
0

0

()

0

VAX LISP/VMS
Editor Programming Guide

Order Number: AA-Y923C-TE

May 1986

This document contains Information required by a LISP language
programmer to wrlte=-programs that extend the VAX LISP Editor.

Operating System and Version: VAX/VMS Version 4.2

Software Version: VAX LISPNMS Version 2.0

digital equipment corporation
maynard, massachusetts

The information in this document is subject to change without notice (,,-.. ... ,,.
and should not be construed as a commitment by Digital Equipment \._)
Corporation. Digital Equipment Corporation assumes no responsibility' ~
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

© Digital Equipment Corporation 1985, 1986.
All Rights Reserved.

Printed in U.S.A.

A postage-paid READER'S COMMENTS form is included on the last page of
this document. Your comments will assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DECUS
MicroVAX
VAXstation
DECnet
ULTRIX-32
ULTRIX-32m

UNIBUS
VAX
MicroVAX II
VAXstation II
ULTRIX

PDP
VMS
MicroVMS
AI VAXstation
ULTRIX-11

0

0

n:.
', "'~. I

CONTENTS

OPREFACE

SUMMARY OF NEW AND CHANGED INFORMATION

0

0

0

CHAPTER 1

1.1
1.1.1
1.1. 2
1.1. 3
1.1. 4
1.1.5
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.3
1.3.1
1. 3. 2
1. 3. 3
1.3.3.1
1.3.3.2
1.3.3.3
1. 3. 4

1.3.4.1
1.3.4.2
1. 3. 5
1.3.5.1
1.3.5.2
1.3.5.3

CHAPTER 2

0

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.3

PART I GUIDE TO EDITOR PROGRAMMING

EDITOR OVERVIEW

SOME COMMON EDITOR EXTENSIONS
Changing the Frequency of Checkpointing
Changing the Number of Windows Displayed
Changing the Default Major Style
Binding a Command to a Key Sequence
Defining a Command to Change Screen Width

THE COMPONENTS OF THE EDITOR
Text Operations
Window and Display Operations
Binding Contexts
Other Subsystems and Utilities

REFERENCING EDITOR OBJECTS
Functions, Macros, and LISP Variables
Editor Objects
Named and Unnamed Editor Objects

Referencing Unnamed Objects
Referencing Named Objects
A Note On Efficiency

Context-Independent and Context-Dependent
Editor Objects

Referencing Context-Independent Objects
Referencing Context-Dependent Objects

The "EDITOR" Package
The Package Prefix
Using USE-PACKAGE
Using IN-PACKAGE

CREATING EDITOR COMMANDS

COMMANDS AND THEIR ASSOCIATED FUNCTIONS
USING DEFINE-COMMAND

Specifying the Names
Specifying the Argument List
Supplying Documentation Strings
Specifying the Action
Modular Definition of Commands
Commands and Context

SOME SPECIAL COMMAND FACILITIES
/

iii

ix

xiii

1-2
1-2
1-3
1-3
1-4
1-4
1-5
1-6
1-6
1-7
1-8
1-8
1-9
1-9

1-10
1-11
1-11
1-13

1-13
1-13
1-14
1-14
1-15
1-15
1-16

2-1
2-2
2-3
2-3
2-4
2-5
2-7
2-8
2-9

2.3.1
2.3.1.1
2. 3 .1. 2.
2.3.1.3
2.3.2
2.3.2.1
2.3.2.2
2.3.3

CHAPTER 3

3.1
3.2
3.3
3.3.1
3.3.2
3.3.3

3.4
3.4.1
3.4.1.1
3.4.1.2
3.4.1.3
3.4.2
3.5
3.5.1
3.5.1.1
3.5.1.2
3.5.2
3.5.3

CHAPTER 4

4.1
4 .1.1
4 .1.2
4.1.3
4.1.4
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.5.1
4.2.5.2
4.2.5.3
4.2.5.4
4.3
4.3.1

'Errors
Getting The User's Attention
Signaling An Error
Error Handling

Prompting
Simple Prompting
General Prompting

Command Categories

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

USING BIND-COMMAND
THE COMMAND TO BE BOUND
THE KEY OR KEY SEQUENCE TO BE BOUND

Choosing a Key or Sequence
Specifying a Character Key or Sequence
Specifying a Function Key, Keypad Key, or
Sequence

THE BINDING CONTEXT
Specifying the Binding Context

Global
Style
Buffer

Search Order and Shadowing
USING BIND-POINTER-COMMAND

Specifying a Pointer Action
Pointer Cursor Movement
Pointer Button Transitions

Specifying a Button State
Getting the State of the Pointer

TEXT OPERATIONS

OPERATIONS ON A CHARACTER POSITION
Retrieving and Changing a Character
Inserting a Character
Inserting a String of Characters
Deleting Characters

OPERATIONS ON A GROUP OF CHARACTERS
Inserting a Region
Copying a Region
Deleting a Region
Writing a Region to a File
Operating on Buffers

Deleting The Text In A Buffer
Inserting One Buffer Into Another
Writing A Buffer To A File
Inserting A File Into A Buffer

MOVING AND SEARCHING OPERATIONS
Moving by Character Positions

iv

2-9
2-9 0

2-10
2-11
2-12
2-13
2-14
2-16

3-2
3-3
3-4
3-4
3-5

3-5
3-6
3-7
3-7
3-7
3-8
3-8
3-9

3-10
3-10
3-10
3-11
3-12

4-2
4-3
4-3
4-3
4-4
4-5
4-6
4-6
4-6 ~

4-7
4-7
4-8
4-8
4-8
4-8
4-9
4-9

0

0

0

0

0

0

0

0

4.3.2
4.3.2.1
4.3.2.2
4.3.2.3
4.3.3
4.3.3.1
4.3.3.2
4.3.3.3
4.4
4.4.1
4.4.1.1
4.4.1.2
4.4.1.3
4.4.2
4.4.2.1
4.4.2.2
4.4.2.3
4.4.2.4
4.4.2.5
4.4.2.6

CHAPTER 5

5.1
5 .1.1
5 .1. 2
5 .1. 3
5.1. 4
5.2
5.2.1
5.2.2
5.2.3
5.2.3.1
5.2.3.2
5.2.4
5.3
5.3.1
5.3.2
5.3.3
5.3.3.1
5.3.3.2
5.3.3.3
5.4
5.4.1
5.4.1.1
5.4.1.2
5.4.1.3
5.4.2
5.4.2.1
5.4.2.2
5.4.2.3

Searching by Pattern
Making A Search Pattern
Locating A Search Pattern
Replacing A Pattern

Searching by Attribute
Using LOCATE-ATTRIBUTE
Mark And Cursor Behavior
Using LOCATE-ATTRIBUTE Repeatedly

MISCELLANEOUS TEXT OPERATIONS
Creating Marks

Mark Types And Their Behavior
Using COPY-MARK
Using WITH-MARK

Operating on Lines
Retrieving And Altering The Text In A Line
Retrieving And Altering A Single Character
Moving By Line
Testing Relative Line Positions
Retrieving And Testing Mark Positions
Example Of An Operation On Lines

WINDOW AND DISPLAY OPERATIONS

ACCESSING WINDOWS
The Current Window
The Windows onto a Buffer
All the Windows on the Screen
The "Next" Window

WINDOW CONTENT
Window Position in a Buffer
The Window Point
Moving a Window in the Buffer

Scrolling
Moving To A Specified Position

Wrapping the Lines in a Window
WINDOW APPEARANCE

Altering Window Rendition
Making Highlight Regions
Operations on Window Labels and Borders

Borders, Labels, And Label Content
Label Position
Label Rendition

DISPLAY MANAGEMENT
The Display Area

Display Area Dimensions
The Reserved Display Area
The Available Display Area

Window Types and Their Behavior
Display Behavior By Window Type
Window Size And Display Behavior
Window Position And Display Behavior

v

4-11
4-11
4 -11
4-12
4-13
4-14
4-15
4-16
4-18
4-18
4-18
4-19
4-20
4-21
4-22
4-22
4-23
4-23
4-23
4-24

5-2
5-3
5-3
5-3
5-4
5.:.5
5-6
5-7
5-8
5-8
5-9
5-9

5-10
5-11
5-12
5-14
5-15
5-16
5-17
5-18
5-18
5-20
5-21
5-23
5-23
5-23
5-24
5-25

5.4.2.4 Window Borders And Display Behavior 5-27
5----.-4----.-3---Di-sp-l-ay-i-ng-and-Rernovi-ng-W-i-ndows--------~5---28-e
5.4.3.1 Using SHOW-WINDOW 5-28
5.4.3.2 Using PUSH-WINDOW 5-29
5.4.3.3 Using REMOVE-WINDOW 5-29
5. 5 MAKING AND DELETIN.G WINDOWS 5-30
5.6 EXAMPLE OF WINDOW AND DISPLAY OPERATIONS 5-31

CHAPTER 6

6.1
6 .1.1
6 .1. 2
6.1.2.1
6.1.2.2
6.1.2.3
6.1.2.4
6 .1. 3
6.1.3.1
6.1.3.2
6.2
6.2.1
6.2.1.1
6.2.1.2
6.2.1.3
6.2.2
6.2.2.1
6.2.2.2
6.2.2.3
6.2.2.4
6.2.3
6.2.3.1
6.2.3.2
6.2.3.3
6.2.3.4
6.3
6.3.1
6.3.2
6.3.3
6.3.4

OPERATIONS ON STYLES

AC';I'IVATING AND DEACTIVATING STYLES
The Styles in a New Buffer
The Editor's Default Styles

The Default Major Style
The Default Minor Style(s)
Default Minor Style(s) By Type Of Buffer
Example Of Activating Default Styles

The Styles in an Existing Buffer
A Buffer's Major Style
A Buffer's Mi~or Style(s)

MODIFYING A DIGITAL-PROVIDED STYLE
Binding Keys and Pointer Actions

Finding Key Bindings
Review Of BIND-COMMAND
Choosing Commands To Bind

Binding Variables and Setting Variable Values
Finding Style Variables
Altering variable Values
Binding A Variable In A Style
Defining New Variables

Binding Attributes and Setting Attribute Values
Finding Style Attributes
Altering Attribute Values
Binding An Attribute In A Style
Defining New Attributes

CREATING A NEW STYLE
Making a Style Object
Style Activation and Deactivation Hooks
Adding Capabilities to the Style
Activating the Style

PART II CONCEPTS IN EDITOR PROGRAMMING

ATTRIBUTES
BUFFERS
CHARACTERS

6-2
6-4
6-4
6-5
6-5
6-6
6-6
6-7
6-8
6-8
6-9
6-9
6-9

6-10
6-11
6-11
6-11
6-12
6-13
6-14
6-15
6-15
6-17
6-17
6-19
6-20
6-20
6-21
6-22
6-24

2
4
5
6

0

0

0

CHECKPOINTING (Subsystem)
COMMANDS
CONTEXT (Subsystem)
DEBUGGING SUPPORT

~ ()
12

vi

0

0
APPENDIX A

0

0

0

EDITOR VARIABLES
ERRORS (Subsystem)
HOOKS
INFORMATION AREA
LINES
MARKS
NAMED EDITOR OBJECTS
PROMPTING (Subsystem)
REGIONS
RINGS
STREAMS
STRING TABLES
STYLES
WINDOWS

PART III EDITOR OBJECT DESCRIPTIONS

EDITOR OBJECTS BY CATEGORY

ATTRIBUTES
ATTRIBUTES PROVIDED WITH VAX LISP
BUFFERS
BUFFERS PROVIDED WITH VAX LISP
COMMANDS
COMMANDS PROVIDED WITH VAX LISP
DISPLAY
EDITOR VARIABLES
EDITOR VARIABLES PROVIDED WITH VAX LISP
ERROR SIGNALING AND DEBUGGING
FILES
HELP
HOOKS
HOOK VARIABLES PROVIDED WITH VAX LISP
INVOKING AND EXITING THE EDITOR
KILL RING
LINES
LISP SYNTAX
MARKS
MISCELLANEOUS
POINTING DEVICE
PROMPTING AND TERMINAL INPUT
REGIONS
RINGS
SEARCHING
STRING TABLES
STRING TABLES PROVIDED WITH VAX LISP
STYLES
STYLES PROVIDED WITH VAX LISP
STYLE BINDINGS, "EDT EMULATION" STYLE

vii

13
14
16
18
19
20
22
24
27
29
30
31
32
36

40

A-3
A-3
A-3
A-4
A-4
A-5
A-8
A-9
A-9

A-10
A-11
A-11
A-11
A-11
A-12
A-12
A-12
A-13
A-14
A-15
A-15
A-16
A-16
A-17
A-17
A-18
A-18
A-18
A-18
A-19

APPENDIX B

APPENDIX C

APPENDIX D

INDEX

FIGURES

TABLES

5-1
5-2
5-3

1
B-1
C-1
D-1

----------- - --- -··

STYLE BINDINGS, "EMACS" STYLE
STYLE BINDINGS, "VAX LIS.P 11 STYLE
TEXT OPERATIONS
WINDOWS

EDITOR COMMANDS AND BINDINGS

BOUND KEYS AND KEY SEQUENCES

FUNCTION KEYS AND KEYPAD KEYS

Display Area Coordinates
Altered Display Area Dimensions
A Window Display Position

"LISP Syntax" Attribute Values
Editor Commands and Key Bindings
Editor Key Binding~
Characters Generated by Keys

viii

A-19
A-210
A-22
A-23

5-19
5-20
5-26

0

1780
B-2
C-1
D-1

0

(J

0

0

0

0

0

PREFACE

Manual Objectives

The VAX LISP/VMS Editor Programming Guide provides the information
needed to program the VAX -LISP Editor in order to extend and customize
its capabilities.

Intended Audience

Readers of this manual are assumed to have a working knowledge of LISP
programming and to be able to use the VAX LISP Editor as proviqed.

• The VAX LISP language
LISP: The Language.*

elements are described in COMMON

• Instructions for using the VAX LISP Editor appear in the VAX
LISP/VMS User's Guide.

Readers who are not familiar with LISP programming can use the VAX
LISP Editor as provided, but should not attempt to c·ustomize it.

Structure of This Document

This manual is organized in three parts:

e PART I, GUIDE TO EDITOR'PROGRAMMING, introduces the techniques
of Editor programming in a task-oriented fashion; It contains
six chapters, each covering a major area of Editor
programming.

Chapter 1 provides an overview of the subsystems of the
Editor and of the data types that each subsystem contains.
It also describes the methods of accessing Editor objects.

* Guy L. Steele, Jr., COMMON LISP:
(1984), Burlington, Massachusetts.

ix

The Language, Digital Press

•

•

Chapter. 2
commands.

describes the t,echniques of creating

Chapter 3 describes the techniques of binding Editor
commands to keyboard keys and pointer actions.

Chapter 4 introduces the Editor's text operations subsystem
and the techniques of extending it.

Chapter 5 introduces the Editor's window and display
operations subsystem and the techniques of extending it.

Chapter 6 describes the techniques of modifying the
Editor's styles and of creating new styles.

PART II, CONCEPTS IN EDITOR PROGRAMMING, contains programming o
information arranged for quick reference. This part consists
of separate, alphabetically arranged articles on each of the
major concepts and data types used in Editor programming.

PART III, EDITOR OBJECT DESCRIPTIONS, describes the individual
functions, variables, and other objects provided with the
Editor. The descriptions are arranged alphabetically by
object name.

0
This manual also contains four appendixes:

•

•

Appendix A, Editor Objects by Category, contains lists of the
functions, variables,· and other objects provided with the
Editor, categorized by the major concepts and data types used
in Editor programming.

Appendixes B, c, and D list all'the commands provided with the Q
Editor, all bound keys, and other.information that is useful
in binding Editor commands to keys and key sequences. These
appendixes also appear in the VAX LISP/VMS User's Guide.

Associated Documents

The following documents are relevant to programming the VAX LISP
Editor:

•

•

The VAX LISP/VMS User's Guide provides general information
about using VAX LISP, and serves as a guide to generally
helpful VMS documentation. This manual also presents
information on using the VAX LISP Editor.as provided.

COMMON LISP: The Language provides a definition of the COMMON I~

LISP language.

x

0 e The VAX LISP/VMS Graphics Programming Guide explains the use
of the VAX LISP programming interface to VAXstation graphics.

Conventions Used in This Document

The following conventions are used in this manual:

Convention

()

Meaning

Parentheses used in examples of LISP code indicate the
beginning and end of a LISP form. For example:

(SETQ NAME LISP)

O UPPERCASE LISP symbols are printed in uppercase characters;
however, you can enter them in uppercase, lowercase, or
a combination of uppercase and lowercase characters.

lowercase
italics

0-
{ }

0 { }*

&OPTIONAL

0

Lowercase italics in function and macro descriptions
and in text indicate arguments that you supply to a
function or macro; however, you can enter them in
lowercase, uppercase, or a combination of lowercase and
uppercase characters.

•
In LISP code examples, a vertical ellipsis indicates
that lines of code not pertinent to the example are
omitted.

In function and macro format specifications, braces
enclose elements that are considered to be one unit of
code. For example:

{keyword value}

In function and macro format specifications, braces
followed by an asterisk enclose elements that are
considered to be one unit of code and that can be
repeated zero or more times. For example:

{keyword value}*

In function and macro format specifications, the word
&OPTIONAL indicates that the arguments after it are
defined to be optional. For example:

COPY-MARK mark &OPTIONAL mark-type

Do not specify &OPTIONAL when you invoke a function or
macro whose definition includes &OPTIONAL.

xi

Convention

&REST

&KEY

CTRL/x

Meaning

In function and macro format specifications, the word
&REST indicates that an indefinite number of arguments
may appear. For example:

INVOKE-HOOK name &REST args

Do not specify &REST when you invoke the function or
macro whose definition includes &REST.

In function and macro format specifications, the word
&KEY indicates that keyword arguments are accepted.
For example:

LOCATE-ATTRIBUTE mark-or-string attribute
&KEY :TEST :CONTEXT :DIRECTION :LIMIT

Do not specify &KEY when you invoke the function or
macro whose definition includes &KEY.

CTRL/x indicates a control character generated when you
hold down the key labeled CTRL while you press another
key. For example:

CTRL/Z or CTRL/Y

xii

0

0

0

(\
__)

0

0

0

0

0

'-

SUMMARY OF NEW AND CHANGED INFORMATION

This section summarizes the ways in which the Version 2.0 VAX LISP/VMS
Editor and its documentation differ from previous versions.

Document Supersession

This document supersedes the VAX LISP Editor Manual. The relationship
of the VAX LISP/VMS Editor Programming Guide to the VAX LISP Editor
Manual is as follows:

• Part I of the Editor Programming Guide is new material.

• Part II of the Editor Programming Guide is a reorganization of
the material in the Editor Manual, Chapter 2.

• Part III of the Editor Programming Guide corresponds to the
Editor Manual, Chapter 3, with additions and revisions as
noted below.

• Appendix A of the Editor Programming Guide corresponds to the
Editor Manual, Appendix A, with additions and revisions as
noted below.

• Appendixes B, C, and D of the Editor Programming Guide are new
material. They contain tables that are identical to tables
included in the VAX LISP/VMS User's Guide.

• The Editor Manual, Chapter 1, has been revised and now appears
as Chapter 3 of the VAX LISP/VMS User's Guide, Using the VAX
LISP Editor.

New and Revised Editor Features

The major additions and changes to the VAX
LISP/VMS Version 2.0 are the following:

• Improved speed of Editor operation

xiii

LISP Editor for VAX

• Support for the pointing device on the AI
Editor environment

VAXstation in the

• Revision of the Editor's display architecture to support
VAXstation windowing

• Recursive use of the ED function

• Use of a permanently displayed window for all Editor prompting

• Some miscellaneou& features under the
programmer

control of the

A right margin setting that causes text inserted from the
keyboard to wrap

A text overstrike mode

The ability to specify the number of anchored windows the
Editor normally displays

The ability to specify the buffer onto which the Editor
displays a window when it has no other .window to display

New and Revised Editor Objects

The VAX LISP/VMS Editor Programming Guide documents the following
Editor objects for the first time with VAX LISP/VMS, Version 2.0.
These objects are described in Part III and listed under the
appropriate categories in Appendix A.

New Functions

BIND-POINTER-COMMAND
BUFFER-HIGHLIGHT-REGIONS
ENQUEUE-EDITOR-COMMAND
GET-POINTER-STATE
POINTER-STATE-ACTION
POINTER-STATE-BUTTONS
POINTER-STATE-P
POINTER-STATE-TEXT-POSITION
POINTER-STATE-WINDOW-POSITION
POSITION-WINDOW-TO-MARK
UNBIND-POINTER-COMMAND

New Macro

RETURN-FROM-EDITOR

xiv

0

0

0

0

0

0

0

New Commands

Close Outermost Form"
Describe Word at Pointer"
EDT Paste at Pointer"
Exit Recursive Edit"
Kill Enclo~ing List"
Kill Next Form"
Kill Previous Form"
Kill Rest of List"
Maybe Reset Select at Pointer"

"Move Point and Select Region"
"Move Point to Pointer"
"Page Previous Window"
"Select Enclosing Form at Pointer"
"Set Select Mark"
"Unset Select Mark"
"Yank at Pointer"

New variable

EDITOR-DEFAULT-BUFFER

Q New Editor Variables

"Anchored Window Show Limit"
"Buffer Right Margin"

0

0

"Current Window Pointer Pattern"
"Current Window Pointer Pattern X"
"Current Window Pointer Pattern Y"
"Editor Initialization Hook"
"Information Area Pointer Pattern"
"Information Area Pointer Pattern X"
"Information Area Pointer Pattern Y"
"Noncurrent Window Pointer Pattern"
"Noncurrent Window Pointer Pattern X"
"Noncurrent Window Pointer Pattern Y"
"Prompt Rendition Complement"
"Prompt Rendition Set"
"Select Region Rendition Complement"
"Sele~t Region Rendition Set"
"Text Overstrike Mode"

xv

----------- --

The VAX LISP/VMS Editor Programming Guide also documen~s the following
Editor objects that have been changed for VAX LISP/VMS, Version 2.0.

Functions

BUFFER-WRITABLE
ED
PROMPT-FOR-INPUT
REGION-READ-POINT
REMOVE-WINDOW
SHOW-WINDOW
SIMPLE-PROMPT-FOR-INPUT
WINDOW-DISPLAY-START

Commands

"EDT Deselect"
"EDT Select"
"Insert Close Paren and Match"
"Remove Current Window"

Editor Variable

"Default Window Lines Wrap"

The documentation of the follo~ing objects has been revised to correct
documentation errors or omissions.

Functions

ALTER-WINDOW-HEIGHT
CURRENT-WINDOW
DESCRIBE-OBJECT-COMMAND
EDIT-LISP-OBJECT-COMMAND
EXIT-EDITOR-COMMAND
INSERT-STRING
MAKE-BUFFER
MAKE-WINDOW
NEXT-WINDOW
UPDATE-WINDOW-LABEL
WINDOW-DISPLAY-COLUMN
WINDOW-DISPLAY-ROW
WINDOW-LABEL-RENDITION
WORD-OFFSET

xvi

0

0

0

0

0

0

0

0

0

0

Commands

"Beginning of Buffer"
"Beginning of Line"
Describe Word"
Downcase Region"
EMACS Forward Search"
Exit"
Help"
Pause Editor"
Set Screen Width"

Editor Variable

"Buffer Exit Hook"

Buffers

EDITOR-HELP-BUFFER
EDITOR-PROMPTING-BUFFER

xvii

0

0

0

0

0

0 PART I

GUIDE TO EDITOR PROGRAMMING

0

0

0

0

0

0

0

0

0

0

0

CHAPTER 1

EDITOR OVERVIEW

The VAX LISP Editor is an interactive LISP program that enables the
user to insert, display, and manipulate text. The behavior and
capabilities of the Editor as they appear to the interactive user are
described in the VAX LISP/VMS User's Guide.

The Editor is designed to be easily modified and extended. Since the
Editor is written entirely in LISP, you can alter it by writing new
LISP code that

• Modifies the behavior of Editor commands

• Binds commands to key sequences or actions of a pointing
device

• Modifies the Editor's initial features, such as the labeling
of its windows, the frequency of checkpointing, the size of
the information _area, and so on

• Adds new capabilities, such as justification of text, parsing
of LISP code, recognition of the syntax of another programming
language, and so on

To write Editor-related code, you use the same functions and data
types that were used to develop the Editor originally. These include
some specially defined "Editor objects"; you-can also use any object
defined in VAX LISP.

This chapter provides an overview of the Editor as a LISP program and
of its data types. The intent is to orient you to the process of
extending the Editor and to the range of possible extensions. This
chapter also provides some basic programming information that is
needed to follow the discussion in later chapters.

1-1

EDITOR OVERVIEW

This chapter contains:

• Some illustrations of simple Editor extensions

• An overview of the Editor's subsystems and utilities

• An introduction to Editor data types and the means of
referencing them

1.1 SOME COMMON EDITOR. EXTENSIONS

This section includes the LISP code that implements several different
kinds of Editor extensions. These simple examples serve to illustrate
the process of programming the Editor.

The following Editor extensions are shown:

• Changing the frequency of checkpointing

• Changing the number of windows. that the Editor .normally
displays at one time

• Changing the default major style

• Binding a DIGITAL-supplied command to a key sequence

• Defining a new command to change the width of the terminal
screen

If you wish to make any of these changes in your own Editor, you
simply execute the forms as shown. You can execute them either by
typing them at top level LISP or by loading them from a file.

Note in these examples that the symbols.for DIGITAL-supplied objects
that relate to the Editor are referenced with the package prefix
EDITOR:. For a full discussion of the pa~kage location of Editor
objects, see Section 1.3.5 below.

1.1.1 Changing the Frequency of Checkpointing

The Editor checkpoints buffers associated with files after every 350
commands that alter text (see VAX LISP/VMS User's Guide). If you
would like checkpointing to occur either more or less frequently, you
can make this change by using SETF with the function
CHECKPOINT-FREQUENCY.

(SETF (EDITOR:CHECKPOINT-FREQUENCY) 1000)

1-2

0

0

0

0

0

0

0

0

0

0

EDITOR OVERVIEW

After you have executed this form, the Editor
every 1000 commands that alter text.

will checkpoint

To disable checkpointing completely, you set the value to NIL:

(SETF (EDITOR:CHECKPOINT-FREQUENCY) NIL)

1.1.2 Changing the Number of Windows Displayed

after

The Editor normally displays up to two anchored windows at a time. If
you call for a third anchored window (by selecting another buffer or
editing another file or LISP object), the Editor removes a window from
the screen to make room for the· new window. (See VAX LISP/VMS User's
Guide.)

If you would
you change
Show Limit"
you set the

like the Editor to show up to three windows at a time,
the value of an Editor variable called "Anchored Window

from 2 to 3. If you want only one window shown at a time,
value to 1.

An Editor variable differs slightly from a LISP variable (see Section
1.3.4 below). You reference an Editor variable by means of a
specifier (symbol or a string called a display name), and you access
the variable's value with the function VARIABLE-VALUE. Using SETF,
you can then change the value of the Editor variable.

The code that changes the number of anchored windows that the Editor
can show is:

(SETF (EDITOR:VARIABLE-VALUE "Anchored Window Show Limit") 3)

After you have executed this form, the Editor will show up to three
anchored windows at a time. If you call for a fourth anchored window,
the Editor will remove a window from the screen to accommodate the new
window.

1.1.3 Changing the Default Major Style

The Editor activates "EDT Emulation" as the major style in all the
buffers that it creates for editing files and LISP objects. If you
prefer the behavior and key bindings of an EMACS-based editor, you can
make "EMACS" style the default major style instead. (See VAX LISP/VMS
User's Guide.)

The default is stored as the value of
Major Style". The possible values
which, like Editor variables, can
symbols or their display names.

1-3

the Editor variable "Default
are Editor objects called styles,
be referenced by either their

EDITOR OVERVIEW

The following form changes the Editor's default major style to
"EMACS":

(SETF (EDITOR:VARIABLE-VALUE "Default Major Style") "EMACS")

Any new buffers that the Editor creates after you have executed this
form will have "EMACS" as their major style. Buffers that already
exist are not affected.

1.1.4 Binding a Command to a Key Sequence

Many DIGITAL-provided commands are not bound to keys or key sequences
and must therefore be invoked by name (see VAX LISP/VMS User's Guide).
You might find it convenient to bind keys to the commands you use
frequently, such as "Write Current Buffer".

To establish a key binding, you can use the function BIND-COMMAND and
the display name of an Editor command. To specify the key or keys,
you can use the normal LISP syntax for a character or a vector
containing characters. (BIND-COMMAND is one of the few Editor-related
symbols that is accessible in the "USER" package; you need not prefix
it with the "EDITOR" package qualifier.)

(BIND-COMMAND "Write Current Buffer" '#(#\"X #\"W))

The sequence CTRL/X CTRL/W will now execute "Write Current Buffer". in
the Editor. To make sure that the key sequence you choose is not
already bound to an Editor command, you can consult Appendix C to this
manual, which lists the keys that are bound in the Editor as provided.

1.1.5 Defining a Command to Change Screen Width

In editing LISP code, you might occasionally want your terminal screen
to display more than 80 columns so that lines do not truncate. One
way to do this is to execute the command "Set Screen Width" after
specifying a prefix argument (such as 132). If you adjust screen
width frequently, you might prefer to have a command that you can
execute in one step.*

To implement a new command, you use the macro DEFINE-COMMAND. A
possible implementation for a command that widens the screen to 132
columns is:

0

0

0

0

* On DIGITAL terminals without the Advanced Video.Option, widening the Q
screen reduces available screen height to 12 rows.

1-4

0

EDITOR OVERVIEW

(EDITOR:DEFINE-COMMAND (WIDEN-SCREEN-COMMAND
:DISPLAY-NAME "Widen Screen")

(PREFIX)

(SETF (EDITOR:VARIABLE-VALUE "Default Window Truncate Char")
NIL)

(SETF (EDITOR:SCREEN-WIDTH) (OR PREFIX 132)))

The function SCREEN-WIDTH returns the current width of the
Using SETF, you change the value to 132 or to a prefix value
can supply interactively. (If no prefix value is
interactively, the Editor automatically passes a NIL value
parameter and the OR form will then return the value 132.)

screen.
that you
supplied
for this

This example also sets the value of the Editor variable "Default
Window Truncate Char" to NIL. This action dispenses with the

O character that normally appears on the screen to indicate line
truncation. DEFINE-COMMAND creates a command named "Widen Screen"
that executes these two SETF forms.

0

0

0

To have another command that sets the screen back to 80 columns and
reestablishes> as the truncation character, you could write:

(EDITOR:DEFINE-COMMAND (SHRINK-SCREEN-COMMAND
:DISPLAY-NAME "Shrink Screen")

(PREFIX)

(SETF (EDITOR:VARIABLE-VALUE "Default Window Truncate Char")
#\>)

(SETF (EDITOR:SCREEN-WIDTH) (OR PREFIX 80)))

The new commands created by these DEFINE-COMMAND forms can be
by name within the Editor. To make the commands accessible
keyboard, you could bind them to key sequences:

(BIND-COMMAND "Widen Screen" '#(#\ESCAPE #\w))

(BIND-COMMAND "Shrink Screen" '#(#\ESCAPE #\s))

invoked
from the

The new commands can now be invok.ed from the keyboard by means of
ESCAPE wand ESCAPE s.

1.2 THE COMPONENTS OF THE EDITOR

This section introduces the various subsystems and utilities of the
Editor. The purpose is to indicate the range of Editor behavior that
can be programmed and to introduce the data types that each subsystem
contains.

Section 1.3 discusses the nature of the Editor data types and the
means of referencing them.

1-5

EDITOR OVERVIEW

1.2.1 Text Operations

Text in the Editor is made up of the 256 characters in the ASCII 8-bit
extended character set (the DEC Multinational Character Set). The
Editor's text operations are the operations that insert, copy, and
delete text and that indicate any given text position (for positioning
the cursor, for instance).

The text operations subsystem contains the following specially defined
data types, along with functions and macros that operate on them:

• Objects that conta;n text: BUFFERS, REGIONS, LINES

• Objects that indicate text positions: MARKS

0

• Objects that distinguish among characters for the purpose of
searching through text: EDITOR ATTRIBUTES o

The text operations subsystem also contains EDITOR VARIABLES and
several LISP global variables.

Information on programming text operations appears in Chapter 4 and in
the descriptions of the above data types in Part II.

1.2.2 Window a·nd Display Operations

The Editor's window operations create, delete, and manipulate windows
that open onto the contents of buffers. The display operations make
windows (and thus buffer contents) visible on the screen or remove
windows from the screen. Display operations also manage the
allocation of the total screen area and the use of the information
area at the bottom of the screen.

The window and display operations subsystem contains the following
data types, along with the functions and macros that operate on them:

• Text-containing objects that can be displayed: BUFFERS

• Objects that translate text into displayable form: WINDOWS

The subsystem also contains EDITOR VARIABLES and LISP global
variables, as well as functions that operate on the information area.

Information on programming window and display operations appears in
Chapter 5 and in the descriptions of the above data types in Part II.

1-6

0

0

0

0

0

0

EDITOR OVERVIEW

1.2.3 Binding Contexts

Contexts are separate programming environments within the Editor where
bindings can take place. Certain types of objects may have different
bindings simultaneously in different contexts:

• EDITOR VARIABLES

• EDITOR ATTRIBUTES

An Editor variable or an Editor attribute can reference more than one
value if the variable or attribute is bound in more than one Editor
context. The bindings of keyboard keys and pointer actions to Editor
commands are also context-dependent.

Two Editor data types can serve as binding contexts:

• Jl:ny BUFFER

• Any STYLE

In addition, the Editor supports a global binding context.

To determine which of several bindings to use in a given situation,
the Editor searches through the contexts in a predetermined order and
uses the first binding it encounters. The search order is:

• The current buffer

• The styles active in the current buffer, beginning with the
most recently activated minor style, if any, and ending with
the major style, if any (see VAX LISP/VMS User's Guide)

• The global Editor context

O When you reference a context-dependent object in LISP
specify the appropriate context.

code, you can

0

Editor contexts implement a form of scoping that is unlike either the
dynamic or lexical scoping of COMMON LISP (see COMMON LISP: The
Language). The binding context determines the scope of Editor
variables, Editor attributes, keys, and pointer actions.

The extent of these context-dependent objects is indefinite (see
COMMON LISP: The Language). That is, the objects have extent that
begins when they are bound in a context and ends when they are unbound
from that context. To "bind" an Editor variable or an Editor
attribute is to establish it as usable in a certain context. You
cannot assign values unless the variable or attribute is bound
("established") in one or more contexts -- buffer, style, or global.

·1-7

EDITOR OVERVIEW

The use of binding contexts is pervasive in Editor programming.
Further detail and examples can be found in Chapter 3, Binding
Commands, and in Chapter 6, Operations on Styles. See also the
discussion of the context subsystem in Part II.

1.2.4 Other Subsystems and Utilities

The smaller subsystems of the Editor consist mainly of functions that
enable you to control certain types of Editor behavior:

e Prompting the user for a value necessary for the execution of
a command -- discussed in Chapter 2 and Part II

• Signaling errors in command execution and handling LISP errors
-- discussed in Chapter 2 and Part II

• Checkpointing buffers to save their contents in the event of
system failure -- discussed in Part II

In addition, the Editor has several low-level tools and utilities.
The following items are all discussed in Part II:

0

0

• Input and output streams: LISP streams that permit normal
COMMON LISP input and output operations to be performed within Q
the Editor.

• String tables: specialized hash tables that store infor
mation indexed by a string (such as the display name of a
command or other Editor· object).

•

•

Hooks: functions that are invoked automatically by certain
Editor operations, such as activating a style or making a
buffer or window.

Rings: circular caches of values that are used, for instance,
to store deleted text. Rings are used to implement the kill
ring -- a facility like those in certain EMACS editors that
stores deleted text.

1.3 REFERENCING EDITOR OBJECTS

The objects provided with the Editor include several new data types.
The Editor also contains definitions of LISP functions, macros, and
global variables. All these objects are LISP objects that can be
referenced in any LISP code.

1-8

0

0

EDITOR OVERVIEW

O This section provides information on how to access these various kinds
of objects. It introduces:

0

• Functions, macros, and variables

• Editor-specific data types

Named and unnamed objects

Context-independent and context-dependent objects

• The package location of Editor symbols

1.3.1 Functions, Macros, and LISP Variables

The Editor contains definitions of LISP functions, macros, and global
variables. All the normal COMMON LISP rules concerning scope and
extent apply to the identifiers of these objects.

1.3.2 Editor Objects

Q The specially defined Editor data types are:

• Editor attributes

• Buffers

• Commands

• Lines

0 • Marks

• Regions

• Rings

• String tables

• Styles

• Editor variables

• Windows

0

1-9

EDITOR OVERVIEW

The methods of accessing Editor objects differ according
the object in question is:

e Named or unnamed

e Context-independent or context~dependent

These methods are outlined in the two sections that follow.

1.3.3 Named and Unnamed Editor Objects

to whether

Named objects are Editor objects that can have two special
specifiers: a string called a display name and a symbol. The
specifiers are associated with a named object at the time it is
defined, and they serve as a means of accessing the object under
certain circumstances.

It is important to recognize that the symbol specifier of a named
Editor object cannot be treated as an ordinary LISP symbol. That is,
the Editor object is not the symbol-value of the symbol. Editor
object specifiers behave somewhat like the symbol and string
specifiers of LISP packages. The function FIND-PA.CKAGE can take, for
instance, the symbol 'USER or the string "USER" and return the package
object; the symbol 'USER itself -does not evaluate to the package

0

0

object. Q
The reference list in Part III of
display name and the symbol of
Editor. Section 1.3.3.2 outlines
accessing named Editor objects.

The named object types are:

• Editor attribute

• Buffer

• Command

• Style

• Editor variable

this manual identifies both the
all named objects provided with the
the use of these specifiers in

The other Editor object types are unnamed.
have no special specifiers.

Unnamed Editor objects

• Line

•- Mark

1-10

0

0

0

0

EDITOR OVERVIEW

• Region

• Ring

• String table

• Window

1.3.3.1 Referencing Unnamed
unnamed can be accessed
of a form that evaluates to
accessed only in this way.

Objects - Any Editor object -- named or
in the usual LISP way: that is, by means
the object. Unnamed objects can be

For instance, the function CURRENT-WINDOW takes
returns the window that is current in the Editor.
current window (an unnamed object) by writing:

(EDITOR:CURRENT-WINDOW)

no arguments and
You can access the

Similarly, you can access a string table by ·referencing the LISP
global variable to which it is bound. For instance, evaluating

EDITOR:*EDITOR-COMMAND-NAMES*

O returns the string table that contains the names of the commands
are currently defined in the Editor.

that

0

0

1.3.3.2 Referencing Named Objects - Named Editor objects
accessed in the same way as unnamed objects: ·by means
expression that returns the object. For instance, the form

can be
of an

(EDITOR:CURRENT-BUFFER)

returns the buffer (a named object) that is current in the Editor.

You can also reference named Editor objects by means of their
specifiers (symbols or display names) in certain circumstances:

•

•

Interactively, when the Editor prompts for the name of a
command, buffer, or style, you supply the approrriate display
name.

In LISP code, when calling a function that takes a named
Editor object specifier as an argument, you can supply any of
three specifiers of the named object:

The display name
The symbol
Any form that evaluates to the object

1-11

EDITOR OVERVIEW

In contrast, some functions take a named Editor object but not a
specifier. When calling these functions, you must supply a form thatQ
evaluates to the object. The function descriptions in Part III of
this manual distinguish between functions that can take specifiers
(including objects) and functions that can only take objects.

For instance, the following functions are among those that can take
specifier arguments: COMMAND-CATEGORIES, VARIABLE-VALUE, BUFFER
MAJOR-STYLE, FIND-STYLE, and BIND-ATTRIBUTE. The following examples
show how you can call each of these functions from LISP code with the
specifier of a named Editor object as the argument. In each case, you
could use either the symbol or the display name of the named object;
you could also, of course, use any form that evaluates to the object
in question.

Using a command specifier:

(EDITOR:COMMAND-CATEGORIES
(EDITOR:COMMAND-CATEGORIES

'EDITOR:END-OF-LINE-COMMAND)
"End of Line")

Using an Editor variable specifier:

(EDITOR:VARIABLE-VALUE 'EDITOR:TARGET-COLUMN)
(EDITOR:VARIABLE-VALUE "Target Column") '

Using a buffer specifier:

(EDITOR:BUFFER-MAJOR-STYLE 'EDITOR:EDITOR-HELP-BUFFER)
(EDITOR:BUFFER-MAJOR-STYLE "Help")

Using a style specifier:·

(EDITOR:FIND-STYLE 'EDITOR:EDT-EMULATION)
(EDITOR:FIND-STYLE "EDT Emulation")

Using an Editor attribute specifier:

(EDITOR:BIND-ATTRIBUTE 'EDITOR:WORD-DELIMITER)
(EDITOR:BIND-ATTRIBUTE "Word Delimiter")

Because these functions evaluate their arguments, the argument can
also be a form that evaluates to a specifier of a named Editor object.
For instance, the following pair of forms has the same effect as the
previous calls to BUFFER-MAJOR-STYLE.

(SETF b "Help")

(EDITOR:BUFFER-MAJOR-STYLE b)

1-12

0

0

0

0

0

0

0

0

0

EDITOR OVERVIEW

1.3.3.3 A Note On Efficiency - The display names of named Editor
objects are included for the convenience of the programmer and the
Editor user. If you wish to maximize the efficiency of your program,
however, you should be aware that accessing an object by using its
display name is less efficient than using its symbol. Further, using
either specifier is less efficient that using an expression that
evaluates to the object.

For example, the following three forms are equivalent when the buffer
named "Mybuffer.txt" is the current buffer. The forms are listed in
order from the least to the most efficient:

(EDITOR:BUFFER-MAJOR-STYLE "Mybuffer.txt")

(EDITOR:BUFFER-MAJOR-STYLE 'MYBUFFER.TXT)

(EDITOR:BUFFER-MAJOR-STYLE (EDITOR:CURRENT-BUFFER))

The code examples in this manual frequently use display names for
convenience and readability. When you reference named objects in your
own code, however, you should consider the trade-off between
convenience and efficiency in each instance.

1.3.4 Context-Independent and Context-Dependent Editor Objects

Editor objects are either context-ind~pendent or context-dependent.
The context-dependent objects are actually specifiers that may be
associated with different objects in differe~t Editor contexts (the
contexts are individual buffers, individual styles, and global).

Context-independent objects exist independently of Editor ·context.
These objects are accessed according to the scoping rules defined in
COMMON LISP: The Language.

1.3.4.1 Referencing Context-Independent Objects - All the unnamed
Editor objects and most of the named objects (buffers, commands, and
styles) are context-independent. A context-independent object, once
created, exists within the Editor as a unique object, and the
accessing functions appropriate to the data type locate and return
that unique object.

For instance:

(EDITOR:FIND-BUFFER 'FACTORIAL)

1-13

. ;Finds and returns the buffer
;object named FACTORIAL

EDITOR OVERVIEW

(EDITOR:FIND-STYLE "VAX LISP")

(EDITOR:NEXT-WINDOW)

;Finds and returns the style
;object named "VAX LISP"

;Finds and returns a unique
;window object (unnamed)

1.3.4.2 Referencing Context-Dependent Objects - The context-dependent
Editor objects are Editor attributes and Editor variables. Attributes
and variables are not unique objects. That is, a specifier can be
associated with different values (or, in the case of variables, also
with different functions) in different Editor contexts.

0

It is important to recognize that these multiple associations can
exist simultaneously; leaving an Editor context makes an association
temporarily inaccessible, but it does not destroy it. Q
The following functions are used to access a value or function
associated with a context-dependent object:

• VARIABLE-VALUE takes a
context and returns
that context.

variable specifier and an optional
the value (if any} of that variable in

• VARIABLE-FUNCTION takes a variable specifier and~ an optional Q
context and returns the function definition (if any) of that
variable in that context.

• CHARACTER-ATTRIBUTE takes an attribute specifier, a character,
and an optional context and returns that character's value (if
any) for that attribute in that context.

The functions FIND-ATTRIBUTE and FIND-VARIABLE are different from the
FIND-object functions for the context-independent data types .. The Q
FIND-object functions for context-dependent objects take a specifier
(symbol or display name) and return the symbol of an attribute or
variable. They do not return a value or function object associated
with the specifier.

Chapters 3 and 6 contain code examples that illustrate the nature and
use of context-dependent objects. Further explanation also appears in
Part II.

1.3.5 The "EDITOR" Package

The symbols for the objects that are defined in the Edi to~ are, located
in the "EDITOR" package and are external in that package. Q

1-14

0

0

0

0

0

EDITOR OVERVIEW

Most of these symbols are not exported to the "USER" package. (Only
the functions ED and BIND-COMMAND are accessible in the "USER"
package.) Any other symbols for DIGITAL-supplied Editor objects must
be referenced in the "EDITOR" package when you use them in writing
extensions.

There are three ways to reference symbols that are located in th~
"EDITOR" package:

• By using the package prefix

o By executing a USE-PACKAGE form

• By executing an IN-PACKAGE form

This section describes these three methods and the circumstances under
which you would use them.

1.3.5.1 The Package Prefix - When you are w~rking in the "USER"
package, you can reference any symbol in the "EDITOR" package by
prefixing it with the package qualifier EDITOR:. For instance, if you
want to call VARIABLE-VALUE with the symbol of an Editor variable, you
would prefix both symbols with EDITOR:.

(EDITOR:VARIABLE-VALUE 'EDITOR:D~FAULT-MAJOR-STYLE)

This expression references two symbols in the "EDITOR" package, but it
can be evaluated in the "USER" package.

Note that using the display name of a named Editor object instead of
its symbol avoids the problem of package location, although at the
expense of efficiency:

(EDITOR:VARIABLE-VALUE "Default Major Style")

1.3.5.2 Using USE-PACKAGE - To avoid the inconvenience of using
qualified names, you can reference all the external symbols in the
"EDITOR" package by executing either of the forms:

(USE-PAC~AGE "EDITOR") (USE-PACKAGE 'EDITOR)

Note that the string argument ("EDITOR") must be upper case.

Executing either of
accessible in the
LISP session.

these forms makes all ·Editor-related symbols
"USER" package for the remainder of your current

1-15

EDITOR OVERVIEW

However, before executing a USE-PACKAGE form, you should consider
whether you will also be using symbols from other packages in the same Q
LISP session. Because of possible name conflicts among packages, you
should use qualified names in sessions where you will be referencing
symbols in more than one package. In particular, there are several
name conflicts in VAX LISP between the "EDITOR" package and the "UIS"
package (see VAX LISP/VMS Graphics Prograrruning Guide).

If you begin the file containing your completed Editor extensions with
a USE-PACKAGE form, you should end the file with a call to
UNUSE-PACKAGE. A call to USE-PACKAGE in your initialization file
makes all' symbols in that package accessible throughout every LISP
session; these symbols may then interfere with symbols you want to use
from other packages.

1.3.5.3 Using IN-PACKAGE - It is generally good programming practice
to place your newly defined symbols in an appropriate package. You
can place your completed Editor extensions in a specified package by
heading the file that contains the extensions with a call to
IN-PACKAGE. An IN-PACKAGE form makes the specified package current
while your file is being loaded into LISP; it then returns you to the
"USER" package for the remainder of your session.·

0

You can place your completed Editor extensions in the "EDITOR" package Q
by heading your file with either of the forms:

(IN-PACKAGE "EDITOR") (IN-PACKAGE 'EDITOR)

However, this use of the "EDITOR" package allows for possible name
conflicts (overwriting) between user-defined extensions and present or
future DIGITAL-supplied objects.

You can avoid overwriting by placing your extensions in a new, user- Q
defined package. To do so, and to have the "EDITOR" package symbols
accessible in the new package, you begin the file with the following
forms:

(IN-PACKAGE "EDITOR-EXTENSIONS")
(USE-PACKAGE "EDITOR")

These forms place your extensions in the package "EDITOR-EXTENSIONS",
and make the symbols from the package "EDITOR" accessible in that
package. They do not make the symbols from either of these packages
acc~ssible in.the "USER" package.

1-16

0

0

CHAPTER 2

CREATING EDITOR COMMANDS

O Commands are
interactive
revise text,
bring about

the means by
session. It
display text

any other

which you control the VAX LISP Editor in an
is by executing commands that you insert and
or other information, activate a style, or
Editor operation. (See VAX LISP/VMS User's

Guide.)

The primary way to customize the Editor is to alter its commands:
replace existing commands or create entirely new ones. This chapter
introduces the techniques of implementing Editor commands. The topics

O it covers are:

• Commands and their associated LISP functions

• Creating commands with DEFINE-COMMAND

• Including some special features in a new command

The techniques of binding commands to keyboard keys and pointer

0 actions are covered in Chapter 3.

2.1 COMMANDS AND THEIR ASSOCIATED FUNCTIONS

A command is a named Editor object that is associ~ted with a
particular LISP function. For instance, the command "Forward Word" is
associated with the function FORWARD-WORD-COMMAND, and the command
"Execute Named Command" is associated with the function
EXECUTE-NAMED-COMMAND-COMMAND. (The nature of named Editor objects is
discussed in Chapter 1.)

Whenever you execute a command during an interactive Editor session,
the Editor calls the associated function. Evaluating this function

O brings about the specified change in the Editor. For instance, when
you execute the command "Forward Word" in the Editor, either by name
or by means of the key sequence bound to it, the Editor invokes the
function· FORWARD-WORD-COMMAND. The result you see is that the cursor
moves to the next word in the text.

2-1

CREATING EDITOR COMMANDS

To implement an Editor command, you create both a new LISP function
and a named Editor command associated with it. Both these operations Q
are performed by the macro DEFINE-COMMAND.

2.2 USING DEFINE-COMMAND

DEFINE-COMMAND is similar to DEFUN in that it creates a new LISP
function from the specified argument list and forms. In addition, it
creates a new Editor command with the specifiers (display name and
symbol) that you supply. The new command definition is a side effect
of a call to DEFINE-COMMAND; the return value is the associated
function definition.

The format of DEFINE-COMMAND is also similar to that of DEFUN:

DEFINE-COMMAND name
arglist
&OPTIONAL command-documentation
&BODY forms

An example follows of a DEFINE-COMMAND expression that implements a
new Editor command named "My Next Screen". (This command differs
slightly from the DIGITAL-supplied "Next Screen" command; the
difference is clarified in Section 2.2.4 below.) The remainder of
this section discusses the purpose and use of each of the parameters
of DEFINE-COMMAND, using this expression as an example.

Recall that the symbols for DIGITAL-provided Editor objects must be
referenced in the "EDITOR" package (see Chapter 1).

(DEFINE-COMMAND
(MY-NEXT-SCREEN-COMMAND :DISPLAY-NAME "My.Next Screen") ;name
(PREFIX &OPTIONAL (WINDOW (CURRENT-WINDOW))) ;arglist

" Scrolls the current window down one screen. If ;com-doc
a positive integer prefix is supplied, it scrolls
down by that many screens, (up if prefix is negative)."

II MY-NEXT-SCREEN-COMMAND prefix &OPTIONAL window

This function has .an optional argument window which
defaults to the current Editor window. It scrolls
the window down one screen if the prefix argument
is NIL. If a positive integer prefix is supplied,
it scrolls down by that many screens (up if prefix
is negative). The modified window point is returned."

;func-doc

0

0

0

(SCROLL-WINDOW WINDOW(* (OR PREFIX 1) ;forms Q
(1- (WINDOW-HEIGHT WINDOW)))))

2-2

0

0

CREATING EDITOR COMMANDS

2.2.1 Specifying the Names

A command can have two special specifiers: a display name, which is a
string, and a symbol, which is identical to the symbol of the function
defined in the same form.

The display name of a command is provided as a convenience for the
interactive user. It serves, for instance, to invoke a command within
the Editor. In LISP code, you can use either the display name or the
symbol of a command, as well as_the associated function itself, as an
argument to a function that takes a command specifier argument. (See
Chapter 1 for referencing named Editor objects, including commands.)

You specify the names of a new
parameter to DEFINE-COMMAND.
list of the form:

command and function in the name
The name argument can be a symbol or a

(symbol :DISPLAY-NAME string)

The symbol argument serves the same purpose as the name argument for
DEFUN it names the function being defined. In a call to
DEFINE-COMMAND, symbol also becomes the symbol specifier of the new
command. The string argument becomes the display name of the new
command.

Q For example:

(DEFINE-COMMAND

0

0

(MY-NEXT-SCREEN-COMMAND :DISPLAY-NAME "My Next Screen") ;name

This form creates a LISP function named MY-NEXT-SCRE~N-COMMAND. It
also creates an Editor command with the display name "My Next Screen"
and the symbol MY-NEXT-SCREEN-COMMAND.

The display name can be any string you want to specify. For
DIGITAL-supplied commands, the convention is that dispiay names are
identical to the associated symbols except f~r case and the omission
of the hyphens and the final element -COMMAND. If you do not specify
a display name, the default is the print name of the symbol. In this
example, the default display name would be "MY-NEXT-SCREEN-COMMAND", a
less convenient specifier than "My Next Screen".

2.2.2 Specifying the Argument List

When you execute a command within the Editor, the Editor always calls
the associated function with exactly one argument. This is the prefix
argument; which can be an integer or NIL. You can supply a prefix

2-3

CREATING EDITOR COMMANDS

value by previously executing the command "Supply Prefix Argument". o
If you execute a command without supplying a prefix value, the Editor
passes NIL.

Because the Editor always passes one argument, the argument list of
every DEFINE-COMMAND expression must have at least one parameter. By
conver.tion, the first parameter is designated as PREFIX. If you
supply other parameters, they must be optional. (You can supply
values for optional arguments only when calling the new function from
LISP code, not when executing the new command in the Editor.)

The argument list for MY-NEXT-SCREEN-COMMAND specifies that this
function can take two arguments: a prefix and a window.

(DEFINE-COMMAND
(MY-NEXT-SCREEN-COMMAND :DISPLAY-NAME "My Next Screen") ;name
(PREFIX &OPTIONAL (WINDOW (CURRENT-WINDOW))) ;arglist o

The prefix argument usually means the number of times the action is to
be repeated, although other meanings are possible. (In fact, the
difference between "My Next Screen" and the DIGITAL-supplied "Next
Screen" command is in the use they make of the prefix.) As with any
function parameter, the meaning of the prefix argument to any Q
particular command is specified in the body of that command's
definition.

If you call the function MY-NE~T-SCREEN-COMMAND from LISP code, you
can also specify the window that is to be operated upon. If you do
not specify a window, then the function CURRENT-WINDOW will be
evaluated and will return the current window.. Since you cannot
specify a window argument when you execute "My Next Screen" in the
Editor, the Editor always applies the command's action to the current Q
window.

2.2.3 Supplying Documentation Strings

DEFINE-COMMAND takes two optional documentation strings. The first is
associated with the new command; the second, which is actually part of
the body, is associated with the new function. If you supply only one
documentation string, it becomes the command-documentation.

The command-documentation is normally used to describe the behavior of
the Editor when you execute the new command. You can retrieve this
documentation within the Editor by means of the "Describe" command,
using. the display name of the command in question. To retrieve
documentation at top-level LISP, you can call either the DESCRIBE

2-4

0

CREATING EDITOR COMMANDS

function or the DOCUMENTATION function and pass it the symbol of the
Qcommand. (If you use DOCUMENTATION, the doc-type is EDITOR-COMMAND.)

0

0

The function documentation is like the documentation string for DEFUN:
it normally gives the function's format and return value and describes
its behavior when called from LISP code. You can retrieve this
documentation at top-level LISP by means of DESCRIBE or DOCUMENTATION,
using the symbol of the function. (The doc-type is FUNCTION.)

The two kinds of documentation string -- one addressed to the person
executing the command and the other to the person calling the function

are illustrated below:

(DEFINE-COMMAND
(MY-NEXT-SCREEN-COMMAND :DISPLAY-NAME "My Next Screen") ;name
(PREFIX &OPTIONAL (WINDOW (CURRENT-WINDOW))) ;arglist

" Scrolls the current window down one screen. If ;com-doc
a positive integer prefix is supplied, it scrolls
down by that many screens (up if prefix is negative)."

II MY-NEXT-SCREEN-COMMAND prefix &OPTIONAL window

This function has an optional argument window which
defaults to the current Editor window. It scrolls
the window down one screen if the prefix argument
is NIL. If a positive integer prefix is supplied,
it scrolls down by that many screens (up if prefix
is negative). The modified window point is returned."

Note the placement of whitespace and newline characters

;func-doc

Odocumentation strings in this example. As with DEFUN,
characters to affect the appearance of a string when it
in response to "Describe", DESCRIBE, or DOCUMENTATION.

in both the
you use these
is displayed

0

2.2.4 Specifying the Action

The forms that you supply to DEFINE-COMMAND are identical in purpose
to the forms for DEFUN: they constitute the body of the LISP function
that will be invoked when you execute the new command. The forms
include the function documentation, if any, and they may include
declarations.

Including the forms completes the definition of "My Next Screen":

(DEFINE-COMMAND
(MY-NEXT-SCREEN-COMMAND :DISPLAY-NAME "My Next Screen") ;name
(PREFIX &OPTIONAL (WINDOW (CURRENT-WINDOW))) ;arglist

2-5

. ------------------------. -·----·-------·-·

CREATING EDITOR COMMANDS

" Scrolls the current window down one screen. If ;com-doc Q
a positive integer prefix is supplied, it scrolls
down by that many screens (up if prefix is negative)."

II MY-NEXT-SCREEN-COMMAND prefix &OPTIONAL window

This function has an optional argument window which
defaults to the current Editor window. It scrolls
the window down one screen if the prefix argument
is NIL. If a positive integer prefix is supplied,
it scrolls down by that many screens (up if prefix
is negative). The modified window point is returned."

(SCROLL-WINDOW WINDOW(~ (OR PREFIX 1)

;func-doc

;forms
(1- (WINDOW-HEIGHT WINDOW)))))

This example uses the COMMON LISP functions*, OR, and 1- and the
Editor functions SCROLL-WINDOW and WINDOW-HEIGHT:

• SCROLL-WINDOW takes a window and a count. It scrolls the
specified window by the number of rows indicated by the count
and returns the window point. (The window point is an object
that indicates the position of the screen cursor in the
current window; see Chapter 5.)

• WINDOW-HEIGHT takes a window and returns the height (in rows)
of that window.

The action of the function MY-NEXT-SCREEN-COMMAND is to scroll the
specified window (or default window) by a number of rows that equals

0

0

one less than the height of the window. That is, the last row of the
current text display becomes the first row of the new text display. o
If you supply a prefix argument, the action is repeated that many
times. Because SCROLL-WINDOW moves the window point, the cursor will
appear within the new text display when you execute "My Next Screen".

To see the difference between "My Next Screen" and the
DIGITAL-supplied "Next Screen" command, compare the last form in the
above example with the last form in the definition of "Next Screen":

(SCROLL-WINDOW WINDOW
(OR PREFIX (1- (WINDOW-HEIGHT WINDOW))))

The prefix value in "My Next Screen" serves as a repetition count. In
"Next Screen" the prefix value is an alternative to the window height
in determining how many rows to scroll the window.

2-6

0

CREATING EDITOR COMMANDS

Q 2.2.5 Modular Definition of Commands

You can define Editor commands of any degree of complexity. When
defining a complex command, it is good programming practice to write
the code in modules. You can, for instance, use DEFUN to create a new
function and then use that function in a DEFINE-COMMAND expression.

0

0

0

0

For example:

(DEFUN PRINT-TIME (STREAM)

II PRINT-TIME stream

Formats a record of the current date and time and writes
that record to the specified stream."

(MULTIPLE-VALUE-BIND
(SECOND MINUTE HOUR DATE MONTH YEAR DAY-OF-WEEK)
(GET-DECODED-TIME)

(FORMAT STREAM
11-0:-2, 'OD:-2, 'OD on ... [Monday- ;Tuesday- ;Wednesday
- ;Thursday- ;Friday"' ;-Saturday- ;Sunday"'], -
-o -[-;January-;February-;March-;April-;May-;June-
-;July-;August-;September-;October"';November-
- ;December- J, -D" , ·
HOUR MINUTE SECOND DAY-OF-WEEK DATE MONTH YEAR)))

This form creates the function PRINT-TIME, which writes the current
date and time to a specified stream. To include this action in an
Editor command, you might write:

(DEFINE-COMMAND
(SHOW-TIME-COMMAND :DISPLAY-NAME "Show Time")
(PREFIX)

II Displays the current time and date in the
information area."

II ·SHOW-TIME-COMMAND prefix

Displays the current_time and date in the information
area. The prefix argument is ignored."

(DECLARE (IGNORE PREFIX))

(CLEAR-INFORMATION-AREA)
(PRINT-TIME *INFORMATION-AREA-OUTPUT-STREAM*))

This form creates an Editor command named "Show Time". When you
execute "Show Time", the Editor clears the information area of any
previous text and then d~rects the record formatted by PRINT-TIME to
the information area. Note the declaration that the prefix is

,2-7

-··-------------------- ---

CREATING EDITOR COMMANDS

·,
ignored, since the PREFIX parameter is not used in the body of the
expression. Q

2.2.6 Commands and Context

Many commands are normally used within a single Editor context
(buffer, style, or global), but commands are not context-dependent
objects. That is, commands are not bound in Editor contexts, as
keyboard keys and pointer actions are: any command can be invoked by
name no matter which co~texts are visible in the Editor. For
instance, the command "EDT Change Case" is usually used in "EDT
Emulation" style, but it could also be used in "EMACS" or "VAX LISP"
styles.

However, the definition of a command may reference another object that
is context-dependent: an Editor variable or an Editor attribute.
(See Chapter 1 for a discussion of context-dependent objects.) If so,
the command behaves differently when you execute it in contexts where
the context-dependent object is bound differently or not bound.

An example is the command "EDT Move Word", which moves the cursor by
one or more words. The body of this command begins with a test of
whether the Editor variable "EDT Direction Mode" is set to :FORWARD.
If so, it invokes FORWARD-WORD-COMMAND:

(IF (EQ (VARIABLE-VALUE "EDT Direction Mode") :FORWARD)
(FORWARD-WORD-COMMAND PREFIX)

If you execute this command outside of "EDT Emulation" style, it will
not invoke FORWARD-WORD-COMMAND because "EDT Direction Mode" is
unbound.

The behavior of FORWARD-WORD-COMMAND also differs in different
contexts. This function references the Editor attribute "Word
Delimiter", whose values are context-dependent. "Forward Word"
behaves differently in "EDT Emulation", "EMACS", and "VAX LISP" styles
because different characters are recognized as word delimiters in
these styles. ·

- NOTE

Unlike commands themselves, the key and pointer
bindings of Editor commands are context-dependent (see
Chapter 3). "EDT Change Case" can be invoked by name
anywhere within the Edi tor, but,· as provided, it is
only in "EDT Emulation" style that this command can be
invoked by means of keypad PF1 1.

2-8

0

0

0

0

CREATING EDITOR COMMANDS

2.3 SOME SPECIAL COMMAND FACILITIES

OMost of the new commands that you implement are likely to pertain to
text operations or to window and display management. Regardless of
the command's primary purpose, however, you may also want to include
in it such features as a prompt or a particular error response. You
can also include the command in a command category, which facilitates
certain kinds of testing that may take place during command
processing.

0

This section introduces the following command subsystems/facilities:

• Errors

• Prompting

• Command categories

2.3.1 Errors

By using functions from the Editor's error subsystem, you can
implement commands that take some action in response to errors in
command processing. In addition, you can use the LISP variable

0 *UNIVERSAL-ERROR-HANDLER* to modify the way the Editor handles LISP
errors.

0

0

This section introduces the following error-related objects:

e The ATTENTION function

• The EDITOR-ERROR function

• The *UNIVERSAL-ERROR-HANDLER* variable

2.3.1.1 Getting The User's Attention - The ATTENTION function,- the
simplest of the error-related functions, can be included in the body
of a command to gain the user's attention if the command's action is
not performed. On DIGITAL VT100- and VT200-series terminals and the
AI VAXstation, the action of ATTENTION is to ring the bell.

An example of the use of ATTENTION is:

(DEFINE-COMMAND (FORWARD-WORD-COMMAND
:DISPLAY-NAME "Forward Word")

(PREFIX)

" Moves the buffer point forward one word. If a prefix
argument is supplied, the point is moved forward that
m~ny words (backward if the prefix is negative)."

2-9

-------------· ·- ·-- -----------

CREATING EDITOR COMMANDS

(UNLESS (WORD-OFFSET (CURRENT-BUFFER-JOINT)
(OR PREFIX 1))

(ATTENTION))
(CURRENT-BUFFER-POINT))

The command "Forward Word" invokes the
moves the current buffer point by one
cannot be performed -- if too few words
instance -- then the ATTENTION function

function WORD-OFFSET,· which
or more words. If thi~ action

remain in the buffer, for
is called to alert the user.

A command continues processing after evaluating ATTENTION. In this
case, the next form (CURRENT-BUFFER-POINT) is evaluated to return the
buffer point.

0

2. 3 .1. 2 Signaling An Error - The most generally useful·. error- Q
signaling function is EDITOR-ERROR. EDITOR-ERROR is typically used to
indicate an invalid command operation, invalid or incomplete user
input, or some other error that allows the Editor to continue
operation after ceasing to process the currently executing command.

The EDITOR-ERROR function invokes ATTENTION to signal a problem in
command processing. In addition, it can display an optional line of
text in the information area to explain the nature of the problem.
The arguments to EDITOR-ERROR are analogous to those for the LISP Q
ERROR function. However, EDITOR-ERROR allows the user to remain in
the Editor after it is called, rather than being placed in the
Debugger.

Unlike ATTENTION, which allows the Editor to continue
command, EDITOR-ERROR terminates the processing
command. The Editor then awaits the next command.

processing the
of the current

The use of EDITOR-ERROR is illustrated in the DIGITAL-supplied command
"EDT Special Insert". This command must be invoked with a prefix; it Q
inserts as text the character whose code is the prefix value supplied.

(DEFINE-COMMAND (EDT-SPECIAL-INSERT-COMMAND
:DISPLAY-NAME "EDT Special Insert")

(PREFIX)

" Takes the value supplied as the ~refix argument
and inserts the character,whose ASCII code is that
value at the current buffer point~"

(UNLESS PREFIX
(EDITOR-ERROR "Character code not supplied"))

2-10

0

0

0

0

0

0

CREATING EDITOR COMMANDS

{UNLESS {AND {INTEGERP PREFIX)
{<= 0 PREFIX 255))

{EDITOR-ERROR "Invalid character code -A" PREFIX))

(INSERT-CHARACTER (CURRENT-BUFFER-POINT)
(CODE-CHAR PREFIX)))

Two errors that can occur when you invoke this command are (1) no
prefix value supplied, and (2) prefix value supplied that is not a
valid ASCII (extended) character code. Before attempting to evaluate
the INSERT-CHARACTER form, the command tests for each of these
possible errors. If an error has occurred, the appropriate
explanation string is displayed in the information area and the
processing of this command stops.

A somewhat more complex error-signaling function is EDITOR-ERROR-WITH
HELP. This function resembles EDITOR-ERROR except that it takes an
additional optional string argument. The additional string, which
supplies further information about the error, is displayed if the user
executes the command "Help on Editor Error" (see Part III).

2.3.1.3 Error Handling - When implementing a command, you can also
modify the way the Editor handles LISP errors that occur during
command processing.

As provided, the Editor responds to a LISP error by clearing the
screen, displaying the error message, and asking if you want to save
modified buffers. It then gives you the choice of entering the
Debugger or returning to top-level LISP.

You can alter this behavior by defining a new error-handling function
and binding it to the variable *UNIVERSAL-ERROR-HANDLER* (see VAX
LISP/VMS User's Guide). You can then reference this variable in a
command definition to invoke the new error-handling function.

For instance, suppose that you want to alter the command "Insert File"
to respond in a particular way when your response to the prompt is not
a valid file name. To achieve this, you define a new error-handling
function, and then write a file-insertion command that invokes this
function if it receives an invalid file name.

The following example shows a skeletal version of a function to be
invoked when the Editor cannot insert a file:

(DEFUN INSERT-FILE-ERROR-HANDLER (&REST ARGS)

(WITH-OUTPUT-TO-MARK (*ERROR-OUTPUT*
(BUFFER-POINT

(FIND-BUFFER "Error Record")))
(APPLY #'PRINT-SIGNALED-ERROR ARGS))

(EDITOR-ERROR "Error reading file ••. "))

2-11

--------~---- ·-------- -----

CREATING EDITOR COMMANDS

This function creates an output stream by means of the macro WITH
OUTPUT-TO-MARK and binds it to the var i.able *ERROR-OUTPUT*. This
stream is directed to a user-defined buffer named "Erro Record". The
VAX LISP function PRINT-SIGNALED-ERROR formats an error message from
the supplied arguments and writes that message to *ERROR-OUTPUT*. The
message text is thus inserted at the buffer point of the· "Error
Record" buffer. Once the formatting is done, INSERT-FILE-ERROR
HANDLER calls EDITOR-ERROR to print a brief explanation and return to
the Editor command loop.

To write a new command that invokes INSERT-FILE-ERROR-HANDLER instead
of the Editor's default error handler when a LISP error occurs, you
bind this new function to *UNIVERSAL-ERROR-HANDLER* in the definition
of the command. For instance, the relevant portion of a file
inserting command might look like:

(DEFINE-COMMAND (MY-INSERT-FILE-COMMAND ...) (PREFIX)

(LET ((*UNIVERSAL-ERROR-HANDLER* #'INSERT-FILE-ERROR-HANDLER))
(INSERT-FILE-AT-MARK (PATHNAME ...)

(CURRENT-BUFFER-POINT)))

This command invokes the Editor function INSERT-FILE-AT-MARK to insert
a specified file at the current buffer point. This action occurs
within the scope of a LET form that binds *UNIVERSAL-ERROR-HANDLER* to
INSERT-FILE-ERROR-HANDLER. If any LISP error occurs during the file
insertion operation, the error system calls INSERT-FILE-ERROR-HANDLER
instead of the default error handler.

2.3.2 Prompting

The Editor's prompting subsystem enables you to write commands that
prompt for any additional user input needed for their execution. For
example, when you invoke the command "Select Buffer", the Editor
prompts for the name of the buffer that is io become current.

Commands prompt by invoking one of the following functions:

e SIMPLE-PROMPT-FOR-INPUT

e PROMPT-FOR-INPUT

0

0

0

0

Both functions display a prompt in the prompting window, which is a
window onto the DIGITAL-supplied buffer "General Prompting". User Q
interaction, including editing the response to the prompt, occurs in

2-12

CREATING EDITOR COMMANDS

O this buffer. The more versatile of the two functions, PROMPT-FOR
INPUT, also enables you to include some additional prompt-related
behavior, such as input completion, alternatives, and help.

2.3.2.1 Simple Prompting - SIMPLE-PROMPT-FOR-INPUT is less versatile
than PROMPT-FOR-INPUT, but it is generally more straightforward to
use. SIMPLE-PROMPT-FOR-INPUT prompts for input and returns the user's
input as a string. Its format is:

SIMPLE-PROMPT-FOR-INPUT &OPTIONAL prompt default

The prompt argument is a string to be displayed as the prompt; the
default argument is a string to be returned by SIMPLE-PROMPT-FOR-INPUT
if the user presses RETURN without typing any input. The default

Qvalue for both arguments is a null string.

An example of a new command that invokes SIMPLE-PROMPT-FOR-INPUT is
"Visit File". This command is similar to the DIGITAL-supplied "View
File" command, except that it allows the user to edit the specified
file.

(DEFINE-COMMAND (VISIT-FILE-COMMAND
:DISPLAY-NAME "Visit File") 0 (PREFIX &OPTIONAL (FILE-NAME NIL))

0

0

" Prompts for a file name and then edits the specified
file. If the specified file is associated with a buffer,
it simply switches to that buffer; otherwise a new buffer
is created."

(DECLARE (IGNORE PREFIX))

(UNLESS FILE-NAME
(SETF FILE-NAME

(SIMPLE-PROMPT-FOR-INPUT "Enter file name: ")))

(EDIT-FILE-COMMAND NIL FILE-NAME))

The function VISIT-FILE-COMMAND, when called from LISP code, takes an
optional file-name argument that can be a pathname or a string. When
you invoke "Visit File" in the Editor, however, you cannot supply this
argument. To obtain the value, the command displays the specified
prompt, "Enter file name: ". SIMPLE-PROMPT-FOR-INPUT re.turns your
response to the prompt as a simple string. The string is bound to the
variable FILE-NAME and then passed to the function EDIT-FILE-COMMAND.

2-13

CREATING EDITOR COMMANDS

Even though SIMPLE-PROMPT-FOR-INPUT always returns a simple string,
you can use this function when the argument needed is· some other data Q
type. In such a case, the command must coerce the user's input into
the appropriate data type.

For example, the command "EDT Special Insert", shown above in Sect~on
2.3.1.2, takes an integer argument. If you fail to execute "Supply
Prefix Argument" beforehand, "EDT Special Insert" displays an error
message and stops processing. You could rewrite this command to
prompt for the needed value instead of signaling an error. The code
for such a command might be:

(DEFINE-COMMAND (MY-SPECIAL-INSERT-COMMAND
:DISPLAY-NAME "My Special Insert")

(PREFIX)

" Takes the prefix value and inserts the character whose
ASCII code is that value at the current buffer point. If
no prefix is supplied, it prompts for a value."

(UNLESS PREFIX
(SETF PREFIX

(READ-FROM-STRING
(SIMPLE-PROMPT-FOR-INPUT II Ent•r ASCII code: "))))

(IF (AND (INTEGERP PREFIX) (<= 0 PREFIX 255))
(INSERT-CHARACTER (CURRENT-BUFFER-POINT)

(CODE-CHAR PREFIX))
(EDITOR-ERROR "Invalid character code: NA" PREFIX)))

The COMMON LISP function READ-FROM-STRING is used here to coerce the
user's input string to an integer. This integer is then bound to
PREFIX and passed to CODE-CHAR. Only if the input supplied does not
convert into a valid ASCII extended character code will this command
display an error message.

2.3.2.2 General Prompting - General prompting differs from simple
prompting in that (1) the prompting function can return any data type
(not only a string), and (2) you can include a greater range of
prompt-related behavior by specifying a n~mber of keyword arguments.
The function you use for general prompting is PROMPT-FOR-INPUT.

What follows is a brief introduction to the use of PROMPT-FOR-INPUT.
Part III of this manual contains a fuller description of this function
and of its keyword arguments.

The basic format of PROMPT-FOR-INPUT is:

0

0

0

PROMPT-FOR-INPUT validation O
2-14

CREATING EDITOR COMMANDS

The one required argument to PROMPT-FOR-INPUT is a validation
Qfunction. This function takes the user's input string and returns a

value that will be returned by PROMPT-FOR-INPUT. If the validation
function returns NIL, PROMPT-FOR-INPUT signals an error and awaits
further input.

For instance:

(PROMPT-FOR-INPUT #'FIND-BUFFER)

This form prompts the user with a default prompting message and passes
the user's input string to the function FIND-BUFFER. If the input
string is not a valid buffer name, FIND-BUFFER returns NIL.
PROMPT-FOR-INPUT then displays a default error message and waits for a
valid buffer name before command· processing continues.

O PROMPT-FOR-INPUT can also make available the facilities for input
completion and alternatives to assist the user. By providing string
tables as arguments to the keywords :COMPLETION and :ALTERNATIVES, you

0

0

specify that those string tables are to be searched if the user
requests assistance from either of these facilities. In the above
example, the appropriate string table is bound to the variable
EDITOR-BUFFER-NAMES, and the form would look like:

(PROMPT-FOR-INPUT #'FIND-BUFFER
:COMPLETION *EDITOR-BUFFER-NAMES*
:ALTERNATIVES *EDITOR-BUFFER-NAMES*)

(These two keyword arguments can also be values other than string
tables; see the description of PROMPT-FOR-INPUT in Part III of this
manual.)

Other keywords allow you to specify, for instance:

• The prompt to be displayed

• An error message to be displayed if the validation function
returns NIL

• Help text to be displayed if the user requests help

• Whether user input is required

• A default value to be returned if you specify that user input
is not required

These and other arguments to PROMPT-FOR-INPUT are described in full in
Part III.

OWhat follows is a comparatively simple example of this function; using
only a few of its possible keyword arguments. The new command "My
Insert Buffer" calls PROMPT-FOR-INPUT to prompt for a buffer name.

2-15

CREATING EDITOR COMMANDS

The command then inserts the
buffer. Its code is:

text of that buffer into the current

(DEFINE-COMMAND (MY-INSERT-BUFFER-COMMAND
:DISPLAY-NAME "My Insert Buffer")

(PREFIX)

(DECLARE (IGNORE PREFIX)

(INSERT-REGION
(CURRENT-BUFFER-POINT)
(BUFFER-REGION

(PROMPT-FOR-INPUT #'FIND-BUFFER

:PROMPT "Enter Buffer Name: "
:REQUIRED T
:COMPLETION *EDITOR-BUFFER-NAMES*
:ALTERNATIVES *EDITOR-BUFFER-NAMES*))))

This command displays the string argument to :PROMPT in the prompting
window. Because the value of :REQUIRED is T, the user must enter a
string for the action to continue (no default value can be returned by
PROMPT-FOR-INPUT). As in the example above, the string table
arguments to :COMPLETION and :ALTERNATIVES make available to the user
the names of all existing buffers.

0

0

The user's input string is passed ~o the validation function, Q
FIND-BUFFER, which returns a buffer object if the input is a valid
buffer name. The buffer object returned by FIND-BUFFER is passed to
BUFFER-REGION, which returns the text-containing region of · that
buffer. The region is passed to INSERT-REGION, which inserts it at
the buffer point of the current buffer. (The region-manipulating
functions and other text operations objects are described in Chapter 4
of this manual.)

2.3.3 Command Categories

A command category indicates some property of a command that
command may need to test for. The test is performed by
whether the command is a member of a specified category.

-

another
checking

For example, the command "EMACS Forward Search" checks to see if the
last command executed was in the category :EMACS-SEARCH. If so, it
means that that command was also a search command and that the user
has already entered a search string. "EMACS Forward Search" will
therefore use the previous string rather than prompt again for one.
If the last command executed was not in the :EMACS-SEARCH category,
then "EMACS Forward Search" prompts for a search string.

2-16

0

0

CREATING EDITOR COMMANDS

O The categories provided with the Editor are :GENERAL-PROMPTING, :LINE
MOTION, :MOVE-TO-POINTER, :EMACS-SEARCH, :EMACS-PREFIX, and :KILL
RING. Categories can also be user-defined.

0

0

0

0

You can place a command in one or more categories by including the
keyword :CATEGORY and a symbol or list of symbols as part of the name
argument of a DEFINE-COMMAND form. You can use existing categories,
or you can define new categories simply by specifying their symbols.
For example:

Or,

(DEFINE-COMMAND (EMACS-BACKWARD-SEARCH-COMMAND
:DISPLAY-NAME "EMACS Backward Search"
:CATEGORY :EMACS-SEARCH)

...)

(DEFINE-COMMAND (MY-NEW-COMMAND-COMMAND
:DISPLAY-NAME "My New Command"
:CATEGORY (:LINE-MOTION 'MY-NEW-CATEGORY)

...)
To check whether a given command is included in a specified category,
you call the function COMMAND-CATEGORIES. This function takes a
command specifier and returns a list of the categories that include
that command (or NIL if none is found). The variable *PREVIOUS
COMMAND-FUNCTION* is bound to the function associated with the last
command executed; this variable is a command specifier acceptable to
COMMAND-CATEGORIES.

For instance, the following form tests whether the previous command
executed was in the category :EMACS-SEARCH.

