
the line. A comment can appear on any line of a program. The presence
or absence of comments has no influence on whether a program is legal or
illegal. Furthermore, comments do not influence the effect of a program,;
their sole purpose is the enlightenment of the human reader.3

Examples:
-— the last sentence above echoes the Algol 68 report

end; -- processing of LINE is complete

-— a long comment may be split onto
-- two or more consecutive lines

———————————————— the first two hyphens start the comment

Note:

Horizontal tabulation can be used in comments, after the double hyphen,
and is equivalent to one or more spaces (see 2.2).

The DEC Multinational Character Set can be used in VAX Ada comments.4
This character set has 256 characters, each with a decimal equivalent
number in the range 0 to 255. The first 128 characters in the set correspond
to the characters in the ASCII character set. The DEC Multinational

3 See also Appendix G, AI-00339.
4 See also Appendix G, AT-00339.

2-9

Comments 2.7

Character Set is documented in the Guide to Using VMS and in several
other manuals in the VMS documentation set; see the VMS Master Index for
more information.

References: end of a line 2.2, illegal 1.6, legal 1.6, space character 2.1

2.8 Pragmas

1

A pragma is used to convey information to the compiler. A pragma starts
with the reserved word pragma followed by an identifier that is the name
of the pragma.

pragma ::=
pragma identifier [(argument_association
{, argument_association})];

argument_association ::=
[argument_identifier =>] name
| [argument_identifier =>] expression

Pragmas are only allowed at the following places in a program:

. Aftersa semicolon delimiter, but not within a formal part or discriminant
part.

¢ At any place where the syntax rules allow a construct defined by a
syntactic category whose name ends with “declaration”, “statement”,
“clause”, or “alternative”, or one of the syntactic categories variant and
exception handler; but not in place of such a construct. Also at any place

where a compilation unit would be allowed.
Additional restrictions exist for the placement of specific pragmas.

Some pragmas have arguments. Argument associations can be either
positional or named as for parameter associations of subprogram calls

(see 6.4). Named associations are, however, only possible if the argument
identifiers are defined. A name given in an argument must be either a name
visible at the place of the pragma or an identifier specific to the pragma.

The pragmas defined by the language are described in Annex B: they must
be supported by every implementation. In addition, an implementation may
provide implementation-defined pragmas, which must then be described

in Appendix F. An implementation is not allowed to define pragmas whose
presence or absence influences the legality of the text outside such pragmas.
Consequently, the legality of a program does not depend on the presence or
absence of implementation-defined pragmas.

5 See also Appendix G, AI-00388.

2.8 Pragmas 2-10

12

13

14

15

A pragma that is not language-defined has no effect if its identifier is

not recognized by the (current) implementation. Furthermore, a pragma
(whether language-defined or implementation-defined) has no effect if its
placement or its arguments do not correspond to what is allowed for the
pragma. The region of text over which a pragma has an effect depends on
the pragma.

Examples:

pragma LIST (OFF);

pragma OPTIMIZE (TIME) ;

pragma INLINE (SETMASK) ;

pragma SUPPRESS (RANGE CHECK, ON => INDEX);

Note:

It is recommended (but not required) that implementations issue warnings
for pragmas that are not recognized and therefore ignored.

References: compilation unit 10.1, delimiter 2.2, discriminant part 3.7.1, exception
handler 11.2, expression 4.4, formal part 6.1, identifier 2.3, implementation-defined
pragma F, language-defined pragma B, legal 1.6, name 4.1, reserved word 2.9,
statement 5, static expression 4.9, variant 3.7.3, visibility 8.3

Categories ending with “declaration” comprise: basic declaration 3.1, compo-
nent declaration 3.7, entry declaration 9.5, generic parameter declaration 12.1

Categories ending with “clause” comprise: alignment clause 13.4, component
clause 13.4, context clause 10.1.1, representation clause 13.1, use clause 8.4, with
clause 10.1.1

Categories ending with “alternative” comprise: accept alternative 9.7.1, case
statement alternative 5.4, delay alternative 9.7.1, select alternative 9.7.1, selective
wait alternative 9.7.1, terminate alternative 9.7.1

2.9 Reserved Words

The identifiers listed below are called reserved words and are reserved for
special significance in the language. For readability of this manual, the
reserved words appear in lower case boldface.

abort declare generic of select
abs delay goto or separate

6 See also Appendix G, AI-00186, AI-00242, AI-00306, AI-00322, and AI-00371.

2-11

Reserved Words 2.9

accept
access
all
and
array
at

begin
body

case
constant

3 A reserved word must not be used as a declared identifier.

Notes:

delta
digits
do

else

elsif

end
entry
exception
exit

for
function

in

is

limited
loop

mod

new

not
null

others
out

package
pragma
private
procedure

raise
range
record
rem
renames
return

reverse

subtype

task
terminate
then

type

when
while
with

Xor

4 Reserved words differing only in the use of corresponding upper and lower
case letters are considered as the same (see 2.3). In some attributes the
identifier that appears after the apostrophe is identical to some reserved

word.

5 References: attribute 4.1.4, declaration 3.1, identifier 2.3, lower case letter 2.1,
upper case letter 2.1

2.10 Allowable Replacements of Characters

1 The following replacements are allowed for the vertical bar, sharp, and

quotation basic characters:

2 * A vertical bar character (|) can be replaced by an exclamation mark
(!) where used as a delimiter.

3 * The sharp characters (#) of a based literal can be replaced by colons (:)
provided that the replacement is done for both occurrences.

2.10 Allowable Replacements of Characters

2-12

4 ¢ The quotation characters (") used as string brackets at both ends of a
string literal can be replaced by percent characters (%) provided that
the enclosed sequence of characters contains no quotation character, and
provided that both string brackets are replaced. Any percent character
within the sequence of characters must then be doubled and each such
doubled percent character is interpreted as a single percent character
value.

5 These replacements do not change the meaning of the program.’

Notes:

6 It is recommended that use of the replacements for the vertical bar, sharp,
and quotation characters be restricted to cases where the corresponding
graphical symbols are not available. Note that the vertical bar appears as
a broken bar on some equipment; replacement is not recommended in this
case.

7 The rules given for identifiers and numeric literals are such that lower
case and upper case letters can be used indifferently; these lexical elements
can thus be written using only characters of the basic character set. If
a string literal of the predefined type STRING contains characters that
are not in the basic character set, the same sequence of character values
can be obtained by catenating string literals that contain only characters
of the basic character set with suitable character constants declared in
the predefined package ASCII. Thus the string literal "AB$CD" could be
replaced by "AB" & ASCIL.DOLLAR & "CD". Similarly, the string literal
"ABcd" with lower case letters could be replaced by "AB" & ASCILLC_C &
ASCIL.LC_D.

8 References: ascii predefined package C, based literal 2.4.2, basic character 2.1,
catenation operation 4.5.3, character value 3.5.2, delimiter 2.2, graphic character
2.1, graphical symbol 2.1, identifier 2.3, lexical element 2.2, lower case letter 2.1,
numeric literal 2.4, string bracket 2.6, string literal 2.6, upper case letter 2.1

7 See also Appendix G, AI-00350.

2-13 Allowable Replacements of Characters 2.10

Chapter 3

Declarations and Types

This chapter describes the types in the language and the rules for declaring
constants, variables, and named numbers.

3.1 Declarations

The language defines several kinds of entities that are declared, either
explicitly or implicitly, by declarations. Such an entity can be a numeric
literal, an object, a discriminant, a record component, a loop parameter, an
exception, a type, a subtype, a subprogram, a package, a task unit, a generic
unit, a single entry, an entry family, a formal parameter (of a subprogram,
entry, or generic subprogram), a generic formal parameter, a named block or
loop, a labeled statement, or an operation (in particular, an attribute or an
enumeration literal; see 3.3.3).

There are several forms of declaration. A basic declaration is a form of
declaration defined as follows.

basic_declaration ::=
object_declaration
type_declaration subtype_declaration
subprogram declaration package_declaration

| number_ declaration
I I
! I
| task_declaration | generic_declaration
I I
I [

exception_declaration generic_instantiation
renaming declaration deferred_constant_declaration

Certain forms of declaration always occur (explicitly) as part of a basic
declaration; these forms are discriminant specifications, component
declarations, entry declarations, parameter specifications, generic parameter
declarations, and enumeration literal specifications. A loop parameter
specification is a form of declaration that occurs only in certain forms of loop
statement.

Declarations 3.1

5 The remaining forms of declaration are implicit: the name of a block, the
name of a loop, and a statement label are implicitly declared. Certain
operations are implicitly declared (see 3.3.3).

6 For each form of declaration the language rules define a certain region of
text called the scope of the declaration (see 8.2). Several forms of declaration
associate an identifier with a declared entity. Within its scope, and only
there, there are places where it is possible to use the identifier to refer to
the associated declared entity; these places are defined by the visibility rules
(see 8.3). At such places the identifier is said to be a name of the entity (its
simple name); the name is said to denote the associated entity.

7 Certain forms of enumeration literal specification associate a character
literal with the corresponding declared entity. Certain forms of declaration
associate an operator symbol or some other notation with an explicitly or
implicitly declared operation.

8 The process by which a declaration achieves its effect is called the elabora-
tion of the declaration; this process happens during program execution.

9 After its elaboration, a declaration is said to be elaborated. Prior to
the completion of its elaboration (including before the elaboration), the
declaration is not yet elaborated. The elaboration of any declaration has
always at least the effect of achieving this change of state (from not yet
elaborated to elaborated). The phrase “the elaboration has no other effect”
is used in this manual whenever this change of state is the only effect of
elaboration for some form of declaration. An elaboration process is also
defined for declarative parts, declarative items, and compilation units (see
3.9 and 10.5).

10 Object, number, type, and subtype declarations are described here. The
remaining basic declarations are described in later chapters.

Note:

1 The syntax rules use the term identifier for the first occurrence of an iden-
tifier in some form of declaration; the term simple name is used for any
occurrence of an identifier that already denotes some declared entity.

12 References: attribute 4.1.4, block name 5.6, block statement 5.6, character literal
2.5, component declaration 3.7, declarative item 3.9, declarative part 3.9, deferred
constant declaration 7.4, discriminant specification 3.7.1, elaboration 3.9, entry
declaration 9.5, enumeration literal specification 3.5.1, exception declaration 11.1,
generic declaration 12.1, generic instantiation 12.3, generic parameter declaration
12.1, identifier 2.3, label 5.1, loop name 5.5, loop parameter specification 5.5, loop
statement 5.5, name 4.1, number declaration 3.2.2, numeric literal 2.4, object decla-
ration 3.2.1, operation 3.3, operator symbol 6.1, package declaration 7.1, parameter
specification 6.1, record component 3.7, renaming declaration 8.5, representation

3.1 Declarations 3-2

clause 13.1, scope 8.2, simple name 4.1, subprogram body 6.3, subprogram decla-
ration 6.1, subtype declaration 3.3.2, task declaration 9.1, type declaration 3.3.1,
visibility 8.3

3.2 Objects and Named Numbers

1

An object is an entity that contains (has) a value of a given type. An object
is one of the following:

an object declared by an object declaration or by a single task
declaration,

a formal parameter of a subprogram, entry, or generic subprogram,
a generic formal object,

a loop parameter,

an object designated by a value of an access type,

a component or a slice of another object.

A number declaration is a special form of object declaration that associates
an identifier with a value of type universal_integer or universal_real.l

number declaration ::

object declaration ::=

identifier list : [constant] subtype_indication
[:= expression];
| identifier list : [constant] constrained array definition
[:= expression];

identifier list : constant := universal static_expression;

identifier list ::= identifier {, identifier}

An object declaration is called a single object declaration if its identifier

list has a single identifier; it is called a multiple object declaration if the
identifier list has two or more identifiers. A multiple object declaration

is equivalent to a sequence of the corresponding number of single object
declarations. For each identifier of the list, the equivalent sequence has a
single object declaration formed by this identifier, followed by a colon and by
whatever appears at the right of the colon in the multiple object declaration;
the equivalent sequence is in the same order as the identifier list.

1 See also Appendix G, AI-00263.

3-3

Objects and Named Numbers 3.2

"

12

13

14

A similar equivalence applies also for the identifier lists of number
declarations, component declarations, discriminant specifications, parameter
specifications, generic parameter declarations, exception declarations, and
deferred constant declarations.

In the remainder of this reference manual, explanations are given for
declarations with a single identifier; the corresponding explanations for
declarations with several identifiers follow from the equivalence stated
above.

Example:
—-— the multiple object declaration
JOHN, PAUL : PERSON NAME := new PERSON(SEX => M); -- see 3.8.1

-— 1is equivalent to the two single object declarations
—— 1in the order given

JOHN : PERSON_NAME :
PAUL : PERSON_NAME :

new PERSON (SEX => M);
new PERSON (SEX => M) ;

]

References: access type 3.8, constrained array definition 3.6, component 3.3,
declaration 3.1, deferred constant declaration 7.4, designate 3.8, discriminant
specification 3.7.1, entry 9.5, exception declaration 11.1, expression 4.4, formal
parameter 6.1, generic formal object 12.1.1, generic parameter declaration 12.1,
generic unit 12, generic subprogram 12.1, identifier 2.3, loop parameter 5.5, numeric
type 3.5, parameter specification 6.1, scope 8.2, simple name 4.1, single task
declaration 9.1, slice 4.1.2, static expression 4.9, subprogram 6, subtype indication
3.3.2, type 3.3, universal_integer type 3.5.4, universal_real type 3.5.6

3.2.1 Object Declarations

1

An object declaration declares an object whose type is given either by

a subtype indication or by a constrained array definition. If the object
declaration includes the assignment compound delimiter followed by an
expression, the expression specifies an initial value for the declared object;
the type of the expression must be that of the object.

The declared object is a constant if the reserved word constant appears

in the object declaration; the declaration must then include an explicit
initialization. The value of a constant cannot be modified after initialization.
Formal parameters of mode in of subprograms and entries, and generic
formal parameters of mode in, are also constants; a loop parameter is

a constant within the corresponding loop; a subcomponent or slice of a
constant is a constant.

3.2.1 Object Declarations 34

3-5

10

13

14

An object that is not a constant is called a variable (in particular, the object
declared by an object declaration that does not include the reserved word
constant is a variable). The only ways to change the value of a variable
are either directly by an assignment, or indirectly when the variable is
updated (see 6.2) by a procedure or entry call statement (this action can be
performed either on the variable itself, on a subcomponent of the variable,
or on another variable that has the given variable as subcomponent).

The elaboration of an object declaration proceeds as follows:

(a) The subtype indication or the constrained array definition is first
elaborated. This establishes the subtype of the object.

(b) If the object declaration includes an explicit initialization, the ini-
tial value is obtained by evaluating the corresponding expression.
Otherwise any implicit initial values for the object or for its subcompo-
nents are evaluated.

(¢) The object is created.

(d) Any initial value (whether explicit or 1mp11c1t) is assigned to the object
or to the corresponding subcomponent.

Implicit initial values are defined for objects declared by object declarations,
and for components of such objects, in the following cases:

o If the type of an object is an access type, the implicit initial value is the
null value of the access type.

o If the type of an object is a task type, the implicit initial (and only) value
designates a corresponding task.

¢ If the type of an object is a type with discriminants and the subtype of
the object is constrained, the implicit initial (and only) value of each
discriminant is defined by the subtype of the object.

¢ If the type of an object is a composite type, the implicit initial value
of each component that has a default expression is obtained by eval-
uation of this expression, unless the component is a discriminant of a
constrained object (the previous case).

In the case of a component that is itself a composite object and whose value
is defined neither by an explicit initialization nor by a default expression,
any implicit initial values for components of the composite object are defined
by the same rules as for a declared object.

Object Declarations 3.2.1

17

19

20

The steps (a) to (d) are performed in the order indicated. For step (b), if the
default expression for a discriminant is evaluated, then this evaluation is
performed before that of default expressions for subcomponents that depend
on discriminants, and also before that of default expressions that include
the name of the discriminant. Apart from the previous rule, the evaluation
of default expressions is performed in some order that is not defined by the
language.

The initialization of an object (the declared object or one of its subcompo-
nents) checks that the initial value belongs to the subtype of the object;

for an array object declared by an object declaration, an implicit subtype
conversion is first applied as for an assignment statement, unless the object
is a constant whose subtype is an unconstrained array type. The exception
CONSTRAINT_ERROR is raised if this check fails.2

The value of a scalar variable is undefined after elaboration of the corre-
sponding object declaration unless an initial value is assigned to the variable
by an initialization (explicitly or implicitly).

If the operand of a type conversion or qualified expression is a variable that
has scalar subcomponents with undefined values, then the values of the
corresponding subcomponents of the result are undefined. The execution

of a program is erroneous if it attempts to evaluate a scalar variable with
an undefined value. Similarly, the execution of a program is erroneous if

it attempts to apply a predefined operator to a variable that has a scalar
subcomponent with an undefined value.3

Examples of variable declarations:
COUNT, SUM : INTEGER;

SIZE : INTEGER range 0 .. 10_000 := 0;

SORTED : BOOLEAN := FALSE;

COLOR_TABLE : array(l .. N) of COLOR;

OPTION : BIT_VECTOR(1 .. 10) := (others => TRUE);

Examples of constant declarations:

LIMIT : constant INTEGER 10_000;
LOW_LIMIT : constant INTEGER := LIMIT/10;
TOLERANCE : constant REAL := DISPERSION(1.15):

2 See also Appendix G, AI-00308.
3 See also Appendix G, AI-00155, AI-00356, AI-00374, and AI-00426.

3.2.1 Object Declarations 3-6

21

22

Note:

The expression initializing a constant object need not be a static expression
(see 4.9). In the above examples, LIMIT and LOW_LIMIT are initialized
with static expressions, but TOLERANCE is not if DISPERSION is a
user-defined function.

References: access type 3.8, assignment 5.2, assignment compound delimiter 5.2,
component 3.3, composite type 3.3, constrained array definition 3.6, constrained
subtype 3.3, constraint_error exception 11.1, conversion 4.6, declaration 3.1, default
expression for a discriminant 3.7, default initial value for an access type 3.8, depend
on a discriminant 3.7.1, designate 3.8, discriminant 3.3, elaboration 3.9, entry 9.5,
evaluation 4.5, expression 4.4, formal parameter 6.1, generic formal parameter 12.1
12.3, generic unit 12, in some order 1.6, limited type 7.4.4, mode in 6.1, package

7, predefined operator 4.5, primary 4.4, private type 7.4, qualified expression 4.7,
reserved word 2.9, scalar type 3.5, slice 4.1.2, subcomponent 3.3, subprogram 6,
subtype 3.3, subtype indication 3.3.2, task 9, task type 9.2, type 3.3, visible part 7.2

3.2.2 Number Declarations

3-7

1

A number declaration is a special form of constant declaration. The type
of the static expression given for the initialization of a number declaration
must be either the type universal_integer or the type universal_real. The
constant declared by a number declaration is called a named number and
has the type of the static expression.

Note:

The rules concerning expressions of a universal type are explained in section
4.10. It is a consequence of these rules that if every primary contained in
the expression is of the type universal_integer, then the named number is
also of this type. Similarly, if every primary is of the type universal_real,
then the named number is also of this type.

Examples of humber declarations:

PI : constant := 3.14159 26536; -- a real number
TWO_PI : constant := 2.0%PI; -- a real number

MAX : constant := 500; -— an integer number
POWER_16 : constant := 2%*16; -- the integer 65_536
ONE, UN, EINS : constant := 1; -- three different

—— names for 1

References: identifier 2.3, primary 4.4, static expression 4.9, type 3.3, universal_
integer type 3.5.4, universal_real type 3.5.6, universal type 4.10

Number Declarations 3.2.2

3.3 Types and Subtypes

1 A type is characterized by a set of values and a set of operations.

2 There exist several classes of types. Scalar types are integer types, real
types, and types defined by enumeration of their values; values of these
types have no components. Array and record types are composite; a value
of a composite type consists of component values. An access type is a type
whose values provide access to objects. Private types are types for which the
set of possible values is well defined, but not directly available to the users
of such types. Finally, there are task types. (Private types are described in
chapter 7, task types are described in chapter 9, the other classes of types
are described in this chapter.)

3 Certain record and private types have special components called discrimi-
nants whose values distinguish alternative forms of values of one of these
types. If a private type has discriminants, they are known to users of the
type. Hence a private type is only known by its name, its discriminants if
any, and by the corresponding set of operations.

4 The set of possible values for an object of a given type can be subjected to a
condition that is called a constraint (the case where the constraint imposes
no restriction is also included); a value is said to satisfy a constraint if it
satisfies the corresponding condition. A subtype is a type together with a
constraint; a value is said to belong to a subtype of a given type if it belongs
to the type and satisfies the constraint; the given type is called the base
type of the subtype. A type is a subtype of itself; such a subtype is said to
be unconstrained: it corresponds to a condition that imposes no restriction.
The base type of a type is the type itself.

5 The set of operations defined for a subtype of a given type includes the
operations that are defined for the type; however the assignment operation
to a variable having a given subtype only assigns values that belong to
the subtype. Additional operations, such as qualification (in a qualified
expression), are implicitly defined by a subtype declaration.

6 Certain types have default initial values defined for objects of the type;
certain other types have default expressions defined for some or all of their
components. Certain operations of types and subtypes are called attributes;
these operations are denoted by the form of name described in section 4.1.4.

7 The term subcomponent is used in this manual in place of the term
component to indicate either a component, or a component of another
component or subcomponent. Where other subcomponents are excluded, the
term component is used instead.

3.3 Types and Subtypes 3-8

A given type must not have a subcomponent whose type is the given type
itself.

The name of a class of types is used in this manual as a qualifier for objects
and values that have a type of the class considered. For example, the term
“array object” is used for an object whose type is an array type; similarly,
the term “access value” is used for a value of an access type.

Note:

The set of values of a subtype is a subset of the values of the base type. This
subset need not be a proper subset; it can be an empty subset.

References: access type 3.8, array type 3.6, assignment 5.2, attribute 4.1.4,
component of an array 3.6, component of a record 3.7, discriminant constraint 3.7.2,
enumeration type 3.5.1, integer type 3.5.4, object 3.2.1, private type 7.4, qualified
expression 4.7, real type 3.5.6, record type 3.7, subtype declaration 3.3.2, task type
9.1, type declaration 3.3.1

3.3.1 Type Declarations

3-9

A type declaration declares a type.

type declaration ::= full_type declaration
| incomplete type declaration | private type declaration

full type declaration ::=
type identifier [discriminant_ part] is type_definition;
type definition ::=
enumeration_type_definition | integer type definition
| real type definition | array_type_definition
| record_type definition | access_type definition
| derived type_definition

The elaboration of a full type declaration consists of the elaboration of the
discriminant part, if any (except in the case of the full type declaration for
an incomplete or private type declaration), and of the elaboration of the type
definition.

The types created by the elaboration of distinct type definitions are distinct
types. Moreover, the elaboration of the type definition for a numeric or
derived type creates both a base type and a subtype of the base type; the
same holds for a constrained array definition (one of the two forms of array
type definition).

Type Declarations 3.3.1

5 The simple name declared by a full type declaration denotes the declared
type, unless the type declaration declares both a base type and a subtype of
the base type, in which case the simple name denotes the subtype, and the
base type is anonymous. A type is said to be anonymous if it has no simple
name. For explanatory purposes, this reference manual sometimes refers
to an anonymous type by a pseudo-name, written in italics, and uses such
pseudo-names at places where the syntax normally requires an identifier.

6 Examples of type definitions:

(WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK)
range 1 .. 72
array(l .. 10) of INTEGER

7 Examples of type declarations:

type COLOR is (WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK);

type COLUMN is range 1 .. 72;
type TABLE is array(l .. 10) of INTEGER;
Notes:

8 Two type definitions always define two distinct types, even if they are
textually identical. Thus, the array type definitions given in the declarations
of A and B below define distinct types.

A : array(l .. 10) of BOOLEAN;
B : array(l .. 10) of BOOLEAN;

9 If A and B are declared by a multiple object declaration as below, their types
are nevertheless different, since the multiple object declaration is equivalent
to the above two single object declarations.

A, B : array(l .. 10) of BOOLEAN;

10 Incomplete type declarations are used for the definition of recursive and
mutually dependent types (see 3.8.1). Private type declarations are used in
package specifications and in generic parameter declarations (see 7.4 and
12.1).

i8] References: access type definition 3.8, array type definition 3.6, base type 3.3,
constrained array definition 3.6, constrained subtype 3.3, declaration 3.1, derived
type 3.4, derived type definition 3.4, discriminant part 3.7.1, elaboration 3.9,
enumeration type definition 3.5.1, identifier 2.3, incomplete type declaration 3.8.1,
integer type definition 3.5.4, multiple object declaration 3.2, numeric type 3.5,
private type declaration 7.4, real type definition 3.5.6, reserved word 2.9, type 3.3

3.3.1 Type Declarations 3-10

3.3.2 Subtype Declarations

1

2

A subtype declaration declares a subtype.

subtype declaration ::=
subtype identifier is subtype_indication;

subtype_indication ::= type mark [constraint]
type_mark ::= type name | subtype name

constraint ::=
range_constraint | floating_point_constraint
| fixed point_constraint | index constraint
| discriminant_constraint

A type mark denotes a type or a subtype. If a type mark is the name

of a type, the type mark denotes this type and also the corresponding
unconstrained subtype. The base type of a type mark is, by definition, the
base type of the type or subtype denoted by the type mark.

A subtype indication defines a subtype of the base type of the type mark.

If an index constraint appears after a type mark in a subtype indication,
the type mark must not already impose an index constraint. Likewise
for a discriminant constraint, the type mark must not already impose a
discriminant constraint.

The elaboration of a subtype declaration consists of the elaboration of

the subtype indication. The elaboration of a subtype indication creates a
subtype. If the subtype indication does not include a constraint, the subtype
is the same as that denoted by the type mark. The elaboration of a subtype
indication that includes a constraint proceeds as follows:*

(a) The constraint is first elaborated.

(b) A check is then made that the constraint is compatible with the type or
subtype denoted by the type mark.

The condition imposed by a constraint is the condition obtained after
elaboration of the constraint. (The rules of constraint elaboration are

such that the expressions and ranges of constraints are evaluated by the
elaboration of these constraints.) The rules defining compatibility are given
for each form of constraint in the appropriate section. These rules are such
that if a constraint is compatible with a subtype, then the condition imposed
by the constraint cannot contradict any condition already imposed by the
subtype on its values. The exception CONSTRAINT_ERROR is raised if any
check of compatibility fails.

4 See also Appendix G, AI-00449.

3-11

Subtype Declarations 3.3.2

Examples of subtype declarations:

subtype RAINBOW is COLOR range RED .. BLUE; -- see 3.3.1
subtype RED BLUE is RAINBOW;

subtype INT is INTEGER;

subtype SMALL INT is INTEGER range -10 .. 10;

subtype UP_TO K is COLUMN range 1 .. K; -- see 3.3.1
subtype SQUARE is MATRIX(1 .. 10, 1 .. 10); -- see 3.6
subtype MALE is PERSON (SEX => M); -- see 3.8
Note:

A subtype declaration does not define a new type.

References: base type 3.3, compatibility of discriminant constraints 3.7.2, com-
patibility of fixed point constraints 3.5.9, compatibility of floating point constraints
3.5.7, compatibility of index constraints 3.6.1, compatibility of range constraints 3.5,
constraint_error exception 11.1, declaration 3.1, discriminant 3.3, discriminant con-
straint 3.7.2, elaboration 3.9, evaluation 4.5, expression 4.4, floating point constraint
3.5.7, fixed point constraint 3.5.9, index constraint 3.6.1, range constraint 3.5,
reserved word 2.9, subtype 3.3, type 3.3, type name 3.3.1, unconstrained subtype 3.3

3.3.3 Classification of Operations

1

The set of operations of a type includes the explicitly declared subpro-
grams that have a parameter or result of the t%'pe; such subprograms are
necessarily declared after the type declaration.

The remaining operations are each implicitly declared for a given type
declaration, immediately after the type definition. These implicitly declared
operations comprise the basic operations, the predefined operators (see

4.5), and enumeration literals. In the case of a derived type declaration,
the implicitly declared operations include any derived subprograms. The
operations implicitly declared for a given type declaration occur after the
type declaration and before the next explicit declaration, if any. The implicit
declarations of derived subprograms occur last.

A basic operation is an operation that is inherent in one of the following:

* An assignment (in assignment statements and initializations), an
allocator, a membership test, or a short-circuit control form.

¢ A selected component, an indexed component, or a slice.

¢ A qualification (in qualified expressions), an explicit type conversion,
or an implicit type conversion of a value of type universal_integer or
universal_real to the corresponding value of another numeric type.

5 See also Appendix G, AI-00330.

3.3.3 Classification of Operations 3-12

1

¢ A numeric literal (for a universal type), the literal null (for an access
type), a string literal, an aggregate, or an attribute.

For every type or subtype T, the following attribute is defined:

T'BASE The base type of T. This attribute is allowed only as the
prefix of the name of another attribute: for example,
T'BASE’ FIRST.

Note:

Each literal is an operation whose evaluation yields the corresponding value
(see 4.2). Likewise, an aggregate is an operation whose evaluation yields

a value of a composite type (see 4.3). Some operations of a type operate on
values of the type, for example, predefined operators and certain subpro-
grams and attributes. The evaluation of some operations of a type returns a
value of the type, for example, literals and certain functions, attributes, and
predefined operators. Assignment is an operation that operates on an object
and a value. The evaluation of the operation corresponding to a selected
component, an indexed component, or a slice, yields the object or value
denoted by this form of name.

References: aggregate 4.3, allocator 4.8, assignment 5.2, attribute 4.1.4, character
literal 2.5, composite type 3.3, conversion 4.6, derived subprogram 3.4, enumeration
literal 3.5.1, formal parameter 6.1, function 6.5, indexed component 4.1.1, initial
value 3.2.1, literal 4.2, membership test 4.5 4.5.2, null literal 3.8, numeric literal
2.4, numeric type 3.5, object 3.2.1, 6.1, predefined operator 4.5, qualified expression
4.7, selected component 4.1.3, short-circuit control form 4.5 4.5.1, slice 4.1.2, string
literal 2.6, subprogram 6, subtype 3.3, type 3.3, type declaration 3.3.1, universal_
integer type 3.5.4, universal_real type 3.5.6, universal type 4.10

3.4 Derived Types

3-13

1

A derived type definition defines a new (base) type whose characteristics are
derived from those of a parent type; the new type is called a derived type. A
derived type definition further defines a derived subtype, which is a subtype
of the derived type.

derived type definition ::= new subtype_ indication

The subtype indication that occurs after the reserved word new defines
the parent subtype. The parent type is the base type of the parent subtype.
If a constraint exists for the parent subtype, a similar constraint exists
for the derived subtype; the only difference is that for a range constraint,
and likewise for a floating or fixed point constraint that includes a range
constraint, the value of each bound is replaced by the corresponding value

Derived Types 3.4

of the derived type. The characteristics of the derived type are defined as
follows:

4 []

The derived type belongs to the same class of types as the parent type.
The set of possible values for the derived type is a copy of the set of
possible values for the parent type. If the parent type is composite,
then the same components exist for the derived type, and the subtype of
corresponding components is the same.

For each basic operation of the parent type, there is a corresponding
basic operation of the derived type. Explicit type conversion of a value
of the parent type into the corresponding value of the derived type is
allowed and vice versa as explained in section 4.6.

For each enumeration literal or predefined operator of the parent type
there is a corresponding operation for the derived type.

If the parent type is a task type, then for each entry of the parent type
there is a corresponding entry for the derived type.

If a default expression exists for a component of an object having
the parent type, then the same default expression is used for the
corresponding component of an object having the derived type.

If the parent type is an access type, then the parent and the derived type
share the same collection; there is a null access value for the derived
type and it is the default initial value of that type.

If an explicit representation clause exists for the parent type and if
this clause appears before the derived type definition, then there is a
corresponding representation clause (an implicit one) for the derived
type.6

Certain subprograms that are operations of the parent type are said to
be derivable. For each derivable subprogram of the parent type, there
is a corresponding derived subprogram for the derived type. Two kinds
of derivable subprograms exist. First, if the parent type is declared
immediately within the visible part of a package, then a subprogram
that is itself explicitly declared immediately within the visible part
becomes derivable after the end of the visible part, if it is an operation
of the parent type. (The explicit declaration is by a subprogram
declaration, a renaming declaration, or a generic instantiation.) Second,
if the parent type is itself a derived type, then any subprogram that
has been derived by this parent type is further derivable, unless the

6 See also Appendix G, AI-00138 and AI-00292.

3.4 Derived Types 3-14

parent type is declared in the visible part of a package and the derived
subprogram is hidden by a derivable subprogram of the first kind.”

12 Each operation of the derived type is implicitly declared at the place of
the derived type declaration. The implicit declarations of any derived
subprograms occur last.

13 The specification of a derived subprogram is obtained implicitly by system-
atic replacement of the parent type by the derived type in the specification
of the derivable subprogram. Any subtype of the parent type is likewise re-
placed by a subtype of the derived type with a similar constraint (as for the
transformation of a constraint of the parent subtype into the corresponding
constraint of the derived subtype). Finally, any expression of the parent type
is made to be the operand of a type conversion that yields a result of the
derived type.

14 Calling a derived subprogram is equivalent to calling the corresponding
subprogram of the parent type, in which each actual parameter that is of
the derived type is replaced by a type conversion of this actual parameter to
the parent type (this means that a conversion to the parent type happens
before the call for the modes in and in out; a reverse conversion to the
derived type happens after the call for the modes in out and out, see 6.4.1).
In addition, if the result of a called function is of the parent type, this result
is converted to the derived type.

15 If a derived or private type is declared immediately within the visible part of
a package, then, within this visible part, this type must not be used as the
parent type of a derived type definition. (For private types, see also section
7.4.1.)

16 For the elaboration of a derived type definition, the subtype indication is
first elaborated, the derived type is then created, and finally, the derived
subtype is created.

17 Examples:

type LOCAL COORDINATE is new COORDINATE; -- two different types
type MIDWEEK is new DAY range TUE .. THU; -- see 3.5.1
type COUNTER is new POSITIVE; —-— same range as
-— POSITIVE
type SPECIAL_KEY is new KEY MANAGER.KEY; -- see 7.4.2

~— the derived subprograms have the following specifications:

—-—- procedure GET_KEY (K : out SPECIAL_KEY);
-— function "<"(X,Y : SPECIAL KEY) return BOOLEAN;

7 See also Appendix G, AI-00367 and AI-00398.

3-15 Derived Types 3.4

18

20

21

23

24

Notes:

The rules of derivation of basic operations and enumeration literals imply
that the notation for any literal or aggregate of the derived type is the
same as for the parent type; such literals and aggregates are said to be
overloaded. Similarly, it follows that the notation for denoting a component,
a discriminant, an entry, a slice, or an attribute is the same for the derived
type as for the parent type.

Hiding of a derived subprogram is allowed even within the same declarative
region (see 8.3). A derived subprogram hides a predefined operator that has
the same parameter and result type profile (see 6.6).

A generic subprogram declaration is not derivable since it declares a generic
unit rather than a subprogram. On the other hand, an instantiation of a
generic subprogram is a (nongeneric) subprogram, which is derivable if it
satisfies the requirements for derivability of subprograms.

If the parent type is a boolean type, the predefined relational operators of
the derived type deliver a result of the predefined type BOOLEAN
(see 4.5.2).

If a representation clause is given for the parent type but appears after
the derived type declaration, then no corresponding representation clause
applies to the derived type; hence an explicit representation clause for such
a derived type is allowed.®

For a derived subprogram, if a parameter belongs to the derived type, the
subtype of this parameter need not have any value in common with the
derived subtype.

References: access value 3.8, actual parameter 6.4.1, aggregate 4.3, attribute
4.1.4, base type 3.3, basic operation 3.3.3, boolean type 3.5.3, bound of a range

3.5, class of type 3.3, collection 3.8, component 3.3, composite type 3.3, constraint
3.3, conversion 4.6, declaration 3.1, declarative region 8.1, default expression 3.2.1,
default initial value for an access type 3.8, discriminant 3.3, elaboration 3.9, entry
9.5, enumeration literal 3.5.1, floating point constraint 3.5.7, fixed point constraint
3.5.9, formal parameter 6.1, function call 6.4, generic declaration 12.1, immediately
within 8.1, implicit declaration 3.1, literal 4.2, mode 6.1, overloading 6.6 8.7,
package 7, package specification 7.1, parameter association 6.4, predefined operator
4.5, private type 7.4, procedure 6, procedure call statement 6.4, range constraint 3.5
representation clause 13.1, reserved word 2.9, slice 4.1.2, subprogram 6, subprogram
specification 6.1, subtype indication 3.3.2, subtype 3.3, type 3.3, type definition 3.3.1,
visible part 7.2

8 See also Appendix G, AI-00138.

3.4 Derived Types 3-16

3.5 Scalar Types

3-17

1

Scalar types comprise enumeration types, integer types, and real types.
Enumeration types and integer types are called discrete types; each value
of a discrete type has a position number which is an integer value. Integer
types and real types are called numeric types. All scalar types are ordered,
that is, all relational operators are predefined for their values.

range_constraint ::= range range

range ::= range_attribute
| simple expression .. simple_expression

A range specifies a subset of values of a scalar type. The range L. .. R
specifies the values from L to R inclusive if the relation L <= R is true. The
values L and R are called the lower bound and upper bound of the range,
respectively. A value V is said to satisfy a range constraint if it belongs to
the range; the value V is said to belong to the range if the relations L <=V
and V <= R are both TRUE. A null range is a range for which the relation
R < L is TRUE; no value belongs to a null range. The operators <= and < in
the above definitions are the predefined operators of the scalar type.

If a range constraint is used in a subtype indication, either directly or as
part of a floating or fixed point constraint, the type of the simple expressions
(likewise, of the bounds of a range attribute) must be the same as the

base type of the type mark of the subtype indication. A range constraint

is compatible with a subtype if each bound of the range belongs to the
subtype, or if the range constraint defines a null range; otherwise the range
constraint is not compatible with the subtype.

The elaboration of a range constraint consists of the evaluation of the range.
The evaluation of a range defines its lower bound and its upper bound. If
simple expressions are given to specify the bounds, the evaluation of the
range evaluates these simple expressions in some order that is not defined
by the language.

Attributes:

For any scalar type T or for any subtype T of a scalar type, the following
attributes are defined:

T'FIRST Yields the lower bound of T. The value of this attribute has
the same type as T.
T'LAST Yields the upper bound of T. The value of this attribute

has the same type as T.

Scalar Types 3.5

Note:
10 Indexing and iteration rules use values of discrete types.

11 References: attribute 4.1.4, constraint 3.3, enumeration type 3.5.1, erroneous 1.6,
evaluation 4.5, fixed point constraint 3.5.9, floating point constraint 3.5.7, index
3.6, integer type 3.5.4, loop statement 5.5, range attribute 3.6.2, real type 3.5.6,
relational operator 4.5 4.5.2, satisfy a constraint 3.3, simple expression 4.4, subtype
indication 3.3.2, type mark 3.3.2

3.5.1 Enumeration Types

1 An enumeration type definition defines an enumeration type.

2 enumeration_type definition ::=
(enumeration literal_ specification
{, enumeration_literal_ specification})

enumeration literal specification ::= enumeration_ literal

enumeration literal ::= identifier | character literal

3 The identifiers and character literals listed by an enumeration type def-
inition must be distinct. Each enumeration literal specification is the
declaration of the corresponding enumeration literal: this declaration is
equivalent to the declaration of a parameterless function, the designator
being the enumeration literal, and the result type being the enumeration
type. The elaboration of an enumeration type definition creates an enu-
meration type; this elaboration includes that of every enumeration literal
specification.?

4 Each enumeration literal yields a different enumeration value. The pre-
defined order relations between enumeration values follow the order of
corresponding position numbers. The position number of the value of the
first listed enumeration literal is zero; the position number for each other
enumeration literal is one more than for its predecessor in the list.

5 If the same identifier or character literal is specified in more than one
enumeration type definition, the corresponding literals are said to be
overloaded. At any place where an overloaded enumeration literal occurs
in the text of a program, the type of the enumeration literal must be
determinable from the context (see 8.7).

9 See also Appendix G, AI-00330 and AI-00430.

3.5.1 Enumeration Types 3-18

Examples:

type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
type SUIT is (CLUBS, DIAMONDS, HEARTS, SPADES);
type GENDER is (M, F);
type LEVEL is (LOW, MEDIUM, URGENT) ;
type COLOR is (WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK):;
type LIGHT is (RED, AMBER, GREEN); -- RED and GREEN are
-- overloaded

type HEXA is (’A’, 'B’, ’C’, 'D’, 'E’, 'F’);
type MIXED is (’A’, 'B’, ’*’, B, NONE, ’?2', '%');

subtype WEEKDAY is DAY range MON .. FRI;

subtype MAJOR is SUIT range HEARTS .. SPADES;

subtype RAINBOW is COLOR range RED .. BLUE; -- the color RED,
-- not the light

Note:

If an enumeration literal occurs in a context that does not otherwise suffice
to determine the type of the literal, then qualification by the name of the
enumeration type is one way to resolve the ambiguity (see 8.7).

References: character literal 2.5, declaration 3.1, designator 6.1, elaboration 3.9,
6.1, function 6.5, identifier 2.3, name 4.1, overloading 6.6 8.7, position number 3.5,
qualified expression 4.7, relational operator 4.5 4.5.2, type 3.3, type definition 3.3.1

3.5.2 Character Types

3-19

1

An enumeration type is said to be a character type if at least one of its enu-
meration literals is a character literal. The predefined type CHARACTER is
a character type whose values are the 128 characters of the ASCII character
set. Each of the 95 graphic characters of this character set is denoted by the
corresponding character literal.

Example:
type ROMAN DIGIT is (’I’, 'V’, ’X’, ‘L', 'C’, ‘D', 'M');
Notes:

The predefined package ASCII includes the declaration of constants denoting
control characters and of constants denoting graphic characters that are not
in the basic character set.

A conventional character set such as EBCDIC can be declared as a character
type; the internal codes of the characters can be specified by an enumeration
representation clause as explained in section 13.3.

Character Types 3.5.2

5

References: ascii predefined package C, basic character 2.1, character literal
2.5, constant 3.2.1, declaration 3.1, enumeration type 3.5.1, graphic character 2.1,
identifier 2.3, literal 4.2, predefined type C, type 3.3

3.5.3 Boolean Types

1

There is a predefined enumeration type named BOOLEAN. It contains the
two literals FALSE and TRUE ordered with the relation FALSE < TRUE. A
boolean type is either the type BOOLEAN or a type that is derived, directly
or indirectly, from a boolean type.

References: derived type 3.4, enumeration literal 3.5.1, enumeration type 3.5.1,
relational operator 4.5 4.5.2, type 3.3

3.5.4 Integer Types

1

An integer type definition defines an integer type whose set of values
includes at least those of the specified range.

integer type definition ::= range_constraint

If a range constraint is used as an integer type definition, each bound of
the range must be defined by a static expression of some integer type, but

the two bounds need not have the same integer type. (Negative bounds are
allowed.)10

A type declaration of the form:11
type T is range L .. R;
is, by definition, equivalent to the following declarations:

type integer type is new predefined integer type:;
subtype T is integer type
range integer type(L) .. integer type(R);

where integer_type is an anonymous type, and where the predefined integer
type is implicitly selected by the implementation, so as to contain the
values L to R inclusive. The integer type declaration is illegal if none of
the predefined integer types satisfies this requirement, excepting universal_
integer. The elaboration of the declaration of an integer type consists of the
elaboration of the equivalent type and subtype declarations.

10 See also Appendix G, AI-00240.
11 See also Appendix G, AI-00023.

3.5.4 Integer Types 3-20

10

The predefined integer types include the type INTEGER. An implementation
may also have predefined types such as SHORT_INTEGER and LONG_
INTEGER, which have (substantially) shorter and longer ranges, respec-
tively, than INTEGER. The range of each of these types must be symmetric
about zero, excepting an extra negative value which may exist in some
implementations. The base type of each of these types is the type itself.

VAX Ada provides the following predefined integer types:

Predefined type Range of values
INTEGER 231 2313

(or —2,147,483,648..2,147,483,647)
SHORT_INTEGER —215 2151

(or —32768..32767)

SHORT_SHORT_INTEGER -27.271
(or -128..127)

Integer literals are the literals of an anonymous predefined integer type that
is called universal_integer in this reference manual. Other integer types
have no literals. However, for each integer type there exists an implicit
conversion that converts a universal_integer value into the corresponding
value (if any) of the integer type. The circumstances under which these
implicit conversions are invoked are described in section 4.6.

The position number of an integer value is the corresponding value of the
type universal_integer.

The same arithmetic operators are predefined for all integer types (see 4.5).
The exception NUMERIC_ERROR is raised by the execution of an operation
(in particular an implicit conversion) that cannot deliver the correct result
(that is, if the value corresponding to the mathematical result is not a value
of the integer type). However, an implementation is not required to raise the
exception NUMERIC_ERROR if the operation is part of a larger expression
whose result can be computed correctly, as described in section 11.6.12

Examples:

type PAGE NUM is range 1 .. 2_000;

type LINE_SIZE is range 1 .. MAX LINE_SIZE;
subtype SMALL_ INT is INTEGER range -10 .. 10;
subtype COLUMN_PTR is LINE_SIZE range 1 .. 10;
subtype BUFFER_SIZE is INTEGER range 0 .. MAX;

12 See also Appendix G, AI-00267 and AI-00387.

3-21

Integer Types 3.5.4

13

14

Notes:

The name declared by an integer type declaration is a subtype name. On the
other hand, the predefined operators of an integer type deliver results whose
range is defined by the parent predefined type; such a result need not belong
to the declared subtype, in which case an attempt to assign the result to a

variable of the integer subtype raises the exception CONSTRAINT_ERROR.

The smallest (most negative) value supported by the predefined integer
types of an implementation is the named number SYSTEM.MIN_INT and
the largest (most positive) value is SYSTEM.MAX_INT (see 13.7).

References: anonymous type 3.3.1, belong to a subtype 3.3, bound of a range
3.5, constraint_error exception 11.1, conversion 4.6, identifier 2.3, integer literal
2.4, literal 4.2, numeric_error exception 11.1, parent type 3.4, predefined operator
4.5, range constraint 3.5, static expression 4.9, subtype declaration 3.3.2, system
predefined package 13.7, type 3.3, type declaration 3.3.1, type definition 3.3.1,
universal type 4.10

3.5.5 Operations of Discrete Types

1

The basic operations of a discrete type include the operations involved in
assignment, the membership tests, and qualification; for a boolean type they
include the short-circuit control forms; for an integer type they include the
explicit conversion of values of other numeric types to the integer type, and
the implicit conversion of values of the type universal_integer to the type.

Finally, for every discrete type or subtype T, the basic operations include
the attributes listed below. In this presentation, T is referred to as being
a subtype (the subtype T) for any property that depends on constraints
imposed by T; other properties are stated in terms of the base type of T.

The first group of attributes yield characteristics of the subtype T. This
group includes the attribute BASE (see 3.3.2), the attributes FIRST and
LAST (see 3.5), the representation attribute SIZE (see 13.7.2), and the
attribute WIDTH defined as follows:

T WIDTH Yields the maximum image length over all values of
the subtype T (the image is the sequence of characters
returned by the attribute IMAGE, see below). Yields zero
for a null range. The value of this attribute is of the type
universal_integer.

3.5.5 Operations of Discrete Types 3-22

5 All attributes of the second group are functions with a single parameter.
The corresponding actual parameter is indicated below by X.

6 T POS

7 T VAL

8 T+ SUCC

9 TPRED
10 T/'IMAGE

13 See also Appendix G, AI-00234.

3-23

This attribute is a function. The parameter X must be

a value of the base type of T. The result type is the type
universal_integer. The result is the position number of the
value of the parameter.

This attribute is a special function with a single parameter
which can be of any integer type. The result type is the
base type of T. The result is the value whose position
number is the universal_integer value corresponding to X.
The exception CONSTRAINT_ERROR is raised if the
universal_integer value corresponding to X is not in the
range T’ POS(T' BASE' FIRST) .. T' POS(T' BASE’ LAST).

This attribute is a function. The parameter X must be a
value of the base type of T. The result type is the base
type of T. The result is the value whose position number is
one greater than that of X. The exception CONSTRAINT_
ERROR is raised if X equals T' BASE’ LAST.

This attribute is a function. The parameter X must be a
value of the base type of T. The result type is the base type
of T. The result is the value whose position number is one
less than that of X. The exception CONSTRAINT_ERROR
is raised if X equals T' BASE’ FIRST.

This attribute is a function. The parameter X must

be a value of the base type of T. The result type is the
predefined type STRING. The result is the image of the
value of X, that is, a sequence of characters representing
the value in display form. The image of an integer value
is the corresponding decimal literal; without underlines,
leading zeros, exponent, or trailing spaces; but with a
single leading character that is either a minus sign or a
space. The lower bound of the image is one.13

The image of an enumeration value is either the corre-
sponding identifier in upper case or the corresponding
character literal (including the two apostrophes); nei-
ther leading nor trailing spaces are included. The

Operations of Discrete Types 3.5.5

image of a character C, other than a graphic char-
acter, is implementation-defined; the only require-
ment is that the image must be such that C equals
CHARACTER' VALUE(CHARACTER' IMAGE((C)).14

In VAX Ada, the image of a character C that is not a
graphic character is defined as a string of two or three
upper case letters, without enclosing quotation marks
or apostrophes. The upper case letters used are those
shown in italics as the literals of the predefined type
CHARACTER in Annex C (package STANDARD).

12 T'VALUE This attribute is a function. The parameter X must be a
value of the predefined type STRING. The result type is
the base type of T. Any leading and any trailing spaces
of the sequence of characters that corresponds to the
parameter are ignored.

13 For an enumeration type, if the sequence of characters
has the syntax of an enumeration literal and if this literal
exists for the base type of T, the result is the corresponding
enumeration value. For an integer type, if the sequence
of characters has the syntax of an integer literal, with an
optional single leading character that is a plus or minus
sign, and if there is a corresponding value in the base
type of T, the result is this value. In any other case, the
exception CONSTRAINT ERROR is raised.

14 In addition, the attributes A’SIZE and A’ ADDRESS are defined for an
object A of a discrete type (see 13.7.2).

15 Besides the basic operations, the operations of a discrete type include the
predefined relational operators. For enumeration types, operations include
enumeration literals. For boolean types, operations include the predefined
unary logical negation operator not, and the predefined logical operators.
For integer types, operations include the predefined arithmetic operators:
these are the binary and unary adding operators — and +, all multiplying
operators, the unary operator abs, and the exponentiating operator.

16 The operations of a subtype are the corresponding operations of its base
type except for the following: assignment, membership tests, qualification,
explicit type conversions, and the attributes of the first group; the effect of
each of these operations depends on the subtype (assignments, membership
tests, qualifications, and conversions involve a subtype check; attributes of
the first group yield a characteristic of the subtype).

14 See also Appendix G, AI-00239.

3.5.5 Operations of Discrete Types 3-24

Notes:

17 For a subtype of a discrete type, the results delivered by the attributes
SUCC, PRED, VAL, and VALUE need not belong to the subtype; similarly,
the actual parameters of the attributes POS, SUCC, PRED, and IMAGE
need not belong to the subtype. The following relations are satisfied (in the
absence of an exception) by these attributes:

T’/ POS (T’ SUCC (X)
T’/ POS (T’ PRED (X)

T’POS(X) + 1
T'POS(X) - 1

)
)
T/ VAL (T’ POS (X))
T’/ POS (T’ VAL (N))

X
N

nn

18 Examples:

-- For the types and subtypes declared
-- in section 3.5.1 we have:

-— COLOR’FIRST = WHITE, COLOR’ LAST = BLACK
—-— RAINBOW'FIRST = RED, RAINBOW’ LAST = BLUE

—-— COLOR’ SUCC (BLUE) = RAINBOW’SUCC(BLUE) = BROWN
-— COLOR’POS (BLUE) = RAINBOW/POS(BLUE) = 4

-— COLOR'VAL(0) = RAINBOW’ VAL (0) = WHITE

19 References: abs operator 4.5 4.5.6, assignment 5.2, attribute 4.1.4, base type 3.3,
basic operation 3.3.3, binary adding operator 4.5 4.5.3, boolean type 3.5.3, bound
of a range 3.5, character literal 2.5, constraint 3.3, constraint_error exception 11.1,
conversion 4.6, discrete type 3.5, enumeration literal 3.5.1, exponentiating operator
4.5 4.5.6, function 6.5, graphic character 2.1, identifier 2.3, integer type 3.5.4, logical
operator 4.5 4.5.1, membership test 4.5 4.5.2, multiplying operator 4.5 4.5.5, not
operator 4.5 4.5.6, numeric literal 2.4, numeric type 3.5, object 3.2, operation 3.3,
position number 3.5, predefined operator 4.5, predefined type C, qualified expression
4.7, relational operator 4.5 4.5.2, short-circuit control form 4.5 4.5.1, string type
3.6.3, subtype 3.3, type 3.3, unary adding operator 4.5 4.5.4, universal_integer type
3.5.4, universal type 4.10

character 2.1, character type 3.5.2, standard predefined package 8.6 C

3.5.6 Real Types

1 Real types provide approximations to the real numbers, with relative bounds
on errors for floating point types, and with absolute bounds for fixed point

types.

2 real_type definition ::=
floating point_constraint | fixed point_constraint

3-25 Real Types 3.5.6

3 A set of numbers called model numbers is associated with each real type.
Error bounds on the predefined operations are given in terms of the model
numbers. An implementation of the type must include at least these model
numbers and represent them exactly.

4 An implementation-dependent set of numbers, called the safe numbers, is
also associated with each real type. The set of safe numbers of a real type
must include at least the set of model numbers of the type. The range of
safe numbers is allowed to be larger than the range of model numbers,
but error bounds on the predefined operations for safe numbers are given
by the same rules as for model numbers. Safe numbers therefore provide
guaranteed error bounds for operations on an implementation-dependent
range of numbers; in contrast, the range of model numbers depends only on
the real type definition and is therefore independent of the implementation.

5 Real literals are the literals of an anonymous predefined real type that is
called universal_real in this reference manual. Other real types have no
literals. However, for each real type, there exists an implicit conversion that
converts a universal_real value into a value of the real type. The conditions
under which these implicit conversions are invoked are described in section
4.6. If the universal_real value is a safe number, the implicit conversion
delivers the corresponding value; if it belongs to the range of safe numbers
but is not a safe number, then the converted value can be any value within
the range defined by the safe numbers next above and below the universal_
real value.

6 The execution of an operation that yields a value of a real type may
raise the exception NUMERIC_ERROR, as explained in section 4.5.7, if
it cannot deliver a correct result (that is, if the value corresponding to
one of the possible mathematical results does not belong to the range of
safe numbers); in particular, this exception can be raised by an implicit
conversion. However, an implementation is not required to raise the
exception NUMERIC_ERROR if the operation is part of a larger expression
whose result can be computed correctly (see 11.6).15

7 The elaboration of a real type definition includes the elaboration of the
floating or fixed point constraint and creates a real type.

15 See also Appendix G, AI-00387.

3.5.6 Real Types 3-26

Note:

An algorithm written to rely only upon the minimum numerical properties
guaranteed by the type definition for model numbers will be portable without
further precautions.

References: conversion 4.6, elaboration 3.9, fixed point constraint 3.5.9, floating
point constraint 3.5.7, literal 4.2, numeric_error exception 11.1, predefined operation
3.3.3, real literal 2.4, type 3.3, type definition 3.3.1, universal type 4.10

3.5.7 Floating Point Types

1

For floating point types, the error bound is specified as a relative precision
by giving the required minimum number of significant decimal digits.

floating point_constraint ::=
floating_accuracy_definition [range_constraint]

floating accuracy_definition ::=
digits static_simple_expression

The minimum number of significant decimal digits is specified by the value
of the static simple expression of the floating accuracy definition. This
value must belong to some integer type and must be positive (nonzero);

it is denoted by D in the remainder of this section. If the floating point
constraint is used as a real type definition and includes a range constraint,
then each bound of the range must be defined by a static expression of some
real type, but the two bounds need not have the same real type.

For a given radix, the following canonical form is defined for any floating
point model number other than zero:

sign * mantissa * (radix ** exponent)

In this form: sign is either +1 or —1; mantissa is expressed in a number base
given by radix; and exponent is an integer number (possibly negative) such
that the integer part of mantissa is zero and the first digit of its fractional
part is not a zero.

The specified number D is the minimum number of decimal digits required
after the point in the decimal mantissa (that is, if radix is ten). The value
of D in turn determines a corresponding number B that is the minimum
number of binary digits required after the point in the binary mantissa
(that is, if radix is two). The number B associated with D is the smallest
value such that the relative precision of the binary form is no less than that
specified for the decimal form. (The number B is the integer next above
(D*log(10)log(2)) + 1.)16

16 See also Appendix G, AI-00205.

3-27

Floating Point Types 3.5.7

7 The model numbers defined by a floating accuracy definition comprise zero
and all numbers whose binary canonical form has exactly B digits after
the point in the mantissa and an exponent in the range —4*B .. +4*B. The
guaranteed minimum accuracy of operations of a floating point type is
defined in terms of the model numbers of the floating point constraint that
forms the corresponding real type definition (see 4.5.7).

8 The predefined floating point types include the type FLOAT. An implemen-
tation may also have predefined types such as SHORT FLOAT and LONG_
FLOAT, which have (substantially) less and more accuracy, respectively,
than FLOAT. The base type of each predefined floating point type is the type
itself. The model numbers of each predefined floating point type are defined
in terms of the number D of decimal digits returned by the attribute DIGITS
(see 3.5.8).

In addition to the type FLOAT, VAX Ada provides the types LONG_FLOAT
and LONG_LONG_FLOAT (declared in the package STANDARD) and the
types F_FLOAT, D_FLOAT, G_FLOAT, and H_FLOAT (declared in the
package SYSTEM).

Each VAX Ada floating point type is represented by one of four internal
floating point data representations:

Representation Size Digits of precision
F_floating 32 bits 6
D_floating 64 bits 9
G_floating 64 bits 15
H_floating 128 bits 33

In VAX Ada, the type FLOAT is implemented using the F_floating represen-
tation. The type LONG_FLOAT is implemented using either the D_floating
or G_floating representation; the pragma LONG_FLOAT (see 3.5.7a) is
provided to allow control over the representation (the default is G_floating).
The type LONG_LONG_FLOAT is implemented using the H_floating rep-
resentation. The types F_FLOAT, D_FLOAT, G_FLOAT, and H_FLOAT
correspond exactly to the F_floating, D_floating, G_floating, and H_floating
representations, respectively.

The predefined attributes that yield the characteristics of each floating point
type are described in section 3.5.8; values of these attributes for the four
VAX floating point data representations are listed in Appendix F. The VAX
Ada Run-Time Reference Manual gives more information on the internal
representation of VAX Ada floating point types.