(IF (MEMBER :EMACS-SEARCH
(COMMAND-CATEGORIES *PREVIOUS-COMMAND-FUNCTION*)
:TEST #'EQ)

What follows is a full command definition that illustrates both (1)
placing a command in a category, and (2) testing the previously
exe~uted command for membership in that category. The example, "My
EMACS Forward Search", is a simplified version of the DIGITAL-provided
command "EMACS Forward Search".

(DEFINE-COMMAND (MY-EMACS-FORWARD-SEARCH-COMMAND
:DISPLAY-NAME "My EMACS Forward Search"
:CATEGORY :EMACS-SEARCH)

(PREFIX)

2-17

CREATING EDITOR COMMANDS

" Searches forward once or the number of times specified
by the prefix argument. Prompts for a search string only
if the previous command was not a searching command."

(IF (MEMBER :EMACS-SEARCH
(COMMAND-CATEGORIES *PREVIOUS-COMMAND-FUNCTION*)
:TEST #'EQ)

(FORWARD-SEARCH-COMMAND
PREFIX
(VARIABLE-VALUE "Last Search String"))

(FORWARD-SEARCH-COMMAND PREFIX)))

The Editor sets the user's response to a search-command prompt to the

0

value of the Editor variable "Last Search String". "My EMACS Forward Q
Search" calls FORWARD-SEARCH-COMMAND, but only after determining
whether the previous command executed in the Editor was also in the
category :EMACS-SEARCH.

• If so, "My EMACS Forward Search" calls FORWARD-SEARCH-COMMAND
with two arguments: the prefix and a string that is the
current value of "Last Search String".

• If not, "My EMACS Forward Search" calls FORWARD-SEARCH-COMMAND
with only a prefix argument, thus requiring FORWARD-SEARCH- Q
COMMAND to prompt for the needed string.

0

0

2-18

0

CHAPTER 3

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

The most common way to extend the VAX LISP Editor is to bind Editor

O
commands to keys and key sequences. You can then use the bound keys
or sequences to invoke the commands within the Editor.

Many of the commands provided with the Editor are bound. The bindings
may be to graphic or control characters, keyboard escape sequences,
function or keypad keys, or to some combination of these keys.
Commands can also be bound to actions of a pointing device provided
with the AI VAXstation. All DIGITAL-supplied bindings are listed in
Appendixes B and C of this manual, arranged 'both by command name and

Oby key or key sequence.

A key binding or pointer-action bin'ding exists within an Editor
context, that is, within a particular style or buffer or in the global
Editor context. The key or pointer action will invoke the command
only when the appropriate context is active in the Editor. If more
than one context is active at a time and if a key or pointer action is
bound to different commands in these contexts, only one binding will
be visible. (See VAX LISP/VMS User's Guide for a discussion of

ocontext

You can
are not

and shadowing as they appea-r to the interactive user.)

change the DIGITAL-supplied bindings and
currently bound.

bind commands that

0

• To bind a key or key sequence to an Editor command, you call
the function BIND-COMMAND from LISP code. To- delete a key
binding, call UNBIND-COMMAND.

• To bind a pointer action to an Edieor command, you call the
function BIND-POINTER-COMMAND from LISP code •. To delete a
pointer-action binding, call UNBIND-POINTER-COMMAND.

3-1

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

This chapter introduces the techniques of binding commands with these
two functions. The topics covered are: Q

• Using BIND-COMMAND

The command to be bound
The key or key sequence to be bound
The binding context

e Using BIND-POINTER-COMMAND

Specifying a pointer action
Specifying a button state
Getting the state of the pointer

NOTE

The Editor's cancel character (initially, CTRL/C) is
not established with BIND-COMMAND and is not
context-dependent. This global association cannot be
shadowed by Editor command bindings to the same
character. To change the Editor's cance~ character,
you use SETF with the function CANCEL-CHARACTER (see
Part III for a description of this function).

3.1 USING BIND-COMMAND

BIND-COMMAND takes a command specifier, a key or key sequence, and an
optional context specifier. Its format is:

0

0

BIND-COMMAND command key-sequence &OPTIONAL context

BIND-COMMAND binds the key-sequence to the command in the
(or default) context. For example:

·f· d Q spec1 1e

(BIND-COMMAND "View File" #\:"'V)

This form binds the key CTRL/V to the DIGITAL-supplied command "View
File", which has no binding in the Editor as provided. Since no
context argument is specified, the binding is global by default.

Note that BIND-COMMAND is one of the few Editor-related symbols that
are accessible in the "USER" package. If you include any other
Editor-related symbols in a BIND-COMMAND form, you must reference them
in the "EDITOR" package (see Chapter 1).

3-2

0

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

O The sections that follow
BIND-COMMAND in turn:

discuss each of the parameters of

0

0

0

0

• The command to be bound

• The key or sequence to be bound

• The binding context

3.2 THE COMMAND TO BE BOUND

You can specify any Editor command as an argument to BIND-COMMAND,
including:

• New user-defined commands

• DIGITAL-defined commands that are not bound

• Any command that is currently bound to another key or
sequence.

You reference the command to be bound by means of
kinds of command specifier (see Chapter 1):

• The command's display name

• The command's symbol

any of the three

• A form that evaluates to the function associated with the
command

For instance, the following three forms are equivalent. All three
bind the command "View File" to CTRL/V in. the global context. (The
first and third of these forms are equal in efficiency; the middle
form, which uses the symbol specifier, is very slightly faster.)

(BIND-COMMAND "View File" #\"'V)

(BIND-COMMAND 'VIEW-FILE-COMMAND #\"'V)

(BIND-COMMAND (FIND-COMMAND "View File II) #\"' V)

You change an existing binding to a command in the same way that you
establish a new binding. You may prefer to delete the old binding
(using the function UNBIND-COMMAND) before rebinding a command, but
this is not required. For instance, if you were to bind the command
"Pause Editor" to CTRL/A, then both CTRL/A and the original binding
(CTRL/X CTRL/Z) would invoke "Pause Editor".

3-3

---------------------------------------· ---- ----

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

However, if you modify a DIGITAL-supplied command, any key bindings to O
the original command continue to invoke the function associated with
original command rather than the function associated with the new
command. For instance, if you were to implement your own version of a
"Next Window" command, the sequence CTRL/X CTRL/N would continue to
invoke the DIGITAL-supplied function NEXT-WINDOW-COMMAND. To have the
sequence CTRL/X CTRL/N invoke the function associated with your new
"Next Window" command, you would need to rebind that key sequence to
the new command by means of a subsequent call to BIND-COMMAND.

3.3 THE KEY OR KEY SEQUENCE TO BE BOUND

Commands are actually bound
generated by those keys.
characters; function keys and
characters.

not to keys but to the characters
Most keyboard keys generate single

keypad keys generate sequences of

You can bind a command to any character in the 8-bit extended ASCII
character set (the DEC Multinational Character Set), .with the few
exceptions noted below. You can also bind a command to any valid LISP
sequence of these characters. LISP sequences include lists and
vectors containing characters, as well as strings.'

The remainder of this section discusses the key-sequence
BIND-COMMAND:

• How to choose a key or sequence to bind

argument to

• ·How to specify character keys, function and keypad keys, and
combinations of these keys

3.3.1 Choosing a Key or Sequence

In choosing a character key or key sequence to bind to a command,
there are several considerations to keep in mind:

• You cannot bind the characters CTRL/S and CTRL/Q, which lock
and unlock your terminal. This. is a limitation of the
operating system.

• You should not bind the current cancel character, which is
initially CTRL/C.

• It is generally not good practice to bind graphic characters

0

0

0

or sequences that begin with graphic characters. Every
graphic character key is bound to the command "Self Insert", Q
which inserts that character as text. Rebinding a character
will supersede the "Self Insert" binding and leave you unable
to insert that character as text except by quoting it.

3-4

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

OAs the last item suggests, the operation of BIND-COMMAND destructively
modifies any previous binding of a key or sequence to a command (in
the same context). For instance, if you were to rebind the sequence
CTRL/X CTRL/Z to a new command (assuming the global context), then
that sequence will no longer invoke "Pause Editor". In choosing keys
to bind, take care not to modify any previous bindings that you wish
to keep.

Similarly, you will lose bindings if you bind a key or sequence that
begins another bound sequence. For instance, if you were to bind
CTRL/X to a command, then the DIGITAL-supplied bindings (in the same
context) that begin with CTRL/X (such as CTRL/X CTRL/Z for "Pause
Editor") will be inaccessible.

Q 3.3.2 Specifying a Character Key or Sequence

A character key can be specified with the usual LISP character syntax.
For control characters and other nongraphic characters, you use the
printed representation. For example, to bind the graphic character A,
you write:

(BIND-COMMAND "Self Insert" ·#\A)

QTo bind the nongraphic character CTRL/A, you write:

(BIND-COMMAND "Transpose Previous Characters" #\"'A)

To bind a sequence of characters, you use the LISP syntax for the LISP
sequence you intend to rise: vector, string, or list. A character
sequence can include a graphic character without interfering with the
"Self Insert" binding as long as the graphic character does not begin
the sequence. The following two examples show vectors that combine

Qgraphic and nongraphic characters:

(BIND-COMMAND "Name of Command" '#(#\"'X #\w))

(BIND-COMMAND "Name of Command" '#(#\ESCAPE #\a))

The first form binds the specified command to the sequence CTRL/X w;
the second binds it to the sequence ESCAPE a. Note that case does not
matter in specifying the printed representations of nongraphic
characters (s~ch as CTRL/X and ESCAPE). Case does matter, however, in
specifying graphic characters (such as wand a).

3.3.3 Specifying a Function Key, Keypad· Key, or Sequence

QThere is no essential difference between binding a command to a
characte-r sequence and binding it to a function key or keypad key (or
sequence), since these keys generate sequences of characters.

3-5

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

Appendix D to this manual identifies the character sequences that are
generated by the function keys and keypad keys on DIGITAL VT100 and Q
LK-201 keyboards. You can specify these sequences as vectors (or
other LISP sequences) in BIND-COMMAND forms, as shown in the previous
section.
\

For instance, the GOLD key (keypad PFl) generates the character
sequence <ESCAPE>OP and keypad 1 generates <ESCAPE>Oq. The form that
binds the sequence keypad PF1 1 to the command "EDT Change Case" is:

(BIND-COMMAND "EDT Change Case"
'#(#\ESCAPE #\0 #\P #\ESCAPE #\0 #\q))

Note that this binding takes place in the Editor's global context,
rather than in "EDT Emulation" style. See Section 3.4 for the means
of specifying a context argument to BIND-COMMAND.

You can also combine character keys and function or keypad keys in a
LISP sequence and pass that sequence to BIND-COMMAND. For instance,
the following form binds a vector that contains the characters
generated by keypad PF1 and the character h.

(BIND-COMMAND "Name of Command" '#(#\ESCAPE #\0 #\P #\h))

The command will now be invoked by pressing the key sequence PF1 h.

3.4 THE BINDING CONTEXT

BIND-COMMAND binds a key or sequence to a command within a particular
Editor context. The key or sequence will invoke the specified command
only when that context is active in the Editor. For instance, if you
try to use "EDT Emulation" keypad bindings when ohly "EMACS" style is

0

0

active, the Editor will consider the keys unbound. Q
The binding context can be:

• Global, the default context, which means that the key binding
exists universally within the Editor

• A style, which means that the key w~ll invoke the specified
command only when that style is active is the current buffer

• A buffer, which means that the key will invoke the specified
command only when that buffer is current in the Editor

Since more than one context is often active in the Editor at any given
time -- global, a major style, one or more minor styles, and a buffer,
for instance -- some command bindings can be shadowed by other Q
bindings to the same keys in different contexts •. The Editor searches
through the active contexts in a predetermined order to identify the
correct command for a key sequence.

3-6

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

This section describes the means of specifying a context in LISP code,

O as well as the Editor's search hierarchy for locating the correct
binding when you use a key sequence to invoke a command.

0

3.4.1 Specifying the Binding Context

The context argument to BIND-COMMAND is specified with either:

• The keyword :GLOBAL

• A list beginning with the keyword :STYLE followed by a style
specifier

• A list beginning with the keyword :BUFFER followed by a buffer
specifier

BIND-COMMAND can take only one context argument at a time. To bind a
command in more than one style or other context, you need to write a
BIND-COMMAND form for each context.

3.4.1.1 Global - The global context is used for very basic Editor

O commands
active.
key, and
"Execute

that enable you to function in the Editor even with no style
Examples are the commands bound to the arrow keys, the RETURN
the DELETE key, as well as "Self Insert", "Pause Editor", and
Named Command".

Since :GLOBAL is the default context argument for BIND-COMMAND, the
following two examples are equivalent:

(BIND-COMMAND "Pause Editor" '#(#\"X #\"Z) :GLOBAL)

0 (BIND-COMMAND "Pause Edi tor" '# (#\" X #\" Z))

0

The two forms are also equal in efficiency.

3.4.1.2 Style - Styles are the most commonly used binding contexts.
Your major style would usually include bindings to all the commands
you commonly invoke for general editing. Minor styles can be seen as
smaller sets of special-purpose bindings, such as those you use only
for editing the syntax of a particular language.

A style argument to BIND-COMMAND is specified as a list beginning with
the keyword :STYLE followed by a style specifier. For example:

3-7

BINDING COMMANDS TO KEYS AND, POINTER ACTIONS

, (:STYLE "EDT Emulation")

'(:STYLE EDT-EMULATION)

(LIST :STYLE (VARIABLE-VALUE "Default Major Style"))

'(:STYLE ,(VARIABLE-VALUE "Default Major Style"))

The Editor variable "Default Major Style" is set to a particular style
object (initially, "EDT Emulation").

CJ

3.4.1.3 Buffer - Some commands may be used only in the context of a
certain buffer, and it may be convenient to have their key bindings
local to that buffer. For instance, the DIGITAL-supplied buffer
"General Prompting" contains buffer-local bindings of commands that Q
pertain to interactive user input, such as "Prompt Complete String"
and "Prompt Help".

A buffer argument to BIND-COMMAND is specified as a list beginning
with the keyword :BUFFER followed by a buffer specifier. For example:

'(:BUFFER "General Prompting")

'(:BUFFER EDITOR-PROMPTING-BUFFER)

(LIST :BUFFER (CURRENT-BUFFER))

The function CURRENT-BUFFER returns the buffer that is current in
Editor.,

3.4.2 Search Order and Shadowing

the

To locate the correct command binding for a key sequence, the Editor
searches through all the active contexts in the following order:

1. Current buffer

2. Minor styles active in that buffer beginning with the most
recently activated

3. Major style of that buffer

4. Global context

The Editor will use the first command binding that it encounters in
this search; any other bindings will be shadowed.

3-8

0

0

0

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

For instance, if you have "EMACS" style active in the current buffer,

C1s either major or minor style, then you cannot use the global binding
6f CTRL/Z to invoke "Execute Named Command". Because style precedes
global in the search order, the "EMACS" binding of CTRL/Z to "Scroll
Window Down" shadows the global binding.

F0r keys that do not have multiple bindings in the active contexts, no
shadowing occurs. For instance, the sequence CTRL/X CTRL/N invokes
its global binding, "Next Window", even when you have "EDT Emulation"
active as major style and both "EMACS" and "VAX LISP" as minor styles.
None of these styles has a conflicting binding for that sequence.

Because of the small number of conflicting bindings involved, it is
feasible to use all three DIGITAL-provided styles -- "EDT Emulation",
"EMACS", and "VAX LISP" -- at once. If only "EDT Emulation" and "VAX
LISP" are active, then most global bindings are visible as well.

d'EMACS", however, shadows a greater number of global bindings.

3.5 USING BIND-POINTER-COMMAND

By calling BIND-POINTER-COMMAND, you can bind various actions of a
mouse or other pointing device to Editor commands. When the pointer
cursor is in the current Editor window, the Editor will respond to Cointer actions by invoking the bound commands. You cannot program
the Editor to respond to pointer actions that occur when the pointer
cursor is outside the current Editor window.

BIND-POINTER-COMMAND must be referenced in the "EDITOR" package. Its
format is:

BIND-POINTER-COMMAND command pointer-action &KEY :CONTEXT
:BUTTON-STATE

Qhe command argument is a
valid command argument
BIND-POINTER-COMMAND (see

specifier of the command to be bound.
for BIND-COMMAND can also be used
Section 3.2 above).

Any
with

The possible values for the :CONTEXT keyword are identical to those
for the context parameter to BIND-COMMAND (see Section 3.4 above).
The default binding context is :GLOBAL.

For instance, to invoke a command by means of a specified pointer
action in "VAX LISP" style, you would write:

0

(BIND-POINTER-COMMAND "Describe Word at Pointer"
pointer-action
:CONTEXT '(:STYLE "VAX LI;5P"))

3-9

BINDING .COMMANDS TO KEYS AND POINTER ACTIONS

The remainder of this section discusses the pointer-action parameter
and the :BUTTON-STATE keyword. This section also explains the Q
procedure for storing and retrieving the state of the pointing device
at a given point in time.

3.5. 1 Specifying a Pointer Action

The pointer actions you can use to invoke Editor commands are:

• A movement of the pointer cursor

• A transition (depressing or releasing) of a pointer button

3.5.1.1 Pointer Cursor Movement - A pointer movement in the Editor is Q
defined as a movement across at least one character in any direction.
Small movements of the pointer cursor (within a character) are not
significant.

You specify movement of the pointer cursor by supplying the keyword
:MOVEMENT as the pointer-action argument. For instance:

(BIND-POINTER-COMMAND "Name ·of Command" : MOVEMENT)

If you want to have the command invoked by a movement only when one or Q
more buttons is depressed, you supply a value for :BUTTON-STATE. See
Section 3.1.2 below.

3. 5 .1. 2 Pointer Button Transitions - The butto-ns on a supported
pointing device are indicated by the symbols for button constants.a
The symbols are in the package "UIS", and they take the form
POINTER-BUTTON-n, beginning with POINTER-BUTTON-1 for the leftmost
button. (See VAX LISP/VMS Graphics Programming Guide for further
information on button constants.)

To specify a downward transition of a particular button, you simply
supply the appropriate button constant as t~e pointer-action argument.
For instance, to bind a command to a downward transition of the middle
button on a three-button mouse, you woul~ write:

(EDITOR:BIND-POINTER-COMMAND "Name of Command"
UIS:POINTER-BUTTON-2)

Note that this form uses symbols from both the
the "UIS" package.

3-10

"EDITOR" package and

0

0

0

0

0

0

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

To specify an upward transition, you supply a list of one element that
is the appropriate button constant. For instance, to bind a command
to an upward transition of the middle button on a three-button mouse,
you would write:

Or,

(EDITOR:BIND-POINTER-COMMAND "Name of Command"
(LIST UIS:POINTER-BUTTON-2))

(EDITOR:BIND-POINTER-COMMAND "Name of Command"
'(,UIS:POINTER-BUTTON-2))

These are the most common methods of specifying button transitions.
For other methods, see the description of BIND-POINTER-COMMAND in Part
III of this manual.

3.5.2 Specifying a Button State

In the examples above, the assumption is that· all pointer buttons
except one specified in the pointer-action argument are in the up
state. The :BUTTON-STATE keyword permits chording of pointer buttons
to invoke commands. That is, you can specify that the pointer-action
argument is to invoke the command only if one or more pointer buttons
are depressed at the time the pointer action occurs.

For instance, in the Editor as provided:

• Depressing the middle button invokes the command "EDT Cut" (in
"EDT Emulation" style)

• Depressing the middle button with the left button depressed
invokes the command "EDT Paste at Pointer" (in "EDT Emulation"
style)

The value for the :BUTTON-STATE keyword is a button constant or the
LOGAND of two or more button constants. These indicate the button(s)
that must be in a down state at the time the specified pointer-action
occurs.

For instance:

• To specify that the left button is depressed:

:BUTTON-STATE UIS:POINTER-BUTTON-1

• To specify that the left and right buttons are depressed:

:BUTTON-STATE (LOGAND UIS:POINTER-BUTTON-1
UIS:POINTER-BUTTON-3)

3-11

-··---· ---------

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

If the pointer-action argument is a button transition, then any value O
supplied for that button in the :BUTTON-STATE argument 'is ignored.

The binding of "EDT Paste at Pointer" -- depressing the middle button
with the left button depressed -- is established by:

(EDITOR: BIND-POINTER-COMM~.ND "EDT Paste at Pointer"
UIS:POINTER-BUTTON-2
:BUTTON-STATE UIS:POINTER-BUTTON-1
:CONTEXT '(:STYLE "EDT Emulation"))

The global binding of "Move Point and Select Region" -- move point~r
with left button depressed -- is established by:

(EDITOR:BIND-POINTER-COMMAND "Move Point and Select Region"
:MOVEMENT
:BUTTON-STATE UIS:POINTER-BUTTON-1) 0

The button state in a chorded pointer binding is a static state of the
button or buttons indicated. You should, however, consider the
transitions (prior pressing and subsequent releasing) that establish
and end that state. Either of these transitions might be bound to a
DIGITAL-supplied command (see VAX LISP/VMS User's Guide for initial
pointer bindings). Or, you might wish to bind one' or both transitions
to commands.

3.5.3 Getting the State of the Pointer

You can retrieve the state of the pointing device which includes
the position of the pointer cursor, the up-or-down state of each
button, and other information -- for a given point.in time by calling
GET-POINTER-STATE. This function is described in full in Part III.

GET-POINTER-STATE returns a pointer-state object that contains
information about the state of the pointer at the time the function is
called. If GET-POINTER-STATE is called from within an Editor command
and if that command was invoked by a pointer action, the function
returns the state of the pointer at the time the pointer action
occurred. If the pointer action that invoked the command was a button
transition, then the pointer-state object contains the state of the
buttons at the end of the transition.

GET-POINTER-STATE is useful in commands that take different actions
depending on some feature of the pointer state. For instance, the
DIGITAL-supplied command "Yank at Pointer" tests to see whether the
pointer cursor is indicating a text position (line and character
position).

• If so, "Yank at Pointer" moves the current. buffer point to
that text position and inserts the current region in the kill
ring at the modified buffer point.

3-12

0

0

0

0

0

0

0

0

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

• If the pointer cursor is indicating an empty position in a
line, "Yank at Pointer" moves the current buffer point to the
last character position in that line and inserts the kill
region.

• If the pointer cursor is not indicating a line, "Yank at
Pointer" moves the current buf!er point to the last character
position in the current buffer and inserts the kill region.

"Yank at Pointer" calls GET-POINTER-STATE to store the pointer-state
information, and calls POINTER-STATE-TEXT-POSITION to retrieve the
text position (line and character position) stored in the pointer
state object. A possible way to implement "Yank at Pointer" is:

(DEFINE-COMMAND (YANK-AT-POINTER-COMMAND
:DISPLAY-NAME "Yank at Pointer")

(PREFIX)

(DECLARE (IGNORE PREFIX))
(LET ((STATE (GET-POINTER-STATE)))

ii Get the text position of the pointer cursor and bind the
ii two values to LINE and CHARPOS.
(MULTIPLE-VALUE-BIND (LINE CHARPOS)

(POINTER-STATE-TEXT-POSITION STATE)

ii If there is a line, move buffer point to the CHARPOS or
ii to the end of that line.
(IF LINE

(MOVE-MARK-TO-POSITION (CURRENT-BUFFER-POINT)
(OR CHARPOS

(LINE-LENGrH LINE))
LINE)

ii If there is no line, move buffer point to end of
ii buffer.
(BUFFER-END (CURRENT-BUFFER-POINT)))

ii After buffer point is modified, call YANK-COMMAND.
(YANK-COMMAND NIL))))

If "Yank at Pointer" has been invoked by means of its pointer binding
in "EMACS" style (depress middle button with left button depressed},
the command uses the pointer state at the time this pointer action
occurred. If "Yank at Pointer" has been invoked by name, it uses the
pointer state at the time the command executes.

The command "Yank at Pointer" calls POINTER-STATE-TEXT-POSITION to
retrieve the line and character position of the pointer cursor. Other
information contained in the pointer-state object and the
corresponding accessing functions are:

3-13

BINDING COMMANDS TO KEYS AND POINTER ACTIONS

• The window position (display row and display column in a given
window) -- POINTER-STATE-WINDOW-POSITION O

• The pointer action, if any, that invoked the currently
executing command -- POINTER-STATE-ACTION

• The state of the pointer buttons at the time GET-POINTER-STATE
was called -- POINTER-STATE-BUTTONS

Further information on GET-POINTER-STATE and on each of
accessing functions appears in Part III of this manual.

these

Note that the function POINTER-STATE-BUTTONS can be used to implement
chording in pointer bindings. When called from within an Editor
command, the following form

(POINTER-STATE-BUTTONS (GET-POINTER-STATE))

returns the state (up or down) of each pointer button at the time the
command was invoked (see Part III). You can use this information to
have the command take different actions depending on whether a
specified button was depressed at the time a pointer action invoked
the command.

3-14

0

0

0

0

0

0

CHAPTER 4

TEXT OPERATIONS

Text consists of the characters that you normally see when you enter
the Editor and display a buffer. The essential operations that any
editor must allow you to perform on text are:

• Indicating the position occupied by any given character

• Inserting, deleting, and changing characters

• Moving from one character position to another

O This chapter introduces the data types and functions you
program these kinds of operations in the VAX LISP Editor.

use to

0

0

You can envision text in the VAX LISP Editor as a group or region of
contiguous characters. The characters can be any of those in the
ASCII 8-bit extended set (the DEC Multinational Character Set); they
can include whitespace and nongraphic characters as well as
alphanumeric characters.

Each character in the Editor occupies a specifiable position. You can
access the characters either individually (that is, at one position)
or in groups (that is, between two positions). You can also
manipulate characters -- insert them, delete them, copy them -- either
individually or in groups. Finally, you can move around within text
either by accessing specified character positions or by searching for
particular characters or sequences of characters.

These sets of text-related capabilities in the VAX LISP Editor are
introduced in the following order:

• Operations on a particular character position

• Operations on a group of contiguous characters

• Moving and searching operations

• Miscellaneous operations

4-1

TEXT OPERATIONS

This chapter introduces the following Editor data types:

• Marks

• Regions

• Attributes

• Lines

Part II of this manual describes these objects in more detail.
Reference information concerning the functions and macros that operate
on these objects appears in Part III.

Buffers are another relevant Editor data type: most text is contained

0

in buffers. However, most text operations are not operations on a
buffer object, but rather on marks, regions, lines, or characters that o
may be contained in a buffer object. Operations on buffers are
covered in Chapter 6 and in Part II.

Recall that the symbols for DIGITAL-provided Editor objects must be
referenced in the "EDITOR" package.

4.1 OPERATIONS ON A CHARACTER POSITION

Editor objects called marks are used to reference the position of any
character in text. An example of a mark is the buffer point, which is
the point of attention in each buffer where most text operations
occur. · In the current buffer, this mark -- the current buffer point
-- is tracked by the screen cursor.

0

Every buffer you enter or create in the Editor contains at least three
marks. Besides the buffer point, each buffer contains two marks thato
point to the beginning and end of text .in that buffer. To reference
positions in text, you can use the existing marks, or you can create
new marks. Creating marks is covered in Section 4.4.1 below.

By using a mark, you can:

• Retrieve and change a character

• Insert a character

• Insert a string of characters

• Delete one or more characters

In the examples in this section, the variable MARK is
bound to a mark.

4-2

assumed to

0

0

0

0

0

TEXT OPERATIONS

4.1.1 Retrieving and Changing a Character

For the purpose of text operations, you should think of a mark as
pointing between two adjacent characters. A mark can also point
before the first character in a buffer or after the last character.

You can retrieve the characters on either side of a mark by means of
the functions NEXT-CHARACTER and PREVIOUS-CHARACTER. Using SETF, you
can also change the specified character.

(SETF (NEXT--CHARACTER MARK) #\W)

This form changes the character to the right of th~ mark to W. If
your text consists of ABCD and the mark is pointing between Band C,
this form changes the C to aw. "The text then reads ABWD.

4.1.2 Inserting a Character

You can add a new character to text by means of the function
INSERT-CHARACTER. INSERT-CHARACTER takes a mark and a character. It
inserts the specified character at the mark, that is, between existing
characters.

For instance:

(INSERT-CHARACTER MARK #\W)

If the mark is pointing between B and C in the text ABCD, then
executing this form changes the text to ABWCD.

To perform the same operation at the current buffer point, you could
reference that mark by calling the .function CURRENT-BUFFER-POINT with
no arguments:

(INSERT-CHARACTER (CURRENT-BUFFER-POINT) #\W)

4.1.3 Inserting a String of Characters

INSERT-CHARACTER allows you to insert only one character at a time.
By using INSE~T-STRING, you can insert any number of characters at the
specified mark.

(INSERT-STRING MARK "ABCD EFGH IJKL")

If your text consists of XX and the mark is pointing between
characters, this form changes the text to XABCD EFGH IJKLX.

4-3

the two

TEXT OPERATIONS

If the string argument to INSERT-STRING contains newline characters,
then multiple lines of text are inserted. Q

(INSERT-STRING MARK "ABCD
EFGH")

This form inserts ABCD at the mark, breaks the line, and inserts EFGH
at the beginning of the next line. Any text following the mark in the
original line will appear after EFGH.

An example of a string that might be inserted in text is the string
that the user enters in response to a prompt. For instance:

(INSERT-STRING (CURRENT-BUFFER-POINT)
(SIMPLE-PROMPT-FOR-INPUT "Enter input: 11))

This form takes the user's response to the prompt and inserts it as O
text at the current buffer point.

4.1.4 Deleting Characters

DELETE-CHARACTERS takes a mark and an optional integer that defaults
to 1. It deletes the specified number of characters after the mark,
or before the mark if the integer is negative. If there are not ~
enough characters after (or before) the mark, DELETE-CHARACTERS does (.____)
not modify the text.

For example, to delete the next 5 characters after a specified mark,
you would write:

(DELETE-CHARACTERS MARK 5)

To delete the character preceding the current buffer point, you would
write:

(DELETE-CHARACTERS (CURRENT-BUFFER-POINT) -1)

When deleting a character, you may want to save the character so that
you can reinsert it later. The following forms show a "delete and
save" operation and a subsequent reinsertion operation:

;;; Define a variable to which to bind a deleted character.

(DEFVAR *SAVED-CHARACTER*)

;;; Bind the character following the current buffer point to the
;;; variable.

0

(SETF *SAVED-CHARACTER* (NEXT-CHARACTER (CURRENT-BUFFER-POINT))) 0

4-4

0

0

TEXT OPERATIONS

;;; Delete the character following the current buffer point.

(DELETE-CHARACTERS (CURRENT-BUFFER-POINT})

; ; ;
, , ,

Later, insert the character bound to the variable at the
then-current buffer point.

(INSERT-CHARACTER (CURRENT-BUFFER-POINT) *SAVED-CHARACTER*)

4.2 OPERATIONS ON A GROUP OF CHARACTERS

Editor objects called regions indicate groups of contiguous
characters. The text in a region can be accessed and manipulated as a
unit.

A region is defined by two marks that indicate.the character positions
where the region begins and ends. To create a region, you write:

(MAKE-REGION MARK! MARK2)

OEvery buffer contains at least one region, which is
marks that indicate the positions where text begins
buffer. This region is called the buffer region.

defined by the
and ends in that

Any number of regions can be created within a buffer region. They may
overlap in arbitrary ways, and one may be completely contained within
another. Since regions may share text, any alterations you do to the
text in one region will affect other regions that share that text.

Ousing regions, you can:

• Insert a block of text

• Copy a block of text

• Delete a block of text

• Delete and save a block of text

• Write a block of text to a file

You can perform these operations on any region. To perform these
operations on a buffer, you perform them on the buffer region of that Q buffer.

4-5

TEXT OPERATIONS

4.2.1 Inserting a Region

The function INSERT-REGION enables you to insert a specified block ofO
text as a unit. INSERT-REGION takes a region and a mark at which to
insert that region in text. The text inserted is a copy of the
specified region; the original region is not altered.

For example:

(INSERT-REGION (CURRENT-BUFFER-POINT) (MAKE-REGION MARKl MARK2))

This form defines a region ·from the two specified marks, which allows
you to treat the text between those marks as a single unit. The text
in this region is copied, and the copy is inserted at the current
buffer point.

4.2.2 Copying a Region

The function COPY-REGION takes a region and returns a new region that
contains a copy of the text in the specified region. The new region
is "disembodied," in that it is not contained in a buffer. Operations
performed on the copy do not affect the orig1nal region, and vice
versa.

0

The following forms illustrate the process of copying and saving aQ
specified region for later insertion elsewhere. The original region
is not deleted or otherwise altered.

;;; Define a variable to which to bind a region.

(DEFVAR *SAVED-REGION*)

;;; Copy a region and bind it to the variable.

(SETF *SAVED-REGION* (COPY-REGION (MAKE-REGION MARKl MARK2)))

;;; Later, insert the copied region at the current buffer point.

(INSERT-REGION (CURRENT-BUFFER-POINT) *SAVED-REGION*)

4.2.3 Deleting a Region

Regions are commonly used to indicate blocks of text to be deleted.
You can delete the text in a region by calling either DELETE-REGION or
DELETE-AND-SAVE-REGION with a region argument.

4-6

0

0

0

0

TEXT OPERATIONS

The function DELETE-REGION takes a region and deletes the text in
leaving an empty region.

(DELETE-REGION (MAKE-REGION MARKl MARK2))

it,

If you wish to retain a copy of the text in a deleted region so that
you can reinsert it elsewhere, you call DELETE-AND-SAVE-REGION. This
function deletes the text in a region and returns a disembodied region
that contains a copy of the deleted text.

(INSERT-REGION (CURRENT-BUFFER-POINT)
(DELETE-AND-SAVE-REGION

(MAKE-REGION MARKl MARK2)))

In this example, DELETE-AND-SAVE-REGION deletes the text in the region
between MARKl and MARK2 and returns a copy of the deleted text. The
disembodied region containing the copied text is passed to
INSERT-REGION, which inserts it at the current buffer point.

4.2.4 Writing a Region to a File

The function WRITE-FILE-FROM-REGION takes a file name (pathname or
namestring) and a region. It writes the specified region to the o specified file. For instance:

0

0

(WRITE-FILE-FROM-REGION "Myfile.lsp"
(MAKE-REGION MARK1 MARK2))

This form writes the text between the specified marks to a file named
"Myfile.lsp".

4.2.5 Operating on Buffers

Text operations that appear to be performed on buffers are actually
performed on the buffer regions of those buffers. Some operations you
can perform on buffer regions are:

• Deleting the text in a buffer

• Inserting the contents of one buffer into another

• Writing the contents of a buffer to a file

• Inserting the contents of a file into a buffer

4-7

These operations use
to smaller regions
region argument you
BUFFER-REGION takes
buffer.

TEXT OPERATIONS

the same region-manipulating functions that apply
within a buffer. The difference here is that the

supply is the buffer region. The function
a buffer and returns the buffer region of that

4.2.5.1 Deleting The Text In A Buffer - To delete all the text in a
buffer, you simply delete the text in the associated buffer region.

(DELETE-REGION (BUFFER-REGION (CURRENT-BUFFER)))

This form deletes the text in the current buffer. The buffer itself
and the empty buffer region remain.

4.2.5.2 Inserting One Buffer Into Another - To insert the text from
one buffer into another buffer, you call the function INSERT-REGION.
As arguments you supply a mark in one buffer and the buffer region of
another buffer.

(INSERT-REGION (CURRENT-BUFFER-POINT) (BUFFER-REGION BUFFER2))

This form inserts a copy of the buffer region of BUFFER2 into the
current buffer at the current buffer point. The content of BUFFER2 is
not affected by this operation, and subsequent changes to the text in
BUFFER2 and in the inserted region do not affect one another.

4.2.5.3 Writing A Buffer To A File - To write a ouffer to a file, you
call WRITE-FILE-FROM-REGION and pass it a file name (pathname or
namestring) and the buffer region of a specified buffer.

(WRITE-FILE-FROM-REGION "Myfile.lsp"
(BUFFER-REGION (CURRENT-BUFFER)))

This form writes the contents of the current buffer to a file named
"Myfile.lsp".

4.2.5.4 Inserting A File Into A Buffer - The function
INSERT-FILE-AT-MARK is similar to INSERT-STRING in that it inserts
text at a specified mark. The mark,can indicate any text position in

0

0

0

0

a buffer or disembodied region; the text inserted is the content of a
specified file. INSERT-FILE-AT-MARK is commonly used to insert a ~ile Q
into a buffer.

4-8

TEXT OPERATIONS

oFor example=.

(INSERT-FILE-AT-MARK "Myfile.lsp" (CURRENT-BUFFER-POINT))

This form inserts the contents of the file "Myfile.lsp" into the
current buffer at the current buffer point.

4.3 MOVING AND SEARCHING OPERATIONS

A number of functions
functions modify a
position.

exist
mark so

that
that

"move" marks.
it specifies a

That is, these
different text

Q There are three basic ways to move marks:

• By specifying a new character position

• By searching for a specified string of characters

• By searching for a character with a particular property

Q 4.3.1 Moving by Character Positions

Several functions take a mark and alter it to point to a specified
character position. The character position can be specified either by
"counting" from the mark's initial position or by referencing another
mark.

its current To move a mark one or more character positions- away ~rom
position, you call:

Q • MOVE-MARK-AFTER - moves a mark to the position
its initial position

that follows

0

A

• MOVE-MARK-BEFORE - moves a mark to the position that precedes
its initial position

• CHARACTER-OFFSET - takes a count and moves the mark forward
that many positions (backward if the count is negative).

You can also move a mark to point to the position specified by another
mark. Some functions you can use are:

• BUFFER-END - moves a mark to_ the end of the text in a
specified buffer

• BUFFER-START - moves a mark to the beginning of the text in a
specified buffer

4-9

TEXT OPERATIONS

• MOVE-MARK - moves a mark to the position occupied by any other Q
specified mark

Moving by char~cter position is illustrated in a new function that
transposes the pair of characters before a specified mark. This
function also illustrates accessing and manipulating individual
characters.

(DEFUN TRANSPOSE-CHARACTERS (MARK)

II Transpose the pa~r of characters before the specified mark."

;; Access the character before the mark and bind it to CHAR2.

(LET ((CHAR2 (PREVIOUS-CHARACTER MARK)))

;; If there is a character before the mark, delete that
;; character.

(WHEN CHAR2
(DELETE-CHARACTERS MARK -1)

ii If there is a character in the posi~ion now
ii preceding the mark, move to the position preceding
ii that character and reinsert the deleted character.

(COND ((PREVIOUS-CHARACTER MARK)
(INSERT-CHARACTER (MOVE-MARK-BEFORE MARK)

CHAR2)
ii Move the mark back to its initial position.

(MOVE-MARK-AFTER MARK))

ii If there is no character in the position
ii preceding the mark, reinsert the deleted
ii character at its initial position.

(T
(INSERT-CHARACTER MARK CHAR2))))))

The action of this function differs slightly from that of the
DIGITAL-supplied command "Transpose Previous Characters". One
difference is that the command suppresses screen display of the
separate text operations, showing only the completed action.
Display-related operations are discussed in Chapter 5. Also, the
command creates a new mark for the operation and disposes of the mark
after the operation is completed. Creating marks is discussed in
Section 4.4.1 below.

4-10

0

0

0

0

TEXT OPERATIONS

4.3.2 Searching by Pattern

O Searching by pattern enables you to move a mark to a specified string
of characters within a region of text. The search can be forward or
backward from the mark's initial position, and it can either consider
or ignore case in determining whether a text string matches the. search
string.

0

To perform a search by pattern, you call two functions:

• MAKE-SEARCH-PATTERN - computes a pattern, including the string
to be matched, the direction of the search, and whether the
search is case-sensitive

• LOCATE-PATTERN - initiates a search operation beginning at a
specified mark and searching according to the parameters of
the specified pattern

This section illustrates the use of these functions to implement
search operations.

4.3.2.1 Making A Search Pattern - Before beginning a search
operation, you call MAKE-SEARCH-PATTERN, which computes and returns a Q search pattern. Its format is:

MAKE-SEARCH-PATTERN kind direction string &OPTIONAL reuse-pattern

The kind argument can be either :CASE-SENSITIVE or :CASE-INSENSITIVE.
The direction argument can be either :FORWARD or :BACKWARD. The
string argument is the string to be searched for. (The optional
reuse-pattern argument is described in Part III.)

O For instance, to search forward for the string
case, you could begin with the following pattern:

ABCDE, disregarding

(MAKE-SEARCH-PATTERN :CASE-INSENSITIVE :FORWARD "abcde")

4.3.2.2 Locating A Search Pattern - To initiate the search, you call
LOCATE-PATTERN. This function takes a search pattern, such as that
specified above, as well as a mark at which to begin the search:

LOCATE-PATTERN mark search-pattern

LOCATE-PATTERN searches for a text string that matches the specified
search pattern. If one is found, it changes the mark to point to the Q beginning of the matched string.

4-11

TEXT OPERATIONS

A very simple
command:

search operation is illustrated by the following

(DEFINE-COMMAND (MY-SIMPLE-SEARCH-COMMAND
:DISPLAY-NAME "My Simple Search")

(PREFIX)

(DECLARE (IGNORE PREFIX))

(LOCATE-PATTERN (CURRENT-BUFFER-POINT)
(MAKE-SEARCH-PATTERN

:CASE-INSENSITIVE
:FORWARD
(SIMPLE-PROMPT-FOR-INPUT

"Search for: 11))))

"My Simple Search" prompts for a search string, which it uses in
making a search pattern. It then searches forward for that string,
beginning at the current buffer point and disregarding case.

Note that this command searches only once. To locate more than one
occurrence of the string, you would need to invoke the command
repeatedly. To search in the opposite direction,.you would need to
write another command with :BACKWARD as the direction argument to
MAKE-SEARCH-PATTERN.

4.3.2.3 Replacing A Pattern - You can also program the Editor
replace strings that it lo~ates through a search operation.
function REPLACE-PATTERN is similar to LOCATE-PATTERN except that
takes a replacement argument -- a new string with which to replace
string it locates in the text:

REPLACE-PATTERN mark search-pattern replacement &OPTIONAL n

For example:

(REPLACE-PATTERN (CURRENT-BUFFER-POINT)
(MAKE-SEARCH-PATTERN

:CASE-SENSITIVE
:BACKWARD
"This is a")

"This is not a")
I

to
The
it

the

This form searches backward through text from the current buffer point
for every case-matched instance of the search string. It deletes each
matching string and replaces it with the specified replacement string.
(Unlike LOCATE-PATTERN, REPLACE-PATTERN does not move the mark.)

0

0

0

0

The optional n argument to REPLACE-PATTERN allows· you to specify how Q
many occurrences of the string should be replaced (see the full

4-12

0

0

0

TEXT OPEP ;'\TIONS

description of REPLACE-PATTERN in Part III).
replace every instance in the direction
pattern.

4.3.3 Searching by Attribute

The default action is to
specified in Ehe search

Searching by attribute enables you to locate text entities such as
words, whitespace, LISP forms, and so on. The Editor recognizes these
entities by the characters that define or delimit them. For instance,
the Editor locates a word by searching for a character that it
recognizes as a word delimiter.

Characters acquire these added properties by means of Editor objects
called attributes. Some attributes provided with the Editor are "Word
Delimiter", "Whitespace", and "LISP Syntax". (Attributes can also be
user-defined.) Once an attribute is established in the Editor, then
all 256 characters have a value for that attribute.

NOTE

Editor attributes should not be confused with
character attributes in COMMON LISP. The Editor
ignores all COMMON LISP bit and font information about
characters. Editor attributes capture other, Editor
specific information about the· meaning of individual
characters.

You can think of Editor attributes on the analogy of a human
attribute, such as "Political Party Member". In contexts where you
apply this attribute to people, every person has a value for it. The

O values might be specified as REPUBLIC.AN, DEMOCRAT, WHIG, TORY, and so
on. Another possible value is NOT-A-MEMBER.

0

Similarly, every character in the Editor has a value for the attribute
"Whitespace". The possible values in this case are 1 and .0, which you
can think of as IS-WHITESPACE and IS-NOT-WHITESPACE, respectively.

To carry out a search by attribute, the Editor tests each character in
turn until it locates one that has a particular value for the
specified attribute. For example:

• To skip over whitespace to the next non-whitespace character,
the Editor searches for the next character with the value O
for the attribute "Whitespace" ..

• To find word breaks, the Editor searches for characters with
the value 1 for the attribute "Word Delimiter".

4-13

TEXT OPERATIONS

To find the next list in LISP code, the Editor searches for
the next character with the value :LIST-INITIATOR for the
attribute "LISP Syntax".

To search by attribute in the Editor, you call the function LOCATE
ATTRIBUTE. This section introduces:

• Using LOCATE-ATTRIBUTE

• Mark and cursor behavior in an attribute search

• Using LOCATE-ATTRIBUTE repeatedly

This discussion focuses on using DIGITAL-provided attributes and
attribute values. Information, on creating new attributes and on
changing attribute values appears in Chapter 6 and in Part II.

4.3.3.1 Using LOCATE-ATTRIBUTE - The function LOCATE-ATTRIBUTE is
used to locate a character with a particular attribute value. This
function is described in full in Part III of this manual. Its format,
with only a few of its parameters, is:

LOCATE-ATTRIBUTE mark attribute &KEY
:TEST
:DIRECTION

LOCATE-ATTRIBUTE scans the text in the specified di re-ct ion to find a
character with a particular value for the specified attribute. The
value of interest is one for which the specified test function returns
a non-NIL value. If such a character is found, LOCATE-ATTRIBUTE moves
the mark to point to that character. The default value for the
keyword argument :DIRECTION is :FORWARD; the default function used as

0

0

0

the :TEST is PLUSP.. o
For example, to find the next word delimiter in a region of text, you
could write:

(LOCATE-ATTRIBUTE (CURRENT-BUFFER-POINT)
"Word Delimiter"

· : TEST # 'PLUSP
:DIRECTION :FORWARD)

This form moves the current buffer point forward to the next character
whose "Word Delimiter" value is 1. The values are tested by passing
them to the predicate function PLUSP. PLUSP returns NIL if its
argument is O and T if its argument is greater than 0. The first
character whose "Word Delimiter" value is 1 satisfies the test, and Q
the search stops.

4-14

0

TEXT OPERATIONS

LOCATE-ATTRIBUTE behaves the same way when called
:BACKWARD, but the search direction is reversed.

(LOCATE-ATTRIBUTE (CURRENT-BUFFER-POINT)
"Word Delimiter"
:DIRECTION :BACKWARD)

with the argument

In this case, LOCATE-ATTRIBUTE moves the current buffer point backward
to the first character whose "Word Delimiter" value satisfies the
default test PLUSP.

To find the next character that is not a word delimiter, you change
the test function:

(LOCATE-ATTRIBUTE (CURRENT-BUFFER-POINT)
"Word Delimiter" 0 :TEST # 'ZEROP)

0

0

0

This form moves the current buffer point to the next character that
has the "Word Delimiter" value O. The function ZEROP returns non-NIL
only when its argument is 0.

4.3.3.2 Mark And Cursor Behavior - When using LOCATE-ATTRIBUTE to
move a mark, it is important to remember that marks point between
characters rather than to characters .. Depending on the direction of
the search, the modified (or "moved") mark points either just before
or just after the character that has satisfied the test. The screen
cursor, on the other hand, always appears on the character just after
the mark it is tracking (the current buffer point).

A mark's behavior in an attribute search is symmetrical
"mirror-image" -- forward and backward. The cursor's behavior is not
symmetrical.

For injtance, imagine that the
current buffer point in the
appears on K·.

following
position

text string contains the
between J and K; the cursor

ABCD EFGH IJ,Os!L MNOP QRST

ML0-250-86

Then call LOCATE-ATTRIBUTE (with its default arguments) to search
ahead for the first character with the value 1 for the attribute "Word
Delimiter".

(LOCATE-ATTRIBUTE (CURRENT-BUFFER-POINT) "Word Delimiter"),

4-15

TEXT OPERATIONS

The test succeeds at the space after L, and the search stops. The O
mark is left pointing just before the space and the cursor is on it.

r"'\
A B C D E F G H I Jt_fM N O P Q R S T

ML0-251-86

If you evaluate the form again, LOCATE-ATTRIBUTE does not move the
mark. It may appear, since the cursor is on the space, that the next
word delimiter is the space after P. However, the mark is actually
positioned just before the space indicated by the cursor. This
character satisfies the test. (The following section discusses how to
call LOCATE-ATTRIBUTE repeatedly.)

The backward-searching behavior of LOCATE-ATTRIBUTE is a mirror image
of its forward-searching behavior. The symmetry is apparent when you
consider mark positions, but less apparent when you consider only
cursor positions.

For instance:

(LOCATE-ATTRIBUTE (CURRENT~BUFFER-POINT)
"Word Delimiter"
:DIRECTION :BACKWARD)

A B C D E F G M N O P Q R S T

ML0-252-86

0

0

If the mark points, as before, between J and K, the first character to O
satisfy the test is the space between Hand I. Because the search
direction is backward, LOCATE-ATTRIBUTE moves the mark to the posi"tion
between the space and the I. The mark indicates the space character
to its left, but the cursor, which is always to the right of the mark,
stops on the I. (Compare this cursor behavior with the cursor
behavior when LOCATE-ATTRIBUTE searches forward.)

Again, LOCATE-ATTRIBUTE does not move the mark if called a second
time. The character that the mark is indicating is the space, which
satisfies the test.

4.3.3.3 Using LOCATE-ATTRIBUTE Repeatedly - Some higher level O
functions and commands may invoke LOCATE-ATTR?BUTE more than once.
For instance, WORD-OFFSET takes an optional count that indicates the-

4-16

0

0

0

0

0

TEXT OPERATIONS

number of word breaks to be located.
number of times specified.

It invokes LOCATE-ATTRIBUTE the

When you invoke LOCATE-ATTRIBUTE repeatedly, you need to consider the
cases where the mark is already indicating a character with the
attribute value in question. As shown above, LOCATE-ATTRIBUTE does
not move the mark when the first character in the specified direction,
satisfies the test.

It is necessary, therefore, to include a test of the mark's position
before invoking LOCATE-ATTRIBUTE. An example of such a test is the
following:

(DEFMACRO NEXT-CHAR-IN-WORD-P (MARK)
'(LET ((NEXT (NEXT-CHARACTER ,MARK)))

(AND NEXT
(ZEROP (THE FIXNUM (CHARACTER-ATTRIBUTE

"Word Delimiter" NEXT))))))

The macro NEXT-CHAR-IN-WORD-P tests whether the character after the
mark is part of a word, and thus not a word delimiter. That is, it
tests whether that character has the value O for the attribute "Word
Delimiter".

Using this test,
LOCATE-ATTRIBUTE:

you can now write a command that invokes

(DEFINE-COMMAND (CAPITALIZE-WORD~AND-TRAVEL-COMMAND
:DISPLAY-NAME "Capitalize Word and Travel")

(PREFIX)

ii Repeat the action if a prefix argument is supplied.

(DOTIMES (INDEX (OR PREFIX 1))

ii If the next character is a word delimiter, find the next
ii one after it that is not a word delimiter.

(UNLESS (NEXT-CHAR-IN-WORD-P (CURRENT-BUFFER-POINT))
(LOCATE-ATTRIBUTE (CURRENT-BUFFER-POINT)

"Word Delimiter"
:TEST #'ZEROP))

ii If the next character is not a word delimiter, capitalize
ii the word that contains it and move to the next word.,

(WHEN (NEXT-CHAR-IN-WORD-P (CURRENT-BUFFER-POINT))
(CAPITALIZE-WORD-COMMAND 1)
(FORWARD-WORD-COMMAND 1))))

4-17

TEXT OPERATIONS

4.4 MISCELLANEOUS TEXT OPERATIONS

The preceding sections have assumed that you are working with existing
marks. You can, however, create new marks when you are programming
text operations.

For some operations, you can also work with lines as text-containing
objects. Lines are sometimes less convenient to use than marks and
regions, but line operations may be more efficient to execute.

This section introduces the_ techniques of:

• Creating marks

• Operating on lines

4.4.1 Creating Marks

Marks are used primarily to indicate positions for insertions and
deletions in text. A single mark can indicate the position for an
insertion operation; a pair of marks can indicate a region of text to
be deleted or inserted.

The Editor supplies a number of marks automatically -- buffer points
and the marks that indicate the limits of buffer regions. If none of
these marks is suitable for the operation you want to perform, you can
create one or more new marks.

New marks are most often created by "copying" existing marks. Both
the function COPY-MARK and the macro WITH-MARK create a new mark that
indicates the same text position as a specified mark. You can also
specify the type of mark you want to create; a mark's type determines
its behavior in a text operation.

This section introduces:

• Mark types and their behavior

• Using COPY-MARK

• Using WITH-MARK

4.4.1.1 Hark Types And Their Behavior - Whenever you create a new
mark, you need to consider what becomes of. that mark after a text
operation is performed on it. Marks are of two basic types:

4-18

0

0

0

0

0

-0

TEXT OPERATIONS

• Temporary marks, which become invalid after any operation upon
them

• Permanent marks, which remain valid after any operation upon
them

Temporary marks are useful for one-time operations; after any
operation that affects the mark or the text to which it points, the
mark becomes invalid and should not be reused. Temporary marks are
more efficient than permanent marks for some applications because they
require less ovirhead to make and use.

Permanent marks remain valid after any operation on them, including
deletion of the text to which they point. For instance, the current
buffer point and the two marks that indicate the beginning and end of
text in a buffer are permanent marks. If you delete all the text in a

O buffer, these three marks (and any other permanent marks in that
buffer) continue to point into that (empty) buffer. Permanent marks
can be removed only with the function DELETE-MARK.

0

When you insert text at a permanent mark, the mark's behavior depends
on whether it is left-inserting or right-inserting:

• A left-inserting mark appears at the end of a new insertion.
That is, new text is inserted to the left of the mark. The
current buffer point and the buffer-end mark are permanent
left-inserting marks.

• A right-inserting mark appears at the beginning of a new
insertion. That is, new text is inserted to the right of the
mark. The buffer-start mark is a permanent right-inserting
mark.

You can specify the type of mark you want to create when you call

O COPY-MARK or WITH-MARK. Each takes an optional mark-type argument
which may be :TEMPORARY, :LEFT-INSERTING, or :RIGHT-INSERTING.

4.4.1.2 Using COPY-MARK - The function ·COPY-MARK creates and returns
a new mark that points to the same position as a specified mark.

COPY-MARK mark &OPTIONAL mark-type

For instance:

(COPY-MARK (CURRENT-BUFFER-POINT) :TEMPORARY)

This form creates a new temporary mark that specifies the same text Q position as the current buffer point.

4-19

. -------- - . -------- --- --------- ---- -----------. ---- -----

TEXT OPERATIONS

If no mark-type argument is specified, the new mark is of the same
type as the specified mark. In the following example, the new mark is Q
a permanent left-inserting mark (like the current buffer point).

(COPY-MARK (CURRENT-BUFFER-POINT))

COPY-MARK is often used in defining a region between· the current
buffer point and some other character position in the buffer. The
procedure is:

1. Indicate the position of the buffer point by placing a new
mark there.

2. Move the buffer point with any of the mark-moving functions.

3. Define a region from the new mark and the modified buffer
point. Q

For instance, to make a region from the current buffer point to the
end of a buffer, you could write: ,

(MAKE-REGION (COPY-MARK (CURRENT-BUFFER-POINT))
(BUFFER-END (CURRENT-BUFFER-POIN~)))

This form copies the current buffer point and then moves the buffer
point to the end of the buffer. It uses the copied mark and the
altered buffer point to define a region.

If you perform an operation on this region, both marks will remain
valid because both are permanen~ marks. For instance:

(DELETE-REGION
(MAKE-REGION (COPY-MARK (CURRENT-BUFFER-POINT))

(BUFFER-END (CURRENT-BUFFER-POINT)))

0

This form deletes all the text between the initial position of the Q
current buffer point and the end of the buffer. Both the buffer point
and the new mark are left pointing to the end of the buffer. However,
because DELETE-REGION returns NIL, you have no access to either the
new mark or the new region.

4.4.1.3 Using WITH-MARK - When you are programming text operations,
you may want to dispose of a new mark after it has.served its purpose.
In this situation, you can create the mark with the macro WITH-MARK.

WITH-MARK copies a mark and binds the new mark to a specified
variable. The ne~ mark can be of any.mark type; the default is
:TEMPO~RY. The variable can be referenced within the body of the Q
macro. Upon exit from the form, the mark is dele~ed and the variable
becomes unbound •

..___/

4-20

TEXT OPERATIONS

WITH-MARK is analogous to the COMMON LISP macro WITH-OPEN-FILE. Its Ouse guarantees that the overhead of creating a mark ends on exit from
the macro.

0

An example of the use of WITH-MARK follows. This form copies the
curfent buffer point for a file-insertion operation. Insertin~ a file
moves the current buffer point to the right and leaves it at the end
of the new insertion. If you want the current buffer point to end up
at the beginning of the new insertion, you could write:

;; Place a ·new right-inserting mark at the same position as the
;; current buffer point.

(WITH-MARK ((NEW-MARK (CURRENT-BUFFER-POINT) :RIGHT-INSERTING))

;; Insert the file at the current buffer point.

(INSERT-F_ILE-AT-MARK FILE (CURRENT-BUFFER-POINT))

;; Move the current buffer point back to the position of the
ii new mark.

(MOVE-MARK (CURRENT-BUFFER-POINT) NEW-MARK))

This form creates a new mark, bound to the variable NEW-MARK. Because

O NEW-MARK is right-inserting, it remains in its initial position when
you insert a file. The current buffer point, which is left-inserting,
moves to the end of. the new text. · After the insertion, the buffer -
point moves back to the position indicated by the new mark. When the
action is completed, NEW-MARK becomes unbound and the new mark is
deleted.

Q 4.4.2 Operating on Lines

A line is an Editor object that points to a string of characters. The
text string in a line normally corresponds to the line of text
displayed on- the screen. A line also contains pointers to the lines
that precede and follow it.

All text operations result, directly or indirectly, in the alteration
of lines or of their relative positions. For instance, marks point
into lines, and operations on marks alter the lines into which they
point. Also, the two marks that define a region point into the same
or different lines, and operations on the region alter the line or
lines that the region contains.

You may prefer, for reasons Q operations directly on lines.
of efficiency, to perform
These operations include:

some text

4-21

TEXT OPERATIONS

• Retrieving and altering the string of text in~ line

• Retrieving and altering a particular character

• Moving from one line to another

• Testing the relative positions of lines

Lines are created as a result
as reading files, breaking
examples, the variables LI~E,
to lines.

(side effect) of Editor operations such
lines, and so on. In the following

LINEl, and LINE2 are assumed to be bound

In A Line - The function 4.4.2.1 Retrieving And Altering The Text
LINE-STRING takes a line and returns
contained in ~hat line.

the string that is the text Q -
(LINE-STRING LINE)

This form returns the text in the specified lin_e as a string.

You can use S~TF with LINE-STRING to modify the text in a line.

(SETF (LINE-STRING LINE) "abcde")

This form accesses the text irt LINE and replaces it with abcde.

To change the string from abcde to ABCDE, you could write:

(SETF (LINE-STRING LINE) (NSTRING-UPCASE (LINE-STRING LINE)))

Note that you must use SETF to have the destructive
performed by NSTRING-UPCASE appropriately reflected in LINE.

operation

4.4.2.2 Retrieving And Altering A Single Character - The function
LINE-CHARACTER takes a line and an integer that indicates a character
position in that line. The character positions are numbered from the
left beginning with O. LINE~CHARACTER·returns the character in the
specified position (or NIL if no·character is found). You can use
SETF with this function to alter the specified character.

For example:

(SETF (LINE-CHARACTER LINE 4) #\W)

0

In this form, LINE-CHARACTER returns the character in position 4 in Q
LINE. - Setting that value to W changes the text string in LINE from
ABCDE to ABCOW.

4-22

0

TEXT OPERATIONS

You can break a line, and thus create
character with a newline character:

a new

(SETF (LINE-CHARACTER LINE 2) #\NEWLINE)

line, by replacing a

This form replaces the C in LINE with a newline character. The- result
of this operation is two lines, one containing the text AB and the
next containing the text DW.

4.4.2.3 Moving By Line - A line contains pointers to the lines that
precede and follow it. You can move from line to line by following
these links. LINE-NEXT and LINE-PREVIOUS take a line and return the
next line or the previous line (or NIL if no line is found).

Q For example, assume that LINEl is followed by LINE2. Then,

0

(LINE-NEXT LINEl)

(LINE-PREVIOUS LINE2)

;returns LINE2

;returns LINEl

4.4.2.4 Testing Relative Line Positions - To check the relative
positions of two lines, or to see if the two are the same line, you
use the functions LINE=, LINE<, LINE>=, and so on. These functions
are listed in Appendix A and described in full in Part III of this
manual.

For instance, the following form returns T only if LINEl follows
LINE2:

(LINE> LINEl LINE2)

O Because LINE2 is the second of the two lines in the example, this form
returns NIL.

0

4.4.2.5 Retrieving And Testing Mark Positions - Marks have be~n
introduced as objects that indicate positions in text. A mark
indicates a text position by pointing to a line and to an integer that
is a character position in that line. (Recall that character
positions are numbered from the left beginning with 0.)

You can determine a mark's position by means of the functions,
MARK-LINE and MARK-CHARPOS:

• MARK-LINE takes a mark and returns the line into which that
mark points.

4-23

-----------. ··--- -···- .. ···-···--···-·

TEXT OPERATIONS

• MARK-CHARPOS takes a mark and returns its character position, 0 that is, the number of characters to the left of the mark in
the same line.

To check the relative positions of two marks, you call a function such
as MARK=, MARK>, and so on. These functions are listed in Appendix A
and described in full in Part III of this manual.

4.4.2.6 Example Of An Operation On Lines - The following example
implements a function that performs a text operation directly on
lines. The new function, PREFIX-LINES, takes a string and a region;
it adds the specified string to the front of each line in the
specified region. This function could be used, for instance, to
indent text (by inserting a specified number of spaces at the
beginning of each line) or to indicate comments in any code (by Q
inserting the appropriate comment-delimiters and spaces).

(DEFUN PREFIX-LINES (STRING REGION)

" Adds the specified string to the beginning of each line
in the specified region."

;; Access each line in turn, beginning with the line that
;; contains the mark that starts the region.

(DO* ((LINE (MARK-LINE (REGION-START REGION))
(LINE-NEXT LINE)))

;; When LINE contains the mark that ends the region,
;; end the loop.

((OR (NULL LINE)
(LINE> LINE (MARK-LINE (REGION-END REGION)))))

;; Prefix each line with the specified string.

(SETF (LINE-STRING LINE)
(CONCATENATE 'STRING STRING (LINE-STRING LINE)))))

4-24

0

0

0

0

0

0

0

0

CHAPTER 5

WINDOW AND DISPLAY OPERATIONS

Whenever you enter the VAX LISP Editor and select a buffer, the Editor
makes a window onto that buffer and displays it on the screen. A
window is an Editor object that translates some portion of the text in
a buffer into a form that is displayable. Displaying the window makes
that text visible.

NOTE

Editor windows are similar to virtual displays in the
VMS screen management facility (SMG).* Creating a
window is a separate operation from displaying it, and
windows can exist without being displayed. As these
features suggest, Editor windows are quite different
from windows in traditional EMACS editors, where a
window is a section of the screen.

During an interactive session, the .Editor makes and displays windows
as a result of executing certain commands. For instance, you see a
window appear whenever you edit a file or function, select a buffer,
or execute "Help" or "Describe". Each of these windows is an Editor
object that includes certain information, such as its size, screen
position, display type (anchored versus floating), and the content and
position of its label. In LISP·code, you can alter the features of a
particular window, and you can program the Editor to make windows with
the features you specify.

When multiple windows are displayed, a display manager within the
Editor determines how they are arranged on the screen. Depending on
the number of windows and their display types, some windows may
overlap others, and some may be resized or repositioned on the screen.
In all situations, space at the bottom.of the screen is reserved for

* See VAX/VMS Run-Time Library Routines Reference Manual.

5-1

WINDOW AND DISPLAY OPERATIONS

the information area, which the Editor uses to report on
activities and to signal errors, and for the prompting window.

its

0
A few DIGITAL-provided Editor commands enable you to operate directly
on windows or to override the automatic display management. For
instance, you can resize, scroll, and split the window you are working
in; you can resize the display area or remove windows from it; and you
can move the cursor from one window to another. If you want to exert
finer control over window and display operations, you can use the
functions and other objects in the Editor's display subsystem to
implement new commands.

This chapter introduces the techniques of programming the Editor to
perform window and display operations. It also covers operations on
the display area (screen) and on the information area (a section of
the screen) .

The topics covered in this chapter are: 0
• Accessing windows

• Operations on a window's text content

• Operations on window appearance: video rendition and labeling

• Managing display, window size, and window screen position 0
• Making and deleting windows

Part III of this .. manual contains more detailed information concerning
the individual objects in the ·display subsystem_. An- extended example
at the end of this chapter (Section 5.6) illustrates the use of many
of these objects.

5.1 ACCESSING WINDOWS
0

Windows are not named Edi tor objects; that is, you can ac.cess an
Editor window only by means of an expression that evaluates to that
window object. This section introduces the functions that you use to
access some particular windows in LISP code;

• The current window

• The windows onto a buffer

• All the windows on the screen

• The "next" window on the screen

5-2

0

WINDOW AND DISPLAY OPERATIONS

Many of the examples in this chapter use these functions to access

O windows. Otherwise, the variables WINDOW, WINDOW!, WINDOW2, and so on
are assumed to be bound to Editor windows.

0

Recall that the symbols for DIGITAL-provided Editor objects must be
referenced in the "EDITOR" package.

5.1.1 The Current Window

Windows are always associated with buffers, and more than one window
can open onto a single buffer. One window onto the current buffer is
the current window. This is the window that contains the cursor; it
is the "active" window where text operations commands are executed.

The current window is returned by the function CURRENT-WINDOW, which
takes no arguments. You can use SETF with CURRENT-WINDOW to make
another window the current window:

(SETF (CURRENT-WINDOW) WINDOW2)

This form makes WINDOW2 the current window. If WINDOW2 is not already
displayed, the display manager makes it visible on the screen. The
buffer associated with WINDOW2 becomes the current buffer, and the o cursor moves to WINDOW2.

5.1.2 The Windows onto a Buffer

The function BUFFER-WINDOWS returns a list of the windows that open
onto a specified buffer. The list contains all ·windows onto that
buffer, including any that are not currently displayed.

QFor instance, another way to access the current window is:

(FIRST (BUFFER-WINDOWS (CURRENT-BUFFER)))

The current window is always the first element in the list of windows
onto the current buffer.

5.1.3 All the Windows on the Screen

The function VISIBLE-WINDOWS returns a list of all windows that are
currently displayed, regardless of ~hat buffers they open onto.
Visible windows are those that have been displayed but not removed.

O Even if a window is completely overlapped by other windows, it is
still considered "visible" and is in the list returned by
VISIBLE-WINDOWS.

5-3

WINDOW AND DISPLAY OPERATIONS

An example using VISIBLE-WINDOWS is the DIGITAL-provided ~ommand
"Remove Other Windows". This command checks each element of the list Q
returned by VISIBLE-WINDOWS to determine if that window is the current
window. (The current window may be anywhere on the list.) Each
window that is not the current window is removed from the screen by
means of the function REMOVE-WINDOW.

(DEFINE-COMMAND (REMOVE-OTHER-WINDOWS-COMMAND
:DISPLAY-NAME "Remove Other Windows")

(PREFIX)

II Removes all windows from the screen except the current
window."

(DECLARE (IGNORE PREFIX))

;; Display only the result of the operation, not intermediate
;; states.
(WITH-SCREEN-UPDATE

T)

(LET ((CURRENT (CURRENT-WINDOW)))
(DOLIST (WINDOW (VISIBLE-WINDOWS))

(UNLESS (EQ WINDOW CURRENT)
(REMOVE-WINDOW WINDOW)))))

5.1.4 The "Next" Window

The function NEXT-WINDOW returns a visible window other than the
current window (or NIL, if no other window is found). The format of
NEXT-WINDOW is:

NEXT-WINDOW &OPTIONAL window-type count

The sequence in which windows are accessed is undefined, except that
you can limit the search to windows of a given window-type. The
window-type argument :ANCHORED or :FLOATING causes NEXT-WINDOW to
return a window of that type (or NIL, if none is found). The default
argument T causes NEXT-WINDOW to return a window of the same type as
the current window; if no such window is visible, then NEXT-WINDOW
returns one of the opposite type. If only one window is displayed,
then NEXT-WINDOW with argument T returns.NIL (the prompting window is
not considered as a possible return value).

0

0

0

The optional count argument is an integer specifying the number of
windows to advance in the sequence to find the window to return. The
default count is 1. An argument of O returns the current window; a
negative argument advances through the sequence of windows in reverse Q
order.·

5-4

WINDOW AND DISPLAY OPERATIONS

If called repeatedly with the same arguments, NEXT-WINDOW returns the

O same window -- it does not advance through the sequence of windows.
However, you can circulate through all the displayed windows, or
through all those of a specified type, by repeatedly setting the

0

current window to the "next" window. This is the action of the
DIGITAL-provided command "Next Window", which moves the cu·rsor to
another. window on the screen. A possible implementation is:

(DEFINE-COMMAND (NEXT-WINDOW-COMMAND
:DISPLAY-NAME "Next Window")

(PREFIX)

" Switches the current window to be the next visible window
on the screen. If a prefix argument n is supplied, it goes
to the nth visible window~"

(SETF (CURRENT-WINDOW)
(NEXT-WINDOW T (OR PREFIX 1))))

Since the window-type argument to NEXT-WINDOW
circulates through all the visible windows
repeatedly.

is T, this command
when you execute it

The command "Previous Window" circulates in reverse order. Its
implementation is identical to that for "Next Window" except that the Q count argument to NEXT-WINDOW is negative:

(NEXT-WINDOW T (- (OR PREFIX 1)))·

5.2 WINDOW CONTENT

You can think of a window as a rectangular opening onto a portion of

O text in a buffer: the window opens onto a group of contiguous lines
and a maximum number of characters per line. That portion of text is
the "content" of the window. To view other text in the buffer -
either other lines or more characters per line -- you perform certain

0

operations on the window, not on the text.

The operations you can perform on window content are:

• Retrieving window position in the buffer, that is, determining
where in the buffer the window begins and ends

• Repositioning a window within a buffer, that is, "moving" a
window so that it contains different text lines

• Wrapping text within a window, that is, altering a window so
that it contains all the characters in text lines that extend
beyond the window

5-5

WINDOW AND DISPLAY OPERATIONS

Another way you can view text that overflows a window,· either in
length or in width, is to alter the dimensions of the window -- making Q
it highe~ or wider. However, depending on screen size, window type,
and the- number of windows to be displayed at once, the Editor's
display manager may limit or override a window's specified dimensions.
The techniques of resizi~g windows are covered in Section 5.4· below,
along with a discuision of display management~

5.2.1 Window Position in a Buffer

The portion of text included in a window is delimited by two marks.
These marks are returned by the functions WINDOW-DISPLAY-START and
WINDOW-DISPLAY-END; both take a window argument.

Like all marks (see Chapter 4, "Text Operations"), e~ch of these marks
indicates a character position in a buffer:

• The display-start mark points to the beginning (character
position 0) of the first line in the window.

• The display-end mark points just after th~ last character in
the window.

The text between these two marks is the portion of the
that the window translates into displayable form.

buffer's text

You can use the display-start and display-end marks is to indicate
text positions to which to move another mark. For instance, the
DIGITAL.:..supplied commands "Begi"nning of Window" and "End of Window"
move the current buffer point to coincide with the display-start mark
and the display-end mark, respectively, of the current window. A
possible implementation of' "Beginning of Window" is:

(DEFINE-COMMAND (BEGINNING-OF-WINDOW-COMMAND
:DISPLAY-NAME "Beginning of Window")

(PREFIX &OPTIONAL (MARK (CURRENT-BUFFER-POINT))
(WINDOW (CURRENT-WINDOW)))

"Moves the cursor to the beginning of the 6urrent window."

(DECLARE (IGNORE PREFIX))

(MOVE-MARK MARK (WINDOW-DISPLAY-START WINDOW)))

The code for "End of Window" can be the same except that it calls
WINDOW-DISPLAY-END.

0

0

0

You ca~not move a window to a·different position in the buffer by Q
moving the display-start and display-end marks. For the te'chniques of
moving windows, see Section 5.2.3 below.

5-6

WINDOW AND DISPLAY OPERATIONS

05.2.2 The Window Point

In addition to the display-start and display-end marks, each window
also contains a third mark called the window point. This mark is
created at the time the window is created, and you can access it by
means of the function WINDOW-POINT. The window point of a· window
always indicates a character position that is within the text
contained in the window.

When the window is current, its window point is the same mark as the
current buffer point. That is, the following form always evaluates to
T:

(EQ (WINDOW-POINT (CURRENT-WINDOW))
(CURRENT-BUFFER-POINT)).

QThe screen cursor, which is always visible in the current window,
tracks the position of this mark.

When the window is not current, its window point is not the same mark
as the buffer point of the associated buffer. Instead, the window
point indicates the last position occupied by the current buffer point
when the window was current. If the window becomes current again, the
buffer point (and therefore the cursor) move to the position indicated
by the window point.

QYou can move the window point by means of any of the mark-moving
functions described in Chapter 4. If you move the window point to a
text position that is not within the window, the Editor moves the
window so that it always contains the window point. For instance:

0

(BUFFER-START (CURRENT-BUFFER-POINT))

(BUFFER-START (WINDOW-POINT (NEXT-WINDOW T)))

Both these forms move the window point to the first text position in
the window's associated buffer. If this position is not within the
window, the window moves automatically so that it does contain this
text position:

• In the first form, the cursor remains visible in the current
window because the window content changes.

• In the second form, window content
you immediately make this window
at the new window-point position
buffer.

5-7

changes on the screen; if
current, the cursor appears
at ·the beginning of the

-----~-----------------------------

WINDOW AND DISPLAV OPERATIONS

5.2.3 Moving a Window in the Buffer ,

When the text in a buffer is longer (i.e, has more lines) than a O
window opening onto it, the window can be moved forward or backward
through the buffer. It appears that the text is moving past the
window, but in the VAX LISP Editor it is actually the window that is
moving.

As shown in the preceding section, you can cause a window to move
within the buffer by operating on its window point. You can also
operate directly on a windo~ to alter the portion of a buffer's text
that it opens onto. The two ways to move a window are:

• Scrolling, or moving line-by-line in the buffer

• Moving to a specified position in the buffer

5.2.3.1 Scrolling - The function SCROLL-WINDOW moves a specified
window within its buffer by a.specified number of rows. This action
changes the text line that appears in the first row of the window. A.
positive count argument to SCROLL-WINDOW indicate.s the number of rows
to move forward in the buffer; a negative count indicates backward
movement.

For instance:

(SCROLL-WINDOW (CURRENT-WINDOW) -20)

0

0

This form scrolls the current w1ndow backward through the text (text
moves down on the screen) for 20 rows. If ,this action moves the
window beyond the position indicated by the current buffer point, the
Editor automatically moves that mark to a position within the new
content of the window. The position of the updated mark is near the o
center of the window.

The window to be scrolled need not be the current window, of course.
For example:

(SCROLL-WINDOW (NEXT-WINDOW) 10)

This form scrolls the "next" window on the screen forward by 10 rows.
If this action moves the window beyond the position indicated by its
window point, then the Editor automatically moves that mark to
indicate a position within the new window content (again, near the
center of the window).

5-8

0

WINDOW AND DISPLAY OPERATIONS

5.2.3.2 Moving To A Specified Position - You can also move a window

O to a specified position within its associated buffer. The function
POSITION-WINDOW-TO-MARK moves a specified window to the line that
contains a specified mark. That is, the line containing the mark is

0

placed in the first row of the window.

For instance:

(POSITION-WINDOW-TO-MARK (CURRENT-WINDOW)
(REGION-START (BUFFER-REGION

(CURRENT-BUFFER))))

This form moves the current window to the beginning
buffer. The Editor automatically updates the
necessary to keep it within the window.

5.2.4 Wrapping the Lines in a Window

of the current
window point if

A window can be narrower (fewer characters per line) than the text it
opens onto. Windows always include the beginnings of lines; that is,
the display-start mark is always at character position O of the line
it indicates. Any lines that are longer than the width of the window
are, by default, truncated on the right.

OTo view text in positions beyond the width of the window, you cannot
move 'the window to the right. Instead, you set the window to "wrap"
text lines onto one or more additional window rows.

0

The function WINDOW-LINES-WRAP-P takes a window and
that window truncates lines or T if it wraps lines.
can change the behavior of a specified window:

(SETF (WINDOW-LINES-WRAP-P (CURRENT-WINDOW)) T)

(SETF (WINDOW-LINES-WRAP-P (CURRENT-WINDOW)) NIL)

returns NIL if
Using SETF, you

The first form causes the current window to wrap lines that are wider
than the window. The second form resets the current window to
truncate lines.

The above examples alter a particular existing window. If you want to
specify the line-handling behavior of newly created windows, you can
reset the value of the Editor variable "Default Window Lines Wrap".
Its possible values are T and NIL, which indicate wrapping and
truncating, respectively:

(SETF (VARIABLE-VALUE "Default Window Lines Wrap") T)

QThis form causes all newly created windows to wrap lines unless
otherwise specified.

5-9

WINDOW AND DISPLAY OPERATIONS

Truncation and wrapping in a window are indicated by certain
characters that appear at the end of an affected line. The default Q
characters are an underlined> for truncation and an underlined< for
wrapping. You can change these characters for a specified window
using the functions WINDOW-TRUNCATE-CHAR and WINDOW-WRAP-CHAR. Both
these functions take a window and return a character, and both· can be
used with SETF:

(SETF (WINDOW-TRUNCATE-CHAR WINDOW1) #\+)

(SETF (WINDOW-WRAP-CHAR WINDOW2) #\I)

Assuming that WINDOW1 is set to truncate, the first .form establishes
an underlined + as the character that signals that a line has been
truncated. Assuming that WINDOW2 is set to wrap, the second form
establishes an underlined I to signal wrapping.

To change the truncation or. wrapping characters in newly created
windows, you can reset the Editor variables "Default Window Truncate
Char" and "Default Window Wrap Char". For example:

(SETF (VARIABLE-VALUE "Default Window Truncate Char") #\+)

(SETF (VARIABLE-VALUE "Default window Wrap Char") #\I)

0

The underlining is a special video rendition of the selected Q
characters; you cannot change this feature. On terminals without
advanced video capabilities, the characters appear in reverse video.
instead of underlined.

5.3 WINDOW APPEARANCE

Window ·appearance refers to the "look" of a window when it is Q
displayed: its video rendition and whether it is bordered and
labeled. All these features are included in the window object itself.
You can change a window's appearance by using the functions·and
variables introduced in this section.

Most windows that the Editor creates are shown with no special video
rendition they share the video ~etting (dark-on-light or
light-on-dark) of the terminal or other display device. The window
onto the "Help" buffer, however, is shown in bold. Depending on the
video capabilities of your display device, you can specify that .a
window be shown in reverse video (the reverse of terminal setting) or
that the text in the window appea·r bold, underlined, or blinking .. ·

You can see all these video options on a VT200-series terminal, an AI
VAXstation, and on VT100-series terminals with the Advanced Video Q
Option~ For the video rendition capabilities o(foreign terminals
that are supported by the VAX LISP Editor, consult your terminal
manual.

5-10

0

0

0

0

0

WINDOW AND DISPLAY OPERATIONS

You can also specify the video rendition of a
special rendition of a region can be either:

region of text. The

• Relative to the window that contains the region for
instance, bold if the window is not bold and vice versa

• Absolute -- for instance, always bold or always not bold,
regardless of the window rendition

Finally, you can specify whether a window is to have borders and a
label when it 'is displayed. You can also determine the content of a
window's label, the label's position on the window, and the label's
video rendition.