3.5.7 Floating Point Types 3-28

10

1

12

13

14

For each predefined floating point type (consequently also for each type
derived therefrom), a set of safe numbers is defined as follows. The safe
numbers have the same number B of mantissa digits as the model num-
bers of the type and have an exponent in the range -E .. +E where E is
implementation-defined and at least equal to the 4*B of model numbers.
(Consequently, the safe numbers include the model numbers.) The rules
defining the accuracy of operations with model and safe numbers are given
in section 4.5.7. The safe numbers of a subtype are those of its base type. 17

A floating point type declaration of one of the two forms (that is, with or
without the optional range constraint indicated by the square brackets): 18

type T is digits D [range L .. R];
is, by definition, equivalent to the following declarations:

type floating point type is new predefined_ floating point_type;
subtype T is floating point type digits D
[range floating point_type(L) .. floating point_type(R)];

where floating_point_type is an anonymous type, and where the predefined
floating point type is implicitly selected by the implementation so that its
model numbers include the model numbers defined by D; furthermore, if a
range L .. R is supplied, then both L and R must belong to the range of safe
numbers. The floating point declaration is illegal if none of the predefined
floating point types satisfies these requirements, excepting universal_real.
The maximum number of digits that can be specified in a floating accuracy
definition is given by the system-dependent named number SYSTEM.MAX
DIGITS (see 13.7.1).

The predefined attributes that yield the safe number characteristics of each
floating point type are described in section 3.5.8; values of these attributes
for the four VAX floating point representations are listed in Appendix F.

The elaboration of a floating point type declaration consists of the elabora-
tion of the equivalent type and subtype declarations.

If a floating point constraint follows a type mark in a subtype indication, the
type mark must denote a floating point type or subtype. The floating point
constraint is compatible with the type mark only if the number D specified
in the floating accuracy definition is not greater than the corresponding
number D for the type or subtype denoted by the type mark. Furthermore,
if the floating point constraint includes a range constraint, the floating point
constraint is compatible with the type mark only if the range constraint is,
itself, compatible with the type mark.

17 See also Appendix G, AI-00217 and AI-00314.
18 See also Appendix G, AI-00023.

3-29

Floating Point Types 3.5.7

15 The elaboration of such a subtype indication includes the elaboration of the
range constraint, if there is one; it creates a floating point subtype whose
model numbers are defined by the corresponding floating accuracy definition.
A value of a floating point type belongs to a floating point subtype if and
only if it belongs to the range defined by the subtype.

16 The same arithmetic operators are predefined for all floating point types
(see 4.5).

Notes:

17 A range constraint is allowed in a floating point subtype indication, either
directly after the type mark, or as part of a floating point constraint. In
either case the bounds of the range must belong to the base type of the type
mark (see 3.5). The imposition of a floating point constraint on a type mark
in a subtype indication cannot reduce the allowed range of values unless it
includes a range constraint (the range of model numbers that correspond to
the specified number of digits can be smaller than the range of numbers of
the type mark). A value that belongs to a floating point subtype need not be
a model number of the subtype.1?

18 Examples:
type COEFFICIENT is digits 10 range -1.0 .. 1.0;

type REAL is digits 8;
type MASS is digits 7 range 0.0 .. 1.0E35;

subtype SHORT COEFF is COEFFICIENT digits 5; -- a subtype with
-- less accuracy

subtype PROBABILITY is REAL range 0.0 .. 1.0; -- a subtype with
-- a smaller range

Notes on the examples:

19 The implemented accuracy for COEFFICIENT is that of a predefined type
having at least 10 digits of precision. Consequently the specification of 5
digits of precision for the subtype SHORT_COEFF is allowed. The largest
model number for the type MASS is approximately 1.27E30 and hence less
than the specified upper bound (1.0E35). Consequently the declaration of
this type is legal only if this upper bound is in the range of the safe numbers
of a predefined floating point type having at least 7 digits of precision.

19 See also Appendix G, AI-00375.

3.5.7 Floating Point Types 3-30

20

References: anonymous type 3.3.1, arithmetic operator 3.5.5 4.5, based literal
2.4.2, belong to a subtype 3.3, bound of a range 3.5, compatible 3.3.2, derived type
3.4, digit 2.1, elaboration 3.1 3.9, error bound 3.5.6, exponent 2.4.1 integer type
3.5.4, model number 3.5.6, operation 3.3, predefined operator 4.5, predefined type
C, range constraint 3.5, real type 3.5.6, real type definition 3.5.6, safe number
3.5.6, simple expression 4.4, static expression 4.9, subtype declaration 3.3.2, subtype
indication 3.3.2, subtype 3.3, type 3.3, type declaration 3.3.1, type mark 3.3.2

long_float pragma 3.5.7a

3.5.7a Pragma LONG_FLOAT

3-31

The pragma LONG_FLOAT is provided by VAX Ada to allow control over the
internal representation chosen for the predefined type LONG_FLOAT and
for floating point type declarations with digits specified in the range 7..15.
The form of this pragma is as follows:

pragma LONG_FLOAT(D_FLOAT | G_FLOAT);

This pragma is only allowed at the start of a compilation, before the first
compilation unit (if any).

If D_FLOAT is specified, and the range is adequate, then a D_floating
representation is used for the predefined type LONG_FLOAT and for
floating point types declared with digits in the range 7..9. Similarly,

if G_FLOAT is specified, and the range is adequate, then a G_floating
representation is used for the predefined type LONG_FLOAT and for
floating point types declared with digits in the range 7..15. F_floating and
H_floating representations are used for floating point types with digits in
other ranges as follows:

Pragma argument Digits specified Representation
D_FLOAT 1.6 F_floating
7.9 D_floating
10..33 H_floating
G_FLOAT 1..6 F_floating
7.15 G_floating
16..33 H_floating

Use of the pragma LONG_FLOAT is interpreted as an implicit recompilation
of the predefined STANDARD environment. Therefore, all units in the
program library that depend on the pragma LONG_FLOAT must be

Pragma LONG_FLOAT 3.5.7a

recompiled. Whenever a program library is reinitialized, the G_floating
representation is established by default.

Notes:

F_floating is the representation chosen for digits in the range 1..6, and
H_floating is the representation chosen for digits in the range 16..33; these
choices are not affected by pragma LONG_FLOAT.

All representation choices also depend on the range of values to be repre-
sented. See the VAX Ada Run-Time Reference Manual for more information.

References: allow 1.6, compilation unit 10.1, d_float type 3.5.7, d_floating rep-
resentation 3.5.7, f_float type 3.5.7, f_floating representation 3.5.7, floating point
type declaration 3.5.7, g_float type 3.5.7, g_floating representation 3.5.7, h_float type
3.5.7, h_floating representation 3.5.7, long_float type 3.5.7, order of compilation 10.3,
pragma 2.8, program library 10.1, range 3.5, standard package 8.6 C

3.5.8 Operations of Floating Point Types

1

The basic operations of a floating point type include the operations involved
in assignment, membership tests, qualification, the explicit conversion of
values of other numeric types to the floating point type, and the implicit
conversion of values of the type universal_real to the type.

In addition, for every floating point type or subtype T, the basic operations
include the attributes listed below. In this presentation, T is referred to as
being a subtype (the subtype T) for any property that depends on constraints
imposed by T; other properties are stated in terms of the base type of T.

Appendix F gives values for these attributes for each of the four VAX Ada
floating point representations (F_floating, D_floating, G_floating, and
H_floating).

The first group of attributes yield characteristics of the subtype T. The
attributes of this group are the attribute BASE (see 3.3.2), the attributes
FIRST and LAST (see 3.5), the representation attribute SIZE (see 13.7.2),
and the following attributes:

T DIGITS Yields the number of decimal digits in the decimal
mantissa of model numbers of the subtype T. (This
attribute yields the number D of section 8.5.7.) The value
of this attribute is of the type universal_integer.

T'MANTISSA Yields the number of binary digits in the binary mantissa
of model numbers of the subtype T. (This attribute yields
the number B of section 3.5.7.) The value of this attribute
is of the type universal_integer.

3.5.8 Operations of Floating Point Types 3-32

3-33

10

1

13

14

15

T- EPSILON Yields the absolute value of the difference between the
model number 1.0 and the next model number above, for
the subtype T. The value of this attribute is of the type
universal_real.

T-EMAX Yields the largest exponent value in the binary canonical
form of model numbers of the subtype T. (This attribute
yields the product 4*B of section 3.5.7.) The value of this
attribute is of the type universal_integer.

T'SMALL Yields the smallest positive (nonzero) model number of
the subtype T. The value of this attribute is of the type
universal_real.

T'LARGE Yields the largest positive model number of the subtype T.
The value of this attribute is of the type universal_real.

The attributes of the second group include the following attributes which
yield characteristics of the safe numbers:

T'SAFE_EMAX Yields the largest exponent value in the binary canonical
form of safe numbers of the base type of T. (This attribute
yields the number E of section 3.5.7.) The value of this
attribute is of the type universal_integer.

T'SAFE_SMALL Yields the smallest positive (nonzero) safe number of the
base type of T. The value of this attribute is of the type
universal_real.

T'SAFE_LARGE Yields the largest positive safe number of the base type of
T. The value of this attribute is of the type universal_real.

In addition, the attributes A’SIZE and A' ADDRESS are defined for an
object A of a floating point type (see 13.7.2). Finally, for each floating
point type there are machine-dependent attributes that are not related to
model numbers and safe numbers. They correspond to the attribute des-
ignators MACHINE_RADIX, MACHINE_MANTISSA, MACHINE_EMAX,
MACHINE_EMIN, MACHINE_ROUNDS, and MACHINE_OVERFIL.OWS
(see 13.7.3).

Appendix F gives values for all of the machine-dependent attributes for each
of the four VAX Ada floating point representations (F_floating, D_floating,
G_floating, and H_floating).

Besides the basic operations, the operations of a floating point type include
the relational operators, and the following predefined arithmetic operators:
the binary and unary adding operators — and +, the multiplying operators *
and /, the unary operator abs, and the exponentiating operator.

Operations of Floating Point Types 3.5.8

16

18

20

The operations of a subtype are the corresponding operations of the type
except for the following: assignment, membership tests, qualification,
explicit conversion, and the attributes of the first group; the effects of these
operations are redefined in terms of the subtype.20

Notes:

The attributes EMAX, SMALL, LARGE, and EPSILON are provided for
convenience. They are all related to MANTISSA by the following formulas:

T’ EMAX = 4*T/MANTISSA

T/EPSILON = 2.0%* (1 - T'/MANTISSA)

T’ SMALL = 2.0%*(-T'"EMAX - 1)

T’ LARGE = 2.0**T/EMAX * (1.0 - 2.0** (-~T'MANTISSA))

The attribute MANTISSA, giving the number of binary digits in the man-
tissa, is itself related to DIGITS. The following relations hold between the
characteristics of the model numbers and those of the safe numbers:

T’'BASE’EMAX <= T'SAFE_EMAX
T’BASE’ SMALL >= T’SAFE_SMALL
T’BASE’LARGE <= T'SAFE_LARGE

The attributes T FIRST and T’ LAST need not yield model or safe numbers.
If a certain number of digits is specified in the declaration of a type or
subtype T, the attribute T+ DIGITS yields this number.

References: abs operator 4.5 4.5.6, arithmetic operator 3.5.5 4.5, assignment
5.2, attribute 4.1.4, base type 3.3, basic operation 3.3.3, binary adding operator 4.5
4.5.3, bound of a range 3.5, constraint 3.3, conversion 4.6, digit 2.1, exponentiating
operator 4.5 4.5.6, floating point type 3.5.7, membership test 4.5 4.5.2, model
number 3.5.6, multiplying operator 4.5 4.5.5, numeric type 3.5, object 3.2, operation
3.3, predefined operator 4.5, qualified expression 4.7, relational operator 4.5 4.5.2,
safe number 3.5.6, subtype 3.3, type 3.3, unary adding operator 4.5 4.5.4, universal
type 4.10, universal_integer type 3.5.4, universal_real type 3.5.6

floating point representation 3.5.7

3.5.9 Fixed Point Types

1

For fixed point types, the error bound is specified as an absolute value,
called the delta of the fixed point type.

fixed_point_constraint ::=
fixed_accuracy_definition [range constraint]

fixed_accuracy_definition ::= delta static_simple expression

20 See also Appendix G, AI-00407.

3.5.9 Fixed Point Types 3-34

3 The delta is specified by the value of the static simple expression of the
fixed accuracy definition. This value must belong to some real type and
must be positive (nonzero). If the fixed point constraint is used as a real
type definition, then it must include a range constraint; each bound of the
specified range must be defined by a static expression of some real type
but the two bounds need not have the same real type. If the fixed point
constraint is used in a subtype indication, the range constraint is optional.

4 A canonical form is defined for any fixed point model number other than
zero. In this form: sign is either +1 or —1; mantissa is a positive (nonzero)
integer; and any model number is a multiple of a certain positive real
number called small, as follows:

sign * mantissa * small

5 For the model numbers defined by a fixed point constraint, the number
small is chosen as the largest power of two that is not greater than the delta
of the fixed accuracy definition. Alternatively, it is possible to specify the
value of small by a length clause (see 13.2), in which case model numbers
are multiples of the specified value. The guaranteed minimum accuracy of
operations of a fixed point type is defined in terms of the model numbers of
the fixed point constraint that forms the corresponding real type definition
(see 4.5.7).

6 For a fixed point constraint that includes a range constraint, the model
numbers comprise zero and all multiples of small whose mantissa can be
expressed using exactly B binary digits, where the value of B is chosen as
the smallest integer number for which each bound of the specified range is
either a model number or lies at most small distant from a model number.
For a fixed point constraint that does not include a range constraint (this is
only allowed after a type mark, in a subtype indication), the model numbers
are defined by the delta of the fixed accuracy definition and by the range of
the subtype denoted by the type mark.2!

7 An implementation must have at least one anonymous predefined fixed
point type. The base type of each such fixed point type is the type itself.
The model numbers of each predefined fixed point type comprise zero and
all numbers for which mantissa (in the canonical form) has the number
of binary digits returned by the attribute MANTISSA, and for which the
number small has the value returned by the attribute SMALL.

To implement fixed point numbers, VAX Ada uses a set of anonymous
predefined fixed point types of the form:

type fixed point_type is delta S range -L..L-S;

21 See also Appendix G, AI-00143.

3-35 Fixed Point Types 3.5.9

10

1

12

where S = 2.0% and L = 2.03!*? for -62 <= n <= 31. Each fixed point type
has a size determined by its delta and range, rounded up to an 8-, 16-, or
32-bit boundary. The size may be changed by a representation clause

(see 13.1).

A fixed point type declaration of the form:?2

type T is delta D range L .. R;
is, by definition, equivalent to the following declarations:?
type fixed point type is new predefined_fixed_point_type;
subtype T is fixed point_type
range fixed point_type(L) .. fixed point_type(R);

In these declarations, fixed_point_type is an anonymous type, and the
predefined fixed point type is implicitly selected by the implementation so
that its model numbers include the model numbers defined by the fixed
point constraint (that is, by D, L, and R, and possibly by a length clause
specifying small).24

The fixed point declaration is illegal if no predefined type satisfies these
requirements. The safe numbers of a fixed point type are the model
numbers of its base type.25

The elaboration of a fixed point type declaration consists of the elaboration
of the equivalent type and subtype declarations.

If the fixed point constraint follows a type mark in a subtype indication,

the type mark must denote a fixed point type or subtype. The fixed point
constraint is compatible with the type mark only if the delta specified by
the fixed accuracy definition is not smaller than the delta for the type or
subtype denoted by the type mark. Furthermore, if the fixed point constraint
includes a range constraint, the fixed point constraint is compatible with the
type mark only if the range constraint is, itself, compatible with the type
mark.

The elaboration of such a subtype indication includes the elaboration of the
range constraint, if there is one; it creates a fixed point subtype whose model
numbers are defined by the corresponding fixed point constraint and also by
the length clause specifying small, if there is one. A value of a fixed point
type belongs to a fixed geoint subtype if and only if it belongs to the range
defined by the subtype.

22 See also Appendix G, AI-00023.
23 See also Appendix G, AI-00144.
24 See also Appendix G, AI-00343.
25 See also Appendix G, AI-00508.
26 See also Appendix G, AI-00145 and AI-00146.

3.5.9 Fixed Point Types 3-36

16

17

18

19

The same arithmetic operators are predefined for all fixed point types
(see 4.5). Multiplication and division of fixed point values deliver results
of an anonymous predefined fixed point type that is called universal_fixed
in this reference manual; the accuracy of this type is arbitrarily fine. The
values of this type must be converted explicitly to some numeric type.

Notes:

If S is a subtype of a fixed point type or subtype T, then the set of model
numbers of S is a subset of those of T. If a length clause has been given for
T, then both S and T have the same value for small. Otherwise, since small
is a power of two, the small of S is equal to the small of T multiplied by a
nonnegative power of two.

A range constraint is allowed in a fixed point subtype indication, either
directly after the type mark, or as part of a fixed point constraint. In either
case the bounds of the range must belong to the base type of the type mark
(see 3.5).

Examples:
type VOLT is delta 0.125 range 0.0 .. 255.0;
subtype ROUGH_VOLTAGE is VOLT delta 1.0; -- same range as VOLT

-- A pure fraction which requires all the available space
-— in a word on a two’s complement machine can be declared
-- as the type FRACTION:

DEL : constant := 1.0/2*%* (WORD_LENGTH - 1);
type FRACTION is delta DEL range -1.0 .. 1.0 - DEL;28

References: anonymous type 3.3.1, arithmetic operator 3.5.5 4.5, base type 3.3,
belong to a subtype 3.3, bound of a range 3.5, compatible 3.3.2, conversion 4.6,
elaboration 3.9, error bound 3.5.6, length clause 13.2, model number 3.5.6, numeric
type 3.5, operation 3.3, predefined operator 4.5, range constraint 3.5, real type 3.5.6,
real type definition 3.5.6, safe number 3.5.6, simple expression 4.4, static expression
4.9, subtype 3.3, subtype declaration 3.3.2, subtype indication 3.3.2, type 3.3, type
declaration 3.3.1, type mark 3.3.2

27 See also Appendix G, AT-00146.
28 See also Appendix G, AI-00147.

3-37

Fixed Point Types 3.5.9

3.5.10 Operations of Fixed Point Types

1

The basic operations of a fixed point type include the operations involved
in assignment, membership tests, qualification, the explicit conversion
of values of other numeric types to the fixed point type, and the implicit
conversion of values of the type universal_real to the type.

In addition, for every fixed point type or subtype T the basic operations
include the attributes listed below. In this presentation T is referred to as
being a subtype (the subtype T) for any property that depends on constraints
imposed by T; other properties are stated in terms of the base type of T.

The first group of attributes yield characteristics of the subtype T. The
attributes of this group are the attributes BASE (see 3.3.2), the attributes
FIRST and LAST (see 3.5), the representation attribute SIZE (see 13.7.2)
and the following attributes:

T'DELTA Yields the value of the delta specified in the fixed accuracy
definition for the subtype T. The value of this attribute is
of the type universal_real.

T'MANTISSA Yields the number of binary digits in the mantissa of
model numbers of the subtype T. (This attribute yields the
number B of section 3.5.9.) The value of this attribute is
of the type universal_integer.

T SMALL Yields the smallest positive (nonzero) model number of
the subtype T. The value of this attribute is of the type
universal_real.

T'LARGE Yields the largest positive model number of the subtype T.
The value of this attribute is of the type universal_real.
T'FORE Yields the minimum number of characters needed for the

integer part of the decimal representation of any value of
the subtype T, assuming that the representation does not
include an exponent, but includes a one-character prefix
that is either a minus sign or a space. (This minimum
number does not include superfluous zeros or underlines,
and is at least two.) The value of this attribute is of the
type universal_integer.

T/ AFT Yields the number of decimal digits needed after the point
to accommodate the precision of the subtype T, unless the
delta of the subtype T is greater than 0.1, in which case

29 See also Appendix G, AI-00179.

3.5.10 Operations of Fixed Point Types 3-38

10

12

15

16

the attribute yields the value one. (T’ AFT is the smallest
positive integer N for which (10**N)*T’ DELTA is greater
than or equal to one.) The value of this attribute is of the
type universal_integer.

The attributes of the second group include the following attributes which
yield characteristics of the safe numbers:

T' SAFE_SMALL Yields the smallest positive (nonzero) safe number of the
base type of T. The value of this attribute is of the type
universal_real.

T'SAFE_LARGE Yields the largest positive safe number of the base type of
T. The value of this attribute is of the type universal_real.

In addition, the attributes A’ SIZE and A’ ADDRESS are defined for an
object A of a fixed point type (see 13.7.2). Finally, for each fixed point type
or subtype T, there are the machine-dependent attributes T MACHINE_
ROUNDS and T MACHINE_OVERFLOWS (see 13.7.3).

Besides the basic operations, the operations of a fixed point type include the
relational operators, and the following predefined arithmetic operators: the
binary and unary adding operators — and +, the multiplying operators * and
/, and the operator abs.

The operations of a subtype are the corresponding operations of the type
except for the following: assignment, membership tests, qualification,
explicit conversion, and the attributes of the first group; the effects of these
operations are redefined in terms of the subtype.3

Notes:

The value of the attribute T FORE depends only on the range of the subtype
T. The value of the attribute T’ AFT depends only on the value of T DELTA.
The following relations exist between attributes of a fixed point type:

T’ LARGE
T’ SAFE_LARGE
T’/ SAFE_SMALL

(2**T/MANTISSA - 1) * T’SMALL
T’/ BASE’ LARGE
T’/BASE’ SMALL

References: abs operator 4.5 4.5.6, arithmetic operator 3.5.5 4.5, assignment
5.2, base type 3.3, basic operation 3.3.3, binary adding operator 4.5 4.5.3, bound
of a range 3.5, conversion 4.6, delta 3.5.9, fixed point type 3.5.9, membership test
4.5 4.5.2, model number 3.5.6, multiplying operator 4.5 4.5.5, numeric type 3.5,
object 3.2, operation 3.3, qualified expression 4.7, relational operator 4.5 4.5.2, safe
number 3.5.6, subtype 3.3, unary adding operator 4.5 4.5.4, universal_integer type
3.5.4, universal_real type 3.5.6

30 See also Appendix G, AI-00407.

3-39

Operations of Fixed Point Types 3.5.10

3.6 Array Types

1 An array object is a composite object consisting of components that have
the same subtype. The name for a component of an array uses one or more
index values belonging to specified discrete types. The value of an array
object is a composite value consisting of the values of its components.

2 array_type definition ::=
unconstrained array definition
| constrained_array definition

unconstrained_array definition ::=
array (index_subtype definition
{, index_subtype_definition}) of
component_subtype_indication

constrained array definition ::=
array index_constraint of component_subtype_indication

index subtype_definition ::= type mark range <>
index constraint ::= (discrete_range {, discrete_ range})
discrete_range ::= discrete subtype_ indication | range

3 An array object is characterized by the number of indices (the dimen-
sionality of the array), the type and position of each index, the lower and
upper bounds for each index, and the type and possible constraint of the
components. The order of the indices is significant.

4 A one-dimensional array has a distinct component for each possible index
value. A multidimensional array has a distinct component for each possible
sequence of index values that can be formed by selecting one value for each
index position (in the given order). The possible values for a given index are
all the values between the lower and upper bounds, inclusive; this range of
values is called the index range.

5 An unconstrained array definition defines an array type. For each object
that has the array type, the number of indices, the type and position of
each index, and the subtype of the components are as in the type definition;
the values of the lower and upper bounds for each index belong to the
corresponding index subtype, except for null arrays as explained in section
3.6.1. The index subtype for a given index position is, by definition, the
subtype denoted by the type mark of the corresponding index subtype
definition. The compound delimiter <> (called a box) of an index subtype
definition stands for an undefined range (different objects of the type
need not have the same bounds). The elaboration of an unconstrained
array definition creates an array type; this elaboration includes that of the
component subtype indication.

3.6 Array Types 3-40

3-41

10

1"

12

13

14

A constrained array definition defines both an array type and a subtype of
this type:

e The array type is an implicitly declared anonymous type; this type is
defined by an (implicit) unconstrained array definition, in which the
component subtype indication is that of the constrained array definition,
and in which the type mark of each index subtype definition denotes the
subtype defined by the corresponding discrete range.

* The array subtype is the subtype obtained by imposition of the index
constraint on the array type.

If a constrained array definition is given for a type declaration, the simple
name declared by this declaration denotes the array subtype.

The elaboration of a constrained array definition creates the corresponding
array type and array subtype. For this elaboration, the index constraint and
the component subtype indication are elaborated. The evaluation of each
discrete range of the index constraint and the elaboration of the component
subtype indication are performed in some order that is not defined by the
language.

Examples of type declarations with unconstrained array definitions:

type VECTOR is array (INTEGER range <>) of REAL;
type MATRIX is array (INTEGER range <>,
INTEGER range <>) of REAL;
type BIT VECTOR is array (INTEGER range <>) of BOOLEAN;
type ROMAN is array (POSITIVE range <>) of ROMAN DIGIT;

Examples of type declarations with constrained array definitions:

type TABLE is array(l .. 10) of INTEGER;
type SCHEDULE is array (DAY) of BOOLEAN;
type LINE is array(l .. MAX LINE_SIZE) of CHARACTER;

Examples of object declarations with constrained array definitions:

GRID : array(l .. 80, 1 .. 100) of BOOLEAN;

MIX : array(COLOR range RED .. GREEN) of BOOLEAN;
PAGE : array(l .. 50) of LINE; -- an array of arrays
Note:

For a one-dimensional array, the rule given means that a type declaration
with a constrained array definition such as

type T is array(POSITIVE range MIN .. MAX) of COMPONENT;

Array Types 3.6

16

is equivalent (in the absence of an incorrect order dependence) to the succes
sion of declarations

subtype index subtype is POSITIVE range MIN .. MAX;
type array type is array(index subtype range <>) of COMPONENT;
subtype T is array type(index subtype);

where index_subtype and array_type are both anonymous. Consequently,
T is the name of a subtype and all objects declared with this type mark
are arrays that have the same bounds. Similar transformations apply to
multidimensional arrays.

A similar transformation applies to an object whose declaration includes
a constrained array definition. A consequence of this is that no two such
objects have the same type.

References: anonymous type 3.3.1, bound of a range 3.5, component 3.3, con-
straint 3.3, discrete type 3.5, elaboration 3.1 3.9, in some order 1.6, name 4.1, object
3.2, range 3.5, subtype 3.3, subtype indication 3.3.2, type 3.3, type declaration 3.3.1,
type definition 3.3.1, type mark 3.3.2

3.6.1 Index Constraints and Discrete Ranges

1

An index constraint determines the range of possible values for every index
of an array type, and thereby the corresponding array bounds.

For a discrete range used in a constrained array definition and defined by a
range, an implicit conversion to the predefined type INTEGER is assumed
if each bound is either a numeric literal, a named number, or an attribute,
and the type of both bounds (prior to the implicit conversion) is the type
universal_integer. Otherwise, both bounds must be of the same discrete type,
other than universal_integer; this type must be determinable independently
of the context, but using the fact that the type must be discrete and that
both bounds must have the same type. These rules apply also to a discrete
range used in an iteration rule (see 5.5) or in the declaration of a family of
entries (see 9.5).31

If an index constraint follows a type mark in a subtype indication, then the
type or subtype denoted by the type mark must not already impose an index
constraint. The type mark must denote either an unconstrained array type
or an access type whose designated type is such an array type. In either
case, the index constraint must provide a discrete range for each index of
the array type and the type of each discrete range must be the same as that
of the corresponding index.

31 See also Appendix G, AI-00148.

3.6.1 Index Constraints and Discrete Ranges 3-42

4 An index constraint is compatible with the type denoted by the type mark if
and only if the constraint defined by each discrete range is compatible with
the corresponding index subtype. If any of the discrete ranges defines a null
range, any array thus constrained is a null array, having no components.
An array value satisfies an index constraint if at each index position the
array value and the index constraint have the same index bounds. (Note,
however, that assignment and certain other operations on arrays involve an
implicit subtype conversion.)32

5 The bounds of each array object are determined as follows:

6 ¢ TFor a variable declared by an object declaration, the subtype indication
of the corresponding object declaration must define a constrained array
subtype (and, thereby, the bounds). The same requirement exists for the
subtype indication of a component declaration, if the type of the record
component is an array type; and for the component subtype indication of
an array type definition, if the type of the array components is itself an
array type.

7 ¢ For a constant declared by an object declaration, the bounds of the
constant are defined by the initial value if the subtype of the constant is
unconstrained; they are otherwise defined by this subtype (in the latter
case, the initial value is the result of an implicit subtype conversion).
The same rule applies to a generic formal parameter of mode in.

8 ¢ For an array object designated by an access value, the bounds must be
defined by the allocator that creates the array object. (The allocated
object is constrained with the corresponding values of the bounds.)

9 ¢ For a formal parameter of a subprogram or entry, the bounds are ob-
tained from the corresponding actual parameter. (The formal parameter
is constrained with the corresponding values of the bounds.)

10 * For a renaming declaration and for a generic formal parameter of
mode in out, the bounds are those of the renamed object or of the
corresponding generic actual parameter.

11 For the elaboration of an index constraint, the discrete ranges are evaluated
in some order that is not defined by the language.

12 Examples of array declarations including an index constraint:

BOARD : MATRIX(1 .. 8, 1 .. 8); -- =see 3.6

RECTANGLE : MATRIX(1 .. 20, 1 .. 30);

INVERSE : MATRIX(1 .. N, 1 .. N); -- N need not be static
FILTER : BIT_VECTOR(0 .. 31);

32 See also Appendix G, AI-00282.

3-43 Index Constraints and Discrete Ranges 3.6.1

13

14

16

17

Example of array declaration with a constrained array subtype:
MY SCHEDULE : SCHEDULE; -- all arrays of type SCHEDULE

—-— have the same bounds
Example of record type with a component that is an array:
type VAR LINE (LENGTH : INTEGER) is

record
IMAGE : STRING(1 .. LENGTH):;
end record;
NULL_LINE : VAR LINE(0); -—- NULL_LINE.IMAGE is a null array
Notes:

The elaboration of a subtype indication consisting of a type mark followed by
an index constraint checks the compatibility of the index constraint with the
type mark (see 3.3.2).

All components of an array have the same subtype. In particular, for an
array of components that are one-dimensional arrays, this means that all
components have the same bounds and hence the same length.

References: access type 3.8, access type definition 3.8, access value 3.8, actual
parameter 6.4.1, allocator 4.8, array bound 3.6, array component 3.6, array type
3.6, array type definition 3.6, bound of a range 3.5, compatible 3.3.2, component
declaration 3.7, constant 3.2.1, constrained array definition 3.6, constrained array
subtype 3.6, conversion 4.6, designate 3.8, designated type 3.8, discrete range
3.6, entry 9.5, entry family declaration 9.5, expression 4.4, formal parameter 6.1,
function 6.5, generic actual parameter 12.3, generic formal parameter 12.1 12.3,
generic parameter 12.1, index 3.6, index constraint 3.6.1, index subtype 3.6, initial
value 3.2.1, integer literal 2.4, integer type 3.5.4, iteration rule 5.5, mode 12.1.1,
name 4.1, null range 3.5, object 3.2, object declaration 3.2.1, predefined type C,
range 3.5, record component 3.7, renaming declaration 8.5, result subtype 6.1,
satisfy 3.3, subprogram 6, subtype conversion 4.6, subtype indication 3.3.2, type
mark 3.3.2, unconstrained array type 3.6, unconstrained subtype 3.3, universal type
4.10, universal_integer type 3.5.4, variable 3.2.1

3.6.2 Operations of Array Types

1

3.6.2 Operations of Array Types

The basic operations of an array type include the operations involved in
assignment and aggregates (unless the array type is limited), membership
tests, indexed components, qualification, and explicit conversion; for one-
dimensional arrays the basic operations also include the operations involved
in slices, and also string literals if the component type is a character type.

3-45

10

"

12

If A is an array object, an array value, or a constrained array subtype, the
basic operations also include the attributes listed below. These attributes
are not allowed for an unconstrained array type. The argument N used

in the attribute designators for the N-th dimension of an array must be a
static expression of type universal_integer. The value of N must be positive
(nonzero) and no greater than the dimensionality of the array.

A'FIRST Yields the lower bound of the first index range. The
value of this attribute has the same type as this
lower bound.

A'FIRST(N) Yields the lower bound of the N-th index range. The
value of this attribute has the same type as this
lower bound.

A'LAST Yields the upper bound of the first index range. The

value of this attribute has the same type as this
upper bound.

A'LAST(N) Yields the upper bound of the N-th index range. The
value of this attribute has the same type as this
upper bound.

A'RANGE Yields the first index range, that is, the range
A'FIRST .. ArLAST.

A'RANGEN) Yields the N-th index range, that is, the range
A/FIRST(N) .. A'LAST(N).

A'LENGTH Yields the number of values of the first index range

(zero for a null range). The value of this attribute is
of the type universal_integer.

A'LENGTH((N) Yields the number of values of the N-th index range
(zero for a null range). The value of this attribute is
of the type universal_integer.

In addition, the attribute T' BASE is defined for an array type or subtype T
(see 3.3.3); the attribute T’ SIZE is defined for an array type or subtype T,
and the attributes A’ SIZE and A’ ADDRESS are defined for an array object
A (see 13.7.2).

Besides the basic operations, the operations of an array type include the
predefined comparison for equality and inequality, unless the array type

is limited. For one-dimensional arrays, the operations include catenation,
unless the array type is limited; if the component type is a discrete type, the
operations also include all predefined relational operators; if the component
type is a boolean type, then the operations also include the unary logical
negation operator not, and the logical operators.

Operations of Array Types 3.6.2

14

15

16

Examples using arrays declared in the examples of section 3.6.1:

== FILTER'FIRST = 0
—-— FILTER’LAST = 31
-— FILTER’ LENGTH = 32
—-— RECTANGLE'’LAST(1l) = 20
—-- RECTANGLE’LAST(2) = 30

Notes:

The attributes A’ FIRST and A’ FIRST(1) yield the same value. A similar
relation exists for the attributes Ar LAST, A RANGE, and A’ LENGTH.
The following relations are satisfied (except for a null array) by the above
attributes if the index type is an integer type:

A’ LENGTH
A’ LENGTH (N)

A’ LAST - A'FIRST + 1
A’LAST(N) - A'FIRST(N) + 1

An array type is limited if its component type is limited (see 7.4.4).

References: aggregate 4.3, array type 3.6, assignment 5.2, attribute 4.1.4, basic
operation 3.3.3, bound of a range 3.5, catenation operator 4.5 4.5.3, character type
3.5.2, constrained array subtype 3.6, conversion 4.6, designator 6.1, dimension

3.6, index 3.6, indexed component 4.1.1, limited type 7.4.4, logical operator 4.5
4.5.1, membership test 4.5 4.5.2, not operator 4.5 4.5.6, null range 3.5, object 3.2,
operation 3.3, predefined operator 4.5, qualified expression 4.7, relational operator
4.5 4.5.2, slice 4.1.2, static expression 4.9, string literal 2.6, subcomponent 3.3, type
3.3, unconstrained array type 3.6, universal type 4.10, universal_integer type 3.5.4

3.6.3 The Type String

1

The values of the predefined type STRING are one-dimensional arrays of the
predefined type CHARACTER, indexed by values of the predefined subtype
POSITIVE:

subtype POSITIVE is INTEGER range 1 .. INTEGER’LAST;
type STRING is array (POSITIVE range <>) of CHARACTER;

In VAX Ada, the maximum number of characters in any object or value of
the predefined type STRING (or any type derived therefrom) is 216 — 1 (or
65,535).

3.6.3 The Type String 3-46

Examples:

STARS : STRING(1 .. 120)
QUESTION : constant STRING
—— QUESTION’FIRST = 1,

—-— QUESTION'’LAST = 20 (the number of characters)

(1 .. 120 => '*7);
"HOW MANY CHARACTERS?";

QUESTION & QUESTION;
"XCVI"; -— see 3.6

ASK TWICE : constant STRING
NINETY SIX : constant ROMAN

Notes:

String literals (see 2.6 and 4.2) are basic operations applicable to the type
STRING and to any other one-dimensional array type whose component type
is a character type. The catenation operator is a predefined operator for the
type STRING and for one-dimensional array types; it is represented

as &. The relational operators <, <=,>, and >= are defined for values of these
types, and correspond to lexicographic order (see 4.5.2).

References: aggregate 4.3, array 3.6, catenation operator 4.5 4.5.3, character type
3.5.2, component type (of an array) 3.6, dimension 3.6, index 3.6, lexicographic order
4.5.2, positional aggregate 4.3, predefined operator 4.5, predefined type C, relational
operator 4.5 4.5.2, string literal 2.6, subtype 3.3, type 3.3

character 2.1, object 3.2, string type 3.6.3

3.7 Record Types

1

347

A record object is a composite object consisting of named components. The
value of a record object is a composite value consisting of the values of its
components.

record_type_definition ::=
record
component_list
end record

component_list ::=
component_declaration {component declaration}
| {component_declaration} variant_part
| null;

component_declaration ::=
identifier list : component subtype definition
[:= expression];

component_subtype_definition ::= subtype indication

Record Types 3.7

3 Each component declaration declares a component of the record type.
Besides components declared by component declarations, the components of
a record type include any components declared by discriminant specifications
of the record type declaration. The identifiers of all components of a record
type must be distinct. The use of a name that denotes a record component
other than a discriminant is not allowed within the record type definition
that declares the component.

4 A component declaration with several identifiers is equivalent to a sequence
of single component declarations, as explained in section 3.2. Each single
component declaration declares a record component whose subtype is
specified by the component subtype definition.

5 If a component declaration includes the assignment compound delimiter
followed by an expression, the expression is the default expression of
the record component; the default expression must be of the type of the
component. Default expressions are not allowed for components that are of
a limited type.

6 If a record type does not have a discriminant part, the same components
are present in all values of the type. If the component list of a record type
is defined by the reserved word null and there is no discriminant part,
then the record type has no components and all records of the type are null
records.

7 The elaboration of a record type definition creates a record type; it consists
of the elaboration of any corresponding (single) component declarations, in
the order in which they appear, including any component declaration in a
variant part. The elaboration of a component declaration consists of the
elaboration of the component subtype definition.

8 For the elaboration of a component subtype definition, if the constraint does
not depend on a discriminant (see 3.7.1), then the subtype indication is
elaborated. If, on the other hand, the constraint depends on a discriminant,
then the elaboration consists of the evaluation of any included expression
that is not a discriminant. 33

33 See also Appendix G, AT-00358.

3.7 Record Types 3-48

1"

12

13

Examples of record type declarations:

type DATE is
record
DAY : INTEGER range 1 .. 31;
MONTH : MONTH NAME;
YEAR : INTEGER range 0 .. 4000;
end record;

type COMPLEX is
record
RE : REAL :
IM : REAL :
end record;

[}
o
o
~

Examples of record variables:

TOMORROW, YESTERDAY : DATE;
A, B, C : COMPLEX;

- both components of A, B, and C
-- are implicitly initialized to zero

Notes:

The default expression of a record component is implicitly evaluated by the
elaboration of the declaration of a record object, in the absence of an explicit
initialization (see 3.2.1). If a component declaration has several identifiers,
the expression is evaluated once for each such component of the object (since
the declaration is equivalent to a sequence of single component declarations).

Unlike the components of an array, the components of a record need not be
of the same type.

References: assignment compound delimiter 2.2, component 3.3, composite value
3.3, constraint 3.3, declaration 3.1, depend on a discriminant 3.7.1, discriminant 3.3,
discriminant part 3.7 3.7.1, elaboration 3.9, expression 4.4, identifier 2.3, identifier
list 3.2, limited type 7.4.4, name 4.1, object 3.2, subtype 3.3, type 3.3, type mark
3.3.2, variant part 3.7.3

3.7.1 Discriminants

A discriminant part specifies the discriminants of a type. A discriminant of
a record is a component of the record. The type of a discriminant must be
discrete.

discriminant_part ::=
(discriminant_specification {; discriminant_specification})

discriminant_specification ::=
identifier list : type mark [:= expression]

Discriminants 3.7.1

3 A discriminant part is only allowed in the type declaration for a record
type, in a private type declaration or an incomplete type declaration (the
corresponding full declaration must then declare a record type), and in the
generic parameter declaration for a formal private type.

4 A discriminant specification with several identifiers is equivalent to a
sequence of single discriminant specifications, as explained in section
3.2. Each single discriminant specification declares a discriminant. If a
discriminant specification includes the assignment compound delimiter
followed by an expression, the expression is the default expression of the
discriminant; the default expression must be of the type of the discriminant.
Default expressions must be provided either for all or for none of the
discriminants of a discriminant part.

5 The use of the name of a discriminant is not allowed in default expressions
of a discriminant part if the specification of the discriminant is itself given
in the discriminant part.

6 Within a record type definition the only allowed uses of the name of a
discriminant of the record type are: in the default expressions for record
components; in a variant part as the discriminant name; and in a component
subtype definition, either as a bound in an index constraint, or to specify
a discriminant value in a discriminant constraint. A discriminant name
used in these component subtype definitions must appear by itself, not as
part of a larger expression. Such component subtype definitions and such
constraints are said to depend on a discriminant.

7 A component is said to depend on a discriminant if it is a record component
declared in a variant part, or a record component whose component subtype
definition depends on a discriminant, or finally, one of the subcomponents of
a component that itself depends on a discriminant.

8 Each record value includes a value for each discriminant specified for the
record type; it also includes a value for each record component that does not
depend on a discriminant. The values of the discriminants determine which
other component values are in the record value.

9 Direct assignment to a discriminant of an object is not allowed; furthermore
a discriminant is not allowed as an actual parameter of mode in out or out,
or as a generic actual parameter of mode in out. The only allowed way to
change the value of a discriminant of a variable is to assign a (complete)
value to the variable itself. Similarly, an assignment to the variable itself
is the only allowed way to change the constraint of one of its components, if
the component subtype definition depends on a discriminant of the variable.

10 The elaboration of a discriminant part has no other effect.

3.7.1 Discriminants 3-50

1 Examples:

type BUFFER(SIZE : BUFFER_SIZE := 100) is -— see 3.5.4
record
POS H BUFFER_SIZE 1= 0;
VALUE : STRING(1 .. SIZE):;

end record;

type SQUARE (SIDE : INTEGER) is
record
MAT : MATRIX(1 .. SIDE, 1 .. SIDE):; ~-—- see 3.6
end record;

type DOUBLE_SQUARE (NUMBER : INTEGER) is
record
LEFT : SQUARE (NUMBER) ;
RIGHT : SQUARE (NUMBER) ;
end record;

type ITEM(NUMBER : POSITIVE) is
record
CONTENT : INTEGER;
-— no component depends on the discriminant
end record;

12 References: assignment 5.2, assignment compound delimiter 2.2, bound of
a range 3.5, component 3.3, component declaration 3.7, component of a record
3.7, declaration 3.1, discrete type 3.5, discriminant 3.3, discriminant constraint
3.7.2, elaboration 3.9, expression 4.4, generic formal type 12.1, generic parameter
declaration 12.1, identifier 2.3, identifier list 3.2, incomplete type declaration
3.8.1, index constraint 3.6.1, name 4.1, object 3.2, private type 7.4, private type
declaration 7.4, record type 3.7, scope 8.2, simple name 4.1, subcomponent 3.3,
subtype indication 3.3.2, type declaration 3.3.1, type mark 3.3.2, variant part 3.7.3

3.7.2 Discriminant Constraints

1 A discriminant constraint is only allowed in a subtype indication, after a
type mark. This type mark must denote either a type with discriminants,
or an access type whose designated type is a type with discriminants. A
discriminant constraint specifies the values of these discriminants.

2 discriminant_constraint ::=
(discriminant_association {, discriminant_association})

discriminant_association ::=
[discriminant_simple_name
{| discriminant_ simple_name} =>] expression

3-51 Discriminant Constraints 3.7.2

3 Each discriminant association associates an expression with one or more
discriminants. A discriminant association is said to be named if the dis-
criminants are specified explicitly by their names; it is otherwise said to be
positional. For a positional association, the (single) discriminant is implicitly
specified by position, in textual order. Named associations can be given in
any order, but if both positional and named associations are used in the
same discriminant constraint, then positional associations must occur first,
at their normal position. Hence once a named association is used, the rest of
the discriminant constraint must use only named associations.

4 For a named discriminant association, the discriminant names must
denote discriminants of the type for which the discriminant constraint
is given. A discriminant association with more than one discriminant
name is only allowed if the named discriminants are all of the same
type. Furthermore, for each discriminant association (whether named or
positional), the expression and the associated discriminants must have the
same type. A discriminant constraint must provide exactly one value for
each discriminant of the type.

5 A discriminant constraint is compatible with the type denoted by a type
mark, if and only if each discriminant value belongs to the subtype of the
corresponding discriminant. In addition, for each subcomponent whose
component subtype specification depends on a discriminant, the discrimi-
nant value is substituted for the discriminant in this component subtype
specification and the compatibility of the resulting subtype indication is
checked 34

6 A composite value satisfies a discriminant constraint if and only if each dis-
criminant of the composite value has the value imposed by the discriminant
constraint.

7 The initial values of the discriminants of an object of a type with discrimi-
nants are determined as follows:

8 * For a variable declared by an object declaration, the subtype indication
of the corresponding object declaration must impose a discriminant
constraint unless default expressions exist for the discriminants; the
discriminant values are defined either by the constraint or, in its
absence, by the default expressions. The same requirement exists for
the subtype indication of a component declaration, if the type of the
record component has discriminants; and for the component subtype
indication of an arrag type, if the type of the array components is a type
with discriminants?

34 See also Appendix G, AI-00007, AI-00319, and AI-00358.
35 See also Appendix G, AI-00014.

3.7.2 Discriminant Constraints 3-52

1

12

14

3-53

e For a constant declared by an object declaration, the values of the
discriminants are those of the initial value if the subtype of the constant
is unconstrained; they are otherwise defined by this subtype (in the
latter case, an exception is raised if the initial value does not belong to
this subtype). The same rule applies to a generic parameter of mode in.

* For an object designated by an access value, the discriminant values
must be defined by the allocator that creates the object. (The allocated
object is constrained with the corresponding discriminant values.)

e For a formal parameter of a subprogram or entry, the discriminants of
the formal parameter are initialized with those of the corresponding
actual parameter. (The formal parameter is constrained if the corre-
sponding actual parameter is constrained, and in any case if the mode is
in or if the subtype of the formal parameter is constrained.)

e For a renaming declaration and for a generic formal parameter of mode
in out, the discriminants are those of the renamed object or of the
corresponding generic actual parameter.

For the elaboration of a discriminant constraint, the expressions given in
the discriminant associations are evaluated in some order that is not defined
by the language; the expression of a named association is evaluated once for
each named discriminant.

Examples using types declared in the previous section:

LARGE : BUFFER(200); -- constrained, always 200 characters
-— (explicit discriminant value)

MESSAGE : BUFFER; -- unconstrained, initially 100
-- characters (default discriminant
-- value)
BASIS : SQUARE (5) ; -- constrained, always 5 by 5
ILLEGAL : SQUARE; -- illegal, a SQUARE must be
-- constrained
Note:

The above rules and the rules defining the elaboration of an object declara-
tion (see 3.2) ensure that discriminants always have a value. In particular, if
a discriminant constraint is imposed on an object declaration, each discrimi-
nant is initialized with the value specified by the constraint. Similarly, if the
subtype of a component has a discriminant constraint, the discriminants of
the component are correspondingly initialized.

Discriminant Constraints 3.7.2

16 References: access type 3.8, access type definition 3.8, access value 3.8, actual
parameter 6.4.1, allocator 4.8, array type definition 8.6, bound of a range 3.5,
compatible 3.3.2, component 3.3, component declaration 3.7, component subtype
indication 3.7, composite value 3.3, constant 3.2.1, constrained subtype 3.3, con-
straint 3.3, declaration 3.1, default expression for a discriminant 3.7, depend on a
discriminant 3.7.1, designate 3.8, designated type 3.8, discriminant 3.3, elaboration
3.9, entry 9.5, evaluation 4.5, expression 4.4, formal parameter 6.1, generic actual
parameter 12.3, generic formal parameter 12.1 12.3, mode in 6.1, mode in out 6.1,
name 4.1, object 3.2, object declaration 3.2.1, renaming declaration 8.5, reserved
word 2.9, satisfy 3.3, simple name 4.1, subcomponent 8.3, subprogram 6, subtype
3.3, subtype indication 3.3.2, type 3.3, type mark 3.3.2, variable 3.2.1

3.7.3 Variant Parts

3.7.3

1 A record type with a variant part specifies alternative lists of components.
Each variant defines the components for the corresponding value or values
of the discriminant.

2 variant_part ::=

case discriminant_simple name is
variant
{variant}

end case;

variant ::=

when choice {| choice} =>

component_list

choice ::= simple_expression
| discrete_range | others | component_simple name

3 Each variant starts with a list of choices which must be of the same type
as the discriminant of the variant part. The type of the discriminant of
a variant part must not be a generic formal type. If the subtype of the
discriminant is static, then each value of this subtype must be represented
once and only once in the set of choices of the variant part, and no other
value is allowed. Otherwise, each value of the (base) type of the discriminant
must be represented once and only once in the set of choices.

4 The simple expressions and discrete ranges given as choices in a variant
part must be static. A choice defined by a discrete range stands for all
values in the corresponding range (none if a null range). The choice others
is only allowed for the last variant and as its only choice; it stands for
all values (possibly none) not given in the choices of previous variants. A
component simple name is not allowed as a choice of a variant (although it
is part of the syntax of choice).

Variant Parts 3-54

5 A record value contains the values of the components of a given variant if
and only if the discriminant value is equal to one of the values specified
by the choices of the variant. This rule applies in turn to any further
variant that is, itself, included in the component list of the given variant.
If the component list of a variant is specified by null, the variant has no
components.

6 Example of record type with a variant part:

type DEVICE is (PRINTER, DISK, DRUM);
type STATE is (OPEN, CLOSED);

type PERIPHERAL (UNIT : DEVICE := DISK) is
record
STATUS : STATE;
case UNIT is
when PRINTER =>

LINE_COUNT : INTEGER range 1 .. PAGE_SIZE;
when others =>
CYLINDER : CYLINDER_INDEX;
TRACK : TRACK_NUMBER;
end case;

end record;

7 Examples of record subtypes:

subtype DRUM UNIT is PERIPHERAL (DRUM) ;
subtype DISK UNIT is PERIPHERAL (DISK);

8 Examples of constrained record variables:

WRITER : PERIPHERAL (UNIT => PRINTER);
ARCHIVE : DISK_UNIT;

Note:

9 Choices with discrete values are also used in case statements and in array
aggregates. Choices with component simple names are used in record
aggregates.

10 References: array aggregate 4.3.2, base type 3.3, component 3.3, component list
3.7, discrete range 3.6, discriminant 3.3, generic formal type 12.1.2, null range 3.5,
record aggregate 4.3.1, range 3.5, record type 3.7, simple expression 4.4, simple
name 4.1, static discrete range 4.9, static expression 4.9, static subtype 4.9,
subtype 3.3

3-55 Variant Parts 3.7.3

3.7.4 Operations of Record Types

1

The basic operations of a record type include the operations involved in
assignment and aggregates (unless the type is limited), membership tests,
selection of record components, qualification, and type conversion (for
derived types).

For any object A of a type with discriminants, the basic operations also
include the following attribute:

A’CONSTRAINED Yields the value TRUE if a discriminant constraint
applies to the object A, or if the object is a constant
(including a formal parameter or generic formal
parameter of mode in); yields the value FALSE
otherwise. If A is a generic formal parameter of mode
in out, or if A is a formal parameter of mode in out
or out and the type mark given in the corresponding
parameter specification denotes an unconstrained
type with discriminants, then the value of this
attribute is obtained from that of the corresponding
actual parameter. The value of this attribute is of the
predefined type BOOLEAN.

In addition, the attributes T BASE and T’ SIZE are defined for a record
type or subtype T (see 3.3.3); the attributes A’ SIZE and A’ ADDRESS are
defined for a record object A (see 13.7.2).

Besides the basic operations, the operations of a record type include the
predefined comparison for equality and inequality, unless the type is limited.

Note:

A record type is limited if the type of any of its components is limited
(see 7.4.4).

References: actual parameter 6.4.1, aggregate 4.3, assignment 5.2, attribute 4.1.4,
basic operation 3.3.3, boolean type 3.5.3, constant 3.2.1, conversion 4.6, derived type
3.4, discriminant 3.3, discriminant constraint 3.7.2, formal parameter 6.1, generic
actual parameter 12.3, generic formal parameter 12.1 12.3, limited type 7.4.4,
membership test 4.5 4.5.2, mode 6.1, object 3.2.1, operation 3.3, predefined operator
4.5, predefined type C, quahﬁed expression 4.7, record type 3.7, relational operator
4.5 4.5.2, selected component 4.1.3, subcomponent 3.3, subtype 3.3, type 3.3

3.7.4 Operations of Record Types 3-56

3.8 Access Types

1

An object declared by an object declaration is created by the elaboration
of the object declaration and is denoted by a simple name or by some
other form of name. In contrast, there are objects that are created by the
evaluation of allocators (see 4.8) and that have no simple name. Access to
such an object is achieved by an access value returned by an allocator; the
access value is said to designate the object.

access_type definition ::= access subtype indication

For each access type, there is a literal null which has a null access value
designating no object at all. The null value of an access type is the default
initial value of the type. Other values of an access type are obtained by
evaluation of a special operation of the type, called an allocator. Each such
access value designates an object of the subtype defined by the subtype
indication of the access type definition; this subtype is called the designated
subtype; the base type of this subtype is called the designated type. The
objects designated by the values of an access type form a collection implicitly
associated with the type.

The elaboration of an access type definition consists of the elaboration of the
subtype indication and creates an access type.

If an access object is constant, the contained access value cannot be changed
and always designates the same object. On the other hand, the value of the
designated object need not remain the same (assignment to the designated
object is allowed unless the designated type is limited).

The only forms of constraint that are allowed after the name of an access
type in a subtype indication are index constraints and discriminant
constraints. (See sections 3.6.1 and 3.7.2 for the rules applicable to these
subtype indications.) An access value belongs to a corresponding subtype of
an access type either if the access value is the null value or if the value of
the designated object satisfies the constraint.3%

Examples:
type FRAME is access MATRIX; -—- see 3.6
type BUFFER_NAME is access BUFFER; -- see 3.7.1

36 See also Appendix G, AI-00324

3-57

Access Types 3.8

10

1

Notes:

An access value delivered by an allocator can be assigned to several access
objects. Hence it is possible for an object created by an allocator to be des-
ignated by more than one variable or constant of the access type. An access
value can only designate an object created by an allocator; in particular, it
cannot designate an object declared by an object declaration.

If the type of the objects designated by the access values is an array type
or a type with discriminants, these objects are constrained with either the
array bounds or the discriminant values supplied implicitly or explicitly for
the corresponding allocators (see 4.8).

Access values are called pointers or references in some other languages.

References: allocator 4.8, array type 3.6, assignment 5.2, belong to a subtype 3.3,
constant 3.2.1, constraint 3.3, discriminant constraint 3.7.2, elaboration 3.9, index
constraint 3.6.1, index specification 3.6, limited type 7.4.4, literal 4.2, name 4.1,
object 3.2.1, object declaration 3.2.1, reserved word 2.9, satisfy 3.3, simple name 4.1,
subcomponent 3.3, subtype 3.3, subtype indication 3.3.2, type 3.3, variable 3.2.1

3.8.1 Incomplete Type Declarations

1

There are no particular limitations on the designated type of an access type.
In particular, the type of a component of the designated type can be another
access type, or even the same access type. This permits mutually dependent
and recursive access types. Their declarations require a prior incomplete (or
private) type declaration for one or more types.

incomplete type declaration ::=
type identifier [discriminant_part];

For each incomplete type declaration, there must be a corresponding
declaration of a type with the same identifier. The corresponding declaration
must be either a full type declaration or the declaration of a task type.

In the rest of this section, explanations are given in terms of full type
declarations; the same rules apply also to declarations of task types.

If the incomplete type declaration occurs immediately within either a
declarative part or the visible part of a package specification, then the full
type declaration must occur later and immediately within this declarative
part or visible part. If the incomplete type declaration occurs immediately
within the private part of a package, then the full type declaration must
occur later and immediately within either the private part itself, or the
declarative part of the corresponding package body.

3.8.1 Incomplete Type Declarations 3-58

A discriminant part must be given in the full type declaration if and only
if one is given in the incomplete type declaration; if discriminant parts are
given, then they must conform (see 6.3.1 for the conformance rules). Prior
to the end of the full type declaration, the only allowed use of a name that
denotes a type declared by an incomplete type declaration is as the type
mark in the subtype indication of an access type definition; the only form of
constraint allowed in this subtype indication is a discriminant constraint. 37

The elaboration of an incomplete type declaration creates a type. If the
incomplete type declaration has a discriminant part, this elaboration
includes that of the discriminant part: in such a case, the discriminant part
of the full type declaration is not elaborated.

Example of a recursive type:

type CELL; -- incomplete type declaration
type LINK is access CELL;

type CELL is

record
VALUE : INTEGER;
SUCC : LINK;
PRED : LINK;

end record;

HEAD : LINK :
NEXT : LINK :

new CELL’ (0, null, null);
HEAD.SUCC;

o

Examples of mutually dependent access types:

type PERSON(SEX : GENDER); -- incomplete type declaration
type CAR; -— incomplete type declaration

type PERSON _NAME is access PERSON;
type CAR_NAME is access CAR;

type CAR is
record
NUMBER : INTEGER;
OWNER : PERSON_NAME;
end record;

37 See also Appendix G, AI-00007, AT-00231, and ATI-00319.

Incomplete Type Declarations 3.8.1

type PERSON (SEX : GENDER) is

record
NAME : STRING(1 .. 20);
BIRTH : DATE;
AGE : INTEGER range 0 .. 130;

VEHICLE : CAR_NAME;
case SEX is

when M => WIFE : PERSON NAME (SEX => F);
when F => HUSBAND : PERSON_NAME (SEX => M) ;
end case;

end record;

MY CAR, YOUR CAR, NEXT CAR : CAR NAME; -- implicitly
-=- initialized
-- with null value
8 References: access type 3.8, access type definition 3.8, component 3.3, conform
6.3.1, constraint 3.3, declaration 3.1, declarative item 3.9, designate 3.8, discrimi-

nant constraint 3.7.2, discriminant part 3.7.1, elaboration 3.9, identifier 2.3, name
4.1, subtype indication 3.3.2, type 3.3, type mark 3.3.2

3.8.2 Operations of Access Types

1 The basic operations of an access type include the operations involved in
assignment, allocators for the access type, membership tests, qualification,
explicit conversion, and the literal null. If the designated type is a type with
discriminants, the basic operations include the selection of the corresponding
discriminants; if the designated type is a record type, they include the
selection of the corresponding components; if the designated type is an
array type, they include the formation of indexed components and slices;
if the designated type is a task type, they include selection of entries and
entry families. Furthermore, the basic operations include the formation of a
selected component with the reserved word all (see 4.1.3).

2 If the designated type is an array type, the basic operations include the
attributes that have the attribute designators FIRST, LAST, RANGE, and
LENGTH (likewise, the attribute designators of the N-th dimension). The
prefix of each of these attributes must be a value of the access type. These
attributes yield the corresponding characteristics of the designated object
(see 3.6.2).

3 If the designated type is a task type, the basic operations include the at-
tributes that have the attribute designators TERMINATED and CALLABLE
(see 9.9). The prefix of each of these attributes must be a value of the
access type. These attributes yield the corresponding characteristics of the
designated task objects.

3.8.2 Operations of Access Types 3-60

In addition, the attribute T' BASE (see 3.3.3) and the representation
attributes T’ SIZE and T’ STORAGE_SIZE (see 13.7.2) are defined for an
access type or subtype T; the attributes A’ SIZE and A’ ADDRESS are
defined for an access object A (see 13.7.2).

Besides the basic operations, the operations of an access type include the
predefined comparison for equality and inequality.

References: access type 3.8, allocator 4.8, array type 3.6, assignment 5.2, attribute
4.1.4, attribute designator 4.1.4, base type 3.3, basic operation 3.3.3, collection 3.8,
constrained array subtype 3.6, conversion 4.6, designate 3.8, designated subtype
3.8, designated type 3.8, discriminant 3.3, indexed component 4.1.1, literal 4.2,
membership test 4.5 4.5.2, object 3.2.1, operation 3.3, private type 7.4, qualified
expression 4.7, record type 3.7, selected component 4.1.3, slice 4.1.2, subtype 3.3,
task type 9.1, type 3.3

3.9 Declarative Parts

3-61

A declarative part contains declarative items (possibly none).

declarative_part ::=
{basic declarative item} {later_declarative_ item}

basic declarative_ item ::= basic_declaration
| representation_clause | use_clause

later declarative_item ::= body
| subprogram declaration | package declaration
| task_declaration | generic_declaration
| use_clause | generic_instantiation

body ::= proper_body | body stub
proper_body ::= subprogram body | package_body | task_body

The elaboration of a declarative part consists of the elaboration of the
declarative items, if any, in the order in which they are given in the
declarative part. After its elaboration, a declarative item is said to be
elaborated. Prior to the completion of its elaboration (including before the
elaboration), the declarative item is not yet elaborated.

For several forms of declarative item, the language rules (in particular scope
and visibility rules) are such that it is either impossible or illegal to use

an entity before the elaboration of the declarative item that declares this
entity. For example, it is not possible to use the name of a type for an object
declaration if the corresponding type declaration is not yet elaborated. In
the case of bodies, the following checks are performed:

Declarative Parts 3.9

10

12

13

¢ For a subprogram call, a check is made that the body of the subprogram
is already elaborated.38

® For the activation of a task, a check is made that the body of the
corresponding task unit is already elaborated.39

* For the instantiation of a generic unit that has a body, a check is made
that this body is already elaborated.

The exception PROGRAM_ERROR is raised if any of these checks fails.40

If a subprogram declaration, a package declaration, a task declaration, or

a generic declaration is a declarative item of a given declarative part, then
the body (if there is one) of the program unit declared by the declarative
item must itself be a declarative item of this declarative part (and must
appear later). If the body is a body stub, then a separately compiled subunit
containing the corresponding proper body is required for the program unit
(see 10.2).

References: activation 9.3, instantiation 12.3, program_error exception 11.1, scope
8.2, subprogram call 6.4, type 3.3, visibility 8.3

Elaboration of declarations: 3.1, component declaration 3.7, deferred constant
declaration 7.4.3, discriminant specification 3.7.1, entry declaration 9.5, enumeration
literal specification 3.5.1, generic declaration 12.1, generic instantiation 12.8, incom-
plete type declaration 3.8.1, loop parameter specification 5.5, number declaration
3.2.2, object declaration 3.2.1, package declaration 7.2, parameter specification 6.1,
private type declaration 7.4.1, renaming declaration 8.5, subprogram declaration
6.1, subtype declaration 3.3.2, task declaration 9.1, type declaration 3.3.1

Elaboration of type definitions: 3.3.1, access type definition 3.8, array type
definition 3.6, derived type definition 3.4, enumeration type definition 3.5.1, integer
type definition 3.5.4, real type definition 3.5.6, record type definition 3.7

Elaboration of other constructs: context clause 10.1, body stub 10.2, compilation
unit 10.1, discriminant part 3.7.1, generic body 12.2, generic formal parameter 12.1
12.3, library unit 10.5, package body 7.1, representation clause 13.1, subprogram
body 6.3, subunit 10.2, task body 9.1, task object 9.2, task specification 9.1, use
clause 8.4, with clause 10.1.1

38 See also Appendix G, AI-00180 and AI-00406.
39 See also Appendix G, AI-00149.
40 See also Appendix G, AI-00430.

3.9 Declarative Parts 3-62

Chapter 4

Names and Expressions

The rules applicable to the different forms of name and expression, and to
their evaluation, are given in this chapter.

4.1 Names

41

Names can denote declared entities, whether declared explicitly or implicitly
(see 3.1). Names can also denote objects designated by access values;
subcomponents and slices of objects and values; single entries, entry
families, and entries in families of entries. Finally, names can denote
attributes of any of the foregoing.

name ::= simple name
| character literal | operator_ symbol
| indexed component | slice
| selected component | attribute
simple_name ::= identifier
prefix ::= name | function call

A simple name for an entity is either the identifier associated with the
entity by its declaration, or another identifier associated with the entity by a
renaming declaration.

Certain forms of name (indexed and selected components, slices, and
attributes) include a prefix that is either a name or a function call. If the
type of a prefix is an access type, then the prefix must not be a name that
denotes a formal parameter of mode out or a subcomponent thereof.

If the prefix of a name is a function call, then the name denotes a compo-
nent, a slice, an attribute, an entry, or an entry family, either of the result of
the function call, or (if the result is an access value) of the object designated
by the result.

Names 4.1

6 A prefix is said to be appropriate for a type in either of the following cases:
7 ¢ The type of the prefix is the type considered.

8 ¢ The type of the prefix is an access type whose designated type is the
type considered.

9 The evaluation of a name determines the entity denoted by the name. This
evaluation has no other effect for a name that is a simple name, a character
literal, or an operator symbol.

10 The evaluation of a name that has a prefix includes the evaluation of the
prefix, that is, of the corresponding name or function call. If the type
of the prefix is an access type, the evaluation of the prefix includes the
determination of the object designated by the corresponding access value;
the exception CONSTRAINT_ERROR is raised if the value of the prefix
is a null access value, except in the case of the prefix of a representation
attribute (see 13.7.2).

11 Examples of simple names:

PT —-- the simple name of a number (see 3.2.2)
LIMIT —- the simple name of a constant (see 3.2.1)
COUNT -— the simple name of a scalar variable (see 3.2.1)
BOARD —- the simple name of an array variable (see 3.6.1)
MATRIX -- the simple name of a type (see 3.6)
RANDOM -- the simple name of a function (see 6.1)
ERROR —-- the simple name of an exception (see 11.1)

12 References: access type 3.8, access value 3.8, attribute 4.1.4, belong to a type 3.3,
character literal 2.5, component 3.3, constraint_error exception 11.1, declaration 3.1,
designate 3.8, designated type 3.8, entity 3.1, entry 9.5, entry family 9.5, evaluation
4.5, formal parameter 6.1, function call 6.4, identifier 2.3, indexed component
4.1.1, mode 6.1, null access value 3.8, object 3.2.1, operator symbol 6.1, raising
of exceptions 11, renaming declarations 8.5, selected component 4.1.3, slice 4.1.2,
subcomponent 3.3, type 3.3

4.1.1

Indexed Components

1 An indexed component denotes either a component of an array or an entry
in a family of entries.

2 indexed component ::= prefix(expression {, expression})

3 In the case of a component of an array, the prefix must be appropriate for
an array type. The expressions specify the index values for the component;
there must be one such expression for each index position of the array type.
In the case of an entry in a family of entries, the prefix must be a name that

Indexed Components 4-2

denotes an entry family of a task object, and the expression (there must be
exactly one) specifies the index value for the individual entry.

Each expression must be of the type of the corresponding index. For the
evaluation of an indexed component, the prefix and the expressions are
evaluated in some order that is not defined by the language. The exception
CONSTRAINT_ERROR is raised if an index value does not belong to the
range of the corresponding index of the prefixing array or entry family.

Examples of indexed components:

MY SCHEDULE (SAT) -- a component of a (see 3.6.1)
-—- one-dimensional array

PAGE (10) -- a component of a (see 3.6)
~-- one-dimensional array

BOARD(M, J + 1) -- a component of a (see 3.6.1)
-- two-dimensional array

PAGE (10) (20) -— a component of a component (see 3.6)

REQUEST (MEDIUM) -- an entry in a family of entries (see 9.5)

NEXT_FRAME (L) (M, N) -- a component of a function call (see 6.1)

Notes on the examples:

Distinct notations are used for components of multidimensional arrays (such
as BOARD) and arrays of arrays (such as PAGE). The components of an
array of arrays are arrays and can therefore be indexed. Thus PAGE(10)(20)
denotes the 20th component of PAGE(10). In the last example NEXT_
FRAME(L) is a function call returning an access value which designates a
two-dimensional array.

References: appropriate for a type 4.1, array type 3.6, component 3.3, component
of an array 3.6, constraint_error exception 11.1, dimension 3.6, entry 9.5, entry
family 9.5, evaluation 4.5, expression 4.4, function call 6.4, in some order 1.6, index
3.6, name 4.1, prefix 4.1, raising of exceptions 11, returned value 5.8 6.5, task
object 9.2

4.1.2 Slices

4-3

A slice denotes a one-dimensional array formed by a sequence of consecutive
components of a one-dimensional array. A slice of a variable is a variable; a
slice of a constant is a constant; a slice of a value is a value.

slice ::= prefix(discrete_range)

Slices 4.1.2

4.1.2 Slices

The prefix of a slice must be appropriate for a one-dimensional array type.
The type of the slice is the base type of this array type. The bounds of the
discrete range define those of the slice and must be of the type of the index;
the slice is a null slice denoting a null array if the discrete range is a null
range.

For the evaluation of a name that is a slice, the prefix and the discrete
range are evaluated in some order that is not defined by the language. The
exception CONSTRAINT_ERROR is raised by the evaluation of a slice, other
than a null slice, if any of the bounds of the discrete range does not belong
to the index range of the prefixing array. (The bounds of a null slice need
not belong to the subtype of the index.)

Examples of slices:

STARS(1 .. 15) -- a slice of (see 3.6.3)
-— 15 characters

PAGE (10 .. 10 + SIZE) -- a slice of (see 3.6 and 3.2.1)
--— 1 + SIZE
-— components

PAGE (L) (A .. B) -- a slice of (see 3.6)
—-— the array PAGE (L)

STARS(1 .. 0) -— a null slice (see 3.6.3)

MY SCHEDULE (WEEKDAY) -- bounds given (see 3.6 and 3.5.1)
—-- by subtype

STARS (5 .. 15) (K) -- same as STARS(K) (see 3.6.3)
-- provided that K
-- 1is in 5 .. 15

Notes:

For a one-dimensional array A, the name AN .. N) is a slice of one compo-
nent; its type is the base type of A. On the other hand, A(N) is a component
of the array A and has the corresponding component type.

References: appropriate for a type 4.1, array 3.6, array type 3.6, array value 3.8,
base type 3.3, belong to a subtype 3.3, bound of a discrete range 3.6.1, component
3.3, component type 3.3, constant 3.2.1, constraint 3.3, constraint_error exception
11.1, dimension 3.6, discrete range 3.6, evaluation 4.5, index 3.6, index range 3.6,
name 4.1, null array 3.6.1, null range 3.5, prefix 4.1, raising of exceptions 11, type
3.3, variable 3.2.1

4-4

4.1.3 Selected Components

4-5

1

10

"

12

Selected components are used to denote record components, entries, entry
families, and objects designated by access values; they are also used as
expanded names as described below.

selected_component ::= prefix.selector

selector ::= simple_ name
| character‘literal | operator_symbol | all

The following four forms of selected components are used to denote a
discriminant, a record component, an entry, or an object designated by an
access value:

(a) A discriminant:

The selector must be a simple name denoting a discriminant of an
object or value. The prefix must be appropriate for the type of this
object or value.

(b) A component of a record:

The selector must be a simple name denoting a component of a record
object or value. The prefix must be appropriate for the type of this
object or value.

For a component of a variant, a check is made that the values of
the discriminants are such that the record has this component. The
exception CONSTRAINT_ERROR is raised if this check fails.

(¢) A single entry or an entry family of a task:

The selector must be a simple name denoting a single entry or an entry
family of a task. The prefix must be appropriate for the type of this
task.

(d) An object designated by an access value:

The selector must be the reserved word all. The value of the prefix
must belong to an access type.

A selected component of one of the remaining two forms is called an
expanded name. In each case the selector must be either a simple name, a
character literal, or an operator symbol. A function call is not allowed as the
prefix of an expanded name. An expanded name can denote:

(e) An entity declared in the visible part of a package:

Selected Components 4.1.3

15

16

18

20

21

®

The prefix must denote the package. The selector must be the simple
name, character literal, or operator symbol of the entity.1

An entity whose declaration occurs immediately within a named
construct:

The prefix must denote a construct that is either a program unit, a
block statement, a loop statement, or an accept statement. In the case
of an accept statement, the prefix must be either the simple name of
the entry or entry family, or an expanded name ending with such a
simple name (that is, no index is allowed). The selector must be the
simple name, character literal, or operator symbol of an entity whose
declaration occurs immediately within the construct.

This form of expanded name is only allowed within the construct
itself (including the body and any subunits, in the case of a program
unit). A name declared by a renaming declaration is not allowed

as the prefix. If the prefix is the name of a subprogram or accept
statement and if there is more than one visible enclosing subprogram
or accept statement of this name, the expanded name is ambiguous,
independently of the selector.?

If, according to the visibility rules, there is at least one possible interpre-
tation of the prefix of a selected component as the name of an enclosing

subprogram or accept statement, then the only interpretations considered
are those of rule (f), as expanded names (no interpretations of the prefix as
a function call are then considered).

The evaluation of a name that is a selected component includes the evalua-
tion of the prefix.

Examples of selected components:

TOMORROW . MONTH —-— a record component (see 3.7)
NEXT_CAR.OWNER -- a record component (see 3.8.1)
NEXT_ CAR.OWNER.AGE -- a record component (see 3.8.1)
WRITER.UNIT —-— a record component

-- (a discriminant) (see 3.7.3)
MIN_CELL(H) .VALUE -- a record component

-- of the result of
—-- the function call

== MIN_CELL (H) (see 6.1 and 3.8.1)
CONTROL.SEIZE -— an entry of the
—-— task CONTROL (see 9.1 and 9.2)

1 See also Appendix G, AI-00016, AI-00187, and AI-00412.
2 See also Appendix G, AI-00016 and AI-00412.

4.1.3 Selected Components

4-7

22

23

24

POOL (K) .WRITE -- an entry of the

—-— task POOL (K) (see 9.1 and 9.2)
NEXT_CAR.ALL -— the object designated

-- by the access variable

-- NEXT_CAR (see 3.8.1)

Examples of expanded names:

TABLE MANAGER.INSERT -- a procedure of the

—-— visible part of

-- a package (see 7.5)
KEY_MANAGER."<" -- an operator of the

-— visible part of (see 7.4.2)

-- a package
DOT_PRODUCT . SUM -—- a variable declared

—-— in a procedure body (see 6.5)
BUFFER.POOL -—- a variable declared

-— in a task unit (see 9.12)
BUFFER.READ -- an entry of a task unit (see 9.12)
SWAP . TEMP -— a variable declared in

—-— a block statement (see 5.6)
STANDARD . BOOLEAN -- the name of a

~- predefined type (see 8.6 and C)
Note:

For a record with components that are other records, the above rules imply
that the simple name must be given at each level for the name of a sub-
component. For example, the name NEXT_CAR.OWNER.BIRTH.MONTH
cannot be shortened (NEXT_CAR.OWNER.MONTH is not allowed).

References: accept statement 9.5, access type 3.8, access value 3.8, appropriate
for a type 4.1, block statement 5.6, body of a program unit 3.9, character literal
2.5, component of a record 3.7, constraint_error exception 11.1, declaration 3.1,
designate 3.8, discriminant 3.3, entity 3.1, entry 9.5, entry family 9.5, function
call 6.4, index 3.6, loop statement 5.5, object 3.2.1, occur immediately within 8.1,
operator 4.5, operator symbol 6.1, overloading 8.3, package 7, predefined type C,
prefix 4.1, procedure body 6.3, program unit 6, raising of exceptions 11, record 3.7,
record component 3.7, renaming declaration 8.5, reserved word 2.9, simple name
4.1, subprogram 6, subunit 10.2, task 9, task object 9.2, task unit 9, variable 3.7.3,
variant 3.7.3, visibility 8.3, visible part 3.7.3

Selected Components 4.1.3

4.1.4 Attributes

1 An attribute denotes a basic operation of an entity given by a prefix.

2 attribute ::= prefix’attribute designator

attribute designator ::=
simple_name [(universal static expression)]

3 The applicable attribute designators depend on the prefix. An attribute can
be a basic operation delivering a value; alternatively it can be a function,
a type, or a range. The meaning of the prefix of an attribute must be
determinable independently of the attribute designator and independently of
the fact that it is the prefix of an attribute.?

4 The attributes defined by the language are summarized in Annex A. In
addition, an implementation may provide implementation-defined attributes;
their description must be given in Appendix F. The attribute designator of
any implementation-defined attribute must not be the same as that of any
language-defined attribute.

5 The evaluation of a name that is an attribute consists of the evaluation of
the prefix.

Notes:

6 The attribute designators DIGITS, DELTA, and RANGE have the same
identifier as a reserved word. However, no confusion is possible since
an attribute designator is always preceded by an apostrophe. The only
predefined attribute designators that have a universal expression are those
for certain operations of array types (see 3.6.2).

7 Examples of attributes:

COLOR’FIRST ~-- minimum value of
-— the enumeration
-- type COLOR (see 3.3.1 and 3.5)

RAINBOW’ BASE’/FIRST —-- same as COLOR’FIRST (see 3.3.2 and 3.3.3)

REAL’DIGITS -- precision of the
-- type REAL (see 3.5.7 and 3.5.8)

BOARD’ LAST (2) -—- upper bound of the
—-—- second dimension of
—-— BOARD (see 3.6.1 and 3.6.2)

BOARD’ RANGE (1) -— index range of the
-- first dimension of
—-— BOARD (see 3.6.1 and 3.6.2)

3 See also Appendix G, AI-00015.

4.1.4 Attributes 4-8

POOL (K) ' TERMINATED -- TRUE if task POOL (K)

-— is terminated (see 9.2 and 9.9)
DATE’ SIZE -- number of bits for

-—- records of type DATE (see 3.7 and 13.7.2)
MESSAGE’ ADDRESS -—- address of the record

-- variable MESSAGE (see 3.7.2 and 13.7.2)

8 References: appropriate for a type 4.1, basic operation 3.3.3, declared entity 3.1,
name 4.1, prefix 4.1, reserved word 2.9, simple name 4.1, static expression 4.9, type
3.3, universal expression 4.10

4.2 Literals

1 A literal is either a numeric literal, an enumeration literal, the literal null,
or a string literal. The evaluation of a literal yields the corresponding value.

2 Numeric literals are the literals of the types universal_integer and universal_
real. Enumeration literals include character literals and yield values of the
corresponding enumeration types. The literal null yields a null access value
which designates no objects at all.

3 A string literal is a basic operation that combines a sequence of characters
into a value of a one-dimensional array of a character type; the bounds
of this array are determined according to the rules for positional array
aggregates (see 4.3.2). For a null string literal, the upper bound is the
predecessor, as given by the PRED attribute, of the lower bound. The
evaluation of a null string literal raises the exception CONSTRAINT_
ERROR if the lower bound does not have a predecessor (see 3.5.5).

4 The type of a string literal and likewise the type of the literal null must
be determinable solely from the context in which this literal appears,
excluding the literal itself, but using the fact that the literal null is a
value of an access type, and similarly that a string literal is a value of a
one-dimensional array type whose component type is a character type.

5 The character literals corresponding to the graphic characters contained
within a string literal must be visible at the place of the string literal
(although these characters themselves are not used to determine the type of
the string literal).

4-9 Literals 4.2

6 Examples:

3.14159_ 26536 -- a real literal

1_345 -— an integer literal
CLUBS —-— an enumeration literal
Y —-— a character literal
"SOME TEXT" -— a string literal

7 References: access type 3.8, aggregate 4.3, array 3.6, array bound 3.6, array type
3.6, character literal 2.5, character type 3.5.2, component type 3.3, constraint_error
exception 11.1, designate 3.8, dimension 3.6, enumeration literal 3.5.1, graphic
character 2.1, integer literal 2.4, null access value 3.8, null literal 3.8, numeric
literal 2.4, object 3.2.1, real literal 2.4, string literal 2.6, type 3.3, universal_integer
type 3.5.4, universal_real type 3.5.6, visibility 8.3

4.3 Aggregates

1 An aggregate is a basic operation that combines component values into a
composite value of a record or array type.

2 aggregate ::=
(component_association {, component_ association})

component_association ::=
[choice {]| choice} =>] expression

3 Each component association associates an expression with components
(possibly none). A component association is said to be named if the
components are specified explicitly by choices; it is otherwise said to
be positional. For a positional association, the (single) component is
implicitly specified by position, in the order of the corresponding component
declarations for record components, in index order for array components.

4 Named associations can be given in any order (except for the choice
others), but if both positional and named associations are used in the
same aggregate, then positional associations must occur first, at their
normal position. Hence once a named association is used, the rest of the
aggregate must use only named associations. Aggregates containing a single
component association must always be given in named notation. Specific
rules concerning component associations exist for record aggregates and
array aggregates.

5 Choices in component associations have the same syntax as in variant parts
(see 3.7.3). A choice that is-a component simple name is only allowed in a
record aggregate. For a component association, a choice that is a simple
expression or a discrete range is only allowed in an array aggregate; a choice
that is a simple expression specifies the component at the corresponding
index value; similarly a discrete range specifies the components at the index

4.3 Aggregates 4-10

values in the range. The choice others is only allowed in a component
association if the association appears last and has this single choice; it
specifies all remaining components, if any.

6 Each component of the value defined by an aggregate must be represented
once and only once in the aggregate. Hence each aggregate must be
complete and a given component is not allowed to be specified by more than
one choice.

7 The type of an aggregate must be determinable solely from the context
in which the aggregate appears, excluding the aggregate itself, but using
the fact that this type must be composite and not limited. The type of an
aggregate in turn determines the required type for each of its components.

Notes:

8 The above rule implies that the determination of the type of an aggregate
cannot use any information from within the aggregate. In particular, this
determination cannot use the type of the expression of a component asso-
ciation, or the form or the type of a choice. An aggregate can always be
distinguished from an expression enclosed by parentheses: this is a conse-
quence of the fact that named notation is required for an aggregate with a
single component.

9 References: array aggregate 4.3.2, array type 3.6, basic operation 3.3.3, choice
3.7.3, component 3.3, composite type 3.3, composite value 3.3, discrete range 3.6,
expression 4.4, index 3.6, limited type 7.4.4, primary 4.4, record aggregate 4.3.1,
record type 3.7, simple expression 4.4, simple name 4.1, type 3.3, variant part 3.7.3

4.3.1 Record Aggregates

1 If the type of an aggregate is a record type, the component names given
as choices must denote components (including discriminants) of the record
type. If the choice others is given as a choice of a record aggregate, it must
represent at least one component. A component association with the choice
others or with more than one choice is only allowed if the represented
components are all of the same type. The expression of a component
association must have the type of the associated record components.

2 The value specified for a discriminant that governs a variant part must
be given by a static expression (note that this value determines which
dependent components must appear in the record value).

4 See also Appendix G, AI-00169 and AI-00293.
5 See also Appendix G, AI-00244.

4-11 Record Aggregates 4.3.1

For the evaluation of a record aggregate, the expressions given in the
component associations are evaluated in some order that is not defined

by the language. The expression of a named association is evaluated once
for each associated component. A check is made that the value of each
subcomponent of the aggregate belongs to the subtype of this subcomponent.
The exception CONSTRAINT ERROR is raised if this check fails.

Example of a record aggregate with positional associations:
(4, JULY, 1776) -— see 3.7

Examples of record aggregates with named associations:

(DAY => 4, MONTH => JULY, YEAR => 1776)
(MONTH => JULY, DAY => 4, YEAR => 1776)

(DISK, CLOSED, TRACK => 5, CYLINDER => 12) -—- see 3.7.3
(UNIT => DISK, STATUS => CLOSED, CYLINDER => 9, TRACK => 1)

Example of component association with several choices:

(VALUE => 0, SUCC|PRED => new CELL’ (0, null, null)) -- see 3.8.1
—-— The allocator is evaluated twice:
-— SUCC and PRED designate different cells

Note:

For an aggregate with positional associations, discriminant values appear
first since the discriminant part is given first in the record type declaration;
they must be in the same order as in the discriminant part.

References: aggregate 4.3, allocator 4.8, choice 3.7.3, component association

4.3, component name 3.7, constraint 3.3, constraint_error exception 11.1, depend
on a discriminant 3.7.1, discriminant 3.3, discriminant part 3.7.1, evaluate 4.5,
expression 4.4, in some order 1.6, program 10, raising of exceptions 11, record
component 3.7, record type 3.7, satisfy 3.3, static expression 4.9, subcomponent 3.3,
subtype 3.3.2, type 3.3, variant part 3.7.3

4.3.2 Array Aggregates

1

If the type of an aggregate is a one-dimensional array type, then each choice
must specify values of the index type, and the expression of each component
association must be of the component type.

If the type of an aggregate is a multidimensional array type, an
n-dimensional aggregate is written as a one-dimensional aggregate, in
which the expression specified for each component association is itself writ-
ten as an (n — 1)-dimensional aggregate which is called a subaggregate; the
index subtype of the one-dimensional aggregate is given by the first index

4.3.2 Array Aggregates 4-12

position of the array type. The same rule is used to write a subaggregate

if it is again multidimensional, using successive index positions. A string
literal is allowed in a multidimensional aggregate at the place of a one-
dimensional array of a character type. In what follows, the rules concerning
array aggregates are formulated in terms of one-dimensional aggregates.

3 Apart from a final component association with the single choice others, the
rest (if any) of the component associations of an array aggregate must be
either all positional or all named. A named association of an array aggregate
is only allowed to have a choice that is not static, or likewise a choice that
is a null range, if the aggregate includes a single component association and
this component association has a single choice. An others choice is static if
the applicable index constraint is static.®

4 The bounds of an array aggregate that has an others choice are determined
by the applicable index constraint. An others choice is only allowed if
the aggregate appears in one of the following contexts (which defines the
applicable index constraint):

5 (a) The aggregate is an actual parameter, a generic actual parameter,
the result expression of a function, or the expression that follows
an assignment compound delimiter. Moreover, the subtype of the
corresponding formal parameter, generic formal parameter, function
result, or object is a constrained array subtype.

6 For an aggregate that appears in such a context and contains an
association with an others choice, named associations are allowed for
other associations only in the case of a (nongeneric) actual parameter
or function result. If the aggregate is a multidimensional array, this
restriction also applies to each of its subaggregates.

7 (b) The aggregate is the operand of a qualified expression whose type mark
denotes a constrained array subtype.

8 (¢) The aggregate is the expression of the component association of an
enclosing (array or record) aggregate. Moreover, if this enclosing
aggregate is a multidimensional array aggregate then it is itself in one
of these three contexts.’

9 The bounds of an array aggregate that does not have an others choice
are determined as follows. For an aggregate that has named associations,
the bounds are determined by the smallest and largest choices given. For
a positional aggregate, the lower bound is determined by the applicable
index constraint if the aggregate appears in one of the contexts (a) through

6 See also Appendix G, AT-00190 and AI-00310.
7 See also Appendix G, AI-00177.

4-13 Array Aggregates 4.3.2

(c); otherwise, the lower bound is given by S’ FIRST where S is the index
subtype; in either case, the upper bound is determined by the number of
components.

10 The evaluation of an array aggregate that is not a subaggregate proceeds
in two steps. First, the choices of this aggregate and of its subaggregates,
if any, are evaluated in some order that is not defined by the language.
Second, the expressions of the component associations of the array aggregate
are evaluated in some order that is not defined by the language; the
expression of a named association is evaluated once for each associated
component. The evaluation of a subaggregate consists of this second step
(the first step is omitted since the choices have already been evaluated).

11 For the evaluation of an aggregate that is not a null array, a check is
made that the index values defined by choices belong to the corresponding
index subtypes, and also that the value of each subcomponent of the aggre-
gate belongs to the subtype of this subcomponent. For an n-dimensional
multidimensional aggregate, a check is made that all (n — 1)-dimensional
subaggregates have the same bounds. The exception CONSTRAINT ERROR
is raised if any of these checks fails.8

Note:

12 The allowed contexts for an array aggregate including an others choice
are such that the bounds of such an aggregate are always known from the
context.

13 Examples of array aggregates with positional associations:

(7, 9, 5, 1, 3, 2, 4, 8, 6, 0)
TABLE’ (5, 8, 4, 1, others => 0) -- see 3.6

14 Examples of array aggregates with named associations:

(1 .. 5=> (1 .. 8 =>10.0)) —-- two-dimensional
(1 .. N => new CELL) —-— N new cells,
—— in particular for N = 0

TABLE’ (2 | 4 | 10 => 1, others => 0)
SCHEDULE' (MON .. FRI => TRUE, others => FALSE) -- see 3.6
SCHEDULE’ (WED | SUN => FALSE, others => TRUE)

8 See also Appendix G, AI-00018, AI-00019, AI-00265, and AT-00313.

4.3.2 Array Aggregates 4-14

15 Examples of two-dimensional array aggregates:
-- Three aggregates for the same value of type MATRIX (see 3.6):

((r1.1, 1.2, 1.3), (2.1, 2.2, 2.3))
(1 => (1.1, 1.2, 1.3), 2 => (2.1, 2.2, 2.3))
(1 => (1 =>1.1, 2 =>1.2, 3 =>1.3),

2 => (1 =>2.1, 2 => 2.2, 3 =>2.3))

i Examples of aggregates as initial values:

(7, 9, 5, 1, 3, 2, 4, 8, 6, 0); -- A(1)=7, A(10)=0
TABLE’ (2 | 4 | 10 => 1,

others => 0); -- B(1)=0, B(10)=1
C : constant MATRIX :=

(L .. 5=> (1L .. 8 =>0.0)); -- C’FIRST(1)=1,
—-—- C’LAST(2)=8

A : TABLE :
B TABLE

.

D : BIT_VECTOR(M .. N) := (M .. N => TRUE); -- see 3.6
E : BIT _VECTOR(M .. N) := (others => TRUE) ;
F : STRING(1 .. 1) := (1 => ’F’); -—- a one component aggregate:

-—- same as "F"

17 References: actual parameter 6.4.1, aggregate 4.3, array type 3.6, assignment
compound delimiter 5.2, choice 3.7.3, component 3.3, component association 4.3,
component type 3.3, constrained array subtype 3.6, constraint 3.3, constraint_error
exception 11.1, dimension 3.6, evaluate 4.5, expression 4.4, formal parameter 6.1,
function 6.5, in some order 1.6, index constraint 3.6.1, index range 3.6, index
subtype 8.6, index type 3.6, named component association 4.3, null array 3.6.1,
object 3.2, positional component association 4.3, qualified expression 4.7, raising of
exceptions 11, static expression 4.9, subcomponent 3.3, type 3.3

4.4 Expressions

1 An expression is a formula that defines the computation of a value.

2 expression ::=
relation {and relation} | relation {and then relation}
| relation {or relation} | relation {or else relation}

| relation {xor relation}

relation ::=
simple expression [relational operator simple expression]
| simple_expression [not] in range
| simple expression [not] in type_mark

simple expression ::=
[unary_adding_ operator] term {binary_ adding_ operator term}

term ::= factor {multiplying operator factor}

factor ::= primary [** primary] | abs primary | not primary

4-15 Expressions 4.4

primary ::=
numeric_literal | null | aggregate | string literal
| name | allocator | function call | type_conversion
| qualified expression | (expression)

3 Each primary has a value and a type. The only names allowed as primaries
are named numbers; attributes that yield values; and names denoting
objects (the value of such a primary is the value of the object) or denoting
values. Names that denote formal parameters of mode out are not allowed
as primaries; names of their subcomponents are only allowed in the case of
discriminants.

4 The type of an expression depends only on the type of its constituents and
on the operators applied; for an overloaded constituent or operator, the
determination of the constituent type, or the identification of the appropriate
operator, depends on the context. For each predefined operator, the operand
and result types are given in section 4.5.

5 Examples of primaries:

4.0 -- real literal

PI -- named number

(1 .. 10 => 0) -— array aggregate

SUM -— variable

INTEGER’ LAST -—- attribute

SINE (X) -- function call

COLOR’ (BLUE) -- qualified expression
REAL (M*N) -- conversion

(LINE_COUNT + 10) -- parenthesized expression

6 Examples of expressions:
VOLUME -— primary

not DESTROYED -- factor

2*LINE_COUNT

term

-4.0 -— simple expression

-4.0 + A -- simple expression

B**2 — 4_0*A*C —-- simple expression

PASSWORD (1 3) = "BWV" -- relation

COUNT in SMALL INT -- relation

COUNT not in SMALL INT -- relation

INDEX = 0 or ITEM HIT -—- expression

(COLD and SUNNY) or WARM -- expression

—-- (parentheses are required)

A** (B**C) -— expression

4.4 Expressions

(parentheses are required)

4-16

References: aggregate 4.3, allocator 4.8, array aggregate 4.3.2, attribute 4.1.4,
binary adding operator 4.5 4.5.3, context of overload resolution 8.7, exponentiating
operator 4.5 4.5.6, function call 6.4, multiplying operator 4.5 4.5.5, name 4.1, named
number 3.2, null literal 3.8, numeric literal 2.4, object 3.2, operator 4.5, overloading
8.3, overloading an operator 6.7, qualified expression 4.7, range 3.5, real literal 2.4,
relation 4.5.1, relational operator 4.5 4.5.2, result type 6.1, string literal 2.6, type
3.3, type conversion 4.6, type mark 3.3.2, unary adding operator 4.5 4.5.4,

variable 3.2.1

4.5 Operators and Expression Evaluation

4-17

The language defines the following six classes of operators. The correspond-
ing operator symbols (except /=), and only those, can be used as designators
in declarations of functions for user-defined operators. They are given in the
order of increasing precedence.

logical_operator = and | or | xor

relational operator 1= = | /= 1 < L <=1>1 >=
binary_adding operator ii= o+ | - | &
unary_adding_operator ti= o+ | -

multiplying operator ti= X |/ | mod | rem
highest_precedence_operator ::= ** | abs | not

The short-circuit control forms and then and or else have the same
precedence as logical operators. The membership tests in and not in have
the same precedence as relational operators.

For a term, simple expression, relation, or expression, operators of higher
precedence are associated with their operands before operators of lower
precedence. In this case, for a sequence of operators of the same precedence
level, the operators are associated in textual order from left to right;
parentheses can be used to impose specific associations.

The operands of a factor, of a term, of a simple expression, or of a relation,
and the operands of an expression that does not contain a short-circuit
control form, are evaluated in some order that is not defined by the language
(but before application of the corresponding operator). The right operand of
a short-circuit control form is evaluated if and only if the left operand has a
certain value (see 4.5.1).

For each form of type declaration, certain of the above operators are
predefined, that is, they are implicitly declared by the type declaration.
For each such implicit operator declaration, the names of the parameters
are LEFT and RIGHT for binary operators; the single parameter is called

Operators and Expression Evaluation 4.5

RIGHT for unary adding operators and for the unary operators abs and
not. The effect of the predefined operators is explained in subsections 4.5.1
through 4.5.7.

7 The predefined operations on integer types either yield the mathematically
correct result or raise the exception NUMERIC_ERROR. A predefined
operation that delivers a result of an integer type (other than universal_
integer) can only raise the exception NUMERIC_ERROR if the mathematical
result is not a value of the type. The predefined operations on real types
yield results whose accuracy is defined in section 4.5.7. A predefined
operation that delivers a result of a real type (other than universal_real) can
only raise the exception NUMERIC_ERROR if the result is not within the
range of the safe numbers of the type, as explained in section 4.5.7.9

8 Examples of precedence:

not SUNNY or WARM -- same as (not SUNNY) or WARM
X>4.0and Y > 0.0 -- same as (X > 4.0) and (Y > 0.0)

-4 . 0*A**2 -- same as -(4.0 * (A**2))

abs(l1 + A) + B -— same as (abs (1 + A)) + B

Y** (=-3) -—- parentheses are necessary

A/ B*C -- same as (A/B)*C

A+ (B + Q) -— evaluate B + C before adding it to A

9 References: designator 6.1, expression 4.4, factor 4.4, implicit declaration 3.1, in
some order 1.6, integer type 3.5.4, membership test 4.5.2, name 4.1, numeric_error
exception 11.1, overloading 6.6 8.7, raising of an exception 11, range 3.5, real type
3.5.6, relation 4.4, safe number 3.5.6, short-circuit control form 4.5 4.5.1, simple
expression 4.4, term 4.4, type 3.3, type declaration 3.3.1, universal_integer type
3.5.4, universal_real type 3.5.6

4.5.1 Logical Operators and Short-circuit Control Forms

1 The following logical operators are predefined for any boolean type and any
one-dimensional array type whose components are of a boolean type; in
either case the two operands have the same type.

2 Operator Operation Operand type Result type
and conjunction any boolean type same boolean type
array of boolean same array type
components

9 See also Appendix G, AI-00387.

4.5.1 Logical Operators and Short-circuit Control Forms 4-18

Operator Operation Operand type Result type

or inclusive any boolean type same boolean type
disjunction
array of boolean same array type
components
xor exclusive any boolean type same boolean type
disjunction
array of boolean same array type
components

3 The operations on arrays are performed on a component-by-component basis
on matching components, if any (as for equality, see 4.5.2). The bounds of
the resulting array are those of the left operand. A check is made that for
each component of the left operand there is a matching component of the
right operand, and vice versa. The exception CONSTRAINT_ERROR is
raised if this check fails. 10

4 The short-circuit control forms and then and or else are defined for two
operands of a boolean type and deliver a result of the same type. The left
operand of a short-circuit control form is always evaluated first. If the
left operand of an expression with the control form and then evaluates to
FALSE, the right operand is not evaluated and the value of the expression
is FALSE. If the left operand of an expression with the control form or else
evaluates to TRUE, the right operand is not evaluated and the value of the
expression is TRUE. If both operands are evaluated, and then delivers the
same result as and, and or else delivers the same result as or.

Note:
5 The conventional meaning of the logical operators is given by the following
truth table:
6 A B Aand B AorB A xor B
TRUE TRUE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE TRUE
FALSE TRUE FALSE TRUE TRUE
FALSE FALSE FALSE FALSE FALSE

10 See also Appendix G, AI-00426 and AI-00431.

4-19 Logical Operators and Short-circuit Control Forms 4.5.1

Examples of logical operators:

SUNNY or WARM
FILTER(1 .. 10) and FILTER(15 .. 24) - see 3.6.1

Examples of short-circuit control forms:

NEXT CAR.OWNER /= null
and then NEXT CAR.OWNER.AGE > 25 -- see 3.8.1

N = 0 or else A(N) = HIT_VALUE

References: array type 3.6, boolean type 3.5.3, bound of an index range 3.6.1,
component of an array 3.6, constraint_error exception 11.1, dimension 3.6, false
boolean value 3.5.3, index subtype 3.6, matching components of arrays 4.5.2, null
array 3.6.1, operation 3.3, operator 4.5, predefined operator 4.5, raising of exceptions
11, true boolean value 3.5.3, type 3.3

4.5.2 Relational Operators and Membership Tests

1

The equality and inequality operators are predefined for any type that

is not limited. The other relational operators are the ordering operators
< (less than), <= (less than or equal), > (greater than), and >= (greater
than or equal). The ordering operators are predefined for any scalar type,
and for any discrete array type, that is, a one-dimensional array type
whose components are of a discrete type. The operands of each predefined
relational operator have the same type. The result type is the predefined
type BOOLEAN.

The relational operators have their conventional meaning: the result is
equal to TRUE if the corresponding relation is satisfied; the result is FALSE
otherwise. The inequality operator gives the complementary result to the
equality operator: FALSE if equal, TRUE if not equal.

Operator Operation Operand type Result type

= /= equality and any type BOOLEAN
inequality

< <= > >= test for any scalar type BOOLEAN
ordering

discrete array type = BOOLEAN

Equality for the discrete types is equality of the values. For real operands
whose values are nearly equal, the results of the predefined relational
operators are given in section 4.5.7. Two access values are equal either if

4.5.2 Relational Operators and Membership Tests 4-20

4-21

they designate the same object, or if both are equal to the null value of the
access type.

For two array values or two record values of the same type, the left operand
is equal to the right operand if and only if for each component of the left
operand there is a matching component of the right operand and vice versa;
and the values of matching components are equal, as given by the predefined
equality operator for the component type. In particular, two null arrays of
the same type are always equal; two null records of the same type are
always equal.

For comparing two records of the same type, matching components are those
which have the same component identifier.

For comparing two one-dimensional arrays of the same type, matching
components are those (if any) whose index values match in the following
sense: the lower bounds of the index ranges are defined to match, and
the successors of matching indices are defined to match. For comparing
two multidimensional arrays, matching components are those whose index
values match in successive index positions.

If equality is explicitly defined for a limited type, it does not extend to
composite types having subcomponents of the limited type (explicit definition
of equality is allowed for such composite types).

The ordering operators <, <=,>, and >= that are defined for discrete array
types correspond to lexicographic order using the predefined order relation
of the component type. A null array is lexicographically less than any
array having at least one component. In the case of nonnull arrays, the

left operand is lexicographically less than the right operand if the first
component of the left operand is less than that of the right; otherwise the
left operand is lexicographically less than the right operand only if their first
components are equal and the tail of the left operand is lexicographically
less than that of the right (the tail consists of the remaining components
beyond the first and can be null).

The membership tests in and not in are predefined for all types. The
result type is the predefined type BOOLEAN. For a membership test with
a range, the simple expression and the bounds of the range must be of the
same scalar type; for a membership test with a type mark, the type of the
simple expression must be the base type of the type mark. The evaluation
of the membership test in yields the result TRUE if the value of the simple
expression is within the given range, or if this value belongs to the subtype
denoted by the given type mark; otherwise this evaluation yields the result
FALSE (for a value of a real type, see 4.5.7). The membership test not in
gives the complementary result to the membership test in.

Relational Operators and Membership Tests 4.5.2

n Examples:

X /=X

nnoc uan and "A" < "AA" - TRUE

IIAA" < "B" and "A" < IIA " - TRUE

MY CAR = null -- true if MY CAR has been set
-—- to null (see 3.8.1)

MY CAR = YOUR_CAR -- true if we both share

-- the same car

MY CAR._ALL = YOUR_CAR._ALL -- true if the two cars
-- are identical

N not in 1 .. 10 —-- range membership test
TODAY in MON .. FRI -- range membership test
TODAY in WEEKDAY ~- subtype membership test (see 3.5.1)

ARCHIVE in DISK UNIT —-- subtype membership test (see 3.7.3)

Notes:

12 No exception is ever raised by a predefined relational operator or by a
membership test, but an exception can be raised by the evaluation of the
operands.

13 If a record type has components that depend on discriminants, two values
of this type have matching components if and only if their discriminants
are equal. Two nonnull arrays have matching components if and only if the
value of the attribute LENGTH(N) for each index position N is the same for
both.

14 References: access value 3.8, array type 3.6, base type 3.3, belong to a subtype
3.3, boolean predefined type 3.5.3, bound of a range 3.5, component 3.3, component
identifier 3.7, component type 3.3, composite type 3.3, designate 3.8, dimension
3.6, discrete type 3.5, evaluation 4.5, exception 11, index 3.6, index range 3.6,
limited type 7.4.4, null access value 3.8, null array 3.6.1, null record 3.7, object
3.2.1, operation 3.3, operator 4.5, predefined operator 4.5, raising of exceptions 11,
range 3.5, record type 3.7, scalar type 3.5, simple expression 4.4, subcomponent 3.3,
successor 3.5.5, type 3.3, type mark 3.3.2

4.5.3 Binary Adding Operators

1 The binary adding operators + and — are predefined for any numeric type
and have their conventional meaning. The catenation operators & are
predefined for any one-dimensional array type that is not limited.

4.5.3 Binary Adding Operators 4-22

4-23

Operator Operation

Left operand
type

Right operand
type

Result type

+ addition any numeric same numeric same numeric
type type type
- subtraction any numeric same numeric same numeric
type type type
& catenation any array type same array type same array
type
any array type the component same array
type type
the component any array type same array
type type
the component the component any array
type type type

For real types, the accuracy of the result is determined by the operand type
(see 4.5.7).

If both operands are one-dimensional arrays, the result of the catenation
is a one-dimensional array whose length is the sum of the lengths of its
operands, and whose components comprise the components of the left
operand followed by the components of the right operand. The lower bound
of this result is the lower bound of the left operand, unless the left operand
is a null array, in which case the result of the catenation is the right
operand.

If either operand is of the component type of an array type, the result of
the catenation is given by the above rules, using in place of this operand
an array having this operand as its only component and having the lower
bound of the index subtype of the array type as its lower bound.

The exception CONSTRAINT_ERROR is raised by catenation if the upper
bound of the result exceeds the range of the index subtype, unless the
result is a null array. This exception is also raised if any operand is of the
component type but has a value that does not belong to the component
subtype.

Examples:

Z + 0.1 -— 2 must be of a real type

"A" & "BCD" -- catenation of two string literals

'A’ & "BCD" -- catenation of a character literal
-— and a string literal

‘A’ & 'A’ -— catenation of two character literals

Binary Adding Operators 4.5.3

References: array type 3.6, character literal 2.5, component type 3.3, constraint_
error exception 11.1, dimension 3.6, index subtype 3.6, length of an array 3.6.2,
limited type 7.4.4, null array 3.6.1, numeric type 3.5, operation 3.3, operator 4.5,
predefined operator 4.5, raising of exceptions 11, range of an index subtype 3.6.1,
real type 3.5.6, string literal 2.6, type 3.3

4.5.4 Unary Adding Operators

1

The unary adding operators + and — are predefined for any numeric type and
have their conventional meaning. For each of these operators, the operand
and the result have the same type.

Operator Operation Operand type Result type
+ identity any numeric type same numeric type
- negation any numeric type same numeric type

References: numeric type 3.5, operation 3.3, operator 4.5, predefined operator 4.5,
type 3.3

4.5.5 Multiplying Operators

1

The operators * and / are predefined for any integer and any floating point
type and have their conventional meaning; the operators mod and rem are
predefined for any integer type. For each of these operators, the operands
and the result have the same base type. For floating point types, the
accuracy of the result is determined by the operand type (see 4.5.7).

Operator Operation Operand type Result type
* multiplication any integer type same integer
type
any floating same floating
point type point type
/ integer division any integer type same integer
type
floating division any floating same floating
point type point type
mod modulus any integer type same integer
type

4.5.5 Multiplying Operators 4-24

2 Operator Operation Operand type Result type

rem remainder any integer type same integer
type

3 Integer division and remainder are defined by the relation
A = (A/B)*B + (A rem B)

4 where (A rem B) has the sign of A and an absolute value less than the
absolute value of B. Integer division satisfies the identity

(-A) /B = -(A/B) = A/(-B)

5 The result of the modulus operation is such that (A mod B) has the sign of
B and an absolute value less than the absolute value of B; in addition, for
some integer value N, this result must satisfy the relation

A = B*N + (A mod B)

6 For each fixed point type, the following multiplication and division operators,
with an operand of the predefined type INTEGER, are predefined.

Right
Left operand operand
7 Operator Operation type type Result type

* multiplication any fixed INTEGER same as
point type left
INTEGER any fixed same as

point type right

/ division any fixed INTEGER same as

point type left

8 Integer multiplication of fixed point values is equivalent to repeated
addition. Division of a fixed point value by an integer does not involve
a change in type but is approximate (see 45.7).11

9 Finally, the following multiplication and division operators are declared in
the predefined package STANDARD. These two special operators apply to
operands of all fixed point types (it is a consequence of other rules that they
cannot be renamed or given as generic actual parameters).

11 See also Appendix G, AI-00475.

4-25 Multiplying Operators 4.5.5

Left Right

operand operand
10 Operator Operation type type! Result type
* multiplication any fixed any fixed universal_fixed

point type point type

/ division any fixed any fixed universal_fixed
point type point type

1See also Appendix G, AI-00020 and AI-00376.

1t Multiplication of operands of the same or of different fixed point types is
exact and delivers a result of the anonymous predefined fixed point type
universal_fixed whose delta is arbitrarily small. The result of any such
multiplication must always be explicitly converted to some numeric type.
This ensures explicit control of the accuracy of the computation. The same
considerations apply to division of a fixed point value by another fixed point
value. No other operators are defined for the type universal_fixed.12

12 The exception NUMERIC_ERROR is raised by integer division, rem, and
mod if the right operand is zerol3

13 Examples:

I : INTEGER := 1;

J : INTEGER := 2;

K : INTEGER := 3;

X : REAL digits 6 := 1.0; - see 3.5.7

Y : REAL digits 6 := 2.0;

F : FRACTION delta 0.0001 := 0.1; -= see 3.5.9

G : FRACTION delta 0.0001 := 0.1;

Expression Value Result type

I*J 2 same as I and J, that is, INTEGER
K/J 1 same as K and J, that is, INTEGER
Kmod J 1 same as K and J, that is, INTEGER
XY 0.5 same as X and Y, that is, REAL

12 See also Appendix G, AI-00235.
13 See also Appendix G, AI-00387.

4.5.5 Multiplying Operators 4-26

Expression Value Result type

F/2 0.05 same as F, that is, FRACTION

3*F 0.3 same as F, that is, FRACTION

F*G 0.01 universal_fixed, conversion needed

FRACTION(F*GQ) 0.01 FRACTION, as stated by the conversion

REALJ)*Y 4.0 REAL, the type of both operands after conversion
of J

Notes:

12 For positive A and B, A/B is the quotient and A rem B is the remainder
when A is divided by B. The following relations are satisfied by the rem
operator:

A rem (-B)
(-A) rem B

A rem B
-(A rem B)

15 For any integer K, the following identity holds:
A mod B = (A + K*B) mod B

16 The relations between integer division, remainder, and modulus are illus-
trated by the following table:

A B A/B AremB AmodB
10 5 2 0 0
11 5 2 1 1
12 5 2 2 2
13 5 2 3 3
14 5 2 4 4
10 -5 -2 0 0
11 -5 -2 1 —4
12 -5 -2 2 -3
13 -5 -2 3 -2
14 -5 -2 4 -1

-10 5 -2 0 0

-11 5 -2 -1 4

-12 5 -2 -2 3

4-27 Multiplying Operators 4.5.5

17

A B A/B AremB A mod B

-13 5 -2 -3

-14 5 -2 —4 1
-10 -5 2 0 0
-11 -5 2 -1 -1
-12 -5 2 -2 -2
-13 -5 2 -3 - -3
-14 -5 2 —4 —4

References: actual parameter 6.4.1, base type 3.3, declaration 3.1, delta of a fixed
point type 3.5.9, fixed point type 3.5.9, floating point type 3.5.7, generic formal
subprogram 12.1, integer type 3.5.4, numeric type 3.5, numeric_error exception 11.1,
predefined operator 4.5, raising of exceptions 11, renaming declaration 8.5, standard
predefined package 8.6, type conversion 4.6

4.5.6 Highest Precedence Operators

1

The highest precedence unary operator abs is predefined for any numeric
type. The highest precedence unary operator not is predefined for any
boolean type and any one-dimensional array type whose components have a
boolean type.

Operator Operation Operand type Result type

abs absolute value any numeric type same numeric type

not “ logical negation any boolean type same boolean type
array of boolean same array type
components

The operator not that applies to a one-dimensional array of boolean compo-
nents yields a one-dimensional boolean array with the same bounds; each
component of the result is obtained by logical negation of the corresponding
component of the operand (that is, the component that has the same index
value).

The highest precedence exponentiating operator ** is predefined for each
integer type and for each floating point type. In either case the right
operand, called the exponent, is of the predefined type INTEGER.

45.6 Highest Precedence Operators 4-28

Right
Left operand operand

5 Operator Operation type type Result type
wE exponentiation any integer INTEGER same as
type left
any floating INTEGER same as
point type left

6 Exponentiation with a positive exponent is equivalent to repeated multipli-
cation of the left operand by itself, as indicated by the exponent and from
left to right. For an operand of a floating point type, the exponent can be
negative, in which case the value is the reciprocal of the value with the
positive exponent. Exponentiation by a zero exponent delivers the value one.
Exponentiation of a value of a floating point type is approximate (see 4.5.7).
Exponentiation of an integer raises the exception CONSTRAINT_ERROR for
a negative exponent. 14

7 References: array type 3.6, boolean type 3.5.3, bound of an array 3.6.1, component
of an array 3.6, constraint_error exception 11.1, dimensionality 3.6, floating point
type 3.5.9, index 3.6, integer type 3.5.4, multiplication operation 4.5.5, predefined
operator 4.5, raising of exceptions 11

4.5.7 Accuracy of Operations with Real Operands

1 A real subtype specifies a set of model numbers. 15 Both the accuracy
required from any basic or predefined operation giving a real result, and the
result of any predefined relation between real operands are defined in terms
of these model numbers.

2 A model interval of a subtype is any interval whose bounds are model
numbers of the subtype. The model interval associated with a value that
belongs to a real subtype is the smallest model interval (of the subtype) that
includes the value. (The model interval associated with a model number of a
subtype consists of that number only.)

3 For any basic operation or predefined operator that yields a result of a real
subtype, the required bounds on the result are given by a model interval
defined as follows:

4 e The result model interval is the smallest model interval (of the result
subtype) that includes the minimum and the maximum of all the
values obtained by applying the (exact) mathematical operation, when

14 See also Appendix G, AI-00137.
15 See also Appendix G, AI-00407.

4-29 Accuracy of Operations with Real Operands 4.5.7

each operand is given any value of the model interval (of the operand
subtype) defined for the operand. 16

5 ¢ The model interval of an operand that is itself the result of an operation,
other than an implicit conversion, is the result model interval of this
operation.

6 ® The model interval of an operand whose value is obtained by implicit
conversion of a universal expression is the model interval associated
with this value within the operand subtype.

7 The result model interval is undefined if the absolute value of one of the
above mathematical results exceeds the largest safe number of the result
type. Whenever the result model interval is undefined, it is highly desirable
that the exception NUMERIC_ERROR be raised if the implementation
cannot produce an actual result that is in the range of safe numbers.

This is, however, not required by the language rules, in recognition of the
fact that certain target machines do not permit easy detection of overflow
situations. The value of the attribute MACHINE_OVERFLOWS indicates
whether the target machine raises the exception NUMERIC_ERROR in
overflow situations (see 13.7.3).17

8 The safe numbers of a real type are defined (see 3.5.6) as a superset of the
model numbers, for which error bounds follow the same rules as for model
numbers. Any definition given in this section in terms of model intervals
can therefore be extended to safe intervals of safe numbers. A consequence
of this extension is that an implementation is not allowed to raise the
exception NUMERIC_ERROR when the result interval is a safe interval.

9 For the result of exponentiation, the model interval defining the bounds
on the result is obtained by applying the above rules to the sequence of
multiplications defined by the exponent, and to the final division in the case
of a negative exponent.

10 For the result of a relation between two real operands, consider for each
operand the model interval (of the operand subtype) defined for the operand;
the result can be any value obtained by applying the mathematical com-
parison to values arbitrarily chosen in the corresponding operand model
intervals. If either or both of the operand model intervals is undefined (and
if neither of the operand evaluations raises an exception) then the result of
the comparison is allowed to be any possible value (that is, either TRUE or
FALSE).

16 See also Appendix G, AI-00516.
17 See also Appendix G, AI-00387.

4.5.7 Accuracy of Operations with Real Operands 4-30

1

12

13

The result of a membership test is defined in terms of comparisons of the
operand value with the lower and upper bounds of the given range or type
mark (the usual rules apply to these comparisons).

Note:

For a floating point type the numbers 15.0, 3.0, and 5.0 are always model
numbers. Hence X/Y where X equals 15.0 and Y equals 3.0 yields exactly
5.0 according to the above rules. In the general case, division does not yield
model numbers and in consequence one cannot assume that (1.0/X)*X = 1.0.

References: attribute 4.1.4, basic operation 3.3.3, bound of a range 3.5, error
bound 3.5.6, exponentiation operation 4.5.6, false boolean value 3.5.3, floating point
type 3.5.9, machine_overflows attribute 13.7.1, membership test 4.5.2, model number
3.5.6, multiplication operation 4.5.5, numeric_error exception 11.1, predefined
operation 3.3.3, raising of exceptions 11, range 3.5, real type 3.5.6, relation 4.4,
relational operator 4.5.2 4.5, safe number 3.5.6, subtype 3.3, true boolean value
3.5.3, type conversion 4.6, type mark 3.3.2, universal expression 4.10

4.6 Type Conversions

4-31

1

The evaluation of an explicit type conversion evaluates the expression
given as the operand, and converts the resulting value to a specified target

type. Explicit type conversions are allowed between closely related types as
defined below.

type_conversion ::= type mark (expression)

The target type of a type conversion is the base type of the type mark. The
type of the operand of a type conversion must be determinable independently
of the context (in particular, independently of the target type). Furthermore,
the operand of a type conversion is not allowed to be a literal null, an
allocator, an aggregate, or a string literal; an expression enclosed by
parentheses is allowed as the operand of a type conversion only if the
expression alone is allowed.

A conversion to a subtype consists of a conversion to the target type followed
by a check that the result of the conversion belongs to the subtype. A
conversion of an operand of a given type to the type itself is allowed.

The other allowed explicit type conversions correspond to the following three
cases:

(a) Numeric types

Type Conversions 4.6

7 The operand can be of any numeric type; the value of the operand is
converted to the target type which must also be a numeric type. For
conversions involving real types, the result is within the accuracy of
the specified subtype (see 4.5.7). The conversion of a real value to an
integer type rounds to the nearest integer; if the operand is halfway
between two integers (within the accuracy of the real subtype) rounding
may be either up or down.

8 (b) Derived types

9 The conversion is allowed if one of the target type and the operand type
is derived from the other, directly or indirectly, or if there exists a third
type from which both types are derived, directly or indirectly.

10 (¢) Array types

1 The conversion is allowed if the operand type and the target type are
array types that satisfy the following conditions: both types must have
the same dimensionality; for each index position the index types must
either be the same or be convertible to each other; the component
types must be the same; finally, if the component type is a type with
discriminants or an access type, the component subtypes must be either
both constrained or both unconstrained. If the type mark denotes an
unconstrained array type, then, for each index position, the bounds of
the result are obtained by converting the bounds of the operand to the
corresponding index type of the target type. If the type mark denotes
a constrained array subtype, then the bounds of the result are those
imposed by the type mark. In either case, the value of each component
of the result is that of the matching component of the operand
(see 4.5.2).

12 In the case of conversions of numeric types and derived types, the exception
CONSTRAINT_ERROR is raised by the evaluation of a type conversion if
the result of the conversion fails to satisfy a constraint imposed by the type
mark.