This section introduces the techniques of:

• Altering window rendition

• Making highlight regions

• Operating on window labels and borders

5.3.1 Altering Window Rendition

The function WINDOW-RENDITION takes a window and returns a keyword or
a list of keywords that define the video characteristics of that
window when it is displayed. The keywords are :NORMAL, :BLINK, :BOLD,
:REVERSE, and :UNDERLINE.

You can use SETF to change the rendition of a specified window to one
or more of the possible values. For instance: ·

Or,

(SETF (WINDOW-RENDITION (CURRENT-WINDOW)) :UNDERLINE)

(SETF (WINDOW-RENDITION (NEXT-WINDOW :FLOATING))
'(:REVERSE :BLINK))

The first form changes the rendition of the current window to
underlined. The second form alters the "next" floating window on the
screen to reverse video (the reverse of the terminal setting) with
blinking.

You can also specify the default window rendition features
created windows, including those that the Editor
automatically. To do so, you set the value of the Editor
"Default Window Rendition" to the desired keyword or list of

5-11

of newly
creates

variable
keywords:

WINDOW AND DISPLAY OPERATIONS

(SETF (VARIABLE-VALUE "Default Window Rendition"
'(:BUFFER "Help"))

:REVERSE)

This buffer-local binding causes all newly created windows onto the
"Help" buffer to have the rendition value :REVERSE unless otherwise
specified. (The global binding of this variable in the Editor as
provided is :NORMAL.)

Recall that removing a window from the screen does not delete the·
window object. If a window onto the "Help" buffer already exists,
changing the value of "Def~ult Window Rendition" does not affect ~he
rendition of that window.

5.3.2 Making Highlight Regions

Sometimes you might want to alter the rendition of a particular block
of text in a window, rather than the entire window. For example, the
select regions that the Editor makes in "EDT Emulation" and "EMACS"
styles are shown in reverse video (the reverse of the window).

0

0

To alter the rendition of a block of contiguous text, you use the
function MAKE-HIGHLIGHT-REGION. This function is similar to
MAKE-REGION (described in Chapter 4) except that it allows you to o·
specify the video rendition that the region will have when a window
containing it is displayed. Highlight regions can be used and treated
like any other Editor region, and all the region-manipulating
functions operate on them.

The format of MAKE-HIGHLIGHT-REGION is:

MAKE-HIGHLIGHT-REGION start end &OPTIONAL set complement

Like MAKE-REGION, MAKE-HIGHLIGHT-REGION takes two marks that indicate O
the text positions where the region begins and ends. If you do,not
supply optional arguments, the function makes a region with no special
video features.

The optional set and complement arguments specify the rendition
feature or features that you want the region to have. They can be any
of the keywords :BOLD, :BLINK, :REVERSE, or :UNDERLINE, or a list of
these keywords. (The default for both is NIL.) In deciding whether
to provide a set argument, a complement argument, or both, you need to
consider the desired rendition of the region in relation to the
rendition of the window where the region will be displayed.

You can think of a set argument with no complement argument as turning
"on" the specified feature in a highlight region. The region will Q
have that video feature regardless of the rendition of the window that
contains the region.

5-12

0

0

0

0

0

WINDOW AND DISPLAY OPERATIONS

For instance:

(MAKE-HIGHLIGHT-REGION MARKl MARK2 :REVERSE)

This form makes a reverse-video region of the text between the two
specified marks. If this region is displayed in a reverse-video
window, then no difference will be apparent between the region and the
other text in the window -- all text in the window will appear in
reverse video. If this region is displayed in a blinking window, then
all the text in the window will blink, including that in the highlight
region. (In the latter case, the region will be distinguished from
the other te~t by its reverse video.)

You can achieve finer control over the video rendition
regions by providing a complement argument, either
conjunction with a set argument.

of highlight
alone or in

You use the complement parameter alone if
contrast with the window rendition on
features but to share the window's value
features. For instance:

you
the
for

want the
specified
any other

region to
feature or
rendition

(MAKE-HIGHLIGHT-REGION (COPY-MARK (CURRENT-BUFFER-POINT)
:RIGHT-INSERTING)

(CURRENT-BUFFER-POINT)
NIL :REVERSE)

This form is essentially the definition of the select regions that the
Editor makes. The form makes a new right-inserting mark at the same
position as the current buffer point and then makes a highlight region
from that mark and the buffer point. If you then move the buffer
point, the text in the region between the two marks is always shown in
reverse video with respect to the window that contains the region.
That is, if the window is dark-on-light, the region is light-on-dark,
and vice versa. The region shares any other special video
characteristics of the window -- bold, blink, or underline. (Note
that moving one of the region-defining marks causes the display of the
region to track the mark's po~ition.)

If, on the other hand, you want the highlight region not to share
specified rendition features that a window might happen.to have -- in
this example, the bold, blink, and underline -- you use the set and
complement parameters in conjunction. You can think of the complement
argument as turning "off" a video feature that is turned "on"
elsewhere -- either in the set argument or in the window that contains
the region.

For instance:

(MAKE-HIGHLIGHT-REGION MARK1 MARK2
'(:BOLD :BLINK :UNDERLINE)
'(:BOLD :BLINK :UNDERLINE :REVERSE))

5-13

WINDOW AND DISPLAY OPERATIONS

In this form, the :REVERSE value of the region "complements" the value
of the window for this feature, as in the form above. The other three o
features are turned "on" by the set argument, but then turned "off" by
the complement argument. They remain "off" regardless of window
rendition; that is, if this region is displayed in a blinking window,
the text in the highlight region does not blink.

Like any regions,
contained within
rendition of the
unpredictable.

highlight regions can overlap or one can be
another. The effect of overlapping on the video
text shared between the regions is, however,

To remove the highlighting of a region, you use the function
REMOVE-HIGHLIGHT-REGION. This function takes a highlight region and
deletes the region object. The text in the region is not affected by
this operation, but its special video rendition is removed.

If you use the normal region-deleting functions,
DELETE-AND-SAVE-REGION with a highlight region,
from the region but the highlight region remains.
text into the region, it will be displayed
rendition features of the region.

DELETE-REGION and O
the text is removed

5.3.3 Operations on Window Labels and Borders

If you insert new
with the specified

Editor windows can have borders on all four sides and a label on one
of these borders. A border is a solid line that surrounds the
text-displaying area of the window. The border occupies the screen
rows above and below the window's text area and the screen columns to
the right and left of the text area. A window label is a string of
text that overlays part or all of one of the window borders.

0

Most windows that the Editor makes have borders and labels. However, 0
depending on window size, window type,. and the number of windows on
the screen at once, one or more of the borders -- including the one -
with the label -- may "spill off" the display area or be obscured by
another window. Nonvisible borders and labels still exist- as part of
the window object, however, and they might be made visible under other
display circumstances. In contrast, the prompting window, which
appears near the bottom of the screen, has no borders and no label.

This section introduces the functions and Editor variables that enable
you to perform operations on window borders and labels. Section
5.4.2.4 below identifies the circumstances under which a border or
label may be obscured when a window is displayed.

5-14

0

WINDOW AND DISPLAY OPERATIONS

oome operations you can perform on window borders and labels are:

Adding and removing borders and labels •
• Specifying label content

• Specifying label position

• Specifying label rendition

5.3.3.1 Borders, Labels, And Label Content - The function
WINDOW-LABEL takes a window and returns either a string, a function,
or NtL. The value returned indicates whether the specified window has
borders, whether it has a label, and, if it has a label, what text

Cthat label contains.

You can use SETF with WINDOW-LABEL to alter any of these features for
a specified window. That is, you can add_or remove borders, add or
remove a label, and specify label content for an existing window. The
meaning of each of possible return values of WINDOW-LABEL is shown in
the following examples.

If you supply the value NIL, the specified window then has no
c·md no label:

borders

(SETF (WINDOW-LABEL WINDOWl) NIL) ; WINDOWl has no borders
and no label.

If you supply a null ~tring (""), the window th~n has borders but no
label:

0
(SETF (WINDOW-LABEL WINDOW2) "") ; WINDOW2 has borders but

; no label.

If you specify label content, then the window has borders and a label
with the content specified. One way to specify label content is to
specify the actual string that you want to label to contain:

(SETF (WINDOW-LABEL WINDOW3) "String") ; WINDOW3 has borders and
; a label that contains
; the specified string.

It is usually more useful, however, to have window label contents vary
according to the buffer the window opens onto. The label can say, for
instance, the name of the file or function being edited in the buffer,
and it can list the styles active in the buffer. To achieve this, you
specify a function that returns a strin.g; the string becomes the

owindow label.

5-15

WINDOW AND DISPLAY OPERATIONS

For instance, the following DEFUN form defines a simple function namedo
LABELER, which returns a string. LABELER is then used with SETF and
WINDOW-LABEL in a form corresponding to those shown above:

(DEFUN LABELER (WINDOW)
(LET ((BUFFER (WINDOW-BUFFER WINDOW)))

(FORMAT NIL "LISP EDITOR -A"
(BUFFER-NAME BUFFER))))

(SETF (WINDOW-LABEL WINDOW4) #'LABELER)

LABELER invokes WINDOW-BUFFER to access the buffer object associated
with the specified window and BUFFER-NAME to find the name of that
buffer. LABELER returns a string that looks like "LISP EDITOR
Name-of-Buffer". The SETF form labels WINDOW4 with the string
returned by LABELER for that window.

The above examples all deal with alterations to a single existingO
window. By resetting the -value of the Editor variable "Default Window
Label", you can make corresponding specifications for newly created
windows. For example:

(SETF (VARIABLE-VALUE "Default Window Label". :GLOBAL) 'LABELER)

The possible values of "Default Window Label" -- NIL, a null string, a
string, or a function -- have the same meanings that they have aso
return values of WINDOW-LABEL. (Note that the function LABELER in
this example is set to the value slot of the variable.) In the Editor
as provided, the value of this variable is set to different functions
in "EDT Emulation" style ·and "EMACS" style.

5.3.3.2 Label Position - For a given window that has a label, you can
specify which border the label is on and where on the border the labelo
is placed. The relevant functions are WINDOW-LABEL-EDGE and
WINDOW-LABEL-OFFSET.

In deciding-where to place window labels, you need to consider whether
the border you choose will be visible when the window is displayed
and, if so, whether the entire label will be visible on the border.
For instance, the top borders of anchored windows are never visible; a
label placed on that border can never be seen. Or, a floating window
that spills off the screen on the right may "lose" the end of a label
that is placed on its top or bottom bqrder. These considerations are
outlined in the Section 5.4 on display management.

WINDOW-LABEL-EDGE takes a window and returns the border
window's label appears. The possible values are :TOP,
and :RIGHT. You can use SETF with this function
placement of the label:

5-16

on which that
:BOTTOM, :LEFT,
to alter theo

0

0

WINDOW AND DISPLAY OPERATIONS

(SETF (WINDOW-LABEL-EDGE WINDOWl) :TOP)

Assuming that WINDOWl has a label, this form places the label on the
top border of WINDOWl.

The function WINDOW-LABEL-OFFSET, used with SETF, allows you to
specify where on a border the label is to appear. The value NIL
causes the label to be centered on the border; a nonnegative integer
value indicates how many character positions the label is offset from
the beginning of the border.

For instance, to center the label of WINDOWl (which the previous
example placed on that window's top border), you would write:

(SETF (WINDOW-LABEL-OFFSET WINDOWl) NIL)

To place a label flush left (if it is on a top or bottom border) or to
make the label begin at the top of a side border, you would write:

(SETF (WINDOW-LABEL-OFFSET WINDOW) 0)

The above examples all deal with label placement in a single existing
window. To change the default label placement in windows created in
the future, you use the Editor variables "Default Window Label Edge" O and "Default Window Label Offset". The global bindings of these
variables in the Editor as provided are :BOTTOM and NIL, respectively.
Thus, window labels appear centered ·on the bottom border of a window
unless otherwise specified.

5.3.3.3 Label Rendition - For a given window that has a label, you
can retrieve and alter the video rendition of that label. The

O function WINDOW-LABEL-RENDITION takes a window and returns one of the
keywords :NORMAL, :REVERSE, :BLINK, :BOLD, or :UNDERLINE, or a list of
those keywords.

The rendition of a window label is an absolute value that is not
relative to the rendition of'the window itself. For instance, the
rendition of a reverse-video label is always the reverse of the
terminal setting (light-on-dark or dark-on-light), regardless of
whether the window rendition is normal or reverse. A window label set
to blink will always blink, regardless of whether the window also
blinks.

WINDOW-LABEL-RENDITION is acceptable to SETF:

(SETF (WINDOW-LABEL-RENDITION WINDOW) :UNDERLINE)

Q This form underlines the label of WINDOW.

5-17

WINDOW AND DISPLAY OPERATIONS

To change the default rendition of the labels of newly created
windows, you reset the value of the Edi tor variable "Default WindowQ
Label Rendition". The possible values are any of the keywords listed
above, or a list of those keywords. The global binding in the Editor
as provided is :REVERSE.

5.4 DISPLAY MANAGEMENT

Once a window exists as an.Editor object, you can cause it to become
visible on the screen. You can also remove a window from the screen
without destroying the window object, and you can redisplay that
window at any time. Each window object contains information
concerning its size and the screen position it occupies when it is
displayed.

However, the Editor's display manager retains control over
display-related decisions. The Editor guarantees, for instance,
the display area is always filled, and that anchored windows do
obscure eac~· other's text content. The display manager
reposition, resize, and even remove some windows from the screen
order to meet these requirements.

manyO
that
not

will
in

Within the constraints set by the display manager, you have
considerable .freedom to determine the total appearance of the screen: Q
the size of the display area, the number of windows displayed, and the
size and screen positions of some individual windows.

This section introduces the following sets of techniques, each in
conjunction with the constraints set by the Editor's automatic display
management:

• Operations on the display area -
area and the prompting window

including the information

• Window types and their behavior visibility, size,
screen position as they relate to a window's display type

•·Displaying windows and removing windows from the display

5.4.1 The Display Area

and

The Editor's display area is the total space available on your display
device for showing Editor windows and the information area. On VT100-
and VT200-series terminals, the display area is, by default, the full
terminal screen. Both these terminal screens are 24 rows in height,
and both permit screen widths of 80 or 132 columns.*.

5-18

0

0

0

0

0

0

0

WINDOW AND DISPLAY OPERATIONS

The AI VAXstation permits an Editor dispiay area of up to 66 rows by
167 columns. The Editor display area provided by default on the AI
VAXstation is 50 rows by 80 columns.

You can think of the display area as an x-y coordinate system. You
u~e these coordinates to specify the screen positions at which windows
are displayed. Both the columns (x coordinate) and the rows (y
coordinate) are numbered from the upper left corner beginning with 1
(see Figure 5-1).

....
a,
.c
E
:::,
c:
;:
0
II
>

{ x=1
y=1

y=24

x=column number

Figure 5-1: Display Area Coordinates

x=BO }
or

x=132

ML0-253-86

You have some latitude to alter the dimensions of the Editor's display
area, and thus the total screen area available for Editor-related
displays. Within this total area, the Editor always reserves some
space for the information area and for the prompting window. The
space that remains in the display area after the prompting window and
the information area are accounted for is the total space available
for displaying other windows.·

This section introduces the following concepts and techniques:

• Display area dimensions - retrieving and altering the height
and width of the display area

• The reserved display area - operating on the information area
and the prompting window

• The available display area - displaying and removing other
Editor windows

5-19

/

WINDOW AND DISPLAY OPERATIONS

5.4.1.1 Display Area Dimensions - The functions SCREEN-HEIGHT and Q
SCREEN-WIDTH return integers that are the number of rows and columns,
respectively, in the display area. The dimensions returned are not
necessarily those of the screen. By default, the display area
occupies the full screen on DIGITAL terminals, but you can use SETF
with SCREEN-HEIGHT and SCREEN-WIDTH to alter either dimension:

(SETF (SCREEN-HEIGHT) 20)

(SETF (SCREEN-WIDTH) 60)

If you execute these two forms, the display area is reduced to the
dimensions shown in Figure 5-2:

Jx=1
ly=1

ML0-254-86

Figure 5-2: Altered Display Area Dimensions

The coordinate numbering does not change when you change the
dimensions of the display area. The rows and columns that become
unavailable are those at the bottom and on the right. The upper left
corner of the display area still corresponds to the upper left corner
of the screen, and the upper left position is still designated as 1,1.

You cannot make the display area
supply a value in either of the
the maximum screen dimension, the
the maximum screen dimension.

larger than the screen. If you
above SETF forms that is larger than
display area dimension is altered to

0

0

0

* For screen sizes of foreign- (non-DIGITAL) terminals supported by the Q
VAX LISP Editor, consult your terminal manual.

5-20

WINDOW AND DISPLAY OPERATIONS

-

O
You can, however, use SETF with SCREEN-WIDTH to alter the width
setting of the screen on DIGITAL terminals; the width setting can be
either 80 columns ("normal") or 132 columns ("wide"). Widening the
screen makes more columns available for the Editor's display area.
Note that if your terminal does not have the Advanced Video Option,
widening the screen limits screen height to 12 rows.

Suppose that your terminal is set to the "normal" width of 80 columns.
Then execute:

(SETF (SCREEN-WIDTH) 120)

This form resets VT100- and VT200-series
132 columns; at the same time, it makes
as the display area. The 12 right-most
blank.

terminals to "wide" width
120 of those columns available
columns of the screen will be

O On the AI VAXstation, this form simply sets to display area
120 columns out of the 167 columns available on the screen.

width to

0

With the AI VAXstation, you can adjust display area dimensions before
the Editor is started (using SETF with SCREEN-HEIGHT or SCREEN-WIDTH).
When you start the Editor, its display area will be the size you
specified. Performing such operations on a VT100- or VT200-series
terminal before the Editor is started produces no effect.

5.4.1.2 The Reserved Display Area - The Editor always reserves some
part of the total display area for the information area and the
prompting window. The information area is always at the bottom of the
display area, and the prompting window is always just above the
information area. By default, both these areas are the full width of
the display area, and each is 1 row in height.

OThe information area is managed directly by the Editor's display
manager, which uses it to display error messages and to report on
Editor activity. The information area is not an Editor window, and
none of the window-related functions operate on it. You cannot delete
the information area, and no Editor windows can overlap it. It is,
therefore, an area of guaranteed visibility within the display area.

0

You can, however, increase the space alloted for the information area,
and you can direct output to it.

The function INFORMATION-AREA-HEIGHT returns the height (in screen
rows) of the information area. Using SETF, you can increase the
height to more than 1 row, but you cannot decrease it to O rows.

To direct output to the information area, you can use the LISP global
variable *INFORMATION-AREA-OUTPUT-STREAM*. This va~iable is bound to
an output stream that is directed to the information area. You can

5-21

WINDOW AND DISPLAY OPERATIONS

use the variable as the stream argument to any of the LISP functions
that take a stream, such as WRITE-STRING, FORMAT, or PRINC. For
example:

(WRITE-STRING "Operation completed. "
INFORMATION-AREA-OUTPUT-STREAM)

Some other functions that operate on the information area are
CLEAR-INFORMATION-AREA, which removes any current text, and
EDITOR-ERROR, which directs error messages to the information area.
EDITOR-ERROR is discussed in Chapter 2 of this manual.

The prompting window is also permanently displayed. The full
prompting area consists of a small section of the screen where prompts
are displayed, followed on the same row by an Editor window where user
input is displayed. By default, the full prompting area is 1 row in
height and the full width of the display area.

Although the prompting window is an Editor window, some of the
window-related functions do not operate on it. The display manager
ignores any attempt to remove this window from the screen, to
reposition it on the screen, or to overlap it with another window.
Thus, the prompting area is also an area of guaran~eed visibility.

You can, however, alter the appearance
using the functions described in the
area where prompts are displayed is not
prompting window.)

of the prompting window by
previous section. (The screen
affected by operations on the

To alter the video rendition of the prompting window, you might write:

(SETF (WINDOW-RENDITION
(FIRST (BUFFER-WINDOWS

(FIND-BUFFER "General Pr6mpting"))))
:REVERSE)

This form alters the rendition of the prompting
video. The rendition of the area where prompts
altered by resetting the Editor variables "Prompt
"Prompt Rendition Complement" (see Part III).

window to reverse
are displayed can be
Rendition Set" and

You can also alter the dimensions of the prompting window, in the same
way that you resize other windows. See Section 5.4.2.2 for the
techniques of resizing windows.

The screen space -- number of rows -- that you have allotted to the
prompting window and the information area is always reserved for them,
and thus not available for displaying other windows.

5-22

0

0

0

0

0

()

()

()

WINDOW AND DISPLAY OPERATIONS

5.4.1.3 The Available.Display Area - Whatever space is not reserved
for the information area and the prompting window is the "available"
display area. This is the area you use to display Editor windows, and
its dimensions constrain your decisions on sizing and positioning
windows if you do not want them to overlap one another or overflow the
screen.

In the following sections on displaying, sizing, and positioning
windows, the term display area should be taken to mean the available
display area.

5.4.2 Window Types and Their Be_havior

There are two types of Editor windows: anchored and floating. The
Editor normally provides anchored windows for ordinary text editing.
Floating windows are used for displaying information or for other
special purposes. For instance, the windows onto the "Help" and
"General Prompting" buffers are floating windows.

-

The content and appearance of a window are not ~ffected by the display
type of that window. The distinction between the two types lies in
how they are treated in display management. This section outlines the
effect of window type on three aspects of display management behavior:

• Whether a window overlaps or i_s overlapped by other windows

e Sizing or resizing a visible window

• Positioning or repositioning a window in the display area

You can access or change the type of a specified window. The function
WINDOW-TYPE takes a window and returns a keyword, which can be either

() :ANCHORED or :FLOATING. Using SETF, you can change the window's type:

()

(SETF {WINDOW-TYPE WINDOW) :FLOATING)

The Editor variable "Default Window Type", which specifies the default
type of newly created windows, can be set to either of these keywords.
In the Editor as provided, the default window type is :ANCHORED.

In the examples that follow, the variable ANCHORED-WINDOW is assumed
to be bound to an anchored window, and FLOATING-WINDOW is assumed to
be bound to a floating window.

5.4.2.1 Display Behavior By Window Type - The
between anchored and floating windows lies in
overlap, or be overlapped, by other windows:

5-23

major difference
whether they can

WINDOW AND DISPLAY OPERATIONS

• A floating window can overlap or completely obscure any other Q
window in the available display area, either anchored or
floating.

• An anchored window never obscures the text area of another
window, either anchored or floating.

When a floating window is displayed, it appears in the size and at the
screen position contained in the window object. Any other windows
that occupy any part of that space are overlapped.

If more than one anchored window is displayed at once, the display
manager moves and resizes them as necessary so that no text is
obscured. The size and screen position contained in the window object
are ignored.

The Editor's display rules concerning window size and screen position
follow from this basic rule concerning window overlaps. Thus,
automatic display management relates to anchored windows only;
floating windows, which need not avoid overlaps, are under the user's
control and not subject to automatic resizing and repositioning.

5.4.2.2 Window Size And Display Behavior - Each window object has
height (number of rows) and width (number of columns). You can
retrieve and alter these features in any window, but it is only in
floating windows that the features have significance.

You can access window dimensions with the functions WINDOW-HEIGHT and
WINDOW-WIDTH, and you can use SETF to alter these dimensions:

(SETF (WINDOW-HEIGHT FLOATING-WINDOW) 12)

(SETF (WINDOW-WIDTH FLOATING-WINDOW) 40)

These forms alter the specified floating window to be 12 rows
height and 40 columns wide. The dimensions of a window refer to
text area only; if the window has borders, the borders occupy
additional rows and 2 additional columns outside the text area.

in
the

2

The minimum size for a floating window is 1 row by 2 columns. If you
attempt to alter either dimension to less than the m1n1mum, an error
is signaled. If you make either dimension larger than the available
display area, the window will overflow the display area to the right
or to the bottom.

0

0

0

For anchored windows, the dimensions contained in a window object are
ignored by the Editor's display manager. An anchored window always
occupies the full width of the display area. The window's height Q
depends- on how many anchored windows are visible at once.

5-24

0

0

0

0

0

WINDOW AND DISPLAY OPERATIONS

If an anchored window is the only anchored window displayed, its text
area occupies the full height of the available display area, minus 1
row for the window's bottom border, if any. (The top and side borders
of anchored windows are always obscured.) You cannot adjust the
height of an anchored window when it is the only anchored window on
the screen.

If two or more anchored windows are displayed at once, the Editor
automatically adjusts their heights to be about equal. You can
override thi~ adjustment for a specified window by means of the
function ALTER~WINDOW-HEIGHT. This function takes a window and a
positive or negative integer that is the number of rows by which to
adjust the window's height. (The argument window need not be visible
at the time the form is evaluated, and it can be either an anchored or
a floating window.) The integer argument specifies a change in size,
rather than an absolute size as does the return value of WINDOW
HEIGHT.

(ALTER-WINDOW-HEIGHT ANCHORED-WINDOW -2)

This form makes the specified anchored window, when displayed with at
least one other anchored window, two rows -horter than the height
determined by the display manager. The display manager adjusts the
height of any other visible anchored windows to accommodate the
altered height of the argument window and still fill the display area.

The minimum height to which you can adjust an anchored window is 1 row
of text area. (If the window is bordered, a second screen row is
reserved for the bottom border.) The maximum height is determined by
the rule that no anchored window can obscure another's text. The
argument window cannot be made so high that another visible anchored
window would be reduced to less than 1 text row (or two screen rows if
bordered). If the integer argument to ALTER-WINDOW-HEIGHT violates
these rules, then the Editor adjusts the argument window only as much
as possible.

5.4.2.3 Window Position And Display Behavior - Editor windows contain
information on the screen position at which they are to be displayed.
Display position is specified as the x-y coordinates of· the screen
position occupied by the top-left character in the window. (Recall
that the x-y coordina-te numbering of the screen and the display area
begin at the same point in the upper left corner.)

You can retrieve the screen position of a specified window by means of
the functions WINDOW-DISPLAY-COLUMN and WINDOW-DISPLAY-ROW. (The
argument window need not be currently visible.)

(WINDOW-DISPLAY-COLUMN WINDOW)

(WINDOW-DISPLAY-ROW WINDOW)

5-25

WINDOW AND DISPLAY OPERATIONS

If these forms return ·10 and 5, respectively, then the upper left Q
corner of the window's text area is displayed at column 10, row 5 of
the display area (see Figure 5-3). If the window is bordered, the
borders lie outside this position.

J x=l
1 y=l

....... ---- BORDER -
x=9 t
y=41

a:
w
c
a:
0
co

, _

J x=10
l y=5

Figure 5-3: A Window Display Position

WINDOW

ML0-255-86

As with window size, the values that indicate window display position
are significant only for fl.eating windows. Anchored windows are
always displayed beginning in column 1. The display row position of
an anchored window is determined by the display manager.

0

0

You can alter the display position of a floating window by means· of
the function MOVE-WINDOW. MOVE-WINDOW takes a window and a row and Q
column to which to move the upper left corner of that window's text
area:

(MOVE-WINDOW FLOATING-WINDOW 8 25)

This form alt"e·rs the floating window's values for display row and
display column to those specified. If the window is displayed, it
moves to that position; if the window is not displayed, it appears at
that position when it is next displayed.

An example using MOVE-WINDOW is a function MY-MOVE-WINDOW·-VERTICALLY.
This function moves a window's display row by the number of rows
specified, or by fewer rows if the specified offset value would result
in spilling the window (or its border) off the display area. Its code
is:

5-26

0

0

0

0

0

WINDOW AND DISPLAY OPERATIONS

(DEFUN MY-MOVE-WINDOW-VERTICALLY (WINDOW OFFSET)

;; Compute the new display row.
(LET ((NEW-ROW

(+ (WINDOW-DISPLAY-ROW WINDOW) OFFSET)))

;; Move the window to the display row, or as far as possible
;; without overflowing. Retain the window's display column.
(MOVE-WINDOW WINDOW

(MIN (MAX NEW-ROW 1)
(- (SCREEN-HEIGHT) (WINDOW-HEIGHT WINDOW)

(IF (WINDOW-LABEL WINDOW)
1
0)))

(WINDOW-DISPLAY-COLUMN WINDOW))))

use this functiorr in an Editor command, you could write:

(DEFINE-COMMAND (MY-MOVE-WINDOW-UP-COMMAND
:DISPLAY-NAME "My Move Window Up")

(PREFIX)

" Moves the current window up one or more rows, without
spilling it off the screen. Cannot be used with
anchored windows."

(IF (EQ (WINDOW-TYPE (CURRENT-WINDOW) :FLOATING))
(MY-MOVE-WINDOW-VERTICALLY (.CURRENT-WINDOW)

(- (OR PREFIX 1)))
(ATTENTION)))

You could write a similar function to move a window horizontally, and
similar commands to move a window down, right, and left.

5.4.2.4 Window Borders And Display Behavior - The Editor's display
rules concerning the overlapping of window text areas do not apply to
window borders. A bordered window can sometimes be sized or
positioned in a way that obscures one or more of its borders.

For anchored windows, the top and side borders are always· nonvisible.
If an anchored window with a border is the only anchored window
displayed, its text area fills the available display area, leaving 1
row for its bottom border. Its top and side borders overflow the
display area. For this reason, you should always place the labels of
anchored windows on their bottom borders.

If two or more anchored windows with borders are displayed at once,
the bottom border of one window obscures the top border of the window
displayed below it. The bottom border of an anchored window never
overflows the display area, and it cannot be obscured by another
anchored window. It can, however, be obscured by a floating window.

5-27

------------------- --------- -----------

WINDOW AND DISPLAY OPERATIONS

For floating windows, the borders are more often visible since
float--ing windows can be sized and positioned well within the display .Q
area. However, if a floating window equals or exceeds the size of the
display area, then any or all of its borders can spill off. The
"Help" window, for instance, is the full width of the display area but
shorter in height. Therefore, its top and bottom borders are visible,
but its side borders are not visible. If .a floating window,
regardless of its size, is positioned on the screen in such a way that
it overflows the display area, then the border of the affected edge
cannot be seen.

5.4.3 Displaying and Removing Windows

Three functions enable you to display and
screen. These functions are:

• SHOW-WINDOW

• PUSH-WINDOW

• REMOVE-WINDOW

remove windows from the

0

The behavior of these functions varies with the display type of the
argument window and of other visible windows. This section introduces Q
these behavior variations; you can find further information in the
description of each function in Part III of this manual.

5.4.3.1 Using SHOW-WINDOW - SHOW-WINDOW takes a window and disp~ays
it on the screen. Its format is:

SHOW-WINDOW window &OPTIONAL row column

If the window is a floating window, you can supply an optional row
column at which its upper left character will appear. If you do
specify a position, the window is placed at the position contained
the window object.

and
not

in

A newly displayed floating window obscures any other window that is
currently displayed in the same position. If the argument (floating)
window is already displayed but is obscured by orie or more windows,
SHOW-WINDOW redisplays it "on top of" the obscuring window(s).

If the argument window is
determined by the display
arguments, they are ignored.

an anchored
manager. If

window, its position is
you supply row and column

0

You can continue to add anchored windows to the screen with Q
SHOW-WINDOW up to the number that is the value of the Editor variable

5-28

WINDOW AND DISPLAY OPERATIONS

"Anchored Window Show Limit". For instance, if the value is 2 (the Cglobal default), then you can show 2 anchored windows on the screen at
a given time. Adding a third anchored window with SHOW-WINDOW causes
the least recently used anchored window to be removed.

A newly displayed anchored window appears at the bottom of the screen,
and any other anchored windows that remain on the screen are moved up.
All the visible anchored windows are resized so that they are about
equal in height. If a window is removed to accommodate the newly
displayed window, the new window is made the same size as the window
that was removed.

5.4.3.2 Using PUSH-WINDOW - PUSH-WINDOW is like SHOW-WINDOW, except
that it does not automatically remove anchored windows when their

O number exceeds the value of "Anchored Window Show Limit". Also,
PUSH-WINDOW takes two optional arguments that enable you to override
some features of the Editor's automatic treatment of anchored windows.

The format of PUSH-WINDOW is:

PUSH-WINDOW window &OPTIONAL companion insert-above

If the argument window is floating, PUSH-WINDOW

OSHOW-WINDOW, except that you cannot specify a
window appears at the position contained in the
supply optional arguments, they are ignored.

has the same effect as
display position. The
window object. If you

If the argument window is anchored, PUSH-WINDOW adds it to the display
without removing any previously displayed anchored windows. The
Editor resizes all the visible anchored windows to make them about
equal in height.

OThe optional arguments enable you to specify the position of a newly
displayed anchored window in relation to a visible anchored window.
If you specify a companion argument -- a visible anchored window
the newly displayed window appears just below the companion. If you
supply both a companion argument and an insert-above argument of T,
the new window appears just above the companion window.

5.4.3.3
display.

Using REMOVE-WINDOW - REMOVE~WINDOW removes a window from the
Its format is:

REMOVE-WINDOW window &OPTIONAL new-current

If the argument window is floating, REMOVE-WINDOW has no effect on the

O remaining visible windows. If the argument window is anchored, the
Editor automatically resizes and repositions the remaining anchored
windows so that they fill the available display area.

5-29

WINDOW AND DISPLAY OPERATIONS

If the window being removed is the current window, you can supply a
new-current argument to specify the window that is to become current. Q
If you do not supply a new-current argument, then the Editor invokes
NEXT-WINDOW (with argument T) to identify the window that becomes
current.

By using REMOVE-WINDOW repeatedly, you can remove from the available
display area all but one of the visible windows. You cannot empty the
available display area completely, however; the one window that will
remain opens onto the buffer bound to the variable
EDITOR-DEFAULT-BUFFER. If you have not bound a buffer to this
variable, the Editor displays a window onto the "Basic Introduction"
buffer when.it has nothing else to show.

5.5 MAKING AND DELETING WINDOWS

Most of the windows that the Editor displays are made by the Editor as
a result of executing certain commands. You can, however, make a
window directly in LISP code, and you can specify all the features you
want that window to have. If the new window is an anchored window,
its specified size and screen position are ignored by the Editor's
display manager.

0

To create a new window, you call the function MAKE-WINDOW.
is:

Its format Q
MAKE-WINDOW buffer-~r-mark &KEY :HEIGHT :WIDTH

:DISPLAY-ROW :DISPLAY-COLUMN
:TYPE
:LINES-WRAP
:LABEL

The one required argument to MAKE-WINDOW is buffer-or-mark. This
argument indicates the text content of the window; that is, it
indicates the buffer onto which the window opens, as well as the text
position within that buffer where the window begins.

• If the argument is
buffer, beginning
point.

a buffer,
with the

the
line

window
that

opens onto that
contains the buffer

• If the argument is a mark, the window opens onto the buffer
that contains that mark, beginning with the line that the mark
indicates.

5-30

0

0

WINDOW AND DISPLAY OPERATIONS

Q For instance:

(MAKE-WINDOW (FIND-BUFFER "Help"))

0

0

0

0

Or,

(MAKE-WINDOW (WINDOW-POINT (FIRST (BUFFER-WINDOWS "Buffer"))))

The first form makes a window onto the "Help" buffer, starting with
the line that contains the buffer point of that buffer. The second
form makes a window onto the buffer associated with another window,
beginning with the line indicated by the window point of the other
window.

Some of the keyword arguments to MAKE-WINDOW :TYPE, :LINES-WRAP,
and :LABEL -- have defaults that are the values of the corresponding
Editor variables. For instance, the default window type is :ANCHORED
-- the global value of the Editor variable "Default Window Type".

The keyword arguments that pertain to window
all take integer values. These values
floating windows. For anchored windows, any
ignored by the display manager.

size and screen position
are significant only for
values you supply are

• :HEIGHT is the number of rows of text in the window, excluding
borders. The default is the height of the available display
area (minus one row if the window is bordered).

• :WIDTH is the number of columns
excluding borders. The default
variable "Default Window Width".

of text in the window,
is the value of the Editor

e :DISPLAY-ROW and :DISPLAY-COLUMN indicate the screen position
of the upper-left corner of the window's text area (excluding
borders) when the window is displayed. The defaults are 1 and
1. You can override these values by supplying row and column
arguments to SHOW-WINDOW.

To delete a window object, you call the function DELETE-WINDOW and
pass it a window argument. The window can be visible or not visible;
if it is visible, DELETE-WINDOW first removes it from the display and
then deletes it. When an Editor window is deleted, it is destroyed
and cannot be used again.

5.6 EXAMPLE OF WINDOW AND DISPLAY OPERATIONS

The following example illustrates the Editor objects that you can use
to create, display, and remove a window. The DEFINE-COMMAND form
implements a new command named "Clock", which displays a window that
contains the current date and time. The command obtains the current

5-31

WINDOW AND DISPLAY OPERATIONS

date and time by calling the function FORMAT-CLOCK, whose code is Q
shown afterward.

(DEFINE-COMMAND (CLOCK-COMMAND :DISPLAY-NAME "Clock")
(PREFIX)

" Displays the current date and time in a window."

(DECLARE (IGNORE~PREFIX))

;; Find or make a buffer named "Clock".
(LET ((BUFFER (FIND-BUFFER "Clock")))

(UNLESS BUFFER
(SETF BUFFER

(MAKE-BUFFER
'(CLOCK-BUFFER :DISPLAY-NAME "Clock")
:MAJOR-STYLE NIL :MINOR-STYLES NIL
:VARIABLES NIL)))

ii Find or make a window onto the "Clock" buffer.
(LET ((WINDOW (FIRST (BUFFER-WINDOWS BUFFER))))

(UNLESS WINDOW
(SETF WINDOW

(MAKE-WINDOW BUFFER
:TYPE :FLOATING
:HEIGHT 2 :WIDTH 30
:LABEL "Clock"
:DISPLAY-ROW 2 :DISPLAY-COLUMN 48))

(SETF (WINDOW-LABEL-EDGE WINDOW) :TOP)
(SETF (WINDOW-LABEL-RENDITION WINDOW) :BLINK)
(SETF (WINDOW-RENDITION WINDOW) :BOLD))

ii Delete any previous text in the "Clock" buffer.
(DELETE-REGION (BUFFER-REGION BUFFER))

ii Insert the string returned by FORMAT-CLOCK onto
ii "Clock" at the buffer point.
(INSERT-STRING (BUFFER-POINT BUFFER) (FORMAT-CLOCK))

ii Display the window.
(SHOW-WINDOW WINDOW 2 48)

;i Force the window to reflect the current contents of
ii the buffer.
(UPDATE-DISPLAY)

'
ii Leave the window on the screen for 3 seconds and ·
ii then remove it.
(SLEEP 3.0)
(REMOVE-WINDOW WINDOW))))

5-32

0

0

0

0

0

0

0

0

WINDOW AND DISPLAY OPERATIONS

Note that there is a redundancy in this form: the
position is specified both in the MAKE-WINDOW
SHOW-WINDOW form. You can choose either place
specification.

window's
form and
to make

display
in the

this

The function MAKE-BUFFER, which creates and returns a new buffer, is
described in Chapter 6 and in Part III.

FORMAT-CLOCK, which returns a string containing the current day, date,
and time, could be implemented as follows:

(DEFUN FORMAT-CLOCK()

" Returns the current time of day and the current date."

(MULTIPLE-VALUE-BIND (SECOND MINUTE HOUR DAY MONTH YEAR
WEEK-DAY)

(GET-DECODED-TIME)

(DECLARE (FIXNUM SECOND MINUTE HOUR DAY MONTH YEAR WEEK-DAY))

(LET ((MONTHS'#("Jan" "Feb" "Mar" "Apr" "May" "Jun"
"Jul" "Aug" "Sep" "Oct" "Nov" "Dec"))

(WEEK-DAYS'#("Monday" "Tuesday" "Wednesday"
"Thursday" "Friday" "Saturday"
"Sunday"))

(DISPLAY-HOUR (IF(= HOUR 12)
HOUR
(MOD HOUR 12))))

(DECLARE (SIMPLE-VECTOR MONTHS WEEK-DAYS)
(FIXNUM DISPLAY-HOUR))

(FORMAT NIL
"-A -2D--A--4D-%-2D:-2, 'OD:-2, 'OD"
(SVREF WEEK-DAYS WEEK-DAY)
DAY
(SVREF MONTHS (1- MONTH))
YEAR HOUR MINUTE SECOND))))

5-33

0

0

0

0

0

0

0

CHAPTER 6

OPERATIONS ON STYLES

Styles in the VAX LISP Editor act as sets of Editor capabilities that
you can turn on and off in the buffers where you are editing. For
instance, in "EDT Emulation" style, you use the same key sequences as
with DIGITAL's EDT editor to execute similar Editor commands. If you
prefer the behavior and key bindings of an EMACS-based editor, you can
use the Editor's "EMACS" style instead in any or all buffers. When
"VAX LISP" style is also active, the Edi tor re·cognizes LISP syntax,
knows how to indent LISP code, can evaluate selected regions of code,
and so on. (See VAX LISP/VMS User's Guide.)

O In programming terms, a style is a named Editor object that serves
a binding context. A style object can contain bindings for:

as

• Editor variables

• Editor attributes

• Keyboard keys and pointer actions

O The particular bindings of variables, attributes, keys, and pointer
actions within a style are responsible for the Editor's distinctive
behavior when that style is active.

The difference in key bindings from one style to another is obvious:
the LINEFEED key, for instance, invokes "EDT Delete Previous Word" in
"EDT Emulation" style, but in "VAX LISP" style, it invoke·s "New LISP
Line." The differences in variable and attribute bindings are less
obvious when you are using the Editor, but they are equally important
in determining the Editor's behavior. For instance:

O·

• When "EDT Emulation" style is active, the Editor "knows" in
what direction it is to.-execute movement and search commands
by the current value of the Editor variable "EDT Direction
Mode" (:FORWARD or :BACKWARD). Outside of "EDT Emulation"
style, this variable is unbou~d and you must provide needed
directional information in some other way.

6-1

- --- ------ -------------------

OPERATIONS ON STYLES

• When "VAX LISP" style is active, the Editor "knows" that a
semicolon is the beginning of a LISP comment because this Q
character has the value :COMMENT-DELIMITER for the Editor
attribute "LISP Syntax". Outside of "VAX LISP" style, this
attribute is unbound.and the Editor does not recognize any
characters as significant in LISP syntax.

The Editor's distinctive behavior in a style also arises from the
particular commands that you normally invoke in that style. For
instance, the command "EDT Delete Previous Word" differs slightly from
the "Delete Previous Word" command bound in "EMACS", just as the
text-deleting commands in DIGITAL's EDT differ slightly from the
delete commands in EMACS editors. While commands themselves are not
context-dependent, many commands are normally used only within a
particular style:

• Commands are frequently invoked by means of key sequences or
pointer actions, and these bindings are context-dependent (see
Chapter 3).

• Many commands reference Editor variables and Editor
attributes, which are also context~dependent. Such a command
will behave differently where the context-dependent object is
unbound or bound differently (see Chapter 02). '

0

This chapter introduces several kinds of operations that you
perform on styles when you are customizing the VAX LISP Editor.
can:

can Q
You

• Choose the styles that are active in any or all buffers

• Modify or extend a DIGITAL-provided style

• Create a new Editor style

More information about styles can be found in Part II of this manual. Q
Recall that the symbols for DIGITAL-provided Editor objects must be
referenced in the "EDITOR" package. For the methods of specifying
named Editor objects, including styles, see Chapter 1.

6.1 ACTIVATING AND DEACTIVATING STYLES

For the bindings in a style to be visible in an interactive session,
that style must be "active" in the current buffer. Styles are
activated in each buffer at the time the buffer is created; you can
later. access and change the active styles in a buffer at any time.

A buffer can have zero or one major style and zero or more minor Q
styles. There is no inherent difference in style objects that makes

6-2

OPERATIONS ON STYLES

them major or minor. The difference arises from the way a style is

O activated in a buffer. The difference between major and minor
activation becomes significant when the Editor searches for the proper
binding of a key sequence, a pointer action, a variable, or an

0

attribute.

In searching for the proper binding for a context-dependent object,
the Editor searches the currently active contexts in the following
order:

• The current buffer

• The minor styles of the current buffer, if any, beginning with
the most recently activated

• The major style, if any, of the current buffer

• The global Editor context

The Editor uses the first binding it encounters in this search for the
object in question. If the object is bound in more than one of these
contexts, then all but one of the bindings · are inaccessible, or
"shadowed". For instance, if you have "EDT Emulation" active as the
major style and "VAX LISP" active as a minor style, the LINEFEED key
will invoke "New LISP Line". The binding of that key in "EDT

OEmulation" style ("EDT Delete Previous Word") is shadowed.

Further information on context search ·and shadowing can be found in
Part II of this manual and in the VAX LISP/VMS Users Guide.

This search order suggests that, in general, your major style should
be a general-purpose style that determines a wide range of Editor
capabilities -- how the Editor manipulates text, moves the cursor,
manages the display, reads in and writes to files, and so on. The two

O
DIGITAL-provided styles that are suitable for use as major styles are
"EDT Emulation" and "EMACS".

0

A minor style is typically a more limited set of bindings that you use
to alter some details of the major style in particular circumstances.
"VAX LISP" style, for instance, enhances either "EDT Emulation" or
"EMACS" to enable you to edit LISP.code. The general-purpose style is
activated as the major style so that it is the last style searched for
bindings. The special-purpose style (added as a minor style) can add
variations to the major style because it shadows the major style.

This section outlines the methods of activating styles in buffers:

• Activating styles in a newly created buffer

• Setting the Editor's default styles

• Accessing and altering_ the styles in an existing buffer

6-3

OPERATIONS ON STYLES

6.1.1 The Styles in a New Buffer

Most buffers are created automatically by the Editor whenever you O
begin to edit a file or function. You can also make buffers yourself
in LISP code. In either case, the new buffer can be created with
specified style(s) active.

The function MAKE-BUFFER takes a buffer-name and returns a new buffer
and T (or NIL if a buffer of that name already exists). The optional
keywords :MAJOR-STYLE and :MINOR-STYLES let you specify the styles
that are to be active in the new buffer.

•

•

The name argument can be a symbol or a list containing a
symbol and' a string argument to the keyword :DISPLAY-NAME.
(This naming convention is the same for all named Editor
objects; for further detail, see the discussion of naming
Editor commands in Chapter 2.)

The :MAJOR-STYLE argument can be a style specifier or NIL .

• 'The :MINOR-STYLES argument can be a list of style specifiers
or NIL.

For example:

(MAKE-BUFFER '(MYBUFFER :DISPLAY-NAME "Mybuffer.lsp")
:MAJOR-STYLE "EDT Emulation"
:MINOR-STYLES '("VAX LISP"))

This form creates a buffer named MYBUFFER, with the alternative
specifier "Mybuffer.lsp". Its major style is "EDT Emulation" and its
one minor style is "VAX LIS~".

0

0

If you do not specify style arguments, the Editor supplies default
values. If you want the buffer to have no minor styles (or no major Q
dstyfle1), you supply the argument NIL to the appropriate keyword. The _

e au ts, and the techniques of changing them, are presented in the
next section.

6.1.2 The Editor's Default Styles

The Editor supplies default values for the major and minor styles of a
newly created buffer unless otherwise specified in the MAKE-BUFFER
form. You can access and change these default values.

Note that changing a default value does not affect buffers that
already exist. Only buffers that are created after the default has
changed will have the new default styles active.

6-4

0

0

0

OPERATIONS ON STYLES

6.1.2.1 The Default Major Style - The Editor's default major style is
stored as the value of the Editor variable "Default Major Style." In
the Editor as provided, this value is "EDT Emulation."

You can use SETF to change the default major style:

(SETF (VARIABLE-VALUE "Default Major Style") "EMACS")

Note that only the global value of this variable is used.

6.1.2.2 The Default Minor Style(s) - The Editor's default minor
styles are stored as the value of the Editor variable "Default Minor
Styles". The possible values are a list of style specifiers or NIL.
In the Editor as provided, this variable is used only globally, and
its value is NIL.

You can establish a default minor style by resetting the value of
"Default Minor Styles". If, for instance, you want to retain "EDT
Emulation" as the Editor's default major style but add "EMACS" as the
default minor style, you could write:

(SETF (VARIABLE-VALUE "Default Minor Styles") '("EMACS"))

O Note, however, that if you had previously established a default minor
style, the form as written would remove that style as the default and
replace it with "EMACS". To add "EMACS" without removing the previous
default, you could use PUSH.

(PUSH "EMACS" (VARIABLE-VALUE-"Default Minor Styles"))

This form adds "EMACS" to the front of the list o·f default minor
styles. The minor styles are activated in a buffer in reverse order

O to their position in the list. That is, the first style in the list
is the last activated and thus the first searched when the Editor
conducts a context search. In this example, "EMACS" will shadow other
minor styles (as well as the major style) that are active in the same
buffer.

You can •ccess and change the entire minor style list if you want to
change the order of the elements or add another style somewhere other
than to the front of the list. For instance, suppose you have
established "VAX LISP" as the default minor style and you now want to
add "EMACS". If you added "EMACS" with PUSH, it would shadow "VAX
LISP". To have "VAX LISP" shadow "EMACS", you would write:

(SETF (VARIABLE-VALUE "Default Minor Styles")
' ("VAX LISP" "EMACS"))

Q This form makes "VAX LISP" the last-activated (and therefore the
first-searched) of the minor styles in any buffer that has the default
minor s.tyles.

6-5

OPERATIONS ON STYLES

6.1.2.3 Default Minor Style(s) By Type Of Buffer - If a minor style
is a special-purpose style, you may want to have it active only in the o
buffers where the special capabilities are needed. For instance, "VAX
LISP" style is activated automatically in buffers that are associated
with LISP objects or with files of the filetype LSP.

If you want to activate a minor style in buffers associated with a
LISP object, you reset the value of the Editor variable "Default LISP
Object Minor Styles". The value is a list of style specifiers, such
as:

(SETF (VARIABLE-VALUE "Default LISP Object Minor Styles")
'("My New Style" "VAX LISP"))

This form specifies that 1:wo minor styles, "My New ·style" and "VAX
LISP", are to be activated in any buffer that is associated with a
LISP object. These styles will be searched in the order shown; they Q
will be searched before any styles in the "Default Minor Styles" list.

If you want to activate a minor style in buffers associated with a
specified type of file, you reset the value of the Editor ,variable
"Default Filetype Minor Styles". The value is an association list of
the form:

((FILETYPE-STRING. MINOR-STYLE-LIST) •..)

For instance, the initial value of this variable is:

("LSP" • "VAX LISP")

Again, minor styles specified by this variable are activated after any
styles specified by "Default Minor Styles", and are therefore searched
first.

6.1.'2.4 Example Of Activating Default Styles - This section
illustrates the activation of multiple default styl~s in several
buffers. The search order, which is the reverse of the order of
activation, is then shown for each buffer.

Suppose you have five styles to work with: "EDT Emulation", "EMACS",
"VAX LISP", and two user-defined styles, "LISP Variation" and
"FORTRAN". One way to set your default activation values is as
follows:

6-6

0

0.

0

0

0

OPERATIONS ON STYLES

(SETF (VARIABLE-VALUE "Default Major Style") "EDT Emulation")

(SETF (VARIABLE-VALUE "Default Minor Styles") '("EMACS"))

(SETF (VARIABLE-VALUE "Default LISP Object Minor Styles")
'("VAX LISP"))

(SETF (VARIABLE-VALUE "Default Filetype Minor Styles")
, ((11 LSP 11 • ("LISP Variation" "VAX LISP"))

("FOR" . "FORTRAN")))

In buffers that have the default styles, the search order is as
follows:

In a buffer named "Myfile.txt":

1. "EMACS"
2. "EDT Emulation"

In a buffer named LISP-FUNCTION:

1. "VAX LISP"
2. "EMACS"
3. "EDT Emulation"

Q In a buffer named "Myfile.lsp":

0

0

1. "LISP Variation"
2. "VAX LISP"
3. "EMACS"
4. "EDT Emulation"

In a buffer named "Myfile.for":

1. "FORTRAN"
2. "EMACS"
3. "EDT Emulation"

6.1.3 The Styles in an Existing Buffer

You can access and change the styles in a specified buffer at any
time.

Note that changing the active style(s) in one buffer has no effect on
any other buffer.

6-7

OPERATIONS ON STYLES

6.1.3.1 A Buffer's Major Style - The function BUFFER-MAJOR-STYLE
takes a buffer specifier and returns the major style of that buffe(J
(or NIL if the buffer has no major style). You can use SETF with this
function to change the major style active in a buffer:

(SETF (BUFFER-MAJOR-STYLE "Mybuffer.txt") "EMACS")

This form deactivates the major .style, if any, of "Mybuffer. txt" and
activates "EMACS" instead.

6.1.3.2 A Buffer's Minor Style(s) - You can also access and alter the
minor style or styles active in a specified buffer.

To determine whether a specified buffer has minor styles active, you
can use the function BUFFER-MINOR-STYLE-LIST. This function takes a~
buffer object and returns a list of the minor styles active in that~
buffer:

(BUFFER-MINOR-STYLE-LIST (FIND-BUFFER "Mybuffer.txt"))

BUFFER-MINOR-STYLE-LIST is an accessing function only. Because it is
not a place form acceptable to SETF, you cannot use it to alter the
list of minor styles active in a buffer.

To alter the list, you use the function BUFFER-MINOR-STYLE-ACTIVE()
This function takes a buffer specifier and a style specifier. It
returns T if the specified style is active as a minor style in the
specified buffer; otherwise NIL. This function can be used with SETF
to add or remove a style from the minor style list of the buffer.

For instance, to activate "VAX LISP" as a minor. s~yle in the current
buffer, you could write:

(SETF (BUFFER-MINOR-STYLE-ACTIVE (.CURRENT-BUFFER) "VAX LISP") T) 0
This form adds "VAX LISP" to the front of the minor style list for the
current buffer. "VAX LISP" will then shadow all other active styles.
This form is the essential action of the DIGITAL-provided command
"Activate Minor Style", which prompts for a style name and activates
that style as a minor style in the current buffer.

To deactivate "VAX LISP" you would end the above SETF form with NIL:

(SETF (BUFFER-MINOR-STYLE-ACTIVE (CURRENT-BUFFER) "VAX LISP")
NIL)

This form is the essential action of
"Deactivate Minor Style".

6-8

the DIGITAL-provided command

0

0

0

0

0

0

OPERATIONS ON STYLES

If you activate a minor style that is already active in the
buffer, the style moves to the front of the minor style
action actually deactivates and then reactivates the style,
the most recently activated (and thus the first-searched).

6.2 MODIFYING A DIGITAL-PROVIDED STYLE

specified
list. The
making it

The three styles provided with
customized in any way you like.

the Editor can be extended and
The operations that you can perform

to modify a style are:

• Binding keys and pointer actions in the style

• Binding Editor variables in the style and assigning values or
function definitions to them

• Binding Editor attributes in the style and assigning values
for each attribute to all characters

You can also define new variables and attributes and bind them in any
style. Only when an Editor variable or an Editor attribute is bound
in a style can you assign values (see Chapter 1).

6.2.1 Binding Keys and Pointer Actions·

A common way to extend a style is to bind keys or pointer actions to
commands in that style. The command to be invoked can be:

• A new user-defined command

• A DIGITAL-provided command that is not currently bound in the
style

• Any command that is currently bound to another key or pointer
action in the style

6.2.1.1 Finding Key Bindings - A complete list of the key bindings in
the Editor as provided appears as Appendix c of this manual. This
list is organized by key or sequence, and it includes all bindings for
each key (buffer, style(s), and global).

To find the current key bindings in th~ Editor, including·any you have
added or changed, you can execute the command "List Key Bindings".
The Editor displays all visible bindings unless you specify a style
(or other context) in response to the prompt.

6-9

--- ----·---

-------- --- ·-----------------

OPERATIONS ON STYLES

If you want to find the current key bindings from the LISP
interpreter, you can call the function MAP-BINDINGS. This function is c=)
described in full in Part III of this manual. Basically, MAP~BINDINGS
finds all key bindings and applies to them a function that you supply
as its argument. To get a list of the bindings, you would supply a
printing function.

For instance, if you wanted to print a list of the bindings in "VAX
LISP" style, you could start by defining a new function such as:

(DEFUN LISP-BINDINGS (KEY COMMAND CONTEXT)
(WHEN (EQUAL CONTEXT .(LIST :STYLE (FIND-STYLE "VAX LISP")))

(FORMAT T "-% -{ -:c-} -30,lOT -A"
(COERCE KEY 'LIST) (COMMAND-NAME COMMAND))))

You then call MAP-BINDINGS with the new function as its argument:

(MAP-BINDINGS #'LISP-BINDINGS)

The result is a screen display of all the keys and key. sequences that
are bound in "VAX LISP" style, along with the name of the command
bound to each.

6.2.1.2 Review Of BIHD-COMMAHD - You bind keys in a style according
to the procedures outlined in Chapter 3 of this manual. You call the
function BIND-COMMAND with the command, key, and context arguments
that you want. Recall that to specify a style as a context argument,
you supply a list that begins with the keyword :STYLE, followed by a
style specifier (symbol or displ·ay name). For instance:

'(:STYLE "EMACS")

Or,

(LIST :STYLE 'VAX-LISP)

To bind the key CTRL/V to "View File" in "EDT Emulation" style, you
would write:

(BIND-COMMAND "View File" #\"'V '(:STYLE ."EDT Emulation"))

The binding procedure is the same regardless of whether the key
sequence or the command is already bound in the style. Rebinding a
key sequence destroys any previous binding of the key sequence;
binding another key sequence to a command leaves the previous key
binding to that command intact (see Chapter 3).

The procedure for binding pointer actions is
discussion of BIND-POINTER-COMMAND in Chapter 3.

6-10

similar. See the

0

0

0.

·o

0

0

0

0

0

OPERATIONS ON STYLES

6.2.1.3 Choosing Commands To Bind - When binding a key or pointer
action to a command in a style, you should first invoke the command by
name in that style to make sure that it behaves as expected. Any
command can be bound in any style, but a command that references a
context-dependent object (an Editor variable or an Editor attribute)
may behave differently in different contexts.

For instance, if you invoke "EDT Move Word" in "EMACS" style, the
command does not behave as it does in "EDT Emulation" style. "EDT
Move Word" references both the Editor variable "EDT Direction Mode"
and the Editor attribute "Word Delimiter"; both are unbound in "EMACS"
style. It would not be worthwhile, therefore, to bind a key to "EDT
Move Word" in "EMACS" style.

You can also define new commands with a particular style in mind and
then bind keys to them in that style. These procedures are explained
in detail in Chapters 2 and 3 of this manual.

6.2.2 Binding Variables and Setting Variable Values

Both the value slot and the function slot of an Editor variable can be
set in the context of a style, but only if the variable is first bound
in that style. Binding an Editor variable in a context establishes
the variable as usable in that context. Only then can its value or
function definition be set.

The function slot is commonly used for hook functions, which are
discussed in Part II.

This section discusses:

• Finding which variables are . bound in a style

• Altering variable values in a style

• Binding a variable in a style

You can also define a new Editor variable and bind it in a style.

6.2.2.1 Finding Style Variables - The function STYLE-VARIABLES takes
a style object and returns a list of the variables that are bound in
that style. For instance, the form

(STYLE-VARIABLES (FIND-STYLE "EDT ~MULATION"))

returns the list:

6-11

---------------------------~-- ·--- --

OPERATIONS ON STYLES

(EDT-DELETED-LINE EDT-DELETED-WORD EDT-DELETED-CHARACTER
SELECT-REGION-RENDITION-SET SELECT-REGION-RENDITION-COMPLEMENT
EDT-DIRECTION-MODE DEFAULT-WINDOW-LABEL EDT-PASTE-BUFFER)

To check whether a specified
you can use VARIABLE-BOUNDP.
and an optional context that
returns T if the variable is

variable is bound in a specified style,
This function takes a variable specifier

defaults to the current context. It
bound in the context, otherwise NIL.

For instance, the first form below returns T; the second returns NIL:

(VARIABLE-BOUNDP "EDT Paste Buffer" '(:STYLE "EDT Emulation"))

(VARIABLE-BOUNDP "EDT Paste Buffer" '(:STYLE "EMACS"))

6.2.2.2 Altering Variable Values - To access the current value of an
Editor variable that is bound in a specified style, you call the
function VARIABLE-VALUE. Depending on the variable, the value might
be any object, including a function. (The function VARIABLE-FUNCTION
accesses the function slot; see Part III.)

For instance, to determine the current value of the
Region Rendition Complement" in "EDT Emulation"
write:

variable "Select
style, you would

(VARIABLE-VALUE "Select Region Rendition Complement"
'(:STYLE "EDT Emulation"))

In the Editor as provided, this form returns :REVERSE.

0

0

0

Using SETF, you can change the value of any variable in a specified
style. In the example above, you can change the video rendition of
select regions in "EDT Emulation" style. (See Chapter 5 for the
meaning of the various region rendition values.) To make select Q
regions appear in bold if the window where .they are displayed is
non-bold, and vice versa, you would write:

(SETF (VARIABLE-VALUE "Select Region Rendition Complement"
'(:STYLE "EDT Emulation"))

:BOLD)

If the value of a variable is a function, you proceed in the same way.
You access the value with VARIABLE-VALUE:

(VARIABLE-VALUE "Default Window Label" '(:STYLE "EMACS"))

This form returns the function EMACS-WINDOW-LABEL.
could be defined as:

6-12

This function

0

·o
OPERATIONS ON STYLES

(DEFUN EMACS-WINDOW-LABEL (WINDOW)
(LET ((BUFFER (WINDOW-BUFFER WINDOW)))

(FORMAT NIL" -A -@re-cs-"-}) -1 11

(IF (EQ (BUFFER-TYPE BUFFER) :FILE)
(NAMESTRING (BUFFER-OBJECT BUFFER))
(BUFFER-NAME BUFFER))

(MAPCAR #'STYLE-NAME (BUFFER-JV!!NOR-STYLE-LIST
BUFFER)))))

This function specifies the default label content for any new windows
created in buffers where the style "EMACS" is active (and not
shadowed). It labels new windows with the name of the buffer
(namestring or object-name) and with any minor styles active in that
buffer.

You can rewrite this function in any way you like or define an

O entirely new labeling function. To set the value of "Default Window
Label" in "EMACS" style to the new function, you would write:

(SETF (VARIABLE-VALUE "Default Window Label" '(:STYLE "EMACS"))
'MY-EMACS-LABELER)

6.2.2.3 Binding A Variable In A Style - A variable cannot have a

O value (or function definition) in a style unless the variable itself
is first bound in that style.

If a given variable is not initially bound in a style, you can include
it with the function BIND-VARIABLE. Its format, with only a few of
its keywords, is:

BIND-VARIABLE symbol &KEY :CONTEXT
:INITIAL-VALUE

OThe symbol argument is an Editor variable
name). The optional keyword arguments
default is :GLOBAL) and an initial value
context (the default is NIL).

specifier (symbol or display
are a context specifier (the
for the variable in the

For instance, suppose you want the Editor to show only one anchored
window at a time in "VAX LISP" style, but up to two when you are not
using "VAX LISP" style. The maximum number of anchored windows the
Editor shows at a time is determined by the value of the Editor
variable "Anchored window Show Limit". In the Editor as provided,
this variable is bound globally and its value is 2; the variable is
not bound in any other context.

If you want "Anchored Window Show Limit" to have the value 1 in "VAX Q LISP" style, _
1
you must bind the variable in that style:

6-13

OPERATIONS ON STYLES

(BIND-VARIABLE "Anchored Window Q.hOW Limit"
:CONTEXT '(:STYLE "VAX LISP")
:INITIAL-VALUE 1)

This form binds "Anchored Window Show Limit" in "VAX LISP" style with
the initial value 1. If you later want to change the value to- 3, you
need only use SETF because the variable is already bound in the style:

(SETF (VARIABLE-VALUE "Anchored Window Show Limit"
'(:STYLE "VAX LISP"))

3)

This form changes the value of the specified variable to 3 in "VAX
LISP" style. The Editor will show up to three anchored windows at
once when this style is active. When "VAX LISP" style is not· active,
the effective value of the variable will be its global value (2)
unless you also bind it in other contexts.

6.2.2.4 Defining New Variables - If some action that you want the
Editor to perform requires a new Editor variable, you can create a
variable with the macro DEFINE-EDITOR-VARIABLE. You then proceed as
above to bind the variable in one or more contexts and to adjust its
value as you like.

0

0

DEFINE-EDITOR-VARIABLE is described in full in Part III of this O
manual. Basically, it creates a variable with the specified name and
an optional documentation string. For instance:

(DEFINE-EDITOR-VARIABLE (LlSP-COMMENT-COLUMN
:DISPLAY-NAME "LISP Comment Column")

II When bound in \"VAX LISP\" style, this variable specifies
an integer value that indicates the position in a line where
a LISP comment should begin.")

This form is the one used to create the DIGITAL-provided Editor
variable "LISP Comment Column". The naming convention for Editor
variables is the same as that used for all named Editor objects. For
more detail on specifying names, see the discussion of naming Editor
commands in.Chapter 2.

Before you can use a new variable, you must bind it in a context. For
instance:·

(BIND-VARIABLE "LISP Comment Column"
:CONTEXT '(:STYLE "VAX LISP")
:INITIAL-VALUE 49)

0.

This form binds the variable in "VAX LISP" style and gives it an Q
initial value. (BIND-VARIABLE also allows you to set the function

6-14

0

0

OPERATIONS ON STYLES

slot of the variable if you like. See Part III.) The variable
now be referenced by functions and commands in "VAX LISP" style.

can

6.2.3 Binding Attributes and Setting Attribute Values

Another way to modify a style is to alter the treatment of Editor
attributes in the context of that style.

Like Editor variables, any attribute can be bound in any context.*
Once an Editor attribute is bound in a style (or other context), then
every character has a value for that attribute in that context. The
values for an attribute serve to distinguish characters from one
another for the purpose of searching through text.

For instance, to find whitespace t~e Editor passes
character with the value O for the attribute "Whitespace"
the first character with the value 1 for this attribute.
discussion of searching by attribute in Chapter 4.)

over every
and accepts

(See the

You can access and change the value that a character has for a
specified attribute in a specified style but, as with Editor
variables, only if the attribute is itself bound in the style. This
section discusses:

Q • Finding the attributes and attribute values in a style

• Altering attribute values in a style

0

0

• Binding an attribute in a style

You can also define a new Editor attribute and bind it in a style.

6.2.3.1 Finding Style Attributes - The function CHARACTER-ATTRIBUTE
takes an attribute specifier, a character, and an optional context.
It returns the value that the character has for the attribute in the
context. (If you do not supply a context argument, the Editor
performs a normal context search to find the proper attribute value.)

The Editor provides no attribute-related functions similar to STYLE
VARIABLES or MAP-BINDINGS. That is, there is no way provided to
determine whi.ch Edi tor attributes are bound in a style or what values
all the characters have for an attribute in a style.

* An exception is "Print Representation",
globally.

6-15

which can only be bound

-~-·-----------·--------

-
OPERATIONS ON STYLES

To obtain this information, you might define a new
the following:

function

(DEFUN LIST-ATTRIBUTE-VALUES (ATTRIBUTE CONTEXT)

;; Print a heading.
(FORMAT T "-%ATTRIBUTE VALU°ES OF -s IN CONTEXT -s -2%"

ATTRIBUTE CONTEXT)

such

;; Define a local error handler in case attribute in unbound.
(LET ((*UNIVERSAL-ERROR-HANDLER*

#'(LAMBDA (&REST ARGS)
(DECLARE (IGNORE ARGS))
(FORMAT T

"-% The attribute-sis not bound in
context -s.-%"

ATTRIBUTE CONTEXT)
(RETURN-FROM LIST-ATTRIBUTE-VALUES

(VALUES)))))

;; Print the value of each character for the attribute in
;; the context.
(DOTIMES (INDEX 255)

(FORMAT T "-C-15,5T<=> -s -%"
(CODE-CHAR INDEX)
(CHARACTER..:ATTRIBUTE ATTRIBUTE INDEX CONTEXT)))

(VALUES)))

The new function LIST-ATTRIBUTE-VALUES takes an attribute specifier
and a style (or other context) specifier. If you execute it at top
level LISP, it displays on the screen a list of the values of all 256
characters for that attribute in that context. If no values are
found, the result is a screen message that the attribute is not bound

0

0

in the specified context. For instance: Q
(LIST-ATTRIBUTE VALUES "LISP Syntax" , (: STYLE "VAX LISP"))

(LIST-ATTRIBUTE VALUES "LISP Syntax" :GLOBAL)

The first from results in a screen display of the values of all
characters for the attribute "LISP Syntax!' in "VAX LISP" style. The
second form results in a message that the attribute "LISP Syntax" is
not bound globally.

Note the use of *UNIVERSAL-ERROR-HANDLER* in this form.
error handler were defined, the function would call the
handler when it encountered an unbound attribute. The
handler places you in the Debugger; this error handler
top-le_vel LISP.

6-16

If no special
VAX LISP error
default error
returns you to

0

0

0

0

OPERATIONS ON STYLES

6.2.3.2 Altering Attribute Values - CHARACTER-ATTRIBUTE is a place
form acceptable to SETF. You can use it to change the value that a
character has for a specified attribute in a specified style.

For instance, the Editor recognizes a hyphen as a word delimiter in
the global context but not in "EDT Emulation" style. If you want the
hyphen to be a word delimiter in "EDT Emulation", you change the value
of that character for that attribute in that style from Oto 1:

(SETF (CHARACTER-ATTRIBUTE "Word Delimiter"#\
'(:STYLE "EDT Emulation"))

1)

After you execute this form, the Editor will recognize the hyphen as a
word delimiter in "EDT Emulation'' style.

The attribute "LISP Syntax" differs slightly from "Word Delimiter" in
that its values are keywords. Most characters in "VAX LISP" style
have the value :CONSTITUENT for the attribute "LISP Syntax" they
can be constituents of LISP symbols, but they have no syntactical
significance. The characters that are significant as LISP syntax have
appropriate keyword values: the open parenthesis has the value
:LIST-INITIATOR, the backquote has the value :READ-MACRO, and so on.
(The values for "LISP Syntax" are listed in Part III of ~his manual.)

These keyword values can be altered in the same way as the zero-one
values illustrated above. For instance, if you want to use square
brackets instead of parentheses around LISP forms, you could write:

(SETF (CHARACTER-ATTRIBUTE "LISP Syntax" #\[
' (: STYLE "VAX LISP"))

:LIST-INITIATOR)

O And,

(SETF (CHARACTER-ATTRIBUTE "LISP Syntax" #\(

0

'(:STYLE "VAX LISP"))
.: CONSTITUENT)

These forms, along with comparable forms for the
close parenthesis, make the Editor recognize
characters that initiate and terminate a list in
The Editor will no longer recognize parentheses as
syntax.

close bracket and
the brackets as the
"VAX LISP" style.
significant in LISP

6.2.3.3 Binding An Attribute In A Style - Characters cannot have
values for an attribute in a style unless the attribute is bound in
that style.

6-17

OPERATIONS ON STYLES

If a given attribute is not initially bound
include it with the function BIND-ATTRIBUTE.

in a style,
Its format is:

you can O
BIND-ATTRIBUTE attribute &KEY :TYPE

:CONTEXT
:INITIAL-VALUE

In addition to the desired attribute and context specifiers, you can
supply to BIND-ATTRIBUTE a :TYPE argument and an :INITIAL-VALUE
argument. The type argument defines the data types of the possible
values of the attribute in the context. The argument can be any LISP
type specification (see COMMON LISP: The Language); the default is
(MOD 2) .

The initial-value argument becomes the value of all 256 characters for
the specified attribute in the specified context. You can then use
SETF with CHARACTER-ATTRIBUTE to change the value assigned to any of
the characters.

For instance, suppose you have established "EDT Emulation" as your
default major style and "EMACS" as your default minor style. This
action makes the Editor behave like an EMACS editor that also has an
EDT-like keypad. Any conflicting bindings will be resolved in favor
of "EMACS".

0

However, the Editor attribute "Word Delimiter" is not bound in "EMACS" o
style. When "EMACS" is the only style active, the global values for
this attribute are visible. When "EDT Emulation" is interposed in the
search order between "EMACS" and the global context, then references
to "Word Delimiter" produce the "EDT Emulation" values. As a result,
the Edi tor recognizes words the way DIGITAL' s EDT does, rath.er than
the way that EMACS editors do.

You can alter this behavior by binding "Word Delimiter" in "EMACS"
style and assigning the characters the values you want them to have. o
To bind the attribute, you write:

(BIND-ATTRIBUTE "Word Delimiter" :TYPE '(MOD 2)
:CONTEXT '(:STYLE "EMACS")
:INITIAL-VALUE 0)

When you execute this form, "Word Delimiter''. becomes bound in "EMACS"
style, and all characters have the value O for this attribute in this
context. You need not include the :TYPE argument in this form since
(MOD 2) is the default; it specifies that the possible values for the
attribute are O and 1.

You then select the characters that you want the Editor to recognize
as word delimiters and change their values to 1. If you want the
values to be set as they are in the Editor's global context, you can Q
get a list of those values by calling LIST-ATTRIBUTE-VALUES (see
Section 6.2.3.1) with the context argument :GLOBAL.

6-18

0

0

0

0

0

OPERATIONS ON STYLES

For instance, many punctuation marks are word delimiters in the global
context but not in "EDT Emulation". To have these characters be word
delimiters in "EMACS", you write the following form for each:

(SETF (CHARACTER-ATTRIBUTE "Word Delimiter"#'\;
' (:STYLE "EMACS"))

1)

You perform no operation on characters that you do not want recognized
as word delimiters in "EMACS". These characters already have the
value O (the initial value) for this attribute in this style.

6.2.3.4 Defining New Attributes - If some action that you want the
Editor to perform requires a new Editor attribute, you can create an
attribute with the macro DEFINE-ATTRIBUTE. This macro is similar to
DEFINE-EDITOR-VARIABLE: it creates a new object with the specified
name and optional documentation string. You then proceed as above to
bind the attribute in one or more contexts and to adjust characters'
values for the attribute as you like.

The following form is the one used to create the DIGITAL-provided
Editor attribute "Page Delimiter":

(DEFINE-ATTRIBUTE (PAGE-DELIMITER :DISPLAY-NAME "Page Delimiter")

" When bound, this attribute can have the value 1 for
characters that separate pages.")

This form creates
cannot be used,
instance:

the attribute
however, until

"Page Delimiter". The attribute
it is bound in some context. For

(BIND-ATTRIBUTE "Page Delimiter" :INITIAL-VALUE 0)

This form binds "Page Delimiter" in the default context (global) with
the default type specification (MOD 2). The initial value for all
characters in the global context for this attribute is 0.

To distinguish the character(s) that you want the Editor ·to recognize
as page delimiters, you change their values from Oto 1:

(SETF (CHARACTER-ATTRIBUTE "Page Delimiter" #'\formfeed) 1)

This form gives the formfeed character (CTRL/L) the value 1 for "Page
Delimiter" in the global context. When the Editor performs an
attribute search to find the next page delimiter, the formfeed
character will satisfy the test (,see Chapter 4).

6-19

OPERATIONS ON STYLES

6.3 CREATING A NEW STYLE

To create a new Editor style, you first make a new style object. Yo~
then bind in the new style all the features that you want it to have.

Creating a new style brings together all the techniques discussed so
far in this manual:

• Defining new commands, variables, and attributes as nec~ssary
to perform text operations, display operations, and other
Editor operations.

• Binding keys, pointer actions, variables, and attributes in
the new style

• Activating the new style in any or all buffers

You can also include in a new style some specially defined functionsO
that are invoked whenever the style is activated or deactivated in a
buffer. These "hook functions" create some useful feature in buffers
where the style is active and remove that feature whenever the style
is deactivated.

All these procedures are illustrated in this section·in relation to a
new Editor style.

0
6.3.1 Making a Style Object

To create a new style object, you use the macro MAKE-STYLE. This
macro is described in full in Part III of this manual. Its format is:

MAKE-STYLE name &OPTIONAL documentation
&KEY :ACTIVATION-HOOK :DEACTIVATION-HOOK

For example:

(MAKE-STYLE (TEXT-MODE :DISPLAY-NAME "Text")

" Used when editing narrative text. It emulates the
behavior of word-processing programs. in formatting text.")

0

If you evaluate this form, the Editor will have a new style named
TEXT-MODE or "Text". The style will contain no bindings until you add
them with calls to BIND-VARIABLE, BIND-ATTRIBUTE, BIND-COMMAND, or
BIND-POINTER-COMMAND.

Before you make the style,
it to have activation and
attached to a style in the
later.

however, you should decide whether you want
deactivation hooks. These functions can beo

MAKE-STYLE form; they cannot be added

6-20

u

0

0

0

0

OPERATIONS ON STYLES

6.3.2 Style Activation and Deactivation Hooks

A style activation hook can be used to perform some operation that you
want done every time the style is activated.

For instance, in a text-related style you need to be able to set
margins -- the character positions in each line where text is to begin
and end. You can define new Editor variables to store margin settings
and then bind the variables in each buffer that has "Text" style
active. This action enables each buffer to store its own margin
settings.

The new variables might look like:

And,

(DEFINE-EDITOR-VARIABLE (LOCAL-LEFT-MARGIN
:DISPLAY-NAME "Local Left Margin")

" Specifies the first character position where text can begin
in each line.")

(DEFINE-EDITOR-VARIABLE (LOCAL-RIGHT-MARGIN
:DISPLAY-NAME "Local Right Margin")

" Specifies the last character position that text can occupy
in each line.")

It would be convenient to have these variables bound automatically in
each buffer that has "Text" style active. To achieve this, you can
define a function that binds the variables in a buffer and then
specify that function as the activation hook of the style "Text".

The style activation hook is invoked whenever its style is activated
in a buffer. The hook function is called with two arguments -- the
style and the buffer. A function that binds the above variables on a
per-buffer basis might look like:

(DEFUN BIND-MARGINS (STYLE BUFFER)

;; The function does not use the STYLE paramenter ..
(DECLARE (IGNORE STYLE))

;; CONTEXT is the buffer where the style is being activated.
(LET ((CONTEXT (LIST :BUFFER BUFFER)))

;; Make the left margin O in the buffer.
(BIND-VARIABLE "Local Left Margin"

:CONTEXT CONTEXT
:INITIAL-VALUE 0)

6-21

-------···· -· ··----------------

OPERATIONS ON STYLES

ii Make the right margin 1 less than the screen width in
ii the buffer. Q
(BIND-VARIABLE "Local Right Margin"

:CONTEXT CONTEXT
:INITIAL-VALUE (1- (SCREEN-WIDTH)))))

A style deactivation hook is similar: it is invoked whenever a style
is made inactive in a buffer. If you deactivate "Text" style in a
given buffer, you would have no further use for the margin settings.
A deactivation hook that unbinds the margin variables might look like:

(DEFUN UNBIND-MARGINS (STYLE BUFFER)
(DECLARE (IGNORE STYLE))
(LET ((CONTEXT (LIST :BUFFER BUFFER)))

(UNBIND-VARIABLE "Local Left Margin" CONTEXT)
(UNBIND-VARIABLE "Local Right Margin" CONTEXT)))

Once you have defined the hook functions and the variables they O
reference, you are ready to create the new style "Text":

(MAKE-STYLE (TEXT-MODE :DISPLAY-NAME "Text")

" Used when editing narrative text .. It(e~ulat7s the
behavior of word-processing programs 1n formatting text."

:ACTIVATION-HOOK #'BIND-MARGINS
:DEACTIVATION-HOOK #'UNBIND-MARGINS)

This form creates the new "Text" style and establishes BIND-MARGINS
and UNBIND-MARGINS as its activation and deactivation hooks.

6.3.3 Adding Capabilities to the Style

0

Once you have created a new style, you can add features to it at any Q
time. You can add capabilities to a style by:

• Binding keys or pointer actions to commands in that style.
This may involve defining new functions and commands; you can
also use existing commands.

• Binding Editor variables in the style. The variables to be
bound can be new or existing variables •. Any variable that is
referenced by a command used in the new style must be bound in
that style, unless a binding will be visible from another
context when the style is active.