13 In the case of array types, a check is made that any constraint on the
component subtype is the same for the operand array type as for the target
array type. If the type mark denotes an unconstrained array type and
if the operand is not a null array, then, for each index position, a check
is made that the bounds of the result belong to the corresponding index
subtype of the target type. If the type mark denotes a constrained array
subtype, a check is made that for each component of the operand there is a
matching component of the target subtype, and vice versa. The exception
CONSTRAINT_ERROR is raised if any of these checks fails.18

18 See also Appendix G, AI-00313.

4.6 Type Conversions 4-32

4-33

14

15

15

16

If a conversion is allowed from one type to another, the reverse conversion is
also allowed. This reverse conversion is used where an actual parameter of
mode in out or out has the form of a type conversion of a (variable) name
as explained in section 6.4.1.

Apart from the explicit type conversions, the only allowed form of type
conversion is the implicit conversion of a value of the type universal_integer
or universal_real into another numeric type. An implicit conversion of an
operand of type universal_integer to another integer type, or of an operand of
type universal_real to another real type, can only be applied if the operand
is either a numeric literal, a named number, or an attribute; such an
operand is called a convertible universal operand in this section. An implicit
conversion of a convertible universal operand is applied if and only if the
innermost complete context (see 8.7) determines a unique (numeric) target
type for the implicit conversion, and there is no legal interpretation of this
context without this conversion.

Notes:

The rules for implicit conversions imply that no implicit conversion is ever
applied to the operand of an explicit type conversion. Similarly, implicit
conversions are not applied if both operands of a predefined relational
operator are convertible universal operands.

The language allows implicit subtype conversions in the case of array types
(see 5.2.1). An explicit type conversion can have the effect of a change of
representation (in particular see 13.6). Explicit conversions are also used for
actual parameters (see 6.4).

Examples of numeric type conversion:

REAL (2*J) -- value is converted to floating point
INTEGER(1.6) -- value is 2
INTEGER(-0.4) -- wvalue is O

Example of conversion between derived types:
type A FORM is new B_FORM;

X : A_FORM;

Y : B _FORM;

X := A FORM(Y);

Y := B_FORM(X); -- the reverse conversion

Type Conversions 4.6

19 Examples of conversions between array types:

type SEQUENCE is array (INTEGER range <>) of INTEGER;
subtype DOZEN is SEQUENCE(1 .. 12):
LEDGER : array(l .. 100) of INTEGER;

SEQUENCE (LEDGER) -- Dbounds are those of LEDGER
SEQUENCE (LEDGER (31 .. 42)) -— bounds are 31 and 42
DOZEN (LEDGER (31 .. 42)) —-— bounds are those of DOZEN

20 Examples of implicit conversions:
X : INTEGER := 2;

X+ 1+ 2 —- implicit conversion of
-- each integer literal

1 +2 +X -- implicit conversion of
-- each integer literal

X + (1 + 2) —-- implicit conversion of
-- each integer literal

2 = (1 + 1) —— no implicit conversion:

-- the type is universal_integer
A’LENGTH = B’LENGTH —-- no implicit conversion:

-- the type is universal integer
C : constant := 3 + 2; -- no implicit conversion:

-- the type is universal_ integer
X=3and 1 =2 —— implicit conversion of 3,

-- but not of 1 and 2

21 References: actual parameter 6.4.1, array type 3.6, attribute 4.1.4, base type 3.3,
belong to a subtype 3.3, component 3.3, constrained array subtype 3.6, constraint_
error exception 11.1, derived type 3.4, dimension 3.6, expression 4.4, floating point
type 3.5.7, index 3.6, index subtype 3.6, index type 3.6, integer type 3.5.4, matching
component 4.5.2, mode 6.1, name 4.1, named number 3.2, null array 3.6.1, numeric
literal 2.4, numeric type 3.5, raising of exceptions 11, real type 3.5.6, representation
13.1, statement 5, subtype 3.3, type 3.3, type mark 3.3.2, unconstrained array type
3.6, universal_integer type 3.5.4, universal_real type 3.5.6, variable 3.2.1

4.7 Qualified Expressions

1 A qualified expression is used to state explicitly the type, and possibly the
subtype, of an operand that is the given expression or aggregate.

2 qualified expression ::=
type_mark’ (expression) | type_mark’aggregate

4.7 Qualified Expressions 4-34

4-35

The operand must have the same type as the base type of the type mark.
The value of a qualified expression is the value of the operand. The
evaluation of a qualified expression evaluates the operand and checks that
its value belongs to the subtype denoted by the type mark. The exception
CONSTRAINT_ERROR is raised if this check fails.

Examples:

type MASK is (FIX, DEC, EXP, SIGNIF);
type CODE is (FIX, CLA, DEC, TNZ, SUB);

PRINT (MASK’ (DEC)); -- DEC is of type MASK
PRINT (CODE’ (DEC)); -—- DEC is of type CODE
for J in CODE’ (FIX) .. CODE’ (DEC) loop ... —— qualification
-—- needed for
-— either FIX
—-— or DEC
for J in CODE range FIX .. DEC loop ... -- qualification
—-— unnecessary
for J in CODE’ (FIX) .. DEC loop ... —-- qualification
-— unnecessary
-— for DEC
DOZEN’ (1 | 3 | 5| 7 => 2, others => 0) -— see 4.6
Notes:

Whenever the type of an enumeration literal or aggregate is not known from
the context, a qualified expression can be used to state the type explicitly.
For example, an overloaded enumeration literal must be qualified in the
following cases: when given as a parameter in a subprogram call to an
overloaded subprogram that cannot otherwise be identified on the basis

of remaining parameter or result types, in a relational expression where
both operands are overloaded enumeration literals, or in an array or loop
parameter range where both bounds are overloaded enumeration literals.
Explicit qualification is also used to specify which one of a set of overloaded
parameterless functions is meant, or to constrain a value to a given subtype.

References: aggregate 4.3, array 3.6, base type 3.3, bound of a range 3.5, con-
straint_error exception 11.1, context of overload resolution 8.7, enumeration literal
3.5.1, expression 4.4, function 6.5, loop parameter 5.5, overloading 8.5, raising of
exceptions 11, range 3.3, relation 4.4, subprogram 6, subprogram call 6.4, subtype
3.3, type 3.3, type mark 3.3.2

Qualified Expressions 4.7

4.8 Allocators

1 The evaluation of an allocator creates an object and yields an access value
that designates the object.

2 allocator ::=
new subtype_ indication | new qualified_expression

3 The type of the object created by an allocator is the base type of the type
mark given in either the subtype indication or the qualified expression. For
an allocator with a qualified expression, this expression defines the initial
value of the created object. The type of the access value returned by an
allocator must be determinable solely from the context, but using the fact
that the value returned is of an access type having the named designated

type.

4 The only allowed forms of constraint in the subtype indication of an allocator
are index and discriminant constraints. If an allocator includes a subtype
indication and if the type of the object created is an array type or a type
with discriminants that do not have default expressions, then the subtype
indication must either denote a constrained subtype, or include an explicit
index or discriminant constraint.

5 If the type of the created object is an array type or a type with discriminants,
then the created object is always constrained. If the allocator includes a
subtype indication, the created object is constrained either by the subtype
or by the default discriminant values. If the allocator includes a qualified
expression, the created object is constrained by the bounds or discriminants
of the initial value. For other types, the subtype of the created object is the
subtype defined by the subtype indication of the access type definition. 19

6 For the evaluation of an allocator, the elaboration of the subtype indication
or the evaluation of the qualified expression is performed first. The new
object is then created. Initializations are then performed as for a declared
object (see 3.2.1); the initialization is considered explicit in the case of a
qualified expression; any initializations are implicit in the case of a subtype
indication. Finally, an access value that designates the created object is
returned.

7 An implementation must guarantee that any object created by the evaluation
of an allocator remains allocated for as long as this object or one of its
subcomponents is accessible directly or indirectly, that is, as long as it can
be denoted by some name. Moreover, if an object or one of its subcomponents
belongs to a task type, it is considered to be accessible as long as the task is

19 See also Appendix G, AI-00150, AI-00331, and AI-00397.

4.8 Allocators 4-36

1

12

not terminated. An implementation may (but need not) reclaim the storage
occupied by an object created by an allocator, once this object has become
inaccessible:

In VAX Ada, storage is reclaimed only upon leaving the innermost block
statement, subprogram body, or task body that encloses the access type
declaration. In other words, storage for an inaccessible object of an access
type is not reclaimed until the collection allocated for the access type is
reclaimed (see also 13.2). For more detailed information on VAX Ada storage
allocation and deallocation, see the VAX Ada Run-Time Reference Manual.

When an application needs closer control over storage allocation for objects
designated by values of an access type, such control may be achieved by one
or more of the following means:

(a) The total amount of storage available for the collection of objects of an
access type can be set by means of a length clause (see 13.2).

(b) The pragma CONTROLLED informs the implementation that auto-
matic storage reclamation must not be performed for objects designated
by values of the access type, except upon leaving the innermost block
statement, subprogram body, or task body that encloses the access type
declaration, or after leaving the main program.

pragma CONTROLLED (access_type simple name);

A pragma CONTROLLED for a given access type is allowed at the
same places as a representation clause for the type (see 13.1). This
pragma is not allowed for a derived type.21

(¢) The explicit deallocation of the object designated by an access value
can be achieved by calling a procedure obtained by instantiation of the
predefined generic library procedure UNCHECKED_DEALLOCATION
(see 13.10.1).

The exception STORAGE_ERROR is raised by an allocator if there is not
enough storage. Note also that the exception CONSTRAINT_ERROR can be
raised by the evaluation of the qualified expression, by the elaboration of the
subtype indication, or by the initialization. 2

20 See also Appendix G, AI-00356.
21 See also Appendix G, AI-00294.
22 See also Appendix G, AI-00397.

4-37

Allocators 4.8

15

Examples for access types declared in section 3.8:
new CELL’ (0, null, null) -- initialized explicitly

new CELL’ (VALUE => O,
SUCC => null,

PRED => null) -- initialized explicitly
new CELL ~—— not initialized
new MATRIX(1 .. 10, 1 .. 20) —-— the bounds only
-—- are given
new MATRIX’ (1 .. 10 => (1 .. 20 => 0.0)) -- initialized
-- explicitly
new BUFFER (100) —-— the discriminant

-— only is given
new BUFFER’ (SIZE => 80,
POS => 0,
VALUE => (1 .. 80 => 'A’)) —-— initialized
—— explicitly

References: access type 3.8, access type definition 3.8, access value 3.8, array type
3.6, block statement 5.6, bound of an array 3.6.1, collection 3.8, constrained subtype
3.3, constraint 3.3, constraint_error exception 11.1, context of overload resolution
8.7, derived type 3.4, designate 3.8, discriminant 3.3, discriminant constraint 3.7.2,
elaboration 3.9, evaluation of a qualified expression 4.7, generic procedure 12.1,
index constraint 3.6.1, initial value 3.2.1, initialization 3.2.1, instantiation 12.3,
length clause 13.2, library unit 10.1, main program 10.1, name 4.1, object 3.2.1,
object declaration 3.2.1, pragma 2.8, procedure 6, qualified expression 4.7, raising of
exceptions 11, representation clause 13.1, simple name 4.1, storage_error exception
11.1, subcomponent 3.3, subprogram body 6.3, subtype 3.3, subtype indication 3.3.2,
task body 9.1, task type 9.2, terminated task 9.4, type 3.3, type declaration 3.3.1,
type mark 3.3.2 type with discriminants 3.3

4.9 Static Expressions and Static Subtypes

1

Certain expressions of a scalar type are said to be static. Similarly, certain
discrete ranges are said to be static, and the type marks of certain scalar
subtypes are said to denote static subtypes.

An expression of a scalar type is said to be static if and only if every primary
is one of those listed in (a) through (h) below, every operator denotes a
predefined operator, and the evaluation of the expression delivers a value
(that is, it does not raise an exception):23

(a) An enumeration literal (including a character literal).

23 See also Appendix G, AI-00128, AI-00190, and AI-00219.

4.9 Static Expressions and Static Subtypes 4-38

4 (b) A numeric literal.
5 (¢) A named number.

6 (d) A constant explicitly declared by a constant declaration with a static
subtype, and initialized with a static expression.24

7 (e) A function call whose function name is an operator symbol that denotes
a predefined operator, including a function name that is an expanded
name; each actual parameter must also be a static expression.

8 () A language-defined attribute of a static subtype; for an attribute that is
a function, the actual parameter must also be a static expression.

9 (g) A qualified expression whose type mark denotes a static subtype and
whose operand is a static expression.

10 (h) A static expression enclosed in parentheses.

1 A static range is a range whose bounds are static expressions. A static
range constraint is a range constraint whose range is static. A static
subtype is either a scalar base type, other than a generic formal type; or a
scalar subtype formed by imposing on a static subtype either a static range
constraint, or a floating or fixed point constraint whose range constraint, if
any, is static. A static discrete range is either a static subtype or a static
range. A static index constraint is an index constraint for which each index
subtype of the corresponding array type is static, and in which each discrete
range is static. A static discriminant constraint is a discriminant constraint
for which the subtyge of each discriminant is static, and in which each
expression is static.?®

Notes:

12 The accuracy of the evaluation of a static expression having a real type is
defined by the rules given in section 4.5.7. If the result is not a model num-
ber (or a safe number) of the type, the value obtained by this evaluation at
compilation time need not be the same as the value that would be obtained
by an evaluation at run time.

13 Array attributes are not static: in particular, the RANGE attribute is not
static.

24 See also Appendix G, AI-00001 and AI-00163.
25 See also Appendix G, AI-00023, AI-00251, and AI-00409.

4-39 Static Expressions and Static Subtypes 4.9

References: actual parameter 6.4.1, attribute 4.1.4, base type 3.3, bound of a
range 3.5, character literal 2.5, constant 3.2.1, constant declaration 3.2.1, discrete
range 3.6, discrete type 3.5, enumeration literal 3.5.1, exception 11, expression 4.4,
function 6.5, generic actual parameter 12.3, generic formal type 12.1.2, implicit
declaration 3.1, initialize 3.2.1, model number 3.5.6, named number 3.2, numeric
literal 2.4, predefined operator 4.5, qualified expression 4.7, raising of exceptions
11, range constraint 3.5, safe number 3.5.6, scalar type 3.5, subtype 3.3, type mark
3.3.2

4.10 Universal Expressions

1

A universal_expression is either an expression that delivers a result of type
universal_integer or one that delivers a result of type universal_real.

The same operations are predefined for the type universal_integer as for any
integer type. The same operations are predefined for the type universal_real
as for any floating point type. In addition, these operations include the
following multiplication and division operators:

Left operand Right operand

Operator Operation type type Result type
* multiplication wuniversal_real universal_ universal_real
integer
universal_ universal_real universal_real
integer
/ division universal_real universal_ universal_real
integer

The accuracy of the evaluation of a universal expression of type universal_
real is at least as good as that of the most accurate predefined floating
point type supported by the implementation, apart from universal_real
itself. Furthermore, if a universal expression is a static expression, then the
evaluation must be exact.26

For the evaluation of an operation of a nonstatic universal expression, an
implementation is allowed to raise the exception NUMERIC_ERROR only
if the result of the operation is a real value whose absolute value exceeds
the largest safe number of the most accurate predefined floating point type
(excluding universal_real), or an integer value greater than SYSTEM.MAX_
INT or less than SYSTEM.MIN_INTZ7

26 See also Appendix G, AI-00103, AI-00209, and AI-00405.
27 See also Appendix G, AI-00181 and AI-00387.

4.10 Universal Expressions 4-40

Note:

It is a consequence of the above rules that the type of a universal expression
is universal_integer if every primary contained in the expression is of this
type (excluding actual parameters of attributes that are functions, and
excluding right operands of exponentiation operators) and that otherwise the
type is universal_real.

Examples:

1 +1 -— 2

abs (-10)*3 -- 30

KILO : constant := 1000;

MEGA : constant := KILO*KILO; -- 1_000_000

LONG : constant := FLOAT’/DIGITS*2;

HALF PI : constant PI/2; -- see 3.2.2

DEG_TO RAD : constant :
RAD_TO_DEG : constant :
-- equivalent to

-- 1.0/((3.14159 26536/2)/90)

HALF _PI/90;
1.0/DEG_TO_RAD;

References: actual parameter 6.4.1, attribute 4.1.4, evaluation of an expression
4.5, floating point type 3.5.9, function 6.5, integer type 3.5.4, multiplying operator
4.5 4.5.5, predefined operation 3.3.3, primary 4.4, real type 3.5.6, safe number 3.5.6,
system.max_int 13.7, system.min_int 13.7, type 3.3, universal_integer type 3.5.4,
universal_real type 3.5.6

Universal Expressions 4.10

Chapter 5

Statements

1 A statement defines an action to be performed; the process by which a
statement achieves its action is called execution of the statement.

2 This chapter describes the general rules applicable to all statements.
Some specific statements are discussed in later chapters. Procedure call
statements are described in chapter 6 on subprograms. Entry call, delay,
accept, select, and abort statements are described in chapter 9 on tasks.
Raise statements are described in chapter 11 on exceptions, and code
statements in chapter 13. The remaining forms of statements are presented
in this chapter.

3 References: abort statement 9.10, accept statement 9.5, code statement 13.8,
delay statement 9.6, entry call statement 9.5, procedure call statement 6.4, raise
statement 11.3, select statement 9.7

5.1 Simple and Compound Statements—Sequences of

Statements

1 A statement is either simple or compound. A simple statement encloses no
other statement. A compound statement can enclose simple statements and
other compound statements.

2 sequence_of statements ::= statement {statement}

statement ::=

{label} simple_statement | {label} compound statement
simple_statement ::= null_statement

| assignment_statement | procedure_call statement

| exit_statement | return_statement

| goto_statement | entry call statement

| delay statement | abort_statement

I |

raise_statement code_statement

Simple and Compound Statements—Sequences of Statements 5.1

compound_statement ::=

if statement | case_statement
| loop_statement | block_statement
| accept_statement | select_statement
label ::= <<label_simple name>>
null_statement ::= null;

3 A statement is said to be labeled by the label name of any label of the
statement. A label name, and similarly a loop or block name, is implicitly
declared at the end of the declarative part of the innermost block statement,
subprogram body, package body, task body, or generic body that encloses the
labeled statement, the named loop statement, or the named block statement,
as the case may be. For a block statement without a declarative part, an
implicit declarative part (and preceding declare) is assumed.

4 The implicit declarations for different label names, loop names, and block
names occur in the same order as the beginnings of the corresponding
labeled statements, loop statements, and block statements. Distinct
identifiers must be used for all label, loop, and block names that are
implicitly declared within the body of a program unit, including within
block statements enclosed by this body, but excluding within other enclosed
program units (a program unit is either a subprogram, a package, a task
unit, or a generic unit).

5 Execution of a null statement has no other effect than to pass to the next
action.

6 The execution of a sequence of statements consists of the execution of the
individual statements in succession until the sequence is completed, or a
transfer of control takes place. A transfer of control is caused either by
the execution of an exit, return, or goto statement; by the selection of a
terminate alternative; by the raising of an exception; or (indirectly) by the
execution of an abort statement.

7 Examples of labeled statements:
<<HERE>> <<ICI>> <<AQUI>> <<HIER>> null;

<<AFTER>> X := 1;

Note:

8 The scope of a declaration starts at the place of the declaration itself (see
8.2). In the case of a label, loop, or block name, it follows from this rule that
the scope of the implicit declaration starts before the first explicit occurrence
of the corresponding name, since this occurrence is either in a statement
label, a loop statement, a block statement, or a goto statement. An implicit
declaration in a block statement may hide a declaration given in an outer

5.1 Simple and Compound Statements—Sequences of Statements 5-2

program unit or block statement (according to the usual rules of hiding
explained in section 8.3).

References: abort statement 9.10, accept statement 9.5, assignment statement
5.2, block name 5.6, block statement 5.6, case statement 5.4, code statement 13.8,
declaration 3.1, declarative part 3.9, delay statement 9.6, entry call statement 9.5,
exception 11, exit statement 5.7, generic body 12.1, generic unit 12, goto statement
5.9, hiding 8.3, identifier 2.3, if statement 5.3, implicit declaration 3.1, loop name
5.5, loop statement 5.5, package 7, package body 7.1, procedure call statement 6.4,
program unit 6, raise statement 11.3, raising of exceptions 11, return statement 5.8,
scope 8.2, select statement 9.7, simple name 4.1, subprogram 6, subprogram body
6.3, task 9, task body 9.1, task unit 9.1, terminate alternative 9.7.1, terminated
task 9.4

5.2 Assignment Statement

An assignment statement replaces the current value of a variable with a
new value specified by an expression. The named variable and the right-
hand side expression must be of the same type; this type must not be a
limited type.

assignment_ statement ::=
variable name := expression;

For the execution of an assignment statement, the variable name and the
expression are first evaluated, in some order that is not defined by the
language. A check is then made that the value of the expression belongs to
the subtype of the variable, except in the case of a variable that is an array
(the assignment then involves a subtype conversion as described in section
5.2.1). Finally, the value of the expression becomes the new value of the
variable. 1

The exception CONSTRAINT_ERROR is raised if the above-mentioned
subtype check fails; in such a case the current value of the variable is left
unchanged. If the variable is a subcomponent that depends on discriminants
of an unconstrained record variable, then the execution of the assignment

is erroneous if the value of any of these discriminants is changed by this
execution.

! See also Appendix G, AI-00407.

5-3

Assignment Statement 5.2

10

5.2 Assignment Statement

Examples:

VALUE := MAX VALUE - 1;
SHADE := BLUE;
NEXT FRAME (F) (M, N) := 2.5; -- see 4.1.1
U := DOT_PRODUCT (V, W):; -- see 6.5
WRITER := (STATUS => OPEN,

UNIT => PRINTER,

LINE_COUNT => 60); -- see 3.7.3
NEXT CAR.ALL := (72074, null):; -—- see 3.8.1

Examples of constraint checks:

I, J : INTEGER range 1 .. 10;

K : INTEGER range 1 .. 20;

I :=J; -- identical ranges

K :=J; -- compatible ranges

J := K; =-- will raise the exception CONSTRAINT ERROR if K > 10
Notes:

The values of the discriminants of an object designated by an access value
cannot be changed (not even by assigning a complete value to the object
itself) since such objects, created by allocators, are always constrained
(see 4.8); however, subcomponents of such objects may be unconstrained.

If the right-hand side expression is either a numeric literal or named
number, or an attribute that yields a result of type universal_integer or
universal_real, then an implicit type conversion is performed, as described
in section 4.6.

The determination of the type of the variable of an assignment statement
may require consideration of the expression if the variable name can be in-
terpreted as the name of a variable designated by the access value returned
by a function call, and similarly, as a component or slice of such a variable
(see section 8.7 for the context of overload resolution).

References: access type 8.8, allocator 4.8, array 3.6, array assignment 5.2.1,
component 3.6 3.7, constraint_error exception 11.1, designate 3.8, discriminant
3.7.1, erroneous 1.6, evaluation 4.5, expression 4.4, function call 6.4, implicit type
conversion 4.6, name 4.1, numeric literal 2.4, object 3.2, overloading 6.6 8.7, slice
4.1.2, subcomponent 3.3, subtype 3.3, subtype conversion 4.6, type 3.3, universal_
integer type 3.5.4, universal_real type 3.5.6, variable 3.2.1

5.2.1 Array Assignments

1

If the variable of an assignment statement is an array variable (including
a slice variable), the value of the expression is implicitly converted to the
subtype of the array variable; the result of this subtype conversion becomes
the new value of the array variable.

This means that the new value of each component of the array variable is
specified by the matching component in the array value obtained by evalua-
tion of the expression (see 4.5.2 for the definition of matching components).
The subtype conversion checks that for each component of the array variable
there is a matching component in the array value, and vice versa. The
exception CONSTRAINT_ERROR is raised if this check fails; in such a case
the value of each component of the array variable is left unchanged.

Examples:

A : STRING(1 .. 31);
B : STRING(3 .. 33);

A := B; -- same number of components

A(1 .. 9) = "tar sauce";

A(4 .. 12) :=2A(1 .. 9); -- A(l1 .. 12) = "tartar sauce"
Notes:

Array assignment is defined even in the case of overlapping slices, because
the expression on the right-hand side is evaluated before performing any
component assignment. In the above example, an implementation yielding
A(1 .. 12) = "tartartartar" would be incorrect.

The implicit subtype conversion described above for assignment to an array
variable is performed only for the value of the right-hand side expression as
a whole; it is not performed for subcomponents that are array values.

References: array 3.6, assignment 5.2, constraint_error exception 11.1, matching
array components 4.5.2, slice 4.1.2, subtype conversion 4.6, type 3.3, variable 3.2.1

5.3 If Statements

5-5

An if statement selects for execution one or none of the enclosed sequences
of statements, depending on the (truth) value of one or more corresponding
conditions.

If Statements 5.3

2 if_ statement ::=
if condition then
sequence_of_ statements
{elsif condition then
sequence_of statements}

[else
sequence_of statements]
end if;
condition ::= boolean expression

3 An expression specifying a condition must be of a boolean type.

4 For the execution of an if statement, the condition specified after if, and any
conditions specified after elsif, are evaluated in succession (treating a final
else as elsif TRUE then), until one evaluates to TRUE or all conditions
are evaluated and yield FALSE. If one condition evaluates to TRUE, then
the corresponding sequence of statements is executed; otherwise none of the
sequences of statements is executed.

5 Examples:
if MONTH = DECEMBER and DAY = 31 then

MONTH := JANUARY;

DAY = 1;

YEAR = YEAR + 1;
end if;

if LINE_TOO_SHORT then
raise LAYOUT ERROR;
elsif LINE FULL then
NEW_LINE;
PUT (ITEM) ;
else
PUT (ITEM) ;
end if;

if MY CAR.OWNER.VEHICLE /= MY CAR then -—- see 3.8
REPORT ("Incorrect data"):;
end if;

6 References: boolean type 3.5.3, evaluation 4.5, expression 4.4, sequence of
statements 5.1

5.4 Case Statements

1 A case statement selects for execution one of a number of alternative
sequences of statements; the chosen alternative is defined by the value of an
expression.

5.4 Case Statements 5-6

case_statement ::=
case expression is
case_statement_alternative
{case_statement_alternative}
end case;

case_statement_alternative ::=
when choice {| choice } =>
sequence_of statements

The expression must be of a discrete type which must be determinable
independently of the context in which the expression occurs, but using the
fact that the expression must be of a discrete type. Moreover, the type of
this expression must not be a generic formal type. Each choice in a case
statement alternative must be of the same type as the expression; the list
of choices specifies for which values of the expression the alternative is
chosen. 2

If the expression is the name of an object whose subtype is static, then
each value of this subtype must be represented once and only once in the
set of choices of the case statement, and no other value is allowed; this
rule is likewise applied if the expression is a qualified expression or type
conversion whose type mark denotes a static subtype. Otherwise, for other
forms of expression, each value of the (base) type of the expression must be
represented once and only once in the set of choices, and no other value is
allowed.

The simple expressions and discrete ranges given as choices in a case
statement must be static. A choice defined by a discrete range stands for all
values in the corresponding range (none if a null range). The choice others
is only allowed for the last alternative and as its only choice; it stands for
all values (possibly none) not given in the choices of previous alternatives.
A component simple name is not allowed as a choice of a case statement
alternative.

The execution of a case statement consists of the evaluation of the expression
followed by the execution of the chosen sequence of statements.3

2 See also Appendix G, AI-00151.
3 See also Appendix G, AI-00267.

5-7

Case Statements 5.4

7 Examples:

case SENSOR is
when ELEVATION => RECORD_ELEVATION (SENSOR_VALUE) ;

when AZIMUTH => RECORD_AZIMUTH (SENSOR_VALUE);
when DISTANCE => RECORD_DISTANCE (SENSOR VALUE) ;
when others => null;

end case;

case TODAY is

when MON => COMPUTE_INITIAL_ BALANCE;
when FRI => COMPUTE_CLOSING_BALANCE;
when TUE .. THU => GENERATE REPORT (TODAY) ;

v

when SAT .. SUN
end case;

null;

case BIN_NUMBER (COUNT) is
when 1 => UPDATE_BIN(1l);
when 2 => UPDATE_BIN(Z);
when 3 | 4 =>
EMPTY BIN(1);
EMPTY BIN(2);
when others => raise ERROR;
end case;

Notes:

8 The execution of a case statement chooses one and only one alternative,
since the choices are exhaustive and mutually exclusive. Qualification of the
expression of a case statement by a static subtype can often be used to limit
the number of choices that need be given explicitly.

9 An others choice is required in a case statement if the type of the expression
is the type universal_integer (for example, if the expression is an integer
literal), since this is the only way to cover all values of the type universal_
integer.

10 References: base type 3.3, choice 3.7.3, context of overload resolution 8.7, discrete
type 3.5, expression 4.4, function call 6.4, generic formal type 12.1, conversion 4.6,
discrete type 3.5, enumeration literal 3.5.1, expression 4.4, name 4.1, object 3.2.1,
overloading 6.6 8.7, qualified expression 4.7, sequence of statements 5.1, static
discrete range 4.9, static subtype 4.9, subtype 3.3, type 3.3, type conversion 4.6, type
mark 3.3.2

5.4 Case Statements 5-8

5.5 Loop Statements

1 A loop statement includes a sequence of statements that is to be executed
repeatedly, zero or more times.

2 loop_statement ::=
[Ioop simple name:]
[iteration_scheme] loop
sequence_of_ statements
end loop [loop simple_name];

iteration_scheme ::= while condition
| for loop_parameter_specification

loop_parameter_specification ::=
identifier in [reverse] discrete_range

3 If a loop statement has a loop simple name, this simple name must be given
both at the beginning and at the end.

4 A loop statement without an iteration scheme specifies repeated execution
of the sequence of statements. Execution of the loop statement is complete
when the loop is left as a consequence of the execution of an exit statement,
or as a consequence of some other transfer of control (see 5.1).

5 For a loop statement with a while iteration scheme, the condition is
evaluated before each execution of the sequence of statements; if the value
of the condition is TRUE, the sequence of statements is executed, if FALSE
the execution of the loop statement is complete.

6 For a loop statement with a for iteration scheme, the loop parameter
specification is the declaration of the loop parameter with the given
identifier. The loop parameter is an object whose type is the base type
of the discrete range (see 3.6.1). Within the sequence of statements, the
loop parameter is a constant. Hence a loop parameter is not allowed as
the (left-hand side) variable of an assignment statement. Similarly the
loop parameter must not be given as an out or in out parameter of a
procedure or entry call statement, or as an in out parameter of a generic
instantiation.*

7 For the execution of a loop statement with a for iteration scheme, the loop
parameter specification is first elaborated. This elaboration creates the loop
parameter and evaluates the discrete range.

4 See also Appendix G, AI-00006.

59 Loop Statements 5.5

12

13

14

If the discrete range is a null range, the execution of the loop statement

is complete. Otherwise, the sequence of statements is executed once for
each value of the discrete range (subject to the loop not being left as a
consequence of the execution of an exit statement or as a consequence of
some other transfer of control). Prior to each such iteration, the correspond-
ing value of the discrete range is assigned to the loop parameter. These
values are assigned in increasing order unless the reserved word reverse is
present, in which case the values are assigned in decreasing order.

Example of a loop statement without an iteration scheme:

loop

GET (CURRENT _CHARACTER) ;

exit when CURRENT CHARACTER = ’*';
end loop;

Example of a loop statement with a while iteration scheme:

while BID (N).PRICE < CUT_OFF.PRICE loop
RECORD_BID (BID (N) .PRICE) ;
N := N + 1;

end loop;

Example of a loop statement with a for iteration scheme:

for J in BUFFER’RANGE loop -- legal even with a null range
if BUFFER(J) /= SPACE then
PUT (BUFFER(J)) ;
end if;
end loop;

Example of a loop statement with a loop simple name:

SUMMATION:
while NEXT /= HEAD loop -- see 3.8
SUM := SUM + NEXT.VALUE;

NEXT := NEXT.SUCC;
end loop SUMMATION;

Notes:

The scope of a loop parameter extends from the loop parameter specification
to the end of the loop statement, and the visibility rules are such that a loop
parameter is only visible within the sequence of statements of the loop.

The discrete range of a for loop is evaluated just once. Use of the reserved
word reverse does not alter the discrete range, so that the following itera-
tion schemes are not equivalent; the first has a null range.

for J in reverse 1 .. O
for g in 0 .. 1

5.5 Loop Statements 5-10

15 Loop names are also used in exit statements, and in expanded names (in a
prefix of the loop parameter).

16 References: actual parameter 6.4.1, assignment statement 5.2, base type 3.3,
bound of a range 3.5, condition 5.3, constant 3.2.1, context of overload resolution
8.7, conversion 4.6, declaration 8.1, discrete range 3.6.1, elaboration 3.1, entry
call statement 9.5, evaluation 4.5, exit statement 5.7, expanded name 4.1.3, false
boolean value 3.5.3, generic actual parameter 12.3, generic instantiation 12.3, goto
statement 5.9, identifier 2.3, integer type 3.5.4, null range 3.5, object 3.2.1, prefix
4.1, procedure call 6.4, raising of exceptions 11, reserved word 2.9, return statement
5.8, scope 8.2, sequence of statements 5.1, simple name 4.1, terminate alternative
9.7.1, true boolean value 3.5.3 3.5.4, visibility 8.3

5.6 Block Statements

1 A block statement encloses a sequence of statements optionally preceded by
a declarative part and optionally followed by exception handlers.

2 block_statement ::=
[block simple_ name:]
[declare
declarative_part]
begin
sequence_of statements
[exception
exception_handler
{exception_handler}]
end [block simple name];

3 If a block statement has a block simple name, this simple name must be
given both at the beginning and at the end.

4 The execution of a block statement consists of the elaboration of its
declarative part (if any) followed by the execution of the sequence of
statements. If the block statement has exception handlers, these service
corresponding exceptions that are raised during the execution of the
sequence of statements (see 11.2).

5 Example:

SWAP:
declare
TEMP : INTEGER;
begin
TEMP := V; V := U; U := TEMP;
end SWAP;

5-11 Block Statements 5.6

Notes:

6 If task objects are declared within a block statement whose execution is
completed, the block statement is not left until all its dependent tasks are
terminated (see 9.4). This rule applies also to a completion caused by an
exit, return, or goto statement; or by the raising of an exception.

7 Within a block statement, the block name can be used in expanded names
denoting local entities such as SWAP.TEMP in the above example
(see 4.1.3 (D).

8 References: declarative part 3.9, dependent task 9.4, exception handler 11.2, exit

statement 5.7, expanded name 4.1.3, goto statement 5.9, raising of exceptions 11,
return statement 5.8, sequence of statements 5.1, simple name 4.1, task object 9.2

5.7 Exit Statements

1 An exit statement is used to complete the execution of an enclosing loop
statement (called the loop in what follows); the completion is conditional if
the exit statement includes a condition.

2 exit_statement ::=
exit [loop name] [when condition];?

3 An exit statement with a loop name is only allowed within the named loop,
and applies to that loop; an exit statement without a loop name is only
allowed within a loop, and applies to the innermost enclosing loop (whether
named or not). Furthermore, an exit statement that applies to a given loop
must not appear within a subprogram body, package body, task body, generic
body, or accept statement, if this construct is itself enclosed by the given
loop.

4 For the execution of an exit statement, the condition, if present, is first
evaluated. Exit from the loop then takes place if the value is TRUE or if
there is no condition.

5 See also Appendix G, AI-00210.

5.7 Exit Statements 5-12

Examples:

for N in 1 .. MAX NUM ITEMS loop
GET_NEW_ITEM(NEW_ITEM);
MERGE_ITEM(NEW_ITEM, STORAGE FILE);
exit when NEW_ITEM = TERMINAL ITEM;
end loop;

MAIN_ CYCLE:
loop
-— initial statements
exit MAIN CYCLE when FOUND;
-- final statements
end loop MAIN CYCLE;

Note:

Several nested loops can be exited by an exit statement that names the
outer loop.

References: accept statement 9.5, condition 5.3, evaluation 4.5, generic body 12.1,
loop name 5.5, loop statement 5.5, package body 7.1, subprogram body 6.3, true
boolean value 3.5.3

5.8 Return Statements

5-13

A return statement is used to complete the execution of the innermost
enclosing function, procedure, or accept statement.

return_statement ::= return [expression];

A return statement is only allowed within the body of a subprogram or
generic subprogram, or within an accept statement, and applies to the
innermost (enclosing) such construct; a return statement is not allowed
within the body of a task unit, package, or generic package enclosed by this
construct (on the other hand, it is allowed within a compound statement
enclosed by this construct and, in particular, in a block statement).

A return statement for an accept statement or for the body of a procedure or
generic procedure must not include an expression. A return statement for
the body of a function or generic function must include an expression.

The value of the expression defines the result returned by the function. The
type of this expression must be the base type of the type mark given after
the reserved word return in the specification of the function or generic
function (this type mark defines the result subtype).

Return Statements 5.8

6 For the execution of a return statement, the expression (if any) is first
evaluated and a check is made that the value belongs to the result subtype.
The execution of the return statement is thereby completed if the check
succeeds; so also is the execution of the subprogram or of the accept
statement. The exception CONSTRAINT _ERROR is raised at the place of
the return statement if the check fails.

7 Examples:

return; -- in a procedure
return KEY VALUE (LAST_INDEX) ; -- in a function
Note:

8 If the expression is either a numeric literal or named number, or an attribute
that yields a result of type universal_integer or universal_real, then an
implicit conversion of the result is performed as described in section 4.6.

9 References: accept statement 9.5, attribute A, block statement 5.6, constraint_
error exception 11.1, expression 4.4, function body 6.3, function call 6.4, generic body
12.1, implicit type conversion 4.6, named number 3.2, numeric literal 2.4, package
body 7.1, procedure body 6.3, reserved word 2.9, result subtype 6.1, subprogram
body 6.3, subprogram specification 6.1, subtype 3.3, task body 9.1, type mark 3.3.2,
universal_integer type 3.5.4, universal_real type 3.5.6

5.9 Goto Statements

1 A goto statement specifies an explicit transfer of control from this statement
to a target statement named by a label.

2 goto_statement ::= goto label name;

3 The innermost sequence of statements that encloses the target statement
must also enclose the goto statement (note that the goto statement can
be a statement of an inner sequence). Furthermore, if a goto statement is
enclosed by an accept statement or the body of a program unit, then the
target statement must not be outside this enclosing construct; conversely,
it follows from the previous rule that if the target statement is enclosed by
such a construct, then the goto statement cannot be outside.

4 The execution of a goto statement transfers control to the named target
statement.

5.9 Goto Statements 5-14

5-15

Note:

The above rules allow transfer of control to a statement of an enclosing se-
quence of statements but not the reverse. Similarly, they prohibit transfers
of control such as between alternatives of a case statement, if statement, or
select statement; between exception handlers; or from an exception handler
of a frame back to the sequence of statements of this frame.

Example:

<<COMPARE>>
if A(I) < ELEMENT then
if LEFT(I) /= 0 then
I := LEFT(I):;
goto COMPARE;
end if;
-— some statements
end if;

References: accept statement 9.5, block statement 5.6, case statement 5.4,
compound statement 5.1, exception handler 11.2, frame 11.2, generic body 12.1, if
statement 5.3, label 5.1, package body 7.1, program unit 6, select statement 9.7,
sequence of statements 5.1, statement 5.1, subprogram body 6.3, task body 9.1,
transfer of control 5.1

Goto Statements 5.9

Chapter 6

Subprograms

1 Subprograms are one of the four forms of program unit, of which programs

can be composed. The other forms are packages, task units, and generic

units.

2 A subprogram is a program unit whose execution is invoked by a
subprogram call. There are two forms of subprogram: procedures and

functions. A procedure call is a statement; a function call is an expression

and returns a value. The definition of a subprogram can be given in two

parts: a subprogram declaration defining its calling conventions, and a
subprogram body defining its execution.

3 References: function 6.5, function call 6.4, generic unit 12, package 7, procedure

6.1, procedure call 6.4, subprogram body 6.3, subprogram call 6.4, subprogram
declaration 6.1, task unit 9

6.1 Subprogram Declarations

1 A subprogram declaration declares a procedure or a function, as indicated by

the initial reserved word.

2 subprogram declaration ::= subprogram specification;

subprogram_specification ::=
procedure identifier [formal part]
| function designator [formal part] return type_mark

designator ::= identifier | operator_symbol
operator_symbol ::= string literal
formal part ::=

(parameter_specification {; parameter_specification})

6-1 Subprogram Declarations

6.1

parameter_ specification ::=
identifier list : mode type mark [:= expression]

mode ::= [in] | in out | out

3 The specification of a procedure specifies its identifier and its formal
parameters (if any). The specification of a function specifies its designator,
its formal parameters (if any) and the subtype of the returned value (the
result subtype). A designator that is an operator symbol is used for the
overloading of an operator. The sequence of characters represented by an
operator symbol must be an operator belonging to one of the six classes of
overloadable operators defined in section 4.5 (extra spaces are not allowed
and the case of letters is not significant).

4 A parameter specification with several identifiers is equivalent to a sequence
of single parameter specifications, as explained in section 3.2. Each single
parameter specification declares a formal parameter. If no mode is explicitly
given, the mode in is assumed. If a parameter specification ends with an
expression, the expression is the default expression of the formal parameter.
A default expression is only allowed in a parameter specification if the mode
is in (whether this mode is indicated explicitly or implicitly). The type of a
default expression must be that of the corresponding formal parameter.

5 The use of a name that denotes a formal parameter is not allowed in default
expressions of a formal part if the specification of the parameter is itself
given in this formal part.

6 The elaboration of a subprogram declaration elaborates the corresponding
formal part. The elaboration of a formal part has no other effect.
7 Examples of subprogram declarations:

procedure TRAVERSE TREE;
procedure INCREMENT (X : in out INTEGER);

procedure RIGHT INDENT (MARGIN : out LINE SIZE); -- see 3.5.4
procedure SWITCH(FROM, TO : in out LINK); -- see 3.8.1
function RANDOM return PROBABILITY; -— see 3.5.7
function MIN CELL(X : LINK) return CELL; -- see 3.8.1
function NEXT FRAME (K : POSITIVE) return FRAME; -- see 3.8
function DOT PRODUCT (LEFT,RIGHT: VECTOR) return REAL; -- see 3.6
function "*" (LEFT,RIGHT : MATRIX) return MATRIX; -— see 3.6
8 Examples of in parameters with default expressions:
procedure PRINT HEADER(PAGES : in NATURAL;
HEADER : in LINE
:= (1 .. LINE'LAST => ' ’); -- see 3.6
CENTER : in BOOLEAN
:= TRUE) ;

6.1 Subprogram Declarations 6-2

10

1

Notes:

The evaluation of default expressions is caused by certain subprogram calls,
as described in section 6.4.2 (default expressions are not evaluated during
the elaboration of the subprogram declaration).

All subprograms can be called recursively and are reentrant.

References: declaration 3.1, elaboration 3.9, evaluation 4.5, expression 4.4, formal
parameter 6.2, function 6.5, identifier 2.3, identifier list 3.2, mode 6.2, name 4.1,
elaboration has no other effect 3.9, operator 4.5, overloading 6.6 8.7, procedure 6,
string literal 2.6, subprogram call 6.4, type mark 3.3.2

6.2 Formal Parameter Modes

6-3

The value of an object is said to be read when this value is evaluated; it is
also said to be read when one of its subcomponents is read. The value of

a variable is said to be updated when an assignment is performed to the
variable, and also (indirectly) when the variable is used as actual parameter
of a subprogram call or entry call statement that updates its value; it is also
said to be updated when one of its subcomponents is updated.

A formal parameter of a subprogram has one of the three following modes:

in The formal parameter is a constant and permits only reading of the
value of the associated actual parameter.

in out The formal parameter is a variable and permits both reading and
updating of the value of the associated actual parameter.

out The formal parameter is a variable and permits updating of the value of
the associated actual parameter.

The value of a scalar parameter that is not updated by the call is unde-
fined upon return; the same holds for the value of a scalar subcompo-
nent, other than a discriminant. Reading the bounds and discriminants
of the formal parameter and of its subcomponents is allowed, but no
other reading.

For a scalar parameter, the above effects are achieved by copy: at the start
of each call, if the mode is in or in out, the value of the actual parameter is
copied into the associated formal parameter; then after normal completion
of the subprogram body, if the mode is in out or out, the value of the
formal parameter is copied back into the associated actual parameter. For a
parameter whose type is an access type, copy-in is used for all three modes,
and copy-back for the modes in out and out.

Formal Parameter Modes 6.2

7 For a parameter whose type is an array, record, or task type, an implemen-
tation may likewise achieve the above effects by copy, as for scalar types.
In addition, if copy is used for a parameter of mode out, then copy-in is
required at least for the bounds and discriminants of the actual parameter
and of its subcomponents, and also for each subcomponent whose type is
an access type. Alternatively, an implementation may achieve these effects
by reference, that is, by arranging that every use of the formal parameter
(to read or to update its value) be treated as a use of the associated actual
parameter, throughout the execution of the subprogram call. The language
does not define which of these two mechanisms is to be adopted for parame-
ter passing, nor whether different calls to the same subprogram are to use
the same mechanism. The execution of a program is erroneous if its effect
depends on which mechanism is selected by the implementation.

The VAX Ada Run-Time Reference Manual describes the parameter passing
mechanisms used in VAX Ada.

8 For a parameter whose type is a private type, the above effects are achieved
according to the rule that applies to the corresponding full type declaration.

9 Within the body of a subprogram, a formal parameter is subject to any
constraint resulting from the type mark given in its parameter specification.
For a formal parameter of an unconstrained array type, the bounds
are obtained from the actual parameter, and the formal parameter is
constrained by these bounds (see 3.6.1). For a formal parameter whose
declaration specifies an unconstrained (private or record) type with
discriminants, the discriminants of the formal parameter are initialized
with the values of the corresponding discriminants of the actual parameter;
the formal parameter is unconstrained if and only if the mode is in out
or out and the variable name given for the actual parameter denotes an
unconstrained variable (see 3.7.1 and 6.4.1).

10 If the actual parameter of a subprogram call is a subcomponent that depends
on discriminants of an unconstrained record variable, then the execution of
the call is erroneous if the value of any of the discriminants of the variable
is changed by this execution; this rule does not apply if the mode is in and
the type of the subcomponent is a scalar type or an access type.

Notes:

11 For parameters of array and record types, the parameter passing rules have
these consequences:

12 ¢ If the execution of a subprogram is abandoned as a result of an excep-
tion, the final value of an actual parameter of such a type can be either
its value before the call or a value assigned to the formal parameter
during the execution of the subprogram.

6.2 Formal Parameter Modes 64

13

14

15

e If no actual parameter of such a type is accessible by more than one
path, then the effect of a subprogram call (unless abandoned) is the same
whether or not the implementation uses copying for parameter passing.
If, however, there are multiple access paths to such a parameter (for
example, if a global variable, or another formal parameter, refers to the
same actual parameter), then the value of the formal is undefined after
updating the actual other than by updating the formal. A program using
such an undefined value is erroneous.

The same parameter modes are defined for formal parameters of entries
(see 9.5) with the same meaning as for subprograms. Different parameter
modes are defined for generic formal parameters (see 12.1.1).

For all modes, if an actual parameter designates a task, the associated
formal parameter designates the same task; the same holds for a subcom-
ponent of an actual parameter and the corresponding subcomponent of the
associated formal parameter.

References: access type 3.8, actual parameter 6.4.1, array type 3.6, assignment
5.2, bound of an array 3.6.1, constraint 3.3, depend on a discriminant 3.7.1, dis-
criminant 3.7.1, entry call statement 9.5, erroneous 1.6, evaluation 4.5, exception
11, expression 4.4, formal parameter 6.1, generic formal parameter 12.1, global

8.1, mode 6.1, null access value 3.8, object 3.2, parameter specification 6.1, private
type 7.4, record type 3.7, scalar type 3.5, subcomponent 3.3, subprogram body 6.3,
subprogram call statement 6.4, task 9, task type 9.2, type mark 3.3.2, unconstrained
array type 3.6, unconstrained type with discriminants 3.7.1, unconstrained variable
3.2.1, variable 3.2.1

6.3 Subprogram Bodies

6-5

1

2

A subprogram body specifies the execution of a subprogram.

subprogram_body ::=

subprogram specification is
[declarative_part]

begin
sequence_of_ statements

[exception
exception _handler
{exception_handler}]

end [designator];

The declaration of a subprogram is optional. In the absence of such a
declaration, the subprogram specification of the subprogram body (or body
stub) acts as the declaration. For each subprogram declaration, there
must be a corresponding body (except for a subprogram written in another
language, as explained in section 13.9). If both a declaration and a body

Subprogram Bodies 6.3

are given, the subprogram specification of the body must conform to the
subprogram specification of the declaration (see section 6.3.1 for conformance
rules).

4 If a designator appears at the end of a subprogram body, it must repeat the
designator of the subprogram specification.

5 The elaboration of a subprogram body has no other effect than to establish
that the body can from then on be used for the execution of calls of the
subprogram.

6 The execution of a subprogram body is invoked by a subprogram call
(see 6.4). For this execution, after establishing the association between
formal parameters and actual parameters, the declarative part of the body
is elaborated, and the sequence of statements of the body is then executed.
Upon completion of the body, return is made to the caller (and any necessary
copying back of formal to actual parameters occurs (see 6.2)). The optional
exception handlers at the end of a subprogram body handle exceptions
raised during the execution of the sequence of statements of the subprogram
body (see 11.4).

Note:

7 It follows from the visibility rules that if a subprogram declared in a package
is to be visible outside the package, a subprogram specification must be
given in the visible part of the package. The same rules dictate that a
subprogram declaration must be given if a call of the subprogram occurs
textually before the subprogram body (the declaration must then occur
earlier than the call in the program text). The rules given in sections 3.9
and 7.1 imply that a subprogram declaration and the corresponding body
must both occur immediately within the same declarative region.

8 Example of subprogram body:

procedure PUSH(E : in ELEMENT TYPE; S : in out STACK) is
begin
if S.INDEX = S.SIZE then
raise STACK OVERFLOW;

else
S.INDEX := S.INDEX + 1;
S.SPACE (S.INDEX) := E;
end if;
end PUSH;

9 References: actual parameter 6.4.1, body stub 10.2, conform 6.3.1, declaration
3.1, declarative part 3.9, declarative region 8.1, designator 6.1, elaboration 3.9,
elaboration has no other effect 3.1, exception 11, exception handler 11.2, formal
parameter 6.1, occur immediately within 8.1, package 7, sequence of statements

6.3 Subprogram Bodies 66

5.1, subprogram 6, subprogram call 6.4, subprogram declaration 6.1, subprogram
specification 6.1, visibility 8.3, visible part 7.2

6.3.1 Conformance Rules

1

Whenever the language rules require or allow the specification of a given
subprogram to be provided in more than one place, the following variations
are allowed at each place:

* A numeric literal can be replaced by a different numeric literal if and
only if both have the same value.

¢ A simple name can be replaced by an expanded name in which this
simple name is the selector, if and only if at both places the meaning of
the simple name is given by the same declaration.

* A string literal given as an operator symbol can be replaced by a
different string literal if and only if both represent the same operator. 1

Two subprogram specifications are said to conform if, apart from comments
and the above allowed variations, both specifications are formed by the same
sequence of lexical elements, and corresponding lexical elements are given
the same meaning by the visibility and overloading rules. 2

Conformance is likewise defined for formal parts, discriminant parts, and
type marks (for deferred constants and for actual parameters that have the
form of a type conversion (see 6.4.1)).

Notes:

A simple name can be replaced by an expanded name even if the simple
name is itself the prefix of a selected component. For example, Q.R can be
replaced by P.Q.R if Q is declared immediately within P.

The following specifications do not conform since they are not formed by the
same sequence of lexical elements:

procedure P (X,Y : INTEGER)
procedure P (X : INTEGER; Y : INTEGER)
procedure P (X,Y : in INTEGER)

References: actual parameter 6.4 6.4.1, allow 1.6, comment 2.7, declaration 3.1,
deferred constant 7.4.3, direct visibility 8.3, discriminant part 3.7.1, expanded name
4.1.3, formal part 6.1, lexical element 2, name 4.1, numeric literal 2.4, operator
symbol 6.1, overloading 6.6 8.7, prefix 4.1, selected component 4.1.3, selector 4.1.3,
simple name 4.1, subprogram specification 6.1, type conversion 4.6, visibility 8.3

1 See also Appendix G, AI-00493.
2 See also Appendix G, AI-00350.

6-7

Conformance Rules 6.3.1

6.3.2

1

Inline Expansion of Subprograms

The pragma INLINE is used to indicate that inline expansion of the
subprogram body is desired for every call of each of the named subprograms.
The form of this pragma is as follows:

pragma INLINE (name {, name}):;

Each name is either the name of a subprogram or the name of a generic sub-
program. The pragma INLINE is only allowed at the place of a declarative
item in a declarative part or package specification, or after a library unit in
a compilation, but before any subsequent compilation unit.

If the pragma appears at the place of a declarative item, each name must
denote a subprogram or a generic subprogram declared by an earlier
declarative item of the same declarative part or package specification. If
several (overloaded) subprograms satisfy this requirement, the pragma
applies to all of them. If the pragma appears after a given library unit,

the only name allowed is the name of this unit. If the name of a generic
subprogram is mentioned in the pragma, this indicates that inline expansion
is desired for calls of all subprograms obtained by instantiation of the named
generic unit.3

In VAX Ada, the subprogram name must be an identifier or a string literal
that denotes an operator symbol.

Also, in VAX Ada, if the name specified by a pragma INLINE is declared

by a renaming declaration, the pragma INLINE applies to the subprogram
only if the declaration of the subprogram that has been renamed, the
renaming declaration, and the pragma all occur in the same declarative part
or package specification. The pragma is ignored if these conditions are not
satisfied.

The meaning of a subprogram is not changed by the pragma INLINE. For
each call of the named subprograms, an implementation is free to follow or
to ignore the recommendation expressed by the pragma. (Note, in particular,
that the recommendation cannot generally be followed for a recursive
subprogram.)

In VAX Ada, a call of a subprogram for which the pragma INLINE has been
specified is expanded inline provided that certain conditions are satisfied.
These conditions are given in the VAX Ada Run-Time Reference Manual.
The same criteria apply to subprograms that result from instantiation of a
generic declaration for which a pragma INLINE was specified.

3 See also Appendix G, AI-00200 and AI-00242.

6.3.2

Inline Expansion of Subprograms 6-8

Notes:

The meaning of the subprogram name is determined as for any name

(see 8.3), except that the name can denote more than one subprogram.
Thus, in the following declaration the pragma INLINE applies to the first
two procedures; it does not apply to the third because the declaration is not
visible at the place of the pragma:

procedure P (B: BOOLEAN) ;
procedure P (I: INTEGER);
pragma INLINE (P):;
procedure P (F: FLOAT);

If a pragma INLINE and pragma INTERFACE are used together, the
pragma INLINE is ignored regardless of the order in which the two pragmas
appear.

Example of renaming:

package CHOOSE R is
procedure P (X: INTEGER);
procedure P (X: FLOAT);

private
procedure R (X: FLOAT) renames P;
pragma INLINE(R); —-- second procedure P will be expanded

-- inline when procedure R is called
end CHOOSE_R;

References: allow 1.6, compilation 10.1, compilation unit 10.1, declarative item
3.9, declarative part 3.9, generic subprogram 12.1, generic unit 12 12.1, instantiation
12.3, library unit 10.1, name 4.1, overloading 6.6 8.7, package specification 7.1,
pragma 2.8, subprogram 6, subprogram body 6.3, subprogram call 6.4

identifier 2.3, operator symbol 6.1, renaming declaration 8.5, string literal 2.6

6.4 Subprogram Calls

6-9

A subprogram call is either a procedure call statement or a function call;
it invokes the execution of the corresponding subprogram body. The call
specifies the association of the actual parameters, if any, with formal
parameters of the subprogram.

procedure_call_ statement ::=
procedure_name [actual_ parameter_part];

function_call ::=
function name [actual_parameter part]

actual_ parameter_part ::=
(parameter_association {, parameter_association})

Subprogram Calls 6.4

parameter association ::=
[formal parameter =>] actual parameter

formal parameter ::= parameter simple name

actual parameter ::=
expression | variable name | type mark(variable name)

3 Each parameter association associates an actual parameter with a corre-
sponding formal parameter. A parameter association is said to be named
if the formal parameter is named explicitly; it is otherwise said to be posi-
tional. For a positional association, the actual parameter corresponds to the
formal parameter with the same position in the formal part.

4 Named associations can be given in any order, but if both positional and
named associations are used in the same call, positional associations must
occur first, at their normal position. Hence once a named association is
used, the rest of the call must use only named associations.

5 For each formal parameter of a subprogram, a subprogram call must specify
exactly one corresponding actual parameter. This actual parameter is
specified either explicitly, by a parameter association, or, in the absence of
such an association, by a default expression (see 6.4.2).

6 The parameter associations of a subprogram call are evaluated in some
order that is not defined by the language. Similarly, the language rules do
not define in which order the values of in out or out parameters are copied
back into the corresponding actual parameters (when this is done).

7 Examples of procedure calls:

TRAVERSE_TREE; -— see 6.1
TABLE_MANAGER.INSERT (E) ; -- see 7.5
PRINT HEADER (128, TITLE, TRUE); -- see 6.1
SWITCH (FROM => X, TO => NEXT); -- see 6.1
PRINT HEADER (128,
HEADER => TITLE,
CENTER => TRUE) ; -— see 6.1
PRINT HEADER (HEADER => TITLE,
CENTER => TRUE,
PAGES => 128); -- see 6.1
8 Examples of function calls:
DOT_PRODUCT (U, V) -- see 6.1 and 6.5
CLOCK -— see 9.6
9 References: default expression for a formal parameter 6.1, erroneous 1.6, ex-

pression 4.4, formal parameter 6.1, formal part 6.1, name 4.1, simple name 4.1,
subprogram 6, type mark 3.3.2, variable 3.2.1

6.4 Subprogram Calls 6-10

6.4.1 Parameter Associations

1

Each actual parameter must have the same type as the corresponding
formal parameter.

An actual parameter associated with a formal parameter of mode in must be
an expression; it is evaluated before the call.

An actual parameter associated with a formal parameter of mode in out

or out must be either the name of a variable, or of the form of a type
conversion whose argument is the name of a variable. In either case, for the
mode in out, the variable must not be a formal parameter of mode out or a
subcomponent thereof. For an actual parameter that has the form of a type
conversion, the type mark must conform (see 6.3.1) to the type mark of the
formal parameter; the allowed operand and target types are the same as for
type conversions (see 4.6).

The variable name given for an actual parameter of mode in out or out

is evaluated before the call. If the actual parameter has the form of a
type conversion, then before the call, for a parameter of mode in out, the
variable is converted to the specified type; after (normal) completion of
the subprogram body, for a parameter of mode in out or out, the formal
parameter is converted back to the type of the variable. (The type specified
in the conversion must be that of the formal parameter.

The following constraint checks are performed for parameters of scalar and
access types:

e Before the call: for a parameter of mode in or in out, it is checked that
the value of the actual parameter belongs to the subtype of the formal
parameter.

e After (normal) completion of the subprogram body: for a parameter of
mode in out or out, it is checked that the value of the formal parameter
belongs to the subtype of the actual variable. In the case of a type
conversion, the value of the formal parameter is converted back and the
check applies to the result of the conversion.

In each of the above cases, the execution of the program is erroneous if the
checked value is undefined.

For other types, for all modes, a check is made hefore the call as for scalar
and access types; no check is made upon return.

4 See also Appendix G, AI-00245.
5 See also Appendix G, AI-00024.
6 See also Appendix G, AI-00025 and AI-00396.

6-11

Parameter Associations 6.4.1

10

13

The exception CONSTRAINT_ERROR is raised at the place of the subpro-
gram call if either of these checks fails.

Note:

For array types and for types with discriminants, the check before the call is
sufficient (a check upon return would be redundant) if the type mark of the
formal parameter denotes a constrained subtype, since neither array bounds
nor discriminants can then vary.

If this type mark denotes an unconstrained array type, the formal parameter
is constrained with the bounds of the corresponding actual parameter and
no check (neither before the call nor upon return) is needed (see 3.6.1).
Similarly, no check is needed if the type mark denotes an unconstrained
type with discriminants, since the formal parameter is then constrained
exactly as the corresponding actual parameter (see 3.7.1).

References: actual parameter 6.4, array bound 3.6, array type 3.6, call of a sub-
program 6.4, conform 6.3.1, constrained subtype 3.3, constraint 3.3, constraint_error
exception 11.1, discriminant 3.7.1, erroneous 1.6, evaluation 4.5, evaluation of a
name 4.1, expression 4.4, formal parameter 6.1, mode 6.1, name 4.1, parameter
association 6.4, subtype 3.3, type 3.3, type conversion 4.6, type mark 3.3.2, uncon-
strained array type 3.6, unconstrained type with discriminants 3.7.1, undefined
value 3.2.1, variable 3.2.1

6.4.2 Default Parameters

1

If a parameter specification includes a default expression for a parameter
of mode in, then corresponding subprogram calls need not include a pa-
rameter association for the parameter. If a parameter association is thus
omitted from a call, then the rest of the call, following any initial positional
associations, must use only named associations.

For any omitted parameter association, the default expression is evalu-
ated before the call and the resulting value is used as an implicit actual
parameter.

Examples of procedures with default values:
procedure ACTIVATE (PROCESS : in PROCESS_NAME;

AFTER : in PROCESS_NAME := NO_PROCESS;
WAIT : in DURATION := 0.0;
PRIOR : in BOOLEAN := FALSE);

procedure PAIR(LEFT, RIGHT : PERSON_NAME := new PERSON) ;

6.4.2 Default Parameters 6-12

Examples of their calls:

ACTIVATE (X) ;

ACTIVATE (X, AFTER => Y);

ACTIVATE (X, WAIT => 60.0, PRIOR => TRUE);
ACTIVATE (X, Y, 10.0, FALSE):;

PAIR;
PAIR (LEFT => new PERSON, RIGHT => new PERSON);

Note:

If a default expression is used for two or more parameters in a multiple
parameter specification, the default expression is evaluated once for each
omitted parameter. Hence in the above examples, the two calls of PAIR are
equivalent.

References: actual parameter 6.4.1, default expression for a formal parameter
6.1, evaluation 4.5, formal parameter 6.1, mode 6.1, named parameter association
6.4, parameter association 6.4, parameter specification 6.1, positional parameter
association 6.4, subprogram call 6.4

6.5 Function Subprograms

6-13

A function is a subprogram that returns a value (the result of the function
call). The specification of a function starts with the reserved word function,
and the parameters, if any, must have the mode in (whether this mode

is specified explicitly or implicitly). The statements of the function body
(excluding statements of program units that are inner to the function body)
must include one or more return statements specifying the returned value.

The exception PROGRAM_ERROR is raised if a function body is left
otherwise than by a return statement. This does not apply if the execution
of the function is abandoned as a result of an exception.

Example:

function DOT PRODUCT (LEFT, RIGHT : VECTOR) return REAL is
SUM : REAL := 0.0;
begin
CHECK (LEFT’/FIRST = RIGHT'FIRST and LEFT’LAST = RIGHT'LAST);
for J in LEFT'RANGE loop
SUM := SUM + LEFT (J)*RIGHT (J);
end loop;
return SUM;
end DOT PRODUCT;

References: exception 11, formal parameter 6.1, function 6.1, function body 6.3,
function call 6.4, function specification 6.1, mode 6.1, program_error exception 11.1,
raising of exceptions 11, return statement 5.8, statement 5

Function Subprograms 6.5

6.6 Parameter and Result Type Profile—Overloading of
Subprograms

1

Two formal parts are said to have the same parameter type profile if and only
if they have the same number of parameters, and at each parameter position
corresponding parameters have the same base type. A subprogram or entry
has the same parameter and result type profile as another subprogram or
entry if and only if both have the same parameter type profile, and either
both are functions with the same result base type, or neither of the two is a
function.

The same subprogram identifier or operator symbol can be used in several
subprogram specifications. The identifier or operator symbol is then said to
be overloaded; the subprograms that have this identifier or operator symbol
are also said to be overloaded and to overload each other. As explained in
section 8.3, if two subprograms overload each other, one of them can hide
the other only if both subprograms have the same parameter and result
type profile (see section 8.3 for the other requirements that must be met for
hiding).

A call to an overloaded subprogram is ambiguous (and therefore illegal)

if the name of the subprogram, the number of parameter associations,

the types and the order of the actual parameters, the names of the

formal parameters (if named associations are used), and the result type
(for functions) are not sufficient to determine exactly one (overloaded)
subprogram specification.

Examples of overloaded subprograms:

procedure PUT (X : INTEGER);
procedure PUT (X : STRING);

procedure SET (TINT : COLOR) ;
procedure SET(SIGNAL : LIGHT);

Examples of calls:

PUT (28) ;
PUT ("no possible ambiguity here");

SET (TINT => RED);
SET (SIGNAL => RED) ;
SET (COLOR' (RED)) ;

-= SET(RED) would be ambiguous since RED may
—— denote a value either of type COLOR or of type LIGHT

6.6 Parameter and Result Type Profile—Overloading of Subprograms 6-14

Notes:

The notion of parameter and result type profile does not include parameter
names, parameter modes, parameter subtypes, default expressions and their
presence or absence.

Ambiguities may (but need not) arise when actual parameters of the call of
an overloaded subprogram are themselves overloaded function calls, literals,
or aggregates. Ambiguities may also (but need not) arise when several
overloaded subprograms belonging to different packages are visible. These
ambiguities can usually be resolved in several ways: qualified expressions
can be used for some or all actual parameters, and for the result, if any; the
name of the subprogram can be expressed more explicitly as an expanded
name; finally, the subprogram can be renamed.

References: actual parameter 6.4.1, aggregate 4.3, base type 3.3, default ex-
pression for a formal parameter 6.1, entry 9.5, formal parameter 6.1, function 6.5,
function call 6.4, hiding 8.3, identifier 2.3, illegal 1.6, literal 4.2, mode 6.1, named
parameter association 6.4, operator symbol 6.1, overloading 8.7, package 7, param-
eter of a subprogram 6.2, qualified expression 4.7, renaming declaration 8.5, result
subtype 6.1, subprogram 6, subprogram specification 6.1, subtype 3.3, type 3.3

6.7 Overloading of Operators

6-15

1

The declaration of a function whose designator is an operator symbol is used
to overload an operator. The sequence of characters of the operator symbol
must be either a logical, a relational, a binary adding, a unary adding, a
multiplying, or a highest precedence operator (see 4.5). Neither membership
tests nor the short-circuit control forms are allowed as function designators.

The subprogram specification of a unary operator must have a single
parameter. The subprogram specification of a binary operator must have
two parameters; for each use of this operator, the first parameter takes

the left operand as actual parameter, the second parameter takes the right
operand. Similarly, a generic function instantiation whose designator is an
operator symbol is only allowed if the specification of the generic function
has the corresponding number of parameters. Default expressions are not
allowed for the parameters of an operator (whether the operator is declared
with an explicit subprogram specification or by a generic instantiation).

For each of the operators “+” and “~”, overloading is allowed both as a unary
and as a binary operator.

Overloading of Operators 6.7

4 The explicit declaration of a function that overloads the equality operator
“=”, other than by a renaming declaration, is only allowed if both parameters
are of the same limited type. An overloading of equality must deliver a
result of the predefined type BOOLEAN; it also implicitly overloads the
inequality operator “/=” so that this still gives the complementary result to
the equality operator. Explicit overloading of the inequality operator is not
allowed.

5 A renaming declaration whose designator is the equality operator is only
allowed to rename another equality operator. (For example, such a renaming
declaration can be used when equality is visible by selection but not directly
visible.)

Note:
6 Overloading of relational operators does not affect basic comparisons such as
testing for membership in a range or the choices in a case statement.

7 Examples:

function "+" (LEFT, RIGHT : MATRIX) return MATRIX;
function "+" (LEFT, RIGHT : VECTOR) return VECTOR;

-—- assuming that A, B, and C are of the type VECTOR
-=— the three following assignments are equivalent

A :=B + C;
A = Ugnw (B, C),'
A := "+"(LEFT => B, RIGHT => C);

8 References: allow 1.6, actual parameter 6.4.1, binary adding operator 4.5 4.5.3, -
boolean predefined type 3.5.3, character 2.1, complementary result 4.5.2, declaration
3.1, default expression for a formal parameter 6.1, designator 6.1, directly visible
8.3, equality operator 4.5, formal parameter 6.1, function declaration 6.1, highest
precedence operator 4.5 4.5.6, implicit declaration 3.1, inequality operator 4.5.2,
limited type 7.4.4, logical operator 4.5 4.5.1, membership test 4.5 4.5.2, multiplying
operator 4.5 4.5.5, operator 4.5, operator symbol 6.1, overloading 6.6 8.7, relational
operator 4.5 4.5.2, short-circuit control form 4.5 4.5.1, type definition 3.3.1, unary
adding operator 4.5 4.5.4, visible by selection 8.3

6.7 Overloading of Operators 6-16

Chapter 7

Packages

1 Packages are one of the four forms of program unit, of which programs can
be composed. The other forms are subprograms, task units, and generic
units.

2 Packages allow the specification of groups of logically related entities.
In their simplest form packages specify pools of common object and type
declarations. More generally, packages can be used to specify groups of
related entities including also subprograms that can be called from outside
the package, while their inner workings remain concealed and protected
from outside users.

3 References: generic unit 12, program unit 6, subprogram 6, task unit 9, type
declaration 3.3.1

7.1 Package Structure

1 A package is generally provided in two parts: a package specification and
a package body. Every package has a package specification, but not all
packages have a package body.

2 package_declaration ::= package_specification;

package_specification ::=
package identifier is
{basic_declarative_item}
[private
{basic_declarative_item}]
end [package simple_name]

7-1 Package Structure 7.1

7.1

package body ::=
package body package_simple name is
[declarative_ part]
[begin
sequence of statements
[exception
exception_handler
{exception handler}]]
end [package simple name];

The simple name at the start of a package body must repeat the package
identifier. Similarly if a simple name appears at the end of the package
specification or body, it must repeat the package identifier.

If a subprogram declaration, a package declaration, a task declaration, or

a generic declaration is a declarative item of a given package specification,
then the body (if there is one) of the program unit declared by the declara-
tive item must itself be a declarative item of the declarative part of the bod;
of the given package.

Notes:

A simple form of package, specifying a pool of objects and types, does not
require a package body. One of the possible uses of the sequence of state-
ments of a package body is to initialize such objects. For each subprogram
declaration there must be a corresponding body (except for a subprogram
written in another language, as explained in section 13.9). If the body of a
program unit is a body stub, then a separately compiled subunit containing
the corresponding proper body is required for the program unit (see 10.2).
A body is not a basic declarative item and so cannot appear in a package
specification.

A package declaration is either a library package (see 10.2) or a declarative
item declared within another program unit.

References: basic declarative item 3.9, body stub 10.2, declarative item 3.9,
declarative part 3.9, exception handler 11.2, generic body 12.2, generic declaration
12.1, identifier 2.3, library unit 10.1, object 3.2, package body 7.3, program unit 6,
proper body 3.9, sequence of statements 5.1, simple name 4.1, subprogram body 6.3,
subprogram declaration 6.1, subunit 10.2, task body 9.1, task declaration 9.1,

type 3.3

Package Structure 7-2

7.2 Package Specifications and Declarations

1

7-3

The first list of declarative items of a package specification is called the
visible part of the package. The optional list of declarative items after the
reserved word private is called the private part of the package.

An entity declared in the private part of a package is not visible outside
the package itself (a name denoting such an entity is only possible within
the package). In contrast, expanded names denoting entities declared in
the visible part can be used even outside the package; furthermore, direct
visibility of such entities can be achieved by means of use clauses (see 4.1.3
and 8.4).

The elaboration of a package declaration consists of the elaboration of its
basic declarative items in the given order.

Notes:

The visible part of a package contains all the information that another
program unit is able to know about the package. A package consisting of
only a package specification (that is, without a package body) can be used
to represent a group of common constants or variables, or a common pool of
objects and types, as in the examples below.

Example of a package describing a group of common variables:

package PLOTTING DATA is
PEN_UP : BOOLEAN;

CONVERSION_FACTOR,
X OFFSET, Y_OFFSET,

X_MIN, Y MIN,

X MAX, Y MAX: REAL; --— see 3.5.7
X VALUE : array (1 .. 500) of REAL;

Y VALUE : array (1 .. 500) of REAL;

end PLOTTING DATA;

Example of a package describing a common pool of objects and types:

package WORK_DATA is
type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
type HOURS_SPENT is delta 0.25 range 0.0 .. 24.0;
type TIME TABLE is array (DAY) of HOURS_SPENT;

WORK_HOURS : TIME TABLE;

NORMAI, HOURS : constant TIME TABLE := (MON .. THU => 8.25,
FRI => 7.0,
SAT | SUN => 0.0);

end WORK_DATA;

Package Specifications and Declarations 7.2

References: basic declarative item 3.9, constant 3.2.1, declarative item 3.9, direct
visibility 8.3, elaboration 3.9, expanded name 4.1.3, name 4.1, number declaration
3.2.2, object declaration 3.2.1, package 7, package declaration 7.1, package identifier
7.1, package specification 7.1, scope 8.2, simple name 4.1, type declaration 3.3.1, use
clause 8.4, variable 3.2.1

7.3 Package Bodies

1

In contrast to the entities declared in the visible part of a package specifi-
cation, the entities declared in the package body are only visible within the
package body itself. As a consequence, a package with a package body can
be used for the construction of a group of related subprograms (a package in
the usual sense), in which the logical operations available to the users are
clearly isolated from the internal entities.

For the elaboration of a package body, its declarative part is first elaborated,
and its sequence of statements (if any) is then executed. The optional
exception handlers at the end of a package body service exceptions raised
during the execution of the sequence of statements of the package body.

Notes:

A variable declared in the body of a package is only visible within this body
and, consequently, its value can only be changed within the package body. In
the absence of local tasks, the value of such a variable remains unchanged
between calls issued from outside the package to subprograms declared in
the visible part. The properties of such a variable are similar to those of an
“own” variable of Algol 60.

The elaboration of the body of a subprogram declared in the visible part of
a package is caused by the elaboration of the body of the package. Hence a
call of such a subprogram by an outside program unit raises the exception
PROGRAM_ERROR if the call takes place before the elaboration of the
package body (see 3.9).

Example of a package:
package RATIONAL NUMBERS is

type RATIONAL is
record
NUMERATOR : INTEGER;
DENOMINATOR : POSITIVE;
end record;

function EQUAL(X,Y : RATIONAL) return BOOLEAN;

7.3 Package Bodies 7-4

7-5

function

—-— to construct a rational

function

function

function

function
end;

"/ll

"+"

n_mn

nkn

"/n

(X, Y

(x,¥
(X, Y
(X, Y
(X, Y

INTEGER)

RATIONAL)
RATIONAL)
RATIONAL)
RATIONAL)

package body RATIONAL_ NUMBERS is

procedure SAME DENOMINATOR (X,Y

begin

return RATIONAL;

number

return RATIONAL;
return RATIONAL;
return RATIONAL;
return RATIONAL;

in out RATIONAL) is

—-— reduces X and Y to the same denominator:

end;

function EQUAL(X,Y

u,v
begin

U := X;

vV = Y;

RATIONAL;

RATIONAL)

SAME DENOMINATOR (U,Vv);
return U.NUMERATOR = V.NUMERATOR;
end EQUAL;

function
begin

"/ll

(X,Y

if Y > 0 then
return (NUMERATOR => X,

else

return
end if;

end n/u ;

function
function
function
function

ll+ll

w_w

Wk

"/'l

return BOOLEAN

is

INTEGER) return RATIONAL is

(NUMERATOR => -X,

X,y
(X,Y
(X, Y
(X, Y

end RATIONAL_ NUMBERS;

References: declaration 3.1, declarative part 3.9, elaboration 3.1 3.9, exception
11, exception handler 11.2, name 4.1, package specification 7.1, program unit 6,

program_error exception 11.1, sequence of statements 5.1, subprogram 6, variable
3.2.1, visible part 7.2

RATIONAL)

RATIONAL)

RATIONAL)
RATIONAL)

DENOMINATOR =>

DENOMINATOR

I
\'%

return RATIONAL
return RATIONAL
return RATIONAL
return RATIONAL

’

’

Y);
-Y);
is ... end "+";
is ... end "-";
is ... end "*";
is ... end "/“;

Package Bodies

’

7.3

7.4 Private Type and Deferred Constant Declarations

1 The declaration of a type as a private type in the visible part of a package
serves to separate the characteristics that can be used directly by outside
program units (that is, the logical properties) from other characteristics
whose direct use is confined to the package (the details of the definition of
the type itself). Deferred constant declarations declare constants of private

types.

2 private type declaration ::=
type identifier [discriminant part] is [limited] private;

deferred_constant_declaration ::=
identifier list : constant type_mark;

3 A private type declaration is only allowed as a declarative item of the visible
part of a package, or as the generic parameter declaration for a generic
formal type in a generic formal part.

4 The type mark of a deferred constant declaration must denote a private
type or a subtype of a private type; a deferred constant declaration and the
declaration of the corresponding private type must both be declarative items
of the visible part of the same package. A deferred constant declaration with
several identifiers is equivalent to a sequence of single deferred constant
declarations as explained in section 3.2.

5 Examples of private type declarations:
type KEY is private;
type FILE NAME is limited private;

6 Example of deferred constant declaration:
NULL_KEY : constant KEY;

7 References: constant 3.2.1, declaration 3.1, declarative item 3.9, deferred constant
7.4.3, discriminant part 3.7.1, generic formal part 12.1, generic formal type 12.1,
generic parameter declaration 12.1, identifier 2.3, identifier list 3.2, limited type
7.4.4, package 7, private type 7.4.1, program unit 6, subtype 3.3, type 3.3, type
mark 3.3.2, visible part 7.2

7.4 Private Type and Deferred Constant Declarations 7-6

7.4.1 Private Types

1

If a private type declaration is given in the visible part of a package, then

a corresponding declaration of a type with the same identifier must appear
as a declarative item of the private part of the package. The corresponding
declaration must be either a full type declaration or the declaration of a task
type. In the rest of this section explanations are given in terms of full type
declarations; the same rules apply also to declarations of task types.

A private type declaration and the corresponding full type declaration define
a single type. The private type declaration, together with the visible part,
define the operations that are available to outside program units (see section
7.4.2 on the operations that are available for private types). On the other
hand, the full type declaration defines other operations whose direct use is
only possible within the package itself.

If the private type declaration includes a discriminant part, the full dec-
laration must include a discriminant part that conforms (see 6.3.1 for the
conformance rules) and its type definition must be a record type definition.
Conversely, if the private type declaration does not include a discriminant
part, the type declared by the full type declaration (the full type) must not
be an unconstrained type with discriminants. The full type must not be
an unconstrained array type. A limited type (in particular a task type) is
allowed for the full type only if the reserved word limited appears in the
private type declaration (see 7.4.4).1

Within the specification of the package that declares a private type and
before the end of the corresponding full type declaration, a restriction
applies to the use of a name that denotes the private type or a subtype of
the private type and, likewise, to the use of a name that denotes any type
or subtype that has a subcomponent of the private type. The only allowed
occurrences of such a name are in a deferred constant declaration, a type
or subtype declaration, a subprogram specification, or an entry declaration;
moreover, occurrences within derived type definitions or within simple
expressions are not allowed.?

The elaboration of a private type declaration creates a private type. If the
private type declaration has a discriminant part, this elaboration includes
that of the discriminant part. The elaboration of the full type declaration
consists of the elaboration of the type definition; the discriminant part, if
any, is not elaborated (since the conforming discriminant part of the private
type declaration has already been elaborated).

1 See also Appendix G, AI-00232.
2 See also Appendix G, AI-00039, AI-00153, and AI-00384.

-7

Private Types 7.4.1

Notes:

It follows from the given rules that neither the declaration of a variable of
a private type, nor the creation by an allocator of an object of the private
type are allowed before the full declaration of the type. Similarly before the
full declaration, the name of the private type cannot be used in a generic
instantiation or in a representation clause. '

References: allocator 4.8, array type 8.6, conform 6.3.1, declarative item 3.9,
deferred constant declaration 7.4.3, derived type 3.4, discriminant part 3.7.1,
elaboration 3.9, entry declaration 9.5, expression 4.4, full type declaration 3.3.1,
generic instantiation 12.3, identifier 2.3, incomplete type declaration 3.8.1, limited
type 7.4.4, name 4.1, operation 3.3, package 7, package specification 7.1, private
part 7.2, private type 7.4, private type declaration 7.4, record type definition 3.7,
representation clause 13.1, reserved word 2.9, subcomponent 3.3, subprogram
specification 6.1, subtype 3.3, subtype declaration 3.3.2, type 3.3, type declaration
3.3.1, type definition 3.3.1, unconstrained array type 3.6, variable 3.2.1, visible
part 7.2

7.4.2 Operations of a Private Type

1

The operations that are implicitly declared by a private type declaration
include basic operations. These are the operations involved in assignment
(unless the reserved word limited appears in the declaration), mem-
bership tests, selected components for the selection of any discriminant,
qualification, and explicit conversions.

For a private type T, the basic operations also include the attributes T' BASE
(see 3.3.3) and T’ SIZE (see 13.7.2). For an object A of a private type, the
basic operations include the attribute A CONSTRAINED if the private type
has discriminants (see 3.7.4), and in any case, the attributes A’ SIZE and
A’ ADDRESS (see 13.7.2).

Finally, the operations implicitly declared by a private type declaration
include the predefined comparison for equality and inequality unless the
reserved word limited appears in the private type declaration.

The above operations, together with subprograms that have a parameter

or result of the private type and that are declared in the visible part of the
package, are the only operations from the package that are available outside
the package for the private type.

Within the package that declares the private type, the additional operations
implicitly declared by the full type declaration are also available. However,
the redefinition of these implicitly declared operations is allowed within the
same declarative region, including between the private type declaration and
the corresponding full declaration. An explicitly declared subprogram hides

7.4.2 Operations of a Private Type 7-8

10

an implicitly declared operation that has the same parameter and result
type profile (this is only possible if the implicitly declared operation is a
derived subprogram or a predefined operator).

If a composite type has subcomponents of a private type and is declared
outside the package that declares the private type, then the operations
that are implicitly declared by the declaration of the composite type include
all operations that only depend on the characteristics that result from the
private type declaration alone. (For example the operator < is not included
for a one-dimensional array type.)

If the composite type is itself declared within the package that declares the
private type (including within an inner package or generic package), then
additional operations that depend on the characteristics of the full type are
implicitly declared, as required by the rules applicable to the composite type
(for example the operator < is declared for a one-dimensional array type if
the full type is discrete). These additional operations are implicitly declared
at the earliest place within the immediate scope of the composite type and
after the full type declaration.3

The same rules apply to the operations that are implicitly declared for an
access type whose designated type is a private type or a type declared by an
incomplete type declaration.*

For every private type or subtype T the following attribute is defined:®

T’ CONSTRAINED Yields the value FALSE if T denotes an unconstrained
nonformal private type with discriminants; also yields
the value FALSE if T denotes a generic formal private
type, and the associated actual subtype is either an
unconstrained type with discriminants or an uncon-
strained array type; yields the value TRUE otherwise.
The value of this attribute is of the predefined type
BOOLEAN.

Note:

A private type declaration and the corresponding full type declaration
define two different views of one and the same type. Outside of the defining
package the characteristics of the type are those defined by the visible part.
Within these outside program units the type is just a private type and any
language rule that applies only to another class of types does not apply. The
fact that the full declaration might implement the private type with a type

3 See also Appendix G, AI-00139 and AI-00154.
4 See also Appendix G, AI-00154.
5 See also Appendix G, AI-00026.

7-9

Operations of a Private Type 7.4.2

of a particular class (for example, as an array type) is only relevant within
the package itself.

12 The consequences of this actual implementation are, however, valid every-
where. For example: any default initialization of components takes place;
the attribute SIZE provides the size of the full type; task dependence rules
still apply to components that are task objects.

13 Example:

package KEY MANAGER is
type KEY is private;
NULL KEY : constant KEY;
procedure GET_KEY (K : out KEY);
function "<" (X, Y : KEY) return BOOLEAN;

private
type KEY is new NATURAL;
NULL_KEY : constant KEY := 0;
end;
package body KEY MANAGER is
LAST KEY : KEY := 0;
procedure GET_KEY (K : out KEY) is
begin

LAST KEY := LAST KEY + 1;
K := LAST KEY;
end GET _KEY;

function "<" (X, Y : KEY) return BOOLEAN is
begin
return INTEGER (X) < INTEGER(Y):;
end "<";
end KEY_ MANAGER;

Notes on the example:

14 Outside of the package KEY_MANAGER, the operations available for objects
of type KEY include assignment, the comparison for equality or inequality,
the procedure GET_KEY and the operator “<”; they do not include other
relational operators such as “>=", or arithmetic operators.

15 The explicitly declared operator “<” hides the predefined operator “<” implic-
itly declared by the full type declaration. Within the body of the function, an
explicit conversion of X and Y to the type INTEGER is necessary to invoke
the “<” operator of this type. Alternatively, the result of the function could
be written as not (X >=Y), since the operator “>=" is not redefined.

16 The value of the variable LAST KEY, declared in the package body, remains
unchanged between calls of the procedure GET_KEY. (See also the Notes of
section 7.3.)

7.4.2 Operations of a Private Type 7-10

References: assignment 5.2, attribute 4.1.4, basic operation 3.3.3, component
3.3, composite type 3.8, conversion 4.6, declaration 3.1, declarative region 8.1,
derived subprogram 3.4, derived type 3.4, dimension 3.6, discriminant 3.3, equality
4.5.2, full type 7.4.1, full type declaration 3.3.1, hiding 8.3, immediate scope 8.2,
implicit declaration 3.1, incomplete type declaration 3.8.1, membership test 4.5,
operation 3.3, package 7, parameter of a subprogram 6.2, predefined function 8.6,
predefined operator 4.5, private type 7.4, private type declaration 7.4, program unit
6, qualification 4.7, relational operator 4.5, selected component 4.1.3, subprogram 6,
task dependence 9.4, visible part 7.2

7.4.3 Deferred Constants

1

If a deferred constant declaration is given in the visible part of a package
then a constant declaration (that is, an object declaration declaring a
constant object, with an explicit initialization) with the same identifier must
appear as a declarative item of the private part of the package. This object
declaration is called the full declaration of the deferred constant. The type
mark given in the full declaration must conform to that given in the deferred
constant declaration (see 6.3.1). Multiple or single declarations are allowed
for the deferred and the full declarations, provided that the equivalent single
declarations conform.

Within the specification of the package that declares a deferred constant
and before the end of the corresponding full declaration, the use of a name
that denotes the deferred constant is only allowed in the default expression
for a record component or for a formal parameter (not for a generic formal
parameter).

The elaboration of a deferred constant declaration has no other effect.

The execution of a program is erroneous if it attempts to use the value
of a deferred constant before the elaboration of the corresponding full
declaration.b

Note:

The full declaration for a deferred constant that has a given private type
must not appear before the corresponding full type declaration. This is a
consequence of the rules defining the allowed uses of a name that denotes a
private type (see 7.4.1).

6 See also Appendix G, AI-00155.

7-11

Deferred Constants 7.4.3

References: conform 6.3.1, constant declaration 3.2.1, declarative item 3.9,
default expression for a discriminant 3.7.1, deferred constant 7.4, deferred constant
declaration 7.4, elaboration has no other effect 3.1, formal parameter 6.1, generic
formal parameter 12.1 12.3, identifier 2.3, object declaration 3.2.1, package 7,
package specification 7.1, private part 7.2, record component 3.7, type mark 3.3.2,
visible part 7.2

7.4.4 Limited Types

1

A limited type is a type for which neither assignment nor the predefined
comparison for equality and inequality is implicitly declared.

A private type declaration that includes the reserved word limited declares
a limited type. A task type is a limited type. A type derived from a limited
type is itself a limited type. Finally, a composite type is limited if the type of
any of its subcomponents is limited.

The operations available for a private type that is limited are as given in
section 7.4.2 for private types except for the absence of assignment and of a
predefined comparison for equality and inequality.

For a formal parameter whose type is limited and whose declaration occurs
in an explicit subprogram declaration, the mode out is only allowed if this
type is private and the subprogram declaration occurs within the visible part
of the package that declares the private type. The same holds for formal
parameters of entry declarations and of generic procedure declarations. The
corresponding full type must not be limited if the mode out is used for any
such formal parameter. Otherwise, the corresponding full type is allowed
(but not required) to be a limited type (in particular, it is allowed to be a
task type). If the full type corresponding to a limited private type is not
itself limited, then assignment for the type is available within the package,
but not outside.”

The following are consequences of the rules for limited types:

* An explicit initialization is not allowed in an object declaration if the
type of the object is limited.

* A default expression is not allowed in a component declaration if the
type of the record component is limited.

* An explicit initial value is not allowed in an allocator if the designated
type is limited.

* A generic formal parameter of mode in must not be of a limited type.

7 See also Appendix G, AI-00260.

7.4.4 Limited Types 7-12

Notes:

10 The above rules do not exclude a default expression for a formal parameter
of a limited type; they do not exclude a deferred constant of a limited type if
the full type is not limited. An explicit declaration of an equality operator is
allowed for a limited type (see 6.7).

1 Aggregates are not available for a limited composite type (see 3.6.2 and
3.7.4). Catenation is not available for a limited array type (see 3.6.2).

12 Example:

package I_O_ PACKAGE is
type FILE NAME is limited private;

procedure OPEN (F : in out FILE_NAME);
procedure CLOSE(F : in out FILE_NAME);
procedure READ (F : in FILE NAME; ITEM : out INTEGER);
procedure WRITE(F : in FILE NAME; ITEM : in INTEGER);
private
type FILE_NAME is
record
INTERNAL NAME : INTEGER := 0;
end record;
end I_O PACKAGE;

package body I_O PACKAGE is

LIMIT : constant := 200;
type FILE DESCRIPTOR is record ... end record;
DIRECTORY : array (1 .. LIMIT) of FILE_DESCRIPTOR;
procedure OPEN (F : in out FILE NAME) is ... end;
procedure CLOSE (F : in out FILE_NAME) is ... end;
procedure READ (F : in FILE_NAME;

ITEM : out INTEGER) is ... end;
procedure WRITE (F : in FILE_NAME;

ITEM : in INTEGER) is ... end;

begin

end I_O PACKAGE;

Notes on the example:

13 In the example above, an outside subprogram making use of I_O_PACKAGE
may obtain a file name by calling OPEN and later use it in calls to READ
and WRITE. Thus, outside the package, a file name obtained from OPEN
acts as a kind of password; its internal properties (such as containing a
numeric value) are not known and no other operations (such as addition or
comparison of internal names) can be performed on a file name.

7-13 Limited Types 7.4.4

15

This example is characteristic of any case where complete control over the
operations of a type is desired. Such packages serve a dual purpose. They
prevent a user from making use of the internal structure of the type. They
also implement the notion of an encapsulated data type where the only
operations on the type are those given in the package specification.

References: aggregate 4.3, allocator 4.8, assignment 5.2, catenation operator 4.5,
component declaration 3.7, component type 3.3, composite type 3.3, default expres-
sion for a discriminant 3.7, deferred constant 7.4.3, derived type 3.4, designate 3.8,
discriminant specification 3.7.1, equality 4.5.2, formal parameter 6.1, full type 7.4.1,
full type declaration 3.3.1, generic formal parameter 12.1 12.3, implicit declaration
3.1, initial value 3.2.1, mode 12.1.1, object 3.2, operation 8.3, package 7, predefined
operator 4.5, private type 7.4, private type declaration 7.4, record component 3.7,
record type 3.7, relational operator 4.5, subcomponent 3.3, subprogram 6, task type
9.1 9.2, type 3.3

7.5 Example of a Table Management Package

1

The following example illustrates the use of packages in providing high level
procedures with a simple interface to the user.

The problem is to define a table management package for inserting and
retrieving items. The items are inserted into the table as they are supplied.
Each inserted item has an order number. The items are retrieved according
to their order number, where the item with the lowest order number is
retrieved first.

From the user’s point of view, the package is quite simple. There is a type
called ITEM designating table items, a procedure INSERT for inserting
items, and a procedure RETRIEVE for obtaining the item with the lowest
order number. There is a special item NULL_ITEM that is returned when
the table is empty, and an exception TABLE_FULL which is raised by
INSERT if the table is already full.

A sketch of such a package is given below. Only the specification of the
package is exposed to the user.

package TABLE MANAGER is

type ITEM is
record
ORDER_NUM : INTEGER;
ITEM CODE : INTEGER;
QUANTITY : INTEGER;
ITEM TYPE : CHARACTER;
end record;

7.5 Example of a Table Management Package 7-14

NULL_ITEM : constant ITEM :
(ORDER_NUM | ITEM CODE | QUANTITY => 0, ITEM TYPE => Ty,

procedure INSERT (NEW_ITEM : in ITEM);

procedure RETRIEVE (FIRST ITEM : out ITEM);

TABLE FULL : exception; -- raised by INSERT when table full
end;

6 The details of implementing such packages can be quite complex; in this case
they involve a two-way linked table of internal items. A local housekeeping
procedure EXCHANGE is used to move an internal item between the
busy and the free lists. The initial table linkages are established by the
initialization part. The package body need not be shown to the users of the
package.

7 package body TABLE MANAGER is
SIZE : constant := 2000;
subtype INDEX is INTEGER range 0 .. SIZE;

type INTERNAL_ ITEM is
record
CONTENT : ITEM;
SUCC : INDEX;
PRED : INDEX;
end record;

TABLE : array (INDEX) of INTERNAL_ITEM;

FIRST BUSY ITEM : INDEX := 0;
FIRST FREE ITEM : INDEX := 1;
function FREE LIST EMPTY return BOOLEAN is ... end;
function BUSY LIST EMPTY return BOOLEAN is ... end;
procedure EXCHANGE (FROM : in INDEX;

TO : in INDEX) is ... end;

procedure INSERT (NEW_ITEM : in ITEM) is
begin
if FREE_LIST EMPTY then
raise TABLE_FULL;

end if;
-- remaining code for INSERT
end INSERT;
procedure RETRIEVE (FIRST_ITEM : out ITEM) is ... end;
begin

-- initialization of the table linkages
end TABLE_ MANAGER;

7-15 Example of a Table Management Package 7.5

7.6 Example of a Text Handling Package

1 This example illustrates a simple text handling package. The users only
have access to the visible part; the implementation is hidden from them in
the private part and the package body (not shown).

2 From a user’s point of view, a TEXT is a variable-length string. Each text
object has a maximum length, which must be given when the object is
declared, and a current value, which is a string of some length between
zero and the maximum. The maximum possible length of a text object is an
implementation-defined constant.

3 The package defines first the necessary types, then functions that return
some characteristics of objects of the type, then the conversion functions
between texts and the predefined CHARACTER and STRING types, and
finally some of the standard operations on varying strings. Most operations
are overloaded on strings and characters as well as on the type TEXT, in
order to minimize the number of explicit conversions the user has to write.

4 package TEXT HANDLER is
MAXIMUM : constant := SOME_VALUE; -- implementation-defined
subtype INDEX is INTEGER range 0 .. MAXIMUM;

type TEXT(MAXIMUM LENGTH : INDEX) is limited private;

function LENGTH (T : TEXT) return INDEX;
function VALUE (T : TEXT) return STRING;
function EMPTY (T : TEXT) return BOOLEAN;

function TO TEXT (S : STRING;
MAX : INDEX) return TEXT;
—-— maximum length MAX
function TO TEXT (C : CHARACTER;
MAX : INDEX) return TEXT;
function TO _TEXT (S : STRING) return TEXT;
-- maximum length S’LENGTH
function TO TEXT (C : CHARACTER) return TEXT;

function "&" (LEFT : TEXT;

RIGHT : TEXT) return TEXT;
function "&" (LEFT : TEXT;

RIGHT : STRING) return TEXT;
function "&" (LEFT : STRING;

RIGHT : TEXT) return TEXT;
function "&" (LEFT : TEXT;

RIGHT : CHARACTER) return TEXT;
function "&" (LEFT : CHARACTER;

RIGHT : TEXT) return TEXT;

7.6 Example of a Text Handling Package 7-16

7-17

function "=" (LEFT
function "<" (LEFT
function "<=" (LEFT
function ">" (LEFT
function ">=" (LEFT

TEXT; RIGHT
TEXT; RIGHT
TEXT; RIGHT
TEXT; RIGHT
TEXT; RIGHT

TEXT) return BOOLEAN;
TEXT) return BOOLEAN;
return BOOLEAN;
TEXT) return BOOLEAN;
TEXT) return BOOLEAN;

=
=
o
=

procedure SET (OBJECT : in out TEX
procedure SET (OBJECT in out TEX

; : in TEXT):;
; VALUE : in STRING);

HHaA

procedure SET (OBJECT in out TEX VALUE in CHARACTER) ;
procedure APPEND (TAIL : in TEXT; TO : in out TEXT);
procedure APPEND (TAIL : in STRING; TO : in out TEXT);

procedure APPEND (TAIL : in CHARACTER; TO in out TEXT);

procedure AMEND (OBJECT : in out TEXT; BY : in TEXT;
POSITION : in INDEX):;

procedure AMEND (OBJECT : in out TEXT; BY : in STRING;

POSITION : in INDEX);

procedure AMEND (OBJECT : in out TEXT; BY : in CHARACTER;

POSITION : in INDEX);

—- amend replaces part of the object by the given
-- text, string, or character
-- starting at the given position in the object

function LOCATE (FRAGMENT : TEXT;

WITHIN : TEXT) return INDEX;
function LOCATE (FRAGMENT : STRING;

WITHIN : TEXT) return INDEX;
function LOCATE (FRAGMENT : CHARACTER;

WITHIN " TEXT) return INDEX;

—- all return 0 if the fragment is not located

private
type TEXT (MAXIMUM LENGTH : INDEX) is
record
POS : INDEX := 0;
VALUE : STRING(1 .. MAXIMUM LENGTH) ;

end record;
end TEXT HANDLER;

Example of use of the text handling package:

A program opens an output file, whose name is supplied by the string
NAME. This string has the form

[DEVICE :] [FILENAME [.EXTENSION]]

There are standard defaults for device, filename, and extension. The user-
supplied name is passed to EXPAND_FILE_NAME as a parameter, and the

result is the expanded version, with any necessary defaults added.

Example of a Text Handling Package

7.6

8 function EXPAND_FILE_NAME (NAME : STRING) return STRING is
use TEXT HANDLER;

DEFAULT_DEVICE : constant STRING := "SY:";
DEFAULT FILE_NAME : constant STRING := "RESULTS";
DEFAULT EXTENSION : constant STRING := " .DAT";

MAXIMUM FILE NAME LENGTH
constant INDEX := SOME_APPROPRIATE VALUE;
FILE _NAME : TEXT (MAXIMUM FILE NAME LENGTH) ;
begin
SET (FILE_NAME, NAME):;
if EMPTY (FILE NAME) then

SET(FILE_NAME, DEFAULT_FILE_NAME);
end if;

if LOCATE(’:’, FILE NAME) = O then
SET (FILE_NAME, DEFAULT DEVICE & FILE_NAME) ;

end if;

if LOCATE('.’, FILE NAME) = 0 then
APPEND(DEFAULTﬁEXTENSION, TO => FILE NAME) ;

end if;

return VALUE (FILE_NAME) ;
end EXPAND FILE_ NAME;

7.6 Example of a Text Handling Package 7-18

Chapter 8

Visibility Rules

The rules defining the scope of declarations and the rules defining which
identifiers are visible at various points in the text of the program are
described in this chapter. The formulation of these rules uses the notion of a
declarative region.

References: declaration 3.1, declarative region 8.1, identifier 2.3, scope 8.2,
visibility 8.3

8.1 Declarative Region

8-1

1

A declarative region is a portion of the program text. A single declarative
region is formed by the text of each of the following:

* A subprogram declaration, a package declaration, a task declaration,
or a generic declaration, together with the corresponding body, if any.
If the body is a body stub, the declarative region also includes the
corresponding subunit. If the program unit has subunits, they are also
included.

e An entry declaration together with the corresponding accept statements.

* A record type declaration, together with a corresponding private or
incomplete type declaration if any, and together with a corresponding
record representation clause if any.

* A renaming declaration that includes a formal part, or a generic pa-
rameter declaration that includes either a formal part or a discriminant
part.

¢ A block statement or a loop statement.

Declarative Region 8.1

10

1"

In each of the above cases, the declarative region is said to be associated
with the corresponding declaration or statement. A declaration is said to
occur immediately within a declarative region if this region is the innermost
region that encloses the declaration, not counting the declarative region Gif
any) associated with the declaration itself.

A declaration that occurs immediately within a declarative region is said
to be local to the region. Declarations in outer (enclosing) regions are said
to be global to an inner (enclosed) declarative region. A local entity is one
declared by a local declaration; a global entity is one declared by a global
declaration.

Some of the above forms of declarative region include several disjoint parts
(for example, other declarative items can be between the declaration of a
package and its body). Each declarative region is nevertheless considered
as a (logically) continuous portion of the program text. Hence if any rule
defines a portion of text as the text that extends from some specific point
of a declarative region to the end of this region, then this portion is the
corresponding subset of the declarative region (for example it does not
include intermediate declarative items between the two parts of a package).

Notes:

As defined in section 3.1, the term declaration includes basic declarations,
implicit declarations, and those declarations that are part of basic decla-
rations, for example, discriminant and parameter specifications. It follows
from the definition of a declarative region that a discriminant specification
occurs immediately within the region associated with the enclosing record
type declaration. Similarly, a parameter specification occurs immediately
within the region associated with the enclosing subprogram body or accept
statement.

The package STANDARD forms a declarative region which encloses all
library units: the implicit declaration of each library unit is assumed to
occur immediately within this package (see sections 8.6 and 10.1.1).

Declarative regions can be nested within other declarative regions. For
example, subprograms, packages, task units, generic units, and block
statements can be nested within each other, and can contain record type
declarations, loop statements, and accept statements.

References: accept statement 9.5, basic declaration 3.1, block statement 5.6,
body stub 10.2, declaration 3.1, discriminant part 3.7.1, discriminant specification
3.7.1, entry declaration 9.5, formal part 6.1, generic body 12.2, generic declaration
12.1, generic parameter declaration 12.1, implicit declaration 3.1, incomplete type
declaration 3.8.1, library unit 10.1, loop statement 5.5, package 7, package body

8.1 Declarative Region 8-2

7.1, package declaration 7.1, parameter specification 6.1, private type declaration
7.4, record representation clause 13.4, record type 3.7, renaming declaration 8.5,
standard package 8.6, subprogram body 6.3, subprogram declaration 6.1, subunit
10.2, task body 9.1, task declaration 9.1, task unit 9

8.2 Scope of Declarations

8-3

1

10

For each form of declaration, the language rules define a certain portion

of the program text called the scope of the declaration. The scope of a
declaration is also called the scope of any entity declared by the declaration.
Furthermore, if the declaration associates some notation with a declared
entity, this portion of the text is also called the scope of this notation (either
an identifier, a character literal, an operator symbol, or the notation for a
basic operation). Within the scope of an entity, and only there, there are
places where it is legal to use the associated notation in order to refer to
the declared entity. These places are defined by the rules of visibility and
overloading.

The scope of a declaration that occurs immediately within a declarative
region extends from the beginning of the declaration to the end of the
declarative region; this part of the scope of a declaration is called the
immediate scope. Furthermore, for any of the declarations listed below, the
scope of the declaration extends beyond the immediate scope:

(a) A declaration that occurs immediately within the visible part of a
package declaration.

(b) An entry declaration.

(c) A component declaration.

(d) A discriminant specification.

(e) A parameter specification.

(f) A generic parameter declaration.

In each of these cases, the given declaration occurs immediately within some
enclosing declaration, and the scope of the given declaration extends to the
end of the scope of the enclosing declaration.

In the absence of a subprogram declaration, the subprogram specification
given in the subprogram body or in the body stub acts as the declaration
and rule (e) applies also in such a case.

Scope of Declarations 8.2

1

Note:

The above scope rules apply to all forms of declaration defined by section 3.1;
in particular, they apply also to implicit declarations. Rule (a) applies to a
package declaration and thus not to the package specification of a generic
declaration. For nested declarations, the rules (a) through (f) apply at each
level. For example, if a task unit is declared in the visible part of a package,
the scope of an entry of the task unit extends to the end of the scope of the
task unit, that is, to the end of the scope of the enclosing package. The scope
of a use clause is defined in section 8.4.

References: basic operation 3.3.3, body stub 10.2, character literal 2.5, component
declaration 3.7, declaration 3.1, declarative region 8.1, discriminant specification
3.7.1, entry declaration 9.5, extends 8.1, generic declaration 12.1, generic parameter
declaration 12.1, identifier 2.3, implicit declaration 3.1, occur immediately within
8.1, operator symbol 6.1, overloading 6.6 8.7, package declaration 7.1, package
specification 7.1, parameter specification 6.1, record type 3.7, renaming declaration
8.5, subprogram body 6.3, subprogram declaration 6.1, task declaration 9.1, task
unit 9, type declaration 3.3.1, use clause 8.4, visibility 8.3, visible part 7.2

8.3 Visibility

1

8.3 Visibility

The meaning of the occurrence of an identifier at a given place in the
text is defined by the visibility rules and also, in the case of overloaded
declarations, by the overloading rules. The identifiers considered in this
chapter include any identifier other than a reserved word, an attribute
designator, a pragma identifier, the identifier of a pragma argument, or
an identifier given as a pragma argument. The places considered in this
chapter are those where a lexical element (such as an identifier) occurs.
The overloaded declarations considered in this chapter are those for
subprograms, enumeration literals, and single entries.

For each identifier and at each place in the text, the visibility rules
determine a set of declarations (with this identifier) that define possible
meanings of an occurrence of the identifier. A declaration is said to be
visible at a given place in the text when, according to the visibility rules, the
declaration defines a possible meaning of this occurrence. Two cases arise.

® The visibility rules determine a¢ most one possible meaning. In such
a case the visibility rules are sufficient to determine the declaration
defining the meaning of the occurrence of the identifier, or in the absence
of such a declaration, to determine that the occurrence is not legal at the
given point.

* The visibility rules determine more than one possible meaning. In such
a case the occurrence of the identifier is legal at this point if and only if

84

10

1"

12

13

exactly one visible declaration is acceptable for the overloading rules in
the given context (see section 6.6 for the rules of overloading and section
8.7 for the context used for overload resolution).

A declaration is only visible within a certain part of its scope; this part
starts at the end of the declaration except in a package specification, in
which case it starts at the reserved word is given after the identifier of
the package specification. (This rule applies, in particular, for implicit
declarations.)

Visibility is either by selection or direct. A declaration is visible by selection
at places that are defined as follows.

(a) For a declaration given in the visible part of a package declaration:
at the place of the selector after the dot of an expanded name whose
prefix denotes the package.

(b) For an entry declaration of a given task type: at the place of the selec-
tor after the dot of a selected component whose prefix is appropriate for
the task type.

(¢) For a component declaration of a given record type declaration: at
the place of the selector after the dot of a selected component whose
prefix is appropriate for the type; also at the place of a component
simple name (before the compound delimiter =>) in a named component
association of an aggregate of the type.

(d) For a discriminant specification of a given type declaration: at the
same places as for a component declaration; also at the place of a
discriminant simple name (before the compound delimiter =>) in a
named discriminant association of a discriminant constraint for the
type.

(e) For a parameter specification of a given subprogram specification
or entry declaration: at the place of the formal parameter (before
the compound delimiter =>) in a named parameter association of a
corresponding subprogram or entry call.

(f) For a generic parameter declaration of a given generic unit: at
the place of the generic formal parameter (before the compound
delimiter =>) in a named generic association of a corresponding generic
instantiation.

Finally, within the declarative region associated with a construct other than
a record type declaration, any declaration that occurs immediately within
the region is visible by selection at the place of the selector after the dot of
an expanded name whose prefix denotes the construct.

Visibility 8.3

15

16

18

Where it is not visible by selection, a visible declaration is said to be
directly visible. A declaration is directly visible within a certain part of

its immediate scope; this part extends to the end of the immediate scope
of the declaration, but excludes places where the declaration is hidden as
explained below. In addition, a declaration occurring immediately within
the visible part of a package can be made directly visible by means of a use
clause according to the rules described in section 8.4. (See also section 8.6
for the visibility of library units.)

A declaration is said to be zidden within (part of) an inner declarative
region if the inner region contains a homograph of this declaration; the
outer declaration is then hidden within the immediate scope of the inner
homograph. Each of two declarations is said to be a homograph of the other
if both declarations have the same identifier and overloading is allowed for
at most one of the two. If overloading is allowed for both declarations, then
each of the two is a homograph of the other if they have the same identifier,
operator symbol, or character literal, as well as the same parameter and
result type profile (see 6.6). 1

Within the specification of a subprogram, every declaration with the same
designator as the subprogram is hidden; the same holds within a generic
instantiation that declares a subprogram, and within an entry declaration
or the formal part of an accept statement; where hidden in this manner, a
declaration is visible neither by selection nor directly. 2

Two declarations that occur immediately within the same declarative region
must not be homographs, unless either or both of the following requirements
are met: (a) exactly one of them is the implicit declaration of a predefined
operation; (b) exactly one of them is the implicit declaration of a derived
subprogram. In such cases, a predefined operation is always hidden by

the other homograph; a derived subprogram hides a predefined operation,
but is hidden by any other homograph. Where hidden in this manner, an
implicit declaration is hidden within the entire scope of the other declaration
(regardless of which declaration occurs first); the implicit declaration is
visible neither by selection nor directly.3

Whenever a declaration with a certain identifier is visible from a given point,
the identifier and the declared entity (if any) are also said to be visible from
that point. Direct visibility and visibility by selection are likewise defined

for character literals and operator symbols. An operator is directly visible if
and only if the corresponding operator declaration is directly visible. Finally,

1 See also Appendix G, AI-00286.
2 See also Appendix G, AI-00370.
3 See also Appendix G, AI-00002 and AI-00330.

8.3 \Visibility

the notation associated with a basic operation is directly visible within the
entire scope of this operation. *

19 Example:

procedure P is
A, B : BOOLEAN;

procedure Q is
C : BOOLEAN;

B : BOOLEAN; -- an inner homograph of B
begin
B := A; -—- means Q.B := P.A;
C := P.B; -- means Q.C := P.B;
end;
begin
A :=B; -- means P.A := P.B;
end;

Note on the visibility of library units:

20 The visibility of library units is determined by with clauses (see 10.1.1)
and by the fact that library units are implicitly declared in the package
STANDARD (see 8.6).

Note on homographs:

21 The same identifier may occur in different declarations and may thus be
associated with different entities, even if the scopes of these declarations
overlap. Overlap of the scopes of declarations with the same identifier can
result from overloading of subprograms and of enumeration literals. Such
overlaps can also occur for entities declared in package visible parts and for
entries, record components, and parameters, where there is overlap of the
scopes of the enclosing package declarations, task declarations, record type
declarations, subprogram declarations, renaming declarations, or generic
declarations. Finally overlapping scopes can result from nesting.

Note on immediate scope, hiding, and visibility:

22 The rules defining immediate scope, hiding, and visibility imply that a
reference to an identifier within its own declaration is illegal (except for
packages and generic packages). The identifier hides outer homographs
within its immediate scope, that is, from the start of the declaration; on the
other hand, the identifier is visible only after the end of the declaration. For
this reason, all but the last of the following declarations are illegal:

4 See also Appendix G, AI-00027.

87 Visibility 8.3

K : INTEGER := K * K; -— illegal

T : T; -- illegal
procedure P (X : P); -— illegal
procedure Q(X : REAL := Q); -— illegal, even if there is
-—- a function named Q
procedure R(R : REAL); —-— an inner declaration
—-— 1is legal (although
—-— confusing)

23 References: accept statement 9.5, aggregate 4.3, appropriate for a type 4.1,
argument 2.8, basic operation 3.3.3, character literal 2.5, component association
4.3, component declaration 3.7, compound delimiter 2.2, declaration 3.1, declarative
region 8.1, designate 3.8, discriminant constraint 3.7.2, discriminant specification
3.7.1, entry call 9.5, entry declaration 9.5, entry family 9.5, enumeration literal
specification 38.5.1, expanded name 4.1.3, extends 8.1, formal parameter 6.1, generic
association 12.3, generic formal parameter 12.1, generic instantiation 12.3, generic
package 12.1, generic parameter declaration 12.1, generic unit 12, identifier 2.3,
immediate scope 8.2, implicit declaration 3.1, lexical element 2.2, library unit
10.1, object 3.2, occur immediately within 8.1, operator 4.5, operator symbol 6.1,
overloading 6.6 8.7, package 7, parameter 6.2, parameter association 6.4, parameter
specification 6.1, pragma 2.8, program unit 6, record type 3.7, reserved word 2.9,
scope 8.2, selected component 4.1.3, selector 4.1.3, simple name 4.1, subprogram 6,
subprogram call 6.4, subprogram declaration 6.1, subprogram specification 6.1, task
type 9.1, task unit 9, type 3.3, type declaration 3.3.1, use clause 8.4, visible part 7.2

8.4 Use Clauses

1 A use clause achieves direct visibility of declarations that appear in the
visible parts of named packages.

2 use_clause ::= use package name {, package name};

3 For each use clause, there is a certain region of text called the scope of the
use clause. This region starts immediately after the use clause. If a use
clause is a declarative item of some declarative region, the scope of the
clause extends to the end of the declarative region. If a use clause occurs
within a context clause of a compilation unit, the scope of the use clause
extends to the end of the declarative region associated with the compilation
unit.

4 In order to define which declarations are made directly visible at a given
place by use clauses, consider the set of packages named by all use clauses
whose scopes enclose this place, omitting from this set any packages that
enclose this place. A declaration that can be made directly visible by a
use clause (a potentially visible declaration) is any declaration that occurs
immediately within the visible part of a package of the set. A potentially

8.4 Use Clauses 8-8

visible declaration is actually made directly visible except in the following
two cases:

5 ¢ A potentially visible declaration is not made directly visible if the
place considered is within the immediate scope of a homograph of the
declaration5

6 o Potentially visible declarations that have the same identifier are not
made directly visible unless each of them is either an enumeration
literal specification or the declaration of a subprogram (by a subprogram
declaration, a renaming declaration, a generic instantiation, or an
implicit declaration).

7 The elaboration of a use clause has no other effect.

Note:

8 The above rules guarantee that a declaration that is made directly visible by
a use clause cannot hide an otherwise directly visible declaration. The above
rules are formulated in terms of the set of packages named by use clauses.

9 Consequently, the following lines of text all have the same effect (assuming
only one package P).

use P;
use P; use P, P;

10 Example of conflicting names in two packages:

procedure R is
package TRAFFIC is
type COLOR is (RED, AMBER, GREEN);

end TRAFFIC;

package WATER COLORS is
type COLOR is (WHITE, RED, YELLOW, GREEN,
BLUE, BROWN, BLACK);

end WATER_COLORS;

use TRAFFIC; -- COLOR, RED, AMBER, and GREEN
-- are directly visible

use WATER_COLORS; =-- two homographs of GREEN
—-- are directly visible but
-— COLOR is no longer directly visible

5 See also Appendix G, AI-00286.

8-9 Use Clauses 8.4

1"

12

8.4 Use Clauses

subtype LIGHT is TRAFFIC.COLOR; ——- Subtypes are used
subtype SHADE is WATER COLORS.COLOR; —- to resolve the

—— conflicting

-- type name COLOR

SIGNAL : LIGHT;
PAINT SHADE;
begin
SIGNAL := GREEN; -- that of TRAFFIC
PAINT := GREEN; -- that of WATER_COLORS
end R;

Example of name identification with a use clause:

package D is
T, U, V : BOOLEAN;
end D;

procedure P is
package E is

B, W, V : INTEGER;
end E;
procedure Q is
T, X : REAL;
use D, E;
begin
-— the name T means Q.T, not D.T
—-— the name U means D.U
-- the name B means E.B
-— the name W means E.W
—-— the name X means Q.X
-— the name V is illegal either

== D.V or E.V must be used
end. Q ,
begin
end) P ,
References: compilation unit 10.1, context clause 10.1, declaration 3.1, declarative
item 3.9, declarative region 8.1, direct visibility 8.3, elaboration 3.1 3.9, elaboration
has no other effect 3.1, enumeration literal specification 3.5.1, extends 8.1, hiding

8.3, homograph 8.3, identifier 2.3, immediate scope 8.2, name 4.1, occur immediately
within 8.1, package 7, scope 8.2, subprogram declaration 6.1, visible part 7.2

8-10

8.5 Renaming Declarations

1

2

A renaming declaration declares another name for an entity.

renaming declaration ::=
identifier : type mark renames object name;
| identifier : exception renames exception name;
| package identifier renames package_name;
| subprogram_specification renames subprogram or_entry name;

The elaboration of a renaming declaration evaluates the name that follows
the reserved word renames and thereby determines the entity denoted by
this name (the renamed entity). At any point where a renaming declaration
is visible, the identifier, or operator symbol of this declaration denotes the
renamed entity.

The first form of renaming declaration is used for the renaming of objects.
The renamed entity must be an object of the base type of the type mark.
The properties of the renamed object are not affected by the renaming
declaration. In particular, its value and whether or not it is a constant are
unaffected; similarly, the constraints that apply to an object are not affected
by renaming (any constraint implied by the type mark of the renaming
declaration is ignored). The renaming declaration is legal only if exactly one
object has this type and can be denoted by the object name8

The following restrictions apply to the renaming of a subcomponent that
depends on discriminants of a variable. The renaming is not allowed if
the subtype of the variable, as defined in a corresponding object decla-
ration, component declaration, or component subtype indication, is an
unconstrained type; or if the variable is a generic formal object (of mode in
out). Similarly if the variable is a formal parameter, the renaming is not
allowed if the type mark given in the parameter specification denotes an
unconstrained type whose discriminants have default expressions.”

The second form of renaming declaration is used for the renaming of
exceptions; the third form, for the renaming of packages.

The last form of renaming declaration is used for the renaming of subpro-
grams and entries. The renamed subprogram or entry and the subprogram
specification given in the renaming declaration must have the same param-
eter and result type profile (see 6.6). The renaming declaration is legal only
if exactly one visible subprogram or entry satisfies the above requirements
and can be denoted by the given subprogram or entry name. In addition,

6 See also Appendix G, AI-00001.
7 See also Appendix G, AI-00170.

8-11

Renaming Declarations 8.5

parameter modes must be identical for formal parameters that are at the
same parameter position.