• Binding Editor attributes in the style. The attributes to be
bound can be new or existing attributes. Any attribute that Q
is referenced by a command used in the new style must be bound
in that style, unless a binding will be visible from another
context when the style is active.

6-22

0

0

0

0

0

OPERATIONS ON STYLES

For instance, the "Text" style might include a key binding for a
command that allows you to reset the margins in any buffer. The new
Editor variables "Local Left Margin" and "Local Right Margin'' serve to
store margin settings once they are bound in a buffer. The activation
hook function BIND-MARGINS binds these variables in a buffer and sets
their initial values whenever "Text" style is activated in the buffer.

To implement a command called "Set Margins", you can use the new
margin variables, along with various Editor objects and other LISP
objects. Such a command might look like:

(DEFINE-COMMAND (SET-MARGINS-COMMAND :DISPLAY-NAME "Set Margins")
(PREFIX)

" Prompts for new margin values and resets the left
and right margins to the new values."

(DECLARE (IGNORE ·PREFIX)}

(LET ((NEW-MARGIN (OR "Local Left Margin" 0)))
(SETQ NEW-MARGIN

(SIMPLE-PROMPT-FOR-INPUT
(FORMAT NIL

"Current left margin at -D.
Enter new value: "NEW-MARGIN)

NEW-MARGIN))

(UNLESS (INTEGERP NEW-MARGIN)
(SETF (VARIABLE-VALUE "Local Left Margin")

(PARSE-INTEGER NEW-MARGIN)))

(SETQ NEW-MARGIN (OR "Local Right Margin"
(1- (SCREEN-WIDTH)))

NEW-MARGIN
(SIMPLE-PROMPT-FOR-INPUT

(FORMAT NIL
"Current right margin at -D.

Enter new value: "NEW-MARGIN)
NEW-MARGIN))

(UNLESS (INTEGERP NEW-MARGIN)
(SETF (VARIABLE-VALUE "Local Right Margin")

(PARSE-INTEGER NEW-MARGIN)))

(CLEAR-INFORMATION-AREA)
(FORMAT *INFORMATION-AREA-OUTPUT-STREAM*.

"Left margin -D, right margin -o"
"Local Left Margin" "Local Right Margin")))

With the new text-formatting style in mind, you could also write
commands that wrap text, that move to the left margin to begin new
lines, and that fill and justify text to the right margin.

6-23

OPERATIONS ON STYLES

Once the new commands are defined, you can bind keys to them in "Text"
style: Q

(LET ((CONTEXT (LIST :STYLE "Text")))
(BIND-COMMAND "Set Margins" '#(#\X #\M) CONTEXT)
(BIND-COMMAND)
(BIND-COMMAND ...))

6.3.4 Activating the Style

Once your style has enough capabilities bound in it to be useful, you
can then decide how and where you want to activate the style.

As a special-purpose style, "Text" is suitable for minor activation.
You would not want to assign it to "Default Minor Styles", since its Q
behavior (wrapping, filling, and so on) is inappropriate for most code
editing. It would be best to activate "Text" in buffers associated
with the filetypes you normally use for narrative text editing.

Recall that the value of "Default Filetype Minor Styles" is an
association list. You can add items to this list with PUSH:

(PUSH '("TXT" . "Text")
(VARIABLE-VALUE "Default Filetype Minor Styles"))

(PUSH '("RNO" . "Text")
(VARIABLE-VALUE "Default File type Minor Styles'.'))

These forms establish "Text" a~ the last-activated (first-searched) of
the minor styles in buffers associated with filetypes TXT and RNO.

6-24

0

0

0

0

0 PART II

CONCEPTS IN EDITOR PROGRAMMING

0

0

0

0

0

0

0.

0

0

0

0

0

0

CONCEPTS IN EDITOR PROGRAMMING

This part is an "encyclopedia" of the major concepts and data types
used in programming the VAX LISP Editor. It consists of separate,
alphabetically arranged articles on the following topics:

ATTRIBUTES
BUFFERS
CHARACTERS
CHECKPOINTING (Subsystem)
COMMANDS
CONTEXT (Subsystem)
DEBUGGING SUPPORT
EDITOR VARIABLES
ERRORS (Subsystem)
HOOKS
INFORMATION AREA
LINES
MARKS
NAMED EDITOR OBJECTS
PROMPTING (Subsystem)
REGIONS
RINGS
STREAMS
STRING TABLES
STYLES
WINDOWS

See Appendix A for a list of the functions and other Editor objects
that relate to each of the object types described in this part.

1

CONCEPTS IN EDITOR PROGRAMMING

ATTRIBUTES

Attributes make up the primary character-related information stored b~
the Editor. An attribute is a named Editor object having a LISP type
specification in some context. Each of the 256 characters can be
assigned a value of the specified type for an attribute. The function
LOCATE-ATTRIBUTE is used to to locate a character that satisfies a
test on the value it has for an attribute.

Example

The following form defines an Editor attribute called WHITESPACE or
"Whitespace":

(DEFINE-ATTRIBUTE (WHITESPACE :DISPLAY-NAME "Whitespace")

" Used to determine which characters can be considered
word delimiters.")

You can then bind this attribute in a context. For instance:

(BIND-ATTRIBUTE 'WHITESPACE
:TYPE '(MOD 2)
:CONTEXT :GLOBAL
:INITIAL-VALUE 0)

0

0
This form creates an instance of the "Whitespace" attribute that can
take on the values O or 1.

If we set

(SETF (CHARACTER-ATTRIBUTE 'WHITESPACE #\SPACE) 1)

(SETF (CHARACTER-ATTRIBUTE 'WHITESPACE #\TAB) 1)

then executing

(LOCATE-ATTRIBUTE position "Whitespace" :TEST #'PLUSP)

0

locates the first space or tab character following the specified
position.

Attributes are powerful tools in processing syntax-dependent text. An
attribute value can be of any LISP data type. However~ the test
function may assume that attribute values are of a certain type. For
instance, the values for the attribute "LISP Syntax" are keywords,
whereas other DIGITAL-provided attribute have integer values. The
test functions for the latter are normally one-argument predicates.

Attributes, like Editor variables, can be bound in any Editor context.Q
In the ex~mple above, an Editor style might create a new binding of

2

0

0

0

0

0

CONCEPTS IN EDITOR PROGRAMMING

ATTRIBUTES (cont.)

the "Whitespace" attribute. This new binding would shadow the global
binding of "Whitespace". When the style was later made inactive, the
global definition would again be in effect.

3

CONCEPTS IN EDITOR PROGRAMMING

BUFFERS

A buffer is the only Editor object that can be displayed and that
be associated with a file or a LISP object~

can

The text contained in a buffer is defined by a region associated with
the buffer -- the buffer region. Although there may be many regions
that mark off sections of the buffer's text, it is the buffer region
that defines the beginning and end of the text in a buffer. It is an
error to alter the marks that define the buffer region.

0

Each buffer has a permanent mark associated with it called the buffer
point. The buffer point is a left-inserting mark that is a point of
attention for the buffer (where most text operations commands are
executed). The underlying display functions of the Editor cause the
screen cursor to track the buffer point when that buffer is the
"current" one. Moving the cursor is therefore accomplished by moving Q
the buffer point mark. Most normal character insertion and deletion
operations are performed with respect to the buffer point. It is an
error to change the type of the buffer point or to change the point so
that it points to text not contained in the buffer.

The Editor can maintain a number of buffers simultaneously. The limit
on the number of buffers depends on the size of ava'ilable LISP dynamic
space. It is also possible to simultaneously display portions of more
than one buffer or different portions of the same buffer. Q
The current buffer is the buffer you are currently working on. The
screen cursor is always displayed in one of the display windows for
the current buffer. The concept of the current buffer is important
because dynamic context is determined by the setting of that buffer.

4

0

0

0

0

0

0

0

CONCEPTS IN EDITOR PROGRAMMING

CHARACTERS

Characters in the Editor are normal VAX LISP string characters; that
is, STRING-CHAR-P returns T for all characters stored in Editor
buffers. Characters are not, however, independent atomic objects in
the context of the Editor; they are always constituents of· Editor
lines.

VAX LISP recognizes and accepts all characters from the 8-bit extended
ASCII character set. All COMMON LISP font and bit information is
ignored by the Editor.

Not all characters can be displayed directly on a terminal, of course.
Any character that cannot be displayed directly on a screen is
converted to a string of printing characters. Such a string is
displayed on the terminal as a representation of the actual character
-- for example, the ASCII escape character is displayed as <ESCAPE>.
See the description of the "Print Representation" attribute in Part
III for more detail.

5

CONCEPTS IN EDITOR PROGRAMMING

CHECKPOINTING (Subsystem)

The VAX LISP
an editing
Without such
work if the
the VAX LISP

Editor provides a mechanism for protecting the results of
session from catastrophic failure such as a system crash.
a mechanism, you could lose the results of many hours of
system were to fail. The protection mechanism adopted by
Editor is called checkpointing.

Checkpointing involves writing to disk the full contents of
that was modified since the last checkpoint. The buffer is
a file having a different (and distinctive) name from the
that is associated with the buffer source. By default, the
file name is:

Source.Filetype_Version_LSC

any buffer
written to
file name
checkpoint

0

where Source, Filetype, and Version correspond to the file name of the o
source file being edited. For example,

MYPROG.LSP_2_LSC

is the name of the checkpoint file created when you are editing
version 2 of a file named MYPROG.LSP.

Buffers that are not associated with files do not, by default, have
checkpoint files associated with them.

You can set or change the checkpoint file name explicitly by using
SETF with the BUFFER-CHECKPOINTED function. (If you change the
checkpoint file name to NIL, checkpointing is not performed for that
buffer. The checkpoint file· name is also changed automatically
whenever the pathname of the buffer's associated file is changed.

When to checkpoint is determined by maintaining a count of the number
of commands that have caused modifications in the buffer text. The
count is kept on a global basis (otherwise it would be possible that
many modified files would never be checkpointed). You can determine
the frequency (number of commands) of checkpointing by calling the
function CHECKPOINT-FREQUENCY. This function is also a SETF form that
allows you to change checkpoint frequency. The default value is 350.
If it is set to NIL, all checkpointing is disabled.

Should there be a catastrophic failure of the system during an editing
session, you can recover a file in its most current state by looking
for its checkpointing file. Checkpointing files are deleted when
modified buffers are written. If a checkpoint file exists, it is
guaranteed to be the latest available copy of the buffer contents.
The user can rename a checkpoint file to the buffer file name.
Editing this file gets the most recent information that was in the
Editor before the crash. Only modifications made to text between the
time of the last checkpoint and the system failur~ are lost.

6

0

0

0

CONCEPTS IN EDITOR PROGRAMMING

OCOMMANDS

Commands are similar to function objects in that they can be invoked
to produce changes in the state of the Editor. They are unlike
ordinary LISP functions in how they are invoked and in the context
rules for their execution. Every command is associated with· a LISP
function; invo~ing a command within the Editor causes the Editor to
invoke the command's associated function.

Binding an Editor command can be thought of as creating a bridge
between a character or sequence of characters and a command in a
particular context. You accomplish this by executing the BIND-COMMAND
function. If you then enter a key or key sequence from the terminal,
the Editor makes a normal context search to find the correct command
to execute. You can also bind actions of a pointing device to Editor

O commands, using the function BIND-POINTER-COM~D.

There are three ways to invoke an Editor command:

0

0

0

• Entering a previously bound character or sequence of
characters from the keyboard, or performing a pointer action,
when you are in the Editor

• Using the "Execute Named Command" command and specifying the
name of a command when you are in the Editor

• Calling the associated function directly from LISP

The first of these is the fastest method. These methods are discussed
individually.

• The BIND-COMMAND function is used to bind an ·Editor command to
a character or sequence of characters in a particular context.
When you enter this character or sequence of characters, the
Editor initiates a normal context search for a command object
bound to that sequence. For example, by default, all the
individual graphic characters are bound to the named command
"Self Insert" in the global context. The result of your
typing any of these characters is the execution of a function
that inserts the characters at the buffer point of the current
buffer.

The action of BIND-POINTER-COMMAND is similar except that the
specified command is invoked by an action of the pointing
device, such as depressing a particular button or moving the
pointer cursor. As with bound characters, the Editor performs
a context search to determine which command to invoke in
response to a pointer action.

The binding of a command, like that of a variable or an
attribute, can be shadowed by another binding to the same key

7

CONCEPTS IN EDITOR PROGRAMMING

COMMANDS (cont.)

(or key sequence) in a local context. For example, when "VAXO

•

LISP" style is active in the current ,buffer, the right
parenthesis character is bound to a function that finds and
displays the matching left parenthesis before inserting the
right parenthesis. This binding shadows the binding of the
right parenthesis to "Self Insert" in the global context.

NOTE

If you redefine a command that is bound in
some context, you must rebind the appropriate
key sequence or pointer action to that command
in order to have the new command executed.

Some commands (like "Delete Current Buffer") are either
infrequently used or are potentially too dangerous to be bound
to keys (where they might be invoked by accident). The VAX
LISP Editor has a command, "Execute Named Command", that
allows you to enter the name of a command and have the
corresponding function executed. ·

0

• The third method used to invoke a command is to directly callo
the associated LISP function from another LISP function. To
make use of existing commands when writing a new Editor
command, you must use the function associated with the
command.

Categories

Commands can also have a list of categories associated with them.o
These categories are user-defined and can be retrieved, tested, and
altered. Examples of command categories are :GENERAL-PROMPTING and
:LINE-MOTION. A command might examine the categories of itself or of
a previously invoked command and perform different actions depending
on the categories found.

Prefix Argument

Every function that implements a command takes at least one argument.
This argument is called the prefix argument, and it usually tells the
function how many times the operation is to be done. For example, if
the "Self Insert" command is called with a prefix argument of 5, it
inserts the most recently typed character five times. The prefix
argume_nt is automatically reset to NIL each time through the c;ommand -o
loop. You use the "Supply Prefix Argument" command to set the prefix
argument for the next command to be executed.

8

CONCEPTS IN EDITOR PROGRAMMING

O CONTEXT (Subsystem)

The VAX LISP Editor maintains a hierarchical search space that is used
to locate all Editor key bindings, pointer action binds, variables,
and attributes. The Editor must search this hierarchy in order to
determine the correct command for a key sequence or pointer action,
the correct value or function of an Editor variable, or the correct
value of an attribute.

0

0

0

0

The binding of commands, variables, and attributes must take place in
some context. The context can be

• Global, which means that the object is always defined.

• A style, which means that the object is defined in buffers
that use the style as either the major. style or a minor style.

• Specific to a particular buffer.

The search order of the hierarchy is

• Current buffer

• Minor styles active in that buffer in the order of most
recently activated to least recently activated

• Major style of that buffer

• Global definitions

Only if the entire search fails is the command, vari~ble, or attribute
considered unbound.

By default, the standard order is used to locate the value of an
object. It is possible to specify an explicit context for an
accessing function (for example, VARIABLE-VALUE). In this case the
normal searching operation is bypassed, and the object is accessed in
the specified context only. Every function that binds an Editor
object has an optional argument to define the context in which the
created object is stored for later access. In such situations, a
context argument is always specified with one of the following:

• :GLOBAL -- The object is defined in the global context and is
universally accessible.

• A 2-element list consisting of the :STYLE keyword followed by
a style reference. The object is defined in the context of
the named style.

Example: '(:STYLE "EDT Emulation")

9

CONCEPTS IN EDITOR PROGRAMMING

CONTEXT Subsystem (cont.)

• A 2-element list consisting of the :BUFFER keyword followed
a buffer reference. The object is defined in the context
the specified buffer; that is, it is local to that buffer.

Examples: '(:BUFFER "filename.lsp")

or

(_LIST :BUFFER (CURRENT-BUFFER))

where the function CURRENT-BUFFER returns an Editor buffer.

As a result of the context and searching rules, the named objects
be thought of as forming a hierarchy:

can

0
Buffers

I
Styles

,--l1
Commands Variables Attributes

ML0-247-86 0
That is:

• Buffers can include active styles and bindings of commands,
variables, and attribut~s, but not other buffers.

•

•

Styles can include bindings of commands, variables, and
attributes, but not buffers or other styles.

Commands, variables, and attributes cannot contain bindings ofO
one another.

Use of Context

A few conventions regarding the use of context by different users of
the Editor follow:

• The global context is established by DIGITAL when the Editor
is built. You can, of course, alter it, but you must be aware
of any hook functions or default variables that are supplied
with the Editor. Styles supplied with the Editor often assume
the existence of certain variables and hook functions. Such
assumptions are listed with the descriptions of theo
appropriate variables and commands.

10

0

0

0

0

0

CONCEPTS IN EDITOR PROGRAMMING

CONTEXT Subsystem (cont.)

If you want to alter the global context, you should check for
any predefined hooks or variables and make certain that they
are either retained, or their use is not necessary.

• Styles ar~ the province of writers of Editor extensions. A
writer of an extension should feel free to make whatever
alterations, bindings, variables, or attributes that are
appropriate for implementing the desired style. A style
should not alter global context or local buffer context
without care. In particular, command bindings should be
established only within the style.

• Buffer local bindings should be used for special-purpose
buffers such as "General Prompting".. These buffers exist to
provide special capabilities that are not needed during normal
text editing. The commands related to help, alternatives, and
completion are bound locally in the "General Prompting" buffer
because these commands have meaning only while the user is
being prompted.

It can, however, be appropriate to bind Editor variables
locally in a buffer. Such bindings are proper when certain
information necessary to the operation of a style needs to be
kept in each buffer~ The "Buffer Select Mark" is an example
of such an Editor variable. The "EDT Emulation" style must
keep track of any selected regions in each buffer having the
style active. A style-local variable cannot be used because
it would lose its value whenever a region was selected in some
other buffer. Each buffer, therefore, keeps its own binding
of the "Buffer Select Mark".

11

CONCEPTS IN EDITOR PROGRAMMING

DEBUGGING SUPPORT

The normal action taken by the Editor's display subsystem when you
execute the command "Pause Editor" is to save the current state of the
screen and clear the screen. Conversely, when the Editor resumes
after a pause, the current state of the screen is lost and the display
is reset to the appearance it had at the time the pause went into
effect.

This is'reasonable behavior when you have been doing normal editing
operations. It becomes a problem, however, for anyone implementing
new Editor commands, because it means that Editor functions cannot
reasonably be called from the LISP top level. The previous screen
state is lost, and any windows created from top level are lost when
the Editor is reentered.

0

In order to have effective debugging support for command implementers, Q
the Editor provides a variable to aid in debugging extensions to the
Editor:

EDITOR-RETAIN-SCREEN-STATE

EDITOR-RETAIN-SCREEN-STATE is a LISP special variable that controls
the action taken by the display subsystem when an Editor pause is
executed. If the value is NIL (default), the display subsystem takes
its normal action of saving the current state and clearing the screen;
if the value is non-NIL, it does not save the screen state and clear
the screen.

The display subsystem clears the screen and restores the old state
only if the display was saved at the last pause. This behavior allows
a command implementer to call Editor commands and functions from the
LISP top level without losing changes made when the. Edi tor resumes (by
means of a call to the ED function).

12

0

0

·o

-~---

CONCEPTS IN EDITOR PROGRAMMING

EDITOR VARIABLES

QEditor variables are distinct from VAX LISP special variables.
are similar to VAX LISP variables in that they can have both
and functions attached to them. The scope and extent rules for
variables, however, are different from LISP variables.

They
values
Editor

The scope of an Editor variable is defined by the Editor context
searching rules. An Editor variable has extent that begins when it is
bound in some context and ends when it is unbound from that context.

Editor variables are named objects, and special functions exist for
accessing and setting the value and function slots of variable
objects. You can use the functions VARIABLE-VALUE and
VARIABLE-FUNCTION for accessing the value or function associated with
an Edit6r variable •. You can use them with SETF to change the value or

Q function.

The LISP symbol corresponding to the Editor variable (the variable
name) has its value and function slots set according to the current
context -- that is, the symbol can be used as a special variable. Its
value changes a~cording to the current context~ It becomes unbound in
any context in which the Editor variable is not bound. By using the
LISP symbol you can improve the access time to the value or function
of an Editor variable.

Osimilarly, the LISP symbol can be used as a LISP
Editor command. The function slot of the
function of the Editor variable bound in the
there is no function definition, the LISP
definition (FBOUNDP is NIL).

function inside an
symbol is set to the

current context. If
symbol has no function

0

0

13

CONCEPTS IN EDITOR PROGRAMMING

ERRORS (Subsystem)

In your extensions to the Editor, the Editor's error subsystem lets O
you handle errors during the execution of Editor commands and notify
the user of such errors. In_ addition, a facility is prov~ded to
handle LISP-level errors (signaled from ERROR or CERROR, for example)
and place the user in a usable debugging environment.

Errors Signaled from LISP

When you invoke the Editor (by means of the ED function), the variable
UNIVERSAL-ERROR-HANDLER is bound to an Editor function that
intercepts any LISP errors .that occur (those signaled by ERROR,
CERROR, and ASSERT, for example). This function first asks you if
modified buffers should be saved. If you reply "Y," the Editor
attempts to save any buffers that were modified, although the nature o
of the error may prevent some or all buffers from being saved. The
Editor then asks if you want to enter the VAX LISP Debugger. If you
reply "Y," the Debugger is invoked; you have access to all the normal
Debugger features. If you reply "N," control returns to the LISP top
level.

You treat this error just .as you would a LISP erro'r at top level and
can take whatever actions are appropriate to the error signaled.
Throwing* to top level (by pressing CTRL/C or quitting the Debugger) o
causes the Editor to quit the current command and pause. Continuing a
continuable error causes a return to the interrupted Editor function.
The Editor screen state is not automatically updated, but the display
device is placed back in the mode required for operation of the
Editor.

Errors Signaled from the Editor

The Editor provides two error functions.that you can use when writing O
Editor commands EDITOR-ERROR and EDITOR-ERROR-WITH-HELP.
EDITOR-ERROR is similar to the LISP ERROR function but is more
appropriate to the Editor environment. When called, the function
displays an optional line of text in the information area of the
screen, calls the ATTENTION function to alert you to a problem, and
executes a THROW to-the top-level command loop of the Editor.

This function is typically used to indicate an illegal command
operation, invalid user input, or some other such error that allows
the Editor to continue normal operation, having discarded some
improper data.

* See COMMON LISP: The Language.

14

0

0

0

0

0

0

CONCEPTS IN EDITOR PROGRAMMING

ERROR Subsystem (cont.)

The second error function used by the Editor is similar to the VAX
LISP CERROR function. The EDITOR-ERROR-WITH-HELP function looks like
EDITOR-ERROR but takes an additional format string, which is used to
provide additional information to a user about the error that has
occurred. You can retrieve this additional formatted string by using
the "Help on Editor Error" command.

For example, when the Editor is writing a file, some error might occur
such as the quota being exceeded. The Editor signals an error and
displays a message in the information area notifying the user of that
fact. The EDITOR-ERROR-WITH-HELP function formats detailed
information about the error (the RMS error message), which the user
can retrieve if the problem is unknown by using the "Help on Editor
Error" command.

15

CONCEPTS IN EDITOR PROGRAMMING

HOOKS

It is often desirable, when you are writing extensions to the Editor,
to have operations performed automatically when some pariicular part
of the Editor state changes. Such automatically execu~ed operations
are called hooks; the functions that implement them are called hook
functions.

The VAX LISP Editor implements hooks by attaching these functions to
the function slots of Editor variables. Such variables are called
hook variables, and their names, by convention, end with -HOOK. Any
binding of a hook variable in an Editor context can have only one
function associated with it (not a list of functions).

Two functions allow you to treat an ordinary Editor variable as a hook
variable:

e INVOKE-HOOK

e REVERSE-INVOKE-HOOK

The arguments for each of these functions are an Editor variable
optionally followed by additional arguments to b~ passed to the hook
functions.

Normally, reference to an Editor variable results in a context search
to locate a single instance of a variable. The invoking of a hook
produces different behavior. A context search is made to locate all
the instances of the hook variable in the context search list (buffer
local, minor styles, major style, and global). Then all the functions
(if any) attached to the instances of these variables are called in
the INVOKE-HOOK or REVERSE-INVOKE-HOOK call. This is a major

'difference between hook variables and other Editor _variables.

It is important to note that in the normal case (a call to
INVOKE-HOOK) the functions are called in the reverse order of the
context search -- global, major style, minor styles (from oldest to
newest), and buffer local. The purpose of this ordering is to allow
writers of styles and individual Editor users to modify effects of
more global hook changes rather than to supplant them completely.

The REVERSE-INVOKE-HOOK
except that it calls
All hooks built into
INVOKE-HOOK function.

function behaves identically to INVOKE-HOOK
the functions in normal context search order.

the VAX LISP Editor are called with the

Setting_ a hook variable to a function in an Editor context will result
in the loss of any previous setting of the function slot of that
variable in that context.

0

0

0

0.

To set hook variables to new functions without losing existing hooks, . Q
you can set the variables in the context of a user-defined style.

16

CONCEPTS IN EDITOR PROGRAMMING

O HOOKS (cont.)

(See Chapter 6 of this manual for information on creating
styles.) When the new style is active, a reference to a hook variable

0

0

0

0

results in evaluating the new hook function as well as any other hooks
that are attached to that variable in other active contexts.

For instance, you can create a new style called "My LISP Hooks" or "My
Text Hooks". You then define the hook functions you want and set them
to the function slots of the appropriate hook variables in the new
style.

;;; Create a style to serve as a binding context.

(MAKE-STYLE (MY-LISP-HOOKS :DISPLAY-NAME "My LISP Hooks")

II This style contains hooks related to editing LISP code.")

;;; Define hook functions.

(DEFUN HOOK-1
(DEFUN HOOK-2

;;; Bind the appropriate hook variables in the new style,
;;; specifying the initial function definitions.

(BIND-VARIABLE "Name of Hook Variable"
:CONTEXT '(:STYLE "My LISP Hooks")
:INITIAL-FUNCTION #'HOOK-1)

;;; Once the hook variables ar~ bound in the style, they
;;; can be changed at any time using SETF.

(SETF (VARIABLE-FUNCTION "Name of Hook Variable"
'(:STYLE "My LISP Hooks"))

#'HOOK-2)

You can activate the new style in any given buffer by executing
"Activate Minor Style" command. You can also have the style activated
automatically by adding it to the lists that are the values of the
Editor variables "Default Minor Styles", "Default LISP Object Minor
Styles", or "Default Filetype Minor Styles".

17

CONCEPTS IN EDITOR PROGRAMMING

INFORMATION AREA

The Editor supports a dynamic multiwindow display. Windows can be
displayed and moved to arbitrary locations. There is a reserved area
at the bottom·of the screen, however, that is never deleted or
overlapped by an Editor window. This is the information area. This
area is always at least one row in height and is the full width of the
screen; its size can be increased.

The purpose of the information area is to have a location with
guaranteed visibility where data can be displayed. Error messages are
displayed here, as are other messages such as those telling you what
file was just written. There is a global variable, *INFORMATION-AREA
OUTPUT-STREAM*, that is bound to an output stream for this area.

0

The information area is not an Editor window and cannot be treated as
such. This means that there are no key bindings or Editor buffers Q
associated with it. The Editor window functions do not operate on the
information area. The information area should be used primarily as an
information display area for the user.

The CLEAR-INFORMATION-AREA function erases any text currently in the
information area ..

The INFORMATION-AREA-HEIGHT function tells you the current height of
the info.rmation area (in number of rows). You can change this value Q
by using SETF with this form.

0.

·o
18

CONCEPTS IN EDITOR PROGRAMMING

O LINES

The line is the basic unit of text in the Editor; it contains a
character string that normally corresponds to a single displayed line
of text. The string is exactly what would be returned if you executed
a READ-LINE function on a text file. A line also contains information
concerning its own relative position within a group of lines, as well
as within a buffer that might contain a group of lines.

Execution of most of the Editor functions results, directly or
indirectly, in the alteration of either lines or their relations to
other lines. The display subsystem of the Editor displays groups of
specified lines.

Lines are created as by-products of certain Editor operations (such as
making empty regions, breaking lines, and reading files). They can be O accessed either through marks that point into them or through
following the forward and backward links between lines. You can alter
lines by inserting or deleting characters in the line, replacing
individual characters in the line, deleting a region that is a portion
of a line, or replacing the entire text of a line. You can delete
lines by deleting regions that encompass them.

A line is never shared among buffers or disembodied regions. Altering
or removing a line in one buffer cannot affect lines in another Obuffer. But because it is possible for regions to overlap or be
completely contained in other regions, altering or removing lines in
one region can affect the contents of another region in the same
buffer or disembodied region.

0

0

19

CONCEPTS IN EDITOR PROGRAMMING

MARKS

The ability to indicate any given position in text is central
operation ·of any editor. The VAX LISP Editor has a special
LISP object for this purpose that is known as a mark.

to the
type of

A mark contains two items of information that allow Editor ,functions
to access or address specific characters in the text -- a pointer to a
line, and a number indicating the character position on the line. If
you think of a single line of text as beginning at the leftmost
position on the screen, then you can think of the representation of. a
character position as the number of characters "to the left" of the
character position of interest.

0

For purposes of text manipulation, you should think of the mark as
pointing between two characters. Any character inserted at the
position of a mark is always placed between the characters. WithQ
respect to the number representing the character position, the mark
points between positions n and n+l. The mark can also point between
the beginning of a line and the first character (n = 0), or between
the last character of a line and the end of the line.

Marks are of two types -- permanent and temporary ..

There are two kinds of permanent marks. They differ with respect to
whether text is inserted following the mark (right-inserting) oro
preceding the mark (left-inserting). The two kinds of permanent marks
are designated by the keywords :LEFT-INSERTING and :RIGHT-INSERTING.
Regardless of text insertions or deletions made before or after them,
a right-inserting mark remains "attached" to the character that was to
its left just prior to the operation; and a left-inserting mark
remains "attached" to the character that was to its right.

A temporary mark, on the other hand, becomes invalid after any
·Operation affecting the character it points to. You define ao
temporary mark by using the keyword :TEMPORARY. Temporary marks are
used primarily in operations that require a mark to be used just once.
They are used because these marks require less overhead in their
creation and use than do permanent marks, and so are much more
efficient in some applications.

If the line that a temporary mark points into is deleted, the mark
becomes invalid and should no longer be used. If the line that
contains a temporary mark is affected by insertion, being copied,
deletion, or being relocated, the temporary mark becomes invalid and
should no longer be used.

Marks are used primarily to indicate positions for character
insertions or deletions. Unlike many LISP functions, the functions
that manipulate marks are usually destructive operations on the mark. Q
Moving a mark, for example, alters the mark so that it points to a new
location. Only the accessing functions MARK-LINE and MARK-CHARPOS do

20

0

0

0

0

0

CONCEPTS IN EDITOR PROGRAMMING

MARKS (cont.)

not alter the mark. Marks can be shared among regions. A given mark
can be used to delimit any number of regions.

When a region of text is deleted, any
region (including the beginning and
region) then point to the location that
that preceded the deleted text and the
text.

For example, in the following text

permanent marks with1n that
ending marks of the deleteJ

is the junction of the text
text that followed the del~ted

A B C D E F G H I J K L M N
" " "

2 3

ML0-248-86

the marks 1, 2, and 3 point to the indicated positions. If the region
defined by marks 1 and 3 is deleted, the resulting text and mark
positions become

A B C K L M N

123

ML0-249-86

21

CONCEPTS IN EDITOR PROGRAMMING

NAMED EDITOR OBJECTS

Several types of Editor object are call~d named objects.
object is a special kind of LISP object. Once a named
created, it can be referred to in any of three ways:

. .· 0
A named

object is

• By means of an expression whose evaluation results in the
actual object. For example, (STYLEP variable) is true if, and
only if, the value of the variable is an Editor style.

• By means of a symbol defined at the
created. For exa·mple, (FIND-COMMAND
COMMAND) returns non-NIL only if the
COMMAND was specified as the name
command was created.

time the object was
'WRITE-CURRENT.-BUFFER
WRITE-CURRENT-BUFFER

of a command when the

• By means of a string that is the display name defined at the Q
time the object was created. For example, (FIND-BUFFER
"JONES.LSP") returns non-NIL only if the string "JONES.LSP"
was specified as a display name when the buffer was created.·

The specification of the name when you are creating a named object is
the same for each of the different types:

where

name I (name :DISPLAY-NAME string)

• The name argument is a symbol.

• The string argument is a character string that can be
specified as an alternate access string to the object. If a
display name is not specified, the print name of the symbol is
used as a display name.

Each named object can have a documentation string associated with it.
Such a string appears when the symbol of the object is described, or
the DOCUMENTATION function is used. The following documentation type
is used for named objects:

' EDITOR-type -- Gets the documentation string of the specified
object.

where type is one of the object types listed below.

The display names of all created named objects are stored in string
tables. The string table associated with each type of named object is
bound to a special variable of the form, *EDITOR-type-NAMES*. Use the
string tables to find the symbol associated with a given display name.

22

0

0

0

0

0

0

0

0

CONCEPTS IN EDITOR PROGRAMMING

NAKED EDITOR OBJECTS (cont.)

The following object types are named Editor objects:

e BUFFER

e. STYLE

• VARIABLE

• COMMANP

e ATTRIBUTE

Buffers, styles, and commands are context-independent LISP objects
that is, their creation functions (MAKE-BUFFER, MAKE-STYLE, and MAKE
COMMAND) create and return LISP objects of these types. The other two
named object types (variables and attributes) are context-dependent
objects. That is, once defined, they must be bound in a specific
Editor context before they are used. In addition, the current value
of these objects depends on the current Editor context.

'

23
;

CONCEPTS IN EDITOR PROGRAMMING

PROMPTING- (Subsystem)

Often, the user must be prompted for information necessary to the Q
operation of some function or command. The operation involves first
telling the user what information is needed and then solicitipg the
input data. For example, the "Write Named File" command needs to ask
the user to specify a file for the contents· of the buffer to be
written to. The VAX LISP Editor makes two functions available to you
for creating a prompt:

PROMPT-FOR-INPUT

and

SIMPLE-PROMPT-FOR-INPUT

Both functions make full use of the Editor capabilities for text Q
processing and display. They assume the availability of a buffer with
the display name "General Prompting". This is a nofmal Editor buffer
that is created with the value of the Editor variable "Default Major
Style" as its major style. You can change this style as you can for
any other Editor buffer. This buffer also has a number of
buffer-local command bindings and Editor variab+es that alter its
normal behavior to provide additional prompting services to the user.

There is a window associated with the "General Prompting" buffer.n
This window is always visible in the Editor (in the row or rows above_)
the information area), and most user interaction occurs in this
window. Although the window is a normal Editor window, it can be
manipulated with only a few of the normal Editor window functions.
Specifically, the prompting window cannot be removed from the screen
or moved to a different screen position.

Simple Prompting

The SIMPLE-PROMPT-FOR-INPUT is the more basic of the prompting
mechanisms. It displays an optional prompting string in the prompting
window and solicits a response from the user, which echoes in the
prompting window. The prompt function reads the user's input as a
simple string; there is no Editor interpretation of the individual
characters. If the user supplies a null input string, an optional
default argument is returned.

General Prompting

0

A much more general mechanism is provided with the PROMPT-FOR-INPUT·
function. This function has special capabilities that you can use to
develqp elaborate prompting schemes when you are creating commands. 0

·24

0

CONCEPTS IN EDITOR PROGRAMMING

PROMPTING Subsystem (cont.)

Validating User Input - The one required argument to the
PROMPT-FOR-INPUT function is the validation function. This must be a
function that accepts a string argument and produces some value that
will be returned by the PROMPT-FOR-INPUT function.

The validation function indicates that the input string is invalid by
returning NIL. In such an instance, PROMPT-FOR-INPUT signals an error
to the user and awaits further input. If the string input is a null
string, and the value of the :REQUIRED keyword is NIL, the value of
the :DEFAULT keyword parameter is returned. You can actually allow
the validation function to return NIL as a valid value by returning
multiple values of NIL and T.

An example of a function you can use for validation is FIND-COMMAND.
O This function returns a command function if the string is the name of

a command, and returns NIL if the string is not the name of a command.

0

0

0

Providing Input Completion - The PROMPT-FOR-INPUT function provides
you with facilities that can attempt to compl'ete partial user input.
For example, the user might be generally familiar with a set of Editor
commands, but not remember the exact display name of the one needed.
By using the completion facility, the user can type a portion of the
name of a command and ask the facility to complete the name
automatically. The user normally requests input completion by typing
a CTRL/space (the null character). ·

There are three ways you can supply such completion assistance to a
user:

• If the argument to the :COMPLETION keyword is a string, it is
just inserted into the prompting buffer.

• If the argument to the :COMPLETION keyword is a string table,
the completion function uses the text entered by the user as
the key to the string table and attempts to return a completed
string that will automatically be inserted into the prompting
buffer.

The string table routines complete as much of the text as they
can supplying the rest of the text string or only as much
of it as is uniquely identifiable. The user is informed of
whether the input is now complete or if other entries can be
found starting with the same string. If no entry can be found
to match the user input, the facility deletes characters from
the end of the user input .until some, entry (possibly
ambiguous) can be found in the string table. This mechanism
is used in the "Execute Named Command" command.

25

CONCEPTS IN EDITOR PROGRAMMING

PROMPTING Subsystem (cont.)

• If· the argument given to the :COMPLETION keyword is a
function, that function is called and passed any arguments
specified in the :COMPLETION-ARGUMENTS keyword. You have
complete control over the displayed contents of the prompting
buffer. This method is used by the "Edit File" command, which
attempts to complete user input by performing a directory
search for a matching file name.

Providing Alternatives - The alternatives option to general prompting
is designed to supply additional help to a user responding to a
prompt. This feature is designed to help the user choose among a set

0

of alternative possibilities. For example, there are many named
commands in the Editor. When being asked for a command name, the usero
might not know the exact spelling of the name. Upon entering some
input and asking for completion help, if the Editor cannot respond
with an exact command name, the user needs to be able to get a list of
possible names based upon the typed input. In such an instance, the
calling of the alternatives option (pressing keypad PF1 PF2) should
yield a displayed list of commands whose names begin with the typed
string.

The general prompting facility uses the :ALTERNATIVES
:ALTERNATIVES-ARGUMENTS arguments to enable this form of help.·
argument to :ALTERNATIVES can be a string table or a function. If
argument is a string table, that table is searched to find
possible entries that start with the string the user has typed.
list is automatically displayed in the "Help" buffer.

and
Theo
the
all
The

If the argument is a function, that function is called and passed any
arguments that were given in the :ALTERNATIVES-ARGUMENTS argument.
This function can perform any operations it needs and should provide a
display of the user's options appropriate to the command. ForQ
example, such a function might do a wild-card directory search for
possible file names.

Providing Help - If, at any point in PROMPT-FOR-INPUT, the user
invokes the "Prompt Help" command (presses keypad PF2), the function
takes action based on the value of the :HELP keyword. If the value is
a string, that string is displayed in the information area or in the
"Help" buffer if the text has more lines than will fit in the
information area.

If the value is a function, that function is called and passed any
arguments that were specified in the :HELP-ARGUMENTS keyword. This
method, like that for completion, gives you, the command writer, all
the flexibility necessary for supplying assistance tailored to theo
needs of the user and the command.

26

0

0

0

0

0

CONCEPTS IN EDITOR PROGRAMMING

REGIONS

A region contains a portion of text, which can be part or all of one
or more lines in a group of related lines. The region is defined by
two marks, which indicate the beginning and ending positions of the
region. Regions are treated as blocks of text that can be manipulated
as units -- deleted or inserted, for example.

The marks that delimit a region can be either temporary or permanent.
You can use temporary marks for one-time operations on regions. If
you use permanent marks, delimit the beginning of the region with a
right-inserting mark and the end of the region with a left-inserting
mark. If you use a left-inserting mark at the beginning of a region
or a right-inserting mark at the end, and if you insert text at the
beginning or end, the results can be unpredictable.

Regions can be of two types. The most commonly used region is a
portion of text insid~ a buffer. The region is defined by beginning
and ending marks. Regions of this type can share text with other
regions. Regions can overlap in arbitrary ways or be entirely
contained within other regions. Since the text of multiple regions
can be shared, any alterations done in one region affect the text of
any other region containing the same text.

The second type of region is a disembodied region -- a region of text
that is not associated with any buffer. This type of region can be
created only by means of the MAKE-EMPTY-REGION or
DELETE-AND-SAVE-REGION function. It can be used with any of the
normal text manipulation functions; for instance, INSERT-CHARACTER
would work if given a mark that points into a disembodied region.
Such a region cannot, however, be displayed. Disembodied regions are
often used as storage areas for deleted text s~ch as traditional
cut-and-paste regions.

Highlight Regions

A highlight region is a special type of region that can be defined
only for text in a buffer. A highlight region can be used just as any
other region in the Editor is, and all the region manipulation
functions operate on them. In addition, when any of the text defined
by the highlight region is visible in a window, that text is displayed
with any special display attributes specified when the region was
created. The possible highlight atttributes are any combination of
reverse video, bold, blinking, or underline. Highlight regions can
overlap, but the resulting display attribute for the overlapped
section is not predictable.

Special functions are available to you for creating and removing
highlight regions. Once created, the highlighting remains in effect
until the region is removed by means of REMOVE-HIGHLIGHT-REGION or
deleted. by means of either DELETE-REGION or DELETE-AND-SAVE-REGION.

27

CONCEPTS IN EDITOR PROGRAMMING

REGIONS (cont.)

Removing a highlight region does not
only the display attributes of the
ending mark of a highlight region is
tracks the motion of the mark.

28

alter the text of the region, buto
text. If either the beginning or
moved, the display of the region

0

0

0

0

CONCEPTS IN EDITOR PROGRAMMING

O RINGS ·

A ring is a specialized data structure that implements a circular
cache of data values. Items of data can be retrieved either from the
start of the ring (Last In/First Out) or from the end of the ring
(First In/First Out). In addition, since the ring is circular,· it can
be rotated so as to move its start/end position.

0

0

0

0

Rings have general utility in editors for example, to store a
record of deleted text. A set of utility routines is included to let
you create and manipulate ring structures. Rings and ring functions
can also be used outside the Editor environment.

29

CONCEPTS IN EDITOR PROGRAMMING

STREAMS

VAX LISP I/0 can be directed into and out of Editor regions by the
creation of streams to these objects.

Establishing an Editor input stream allows text to be read from a
region with standard LISP read operations. All normal LISP input
functions can be used. The usual COMMON LISP end-of-file action is
taken whenever an attempt to read past the end of the region occurs.

An Editor output stream allows normal VAX LISP write operations to put
text into a region at a particular mark. All normal LISP output
functions can be used. You can create a new line in the region by
using the TERPRI function or by writing a newline character. Writing
a carriage return - linefeed pair does not automatically break a line.
These characters are inserted as ordinary nonprinting characters.

There are two additional functions that direct file operations into
and out of Editor regions. INSERT-FILE-AT-MARK inserts the contents
of a file at the designated mark. WRITE-FILE-FROM-REGION writes the
contents of an Editor region to a file.

30

0

0

0

0

0

CONCEPTS IN EDITOR PROGRAMMING

O STRING TABLES

0

String tables are specialized hash tables that are used to store
information indexed by a string. String tables are of general utility
(they can be used outside the Editor environment) and are used for
such actions as completing partial user input (of a command name, for
example). There are functions that access these tables to retrieve
data based on a specified string. The mapping of Editor names to LISP
objects is accomplished through use of these tables.

The following special variables are bound
information on named Editor objects:

e *EDITOR-ATTRIBUTE-NAMES*

e *EDITOR-BUFFER-NAMES*

e *EDITOR-COMMAND-NAMES*

e *EDITOR-STYLE-NAMES*

e *EDITOR-VARIABLE-NAMES*

to tables holding

In addition to your being able to access information by means
entire string, you can use functions to do a search based on a

Qstring (for example, the first four letters of a buffer name).
functions help .in writing commands that attempt to complete a

of the
partial

These
partial

string that is specified. ·

For example, you might want to execute a named command. The Editor
can accept a partial command name and, by means of the string table
EDITOR-COMMAND-NAMES, complete the partial name; .or the. function
might complete the string only to the point where it becomes

Q ambiguous.

0

Example

If you are prompted for a command and enter Del, you can type a
CTRL/space. There are two commands that begin with Del -- "Delete
Buffer" and "Delete Window." The Editor therefore completes the string
as far as "Delete". You then have to enter at least B or W
(indicating an unambiguous command) before typing the CTRL/space
again.

You are not limited to this set of string tables.
general and there are functions for creating
Strings are case-sensitive when . stored or
case-insensitive during string matching.

31

The facility is
new string tables.

returned, but

CONCEPTS IN EDITOR PROGRAMMING

STYLES

A style is a collection of bindings of Editor keys, pointer actions, 0
variables, and attributes, coupled with functions executed when a
style is either activated or deactivated.

When a style is active in a buffer, it alters the current behavior of
the Editor. An example of a style is one that causes the Editor to
recognize the structure and syntax rules of LISP code. This behavior
is appropriate only when you are editing LISP source code. Properly
editing code written in FORTRAN or PL/I would require different Editor
styles to be active.

Any number of styles can be active at one time when you are editing in
a particular buffer. The styles can interact with one another to some
extent, but one style can also shadow (hide) the behavior of another.

For example, you might be using the style called "VAX LISP" for Q
editing LISP code, but you would like to specify your own command for
indenting LISP text. The new indent command can be bound in another
style called "LISP Indent" and "LISP Indent" can be made active in the
current buffer. The binding of the indent command in "LISP Indent"
shadows the binding of the indent command in "VAX .LISP," but all other
commands defined by "VAX LISP" are visible. Deactivating "LISP
Indent" would "unshadow" the original indent command binding and make
it visible again. Q

General Style Writing

The writer of an Editor style must take steps to ensure that any
needed Editor support is present. For example, if the new style needs
Editor variables bound in the style or in any buffers that use the
style, the style must bind them directly or through use of a
BUFFER-CREATION-HOOK function defined in that style. Editor variableso
that are defined with the VAX LISP Editor can be freely bound where
needed.

A variable should be bound in a style whenever the style writer wants
to retain information able to be used in any buffer having that style
active. For example, the variable "EDT Paste Buffer" is bound in the
EDT Emulation style. With this binding, any text that is cut from one
buffer using "EDT Emulation" style can be pasted into any other buffer
that also has "EDT Emulation" style.

Command bindings defined for a style should be thought of as
recommendations. It is quite possible for the user to change the
bindings local to that style. This means, for example, that help
functions associated with a style should not assume that a particular
key sequence is bound to a particular command. o

32

0

0

0

0

0

CONCEPTS IN EDITOR PROGRAMMING

STYLES (cont.)

Major/Minor Style Distinction

Any Editor Style can be bound as a major or minor style on a
per-buffer basis. The decision is normally made on the basis of the
extent of behavior changes introduced by the style. You make this
decision when you bind the style to a buffer. A buffer can have only
one major style active at a time, but any number of minor styles
active at the same time.

The set of global bindings of commands is extremely limited in the VAX
LISP Editor. This fact implies that any generally useful editing
session must have a powerful major style bound for each buffer. As
supplied in the VAX LISP Editor, the default major style is "EDT
Emulation," which supplies a set of commands and bindings that make
the Editor behave as EDT does. You may want to replace this default
style with "EMACS" or with one of your own that would make the Editor
behave in a different manner.

Minor styles are intended to be variations of the major style (or
other minor styles) that tailor the Editor behavior to more specific
needs. For example, the Editor comes with a "VAX LISP" style, which
modifies the Editor so that it has more knowledge of the syntax of
LISP. When this style is active, typing the) key not only inserts
the character but also locates and displays the corresponding (
character. Most of the editing capabilities are still vested in the
major style of the buffer. ·

Activation of Styles

There are
when a
buffers;
buffers.

two methods by which styles can be automatically activated
new buffer is created. One method works for all created
the other method can be tailored for specific attributes of

The first method involves the Editor variables "Default Major Style"
and "Default Minor Styles." When a buffer is created, its major style
is set to the current value of "Default Major Style." As supplied, the
value of this variable is "EDT Emulation." If you chang·e this value,
it changes the major style of the "Help" and "General Prompting"
buffers to the new style. The minor styles of the new buffer are set
from the list of styles contained in "Default Mirier Styles." The
global value of this variable is initially NIL.

The second method allows you to activate minor styles in a new buffer
either according to .the file-type of the associated file or whenever a
LISP object i,s being edited in the buffer.

The Editor variable "Default File Type Minor Styles" contains an
,association list (a-list; see COMMON LISP: The Language). Each key

33

CONCEPTS IN EDITOR PROGRAMMING

STYLES (cont.)

in the a-list is a string that is compared with the file type of theo
new buffer's associated file. Each element contains a list of minor
styles to activate in any buffer with a file type matching the key.
As supplied, this variable is bound in the global context and has a
single element of the form ("LSP" . ("VAX LISP")). Thio means that
the "VAX LISP" style is activated in any buffer containing a file
having a file type of LSP.

A second Edi tor variable, ".Default LISP Object Minor Styles, 11 contains
a list of minor styles to be activated in any buffer having an object
being edited directly from LISP. As supplied, this variable is bound
in the global context and contains the list ("VAX LISP"). This means
that the "VAX LISP" style is automatically activated in any buffer
used to edit a LISP function.

Order of Activation
0

When a buffer is created, first the major style is activated from the
current value of "Default Major Style" (unless the major style is
otherwise specified). Note that only the gl~bal value of this
variable is· used. The minor styles are then activated from the list
found in "Default Minor Styles." The order of acti~ation is in reverse
order of the list. When the operation is complete, the order ofo
search of the minor styles is the same as that of the list.

If the buffer contains a LISP object, the minor styles in the "Default
LISP Object Minor Styles" list are next activated in reverse order.
Any styles present in this list will be searched before any of the
styles found in the "Default Minor Styles" list.

If the buffer has an associated file, the association list (a-list)
contained in "Default File Type Minor Styles" is searched for an entry Q
whose key matches the file type of the associated file. The styles
contained in the entry are activated in reverse order so that the
expected search order is maintained. Any styles present in this list
will be searched before any of the styles found in the "Default Minor
Styles" list.

Activation and Deactivation Functions

Activation and deactivation functions are associated with each style.
When a style is made active, its activation function is executed; when
a style is made inactive, its deactivation function is executed. You
make a style active by using the SETF macro with BUFFER-MAJOR-STYLE or
BUFFER-MINOR-STYLE-ACTIVE.

34

0

CONCEPTS IN EDITOR PROGRAMMING

O STYLES (cont.)

0

0

0

0

If the "EDT Emulation" major style is defined, and it is activated
with

(SETF (BUFFER-MAJOR-STYLE "TYPESET.LSP") "EDT Emulation"),

then the deactivation function of the old major style and the
activation func~ion of the new major style are executed. This process
occurs unless the new and old styles are the same. Setting the major
siyle to NIL causes the old major style to become inactive.

If the "VAX LISP" minor style is made active in the FACTORIAL buffer
with

(SETF (BUFFER-MINOR-STYLE-ACTIVE 'FACTORIAL "VAX LISP") T),

then its activation function is executed, and the new style is pushed
onto the front of the list of active minor styles.

If an active minor style is again activated, and it is not the most
recently activated minor style, then the foll~wing actions occur:

• The deactivation function associated with the style is
executed.

• The original entry for the style is deleted from the list of
active minor styles.

• The activation function associated with the style is executed.

• The style is pushed onto the front of the list of active minor
styles.

If a style that is active in any Editor buffer is modified (for
example, if a new variable is bound in that style), the modifications
take effect in those buffers immediately.

35

CONCEPTS IN EDITOR PROGRAMMING

WINDOWS

the O A window is both an Editor object and the display mechanism of
Editor. Each window is a rectangular "opening" into a portion of an
Editor buffer. This opening can be displayed on the screen of your
display device, thereby showing you the current state of text within
viewing range. As windows are Editor objects, they can be manipulated
by various Editor functions.

Windows need not be the full height or width of the screen. Multiple
windows can be on the screen at the same time. Moreover, windows can
fully or partially overlap one another. The dimensions of a window
are dynamic and can be changed either automatically by the Editor or
under program control by a function you write.

Only text that lies within a buffer region can be displayed. A buffer
can have multiple independent windows pointing into it. Since the Q
text contained within a buffer can be both longer than a window (more
lines) and wider (more characters per line), some provisions have been
made to handle both circumstances.

Windows that are shorter than a buffer can be "moved" forward and
backward through the buffer. This is known as "scrolling." In the VAX
LISP Editor, it -is the window that scrolls in 'the direction ·you
specify and not the text. For example, when you scroll the window
down (or forward) through the buffer, the text appears to move up too
accommodate the new window display; actually, the window is moving
down in the buffer. Windows can also be positioned absolutely in a
buffer (at the beginning or end of a buffer, or at a particular line).

A window that is narrower than the text of the buffer is treated
differently. The displayed text. lines are either truncated on the
right wherever the window ends (that is, only as many characters as
will fit in the width of a window are displayed); or the lines "wrap
around" (that is, the entire line of text is displayed even if ito
overflows onto one or more additional rows). Truncation and wrapping
are indicated by special characters at the end of an affected line.
The default is an underlined> for truncation, and an underlined< for
wraparound, but you can specify different characters for any window.

The physical location of a window on the screen can be moved without
affecting the portion of the buffer that. the window is displaying;
that is, you affect only where the text is displayed, not what is
being displayed. A window can also exist as an Editor object but not
be currently displayed. The Editor provides mechanisms for
automatically placing windows in and removing windows from the
display. You can also do this under the control of your program.

A window has an optional label -- a line of text that accompanies the
window and that is displayed with it. The line can be displayed at Q
the top, bottom, or either side of a window. By default, the label is
placed at the bottom of the window and can be of any length up to the

36

CONCEPTS IN EDITOR PROGRAMMING

O WINDOWS <cont. >

length of whatever
can contain any
name.

edge of the window the label is displayed on. It
text you want -- for example, a buffer name or file

The label can be highlighted to give a visual separation from the
buffer text being displayed. By default, this is done with reverse
video on terminals that support this feature (VT100 compatible). The
highlighting can be changed under program control. By default, the
label is centered on whatever edge of the window is used for this
display. You can control the label's position on a line, however, by
specifying a starting position for the label -- an offset value that
is the number of characters from the start of the window side (from
the top of the window, if the label is on the right or left; or from
the left-hand side, if the label is on the top or bottom).

QEditor windows are of two types -- floating and anchored. Display
text in a window is unaffected by the type of the window.
distinction between the two lies in how they are treated by
display subsystem.

of
The
the

0

The simplest distinction is that floating windows are always displayed
"on top" of (overlaying) any anchored windows, possibly obscuring
them.

NOTE

With such overlaying, it is possible that the cursor
that appears to be in the floating window is, in fact,
indicating a position in the overlaid anchor~d window.

OAn anchored window cannot obscure a floating window. Another
difference is that anchored windows are subject to automatic resizing
and repositioning by the display subsystem. Floating windows are
treated independently of other windows.

The two types of windows are identified with the keywo·rds : FLOATING
and :ANCHORED. By default, created windows are anchored if they are
the full width of the screen and are displayed starting in column 1
(the left-hand side of the screen). Otherwise, they are floating.
You can specify an explicit type for any windows you· create and can
also change the type of an existing window ..

The display subsystem allows you to gain full control over the
treatment of windows on the display where they are, what they
overlap, and which are displayed. You can allow the Display Subsystem

O to exercise automatic control over the display of anchored windows.
Floating windows are always assumed to be under program control.

37

CONCEPTS IN EDITOR PROGRAMMING

WINDOWS (cont.) 0
The automatic treatment of anchored windows follows
below:

the rules given

1. Text in one anchored window is never obscured by text in
another anchored window.

2. The bottom border of an anchored window is never obscured by
another anchored window, but the top and side borders can be
obscured.

3. Anchored windows are automatically adjusted· in height when
other anchored windows are added to, or removed from, the
display. The adjustment is such that the text areas of
anchored windows do not overlap one another~ and the total
height of all the anchored windows on the screen is the fullo
height of the screen minus the height of the information area
and the prompting window.

4. Any of the functions that manipulate windows on the screen
assume that, unless explicit directions are given for the
treatment of anchored windows (such as specifying height or
relative position), all the currently displayed anchored
windows are subject to automatic manipulation.

A record is also kept of the time a window is created. You
retrieve this information with the WINDOW-CREATION-TIME function.
returns a value in universal time.

canO
It

0

0

38

0

0 l>ART Ill

EDITOR OBJECT DESCRIPTIONS

0

0

0

-o
EDITOR OBJECT DESCRIPTIONS

This-part describes each of the objects provided with the VAX LISP
Editor. The objects are l~sted by name in alphabetical order.

The Editor objects listed include the following types:

• Functions

• Macroi;

• LISP global variables

• Named Editor objects

Buffers

Commands

Editor attributes

Editor variables

Styles

0

0

The other objects provided with the Editor are unn~med: lines, marks,
regions, string tables, streams, windows. These objects are not
described here, except for those.that are bound to LISP variables. Q
For instance, the string table bound to *EDITOR-COMMAND-NAMES~ and the _
stream bound to *INFORMATION-AREA-OUTPUT-STREAM* are described here.

The following conventions are used in
descriptions:

Named Editor Objects

the individual object

Named Editor objects can have both a symbol and a display name, which
is a string. For instance:

• EDT-EMULATION and "EDT Emulation" both refer to the same style
object

• EDITOR-PROMPTING-BUFFER and "General Prompting" both refer to O
the same buffer object

40

EDITOR OBJECT DESCRIPTIONS

O The description of each named Editor object identifies both its symbol
and its display name. The descriptions are alphabetized according to
the objects' display names.

Functions Associated with Commands

The functions associated with commands are listed according to the
display names of the commands. For instance, the function INDENT
LISP-REGION-COMMAND is described along with the command "Indent LISP
Region". The symbol of the function and the symbol of the command are
identical.

The command descriptions give the full format of the associated
functions, including all optional arguments. Whether you can supply
values for optional arguments depends on whether you are executing a

O command in the Editor or calling its associated function from LISP
code:

0

• When executing a command within the Editor, you can supply a
value only for the prefix parameter (by previously executing a
command such as "Supply Prefix Argument" or "Supply EMACS
Prefix"). If the Editor needs additional values to execute
the command, it will either use default values or prompt for a
needed value.

• When calling a command-associated function from LISP code, you
can supply a value for any paiameter.

Functions That Take Named Editor Objects

The descriptions of functions that take named Editor objects as
arguments distinguish between those that can take an object specifier

O and those that can take only the object itself. In each case, the
function description identifies the argument as either object-type or
object-type specifier.

0

Object specifiers include the display
Editor objects. Functions that take
cannot take a display name or symbol
symbol of a named Editor object does
Chapter 1).

names and
objects (not
specifier.

not evaluate

symbols of named
object specifiers)
Recall that the

to the object (see

The distinction between functions that take only objects and functions
that take specifiers is illustrated by BUFFER-WRITABLE and BUFFER
MAJOR-STYLE:

41

EDITOR OBJECT DESCRIPTIONS

• BUFFER-WRITABLE takes an Editor buffer. The argument can be Q
specified only by a form that evaluates to a buffer object.
For instance:

•

(BUFFER-WRITABLE (CURRENT-BUFFER))
or

(BUFFER-WRITABLE (FIND-BUFFER 'EDITOR-HELP-BUFFER))
or

(BUFFER-WRITABLE *EDITOR-DEFAULT-BUFFER*)

BUFFER-MAJOR-STYLE takes an Editor buffer specifier.
argument can be specified by any of the following:

A

A

A

buffer display name

(BUFFER-MAJOR-STYLE "Mybuffer.lsp")

buffer· symbol

(BUFFER-MAJOR-STYLE 'EDITOR-HELP-BUFFER)

form that evaluates to a buffer object,

(BUFFER-MAJOR-STYLE (CURRENT-BUFFER))
or

such as

(BUFFER-MAJOR-STYLE (FIND-BUFFER 'EDITOR-HELP-BUFFER))
or

(BUFFER-MAJOR-STYLE *EDITOR-DEFAULT-BUFFER*)

42

The

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

O ACTIVATE MINOR STYLE Command

Prompts the user for the name of a style and then activates that style
as a minor style in the current buffer. Alternatives and completion
are available during the prompt.

Category

:GENERAL-PROMPTING

Display Name Format

Activate Minor Style

Function Format

o ACTIVATE-MINOR-STYLE-COMMAND prefix

Arguments

prefix

Ignored

QReturn Value

The new minor style

AL TEA-WINDOW-HEIGHT Function

Increases (for a positive delta-value argument) or decreases (for a

Onegative delta-value argument) the height of the specified window by
the specified number of rows. If the window is currently displayed
and is of the anchored type, the heights of other displayed anchored
wiqdows are adjusted accordingly. The new height of the window cannot
be less than 1. If the new height is too large to fit on the screen
with the other displayed anchored windows, the height is set to the
maximum height permissible. Calling this function causes the "Window
Modification Hook" to be invoked.

Format

ALTER-WINDOW-HEIGHT window delta-value

Arguments

Owindow _

An Editor window. It need not be currently displayed.

43

EDITOR OBJECT DESCRIPTIONS

delta-value

An integer

Return Value

The new height of the window

ANCHORED WINDOW SHOW ~IMIT Editor Variable

Specifies the maximum number of Editor windows that can be displayed
simultaneously by repeated calls to the function SHOW-WINDOW. If the
number of anchored windows already displayed is greater than or equal

0

to the value of this variable, then SHOW-WINDOW will remove th~ least
recently used window when it displays another window. The default Q
global value is 2.

The action of PUSH-WINDOW is not affected by this variable.

Display Name Format

Anchored Window Show Limit

Symbol Format

ANCHORED-WINDOW-SHOW-LIMIT

APROPOS Command

Displays a list of objects of the specified type in the *'Help" buffer. Q
Only objects whose name contains the specified string are listed. If .
the object type or string is NIL, the user is prompted for it in the
Editor prompting window. An object type of T signifies that all
Editor objects containing the specified string are to be displayed.

Category

:GENERAL-PROMPTING

Display Name Format

Apropos

Function rorillat

APROPOS-COMMAND prefix &OPTIONAL type string.

44

0

-'

EDITOR OBJECT· DESCRIPTIONS

O Arguments

prefix

0

type

Ignored

• A named Editor object type (ATTRIBUTE, BUFFER, COMMAND,
VARIABLE, or STYLE)

• SYMBOL to search all LISP objects

• T to search all named editor objects

string

The string that is to be matched in the object names

Return Value

None

APROPOS-STRING-TABLE Function

O Searches the specified string table for all entries whose key contains
the specified string as a substring. It returns a list of all such
keys in alphabetical order. If the string is of zero length, all the
keys in the string table are returned.

Format

APROPOS-STRING-TABLE string string-table

O Arguments

0

string

A string to be used as a search string

string-table

A string.table to be searched

Return Value

An alphabetical list of keys

45

EDITOR OBJECT DESCRIPTIONS

APROPOS WORD Command

Does an APROPOS of the word at the mark and displays the result in the
Help buffer. If the mark is not supplied, it defaults to the current
buffer point.

Display Name Format

Apropos Word

Function Format

APROPOS-WORD-COMMAND prefix &OPTIONAL mark

Arguments

prefix

Ignored

mark

An Editor mark that defaults to the current buffer point

Return Value

Undefined.

ATTENTION Function

Gains the attention of the user.

Format

ATTENTION

Arguments

None

Return Value

NIL

0

0

0

0.

·o
46

EDITOR OBJECT DESCRIPTIONS

QATTRIBUTE-NAME Function

Takes an attribute specifier as an argument and returns the display
name of the attribute.

Format

ATTRIBUTE-NAME attribute

Arguments

attribute

An attribute specifier

Q Return Value

A string that is the display name of the attribute

BACKWARD CHARACTER Command

Moves the point in the current window back one character if the prefix

Oargument is NIL. If you specify an integer prefix argument, the point
is moved backward (or forward, if the prefix is negative) by the
number of characters you indicated. An error is signaled if,the point
is at the beginning of a buffer. ·

Display Name Format

Backward Character

Function Format

() BACKWARD-CHARACTER-COMMAND prefix

Arguments

prefix

A fixnum specifying how many characters to move

Return Value

The updated buffer point mark

0

47

EDITOR OBJECT DE'SCRIPTIONS

BACKWARD KILL RING Command

Rotates the kill ring backward by the number of elements specified
the prefix.

Category

:KILL-RING

Display Name Format

Backward Kill Ring

Function Format

BACKWARD-KILL-RING-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value -

Undefined

BACKWARD PAGE Command

0

0

Moves the point in the current buffer backward one page if prefix is
NIL. If you specify an integer prefix argumen~, the point is moved
backward (or forward, if prefix is negative) by the number of pages
you indicated. A page delimiter is a character that has a "Page Q
Delimiter" attribute value of 1.

Display Name Format

Backward Page

Function Format

BACKWARD-PAGE-COMMAND prefix

Arguments

prefix

A fixnum specifying how many pages to move 0

48

EDITOR OBJECT DESCRIPTIONS

QATTRIBUTE-NAME Function

Takes an attribute specifier as an argument and returns the display
name of the attribute.

Format

ATTRIBUTE-NAME attribute

Arguments

attribute

An attribute specifier

Q Return Value

A string that is the display name of the attribute

BACKWARD CHARACTER Command

Moves the point in the current window back one character if the prefix

Oargument is NIL. If you specify an integer prefix argument, the point
is moved backward (or forward, if the prefix is negative) by the
number of characters you indicated. An error is signaled if the point
is at the beginning of a buffer.

Display Name Format

Backward Character

Function Format

O BACKWARD-CHARACTER-COMMAND prefix

Arguments

prefix

A fixnum specifying how many characters to move

Return Value

The updated buffer point mark

0

47

EDliOR OBJECT DESCRIPTIONS

BACKWARD KILL RING Command

Rotates the kill ring backward by the number of elements specified
the prefix.

category

:KILL-RING

Display Name Format

Backward Kill Ring

Function Format

' BACKWARD-KILL-RING-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value

Undefined

BACKWARD PAGE Command

by 0

0

0

Moves the point in the current buffer backward one page if prefix is
NIL. If you specify an integer prefix argumen~, the point is moved
backward (or forward, if prefix is negative) by the number of pages
you indicated. A page delimiter is a character that has a "Page Q
Delimiter" attribute value of 1.

Display Name Format

Backward P~ge

Function Format

BACKWARD-PAGE-COMMAND prefix

Arguments

prefix

A fixnum specifying how many pages to move

48

0

0

EDITOR OBJECT DESCRIPTIONS

Return Value

The updated buffer point mark

BACKWARD SEARCH Command

Prompts for an argument string if the user does not supply one. The
string is used as the pattern for a backward search. If the search is
successful, the.buffer point is moved to the beginning of the first
matching string. If the user does not specify a string when prompted,
the command takes the value of the Editor Variable "Last Search
String." If the user specifies a prefix argument, n, this command
looks for the nth occurrence of the pattern.

Q Display Name Format

Backward Search

Function Format

BACKWARD-SEARCH-COMMAND prefix &OPTIONAL string

Arguments

0 prefix

The fixnum repeat count

string

The string to search for. If you do not specify a string when
prompted, string defaults to the value of the Editor variable Q "Last Search String."

0

Return Value

The modified point

BACKWARD WORD Command
.

Moves the point back
an integer prefix
words you indicate.
Delimiter" attribute

Display ·Name Format

Backward Word

to the end of the preceding word. If·you specify
argument, the point is moved back the number of
Words are delimited by characters having a "Word
value of 1.

49

EDITOR OBJECT DESCRIPTIONS

Function Format

BACKWARD-WORD-COMMAND prefix

Arguments

prefix

A positive integer or NIL

Return Value

The modified point

BEGINNING OF BUFFER Command

Moves the point to the beginning of the current buffer.

Display Name Format

Beginning of Buffer

Function Format

BEGINNING-OF-BUFFER-COMMAND prefix

Arguments

prefix

Ignored

Return Value

The modified point

BEGINNING OF LINE Command

Moves the point to the beginning of the current line. If you specify
an integer prefix argument, the point is moved down the number of
lines you indicated (or up, if the prefix is negative) and then to the
beginning of the new line.

Display Name Format

Beginning of Line

50

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

o Function Format

BEGINNING-OF-LINE-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value

The updated buffer point mark

O BEGINNING OF OUTERMOST FORM Command

Moves the buffer point from inside a LISP form to the beginning of the
outermost form surrounding it. If the point is in between two outer
forms, it is moved to the beginning of the preceding one. If there is
no preceding outer form, an Edi tor error is ·signaled. An outermost
form is one whose opening parenthesis is in the leftmost column on the
screen.

Q Display Name Format

Beginning of Outermost Form

Function Format

BEGINNING-OF-OUTERMOST-FORM-COMMAND prefix

Q Arguments

prefix

0

Ignored

Return Value

The updated buffer point

BEGINNING OF PARAGRAPH Command

Moves the specified mark to the beginning of the paragraph.
defaults to the current buffer point.

51

The mark

EDITOR OBJECT DESCRIPTIONS

Display Name Format

Beginning of Paragraph

Function Format

BEGINNING-OF-PARAGRAPH-COMMAND prefix &OPTIONAL mark

Arguments

prefix

ignored

mark

An Editor mark that defaults to the current buffer point

Return value

The updated mark

BEGINNING OF WINDOW Command

Moves the cursor to the beginning of the current window.

Display Name Format

Beginning of Window

Function Format

BEGINNING-OF-WINDOW-COMMAND prefix &OPTIONAL mark window

Arguments

prefix

Ignored

mark

The mark to be placed at the beginning of the window. It
defaults to the current buffer point.

window

0

0

0

0

The window in which the mark is to be moved.
current window.

It defaults to theo

52

EDITOR OBJECT DESCRIPTIONS

o Function Format

BEGINNING-OF-LINE-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value

The updated buffer point mark

O BEGINNING OF OUTERMOST FORM Command

Moves the buffer point from inside a LISP form to the beginning of the
outermost form surrounding it. If the point is in between two outer
forms, it is moved to the beginning of the preceding one. If there is
no preceding outer form, an Editor error is signaled. An outermost
form is one whose opening parenthesis is in the leftmost column on the
screen.

Q Display Name Format

Beginning of Outermost Form

Function Format

BEGINNING-OF-OUTERMOST-FORM-COMMAND prefix

Q Arguments

prefix

0

Ignored

Return Value

The updated buffer point

BEGINNING OF PARAGRAPH Command

Moves the specified mark to the beginning of the paragraph.
defaults to the current buffer point.

51

The mark

EDITOR OBJECT DESCRIPTIONS

Display Name Format

Beginning of Paragraph

Function Format

BEGINNING-OF-PARAGRAPH-COMMAND prefix &OPTIONAL mark

Arguments

prefix

Ignored

mark

An Editor mark that defaults to the current buffer point

Return Value

The updated mark

BEGINNING OF WINDOW Command

Moves the cursor to the beginning of the current window.

Display Name ~ormat

Beginning of Window

Function Format

BEGINNING-OF-WINDOW-COMMAND prefix &OPTIONAL mark window

Arguments

prefix

mark

Ignored

The mark to be placed at the beginning of the window. It
defaults to the current buffer point.

window

0

0

0

0

The window in which the mark is to be moved.
current window.

It defaults to theo

52

EDITOR OBJECT DESCRIPTIONS

oeturn Value

The current buffer point

BIND-ATTRIBUTE Function

Takes a defined Editor attribute as an argument and creates a binding
of that attribute in the specified context with the specified type and
value.

Format

BIND-ATTRIBUTE attribute &KEY :TYPE

0
Arguments

attribute

:CONTEXT
:INITIAL-VALUE

An Editor attribute specifier

:TYPE

0 A LISP type specifier. The default is (mod 2).

:CONTEXT

An Editor context specifier. The default is :GLOBAL.

:INITIAL-VALUE

0 The attribute value that all characters will initially have for
this attribute in this context. It must be of the type specified
by :TYPE. The default is 0.

Return Value

The attribute symbol

.
BIND COMMAND Command

Prompts the user for a command name, a key sequence, and a binding
context. This command is useful for binding commands to keys without
leaving the context of the Editor. Completion and Alternatives are C~vailable for the command name and for the style or buffer name
6epending on the desired binding context. The key sequence must be
entered literally as the sequence of characters to bind. This
frequently requires the quoting of control characters.

53

EDITOR OBJECT DESCRIPTIONS

Category

:GENERAL-PROMPTING -0
Display Name Format

Bir..d Command

Function Format

BIND-COMMAND-COMMAND prefix

Arguments

prefix

Ignored
0 Return Value

The function associated with the command

BIND-COMMAND Function

Binds the specified key-sequence
specified context.

to the specified command in theO

Format

BIND-COMMAND command key-sequence &OPTIONAL context

Arguments

command

An Editor command specifier command

key-sequence

A character or a sequence of character$. The key sequence cannot
contain the characters CTRL/S or CTRL/Q. It should not contain
the current cancel character (CTRL/C by default).

context

The context in which to bind the command. The argument context
defaults to :GLOBAL.

54

0

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Return Value

The function associated with the command

BIND-POINTER-COMMAND Function

Binds the specified action of the pointing device to the specified
command in the specified context. The possible actions of the
pointing device are a button transition (depressing or releasing) or a
movement of the pointer cursor. The Editor invokes the bound command
in response to a pointer action only when the pointer cursor is in the
current window.

The :BUTTON-STATE parameter is
pointer buttons must be in
action to invoke the command.
button transition, then any
corresponds to that button is

Format

used to indicate that one or more
a down state for the specified pointer
If the pointer-action argument is a

value in the :BUTTON-STATE argument that
ignored.

BIND-POINTER-COMMAND command pointer-action &KEY :CONTEXT
:BUTTON-STATE

Arguments

command

An Editor command specifier

pointer-action

A keyword, a button constant, or a list.
are:

:MOVEMENT

The possible values

The command is invoke-a by any movement of the pointer cursor
within the current window. Cursor movement is defined as a
movement across at least one character in any direction.

A button constant

The command is invoked by depressing the pointer button that
corresponds to the constant. The constants are specified as
UIS:POINTER-BUTTON-n, starting with UIS:POINTER-BUTTON-1 for the
left-most button. Note that the symbols for button constants are
located in the "UIS" package; see VAX LISP/VMS Graphics
Programming Guide for more information.

55

EDITOR OBJECT DESCRIPTIONS

A list whose CAR is a button constant

If the CADR is non-NIL, the command is invoked when the
button corresponding to the CAR is depressed.

pointeO

If the CADR is NIL, the- command is invoked when the pointer
button corresponding to the CAR is released.

:CONTEXT value

A context specifier .. The default is :GLOBAL.

:BUTTON-STATE value

A button constant or the LOGAND of two or
The button(s·) indicated must be in a down
pointer-action to invoke the command.

more button constants.
state for the specified

0
If a button transition is specified as
argument, any value that corresponds to
:BUTTON-STATE argument is ignored.

the pointer-action
that button in the

Return Value

The function associated with the command

0
BIND-VARIABLE Function

Binds the specified Editor variable in the specified context. You get
a warning if you attempt to bind a variable in a context in which it
is already bound. The function specified in the. :BIND-HOOK argument
of DEFINE-EDITOR-VARIABLE is called and passed the symbol and the
binding context. Q
Format

BIND-VARIABLE symbol &KEY :CONTEXT

Arguments

symbol

:SET-VALUE-HOOK :SET-FUNCTION-HOOK
:INITIAL-VALUE :INITIAL-FUNCTION

An Editor variable specifier

:CONTEXT

An Editor context specifier that defaults to :GLOBAL

56

0

EDITO.R OBJECT DESCRIPTIONS

:SET-VALUE-HOOK

O A function that is invoked whenever the value of the variable is
set in the specified context. The function is called with three
arguments -- the variable, the context of the variable, and the
new value. It defaults to NIL.

0

:SET-FUNCTION-HOOK

A function that is invoked whenever the function slot is changed
in the specified context. The function is called with three
arguments -- the variable, the context of the variable, and the
new function. It defaults to NIL.

:INITIAL-VALUE

The value given to the binding of the variable created in the
specified context. -It defaults to NIL.

:INITIAL-FUNCTION

The function bound to the variable in the.specified context. It
defaults to NIL.

Return Value

0 The symbol that names the variable

BREAK-LINE Function

Breaks a line at the position pointed to by the specified mark.

oFormat

BREAK-LINE mark

Arguments

, mark

0

A mark specifying the position at which a line is to be broken.
If the mark is left-inserting, the mark is moved to the beginning
of the new line. If the mark is right-inserting, the mark
remains at the end of the original line.

Return Value

The updated mark

57

EDITOR OBJECT DESCRIPTIONS

BUFFER-CHECKPOINTED Function

'Returns the pathname of the file where checkpoints of
buffer will be written, or NIL if the buffer
checkpointed. You can change either the file to which
checkpointed or make the buffer not checkpointed by
with SETF. When changing the value, you can set
values:

• NIL makes the buffer not checkpointed.

• A pathname writes the buffer to that file.

the specified
is not being

the buffer is
using this form
three possible

• T writes the buffer checkpoints to a file name the Editor
creates from the name of the object being edited.

Format

BUFFER-CHECKPOINTED buffer

Arguments

buffer

An Editor buffer

Return Value

A pathname or NIL

BUFFER-CHECKPOINTED-TIME Function

0

0

0

Returns the universal time that the buffer was last checkpointed; or Q
NIL, if it has not been checkpointed.

Format ,•

BUFFER-CHECKPOINTED-TIME buffer

Arguments

buffer

An Editor buffer

Return Value

A value in universal time or NIL

0
58

EDITOR OBJECT DESCRIPTIONS

BUFFER CREATION HOOK Editor Variable

O Specifies a hook function that is called whenever a new buffer is
created. The hook function is passed one argument the new buffer.
The function is called after the complete buffer context is created,
and in the context of the new buffer.

Display Name Format

Buffer Creation Hook

Symbol Format

BUFFER-CREATION-HOOK

0 BUFFER-CREATION-TIME Function

Returns the universal time at which the specified buffer was created.
For information on universal time, see COMMON LISP: The Language.

Format

BUFFER-CREATION-TIME buffer

O Arguments

0

buffer

The buffer for which the time is desired

Return Value

The universal time at which the buffer was created

BUFFER DELETION HOOK Editor Variable

Specifies a hook function that is called just before
deleted. It is called in the context of the buffer to
before any alterations are made to the buffer. It
argument -- the buffer to be deleted.,

Display Name Format

Buffer Deletion Hook

Q Symbol Format

BUFFER-DELETION-HOOK

59

a buffer is
be deleted and

is passed one

EDITOR OBJECT DESCRIPTIONS

BUFFER-END Function

Changes the specified mark so that it points to the end of the buffer.

Format

BUFFER-END mark &OPTIONAL buffer

Arguments

mark

An Editor mark

buffer

An Editor buffer. This defaults to the buffer the mark is
pointing into.,

Return Value

The modified mark

BUFFER ENTRY HOOK Editor Variable

Specifies a hook function that is invoked whenever a different buffer
becomes current. The function is called with one argument -- the new
buffer -- and is evaluated in the context of the new buffer.

Display Name Format

Buffer Entry Hook

Symbol Format

BUFFER-ENTRY-HOOK

BUFFER EXIT HOOK Editor Variable

Specifies a hook function that is invoked whenever a different buffer
becomes current. The function is called with ·one argument -- the old
buffer -- and is evaluated in the context of the old buffer.

Display Name Format

Buffer Exit Hook

60

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Symbol Format

O BUFFER-EXIT-HOOK

BUFFER-HIGHLIGHT-REGIONS Function

Returns a list of the highlight regions associated with the specified
buffer, or NIL if there are no such regions.

Format

BUFFER-HIGHLIGHT-REGIONS buffer

Arguments

Cbuffer

An Editor buffer

Return Value

A list of highlight regions or NIL

QBU FFER-MAJOR-STYLE Function

Returns the major style associated with the specified buffer, or NIL
if there is none. You can use SETF with BUFFER-MAJOR-STYLE to change
the major style of a buffer. This action causes ~he "Major Style
Activation Hook" to be invoked.

oormat

BUFFER-MAJOR-STYLE buffer

Arguments

buffer

An Editor buffer specifier

Return Value

The major style of the buffer, or NIL

0
61

EDITOR OBJECT DESCRIPTIONS

BUFFER-MINOR-STYLE-ACTIVE Function

Returns T if the specified style is active in the
You can use SETF with BUFFER-MINOR-STYLE-ACTIVE
to, or delete them from, a buffer. This action
Style Activation Hook" to be invoked.