8 The subtypes of the parameters and result (if any) of a renamed subprogram
or entry are not affected by renaming. These subtypes are those given
in the original subprogram declaration, generic instantiation, or entry
declaration (not those of the renaming declaration); even for calls that use
the new name. On the other hand, a renaming declaration can introduce
parameter names and default expressions that differ from those of the
renamed subprogram; named associations of calls with the new subprogram
name must use the new parameter name; calls with the old subprogram
name must use the old parameter names?

9 A procedure can only be renamed as a procedure. Either of a function or
operator can be renamed as either of a function or operator; for renaming as
an operator, the subprogram specification given in the renaming declaration
is subject to the rules given in section 6.7 for operator declarations.
Enumeration literals can be renamed as functions; similarly, attributes
defined as functions (such as SUCC and PRED) can be renamed as
functions. An entry can only be renamed as a procedure; the new name is
only allowed to appear in contexts that allow a procedure name. An entry of
a family can be renamed, but an entry family cannot be renamed as a whole.

10 Examples:

declare
L : PERSON renames LEFTMOST_ PERSON; -- see 3.8.1
begin
L.AGE := L.AGE + 1;
end;
FULL : exception renames TABLE_MANAGER.TABLE FULL; -- see 7.5

package TM renames TABLE MANAGER;

function REAL PLUS(LEFT, RIGHT : REAL)
return REAL renames "+";

function INT PLUS (LEFT, RIGHT : INTEGER)
return INTEGER renames "+";

function ROUGE return COLOR renames RED; -- see 3.5.1
function ROT return COLOR renames RED;
function ROSSO return COLOR renames ROUGE;

function NEXT(X : COLOR) return COLOR renames COLOR'’ SUCC;
-—- see 3.5.5

8 See also Appendix G, AI-00245.

8.5 Renaming Declarations 8-12

8-13

13

15

16

Example of a renaming declaration with new parameter names:

function "*" (X,Y : VECTOR) return REAL renames DOT_PRODUCT;
-- see 6.1

Example of a renaming declaration with a new default expression:

function MINIMUM(L : LINK := HEAD) return CELL renames MIN_CELL;
-— see 6.1

Notes:

Renaming may be used to resolve name conflicts and to act as a shorthand.
Renaming with a different identifier or operator symbol does not hide

the old name; the new name and the old name need not be visible at the
same points. The attributes POS and VAL cannot be renamed since the
corresponding specifications cannot be written; the same holds for the
predefined multiplying operators with a universal_fixed result.

Calls with the new name of a renamed entry are procedure call statements
and are not allowed at places where the syntax requires an entry call
statement in conditional and timed entry calls; similarly, the COUNT
attribute is not available for the new name.

A task object that is declared by an object declaration can be renamed as an
object. However, a single task cannot be renamed since the corresponding
task type is anonymous. For similar reasons, an object of an anonymous
array type cannot be renamed. No syntactic form exists for renaming a
generic unit.

A subtype can be used to achieve the effect of renaming a type (including a
task type) as in

subtype MODE is TEXT_IO.FILE_MODE;

References: allow 1.6, attribute 4.1.4, base type 3.3, conditional entry call 9.7.2,
constant 3.2.1, constrained subtype 3.3, constraint 3.3, declaration 3.1, default
expression 6.1, depend on a discriminant 3.7.1, discriminant 3.7.1, elaboration 3.1
3.9, entry 9.5, entry call 9.5, entry call statement 9.5, entry declaration 9.5, entry
family 9.5, enumeration literal 3.5.1, evaluation of a name 4.1, exception 11, formal
parameter 6.1, function 6.5, identifier 2.3, legal 1.6, mode 6.1, name 4.1, object 3.2,
object declaration 3.2, operator 6.7, operator declaration 6.7, operator symbol 6.1,
package 7, parameter 6.2, parameter specification 6.1, procedure 6.1, procedure call
statement 6.4, reserved word 2.9, subcomponent 3.3, subprogram 6, subprogram call
6.4, subprogram declaration 6.1, subprogram specification 6.1, subtype 3.3.2, task
object 9.2, timed entry call 9.7.3, type 3.3, type mark 3.3.2, variable 3.2.1,

visibility 8.3

Renaming Declarations 8.5

8.6 The Package Standard

1

The predefined types (for example the types BOOLEAN, CHARACTER and
INTEGER) are the types that are declared in a predefined package called
STANDARD; this package also includes the declarations of their predefined
operations. The package STANDARD is described in Annex C. Apart from
the predefined numeric types, the specification of the package STANDARD
must be the same for all implementations of the language.

The package STANDARD forms a declarative region which encloses every
library unit and consequently the main program; the declaration of every
library unit is assumed to occur immediately within this package. The
implicit declarations of library units are assumed to be ordered in such a
way that the scope of a given library unit includes any compilation unit that
mentions the given library unit in a with clause. However, the only library
units that are visible within a given compilation unit are as follows: they
include the library units named by all with clauses that apply to the given
unit, and moreover, if the given unit is a secondary unit of some library unit,
they include this library unit.2

Notes:

If all block statements of a program are named, then the name of each
program unit can always be written as an expanded name starting with
STANDARD (unless this package is itself hidden).

If a type is declared in the visible part of a library package, then it is a
consequence of the visibility rules that a basic operation (such as assign-
ment) for this type is directly visible at places where the type itself is not
visible (whether by selection or directly). However this operation can only
be applied to operands that are visible and the declaration of these operands
requires the visibility of either the type or one of its subtypes.

References: applicable with clause 10.1.1, block name 5.6, block statement 5.6,
declaration 3.1, declarative region 8.1, expanded name 4.1.3, hiding 8.3, identifier
2.3, implicit declaration 3.1, library unit 10.1, loop statement 5.5, main program
10.1, must 1.6, name 4.1, occur immediately within 8.1, operator 6.7, package 7,
program unit 6, secondary unit 10.1, subtype 3.3, type 3.3, visibility 8.3,

with clause 10.1.1

9 See also Appendix G, AI-00192.

8.6 The Package Standard 8-14

8.7 The Context of Overload Resolution

10

1

Overloading is defined for subprograms, enumeration literals, operators, and
single entries, and also for the operations that are inherent in several basic
operations such as assignment, membership tests, allocators, the literal
null, aggregates, and string literals.

For overloaded entities, overload resolution determines the actual meaning
that an occurrence of an identifier has, whenever the visibility rules have
determined that more than one meaning is acceptable at the place of this
occurrence; overload resolution likewise determines the actual meaning of
an occurrence of an operator or some basic operation.

At such a place all visible declarations are considered. The occurrence is
only legal if there is exactly one interpretation of each constituent of the
innermost complete context; a complete context is one of the following:10

¢ A declaration.
e A statement.
e A representation clause.

When considering possible interpretations of a complete context, the only
rules considered are the syntax rules, the scope and visibility rules, and the
rules of the form described below.11

(a) Any rule that requires a name or expression to have a certain type, or
to have the same type as another name or expression.12

(b) Any rule that requires the type of a name or expression to be a type of
a certain class; similarly, any rule that requires a certain type to be a
discrete, integer, real, universal, character, boolean, or nonlimited type.

(¢) Any rule that requires a prefix to be appropriate for a certain type.

(d) Any rule that specifies a certain type as the result type of a basic
operation, and any rule that specifies that this type is of a certain
class.

(e) The rules that require the type of an aggregate or string literal to
be determinable solely from the enclosing complete context (see 4.3
and 4.2). Similarly, the rules that require the type of the prefix of an
attribute, the type of the expression of a case statement, or the type of

10 See also Appendix G, AI-00120.
11 See also Appendix G, AI-00157.
i2 See also Appendix G, AI-00193.

8-15

The Context of Overload Resolution 8.7

13

15

16

18

20

the operand of a type conversion, to be determinable independently of
the context (see 4.1.4, 5.4, 4.6, and 6.4.1).

() The rules given in section 6.6, for the resolution of overloaded
subprogram calls; in section 4.6, for the implicit conversions of
universal expressions; in section 3.6.1, for the interpretation of discrete
ranges with bounds having a universal type; and in section 4.1.3,
for the interpretation of an expanded name whose prefix denotes a
subprogram or an accept statement!3

Subprogram names used as pragma arguments follow a different rule: the
pragma can apply to several overloaded subprograms, as explained in section
6.3.2 for the pragma INLINE, in section 11.7 for the pragma SUPPRESS,
and in section 13.9 for the pragma INTERFACE.

Similarly, the simple names given in context clauses (see 10.1.1) and in
address clauses (see 13.5) follow different rules.

Notes:

If there is only one possible interpretation, the identifier denotes the cor-
responding entity. However, this does not mean that the occurrence is
necessarily legal since other requirements exist which are not considered for
overload resolution; for example, the fact that an expression is static, the
parameter modes, whether an object is constant, conformance rules, forcing
occurrences for a representation clause, order of elaboration, and so on.

Similarly, subtypes are not considered for overload resolution (the violation
of a constraint does not make a program illegal but raises an exception
during program execution).

Rules that require certain constructs to have the same parameter and result
type profile fall under the category (a); the same holds for rules that require
conformance of two constructs since conformance requires that corresponding
names be given the same meaning by the visibility and overloading rules.

A loop parameter specification is a declaration, and hence a complete
context.

References: aggregate 4.3, allocator 4.8, assignment 5.2, basic operation 3.3.3,
case statement 5.4, class of type 3.3, declaration 3.1, entry 9.5, enumeration literal
3.5.1, exception 11, expression 4.4, formal part 6.1, identifier 2.3, legal 1.6, literal
4.2, loop parameter specification 5.5, membership test 4.5.2, name 4.1, null literal
3.8, operation 3.3.3, operator 4.5, overloading 6.6, pragma 2.8, representation clause
13.1, statement 5, static expression 4.9, static subtype 4.9, subprogram 6, subtype
3.3, type conversion 4.6, visibility 8.3

13 See also Appendix G, AI-00287.

8.7 The Context of Overload Resolution 8-16

8-17

21

22

23

24

Rule of the form (a): address clause 13.5, assignment 5.2, choice 3.7.3 4.3.2 5.4,
component association 4.3.1 4.3.2, conformance rules 9.5, default expression 3.7 3.7.1
6.1 12.1.1, delay statement 9.6, discrete range 3.6.1 5.5 9.5, discriminant constraint
3.7.2, enumeration representation clause 13.3, generic parameter association
12.3.1, index constraint 3.6.1, index expression 4.1.1 4.1.2 9.5, initial value 3.2.1,
membership test 4.5.2, parameter association 6.4.1, parameter and result type
profile 8.5 12.3.6, qualified expression 4.7, range constraint 3.5, renaming of an
object 8.5, result expression 5.8

Rules of the form (b): abort statement 9.10, assignment 5.2, case expression 5.4,
condition 5.3 5.5 5.7 9.7.1, discrete range 3.6.1 5.5 9.5, fixed point type declaration
3.5.9, floating point type declaration 3.5.7, integer type declaration 3.5.4, length
clause 13.2, membership test 4.4, number declaration 3.2.2, record representation
clause 13.4, selected component 4.1.3, short-circuit control form 4.4, val

attribute 3.5.5

Rules of the form (c): indexed component 4.1.1, selected component 4.1.3,
slice 4.1.2

Rules of the form (d): aggregate 4.3, allocator 4.8, membership test 4.4, null
literal 4.2, numeric literal 2.4, short-circuit control form 4.4, string literal 4.2

The Context of Overload Resolution 8.7

Chapter 9

Tasks

-1

The execution of a program that does not contain a task is defined in terms
of a sequential execution of its actions, according to the rules described

in other chapters of this manual. These actions can be considered to be
executed by a single logical processor.

Tasks are entities whose executions proceed in parallel in the following
sense. Each task can be considered to be executed by a logical processor of
its own. Different tasks (different logical processors) proceed independently,
except at points where they synchronize.

Some tasks have entries. An entry of a task can be called by other tasks. A
task accepts a call of one of its entries by executing an accept statement for
the entry. Synchronization is achieved by rendezvous between a task issuing
an entry call and a task accepting the call. Some entries have parameters;
entry calls and accept statements for such entries are the principal means of
communicating values between tasks.

The properties of each task are defined by a corresponding task unit which
consists of a task specification and a task body. Task units are one of the
four forms of program unit of which programs can be composed. The other
forms are subprograms, packages and generic units. The properties of task
units, tasks, and entries, and the statements that affect the interaction
between tasks (that is, entry call statements, accept statements, delay
statements, select statements, and abort statements) are described in this
chapter.

Note:

Parallel tasks (parallel logical processors) may be implemented on multicom-
puters, multiprocessors, or with interleaved execution on a single physical
processor. On the other hand, whenever an implementation can detect that
the same effect can be guaranteed if parts of the actions of a given task are
executed by different physical processors acting in parallel, it may choose

to execute them in this way; in such a case, several physical processors
implement a single logical processor.

References : abort statement 9.10, accept statement 9.5, delay statement 9.6,
entry 9.5, entry call statement 9.5, generic unit 12, package 7, parameter in an
entry call 9.5, program unit 6, rendezvous 9.5, select statement 9.7, subprogram 6,
task body 9.1, task specification 9.1

9.1 Task Specifications and Task Bodies

1

A task unit consists of a task specification and a task body. A task
specification that starts with the reserved words task type declares a task
type. The value of an object of a task type designates a task having the
entries, if any, that are declared in the task specification; these entries are
also called entries of this object. The execution of the task is defined by the
corresponding task body.

A task specification without the reserved word type defines a single

task. A task declaration with this form of specification is equivalent to

the declaration of an anonymous task type immediately followed by the
declaration of an object of the task type, and the task unit identifier names
the object. In the remainder of this chapter, explanations are given in terms
of task type declarations; the corresponding explanations for single task
declarations follow from the stated equivalence.

task_declaration ::= task_specification;

task_specification ::=
task [type] identifier [is
{entry_declaration}
{representation_clause}
end [task_simple_name]]

9.1 Task Specifications and Task Bodies 9-2

task _body ::=

task body task _simple name is
[declarative part]

begin
sequence_of_statements

[exception
exception_handler
{exception_handler}]

end [task_simple name];

The simple name at the start of a task body must repeat the task unit
identifier. Similarly if a simple name appears at the end of the task
specification or body, it must repeat the task unit identifier. Within a task
body, the name of the corresponding task unit can also be used to refer

to the task object that designates the task currently executing the body;
furthermore, the use of this name as a type mark is not allowed within the
task unit itself.

For the elaboration of a task specification, entry declarations and represen-
tation clauses, if any, are elaborated in the order given. Such representation
clauses only apply to the entries declared in the task specification (see 13.5).

The elaboration of a task body has no other effect than to establish that
the body can from then on be used for the execution of tasks designated by
objects of the corresponding task type.

The execution of a task body is invoked by the activation of a task object of
the corresponding type (see 9.3). The optional exception handlers at the end
of a task body handle exceptions raised during the execution of the sequence
of statements of the task body (see 11.4).

Examples of specifications of task types:

task type RESOURCE is
entry SEIZE;
entry RELEASE;

end RESOURCE;

task type KEYBOARD DRIVER is
entry READ (C : out CHARACTER):;
entry WRITE(C : in CHARACTER);
end KEYBOARD DRIVER;

Task Specifications and Task Bodies 9.1

9.1

12

Examples of specifications of single tasks:

task PRODUCER_CONSUMER is
entry READ (V : out ITEM);
entry WRITE(E : in ITEM);

end;
task CONTROLLER is
entry REQUEST (LEVEL) (D : ITEM); -- a family of entries
end CONTROLLER;
task USER; -- has no entries

Example of task specification and corresponding body:

task PROTECTED_ARRAY is
—-- INDEX and ITEM are global types
entry READ (N : in INDEX; V : out ITEM);
entry WRITE(N : in INDEX; E : in ITEM);

end;
task body PROTECTED_ARRAY is
TABLE : array (INDEX) of ITEM := (INDEX => NULL_ITEM) ;
begin
loop
select

accept READ (N : in INDEX; V : out ITEM) do
V := TABLE (N);
end READ;
or
accept WRITE(N : in INDEX; E : in ITEM) do
TABLE (N) := E;
end WRITE;
end select;
end loop;
end PROTECTED_ARRAY;

Note:

A task specification specifies the interface of tasks of the task type with
other tasks of the same or of different types, and also with the main
program.

References : declaration 3.1, declarative part 3.9, elaboration 3.9, entry 9.5, entry
declaration 9.5, exception handler 11.2, identifier 2.3, main program 10.1, object 3.2,
object declaration 3.2.1, representation clause 13.1, reserved word 2.9, sequence of
statements 5.1, simple name 4.1, type 3.3, type declaration 3.3.1

Task Specifications and Task Bodies 94

9.2 Task Types and Task Objects

1

A task type is a limited type (see 7.4.4). Hence neither assignment nor the
predefined comparison for equality and inequality are defined for objects of
task types; moreover, the mode out is not allowed for a formal parameter
whose type is a task type.

A task object is an object whose type is a task type. The value of a task
object designates a task that has the entries of the corresponding task type,
and whose execution is specified by the corresponding task body. If a task
object is the object, or a subcomponent of the object, declared by an object
declaration, then the value of the task object is defined by the elaboration of
the object declaration. If a task object is the object, or a subcomponent of the
object, created by the evaluation of an allocator, then the value of the task
object is defined by the evaluation of the allocator. For all parameter modes,
if an actual parameter designates a task, the associated formal parameter
designates the same task; the same holds for a subcomponent of an actual
parameter and the corresponding subcomponent of the associated formal
parameter; finally, the same holds for generic parameters.

Examples:

CONTROL : RESOURCE;

TELETYPE : KEYBOARD_ DRIVER;

POOL : array(l .. 10) of KEYBOARD_ DRIVER;

-- see also examples of declarations of single tasks in 9.1

Example of access type designating task objects:
type KEYBOARD is access KEYBOARD_DRIVER;
TERMINAL : KEYBOARD := new KEYBOARD DRIVER;

Notes:

Since a task type is a limited type, it can appear as the definition of a
limited private type in a private part, and as a generic actual parameter
associated with a formal parameter whose type is a limited type. On the
other hand, the type of a generic formal parameter of mode in must not be a
limited type and hence cannot be a task type.

Task objects behave as constants (a task object always designates the

same task) since their values are implicitly defined either at declaration

or allocation, or by a parameter association, and since no assignment is
available. However the reserved word constant is not allowed in the
declaration of a task object since this would require an explicit initialization.
A task object that is a formal parameter of mode in is a constant (as is any
formal parameter of this mode).

Task Types and Task Objects 9.2

7 If an application needs to store and exchange task identities, it can do
so by defining an access type designating the corresponding task objects
and by using access values for identification purposes (see above example).
Assignment is available for such an access type as for any access type.

8 Subtype declarations are allowed for task types as for other types, but there
are no constraints applicable to task types.

9 References : access type 3.8, actual parameter 6.4.1, allocator 4.8, assignment 5.2,
component declaration 3.7, composite type 3.3, constant 3.2.1, constant declaration
3.2.1, constraint 3.3, designate 3.8 9.1, elaboration 3.9, entry 9.5, equality operator
4.5.2, formal parameter 6.2, formal parameter mode 6.2, generic actual parameter
12.3, generic association 12.3, generic formal parameter 12.1, generic formal pa-
rameter mode 12.1.1, generic unit 12, inequality operator 4.5.2, initialization 3.2.1,
limited type 7.4.4, object 3.2, object declaration 3.2.1, parameter association 6.4,
private part 7.2, private type 7.4, reserved word 2.9, subcomponent 3.3, subprogram
6, subtype declaration 3.3.2, task body 9.1, type 3.3

9.3 Task Execution—Task Activation

1 A task body defines the execution of any task that is designated by a task
object of the corresponding task type. The initial part of this execution is
called the activation of the task object, and also that of the designated task;
it consists of the elaboration of the declarative part, if any, of the task body.
The execution of different tasks, in particular their activation, proceeds in
parallel.

2 If an object declaration that declares a task object occurs immediately within
a declarative part, then the activation of the task object starts after the
elaboration of the declarative part (that is, after passing the reserved word
begin following the declarative part); similarly if such a declaration occurs
immediately within a package specification, the activation starts after the
elaboration of the declarative part of the package body. The same holds for
the activation of a task object that is a subcomponent of an object declared
immediately within a declarative part or package specification. The first
statement following the declarative part is executed only after conclusion of
the activation of these task objects.

3 Should an exception be raised by the activation of one of these tasks,
that task becomes a completed task (see 9.4); other tasks are not directly
affected. Should one of these tasks thus become completed during its
activation, the exception TASKING_ERROR is raised upon conclusion of the
activation of all of these tasks (whether successfully or not); the exception
is raised at a place that is immediately before the first statement following
the declarative part (immediately after the reserved word begin). Should

9.3 Task Execution—Task Activation 9-6

several of these tasks thus become completed during their activation, the
exception TASKING_ERROR is raised only oncel

4 Should an exception be raised by the elaboration of a declarative part or
package specification, then any task that is created (directly or indirectly)
by this elaboration and that is not yet activated becomes terminated and is
theregore never activated (see section 9.4 for the definition of a terminated
task):

5 For the above rules, in any package body without statements, a null
statement is assumed. For any package without a package body, an implicit
package body containing a single null statement is assumed. If a package
without a package body is declared immediately within some program
unit or block statement, the implicit package body occurs at the end of the
declarative part of the program unit or block statement; if there are several
such packages, the order of the implicit package bodies is undefined3

6 A task object that is the object, or a subcomponent of the object, created by
the evaluation of an allocator is activated by this evaluation. The activation
starts after any initialization for the object created by the allocator; if
several subcomponents are task objects, they are activated in parallel. The
access value designating such an object is returned by the allocator only
after the conclusion of these activations.

7 Should an exception be raised by the activation of one of these tasks, that
task becomes a completed task; other tasks are not directly affected. Should
one of these tasks thus become completed during its activation, the exception
TASKING_ERROR is raised upon conclusion of the activation of all of these
tasks (whether successfully or not); the exception is raised at the place
where the allocator is evaluated. Should several of these tasks thus become
completed during their activation, the exception TASKING_ERROR is raised
only once.

8 Should an exception be raised by the initialization of the object created by
an allocator (hence before the start of any activation), any task designated
by a subcomponent of this object becomes terminated and is therefore never
activated?

1 See also Appendix G, AI-00268.
2 See also Appendix G, AI-00198.
3 See also Appendix G, AI-00237.
4 See also Appendix G, AI-00198.

9-7 Task Execution—Task Activation 9.3

10

1

Example:

procedure P is

A, B : RESOURCE; -- elaborate the task objects A, B
C : RESOURCE; -- -elaborate the task object C
begin

-— the tasks A, B, C are activated in parallel
—-—- before the first statement

end;

Notes:

An entry of a task can be called before the task has been activated. If
several tasks are activated in parallel, the execution of any of these tasks
need not await the end of the activation of the other tasks. A task may
become completed during its activation either because of an exception or
because it is aborted (see 9.10).

References : allocator 4.8, completed task 9.4, declarative part 3.9, elaboration
3.9, entry 9.5, exception 11, handling an exception 11.4, package body 7.1, parallel
execution 9, statement 5, subcomponent 3.3, task body 9.1, task object 9.2, task
termination 9.4, task type 9.1, tasking_error exception 11.1

9.4 Task Dependence—Termination of Tasks

1

Each task depends on at least one master.’> A master is a construct that is
either a task, a currently executing block statement or subprogram, or a
library package (a package declared within another program unit is not a
master). The dependence on a master is a direct dependence in the following
two cases:

(@) The task designated by a task object that is the object, or a subcompo-
nent of the object, created by the evaluation of an allocator depends on
the master that elaborates the corresponding access type definition.

(b) The task designated by any other task object depends on the master
whose execution creates the task object.

Furthermore, if a task depends on a given master that is a block statement
executed by another master, then the task depends also on this other master,
in an indirect manner; the same holds if the given master is a subprogram
called by another master, and if the given master is a task that depends
(directly or indirectly) on another master. Dependences exist for objects of a
private type whose full declaration is in terms of a task type.

5 See also Appendix G, AI-00167.

9.4 Task Dependence—Termination of Tasks 9-8

5 A task is said to have completed its execution when it has finished the
execution of the sequence of statements that appears after the reserved
word begin in the corresponding body. Similarly a block or a subprogram
is said to have completed its execution when it has finished the execution
of the corresponding sequence of statements. For a block statement, the
execution is also said to be completed when it reaches an exit, return,
or goto statement transferring control out of the block. For a procedure,
the execution is also said to be completed when a corresponding return
statement is reached. For a function, the execution is also said to be
completed after the evaluation of the result expression of a return statement.
Finally the execution of a task, block statement, or subprogram is completed
if an exception is raised by the execution of its sequence of statements and
there is no corresponding handler, or, if there is one, when it has finished
the execution of the corresponding handler.

6 If a task has no dependent task, its termination takes place when it
has completed its execution. After its termination, a task is said to be
terminated. If a task has dependent tasks, its termination takes place
when the execution of the task is completed and all dependent tasks are
terminated. A block statement or subprogram body whose executlon is
completed is not left until all of its dependent tasks are terminated.”

7 Termination of a task otherwise takes place if and only if its execution has
reached an open terminate alternative in a select statement (see 9.7.1), and
the following conditions are satisfied:

8 * The task depends on some master whose execution is completed (hence
not a library package).

9 ¢ Each task that depends on the master considered is either already
terminated or similarly waiting on an open terminate alternative of a
select statement.

10 When both conditions are satisfied, the task considered becomes terminated,
together with all tasks that depend on the master considered.

6 See also Appendix G, AI-00173.
7 See also Appendix G, AI-00441.

9-9 Task Dependence—Termination of Tasks 9.4

9.4

1 Example:

declare
type GLOBAL is access RESOURCE; -- see 9.1
A, B : RESOURCE;
G : GLOBAL;
begin
-- activation of A and B
declare
type LOCAL is access RESOURCE;
X : GLOBAL := new RESOURCE; -- activation of X.all
L : LOCAL := new RESOURCE; -- activation of L.all
C : RESOURCE;
begin
-- activation of C
G := X; -- Dboth G and X designate the same task object
end; -- await termination of C and L.all (but not X.all)
end; -- await termination of A, B, and G.all
Notes:

12 The rules given for termination imply that all tasks that depend (directly or
indirectly) on a given master and that are not already terminated, can be
terminated (collectively) if and only if each of them is waiting on an open
terminate alternative of a select statement and the execution of the given
master is completed.

13 The usual rules apply to the main program. Consequently, termination of
the main program awaits termination of any dependent task even if the
corresponding task type is declared in a library package. On the other hand,
termination of the main program does not await termination of tasks that
depend on library packages; the language does not define whether such
tasks are required to terminate.

In VAX Ada, the environment task that calls the main program (see 10.1) is
the master of tasks that depend on library packages. Thus, in accordance
with the rules of this section, the environment task awaits termination of
such tasks. In particular, the rules concerning terminate alternatives in
select statements apply.

14 For an access type derived from another access type, the corresponding
access type definition is that of the parent type; the dependence is on the
master that elaborates the ultimate parent access type definition.

15 A renaming declaration defines a new name for an existing entity and hence
creates no further dependence.

Task Dependence—Termination of Tasks 9-10

References : access type 3.8, allocator 4.8, block statement 5.6, declaration

3.1, designate 3.8 9.1, exception 11, exception handler 11.2, exit statement 5.7,
function 6.5, goto statement 5.9, library unit 10.1, main program 10.1, object

3.2, open alternative 9.7.1, package 7, program unit 6, renaming declaration 8.5,
return statement 5.8, selective wait 9.7.1, sequence of statements 5.1, statement 5,
subcomponent 3.3, subprogram body 6.3, subprogram call 6.4, task body 9.1, task
object 9.2, terminate alternative 9.7.1

9.5 Entries, Entry Calls, and Accept Statements

911

Entry calls and accept statements are the primary means of synchronization
of tasks, and of communicating values between tasks. An entry declaration
is similar to a subprogram declaration and is only allowed in a task
specification. The actions to be performed when an entry is called are
specified by corresponding accept statements.

entry declaration ::=
entry identifier [(discrete range)] [formal part];

entry call statement ::= entry name [actual_parameter_ part];

accept_statement ::=
accept entry simple name [(entry index)] [formal part] [do
sequence_of_ statements
end [entry simple name]];

entry index ::= expression

An entry declaration that includes a discrete range (see 3.6.1) declares a
family of distinct entries having the same formal part (if any); that is, one
such entry for each value of the discrete range. The term single entry is
used in the definition of any rule that applies to any entry other than one of
a family. The task designated by an object of a task type has (or owns) the
entries declared in the specification of the task type.

Within the body of a task, each of its single entries or entry families can

be named by the corresponding simple name. The name of an entry of a
family takes the form of an indexed component, the family simple name
being followed by the index in parentheses; the type of this index must be
the same as that of the discrete range in the corresponding entry family
declaration. Outside the body of a task an entry name has the form of a
selected component, whose prefix denotes the task object, and whose selector
is the simple name of one of its single entries or entry families.

Entries, Entry Calls, and Accept Statements 9.5

10

A single entry overloads a subprogram, an enumeration literal, or another
single entry if they have the same identifier. Overloading is not defined for
entry families. A single entry or an entry of an entry family can be renamed
as a procedure as explained in section 8.5.8

The parameter modes defined for parameters of the formal part of an entry
declaration are the same as for a subprogram declaration and have the same
meaning (see 6.2). The syntax of an entry call statement is similar to that of
a procedure call statement, and the rules for parameter associations are the
same as for subprogram calls (see 6.4.1 and 6.4.2).

An accept statement specifies the actions to be performed at a call of a
named entry (it can be an entry of a family). The formal part of an accept
statement must conform to the formal part given in the declaration of the
single entry or entry family named by the accept statement (see section 6.3.1
for the conformance rules). If a simple name appears at the end of an accept
statement, it must repeat that given at the start.

An accept statement for an entry of a given task is only allowed within the
corresponding task body; excluding within the body of any program unit
that is, itself, inner to the task body; and excluding within another accept
statement for either the same single entry or an entry of the same family.
(One consequence of this rule is that a task can execute accept statements
only for its own entries.) A task body can contain more than one accept
statement for the same entry.

For the elaboration of an entry declaration, the discrete range, if any, is
evaluated and the formal part, if any, is then elaborated as for a subprogram
declaration.

Execution of an accept statement starts with the evaluation of the entry
index (in the case of an entry of a family). Execution of an entry call
statement starts with the evaluation of the entry name; this is followed by
any evaluations required for actual parameters in the same manner as for a
subprogram call (see 6.4). Further execution of an accept statement and of a
corresponding entry call statement are synchronized.

If a given entry is called by only one task, there are two possibilities:

e If the calling task issues an entry call statement before a corresponding
accept statement is reached by the task owning the entry, the execution
of the calling task is suspended.

e If a task reaches an accept statement prior to any call of that entry, the
execution of the task is suspended until such a call is received.

8 See also Appendix G, AI-00287.

9.5 Entries, Entry Calls, and Accept Statements 9-12

9-13

15

16

17

18

When an entry has been called and a corresponding accept statement has
been reached, the sequence of statements, if any, of the accept statement is
executed by the called task (while the calling task remains suspended). This
interaction is called a rendezvous. Thereafter, the calling task and the task
owning the entry continue their execution in parallel.

If several tasks call the same entry before a corresponding accept statement
is reached, the calls are queued; there is one queue associated with each
entry. Each execution of an accept statement removes one call from the
queue. The calls are processed in the order of arrival.

An attempt to call an entry of a task that has completed its execution
raises the exception TASKING_ERROR at the point of the call, in the
calling task; similarly, this exception is raised at the point of the call if
the called task completes its execution before accepting the call (see also
9.10 for the case when the called task becomes abnormal). The exception
CONSTRAINT_ERROR is raised if the index of an entry of a family is not
within the specified discrete range.

Examples of entry declarations:

entry READ(V : out ITEM);
entry SEIZE;
entry REQUEST (LEVEL) (D : ITEM); -- a family of entries

Examples of entry calls:

CONTROL.RELEASE; -— see 9.2 and 9.1
PRODUCER_CONSUMER.WRITE (E) ; -— see 9.1
POOL (5) .READ (NEXT CHAR) ; -— see 9.2 and 9.1
CONTROLLER.REQUEST (LOW) (SOME_ITEM) ; -— see 9.1

Examples of accept statements:
accept SEIZE;

accept READ(V : out ITEM) do
V := LOCAL_ITEM;
end READ;

accept REQUEST (LOW) (D : ITEM) do

end REQUEST;

Entries, Entry Calls, and Accept Statements 9.5

20

21

22

23

Notes:

The formal part given in an accept statement is not elaborated; it is only
used to identify the corresponding entry.

An accept statement can call subprograms that issue entry calls. An accept
statement need not have a sequence of statements even if the corresponding
entry has parameters. Equally, it can have a sequence of statements even if
the corresponding entry has no parameters. The sequence of statements of
an accept statement can include return statements. A task can call its own
entries but it will, of course, deadlock. The language permits conditional
and timed entry calls (see 9.7.2 and 9.7.3). The language rules ensure that a
task can only be in one entry queue at a given time.

If the bounds of the discrete range of an entry family are integer literals, the
index (in an entry name or accept statement) must be of the predefined type
INTEGER (see 3.6.1).

References : abnormal task 9.10, actual parameter part 6.4, completed task 9.4,
conditional entry call 9.7.2, conformance rules 6.3.1, constraint_error exception 11.1,
designate 9.1, discrete range 3.6.1, elaboration 3.1 3.9, enumeration literal 3.5.1,
evaluation 4.5, expression 4.4, formal part 6.1, identifier 2.3, indexed component
4.1.1, integer type 3.5.4, name 4.1, object 3.2, overloading 6.6 8.7, parallel execution
9, prefix 4.1, procedure 6, procedure call 6.4, renaming declaration 8.5, return
statement 5.8, scope 8.2, selected component 4.1.3, selector 4.1.3, sequence of
statements 5.1, simple expression 4.4, simple name 4.1, subprogram 6, subprogram
body 6.3, subprogram declaration 6.1, task 9, task body 9.1, task specification 9.1,
tasking_error exception 11.1, timed entry call 9.7.3

9.6 Delay Statements, Duration, and Time

1

The execution of a delay statement evaluates the simple expression, and
suspends further execution of the task that executes the delay statement,
for at least the duration specified by the resulting value?

delay_statement ::= delay simple expression;

The simple expression must be of the predefined fixed point type
DURATION; its value is expressed in seconds; a delay statement with
a negative value is equivalent to a delay statement with a zero value.

9 See also Appendix G, AT-00201 and AI-00464.

9.6 Delay Statements, Duration, and Time 9-14

4 Any implementation of the type DURATION must allow representation
of durations (both positive and negative) up to at least 86400 seconds
(one day); the smallest representable duration, DURATION’ SMALL
must not be greater than twenty milliseconds (whenever possible, a
value not greater than fifty microseconds should be chosen). Note that
DURATION’ SMALL need not correspond to the basic clock cycle, the named
number SYSTEM.TICK (see 13.7). 10

In VAX Ada, DURATION’ SMALL is 2714 seconds, or approximately 61
microseconds. The value does not correspond to the value of the named
number SYSTEM.TICK, which is 10.0~2 seconds (10 milliseconds) in VAX
Ada. (SYSTEM.TICK represents the smallest unit of time used by the VMS
operating system in its time-related system services.)

5 The definition of the type TIME is provided in the predef .ed library package
CALENDAR. The function CLOCK returns the current value of TIME at the
time it is called. The functions YEAR, MONTH, DAY and SECONDS return
the corresponding values for a given value of the type TIME; the procedure
SPLIT returns all four corresponding values. Conversely, the function
TIME_OF combines a year number, a month number, a day number, and a
duration, into a value of type TIME. The operators “+” and “~” for addition
and subtraction of times and durations, and the relational operators for
times, have the conventional meaning. 11

In VAX Ada, the type TIME is implemented as VMS binary time.

6 The exception TIME_ERROR is raised by the function TIME_OF if the
actual parameters do not form a proper date. This exception is also
raised by the operators “+” and “-” if, for the given operands, these operators
cannot return a date whose year number is in the range of the corresponding

subtype, or if the operator “—” cannot return a result that is in the range of
the type DURATION. 12

7 package CALENDAR is
type TIME is private;

subtype YEAR NUMBER is INTEGER range 1901 .. 2099;

subtype MONTH _NUMBER is INTEGER range 1 .. 12;
subtype DAY NUMBER is INTEGER range 1 .. 31;
subtype DAY DURATION is DURATION range 0.0 .. 86_400.0;

function CLOCK return TIME;

10 See also Appendix G, AI-00201.
11 See also Appendix G, AI-00195 and AI-00201.
12 See also Appendix G, AI-00196.

9-15 Delay Statements, Duration, and Time 9.6

function YEAR (DATE
function MONTH (DATE

TIME) return YEAR NUMBER;
TIME) return MONTH NUMBER;

e e es

function DAY (DATE : TIME) return DAY NUMBER;
function SECONDS (DATE : TIME) return DAY DURATION;
procedure SPLIT (DATE : in TIME;
YEAR : out YEAR NUMBER;
MONTH : out MONTH_NUMBER;
DAY : out DAY NUMBER;
SECONDS : out DAY DURATION) ;
function TIME OF (YEAR : YEAR NUMBER;
MONTH : MONTH_NUMBER;
DAY : DAY NUMBER;
SECONDS : DAY DURATION := 0.0) return TIME;
function "+" (LEFT : TIME;
RIGHT : DURATION) return TIME;
function "+" (LEFT : DURATION;
RIGHT : TIME) return TIME;
function "-" (LEFT : TIME;
RIGHT : DURATION) return TIME;
function "-" (LEFT : TIME;
RIGHT : TIME) return DURATION;

function "<" (LEFT, RIGHT : TIME) return BOOLEAN;
function "<=" (LEFT, RIGHT : TIME) return BOOLEAN;
function ">" (LEFT, RIGHT : TIME) return BOOLEAN;
function ">=" (LEFT, RIGHT : TIME) return BOOLEAN;

TIME_ERROR : exception;
-- can be raised by TIME OF, "+", and "-"

private
—-— implementation-dependent
end;13

8 Examples:
delay 3.0; -- delay 3.0 seconds

declare
use CALENDAR;
—-— INTERVAL is a global constant of type DURATION
NEXT TIME : TIME := CLOCK + INTERVAL;
begin
loop
delay NEXT TIME - CLOCK;
—-— some actions
NEXT _TIME := NEXT TIME + INTERVAL;
end loop;
end;

13 See also Appendix G, AI-00355.

9.6 Delay Statements, Duration, and Time 9-16

Notes:

3 The second example causes the loop to be repeated every INTERVAL seconds
on average. This interval between two successive iterations is only approxi-
mate. However, there will be no cumulative drift as long as the duration of
each iteration is (sufficiently) less than INTERVAL.

1o References : adding operator 4.5, duration C, fixed point type 3.5.9, function call
6.4, library unit 10.1, operator 4.5, package 7, private type 7.4, relational operator
4.5, simple expression 4.4, statement 5, task 9, type 3.3

named number 3.2, system predefined package 13.7 13.7.1

9.7 Select Statements

1 There are three forms of select statements. One form provides a selective
wait for one or more alternatives. The other two provide conditional and
timed entry calls.

2 select_statement ::= selective wait
| conditional_entry call | timed_entry_ call

3 References : selective wait 9.7.1, conditional entry call 9.7.2, timed entry call 9.7.3

1 9.7.1 Selective Waits

1 This form of the select statement allows a combination of waiting for, and
selecting from, one or more alternatives. The selection can depend on
conditions associated with each alternative of the selective wait.

2 selective wait ::=
select
select alternative
{or
select_alternative}
[else
sequence_of_ statements]
end select;

select_alternative ::=
[when condition =>]
selective_wait_alternative

selective wait_alternative ::= accept_alternative
| delay alternative | terminate_alternative

9-17 Selective Waits 9.7.1

accept_alternative ::= accept_statement [sequence_of_ statements]

I

delay alternative ::= delay_statement [sequence_of_ statements]

terminate_alternative ::= terminate;

3 A selective wait must contain at least one accept alternative. In addition
a selective wait can contain either a terminate alternative (only one), or
one or more delay alternatives, or an else part; these three possibilities are
mutually exclusive.

4 A select alternative is said to be open if it does not start with when and a
condition, or if the condition is TRUE. It is said to be closed otherwise.

5 For the execution of a selective wait, any conditions specified after when
are evaluated in some order that is not defined by the language; open
alternatives are thus determined. For an open delay alternative, the delay
expression is also evaluated. Similarly, for an open accept alternative for an
entry of a family, the entry index is also evaluated. Selection and execution
of one open alternative, or of the else part, then completes the execution of
the selective wait; the rules for this selection are described below. 14

6 Open accept alternatives are first considered. Selection of one such alterna-
tive takes place immediately if a corresponding rendezvous is possible, that
is, if there is a corresponding entry call issued by another task and waiting
to be accepted. If several alternatives can thus be selected, one of them is
selected arbitrarily (that is, the language does not define which one). When
such an alternative is selected, the corresponding accept statement and pos-
sible subsequent statements are executed. If no rendezvous is immediately
possible and there is no else part, the task waits until an open selective wait
alternative can be selected.

7 Selection of the other forms of alternative or of an else part is performed as
follows:

8 * An open delay alternative will be selected if no accept alternative can
be selected before the specified delay has elapsed (immediately, for
a negative or zero delay in the absence of queued entry calls); any
subsequent statements of the alternative are then executed. If several
delay alternatives can thus be selected (that is, if they have the same
delay), one of them is selected arbitrarily.

9 ® The else part is selected and its statements are executed if no accept
alternative can be immediately selected, in particular, if all alternatives
are closed.

14 See also Appendix G, AI-00030.

9.7.1 Selective Waits 9-18

9-19

10

1

e An open terminate alternative is selected if the conditions stated in
section 9.4 are satisfied. It is a consequence of other rules that a
terminate alternative cannot be selected while there is a queued entry
call for any entry of the task.

The exception PROGRAM_ERROR is raised if all alternatives are closed and
there is no else part.

Examples of a select statement:

select
accept DRIVER AWAKE_SIGNAL;
or
delay 30.0*SECONDS;
STOP_THE_TRAIN;
end select;

Example of a task body with a select statement:
task body RESOURCE is

BUSY : BOOLEAN := FALSE;
begin
loop
select

when not BUSY =>
accept SEIZE do

BUSY := TRUE;
end;
or
accept RELEASE do
BUSY := FALSE;
end;
or
terminate;
end select;
end loop;

end RESOURCE;

Notes:

A selective wait is allowed to have several open delay alternatives. A
selective wait is allowed to have several open accept alternatives for the
same entry.

References : accept statement 9.5, condition 5.3, declaration 3.1, delay expression
9.6, delay statement 9.6, duration 9.6, entry 9.5, entry call 9.5, entry index 9.5, pro-
gram_error exception 11.1, queued entry call 9.5, rendezvous 9.5, select statement
9.7, sequence of statements 5.1, task 9

Selective Waits 9.7.1

9.7.2 Conditional Entry Calls

1

A conditional entry call issues an entry call that is then canceled if a
rendezvous is not immediately possible.15

conditional_entry_call ::=
select
entry_call_statement
[sequence_of_ statements]
else
sequence_of_ statements
end select;

For the execution of a conditional entry call, the entry name is first evalu-
ated. This is followed by any evaluations required for actual parameters as
in the case of a subprogram call (see 6.4).

The entry call is canceled if the execution of the called task has not reached
a point where it is ready to accept the call (that is, either an accept state-
ment for the corresponding entry, or a select statement with an open accept
alternative for the entry), or if there are prior queued entry calls for this
entry. If the called task has reached a select statement, the entry call is
canceled if an accept alternative for this entry is not selected.

If the entry call is canceled, the statements of the else part are executed.
Otherwise, the rendezvous takes place; and the optional sequence of
statements after the entry call is then executed.

The execution of a conditional entry call raises the exception TASKING _
ERROR if the called task has already completed its execution (see also 9.10
for the case when the called task becomes abnormal).

Example:

procedure SPIN(R : RESOURCE) is
begin
loop
select
R.SEIZE;
return;
else
null; -- busy waiting
end select;
end loop:;
end;

15 See also Appendix G, AI-00276 and AI-00444.

9.7.2 Conditional Entry Calls 9-20

References : abnormal task 9.10, accept statement 9.5, actual parameter part
6.4, completed task 9.4, entry call statement 9.5, entry family 9.5, entry index
9.5, evaluation 4.5, expression 4.4, open alternative 9.7.1, queued entry call 9.5,
rendezvous 9.5, select statement 9.7, sequence of statements 5.1, task 9, tasking_
error exception 11.1

9.7.3 Timed Entry Calls

1

A timed entry call issues an entry call that is canceled if a rendezvous is not
started within a given delay.

timed entry_call ::=
select
entry call_statement
[sequence_of statements]
or
delay_alternative
end select;

For the execution of a timed entry call, the entry name is first evaluated.
This is followed by any evaluations required for actual parameters as in the
case of a subprogram call (see 6.4). The expression stating the delay is then
evaluated, and the entry call is finally issued.

If a rendezvous can be started within the specified duration (or immediately,
as for a conditional entry call, for a negative or zero delay), it is performed
and the optional sequence of statements after the entry call is then executed.
Otherwise, the entry call is canceled when the specified duration has
expired, and the optional sequence of statements of the delay alternative is
executed.!

The execution of a timed entry call raises the exception TASKING_ERROR
if the called task completes its execution before accepting the call (see also
9.10 for the case when the called task becomes abnormal).

Example:

select

CONTROLLER.REQUEST (MEDIUM) (SOME_ITEM) ;
or

delay 45.0;

-- controller too busy, try something else
end select;

16 See also Appendix G, AI-00276.

9-21

Timed Entry Calls 9.7.3

7 References : abnormal task 9.10, accept statement 9.5, actual parameter part
6.4, completed task 9.4, conditional entry call 9.7.2, delay expression 9.6, delay
statement 9.6, duration 9.6, entry call statement 9.5, entry family 9.5, entry index
9.5, evaluation 4.5, expression 4.4, rendezvous 9.5, sequence of statements 5.1, task
9, tasking_error exception 11.1

9.8 Priorities

1 Each task may (but need not) have a priority, which is a value of the
subtype PRIORITY (of the type INTEGER) declared in the predefined
library package SYSTEM (see 13.7).17 A lower value indicates a lower
degree of urgency; the range of priorities is imsplementation-deﬁned. A
priority is associated with a task if a pragma1

pragma PRIORITY (static_expression);

2 appears in the corresponding task specification; the priority is given by the
value of the expression. A priority is associated with the main program if
such a pragma appears in its outermost declarative part. At most one such
pragma can appear within a given task specification or for a subprogram
that is a library unit, and these are the only allowed places for this pragma.
A pragma PRIORITY has no effect if it occurs in a subprogram other than
the main program.

VAX Ada specifies the subtype PRIORITY to be of the type INTEGER with
a range of 0..15. A VAX Ada task whose priority has not been explicitly
specified has a default priority of 7.

3 The specification of a priority is an indication given to assist the implemen-
tation in the allocation of processing resources to parallel tasks when there
are more tasks eligible for execution than can be supported simultaneously
by the available processing resources. The effect of priorities on scheduling
is defined by the following rule:

4 If two tasks with different priorities are both eligible for execution and
could sensibly be executed using the same physical processors and the
same other processing resources, then it cannot be the case that the
task with the lower priority is executing while the task with the higher
priority is not.?

17 See also Appendix G, AI-00197.
18 See also Appendix G, AI-00031.
19 See also Appendix G, AI-00032 and AI-00288.

9.8 Priorities 9-22

For tasks of the same priority, the scheduling order is not defined by the
language. For tasks without explicit priority, the scheduling rules are

not defined, except when such tasks are engaged in a rendezvous. If the
priorities of both tasks engaged in a rendezvous are defined, the rendezvous
is executed with the higher of the two priorities. If only one of the two
priorities is defined, the rendezvous is executed with at least that priority. If
neither is defined, the priority of the rendezvous is undefined.

Notes:

The priority of a task is static and therefore fixed. However, the prior-
ity during a rendezvous is not necessarily static since it also depends on
the priority of the task calling the entry. Priorities should be used only
to indicate relative degrees of urgency; they should not be used for task
synchronization.

References : declarative part 3.9, entry call statement 9.5, integer type 3.5.4, main
program 10.1, package system 13.7, pragma 2.8, rendezvous 9.5, static expression
4.9, subtype 3.3, task 9, task specification 9.1

9.8a Time Slicing

9-23

In VAX Ada, a task is executed either until it becomes suspended or until
a task of higher priority becomes eligible for execution. Tasks of the same
priority are executed in first-in first-out order (by default).

To allow additional control over the fairness of task scheduling, VAX Ada
provides the pragma TIME_SLICE. This pragma enables round-robin task
scheduling. In other words, the pragma causes the task scheduler to limit
the amount of continuous execution time given to a task when other tasks of
the same priority are also eligible for execution. The form of this pragma is
as follows:

pragma TIME SLICE (static_expression);

The static expression gives the value of a time slice in seconds; it must be
of the predefined fixed point type DURATION. A positive, nonzero value
enables round-robin scheduling; a negative or zero value disables it.

This pragma is only allowed in the outermost declarative part of a sub-
program that is a library unit; at most one such pragma is allowed in a
subprogram. If it occurs in a subprogram other than the main program, this
pragma has no effect.

Time Slicing 9.8a

The following rules define the effect of enabling round-robin scheduling with
the pragma TIME_SLICE:

¢ The value applies to the scheduling of every task in the program.

* As long as an executing task is not preempted from the processor by a
task of higher priority and as long as it does not become suspended, it
will execute for at most the number of seconds (approximate elapsed
time) specified by the pragma. Then, if other tasks of the same priority
are eligible for execution, the executing task will stop executing, and the
task that has been waiting the longest will be selected for execution.

Notes:

The amount of scheduling overhead needed to support round-robin task
scheduling increases as the value of a time slice decreases. See the VAX Ada
Run-Time Reference Manual for the recommended minimum value.

The VAX Ada predefined package SYSTEM_RUNTIME_TUNING also has
operations that enable time slicing. See the VAX Ada Run-Time Reference
Manual for more information on this package.

References: allow 1.6, declarative part 3.9, duration 9.6, fixed point type 3.5.9,
library unit 10.1, main program 10.1, pragma 2.8, priority of a task 9.8, static
expression 4.9, subprogram 6, task 9

9.9 Task and Entry Attributes

1 For a task object or value T the following attributes are defined:

2 T'CALLABLE Yields the value FALSE when the execution of the task
designated by T is either completed or terminated,
or when the task is abnormal. Yields the value
TRUE otherwise. The value of this attribute is of the
predefined type BOOLEAN.

3 T'TERMINATED Yields the value TRUE if the task designated by T
is terminated. Yields the value FALSE otherwise.
The value of this attribute is of the predefined type
BOOLEAN.

4 In addition, the representation attributes STORAGE_SIZE, SIZE, and
ADDRESS are defined for a task object T or a task type T (see 13.7.2).

9.9 Task and Entry Attributes 9-24

5 The attribute COUNT is defined for an entry E of a task unit T. The entry
can be either a single entry or an entry of a family (in either case the name
of the single entry or entry family can be either a simple or an expanded
name). This attribute is only allowed within the body of T, but excluding
within any program unit that is, itself, inner to the body of T.

6 E/COUNT Yields the number of entry calls presently queued
on the entry E (if the attribute is evaluated by the
execution of an accept statement for the entry E, the
count does not include the calling task). The value of
this attribute is of the type universal_integer.20

Note:

7 Algorithms interrogating the attribute E- COUNT should take precautions to
allow for the increase of the value of this attribute for incoming entry calls,
and its decrease, for example with timed entry calls.

8 References : abnormal task 9.10, accept statement 9.5, attribute 4.1.4, boolean
type 3.5.3, completed task 9.4, designate 9.1, entry 9.5, false boolean value 3.5.3,
queue of entry calls 9.5, storage unit 13.7, task 9, task object 9.2, task type 9.1,
terminated task 9.4, timed entry call 9.7.3, true boolean value 3.5.3, universal_
integer type 3.5.4

9.10 Abort Statements

1 An abort statement causes one or more tasks to become abnormal, thus
preventing any further rendezvous with such tasks.

2 abort_statement ::= abort task name {, task name};

3 The determination of the type of each task name uses the fact that the type
of the name is a task type.

4 For the execution of an abort statement, the given task names are evaluated
in some order that is not defined by the language. Each named task then
becomes abnormal unless it is already terminated; similarly, any task that
depends on a named task becomes abnormal unless it is already terminated.

5 Any abnormal task whose execution is suspended at an accept statement,
a select statement, or a delay statement becomes completed; any abnormal
task whose execution is suspended at an entry call, and that is not yet in a
corresponding rendezvous, becomes completed and is removed from the entry
queue; any abnormal task that has not yet started its activation becomes

20 See also Appendix G, AI-00034.

9-25 Abort Statements 9.10

completed (and hence also terminated). This completes the execution of the
abort statement.21

6 The completion of any other abnormal task need not happen before
completion of the abort statement. It must happen no later than when the
abnormal task reaches a synchronization point that is one of the following:
the end of its activation; a point where it causes the activation of another
task; an entry call; the start or the end of an accept statement; a select
statement; a delay statement; an exception handler; or an abort statement.
If a task that calls an entry becomes abnormal while in a rendezvous, its
termination does not take place before the completion of the rendezvous
(see 11.5).22

7 The call of an entry of an abnormal task raises the exception TASKING _
ERROR at the place of the call. Similarly, the exception TASKING_ERROR
is raised for any task that has called an entry of an abnormal task, if the
entry call is still queued or if the rendezvous is not yet finished (whether
the entry call is an entry call statement, or a conditional or timed entry
call); the exception is raised no later than the completion of the abnormal
task. The value of the attribute CALLABLE is FALSE for any task that is
abnormal (or completed).

8 If the abnormal completion of a task takes place while the task updates a
variable, then the value of this variable is undefined.

9 Example:
abort USER, TERMINAL.all, POOL(3);

Notes:

1o An abort statement should be used only in extremely severe situations
requiring unconditional termination. A task is allowed to abort any task,
including itself.

The rules for an abort statement permit either an asynchronous or a syn-
chronous implementation of abnormal task completion. An asynchronous
implementation causes an abnormal task to become completed at arbi-
trary points in its execution (except where prohibited by the above rules).
A synchronous implementation causes an abnormal task to become com-
pleted only at specific points in its execution (these points must include the
synchronization points listed above).

21 See also Appendix G, AI-00198.
22 See also Appendix G, AI-00446.

9.10 Abort Statements 9-26

VAX Ada uses the synchronous implementation. A means of ensuring the
completion of an abnormal task at a particular point in a VAX Ada program
is to insert a delay 0.0 statement at that point.

For more information on the VAX Ada implementation of the abort state-
ment, see the VAX Ada Run-Time Reference Manual.

References : abnormal in rendezvous 11.5, accept statement 9.5, activation 9.3,
attribute 4.1.4, callable (predefined attribute) 9.9, conditional entry call 9.7.2, delay
statement 9.6, dependent task 9.4, entry call statement 9.5, evaluation of a name
4.1, exception handler 11.2, false boolean value 3.5.3, name 4.1, queue of entry
calls 9.5, rendezvous 9.5, select statement 9.7, statement 5, task 9, tasking_error
exception 11.1, terminated task 9.4, timed entry call 9.7.3

9.11 Shared Variables

9-27

The normal means of communicating values between tasks is by entry calls
and accept statements.

If two tasks read or update a shared variable (that is, a variable accessible
by both), then neither of them may assume anything about the order in
which the other performs its operations, except at the points where they
synchronize. Two tasks are synchronized at the start and at the end of
their rendezvous. At the start and at the end of its activation, a task is
synchronized with the task that causes this activation. A task that has
completed its execution is synchronized with any other task.

For the actions performed by a program that uses shared variables, the
following assumptions can always be made:

e If between two synchronization points of a task, this task reads a shared
variable whose type is a scalar or access type, then the variable is not
updated by any other task at any time between these two points.

e If between two synchronization points of a task, this task updates a
shared variable whose type is a scalar or access type, then the variable
is neither read nor updated by any other task at any time between these
two points.

The execution of the program is erroneous if any of these assumptions is
violated.

If a given task reads the value of a shared variable, the above assumptions
allow an implementation to maintain local copies of the value (for example,
in registers or in some other form of temporary storage); and for as long as
the given task neither reaches a synchronization point nor updates the value

Shared Variables 9.11

of the shared variable, the above assumptions imply that, for the given task,
reading a local copy is equivalent to reading the shared variable itself.

8 Similarly, if a given task updates the value of a shared variable, the above
assumptions allow an implementation to maintain a local copy of the value,
and to defer the effective store of the local copy into the shared variable
until a synchronization point, provided that every further read or update
of the variable by the given task is treated as a read or update of the local
copy. On the other hand, an implementation is not allowed to introduce a
store, unless this store would also be executed in the canonical order
(see 11.6).

9 The pragma SHARED can be used to specify that every read or update of
a variable is a synchronization point for that variable; that is, the above
assumptions always hold for the given variable (but not necessarily for other
variables). The form of this pragma is as follows: 23

pragma SHARED (variable simple name) ;

10 This pragma is allowed only for a variable declared by an object declaration
and whose type is a scalar or access type; the variable declaration and
the pragma must both occur (in this order) immediately within the same
declarative part or package specification; the pragma must appear before
any occurrence of the name of the variable, other than in an address clause.

1 An implementation must restrict the objects for which the pragma SHARED
is allowed to objects for which each of direct reading and direct updating is
implemented as an indivisible operation.

VAX Ada does not allow the pragma SHARED for objects of floating point
types whose representation is not the same as the representation of the
type STANDARD.FLOAT (F_floating). Also, VAX Ada does not allow the
pragma SHARED for objects of generic formal floating point types and types
derived therefrom. See the VAX Ada Run-Time Reference Manual for more
information on the representation of types and objects and on the use of the
pragma SHARED.

In addition to the pragma SHARED, VAX Ada provides the pragma
VOLATILE to allow variables that are subject to asynchronous modification
to be specified as such.

The pragma VOLATILE prevents the compiler from referring to an earlier
read or write of the variable to deduce the variable’s current value. Thus,
every read of the variable reads the variable itself, rather than a copy of
the variable located in temporary storage. Likewise, every update of the
variable updates the variable itself, rather than a temporary copy. Note,

23 See also Appendix G, AI-00141.

9.11 Shared Variables 9-28

9-29

however, that if the variable is in memory shared by two or more VMS
processes, each process may have its own cached copy of the variable. A
write to this kind of variable must be synchronized by a rendezvous, a VAX
interlocked instruction, or a write to an object that has been specified with
the pragma SHARED.

Unlike the pragma SHARED, the pragma VOLATILE does not guarantee
indivisible access to the shared variable. In other words, it is possible

to read partially updated values of the variable if other synchronization
mechanisms (rendezvous, VAX interlocked instructions, and so on) have
not been used; tasks that share a volatile variable must provide their own
means of synchronizing their references. The form of this pragma is as
follows:

pragma VOLATILE (variable simple_name)

This pragma is allowed only for a variable declared by an object declaration;
the variable can be of any type. The variable declaration and the pragma
must both occur (in this order) immediately within the same declarative
part or package specification; the pragma must appear before any occurrence
of the name of the variable, other than in an address clause or in one of
the VAX Ada pragmas IMPORT_OBJECT, EXPORT_OBJECT, or PSECT_
OBJECT. It must not occur in combination with the pragma SHARED.