Format

BUFFER-MINOR-STYLE-ACTIVE buffer style

Arguments

buffer

An Editor buffer specifier

style

An Editor style specifier

Return Value

Tor NIL

BUFFER-MINOR-STYLE-LIST Function

specified buffer.
to add minor styles
causes the "Minor

Returns a list of the minor styles active in the specified
The order of the styles is the.same as the search order.

buffer.

Format

BUFFER-MINOR-STYLE-LIST buffer

Arguments

buffer

An Editor buffer specifier

Return Value

A list of the minor styles

62

0

0

0

0

0

___ ,, _____ ----~-------------------------------

EDITOR OBJECT DESCRIPTIONS

(JUFFER-MODIFIED-P Function

Is a predicate that returns T if the buffer has been modified and NIL
if it has not. You can use SETF with BUFFER-MODIFIED-P to change the
status of whether or not the buffer is considered to be modified.

Format

BUFFER-MODIFIED-P buffer

Arguments

buffer

An Editor buffer

Ceturn Value

Tor NIL

BUFFER-NAME Function

Returns the name of the buffer you specify. You can use SETF with

C;JFFER-NAME to change the name of the buffer. This action causes the
Buffer Name Hook" to be invoked.

Format

BUFFER-NAME buffer

Arguments

ctffer

An Editor buffer

Return Value

The buffer name

BUFFER NAME HOOK Editor Variable

Is a hook function that is called with the buffer and the new name as
arguments when the name of a buffer is changed.

C)isplay Name Format

Buffer Name Hook

63

EDITOR OBJECT DESCRIPTIONS

Symbol Format

BUFFER-NAME-HOOK

BUFFER-OBJECT Function

Returns the object being edited in the buffer you specify. This
object is a pathname in the case of a file, a symbol in the case of a
LISP function or the value of a symbol, or the form of a generalized
variable. You can use SETF with BUFFER-OBJECT to change the object
being edited in the buffer. This action causes the "Buffer Object
Hook" to be invoked.

Format

BUFFER-OBJECT buffer

Arguments

buffer

An Editor buffer

Return Value

The object being edited in the buffer

BUFFER OBJECT HOOK Editor Variable

Is a hook function that is called with the buffer and the new object
as arguments when the object associated with a buffer is changed.

Display Name Format

Buffer Object Hook

Symbol Format

BUFFER-OBJECT-HOOK

BUFFER-PERMANENT Function

Is a predicate that returns T if the specified buffer
(that is, if it cannot be deleted by the DELETE-BUFFER
returns NIL otherwise. You can change the permanent
buffer by using the SETF macro with this form.

64

is permanent
function). It
status of a

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Format

0 BUFFER-PERMANENT buffer

Arguments

buffer

An Editor buffer

Return value

Tor NIL

0 BUFFER-POINT Function

Returns the point of the buffer you specify.

Format

BUFFER-POINT buffer

Arguments

Q buffer

0

0

An Editor buffer

Return Value

A mark that is the point for the buffer

BUFFER-REGION Function

Returns the region of the buffer you specify.

Format

BUFFER-REGION buffer

Arguments

buffer

An Editor buffer

65

EDITOR OBJECT DESCRIPTIONS

(

Return Value

The buffer region

BUFFER RIGHT MARGIN Editor Variable

Can be set to an integer that specifies the last character position at
which text can be inserted in each line by means of the commands "Self
Insert" and "Quoted Insert". If more text is inserted than will fit
on a line of this length, then the line is automatically broken at the
last word break within the right margin. In the default Editor, this
variable is bound globally and set to NIL.

Note that this variable does not affect the operation of
inserting commands, such as "EDT Paste" and "Yank".

Display Name Format

Buffer Right Margin

Symbol Format

BUFFER-RIGHT-MARGIN

BUFFER SELECT MARK Editor Variable

other text-

Is used by a number of commands that need to retain a special mark
indicating a position in a buffer. It is bound to a mark by commands
that select regions of a buffer. See also "Buffer Select Region".

Display Name Format

Buffer Select Mark

Symbol Format

BUFFER-SELECT-MARK

BUFFER SELECT REGION Editor Variable

Is bound by several commands to a "selected" region in a buffer. This
variable is created as a local variable to each buffer. See also
"Buffer Select Mark".

66

0

0

0

0

0

0

0

0

EDITOR OBJECT . DESCRIPTIONS

Display Name Format

Buffer Select Region

Symbol Format

BUFFER-SELECT-REGION

BUFFER-START Function

Changes mark so that it points to the beginning of the buffer.

Format

BUFFER-START mark &OPTIONAL buffer

Arguments

mark

An Editor mark

buffer

A buffer. If no buffer is speci~ied, the default is
the mark points into.

Return Value

The modified mark

the buffer

O BUFFER-TYPE Function

0

Returns a keyword indicating the type of object being edited in the
specified buffer. This function returns NIL if there is no LISP
object or file asso~iated with the buffer.

Format

BUFFER-T~PE buffer

Arguments

buffer

An Editor buffer

67

EDITOR OBJECT DESCRIPTIONS

Return Value

One of the following keywords or NIL:

:FILE - the object is a file
:FUNCTION - the object is the function definition of a symbol
:VALUE - the object is t~1e value of a symbol
:SETF-FORM - the object is a generalized variable acceptable to
SETF

BUFFER-VARIABLES Function

Returns a list of Editor variables bound in the specified buffer.

Format

BUFFER-VARIABLES buffer

Arguments

buffer

An Editor buffer

Return Value

A list of Editor variables (symbols)

BUFFER-WINDOWS Function

Returns a list of the windows that are associated with the
buffer. This list can include windows that are not visible.

Format

BUFFER-WINDOWS buffer

Arguments

buffer

An Editor buffer

Return Value

A list of the windows that open into the buffer

68

specified

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

BUFFER-WRITABLE Function

ORetur~s T if modifications to the specified buffer can be written back
as a new version of the file being edited or an update of the LISP
object being edited, or NIL if they cannot. You can use SETF with
BUFFER-WRITABLE to change the status of whether or not buffer
modifications can be written.

Format

BUFFER-WRITABLE buffer

Arguments

buffer

0 An Editor buffer

Return Value

Tor NIL

BUFFER-WRITTEN-TIME Function

OReturns the universal time that the. buffer you specify was last
"written" by the· Write Current Buffer or Write Modified Buffers
command, or NIL if the buffer has never been written. If the buffer
is associated with a file, this function returns the time when the
buffer contents were last written to the file. If the buffer is
associated with a symbol or a SETF form, the tim~ is the last time
that the buffer contents were evaluated. (See COMMON LISP: The
Language for a description of universal time.)

Q Format

BUFFER-WRITTEN-TIME buffer

Arguments

buffer

The buffer for which you want the time

Return Value

Universal time that the buffer was last written, or NIL

0

69

EDITOR OBJECT DESCRIPTIONS

BUFFERP Function

Is a predicate that returns T if its argument is a buffer.

Format

BUFFERP object

Arguments

object

Anything

Return Value

Tor NIL

CANCEL-CHARACTER Function

Returns the character that, if typed while in the Editor, causes the
current action to be terminated. The initial value is #\AC. You can
change the cancel character by using this form with SETF.

NOTE

The cancel character must
character whose character
31. Also, it cannot be
#\Escape, #\AQ or #\AS.

Format

CANCEL-CHARACTER

Arguments

None

Return Value

The current cancel character

70

be an ASCII control
code is in the range Oto

#\Return, #\Linefeed,

0

0

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

CAPITALIZE REGION Command

Capitalizes all the words in the current select region.

Display Name Format

Capitalize Region

Function Format

CAPITALIZE-REGION-COMMAND prefix &OPTIONAL region

Arguments

prefix

Ignored

region

A region that defaults to the value of the "Buffer Select Region"
°Editor variable

Return Value

The modified region

CAPITALIZE WORD Command

Capitalizes the current word.

Display Name Format

O Capitalize Word

Function Format

CAPITALIZE-WORD-COMMAND prefix &OPTIONAL mark

Arguments

prefix

Ignored

mark

0 An Editor mark that defaults to the current buffer point

71

EDITOR OBJECT DESCRIPTIONS

Return Value

A region containing the capitalized word

CATEGORY-COMMANDS Function

Returns a list of Editor commands that are cataloged under the
specified category.

Format

CATEGORY-COMMANDS category

Arguments

category

A symbol used as a command category

Return Value

A list of Editor command symbols

CENTER-WINDOW Function

Causes the display in the speci.fied window to be adjusted so that the
line pointed to by the specified mark is centered in the display
window.

Format

CENTER-WINDOW window mark

Arguments

window

An Editor window

mark

An Editor mark that must point into the same buffer the window is
associated with

Return Value

The mark

72

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

CHARACTER-ATTRIBUTE Function

OLooks up and returns the value the specified attribute has for the
character. You can use SETF with CHARACTER-ATTRIBUTE to modify the
attributes of a character. Changing the value of a character
attribute causes the "Character Attribute Hook" to be invoked.

Format

CHARACTER-ATTRIBUTE attribute character &OPTIONAL context

Arguments

attribute

An Editor attribute

O character

0

The character whose attribute value you want

context

A context specifier. Defaults to the current context, unless the
function is used with SETF in which case the context defaults to
:GLOBAL.

Return Value

' The attribute value for the specified character

CHARACTER ATTRIBUTE HOOK Editor Variable

Ors a hook
context,
character

function that is called, with
and new value as arguments,
attribute is changed.

the
just

attribute, character,
before the value of a

Display Name Format

Character Attribute Hook

Symbol Format,

CHARACTER-ATTRIBUTE-HOOK

0

73

EDITOR OBJECT DESCRIPTIONS

CHARACTER-OFFSET Function

Changes the specified mark so that it points n characters after its
former position (or before its former position, if n is negative). If
there are not n characters after the mark position (or before, if n is
negative), mark is not modified, and NIL is returned.

Format

CHARACTER-OFFSET mark n

Arguments

mark

An Editor mark

n

A fixnum

Return Value

The modified mark or NIL

CHECKPOINT-BUFFER Function

Checkpoints the specified buffer to the specified file, which defaults
to the checkpoint file previously specified for the buffer.

Format

CHECKPOINT-BUFFER buffer &OPTIONAL pathname

Arguments

buffer

An Editor buffer

pathname

An optional pathname specifier that defaults to the checkpoint
pathname specified earlier for the buffer

74

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Return Value

OTwo values:

1. The truename of the checkpoint file written to, or NIL if no
pathname existed. (For an explanation of the truename of a
file, see the explanation of Pathname in COMMON LISP: The
Language.)

2. The number of records written to the file.

CHECKPOINT-FREQUENCY Function

Returns an integer that gives the frequency at which file

O checkpointing is being performed. The frequency is measured in
keystrokes, but only those that modify a buffer. If checkpointing has
been disabled, the function returns NIL. The default frequency is
350. You can use SETF with CHECKPOINT-FREQUENCY to change the default
value. To disable checkpointing, specify a value of NIL.

Format

CHECKPOINT-FREQUENCY

CArgwnents

None

Return Value

The ch~ckpointing frequency or NIL

O·
CLEAR-INFORMATION-AREA Function

Clears the text in the Editor information area.

Format

CLEAR-INFORMATION-AREA

Argwnents

None

Return Value

Q None

75

EDITOR OBJECT DESCRIPTIONS

CLOSE OUTERMOST FORM Command

Inserts at the mark the number of list-terminator characters needed to
close the outermost LISP form. The mark defaults to the current
buffer point. If the outermost form is already closed or if no
outermost form is found, a message is displayed and no action occurs.
(See "LISP Syntax" attribute, especially the value :LIST-TERMINATOR.)

Display Name Format

Close Outermost Form

Function Format

CLOSE-OUTERMOST-FORM-COMMAND prefix &OPTIONAL mark

Arguments

prefix

Ignored

mark

An Editor mark that defaults to the current buffer point

Return Value

Undefined

COMMAND-CATEGORIES Function

0

0

0

Returns a list of the categories for the specified Editor command or Q
NIL if there are no categories for this command. See Section 2.2.3.1
on categories in Chapter 2 of this manual.

Format

COMMAND-CATEGORIES command

Arguments

comma rid

An Editor command specifier

Return Value

A list of categories or NIL 0

76

EDITOR OBJECT DESCRIPTIONS

COMMAND-NAME Function

()Takes an Editor command specifier and returns the display name of
command.

Format

COMMAND-NAME command

Arguments

command

An Editor command specifier (display name or symbol)

Return Value

() The display name of the command

COMPLETE-STRING Function

Searches through all strings in the specified
those having the string argument as an

()searching is case insensitive.

Format .

COMPLETE-STRING string table

Arguments

string

() The character string to be searched for

table

An Editor string table

Return Value

Four values:

Editor string table
initial substring.

the

for
The

1. A string that is the maximum beginning portion common to all
the strings found that match the string argument.

()
2. The value of a corresponding entry if a unique match was

found; NIL otherwise.

77

EDITOR OBJECT DESCRIPTIONS

3. T, if the second returned value is valid, or NIL, if the
second returned value is not valid. (This allows NIL to be a Q
valid value for a string table entry.)

4. T, if there are additional
specified string. This is
wher~ a string is the key for
additional keys that begin
"Ed" and "Edit File" are both

COPY-MARK Function

entries that start with the
helpful to distinguish the case
a specific entry, and there are
with this string. For example,
valid commands.

Returns a new mark pointing to the same position as the specified
mark.

Format
COPY-MARK mark &OPTIONAL mark-type

Arguments

mark

An Editor mark

mark-type

Either :LEFT-INSERTING, :RIGHT-INSERTING, or :TEMPORARY. The
default is the type of the mark specified.

Return Value

A new Editor mark

COPY-REGION Function

Takes an Editor region as an argument and returns a new disembodied
region that contains a copy of the text of the region you specified.
The new region does not share any lines with the original region.

Format

COPY-REGION region

Arguments

region

An Editor region

78

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

O ReturAn Value

new Editor region

COUNT-REGION Function

Returns both the number of characters that are in the specified region
and the number of lines that are in the region. A break between lines
counts as a single character. The line count is always at least 1.

Format

COUNT-REGION region

QArguments

region

An Editor region

Return Value

Two values:

0 1. The number of characters in the region

2. The number of lines in the region

CURRENT-BUFFER Function

CReturns the currently active Editor buffer. You can use SETF with
CURRENT-BUFFER to change the buffer that is considered current.
Changing the value of CURRENT-BUFFER causes the "Buffer Exit Hook" and
the "Buffer Entry Hook" to be invoked.

Format

CURRENT-BUFFER

Arguments

None

Return Value

0 The current Editor buffer

79

) EDITOR OBJECT DESCRIPTIONS

CURRENT-BUFFER-POINT Function

Returns the mark that is the point for the current buffer. Calling
this function is substantially faster than using the form
(BUFFER-POINT (CURRENT-BUFFER)).

Format

CURRENT-BUFFER-POINT

Arguments

None

Return Value

The 'buffer point of the current buffer

•CURRENT-COMMAND-FUNCTION• Variable

Is bound to the Editor command function currently being executed.
binding is established just before the function is called.

CURRENT-WINDOW Function

The

Returns the currently active E4itor window. You can use SETF with
CURRENT-WINDOW to change the window considered current. Changing the
value of CURRENT-WINDOW causes the "Switch Window Hook" to be ·invoked.
This change may also cause the value of (CURRENT-BUFFER) to be
changed; if so, th- "Buffer Exit Hook" and the "Buffer Entry Hook" are
also invoked.

Format

CURRENT-WINDOW

Arguments

None

Return Value

The current Editor window

80

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

CURRENT WINDOW POINTER PATTERN Editor Variable

C-kpecifies a 16x16 bitmap that determines the pointer cursor pattern
when the pointer is in the current Editor window. When set to NIL,
the pointer cursor pattern is the VAXstation default (an arrow). See
the functions SET-POINTER-PATTERN and MAKE-BITMAP in the VAX L-ISP/VMS
Graphics Programming Guide.

Display Name Format

Current Window Pointer Pattern

Symbol Format

CURRENT-WINDOW-POINTER-PATTERN

O CURRENT WINDOW POINTER PATTERN X Editor Variable

Specifies the horizontal coordinate of the active pixel of the bitmap
specified by the Editor variable "Current window Pointer Pattern".
The possible values are an integer in the range 0-15 or NIL. See the
function SET-POINTER-PATTERN in the VAX LISP/VMS Graphics Programming
Guide.

c=;oisplay Name Format

Current Window Pointer Pattern X

Symbol Format

CURRENT-WINDOW-POINTER-PATTERN-X

QCURRENT WINDOW POINTER PATTERN V Editor Variable

Specifies the vertical coordinate of the active pixel of the bitmap
specified by the Editor variable "Current Window Pointer Pattern",
relative to the lower edge of the bitmap. The possible values are an
integer in the range 0-15 or NIL. See the function SET-POINTER
PATTERN in the VAX LISP/VMS Graphics Programming Guide .

.
Display Name Format

Current Window Pointer Pattern Y

Symbol Format

O CURRENT-WINDOW-POINTER-PATTERN-Y

81

EDITOR OBJECT DESCRIPTIONS

DEACTIVATE MINOR STYLE Command

Prompts the user for the name of a minor style active in the current
buffer. It then deactivates that style in the current buffer.
Alternatives and completion are available during the promp~. An
Editor error is signaled if the style is not active.

Category

:GENERAL-PROMPTING

Display Name Format

Deactivate Minor Style

Function Format

DEACTIVATE-MINOR-STYLE-COMMAND prefix

Arguments

prefix

Ignored

Return Value

The style that was deactivated

DEFAULT BUFFER VARIABLES Editor Variable

Is bound to a list of Editor variables that are to have local bindings
in newly created buffers. Each element of the list is of the form:

variable-name I (variable-name initial-value initial-function)

Each of the Editor variables listed is bound in the context of the new
buffer. The initial value and function of this variable are NIL
unless specified in a list element.

Display Name Format

Default Buffer variables

Symbol Format

DEFAULT-BUFFER-VARIABLES

82

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

QDEFAULT FILETYPE MINOR STYLES Editor Variable

Specifies an association list that maps file types to Editor styles.
When a file is associated with a buffer (for example, in the "Edit
File" command), the file type is looked up in this association list.
If an entry is found, it must specify a style or list of styles that
are to be activated as minor styles in the buffer.

The default is the list (("LSP" . "VAX LISP")). This means that a
file type of LSP activates the "VAX LISP" minor style.

Display Name Format

Default Filetype Minor Styles

Symbol Format

O DEFAULT-FILETYPE-MINOR-STYLES

DEFAULT LISP OBJECT MINOR STYLES Editor Variable

Specifies a list of minor styles that are to be activated in a buffer
,,.----.,_used to edit a LISP object. The default list is ("VAX LISP"), which
~~eans that the VAX LISP style is activated.

Display Name Format'

Default LISP Object Styles

Symbol Format

0
DEFAULT-LISP-OBJECT-MINOR-STYLES

DEFAULT MAJOR STYLE Editor Variable

Is bound to the Editor style that is the default major style for a
newly created buffer. The initial value is "EDT Emulation" style.
You can use SETF with the VARIABLE-VALUE function to change this
default. Changing the value of this variable changes the major style
for the "Help" and "General Prompting" buffers. Any previously
created buffers retain their original major styles. See

Display Name Format

0
Default Major Style

83

EDITOR OBJECT DESCRIPTIONS

Symbol Format

DEFAULT-MAJOR-STYLE

DEFAULT MINOR STYLES Editor Variable

Is bound to a list of Editor styles that are the default minor styles
for a newly created buffer. The initial value of this variable is
NIL. Any previously created buffers retain their original minor
styles.

Display Name Format

Default Minor Styles

Symbol Format

DEFAULT-MINOR-STYLES

DEFAULT SEARCH CASE Editor Variable

0

0

Is bound to a keyword that specifies whether differences in case are Q
to be ignored in searches. If the keyword is :CASE-SENSITIVE, the
search commands perform case-sensitive searches; if the keyword is
:CASE-INSENSITIVE, the search commands perform case-insensitive
searches. Initially, the value of this variable is :CASE-INSENSITIVE.

Display Name Format

Default Search Case

Symbol Format

DEFAULT SEARCH CASE

DEFAULT WINDOW LABEL Editor Variable

Is bound to a string, a function, or NIL that is used by MAKE-WINDOW
as the default window label. If it is a function, it must have one
argument (a window). If the value is the null string(""), the window
is bordered but has no label. If the value is NIL, the window is
unbordered.

Display Name Format

Default Window Label

84

0

0

0

EDITOR OBJECT DESCRIPTIONS

Symbol Format

DEFAULT-WINDOW-LABEL

DEFAULT WINDOW LABEL EDGE Editor Variable

Is bound to keyword that specifies which edge of a window the label
text will be displayed on. The variable is globally bound to :BOTTOM.

Display Name Format

Default Window Label Edge

Symbol Format

O DEFAULT-WINDOW-LABEL-EDGE

DEFAULT WINDOW LABEL OFFSET Editor Variable .

Is bound to a positive integer or NIL. The value specifies the
default offset value to be used for the label position of a newly

Ocreated window. The global binding is NIL, which causes labels to be
centered.

Display Name Format

Default Window Label Offset

Symbol Format

0
DEFAULT-WINDOW-LABEL-OFFSET

DEFAULT WINDOW LABEL RENDITION Editor Variable

Is bound to a keyword or a list of keywords that specify the default
video rendition to be applied to the label of a newly created window.
The keyword can be any of :NORMAL, :REVERSE, :UNDERLINE, :BOLD, or
:BLINK. The g,lobal binding is :REVERSE.

Display Name Format

Default Window Label Rendition

Qsymbol Format

DEFAULT-WINDOW-LABEL-RENDITION

85

EDITOR OBJECT DESCRIPTIONS

DEFAULT WINDOW LINES WRAP Editor Variable

Is used to determine whether lines in a newly created window should Q
wrap or truncate. A value of NIL indicates that lines should
truncate; otherwise, lines wrap. The global binding is NIL.

Display Name Format

Default Window Lines Wrap

Symbol Format

DEFAULT-WINDOW-LINES-WRAP

DEFAULT WINDOW RENDITION Editor Variable

Is bound to a keyword or a list of keywords that specify the default
video rendition to be applied to a newly created window. The keyword
can be any of :NORMAL, :REVERSE, :UNDERLINE, :BOLD, or :BLINK. The
global binding is :NORMAL.

Display Name Format

Default Window Rendition

Symbol Format

DEFAULT-WINDOW-RENDITION

DEFAULT WINDOW TRUNCATE CHAR Editor Variable

Is bound to a character that is used to indicate the truncation of a
displayed line. This variable is globally bound to the#\> character.

Display Name Format

Default Window Truncate Char

Symbol Format

DEFAULT-WINDOW-TRUNCATE-CHAR

86

0

.o

0

0

EDITOR· OBJECT DESCRIPTIONS

DEFAULT WINDOW TYPE Editor Variable

Ors bound to a keyword that specifies the default type of
window. Possible values are :ANCHORED or :FLOATING.
binding is :ANCHORED.

Display Name Format

Default Window Type

Symbol Format

DEFAULT-WINDOW-TYPE

O DEFAULT WINDOW WIDTH Editor Variable

a created
The global

Is bound to a value that is the default width of a newly created
window. The global value of this variable is set to be the width of
the screen. If the screen width is altered, the value of this
variable is changed by the global Screen Modification Hook function.

Display Name Format

O Default Window Width

Symbol Format

DEFAULT-WINDOW-WIDTH

DEFAULT WINDOW WRAP CHAR Editor Variable

Ors bound to the default character that is used to indicate w~apping of
text in a window. The variable is globally bound to#\<.

0

Display Name Format

Default Window Wrap Char

Symbol Format

DEFAULT-WINDOW-WRAP-CHAR

87

EDITOR OBJECT DESCRIPTIONS

DEFINE-ATTRIBUTE Macro

Creates a new attribute having the specified name and documentation
string. Note that the type of the attribute is not defined until it
is bound.

Format

DEFINE-ATTRIBUTE name &OPTIONAL documentation

Arguments

name

The name of the attribute. This can be specified as either a
symbol or a list of the form (symbol :DISPLAY-NAME string), where
"string" is used as an alternate reference to this attribute.

documentation

A string that is the documentation text for this attribute

Return Value

The symbol of the attribute

DEFINE-COMMAND Macro

Creates a new Editor command by making a new LISP function from the
specified arglist and forms.

0

0

0

As a rule, commands have names of the form NAME-OF-COMMAND-COMMAND and
display names of the form "Name of Command." The command can be Q
executed only in the Editor, either through a key binding or as the
argument of the command "Execute Named Command" (bound to CtRL/Z
globally or PF1 7 in EDT Emulation style). The created function can
be called from any LISP code.

Format

DEFINE-COMMAND name
arglist
&OPTIONAL command-documentation
&BODY forms

88

0

drguments

name

EDITOR OBJECT DESC-RiPTIONS

The symbol that will name the command. This can be specif_ied as
either a symbol or a list of the form

(symbol {keyword-value-pair})

The acceptable keywords are:

:DISPLAY-NAME string

The display name for the command, which will be entered in
the *EDITOR-COMMAND-NAMES* string table. o :CATEGORY categories

The categories must be a symbol or a list of symbols that
are user-defined categories the command is cataloged under.
The list can be referenced using the COMMAND-CATEGORIES
command. A list of all commands belonging to a specific
category can be obtained with the CATEGORY-COMMANDS
function.

orglist

The list of formal
to the argument
argument, however.

command-documentation

parameters of the command. This is identical
list in DEFUN. There must be at least one

0
An optional documentation string associated with the
This string is associated with the command name
documentation type of EDITOR-COMMAND.

command.
and has a

0

forms

A list of forms that make up the body of the function executed
when the command is invoked. These forms are identical to the
forms given to DEFUN and can include a function documentation
string and declarations.

Return Value

The function associated with the command

89

EDITOR OBJECT DESCRIPTIONS

DEFINE-EDITOR-VARIABLE Macro

Defines an Editor variable. The symbol is interned in the current O
package and proclaimed to be a special variable. This definition must
appear prior to any.bindings or other uses of the variable.

Format

DEFINE-EDITOR-VARIABLE name
&OPTIONAL documentation
&KEY :BIND-HOOK :UNBIND-HOOK

Arguments

name

The name may be specified as either a symbol or a list of the Q
form (symbol :DISPLAY-NAME string), where string is a
user-defined name for the variable. The print name of the symbol
and the display name (if supplied) are entered as a key into the
EDITOR-VARIABLE-NAMES string table with the symbol placed into
the data slot of the table.

documentation

A string that is included in the documentation of the symbol with Q
a documentation type of EDITOR-VARIABLE.

:BIND-HOOK

A function that is invoked whenever the variable is
context. The function is called with two arguments
and the context in which the variable is being bound.

bound in a
the symbol

:UNBIND-HOOK

A function that is called when the binding
removed in the context. The function
arguments -- the variable and the context.

Return Value

The symbol of the Editor variable

DEFINE-KEYBOARD-MACRO Function

of the variable is
is called with two
It defaults to NIL.

Causes the Editor to start remembering keystrokes as they are typed at

0

the terminal until a call is made to the END-KEYBOARD-MACRO function. Q
If an optional string is supplied, a keyboard macro is created and
returned as if that string were a sequence of characters that had been

90

0

0

EDITOR OBJECT DESCRIPTIONS

entered and remembered previously. The Editor does
entered keystrokes if a string argument is supplied.

Format

DEFINE-KEYBOARD-MACRO &OPTIONAL string

Arguments

string

not remember

An optional string that will be used in place of a sequence of
keystrokes

Return Value

A function, when called, will execute the keyboard macro if a
string argument is supplied, otherwise T

DELETE-AND-SAVE-REGION Function

Deletes the region and returns a copy of the region containing the
deleted text.

OFormat

DELETE-AND-SAVE-REGION region

Arguments

region

·o An Editor region

Return Value

A copy of the region that was deleted

DELETE-BUFFER Function

Deletes the specified buffer. The calling of this function causes the
"Buffer Deletion Hook" to be invoked. If you delete the current
buffer and do not specify a value for new-current, the current buffer
is set by the same rules used in the NEXT-WINDOW function, provided
other buffers are displayed.

Orf none are displayed, the Editor makes an arbitrary choice. If there
are no other user-created buffers, the Editor returns to an initial

91

EDITOR OBJECT DESCRIPTIONS

state as if it had been invoked originally by the typing of (ED)
no arguments.

with O
Format

DELETE-BUFFER buffer &OPTIONAL new-current

Arguments

buffer

An Editor buffer

new-current

An Editor buffer that becomes the new current buffer

Return Value 0
The symbol naming the Editor buffer

DELETE-CHARACTERS Function

Deletes a specified number of characters after the specified mark (or Q
before it, if the number is negative). If there are not enough
characters after (or before) the mark, the buffer is not modified.

Format

DELETE-CHARACTERS mark &OPTIONAL n

Arguments

mark

n

An Editor mark

A fixnum, which defaults to 1, specifying the number of
characters to delete.

Return Value

The number of characters deleted, or NIL if there were not n
characters to delete.

92

0

0

EDITOR OBJECT DESCRIPTIONS

DELETE ,CURRENT BUFFER Command

ODeletes the current buffer. If the buffer is modified, the user is
asked whether to save the contents of the buffer. If another buffer
is visible on the screen, that buffer becomes the new current buffer.
If not, the Editor makes an arbitrary choice of another buffer to be
the new current buffer.

Display Name Format

Delete Current Buffer

Function Format

DELETE-CURRENT-BUFFER-COMMAND prefix buffer new-current

QArguments

prefix

Ignored

buffer

The buffer to delete. Default is the current buffer.

Onew-current

The buffer that becomes the new current buffer. The default is
as specified above.

Return Value

T

0

0

DELETE LINE Command

Deletes lines or parts of lines, depending on the prefix argument and
the location of the current buffer point:

• If the prefix is NIL, the command deletes between the current
buffer point and the end of the line. If there are
non-whitespace characters before the end of the line, the
command deletes those characters and does not delete the
newline character. If there are no characters or only
whitespace characters before the end of the line, the command
deletes to the end of the line, including the newline
character.

, 93

EDITOR OBJECT DESCRIPTIONS

• If the prefix is an integer, the command deletes the o
characters between the beginning of the line indicated by the
prefix and the current buffer point. A prefix of O indicates
the current line, 1 indicates the next line, -1 indicates the
previous line, and so on.

Display Name Format

Delete Line

Function Format

DELETE-LINE-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value

A disembodied region containing the deleted text

DELETE-MARK Function

Deletes the specified Editor mqrk. You use this function primarily to
remove permanent marks when they are no longer needed. If the mark
being deleted is the buffer point of a buffer, the window point of a
window, the display beginning or end of a window, or a mark defining a
buffer region, the results are unpredictable.

Format

DELETE-MARK mark

Arguments

mark

An Editor mark

Return Value

NIL

94

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

DELETE NAMED BUFFER Command

() Deletes the specified Editor buffer and any windows associated with
it. The appropriate hook functions are invoked. If the name is NIL,
the user is prompted for a name.

Category

:GENERAL-PROMPTING

Display Name Format

Delete Named Buffer

Function Format

0 DELETE-NAMED-BUFFER-COMMAND prefix &OPTIONAL name

Arguments

prefix

Ignored

name

() The name of the buffer to delete. It defaults to NIL.

Return Value

T

()DELETE NEXT CHARACTER Command

Causes the character following the point in the current window to be
deleted. If you specify an integer prefix argument, characters
following the point are deleted in the amount indicated.

Display Name Format

Delete Next Character

Function Forma't

DELETE-NEXT-CHARACTER-COMMAND prefix

0

95

EDITOR OBJECT DESCRIPTIONS

Arguments

prefix

A positive integer or NIL

Return value

The number of characters deleted

DELETE NEXT WORD Command

Deletes the next word. If you supply an integer prefix argument,
command deletes as many words as you specify.

Display Name Format

Delete Next Word

Function Format

DELETE-NEXT-WORD-COMMAND prefix &OPTIONAL mark

Arguments

prefix

A positive integer or NIL

mark

An Editor mark that defaults to the current buffer point

Return Value

The region containing the word(s) deleted

DELETE PREVIOUS CHARACTER Command

the

Deletes the character preceding the point in the current window if the
prefix argument is NIL. If you specify an integer prefix argument,
characters preceding the point (or following it, if the prefix is
negative) are deleted in the amount indicated.

Display Name Format

Delete Previous Character

96

0

0

0

0

0

\

EDITOR OBJECT DESCRIPTIONS

Function Format o DELETE-PREVIOUS-CHARACTER-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value

Undefined

DELETE PREVIOUS WORD Command

QDeletes the previous word. If you supply an integer prefix, the
command deletes as many words as you specify.

Display Name Format

Delete Previous Word

Function Format

o DELETE-PREVIOUS-WORD-COMMAND prefix &OPTIONAL mark

Arguments

prefix

A positive integer or NIL

omark

An Editor mark that defaults to the current buffer point

Return Value

The region containing the word(s) deleted

DELETE-REGION Function

Deletes the text in the specified region; the empty region remains.

Format

o DELETE-REGION region

97

EDITOR OBJECT DESCRIPTIONS

Arguments

region

An Editor region

Return Value

NIL

DELETE WHITESPACE Command

Deletes the whitespace characters following the current buffer point.

Display Name Format

Delete Whitespace

Function Format

DELETE-WHITESPACE-COMMAND prefix &OPTIONAL mark

Arguments

prefix

Ignored

mark

An Editor mark that defaults to the current buffer point

Ret~rn Value

NIL

DELETE-WINDOW Function

Deletes a window from the Editor. If the window is displayed, it is
removed from the display and then deleted. If the window is the
current window, a new current window is selected from any other
currently displayed windows. If there are none, a new window is
displayed from other available buffers. The functions in "Window
Deletion Hook" are called prior to any alterations of the window.·

Format

DELETE-WINDOW window

98

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

OArgwnents

window

An Editor window

Return Value

T

DELETE WORD Command

Deletes the characters from the current point to the beginning of the
next word. If you specify an integer prefix argument, n, characters

ofrom the current point to the end of the nth word are deleted.

Display Name Format

Delete Word

Function Format

DELETE-WORD-COMMAND prefix

Orguments

prefix

A positive integer or NIL

Return Value

0 Undefined

DESCRIBE Command

Displays in the Help buffer the documentation string of the specified
object. If the type or name is NIL, the command-prompts the user for
it in the Editor prompting window.

Category

:GENERAL-PROMPTING

Display Name Format

O Describe

99

EDITOR OBJECT DESCRIPTIONS

Function Format

DESCRIBE-OBJECT-COMMAND prefix &OPTIONAL type name

Arguments

prefix

type

name

Ignored

A named object type specifier that defaults to NIL -- ATTRIBUTE,
COMMAND, BUFFER, STYLE, VARIABLE, KEYBOARD-MACRO, KEY-BINDING, or
SYMBOL

The symbol or display name of a named Editor object of the
appropriate type

Return Value

None

DESCRIBE-OBJECT-COMMAND Function

See "Describe" command.

DESCRIBE WORD Command

0

0

0

Does a LISP DESCRIBE operation on the word at the argument mark and Q
displays the result in the "Help" buffer. The mark defaults to the
current buffer point.

Display Name Format

Describe Word

Function Format

DESCRIBE-WORD-COMMAND prefix &OPTIONAL mark

Arguments

prefix

Ignored 0
100

0

0

0

EDITOR OBJECT DESCRIPTIONS

mark

An Editor mark that defaults to the current buffer point

Return Value

Undefined

DESCRIBE WORD AT POINTER Command

Does a LISP DESCRIBE operation on the symbol indicated by the pointer.
If the pointer indicates a character that is a list terminator, this
command momentarily highlights the matching list-initiator character.
If the list initiator is not visible in the window, the line
containing it is displayed in the information area, and the matching
list initiator is highlighted. (See "LISP Syntax" attribute,
especially the values :CONSTITUENT, :LIST-TERMINATOR, and :LIST
INITIATOR.)

Display Name Format

Describe Word at Pointer

Function Format

DESCRIBE-WORD-AT-POINTER-COMMAND.prefix

Arguments

prefix

Ignored

Q Return Value

Undefined

0

DOWNCASE REGION Command

Makes all al~~abetic characters in the current buffer select region
lower case.

Display Name Format

Downcase Region

101

EDITOR OBJECT DESCRIPTIONS

Function Format

DOWNCASE-REGION-COMMAND prefix &OPTIONAL region

Arguments

prefix

Ignored

region

An Editor region that defaults to the buffer select region

Return Value

The region

DOWNCASE WORD Command

Makes all alphabetic characters in the current word lower case.

Display Name Format

Downcase Word

Function Format

DOWNCASE-WORD-COMMAND prefix &OPTIONAL mark

Arguments

prefix

Ignored

mark

An Editor mark that defaults to the current buffer point

Return Value

The region containing the word that was made all lower case, or
NIL

102

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

ED Command

Performs the same actions as the ED function, but you can use it from
within the Editor. If you do not specify an object or a type, the
command prompts you for it.

Category

:GENERAL-PROMPTING

Display Name Format

Ed

Function Format

o EDIT-LISP-OBJECT-COMMAND prefix &OPTIONAL object type

Arguments

0

prefix

Ignored

object

type

Any object that is valid for the ED function

Any keyword that is a valid value for the :TYPE keyword to the ED
function -- that is, :FUNCTION or :VALUE. This is valid only if
the object argument is a symbol.

Q Return Value

Undefined

0

ED Function

Invokes the VAX LISP Editor.
argument that specifies what
namestring, pathname, or symbol.
value can also be a list.

This function takes an optional x
is to be edited. The value can be a
In the VAX LISP implementation, the

This function can be called recursively. This is helpful when
implementing commands such as "Query Search Replace".

103

EDITOR OBJECT · DESCRIPTIONS

Format

ED &OPTIONAL x &KEY :TYPE :READ-ONLY

Arguments

x

A namestring, pathname, symbol, or list that specifies what is to
be edited.

A namestring or pathname specifies a file. A symbol specifies a
LISP symbol. If you supply a symbol argument, then you can also
specify a :TYPE keyword argument, :FUNCTION or :VALUE, which
tells the Editor whether you want to edit the symbol's
function/macro definition or its value.

If you specify a list, the list must be a generalized variable
that can be specified in a call to the SETF macro. The list is
evaluated, and it returns a value to edit. When you write the
buffer containing the value, the Editor replaces the value of the
generalized variable with the new value.

:TYPE keyword

0

0

You can specify this argument only if the x argument is a symbol. Q
The possible values are:

:FUNCTION (the default)

The Editor is inv~ked to edit the function or macro
definition associated with the specified symbol.

:VALUE

The Editor is invoked to edit the specified symbol's value. Q
':READ-ONLY value

You can specify this argument to indicate whether modifications
to the buffer can be written back as a new version of the file
being edited or an update of the LISP object being edited. (See
description of BUFFER-WRITABLE.) The possible values are:

NIL (the default)

Modifications can be written.

Non-NIL

Modifications cannot be written.

104

0

0

EDITOR OBJECT DESCRIPTIONS

Return Value

None (by default).
from a call to ED.

EDIT FILE Command

See RETURN-FROM-EDITOR for returning values

Prompts for a file name if the user does not supply one. If there is
a buffer containing that file, the command switches you to it.
Otherwise, a new buffer is created whose name is the name of the file,
the named file is read into the buffer, and the command switches you
to that buffer. If there is a buffer with the same name as the file,
but that buffer's file is a different file (for example, same name but
in a different directory), the user is prompted for a new buffer name.

O if the user does not supply a new buffer name, the old buffer is
reused.

Category

:GENERAL-PROMPTING

Display Name Format

O Edit File

Function Format

EDIT-FILE-COMMAND prefix &OPTIONAL file

Arguments

prefix

Q Ignored

file

A pathname, namestring, stream, or NIL.

Return Value

The buffer

0
105

-- -----------------------· -------·-·

EDITOR OBJECT DESCRIPTIONS

EDIT-LISP-OBJECT-COMMAND Function

See "Ed" command.

EDITOR-ATTRIBUTE-NAMES Variable

Specifies a string table that contains the names of all the defined
Editor attributes.

EDITOR-BUFFER-NAMES Variable

0

Specifies a string table that contains the names of all the existing
Edi tor buffers. Q

EDITOR-COMMAND-NAMES Variable

Specifies a string table that contains the names of commands currently
defined in the Editor.

EDITOR-DEFAULT-BUFFER Variable

Can be set to a buffer specifi~r. When
windows to display, it will display
buffer. If the value of this variable is
specified buffer does not exist, then the
into the buffer "Basic Introduction" when

the Editor has no other
a window into the specified
NIL (the default) or if the
Editor will display a window
it has nothing else to show.

This variable is useful, for example, to set up a LISP "scratch pad"
buffer to be used when you are not editing files.

EDITOR ENTRY HOOK Editor Variable

Specifies a hook function that is to be called when the user invokes
the Editor. It is called after the Editor is initialized and just
before the processing of the arguments to the ED function. The
context searching order is the one that was in effect when an Editor
pause occurred, or :GLOBAL if the Editor is being called for the first
time.

Display Name Format

Editor Entry Hook

106

0

0

0

QSymbol Format

EDITOR-ENTRY-HOOK

EDITOR-ERROR Function

EDITOR OBJECT DESCRIPTIONS

Is the error-signaling mechanism for the Editor. This function
creates an error message by applying FORMAT to the format string and
the remaining arguments. It writes this message in the Information
Area, calls the ATTENTION function, and returns to the Editor command
level.

Format

o EDITOR-ERROR &OPTIONAL format-string &REST args

Arguments

format-string

The control string for the FORMAT function

args

Q Arguments to be passed to FORMAT

Return Value

None

QEDITOR-ERROR-WITH-HELP Function

Is similar to the EDITOR-ERROR function but can provide the user with
additional information on the error that has occurred. This function
applies FORMAT to the error string and the remaining arguments to
obtain an error message that is displayed in the Information Area. It
calls the ATTENTION function and returns to the Editor command loop.
In addition, it applies FORMAT to the information string and the
remaining arguments to obtain another string that is saved for later
display to the user.

The initial error message should be brief and give the experienced
user enough information to understand the problem. The information
message can be tailored to the less experienced user or can be used to
provide more extensive supplemental information on the nature of the

oerror.

107

-------·--· - -

EDITOR OBJECT DESCRIPTIONS

Format

EDITOR-ERROR-WITH-HELP information-string error-string &REST args

Arguments

information-string

A format string to be applied to the args to produce additional
information

error-string

A format string to be applied to the args to produce a brief
error message

args

Any arguments needed to supply error information

Return Value

None

EDITOR EXIT HOOK Editor Variable

Specifies a hook function that is invoked when you exit from the
Editor. The function is called immediately after the execution of an
"Exit" command. The context searching order is what was in effect at
the start of the "Exit" command.

Display Name Format

Editor Exit Hook

Symbol Format

EDITOR-EXIT-HOOK

EDITOR-HELP-BUFFER Buffer

See "Help" buffer.

108

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

EDITOR INITIALIZATION HOOK Editor Variable

Ocan be set (using SETF with VARIABLE-FUNCTION) to a hook function of
no arguments that is called whenever the Editor is initialized. The
Editor is initialized the first time you call the ED function in a
LISP session, and anytime you call ED after having exited the Editor.

Note that when this hook function is called, the Editor state is not
fully established. In particular, CURRENT-BUFFER, CURRENT-BUFFER
POINT, and CURRENT-WINDOW return no values.

Also, no Editor style is active when this function is called.
Therefore, only the global binding of the variable is meaningful.

This variable has no initial function definition.

QDisplay Name Format

Editor Initialization Hook

Symbol Format

EDITOR-INITIALIZATION-HOOK

Q· EDITOR-KEYBOARD-MACRO-NAMES* Variable

Is a string table that contains the names of all named keyboard
macros.

EDITOR-LISTEN Function

C~eturns T if there is
terminal while you
otherwise.

Format

EDITOR-LISTEN

Arguments

None

Return Value

0 Tor NIL

another character immediately available .from the
are using the Editor. This function returns NIL

109

EDITOR OBJECT DESCRIPTIONS

EDITOR PAUSE HOOK Editor Variable

Specifies a hook function that is invoked when you pause the Editor.
The function is called immediately after the execution of a "Pause"
command. The context searching order is what was in effect at the
start of the "Pause" command.

Display Name Format

Editor Pause Hook

Symbol Format

EDITOR-PAUSE-HOOK

EDITOR-PROMPTING-BUFFER Buffer

See "General Prompting" buffer.

EDITOR-READ-CHAR Function

0

0

Returns the next character read from the terminal.
function only when the Editor is active.

You can call this Q
Format

EDITOR-READ-CHAR

Argwnents

None

Return Value

A character

EDITOR-READ-CHAR-NOHANG Function

Returns the next character typed at the terminal if a character is
immediately available. The function returns NIL otherwise.

Format

EDITOR-READ-CHAR-NOHANG

110

0

0

ouments

None

Return Value

EDITOR OBJECT DESCRIPTIONS

A character; or NIL, if none is available

* EDITOR-RETAIN-SCREEN-STATE* Variable

Specifies whether or not the state of the screen is to be retained
when the you cause the Editor to pause. The default value is NIL,
which means that the screen is erased when the Editor pauses and is
restored to its previous state when the Editor is reentered.

(::)en you are debugging new commands, however, it may be desirable for
you to alter this behavior. When the variable is set to T, then the
screen is not erased when the Editor pauses.

EDITOR-STYLE-NAMES Variable

C1cifies a string table that contains the names of
1tor styles.

EDITOR-UNREAD-CHAR Function

all the defined

Unreads the last character read from the terminal while in the Editor.
See COMMON LISP: The Language for more information about unreading.

()mat

EDITOR-UNREAD-CHAR character

Arguments

character

The last character read from the terminal

Return Value

NIL

0

111

EDITOR OBJECT DESCRIPTIONS

•EDITOR-VARIABLE-NAMES* Variable

Specifies a string table that contains the names of
Editor variables.

EDT APPEND Command

all the defined

Deletes the current select region of text (the region defined from the
current buffer point and the mark in the "Buffer Select Mark"
variable) and stores the deleted region in the Editor variable "EDT
Paste Buffer". The region is inserted at the end of the current
contents, ·if any, of the paste buffer.

A select region is a region established by executing the command "EDT
Select" (or "Set Select Region"). "EDT Append" can add to text that
was previously deleted and stored by execution of either "EDT Cut" or
"EDT Append". .

Display Name Format

EDT Append

Function Format

EDT-APPEND-COMMAND prefix

Arguments

prefix

Ignored

Return Value

Undefined

EDT BACK TO START OF LINE Command

Moves the curent buffer point to the beginning of the current line.
If the point is already at the beginning of a line, it is moved to the
beginning of the previous line. If a positive integer prefix is
supplied, the point is moved backward the number of lines indicated.

Display Name Format

EDT Back to Start of Line

112

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Function Format

O EDT-BACK-TO-START-OF-LINE-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value

The modified point

O EDT BEGINNING OF LINE Command

Moves the point of the current buffer to the beginning of the next
line if the prefix argument is NIL, and if "EDT Direction Mode" is
:FORWARD. If "EDT Direction Mode" is :BACKWARD, the point is moved
backward to the nearest beginning of a line. ·

If you specify a positive integer prefix argument, n, the point is
moved to the nth beginning of a line in the direction indicated by

O "EDT Direction Mode." If you specify a negative integer prefix
argument, n, the point is moved to the nth beginning of a line in the
direction opposite to that indicated by EDT-Direction-Mode.

Display Name Format

EDT Beginning of Line

Function Format

O EDT-BEGINNING-OF-LINE-COMMAND prefix

Arguments

prefix

A fixnum or NIL

Return Value .

The modified point

0
113

EDITOR OBJECT DESCRIPTIONS

EDT CHANGE CASE Command

Changes the case of any characters in the region specified by the Q
"Buffer Select Region" Editor variable or the character at the current
buffer point if no region is specified.

Display Name Format

EDT Change Case

Function Format

EDT-CHANGE-CASE-COMMAND prefix

Arguments

prefix

Ignored

Return Value

Undefined

EDT CUT Command

Deletes the current select region of text (the region defined from the
current buffer point and the mark in the "Buffer Select Mark"
variable) and stores the delet~d region in the Editor variable "EDT
Paste Buffer". The previous contents of the paste buffer are lost.

A select region is a region· established by executing the command
Select" (or "Set Select Mark").

Display Name Format

EDT Cut

Function Format

EDT-CUT-COMMAND prefix

Arguments

prefix

Ignored

114

"EDT

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

OReturn Value

Undefined

EDT DELETE CHARACTER Command

Deletes the character at the position of the cursor (that is, at the
position immediately following the point in the current buffer) if the
prefix argument is NIL. If you specify a positive integer prefix
argument, characters following the point are deleted in the amount
indicated. The Editor variable "EDT Deleted Character" is set to the
last character deleted.

Display Rame Format

Q EDT Delete Character

Function Format

EDT-DELETE-CHARACTER-COMMAND prefix

Arguments

Qprefix

An integer or NIL

Return Value

The last character deleted

QEDT DELETE LINE Command

0

Deletes the line of text starting at the current buffer point and
extending to the beginning of the next line. If you specify an
integer prefix argument, lines are deleted in the amount indicated (in
a forward direction if integer is positive, in a backward direction if
integer is negative). The Editor variable "EDT Deleted Line" is set
to the last line deleted.

Display Rame Format

EDT Delete Line

Function Format

EDT-DELETE-LINE-COMMAND prefix

115

EDITOR OBJECT DESCRIPTIONS

Arguments

prefix 0
An integer or NIL

Return Value

A region containing the last line deleted

EDT DELETE PREVIOUS CHARACTER Command

Deletes the character preceding the current buffer point. If a prefix
argument is supplied, the command deletes the number of previous
characters specified by the argument. The value of the "EDT Deleted Q
Character" Editor variable is set to the last character deleted.

Display Name Format

EDT Delete Previous Character

Function Format

EDT-DELETE-PREVIOUS-CHARACTER-COMMAND prefix

Arguments

prefix

An integer or NIL
/

Return Value

The last character deleted

EDT DELETE PREVIOUS LINE Command

Deletes from the current buffer point back to the beginning of the
current line. If the -point was already at the beginning of a line,
the command deletes back to the beginning of the previous line. If a
prefix argument, n, is supplied, n lines are deleted. The value of
the "EDT Deleted Line" Editor variable is set to a region containing
the last line deleted.

Display Name Format

EDT Delete Previous Line

116

0

0

0

EDITOR OBJECT DESCRIPTIONS

()Function Format

EDT-DELETE-PREVIOUS-LINE-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value

A region containing the last deleted line

() EDT DELETE PREVIOUS WORD Command

Deletes from the current buffer point back to the beginning of the
current word. If the point was already at the beginning of a word,
the command deletes back to the beginning of the previous word. If a
prefix argument, n, is supplied, n words are deleted. The value of
the "EDT Deleted Word" Editor variable is set to a region containing
the last word deleted.

() Display Name Format

EDT Delete Previous Word

Function Format

EDT-DELETE-PREVIOUS-WORD-COMMAND prefix

Arguments

()prefix

An integer or NIL

Return Value

A region containing the last deleted word

EDT DELETE TO END OF LINE Command

Deletes all characters found between the point of the current buffer
and the end of the current line. If you specify a positive integer

() prefix argument, n, all characters found between the buffer point and
the nth end-of-line following the point are deleted. If you specify a
negative integer prefix argument, n, the sign is ignored and the

117

EDITOR OBJECT DESCRIPTIONS

absolute value of the argument is used. The value of the Editoro
variable "EDT Deleted Line" is set to the last line deleted.

Display Name Format

EDT Delete to End of Line

Function Format

EDT-DELETE-TO-END-OF-LINE-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value

The line that was deleted

EDT DELETE WORD Command

Deletes all characters between the point of the current buffer and the
next end of a word. If you specify a positive integer prefix
argument, n, the characters between the current buffer point and the
end of the nth following word are deleted. If you specify a negative
integer prefix argument, the sign is ignored and the absolute value is
used. The Editor variable "EDT Deleted Word" is set to the last word
deleted.

Display Name Format

EDT Delete Word

Function Format

EDT-DELETE-WORD-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value

The deleted word

118

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

(JT DELETED CHARACTER Editor Variable

Is bound to the last character deleted by the "EDT Delete Character"
command.

Display Name Format

EDT Deleted Character

Symbol Format

EDT-DELETED-CHARACTER

EDT DELETED LINE Editor Variable

~ bound to the region containing the last line deleted by the "EDT
Delete Line" command or by the "EDT Delete to End of Line" command.

Display Name Format

EDT Deleted Line

Symbol Format

c=) EDT-DELETED-LINE

EDT DELETED WORD Editor Variable

Is bound to the region containing the last word deleted by the "EDT
Delete Word" command.

c=)splay Name Format

EDT Deleted Word

Symbol Format

EDT-DELETED-WORD

EDT DESELECT Command

See "Unset Select Mark" command.

0

119

EDITOR OBJECT DESCRIPTIONS

EDT DIRECTION MODE Editor Variable

Specifies the direction in which certain commands in "EDT Emulation"
style are to operate. The possible values are :FORWARD and :BACKWARD.

Display Name Format

EDT Direction Mode

Symbol Format

EDT-DIRECTION-MODE

EDT EMULATION Style

Is the default major style for the VAX LISP Editor. This style is
designed to imitate the basic keypad behavior of the VMS EDT Editor.

Display Name Format

EDT Emulation

Symbol Format

EDT-EMULATION

EDT END OF LINE Command

Moves the current buffer point to the next end-of-line if "EDT
Direction Mode" is :FORWARD or to the previous end-of-line if "EDT
Direction Mode" is :BACKWARD. If you specify an integer prefix
argument, n, the point is moved to' the nth end of a line in the
direction indicated by "EDT Direction Mode"; if the integer is
negative, the direction is opposite to that indicated by "EDT
Direction Mode."

Display Name Format

EDT End of Line

Function Format

EDT-END-OF-LINE-COMMAND prefix

120

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Arguments

Oprefix

An integer or NIL

Return Value

The modified point

EDT MOVE CHARACTER Command

Moves the point of the current buffer by one character if prefix is
NIL. If the value of "EDT Direction Mode" is :FORWARD, the point is

O moved forward; if :BACKWARD, it is moved backward. If you specify an
integer prefix argument, the point is moved in the direction of "EDT
Direction Mode" by the number of characters indicated. If you specify

0

a positive integer prefix argument, n, the point is moved n characters
in the direction indicated by "EDT Direction Mode." If you specify a
negative integer prefix argument, n, the point is moved n characters
in the direction opposite to that indicated by "EDT Direction Mode."

Display Name Format

EDT Move Character

Function Format

EDT-MOVE-CHARACTER-COMMAND prefix

Arguments

oprefix

A fixnum or NIL

Return Value

The modified point ·

EDT MOVE PAGE Command

Moves the point one page in the direction of "EDT Direction Mode" if
the prefix argument is NIL. If you specify a positive integer prefix
argument, the point is moved in the direction of "EDT Direction Mode"

Oby the number of pages indicated; if the integer is negative, the
direction is opposite to that of "EDT Direction Mode."

121

EDITOR OBJECT DESCRIPTIONS

Display Name Format

EDT Move Page

Function Format

EDT-MOVE-PAGE-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value

The modified point

EDT MOVE WORD Command

Moves the current buffer point to the next or previous beginning of a
word in the direction indicated by "EDT Direction Mode" if the prefix
argument is NIL. If you specify a positive integer prefix argument,
the point is moved in the direction of "EDT Direction Mode" by the
number of words indicated; if the integer is negative, the direction
is opposite to that of "EDT Direction Mode."

Display Name Format

EDT Move Word

Function Format

EDT-MOVE-WORD-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value

The current buffer point

122

0

0

0

0

0

EDT PASTE Command

()Inserts the contents
Paste Buffer" at the

Display Name Format

EDT Paste

Function Format

EDITOR OBJECT DESCRIPTIONS

of the region bound to the Editor
current buffer point.

EDT-PASTE-COMMAND prefix

Arguments

prefix

() Ignored

Return Value

The inserted region

()EDT PASTE AT POINTER Command

variable "EDT

Moves the current buffer point to the position indicated by the
pointer and then inserts at that location the region contained in the
paste buffer. If the pointer is beyond the end of a line, the region
is inserted at the end of that line. If the pointer is beyond the end
of the buffer region, the paste region is inserted at the end of the
buffer region.

~Uisplay Name Format

EDT Paste at Pointer

Function Format

EDT-PASTE-AT-POINTER-COMMAND prefix

Arguments

prefix

Ignored

Return value

() The inserted region

123

EDITOR OBJECT DESCRIPTIONS

EDT PASTE BUFFER Editor Variable

Is bound in the "EDT Emulation" style. The value of this variable
the region most recently deleted by the "EDT Cut" command.

Display Name Format

EDT Paste Buffer

Symbol Format

EDT-PASTE-BUFFER

EDT QUERY SEARCH Command

Prompts for a string to use as a pattern in a search. The search is
forward if "EDT Direction Mode" is :FORWARD; backward, if "EDT
Direction Mode" is :BACKWARD. The point is moved to the end of the
first matching string if the search is forward, or to the beginning of
the first matching string if the search is backward. If the prefix
argument is an integer, n, the command searches for the nth occurrence
of the string. If n is negative, the command searches in the
direction opposite to the setting of "EDT Direction Mode."

Display Name Format

EDT Query Search

Function Format

EDT-QUERY-SEARCH-COMMAND prefix &OPTIONAL string

Arguments

prefix

An integer or NIL

string

The string to search for

Return Value

The modified point

124

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

EDT REPLACE Command

C)Deletes the current select region
current buffer point and the
variable) and replaces it with
variable "EDT Paste Buffer".

of text (the region defined from the
mark in the "Buffer Select Mark"
the region stored in the Editor

A select region is a region established by executing the command "EDT
Select" (or "Set Select Region"). The replacement text is text placed
in the paste buffer by means of either "EDT Cut" or "EDT Append".

Display Name Format

EDT Replace

Function Format

C) EDT-REPLACE-COMMAND prefix

Arguments

prefix

Ignored

C)Return Value

Undefined

EDT SCROLL WINDOW Command

Scrolls the current window in the direction indicated by "EDT
~Direction Mode" by a distance that is two-thirds the height of the
__,;Window, if the prefix argument is NIL. If prefix is positive, the

window is scrolled in the direction of "EDT Direction Mode" by a
distance of prefix times half the height of the window; if prefix is
negative, the window is scrolled in the direction opposite to the
setting of "EDT Direction Mode" by a distance of prefix times half the
height of the window.

Display Name Format

EDT Scroll Window

Function Format

EDT-SCROLL-WINDOW-COMMAND prefix

C)

125

EDITOR OBJECT DESCRIPTIONS

Arguments

prefix

A fixnum or NIL

Return Value

The new point

EDT SEARCH AGAIN Command

Searches for text that matches the search string saved in
Search String" Editor variable. If "EDT Direction Mode" is
the direction of the search is forward; if "EDT Direction
:BACKWARD, the direction of the search is backward.

Display Name Format

EDT Search Again

Function Format

EDT-SEARCH-AGAIN-COMMAND prefix

Arguments

prefix

Ignored

Return Value

The modified point

EDT SELECT Command

See "Set Select Mark" command.

EDT SET DIRECTION BACKWARD Command

the "Last
:FORWARD,
Mode" is

Sets the value of the Editor variable "EDT Direction Mode" to
:BACKWARD. The prefix argument is ignored.

126

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

O Display Name Format

EDT Set Direction Backward

Function Format

EDT-SET-DIRECTION-BACKWARD-COMMAND prefix

Arguments

prefix

Ignored

Return Value

0 :BACKWARD

EDT SET DIRECTION FORWARD Command

Sets the
:FORWARD.

value of the Editor variable
The prefix argument is ignored.

Q Display Name Format

EDT Set Direction Forward

Function Format

"EDT

EDT-SET-DIRECTION-FORWARD-COMMAND prefix

Arguments

O prefix

Ignored

Return Value

:FORWARD

EDT SPECIAL INSERT Command

Direction Mode" to

0
Inserts the character at the current buffer point whose character code
is specified by the prefix argument. For example, to insert a DELETE
character, you specify a prefix argument of 127. The character is
inserted with no special interpretation by the Editor.

127

EDITOR OBJECT DESCRIPTIONS

Display Name Format

EDT Special Insert

Function Format

EDT-SPECIAL-INSERT-COMMAND prefix

Arguments

prefix

The prefix argument is interpreted as the character code of a
character to be inserted.

Return Value

The character

EDT SUBSTITUTE Command

Causes the text in the "EDT Pasti Buffer" Editor variable to replace a
string just located in the text by the "EDT Query Search" or "EDT
Search Again" command. After the text is replaced, the command
searches for the next occurrence of the search string. If a prefix
argument is supplied, the command is executed the number of times
indicated.

Display Name Format

EDT Substitute

Function Format

EDT-SUBSTITUTE-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value

Undefined

128

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

EDT UNDELETE CHARACTER Command

C\estores the character last deleted by the "EDT Delete Character"
command (that is, the value of the Editor variable "EDT Deleted
Character") to the position of the current buffer point if prefix is
NIL. If you specify an integer prefix argument, the character is
inserted the number of times indicated.

Display Name Format

EDT Undelete Character

Function Format

EDT-UNDELETE-CHARACTER-COMMAND prefix

QArguments

prefix

A p9sitive integer or NIL

Return Value

The inserted character

0
EDT UNDELETE LINE Command

Restores the line last deleted by the "EDT Delete Line" or "EDT Delete
to End of Line" command (that is, the value of the Editor variable
"EDT Deleted Line") to the position of the current buffer point if
prefix is NIL. If you specify an integer prefix argument, the line is

c=)inserted the number of times indicated.

Display Name Format

EDT Undelete Line

Function Format

EDT-UNDELETE-LINE-COMMAND prefix

Arguments

prefix

A positive integer or NIL

0
129

EDITOR OBJECT DESCRIPTIONS

Return Value

The inserted region

EDT UNDEU:TE WORD Command

Restores the word last deleted by the "EDT Delete Word" command (that
is, the value of the Editor variable "EDT Deleted Word") to the
position of the current buffer point if prefix is NIL. If you specify
an integer prefix argument, the word is inserted the number of times
indicated.

Display Name Format

EDT Undelete Word

Function Format

EDT-UNDELETE-WORD-COMMAND prefix

Arguments

prefix

A positive integer or NIL

Return Value

The inserted region

EMACS Style

Is an Editor style designed to imitate the functions and key
of an EMACS-based editor.

Display.Name Format

EMACS

Symbol Format

EMACS

130

bindings

0

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

EMACS BACKWARD SEARCH Command

Searches backward for the search string specified in the last command.
If the last command was not a searching command, the "EMACS Backward
Search" command prompts for a search string. If no prefix is
supplied, this command searches for the first occurrence of the· search
string. For a prefix n, the command searches for the nth occurrence
of the string.

Category

:EMACS-SEARCH

Display Name Format

EMACS Backward Search

Function Format

EMACS-BACKWARD-SEARCH-COMMAND prefix

Arguments

prefix

o An integer or NIL

Return Value

The updated current buffer point

EMACS FORWARD SEARCH Command

O Searches forward for the search string specified in the last .command.

0

If the last command was not a searching command, the "EMACS Forward
Search" command prompts for a search string. If no prefix is
supplied, this command searches for the first occurrence of the search
string. For a prefix n, the command searches for the nth occurrence
of the string.

category

:EMACS-SEARCH

Display Name Format

EMACS Forward Search

131

EDITOR OBJECT DESCRIPTIONS

Function Format

EMACS-FORWARD-SEARCH-COMMAND prefix &OPTIONAL string

Arguments

prefix

An integer or NIL

string

A string

Return Value

The updated current buffer point

EMPTY-LINE-P Function

Returns T if the specified mark points into a line having no
characters; otherwise, the function returns NIL.

Format

EMPTY-LINE-P mark

Arguments

mark

An Editor mark

Return Value

Tor NIL

END KEYBOARD MACRO Command

Ends the keyboard macro started with the "Start Keyboard Macro"
command. After this command is executed, the keyboard macro can be
executed by means of the "Execute Keyboard Macro" command.

Display Name Format

End Keyboard Macro

132

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Function Format

0 ,END-KEYBOARD-MACRO-COMMAND prefix

Arguments

prefix

Ignored

Return Value

A function that, if called, executes the keyboard macro

O END-KEYBOARD-MACRO Function

Terminates the keyboard macro started with the
function. This function returns a function
executes the keyboard macro.

Format

END-KEYBOARD-MACRO

0 Arguments

None

Return Value

A function

0
END OF BUFFER Command

START-KEYBOARD-MACRO
that, when called,

Moves the buffer point to the end of the current buffer.

Display Name Format

End of Buffer

Function Format

END-OF-BUFFER-COMMAND prefix

0
133

EDITOR OBJECT DESCRIPTIONS

Arguments

prefix

Ignored

Return Value

The updated buffer point

END OF LINE Command

Moves the point to the end of the current line if the prefix argument
is NIL. If you specify an integer prefix argument, the point is moved

0

down the number of lines indicated (or up, if prefix is negative) and Q
then to the end of the line.

Display Name Format

End of Line

Function Format

END-OF-LINE-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value

The modified point

END-OF-LINE-P Function

Returns T if the specified mark points
following the last character on a
returns NIL.

Format

END-OF-LINE-P mark

134

to ·the position immediately
line; otherwise, the function

0

0

0

EDITOR OBJECT DESCRIPTIONS

drguments

mark

An Editor mark

Return Value

Tor NIL

END OF OUTERMOST FORM Command

Moves the buffer point from inside a LISP form to the end of the
outermost form surrounding it. If the point is between two outer

Cforms, it is moved to the end of the following one. An outermost form
is one whose opening parenthesis is in the leftmost column on the
screen.

Display Name Format

End of Outermost Form

Function Format

0 END-OF-OUTERMOST-FORM-COMMAND prefix

Arguments

prefix

Ignored

Qeturn Value

The updated buffer point mark

END OF PARAGRAPH Command

Moves the mark to the end of the paragraph. If the mark is not
supplied, it defaults to the current buffer point.

Display Name Format

End of Paragraph

e,i~unction Format

END-OF-PARAGRAPH-COMMAND prefix &OPTIONAL mark

135

EDITOR OBJECT DESCRIPTIONS

Arguments

prefix

·Ignored

mark

An Editor mark that defaults to the current buffer point

Return Value

The updated mark

END OF WINDOW Command

Moves the cursor to the end of the current window.

Display Name Format

End of Window

Function Format

END-OF-WINDOW-COMMAND prefix

Arguments

prefix

Ignored

Return Value

The updated current buffer point

ENQUEUE-EDITOR-COMMAND Function

Places the argument function onto the queue for later processing by
the Editor. The function can be any LISP function; it will be called
in the correct'time relation to commands invoked from the keyboard and
from the pointing device. The value of the keyword :ARGUMENTS can be
a list of arguments to be passed to the argument function.

Format

ENQUEUE-EDITOR-COMMAND function &KEY :ARGUMENTS

136

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Arguments

Q function

0

0

0

0

Any LISP function

:ARGUMENTS

A list of arguments to be passed to the argument function. The
default is NIL.

Return Value

The argument function

Causes the text in the region bound to the "Buffer Select Region"
variable to be evaluated as LISP code. The result of the evaluation
is printed in the information area. The result is also bound to the
"LISP Evaluation Result" variable.

Display Name Format

Evaluate LISP Region

Function Format

EVALUATE-LISP-REGION-COMMAND prefix

Arguments

prefix

Ignored

Return Value

A list of the values returned from the region evaluated

EXCHANGE POINT AND SELECT MARK Command

Moves the cursor to the location bound to the
variable in the current buffer, and sets
variable to point to the old cursor position.
returns the updated buffer select mark or NIL

Display Name Format

Exchange Point and Select Mark

137

"Buffer Select Mark"
the "Buffer Select Mark"

The command function
if no mark was selected.

EDITOR OBJECT DESCRIPTIONS

Function Format

EXCHANGE-POINT-AND-SELECT-MARK-COMMAND prefix

Arguments

prefix

Ignored

Return Value

The updated buffer select mark or NIL

EXECUTE KEYBOARD MACRO Command

Executes the most recently defined keyboard macro once if the prefix
argument is NIL. If you specify· an integer prefix argument, the
comm~nd is executed the number of times indicated.

Display Name Format

Execute Keyboard Macro

Function Format

EXECUTE-KEYBOARD-MACRO-COMMMAND prefix

Arguments

prefix

0

0

0

An integer or NIL 0
Return Value

The value returned by the last function executed in the
macro

EXECUTE NAMED COMMAND Command

keyboard

·Prompts the user for the name of an· Edi tor command to execute if you
do not specify one. The prefix argument is passed to the COll\11\and you
want executed.

Display Name Format

Execute Named Command

138

0

0

0

0

EDITOR OBJECT. DESCRIPTIONS

Function Format

EXECUTE-NAMED-COMMAND-COMMAND prefix

Arguments

prefix

An integer or NIL

Return value

The value returned by the named command

EXIT Command

Returns control to LISP, and the Editor state is lost. If there are
modified buffers, the Editor asks the user if the buffers should be
saved. If the response is yes, the Editor executes the "Write
Modified Buffers" command.

Display Name Format

Exit

Function Format

EXIT-EDITOR-COMMAND prefix

Arguments

prefix

Q Ignored

Return Value

Nothing

EXIT-EDITOR-COMMAND Function

See "Exit" command.

0
139

EDITOR OBJECT DESCRIPTIONS

EXIT RECURSIVE EDIT Command

Causes the Editor to exit one level of calls to the ED
returning no values from ED. You must use this command to
a recursive call to ED. If invoked from the Editor's top
command has the same effect as "Pause Editor".

functionO
return from
level, the

This command is commonly used in conjunction with the command "Query
Search Replace".

Display Name Format

Exit Recursive Edit

Function Format

EXIT-RECURSIVE-EDIT-COMMAND prefix

Arguments 0
prefix

Ignored

Return Value

Undefined 0
FIND-AMBIGUOUS Function

Returns a list of those strings in the string table that begin with
the specified string. The list is in alphabetical order. String
comparisons are case insensitive.

Format 0
FIND-AMBIGUOUS string string-table

Arguments

string

A string to be compared with the string-table entries

string-table

An Editor string table

0
140

EDITOR OBJECT DESCRIPTIONS

Return Value

0 An alphabetically ordered list of those strings in the string
table that begin with the specified string, or NIL if none.

FIND-ATTRIBUTE Function

Returns the symbol that names the specified attribute if the argument
is a defined attribute, or NIL otherwise.

Format

FIND-ATTRIBUTE attribute

OArguments

attribute

An attribute specifier

Return Value

A symbol or NIL

0
FIND-BUFFER Function

Returns the buffer if the argument is a buffer specifier, or NIL
otherwise.

Format

O FIND-BUFFER buffer

Arguments

buffer

An Editor buffer specifier

Return Value

An Editor buffer or NIL

0

141

EDITOR OBJECT DESCRIPTIONS

FIND-COMMAND Function

Returns the associated function if the argument is a
specifier, or NIL otherwise.

command O
Format

FIND-COMMAND command

Arguments

command

An Editor command specifier

Return Value

The function associated with the command or NIL

FIND-STYLE Function

Returns an Editor style if the argument is a style specifier, or NIL
otherwise.

Format

FIND-STYLE style

Arguments

style

An Editor style specifier

Return Value

An Editor style or NIL

FIND-VARIABLE Function

Returns an Editor variable symbol if the argument is an Editor
variable, the symbol that names an Editor variable specifier, or NIL
otherwise.

Format

FIND-VARIABLE variable

142

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Q Arguments

variable

An Editor variable specifier

Return Value

The symbol that names the Editor variable, or NIL

FIRST-LINE-P Function

Is a predicate that returns T if the mark points into the first line
in a buffer or a disembodied region.

OFormat

FIRST-LINE-P mark

Arguments

mark

0 An Editor mark

Return Value

Tor NIL

FORWARD CHARACTER Command

c=)Moves the point in the current window forward by one character. if the
prefix argument is NIL. If you specify an integer prefix argument,
the point is moved forward by the number of characters indicated (or
backward, if the prefix is negative).

Display Name Format

Forward Character

Function Format

FORWARD-CHARACTER-COMMAND prefix

0

143

--------- -- -- ---

EDITOR OBJECT DESCRIPTIONS

Arguments

prefix

An integer specifying how many characters to move

Return Value

The updated buffer point mark

FORWARD KILL RING Command

Rotates the kill ring forward by the number of elements
the prefix argument. The prefix defaults to 1.

Category

:KILL-RING

Display Name Format

Forward Kill Ring

Function Format

FORWARD-KILL-RING-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value

Undefined

FORWARD PAGE Command

specified by

Moves the point forward one page. A page is delimited by any
character having a "Page Delimiter" attribute value of 1. If you
specify an integer prefix argument, the point is moved forward the
number of pages indicated.

Display Name Format

Forward Page

144

0

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Function Format

FORWARD-PAGE-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value

Updated buffer point

FORWARD SEARCH Command

Prompts the user for a string to use as a pattern for a forward
search. The string defaults to the value of the Editor variable "Last
Search String." The buffer point is moved to the end of the matching
string. If the user specifies a prefix argument, n, the search occurs
n times.

Display Name Format

O Forward Search

Function Format

FORWARD-SEARCH-COMMAND prefix &OPTIONAL string

Arguments

Q prefix

0

An integer or NIL

string

A string that defaults to the value of the Editor variable "Last
Search String"

Return Value

A modified buffer point

145

EDITOR OBJECT DESCRIPTIONS

FORWARD WORD Command

Moves the point forward to the beginning of the next word. A word is
delimited by a character having a "Word Delimiter" attribute value of
1. If you specify an integer prefix argument, the point is moved
forward the number of words indicated.

Display Name Format

Forward Word

Function Format

FORWARD-WORD-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value

A modified buffer point

GENERAL PROMPTING Buffer

Is used by the general prompting facility to display prompts and
obtain input from the user. A floating window is associated with this
buffer. The following commands are locally bound in this buffer:

1. "Prompt Help"
2. "Prompt Read and Validate"
3. "Prompt Show Alternatives"
4. "Prompt Complete String"

Display Name Format

General Prompting

Symbol Format

EDITOR-PROMPTING-BUFFER

146

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

GET-BOUND-COMMAND-FUNCTION Function

O Returns the function of the command currently bound to the specified
key-sequence; or, if you specify a context, bound to the specified
key-sequence in that context. If the specified sequence is ambiguous,
the keyword :PREFIX is returned.

0

0

0

Format

GET-BOUND-COMMAND-FUNCTION key-sequence OPTIONAL context

Arguments

key-sequence

A character or vector of characters

context

An Editor context specifier that defaults to the current context

Return Value

A function, :PREFIX, or NIL

GET-POINTER-STATE Function

Returns an object that contains the state of the pointing device at
some point in time. The pointer-state information includes:

• The text position (line and character position) indicated by
the pointer cursor.

• The window position (column and row coordinates in
particular Editor window) indicated by the pointer cursor.

a

• The state (up or down) of each button on the pointing device.
If a button was in transition (being depressed or released) at
the point in time for which the pointer state is stored, the
button state is the state of the buttons at the end of the
transition.

• In some cases, a particular previous action of the pointing
device (see below).

If called from within an Editor command and if that command was
invoked by an action of the pointing device, GET-POINTER-STATE returns

O an object containing the pointer state at the time of the pointer
action that invoked the command. In this case the action information
in the pointer-state object is the action that invoked the currently

147

EDITOR OBJECT DESCRIPTIONS

executing command (see BIND-POINTER-COMMAND for information on pointer
actions). If the command was not invoked by a pointer action,
GET-POINTER-STATE returns the current state of the pointing device.

If called from outside the active Editor environment, this function
returns an object that contains the current state of the pointing
device: text position, window position, and button state. In this
case the action information in the pointer-state object is NIL. If
the pointer cursor is outside the Editor's display area,
GET-POINTER-STATE returns NIL.

GET-POINTER-STATE is useful in commands that perform different actions
depending on some feature of the pointer state other than the
particular pointer action that invoked them.

The information contained in the pointer-state object can be accessed

0

by means of the functions POINTER-STATE-TEXT-POSITION, POINTER-STATE- O
WINDOW-POSITION, POINTER-STATE-BUTTONS, and POINTER-STATE-ACTION.

Format

GET-POINTER-STATE

Argwnents

None

0 Return Value

A pointer-state object or NIL

GET-STRING-TABLE-VALUE Function

Searches the specified string table for an entry whose key matches the Q
string argument. You can use this function with SETF to modify the
contents of the string table.

Format

GET-STRING-TABLE-VALUE string string-table

Arguments

string

A character string

string-table

An Editor string table 0
148

EDITOR OBJECT DESCRIPTIONS

Return Value

OTwo values:

1. The first value is the entry found, or NIL.

2. The second value is T if the first value is valid.

GROW WINDOW Command

Increases the height of the specified window (or current window, if
none is specified) by one line. If the window is anchored, there must
be at least one other window also being displayed on the screen.
Other displayed windows that are anchored decrease in height

O
proportionately, except any window having only one line. Floating
windows can always grow or shrink within the range of one line to the
height of the screen.

If the prefix is a positive integer, the window grows by the number of
lines indicated. If the prefix is a negative integer, the window
shrinks by the number of lines indicated.

Display Name Format

Q Grow Window

Function Format

GROW-WINDOW-COMMAND prefix OPTIONAL window

Arguments

cJrefix

An integer or NIL

window

An Editor window

Return Value

The new window height

0
149

EDITOR OBJECT DESCRIPTIONS

HELP Buffer

Is used to display Help information. A floating window is associated
with this buffer. The buffer is used by the Editor "Help" command and
by the prompting facility. It can also be used by user-defined
commands.

Display Name Format

Help

Symbol Format

EDITOR-HELP-BUFFER

HELP Command

Is used to supply assistance to the user while the Editor is being
used. This command makes a window into the "Help" buffer visible. It
inserts the text of the help-string argument, if supplied, or the text
of the current value of the "Help Text" Editor variable. If both are
NIL, the command signals an Editor error with the message "No Help
Available."

Display Name Format

Help

Function Format

HELP-COMMAND prefix &OPTIONAL help-string

Arguments

prefix

Ignored

help-string

An optional string for use as the current help text

Return Value

None

150 ·

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

HELP ON EDITOR ERROR Command

Q Displays the last message created by the
function in a window into the "Help" buffer.

EDITOR-ERROR-WITH-HELP

Display Name Format

Help on Editor Error

Function Format

HELP-ON-EDITOR-ERROR-COMMAND prefix

Arguments

prefix

O Ignored

Return Value

None

O HELP TEXT Editor Variable

Specifies the help text to be display~d by the "Help"
value of this variable must be a string, a function
that returns a string, or NIL. The global binding of
contains the default help text for the Editor.

Display Name Format

o Help Text

Symbol Format

HELP-TEXT

HIGHLIGHT-REGION-P Function

command. The
of no arguments
this variable

Returns T if the argument is a highlight region and NIL otherwise.

Format

0
HIGHLIGHT-REGION-P object

151

EDITOR OBJECT DESCRIPTIONS

Arguments

object

Any Lisp object

Return Value

T or NIL

ILLEGAL OPERATION Command

Signals an Editor error with the message "Illegal Operation." This
command is used to disable a command locally within a style or buffer.

0

For example, to disable "Self Insert" for a particular character, bind Q
the character to "Illegal Operation."

Display Name Format

Illegal Operation

Function Format

ILLEGAL-OPERATION-COMMAND prefix

Arguments

prefix

Ignored

Return Value

None

INDENT LISP LINE Command

Adjusts the indentation of the current LISP.source line so that it is
indented appropriately in the program context.

Display Name Format

Indent LISP Line

Function Format

INDENT-LISP-LINE-COMMAND prefix

152

0

0

0

EDITOR OBJECT DESCRIPTIONS

Arguments

O prefix

0

Ignored

Return Value

Undefined

INDENT LISP REGION. Command

Adjusts the indentation of the LISP text in the region in
variable "Buffer Select Region," so that the text
appropriately in the program context.

Display Name Format

Indent LISP Region

Function Format

INDENT-LISP-REGION-COMMAND prefix

Q Arguments

prefix

Ignored

Return Value

0
None

INDENT OUTERMOST FORM Command

the Editor
lines up

Determines the outermost LISP form that surrounds the current buffer
point and indents each line in the form appropriately. An outermost
form is one whose opening parenthesis is in the leftmost column on the
screen.

Display Name Format

Indent Outermost Form

Function Format

O INDENT-OUTERMOST-FORM-COMMAND prefix

153

EDITOR OBJECT DESCRIPTIONS

Arguments

prefix

Ignored

Return Value

Undefined

INFORMATION-AREA-HEIGHT Function

Returns the number of lines occupied by the information
bottom of the screen. You can use this function with
the number of lines, but you cannot set that number to
When you alter the height of the information area, the
anchored windows are adjusted accordingly.

Format

INFORMATION-AREA-HEIGHT

Arguments

None

Return Value

area at the
SETF to modify
less than 1~
heights of any

The number of lines occupied by the information area

INFORMATION-AREA-OUTPUT-STREAM Variable

Is bound to an output stream that can be used to write to the
information area. Lines written to the information area are truncated
if they are longer than the screen is wide. A TERPRI executed to this
stream scrolls the lines in the information area.

INFORMATION AREA POINTER PATTERN Editor Variable

Specifies a 16x16 bitmap that determines the pointer cursor pattern
when the pointer is in the Editor's information area. When set to
NIL, the pointer cursor pattern is the VAXstation default (an arrow).
See the functions SET-POINTER-PATTERN and MAKE-BITMAP in the VAX
LISP/VMS Graphics Programming Guide.

154

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

QDisplay Name Format

Information Area Pointer Pattern

Symbol Format

INFORMATION-AREA-POINTER-PATTERN

INFORMATION AREA POINTER PATTERN X Editor Variable

Specifies the horizontal coordinate of the active pixel of the bitmap
specified by the Editor variable "Information Area Pointer Pattern".
The possible values are an integer in the range 0-15 or NIL. See the

O function SET-POINTER-PATTERN in the VAX LISP/VMS Graphics Programming
Guide.

Display Name Format

Information Area Pointer Pattern X

Symbol Format

0
INFORMATION-AREA-POINTER-PATTERN-X

INFORMATION AREA POINTER PATTERN Y Editor Variable

Specifies the vertical coordinate of the active pixel of the bitmap
specified by the Editor variable "Information Area. Pointer Pattern",
relative to the lower edge of the bitmap. The possible values are an

Cinteger in the range 0-15 or NIL. See the function SET-POINTER
?ATTERN in the VAX LISP/VMS Graphics Programming Guide.

Display Name Format

Information Area Pointer Pattern Y

Symbol Format

INFORMATION-AREA-POINTER-PATTERN-Y

INITIALIZE-EDITOR Function

Initializes the Editor without actually entering it. The screen

Cmanagement system and all standard Editor buffers are initialized.
~he function is automatically called when the Editor is first invoked.
This function must be called prior to the use of any window creation

155

EDITOR OBJECT DESCRIPTIONS

or manipulation functions. If, for example, you want to create Editor
windows in an initialization file, you must include a call to thisQ
function in the initialization file.

Format

INITIALIZE-EDITOR

Arguments

None

Return Value

T, if the Editor is actually initialized by this call; or NIL, if
it had already been initialized.

INSERT BUFFER Command

Prompts the user for a buffer name if one is not supplied and inserts
the text of the buffer specified into the current buffer at the buffer
point. The point is left at the end of the inserted text.

0

category 0
:GENERAL-PROMPTING

Display Name Format

Insert Buffer

Function Format

INSERT-BUFFER-COMMAND prefix &OPTIONAL name 0
Arguments

prefix

Ignored

name

An Editor buffer

Return Value

The modified point

0

156

EDITOR ·OBJECT DESCRIPTIONS

INSERT-CHARACTER Function

O Inserts the specified character at the position of the specified mark.
If the character is a #\Newline, the line is broken into two lines.

Format

INSERT-CHARACTER mark character

Arguments

mark

An Editor mark

character

O A character

Return Value

The character

O INSERT CLOSE PAREN AND MATCH Command

Inserts the last character typed at the current buffer point. If the
character is a list terminator, this command finds and momentarily
highlights the matching list initiator. If the list initiator is not
visible in the window, the line containing it is displayed in the
information area, and the matching list initiator is .highlighted. If
there is no matching list initiator, an Editor error is signaled.
(See "LISP Syntax" attribute, especially the values :LIST-TERMINATOR

oand LIST-INITIATOR.)

Display Rame Format

Insert Close Paren and Match

Function Format

INSERT-CLOSE-FAREN-AND-MATCH-COMMAND prefix

Arguments

prefix

Ignored

0
157

EDITOR OBJECT DESCRIPTIONS

Return Value

NIL

INSERT FILE Command

Prompts the user for the name of a file if none is specified and
inserts the file at the current buffer point. The point is'left at
the end of the inserted text.

Category

:GENERAL-PROMPTING

Display Name Format

Insert File

Function Format

INSERT-FILE-COMMAND prefix &OPTIONAL file-name

Arguments

prefix

Ignored

file-name

A pathname, namestring, or stream

Return Value

The updated buffer point

INSERT-FILE-AT-MARK Function

Inserts the specified file into a buffer at the position of the
specified mark. This function checks to see if there is enough
dynamic memory available to load the file and signals an Editor error
if there is not. There is an implied #\Newline character at the end
of the file but not at the beginning.

Format

INSERT-FILE-AT-MARK pathname mark

158

0

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Arguments

pathname

A pathname, namestring, or stream

mark

An Editor mark

Return Value

The mark

INSERT-REGION Function

Inserts the specified region at the position of the specified mark.
The region text is copied in the process.

Format

INSERT-REGION mark region

o Arguments

mark

An Editor mark

region

An Editor region

O Return Value

0

The region

INSERT-STRING Function

Inserts a string at the position of the specified mark. Embedded
newline characters cause additional Editor lines to be inserted. The
string is copied. The optional start and end arguments allow you to
specify a substring to be inserted.

Format

INSERT-STRING mark string &OPTIONAL start end

159

EDITOR OBJECT DESCRIPTIONS

Arguments

mark

An Editor mark

string

start

end

A string

An integer that is an index into the string.
zero.

0

The default is

An integer that is an index into the string.
length of the string.

The default is the O
Return Value

The string

INVOKE-HOOK Function

Searches the entire current context, in the reverse of the usual
search order, for occurrenc~s of the variable (that is, the search
occurs in the order -- the global definition, the major style of the
current buffer, the minor styles in reverse order, and the local
variables of the current buffer). The function then applies to the
specified args arguments all the functions bound to each occurrence of
the specified Editor variable.

Format

INVOKE-HOOK name &REST args

Arguments

name

An Editor variable specifier

args

The arguments to be passed to the hook function

160

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Return Value

The value that the last hook function returns

KILL ENCLOSING LIST Command

Deletes the list that immediately encloses the argument mark and
returns a disembodied region that contains the deleted text. The mark
defaults to the current buffer point. If the mark is located within a
symbol, the list that immediately encloses the symbol is deleted. The
mark is left at the location where the deleted text appeared.

If a positive prefix argument n is specified, the next n enclosing
lists are deleted and returned as a disembodied region. If a zero or
negative prefix argument is specified, no action occurs and NIL is
returned. If the list to be deleted cannot be determined because of
missing text, no action occurs and NIL is returned.

Display Name Format

Kill Enclosing List

Function Format

o KILL-ENCLOSING-LIST-COMMAND prefix &OPTIONAL mark

Arguments

prefix

An integer or NIL

Q mark

An Editor mark that defaults to the current buffer point·

0

Return Value

A disembodied region or NIL

KILL LINE Command

Deletes the rest of the current line and adds it to the end of the
current kill-ring region if the previous command was in the category
:KILL-RING; or, creates a new kill-ring region. If you supply a
positive integer prefix n, the command deletes the rest of the current
line and n-1 lines following the current line; the line following the
last line deleted is appended to the beginning portion of the current

161

EDITOR OBJECT DESCRIPTIONS

line. If you supply a negative
the portion of the current
preceding the current line; the
to the line preceding the first

Category

:KILL-RING

Display Name Format

Kill Line

Function Format

KILL-LINE-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value

Undefined

KILL NEXT FORM Command

integer prefix -n, the command deletes
line preceding the point and n-1 lines Q
rest of the current line is appended
line deleted.

0

0

Deletes the LISP form immediately after the mark at the current
parenthesis nesting level and returns a disembodied . region that
contains the deleted text. The mark defaults to the current buffer
point. If a positive prefix argument n is specified, then the next n Q
LISP objects at the current parenthesis nesting level are deleted and
returned as a disembodied region. If no next form is found within the
innermost enclosing list or if a negative prefix argument is supplied,
no action occurs and NIL is returned.

Display Name Format

Kill Next Form

Function Format

KILL-NEXT-FORM-COMMAND prefix &OPTIONAL mark

0
162

EDITOR OBJECT DESCRIPTIONS

OArguments

prefix

A positive integer or NIL

mark

An Editor mark that defaults to the current buffer point

Return Value

A disembodied region or NIL

O KILL PARAGRAPH Command

0

Deletes the rest of the current paragraph and adds it to the end of
the current kill-ring region if the previous command was in the
category :KILL-RING; or, creates a new kill-ring region. If a prefix
argument n is supplied, the command deletes the rest of the current
paragraph and the next n-1 paragraphs.

Category

:KILL-RING

Display Name Format

Kill Paragraph

Function Format

0 KILL-PARAGRAPH-COMMAND prefix

Arguments

prefix

Positive integer or NIL

Return Value

Undefined

0

163

EDITOR OBJECT DESCRIPTIONS

KILL PREVIOUS FORM Command

Deletes the LISP form immediately before the mark at the current
parenthesis nesting level and returns a disembodied region that
contains the deleted text. The mark defaults to the current buffer
point. If a positive prefix argument n is specified, then the
previous n LISP objects at the current parenthesis nesting level are
deleted and returned as a disembodied region. If no previous form is
found within the innermost enclosing list or if a negative p~efix
argument is supplied, no action occurs and NIL is returned.

Display Name Format

Kill Previous Form

Function Format

KILL-PREVIOUS-FORM-COMMAND prefix &OPTIONAL mark

Arguments

prefix

A positive integer or NIL

mark

An Editor mark that defaults to the current buffer point

Return Value

A disembodied region or NIL

KILL REGION Command

Deletes a region and adds it to the end of the current kill-ring
region if the previous command was in the category :KILL-RING; or,
creates a new kill-ring region. If the region is not supplied, it
defaults to the region between the buffer select mark and the current
buffer point.

Category

:KILL-RING

Display Name Format

Kill Region

164

0

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Function Format

KILL-REGION-COMMAND prefix &OPTIONAL region

Arguments

prefix

Ignored

region

An Editor region that defaults to the buffer-select-region

Return Value

Undefined

KILL REST OF LIST Command

Deletes the part of the list that immediately follows the argument
mark and returns a disembodied region that contains the deleted text.
The mark defaults to the current buffer point. If the mark is not in

O a list or if the list terminator cannot be found, no action occurs and
NIL is returned.

Display Name Format

Kill Rest of List

Function Format

O KILL-REST-OF-LIST-COMMAND prefix &OPTIONAL mark

Arguments

prefix

Ignored

mark

An Editor mark that defaults to the current buffer point

Return Value

A disembodied region or NIL

0
165

EDITOR OBJECT DESCRIPTIONS

LAST-CHARACTER-TYPED Variable

Is bound to the last character typed by the user.

LAST-LINE-P Function

Is a predicate that returns T if the specified mark points to the last
line in a buffer or a disembodied region.

Format

LAST-LINE-P mark

Arguments

mark

An Editor mark

Return Value

Tor NIL

LAST SEARCH DIRECTION Editor Variable

Indicates the direction of the most recent search by means of a
keyword having the value of either :FORWARD or :BACKWARD.

Display Name Format

Last Search Direction

Symbol Format

LAST-SEARCH-DIRECTION

LAST SEARCH PATTERN Editor Variable

Specifies the search pattern that was last used with the search
commands.

Display Name Format

Last Search Pattern

166

0

0

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Symbol Format

LAST-SEARCH-PATTERN

LAST SEARCH STRING Editor Variable

Specifies the string that was last used with the search commands.

Display Name Format

Last Search String

Symbol Format

LAST-SEARCH-STRING

LINE-BUFFER Function

Returns the buffer associated with the Editor line. This function
returns NIL if the line is not associated with any buffer.

Format

LINE-BUFFER line

Arguments

line

An Editor line

Q Return Value

0

An Editor buffer or NIL

LINE-CHARACTER Function

Returns the character in the text of the specified line at the
position indicated by the specified index (the first character is
specified by 0, the second by 1, and so on). The function returns NIL
if there is no character at that position. It returns the #\NEWLINE
character if the specified position is at the end of the line. You
can use this function with SETF to change the character at that
position.

167

EDITOR OBJECT DESCRIPTIONS

Format

LINE-CHARACTER line index

Arguments

line

An Editor line

index

A fixnum

Return value

A character or NIL

LINE-END Function

Changes the specified mark so that it points to the end of the line.

Format

LINE-END mark &OPTIONAL line

Arguments

mark

An Editor mark

line

An Editor line that defaults to the line that the mark points
into

Return value

The modified mark

LINE-LENGTH Function

Returns an integer that is the number of characters contained in the
Editor line. The line-break is not included.

168

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Format

0 LINE-LENGTH line

Arguments

line

An Editor line

Return Value

An integer

OLINE-NEXT Function

Returns the line following the specified line.

Format

LINE-NEXT line

Arguments

Oline

An Editor line

Return Value

An Editor line, or NIL if there is no following line

OLINE-OFFSET Function

0

Changes the specified mark so that it points n lines after the line it
currently points into (or n lines before, if n is negative). The
function attempts to have the mark in the new line point to the same
position it pointed to in the old line. If you do not want the mark
to point to that position, you can specify another position in the new
line by supplying a value for the index argument.

If there are not enough characters in the new line for a specified or
defaulted position to exist, the mark is positioned at the end of the
line. If there are not enough lines after (or before) the mark to
satisfy then argument, the mark is not modified, and NIL is returned.

169

EDITOR OBJECT DESCRIPTIONS

Format

LINE-OFFSET mark n &OPTIONAL index

Arguments

mark

An Editor mark

n

A fixnum

index

A fixnum that defaults to the character position of mark

Return Value

The modified mark, or NIL

LINE-PREVIOUS Function

Returns the line preceding the specified line.

Format

LINE-PREVIOUS line

Arguments

line

An Editor line

Return Value

A line, or NIL if there is no preceding line

LINE-START Function

Changes the specified mark so that it points to the beginning
line.

Format

LINE-START mark &OPTIONAL line

170

0

0

0

0

of

0

EDITOR OBJECT DESCRIPTIONS

Arguments

O mark

An Editor mark

line

An Editor line that defaults to the line that the mark points
into

Return Value

The modified mark

O LINE-STRING Function

Returns a character string that is the text contained in the Editor
line. You can use LINE-STRING with the SETF macro to modify the text
contained in an Editor line. In particular, if you do any destructive
operations on the string (for example, using the LISP NSTRING-UPCASE
function to make a portion of the text uppercase}, you must use SETF
to have the change appropriately reflected.

QFormat

LINE-STRING line

Arguments

.Q
line

An Editor line

Return Value

A string

LINE-TO-REGION Function

Returns a region consisting of
argument is a line or the
argument is a mark.

Format

O LINE-TO-REGION line-or-mark

either the specified line if the
line that the mark points into if the

171

EDITOR OBJECT DESCRIPTIONS

Arguments

line-or-mark

An Editor line or an Editor mark

Return Value

A region containing the specified line

LINE TO TOP OF WINDOW Command

Moves the line that the buffer point points into, so that
first displayed line in the current window.

Display Name Format

Line to'Top of Window

Function Format

it· is the

LINE-TO-TOP-OF-WINDOW-COMMAND prefix &OPTIONAL mark window

Arguments

prefix

mark

Ignored

A mark pointing into the line to go to the
The default is the current buffer point.

window

top of the window.

The window in which the specified line is to be the top line.
The default is the current window.

Return Value

None

172

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

LINEP Function

CJrs a predicate that returns T if object is an Editor line.

CJ

Format

LINEP object

Arguments

object

Any LISP object

Return Value

Tor NIL

LINES-RELATED-P Function

Returns T if the two specified lines are in either the same buffer or
the same disembodied region.

(]Format

LINES-RELATED-P line1 line2

Arguments

line1

An Editor line

c!I..ine2

Another Editor line

Return Value

Tor NIL

LINE/= Function

Returns T if linel and line2 are not the same. The two lines do not
have to be in the same buffer.

CJ

173

EDITOR OBJECT DESCRIPTIONS

Format

LINE/= line1 line2

Arguments

line1

An Editor line

line2

Another Editor line

Return Value

Tor NIL

LINE< Function

Returns T if linel precedes line2. The two lines must be in the same
buffer.

Format

LINE< line1 line2

Arguments

line1

An Editor line

line2

Another Editor line

Return Value

Tor NIL

LINE< = Function

Returns T if linel precedes line2-or is the same line as line2. The
two lines must be in the same buffer.

174

0

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Format

LINE<= line1 line2

Arguments

line1

An Editor line

line2

Another Editor line

Return Value

Tor NIL

LINE= Function

Returns T if line1 and line2 are the same line. The two lines do not
have to be in the same buffer.

Q Format

LINE= line1 line2

Arguments

line1

An Editor line

01ine2

Another Editor line

Return Value

Tor NIL

LINE> Function

Returns T if line1 follows line2. The two lines must be in the same
buffer.

0

175

EDITOR OBJECT DESCRIPTIONS

Format

LINE> line1 line2

Arguments

line1

An Editor line

line2

Another Editor line

Return Value

Tor NIL

LINE> = Function

Returns T if linel follows line2 or if they are the same line. The
two lines must be in the same buffer.

Format

LINE>= line1 line2

Arguments

line1

An Editor line

line2

Another Editor line

Return Value

Tor NIL

LISP COMMENT COLUMN Editor Variable

Is bound in "VAX LISP" style to an integer that indicates the column
in which a LISP comment begins on a line. This Editor variable is

0

0

0

0

used by the indentation commands as well as by the "Move to LISP
Comment" command. By default, LISP comments begin at column 49. You Q
can change the LISP comment column by using the SETF macro.

176

EDITOR OBJECT DESCRIPTIONS

QDisplay Name Format

LISP Comment Column

Symbol Format

LISP-CO~MENT-COLUMN

LISP EVALUATION RESULT Editor Variable

Is bound to a list of the values returned when a LISP region is
evaluated in the Editor.

Display Name Format

Q LISP Evaluation Result

Symbol Format

LISP-EVALUATION-RESULT

QLISP SVNT_AX Attribute

Used in "VAX LISP" style to determine the structure of the LISP source
being edited. The value of this attribute for a given character
defines the role (if any) that character plays in the syntax of LISP.
The table below lists the values this attribute can take and shows a
sample character for each attribute value. You can modify the value
of this attribute for a given character by using the SETF macro on a
CHARACTER-ATTRIBUTE form.

Onisplay Name Format

LISP Syntax

Symbol Format

LISP-SYNTAX

0

177

-- ·--· -------

EDITOR OBJECT DESCRIPTIONS

Table 1: "LISP Syntax" Attribute Values

Value

:LIST-INITIATOR

:LIST-TERMINATOR

:COMMENT-DELIMITER

:STRING-DELIMITER

:SINGLE-ESCAPE

:MULTIPLE-ESCAPE

:WORD-DELIMITER

:READ-MACRO

Example of
Character

#\(

#\)

#\;

#\"

.#\\

#\I

#\space

#\'

Description

A character that. signifies the
beginning of a list.

A character that signifies the end
of a list.

A character that signifies the
beginning of a comment.

A character that, delimits the
beginning and end of a string.

A character used as a single escape
character. See COMMON LISP: The
Language for more information on
single escape characters.

A character used as a multiple
escape character. See COMMON LISP:
The Language for more information.
on multiple escape characters.

A character used to separate words.

A macro character that the READ
function accepts.

0

0

0

:CONSTITUENT #\A A character used as a constituent
character. See COMMON LISP: The O
Language for more information on
constituent characters.

You can use the LOCATE-ATTRIBUTE function in conjunction with the
"LISP Syntax" attribute to find an instance of a particular LISP
syntactic element. For example, the following function call finds the
first occurrence of a string delimiter beyond the current buffer
point:

(LOCATE-ATTRIBUTE (CURRENT-BUFFER-POINT)
"LISP Syntax"
:TEST #'(LAMBDA (X) (EQ X :STRING-DELIMITER)))

178

0

------ ---·----------------------

EDITOR OBJECT DESCRIPTIONS

NOTE

0 Characters whose "LISP Syntax" attribute value is
:LIST-INITIATOR, :LIST-TERMINATOR, :COMMENT-DELIMITER,
:STRING-DELIMITER, and :READ-MACRO are also considered
to delimit words, in addition to the characters whose
value is :WORD-DELIMITER.

LIST BUFFERS Command

Causes a list of the current buffers to be displayed in the Help
window.

Display Name Format

0 List Buffers

Function Format

LIST-BUFFERS-COMMAND prefix

Arguments

oefix

Ignored

Return Value

NIL

CsT KEY BINDINGS Command

Prompts the user for a context in which to search for key
If none is specified, all the currently visible bindings
The command formats and displays a list that includes
sequence, the associated command name, and the context of the
Key sequences that are bound to the "Self Insert" ·command
included in the list.

Category

:GENERAL-PROMPTING

Display Name Format

0 List Key Bindings

179

bindings.
are used.

the key
binding.
are not

EDITOR OBJECT DESCRIPTIONS

Function Format

LIST-KEY-BINDINGS-COMMAND prefix &OPTIONAL context

Arguments

prefix

Ignored

context

The context in which to search for bindings. If the value of the
context argument is NIL, the user is prompted for a context; if
the value is T, the entire visible set of bindings is used.

Return Value

None

LOCATE-ATTRIBUTE Function

Locates a character in a region or string whose value for the
specified attribute satisfies the given test~

If the argument you specify is a mark, the function begins searching
at the mark and proceeds in the direction specified by the :DIRECTION
keyword (:FORWARD, the default, or :BACKWARD). The search continues
until a suitable character is found, or until there are no more
characters, or until the mark specified by the :LIMIT keyword is
reached. If a character is found, the mark is updated to point to
that character. If no character is found, the function returns NIL.

If the argument you specify is a string, the string is searched
starting at the beginning of the string or at the position indicated
by :START if the :START keyword is specified. If a character is found
that satisfies the test, the function returns the position of the
character in the string. If no suitable character is found, the
function returns NIL.

Format

LOCATE-ATTRIBUTE mark-or-string attribute &KEY :TEST
:CONTEXT
:DIRECTION
:LIMIT
:START :END

180

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Arguments

O mark-or-string

0

Either a mark that specifies the starting position or a string to
be searched

attribute

:TEST

An attribute specifier

A predicate function of one argument used to test the attribute
value of each character. :TEST returns non-NIL if the argument
that specifies the attribute value of the character matches a
character during the search. The default is #'PLUSP, which is
often used with a O or 1 value for a character attribute. The
attribute value may be any LISP object. The test function must
accept objects of the appropriate type.

:CONTEXT

An Editor context specifier for the character attribute. The
default is the current context.

0 : DIRECTION

The direction to scan for a character
test. Values can be :FORWARD or
:FORWARD.

satisfying
:BACKWARD.

the attribute
The default is

:LIMIT

0

0

Used only when you specify a mark for the mark-or-string
argument. :LIMIT must be a mark that points into the same buffer
or disembodied region as the mark you specify for the
mark-or-string argument. If no character is found that satisfies
the test before the :LIMIT mark is reached, the search fails.
(The character pointed to by :LIMIT is included in the search.)
If the search direction is forward, the limit mark must be
located after the starting mark; otherwise, the limit mark must
be located before the starting mark.

:START

Used only when you specify a string for the mark-or-string
argument. :START is an integer that specifies the character
position in the string where the search begins. The default
value for :START is 0. The :START argument is ignored if you
specify a mark for the mark-or-string argument.

181

:END

EDITOR OBJECT DESCRIPTIONS

Used only when you specify a string for the mark-or-string
argument. :END is an integer that specifies the character
position in the string where the search ends. The default value
for :END is the length of the string. The :END argument is
ignored if you specify a mark for the mark-or-string argument.

Return Value

Three values:

1.

2.

The modified mark, if the argument for mark-or-string is a
mark and the search is successful; or, if the mark-or-string
argument specified is a string, an integer that represents
the character's position in the string; or NIL if no
character is found (the search is unsuccessful).

The character at the position of the mark.

3. The value of the attribute for that character.

LOCATE-PATTERN Function

0

0

Searches for a text string that matches the specified search pattern. Q
You create search patterns by means of the MAKE-SEARCH-PATTERN
function. The mark is changed so that it points to the beginning of
the located text.

Format

LOCATE-PATTERN mark search-pattern

l\rguments 0
mark

An Editor mark

search-pattern

An Editor search pattern

ieturn Value

The number of characters matched, or NIL

0
182

EDITOR OBJECT DESCRIPTIONS

MAJOR STYLE ACTIVATION HOOK Editor Variable

QSpecifies a hook function that is called whenever a major style is
activated in a buffer. The function is called with two arguments, the
style and the buffer.

Display Name Format

Major Style Activation Hook

Symbol Format

MAJOR-STYLE-ACTIVATION-HOOK

O MAKE-BUFFER Function

0

Takes a name specifier and creates a buffer of the specified name.
The calling of this function causes the "Buffer Creation Hook" to be
invoked. If a buffer having the specified name. already exists, it is
returned.

Format

MAKE-BUFFER buffer-name &KEY :DOCUMENTATION
:MAJOR-STYLE :MINOR-STYLES
:VARIABLES
:OBJECT :TYPE
:PERMANENT

Arguments

buffer-name

Q The name for the new buffer. This can be specified as either a
symbol or a list of a symbol with the keyword :DISPLAY-NAME and a
string; that is,

0

name I (name :DISPLAY-NAME string)

:DOCUMENTATION

A string used as the documentation string for the buffer.

:MAJOR-STYLE

An Editor style that is to be the major style of the buffer.
This defaults to the global value of the "Default Major Style"
Editor variable.

183

EDITOR OBJECT DESCRIPTIONS

:MINOR-STYLES

A list of Editor styles that are to be the minor styles of the
buffer. This defaults to the global value of the "Default Minor
Styles" Editor buffer.

:VARIABLES

A list of Editor variables that are to be bound
This defaults to the global value of the
Variables" Editor variable.

in the
"Default

buffer.
Buffer

:OBJECT

:TYPE

The object that is to be edited in the buffer. This can be a
pathname, a symbol, or a list that is a form acceptable to the
SETF macro.

The type of the object being edited. This can be specified only
if the object is a symbol. The possible values are :FUNCTION
(the default) and :VALUE.

:PERMANENT

If non-NIL, the buffer is created as a permanent buffer. A
permanent buffer cannot be deleted with DELETE-BUFFER, it remains
in the Editor across a suspend/resume cycle, and it remains if
you exit the Editor. The ~efault is NIL.

Return Value

Two values:

1. An Editor buffer

2. T, if this is a new buffer; NIL, if the buffer already
existed

MAKE-COMMAND Function

Is used to turn an existing LISP function into an Editor command. The
name options to the MAKE-COMMAND function are the same as those for
the DEFINE-COMMAND macro and can include a display name, and a
category or list of categories. The supplied function must be a
function of at least one argument. The prefix argument is passed when
the command is executed as a function.

184

0

0

0

0

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Format

MAKE-COMMAND name function &OPTIONAL documentation

Arguments

name

A command name specifier

function

A LISP function that is to become an Editor command

documentation

The documentation string that will be used to describe the Editor
command (not the function documentation)

Return Value

The function

MAKE-EDITOR-STREAM-FROM-REGION Function

Takes an Editor region and returns an Editor input stream.

Format

MAKE-EDITOR-STREAM-FROM-REGION region

Arguments

region

An Editor region

Return Value

An input stream

MAKE-EDITOR-STREAM-TO-MARK Function

Returns an Editor output stream that causes all output to be inserted
at the specified mark.

185

EDITOR OBJECT DESCRIPTIONS

Format

MAKE-EDITOR-STREAM-TO-MARK mark

Arguments

mark

An Editor mark

Return Value

An output stream

MAKE-EMPTY-REGION Function

Returns a new disembodied Editor region with permanent marks pointing
into a line with no characters. The starting mark is right-inserting,
and the ending mark is left-inserting.

Format

MAKE-EMPTY-REGION

Arguments

None

Return Value

An Editor region

MAKE-HIGHLIGHT-REGION Function

Returns a new highlight region. Whenever any of the text in the
region is visible in a window, the display of the text is given the
specified video rendition. The rendition can be specified as a
keyword or list of keywords. The possible values are :BOLD, :BLINK,
:REVERSE, and :UNDERLINE.

When specifying highlight regions, you must be aware of the background
rendition of the window where the region will be visible. For
example, specifying reverse video when the window is already in
reverse video will have no apparent effect.

0

0

0

0

The set and complement arguments let you adjust the rendition of the
display so that you can achieve the desired rendition. The attributes Q
specified in the set argument will always be turned on when visible.

186

EDITOR OBJECT DESCRIPTIONS

The

O the
set
you

attributes specified by the complement argument will complement
existing display values, including any that were turned on by the

argument. So to turn off reverse video in the highlight region,
must specify :REVERSE in both the set and complement arguments.

0

The highlight region can also be used as a normal region by any Editor
function that takes a region as an argument.

Format

MAKE-HIGHLIGHT-REGION start end &OPTIONAL set complement

Arguments

start

An Editor mark that indicates the beginning of the region

end

An Editor mark that indicates the end of the region

set

A keyword

O be turned

complement

or list of keywords specifying the video renditions
on in the display when visible. The default is NIL.

to

A keyword or list of keywords specifying the video renditions to
be complemented in the display when visible. The default is NIL.

QMAKE-MARK Function

Returns a new mark that points to the specified line at the position
specified by the index argument.

Format

MAKE-MARK line index &OPTIONAL mark-type

Arguments

line

An Editor line

oindex

An integer in the range of Oto the length of the line

187

EDITOR OBJECT DESCRIPTIONS

mark-type

The type of the mark to create -- :LEFT-INSERTING,
INSERTING, or :TEMPORARY. The default is :TEMPORARY.

Return Value

A new Editor mark

MAKE-REGION Function

Creates an Editor region that starts and ends at the specified
Both marks must be in the same buffer or disembodied region.

Format

MAKE-REGION start-mark end-mark

Arguments

start-mark

A mark for defining the beginning of a region

end-mark

A mark for defining the end of a region

Return Value

A new region

MAKE-RING Function

:RIGHT- 0

marks.

0

0

0
Creates a ring buffer of the size specified by the integer argument.

Format

MAKE-RING integer &OPTIONAL delete-function

Arguments

integer

A positive integer, the maximum size of the ring

0

188

EDITOR OBJECT DESCRIPTIONS

delete-function

O A function that is called any time an item is deleted from the
ring, either by RING-PUSH or by the application of SETF to
RING-REF. The function is called with two arguments the item
being deleted and the ring. The default is NIL.

Return Value

The new ring

MAKE-SEARCH-PATTERN Function

Creates a new search pattern that you can use in subsequent searching Q operations.

Format

MAKE-SEARCH-PATTERN kind direction string &OPTIONAL reuse-pattern

Arguments

kind

0 A search pattern type, either :CASE-SENSITIVE or
:CASE-INSENSITIVE

direction

A direction to search in -- either :FORWARD or :BACKWARD

string

0 The string to be searched for

0

reuse-pattern

A previously computed search pattern that will be destructively
modified to create the new pattern

Return Value

A new search pattern

189

EDITOR OBJECT DESCRIPTIONS

MAKE-STRING-TABLE Function

Returns a new string table having no entries

Format

MAKE-STRING-TABLE

Arguments

None

Return Value

An empty string table

MAKE-STYLE Macro

Creates a new Editor style. The style will have no attribute,
variable, or command bindings. If there is already a style of the
specified name, the new style (with no bindings) will replace the old
one. Note that any bindings present in the old style are lost.

Format

MAKE-STYLE name &OPTIONAL documentation &KEY :ACTIVATION-HOOK
:DEACTIVATION-HOOK

Arguments

name

A symbol that names the style or a list of a symbol, the keyword
:DISPLAY-NAME, and a string that will become the style's display
name

documentation

A documentation string for the style

:ACTIVATION-HOOK

A function that will be invoked whenever this style is activated
in a buffer., The function is called with two arguments -- the
style and the buffer that the style is activated in.

190

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

:DEACTIVATION-HOOK

A function that will be invoked whenever the style is made
inactive in a buffer. The function is called with two arguments
-- the style and the buffer that the style is activated in.

Return Vitlue

The new style

MAKE-WINDOW Function

Takes a buffer or a mark and returns a new window. If the argument is
a mark, the window opens into the buffer that contains the mark, and

O the display starts with the line that the mark points into. If the
argument is a buffer, the window opens into that buffer, and the
display starts with the line pointed to by the buffer point. The
window is not automatically displayed.

The calling of this function invokes the "Wind6w Creation Hook".

Format

0
MAKE-WINDOW buffer-or-mark &KEY :HEIGHT :WIDTH

:DISPLAY-ROW :DISPLAY-COLUMN
:TYPE
:LINES-WRAP
:LABEL

Arguments

buffer-or-mark

O An Editor buffer or mark

:HEIGHT

0

The number of rows to be contained in the window. The m1n1mum
value is one. This value is significant only if the window type
is :FLOATING.

:WIDTH

The number of characters that can be displayed horizontally in a
window. The minimum value is two. The maximum value (and
default) is the width of the available display area. This value
has significance only if the window type is :FLOATING.

191

EDITOR OBJECT DESCRIPTIONS

:DISPLAY-ROW

The screen row (y position) at which to start displaying the text
of the window. The top row is 1. This value has significance
only if the window type is :FLOATING.

:DISPLAY-COLUMN

:TYPE

The screen column (x position) at which to start
text of the window. The left-hand column is 1.
significance only if the window type is :FLOATING.

displaying the
This value has

The display type of the window.
:FLOATING. The default is the
"Default Window Type".

Can be
value

either :ANCHORED or
of the Editor variable

:LINES-WRAP

If T, specifies that displayed lines are continued on the next
line of the display if the length of the Editor line exceeds the
width of the window. The default is the value of the Editor
variable "Default Window Lines Wrap".

:LABEL

A string, a function that returns a string, or NIL. If the value
is a string or a function that returns a string, the string is
used as the label for the window. Only as much of the string as
will fit on the specified side will be displayed. An empty
string("") means that the window is unlabeled. A value of NIL
means that the window is not bordered. The default is the value
of "Default Window Label."

Return Value

The new window

MAP-BINDINGS Function

Calls, with the following three arguments, the specified function for
each key sequence having a binding in the specified context:

1. The sequence of characters bound

2. The command function the sequence is bound to

0

0

0

0

3. The context specification in which the b~nding was found. If Q
an optional context is specified, only the key bindings in

192

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

that context are mapped. If no context is provided, the map
is done over all the currently visible bindings.

Format

MAP-BINDINGS function &OPTIONAL context

Arguments

function

A function of three arguments

context

An optional context specification. The default is NIL.

Return Value

NIL

MAP-BUFFERS Function

Applies the specified function to each buffer in the Editor along with
any additional arguments supplied. The specified function must be a
function of at least one argument. The first argument will always be
an Editor buffer object.

Format

MAP-BUFFERS function &REST args

Arguments

function

args

A function to be called for each buffer.
accept at least one argument, a buffer.

The function must

Any additional arguments that must be passed to the specified
function on each call

Return Value

NIL

193

EDITOR OBJECT DESCRIPTIONS

MAP-STRINGS Function

Calls the specified function for each entry in the specified string
table. That function is called with two arguments -- the string that
is the key of the entry and the value of the entry.

Format

MAP-STRINGS function table

Arguments

function

A function of two arguments

table

A string table

Return Value

NIL

MARK-CHARPOS Function

Returns the number of characters in the line of text preceding the
specified mark.

Format

MARK-CHARPOS mark

Arguments

mark

An Editor mark

Return Value

A nonnegative fixnum

194

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

MARK-COLUMN Function

OReturns the column (position n) at which the specified mark would be
displayed, based on the "Print Representation" attribute of each
character, if the screen were wide enough. This number is often
different from the result of MARK-CHARPOS because some characte·rs take
up more than one column when they are display~d. For example, tab
characters usually are not displayed as single blank characters. The
first character of a line is at display position 1.

Format

MARK-COLUMN mark

Arguments

omark

An Editor mark

Return Value

A positive fixnum

O MARK-LINE Function

Returns the line that the specified mark points into.

Format

MARK-LINE mark

QArguments

mark

An Editor mark

Return Value

An Editor line

MARK-TYPE Function

Returns the type of Q with SETF to change
the specified mark.
the type of a mark.

195

You can use this function

EDITOR OBJECT DESCRIPTIONS

Format

MARK-TYPE mark

Arguments

mark

An Editor mark

Return Value

The type of the specified mark
INSERTING, or :TEMPORARY.

MARK-VISIBLE-P Function

:LEFT-INSERTING, :RIGHT-

Returns T if the mark position lies within the text contained in the
window; returns NIL if it is not~

Format

MARK-VISIBLE-P mark window

Arguments

mark

An Editor mark

window

An Editor window

Return Value

Tor NIL

MARK-WINDOW-POSITION Function

Returns NIL if the specified mark position does not lie within the
text contained in the window; returns multiple values of the column
and row positions of the specified mark if it is visible. The upper
left corner position of a window is specified as 1,1.

Format

MARK-WINDOW-POSITION mark window

196

0

0

0

0

0

Q Arguments

mark

An Editor mark

window

An Editor window

Return Value

EDITOR OBJECT DESCRIPTIONS

Either NIL or the column and row position that the mark is
displayed at

O MARKP Function

Returns T if the argument is a mark; returns NIL if it is not.

Format

MARKP object

QArguments

object

Any LISP object

Return Value

Tor NIL

0
MARK/= Function

Returns T if markl and mark2 point to different positions; returns NIL
otherwise. The marks can point into different buffers.

Format

MARK/= mark1 mark2

Arguments

mark1

0 An Editor mark

197

EDITOR OBJECT DESCRIPTIONS

mark2

Another Editor mark

Return Value

Tor NIL

MARK< Function

Returns T if markl points to a character preceding mark2; returns NIL
otherwise. An error occurs if the marks point to different buffers.

Format

MARK< markl mark2

Arguments

mark1

An Editor mark

mark2

Another Editor mark

Return Value

Tor NIL

MARK< = Function

Returns T if markl points to a character preceding mark2, or if they
point to the same position; returns NIL otherwise. An error occurs if
the marks point to different buffers.

Format

MARK<= mark! mark2
Arguments

mar kl

An Editor mark

198

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

mark2

Another Editor mark

Return Value

Tor NIL

MARK= Function

Returns T if markl and mark2 point to the same position; returns NIL
otherwise. The marks can point into different buffers.

Format

O MARK= mark1 mark2

Arguments

mark1

An Editor mark

omark2

Another Editor mark

Return Value

Tor NIL

QMARK > Function

Returns T if mar kl points to a character followi,ng mark2; returns NIL
otherwise. An error occurs if the marks point to different buffers.

Format

MARK> mark1 mark2

Arguments

mark1

An Editor mark

0

199

EDITOR OBJECT DESCRIPTIONS

mark2

Another Editor mark

Return value

Tor NIL

MARK> = Function

Returns T if mark! points to a character following mark2, or if they
point to the same position; returns NIL otherwise. An error occurs if
the marks point to different buffers.

Format

MARK>= mark1 mark2

Arguments

mark1

An Editor mark

mark2

Another Editor mark

Return Value

Tor NIL

MAYBE RESET SELECT AT POINTER Command

Removes a previously set select mark, and thus a select region, if the
current buffer point, the buffer select mark, and the pointer all
indicate the same text position. If any of these conditions is not
met, this command takes no action.

Display Ra.me Format

Maybe Reset Select at Pointer

Function Format

MAYBE-RESET-SELECT-AT-POINTER-COMMAND prefix

200

0

0

0

0

0

0

0

0

0

0

I .

EDITOR OBJECT DESCRIPTIONS

Arguments

prefix

Ignored

Return Value

Undefined

MINOR STYLE ACTIVATION HOOK Editor Variable

Specifies a hook function that is called whenever a minor style is
activated in a buffer. The function is called with two arguments, the
style and the buffer.

Display Name Format

Minor Style Activation Hook

Symbol Format

MINOR-STYLE-ACTIVATION-HOOK

MOVE-MARK Function

Changes markl so that it points to the same position as mark2. The
marks do not have to point into the same buffer or disembodied region.

Format

MOVE-MARK rnark1 rnark2

Arguments

rnark1

An Editor mark

rnark2

Another Edi tor mark ·

Return Value·

The updated markl

201

--------- -- -- ----------

EDITOR OBJECT DESCRIPTIONS

MOVE-MARK-AFTER Function

Changes the specified mark so that it points to the character
following its current position. If mark points to the last character
in the buffer, it is not modified, and NIL is returned.

Fr,rmat

MOVE-MARK-AFTER mark

Arguments

mark

An Editor mark

Return Value

The modified mark or NIL

MOVE-MARK-BEFORE Function

Changes the mark so that it points to the character preceding its
current position. If the mark points to the first character in the
buffer, it is not modified, and NIL is returned.

Format

MOVE-MARK-BEFORE mark

Arguments

mark

An Editor mark

Return Value

The modified mark, or NIL

MOVE-MARK-TO-POSITION Function

Changes the specified mark so that it points into the specified line
at the character position indicated by the specified integer index.

Format

MOVE-MARK-TO-POSITION mark index &OPTIONAL line

202

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Arguments

Omark

index

line

An Editor mark

A nonnegative fixnum less than or equal to the length of the line

An Editor line that defaults to the line that the mark points
into

Return value

O The modified mark

MOVE POINT AND SELECT REGION Command

Moves the current buffer point to the position indicated by the
pointer. In addition, if the previous command executed was in the

O category :MOVE-TO-POINTER and there was no select region, this command
sets a buffer select mark and establishes a select region before
moving the buffer point.

Display Name Format

Move Point and Select Region

Function Format

O MOVE-POINT-AND-SELECT-REGION-COMMAND prefix

Arguments

prefix

Ignored

Return Value

Undefined

0
203

EDITOR OBJECT DESCRIPTIONS

MOVE POINT TO POINTER Command

Moves the current buffer point to the position indicated by the
pointer. If the pointer is beyond the end of a line, the buffer point
is moved to the end of that line. If the pointer is beyond the end of
the buffer region, the buffer point is moved to the end of the· buffer
region.

Category

:MOVE-TO-POINTER

Display Name Format

Move Point to Pointer

Function Format

MOVE-POINT-TO-POINTER-COMMAND prefix

Arguments

prefix

Ignored

Return Value

The modified buffer point

MOVE TO LISP COMMENT Command

Moves the cursor to the comment part of the current line. If there is
a comment on the current line, the cursor is moved to the comment
delimiter. If there is no comment delimiter on the current line,
blanks are inserted between the end of any executable LISP code on the
line and the LISP comment column, a comment delimiter and a space are
inserted at the LISP comment column, and the cursor is moved to the
end of the line. If the length of executable code in the line does
not allow for a clear separation of th€ executable code from the
comment, a number of spaces are inserted before the comment delimiter.

This command makes use of the "LISP Comment Column" Editor variable
and should only be used if that variable is bound in the current
context.

Display Name Format

Move to LISP Comment

204

0

0

0

0

0

-------------------------------~--~---

EDITOR OBJECT DESCRIPTIONS

o Function Format

MOVE-TO-LISP-COMMENT-COMMAND prefix

Arguments

prefix

Ignored

Return Value

The new buffer point

O MOVE-WINDOW Function

Moves the displayed position of a window so that the upper left corner
of the text area is at the specified row and column. If the window is
visible, the display is altered immediately. If the window is not
currently visible, it appears at the specified position when it is
next shown (unless it is an anchored window being treated
automatically).

Q Format

MOVE-WINDOW window row column

Arguments

window

Q row

An Editor window

0

The row where the text display of the window should appear. The
top row of the screen is 1.

column

The column where the text display of the window should appear.
The left-hand column of the screen is 1. /

Return Value

The window

205

EDITOR OBJECT DESCRIPTIONS

NEW LINE Command

Breaks a line at the current buffer point. The resulting position of
the buffer point is the beginning of the new line. If you specify a
prefix argument, n, the command creates n lines.

Display Name Format

New Line Command

Function Format

NEW-LINE-COMMAND prefix

Arguments

prefix

A positive fixnum or NIL

Return Value

The updated buffer point mark

NEW LISP LINE Command

Creates a new line beginning at a column appropriate
indentation for LISP code .. The point is moved
following the new line and indentation.

Display Name Format

New LISP Line

Function Format

NEW-LISP-LINE-COMMAND prefix

Arguments

prefix

Ignored

Return Value

The ne.w buffer point

206

to the current
to the position

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

NEXT-CHARACTER Function

OReturns the character immediately following the position of the mark.
If there is no following character, the function returns NIL. You can
use this function with the SETF macro to change the character
following the mark.

Format

NEXT-CHARACTER mark

Arguments

mark

An Editor mark

O Return Value

A character, or NIL if there is no following character

NEXT FORM Command

O
Moves the current buffer point forward by the number of forms
specified with the prefix argumen~, within the current parenthesis
nesting level. The current buffer point is moved to the location
immediately following the specified number of forms, and the new
buffer point is returned. If a negative prefix argument is specified,
the current buffer point is moved backward past the specified number
of forms.

If the end of the current buffer or an outermost form is found before

O
the end of the specified number of forms is reached, the Editor
displays a message and returns NIL, and the point is not mov~d. If
there are fewer forms at the current nesting level than the number
specified by the prefix argument, the point is placed immediately

O·

before the list terminator character of the innermost list that
encloses the point, and NIL is returned.

Display Name Format

Next Form

Function Format

NEXT-FORM-COMMAND prefix

207

EDITOR OBJECT DESCRIPTIONS

Arguments

prefix

Integer or NIL

Return Value

The new buffer point or NIL

NOTE

Do not try to execute the "Next Form" command when the
buffer point is located within a string or a multiple
escape sequence. The results of a "Next Form" command
in these circumstances can be incorrect.

NEXT LINE Command

Moves the point down one line. The relative horizontal character
position (not the displayed position) of the point in the old line is
maintained unless the end of the new line is to the left of that
position. In such a case, the point will be at the end of the new
line. If you specify an integer prefix argument, the point is moved
down the number of lines indicated (or up, if the prefix is negative).

Category

:LINE-MOTION

Display Name Format

Next Line

Function Format

NEXT-LINE-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value

The new buffer point

208

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

NEXT-LISP-FORM Function

Moves the mark supplied as an argument to a point immediately
following the end of the next form at the parenthesis nesting level of
the mark. The updated mark is returned. If the mark is located
within a symbol, it is moved to the end of the symbol.· If an
outermost form is found before the end of the next form, the function
returns :OUTERMOST-FORM and does not move the mark. If no objects are
found at the parenthesis level of the mark, the function moves the
mark to a point immediately before the end of the innermost enclosing
list and returns :END-OF-LIST. If the end of the buffer is found
before the end of the next form, the function returns :END-OF-BUFFER
and does not move the mark.

Format

o NEXT-LISP-FORM mark

Arguments

0

mark

An Editor mark

Return Value

The updated
:END-OF-BUFFER

mark;

NEXT PARAGRAPH Command

or :END-:OF-LIST, :OUTERMOST-FORM, or

Moves the mark to the beginning of the next paragraph. A paragraph is

O delimited by a whitespace line (see WHITESPACE-LINE-P function). The
mark defaults to the current buffer point. If a prefix argument is
supplied, the command moves the mark forward that many paragraphs.

Display Name Format

Next Paragraph

Function Format

NEXT-PARAGRAPH-COMMAND prefix &OPTIONAL mark

Arguments

prefix

0 An integer or NIL

209

EDITOR OBJECT DESCRIPTIONS

mark

An Editor mark that defaults to the current buffer point.

Return Value

The updated mark

NEXT SCREEN Command

Scrolls the window down a distance equal to the height of the window
if the prefix argument is NIL. If you specify an integer prefix
argument, the window is scrolled down the number of lines indicated
(or up, if prefix is negative).

Display Name Format

Next Screen

Function Format

NEXT-SCREEN-COMMAND prefix &OPTIONAL window

Arguments

prefix

An integer or NIL

window

An Editor window that defaults to the current window

Return Value

The new buffer point

NEXT WINDOW Command

Moves the cursor from the current window to the window below it; that
is, the current window is redefined. The cursor is then located at
the window point of the new current window. If you specify an integer
prefix argument, the command is executed the number of times
indicated. The command circulates through all displayed windows
regardless of window type.

210

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Display Name Format

0 Next Window

Function Format

NEXT-WINDOW-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value

0
The new current window

NEXT-WINDOW Function

Returns a window that is the "next" displayed window in sequence from
the current window. If the window type argument is T, this function
selects the next window that has the type of the current window. If
the function is at the end of the list of that type, it switches to Q the opposite type of window and continues through that list. If the
window type argument is either :FLOATING or :ANCHORED, the selection
of the next window is made from only that type of window. The
function returns NIL if there is not a window of the appropriate type
currently displayed.

The optional count argument tells the function how many times to look
for a next window. The argument can be positive or negative. A zero

O argument returns the current window. Repeatedly setting the current
window to the next window with a window type of T results in
circulation through all displayed windows.

0

Format

NEXT-WINDOW &OPTIONAL window-type count

Arguments

window-type

The type of the next window desired.
:ANCHORED, or T. The default is T.

211

One of :FLOATING,

---------·------· --- ------

EDITOR OBJECT DESCRIPTIONS

count

An integer specifying the number of windows to advance.
default is one.

theo

Return Value

The next window; or NIL, if there are no windows of the specified
type

NONCURRENT WINDOW POINTER PATTERN Editor Variable

Specifies a 16x16 bitmap that determines the pointer cursor pattern
when the pointer is in an Editor window other than the current window.
When set to NIL, the pointer cursor pattern is the VAXstation defaultQ
(an arrow). See the functions SET-POINTER-PATTERN and MAKE-BITMAP in
the VAX LISP/VMS Graphics Programming Guide.

Display Name Format

Noncurrent Window Pointer Pattern

Symbol Format

NONCURRENT-WINDOW-POINTER-PATTERN 0

NONCURRENT WINDOW POINTER .PATTERN X Editor Variable

Specifies the horizontal coordinate of the active pixel of the bitmap
specified by the Editor variable "Noncurrent Window Pointer Pattern".
The possible values are an integer in the range 0-15 or NIL. See theo
function SET-POINTER-PATTERN in the VAX LISP/VMS Graphics Programming
Guide.

Display Name Format

Noncurrent Window Pointer Pattern X

Symbol Format

NONCURRENT-WINDOW-POINTER-PATTERN-X

0

212

0

0

EDITOR OBJECT DESCRIPTIONS

NONCURRENT WINDOW POINTER PATTERN V Editor Variable

Specifies the vertical coordinate of the active pixel of the bitmap
specified by the Editor variable "Noncurrent Window Pointer Pattern",
relative to the lower edge of the bitmap. The possible values are an
integer in the range 0-15 or NIL. See the function SET-POINTER
PATTERN in the VAX LISP/VMS Graphics Programming Guide.

Display Name Format

Noncurrent Window Pointer Pattern Y

Symbol Format

NONCURRENT-WINDOW-POINTER-PATTERN-Y

OPEN LINE Command

Breaks a line at the current buffer point .. The resulting point
position is the end of the old line.

Display Name Format

o Open Line

Function Format

0

0

OPEN-LINE-COMMAND prefix

Arguments

prefix

Ignored

Return Value

The new buffer point

PAGE DELIMITER Attribute

Has a value of 1 for characters that separate pages, and O for all
other characters.

Display Name Format

Page Delimiter

213

EDITOR OBJECT DESCRIPTIONS

Symbol Format

PAGE-DELIMITER

PAGE NEXT WINDOW Command

Scrolls the next window forward the number of lines indicated by the
prefix argument or (without a prefix argument) scrolls the window
forward to the next page.

Display Name Format

Page Next Window

Function Format

PAGE-NEXT-WINDOW-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value

The window point of the next window

PAGE-OFFSET Function

Updates the specified mark so that it points to the position of the
next page break character (a character having a "Page Delimiter"
attribute value of 1). An optional count argument lets you specify
the number of page breaks to be located forward in the buffer if count
is positive, and backward in the buffer if count is negative.

Format

PAGE-OFFSET mark &OPTIONAL count

Arguments

mark

The mark that is to be updated

214

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

count

The number of page breaks that are to be located

Return Value

The updated mark

PAGE PREVIOUS WINDOW Command

Scrolls the previous window forward to the next page. If an integer
prefix argument is supplied, it scrolls the window by that many rows.

Display Name Format

O Page Previous Window

Function Format

PAGE-PREVIOUS-WINDOW-COMMAND prefix

Arguments

O prefix

An integer or NIL

Return Value

Undefined

O PAUSE EDITOR Command

Returns control from the Editor to LISP at the point at which the
Editor was called. The current Editor state is saved, and the Editor
restarts in that state the next time you call the ED function. Any
changes to values or functions of symbols while the control is with
the Editor are not reflected in LISP unless buffers have been
explicitly evaluated.

Display Name Format

Pause Editor

Function Format

O PAUSE-EDITOR-COMMAND prefix

215

EDITOR OBJECT DESCRIPTIONS

Arguments

prefix

Ignored

Return Value

None

POINTER-STATE-ACTION Function

Takes a pointer-state object and returns the pointer-action
information that is contained in the object, or NIL if there is none.
The pointer-action information can be:

• :MOVEMENT if the action was to move the pointer cursor

• A button constant if the action was to depress or release a
button on the pointing device. (See BIND-POINTER-COMMAND for
informatipn on button constants.) In this case POINTER-STATE
ACTION also returns a second value: T if the action was to
depress the button, or NIL if the action was to release the
button.

The pointer-action value(s) in a pointer-state object define the
pointer action, if any, that invoked a command which in turn called
GET-POINTER-STATE. See GET-POINTER-STATE for further information.

Format

POINTER-STATE-ACTION pointer-state

Arguments

pointer-state

A pointer-state object (as returned by GET-POINTER-STATE)

Return Value

Multiple values:

1. The keyword :MOVEMENT or a button constant

2. If a button constant is returned, POINTER-STATE-ACTION also
returns Tor NIL.

216

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

POINTER-STATE-BUTTONS Function

Takes a pointer-state object and returns the button-state information
that is contained in the object. The button-state information
indicates, for each button on the supported pointing device, whether
the button was up or down. See GET-POINTER-STATE for information on
the time at which the button sta~e is captured in a pointer-state
object. If a button was in transition (being depressed or released)
at the point in time for which the pointer state is stored, the
button-state information is the state of the buttons at the end of the
transition.

Format

POINTER-STATE-BUTTONS pointer-state

o Arguments

pointer-state

0

A pointer-state object (as returned by GET-POINTER-STATE)

Return Value

A fixnum representing the state of the buttons. See the
description of UIS:GET-BUTTONS in the VAX LISP/VMS Graphics
Programming Guide for more information.

POINTER-STATE-P Function

Takes a LISP object and returns T if that object is a pointer-state
object, or NIL if it is not. See GET-POINTER-STATE for information on

opointer-state objects.

Format

POINTER-STATE-P object

Arguments

object

Any LISP object

Return Value

Tor NIL

0
217

EDITOR OBJECT DESCRIPTIONS

POINTER-STATE-TEXT-POSITION Function

Takes a pointer-state object and returns the line and the character
position that are contained in the object. These values define the
text position indicated by the pointer cursor at the time the
pointer-state object was created. See GET-POINTER-STATE for
information on the time at which the pointer state is captured in a
pointer-state object.

Format

POINTER-STATE-TEXT-POSITION pointer-state

Arguments

pointer-state

A pointer-state object (as returned by GET-POINTER-STATE)

Return Value

Two values:

1. The line indicated by the pointer cursor, or NIL if the
pointer cursor was not indicating a line

0

0

2. The character position indicated by the pointer cursor, or Q
NIL if the pointer cursor was not indicating a character
position

POINTER-STATE-WINDOW-POSITION Function

Takes a pointer-state object and returns an Editor window, along witho
integers that are the x and y coordinates of a display position in
that window. These values define the window position indicated by the
pointer cursor at the time the pointer-state object was created. See
GET-POINTER-STATE for information on the time at which the pointer
state is captured in a pointer-state object.

Format

POINTER-STATE-WINDOW-POSITION pointer-state

Arguments

pointer-state

A pointer-state object (as returned by GET-POINTER-STATE)

0
218

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Return Value

Three values if the pointer cursor was indicating an Editor window
the time the pointer-state object was created:

1. The Edi tor window indicated by t.he pointer cursor

at

2. An integer that is the window column position indicated by
the pointer cursor

3. An integer that is the window row position indicated by the
pointer cursor

If the pointer cursor was not indicating an Editor window at the time
the pointer-state object was created, POINTER-STATE-WINDOW-POSITION
returns NIL.

POSITION-WINDOW-TO-MARK Function

Repositions the specified window within its associated buffer to the
line that contains the specified mark. This line becomes the first
line displayed in the window. The mark's character position is
ignored.

The window's screen position is not affected. The window point of the
window remains at the same text position if possible; otherwise it
moves to a position within the window (usually the center).

This function replaces the operation, in previous releases or the
Editor, of repositioning a window by moving its wipdow display start
mark.

Format

POSITION-WINDOW-TO-MARK window mark

Arguments

window

An Editor window

mark

An Editor mark

Return Value

The window point of the window

219

EDITOR OBJECT DESCRIPTIONS

PREFIX-ARGUMENT Function

Returns the current value of the prefix argument. You can set a new
value for the prefix argument by using the SETF macro with this
function. The new value can be either NIL or a fixnum. Setting the
value causes that value to be passed as the prefix argument· to the
next command executed.

Format

PREFIX-ARGUMENT

Arguments

None

Return Value

A fixnum or NIL

PREVIOUS-CHARACTER Function

Returns the character immediately preceding the position of
If there is no previous character, the function returns
function can be used with the SETF macro to change the
preceding the mark.

Format

PREVIOUS-CHARACTER mark

Arguments

mark

An Editor mark

Return Value

A character or NIL

PREVIOUS-COMMAND-FUNCTION Variable

Is bound to the last Editor command function invoked.

220

the mark.
NIL. This
character

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

PREVIOUS FORM Command

CJ Moves the current buffer point backward by the number of forms
specified with the prefix argument, within the current parenthesis
nesting level. The current buffer point is moved to the location
immediately before the specified number of forms, and the new buffer
point is returned. If a negative prefix argument is specified, the
current buffer point is moved forward past the specified number of
forms.

If the beginning of the current buffer or an outermost form is found
before the beginning of the specified number of forms is reached, the
Editor displays a message and returns NIL, and the point is not moved.
If there are fewer forms at the current nesting level than the number
specified by the prefix argument, the point is placed immediately
before the list initiator character of the innermost list that CJ encloses the point, and NIL is returned.

Display Name Format

Previous Form

Function Format

PREVIOUS-FORM-COMMAND prefix
~

UArguments

CJ

CJ

prefix

Integer or NIL

Return Value

The new buffer point or NIL

NOTE

Do not try to execute the "Previous Form" command when
the buffer point is located within a string or a
multiple escape sequence. The results of a "Previous
Form" command in these circumstances are incorrect.

Also, when using unmatched multiple escape characters
or unmatched string delimiter characters in a comment,
you should include a backslash (\) before these
characters. Otherwise, the "Previous Form" command
may fail, because the comment delimiter will be
interpreted as part of a string or multiple escape
sequence.

221

EDITOR OBJECT DESCRIPTIONS

PREVIOUS LINE Command

Moves the point of the current buffer to the previous line. The O
relative horizontal character position (not the displayed position) of
the point in the old line is maintained unless the end of the new line
is to the left of that position. In such a case, the poirit will be at
the end of the new line.

If you specify an integer prefix argument, the point is moved up the
number of times indicated (or down, if prefix is negative). If there
is no previous line, the point is moved to the beginning of the first
line.

q1tegory

:LINE-MOTION

Display Name Format

Previous Line

Function Format

PREVIOUS--LINE-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value

The new buffer point

PREVIOUS-LISP-FORM Function

Moves the mark supplied as an argument to a point immediately
preceding the beginning of the previous form at the parenthesis
nesting level of the mark. The updated mark is returned. If the mark
is located within a symbol, it is moved to the beginning of the
symbol. If an outermost form is found before the beginning of the
previous form, the function returns :OUTERMOST-FORM and does not move
the mark. If no forms are found at the parenthesis level of the mark,

0

0

0

the function moves the mark to the beginning of the innermost
enclosing list and returns :BEGINNING-OF-LIST. If the beginning of
the buffer is found before the beginning of the previous form, the
function returns :BEGINNING~OF-BUFFER and does not move the mark. Ifo
the function detects an error due to an unmatched string delimiter or
multiple escape character in a comment, the function returns :FAILURE
and does not move the mark.

222

---~-- ----

0

EDITOR OBJECT DESCRIPTIONS

Format

PREVIOUS-LISP-FORM mark

Arguments

mark

An Editor mark

Return Value

The updated mark; or :BEGINNING-OF-LIST,
:FAILURE, or :BEGINNING-OF-BUFFER

:OUTERMOST-FORM,

O PREVIOUS PARAGRAPH Command

Moves the mark to the end of the previous paragraph. A paragraph is
delimited by a whitespace line (see WHITESPACE-LINE-P function). The
mark defaults to the current buffer point. If a prefix argument is
supplied, the command moves the mark backward that many paragraphs.

Display Name Format

O Previous Paragraph

Function Format

PREVIOUS-PARAGRAPH-COMMAND prefix &OPTIONAL mark

Arguments

oprefix

An integer or NIL

mark

An Editor mark that defaults to the current buffer point

Return Value

The updated mark

0
223

EDITOR OBJECT- DESCRIPTIONS

PREVIOUS SCREEN Command

Scrolls the specified window (or the current window, if none is
specified) up a distance equal to the height of the window. If you
specify an integer prefix argument, the window is scrolled up, the
number of lines indicated (or down, if the prefix is negative).·

Display Name Format

Previous Screen

Function Format

PREVIOUS-SCREEN-COMMAND prefix &OPTIONAL window

Arguments

prefix

An integer or NIL

window

An Editor window that defaults to the current window

Return Value

The new buffer point

PREVIOUS WINDOW Command

Moves the cursor from the current window to the window above it; that

0

0

0

is, the current window is redefined. The cursor is then located at Q
the window point of the new current window. If you specify an integer
prefix argument, the command is executed the number of times
indicated. The command circulates through all displayed windows
regardless of window type.

Display Name Format

Previous Window

Function Format

PREVIOUS-WINDOW-COMMAND prefix

0

224

EDITOR OBJECT DESCRIPTIONS

Q Arguments

prefix

0

An integer or NIL

Return Value

The new current window

PRINT REPRESENTATION Attribute

Determines how a character is displayed on the screen. If the value
of this attribute is NIL, the character is given no special treatment.
If the value is a string, the string is displayed as the character
representation. If it is a vector, the current column is used as an
index into the vector to obtain a string to display. Using a vector
is useful for displaying characters whose print representation is
column dependent (such as tabs).

If the value is a function, then that function is called with two
arguments the current column and the character -- to obtain a
string.

Q The Print Representation attribute cannot be bound in any context
other than :GLOBAL.

Display Name Format

Print Representation

Symbol Format

O PRINT-REPRESENTATION

0

PROMPT ALTERNATIVES Editor Variable

Is bound to the alternatives argument for the general prompt that is
currently in progress.

Display Name Format

Prompt Alternatives

Symbol Format

PROMPT-ALTERNATIVES

225

EDITOR OBJECT DESCRIPTIONS

PROMPT ALTERNATIVES ARGUMENTS Editor Variable

Is bound to the alternatives arguments for the general prompt that
currently in progress.

Display Name Format

Prompt Alternatives Arguments

Symbol Format

PROMPT-ALTERNATIVES-ARGUMENTS

PROMPT COMPLETE STRING Command

is O

Is used by the PROMPT-FOR-INPUT function to complete user input to a Q
prompt. The command uses the information supplied by the :COMPLETION
and :COMPLETION-ARGUMENTS arguments of the PROMPT-FOR-INPUT function.

NOTE

This command is an integral part of the
PROMPT-FOR-INPUT function and should not be used in
any context other than that of the "General Prompting"
buffer. It can be rebound in that context to any
desired key sequence.

Display Name Format

Prompt Complete String

Function Format

PROMPT-COMPLETE-STRING-COMMAND prefix

Arguments

prefix

Ignored

Return Value

None

226

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

PROMPT COMPLETION Editor Variable

Is bound to the completion argument for the
currently in progress.

Display Name Format

Prompt Completion

Symbol Format

PROMPT-COMPLETION

general

PROMPT COMPLETION ARGUMENTS Editor Variable

prompt

Is bound to the list of completion function arguments for the
prompt that is currently in progress.

Display Name Format

Prompt Completion Arguments

Symbol Format

that is

general

O PROMPT-COMPLETION-ARGUMENTS

PROMPT DEFAULT Editor Variable

Is bound to the default value for the general prompt that is currently
in progress.

Q Display Name Format

Prompt Default

0

Symbol Format

PROMPT-DEFAULT

PROMPT ERROR MESSAGE Editor Variable

Is bound to the error message argument of the general prompt currently
in progress.

227

EDITOR OBJECT DESCRIPTIONS

Display Name Format

Prompt Error Message

Symbol Format

PROMPT-ERROR-MESSAGE

PROMPT ERROR MESSAGE ARGUMENTS Editor Variable

Is bound to the error message arguments for the general prompt that is
currently in progress.

Display Name Format

Prompt Error Message Arguments

Symbol Format

PROMPT-ERROR-MESSAGE-ARGUMENTS

0

0

PROMPT-FOR-INPUT Function

Prompts for input, invokes the validation function with the user's Q
input string as the argument, and returns the return value of the
validation function. If the user enters no input (a null string),
PROMPT-FOR-INPUT can either return a default value or prompt again for
input. If the user's input is invalid, PROMPT-FOR-INPUT signals an
error and awaits further input.

You can specify a prompting message and a value to be returned if theo
user enters no input. You can also provide alternatives, completion,
and help to the user during the prompt.

Format

PROMPT-FOR-INPUT validation &KEY

228

:PROMPT
:REQUIRED
:DEFAULT :DEFAULT-MESSAGE
:ALTERNATIVES
:ALTERNATIVES-ARGUMENTS
:COMPLETION :COMPLETION-ARGUMENTS
:HELP :HELP-ARGUMENTS
:ERROR-MESSAGE
:ERROR-MESSAGE-ARGUMENTS
:SAVE-WINDOW-STATE

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Arguments

validation

A function of one argument. This function operates on the user's
input string and returns the value that will be returned by
PROMPT-FOR-INPUT. An example 0f a validation function might be
FIND-BUFFER, which returns the buffer specified by the string or
NIL if there is no buffer with that display name.

If the validation function returns NIL, the user's input is not
valid. In this case, PROMPT-FOR-INPUT signals an error and
awaits further input. NIL can be a valid value if the validation
function returns multiple values of NIL and T.

:PROMPT

A string or a function that returns a string. This argument
specifies the prompting message. The default is "Enter input "

:REQUIRED

Tor NIL. This argument specifies the action to be taken if the
user enters no input (a null string) in response to the prompt.
If T, PROMPT-FOR-INPUT prints "Input required" in the information
area and awaits further input. If NIL (the default),
PROMPT-FOR-INPUT returns the value of the :DEFAULT argument.

:DEFAULT

This argument specifies the value to be returne~ by
PROMPT-FOR-INPUT if the user enters no input and if the value of
:REQUIRED is NIL. The default is NIL.

:DEFAULT-MESSAGE

NIL, T, a string, or a function of one argument that returns a
string. This argument specifies a message to be displayed in the
information area at the start of the prompt. Its purpose is to
inform the user of a default return value.

If the argument is NIL (the default), no message is displayed.
If T, the value of :DEFAULT is printed. If a string, the string
is used as the control-string argument in a call to FORMAT, and
the result is printed. The value of :DEFAULT is used as the data
argument to FORMAT. If a function, it is passed the value of
:DEFAULT and the string that the function returns is printed.

:ALTERNATIVES

A string, a string table, or a function of at least one argument
to be called if the user requests input alternatives. If the

229

EDITOR OBJECT DESCRIPTIONS

argument is a function, it is passed the
typed so far and any additional
:ALTERNATIVES-ARGUMENTS. The default
alternatives available."

:ALTERNATIVES-ARGUMENTS

string
arguments
is the

the user
supplied
string

has
as

"No

A list of arguments for the :ALTERNATIVES function. The default
is NIL.

:COMPLETION

NIL, a string, a string table, or a function of at least one
argument to be called if the user requests input completion. If
the argument is a function, it is passed the string the user has
typed so far and any additional arguments supplied as
:COMPLETION-ARGUMENTS. If the argument is NIL (the default) and
the user requests input completion, an Editor error is signaled.

:COMPLETION-ARGUMENTS

A list of arguments for the :COMPLETION function. The default is
NIL.

:HELP

NIL, a string, or a function to be called if the user requests
help. The default is "No help available." If the value is a
string, it is displayed in the information area; if the string
contains more lines than. will fit in the information area, it is
displayed in the "Help" buffer. If the argument is a function,
it is called with any arguments supplied as :HELP-ARGUMENTS.

:HELP-ARGUMENTS

A list of arguments for the :HELP function. The default is NIL.

:ERROR-MESSAGE

A string or a function that returns a string. This argument
specifies the error message to be displayed if the user's input
is invalid. If the argument is a function, it is called with any
arguments supplied as :ERROR-MESSAGE-ARGUMENTS.

:ERROR-MESSAGE-ARGUMENTS

A list of arguments for the :ERROR-MESSAGE function. The default
is NIL.

230

0

0

0

0

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

:SAVE-WINDOW-STATE

NIL or non-NIL. Non-NIL specifies that the "General Prompting"
buffer remains the current buffer when the prompt is completed.
(This is helpful when writing commands that prompt for more than
one value.) NIL (the default) specifies that the buffer that
was current when the prompt was initiated is to become current
again when the prompt is completed.

Return Value

The value returned by the validation function or the :DEFAULT
value

PROMPT HELP Command

Is used by the PROMPT-FOR-INPUT function to display help when the user
is being prompted. The help information is taken from the :HELP and
:HELP-ARGUMENTS arguments of PROMPT-FOR-INPUT.

NOTE

This command is an integral part of the
PROMPT-FOR-INPUT function and should not be used in
any context other than that of the "General Prompting"
buffer. It can be rebound in that context to any
desired key sequence.

Display Name Format

Prompt Help

Function Format

PROMPT-HELP-COMMAND prefix

Arguments

prefix

Ignored

Return Value

None

231

EDITOR OBJECT DESCRIPTIONS

PROMPT HELP Editor Variable

Is bound to the help argument for the general prompt that is currently
in progress.

Display Name Format

Prompt Help

Symbol Format

PROMPT-HELP

PROMPT HELP ARGUMENTS Editor Variable

Is bound to the help function arguments for the general prompt that is
currently in progress.

Display Name Format

Prompt Help Arguments

Symbol Format

PROMPT-HELP-ARGUMENTS

PROMPT HELP CALLED Editor Va'riable

0

0

0

Specifies whether or not a help function has been called during the
general prompt that is currently in progress. If the value of this
variable is non-NIL at the completion of a prompt, the displayed help Q
window is removed from the display.

Display Name Format

Prompt Help Called

Symbol Format

PROMPT-HELP-CALLED

0

232

0

0

EDITOR OBJECT DESCRIPTIONS

PROMPT READ AND VALIDATE Command

Is used by the PROMPT-FOR-INPUT function to obtain and validate the
current user response to a prompt. The validation function is taken
from the validation function argument of the PROMPT-FOR-INPUT
function. If the validation function succeeds, the value is returned
by the PROMPT-FOR-INPUT function. Otherwise, this command signals an
Editor error and waits for the user to correct the problem.

NOTE

This command is an integral part of the
PROMPT-FOR-INPUT function and should not be use.d in
any context other than that of the "General Prompting"
buffer. It can be rebound in that context to any
desired key sequence.

Display Name Format

Prompt Read and Validate

Function Format o PROMPT-READ-AND-VALIDATE-COMMAND prefix

Arguments

0

0

prefix

Ignored

Return Value

The return value of the validation function

PROMPT RENDITION COMPLEMENT Editor Variable

Set to a keyword or a list of ke.ywords that specifies the video
rendition of prompting messages. The rendition specified is relative
to the terminal rendition setting. The keywords are :NORMAL,
:REVERSE, :BOLD, :UNDERLINE, and :BLINK. The default is :UNDERLINE.

Display Name Format

Prompt Rendition Complement

233

EDITOR OBJECT DESCRIPTIONS

Symbol Format

PROMPT-RENDITION-COMPLEMENT

PROMPT RENDITION SET Editor Variable

Set to a keyword or a list of keywords that specifies the video
rendition of prompting messages. The rendition specified is absolute,
rather than relative to the terminal rendition setting. The keywords
are :NORMAL, :REVERSE, :BOLD, :UNDERLINE, and :BLINK. The default is
:NORMAL.

Display Name Format

Prompt Rendition Set

Symbol Format

PROMPT-RENDITION-SET

PROMPT REQUIRED Editor Variable

0

0

Specifies whether an input value is required for
that is currently in progress.

the general prompt O
Display Name Format

Prompt Required

Symbol Name

PROMPT-REQUIRED

PROMPT SCROLL HELP WINDOW Command

Scrolls the Help window while in another window. When the scrolling
reaches the end of the "Help" buffer, the window is reset to the
beginning of the Help buffer. The command is bound in the "General
Prompting" buffer so that prompt help can be scrolled without having
to leave the prompting window.

Display Name Format

Prompt Scroll Help Window

234

0

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Function Format

PROMPT-SCROLL-HELP-WINDOW-COMMAND prefix

Arguments

prefix

Ignored

Return Value

Undefined

PROMPT SHOW ALTERNATIVES Command

Is used by the PROMPT-FOR-INPUT function to supply the user with a
list of alternatives based on current input. The information for this
command is supplied with the :ALTERNATIVES and :ALTERNATIVES-ARGUMENTS
arguments of the PROMPT-FOR-INPUT function. ·

NOTE

This command is an integral part of the
PROMPT-FOR-INPUT function and should not be used in
any context other than that of the "General Prompting"
buffer. It can be rebound in that context to any
desired key sequence.

Display Name Format

Prompt Show Alternatives

Function Format

PROMPT-SHOW-ALTERNATIVES-COMMAND prefix

Arguments

prefix

Ignored

Return Value

None

235

EDITOR OBJECT DESCRIPTIONS

PROMPT START Editor Variable

Is bound to a right-inserting mark that points to the starting O
position of the user's input in the prompt buffer. This description
applies to the general prompt that is currently in progress. The
user's input is defined as the region between this mark and the· buffer
point of the "General Prompting" buffer.

Display Name Format

Prompt Start

Symbol Format

PROMPT-START

PROMPT VALIDATION Editor Variable

Is bound to the validation function for the general prompt that is
currently in progress.

Display Name Format

Prompt Validation

Symbol Format

PROMPT-VALIDATION

PUSH-WINDOW Function

Makes the specified window visible on the screen without removing any
other windows. If the type of the window is :FLOATING, the function
has the same effect as the SHOW-WINDOW function. If the window is
:ANCHORED, the window is added to the list of currently visible
anchored windows, and its height and those· of the other anchored
windows are adjusted so as to make them all about the same height.
See also SHOW-WINDOW, which might remove another anchored window to
make room for the new one.

The optional arguments allow some control over the relative vertical
positioning of an anchored window. If the companion argument is
supplied, it must be another visible anchored window. The new window
is placed on the screen just below the companion window. If the
optional insert-above argument is T, the new window is inserted on the
screen just above the position of the companion window.

236

0

0

0

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Format

PUSH-WINDOW ~indow &OPTIONAL companion insert-above

Arguments

window

An Editor window to display

companion

A currently visible anchored window or NIL

insert-above

If NIL, the new window will be below the companion; if not NIL,
it will appear above the companion.

Return Value

The window

QUERY SEARCH REPLACE Command

Prompts the user for a string to search for and a second string to
replace occurrences of the first one. Completion is available during
both prompts. The completion command inserts the string last searched
for or the last replacement string, as appropriate. Once these
strings are established, the command repeatedly searches for
occurrences of the first string. At each one, the command stops and
asks the user to enter one of several options about how to proceed.
The options are:

space Replace this occurrence and find the next one.

s ors Replace this occurrence and stay here. The purpose of this is
to let you examine the results of the change and perhaps
decide to continue, quit, or do a recursive edit.

Replace this occurrence and then quit.

Replace all the remaining occurrences without asking. At the
end the Editor will put out a message telling how many
occurrences were replaced.

Norn Do not replace this occurrence but do find the next one.

CTRL/C (or the current cancel character)
Do not replace this occurrence and do quit.

237

EDITOR OBJECT DESCRIPTIONS

Q or q Do not replace this occurrence and do quit, returning to the
point at which the search began. Q

R or r Enter a recursive edit. Exit the recursion with
the current cancel character). A recursive edit
to let you do any editing you need to do and then
your original place in the search/replace cycle.

? Display an abbreviated version of this text.

Category

:GENERAL-PROMPTING

Display Name Format

Query Search Replace

Function Format

CTRL/C (or
is designed

return to

QUERY-SEARCH-REPLACE-COMMAND
replace-string

prefix &OPTIONAL search-string

Arguments

prefix

Ignored

search-string

The string to be replaced. If this argument is not supplied, the
user is prompted for a string.

replace-string

The string to replace the search-string with. If this
is not supplied, the user is prompted for a string.

Return Value

None

QUOTED INSERT Command

argument

0

0

0

Causes the next character typed to be inserted in the current buffer
without interpretation by the Editor. If you specify an integer
prefix argument, the character is inserted the number of times Q
indicated.

238

0

0

0

EDITOR OBJECT DESCRIPTIONS

Display Name Format

Quoted Insert

Function Format

QUOTED-INSERT-COMMAND prefix

Argwnents

prefix

An integer or NIL

Return Value

The character or string inserted

READ FILE Command

Replaces the current buffer contents by reading in a file. If a file
is hot specified, the command prompts for a file name.

Display Name Format

Read File

Function Format

READ-FILE-COMMAND prefix &OPTIONAL pathname

Argwnents

Q prefix

Ignored

pathname

The pathname specifier or NIL

Return Value

The current buffer point

0
239

EDITOR OBJECT DESCRIPTIONS

REDISPLAY SCREEN Command

Erases and redisplays everything on the screen. 0
Display Name Format

Redisplay Screen

Function Format

REDISPLAY-SCREEN-COMMAND prefix

Arguments

prefix

Ignored

0 Return Value

None

REDISPLAY-SCREEN Function

Erases and redisplays the entire screen. This function is
the terminal display has been altered by broadcast
collection messages.

used whenQ
or garbage

Format

REDISPLAY-SCREEN

Arguments

None

Return Value

None

REGION-END Function

Returns a mark that points to the end of the region. Altering the
position of the end of a buffer region can lead to unpredictable
results.