The variable simple name must not be the result of a renaming declaration.
If a variable is specified with the pragma VOLATILE, then any renaming of
it, or any of its components, is also volatile.

Example:

CONSTANT FIVE : constant INTEGER := 5;
VOLATILE VAR, DUMMY : INTEGER;
pragma VOLATILE (VOLATILE VAR);

begin
VOLATILE_ VAR := CONSTANT_FIVE; -- statement 1
DUMMY := VOLATILE VAR; —-— statement 2
end;

In this example, statement 1 represents an update of the variable
VOLATILE_VAR, and statement 2 represents a read of the variable
VOLATILE_VAR. The pragma VOLATILE indicates to the compiler that
the variable VOLATILE_VAR may be subject to asynchronous modification—
it may be read or updated by a parallel task or asynchronous system service
at unpredictable times. Consequently, the compiler will always refer to the
variable VOLATILE_VAR itself, rather than to a local copy.

Shared Variables 9.11

12

To further illustrate, suppose that another task or a VMS system service
operation (such as SYS$QIO) were to update the value of VOLATILE_VAR
between statements 1 and 2. Then, the pragma VOLATILE ensures that the
value of VOLATILE_VAR used in statement 2 is the value updated by the
parallel task or system service, and not the value assigned in statement 1.

Suppose, instead, that another task or a VMS system service operation
were to read the value of VOLATILE_VAR sometime after statement 1, but
before statement 2. Then, the pragma VOLATILE ensures that the value of
VOLATILE_VAR used by that task or system service is the value assigned
by statement 1.

Notes:

Any variable in VAX Ada that is asynchronously read or written by a VMS

system service must be specified with a pragma VOLATILE, or the program
will be erroneous (see the VMS System Services Reference Manual for infor-
mation on which system services have parameters that are asynchronously

modified).

If a variable is shared among tasks such that the assumptions about
shared variables given at the beginning of section 9.11 hold, then a pragma
VOLATILE is not needed.

Because of rules about forcing occurrences (see section 13.1), a pragma
VOLATILE or pragma SHARED for an object specified with an address
clause must follow the address clause.

References : accept statement 9.5, activation 9.3, assignment 5.2, canonical order
11.6, declarative part 3.9, entry call statement 9.5, erroneous 1.6, global 8.1, package
specification 7.1, pragma 2.8, read a value 6.2, rendezvous 9.5, simple name 3.1 4.1,
task 9, type 3.3, update a value 6.2, variable 3.2.1

allow 1.6, component 3.3, f_floating representation 3.5.7, name 4.1, object declaration
3.2.1, package standard C, renaming declaration 8.5

9.12 Example of Tasking

1

The following example defines a buffering task to smooth variations
between the speed of output of a producing task and the speed of input of
some consuming task. For instance, the producing task may contain the
statements

9.12 Example of Tasking 9-30

9-31

loop
~—- produce the next character CHAR
BUFFER.WRITE (CHAR) ;
exit when CHAR = ASCII.EOT;

end loop;

and the consuming task may contain the statements

loop
BUFFER.READ (CHAR) ;
-- consume the character CHAR
exit when CHAR = ASCII.EOT;
end loop;

The buffering task contains an internal pool of characters processed in a
round-robin fashion. The pool has two indices, an IN_INDEX denoting the
space for the next input character and an OUT_INDEX denoting the space

for the next output character.

task BUFFER is
entry READ (C : out CHARACTER);
entry WRITE(C : in CHARACTER);
end;

task body BUFFER is

POOL_SIZE : constant INTEGER := 100;
POOL : array(l .. POOL_SIZE) of CHARACTER;
COUNT : INTEGER range 0 .. POOL_SIZE := 0;
IN_INDEX, OUT_INDEX : INTEGER range 1 .. POOL_SIZE := 1;
begin
loop
select

when COUNT < POOL_ SIZE =>
accept WRITE(C : in CHARACTER) do

POOL (IN_INDEX) := C;
end;
IN INDEX := IN INDEX mod POOL_SIZE + 1;
COUNT := COUNT + 1;

or when COUNT > 0 =>
accept READ(C : out CHARACTER) do

C := POOL (OUT_INDEX);
end;
OUT_INDEX := OUT_INDEX mod POOL_SIZE + 1;
COUNT = COUNT - 1;
or
terminate;
end select;
end loop;
end BUFFER;

Example of Tasking

9.12

9.12a Task Entries and VMS Asynchronous System Traps

An asynchronous system trap (AST) is a call made by the VMS operating
system in response to certain events detected or caused by the operating
system. In general, an AST occurs upon successful completion of a requested
system service, if the appropriate parameters have been specified as part of
the system service call. ASTs can be handled in VAX Ada through use of the
pragma AST _ENTRY and the AST_ENTRY attribute.

VMS system services that deliver ASTs can be called in VAX Ada with the
subprograms provided in the VAX Ada package STARLET. (The package
TASKING_SERVICES also provides subprograms for calling those system
services that generate ASTs, but no AST handler can be provided by the
Ada program calling these operations.) For information on which system
services provide an AST option, and for a detailed description of ASTs, see
the Introduction to VMS System Routines. For information on using AST
system services in an Ada program, see the VAX Ada Run-Time Reference
Manual.

The pragma AST_ENTRY identifies an Ada task entry as one that can
subsequently be called to handle an AST. This pragma must be used in
combination with the AST_ENTRY attribute, and is allowed only in the
same task type specification (or single task) as the entry to which it applies.
The form of this pragma is as follows:

pragma AST_ENTRY (entry simple name);

The entry simple name must denote a unique entry declared with either
zero or one formal parameter; it may not denote an entry family or member
of an entry family. At most one such pragma may be given for any one entry.

When the AST occurs, an entry call is queued to the given entry and the
AST is dismissed. Task execution then proceeds according to normal Ada
rules; in particular, the rendezvous that results from the AST does not
execute “at AST level.”

If the entry has a formal parameter, the parameter must be of a discrete,
address, or access type, and the parameter must be of mode in. When the
AST occurs and the entry is called, the formal parameter receives the value
of the astprm parameter provided by the system service.

9.12a Task Entries and VMS Asynchronous System Traps 9-32

To connect VMS ASTs with Ada task entries, VAX Ada provides the following
attribute, where E is the name of a single entry of a task:

E’AST _ENTRY Yields a value of the predefined type AST_HANDLER
(declared in the predefined package SYSTEM) that
enables the given entry, E, to be called when an AST
occurs. If the name to which the attribute applies
has not been specified with the pragma AST_ENTRY,
this attribute returns the value SYSTEM.NO_AST_
HANDLER and no AST occurs. If the entry is for a
task that is not callable (T* CALLABLE is false), the
exception PROGRAM_ERROR is raised. If an AST
occurs for an entry of a task that is terminated, the
program is erroneous.

E/AST ENTRY is typically used and generally only useful as an actual
parameter corresponding to the astadr formal parameter of a VMS system
service that provides an AST option.

Example:

with TEXT_IO; use TEXT_IO;
with STARLET; use STARLET;
with CONDITION_ HANDLING; use CONDITION_ HANDLING;
procedure AST EXAMPLE is
RETURN_STATUS: COND_VALUE_TYPE;
IO_CHANNEL: CHANNEL TYPE;
FUNCTION_CODE: FUNCTION_CODE TYPE;

task AST HANDLER is
entry RECEIVE_AST (ASTPRM: in INTEGER);
pragma AST ENTRY (RECEIVE_AST);

end AST HANDLER;

task body AST HANDLER is

begin
loop
select
accept RECEIVE_AST(ASTPRM: in INTEGER) do
if ASTPRM = 3 then
PUT_LINE ("Received the expected AST parameter");
end if;
end;
or
terminate;
end select;
end loop:;

end AST HANDLER;

9-33 Task Entries and VMS Asynchronous System Traps 9.12a

begin

-- Code to initialize the IO_CHANNEL and FUNCTION_CODE
-—- variables

—— Call the VMS SYS$QIO system service using the
—-—- VAX Ada package STARLET interface

STARLET.QIO (STATUS => RETURN_STATUS,
CHAN => I0O_CHANNEL,
FUNC => FUNCTION_CODE,
ASTADR => AST HANDLER.RECEIVE_ AST’AST ENTRY,
ASTPRM => 3);

end AST EXAMPLE;

Note:

Because it depends on the VAX Ada defined type AST HANDLER, the
AST_ENTRY attribute can only be used in a compilation unit to which the
predefined package SYSTEM applies.

References: access type 3.8, actual parameter 6.4 6.4.1, address type 13.7 13.7a.1,
allow 1.6, attribute 4.1.4, callable (predefined attribute) 9.9, discrete type 3.5, entry
9.5, entry call 9.5 9.7.2 9.7.3, entry family 9.5, entry name 9.5, erroneous 1.6, formal
parameter 6.1 6.2, import pragma 13.9a, mode in 6.2, package system 13.7, pragma
import_valued_procedure 13.9a.1.1, pragma interface 13.9, procedure 6, program_
error exception 11.1, rendezvous 9.5, subprogram 6, system.ast_handler 13.7a.4,
system.no_ast_handler 13.7a.4, task specification 9.1, task type 9.2

9.12a Task Entries and VMS Asynchronous System Traps 9-34

Chapter 10

Program Structure and Compilation Issues

The overall structure of programs and the facilities for separate compilation
are described in this chapter. A program is a collection of one or more
compilation units submitted to a compiler in one or more compilations.
Each compilation unit specifies the separate compilation of a construct
which can be a subprogram declaration or body, a package declaration or
body, a generic declaration or body, or a generic instantiation. Alternatively
this construct can be a subunit, in which case it includes the body of a
subprogram, package, task unit, or generic unit declared within another
compilation unit.

References: compilation 10.1, compilation unit 10.1, generic body 12.2, generic
declaration 12.1, generic instantiation 12.3, package body 7.1, package declaration
7.1, subprogram body 6.3, subprogram declaration 6.1, subunit 10.2, task body 9.1,
task unit 9

10.1 Compilation Units—Library Units

10-1

The text of a program can be submitted to the compiler in one or more
compilations. Each compilation is a succession of compilation units.

compilation ::= {compilation unit}

compilation_unit ::=
context_clause library unit | context_clause secondary_unit

library unit ::=
subprogram declaration | package declaration
| generic_declaration | generic_instantiation
| subprogram body

secondary unit ::= library unit_body | subunit

library unit_body ::= subprogram body | package_body

Compilation Units—Library Units 10.1

3 The compilation units of a program are said to belong to a program
library. A compilation unit defines either a library unit or a secondary
unit. A secondary unit is either the separately compiled proper body of a
library unit, or a subunit of another compilation unit. The designator of a
separately compiled subprogram (whether a library unit or a subunit) must
be an identifier. Within a program library the simple names of all library
units must be distinct identifiers.

4 The effect of compiling a library unit is to define (or redefine) this unit as
one that belongs to the program library. For the visibility rules, each library
unit acts as a declaration that occurs immediately within the package
STANDARD.

s The effect of compiling a secondary unit is to define the body of a library
unit, or in the case of a subunit, to define the proper body of a program unit
that is declared within another compilation unit.

6 A subprogram body given in a compilation unit is interpreted as a secondary
unit if the program library already contains a library unit that is a
subprogram with the same name; it is otherwise interpreted both as a
library unit and as the corresponding library unit body (that is, as a
secondary unit).

7 The compilation units of a compilation are compiled in the given order. A
pragma that applies to the whole of a compilation must appear before the
first compilation unit of that compilation.

8 A subprogram that is a library unit can be used as a main program in the
usual sense. Each main program acts as if called by some environment
task; the means by which this execution is initiated are not prescribed
by the language definition. An implementation may impose certain
requirements on the parameters and on the result, if any, of a main program
(these requirements must be stated in Appendix F). In any case, every
implementation is required to allow, at least, main programs that are
parameterless procedures, and every main program must be a subprogram
that is a library unit.

VAX Ada permits a library unit to be used as a main program under the
following conditions:

¢ Ifitis a procedure with no formal parameters. In this case, the status
returned to the VMS environment upon normal completion of the
procedure is the value 1.

1 See also Appendix G, AI-00418.
2 See also Appendix G, ATI-00199, AI-00225, and AI-00266.

10.1 Compilation Units—Library Units 10-2

10

1

¢ Ifitis a function with no formal parameters whose returned value is of a
discrete type. In this case, the status returned to the VMS environment
upon normal completion of the function is the function value.

e Ifit is a procedure declared with the pragma EXPORT_VALUED_
PROCEDURE, and it has one formal out parameter that is of a discrete
type. In this case, the status returned to the VMS environment upon
normal completion of the procedure is the value of the first (and only)
parameter.

Note that when a main function or a main procedure declared with the
pragma EXPORT_VALUED_PROCEDURE returns a discrete value whose
size is less than 32 bits, the value is zero- or sign-extended as appropriate.

Notes:

A simple program may consist of a single compilation unit. A compilation
need not have any compilation units; for example, its text can consist of
pragmas.

The designator of a library function cannot be an operator symbol, but a
renaming declaration is allowed to rename a library function as an operator.
Two library subprograms must have distinct simple names and hence
cannot overload each other. However, renaming declarations are allowed

to define overloaded names for such subprograms, and a locally declared
subprogram is allowed to overload a library subprogram. The expanded
name STANDARD.L can be used for a library unit L (unless the name
STANDARD is hidden) since library units act as declarations that occur
immediately within the package STANDARD.

References: allow 1.6, context clause 10.1.1, declaration 3.1, designator 6.1,
environment 10.4, generic declaration 12.1, generic instantiation 12.3, hiding 8.3,
identifier 2.3, library unit 10.5, local declaration 8.1, must 1.6, name 4.1, occur
immediately within 8.1, operator 4.5, operator symbol 6.1, overloading 6.6 8.7,
package body 7.1, package declaration 7.1, parameter of a subprogram 6.2, pragma
2.8, procedure 6.1, program unit 6, proper body 3.9, renaming declaration 8.5, simple
name 4.1, standard package 8.6, subprogram 6, subprogram body 6.3, subprogram
declaration 6.1, subunit 10.2, task 9, visibility 8.3

discrete type 3.5, formal parameter 6.1, function 6.5, pragma export_valued_
procedure 13.9a.1.4

Compilation Units—Library Units 10.1

10.1.1 Context Clauses—With Clauses

1

A context clause is used to specify the library units whose names are needed
within a compilation unit.

context_clause ::= {with clause {use clause}}
with clause ::= with unit_simple name {, unit_simple name};

The names that appear in a context clause must be the simple names of
library units. The simple name of any library unit is allowed within a with
clause. The only names allowed in a use clause of a context clause are the
simple names of library packages mentioned by previous with clauses of the
context clause. A simple name declared by a renaming declaration is not
allowed in a context clause.

The with clauses and use clauses of the context clause of a library unit
apply to this library unit and also to the secondary unit that defines the
corresponding body (whether such a clause is repeated or not for this
unit). Similarly, the with clauses and use clauses of the context clause of a
compilation unit epply to this unit and also to its subunits, if any.3

If a library unit is named by a with clause that applies to a compilation unit,
then this library unit is directly visible within the compilation unit, except
where hidden; the library unit is visible as if declared immediately within
the package STANDARD (see 8.6).

Dependences among compilation units are defined by with clauses; that

is, a compilation unit that mentions other library units in its with clauses
depends on those library units. These dependences between units are taken
into account for the determination of the allowed order of compilation (and
recompilation) of compilation units, as explained in section 10.3, and for the
determination of the allowed order of elaboration of compilation units, as
explained in section 10.5.

Notes:

A library unit named by a with clause of a compilation unit is visible (except
where hidden) within the compilation unit and hence can be used as a
corresponding program unit. Thus within the compilation unit, the name

of a library package can be given in use clauses and can be used to form
expanded names; a library subprogram can be called; and instances of a
library generic unit can be declared.

3 See also Appendix G, AI-00226.

10.1.1 Context Clauses—With Clauses 104

10

1

The rules given for with clauses are such that the same effect is obtained
whether the name of a library unit is mentioned once or more than once by
the applicable with clauses, or even within a given with clause.

Example 1: A main program:

The following is an example of a main program consisting of a single compi-
lation unit: a procedure for printing the real roots of a quadratic equation.
The predefined package TEXT_IO and a user-defined package REAL_
OPERATIONS (containing the definition of the type REAL and of the pack-
ages REAL_IO and REAL_FUNCTIONS) are assumed to be already present
in the program library. Such packages may be used by other main programs.

with TEXT IO, REAL OPERATIONS; use REAL OPERATIONS;
procedure QUADRATIC EQUATION is
A, B, C, D : REAL;
use REAL_IO, -— achieves direct visibility of
—-— GET and PUT for REAL

TEXT_IO, —— achieves direct visibility of
-- PUT for strings and of NEW_LINE

REAL FUNCTIONS; -- achieves direct visibility of SORT
begin
GET (A) ; GET(B); GET(C);
D := B**2 - 4,0*A*C;
if D < 0.0 then
PUT ("Imaginary Roots.");
else
PUT ("Real Roots : X1 = ");
PUT((-B - SQRT(D))/(2.0*A)); PUT(" X2 = ");
PUT((-B + SQRT(D))/(2.0%A));
end if;
NEW_LINE;
end QUADRATIC EQUATION;

Notes on the example:

The with clauses of a compilation unit need only mention the names of those
library subprograms and packages whose visibility is actually necessary
within the unit. They need not (and should not) mention other library units
that are used in turn by some of the units named in the with clauses, unless
these other library units are also used directly by the current compilation
unit. For example, the body of the package REAL,_ OPERATIONS may need
elementary operations provided by other packages. The latter packages
should not be named by the with clause of QUADRATIC_EQUATION since
these elementary operations are not directly called within its body.

Context Clauses—With Clauses 10.1.1

12 References: allow 1.6, compilation unit 10.1, direct visibility 8.3, elaboration 3.9,
generic body 12.2, generic unit 12.1, hiding 8.3, instance 12.3, library unit 10.1,
main program 10.1, must 1.6, name 4.1, package 7, package body 7.1, package
declaration 7.1, procedure 6.1, program unit 6, secondary unit 10.1, simple name
4.1, standard predefined package 8.6, subprogram body 6.3, subprogram declaration
6.1, subunit 10.2, type 3.3, use clause 8.4, visibility 8.3

10.1.2 Examples of Compilation Units
1 A compilation unit can be split into a number of compilation units. For
example, consider the following program.

2 procedure PROCESSOR is

SMALL : constant :
TOTAL : INTEGER

20;
0;
package STOCK is
LIMIT : constant := 1000;
TABLE : array (1 .. LIMIT) of INTEGER;
procedure RESTART;
end STOCK;

package body STOCK is
procedure RESTART is
begin
for N in 1 .. LIMIT loop
TABLE (N) := N;
end loop;
end;
begin
RESTART;
end STOCK;

procedure UPDATE (X : INTEGER) is
use STOCK;
begin

iAéLE(X) := TABLE (X) + SMALL;
end . UP DATE;
begin
é&éCK.RESTART; —-- reinitializes TABLE
end . E.’I.%OCESSOR;

3 The following three compilation units define a program with an effect
equivalent to the above example (the broken lines between compilation units
serve to remind the reader that these units need not be contiguous texts).

10.1.2 Examples of Compilation Units 10-6

Example 2: Several compilation units:

package STOCK is
LIMIT : constant := 1000;

TABLE : array (1 .. LIMIT) of INTEGER;
procedure RESTART;
end STOCK;

package body STOCK is
procedure RESTART is
begin
for N in 1 .. LIMIT loop
TABLE (N) := N;
end loop;
end;
begin
RESTART;
end STOCK;

with STOCK:
procedure PROCESSOR is

o

;

SMALL : constant :=

2
TOTAL : INTEGER 0;

procedure UPDATE (X : INTEGER) is
use STOCK;
begin

TABLE (X) := TABLE (X) + SMALL;

end UPDATE;
begin

STOCK.RESTART; —-- reinitializes TABLE

end PROCESSOR;

Note that in the latter version, the package STOCK has no visibility of outer
identifiers other than the predefined identifiers (of the package STANDARD).
In particular, STOCK does not use any identifier declared in PROCESSOR
such as SMALL or TOTAL; otherwise STOCK could not have been extracted
from PROCESSOR in the above manner. The procedure PROCESSOR, on
the other hand, depends on STOCK and mentions this package in a with
clause. This permits the inner occurrences of STOCK in the expanded name
STOCK.RESTART and in the use clause.

These three compilation units can be submitted in one or more compilations.
For example, it is possible to submit the package specification and the
package body together and in this order in a single compilation.

Examples of Compilation Units 10.1.2

References: compilation unit 10.1, declaration 3.1, identifier 2.3, package 7,
package body 7.1, package specification 7.1, program 10, standard package 8.6, use
clause 8.4, visibility 8.3, with clause 10.1.1

10.2

Subunits of Compilation Units

A subunit is used for the separate compilation of the proper body of a
program unit declared within another compilation unit. This method of
splitting a program permits hierarchical program development.

body_stub ::=
subprogram_specification is separate;
| package body package simple name is separate;
| task body task_simple name is separate;

subunit ::=
separate (parent unit_name) proper_body

A body stub is only allowed as the body of a program unit (a subprogram, a

package, a task unit, or a generic unit) if the body stub occurs immediately

within either the specification of a library package or the declarative part of
another compilation unit.4

If the body of a program unit is a body stub, a separately compiled subunit
containing the corresponding proper body is required. In the case of a
subprogram, the subprogram specifications given in the proper body and in
the body stub must conform (see 6.3.1).

Each subunit mentions the name of its parent unit, that is, the compilation
unit where the corresponding body stub is given. If the parent unit is a
library unit, it is called the ancestor library unit. If the parent unit is itself
a subunit, the parent unit name must be given in full as an expanded name,
starting with the simple name of the ancestor library unit. The simple
names of all subunits that have the same ancestor library unit must be
distinct identifiers.®

Visibility within the proper body of a subunit is the visibility that would
be obtained at the place of the corresponding body stub (within the parent
unit) if the with clauses and use clauses of the subunit were appended to
the context clause of the parent unit. If the parent unit is itself a subunit,
then the same rule is used to define the visibility within the proper body of
the parent unit.

4 See also Appendix G, AI-00035.
5 See also Appendix G, AT-00289.

10.2 Subunits of Compilation Units 10-8

10

The effect of the elaboration of a body stub is to elaborate the proper body of
the subunit.

Notes:

Two subunits of different library units in the same program library need not
have distinct identifiers. In any case, their full expanded names are distinct,
since the simple names of library units are distinct and since the simple
names of all subunits that have a given library unit as ancestor unit are also
distinct. By means of renaming declarations, overloaded subprogram names
that rename (distinct) subunits can be introduced.

A library unit that is named by the with clause of a subunit can be hidden
by a declaration (with the same identifier) given in the proper body of the
subunit. Moreover, such a library unit can even be hidden by a declara-
tion given within a parent unit since a library unit acts as if declared in
STANDARD; this however does not affect the interpretation of the with
clauses themselves, since only names of library units can appear in with
clauses.

References: compilation unit 10.1, conform 6.3.1, context clause 10.1.1, declaration
3.1, declarative part 3.9, direct visibility 8.3, elaboration 3.9, expanded name 4.1.3,
generic body 12.2, generic unit 12, hidden declaration 8.3, identifier 2.3, library unit
10.1, local declaration 8.1, name 4.1, occur immediately within 8.1, overloading 8.3,
package 7, package body 7.1, package specification 7.1, program 10, program unit 6,
proper body 3.9, renaming declaration 8.5, separate compilation 10.1, simple name
4.1, subprogram 6, subprogram body 6.3, subprogram specification 6.1, task 9, task
body 9.1, task unit 9.1, use clause 8.4, visibility 8.3, with clause 10.1.1

10.2.1 Examples of Subunits

1

2

10-9

The procedure TOP is first written as a compilation unit without subunits.

with TEXT_IO;
procedure TOP is

type REAL is digits 10;
R, S : REAL := 1.0;

package FACILITY is
PI : constant := 3.14159_26536;
function F (X : REAL) return REAL;
procedure G(Y, Z : REAL);

end FACILITY;

package body FACILITY is
-— some local declarations followed by

Examples of Subunits 10.2.1

function F (X : REAL) return REAL is
begin

-— sequence of statements of F
end F;
procedure G(Y, Z : REAL) is

—— local procedures using TEXT_ IO
begin

—-— sequence of statements of G

end G;

end FACILITY;

procedure TRANSFORM(U : in out REAL) is
use FACILITY;

begin
U := F(U);

end TRANSFORM;
begin -- TOP

TRANSFORM(R) ;
FACILITY.G(R, S):
end TOP;

3 The body of the package FACILITY and that of the procedure TRANSFORM
can be made into separate subunits of TOP. Similarly, the body of the
procedure G can be made into a subunit of FACILITY as follows.

4 Example 3:
5 procedure TOP is

type REAL is digits 10;
R, S : REAL := 1.0;

package FACILITY is
PI : constant := 3.14159 26536;
function F(X : REAL) return REAL;
procedure G(Y, Z : REAL);

end FACILITY;

package body FACILITY is separate; ~= stub of FACILITY
procedure TRANSFORM(U : in out REAL) is separate;
-- stub of TRANSFORM
begin -- TOP
TRANSFORM(R) ;

FACILITY.G(R, S);
end TOP;

10.2.1 Examples of Subunits 10-10

10-11

10

separate (TOP)

procedure TRANSFORM(U : in out REAL) is
use FACILITY;

begin
U := F(U);

end TRANSFORM;

separate (TOP)
package body FACILITY is
-— some local declarations followed by

function F (X : REAL) return REAL is

begin
-- sequence of statements of F
end F;
procedure G(Y, Z : REAL) is separate; -- stub of G

end FACILITY;

with TEXT_IO;
separate (TOP.FACILITY) —— full name of FACILITY
procedure G(Y, Z : REAL) is

—-— local procedures using TEXT IO

begin

-—- sequence of statements of G
end G;
In the above example TRANSFORM and FACILITY are subunits of TOP,
and G is a subunit of FACILITY. The visibility in the split version is the
same as in the initial version except for one change: since TEXT IO is
only used within G, the corresponding with clause is written for G instead
of for TOP. Apart from this change, the same identifiers are visible at
corresponding program points in the two versions. For example, all of the
following are (directly) visible within the proper body of the subunit G:
the procedure TOP, the type REAL, the variables R and S, the package
FACILITY and the contained named number PI and subprograms F and G.

References: body stub 10.2, compilation unit 10.1, identifier 2.3, local declaration
8.1, named number 3.2, package 7, package body 7.1, procedure 6, procedure body
6.3, proper body 3.9, subprogram 6, type 3.3, variable 3.2.1, visibility 8.3, with
clause 10.1.1

Examples of Subunits 10.2.1

10.3 Order of Compilation

1

The rules defining the order in which units can be compiled are direct
consequences of the visibility rules and, in particular, of the fact that any
library unit that is mentioned by the context clause of a compilation unit is
visible in the compilation unit.

A compilation unit must be compiled after all library units named by its
context clause. A secondary unit that is a subprogram or package body must
be compiled after the corresponding library unit. Any subunit of a parent
compilation unit must be compiled after the parent compilation unit.

If any error is detected while attempting to compile a compilation unit, then
the attempted compilation is rejected and it has no effect whatsoever on the
program library; the same holds for recompilations (no compilation unit can
become obsolete because of such a recompilation).6

The order in which the compilation units of a program are compiled must be
consistent with the partial ordering defined by the above rules.

Similar rules apply for recompilations. A compilation unit is potentially
affected by a change in any library unit named by its context clause. A
secondary unit is potentially affected by a change in the corresponding
library unit. The subunits of a parent compilation unit are potentially
affected by a change of the parent compilation unit. If a compilation unit
is successfully recompiled, the compilation units potentially affected by
this change are obsolete and must be recompiled unless they are no longer
needed. An implementation may be able to reduce the compilation costs if
it can deduce that some of the potentially affected units are not actually
affected by the change.

The subunits of a unit can be recompiled without affecting the unit itself.
Similarly, changes in a subprogram or package body do not affect other
compilation units (apart from the subunits of the body) since these compi-
lation units only have access to the subprogram or package specification.
An implementation is only allowed to deviate from this rule for inline inclu-
sions, for certain compiler optimizations, and for certain implementations of
generic program units, as described below.”

6 See also Appendix G, AI-00261.
7 See also Appendix G, AI-00408.

10.3 Order of Compilation 10-12

7 e If a pragma INLINE is applied to a subprogram declaration given in
a package specification, inline inclusion will only be achieved if the
package body is compiled before units calling the subprogram. In such
a case, inline inclusion creates a dependence of the calling unit on the
package body, and the compiler must recognize this dependence when
deciding on the need for recompilation. If a calling unit is compiled
before the package body, the pragma may be ignored by the compiler
for such calls (a warning that inline inclusion was not achieved may
be issued). Similar considerations apply to a separatelgr compiled
subprogram for which an INLINE pragma is specified.

e In VAX Ada, if a pragma INLINE_GENERIC is applied to a generic
instantiation, either by naming the instantiation or by naming the
generic declaration from which the instantiation was derived, inline
inclusion will only be achieved if the corresponding generic body is
compiled before the instantiation. In such a case, inline inclusion
creates a dependence of the instantiation on the generic body, and the
compiler recognizes this dependence when deciding on the need for
recompilation. If an instantiation is compiled before the generic body,
the pragma will be ignored by the compiler for such instantiations (a
diagnostic message that inline inclusion was not achieved will be issued).

8 e Tor optimization purposes, an implementation may compile several units
of a given compilation in a way that creates further dependences among
these compilation units. The compiler must then take these dependences
into account when deciding on the need for recompilations.

9 ¢ An implementation may require that a generic declaration and the
corresponding proper body be part of the same compilation, whether
the generic unit is itself separately compiled or is local to another
compilation unit. An implementation may also require that subunits of
a generic unit be part of the same compilation.

VAX Ada does not require that a generic declaration and the corre-
sponding proper body be part of the same compilation, nor does VAX
Ada require that the subunits of a generic unit be part of the same
compilation. The instantiation of a generic declaration before the cor-
responding body is available results in an incomplete compilation. See
Developing Ada Programs on VMS Systems for information on compiling
and recompiling VAX Ada compilation units.

8 See also Appendix G, A1-00200.
9 See also Appendix G, AI-00257.

10-13 Order of Compilation 10.3

10

12

13

15

16

Examples of Compilation Order:

(a) In example 1 (see 10.1.1): The procedure QUADRATIC_EQUATION
must be compiled after the library packages TEXT IO and REAL_
OPERATIONS since they appear in its with clause.

(b) In example 2 (see 10.1.2): The package body STOCK must be compiled
after the corresponding package specification.

() In example 2 (see 10.1.2): The specification of the package STOCK
must be compiled before the procedure PROCESSOR. On the other
hand, the procedure PROCESSOR can be compiled either before or
after the package body STOCK.

(d) In example 3 (see 10.2.1): The procedure G must be compiled after the
package TEXT_IO since this package is named by the with clause
of G. On the other hand, TEXT_IO can be compiled either before or
after TOP.

(e) In example 3 (see 10.2.1): The subunits TRANSFORM and FACILITY
must be compiled after the main program TOP. Similarly, the subunit
G must be compiled after its parent unit FACILITY.

Notes:

For library packages, it follows from the recompilation rules that a package
body is made obsolete by the recompilation of the corresponding specifica-
tion. If the new package specification is such that a package body is not
required (that is, if the package specification does not contain the declara-
tion of a program unit), then the recompilation of a body for this package is
not required. In any case, the obsolete package body must not be used and
can therefore be deleted from the program library.

References: compilation 10.1, compilation unit 10.1, context clause 10.1.1, elab-
oration 3.9, generic body 12.2, generic declaration 12.1, generic unit 12, library
unit 10.1, local declaration 8.1, name 4.1, package 7, package body 7.1, package
specification 7.1, parent unit 10.2, pragma inline 6.8.2, procedure 6.1, procedure
body 6.3, proper body 3.9, secondary unit 10.1, subprogram body 6.3, subprogram
declaration 6.1, subprogram specification 6.1, subunit 10.2, type 3.3, variable 3.2.1,
visibility 8.3, with clause 10.1.1

generic body 12.2, instantiation 12.3

10.3 Order of Compilation 10-14

10.4 The Program Library

1

Compilers are required to enforce the language rules in the same manner
for a program consisting of several compilation units (and subunits) as for

a program submitted as a single compilation. Consequently, a library file
containing information on the compilation units of the program library must
be maintained by the compiler or compiling environment. This information
may include symbol tables and other information pertaining to the order of
previous compilations.

A normal submission to the compiler consists of the compilation unit(s)
and the library file. The latter is used for checks and is updated for each
compilation unit successfully compiled.

Notes:

A single program library is implied for the compilation units of a compila-
tion. The possible existence of different program libraries and the means by
which they are named are not concerns of the language definition; they are
concerns of the programming environment.

There should be commands for creating the program library of a given
program or of a given family of programs. These commands may permit the
reuse of units of other program libraries. Finally, there should be commands
for interrogating the status of the units of a program library. The form of
these commands is not specified by the language definition.

VAX Ada program library management, as well as commands for creating
program libraries and for determining the status of the units of a program
library, is described in Developing Ada Programs on VMS Systems.

References: compilation unit 10.1, context clause 10.1.1, order of compilation 10.3,
program 10.1, program library 10.1, subunit 10.2, use clause 8.4, with clause 10.1.1

10.5 Elaboration of Library Units

1

Before the execution of a main program, all library units needed by the main
program are elaborated, as well as the corresponding library unit bodies, if
any. The library units needed by the main program are: those named by
with clauses applicable to the main program, to its body, and to its subunits;
those named by with clauses applicable to these library units themselves, to
the corresponding library unit bodies, and to their subunits; and so on, in a
transitive manner.

10 See also Appendix G, AI-00158.

10-15

Elaboration of Library Units 10.5

The elaboration of these library units and of the corresponding library unit
bodies is performed in an order consistent with the partial ordering defined
by the with clauses (see 10.3). In addition, a library unit mentioned by
the context clause of a subunit must be elaborated before the body of the
ancestor library unit of the subunit.!

An order of elaboration that is consistent with this partial ordering does not
always ensure that each library unit body is elaborated before any other
compilation unit whose elaboration necessitates that the library unit body be
already elaborated. If the prior elaboration of library unit bodies is needed,
this can be requested by a pragma ELABORATE. The form of this pragma is
as follows:

pragma ELABORATE (library unit_simple name
{, library unit_simple_name}) ;

These pragmas are only allowed immediately after the context clause of

a compilation unit (before the subsequent library unit or secondary unit).
Each argument of such a pragma must be the simple name of a library
unit mentioned by the context clause, and this library unit must have a
library unit body. Such a pragma specifies that the library unit body must
be elaborated before the given compilation unit. If the given compilation
unit is a subunit, the library unit body must be elaborated before the body
of the ancestor library unit of the subunit.

The program is illegal if no consistent order can be found (that is, if a
circularity exists). The elaboration of the compilation units of the program
is performed in some order that is otherwise not defined by the language.

References: allow 1.6, argument of a pragma 2.8, compilation unit 10.1, context
clause 10.1.1, dependence between compilation units 10.3, elaboration 3.9, illegal
1.6, in some order 1.6, library unit 10.1, name 4.1, main program 10.1, pragma 2.8,
secondary unit 10.1, separate compilation 10.1, simple name 4.1, subunit 10.2, with
clause 10.1.1

10.6 Program Optimization

1

Optimization of the elaboration of declarations and the execution of
statements may be performed by compilers. In particular, a compiler may be
able to optimize a program by evaluating certain expressions, in addition to
those that are static expressions. Should one of these expressions, whether
static or not, be such that an exception would be raised by its evaluation,
then the code in that path of the program can be replaced by code to raise

11 See also Appendix G, AI-00354.
12 See also Appendix G, AI-00236, AI-00298, and AI-00355.

10.6 Program Optimization 10-16

the exception; the same holds for exceptions raised by the evaluation of
names and simple expressions. (See also section 11.6.)

2 A compiler may find that some statements or subprograms will never be
executed, for example, if their execution depends on a condition known to be
FALSE. The corresponding object machine code can then be omitted. This
rule permits the effect of conditional compilation within the language.

Note:

3 An expression whose evaluation is known to raise an exception need not
represent an error if it occurs in a statement or subprogram that is never
executed. The compiler may warn the programmer of a potential error.

4 References: condition 5.3, declaration 3.1, elaboration 3.9, evaluation 4.5, excep-
tion 11, expression 4.4, false boolean value 3.5.3, program 10, raising of exceptions
11.3, statement 5, static expression 4.9, subprogram 6

10-17 Program Optimization 10.6

Chapter 11

Exceptions

This chapter defines the facilities for dealing with errors or other exceptional
situations that arise during program execution. Such a situation is called an
exception. To raise an exception is to abandon normal program execution so
as to draw attention to the fact that the corresponding situation has arisen.
Executing some actions, in response to the arising of an exception, is called
handling the exception.

An exception declaration declares a name for an exception. An exception can
be raised by a raise statement, or it can be raised by another statement or
operation that propagates the exception. When an exception arises, control
can be transferred to a user-provided exception handler at the end of a block
statement or at the end of the body of a subprogram, package, or task unit.

Note:

In VAX Ada, exceptions are implemented using the VAX Condition Handling
Facility (CHF). The VAX Ada Run-Time Reference Manual describes the
implementation of exceptions and its implications in more detail.

References: block statement 5.6, error situation 1.6, exception handler 11.2, name
4.1, package body 7.1, propagation of an exception 11.4.1 11.4.2, raise statement
11.3, subprogram body 6.3, task body 9.1

11.1 Exception Declarations

11-1

1

An exception declaration declares a name for an exception. The name of
an exception can only be used in raise statements, exception handlers, and
renaming declarations.

exception declaration ::= identifier list : exception;

Exception Declarations 11.1

1.1

An exception declaration with several identifiers is equivalent to a sequence
of single exception declarations, as explained in section 8.2. Each single
exception declaration declares a name for a different exception. In par-
ticular, if a generic unit includes an exception declaration, the exception
declarations implicitly generated by different instantiations of the generic
unit refer to distinct exceptions (but all have the same identifier). The
particular exception denoted by an exception name is determined at com-
pilation time and is the same regardless of how many times the exception
declaration is elaborated. Hence, if an exception declaration occurs in a
recursive subprogram, the exception name denotes the same exception for
all invocations of the recursive subprogram.

The following exceptions are predefined in the language; they are raised
when the situations described are detected.

CONSTRAINT_ERROR This exception is raised in any of the following
situations: upon an attempt to violate a range
constraint, an index constraint, or a discriminant
constraint; upon an attempt to use a record
component that does not exist for the current
discriminant values; and upon an attempt to use
a selected component, an indexed component, a
slice, or an attribute, of an object designated by an
access value, if the object does not exist because
the access value is null.

In VAX Ada, this exception is also raised by

the execution of a predefined numeric operation
that cannot deliver a correct result (within the
declared accuracy for real types). It is raised

for integer overflow, floating point overflow, and
integer and floating point division by zero. This
exception is not raised by floating point underflow
(floating point underflow is not defined as an
exception in VAX Ada); underflow can be handled
as an imported VAX condition (see 13.9a.3.1 for
information on importing VAX conditions).

NUMERIC_ERROR This exception is raised by the execution of
a predefined numeric operation that cannot
deliver a correct result (within the declared
accuracy for real types); this includes the case
where an implementation uses a predefined
numeric operation for the execution, evaluation,
or elaboration of some construct. The rules
given in section 4.5.7 define the cases in which

Exception Declarations 11-2

an implementation is not required to raise this
exception when such an error situation arises; see
also section 11.6.1

VAX Ada raises NUMERIC_ERROR only when

it is explicitly raised with a raise statement.
Wherever this standard requires that NUMERIC_
ERROR be raised, CONSTRAINT_ERROR will be
raised instead.?

7 PROGRAM_ERROR This exception is raised upon an attempt to
call a subprogram, to activate a task, or to
elaborate a generic instantiation, if the body
of the corresponding unit has not yet been
elaborated. This exception is also raised if the end
of a function is reached (see 6.5); or during the
execution of a selective wait that has no else part,
if this execution determines that all alternatives
are closed (see 9.7.1). Finally, depending on the
implementation, this exception may be raised upon
an attempt to execute an action that is erroneous,
and for incorrect order dependences (see 1.6).

In VAX Ada, this exception is raised for some
erroneous situations; it is not raised for incorrect
order dependences.

8 STORAGE_ERROR This exception is raised in any of the following
situations: when the dynamic storage allocated
to a task is exceeded; during the evaluation of an
allocator, if the space available for the collection
of allocated objects is exhausted; or during the
elaboration of a declarative item, or during the
execution of a subprogram call, if storage is not
sufficient.

9 TASKING_ERROR This exception is raised when exceptions arise
during intertask communication (see 9 and 11.5).

In addition to these exceptions, VAX Ada provides two packages of input-
output exceptions: IO_EXCEPTIONS (predefined by the language), and
AUX _I0_EXCEPTIONS (defined for use with the VAX Ada relative and
indexed input-output packages). The input-output exceptions are described
in 14.4.

1 See also Appendix G, AI-00311, AI-00312, and AI-00387.
2 See also Appendix G, AI-00387.

11-3 Exception Declarations 11.1

12

13

15

16

VAX Ada also defines the exception NON_ADA_ERROR (in package
SYSTEM); see sections 11.2 and 13.7a.5.

Note:

The situations described above can arise without raising the corresponding
exceptions, if the pragma SUPPRESS has been used to give permission to
omit the corresponding checks (see 11.7).

In addition to the pragma SUPPRESS, VAX Ada provides the pragma
SUPPRESS_ALL (see 11.7).

Examples of user-defined exception declarations:

SINGULAR : exception;
ERROR : exception;
OVERFLOW, UNDERFLOW : exception;

References: access value 3.8, collection 3.8, declaration 3.1, exception 11, excep-
tion handler 11.2, generic body 12.2, generic instantiation 12.3, generic unit 12,
identifier 2.3, implicit declaration 12.3, instantiation 12.3, name 4.1, object 3.2,
raise statement 11.3, real type 3.5.6, record component 3.7, return statement 5.8,
subprogram 6, subprogram body 6.3, task 9, task body 9.1

aux_io_exceptions package 14.4, erroneous 1.6, imported VAX condition 13.9a.3.1,
indexed input-output 14.2a 14.2a.1 14.2a.4 14.2b.9, indexed_io package 14.2a.5,
indexed_mixed_io package 14.2b.10, io_exceptions package 14.4, non_ada_error
exception 13.7a, package system 13.7, relative input-output 14.2a 14.2a.1 14.2a.2
14.2b.7, relative_io package 14.2a.3, relative_mixed_io package 14.2b.8

Constraint_error exception contexts: aggregate 4.3.1 4.3.2, allocator 4.8,
assignment statement 5.2 5.2.1, constraint 3.3.2, discrete type attribute 3.5.5,
discriminant constraint 3.7.2, elaboration of a generic formal parameter 12.3.1
12.3.2 12.3.4 12.3.5, entry index 9.5, exponentiating operator 4.5.6, index constraint
3.6.1, indexed component 4.1.1, logical operator 4.5.1, null access value 3.8, object
declaration 3.2.1, parameter association 6.4.1, qualified expression 4.7, range
constraint 3.5, selected component 4.1.3, slice 4.1.2, subtype indication 3.3.2, type
conversion 4.6

Numeric_error exception contexts: discrete type attribute 3.5.5, implicit
conversion 3.5.4 3.5.6 4.6, numeric operation 3.5.5 3.5.8 3.5.10, operator of a
numeric type 4.5 4.5.7

Program_error exception contexts: collection 3.8, elaboration 3.9, elaboration
check 3.9 7.3 9.3 12.2, erroneous 1.6, incorrect order dependence 1.6, leaving a
function 6.5, selective wait 9.7.1

Storage_error exception contexts: allocator 4.8

Tasking_error exception contexts: abort statement 9.10, entry call 9.5 9.7.2
9.7.3, exceptions during task communication 11.5, task activation 9.3

11.1 Exception Declarations 114

11.2 Exception Handlers

11-5

The response to one or more exceptions is specified by an exception handler.

exception_handler ::=
when exception choice {| exception_choice} =>
sequence_of statements

exception choice ::= exception name | others

An exception handler occurs in a construct that is either a block statement
or the body of a subprogram, package, task unit, or generic unit. Such a
construct will be called a frame in this chapter. In each case the syntax of a
frame that has exception handlers includes the following part:

begin
sequence_of_ statements

exception
exception_handler
{exception_handler}

end

The exceptions denoted by the exception names given as exception choices
of a frame must all be distinct. The exception choice others is only allowed
for the last exception handler of a frame and as its only exception choice;

it stands for all exceptions not listed in previous handlers of the frame,
including exceptions whose names are not visible at the place of the
exception handler.

The exception handlers of a frame handle exceptions that are raised by

the execution of the sequence of statements of the frame. The exceptions
handled by a given exception handler are those named by the corresponding
exception choices.

When non-Ada code is imported in an Ada program (see 13.9a), any VAX
conditions that may be signaled can be handled by an others choice in

the Ada frame that calls the non-Ada routines. Alternatively, the VAX

Ada predefined exception SYSTEM.NON_ADA_ERROR can be used as an
exception choice (see 13.7a.5). The handling of a VAX condition from an Ada
program, however, means that once control is passed to the Ada exception
handler, it cannot return to the point where the condition was signaled (see
11.4). See the VAX Ada Run-Time Reference Manual for more information
on handling VAX conditions from Ada programs.

Exception Handlers 11.2

Example:

begin
—-—- sequence of statements
exception
when SINGULAR | NUMERIC ERROR =>
PUT (" MATRIX IS SINGULAR ");
when others =>
PUT (" FATAL ERROR ");
raise ERROR;
end;

Note:

The same kinds of statement are allowed in the sequence of statements of
each exception handler as are allowed in the sequence of statements of the
frame. For example, a return statement is allowed in a handler within a
function body.

References: block statement 5.6, declarative part 3.9, exception 11, exception
handling 11.4, function body 6.3, generic body 12.2, generic unit 12.1, name 4.1,
package body 7.1, raise statement 11.3, return statement 5.8, sequence of statements
5.1, statement 5, subprogram body 6.3, task body 9.1, task unit 9 9.1, visibility 8.3

import pragma 13.9a, non_ada_error exception 13.7a, package system 13.7

11.3 Raise Statements

1

A raise statement raises an exception.
raise_statement ::= raise [exception name];

For the execution of a raise statement with an exception name, the named
exception is raised. A raise statement without an exception name is

only allowed within an exception handler (but not within the sequence of
statements of a subprogram, package, task unit, or generic unit, enclosed
by the handler); it raises again the exception that caused transfer to the
innermost enclosing handler.

Examples:

raise SINGULAR;

raise NUMERIC_FERROR; -- explicitly raising a predefined
-— exception

raise; —-- only within an exception handler

References: exception 11, generic unit 12, name 4.1, package 7, sequence of
statements 5.1, subprogram 6, task unit 9

11.3 Raise Statements 11-6

11.4 Exception Handling

1

When an exception is raised, normal program execution is abandoned

and control is transferred to an exception handler. The selection of this
handler depends on whether the exception is raised during the execution of
statements or during the elaboration of declarations.?3

Note:

By providing the pragma IMPORT_EXCEPTION (see 13.9a.3.1), VAX Ada
allows Ada exception handlers to handle any VMS conditions raised in Ada
code or in imported (non-Ada) code. VAX Ada also provides the package
CONDITION_HANDLING to allow additional control over VAX condition
handling. Similarly, by providing the pragma EXPORT_EXCEPTION (see
13.92.3.2), VAX Ada allows handlers written in other languages to handle
exported Ada exceptions. See the VAX Ada Run-Time Reference Manual for
implementation details and for information on using these pragmas and
packages.

References: declaration 3.1, elaboration 3.1 3.9, exception 11, exception handler
11.2, raising of exceptions 11.3, statement 5

11.4.1 Exceptions Raised During the Execution of Statements

1

The handling of an exception raised by the execution of a sequence of
statements depends on whether the innermost frame or accept statement
that encloses the sequence of statements is a frame or an accept statement.
The case where an accept statement is innermost is described in section
11.5. The case where a frame is innermost is presented here.

Different actions take place, depending on whether or not this frame has
a handler for the exception, and on whether the exception is raised in the
sequence of statements of the frame or in that of an exception handler.

If an exception is raised in the sequence of statements of a frame that has
a handler for the exception, execution of the sequence of statements of the
frame is abandoned and control is transferred to the exception handler.
The execution of the sequence of statements of the handler completes the
execution of the frame (or its elaboration if the frame is a package body). 4

3 See also Appendix G, AI-00446.
4 See also Appendix G, AI-00455.

11-7

Exceptions Raised During the Execution of Statements 11.4.1

4 If an exception is raised in the sequence of statements of a frame that
does not have a handler for the exception, execution of this sequence of
statements is abandoned. The next action depends on the nature of the
frame:

5 (a) For a subprogram body, the same exception is raised again at the point
of call of the subprogram, unless the subprogram is the main program
itself, in which case execution of the main program is abandoned.

6 (b) For a block statement, the same exception is raised again immediately
after the block statement (that is, within the innermost enclosing frame
or accept statement).

7 (c) For a package body that is a declarative item, the same exception
is raised again immediately after this declarative item (within the
enclosing declarative part). If the package body is that of a subunit,
the exception is raised again at the place of the corresponding body
stub. If the package is a library unit, execution of the main program is
abandoned.

8 (d) For a task body, the task becomes completed.

9 An exception that is raised again (as in the above cases (a), (b), and
(¢)) is said to be propagated, either by the execution of the subprogram,
the execution of the block statement, or the elaboration of the package
body. No propagation takes place in the case of a task body. If the frame
is a subprogram or a block statement and if it has dependent tasks, the
propagation of an exception takes place only after termination of the
dependent tasks.

10 Finally, if an exception is raised in the sequence of statements of an
exception handler, execution of this sequence of statements is abandoned.
Subsequent actions (including propagation, if any) are as in the cases (a) to
(d) above, depending on the nature of the frame.

11 Example:

function FACTORIAL (N : POSITIVE) return FLOAT is
begin
if N = 1 then
return 1.0;
else
return FLOAT (N) * FACTORIAL (N-1):;
end if;
exception
when NUMERI C_ERROR => return FLOAT’ SAFE_LARGE;
end FACTORIAL;

11.4.1 Exceptions Raised During the Execution of Statements 11-8

11-9

12

13

16

If the multiplication raises NUMERIC_ERROR, then FLOAT' SAFE_LARGE
is returned by the handler. This value will cause further NUMERIC_
ERROR exceptions to be raised by the evaluation of the expression in each
of the remaining invocations of the function, so that for large values of N the
function will ultimately return the value FLOAT’ SAFE_LARGE.

Example:

procedure P is
ERROR : exception;
procedure R;

procedure Q is

begin
R;
e -— error situation (2)
exception
when ERROR => -- handler E2
end Q;
procedure R is
begin
. —-—- error situation (3)
end R;
begin
e —-— error situation (1)
Q;
exception
when ERROR => -— handler E1
end P;

The following situations can arise:

(1) If the exception ERROR is raised in the sequence of statements of the
outer procedure P, the handler E1 provided within P is used to complete
the execution of P.

(2) If the exception ERROR is raised in the sequence of statements of Q,
the handler E2 provided within Q is used to complete the execution
of Q. Control will be returned to the point of call of Q upon completion
of the handler.

(8) If the exception ERROR is raised in the body of R, called by Q, the
execution of R is abandoned and the same exception is raised in the
body of Q. The handler E2 is then used to complete the execution of Q,
as in situation (2).

Exceptions Raised During the Execution of Statements 11.4.1

19

20

21

22

23

Note that in the third situation, the exception raised in R results in (in-
directly) transferring control to a handler that is part of Q and hence not
enclosed by R. Note also that if a handler were provided within R for the
exception choice others, situation (3) would cause execution of this handler,
rather than direct termination of R.

Lastly, if ERROR had been declared in R, rather than in P, the handlers E1
and E2 could not provide an explicit handler for ERROR since this identifier
would not be visible within the bodies of P and Q. In situation (3), the
exception could however be handled in Q by providing a handler for the
exception choice others.

Notes:

The language does not define what happens when the execution of the main
program is abandoned after an unhandled exception.

The predefined exceptions are those that can be propagated by the basic
operations and the predefined operators.

The case of a frame that is a generic unit is already covered by the rules
for subprogram and package bodies, since the sequence of statements of
such a frame is not executed but is the template for the corresponding
sequences of statements of the subprograms or packages obtained by generic
instantiation.

References: accept statement 9.5, basic operation 3.3.3, block statement 5.6, body
stub 10.2, completion 9.4, declarative item 3.9, declarative part 3.9, dependent task
9.4, elaboration 3.1 3.9, exception 11, exception handler 11.2, frame 11.2, generic
instantiation 12.3, generic unit 12, library unit 10.1, main program 10.1, numeric_
error exception 11.1, package 7, package body 7.1, predefined operator 4.5, procedure
6.1, sequence of statements 5.1, statement 5, subprogram 6, subprogram body 6.3,
subprogram call 6.4, subunit 10.2, task 9, task body 9.1

11.4.2 Exceptions Raised During the Elaboration of Declarations

1

If an exception is raised during the elaboration of the declarative part of a
given frame, this elaboration is abandoned. The next action depends on the
nature of the frame:

(a) For a subprogram body, the same exception is raised again at the point
of call of the subprogram, unless the subprogram is the main program
itself, in which case execution of the main program is abandoned.

(b) For a block statement, the same exception is raised again immediately
after the block statement.

11.4.2 Exceptions Raised During the Elaboration of Declarations 11-10

11-11

(¢) For a package body that is a declarative item, the same exception is
raised again immediately after this declarative item, in the enclosing
declarative part. If the package body is that of a subunit, the exception
is raised again at the place of the corresponding body stub. If the
package is a library unit, execution of the main program is abandoned.

(d) For a task body, the task becomes completed, and the exception
TASKING_ERROR is raised at the point of activation of the task, as
explained in section 9.3.

Similarly, if an exception is raised during the elaboration of either a package
declaration or a task declaration, this elaboration is abandoned; the next
action depends on the nature of the declaration.

(e) For a package declaration or a task declaration, that is a declarative
item, the exception is raised again immediately after the declarative
item in the enclosing declarative part or package specification. For the
declaration of a library package, the execution of the main program is
abandoned.

An exception that is raised again (as in the above cases (a), (b), (¢) and
(e)) is said to be propagated, either by the execution of the subprogram
or block statement, or by the elaboration of the package declaration, task
declaration or package body.

Example of an exception in the declarative part of a block statement
(case (b)):

procedure P is

begin
declare
N : INTEGER := F; -- the function F may raise ERROR
begin

exception
when ERROR => -— handler E1
end;

exception
when ERROR => —-— handler E2
end P;

-- 1f the exception ERROR is raised in the declaration of N,
-- it is handled by E2

Exceptions Raised During the Elaboration of Declarations 11.4.2

References: activation 9.3, block statement 5.6, body stub 10.2, completed task
9.4, declarative item 3.9, declarative part 3.9, elaboration 3.1 3.9, exception 11,
frame 11.2, library unit 10.1, main program 10.1, package body 7.1, package
declaration 7.1, package specification 7.1, subprogram 6, subprogram body 6.3,
subprogram call 6.4, subunit 10.2, task 9, task body 9.1, task declaration 9.1,
tasking_error exception 11.1

11.5 Exceptions Raised During Task Communication

1

An exception can be propagated to a task communicating, or attempting to
communicate, with another task. An exception can also be propagated to a
calling task if the exception is raised during a rendezvous.

When a task calls an entry of another task, the exception TASKING_
ERROR is raised in the calling task, at the place of the call, if the called
task is completed before accepting the entry call or is already completed at
the time of the call.

A rendezvous can be completed abnormally in two cases:

(a) When an exception is raised within an accept statement, but not
handled within an inner frame. In this case, the execution of the
accept statement is abandoned and the same exception is raised again
immediately after the accept statement within the called task; the
exception is also propagated to the calling task at the point of the entry
call.

(b) When the task containing the accept statement is completed abnor-
mally as the result of an abort statement. In this case, the exception
TASKING_ERROR is raised in the calling task at the point of the entry
call.

On the other hand, if a task issuing an entry call becomes abnormal (as the
result of an abort statement) no exception is raised in the called task. If the
rendezvous has not yet started, the entry call is cancelled. If the rendezvous
is in progress, it completes normally, and the called task is unaffected.

References: abnormal task 9.10, abort statement 9.10, accept statement 9.5,
completed task 9.4, entry call 9.5, exception 11, frame 11.2, rendezvous 9.5, task 9,
task termination 9.4, tasking_error exception 11.1

11.5 Exceptions Raised During Task Communication 11-12

11.6 Exceptions and Optimization

11-13

1

The purpose of this section is to specify the conditions under which an
implementation is allowed to perform certain actions either earlier or later
than specified by other rules of the language.

In general, when the language rules specify an order for certain actions
(the canonical order), an implementation may only use an alternative order
if it can guarantee that the effect of the program is not changed by the
reordering. In particular, no exception should arise for the execution of the
reordered program if none arises for the execution of the program in the
canonical order. When, on the other hand, the order of certain actions is not
defined by the language, any order can be used by the implementation. (For
example, the arguments of a predefined operator can be evaluated in any
order since the rules given in section 4.5 do not require a specific order of
evaluation.)

Additional freedom is left to an implementation for reordering actions
involving predefined operations that are either predefined operators or basic
operations other than assignments. This freedom is left, as defined below,
even in the case where the execution of these predefined operations may
propagate a (predefined) exception:

(a) For the purpose of establishing whether the same effect is obtained by
the execution of certain actions in the canonical and in an alternative
order, it can be assumed that none of the predefined operations invoked
by these actions propagates a (predefined) exception, provided that
the two following requirements are met by the alternative order:
first, an operation must not be invoked in the alternative order if it
is not invoked in the canonical order; second, for each operation, the
innermost enclosing frame or accept statement must be the same in
the alternative order as in the canonical order, and the same exception
handlers must apply.

(b) Within an expression, the association of operators with operands is
specified by the syntax. However, for a sequence of predefined operators
of the same precedence level (and in the absence of parentheses
imposing a specific association), any association of operators with
operands is allowed if it satisfies the following requirement: an integer
result must be equal to that given by the canonical left-to-right order;
a real result must belong to the result model interval defined for the
canonical left-to-right order (see 4.5.7). Such a reordering is allowed
even if it may remove an exception, or introduce a further predefined
exception.

Exceptions and Optimization 11.6

10

Similarly, additional freedom is left to an implementation for the evaluation
of numeric simple expressions. For the evaluation of a predefined operation,
an implementation is allowed to use the operation of a type that has a range
wider than that of the base type of the operands, provided that this delivers
the exact result (or a result within the declared accuracy, in the case of a
real type), even if some intermediate results lie outside the range of the
base type. The exception NUMERIC_ERROR need not be raised in such a
case. In particular, if the numeric expression is an operand of a predefined
relational operator, the exception NUMERIC_ERROR need not be raised by
the evaluation of the relation, provided that the correct BOOLEAN result is
obtained.?