240

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Format

REGION-END region

Arguments

region

An Editor region

Return Value

The ending mark of the region

REGION-READ-POINT Function

Returns a mark that specifies the next character to be read from an
Editor region input stream. (See description of MAKE-EDITOR-STREAM
FROM-REGION function.) The mark is a new mark unless the optional
mark argument is supplied; if a mark is ·specified, that mark is
destructively modified to point to the next character to be read from
the stream. Altering the returned mark does not affect the operation
of the stream in any way.

Q Format

REGION-READ-POINT stream &OPTIONAL mark

Arguments

stream

O An

mark

Editor region input stream

0

An Editor mark

Return Value

An Editor mark

REGION-START Function

Returns a mark that points to the beginning of the specified region.
Altering the position of the beginning of a buffer region can lead to
unpredictable results.

241

EDITOR OBJECT DESCRIPTIONS

Format

REGION-START region

Argwnents

region

An Editor region

Return Value

The starting mark of the region

REGION-TO-STRING Function

Returns a string that contains the characters in the region.
breaks in the region are interpreted as newline characters.

Format

REGION-TO-STRING region

Arguments

region

An Editor region

Return Value

A simple string

REGIONP Function

Line

Returns T if the argument is an Editor region, or NIL if it is not.

Format

REGIONP object

Arguments

object

Any LISP object

242

0

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Return Value

Tor NIL

REMOVE CURRENT WINDOW Command

Removes the current window from the screen. The window
deleted, but is no longer visible. The new current window will
chosen according to the rules for the NEXT-WINDOW function. If
are no other windows visible, the Editor returns to its initial
See REMOVE-WINDOW and *EDITOR-DEFAULT-BUFFER*.

Display Name Format

Remove Current Window

Function Format

REMOVE-CURRENT-WINDOW-COMMAND prefix

Arguments

is not
be one
there

state.

prefix

O Ignored

Return Value

T

O REMOVE-HIGHLIGHT-REGION Function

Alters destructively the specified highlight region object so that it
no longer affects the video display characteristics of the text
contained in the region. The text in the region is not affected by
this operation. The highlight region object, however, is destroyed
and cannot be reused.

Format

REMOVE-HIGHLIGHT-REGION region

Arguments

region

Q An Editor highlight region

243

EDITOR OBJECT DESCRIPTIONS

Return Value

T

REMOVE OTHER WINDOWS Command

Removes all windows but the current window. The appropriate hook
functions are invoked. The windows are not deleted.

Display Name Format

Remove Other Windows

Function Format

REMOVE-OTHER-WINDOWS prefix

Arguments

prefix

Ignored

Return Value

T

REMOVE-STRING-TABLE-ENTRY Function

0

0

0

Removes an entry having the specified key from the specified string
table. This function is also a predicate that returns T if there was Q
an entry for the specified key, and NIL if there was not.

Format

REMOVE-STRING-TABLE-ENTRY key-string string-table

Arguments

key-string

The string that is the key of the entry to remove

string-table

The string table from which to remove the entry

0
244

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Return Value

Tor NIL

REMOVE-WINDOW Function

Removes the specified window from the display area.
does not delete the window.

This function-

If the window being removed is the current window, the new-current
argument can be used to specify the window that is to become current.
If no value is specified, the NEXT-WINDOW function is called to select
a new current window. If there are no other windows visible, the
screen is restored to an initial state. (See NOTE below.)

The resize-remainder parameter in earlier versions of the Editor is
obsolete and any value supplied is ignored. If the window being
removed is an anchored window, the sizes of other visible anchored
windows are always adjusted to fill the availa~le display area.

Format

REMOVE-WINDOW window &OPTIONAL resize-remainder new-current

Arguments

window

A visible Editor window

resize-remainder

Obsolete. Any value supplied is ignored.

new-current

An Editor window. It need not be currently visible. The default
is a visible window selected by the NEXT-WINDOW function.

Return Value

T if the window was displayed and has been removed from the
display, or NIL if the window was not displayed.

NOTE

The REMOVE-WINDOW-function will not remove the window
that is associated with the buffer specified by
EDITOR-DEFAULT-BUFFER. This is the window that

245

EDITOR OBJECT DESCRIPTIONS

appears when you call the Editor without specifying a
string, pathname, symbol, or list, and it normally
appears only when the Editor has no other window to
display. Displaying any other window will cover this
window. If the value of *EDITOR-DEFAULT-BUFFER* is
NIL, a window to the buffer "Basic Introduction" is
shown when the Editor has nothing else to display.

REPLACE-PATTERN Function

Replaces n occurrences of
the string replacement.
n is NIL, all occurrences
replaced.

the text matched by the search-pattern with
The search starts at the specified mark. If
of the search-pattern following the mark are

Format

REPLACE-PATTERN mark search-pattern replacement &OPTIONAL n

Arguments

mark

An Editor mark

search-pattern

An Editor search
MAKE-SEARCH-PATTERN

replacement

pattern previously computed

A string that will replace the old pattern in the text

n

A fixnum or NIL

Return Value

The number of occurrences replaced

RETURN-FROM-EDITOR Macro

Causes the ED function to return the value or values ~eturned by
result form. If ED has been called recursively (for instance,
command within the Editor), RETURN-FROM-EDITOR returns a result
the innermost call to ED.

246

with

the
by a
from

0

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

This macro is useful for returning results from a recursive
the Editor, as is done in the function PROMPT-FOR-INPUT.

Format

RETURN-FROM-EDITOR &OPTIONAL result

Arguments

result

A form that defaults to NIL.

Return Value

Not applicable

REVERSE-INVOKE-HOOK Function

call to

Calls all the hook functions
the specified arguments.
functions is the same as the
INVOKE-HOOK.

in the specified hook variable and passes
The order of invocation of the hook
normal context searching order. See also

Q Format

0

0

REVERSE-INVOKE-HOOK hook-variable &REST args

Arguments

hook-variable

args

An Editor variable specifier

Any additional arguments that may need to be passed to the hook
functions

Return Value

Undefined

247

EDITOR OBJECT DESCRIPTIONS

RING-LENGTH Function

Returns two integers. The first is the number of slots used
ring; the second is the maximum number of slots in the ring.

in the Q
Format

RING-LENGTH ring

Arguments

ring

An Editor ring

Return Value

Two values:

1. The number of slots used in the ring

2. The maximum number of slots in the ring

RING-POP Function

Deletes the object at the zero position of the ring and returns it.
The ring delete-function is not called. This decreases the current
length of the ring by 1.

Format

RING-POP ring

Arguments

ring

An Editor ring

Return Value

The object at the current position of the ring

248

0

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

RING-PUSH Function

Pushes the object onto the ring, deleting the oldest element if the
ring is full. The ring delete-function is called if an object is
deleted. This function is called with two arguments the object
being deleted and the ring.

Format

RING-PUSH ring object

Arguments

ring

An Editor ring

object

Any LISP object

Return Value

The object that was pushed

RING-REF Function

Returns an element of the specified ring as specified by an i~teger
index. You can specify any integer. A negative number is the number
of slots backward from the end. If the absolute value of the integer
is greater than the size of the ring, the integer is taken modulo the
size of the ring. This function can be used with the SETF macro to

O replace an element of a ring. When replacing an element, the ring
delete-function is called with two arguments the entry being
replaced and the ring.

.0

Format

RING-REF ring &OPTIONAL index

Arguments

ring

index

An Editor ring

An integer specifying the element of the ring to be returned.
The default is 0.

249

_______________________ :!

EDITOR OBJECT DESCRIPTIONS

Return Value

Two values:

1. The specified object in the ring

2. The positive index number of the referenced ring slot modulo
the length of the ring

RING-ROTATE Function

Rotates a ring forward if the offset is positive, or backward if the
offset is negative. For example, with an offset of +1, the second
element would become the first; with an offset of -1, the last element
would become the first.

Format

RING-ROTATE ring offset

Arguments

ring

An Editor ring

offset

An integer

Return Value

The object at the new zero position in the ring

RINGP Function

Returns T if the argument is an Editor ring; otherwise, returns NIL.

Format

RINGP object

Arguments

object

Any LISP object

250

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Return Value

Tor NIL

SAME-LINE-P Function

Returns T if markl and mark2 point into the same line; returns NIL
otherwise.

Format

SAME-LINE-P mark1 mark2

Arguments

Q mark1

An Editor mark

mark2

Another Editor mark

Q Return Value

Tor NIL

SCREEN-HEIGHT Function

Returns the current available height of the display device (screen).

OThis number can be less than the height of the physical device. It is
the height used by the Editor as the maximum displayable height.. This
value can be changed by using the SETF macro. The value returned by
SCREEN-HEIGHT can be less than the specified value if the physical
device cannot accommodate the specified new height. Any anchored
windows will be adjusted to fit the new height.

Format

SCREEN-HEIGHT

Arguments

None

Q Return Value

The current screen height

251

-- -·------

EDITOR OBJECT DESCRIPTIONS

SCREEN MODIFICATION HOOK Editor Variable

Is a hook variable that is called whenever the screen height or width Q
is changed, after all screen and window modifications have been made.

Display Name Format

Screen Modification Hook

Symbol Format

SCREEN-MODIFICATION-HOOK

SCREEN-WIDTH Function

Returns the current available width of the display device (screen).
This number can be less than the width of the physical device. It is
the width used by the Editor as the maximum displayable width. This
value can be changed by using the SETF macro. The value returned by
SCREEN-WIDTH can be less than the specified value if the physical
device cannot accommodate the specified new width. Any anchored
windows will be adjusted to fit the new width.

Format

SCREEN-WIDTH

Arguments

None

Return Value

The current screen width

SCROLL-WINDOW Function

Scrolls the specified window by a certain number of lines. If the
count is positive, the window scrolls down through the text, making
the lines appear to be moving upward on the screen. The window is
sc~olled up through the buffer if the count is negative. The buffer
point stays at the same position whenever possible; otherwise, it is
centered on the screen.

Format

SCROLL-WINDOW window count

252

0

0

0

0

0

0

0

EDITOR OBJECT DESCRIPTIONS

Arguments

window

An Editor window

count

An integer

Return Value

The buffer point of the window

SCROLL WINDOW DOWN Command

Scrolls the indicated or current window down (moves the text up) the
number of lines indicated by the prefix.

Display Name Format

Scroll Window Down

Function Format

SCROLL-WINDOW-DOWN-COMMAND prefix &OPTIONAL window

Arguments

prefix

An integer or NIL

Q window

0

An Editor window that defaults to the current window

Return Value

The buffer point of the window

SCROLL WINDOW UP Command

Scrolls the indicated or current window up (moves the text down) the
number of lines indicated by the prefix argument.

253

·-------------,- ··-·------------

EDITOR OBJECT DESCRIPTIONS

Display Name Format

Scroll Window Up 0
Function Format

SCROLL-WINDOW-UP-COMMAND prefix &OPTIONAL window

Arguments

prefix

An integer or NIL

window

An Editor window that defaults to the current window 0
Return value

The buffer point of the window

SELECT BUFFER Command

Makes the specified buffer the current buffer. If the buffer is not Q
specified, the function prompts for a buffer name. If the buffer does
not exist, a new buffer is created with the name you enter in response
to the prompt.

Category

:GENERAL-PROMPTING

Display Name Format 0
Select Buffer

Function Format

SELECT-BUFFER-COMMAND prefix &OPTIONAL-buffer

Arguments

prefix

Ignored

An Editor buffer
0 buffer

254

0

0

EDITOR OBJECT DESCRIPTIONS

Return Value

The new current buffer

SELECT ENCLOSING FORM AT POINTER Command

Creates a select region that encompasses the LISP form indicated by
the pointer. If the pointer is indicating a symbol, the region
contains the symbol; if the pointer is indicating a list initiator or
a list terminator, the region contains the list. If the command is
invoked repeatedly, the select region expands to include that number
of forms enclosing the one indicated by the pointer, stopping when it
reaches an outermost form.

Display Name Format

Select Enclosing Form at Pointer

Function Format

SELECT-ENCLOSING-FORM-AT-POINTER-COMMAND prefix

Arguments

Q prefix

Ignored

0

0

Return Value

Undefined

SELECT OUTERMOST FORM Command

Creates and returns a region containing the outermost list (a list
with its opening parenthesis in the leftmost screen column) that
enclos~s the buffer point of the current buffer. If there is no
outermost list enclosing the buffer point, the command selects the
outermost list following the point if there is one, and otherwise
selects the preceding outermost list. The command moves the point to
the left parenthesis of the appropriate list and creates a mark at the
right parenthesis of the same list. The created mark is bound to the
"Buffer Select Mark" Editor variable. The region is bound to the
"Buffer Select Region" Editor variable.

Display Name Format

Select Outermost Form

255

EDITOR OBJECT DESCRIPTIONS

Function Format

SELECT-OUTERMOST-FORM-COMMAND prefix

Arguments

prefix

Ignored

Return Value

An Editor region containing the form

SELECT REGION RENDITION COMPLEMENT Editor Variable

Set to a keyword or a list of keywords that specifies the video
rendition of an Editor select region. The rendition specified is
relative to the rendition of the window where the region is displayed.
The keywords are :NORMAL, :BOLD, :BLINK,:REVERSE, and :UNDERLINE. The
value is set to NIL in the global context, and to :REVERSE in "EDT
Emulation" and "EMACS" styles.

The values correspond to the possible values of the complement
argument to MAKE-HIGHLIGHT-REGION. See also "Select Region Rendition
Set" and "Buffer Select Region".

Display Name Format

Select Region Rendition Complement

Symbol Format

SELECT-REGION-RENDITION-COMPLEMENT

SELECT REGION RENDITION SET Editor Variable

Set to a keyword or a list of keywords that specifies the video
rendition· of an Editor select region. The rendition specified is
absolute, rathe-r than relative to the rendition of the window where
the region , is displayed. The keywords are :NORMAL, :BOLD,
:BLINK,:REVERSE, and :UNDERLINE. The value is set globally to NIL.

0

0

0

0

The values correspond to the possible values of the set argument to
MAKE-HIGHLIGHT-REGION. See also "Select Region Rendition Complement" O
and "Buffer Select Region".

256

EDITOR OBJECT DESCRIPTIONS

Q Display Name Format

Select Region Rendition Set

Symbol Format

SELECT-REGION-RENDITION-SET

SELF INSERT Command

Causes the last character typed to be inserted in the cur.rent buffer
as text. If the prefix is an integer, the character is inserted the
number of times indicated. This command is useful only when bound to

O keyboard characters that are to be inserted as ordinary text. All
graphic characters are self-inserting.

Display Name Format

Self Insert

Function Format

o SELF-INSERT-COMMAND prefix

Arguments

0

0

prefix

An integer or NIL

Return Value

The character or string of repeated characters

SET SCREEN HEIGHT Command

Prompts for a height if no prefix argument is supplied. The command
sets the height of the screen to the number of rows specified.

Display Name Format

Set Screen Height

Function Format

SET-SCREEN-HEIGHT-COMMAND prefix

257

EDITOR OBJECT DESCRIPTIONS

Arguments

prefix

An integer or NIL

Return value ,

The new screen height

SET SCREEN WIDTH Command

Prompts for a width if no prefix argument is supplied. The command
sets the width of the screen to the number of columns specified.

Display Name Format

Set Screen Width

Function Format

SET-SCREEN-WIDTH-COMMAND prefix

Arguments

prefix

An integer or NIL

Return Value

The new screen width

NOTE

If you set the screen width of a terminal that does
not have the Advanced Video Option to greater than 80,
the screen height is limited to 12 lines. Therefore,
you must also set the height of the.screen to 12.

SET SELECT MARK Command

0

0

0

0

Selects and highlights a region of text for other commands to operate
upon. This command sets the value of the Editor variable "Buffer
Select Mark" to a mark that indicates the same position as the current Q
buffer point. It then makes a highlight regien between the select
mark and the buffer point and sets the value of the Editor variable

258

EDITOR OBJECT DESCRIPTIONS

"Buffer Select Region" to that region. The next command you execute

O that requires a select region will use the current value of "Buffer
Select Region".

0

You can control the video rendition of the select region with the
Editor variables "Select Region Rendition Set" and "Select Region
Rendition Complement".

Display Name Format

Set Select Mark

or

EDT Select

Function Format

SET-SELECT-MARK-COMMAND prefix

Arguments

prefix

Ignored

Q Return Value

Undefined

SHOW-MARK Function

O Highlights the position of the specified mark within the specified
window for a certain length of time. Time is in units of seconds, and
defaults to 0.5. The function terminates before the number of ~econds
specified in the time argument elapses if any input is typed on the

0

terminal. If the mark's position is not visible on the terminal,
SHOW-MARK returns NIL; otherwise, it returns T.

Format

SHOW-MARK mark window &OPTIONAL time

Arguments

mark

An Editor mark

259

EDITOR OBJECT DESCRIPTIONS

window

An Editor window

time

A positive number indicating the number of seconds the mark will
be highlighted. The default is 0.5.

Return value

Tor NIL

SHOW TIME Command

Displays the current time and date in the information area.

Display Name Format

Show Time

Function Format

SHOW-TIME-COMMAND prefix

Arguments

prefix

Ignored

Return Value

Undefined

SHOW-WINDOW Function

Makes a window visible on the screen. The behavior of this function
differs according to whether its argument is an anchored window or a
floating window.

0

0

0

0

1. If the window is a floating window, it is placed at the
screen row and column specified when the window was created
unless this placement is overridden by an explicit
specification of a row or column argument. This window will
obscure any anchored or floating windows in its area. Its Q
new row and column are remembered so .that the window will
always return to that spot unless moved or reshown with
different row or column arguments.

260

------------------------- ~~-- -------- -------~-

0

0

0

EDITOR OBJECT DESCRIPTIONS

2. If the window is a floating window that is already displayed
but obscured by another floating window, this function places
the specified window "on top of" the obscuring one(s).

3. If the window is an anchored window and it is already on the
screen, no action occurs.

4. If the window is an anchored window and it is not on the
screen, then any row or column argument is ignored and:

Format

a. If there is no other anchored window on the screen, the
height of the window is set to the maximum allowable on
the screen and it is made visible.

b. If the number of anchored windows already on the screen
is greater than zero but less than the value of the
Editor variable "Anchored Window Show Limit", then the
heights of the new and existing windows are adjusted so
that all.will have about equal space on the screen. The
new window is made visible below the old.

c. If the number of anchored windows ·already on the screen
is greater than or equal to the value of the Editor
variable "Anchored Window Show Limit", then the least
recently used window is removed from the screen. The
height of the new window is adjusted to fit the height of
the window being removed, and the new window is made
visible in the same position as the one being removed.

SHOW-WINDOW window &OPTIONAL row column

Arguments

O window

0

row

An Editor window

An integer that specifies the screen row where the topmost line
of text of the window is to appear. The top row of the screen is
row 1.

column

An integer that specifies the screen column where the leftmost
text of the window is to appear. The left column of the screen
is column 1.

261

I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'~~ 



EDITOR OBJECT DESCRIPTIONS 

Return Value 

The window 

SHRINK WINDOW Command 

Causes the current window to decrease in height by one line. If the 
window is · an anchored window, the heights of other anchored windows 
are increased. If the prefix is a positive integer, the window 
shrinks by the number of lines indicated. If the prefix is negative, 
the window grows by the number of lines indicated. 

Display Name Format 

Shrink Window 

Function Format 

SHRINK-WINDOW-COMMAND prefix 

Arguments 

prefix 

An integer or NIL 

Return Value 

The new window height 

0 

0 

0 

SIMPLE-PROMPT-FOR-INPUT Function O 
Prompts for input in the prompting window and returns the user's input 
as a string. The optional prompt argument specifies a prompting 
message. If the user enters a null string, the function returns the 
value of the optional default argument. 

Format 

SIMPLE-PROMPT-FOR-INPUT &OPTIONAL prompt default 

Arguments 

prompt 

A string.· The default is a null string. 

262 

0 



0 

0 

0 

0 

EDITOR OBJECT DESCRIPTIONS 

default 

A value to be returned if the user enters 
default is a null string. 

Return Value 

a null string. The 

A string as entered by the user or the value of the default 
argument 

SPLIT WINDOW Command 

Creates and returns a new Editor window by duplicating the current 
window and displaying both. If the original window is anchored, the 
heights of all anchored windows (including the new one) are adjusted. 

Display Name Format 

Split Window 

Function Format 

SPLIT-WINDOW-COMMAND prefix 

Arguments 

prefix 

Ignored 

Return Value 

New window 

START KEYBOARD MACRO Command 

Starts an Editor keyboard macro. Each keystroke entered following 
this command is remembered, and all commands are executed. The 
keyboard macro can be ended with END-iEYBOARD-MACRO-COMMAND. 

Display Name Format 

Start Keyboard Macro 

Function Format 

O START-KEYBOARD-MACRO-COMMAND prefix 

263 



EDITOR OBJECT DESCRIPTIONS 

Arguments 

0 prefix 

Ignored 

Return Vl'!lue 

None 

START NAMED KEYBOARD MACRO Command 

Prompts the user for a name under which to catalog a new keyboard 
macro. Each keystroke entered following this command is remembered, 
as in a normal keyboard macro (see "Start Keyboard Macro" Q 
description). When the macro is completed (by "End Keyboard Macro"), 
it becomes the new current keyboard macro. It is also cataloged as a 
new named command by the system and can be treated just as any other 
named command. Its name is also entered in the 
*EDITOR-KEYBOARD-MACRO-NAMES* string table. 

Category 

:GENERAL-PROMPTING 

Display Name Format 

Start Named Keyboard Macro 

Function Format 

START-NAMED-KEYBOARD-MACRO-COMMAND prefix 

Arguments 

prefix 

Ignored 

Return Value 

NIL 

264 

0 

0 

0 



EDITOR OBJECT DESCRIPTIONS 

START-OF-LINE-P Function 

Ois a predicate that returns 
beginning of a line and NIL 

Format 

START-OF-LINE-P mark 

Arguments 

mark 

An Editor mark 

Return Value 

0 Tor NIL 

STRING-TABLE-P Function 

T if the specified 
otherwise. 

mark points to the 

Returns T if the argument is an Editor string table; NIL if it is not. 

oFormat 

STRING-TABLE-P object 

Arguments 

object 

Any LISP object 

OReturn Value 

Tor NIL 

STRING-TO-REGION Function 

Returns a disembodied region containing the characters in the 
specified string. 

Format 

STRING-TO-REGION string 

0 

265 



EDITOR OBJECT DESCRIPTIONS 

Arguments 

string 

A string 

Return Value 

A new region 

STYLE-NAME Function 

Takes an Editor style specifier and returns the display name of the 
style. 

Format 

STYLE-NAME style 

Arguments 

style 

An Editor style specifier 

Return Value 

The string that is the display name of the style 

STYLE-VARIABLES Function 

0 

0 

0 

Returns a list of symbols representing the Editor variables bound in aQ 
specified style. 

Format 

STYLE-VARIABLES style 

Arguments 

style 

An Editor style 

Return Value 

A list of symbols that name the Editor variables bound in the Q 
style 

266 



EDITOR OBJECT DESCRIPTIONS 

STVLEP Function 

OReturns T if the argument is an Editor Style, and NIL if it is not. 

0 

Format 

STYLEP object 

Arguments 

object 

Any LISP object 

Return Value 

Tor NIL 

SUPPL V EMACS PREFIX Command 

Sets the repetition count to four times its former value and returns 
the new count. That is, if the current prefix value is 1, this 
command sets the value to 4 if executed once, to 16 if executed twice, 

oand so on. 

Category 

:EMACS-PREFIX 

Display Name Format 

Supply EMACS Prefix 

OFunction Format 

SUPPLY-EMACS-PREFIX-COMMAND prefix 

Arguments 

prefix 

An integer or NIL 

Return Value 

The repetition count 

0 
267 



EDITOR OBJECT DESCRIPTIONS 

SUPPLY PREFIX ARGUMENT Command 

Prompts the user for an integer and uses the response as a prefix 
argument for the next command invoked. The user terminates the prompt 
by pressing the RETURN key. If a prefix argument is supplied for this 
command, it multiplies the number entered as the response· to the 
prompt. 

Display Name Format 

Supply Prefix Argument 

Function Format 

SUPPLY-PREFIX-ARGUMENT-COMMAND prefix 

Arguments 

prefix 

The prefix argument for this command is an integer or NIL. It 
should not be confused with the prefix integer that this command 
returns for the subsequent command. 

Return Value 

The prefix integer for the next command invoked 

SWITCH WINDOW HOOK Editor Variable 

0 

0 

0 

Is a hook function that is called with the new window as an argument 
before the value of (CURRENT-WINDOW) changes. If the change of 
(CURRENT-WINDOW) causes the value of (CURRENT-BUFFER) to change, the O 
hooks "Buffer Entry Hook" and "Buffer Exit Hook" are also invoked. 

' Display Name Format 

Switch Window Hook 

Symbol Format 

SWITCH-WINDOW-HOOK 

0 

268 



0 

EDITOR OBJECT DESCRIPTIONS 

TARGET COLUMN Editor Variable 

Maintains the screen column for commands having the :LINE-MOVEMENT 
category (the "Previous Line" and "Next Line" commands, bound to the 
up arrow and down arrow, respectively). When one of these commands is 
entered, it checks the category of the previous command. · If the 
previous command was not in thP :LINE-MOVEMENT category, the current 
command sets the "Target Column" variable to the current column before 
moving the cursor. If the previous command was a :LINE-MOVEMENT 
command, the current command uses the value of the "Target Column" 
variable to position the cursor. This allows a series of 
:LINE-MOVEMENT commands to return the cursor to the original column 
after traversing one or more short lines. 

Display Name Format 

o Target Column 

Symbol Format 

0 

0 

0 

TARGET-COLUMN 

TEXT OVERSTRIKE MODE Editor Variable 

When set to T, causes characters inserted by means of "Self Insert" 
and "Quoted Insert" to replace iny characters (except newline 
characters) previously located at the same positions. Text inserted 
at a newline character is inserted at the end of the same line (that 
is, the newline character is moved to the right). When this variable 
is set to NIL, newly inserted characters appear between previous 
characters. In the default Editor, this variable is bound globally 
and set to NIL. 

Note that this variable does not affect the operation of 
inserting commands, such as "EDT Paste" and "Yank". 

Display Name Format 

Text Overstrike Mode 

Symbol Format 

TEXT-OVERSTRIKE-MODE 

269 

other text-



EDITOR OBJECT DESCRIPTIONS 

TRANSPOSE PREVIOUS CHARACTERS Command 

Transposes the pair of characters before the cursor (the current 
buffer point). 

Display Name Format 

Transpose Previous Characters 

Function Format 

TRANSPOSE-PREVIOUS-CHARACTERS-COMMAND prefix 

Arguments 

prefix 

Ignored 

Return Value 

Undefined 

TRANSPOSE PREVIOUS WORDS Command 

Transposes the pair of words at and before the cursor 
buffer point). 

Display Name Format 

Transpose Previous Words 

Function Format 

TRANSPOSE-PREVIOUS-WORDS-COMMAND prefix 

Arguments 

prefix 

Ignored 

Return Value 

Undefined 

270 

(the current 

0 

0 

0 

0 

0 



EDITOR OBJECT DESCRIPTIONS 

UNBIND-ATTRIBUTE Function 

C) Unbinds the specified attribute from the specified context. The 
unbind hook function defined for the attribute is called with two 
arguments -- the attribute and the context. 

C) 

Format 

UNBIND-ATTRIBUTE attribute &OPTIONAL context 

Arguments 

attribute 

An attribute specifier 

context 

The context from which to unbind the attribute. The default is 
:GLOBAL. 

Return Value 

NIL 

C) UNBIND-COMMAND Function 

C) 

C) 

Deletes the binding of a key sequence to a command in the specified 
context. 

Format 

UNBIND-COMMAND key-sequence &OPTIONAL context 

Arguments 

key-sequence 

A sequence of characters 

context 

An Editor context specifier that defaults to :GLOBAL 

Return Value 

The function that was bound, or NIL if no binding was found 

271 



EDITOR OBJECT DESCRIPTIONS 

UNBIND-POINTER-COMMAND Function 

Deletes the binding of a pointer action to a command in the 
context. 

specifiedO 

Format 

UNBIND-POINTER-COMMAND pointer-action &OPTIONAL context 

Arguments 

pointer-action 

A keyword, a button constant, or a list that specifies an action 
of a supported pointing device. See BIND-POINTER-COMMAND for the 
possible values. 

context 

A context specifier. The default is :GLOBAL. 

Return Value 

The function associated with the command that was bound, or NIL 
if no binding was found. 

0 

0 
UNBIND-VARIABLE Function 

Unbinds the specified Editor variable from the specified context. The 
unbind hook function defined for the variable is called with two 
arguments -- the variable and the context. 

Format 0 
UNBIND-VARIABLE variable &OPTIONAL context 

Arguments 

variable 

An Editor variable specifier 

context 

The context from which to unbind the variable. 
:GLOBAL. 

Return Value 

NIL 

272 

.The default is 

0 



0 

0 

0 

EDITOR OBJECT DESCRIPTIONS 

UNDO PREVIOUS YANK Command 

Deletes the previously yanked region but does not push this region 
onto the kill ring. More generally, this command deletes a region 
without pushing it onto the kill ring. The region is either the 
currently selected region (the region associated with the- Buffer 
Select Region editor variable) or, if no currently selected region 
exists, a region defined by the buffer select mark and the current 
buffer mark. 

Display Name Format 

Undo Previous Yank 

Function Format 

UNDO-PREVIOUS-YANK-COMMAND prefix 

Arguments 

prefix 

Ignored 

Return Value 

NIL 

UNSET SELECT MARK Command 

Deletes the select mark and removes the select region in the current 
buffer. That is, it cancels the action of the command "Set Select 
Mark" (or "EDT Select") by setting the value of the Editor variables 
"Buffer Select Mark" and "Buffer Select Region" to NIL. 

Any text contained in the select region is not affected. 

Display Name Format 

Unset Select Mark 

or 

EDT Deselect 

Function Format 

O UNSET-SELECT-MARK-COMMAND prefix 

273 



EDITOR OBJECT DESCRIPTIONS 

Arguments 

prefix 

Ignored 

Return Value 

Undefined 

UPCASE REGION Command 

Makes the alphabetic characters in the region supplied as an argument 
all upper case. If no argument is supplied, the command uses the 
current select region. 

Display Name Format 

Upcase Region 

Function Format 

UPCASE-REGION-COMMAND prefix &OPTIONAL region 

Arguments 

prefix 

Ignored 

region 

An Editor region that defaults to the buffer select region 

Return Value 

Undefined 

UPCASE WORD Command 

Makes the alphabetic characters in the word around the specified mark 
all upper case. The mark defaults to the current buffer point. 

Display Name Format 

Upcase Word 

274 

0 

0 

0 

0 

0 



0 

0 

EDITOR OBJECT DESCRIPTIONS 

Function Format 

UPCASE-WORD-COMMAND prefix &OPTIONAL mark 

Arguments 

prefix 

Ignored 

mark 

An Editor mark that defaults to the current buffer point 

Return Value 

A region containing the word 

UPDATE-DISPLAY Function 

Updates any Editor windows that have changed and turns off batching of 
screen updates. This function does not detect messages issued by VMS 
(such as operator messages) and therefore might not erase them. 

Q Format 

UPDATE-DISPLAY 

Arguments 

None 

QReturn Value 

None 

0 

UPDATE-WINDOW-LABEL Function 

Updates the label of a window and returns the new label as a string. 
This function is useful when you must force the window to change at 
times other than when the display manger needs to change it. 

Format 

UPDATE-WINDOW-LABEL window 

275 



EDITOR OBJECT DESCRIPTIONS 

Arguments 

window 0 
An Editor window 

Return Value 

The new label for the window 

VARIABLE-BOUNDP Function 

Returns T if the specified Editor variable has a value, and NIL if it 
does not. 

Format Q 
VARIABLE-BOUNDP editor-variable &OPTIONAL context 

Arguments 

editor-variable 

An Editor variable specifier 

0 context 

An optional context specifier. Defaults to the current context. 

Return Value 

Tor NIL 

0 
VARIABLE-FBOUNDP Function 

Returns T if the specified Editor variable has a function definition, 
and NIL if it does not. 

Format 

VARIABLE-FBOUNDP editor-variable &OPTIONAL context 

Arguments 

editor-variable 

An Editor variable specifier 0 
276 



0 

0 

0 

0 

0 

EDITOR OBJECT DESCRIPTIONS 

context 

An optional context specifier. Defaults to the current context. 

Return Value 

Tor NIL 

VARIABLE-FUNCTION Function 

Returns the function definition of the Editor variable in the specifed 
context. An error is signaled if the argument symbol is not a defined 
Editor variable in the specified context. 

You can use this function with the SETF macro to change the function 
definition of an Editor variable. If the function definition of an 
Editor variable is set, all the set hook functions associated with 
that variable are called. 

Format 

VARIABLE-FUNCTION variable &OPTIONAL context 

Arguments 

variable 

An Editor variable specifier 

context 

A context specifier that defaults to the current context 

Return Value 

The function definition of the Editor variable 

VARIABLE-NAME Function 

Returns the display name of the specified Editor variable. 

Format 

VARIABLE-NAME variable 

277 



EDITOR OBJECT DESCRIPTIONS 

Arguments 

variable 

An Editor variable specifier 

Return Value 

The display name of the variable 

VARIABLE-VALUE Function 

Returns the value of the specified Editor variable in the specified 
context. An error is signaled if the argument symbol is not a defined 
Editor variable in the specified context. You can use this function 
with the SETF macro to change the value of a symbol. If the variable 
value of an Editor variable is set, all the set hook functions 
associated with that variable are called. 

Format 

VARIABLE-VALUE variable &OPTIONAL context 

Arguments 

variable 

An Edi tor variable specifi.er 

context 

A context specifier that defaults to the current context 

Return Value 

The value of the Editor variable 

VAX LISP Style 

Is the default minor style for editing any LISP objects or for editing 
files with an extension of LSP. 

Display Name Format 

VAX LISP 

278 

0 

0 

0 

0 

0 



EDITOR OBJECT DESCRIPTIONS 

OSymbol Format 

VAX-LISP 

0 

0 

0 

0 

VIEW FILE Command 

Prompts the user for the name of a file, if one is not supplied, and 
reads that file into a read-only buffer. A window into the buffer is 
created and becomes the new current window. If a buffer exists with 
that file, that buffer becomes the current one and is set to be 
read-only. An Editor error is signaled if any attempt to modify the 
buffer occurs. 

Category 

:GENERAL-PROMPTING 

Display Name Format 

View File 

Function Format 

VIEW-FILE-COMMAND prefix &OPTIONAL file 

Arguments 

prefix 

Ignored 

file 

A pathname, namestring, or stream 

Return Value 

The new buffer 

VISIBLE-WINDOWS Function 

Returns a list of the windows currently visible on 
window is considered "visible" if it has been 
removed; thus, a window that is completely hidden by 
still considered visible. 

279 

the screen. A 
displayed and not 
another window is 



EDITOR OBJECT DESCRIPTIONS 

Format 

VISIBLE-WINDOWS 0 
Arguments 

None 

Return Value 

A list of the windows currently visible on the screen 

WHAT CURSOR POSITION Command 

Displays the following information about the current buffer point in Q 
the information area: 

x = column 
y = row 
L = line number (% of total) 
c = character number ( % of total) 
w = window start-line number; window end-line number 
CH = char-code of current character 

Display Name Format 

What Cursor Position 

Function Format 

WHAT-CURSOR-POSITION-COMMAND prefix 

Arguments 

prefix 

Ignored 

Return Value 

NIL 

WHITESPACE Attribute 

Has a value of 1 for whitespace characters and O 
characters. 

280 

for all other 

0 

0 

0 



0 

0 

EDITOR OBJECT DESCRIPTIONS 

Display Name Format 

Whitespace 

Symbol Format 

WHITESPACE 

WHITESPACE-AFTER-P Function 

Is a predicate that returns T if all the characters following mark on 
the line have a "Whitespace" attribute value of 1; otherwise, it 
returns NIL. 

Format 

WHITESPACE-AFTER-P mark 

Arguments 

mark 

An Editor mark 

Q Return Value 

Tor NIL 

WHITESPACE-BEFORE-P Function 

O rs a predicate that returns T if all the c~aracters preceding mark on 
the line have a "Whitespace" attribute of 1 or if the line is empty; 
otherwise, it returns NIL. 

Format 

WHITESPACE-BEFORE-P mark 

Arguments 

mark 

An Editor mark 

Return Value 

0 Tor NIL 

281 



EDITOR OBJECT DESCRIPTIONS 

WHITESPACE-BETWEEN-P Function 

Is a predicate that returns T if all the characters between the two 
marks have a "Whitespace" attribute value of 1. A mark at the end of 
a line precedes the newline character; a mark at the beginning of a 
line follows the newline character. It is an error for the marks to 
point into different buffers or disembodied regions. 

Format 

WHITESPACE-BETWEEN-P start-mark end-mark 

Arguments 

start-mark 

An Editor mark pointing to the character that 
scan 

end-mark 

should start the 

An Editor mark pointing to the character that should end the 
whitespace scan. The character at the end is not included in the 
scan. 

Return Value 

Tor NIL 

WHITESPACE-LINE-P Function 

Is a predicate that returns T if every character in the line has a 
"Whitespace" attribute of 1 (or if the line is empty); otherwise, it 
returns NIL. 

Format 

WHITESPACE-LINE-Pline 

Al'guments 

line 

An Editor line 

Retul'n Value 

Tor NIL 

282 

0 

0 

0 

0 

0 



EDITOR OBJECT DESCRIPTIONS 

WINDOW-BUFFER Function 

O Returns the buffer associated with a window. You can use this 
function as a place indicator with the SETF macro to change the buffer 
associated with a window. Changing the value of WINDOW-BUFFER causes 
the "Window Buffer Hook" to be invoked. 

Format 

WINDOW-BUFFER window 

Arguments 

window 

An Editor window 

Q Return Value 

An Editor buffer 

WINDOW BUFFER HOOK Editor Variable 

O is a hook function that is called with the window and new buffer as 
arguments whenever a window is to be associated with a different 
buffer. 

Display Name Format 

Window Buffer Hook 

Symbol Format 

O WINDOW-BUFFER-HOOK 

WINDOW CREATION HOOK Editor Variable 

Is a hook function that is called with a new window as an argument 
whenever a new window is created. 

Display Name Format 

Window Creation Hook 

Symbol Format 

O WINDOW-CREATION-HOOK 

283 



EDITOR OBJECT DESCRIPTIONS 

WINDOW-CREATION-TIME Function 

Returns the universal time at which the specified window was c~eated.O 
For information on universal time, see COMMON LISP: The Language. 

Format 

WINDOW-CREATION-TIME window 

Arguments 

window 

An Editor window 

Return Value 

The universal time at which the window was created 

WINDOW DELETION HOOK Editor Variable 

Is a hook function that is called with a window as an argument before 
it is deleted. 

0 

Display Name Format O 

Window Deletion Hook 

Symbol Format 

WINDOW-DELETION-HOOK 

WINDOW-DISPLAY-COLUMN Function 

Returns the physical screen column that the first text character of 
the specified window is displayed in. Columns are numbered beginning 
with 1. This function is not a place form acceptaple to the SETF 
macro. 

Format 

WINDOW-DISPLAY-COLUMN window 

Arguments 

window 

The window whose display column is to be returned 

284 

0 

0 



0 

0 

0 

0 

0 

EDITOR OBJECT DESCRIPTIONS 

Return Value 

An integer specifying the column 

WINDOW-DISPLAY-END Function 

Returns a mark that points to the position just after the last 
position displayed in the window. Altering the position of this mark 
can have unpredictable results. 

Format 

WINDOW-DISPLAY-END window 

Arguments 

window 

An Editor window 

Return Value 

An Editor mark 

WINDOW-DISPLAY-ROW Function 

Returns the physical screen row that the first text character of the 
specified window is displayed in. Rows are numbered .beginning with 1. 
This function is not a place form acceptable to the SETF macro. 

Format 

WINDOW-DISPLAY-ROW window 

Arguments 

window 

The window whose display row is to be returned 

Return Value 

An integer specifying the row 

285 



EDITOR OBJECT DESCRIPTIONS 

WINDOW-DISPLAY-START Function 

This function returns a mark that points to the first position 
displayed in the window. This mark must always point to the beginning 
of a line (that is, its character position must be 0). 

Format 

WINDOW-DISPLAY-START window 

Arguments 

window 

An Editor window 

Return Value 

A mark 

WINDOW-HEIGHT Function 

Returns the height of the window as an integer. 
function as a place indicator to the SETF macro 
of a window. Changing the value of WINDOW-HEIGHT 
Modification Hook" to be invoked. 

Format 

WINDOW-HEIGHT window 

Arguments 

window 

An Editor window 

Return Value 

An integer 

WINDOW-LABEL Function 

You can use this 
to change the height 
causes the "Window 

Returns either a string to be used as the window label or a function 
used to create the the label string for a window. You can use this 
function with the SETF macro to change the label of a window. 

286 

0 

0 

0 

0 

0 



0 

0 

EDITOR OBJECT DESCRIPTIONS 

Format 

WINDOW-LABEL window 

Arguments 

window 

An Editor window 

Return Value 

A string, a function, or NIL 

WINDOW-LABEL-EDGE Function 

Returns the edge of the window that the label is on. The value can be 
:TOP, :BOTTOM, :LEFT, or :RIGHT. The default is :BOTTOM. This 
corresponds to the :LABEL-EDGE option of MAKE-WINDOW. You can use 
this function with the SETF macro to change· the edge of the window 
that the label is on. 

Format 

O WINDOW-LABEL-EDGE window 

Arguments 

window 

An Editor window 

Q Return Value 

The keyword indicating the edge the label is on 

WINDOW-LABEL-OFFSET Function 

Returns a nonnegative integer or NIL. If NIL, the label is centered 
on the specified side. If a number, the beginning of the label is 
offset by the.number of characters from the start of the specified 
side. You can use this function with the SETF macro to change the 
offset of the label. 

Format 

O WINDOW-LABEL-OFFSET window 

287 



EDITOR OBJECT DESCRIPTIONS 

Argwnents 

window 0 
An Editor window 

Return Value 

A positive integer or NIL 

WINDOW-LABEL-RENDITION Function 

Returns a keyword or a list of keywords specifying the video rendition 
for a window's label. The keywords are :NORMAL, :BLINK, :BOLD, 
:REVERSE, and :UNDERLINE. This function is acceptable as a place form Q 
to SETF. The new value can be a single keyword or a list of keywords. 

Format 

WINDOW-LABEL-RENDITION window 

Arguments 

window 

The window whose label's video rendition is desired 

Return Value 

A list of keywords as described above 

WINDOW-LINES-WRAP-P Function 

Returns T if lines that are longer than the window is wide are 
wrapped, or NIL if they are truncated. This function is acceptable as 
a place form to the SETF macro to make lines truncated or wrapped in a 
window. 

Format 

WINDOW-LINES-WRAP-P window 

Arguments 

window 

An Editor window 

288 

0 

0 

0 



0 

EDITOR OBJECT DESCRIPTIONS 

Return Value 

Tor NIL 

WINDOW MODIFICATION HOOK Editor Variable 

Is a hook function that is called with the modified window as an 
argument whenever the height, type, or width of the window changes. 
It is called at the completion of the modification. 

Display Name Format 

Window Modification Hook 

Q Symbol Format 

WINDOW-MODIFICATION-HOOK 

0 

WINDOW-POINT Function 

Returns a mark that retains the buffer point for a specified window. 
You can use this mark to alter the display for a window that is not 
the current window. 

Format 

WINDOW-POINT window 

Arguments 

o window 

An Editor window 

Return Value 

An Editor mark 

WINDOW-RENDITION Function 

Returns a list of keywords specifying the video rendition for an 
entire window. The keywords are :NORMAL, :BLINK, :BOLD, :REVERSE, and 
:UNDERLINE. This function is acceptable as a place form to SETF. The Q new value can be a single keyword or a list of keywords. 

289 



EDITOR OBJECT DESCRIPTIONS 

Format 

WINDOW-RENDITION window 

Arguments 

window 

An Editor window 

Return Value 

A list of keywords 

WINDOW-TRUNCATE-CHAR Function 

Returns the character used to indicate that a line is truncated. The 
default character is >. This function can be used as a place 
indicator with the SETF macro to change the truncation indicator 
character. Changing this character causes the window image to be 
recomputed if WINDOW-LINES-WRAP-Pis NIL. 

Format 

WINDOW-TRUNCATE-CHAR window 

Arguments 

window 

An Editor window 

Return Value 

A character 

WINDOW-TYPE Function 

Returns a keyword indicating the type of the window. You can change 
the type of a window by using this form with SETF. 

Format 

WINDOW-TYPE window 

290 

0 

0 

0 

0 

0 



EDITOR OBJECT DESCRIPTIONS 

Arguments 

Owindow 

0 

An Editor window 

Return Value 

:FLOATING or :ANCHORED 

WINDOW-WIDTH Function 

Returns the width of the window as an integer. This function can be 
used with the SETF macro to change the width of a window. Changing 
the value of WINDOW-WIDTH causes the "Window Modification Hook" to be 
invoked. 

Format 

WINDOW-WIDTH window 

Arguments 

owindow 

An Editor window 

Return Value 

The width of the window 

O WINDOW-WRAP-CHAR Function 

Returns the character used to indicate that the lines wrapped. The 
default character is <. This function can be used as a place 
indicator with the SETF macro to change the wrap indicator character. 
Changing this character causes the window image to be recomputed if 
WINDOW-LINES-WRAP-Pis T. 

Format 

WINDOW-WRAP-CHAR window 

Arguments 

Q window 

An Editor window 

291 



EDITOR OBJECT DESCRIPTIONS 

Return Value 

A character 0 

WINDOWP Function 

Returns T if its argument is an Editor window, and NIL if it is not. 

Format 

WINDOWP object 

Arguments 

Any LISP object 0 
object 

Return Value 

Tor NIL 

WITH-INPUT-FROM-REGION Macro O 
Makes an input stream from region and evaluates the forms as an 
implicit PROGN with the stream bound to the argument var. On exit 
from the macro, the stream is closed. 

Format 

WITH-INPUT-FROM-REGION (var region) {declaration}* {form}* 

Arguments 

var 

The variable var is bound to the input stream. 

region 

An Editor region 

Return Value 

The value of the last evaluated form 

292 

0 

0 



0 

0 

0 

0 

0 

EDITOR OBJECT DESCRIPTIONS 

WITH-MARK Macro 

Evaluates the forms of the body with the variables bound to copies of 
the specified marks. The copied marks are deleted upon exit from the 
form. 

Format 

WITH-MARK ({(var mark [type])}*) form 

Arguments 

(var mark [type}) 

forms 

Each variable is bound to a copy of the mark. The new mark will 
be of type :TEMPORARY unless otherwise specified by the type. 

A list of forms that are evaluated as an implicit progn 

Return Value 

The value of the last evaluated form 

WITH-OUTPUT-TO-MARK Macro 

Creates an output stream to mark and evaluates the forms as an 
implicit progn with the stream bound to the argument var. On exit 
from the macro, the stream is closed. 

Format 

WITH-OUTPUT-TO-MARK (var mark) {declaration}* {form}* 

Arguments 

var 

The variable that will be bound to the output stream 

mark 

An Editor mark where output from the stream will be inserted 

Return Value 

The value of the last evaluated form 

293 



EDITOR OBJECT DESCRIPTIONS 

WITH-SCREEN-UPDATE Macro 

Used to batch any changes made to the screen unti) all the specified 
forms have completed. This form is especially useful when an Editor 
command makes a large number of changes to the screen, such as 
removing and showing several windows as part of one command. No 
alterations will appear on the screen until the specified forms 
complete, at which time the screen will change to reflect the final 
configuration. 

Prompts written to the screen (by using either of the prompting 
functions or writing to the information area) will not appear on the 
screen while inside this macro. 

You may not change the screen height or width while inside this macro. 

Format 

WITH-SCREEN-UPDATE &REST {form}* 

Arguments 

form 

One or more forms to be evaluated before the screen update occurs 

Return Value 

The value of the last form executed 

WORD DELIMITER Attribute 

0 

0 

0 

Has a value of 1 for characters that separate words, 
other characters. 

ahd 0 for all Q 
Display Name Format 

Word Delimiter 

Symbol Format 

WORD-DELIMITER 

0 
294 



EDITOR OBJECT DESCRIPTIONS 

WORD-OFFSET Function 

() Updates a mark so that it points to the next word -- that is, to the 
next non-word-delimting character beyond the next word-delimiting 
character. A word-delimiting character is a character having a "Word 
Delimiter" attribute value of 1. the count value specifies the-number 
of word breaks that are to be located, going forward if positive and 
backward if negative. 

Format 

WORD-OFFSET mark count 

Arguments 

mark 

() The mark that is to be updated 

() 

() 

() 

count 

The number of word breaks that are to be located 

Return Value 

The updated mark 

WRITE CURRENT BUFFER Command 

Writes the current buffer or the buffer specified _as the optional 
argument. If the buffer is associated with a file, the resulting file 
is one with the same specification and the highest version number. 
The associated checkpoint file, if there is one, is deleted. If the 
buffer was created from a LISP object, the buffer contents are read 
(and evaluated, if the contents are a LISP function) to produce a new 
object. For example, if the buffer contained a function definition, 
the definition is changed. 

Display Name Format 

Write Current Buffer 

Function Format 

WRITE-CURRENT-BUFFER-COMMAND prefix &OPTIONAL buffer 

295 



EDITOR OBJECT DESCRIPTIONS 

Arguments 

prefix 

Ignored 

buffer 

An Editor buffer that defaults to the current buffer 

Return Value 

The pathname of the file that the buffer was written to; or the 
value read from the buffer 

WRITE-FILE-FROM-REGION Function 

Writes the specified region to a specified file. The region can begin 
or end in the middle of a line. Only the text in the region is 
written to the file. Each line in the region corresponds to a record 
in the file. 

Format 

WRITE-FILE-FROM-REGION pathname region 

Arguments 

pathname 

A pathname or namestring 

region 

An Editor region 

Return Value 

Two values: 

1. The truename of .the file written. (For an explanation of the 
truename of a file, see Common LISP: The Language). 

2. The count of the number of records written to the file. 

296 

0 

0 

0 

0 

0 



0 

0 

0 

0 

EDITOR OBJECT DESCRIPTIONS 

WRITE MODIFIED BUFFERS Command 

Performs the same operations as "Write Current Buffer" for each buffer 
containing an object (that is, a file or a LISP object) being edited. 

Display Name Format 

Write Modified Buffers 

Function Format 

WRITE-MODIFIED-BUFFERS-COMMAND prefix 

Arguments 

prefix 

Ignored 

Return Value 

NIL 

WRITE NAMED FILE Command 

Prompts for a file name if it is not supplied. 
the current Editor buffer to the file. 

Category 

:GENERAL-PROMPTING 

Display Name Format 

Write Named File 

Function Format 

The function writes 

WRITE-NAMED-FILE-COMMAND prefix .&OPTIONAL filename 

Arguments 

prefix 

Ignored 

filename 

Q A pathname, namestring, string, or stream 

297 



EDITOR OBJECT DESCRIPTIONS 

Return Value 

The pathname to which the buffer was written 

YANK Command 

copies the current region of the kill ring into the indicated buffer 
at the argument mark. The mark defaults to the current buffer point. 
If an integer prefix argument is supplied, that many copies of the 
kill-ring region are inserted. 

Display Name Format 

Yank 

Function Format 

YANK-COMMAND prefix &OPTIONAL mark 

Arguments 

prefix 

An integer or NIL 

mark 

An Editor mark that defaults to the current buffer point 

Return Value 

NIL 

YANK AT POINTER Command 

Moves the current-buffer point to the position indicated by the 
pointer and then inserts at that location the first region saved on 
the kill ring. If the pointer is beyond the end of a line, the region 
is inserted at the end of that line. If the pointer is beyond the end 
of the buffer region, the kill region is inserted at the end of the 
buffer region. 

Display Name Format 

Yank at Pointer 

298 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

EDITOR OBJECT DESCRIPTIONS 

Function Format 

YANK-AT-POINTER-COMMAND prefix 

Arguments 

prefix 

Ignored 

Return Value 

The current buffer point 

YANK PREVIOUS Command 

Rotates the kill ring forward, and copies the new current kill-ring 
region into the buffer at the argument mark. The mark defaults to the 
current buffer point. The prefix defaults to 1 and specifies how many 
copies are to be inserted (not how much to rotate the ring). 

Display Name Format 

Yank Previous 

Function Format 

YANK-PREVIOUS-COMMAND prefix &OPTIONAL mark 

Arguments 

prefix 

An integer or NIL 

mark 

An Editor mark that defaults to the current buffer point 

Return Value 

NIL 

299 



EDITOR OBJECT DESCRIPTIONS 

YANK REPLACE PREVIOUS Command 

Deletes the previously yanked region, rotates the kill ring forward, 
and copies the new current kill-ring region into the current buffer at 
the current point. The prefix defaults to 1 and specifies how many 
copies are to be inserted. 

Display Name Format 

Yank Replace Previous 

Function Format 

YANK-REPLACE-PREVIOUS-COMMAND prefix 

Arguments 

prefix 

An integer or NIL 

Return Value 

None 

300 

0 

0 

0 

0 

0 



0 APPENDIXES 

0 

-
0 



0 

0 



0 

0 

0 

0 

0 

APPENDIX A 

EDITOR OBJECTS BY CATEGORY 

This appendix lists the Editor objects 
commands, and so on -- that pertain to each 
below. The categories are the major data 
utilities provided with the Editor. 

ATTRIBUTES 
ATTRIBUTES PROVIDED WITH VAX LISP 
BUFFERS 
BUFFERS PROVIDED WITH VAX LISP 
COMM.ANDS 
COMM.ANDS PROVIDED WITH VAX LISP 
DISPLAY 
EDITOR VARIABLES 

functions, variables, 
of the categories listed 
types, subsystems, and 

EDITOR VARIABLES PROVIDED WITH VAX LISP 
ERROR SIGNALING AND DEBUGGING 
FILES 
HELP 
HOOKS 
HOOK VARIABLES PROVIDED WITH VAX LISP 
INVOKING AND EXITING THE EDITOR 
KILL RING 

- LINES 
LISP SYNTAX 
MARKS 
MISCELLANEOUS 
POINTING DEVICE 
PROMPTING AND TERMINAL INPUT 
REGIONS 
RINGS 
SEARCHING 
STRING TABLES 
STRING TABLES PROVIDED WITH VAX LISP 
STYLES 
STYLES PROVIDED WITH VAX LISP 
STYLE BINDINGS, "EDT EMULATION" STYLE 

A-1 



EDITOR OBJECTS BY CATEGORY 

STYLE BINDINGS, "EMACS" STYLE 
STYLE BINDINGS, "VAX LISP" STYLE 
TEXT OPERATIONS 
WINDOWS 

A-2 

0 

0 

0 

0 

0 



0 

0 

0 

EDITOR OBJECTS BY CATEGORY 

ATTRIBUTES 

ATTRIBUTE-NAME function 
BIND-ATTRIBUTE function 
CHARACTER-ATTRIBUTE function 
"Character Attribute Hook" Editor variable 
DEFINE-ATTRIBUTE macro 
*EDITOR-ATTRIBUTE-NAMES* variable 
FIND-ATTRIBUTE function 
LOCATE-ATTRIBUTE function 
UNBIND-ATTRIBUTE function 
WHITESPACE-AFTER-P function 
WHITESPACE-BEFORE-P function 
WHITESPACE-BETWEEN-P function 
WHITESPACE-LINE-P function 

ATTRIBUTES PROVIDED WITH VAX LISP 

"LISP Syntax" 
"Page Delimiter" 
"Print Representation" 
"Whitespace" 
"Word Delimiter" 

BUFFERS 

"Beginning of Buffer" command 
BUFFER-CHECKPOINTED function 
BUFFER-CHECKPOINTED-TIME function 
"Buffer Creation Hook" Editor variable 
BUFFER-CREATION-TIME function 
"Buffer Deletion Hook" Editor variable 

0 "Buffer Entry Hook" Editor variable 
"Buffer Exit Hook" Editor variable 
BUFFER-HIGHLIGHT-REGIONS function 

0 

BUFFE!t=-MAJOR-STYLE function 
BUFFER-MINOR-STYLE-ACTIVE function 
BUFFER-MINOR-STYLE-LIST function 
BUFFER-MODIFIED-P function 
BUFFER-NAME function 
"Buffer Name Hook" Editor variable 
BUFFER-OBJECT function 
"Buffer Object Hook" Editor variable 
BUFFER-PERMANENT function 
BUFFER-POINT function 
BUFFER-REGION function 
BUFFER-TYPE function 
BUFFER-VARIABLES function 
BUFFER-WINDOWS function 
BUFFER-WRITABLE function 

A-3 



EDITOR OBJECTS BY CATEGORY 

BUFFERS (cont.) 

BUFFER-WRITTEN-TIME f_unction 
BUFFERP function 
CHECKPOINT-BUFFER function 
CURRENT-BUFFER function 
CURRENT-BUFFER-POINT function 
"Default Buffer Variables" Editor variable 
"Default Major Style" Editor variable 
"Default Minor Styles" Editor variable 
DELETE-BUFFER function 
"Delete Current Buffer" command 
"Delete Named Buffer" command 
*EDITOR-BUFFER-NAMES* variable 
*EDITOR-DEFAULT-BUFFER* variable 
"End of Buffer" command 
FIND-BUFFER function 
"List Buffers" command 
MAKE-BUFFER function 
MAP-BUFFERS function 
"Maybe Reset Select at Pointer" command 
"Move Point and Select Region" command 
"Move Point to Pointer" command 
"Select Buff e'r" command 
"Set Select Mark" command 
"Unset Select Mark" command 

BUFFERS PROVIDED WITH VAX LISP 

"General Prompting" buffer 
"Help" buffer 

COMMANDS 

"Bind Command" command 
BIND-COMMAND function 
BIND-POINTER-COMMAND function 
CATEGORY-COMMANDS function 
COMMAND-CATEGORIES function 
COMMAND-NAME function 
*CURRENT-COMMAND-FUNCTION* variable 
DEFINE-COMMAND macro 
DEFINE-KEYBOARD-MACRO function 
*EDITOR-COMMAND-NAMES* variable 
*EDITOR-KEYBOARD-MACRO-NAMES* variable 
END-KEYBOARD-MACRO function 
ENQUEUE-EDITOR-COMMAND function 
"Execute Keyboard Macro" command 
"Execute Named Command" command 
FIND-COMMAND function 

A-4 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

EDITOR OBJECTS BY CATEGORY 

COMMANDS (cont.} 

GET-BOUND-COMMAND-FUNCTION function 
"List Key Bindings" command 
MAP-BINDINGS function 
MAKE-COMMAND function 
*PREVIOUS-COMMAND-FUNCTION* variable 
"Start Keyboard Macro" command 
"Start Named Keyboard Macro" command 
"Supply EMACS Prefix" command 
"Supply Prefix Argument" command 
UNBIND-COMMAND function 
UNBIND-POINTER-COMMAND function 

COMMANDS PROVIDED WITH VAX LISP 

"Activate Minor Style" 
"Apropos" 
"Apropos word" 
"Backward Character" 
"Backward Kill Ring" 
"Backward Page" 
"Backward Search" 
"Backward Word" 
"Beginning of Buffer" 
"Beginning of Line" 
"Beginning of Outermost Form" 
"Beginning of Paragraph" 
"Beginning of Window" 
"Bind Command" 
"Capitalize Region" 
"Capitalize Word" 
"Close Outermost Form" 
"Deactivate Minor Style" 
"Delete Current Buffer" 
"Delete Line" 
"Delete Named Buffer" 
"Delete Next Character" 
"Delete Next Word" 
"Delete Previous Character" 
"Delete Previous Word" 
"Delete Whitespace" 
"Delete Word" 
"Describe" 
"Describe Word" 
"Describe Word at Pointer" 
"Downcase Region" 
"Downcase Word" 
II Ed II 
"Edit File" 
"EDT Append" 

A-5 



EDITOR OBJECTS BY CATEGORY 

COMMANDS PROVIDED WITH VAX LISP (cont.) 

"EDT Back to Start of Line" 
"EDT Beginning of Line" 
"EDT Capitalize" 
"EDT Cut" 
"EDT Delete Character" 
"EDT Delete Line" 
"EDT Delete Previous Character" 
"EDT Delete Previous Line" 
"EDT Delete Previous Word" 
"EDT Delete to End of Line" 

EDT Delete Word" 
EDT Deselect" 
EDT End of Line" 
EDT Move Character" 
EDT Move Page" 
EDT Move Word" 
EDT Paste" 
EDT Paste at Pointer" 
EDT Query Search" 
EDT Replace" 

"EDT Scroll Window" 
"EDT Search Again" 
"EDT Select" 
"EDT Set Direction Advance" 
"EDT Set Direction Reverse" 
"EDT Special Insert" 
"EDT Substitute" 
"EDT Undelete Character" 
"EDT Undelete Line" 
"EDT Undelete Word" 
"EMACS Backward Search" 
"EMACS Forward Search" 
"End Keyboard Macro" 
"End of Buffer" 
"End of Line" 
."End of Outermost Form" 
"End of Paragraph" 
"End of Window" 
"Evaluate LISP Region" 
"Exchange Point and Select Mark" 
"Execute Keyboard Macro" 
"Execute Named Command" 
"Exit" 
"Exit Recursive Edit" 
"Forward Character" 
"Forward Kill Ring" 
"Forward Page" 
"Forward Search" 
"Forward Word" 
"Grow Window" 

A-6 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

EDITOR OBJECTS BY CATEGORY 

COMMANDS PROVIDED WITH VAX LISP (cont.) 

"Help" 
"Help on Editor Error" 
Illegal Operation" 
Indent LISP Line" 
Indent LISP Region" 
Indent outermost Form" 
Insert Buffer" 
Insert Close Faren and Match" 
Insert F~le" 
Kill Enclosing List" 
Kill Line" 
Kill Next Form" 
Kill Paragraph" 
Kill Previous Form" 
Kill Region" 
Kill Rest of List" 
Line to Top of Window" 
List Buffers" 
List Key Bindings" 
Maybe Reset Select at Pointer" 

"Move Point and Select Region" 
"Move Point to Pointer" 
"Move to Lisp Comment" 
"New Line" 
"New LISP Line" 
"Next Form" 
"Next Line" 
"Next Paragraph" 
"Next Screen" 
"Next Window" 
"Open Line" 
"Page Next Window" 
"Page Previous Window" 
"Pause" 
"Previous Form" 
"Previous Line" 
"Previous Paragraph" 
"Previous Screen" 
"Previous Window" 
"Prompt Complete String" 
"Prompt Help" 
"Prompt Read and Validate" 
"Prompt Scroll Help Window" 
"Prompt Show Alternatives" 
"Query Search Replace" 
"Quoted Insert" 
"Read File" 
"Redisplay Screen" 
"Remove Current Window" 
"Remove Other Windows" 

A-7 



EDITOR OBJECTS BY CATEGORY 

COMMANDS PROVIDED WITH VAX LISP (cont.) 

Scroll Window Down" 
Scroll Window Up" 
Select Buffer" 
Select Enclosing Form at Pointer" 
Select Outermost Form" 
Self Insert" 
Set Select Mark" 
Show Time" 
Shrink Window" 
Split Window" 
Start Keyboard Macro" 
Start Named Keyboard Macro" 
Supply EMACS Prefix" 
Supply Prefix Argument" 
Transpose Previous Characters" 
Transpose Previous Words" 
Undo Previous Yank" 

"Unset Select Mark" 
"Upcase Region" 
"Upcase Word" 
"View File" 
"What Cursor Position" 
"Write Current Buffer" 
"Write Modified Buffers" 
"Write Named File" 
"Yank" 
"Yank at Pointer" 
"Yank Previous" 
"Yank Replace Previous" 

DISPLAY 

CLEAR-INFORMATION-AREA function. 
*EDITOR-RETAIN-SCREEN-STATE* variable 
INFORMATION-AREA-HEIGHT function 
*INFORMATION-AREA-OUTPUT-STREAM* variable 
"Redisplay Screen" command 
REDISPLAY-SCREEN function 
SCREEN-HEIGHT function 
"Screen Modification Hook" Editor variable 
SCREEN-WIDTH function 
"Set Screen Height" command 
"Set Screen Width" command 
UPDATE-DISPLAY function 
WITH-SCREEN-UPDATE macro 

A-8 

0 

0 

0 

·o 



EDITOR OBJECTS BY CATEGORY 

EDITOR VARIABLES 

O BIND-VARIABLE function 
DEFINE-EDITOR-VARIABLE macro 
*EDITOR-VARIABLE-NAMES* variable 
FIND-VARIABLE function 
UNBIND-VARIABLE function 
VARIABLE-BOUNDP function 
VARIABLE-FBOUNDP function 
VARIABLE-FUNCTION function 
VARIABLE-NAME function 
VARIABLE-VALUE function 

0 

0 

0 

0 

EDITOR VARIABLES PROVIDED WITH VAX LISP 

"Anchored Window Show Limit" 
"Buffer Creation Hook" 
"Buffer Deletion Hook" 
"Buffer Entry Hook" 
Buffer Exit Hook" 
Buffer Name Hook" 
Buffer Object Hook" 
Buffer Right Margin" 
Buffer Select Mark" 
Buffer Select Region" 

"Character Attribute Hook" 
"Current Window Pointer Pattern" 
"Current Window Pointer Pattern X" 
"Current Window Pointer Pattern Y" 
"Default Buffer Variables" 
"Default Filetype Minor Styles" 
"Default Major Style" 
"Default Minor Styles" 
"Default Search Case" 
"Default LISP Object Minor Styles" 
"Default Window Label" 
"Default Window Label Edge" 
"Default Window Label Offset" 
"Default Window Label Rendition" 
"Default Window Lines Wrap" 
"Default Window Rendition" 
"Default Window Truncate Char" 
"Default Window Type" 
"Default Window Width" 
"Default Window Wrap Char" 
"Editor Entry Hook" 
"Editor Exit Hook" 
"Editor Initialization Hook" 
"Editor Pause Hook" 
"EDT Deleted Character" 
"EDT Deleted Line" 

A-9 



EDITOR OBJECTS BY CATE<.iOHY 

EDITOR VARIABLES PROVIDED WITH VAX LISP (cont.) 

"EDT Deleted Word" 
"EDT Direction Mode" 
"EDT Paste Buffer" 
"Help Text" 
"Information Area Pointer Pattern" 
"Information Area Pointer Pattern X" 
"Information Area Pointer Pattern Y" 
"Last Search Direction" 
"Last Search Pattern" 
"Last Search String" 
"LISP Comment Column" 
"LISP Evaluation Result" 
"Major Style Activation Hook" 
"Minor Style Activation Hook" 
"Noncurrent Window Pointer Pattern" 
"Noncurrent Window Pointer Pattern X" 
"Noncurrent Window Pointer Pattern Y" 
"Prompt Alternatives" 
"Prompt Alternatives Arguments" 
"Prompt Completion" 
"Prompt Completion Arguments" 
"Prompt Default" 
"Prompt Error Message" 
"Prompt Error Message Arguments" 
"Prompt Help" 
"Prompt Help Arguments" 
"Prompt Help Called" 
"Prompt Rendition Complement" 
"Prompt Rendition Set" · 
Prompt Required" 
Prompt Start" 
Prompt Validation" 
Screen Modification Hook" 
Select Region Rendition Complement" 
Select Region Rendition Set" 
Switcb Window Hook" 

"Target Column" 
"Text Overstrike Mode" 
"Window Buffer Hook" 
"Window Creation Hook" 
"Window Deletion Hook" 
"Window Modification Hook" 

ERROR SIGNALING AND DEBUGGING 

ATTENTION function 
EDITOR-ERROR function 
EDITOR-ERROR-WITH-HELP function 
*EDITOR-RETAIN-SCREEN-STATE* variable 
"Illegal Operation" command 

A-10 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

EDITOR OBJECTS BY CATEGORY 

FILES 

BUFFER-CHECKPOINTED function 
CHECKPOINT-FREQUENCY function 
"Edit File" command 
"Insert File" command 
INSERT-FILE-AT-MARK function 
"Read File" command 
"View File" command 
"Write Current Buffer" command 
WRITE-FILE-FROM-REGION function 
11 WI'ite Modified BuffeI's" command 
"Write Named File" command 

HELP 

"Apropos" command 
APROPOS-STRING-TABLE function 
"Apropos Word" command 
"Apropos Word" command 
"Describe" command 
"Describe WoI'd" command 
"Describe Word at Pointer" command 
"Editor Help" command 
EDITOR-HELP-BUFFER buffer 
"Help" buffer 
"Help" command 
"Help on Editor Error" command 
"Help Text" Editor variable 
"Prompt Complete String" command 
"Prompt Help" command 
"Prompt Scroll Help Window" command 
"Prompt Show Alternatives" command 

HOOKS 

INVOKE-HOOK function 
REVERSE-INVOKE-HOOK function 

HOOK VARIABLES PROVIDED WITH VAX LISP 

"Buffer Creation Hook" 
"Buffer Deletion Hook" 
"Buffer Entry Hook" 
"Buffer Exit Hook" 
"Buffer Name Hook" 
"BuffeI' Object Hook" 
"Character Attribute Hook" 
"Editor Entry Hook" 

A-11 



EDITOR OBJECTS BY CATEGORY 

HOOK VARIABLES PROVIDED WITH VAX LISP (cont.) 

"Editor Exit Hook" 
"Editor Initialization Hook" 
"Editor Pause Hook" 
"Major Style Activation Hook" 
"Minor Style Activation Hook" 
"Screen Modification Hook" 
"Switch Window Hook" 
"Window Buffer Hook" 
"Window Creation Hook" 
"Window Deletion Hook" 
"Window Modification Hook" 

INVOKING AND EXITING THE EDITOR 

"Ed" command 
ED function 
Editor Entry Hook" Editor variable 
Editor Exit Hook" Editor variable 
Editor Initialization Hook" Editor variable 
Editor Pause Hook" Editor variable 
Exit Editor" command 
Exit Recursive Edit" command 
NITIALIZE-EDITOR function 

"Pause Editor" command 
RETURN-FROM-EDITOR macro 

KILL RING 

Backward Kill Ring" command 
Forward Kill Ring" command 
Kill Line" command 
Kill Paragraph" command 
Kill Region" command 
Undo f>revious Yank" command 

"Yank" command 
"Yank at Pointer" command 
"Yank Previous" command 
"Yank Replace Previous" command 

LINES 

"Beginning of Line" command 
BREAK-LINE function 
"Delete Line" command 
EMPTY-LINE-P function 
"End of Line" command 
END-OF-LINE-P function 

A-12 

0 

0 

0 

0 



0 

0 

0 

0 

0 

EDITOR OBJECTS BY CATEGORY 

LINES (cont.) 

"Kill Line" command 
LINE/= function 
LINE< function 
LINE<= function 
LINE= function 
LINE> function 
LINE>= function 
LINE-BUFFER function 
LINE-CHARACTER function 
LINE-END function 
LINE-LENGTH function 
LINE-NEXT function 
LINE-OFFSET function 
LINE-PREVIOUS function 
LINE-START function 
LINE-STRING function 
LINE-TO-REGION function 
"Line to Top of Window" command 
LINEP function 
LINES-RELATED-P function 
"New Line" command 
"New LISP Line" command 
"Next Line" command 
"Open L1ne" command 
"Previous Line" command 

USP SYNTAX 

"Beginning of Outermost Form" command 
Close Outermost Form" command 
Delete Whitespace" command 
Describe Word" command 
Describe Word at Pointer" command 
End of Outermost Form" command 
Evaluate LISP Region" command 
Indent LISP Line" command 
Indent LISP Region" command 
Indent Outermost Form" command 
Insert Close Paren and Match" command 

'LISP Comment Column" Editor variable 
LISP Evaluation Result" Editor variable 
LISP Syntax" attribute 
Kill Enclosing List" command 
Kill Next Form" command 
Kill Previous Form" command 
Kill Rest of List" command 

"Move to LISP Comment" command 
"New tISP Line" command 
"Next Form" command 

A-13 



.~-------------------------·---··" -------------. 

EDITOR OBJECTS BY CATEGORY 

LISP SYNTAX (cont.) 

NEXT-LISP-FORM function 
"Previous Form" command 
PREVIOUS-LISP-FORM function 
"Select Enclosing Form at Pointer" 
"Select Outermost Form" command 

MARKS 

"Beginning of Paragraph" command 
"Beginning of Window" command 
BUFFER-END function 
BUFFER-POINT function 

command 

"Buffer Select Mark" Editor variable 
BUFFER-START function 
CHARACTER-OFFSET function 
COPY-MARK function 
CURRENT-BUFFER-POINT function 
DELETE-MARK function 
END-OF-LINE-P function 
"End of Paragraph" command 
"End of Window" command 
"Exchange Point and Select Mark" command 
FIRST-LINE-P function 
LAST-LINE-P function 
LINE-OFFSET function 
MAKE-EDITOR-STREAM-TO-MARK function 
MAKE-MARK function 
MARK-VISIBLE-P 
MARK/= function 
MARK< function 
MARK<= function 
MARK= function 
MARK> function 
MARK>= function 
MARK-CHARPOS function 
MARK-COLUMN function 
MARK-LINE function 
MARK-TYPE function 
MARK-WINDOW-POSITION function 
MARKP function 
MOVE-MARK function 
MOVE-MARK-AFTER function 
MOVE-MARK-BEFORE function 
MOVE-MARK-TO-POSITION function 
"Move to LISP Comment" command 
NEXT-CHARACTER function 
"Next Form" command 
"Next Line" command 
"Next Paragraph" command 

A-14 

0 

0 

0 

0 

0 



0 

0 

0 

0 

EDITOR OBJECTS BY CATEGORY 

MARKS (cont.) 

"Next Screen" command 
"Next Window" command 
"Page Next Window" command 
"Page Previous Window" command 
PAGE-OFFSET function 
PREVIOUS-CHARACTER function 
"Previous Form" command 
"Previous Line" command 
"Previous Paragraph" command 
"Previous Screen" command 
"Previous Window" command 
REGION-END function 
REGION-START function 
SAME-LINE-P function 
"Scroll Window Down" command 
"Scroll Window Up" command 
SHOW-MARK function 
START-OF-LINE-P function 
"What Cursor Position" command 
WINDOW-POINT function 
WITH-MARK macro 
WITH-OUTPUT-TO-MARK macro 
WORD-OFFSET function 

MISCELLANEOUS 

CANCEL-CHARACTER function 
"Show Time" command 

POINTING DEVICE 

BIND-POINTER-COMMAND function 
"Current Window Pointer Pattern" Editor variable 
"Current Window Pointer Pattern X" Editor variable 
"Current Window Pointer Pattern Y" Editor variable 
"Describe Word at Pointer" command 
"EDT Paste at Pointer" command 
GET-POINTER-STATE function 
"Information Area Pointer Pattern" Editor variable 
"Information Area Pointer Pattern X" Editor variable 
"Information Area Pointer Pattern Y" Editor variable 
"Maybe Reset Select at Pointer" command 
"Move Point and Select Region" command 
"Move Point to Pointer" command 
"Noncurrent Window Pointer Pattern" Editor variable 
"Noncurrent Window Pointer Pattern X" Editor variable 
"Noncur·rent Window Pointer Pattern Y" Edi tor variable 
POINTER-STATE-ACTION function 

A-15 



EDITOR OBJECTS BY CATEGORY 

POINTING DEVICE (cont.) 

POINTER-STATE-BUTTONS function 
POINTER-STATE-P function 
POINTER-STATE-TEXT-POSITION function 
POINTER-STATE-WINDOW-POSITION function 
"Select Enclosing Form at Pointer" command 
UNBIND-POINTER-COMMAND function 
"Yank at Pointer" command 

PROMPTING AND TERMINAL INPUT 

EDITOR-LISTEN function 
EDITOR-PROMPTING-BUFFER buffer 
EDITOR-READ-CHAR function 
EDITOR-READ-CHAR-NOHANG function 
EDITOR-UNREAD-CHAR function 
"General Prompting" buffer 
*INFORMATION-AREA-OUTPUT-STREAM* variable 
*LAST-CHARACTER-TYPED* variable 
"Prompt Alternatives" Editor variable 
"Prompt Alternatives Arguments" Editor variable 
"Prompt Complete String" command 
"Prompt Completion" Editor variable 
"Prompt Completion Arguments" Editor variable 
"Prompt De~ault" Editor variable 
"Prompt Error Message" Editor variable 
"Prompt Error Message Arguments" Editor variable 
PROMPT-FOR-INPUT function 
"Prompt Help" command 
"Prompt Help" Editor variable 
"Prompt Help Arguments" Editor variable 
"Prompt Help Called" Editor variable 

Prompt Read and Validate" command 
Prompt Rendition Complement" Editor variable 
Prompt Rendition Set" Editor variable 
Prompt Required" Editor variable 
Prompt Scroll Help Window" command 
Prompt Show Alternatives" command 
Prompt Start" Editor variable 
Prompt Validation" Editor variable 

SIMPLE-PROMPT-FOR-INPUT function 

REGIONS 

"Buffer Select Region" Editor variable 
COPY-REGION function 
COUNT-REGION function 
DELETE-AND-SAVE-REGION function 
DELETE-REGION function 

A-16 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

EDITOR OBJECTS BY CATEGORY 

REGIONS (cont.) 

HIGHLIGHT-REGION-P function 
MAKE-EDITOR-STREAM-FROM-REGION function 
MAKE-EMPTY-REGION function 
MAKE-HIGHLIGHT-REGION function 
MAKE-REGION function 
"Maybe Reset Select at Pointer" command 
"Move Point and Select Region" command 
REGION-END function 
REGION-READ-POINT function 
REGION-START function 
REGION-TO-STRING function 
REGIONP function 
REMOVE-HIGHLIGHT-REGION function 
"Select Region Rendition Complement" Editor variable 
"Select Region Rendition Set" Editor variable 
"Set Select Mark" command 
STRING-TO-REGION function 
"Unset Select Mark" command 
WITH-INPUT-FROM-REGION macro 

RINGS 

MAKE-RING function 
RING-LENGTH function 
RING-POP function 
RING-PUSH function 
RING-REF function 
RINGP function 
ROTATE-RING function 

SEARCHING 

"Backward Search" command 
"Default Search Case" Editor variable 
"EMACS Backward Search" command 
"EMACS Forward Search" command 
"Forward Search" command 
"Last Search Direction" Editor variable 
"Last Search Pattern" Editor variable 
"Last Search String" Editor variable 
LOCATE-PATTERN function 
MAKE-SEARCH-PATTERN function 
"Query Search Replace" command 
REPLACE-PATTERN function 

A-17 



EDITOR OBJECTS BY CATEGORY 

STRING TABLES 

APROPOS-STRING-TABLE function 
COMPLETE-STRING function 
FIND-AMBIGUOUS function 
GET-STRING-TABLE-VALUE function 
MAKE-STRING-TABLE function 
MAP-STRINGS function 
REMOVE-STRING-TABLE-ENTRY function 
STRING-TABLE-P function 

STRING TABLES PROVIDED WITH VAX LISP 

*EDITOR-ATTRIBUTE-NAMES* 
*EDITOR-STYLE-NAMES* 
*EDITOR-KEYBOARD-MACRO-NAMES* 
*EDITOR-COMMAND-NAMES* 
*EDITOR-BUFFER-NAMES* 
*EDITOR-VARIABLE-NAMES* 

STYLES 

"Activate Minor Style" command 
BUFFER-MAJOR-STYLE function 
BUFFER-MINOR-STYLE-ACTIVE function 
BUFFER-MINOR-STYLE-LIST function 
"Deactivate Minor Style" command 
"Default Filetype Minor Styles" Editor variable 
"Default LISP Object Minor Styles" Editor variable 
"Default Major Style" Editor variable 
"Default Minor Styles" Editor variable 
*EDITOR-STYLE-NAMES* variable 
"EDT Emulation" style 
FIND-STYLE function 
"Major Style Activation Hook" Editor variable 
MAKE-S'!'YLE macro 
"Minor Style Activation Hook" Editor variable 
STYLE-NAME function 
STYLEP function 
STYLE-VARIABLES function 
"VAX LISP" style 

STYLES PROVIDED WITH VAX LISP 

"EDT Emulation" style 
"EMACS" style 
"VAX LISP" style 

A-18 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

EDITOR OBJECTS BY CATEGORY 

STYLE BINDINGS, "EDT EMULATION" STYLE 

"Default Window Label" Editor variable 
"EDT Append" command 
"EDT Back to Start of Line" command 
"EDT Beginning of Line" command 
"EDT Change Case" command 
"EDT Cut" command 
"EDT Delete Character" command 

EDT Delete Line" command 
EDT Delete Previous Character" command 
EDT Delete Previous Line" command 
EDT Delete Previous Word" command 
EDT Delete to End of Line" command 
EDT Delete Word" command 
EDT Deleted Character" Editor variable 
EDT Deleted Line" Editor variable 
EDT Deleted Word" Editor variable 
EDT Deselect" command 
EDT Direction Mode" Editor variable 
EDT End of Line" command 
EDT Move Character" command 
EDT Move Page" command 
EDT Move Word" command 
EDT Paste" command 

"EDT Paste at Pointer" command 
"EDT Paste Buffer" Editor variable 
"EDT Query Search" command 
"EDT Replace" command 
"EDT Scroll Window" command 

EDT Search Again" command 
EDT Select" command 
EDT Set Direction Backward" command 
EDT Set Direction Forward" command 
EDT Special Insert" command 
EDT Substitute" command 
EDT Undelete Character" command 
EDT Ufidelete Line" command 

"EDT Undelete Word" command 
"Select Region Rendition Complement" Editor variable 
"Select Region Rendition Set" Editor variable 
"Word Delimiter" Editor attribute 

STYLE BINDINGS, "EMACS" STYLE 

"Apropos Word" command 
"Backward Character" command 
"EMACS Backward Search" command 
"Backward Word" command 
"Beginning of Buffer" command 
"Beginning of Line" command 

A-19 



EDITOR OBJECTS BY CATEGORY 

STYLE BINDINGS, "EMACS" STYLE (cont.) 