A predefined operation need not be invoked at all, if its only possible effect
is to propagate a predefined exception. Similarly, a predefined operation
need not be invoked if the removal of subsequent operations by the above
rule renders this invocation ineffective.

Notes:

Rule (b) applies to predefined operators but not to the short-circuit control
forms.

The expression SPEED < 300_000.0 can be replaced by TRUE if the value
300_000.0 lies outside the base type of SPEED, even though the implicit

conversion of the numeric literal would raise the exception NUMERIC_
ERROR.

Example:

declare
N : INTEGER;
begin
N := 0; -— (1)
for J in 1 .. 10 loop
N := N + J*¥*A(K); -- A and K are global variables
end loop;
PUT (N) ;
exception
when others => PUT("Some error arose"); PUT(N);
end;

The evaluation of A(K) may be performed before the loop, and possibly
immediately before the assignment statement (1) even if this evaluation can
raise an exception. Consequently, within the exception handler, the value
of N is either the undefined initial value or a value later assigned. On the
other hand, the evaluation of A(K) cannot be moved before begin since an
exception would then be handled by a different handler. For this reason, the

5 See also Appendix G, AI-00267.

11.6 Exceptions and Optimization 11-14

initialization of N in the declaration itself would exclude the possibility of
having an undefined initial value of N in the handler.

References: accept statement 9.5, accuracy of real operations 4.5.7, assignment
5.2, base type 3.3, basic operation 3.3.3, conversion 4.6, error situation 11, exception
11, exception handler 11.2, frame 11.2, numeric_error exception 11.1, predefined
operator 4.5, predefined subprogram 8.6, propagation of an exception 11.4, real type
3.5.6, undefined value 3.2.1

11.7 Suppressing Checks

11-15

The presence of a SUPPRESS pragma gives permission to an implemen-
tation to omit certain run-time checks. The form of this pragma is as
follows:

pragma SUPPRESS (identifier [, [ON =>] name]);

The identifier is that of the check that can be omitted. The name (if
present) must be either a simple name or an expanded name and it must
denote either an object, a type or subtype, a task unit, or a generic unit;
alternatively the name can be a subprogram name, in which case it can
stand for several visible overloaded subprograms.

A pragma SUPPRESS is only allowed immediately within a declarative part
or immediately within a package specification. In the latter case, the only
allowed form is with a name that denotes an entity (or several overloaded
subprograms) declared immediately within the package specification.

The permission to omit the given check extends from the place of the
pragma to the end of the declarative region associated with the innermost
enclosing block statement or program unit. For a pragma given in a package
specification, the permission extends to the end of the scope of the named
entity.

If the pragma includes a name, the permission to omit the given check is
further restricted: it is given only for operations on the named object or
on all objects of the base type of a named type or subtype; for calls of a
named subprogram; for activations of tasks of the named task type; or for
instantiations of the given generic unit.

In addition to the pragma SUPPRESS, VAX Ada provides the pragma
SUPPRESS_ALL for the purpose of suppressing all run-time checks in a
compilation unit. The form of this pragma is as follows:

pragma SUPPRESS ALL;

The pragma SUPPRESS_ALL is only allowed following a compilation unit.
The scope of the pragma is the entire unit or subunit that it follows.

Suppressing Checks 11.7

5 The following checks correspond to situations in which the exception
CONSTRAINT _ERROR may be raised; for these checks, the name (if
present) must denote either an object or a type.

¢ ACCESS_CHECK

7 DISCRIMINANT_CHECK

s INDEX_CHECK

9 LENGTH_CHECK

10 RANGE_CHECK

11.7 Suppressing Checks

When accessing a selected component, an
indexed component, a slice, or an attribute,
of an object designated by an access value,
check that the access value is not null.

Check that a discriminant of a composite
value has the value imposed by a discrim-
inant constraint. Also, when accessing a
record component, check that it exists for the
current discriminant values.

Check that the bounds of an array value

are equal to the corresponding bounds of

an index constraint. Also, when accessing a
component of an array object, check for each
dimension that the given index value belongs
to the range defined by the bounds of the
array object. Also, when accessing a slice of
an array object, check that the given discrete
range is compatible with the range defined by
the bounds of the array object.

Check that there is a matching component
for each component of an array, in the case
of array assignments, type conversions,
and logical operators for arrays of boolean
components.

Check that a value satisfies a range con-
straint. Also, for the elaboration of a subtype
indication, check that the constraint (if
present) is compatible with the type mark.
Also, for an aggregate, check that an index or
discriminant value belongs to the correspond-
ing subtype. Finally, check for any constraint
checks performed by a generic instantiation.

In VAX Ada, when explicitly passing an array
by reference to an imported subprogram

(and one of the unaligned descriptors would
have applied if the default descriptor passing
mechanism had been used), check if the array
is aligned on a byte boundary. Also, when

11-16

11-17

14

15

16

17

18

19

a VAX descriptor is created or used to pass

a parameter to or accept a function result
from an imported subprogram, check that the
descriptor length field is large enough to hold
the actual parameter or result length. See
section 13.9a.1.2 and the VAX Ada Run-Time
Reference Manual for more information on
when VAX descriptors are created or used.

The following checks correspond to situations in which the exception
NUMERIC_ERROR is raised. The only allowed names in the corresponding
pragmas are names of numeric types.

DIVISION_CHECK Check that the second operand is not zero for
the operations /, rem and mod.
OVERFLOW_CHECK Check that the result of a numeric operation

does not overflow.

The following check corresponds to situations in which the exception
PROGRAM_ERROR is raised. The only allowed names in the corresponding
pragmas are names denoting task units, generic units, or subprograms.

ELABORATION_CHECK When either a subprogram is called, a task
activation is accomplished, or a generic
instantiation is elaborated, check that the
body of the corresponding unit has already
been elaborated.

The following check corresponds to situations in which the exception
STORAGE_ERROR is raised. The only allowed names in the corresponding
pragmas are names denoting access types, task units, or subprograms.

STORAGE_CHECK Check that execution of an allocator does not
require more space than is available for a
collection. Check that the space available for
a task or subprogram has not been exceeded.

If an error situation arises in the absence of the corresponding run-time
checks, the execution of the program is erroneous (the results are not defined
by the language).

Examples:

pragma SUPPRESS (RANGE_CHECK) ;
pragma SUPPRESS (INDEX CHECK, ON => TABLE);

Suppressing Checks 11.7

Notes:

20 For certain implementations, it may be impossible or too costly to suppress
certain checks. The corresponding SUPPRESS pragma can be ignored.
Hence, the occurrence of such a pragma within a given unit does not guar-
antee that the corresponding exception will not arise; the exceptions may
also be propagated by called units.

The pragma SUPPRESS_ALL does not suppress some checks that are
always performed by the VAX hardware and run-time system. For exam-
ple, DIVISION_CHECK and OVERFLOW_CHECK correspond to hard-
ware checks that cannot be suppressed; the exceptions that correspond to
ACCESS_CHECK and STORAGE_CHECK may also be raised when the
pragma SUPPRESS_ALL is in effect. For more information, see the VAX
Ada Run-Time Reference Manual.

21 References: access type 3.8, access value 3.8, activation 9.3, aggregate 4.3, allo-
cator 4.8, array 3.6, attribute 4.1.4, block statement 5.6, collection 3.8, compatible
3.3.2, component of an array 3.6, component of a record 3.7, composite type 3.3,
constraint 3.3, constraint_error exception 11.1, declarative part 3.9, designate 3.8,
dimension 3.6, discrete range 3.6, discriminant 3.7.1, discriminant constraint 3.7.2,
elaboration 3.1 3.9, erroneous 1.6, error situation 11, expanded name 4.1.3, generic
body 11.1, generic instantiation 12.3, generic unit 12, identifier 2.3, index 3.6, index
constraint 3.6.1, indexed component 4.1.1, null access value 3.8, numeric operation
3.5.5 3.5.8 3.5.10, numeric type 3.5, numeric_error exception 11.1, object 3.2, oper-
ation 3.3.3, package body 7.1, package specification 7.1, pragma 2.8, program_error
exception 11.1, program unit 6, propagation of an exception 11.4, range constraint
3.5, record type 3.7, simple name 4.1, slice 4.1.2, subprogram 6, subprogram body
6.3, subprogram call 6.4, subtype 3.3, subunit 10.2, task 9, task body 9.1, task type
9.1, task unit 9, type 3.3, type mark 3.3.2

actual parameter 6.4 6.4.1, allow 1.6, compilation unit 10.1, function result 6.5,
importing subprograms 13.9a.1.1, parameter 6.2, reference parameter passing
mechanism 13.9a.1.2, scope 8.2

11.7 Suppressing Checks 11-18

Chapter 12

Generic Units

A generic unit is a program unit that is either a generic subprogram or a
generic package. A generic unit is a template, which is parameterized or
not, and from which corresponding (nongeneric) subprograms or packages
can be obtained. The resulting program units are said to be instances of the
original generic unit.

A generic unit is declared by a generic declaration. This form of declaration
has a generic formal part declaring any generic formal parameters. An
instance of a generic unit is obtained as the result of a generic instantiation
with appropriate generic actual parameters for the generic formal
parameters. An instance of a generic subprogram is a subprogram. An
instance of a generic package is a package.

Generic units are templates. As templates they do not have the properties
that are specific to their nongeneric counterparts. For example, a generic
subprogram can be instantiated but it cannot be called. In contrast, the
instance of a generic subprogram is a nongeneric subprogram; hence, this
instance can be called but it cannot be used to produce further instances.

References: declaration 3.1, generic actual parameter 12.3, generic declaration
12.1, generic formal parameter 12.1, generic formal part 12.1, generic instantiation
12.3, generic package 12.1, generic subprogram 12.1, instance 12.3, package 7,
program unit 6, subprogram 6

12.1 Generic Declarations

12-1

A generic declaration declares a generic unit, which is either a generic
subprogram or a generic package. A generic declaration includes a
generic formal part declaring any generic formal parameters. A generic
formal parameter can be an object; alternatively (unlike a parameter of a
subprogram), it can be a type or a subprogram.

Generic Declarations 12.1

generic_declaration ::= generic_specification;

generic specification ::=
generic_formal_part subprogram specification
| generic_formal part package specification

generic_formal part ::=
generic {generic_parameter_declaration}

generic parameter_declaration ::=
identifier list : [in [out]] type _mark [:= expression];
| type identifier is generic_type definition;
| private type declaration
| with subprogram specification [is name];
| with subprogram specification [is <>];
generic type definition ::=
(<>) | range <> | digits <> | delta <>
| array_type_definition | access_type definition

The terms generic formal object (or simply, formal object), generic formal
type (or simply, formal type), and generic formal subprogram (or simply,
formal subprogram) are used to refer to corresponding generic formal
parameters.

The only form of subtype indication allowed within a generic formal part
is a type mark (that is, the subtype indication must not include an explicit
constraint). The designator of a generic subprogram must be an identifier.

Outside the specification and body of a generic unit, the name of this
program unit denotes the generic unit. In contrast, within the declarative
region associated with a generic subprogram, the name of this program unit
denotes the subprogram obtained by the current instantiation of the generic
unit. Similarly, within the declarative region associated with a generic
package, the name of this program unit denotes the package obtained by the
current instantiation.1

The elaboration of a generic declaration has no other effect.

Examples of generic formal parts:

generic —-—- parameterless
generic

SIZE : NATURAL; -- formal object
generic

Il

LENGTH : INTEGER := 200; -~ formal object with a

-- default expression

AREA : INTEGER :

LENGTH*LENGTH; -- formal object with a
-- default expression

1 See also Appendix G, AI-00286, AI-00367, and AI-00412.

121

Generic Declarations 12-2

12-3

10

1

12

generic

type ITEM is private; -— formal type
type INDEX is (<>); -— formal type
type ROW is array (INDEX range <>) of ITEM; -- formal type
with function "<" (X, Y : ITEM) return BOOLEAN; -- formal

—-- subprogram

Examples of generic declarations declaring generic subprograms:

generic
type ELEM is private;
procedure EXCHANGE (U, V : in out ELEM);

generic

type ITEM is private;

with function "*" (U, V : ITEM) return ITEM is <>;
function SQUARING(X : ITEM) return ITEM;

Example of a generic declaration declaring a generic package:

generic
type ITEM is private;
type VECTOR is array (POSITIVE range <>) of ITEM;
with function SUM(X, Y : ITEM) return ITEM;
package ON_VECTORS is
function SUM (A, B : VECTOR) return VECTOR;

function SIGMA (A : VECTOR) return ITEM;
LENGTH_ERROR : exception;

end;

Notes:

Within a generic subprogram, the name of this program unit acts as the
name of a subprogram. Hence this name can be overloaded, and it can
appear in a recursive call of the current instantiation. For the same reason,

‘this name cannot appear after the reserved word new in a (recursive)

generic instantiation.

An expression that occurs in a generic formal part is either the default
expression for a generic formal object of mode in, or a constituent of an
entry name given as default name for a formal subprogram, or the default
expression for a parameter of a formal subprogram. Default expressions
for generic formal objects and default names for formal subprograms are
only evaluated for generic instantiations that use such defaults. Default
expressions for parameters of formal subprograms are only evaluated for
calls of the formal subprograms that use such defaults. (The usual visibility
rules apply to any name used in a default expression: the denoted entity
must therefore be visible at the place of the expression.)

Neither generic formal parameters nor their attributes are allowed con-
stituents of static expressions (see 4.9).

Generic Declarations 12.1

References: access type definition 3.8, array type definition 3.6, attribute 4.1.4,
constraint 3.3, declaration 3.1, designator 6.1, elaboration has no other effect

3.1, entity 3.1, expression 4.4, function 6.5, generic instantiation 12.3, identifier
2.3, identifier list 3.2, instance 12.3, name 4.1, object 3.2, overloading 6.6 8.7,
package specification 7.1, parameter of a subprogram 6.2, private type definition 7.4,
procedure 6.1, reserved word 2.9, static expression 4.9, subprogram 6, subprogram
specification 6.1, subtype indication 3.3.2, type 3.3, type mark 3.3.2

12.1.1 Generic Formal Objects

1

The first form of generic parameter declaration declares generic formal
objects. The type of a generic formal object is the base type of the type
denoted by the type mark given in the generic parameter declaration. A
generic parameter declaration with several identifiers is equivalent to a
sequence of single generic parameter declarations, as explained in
section 3.2.

A generic formal object has a mode that is either in or in out. In the ab-
sence of an explicit mode indication in a generic parameter declaration, the
mode in is assumed; otherwise the mode is the one indicated. If a generic
parameter declaration ends with an expression, the expression is the default
expression of the generic formal parameter. A default expression is only
allowed if the mode is in (whether this mode is indicated explicitly or im-
plicitly). The type of a default expression must be that of the corresponding
generic formal parameter.

A generic formal object of mode in is a constant whose value is a copy of
the value supplied as the matching generic actual parameter in a generic
instantiation, as described in section 12.3. The type of a generic formal
object of mode in must not be a limited type; the subtype of such a generic
formal object is the subtype denoted by the type mark given in the generic
parameter declaration.

A generic formal object of mode in out is a variable and denotes the
object supplied as the matching generic actual parameter in a generic
instantiation, as described in section 12.3. The constraints that apply to
the generic formal object are those of the corresponding generic actual
parameter.

12.1.1 Generic Formal Objects 124

Note:

The constraints that apply to a generic formal object of mode in out are
those of the corresponding generic actual parameter (not those implied by
the type mark that appears in the generic parameter declaration). Whenever
possible (to avoid confusion) it is recommended that the name of a base type
be used for the declaration of such a formal object. If, however, the

base type is anonymous, it is recommended that the subtype name defined
by the type declaration for the base type be used.

References: anonymous type 3.3.1, assignment 5.2, base type 3.3, constant
declaration 3.2, constraint 3.3, declaration 3.1, generic actual parameter 12.3,
generic formal object 12.1, generic formal parameter 12.1, generic instantiation
12.3, generic parameter declaration 12.1, identifier 2.3, limited type 7.4.4, matching
generic actual parameter 12.3, mode 6.1, name 4.1, object 3.2, simple name 4.1,
subtype 3.3, type declaration 3.3, type mark 3.3.2, variable 3.2.1

12.1.2 Generic Formal Types

12-56

1

A generic parameter declaration that includes a generic type definition or

a private type declaration declares a generic formal type. A generic formal
type denotes the subtype supplied as the corresponding actual parameter in
a generic instantiation, as described in 12.3(d). However, within a generic
unit, a generic formal type is considered as being distinct from all other
(formal or nonformal) types. The form of constraint applicable to a formal
type in a subtype indication depends on the class of the type as for a
nonformal type.

The only form of discrete range that is allowed within the declaration of a
generic formal (constrained) array type is a type mark.

The discriminant part of a generic formal private type must not include

a default expression for a discriminant. (Consequently, a variable that is
declared by an object declaration must be constrained if its type is a generic
formal type with discriminants.)

Within the declaration and body of a generic unit, the operations available
for values of a generic formal type (apart from any additional operation
specified by a generic formal subprogram) are determined by the generic
parameter declaration for the formal type:

(a) For a private type declaration, the available operations are those
defined in section 7.4.2 (in particular, assignment, equality, and
inequality are available for a private type unless it is limited).

Generic Formal Types 12.1.2

"

14

15

(b) For an array type definition, the available operations are those defined
in section 3.6.2 (for example, they include the formation of indexed
components and slices).

(c) For an access type definition, the available operations are those defined
in section 3.8.2 (for example, allocators can be used).

The four forms of generic type definition in which a box appears (that is, the
compound delimiter <>) correspond to the following major forms of scalar
type:

(d) Discrete types: <>

The available operations are the operations common to enumeration
and integer types; these are defined in section 3.5.5.

(e) Integer types: range <>

The available operations are the operations of integer types defined in
section 3.5.5.

(f) Floating point types: digits <>

The available operations are those defined in section 3.5.8.
(g) Fixed point types: delta <>

The available operations are those defined in section 3.5.10.

In all of the above cases (a) through (f), each operation implicitly associated
with a formal type (that is, other than an operation specified by a formal
subprogram) is implicitly declared at the place of the declaration of the
formal type. The same holds for a formal fixed point type, except for the
multiplying operators that deliver a result of the type universal_fixed (see
4.5.5), since these special operators are declared in the package STANDARD.

For an instantiation of the generic unit, each of these operations is the
corresponding basic operation or predefined operator of the matching actual
type. For an operator, this rule applies even if the operator has been
redefined for the actual type or for some parent type of the actual type.

Examples of generic formal types:

type ITEM is private;
type BUFFER (LENGTH : NATURAL) is limited private;

type ENUM is (<>);

type INT is range <>;
type ANGLE is delta <>;
type MASS is digits <>;

type TABLE is array (ENUM) of ITEM;

12.1.2 Generic Formal Types 12-6

17

Example of a generic formal part declaring a formal integer type:

generic
type RANK is range <>;
FIRST : RANK := RANK'FIRST;
SECOND : RANK := FIRST + 1; -- the operator "+" of

—-— the type RANK

References: access type definition 3.8, allocator 4.8, array type definition 3.6,
assignment 5.2, body of a generic unit 12.2, class of type 3.3, constraint 3.3,
declaration 3.1, declaration of a generic unit 12.1, discrete range 3.6, discrete type
3.5, discriminant part 3.7.1, enumeration type 3.5.1, equality 4.5.2, fixed point type
3.5.9, floating point type 3.5.7, generic actual type 12.3, generic formal part 12.1,
generic formal subprogram 12.1.3, generic formal type 12.1, generic parameter
declaration 12.1, generic type definition 12.1, indexed component 4.1.1, inequality
4.5.2, instantiation 12.3, integer type 3.5.4, limited private type 7.4.4, matching
generic actual type 12.3.2 12.3.3 12.3.4 12.3.5, multiplying operator 4.5 4.5.5,
operation 3.3, operator 4.5, parent type 3.4, private type definition 7.4, scalar type
3.5, slice 4.1.2, standard package 8.6 C, subtype indication 3.3.2, type mark 3.3.2,
universal_fixed 3.5.9

12.1.3 Generic Formal Subprograms

12-7

1

A generic parameter declaration that includes a subprogram specification
declares a generic formal subprogram.

Two alternative forms of defaults can be specified in the declaration of a
generic formal subprogram. In these forms, the subprogram specification

is followed by the reserved word is and either a box or the name of a
subprogram or entry. The matching rules for these defaults are explained in
section 12.3.6.

A generic formal subprogram denotes the subprogram, enumeration literal,
or entry supplied as the corresponding generic actual parameter in a generic
instantiation, as described in section 12.3(f).

Examples of generic formal subprograms:

with function INCREASE (X : INTEGER) return INTEGER;
with function SUM(X, Y : ITEM) return ITEM;

with function "+" (X, Y : ITEM) return ITEM is <>;
with function IMAGE (X : ENUM) return STRING is ENUM’ IMAGE;

with procedure UPDATE is DEFAULT_UPDATE;

Generic Formal Subprograms 12.1.3

Notes:

5 The constraints that apply to a parameter of a formal subprogram are
those of the corresponding parameter in the specification of the matching
actual subprogram (not those implied by the corresponding type mark
in the specification of the formal subprogram). A similar remark applies
to the result of a function. Whenever possible (to avoid confusion), it is
recommended that the name of a base type be used rather than the name of
a subtype in any declaration of a formal subprogram. If, however, the base
type is anonymous, it is recommended that the subtype name defined by the
type declaration be used.

6 The type specified for a formal parameter of a generic formal subprogram
can be any visible type, including a generic formal type of the same generic
formal part.

7 References: anonymous type 3.3.1, base type 3.3, box delimiter 12.1.2, constraint
3.3, designator 6.1, generic actual parameter 12.3, generic formal function 12.1,
generic formal subprogram 12.1, generic instantiation 12.3, generic parameter
declaration 12.1, identifier 2.3, matching generic actual subprogram 12.3.6, operator
symbol 6.1, parameter of a subprogram 6.2, renaming declaration 8.5, reserved word
2.9, scope 8.2, subprogram 6, subprogram specification 6.1, subtype 3.3.2, type 3.3,
type mark 3.3.2

12.1a Pragma INLINE_GENERIC

VAX Ada provides the pragma INLINE_GENERIC to allow the desire for
inline expansion of the generic body to be indicated for each instantiation of
the named generic declarations, or for the particular named instances. The
form of this pragma is as follows:

pragma INLINE GENERIC (name {, name});

Each name is either the name of a generic declaration or the name of

an instance of a generic declaration. The pragma INLINE_GENERIC is
only allowed at the place of a declarative item in a declarative part or
package specification, or after a library unit in a compilation, but before any
subsequent compilation unit.

If the pragma appears at the place of a declarative item, each name must
denote a generic subprogram or package, or a (nongeneric) subprogram or
package that is an instance of a generic subprogram or package, declared
by an earlier declarative item of the same declarative part or package
specification. If several (nongeneric, overloaded) subprograms satisfy this
requirement, the pragma applies to all of them. If the pragma appears
after a given library unit, the only name allowed is the name of that unit.

12.1a Pragma INLINE_GENERIC 12-8

12-9

If the name of a subprogram that is an instance of a generic subprogram

is mentioned in the pragma, it indicates that only inline expansion of the
instance itself is desired (it does not indicate that inline expansion of calls of
the subprogram is desired).

If the name specified by a pragma INLINE_GENERIC is an instantiation
declared by a renaming declaration, the pragma INLINE_GENERIC applies
to the instantiation only if the instantiation that has been renamed, the
renaming declaration, and the pragma all occur in the same declarative part
or package specification. The pragma is ignored if these conditions are not
satisfied.

The meaning of an instantiation is not changed by the pragma INLINE_
GENERIC.

Inline expansion of an instance creates a dependence of the unit containing
the instantiation upon the corresponding generic proper body (the template
and its subunits, if any); VAX Ada recognizes this dependence when deciding
on the need for recompilation. See Developing Ada Programs on VMS
Systems for more information on VAX Ada recompilation requirements.

Notes:

The pragma INLINE_GENERIC causes inline expansion of the generic body
(and substitution of actual parameters for any generic formal parameters)
at the point of any instantiation to which the pragma applies. Because

of this effect, the pragma INLINE_GENERIC differs from the pragma
INLINE in two respects. First, the pragma INLINE_GENERIC for a generic
subprogram or an instance of a generic subprogram does not indicate a
desire that calls of the subprograms are to be expanded inline. Second, the
pragma INLINE_GENERIC can be given for a generic package or for an
instance of a generic package (while the pragma INLINE cannot).

If the pragma INLINE is given for a generic subprogram, the pragma
INLINE_GENERIC may also be given; similarly, if the pragma INLINE

is given for an instance of a generic subprogram, the pragma INLINE_
GENERIC may also be given. In such cases, if calls are expanded inline,
then the pragma INLINE_GENERIC has no additional effect. However, if
calls are not expanded inline, the instance may still be expanded inline. (If
only the pragma INLINE is given, and calls are not expanded inline, then
the instance cannot be expanded inline either.)

If a pragma INLINE_GENERIC appears at the place of a declarative item
and a name in the pragma is overloaded, the pragma applies only to those
instantiations whose declarations occur (explicitly) earlier in the same
declarative part or package specification.

Pragma INLINE_GENERIC 12.1a

References: compilation unit 10.1, declarative item 3.9, declarative part: 3.9,
generic declaration 12.1, generic package 12.1, generic subprogram 12.1, generic
template 12 12.2, instance 12.3, instantiation 12.3, library unit 10.1, name 4.1,
package specification 7.1, renaming declaration 8.5, subprogram 6, subunit 10.2

12.1b Pragma SHARE_GENERIC

VAX Ada provides the pragma SHARE_GENERIC to allow the desire for
generic code sharing to be indicated for each instantiation of the named
generic declarations, or for the particular named instances. The form of this
pragma is as follows:

pragma SHARE_GENERIC (name {, name});

Each name is either the name of a generic declaration or the name of

an instance of a generic declaration. The pragma SHARE_GENERIC is
only allowed at the place of a declarative item in a declarative part or
package specification, or after a library unit in a compilation, but before any
subsequent compilation unit.

If the pragma appears at the place of a declarative item, each name must
denote a generic subprogram or package, or a (nongeneric) subprogram or
package that is an instance of a generic subprogram or package, declared
by an earlier declarative item of the same declarative part or package
specification. If several (nongeneric, overloaded) subprograms satisfy this
requirement, the pragma applies to all of them. If the pragma appears after
a given library unit, the only name allowed is the name of that unit.

If the name specified by a pragma SHARE_GENERIC is an instantiation
declared by a renaming declaration, the pragma SHARE_GENERIC applies
to the instantiation only if the instantiation that has been renamed, the
renaming declaration, and the pragma all occur in the same declarative part
or package specification. The pragma is ignored if these conditions are not
satisfied.

The meaning of an instantiation is not changed by the pragma SHARE_
GENERIC.

The pragmas SHARE_GENERIC and INLINE_GENERIC cannot apply to
the same generic declaration. However, the pragma INLINE_GENERIC
can be specified for an instance even if the pragma SHARE_GENERIC
applies to the corresponding generic declaration. In this case, the pragma
specified for the instance overrides the pragma that applies to the generic
declaration, and the expansion of the particular instance is expanded inline.
Similarly, the pragma SHARE_GENERIC can be specified for an instance
even if the pragma INLINE_GENERIC applies to the corresponding generic

12.1b Pragma SHARE_GENERIC 12-10

declaration. Again, the pragma specified for the instance overrides the
pragma that applies to the generic declaration.

Notes:

The pragma SHARE_GENERIC causes the code for an instance to be
generated in such a manner as to allow the same code to be shared by other
instances of the same generic under some conditions.

References: compilation unit 10.1, declarative item 3.9, declarative part 3.9,
generic declaration 12.1, generic package 12.1, generic subprogram 12.1, generic
template 12 12.2, instance 12.3, instantiation 12.3, library unit 10.1, name 4.1,
package specification 7.1, renaming declaration 8.5, subprogram 6, subunit 10.2

12.2 Generic Bodies

1 The body of a generic subprogram or generic package is a template for
the bodies of the corresponding subprograms or packages obtained by
generic instantiaztions. The syntax of a generic body is identical to that of a
nongeneric body.

2 For each declaration of a generic subprogram, there must be a corresponding
body.

3 The elaboration of a generic body has no other effect than to establish
that the body can from then on be used as the template for obtaining the
corresponding instances.

4 Example of a generic procedure body:

procedure EXCHANGE (U, V : in out ELEM) is —-- see example in 12.1
T : ELEM; -- the generic formal type
begin
T := U;
U :=V;
vV = T;

end EXCHANGE;

5 Example of a generic function body:

function SQUARING(X : ITEM) return ITEM is -- see example in 12.1
begin

return X*X; -- the formal operator "*"
end;

2 See also Appendix G, AI-00328.

12-11 Generic Bodies 12.2

6 Example of a generic package body:
package body ON_VECTORS is -- see example in 12.1

function SUM(A, B : VECTOR) return VECTOR is
RESULT : VECTOR (A’RANGE) ; —— the formal type VECTOR
BIAS : constant INTEGER := B’FIRST - A’FIRST;
begin
if A’LENGTH /= B’LENGTH then
raise LENGTH_ERROR;

end if;
for N in A’RANGE loop
RESULT (N) := SUM(A(N), B(N + BIAS)):; -— the formal
-— function SUM
end loop;
return RESULT;
end;
function SIGMA (A : VECTOR) return ITEM is
TOTAL : ITEM := A(A’FIRST):; —-— the formal
-- type ITEM
begin
for N in A’FIRST + 1 .. A’LAST loop
TOTAL := SUM(TOTAL, A(N)); -— the formal
-— function SUM
end loop;
return TOTAL;
end;

end;

7 References: body 3.9, elaboration 3.9, generic body 12.1, generic instantiation
12.3, generic package 12.1, generic subprogram 12.1, instance 12.3, package body
7.1, package 7, subprogram 6, subprogram body 6.3

12.3 Generic Instantiation

1 An instance of a generic unit is declared by a generic instantiation.

2 generic_instantiation ::=
package identifier is
new generic_package name [generic_actual part];
| procedure identifier is
new generic procedure_name [generic_actual part];
| function designator is
new generic function_name [generic_actual part];

generic actual_part ::=
(generic_association {, generic_association})

generic_association ::=
[generic_formal_ parameter =>] generic_actual_parameter

12.3 Generic Instantiation 12-12

generic formal parameter ::=
parameter_simple name | operator_symbol

generic_actual parameter ::= expression | variable_name
| subprogram name | entry name | type_mark

An explicit generic actual parameter must be supplied for each generic
formal parameter, unless the corresponding generic parameter declaration
specifies that a default can be used. Generic associations can be either
positional or named in the same manner as parameter associations of
subprogram calls (see 6.4). If two or more formal subprograms have

the same designator, then named associations are not allowed for the
corresponding generic parameters.

Each generic actual parameter must match the corresponding generic formal
parameter. An expression can match a formal object of mode in; a variable
name can match a formal object of mode in out; a subprogram name or

an entry name can match a formal subprogram; a type mark can match a
formal type. The detailed rules defining the allowed matches are given in
sections 12.3.1 to 12.3.6; these are the only allowed matches.

The instance is a copy of the generic unit, apart from the generic formal
part; thus the instance of a generic package is a package, that of a generic
procedure is a procedure, and that of a generic function is a function. For
each occurrence, within the generic unit, of a name that denotes a given
entity, the following list defines which entity is denoted by the corresponding
occurrence within the instance.

(a) For a name that denotes the generic unit: The corresponding occur-
rence denotes the instance.

(b) For a name that denotes a generic formal object of mode in: The
corresponding name denotes a constant whose value is a copy of the
value of the associated generic actual parameter.

(¢) For a name that denotes a generic formal object of mode in out: The
corresponding name denotes the variable named by the associated
generic actual parameter.

(d) For a name that denotes a generic formal type: The corresponding
name denotes the subtype named by the associated generic actual
parameter (the actual subtype).

(e) For a name that denotes a discriminant of a generic formal type: The
corresponding name denotes the corresponding discriminant (there
must be one) of the actual type associated with the generic formal type.

3 See also Appendix G, AI-00398 and AI-00409.

12-13

Generic Instantiation 12.3

"

13

15

16

17

18

() For a name that denotes a generic formal subprogram: The correspond-
ing name denotes the subprogram, enumeration literal, or entry named
by the associated generic actual parameter (the actual subprogram).

(g) For a name that denotes a formal parameter of a generic formal
subprogram: The corresponding name denotes the corresponding
formal parameter of the actual subprogram associated with the formal
subprogram.

(h) For a name that denotes a local entity declared within the generic
unit: The corresponding name denotes the entity declared by the
corresponding local declaration within the instance.

(1) For a name that denotes a global entity declared outside of the generic
unit: The corresponding name denotes the same global entity.

Similar rules apply to operators and basic operations: in particular, formal
operators follow a rule similar to rule (f), local operations follow a rule
similar to rule (h), and operations for global types follow a rule similar

to rule (i). In addition, if within the generic unit a predefined operator

or basic operation of a formal type is used, then within the instance the
corresponding occurrence refers to the corresponding predefined operation of
the actual type associated with the formal type.

The above rules apply also to any type mark or (default) expression given
within the generic formal part of the generic unit.

For the elaboration of a generic instantiation, each expression supplied

as an explicit generic actual parameter is first evaluated, as well as each
expression that appears as a constituent of a variable name or entry name
supplied as an explicit generic actual parameter; these evaluations proceed
in some order that is not defined by the language. Then, for each omitted
generic association (if any), the corresponding default expression or default
name is evaluated; such evaluations are performed in the order of the
generic parameter declarations. Finally, the implicitly generated instance
is elaborated. The elaboration of a generic instantiation may also involve
certain constraint checks as described in later subsections.

Recursive generic instantiation is not allowed in the following sense: if a
given generic unit includes an instantiation of a second generic unit, then
the instance generated by this instantiation must not include an instance
of the first generic unit (whether this instance is generated directly, or
indirectly by intermediate instantiations).

4 See also Appendix G, AI-00237 and AI-00365.

12.3 Generic Instantiation 12-14

12-15

19

20

21

22

Examples of generic instantiations (see 12.1):

procedure SWAP is new EXCHANGE (ELEM => INTEGER);
procedure SWAP is new EXCHANGE (CHARACTER); -- SWAP is overloaded

function SQUARE is new SQUARING(INTEGER); -- "*" of INTEGER
-- used by default

function SQUARE is new SQUARING (ITEM => MATRIX,
"xw => MATRIX PRODUCT) ;

function SQUARE is new SQUARING (MATRIX, MATRIX PRODUCT) ;
—-- same as previous

package INT VECTORS is new ON_VECTORS (INTEGER, TABLE, "+");

Examples of uses of instantiated units:

SWAP (A, B);

A := SQUARE (A);

T : TABLE(1 .. 5) := (10, 20, 30, 40, 50);

N : INTEGER := INT_VECTORS.SIGMA(T); -- 150 (see 12.2 for

-— the body of SIGMA)

use INT VECTORS;
M : INTEGER := SIGMA(T); -- 150

Notes:

Omission of a generic actual parameter is only allowed if a corresponding
default exists. If default expressions or default names (other than simple
names) are used, they are evaluated in the order in which the corresponding
generic formal parameters are declared.

If two overloaded subprograms declared in a generic package specification
differ only by the (formal) type of their parameters and results, then there
exist legal instantiations for which all calls of these subprograms from
outside the instance are ambiguous. For example:

generic
type A is (<>);
type B is private;
package G is
function NEXT (X : A) return A;
function NEXT (X : B) return B;
end;

package P is new G(A => BOOLEAN, B => BOOLEAN) ;
-- calls of P.NEXT are ambiguous

Generic Instantiation 12.3

23

References: declaration 3.1, designator 6.1, discriminant 3.7.1, elaboration 3.1
3.9, entity 3.1, entry name 9.5, evaluation 4.5, expression 4.4, generic formal object
12.1, generic formal parameter 12.1, generic formal subprogram 12.1, generic formal
type 12.1, generic parameter declaration 12.1, global declaration 8.1, identifier 2.3,
implicit declaration 3.1, local declaration 8.1, mode in 12.1.1, mode in out 12.1.1,
name 4.1, operation 3.3, operator symbol 6.1, overloading 6.6 8.7, package 7, simple
name 4.1, subprogram 6, subprogram call 6.4, subprogram name 6.1, subtype
declaration 3.3.2, type mark 3.3.2, variable 3.2.1, visibility 8.3

12.3.1 Matching Rules for Formal Objects

1

A generic formal parameter of mode in of a given type is matched by an
expression of the same type. If a generic unit has a generic formal object
of mode in, a check is made that the value of the expression belongs to the
subtype denoted by the type mark, as for an explicit constant declaration
(see 3.2.1). The exception CONSTRAINT_ERROR is raised if this check
fails.

A generic formal parameter of mode in out of a given type is matched by
the name of a variable of the same type. The variable must not be a formal
parameter of mode out or a subcomponent thereof. The name must denote a
variable for which renaming is allowed (see 8.5).

Notes:

The type of a generic actual parameter of mode in must not be a limited
type. The constraints that apply to a generic formal parameter of mode in
out are those of the corresponding generic actual parameter (see 12.1.1).

References: constraint 3.3, constraint_error exception 11.1, expression 4.4, formal
parameter 6.1, generic actual parameter 12.3, generic formal object 12.1.1, generic
formal parameter 12.1, generic instantiation 12.3, generic unit 12.1, limited type
7.4.4, matching generic actual parameter 12.3, mode in 12.1.1, mode in out 12.1.1,
mode out 6.2, name 4.1, raising of exceptions 11, satisfy 3.3, subcomponent 3.3, type
3.3, type mark 3.3.2, variable 3.2.1

12.3.2 Matching Rules for Formal Private Types

12.3.2

1

2

A generic formal private type is matched by any type or subtype (the actual
subtype) that satisfies the following conditions:

* If the formal type is not limited, the actual type must not be a limited
type. (If, on the other hand, the formal type is limited, no such condition
is imposed on the corresponding actual type, which can be limited or not
limited.)

Matching Rules for Formal Private Types 12-16

3

e If the formal type has a discriminant part, the actual type must be a
type with the same number of discriminants; the type of a discriminant
that appears at a given position in the discriminant part of the actual
type must be the same as the type of the discriminant that appears
at the same position in the discriminant part of the formal type; and
the actual subtype must be unconstrained. (If, on the other hand, the
formal type has no discriminants, the actual type is allowed to have
discriminants.)

Furthermore, consider any occurrence of the name of the formal type at a
place where this name is used as an unconstrained subtype indication. The
actual subtype must not be an unconstrained array type or an unconstrained
type with discriminants, if any of these occurrences is at a place where
either a constraint or default discriminants would be required for an array
type or for a type with discriminants (see 3.6.1 and 3.7.2). The same
restriction applies to occurrences of the name of a subtype of the formal
type, and to occurrences of the name of any type or subtype derived, directly
or indirectly, from the formal type.5

If a generic unit has a formal private type with discriminants, the elabora-
tion of a corresponding generic instantiation checks that the subtype of each
discriminant of the actual type is the same as the subtype of the correspond-
ing discriminant of the formal type. The exception CONSTRAINT_ERROR
is raised if this check fails.

References: array type 3.6, constraint 3.3, constraint_error exception 11.1,
default expression for a discriminant 3.7.1, derived type 3.4, discriminant 3.7.1,
discriminant part 3.7.1, elaboration 3.9, generic actual type 12.3, generic body 12.2,
generic formal type 12.1.2, generic instantiation 12.3, generic specification 12.1,
limited type 7.4.4, matching generic actual parameter 12.3, name 4.1, private type
7.4, raising of exceptions 11, subtype 3.3, subtype indication 3.3.2, type 3.3, type
with discriminants 3.3, unconstrained array type 3.6, unconstrained subtype 3.3

12.3.3 Matching Rules for Formal Scalar Types

1

A generic formal type defined by (<>) is matched by any discrete subtype
(that is, any enumeration or integer subtype). A generic formal type defined
by range <> is matched by any integer subtype. A generic formal type
defined by digits <> is matched by any floating point subtype. A generic
formal type defined by delta <> is matched by any fixed point subtype. No
other matches are possible for these generic formal types.

5 See also Appendix G, AI-00037.

12-17

Matching Rules for Formal Scalar Types 12.3.3

References: box delimiter 12.1.2, discrete type 3.5, enumeration type 3.5.1, fixed
point type 38.5.9, floating point type 3.5.7, generic actual type 12.3, generic formal
type 12.1.2, generic type definition 12.1, integer type 3.5.4, matching generic actual
parameter 12.3, scalar type 3.5

12.3.4 Matching Rules for Formal Array Types

1

A formal array type is matched by an actual array subtype that satisfies the
following conditions:

* The formal array type and the actual array type must have the same
dimensionality; the formal type and the actual subtype must be either
both constrained or both unconstrained.

® For each index position, the index type must be the same for the actual
array type as for the formal array type.

* The component type must be the same for the actual array type as for
the formal array type. If the component type is other than a scalar type,
then the component subtypes must be either both constrained or both
unconstrained.

If a generic unit has a formal array type, the elaboration of a corresponding
instantiation checks that the constraints (if any) on the component type are
the same for the actual array type as for the formal array type, and likewise
that for any given index position the index subtypes or the discrete ranges
have the same bounds. The exception CONSTRAINT _ERROR is raised if
this check fails.

Example:
-- given the generic package

generic
type ITEM is private;
type INDEX is (<>);
type VECTOR is array (INDEX range <>) of ITEM;
type TABLE is array (INDEX) of ITEM;
package P is

end;

-- and the types

type MIX is array (COLOR range <>) of BOOLEAN;
type OPTION is array (COLOR) of BOOLEAN;

—— then MIX can match VECTOR and OPTION can match TABLE

package R is new P (ITEM => BOOLEAN, INDEX => COLOR,
VECTOR => MIX, TABLE => QOPTION) ;

12.3.4 Matching Rules for Formal Array Types 12-18

-- Note that MIX cannot match TABLE and
—-— OPTION cannot match VECTOR

Note:

7 For the above rules, if any of the index or component types of the formal
array type is itself a formal type, then within the instance its name denotes
the corresponding actual subtype (see 12.3(d)).

8 References: array type 3.6, array type definition 3.6, component of an array
3.6, constrained array type 3.6, constraint 3.3, constraint_error exception 11.1,
elaboration 3.9, formal type 12.1, generic formal type 12.1.2, generic instantiation
12.3, index 3.6, index constraint 3.6.1, matching generic actnal parameter 12.3, raise
statement 11.3, subtype 3.3, unconstrained array type 3.6

12.3.5 Matching Rules for Formal Access Types

1 A formal access type is matched by an actual access subtype if the type
of the designated objects is the same for the actual type as for the formal
type. If the designated type is other than a scalar type, then the designated
subtypes must be either both constrained or both unconstrained.

2 If a generic unit has a formal access type, the elaboration of a corresponding
instantiation checks that any constraints on the designated objects are
the same for the actual access subtype as for the formal access type. The
exception CONSTRAINT_ERROR is raised if this check fails.

3 Example:

—— the formal types of the generic package

generic
type NODE is private;
type LINK is access NODE;
package P is

end;

—-- can be matched by the actual types

type CAR;
type CAR NAME is access CAR;
type CAR is
record
PRED, SUCC : CAR_NAME;
NUMBER : LICENSE_ NUMBER;
OWNER : PERSON;

end record;

-— in the following generic instantiation
package R is new P (NODE => CAR, LINK => CAR NAME);

12-19 Matching Rules for Formal Access Types 12.3.5

Note:

4 For the above rules, if the designated type is itself a formal type, then within
the instance its name denotes the corresponding actual subtype (see 12.3(d)).

5 References: access type 3.8, access type definition 3.8, constraint 3.3, constraint,_
error exception 11.1, designate 3.8, elaboration 3.9, generic formal type 12.1.2,
generic instantiation 12.3, matching generic actual parameter 12.3, object 3.2, raise
statement 11.3, value of access type 3.8

12.3.6 Matching Rules for Formal Subprograms

1 A formal subprogram is matched by an actual subprogram, enumeration
literal, or entry if both have the same parameter and result type profile (see
6.6); in addition, parameter modes must be identical for formal parameters
that are at the same parameter position.

2 If a generic unit has a default subprogram specified by a name, this name
must denote a subprogram, an enumeration literal, or an entry, that matches
the formal subprogram (in the above sense). The evaluation of the default
name takes place during the elaboration of each instantiation that uses the
default, as defined in section 12.3.6

3 If a generic unit has a default subprogram specified by a box, the corre-
sponding actual parameter can be omitted if a subprogram, enumeration
literal, or entry matching the formal subprogram, and with the same desig-
nator as the formal subprogram, is directly visible at the place of the generic
instantiation; this subprogram, enumeration literal, or entry is then used by
default (there must be exactly one subprogram, enumeration literal, or entry
satisfying the previous conditions).

4 Example:

-- given the generic function specification

generic

type ITEM is private;

with function "*" (U, V : ITEM) return ITEM is <>;
function SQUARING(X : ITEM) return ITEM;

-— and the function
function MATRIX_PRODUCT (A, B : MATRIX) return MATRIX;

-- the following instantiation is possible

6 See also Appendix G, AI-00038.

12.3.6 Matching Rules for Formal Subprograms 12-20

function SQUARE is new SQUARING (MATRIX, MATRIX PRODUCT);
-- the following instantiations are equivalent

function SQUARE is new SQUARING(ITEM => INTEGER, "*" => "*");
function SQUARE is new SQUARING (INTEGER, "*");
function SQUARE is new SQUARING (INTEGER) ;

Notes:

The matching rules for formal subprograms state requirements that are
similar to those applying to subprogram renaming declarations (see 8.5). In
particular, the name of a parameter of the formal subprogram need not be
the same as that of the corresponding parameter of the actual subprogram;
similarly, for these parameters, default expressions need not correspond.

A formal subprogram is matched by an attribute of a type if the attribute is
a function with a matching specification. An enumeration literal of a given
type matches a parameterless formal function whose result type is the given

type.

References: attribute 4.1.4, box delimiter 12.1.2, designator 6.1, entry 9.5,
function 6.5, generic actual type 12.3, generic formal subprogram 12.1.3, generic
formal type 12.1.2, generic instantiation 12.3, matching generic actual parameter
12.3, name 4.1, parameter and result type profile 6.3, subprogram 6, subprogram
specification 6.1, subtype 3.3, visibility 8.3

12.4 Example of a Generic Package

12-21

The following example provides a possible formulation of stacks by means of
a generic package. The size of each stack and the type of the stack elements
are provided as generic parameters.

generic
SIZE : POSITIVE;
type ITEM is private;
package STACK is
procedure PUSH(E : in ITEM);
procedure POP (E : out ITEM):;
OVERFLOW, UNDERFLOW : exception;
end STACK;

package body STACK is

type TABLE is array (POSITIVE range <>) of ITEM;
SPACE : TABLE(1 .. SIZE);
INDEX : NATURAL := 0;

Example of a Generic Package 12.4

procedure PUSH(E : in ITEM) is
begin
if INDEX >= SIZE then
raise OVERFLOW;

end if;

INDEX := INDEX + 1;

SPACE (INDEX) := E;
end PUSH;

procedure POP(E : out ITEM) is
begin
if INDEX = 0 then
raise UNDERFLOW;

end if;
E := SPACE (INDEX) ;
INDEX := INDEX - 1;
end POP;
end STACK;

3 Instances of this generic package can be obtained as follows:

package STACK_INT is new STACK(SIZE => 200, ITEM => INTEGER) ;
package STACK BOOL is new STACK (100, BOOLEAN);

4 Thereafter, the procedures of the instantiated packages can be called as
follows:

STACK_INT.PUSH(N) ;
STACK_BOOL.PUSH (TRUE) ;

5 Alternatively, a generic formulation of the type STACK can be given as
follows (package body omitted):

generic
type ITEM is private;
package ON_STACKS is
type STACK(SIZE : POSITIVE) is limited private;
procedure PUSH(S : in out STACK; E : in ITEM);
procedure POP (S : in out STACK; E : out ITEM);
OVERFLOW, UNDERFLOW : exception;
private
type TABLE is array (POSITIVE range <>) of ITEM;
type STACK(SIZE : POSITIVE) is
record
SPACE : TABLE(1 .. SIZE);
INDEX : NATURAL := O;
end record;
end;

12.4 Example of a Generic Package 12-22

6 In order to use such a package, an instantiation must be created and
thereafter stacks of the corresponding type can be declared:
declare
package STACK REAL is new ON_STACKS (REAL); use STACK_REAL;

S : STACK(100);
begin

PUSH(S, 2.54);

end;

12-23 Example of a Generic Package 12.4

Chapter 13

Representation Clauses and
Implementation-Dependent Features

1

This chapter describes representation clauses, certain implementation-
dependent features, and other features that are used in system
programming.

13.1 Representation Clauses

1

Representation clauses specify how the types of the language are to be
mapped onto the underlying machine. They can be provided to give more
efficient representation or to interface with features that are outside the
domain of the language (for example, peripheral hardware).

representation_clause ::=
type representation_clause | address_clause

type representation_clause ::= length_clause
| enumeration_ representation clause
| record representation_clause

A type representation clause applies either to a type or to a first named
subtype (that is, to a subtype declared by a type declaration, the base

type being therefore anonymous). Such a representation clause applies to
all objects that have this type or this first named subtype. At most one
enumeration or record representation clause is allowed for a given type: an
enumeration representation clause is only allowed for an enumeration type;
a record representation clause, only for a record type. (On the other hand,
more than one length clause can be provided for a given type; moreover, both
a length clause and an enumeration or record representation clause can be
provided.) A length clause is the only form of representation clause allowed

Representation Clauses 13.1

for a type derived from a parent type that has (user-defined) derivable
subprograms.

4 An address clause applies either to an object; to a subprogram, package, or
task unit; or to an entry. At most one address clause is allowed for any of
these entities.

In VAX Ada, an address clause can apply only to an object. See section 13.5
for more information.

5 A representation clause and the declaration of the entity to which the
clause applies must both occur immediately within the same declarative
part, package specification, or task specification; the declaration must occur
before the clause. In the absence of a representation clause for a given
declaration, a default representation of this declaration is determined by
the implementation. Such a default determination occurs no later than the
end of the immediately enclosing declarative part, package specification, or
task specification. For a declaration given in a declarative part, this default
determination occurs before any enclosed body.

6 In the case of a type, certain occurrences of its name imply that the rep-
resentation of the type must already have been determined. Consequently
these occurrences force the default determination of any aspect of the
representation not already determined by a prior type representation clause.
This default determination is also forced by similar occurrences of the name
of a subtype of the type, or of the name of any type or subtype that has
subcomponents of the type. A forcing occurrence is any occurrence other
than in a type or subtype declaration, a subprogram specification, an entry
declaration, a deferred constant declaration, a pragma, or a representation
clause for the tgpe itself. In any case, an occurrence within an expression is
always forcing.

7 A representation clause for a given entity must not appear after an
occurrence of the name of the entity if this occurrence forces a default
determination of representation for the entity.

8 Similar restrictions exist for address clauses. For an object, any occurrence
of its name (after the object declaration) is a forcing occurrence. For a
subprogram, package, task unit, or entry, any occurrence of a representation
attribute of such an entity is a forcing occurrence.

9 The effect of the elaboration of a representation clause is to define the
corresponding aspects of the representation.

1 See also Appendix G, AI-00040, AI-00138, and AI-00422.
2 See also Appendix G, AI-00039, AI-00186, AI-00321, and AI-00322.
3 See also Appendix G, AI-00039 and AI-00371.

13.1 Representation Clauses 13-2

10

1

12

13

The interpretation of some of the expressions that appear in representation
clauses is implementation-dependent, for example, expressions specifying
addresses. An implementation may limit its acceptance of representation
clauses to those that can be handled simply by the underlying hardware.
If a representation clause is accepted by an implementation, the compiler
must guarantee that the net effect of the program is not changed by the
presence of the clause, except for address clauses and for parts of the
program that interrogate representation attributes. If a program contains a
representation clause that is not accepted, the program is illegal. For each
implementation, the allowed representation clauses, and the conventions
used for implementation-dependent expressions, must be documented in
Appendix F of the reference manual.

The allowed representation clauses and the conventions used for
implementation-dependent expressions are documented in this chapter,
and are summarized in Appendix F.

Whereas a representation clause is used to impose certain characteristics
of the mapping of an entity onto the underlying machine, pragmas can be
used to provide an implementation with criteria for its selection of such a
mapping. The pragma PACK specifies that storage minimization should be
the main criterion when selecting the representation of a record or array
type. Its form is as follows:

pragma PACK (type simple_name);

Packing means that gaps between the storage areas allocated to consecutive
components should be minimized. It need not, however, affect the mapping
of each component onto storage. This mapping can itself be influenced by

a pragma (or controlled by a representation clause) for the component or
component type. The position of a PACK pragma, and the restrictions on the
named type, are governed by the same rules as for a representation clause;
in particular, the pragma must appear before any use of a representation
attribute of the packed entity.

The pragma PACK is the only language-defined representation pragma.
Additional representation pragmas may be provided by an implementation;
these must be documented in Appendix F. (In contrast to representation
clauses, a pragma that is not accepted by the implementation is ignored.)

In VAX Ada, all array and record components are aligned on byte boundaries
by default; the effect of the pragma PACK on a record or array is to cause
those components that are packable to be allocated in adjacent bits without
regard to byte boundaries. Whether any particular component is packable
depends on the rules for its type; the VAX Ada Run-Time Reference Manual
gives information on which types can be packed as components of composite
types, as well as information on how these types are packed.

Representation Clauses 13.1

VAX Ada provides no additional representation pragmas.

Note:
14 No representation clause is allowed for a generic formal type.

In addition, VAX Ada does not allow a representation clause for a type that
depends on a generic formal type. A type depends on a generic formal type
if it has a subcomponent of a generic formal type or a subcomponent that
depends on a generic formal type, or if it is derived from a generic formal
type or a type that depends on a generic formal type.

15 References: address clause 13.5, allow 1.6, body 3.9, component 3.3, declaration
3.1, declarative part 3.9, default expression 3.2.1, deferred constant declaration
7.4, derivable subprogram 3.4, derived type 3.4, entity 3.1, entry 9.5, enumeration
representation clause 13.3, expression 4.4, generic formal type 12.1.2, illegal 1.6,
length clause 13.2, must 1.6, name 4.1, object 3.2, occur immediately within
8.1, package 7, package specification 7.1, parent type 3.4, pragma 2.8, record
representation clause 13.4, representation attribute 13.7.2 13.7.3, subcomponent 3.3
subprogram 6, subtype 3.3, subtype declaration 3.3.2, task specification 9.1, task
unit 9, type 3.3, type declaration 3.3.1

array 3.6, constant 3.2.1, record 3.7, variable 3.2.1, variant 3.7.3

2

13.2 Length Clauses

1 A length clause specifies an amount of storage associated with a type.

2 length_clause ::= for attribute use simple_expression;4

3 The expression must be of some numeric type and is evaluated during the
elaboration of the length clause (unless it is a static expression). The prefix
of the attribute must denote either a type or a first named subtype. The
prefix is called T in what follows. The only allowed attribute designators in
a length clause are SIZE, STORAGE_SIZE, and SMALL. The effect of the
length clause depends on the attribute designator:

4 (a) Size specification: T’ SIZE

5 The expression must be a static expression of some integer type. The
value of the expression specifies an upper bound for the number of bits
to be allocated to objects of the type or first named subtype T. The size
specification must allow for enough storage space to accommodate every
allowable value of these objects. A size specification for a composite
type may affect the size of the gaps between the storage areas allocated

4 See also Appendix G, AI-00300.

13.2 Length Clauses 134

(b)

to consecutive components. On the other hand, it need not affect the
size of the storage area allocated to each component.

The size specification is only allowed if the constraints on T and on
its subcomponents (if any) are static. In the case of an unconstrained
array type, the index subtypes must also be static.

In VAX Ada, for a discrete type, the given size must not exceed 32
(bits). The given size becomes the default allocation for all objects and
components (in arrays and records) of that type.

For integer and enumeration types, the given size affects the internal
representation as follows: for integer types, high order bits are sign-
extended; for enumeration types, the high order bits may be either
zero- or sign-extended depending upon the base representation that is
selected. For fixed point types, the given size affects the range (but
not the precision) of the underlying model numbers of the type; that is,
the given size determines the value of B, which is described in section
3.5.9 (note that the given size may not equal the value of B because the
given size includes any sign bit and B does not).

For all other types, the given size must equal the size that would apply
in the absence of a size specification.

Specification of collection size: T STORAGE_SIZE

The prefix T must denote an access type. The expression must be

of some integer type (but need not be static); its value specifies the
number of storage units to be reserved for the collection, that is, the
storage space needed to contain all objects designated by values of the
access type and by values of other types derived from the access type,
directly or indirectly. This form of length clause is not allowed for a
type derived from an access type.

In VAX Ada, the specification of a collection size is interpreted as
follows. If the value of the expression is greater than zero, the specified
size (representing the number of bytes in the collection) is rounded up
to the next integral number of pages (where one page is 512 bytes),
and is then used as the initial size for the collection; the collection is
not extended should that initial allocation be exhausted. If the value is
equal to zero, no storage is initially allocated for the collection; storage
is allocated as needed, until all virtual memory is depleted. (This is the
default behavior in the absence of a length clause.) If the value is less
than zero, the exception CONSTRAINT_ERROR is raised.

Specification of storage for a task activation: T STORAGE_SIZE

Length Clauses 13.2

10 The prefix T must denote a task type. The expression must be of some
integer type (but need not be static); its value specifies the number of
storage units to be reserved for an activation (not the code) of a task of
the type.

In VAX Ada, the specification of storage for a task activation is
interpreted as follows. If the value of the expression is greater than
zero, the specified storage (in bytes) is rounded up to the next integral
number of pages (where one page is 512 bytes), and then is used as the
amount of storage to be allocated for an activation of a task of the given
type. If the value is equal to zero, a default allocation is used (this is
the default behavior in the absence of a length clause). In both cases,
the task activation storage is fixed and is not extended if the initial
allocation is exhausted. If the value is less than zero, the exception
CONSTRAINT _ERROR is raised.

The storage allocation for a task may also be affected by the pragmas
TASK_STORAGE (see 13.2a) and MAIN_STORAGE (see 13.2b); see
also the VAX Ada Run-Time Reference Manual.

1 (d) Specification of small for a fixed point type: T SMALL

12 The prefix T must denote the first named subtype of a fixed point
type. The expression must be a static expression of some real type; its
value must not be greater than the delta of the first named subtype.
The effect of the length clause is to use this value of small for the
representation of values of the fixed point base type. (The length clause
theret;sy also affects the amount of storage for objects that have this
type.)

In VAX Ada, the value of small in a fixed point representation clause
must be 2.0" such that —62 <= n <= 31. For example:

type MY FIXED is delta 0.1 range 0.0 .. 1.0;
for MY FIXED'SMALL use 0.03125;

This example is a legal specification for the declaration of MY_FIXED
because the value specified for small (0.03125) is a power of two (2.0~5)
that is less than the delta (0.1) and that also satisfies the specified
range (0.0..1.0).

5 See also Appendix G, AI-00099.

13.2 Length Clauses 13-6

15

16

Notes:

A size specification is allowed for an access, task, or fixed point type,
whether or not another form of length clause is also given for the type.

What is considered to be part of the storage reserved for a collection or for
an activation