"Beginning of Paragraph" command 
"Beginning of Window" command 
"Capitalize Word" command 
"Default Window Label" Editor variable 
"Delete Current Buffer" command 
"Delete Next Character" command 
"Delete Previous Character" command 
"Delete Previous Word" command 
"Delete Next Word" command 
"Delete Whitespace" command 
"Describe Word" command 
"Downcase Word" command 
"Ed" command 
"Edit File" command 
"End of Buffer" command 
"End of Line" command 
'End of Paragraph" command 

End of Window" command 
Exchange Point and Select Mark" command 
Execute Keyboard Macro" command 
Execute Named Command" command 
Exit Recursive Edit" command 

'Forward Character" command 
"EMACS Forward Search" command 
"Forward Word" command 
"Grow Window" command 
"Insert File" command 
"Kill Line" command 
"Kill Paragraph" command 
"Kill Region" command 
"Line to Top of Window" command 
"List Buffers" command 
"Next Line" command 

0 

0 

0 

"Next Pa.ragraph" command Q 
"Next Screen" command 
"Next Window" command 
"New Line" command 
Open Line" command 
Page Next Window" command 
Pause Editor" command 
Previous Line" command 
Previous Paragraph" command 
Previous Screen" command 
Previous Window" command 
Query Search Replace" command 
Quoted Insert" command 

'Read File" command 
"Redisplay Screen" command 
"Remove Current Window" command 
"Remove Other Windows" command 0 

A-20 



0 

0 

0 

0 

0 

STYLE BINDINGS, "EMACS" STYLE (cont.) 

Scroll Window Down" command 
Scroll Window Up" command 
Select Buffer" command 
Select Region Rendition Complement" Editor variable 
Select Region Rendition Set" Editor variable 
Set Select Mark" command 
Unset Select Mark" command 

'Show Time" command 
"Shrink Window" command 
"Split Window" command 
"Supply EMACS Prefix" command 
"Supply Prefix Argument" command 
"Transpose Previous Characters" command 
"Transpose Previous Words" command 
"Undo Previous Yank" command 
"Upcase Word" command 
"View File" command 
"What Cursor Position" command 
"Write Current Buffer" command 
"Write Modified Buffers" command 
"Write Named File" command 
"Yank" command 
"Yank at Pointer" command 
"Yank Previous" command 
"Yank Replace Previous" command 

STYLE BINDINGS, "VAX LISP" STYLE 

"Beginning of Outermost Form" command 
"Close Outermost Form" command 
"Describe Word at Pointer" command 

End of Outermost Form" command 
Evaluate LISP Region" command· 
Indent LISP Line" command 
Indent Outermost Form" command 
Insert Close Paren and Match" command 
LISP Comment Column" Editor variable 

"LISP Evaluation Result" Editor vatiable 
"LISP Syntax" attribute 
"Move to LISP Comment" command 
"New LISP Line" command 
"Next Form" command 
"Previous Form" command 
"Select Enclosing Form at Pointer" command 
"Select Outermost Form" 'command 
"Word Delimiter" attribute 

A-21 



EDITOR OBJECTS BY CATEGORY 

TEXT OPERATIONS 

"Backward Character" command 
"Backward Page" command 
"Backward Word" command 
"Beginning of Paragraph" command 
"Beginning of Window" command 
"Buffer Right Margin" Editor variable 
"Capitalize Region" command 
"Capitalize Word" command 
DELETE-AND-SAVE-REGION function 
DELETE-CHARACTERS function 
"Delete Next Character" command 
"Delete Next Word" command 
"Delete Previous Character" command 
"Delete Previous Word" command 
DELETE-REGION function 
"Delete Word" command 
"Downcase Region" command 
"Downcase Word" command 
"End of Paragraph" command 
"Forward Character" command 
"Forward Page" command 
"Forward Word" command 
"Insert Buffer" command 
INSERT-CHARACTER function 
"Insert File" command 
INSERT-FILE-AT-MARK function 
INSERT-REGION function 
INSERT-STRING function 
"Kill Line" command 
"Kill Paragraph" command 
"Kill Region" command 
NEXT-CHARACTER function 
"Next Paragraph" command 
PREVIOUS-CHARACTER function 
"Previous Paragraph" command 
"Quotea Insert" command 
"Self Insert" command 
"Text Overstrike Mode" Editor variable 
"Transpose Previous Characters" command 
"Transpose Previous Words" command 
"Undo Previous Yank" command 
"Upcase Region" command 
"Upcase Word" command 
"Yank" command 
"Yank at Pointer" command 
"Yank Previous" command 
"Yank Replace Previous" command 

A-22 

0 

0 

0 

0 



0 

0 

0 

0 

0 

EDITOR OBJECTS BV CATEGORY 

WINDOWS 

ALTER-WINDOW-HEIGHT function 
"Anchored Window Show Limit" Editor variable 
"Beginning of Window" command 
BUFFER-HIGHLIGHT-REGIONS function 
BUFFER-WINDOWS function 
CENTER-WINDOW function 
CURRENT-WINDOW function 
"Default Window Label" Editor variable 
"Default Window Label Edge" Editor variable 
"Default Window Label Offset" Editor variable 
"Default Window Label Rendition" Editor variable 
"Default Window Lines Wrap" Editor variable 
"Default Window Rendition" Editor variable 
"Default Window Truncate Char" Editor variable 
"Default Window Type" Editor variable · 
"Default Window Width" Editor variable 
"Default Window Wrap Char" Editor variable 
DELETE-WINDOW function 
"EDT Scroll Window" command 
"End of Window" command 
"Grow Window" command 
HIGHLIGHT-REGION-P function 
"Line to Top of Window" command 
MAKE-HIGHLIGHT-REGION function 
MARK-WINDOW-POSITION function 
MAKE-WINDOW function 
MOVE-WINDOW function 
"Next Screen" command 
"Next Window" command 
NEXT-WINDOW function 
"Page Next Window" command 
"Page Previous Window" command 
"Previous Screen" command 
"Previous Window" command 
"Prompt Scroll Help window" command 
PUSH-W~NDOW function 
"Remove Current Window" command 
REMOVE-HIGHLIGHT-REGION function 
"Remove Other Windows" command 
REMOVE-WINDOW function 
SCROLL-WINDOW function 
"Scroll Window Down" command 
"Scroll Window Up" command 
SHOW-WINDOW function 
"Shrink Window" command 
"Split Window" command· 
"Switch Window Hook" Editor variable 
UPDATE-DISPLAY function 
UPDATE-WINDOW-LABEL function 
VISIBLE-WINDOWS function 

A-23 



--~-----------

WINDOWS (cont. ) 

WINDOW-BUFFER function 
"Window Buffer Hook" Editor variable 
"Window Creation Hook" Editor variable 
WINDOW-CREATION-TIME function 
"Window Deletion Hook" Editor variable 
WINDOW-DISPLAY-COLUMN function 
WINDOW-DISPLAY-END function 
WINDOW-DISPLAY-ROW function 
WINDOW-DISPLAY-START function 
WINDOW-HEIGHT function 
WINDOW-LABEL function 
WINDOW-LABEL-EDGE function 
WINDOW-LABEL-OFFSET function 
WINDOW-LABEL-RENDITION function 
WINDOW-LINES-WRAP-P function 
"Window Modification Hook" Editor variable 
WINDOW-POINT function 
WINDOW-RENDITION function 
WINDOW-TRUNCATE-CHAR function 
WINDOW-TYPE function 
WINDOW-WIDTH function 
WINDOW-WRAP-CHAR function 
WINDOWP function 

A-24 

0 

0 

0 

0 

0 



0 

APPENDIX 8 

EDITOR COMMANDS AND BINDINGS 

This appendix lists and briefly describes all the commands supplied 

Cwith the VAX LISP Editor. Key bindings, pointer bindings, and binding 
contexts are also listed where applicable. 

This appendix is identical to Table C.1 in Appendix C of the VAX 
LISP/VMS User's Guide. 

0 

0 

0 
B-1 



EDITOR COMMANDS AND BINDINGS 

Table B-1: Editor Commands and Key Bindings 

Name 

Activate Minor Style 

Apropos 

Apropos Word 

Bindlng(s) 1 

None 

None 

(:STYLE 11 VAX LISP11 ) 

!ESCAPE!? 

Description 

Prompts for the name of a minor style and then 
activates that style as a minor style in the current 
buffer 

Prompts for a string, then displays the names of 
objects of a specified type containing that string 

Displays the result of evaluating the APROPOS 
function with the word at the cursor location as the 
argument 

Backward Character :GLOBAL El Moves the cursor backward one character, or by the 
(:STYLE "EMACS") jCTRLIB! number of characters specified by the prefix argument 

Backward Kill Ring 

Backward Page 

Backward Search 

Backward Word 

Beginning of Buffer 

Beginning of Line 

Beginning of 
Outermost Form 

Beginnino of 
Paragraph 

None 

None 

None 

(:STYLE 11 EMACS11 ) 

!ESCAPE!b 

(:STYLE 11 EDT Emulation") 
!PF1 ! (§] 
(:STYLE II EMACS11 ) 

!ESCAPE!< 

(:STYLE 11 EMACS") !CTRL/A! 

(:STYLE 11 VAX LISP11 ) 

!CTRL/X! < 

(:STYLE 11 EMACS11 ) 

!ESCAPE! A 

Beginning of Window (:STYLE "EMACS") 
!ESCAPE!, 

Bind Command None 

Capitalize Region None 

Rotates the kill ring backward by one element, or 
by the number of elements specified by the prefix 
argument 

Moves the cursor to the previous page break, or to the 
preceding page break specified by the prefix argument 

Prompts for a search string, then moves the cursor to 
the beginning of the first preceding occurrence of that 
string, or to the preceding occurrence specified by the 
prefix argument 

Moves the cursor to the end of the previous word, 
or to the end of the preceding word specified by the 
prefix argument 

Moves the cursor to the beginning of the buffer 

Moves the cursor to the beginning of the current line, 
or to the beginning of the following line specified by 
the prefix argument 

Moves the cursor to the beginning of the outermost 
form currently containing It, or, If the cursor is not 
currently contained in a form, to the beginning of the 
preceding outermost form 

Moves the cursor to the beginning of the current 
paragraph 

Moves the cursor to the top of the current window 

Prompts for a command name, a key sequence to 
bind to the command, and a context In which to bind 
the key sequence, then binds the key sequence to the 
command 

Capitalizes the first letter of each word in the current 
select region 

10 Indicates nonprinting characters or pointer activity. jCTRL/D! Hold down jCTRL! while typing letter. jPFtl@J 
[J~Numerlc keypad keys. I- I !TI Arrow keys. ~Pointer button transition: obutton up; ebutton held dc,wn; 
!button pressed; f button released; lo•ol_. pointer movement with buttons in specified state. Pointer buttons 
Invoke command only when pointer cursor is in the current window. 

B-2 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

EDITOR COMMANDS AND BINDINGS 

Table B-1 (cont.) 

Name Binding(s) 1 Description 

Capitalize Word (:STYLE "EMACS11 ) Capitalizes the first letter of the word at the cursor 
!ESCAPE! c location 

Close Outermost (:STYLE 11 VAX LISP11 ) Completes the outermost LISP form by inserting 
Form !ESCAPE!] close-parentheses characters at the cursor position 

Deactivate Minor None Prompts for the name of a minor style, then 
Style deactivates that minor style in the current buffer 

Delete Current Buffer (:STYLE 11 EMACS11 ) Deletes the current buffer; for modified buffers, asks If 
!CTRLtxl ICTRLtDI the contents of the buffer should first be saved 

Delete Line None Deletes everything between the cursor and the end 
of the current line, or to the end of the following line 
specified by the prefix argument 

Delete Named Buffer None Prompts for the name of a buffer, then deletes that 
buffer; if the buffer Is modified, asks if the contents of 
the buffer should first be saved 

Delete Next (:STYLE 11 EMACS11 ) ICTRL/D! Deletes the character following the cursor, or the 
Character number of following characters specified by the prefix 

argument 

Delete Next Word (:STYLE 11 EMACS11 ) Deletes everything from the cursor position to the end 
!ESCAPE! d of the current word, or the number of following words 

specified by the prefix argument 

Delete Previous :GLOBAL I DELETE! Deletes the character preceding the cursor position, or 
Character (:STYLE "EMACS") the number of preceding characters specified by the 

!DELETE! prefix argument 

Delete Previous (:STYLE 11 EMACS11 ) Deletes everything from the cursor position to the 
Word I ESCAPE! I DELETE! beginning of the current word, or the number of 

preceding words specified by the prefix argument 

Delete Whitespace (:STYLE "EMACS") Deletes whitespace characters following the cursor 
!ESCAPE! !CTRL/DI location up to the next nonwhitespace character 

Delete Word None Deletes everything from the cursor position to the 
beginning of the next word, Including whitespace, or 
deletes the number of following words specified by the 
prefix argument 

Describe None Prompts for the name and type of an object, then 
displays a description of that object 

Describe Word (:STYLE 11 VAX LISP11 ) Calls the DESCRIBE function with the word at the 
!CTRL/?j cursor position as the argument 

Describe Word at (:STYLE 11 VAX LISP11 ) §I Calls the DESCRIBE function with the word at the 
Polnter2 pointer position as the argument 

Downcase Region None Makes all alphabetic characters In the current select 
region lower case 

Downcase Word (:STYLE 11 EMACS11 ) Makes all alphabetic characters in the word at the 
!ESCAPE! I cursor position lower case 

10 indicates nonprintlng characters or pointer activity. !CTRUD! Hold down !CTRL! while typing letter. I PF1 l@J 
Q Numeric keypad keys. B [] Arrow keys. ~Pointer button transition: obutton up; @button held down; 
!button pressed; fbutton released; lo•o!--+ pointer movement with buttons in specified state. Pointer buttons 
invoke command only when pointer cursor is in the current window. 

2Avallable only on VAXstation. 

B-3 



EDITOR COMMANDS AND BINDINGS 

Table B-1 (cont.) 

Name Binding(s) 1 

Ed (:STYLE 11 EMACS11 ) 

!CTRLIX! !CTRL/E! 

Edit File (:STYLE "EMACS11 ) 

!CTRLIX! !CTRLIV! 

EDT Append (:STYLE 11 EDT Emulation") 
[ID 

EDT Back to Start of (:STYLE 11 EDT Emulation") 
Line !CTRUH! and !BACKSPACEl4 

and !F1213 

EDT Beginning of 
Line 

EDT Change Case 

EDT Cut 

EDT Delete 
Character 

EDT Delete Line 

.! 

(:STYLE 11 EDT Emulation") 
[QI 

. (:STYLE 11 EDT Emulation") 
!PF1IOJ 

(:STYLE 11 EDT Emulation") 
[fil and !REMOVE! 3 and 
[£@ 
(:STYLE 1,1 EDT Emulation") 
Gl 

(:STYLE 11 EDT Emulation") 
!PF4! 

EDT Delete Previous -(:STYLE II EDT Emulation") 
Character !DELETE! 

EDT Delete Previous (:STYLE 11 EDT Emulation") 
Line -- !CTRL/U! 

EDT Delete Previous (:STYLE "EDT Emulation") 
Word CTRL/J and I LINEFEED!4 

and F13 3 

Description 

Prompts for a LISP object to edit and, If the object is 
a symbol, whether to edit Its function definition or Its 
value 

Prompts for the specification of a file to edit; 
completion and alternatives are available during 
your response to the prompt 

Appends the current select region to the contents of 
the paste buffer 

Moves the cursor to the beginning of the current line, 
or to the beginning of the previous line if the cursor Is 
already at the beginning of a line; or moves back the 
number of lines specified by the prefix argument 

Moves the cursor to the beginning of the next line, If 
the current direction is forward, or to the beginning of 
the current or previous line, if the current direction Is 
backward; moves by the number of lines specified by 
the prefix argument 

Changes the case (lower to upper and vice versa) of all 
characters In the select region, or, If no select region 
Is defined, of the character at the cursor position 

Deletes the current select region and replaces the 
contents of the paste buffer with It 

Deletes the character at the cursor position and stores 
it in the deleted character area; deletes the number of 
characters specified by the prefix argument . 

Deletes from the cursor position to the beginning of 
the next line and stores the deleted line In the deleted 
line area; deletes the number of lines specified by the 
prefix argument 

Deletes the character preceding the cursor and stores 
It In the deleted character area; deletes the number of 
characters specified by the prefix argument 

Deletes from the cursor position to the beginning of 
the current line or, If the cursor Is at the beginning of. 
a line, to the beginning of the previous line; stores the 
result In the deleted line area; deletes the number of 
lines specified by the prefix argument 

Deletes from the cursor position to the beginning of 
the current word. or, if the cursor is between words, to 
the beginning of the previous word; stores the result 
in the deleted word area; deletes the number of lines 
specified by the prefix argument 

10 indicates non printing characters or pointer activity. I CTRLtDI Hold down I CTRL! while typing letter. I PF1 I [QI 
GI Numeric keypad keys. !--+ I IIJ Arrow keys. [£@Pointer button transition: obutton up; ebutton held down; 
!button pressed; fbutton released;~ pointer movement with buttons in specified state. Pointer buttons 
invoke command only when pointer cursor is In the current window. 

3Key available only on LK201 keyboard. 

4Key available only on VT100 terminal. 

B-4 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

EDITOR COMMANDS AND BINDINGS 

Table B-1 (cont.) 

Name Binding(s) 1 Description 

EDT Delete to End {:STYLE 11 EDT Emulation") Deletes from the cursor position to the end of the 
of Line !PF1![fil current line or, if the cursor is at the end of a line, 

to the end of the next line; stores the result in the 
deleted line area; deletes the number of lines specified 
by the prefix argument 

EDT Delete Word {:STYLE 11 EDT Emulation") Deletes from the cursor position to the beginning of 
E] the next word; stores the result in the deleted word 

area; deletes the number of words specified by the 
prefix argument 

EDT Deselect {:STYLE "EDT Emulation") Cancels the current select region; equivalent to "Unset 
jPF1j D Select Mark" 

EDT End of Line {:STYLE II EDT Emulation") Moves the cursor to the end of the current, next, or 
[fil previous line, depending on starting cursor position 

and current direction; moves by the number of lines 
specified by the prefix argument 

EDT Move Character (:STYLE II EDT Emulation") Moves the cursor forward or backward by one 

~ character, according to the current direction; moves 
the number of characters specified by the prefix 
argument 

EDT Move Page (:STYLE 11 EDT Emulation") Moves the cursor to the preceding or following page 
IT] break, depending on the current direction; moves the 

number of pages specified by the prefix argument 

EDT Move Word (:STYLE II EDT Emulation") Moves the cursor to the beginning of the next, current, 
OJ or preceding word, depending on current direction and 

cursor starting position; moves the number of words 
specified by the prefix argument 

EDT Paste (:STYLE "EDT Inserts the contents of the paste buffer at the cursor 
Emulation") I P~1 J [ID and location 
!INSERT HERE! 

EDT Paste at (:STYLE "EDT Emulation") Inserts the contents of the .paste buffer at the pointer 
Pointer2 rn cursor location 

EDT Query Search (:STYLE II EDT Emulation") Prompts for a search string and moves the cursor to 
I PF111 PF31 and I FINDl3 the following or preceding occurrence of the string, 

depending on the current direction; moves to the 
occurrence specified by the prefix argument 

EDT Replace (:STYLE II EDT Emulation") Replaces the current select region with the contents 
j PF1 ! [fil of the paste buffer 

EDT Scroll Window (:STYLE "EDT Emulation") Scrolls the window in the direction indicated by the 
[ID current direction 

EDT Search Again (:STYLE "EDT Emulation") Searches for the next or previous occurrence of the 
!PF3j search string that was last entered, according to the 

current direction 

10 indicates nonprinting characters or pointer activity. jCTRLtDI Hold down jCTRLJ while typing letter. I PF1 J@J 
[J Numeric keypad keys. !--+ J ll] Arrow keys. ~Pointer button transition: obutton up; ebutton held down; 
!button pressed; jbutton released; !o•oJ-+ pointer movement with buttons in specified state. Pointer butto,ns 
invoke command only when pointer cursor is in the current window. 

2Available only on VAXstation. 

3Key available only on LK201 keyboard. 

B-5 



-----····-···· 

EDITOR COMMANDS AND BINDINGS 

Table B-1 (cont.) 

Name 

EDT Select 

EDT Set Direction 
Backward 

EDT Set Direction 
Forward 

EDT Special Insert 

EDT Substitute 

EDT Undelete 
Character 

EDT Undelete Line 

EDT Undelete Word 

EMACS Backward 
Search 

EMACS Forward 
Search 

Binding(s) 1 

(:STYLE "EDT Emulation") 
O and I SELECTJ3 

(:STYLE 11 EDT Emulation") 
[§] 
(:STYLE 11 EDT Emulation") 
@] 
(:STYLE II EDT Emulation") 
jPF1J@J 

(:STYLE 11 EDT Emulation") 
!PF1IIENTEAJ 

(:STYLE II EDT Emulation") 
!PF1 ! G) 
(:STYLE II EDT Emulation") 
!PF1 I IPF4l 

(:STYLE II EDT Emulation") 
!PF1JG 

Description 

Places a mark at the cursor position to indicate one 
end of a select region; equivalent to "Set Select 
Mark" 

Sets the current direction to backward 

Sets the current direction to forward 

Inserts the character whose ASCII code is specified by 
the prefix argument at the cursor position 

If the cursor is located at the beginning of the current 
search string, replaces the search string with the 
contents of the paste buffer, then finds the next 
occurrence of the search string 

Inserts the contents of the deleted character area at 
the cursor location 

Inserts the contents of the deleted line area at the 
cursor location 

Inserts the contents of the deleted word area at the 
cursor location 

(:STYLE 11 EMACS 11 ) !CTRL/RJ Searches backward for the first occurrence of the 
search string specified in the previous command; 
prompts for a search string if the previous command 
was not a searching command; searches for the 
occurrence of the search string specified by the prefix 
argument 

(:STYLE "EMACS11 ) I CTRL/\l Searches forward for the first occurrence of the search 
string specified in the previous command; prompts for 
a search string if the previous command was not a 
searching command; searches for the occurrence of 
the search string specified by the prefix argument 

End Keyboard Macro :GLOBAL I CTRLtxl ) Ends the collection of keystrokes for a keyboard macro 

End of Buffer 

End of Line 

End of Outermost 
Form 

(:STYLE 11 EDT Emulation") 
!PF1j@] 

(:STYLE II EMACS 11 ) 

!ESCAPE! > 
(:STYLE 11 EMACS11 ) !CTRL/Ej 

(:STYLE 11 VAX LISP") 
!CTAL/Xj > 

Moves the cursor to the end of the buffer 

Moves the cursor to the end of the current line, or 
forward by the number of lines specified by the prefix 
argument and then to the end of the line 

Moves the cursor- to the outermost form currently 
surrounding the cursor, or, if the cursor is between 
outermost forms, to the end of the following outermost 
form 

10 indicates nonprinting characters or pointer activity. I CTRL/Dj Hold down !CTALj while typing letter. I PF1 l@J 
[JNumeric keypad keys. EJ [] Arrow keys. ~Pointer button transition: obutton up; •button held down; 
!button pressed; jbutton released; !o•ol_. pointer movement with buttons in specified state. Pointer buttons 
invoke command only when pointer cursor is in the current window. 

3Key available only on LK201 keyboard. 

B-6 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

EDITOR COMMANDS AND BINDINGS 

Table B-1 (cont.) 

Name 

End of Paragraph 

End of Window 

Evaluate LISP 
Region 

Exchange Point and 
Select Mark 

Execute Keyboard 
Macro 

Execute Named 
Command 

Exit Editor 

Exit Recursive Edit 

Forward Character 

Forward Kill Ring 

Forward Page 

Forward Search 

Forward Word 

Grow Window 

Help 

Binding(s) 1 

(:STYLE II EMACS11 ) 

!ESCAPE! e 

(:STYLE II EMACS11 ) 

!ESCAPE!. 

(:STYLE 11 VAX LISP") 
!CTRLtxl I CTRLtAI 

(:STYLE 11 EMACS11 ) 

I CTRLtxl I CTRLtxl 

:GLOBAL I CTRLtxl I CTRLtEI 

(:STYLE 11 EMACS11 ) 

!CTRL/X! e 

:GLOBAL i CTRLIZ! and 
iD0!3 

(:STYLE 11 EDT Emulation") 
iPF1![z) 

(:STYLE II EMACS11 ) 

!ESCAPE! x 

None 

(:STYLE 11 EMACS11 ) 

!ESCAPE! !CTRLIG! 

:GLOBALE] 

(:STYLE 11 EMACS 11 ) !CTRL/FJ 

None 

Non6 

None 

(:STYLE II EMACS11 ) 

!ESCAPE! f 

(:STYLE II EMACS11 ) 

!CTRLtxi z 

:GLOBAL I PF2! and I HELPj3 

Description 

Moves the cursor to the end of the current paragraph 

Moves the cursor to the end of the text in the cur·ant 
window 

Evaluates the select region as LISP code; displays the 
result of the evaluation in the information area 

Moves the cursor to the other end of the current select 
region, and the mark delimiting the select region to 
the old cursor position; in other words, preserves the 
select region but places the cursor at the other end of 
it 

Executes the current keyboard macro once, or the 
number of times specified by the prefix argument 

Prompts for the name of a command to execute; input 
completion and alternatives are available during your 
response to the prompt 

Returns control to the LISP interpreter, discarding the 
current Editor state; asks if modified buffers should 
first be saved 

Terminates a recursive edit, or pauses the Editor if not 
doing a recursive edit 

Moves the cursor forward one character 

Rotates the kill ring forward by one element, or by the 
number of elements specified by the prefix argument 

Moves the cursor to the next page break, or to the 
following page break specified by the prefix argument 

Prompts for a search string, then moves the cursor 
forward to the end of the first occurrence of the string; 
moves the cursor to the occurrence of the string · 
specified by the prefix argument 

Moves the cursor to the beginning of the next word, 
or the beginning of the word specified by the prefix 
argument 

Increases the height of the current window by one 
row, or by the number of rows specified by the prefix 
argument 

Displays help on your current situation 

10 indicates nonprinting characters or pointer activity. !CTRL!Dl Hold down !CTRL! while typing letter. lPF1J@] 
C] Numeric keypad keys. I- I !I] Arrow keys. ~Pointer button transition: obutton up; ebutton held down; 
!button pressed; jbutton released; lo•ol-. pointer movement with buttons in specified state. Pointer buttons 
invoke command only when pointer cursor is in the current window. 

3Key available only on LK201 keyboard. 

B-7 



EDITOR COMMANDS AND BINDINGS 

Table B-1 (cont.) 

Name 

Kill Previous Form 

Kill Region 

Kill Rest of List 

Line to Top of 
Window 

List Buffers 

List Key Bindings 

Maybe Reset Select 
at Pointer2 

Move Point and 
Select Region2 

Move Point to 
Pointer2 

Move to LISP 
Comment 

New Line 

New LISP Line 

Next Form 

Binding(s) 1 

None 

(:STYLE 11 EMACS11 ) 

!CTRLtWI and~ 

None 

(:STYLE II EMACS11 ) 

!ESCAPE!! 

(:STYLE II EMACS") 
I CTRL!X! I CTRLtBI 

None 

:GLOBAL~ 

:GLOBAL~ 

:GLOBAL jeoo! 

(:STYLE 11 VAX LISP 11 ) 

jCTRL/Xj; 

:GLOBAL I RETURN! 

(:BUFFER II General 
Prompting") j LINEFEED! 

(:STYLE 11 EMACS11 ) 

!RETURN! 

(:STYLE 11 VAX LISP11 ) 

!LINEFEED! 

(:STYLE 11 VAX LISP11 ) 

jCTRL!XI. 

Description 

Deletes the LISP form immediately preceding the 
cursor and adds it to the current kill-ring region if the 
previous command was a kill-ring command, or creates 
a new kill-ring region to hold the deleted form; deletes 
the number of preceding forms specified by the prefix 
argument within the current parentheses nesting level 

Deletes the current select region and adds It to the 
current kill-ring region if the previous command was a 
kill-ring command, or creates a new kill-ring region to 
hold the deleted region 

Deletes the rest of the enclosing list and adds it to the 
current kill-ring region if the previous command was a 
kill-ring command, or creates a new kill-ring region to 
hold the deleted list fragment 

Moves the line containing the cursor to the top of the 
window 

Displays a list of all buffers 

Displays a list of all visible key bindings or of all keys 
bound in a specified context 

If the pointer cursor has not moved, cancels the select 
region that was started with ~; if the pointer cursor 
has moved since ~. does nothing 

Moves the text cursor with the pointer cursor, marking 
a select region 

Moves the text cursor to the pointer cursor· 

If there is no comment on the current line, moves 
the cursor to the comment column and inserts a 
semicolon and space; If there is a comment, moves 
the cursor to the comment 

Breaks a line at the cursor position, leaving the cursor 
at the start of the new line 

Breaks a line at the cursor position, and indents the 
new line by the appropriate amount in the context of 
the program 

Moves the cursor to the end of the next form, or 
to the end of the following form specified by the 
prefix argument; does not move outside the current 
parentheses nesting level 

10 indicates non printing characters or pointer activity. j CTRUD! Hold down j CTRL! while typing letter. j PF1 l@J 
CJ Numeric keypad keys. !--+ I [I] Arrow keys. ~Pointer button transition: obutton up; ebutton held down; 
!button pressed; jbutton released; lo•ol-+ pointer movement with buttons in specified state. Pointer buttons 
invoke command only when pointer cursor is in the current window. 

2Available only on VAXstation. 

B-8 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

EDITOR COMMANDS AND BINDINGS 

Table B-1 (cont.) 

Name 

Help on Editor Error 

Illegal Operation 

Indent LISP Line 

Indent LISP Region 

Indent Outermost 
Form 

Insert Buffer 

Insert Close Paren 
and Match 

Insert File 

Kill Enclosing List 

Kill Line 

Kill Next Form 

Kill Paragraph 

Binding(s) 1 

:GLOBAL I CTRLIX! ? 

None 

(:STYLE 11 VAX LISP 11 ) ITABI 

None 

(:STYLE 11 VAX LISP11 ) 

jCTRL/Xj !TAB! 

None 

(:STYLE 11 VAX LISP11 ) ) 

(:STYLE 11 EMACS11 ) 

I CTRLIX! I CTRL/1! 

None 

(:STYLE 11 EMACS11 ) !CTRL/KI 

None 

(:STYLE 11 EMACS11 ) 

!ESCAPE! k 

Description 

Displays information on the last Editor error that 
occurred 

Signals an Editor error; use to disable a key binding 
locally within a style or buffer 

Adjusts the current LISP line so that it is indented 
properly in the context of the program 

Adjusts the indentation of the LISP code in the current 
select region 

Indents each line In the outermost LISP form 
containing the cursor 

Prompts for a buffer name, then inserts the contents 
of the specified buffer at the cursor location 

Inserts a close-parenthesis character at the cursor 
location and highlights the corresponding open
parenthesis character 

Prompts for a file specification, then inserts the 
contents of the file at the cursor location; input 
completion and alternatives are available during your 
response to the prompt 

Deletes the LISP list that encloses the cursor and 
adds it to the current kill-ring region if the previous 
command was a kill-ring command, or creates a new 
kill-ring region to hold the deleted list; deletes the 
number of enclosing lists specified by the prefix 
argument 

Deletes the rest of the current line and adds it to the 
current kill-ring region if the previous command was 
a kill-ring command, or creates a new kill-ring region 
to hold the deleted line; deletes the number of lines 
specified by the prefix argument 

Deletes the LISP form immediately following the cursor 
and adds It to the current kill-ring region If the previous 
command was a kill-ring command, or creates a new 
kill-ring region to hold the deleted form; deletes the 
number of following forms specified by the prefix 
argument within the current parentheses nesting level 

Deletes the rest of the current paragraph and adds it 
to the current kill-ring region if the previous command 
was a kill-ring command, or creates a new kill-ring 
region to hold the deleted paragraph; deletes the 
number of paragraphs specified by the prefix argument 

10 Indicates nonprinting characters or pointer activity. ICTRL/DI Hold down ICTRL! while typing letter. I PF1 l@J 
GJ Numeric keypad keys. !-+ I [I] Arrow keys. ~Pointer button transition: obutton up; ebutton held down; 
!button pressed; fbutton released; lo•o!-+ pointer movement with buttons in specified state. Pointer buttons 
invoke command only when pointer cursor is in the current window. 

B-9 



--------------

EDITOR COMMANDS AND BINDINGS 

Table B-1 (cont.) 

Name 

Next Line 

Next Paragraph 

Next Screen 

Next Window 

Open Line 

Page Next Window 

Pause Editor 

Binding(s) 1 

:GLOBAL[] 

(:STYLE 11 EMACS11 ) ICTRL!Ni 

(:STYLE "EMACS 11 ) 

!ESCAPE! n 

:GLOBAL !NEXT SCREENj3 

:GLOBAL !CTRL/Xi ICTRL!Ni 

(:STYLE 11 EMACS11 ) 

!CTRL/XI p 

(:STYLE 11 EDT Emulation") 
! PF1 i [QJ 
(:STYLE "EMACS") 
!CTRL!Oi 

(:STYLE "EMACS11 ) 

I ESCAPE! jCTRLJVi 

:GLOBAL I CTRL/Xi I CTRL!ZI 

Description 

Moves the cursor to the next line or down by the 
number of lines specified by the prefix argument, 
keeping the cursor in the same column if possible 

Moves the cursor to the beginning of the next 
paragraph, or to the following paragraph specified 
by the prefix argument 

Moves the window down in the buffer by one screenful, 
or by as many screenfuls as are specified by the prefix 
argument 

Selects another window on the screen to be the 
current window; eventually circulates through all the 
windows on the screen 

Breaks a line at the cursor location, leaving the cursor 
at the end of the old line 

Scrolls the next window on the screen down one page; 
or, if a prefix argument is supplied, scrolls the next 
window by that many rows 

Saves the Editor state and returns control to the LISP 

(:STYLE II EMACS") I CTRL!Gi interpreter 

Previous Form 

Previous Line 

Previous Paragraph 

Previous Screen 

Previous Window 

Prompt Complete 
String 

Prompt Help 

(:STYLE 11 VAX LISP11 ) 

jCTRL/Xj, 

:GLOBAL [I] 
(:STYLE 11 EMACS11 ) !CTRL!Pi 

(:STYLE 11 EMACS11 ) 

!ESCAPE! p 

:GLOBAL I PREV SCREEN 13 
(:STYLE 11 EMACS11 ) 

!ESCAPE! v 

(:STYLE "EMACS") 
jCTRL/Xi n 

(:BUFFER "General 
Prompting") jCTRL/ i 

(:BUFFER II General 
Prompting") I PF2i 

Moves the cursor to the beginning of the previous 
form, or to the beginning of the preceding form 
specified by the prefix argument; does not move 
outside the current parentheses nesting level 

Moves the cursor to the previous line, or up by the 
number of lines specified by the prefix argument; 
keeps the cursor in the same column if possible 

Moves the cursor to the end of the previous 
paragraph, or to the end of the preceding paragraph 
specified by the prefix argument 

Moves the cursor up in the buffer by one screenful, or 
by as many screenfuls as are specified by the prefix 
argument 

Makes another window on the screen into the current 
window; eventually circulates through all windows on 
the screen 

Attempts to complete your response to a prompt, 
based on what you have typed already and the 
choices available in the situation 

Displays information on whatever is being prompted 
for 

10 indicates nonprinting characters or pointer activity. !CTRL/Dl Hold down !CTRLi while typing letter. !PF1l@J 
Q Numeric keypad keys. !-+ I[[] Arrow keys. ~Pointer button transition: obutton up; ebutton held down; 
!button pressed; f button released;~ pointer movement with buttons in specified state. Pointer buttons 
invoke command only when pointer cursor is in the current window. 

3Key available only on LK201 keyboard. 

B-10 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

EDITOR COMMANDS AND BINDINGS 

Table B-1 (cont.) 

Name 

Prompt Read and 
Validate 

Prompt Scroll Help 
Window 

Prompt Show 
Alternatives 

Query Search 
Replace 

Quoted Insert 

Read File 

Redisplay Screen 

Remove Current 
Window 

Remove Other 
Windows 

Scroll Window Down 

Scroll Window Up 

Select Buffer 

Select Enclosing 
Form at Pointer 

Select Outermost 
Form 

Self Insert 

Set Screen Height 

Binding(s) 1 

(:BUFFER "General 
Prolpting" )I! RETURN! 
and ENTER 

(:BUFFER II General 
Prompting") j CTRLIV! 

(:BUFFER "General 
Prompting") I PF 111 PF2 ! 

(:STYLE 11 EMACS 11 ) 

jESCAPE! q 

:GLOBAL ,....,, c=T=R-L/-,Xj \ 

(:STYLE 11 EMACS 11 ) 

!CTRLtXI q 

(:STYLE 11 EMACS 11 ) 

jCTAL/Xj !CTALIAI 

(:STYLE II EDT Emulation") 
jCTALIW! 

(:STYLE 11 EMACS 11 ) jCTRLIL! 

:GLOBAL I CTRL/Xj I CTRL/Rj 

(:STYLE II EMACS") 
jCTRL/Xj d 

(:STYLE 11 EMACS 11 ) 

jCTRL/Xj 1 

Description 

Used to terminate prompt Input 

Scrolls the Help window down while another buffer 
is current; supplied to allow you to scroll the Help 
window while responding to a prompt 

Displays a list of alternatives that can be entered in 
response to the current prompt, based on what you 
have typed already 

Prompts for a search string and a replacement; offers 
a number of options at each replacement opportunity 

Inserts the next character typed at the cursor location 
without Editor interpretation 

Prompts for a file specification, then replaces the 
contents of the current buffer with the file; if the 
current buffer is modified, prompts for confirmation 

Erases and redisplays everything on the screen 

Removes the current window from the screen; does 
not delete the associated buffer 

Removes all windows but the current window from the 
screen 

(:STYLE "EMACS 11 ) j CTRL/Zj Scrolls the current window down in the buffer by one 
row, or by the number of rows specified by the prefix 
argument 

(:STYLE II EMACS 11 ) 

!ESCAPE! z 

(:STYLE II EMACS 11 ) 

jCTRLIX! b 

(:STYLE 11 VAX LISP11 ) ~ 

(:STYLE 11 VAX LISP11 ) 

!CTALIX!!CTRL/ I 
:GLOBAL All graphic 
characters 

None 

Scrolls the current window up in the buffer by one 
row, or by the number of rows specified by the prefix 
argument 

Prompts for a buffer name, then makes that buffer the 
current buffer; creates a new buffer if necessary 

Places the form enclosing the cursor in a select 
region; if the cursor is already in a select region, 
expands the region to the next outermost form 

Makes the outermost LISP form containing the cursor 
into a select region 

Inserts the last character typed at the cursor location 

Sets the screen height to the number of rows specified 
by the prefix argument; prompts for height if no prefix 
argument is defined 

10 indicates nonprinting characters or pointer activity. !CTRL/Dj Hold down jCTRLj while typing letter. jPF1,j@) 
[J Numeric keypad keys. B (I] Arrow keys. ~Pointer button transition: obutton up; sbutton held down; 
l button pressed; t button released; !o•o I- pointer movement with buttons in specified state. Pointer buttons 
invoke command only when pointer cursor is in the current window. 

B-11 



------ - - -- . -- -----

EDITOR COMMANDS AND BINDINGS 

Table B-1 (cont.) 

Name Binding(s), Description 

Set Screen Width None Sets the screen width to the number of columns 
specified by the prefix argument; prompts for the width 
if no prefix argument is defined 

Set Select Mark (:STYLE II EDT Emulation") Places a mark at the cursor position to indicate one 

0 end of a select region 

(:STYLE 11 EMACS11 ) ICTRL/ I 

Show Time (:STYLE II EMACS11 ) Displays the time and date in the information area 
!CTRLIXI ICTRLIT! 

Shrink Window (:STYLE II EMACS") Shrinks the current window by one row, or by the 
I CTRLIXI I CTRLIZI number of rows specified by the prefix argument 

Split Window (:STYLE II EMACS11 ) Splits the current window Into two identical windows 
ICTRLIXI 2 

Start Keyboard :GLOBAL I CTRLIXi ( Starts collecting keystrokes for a keyboard macro, 
Macro replacing any unnamed keyboard macro that already 

exists 

Start Named None Prompts for a name, then starts collecting keystrokes 
Keyboard Macro for a keyboard macro; the resulting keyboard macro 

is catalogued under the name you give and can be 
treated as a command 

Supply EMACS (:STYLE 11 EMACS11 ) !CTRLIUI Sets the prefix argument to four, if no prefix argument 
Prefix was defined, or to four times Its former value, if a 

prefix argument was defined 

Supply Prefix (:STYLE "EDT Emulation") Prompts for a prefix argument; If a prefix argument Is 
Argument IPF1 II PF1 I already defined, multiplies It by the number you enter 

(:STYLE II EMACS11 ) 

!ESCAPE! !CTRLIUI 

Transpose Previous (:STYLE 11 EMACS 11 ) !CTRLITi Transposes the two characters preceding the cursor 
Characters 

Transpose Previous (:STYLE 11 EMACS11 ) Transposes the words at and preceding the cursor 
Words !ESCAPE! t 

Undo Previous Yank (:STYLE II EMACS11 ) Deletes the previously yanked region without pushing 
!ESCAPE! ICTRLIW! it onto the kill ring; more generally, deletes the select 

region without pushing It onto the kill ring 

Unset Select Mark (:STYLE 11 EDT Emulation") Cancels the current select region 
!PF1iQ 

(:STYLE II EMACS11 ) 

!ESCAPEi!CTRL/ I 
Upcase Region None Changes all alphabetic characters in the current select 

region to upper case 

Upcase Word (:STYLE 11 EMACS11 ) Changes all alphabetic characters in the word at the 
!ESCAPE! u cursor location to upper case 

View File (:STYLE 11 EMACS11 ) Prompts for a file specification, then reads the 
!CTRLIX! !CTRLIF! specified file Into a read-only buffer 

10 indicates nonprinting characters or pointer activity. !CTRLID! Hold down !CTRL! while typing letter. IPF1!'[Q) 
Q Numeric keypad keys. I- I [I] Arrow keys. ~Pointer button transition: obutton up; ebutton held down; 
! button pressed; t button released; ~ pointer movement with buttons in specified state. Pointer buttons 
invoke command only when pointer cursor is in the current window. 

B-12 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

EDITOR COMMANDS AND BINDINGS 

Table B-1 (cont.) 

Name 

What Cursor Position 

Write Current Buffer 

Write Modified 
Buffers 

Write Named File 

Yank 

Yank at Pointer2 

Yank Previous 

Yank Replace 
Previous 

Binding(s) 1 

(:STYLE II EMACS") 
JCTRL/XJ = 

(:STYLE "EMACS") 
JCTRL/XJ s 

(:STYLE "EMACS11 ) 

I CTRL/XJ I CTRL/M I 

(:STYLE "EMACS") 
JCTRL/X! JCTRL/WI 

(:STYLE 11 EMACS11 ) JCTRL/YJ 

(:STYLE II EMACS11 ) rn 
(:STYLE 11 EMACS11 ) 

JESCAPEI y 

(:STYLE II EMACS") 
I ESCAPE! I CTRL/YI 

Description 

Displays Information about the cursor location 

Writes out the current buffer; creates a new file 
version, or updates the LISP symbol whose function or 
value slot is being edited 

Performs the "Write Current Buffer" operation for each 
buffer that has been modified 

Prompts for a file specification, then creates a file 
having that specification from the contents of the 
current buffer 

Inserts the current kill-ring region at the cursor 
location; inserts as many copies as are specified 
by the prefix argument 

Inserts the current kill-ring region at the pointer cursor 
location 

Rotates the kill ring forward, then inserts the new 
current kill-ring region at the cursor location; inserts as 
many copies as are specified by the prefix argument 

Deletes the previously yanked region, rotates the kill 
ring forward, and inserts the new current kill-ring region 
at the cursor location; inserts as many copies as are 
specified by the prefix argument 

10 indicates nonprinting characters or pointer activity. JCTRL/DI Hold down JCTRL! while typing letter. JPF1j@] 
Q Numeric keypad keys. J-+ i [I] Arrow keys. ffi!Pointer· button transition: obutton up; ebutton held down; 
!button pressed; tbutton released; Jo•oi-+ pointer movement with buttons in specified state. Pointer buttons 
invoke command only when pointer cursor is in the current window. 

2Available only on VAXstation. 

B-13 



~·-·--···---

0 

0 

0 

0 



0 

APPENDIX C 

BOUND KEYS AND KEY SEQUENCES 

This appendix lists all the keys and key sequences that are bound to O?mm~nds in the VAX LISP Editor, along with the context in which each 
1nd1ng occurs. 

If a key or key sequence is bound in more than one context, all but 
one of the bindings are "shadowed" or inaccessible. The Editor 
searches through the contexts in the following order and accepts the 
first binding it encounters: 

0 
e Current buffer 

• Minor styles active in the current buffer, beginning with the 
most recently activated 

• Major style active in the current buffer 

• Global Editor context 

This appendix is identical to Table C.2 in Appendix C of the VAX 
orSP/VMS user's Guide. 

Table C-1: Editor Key Bindings 

Key(s) Context and Command 

CTRL/SPACE 

OTRL/A 

CTRL/B 

Single Keys 

(:BUFFER "General Prompting") Prompt Complete 
String 

(:STYLE "EMACS") Set Select Mark 

(:STYLE "EMACS") Beginning of Line 

(: STYLE "EMACS.") Backward Character 

C-1 



Table C-1 

Key(s) 

CTRL/D 

CTRL/E 

CTRL/F 

CTRL/G 

CTRL/H or 
BACKSPACE 

TAB or 
CTRL/I 

CTRL/J or 
LINEFEED 

CTRL/K 

CTRL/L 

RETURN 
or CTRL/M 

CTRL/N 

CTRL/0 

CTRL/P 

CTRL/R .... 

CTRL/T 

CTRL/U 

CTRL/V 

CTRL/W 

CTRL/Y 

(cont.) 

BOUND KEYS AND KEY SEQUENCES 

Context and Command 

(: STYLE "EMACS") Delete Next Character 

(: STYLE "EMACS") End of Line 

(: STYLE "EMACS") Forward Character 

(: STYLE "EMACS") Pause Editor 

(: STYLE "EDT Emulation") EDT Back to Start 

(:STYLE "VAX LISP") Indent LISP Line 

(:BUFFER "General Prompting") New Line 
(:STYLE "VAX LISP") New LISP Line 

of Line 

(:STYLE "EDT Emulation") EDT Delete Previous Word 

(:STYLE "EMACS") Kill Line 

(:STYLE "EMACS") Redisplay Screen 

0 

0 

(:BUFFER "General Prompting") Prompt Read and Q 
Validate 

(:STYLE "EMACS") New Line 
:GLOBAL New Line 

(:STYLE "EMACS") Next Line 

(: STYLE "EMACS") Open Line 

(: STYLE "EMACS") Previous 

(: STYLE "EMACS") Backward 

Line 

Search 

(: STYLE "EMACS") Transpose Previous 

(: STYLE "EMACS") Supply. EMACS Prefix 

Characters 

(:STYLE "EDT Emulation") EDT Delete Previous Line 

(:BUFFER "General Prompting") Prompt Scroll Help 
Window 

(:STYLE "EMACS") Next Screen 

(:STYLE "EMACS") Kill Region 
(:STYLE "EDT Emulation") Redisplay Screen 

(:STYLE "EMACS") Yank 

C-2 

0 

0 



Table C-1 (cont.) 

C.ttey( s) 

CTRL/Z 

CTRL/\ 

CTRL/? 

DELETE 
or <XJ 

Okeypad 

keypad 

keypad 

keypad 

okeypad 

keypad 

keypad 

keypad 

okeypad 

keypad 

keypad 

keypad 

keypad 

keypad 

keypad 

okeypad 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

. 
ENTER 

, 

-
PF2 

PF3 

BOUND KEYS AND KEY SEQUENCES 

Context and Command 

(:STYLE "EMACS") Scroll Window Down 
:GLOBAL Execute Named Command 

(:STYLE "EMACS") EMACS Forward Search 

(:STYLE "VAX LISP") Describe Word 

(:STYLE "EMACS") Delete Previous Character 
(:STYLE "EDT Emulation") Delete Previous Character 
:GLOBAL Delete Previous Character 

(:STYLE "VAX LISP") Insert Close Faren and Match 

(:STYLE "EDT Emulation") EDT Beginning of Line 

(:STYLE "EDT Emulation") EDT Move Word 

(: STYLE "EDT Emulation") EDT End of Line 

(: STYLE "EDT Emulation") EDT Move Character 

(: STYLE "EDT Emulation") EDT Set Direction Forward 

(:STYLE "EDT Emulation") EDT Set Direction 
Backward 

(: STYLE "EDT Emulation") EDT Cut 

(: STYLE "EDT Emulation") EDT Move Page 

(: STYLE "EDT Emulation") EDT Scroll Window 

(: STYLE "EDT Emulation") EDT Append 

(:STYLE "EDT Emulation") Set Select Mark 

(:BUFFER "General Prompting") Prompt Read and 
Validate 

(: STYLE "EDT Emulation") EDT Delete Character 

(: STYLE "EDT Emulation") EDT Delete Word 

(:BUFFER "General Prompting") Prompt Help 
(:STYLE "EDT Emulation") Help 
:GLOBAL Help 

(: STYLE "EDT Emulation") EDT Search Again 

C-3 



Table C-1 (cont.) 

Key(s) 

keypad PF4 

Up arrow 

Down arrow 

Right arrow 

Left arrow 

All graphic 
characters 

F12 

F13 

HELP 

DO 

FIND 

INSERT HERE 

REMOVE 

SELECT 

PREV SCREEN 

NEXT S-CREEN 

--- -- ------- - -------------

BOUND KEYS AND KEY SEQUENCES 

Context and Command 0 
(:STYLE "EDT Emulation") EDT Delete Line 

:GLOBAL Previous Line 

:GLOBAL Next Line 

:GLOBAL Forward Character 

:GLOBAL Backward Character 

:GLOBAL Self Insert 

Single Keys -- LK201 Keyboard Only 0 
(:STYLE "EDT Emulation") EDT Back to Start of Line 

(:STYLE "EDT Emulation") EDT Delete Previous Word 

:GLOBAL Help 

:GLOBAL Execute Named Command 

(: STYLE "EDT Emulation") EDT Query Search 0 
(: STYLE "EDT Emulation") EDT Paste 

(: STYLE "EDT Emulation") EDT Cut 

(:STYLE "EDT Emulation") EDT Select 

:GLOBAL Previous Screen 0 
:GLOBAL Next Screen 

Two-Key Sequences Starting with CTRL/X 

CTRL/X CTRL/SPACE (: STYLE "VAX LISP") Sel_ect Outermost Form 

CTRL/X CTRL/A (:STYLE "VAX LISP") Evaluate LISP Region 

CTRL/X CTRL/B (.:STYLE "EMACS") Li st Buffers 

CTRL/X CTRL/D (:STYLE "EMACS") Delete Current Buffer 

CTRL/X CTRL/E (:STYLE "EMACS") Ed 
:GLOBAL Execute Keyboard Macro -o 

C-4 



0 

0 

0 

0 

0 

Table C-1 (cont.) 

Key(s) 

CTRL/X CTRL/F 

CTRL/X TAB 
or 
CTRL/X CTRL/I 

CTRL/X RETURN 
or 
CTRL/X CTRL/M 

CTRL/X CTRL/N 

CTRL/X CTRL/R 

CTRL/X CTRL/T 

CTRL/X CTRL/V 

CTRL/X CTRL/W 

CTRL/X CTRL/X 

CTRL/X CTRL/Z 

CTRL/X 

CTRL/X 

CTRL/X, 

CTRL/X. 

CTRL/X 1 

CTRL/X 2 

CTRL/X 

CTRL/X < 

CTRL/X > 

CTRL/X = 

C'l'RL/X? 

BOUND KEYS AND KEY SEQUENCES 

Context and Command 

(:STYLE "EMACS") View File 

(: STYLE "EMACS") Insert File 
(:STYLE "VAX LISP") Indent Outermost Form 

(:STYLE "EMACS") Write Modified Buffers 

:GLOBAL Next Window 

(:STYLE "EMACS") Read File 
:GLOBAL Remove Current Window 

(:STYLE "EMACS") Show Time 

(:STYLE "EMACS") Edit File 

(:STYLE "EMACS") Write Named File 

(:STYLE "EMACS") Exchange Point and Select Mark 

(:STYLE "EMACS") Shrink Window 
:GLOBAL Pause Editor 

:GLOBAL Start Keyboard Macro 

:GLOBAL End Keyboard Macro 

(:STYLE "VAX LISP") Previous Form 

(:STYLE "VAX LISP") Next Form 

(:STYLE "EMACS") Remove Other Windows 

(:STYLE "EMACS") Split Window 

(:STYLE "VAX LISP") Move to LISP Comment 

(:STYLE "VAX LISP") Beginning of Outermost Form 

(:STYLE "VAX LISP") End of Outermost Form 

(:STYLE "EMACS") What Cursor Position 

:GLOBAL Help on Editor Error 

C-5 



---- ----- ----- ·------------

BOUND KEYS AND KEY SEQUENCES 

Table C-1 (cont.) 

Key(s) Context and Command 0 
CTRL/X \ :GLOBAL Quoted Insert 

CTRL/X b (:STYLE "EMACS") Select Buffer 

CTRL/X d (:STYLE "EMACS") Remove Current Window 

CTRL/X e :GLOBAL Execute Keyboard Macro 

CTRL/X n (:STYLE "EMACS") Previous Window 

CTRL/X p (:STYLE "EMACS") Next Window 

CTRL/X q (:STYLE "EMACS") Quoted Insert 

CTRL/X s (:STYLE "EMACS") Write Current Buffer 0 
CTRL/X z (:STYLE "EMACS") Grow Window 

Two-Key Sequences Starting with ESCAPE 

ESCAPE CTRL/SPACE (:STYLE "EMACS") Unset Select Mark 

ESCAPE CTRL/D (:STYLE "EMACS") Delete Whitespace 0 
ESCAPE CTRL/G (:STYLE "EMACS") Exit Recursive Edit 

ESCAPE CTRL/U (:STYLE "EMACS") Supply Prefix Argument 

ESCAPE CTRL/V (:STYLE "EMACS") Page Next Window 

ESCAPE CTRL/W (:STYLE "EMACS") Undo Previous Yank 

ESCAPE CTRL/Y ..,. (:STYLE "EMACS") Yank Previous Replace 0 
ESCAPE (:STYLE "EMACS") Line to Top of Window 

ESCAPE, (:STYLE "EMACS") Beginning of Window 

ESCAPE. (:STYLE "EMACS") End of Window 

ESCAPE< (:STYLE "EMACS") Beginning of Buffer 

ESCAPE> (:STYLE "EMACS") End of Buffer 

ESCAPE? (:STYLE "VAX LISP") Apropos Word 

ESCAPE ( :STYLE "VAX LISP") Close Oute.rmost Form 0 
c-6 



----- -- -----· 

Table C-1 (cont.) 

Q Key(s) 

ESCAPE a 

ESCAPE b 

ESCAPE c 

ESCAPE d 

ESCAPE e 

ESCAPE f 

ESCAPE k 

O ESCAPE l 

ESCAPE n 

ESCAPE p 

ESCAPE q 

OESCAPE t 

ESCAPE u 

ESCAPE v 

ESCAPE x 

ESCAPE y 

OESCAPE z 

ESCAPE DELETE 
or 
ESCAPE <X] 

BOUND KEYS AND KEY SEQUENCES 

Context and Command 

(:STYLE "EMACS") Beginning of Paragraph 

(:STYLE "EMACS") Backward Word 

(:STYLE "EMACS") Capitalize Word 

(:STYLE "EMACS") Delete Next Word 

(:STYLE "EMACS") End of Paragraph 

(:STYLE "EMACS") Forward word 

(:STYLE "EMACS") Kill Paragraph 

(:STYLE "EMACS") Downcase Word 

(:STYLE "EMACS") Next Paragraph 

(:STYLE "EMACS") Previous Paragraph 

(:STYLE "EMACS") Query Search Replace 

(:STYLE "EMACS") Transpose Previous Words 

(:STYLE "EMACS") Upcase Word 

(:STYLE "EMACS") Previous Screen 

(:STYLE "EMACS") Execute Named Command 

(:STYLE "EMACS") Yank Previous 

(:STYLE "EMACS") Scroll Window Up 

(:STYLE "EMACS") Delete Previous Word 

Two-Key Sequences Starting with Keypad PF1 

keypad PF1 0 (:STYLE "EDT Emulation") Open Line 

keypad PF1 1 (: STYLE "EDT Emulation") EDT Change Case 

keypad PF1 2 (: STYLE "EDT Emulation") EDT Delete to End 

ok~ypad PF1 3 (: STYLE "EDT Emulation") EDT Special Insert 

C-7 

of Line 
' 



BOUND KEYS AND KEY SEQUENCES 

Table C-1 (cont.) 

Key(s) Context and Command 0 
keypad PF1 4 (: STYLE "EDT Emulation") End of Buffer 

keypad PF1 5 (: STYLE "EDT Emuli:ition") Beginning of Buffer 

keypad PFl 6 (:STYLE "EDT Emulation") EDT Paste 

keypad PF1 7 (: STYLE "EDT Emulation") Execute Named Command 

keypad PF1 9 (: STYLE "EDT Emulation") EDT Replace 

keypad PFl . (:STYLE "EDT Emulation") Unset Select Mark 

keypad PFl ENTER (: STYLE "EDT Emulation") EDT Substitute 

0 keypad PFl (:STYLE "EDT Emulation") EDT Undelete Character , 

keypad PFl - (:STYLE "EDT Emulation") EDT Undelete Word 

keypad PF1 PFl (:STYLE "EDT Emulation") Supply Prefix Argument 

keypad PFl PF3 .(:BUFFER "General Prompting") Prompt Show 
Alternatives 

0 keypad PFl PF3 (: STYLE "EDT Emulation") EDT _Query Searc}:l 

keypad PFl PF4 (:STYLE "EDT Emulation") EDT Undelete Line 

0 

0 
C-8 



0 

0 

0 

0 

0 

APPENDIX D 

FUNCTION KEYS AND KEYPAD KEYS 

This appendix provides information needed to specify the function keys 
and keypad keys on DIGITAL keyboards in LISP code. The table below 
lists the actual character sequence generated by each function key and 
keypad key. 

You can include these character sequences in a LISP sequence (vector, 
list, or string) and pass the LISP sequence as the key-sequence 
argument in a call to BIND-COMMAND. 

This list is identical to Table 3-4 of the VAX LISP/VMS User's Guide. 

Table 0-1: Characters Generated by Keys 

Key Characters Generated 

Numeric Keypad Keys (LK201 and VT100) 

keypad 0 #\ESCAPE #\.0 #\p 
keypad 1 #\.ESCAPE #\.0 #\.q 
keypad 2 #\.ESCAPE #\.0 #\.r 
keypaa-- 3 #\.ESCAPE #\0 #\s 
keypad 4 #\ESCAPE #\0 #\t 
keypad 5 #\ESCAPE #\.0 #\.U 
keypad 6 #\ESCAPE #\0 #\v 
keypad 7 #\ESCAPE #\0 #\w 
keypad 8 #\ESCAPE #\0 #\x 
keypad 9 #\ESCAPE #\0 #\y 
keypad - #\ESCAPE #\0 #\m 
keypad, #\ESCAPE #\0 #\1 
keypad . #\ESCAPE #\0 #\n 
keypad ENTER #\ESCAPE #\0 #\M 
keypad PFl #\ESCAPE #\0 #\P 
keypad PF2 #\ESCAPE #\0 #\Q 
keypad PF3 #\ESCAPE #\0 #\R 
keypad PF4 #\ESCAPE #\0 #\S 

D-1 



- --- -·-- -----· -- ----

FUNCTION KEYS AND KEYPAD KEY~ 

Table D-1 ( cont. ) 

Key Characters Generated 0 
Arrow Keys (LK201 and VT100) 

Up Arrow #\ESCAPE #\[ #\A 
Down Arrow #\ESCAPE #\[ #\B 
Right Arrow #\ESCAPE #\[ #\C 
Left Arrow #\ESCAPE #\[ #\D 

Function, HELP, and DO keys (LK201) 

F6 #\ESCAPE #\[ #\1 #\7 #\-
F7 #\ESCAPE #\[ #\1 #\8 #\-
F8 #\ESCAPE #\[ #\1 #\9 #\-
F9 #\ESCAPE #\[ #\2 #\0 #\- 0 F10 #\ESCAPE #\[ #\2 #\1 #\-
F11 #\ESCAPE #\[ #\2 #\3 #\-
F12 #\ESCAPE #\[ #\2 #\4 #\-
F13 #\ESCAPE #\[ #\2 #\5 #\-
F14 #\ESCAPE #\[ #\2 #\6 #\-
HELP (F15) #\ESCAPE #\[ #\2 #\8 #\-
DO (F16) #\ESCAPE #\[ #\2 #\9 #\-
F17 #\ESCAPE #\[ #\3 #\1 #\-
F18 #\ESCAPE #\[ #\3 #\2 #\-

0 F19 #\ESCAPE #\[ #\3 #\3 #\-
F20 #\ESCAPE #\[ #\3 #\4 #\-

Editing Keys (LK201) 

FIND (El) #\ESCAPE #\[ #\1 #\-
INSERT HERE (E2) #\ESCAPE #\[ #\2 #\-
REMOVE (E3) #\ESCAPE #\[ #\3 #\-
SELECT (E4) #\ESCAPE #\[ #\4 #\-

0 PREV SCREEN (E5) #\ESCAPE #\[. #\5 #\-
NEXT SCREEN (E6) #\ESCAPE #\[ #\6 #\-

0 
D-2 



0 

0 INDEX 

0 

0 

0 



0 

0 

0 

0 

0 



0 

0 

INDEX 

This index covers Parts I, II, and III, and Appendix A. Page numbers 
appear in the following forms: 

c-n (for example, 2-13) Refers to a chapter and page in Part I 

n (for example, 25) Refers to a page in Part II or III 

A-n (for example, A-22) Refers to a page in Appendix A 

Note that the pages in Parts II and III are numbered sequentially. 

-A-

"Activate Minor Style" command, 
43 

a definition, 6-8 
ALTER-WINDOW-HEIGHT function, 43 

using, 5-25 

"Beginning of Line" command, 50 
"Beginning of Outermost Form" 

command, 51 
"Beginning of Paragraph" command, 

51 
"Beginning of Window" command, 52 

a definition, 5-6 

0 "Anchored Window Show Limit" 
Editor variable, 44 

using, 1-3, 5-29, 6-13 

"Bind Command" command, 53 
BIND-ATTRIBUTE function, 53 

using, 6-18 
"Apropos Word" command, 46 
"Apropos" command, 44 
APROPOS-STRING-TABLE function, 45 
ATTENTION function, 46 

using, 2-9 
ATTRIBUTE-NAME function, 47 

O Attributes, 4-13, 2 
See also Searching through text 
binding, 6-15, 6-17 

0 

crea-ting, 6-19 
provided with VAX LISP, A-3 
referencing, 1-14 
related functions and variables, 

A-3 
setting values for, 6-15, 6-17 

-B-

"Backward Character" command, 47 
"Backward Kill Ring" command, 48 
"Backward Page" command, 48 
"Backward Search" command, 49 
"Backward Word" command, 49 
"Beginning of Buffer" command, 50 

BIND-COMMAND function, 54 
command argument, 3-3 
context argument, 3-6 
key-sequence argument, 3-4 
package location, 1-15 
using, 1-4, 3-2, 6-24 

BIND-POINTER-COMMAND function, 55 
:BUTTON-STATE argument, 3-11 
package location, 3-9 
pointer-action argument, 3-10 
using, 3-9 

BIND-VARIABLE function, 56 
using, 6-13 

Bindings 
See also Commands, Attributes, 

and Editor variables 
finding attribute bindings and 

values, 6-15 
finding Editor variable 

bindings, 6-11 
finding key bindings, 6-9 
in "EDT Emulation" style, A-19 
in "EMACS" style, A-19 
in "VAX LISP" style, A-21 

Index-1 



INDEX 

BREAK-LINE function, 57 
"Buffer Creation Hook" Editor 

variable, 59 
"Buffer Deletion Hook" Editor 

variable, 59 
"Buffer Entry Hook" Editor 

variable, 60 
"Buffer Exit Hook" Editor 

variable, 60 
"Buffer Name Hook" Editor 

variable, 63 
"Buffer Object Hook" Editor 

variable, 64 
Buffer point 

See Buffers 
"Buffer Right Margin" Editor 

variable, 66 
"Buffer Select Mark" Editor 

variable, 66 
"Buffer Select Region" Editor 

variable, 66 
BUFFER-CHECKPOINTED function, 58 

using, 6 
BUFFER-CHECKPOINTED-TIME function, 

58 
BUFFER-CREATION-TIME function, 59 
BUFFER-END function, 60 
BUFFER-HIGHLIGHT-REGIONS function, 

61 
BUFFER-MAJOR-STYLE function, 61 

using, 6-8 
BUFFER-MINOR-STYLE-ACTIVE 

function, 62 
using, 6-8 

BUFFER-MINOR-STYLE-LIST function, 
62 

using, 6-8 
BUFFER'"-MODIFIED-P function, 63 
BUFFER-NAME function, 63 

using, 5-16 
BUFFER-OBJECT function, 64 
BUFFER-PERMANENT function, 64 
BUFFER-POINT function, 65 
BUFFER-REGION function, 65 

using, 4-8 
BUFFER-START function, 67 
BUFFER-TYPE function, 67 
BUFFER-VARIABLES function, 68 
BUFFER-WINDOWS function, 68 

using, 5-3 
BUFFER-WRITABLE function, 69 
BUFFER-WRITTEN-TIME function, 69 

BUFFERP function, 70 
Buffers, 4 

See also Regions and Styles 
as a binding context, 1-7, 3-8 
buffer point, 4-2, 4 
creating, 6-4 
current buffer, 4 
making windows onto, 5-30 
provided with VAX LISP, A-4 
related functions, commands, 

and variables, A-3 

-c-

CANCEL-CHARACTER function, 70 
using, 3-2 

"Capitalize Region" command, 71 
"Capitalize Word" command, 71 
CATEGORY-COMMANDS function, 72' 
CENTER-WINDOW function, 72 
"Character Attribute Hook" Editor 

variable, 73 
CHARACTER-ATTRIBUTE function, 73 

using, 1-14, 6-15, 6-17, 6-19 
CHARACTER-OFFSET function, 74 
Characters, 5 

See also Attributes 
accessing, 4-3 
binding commands to, 3-4 
DEC Multinational Character Set, 

3-4 I 4-1 
deleting, 4-4 
inserting, 4-3 
window truncation, 5-10 
window wrapping, 5-10 

CHECKPOINT-BUFFER function, 74 
CHECKPOINT-FREQUENCY function,· 75 

using, 1-2, 6 
Checkpointing subsystem, 6 
Chorded bindings 

See BIND-POINTER-COMMAND 
function 

CLEAR-INFORMATION-AREA function, 
75 

using, 5-22 
"Close outermost Form" command, 

76 
COMMAND-CATEGORIES function,' 76 

using, 2-17 
COMMAND-NAME function, 77 

lndex-2 

0 

0 

0 

0 

0 



INDEX 

0 

0 

0 

Commands, 7 
associated functions, 2-1, 2-5, 

3-3, 41 
binding to keys, 3-2 
binding to pointer actions, 3-9 
categories, 2-16, 8 
documenting, 2-4 
invoking, 7 
naming, 2-3 
optional arguments, 2-4 
prefix argument, 2-3, 8 
provided with VAX LISP, A-5 
related functions, commands, 

and variables, A-4 
COMPLETE-STRING function, 77 
Context-dependent objects, 23 

referencing, 1-14 
scope and extent, 1-7 

Context-independent objects, 23 
referencing, 1-13 

Contexts, 9 
See also Buffers and Styles 
conventions for use, 10 
effect on command behavior, 2-8 
search order, 1-7, 3-8, 6-3, 

6-5, 6-6, 6-8, 9 
search order for hook variables, 

16 
specifying, 3-7, 9 
subsystem overview, 1-7 

COPY-MARK function, 78 
using, 4-19 

COPY-REGION function, 78 
using, 4-6 

O COU~T-REGION function, 79 
Current buffer point 

See Buffers and Marks 

0 

"Current Window Pointer Pattern 
X" Editor variable, 81 

"Current Window Pointer Pattern 
Y" Editor variable, 81 

"Current Window Pointer Pattern" 
Editor variable, 81 

CURRENT-BUFFER function, 79 
CURRENT-BUFFER-POINT function, 80 

using, 4-3 
*CURRENT-COMMAND-FUNCTION* 

variable, 80 
CURRENT-WINDOW function, 80 

using, 5-3 

-D-

Data types 
See Editor data types 

"Deactivate Minor Style" command, 
82 

a definition, 6-8 
Debugging support, 12 

related functions, commands, 
and variables, A-10 

"Default Buffer Variables" Editor 
variable, 82 

"Default Filetype Minor Styles" 
Editor variable, 83 

using, 6-6, 6-24 
"Default LISP Object Minor 

Styles" Editor variable, 83 
using, 6-6 

"Default Major Style" Editor 
variable, 83 

using, 1-4, 6-5 
"Default Minor Styles" Editor 

variable, 84 
using, 6-5 

"Default Search Case" Editor 
variable, 84 

"Default Window Label Edge" 
Editor variable, 85 

using, 5-17 
"Default Window Label Offset" 

Editor variable, 85 
using, 5-17 

"Default Window Label Rendition" 
Editor variable, 85 

using, 5-18 
"Default Window Label" Editor 

variable, 84 
using, 5-16 

"Default Window Lines Wrap" 
Editor variable, 86 

using, 5-9 
"Default Window Rendition" Editor 

variable, 86 
using, 5-11 

"Default Window Truncate Char" 
Editor variable, 86 

using, 1-5, 5-10 
"Default Window Type" Editor 

variable, 87 
using, 5-23 

"Default Window Width" Editor 
variable, 87 

Index-3 



INDEX 

"Default Window Wrap Char" Editor 
variable, 87 

using, 5-10 
DEFINE-ATTRIBUTE macro, 88 

using, '6-19 
DEFINE-COMMAND macro, 88 

using, 1-4, 2-2 
DEFINE-EDITOR-VARIABLE macro, 90 

using, 6-14, 6-21 
DEFINE-KEYBOARD-MACRO function, 

90 
"Delete Current Buffer" command, 

93 
"Delete Line" command, 93 
"Delete Named Buffer" command, 95 
"Delete Next Character" command, 

95 
"Delete Next Word" command, 96 
"Delete Previous Character" 

command, 96 
"Delete Previous Word" command, 

97 
"Delete Whitespace" command, 98 
"Delete Word" command, 99 
DELETE-AND-SAVE-REGION function, 

91 
using, 4-7, 5-14, 27 

DELETE-BUFFER function, 91 
DELETE-CHARACTERS function, 92 

using, 4-4 
DELETE-MARK function, 94 

using, 4-19 · 
DELETE-REGION function, 97 

using, 4-7, 5-14 
DELETE-WINDOW function, 98 

using, 5-31 
"Describe Word at Pointer" 

colfimand, 101 
"Describe Word" command, 100 
"Describe" command, 99 
DESCRIBE-OBJECT-COMMAND function 

See "Describe" command 
Display, 5-1 

See also Windows and 
Information area 

display area, 5-18 
available, 5-23 
coordinates, 5-19 
dimensions, 5-20 
reserved, 5-21 

display management, 5-1, 5-18, 
5-29 I 5-31 

Display 
display management (Cont.) 

by window display types, 5-23 
prompting window, 5-22 
window screen position, 5-28 
window size, 5-24 

related functions, commands, 
and variables, A-8 

subsystem overview, 1-6 
"Downcase Region" command, 101 
"Downcase Word" command, 102 

-E-

0 

ED function, 103 
package location, 1-15 Q 

"Ed" command, 103 
"Edit File" command, 105 
EDIT-LISP-OBJECT-COMMAND function 

See "Ed" command 
Editor attributes 

See Attributes 
Editor data types 

listed, 1-9 
"Editor Entry Hook" Editor Q 

variable, 106 
"Editor Exit Hook" Editor 

variable, 108 
"Editor Initialization Hook" 

Editor variable, 109 
"Editor Pause Hook" Editor 

variable, 110 
Editor variables, 13 

binding, 6-11, 6-13, 6-21 o· 
creating, 6-14 
provided with VAX LISP, A-9 
referencing, 1-14 
related functions and variables, 

A-9 
settipg, 6-11, 6-12, 6-14 
setting the value to a function, 

6-12 
*EDITOR-ATTRIBUTE-NAMES* variable, 

106 
*EDITOR-BUFFER-NAMES* variable, 

106 
using, 2-15 

*EDITOR-COMMAND-NAMES* variable, 
106 

using, 1-11 0 
Index-4 



0 

0 

0 

0 

0 

INDEX 

*EDITOR-DEFAULT-BUFFER* variable, 
106 

using, 5-30 
EDITOR-ERROR function, 107 

using, 2-10, 14 
EDITOR-ERROR-WITH-HELP function, 

107 
using, 2-11, 15 

EDITOR-HELP-BUFFER buffer 
See "Help" buffer 

*EDITOR-KEYBOARD-MACRO-NAMES* 
variable, 109 

EDITOR-LISTEN function, 109 
EDITOR-PROMPTING-BUFFER buffer 

See "General Prompting" buffer 
EDITOR-READ-CHAR function, 110 
EDITOR-READ-CHAR-NOHANG function, 

110 
*EDITOR-RETAIN-SCREEN-STATE* 

variable, 111 
using, 12 

*EDITOR-STYLE-NAMES* variable, 
111 

EDITOR-UNREAD-CHAR function, 111 
*EDITOR-VARIABLE-NAMES* variable, 

112 
"EDT Append" command, 112 
"EDT Back to Start of Line" 

command, 112 
"EDT Beginning of Line" command, 

113 
"EDT Change Case" command, 114 
"EDT Cut" command, 114 
"EDT Delete Character" command, 

115 
"EDT Delete Line" command, 115 . 
"EDT Delete Previous Character" 

command, 116 
"EDT Delete Previous Line" 

command, 116 
"EDT Delete Previous Word" 

command, 117 
"EDT Delete to End of Line" 

command, 117 
"EDT Delete Word" command, 118 
"EDT Deleted Character" Editor 

variable, 119 
"EDT Deleted Line" Editor 

variable, 119 
"EDT Deleted Word" Editor 

variable, 119 
"EDT Deselect" command, 119 

"EDT Direction Mode" Editor 
variable, 120 

using, 2-8 
"EDT Emulation" style, 120 
"EDT End of Line" command, 120 
"EDT Move Character" command, 121 
"EDT Move Page" command, 121 
"EDT Move Word" command, 122 

a definition, 2-8 
"EDT Paste at Pointer" command, 

123 
"EDT Paste Buffer" Editor 

variable, 124 
EDT Paste" command, 123 
EDT Query Search" command, 124 
EDT Replace" command, 125 
EDT Scroll Window" command, 125 
EDT Search Again" command, 126 
EDT Select" command, 126 
EDT Set Direction Backward" 

command, 126 
"EDT Set Direction Forward" 

command, 127 
"EDT Special Insert" command, 127 

a definition, 2-10, 2-14 
"EDT Substitute" command, 128 
"EDT Undelete Character" command, 

129 
"EDT Undelete Line" command, 129 
"EDT Undelete Word" command, 130 
"EMACS Backward Search" command, 

131 
"EMACS Forward ·search" command, 

131 
"EMACS" style, 130 
EMACS-WINDOW-LABEL function 

a definition, 6-12 
EMPTY-LINE-P function, 132 
"End Keyboard Macro" command, 132 
"End of Buffer" command, 133 
"End of Line" command, 134 
"End of Outermost Form" command, 

135 
"End of Paragraph" command, 135 
"End of Window" command, 136 
END-KEYBOARD-MACRO function, 133 
END-OF-LINE-P function, 134 
ENQUEUE-EDITOR-COMMAND function, 

136 
Errors, 14 

implementing error responses, 
. 2-9 

Index-5 



INDEX 

Errors (Cont.) 
related functions, commands, 

and variables, A-10 
signaled from LISP, 2-11, 14 
signaled from the Editor, 2-9, 

14 
"Evaluate LISP Region" command, 

137 
"Exchange Point and Select Mark" 

command, 137 
"Execute Keyboard Macro" command, 

138 
"Execute Named Command" command, 

138 
"Exit Recursive Edit" command, 

140 
"Exit" command, 139 
EXIT-EDITOR-COMMAND function 

See "Exit" command 

-F-

Files 
See also Checkpointing 

subsystem 
inserting in buffers, 4-8 
related functions and commands, 

A-11 
writing buffers to, 4-8 

FIND-AMBIGUOUS function, 140 
FIND-ATTRIBUTE function, 141 

using, 1-14 
FIND-BUFFER function, 141 

using, 2-15 
FIND-COMMAND function, 142 
FIND-S~YLE function, 142 
FIND-VARIABLE function, 142 

using, 1-14 
FIRST-LINE-P function, 143 
"Forward Character" command, 143 
"Forward Kill Ring" command, 144 
"Forward Page" command, 144 
"Forward Search" command, 145 
"Forward Word" command, 146 

a definition, 2-9 
using, 2-8 

Functions associated with 
commands 

See Commands, associated 
functions 

-G-

"General Prompting" buffer, 146 
using, 2-12 

GET-BOUND-COMMAND-FUNCTION 
function, 147 

GET-POINTER-STATE function, 147 
using, 3-12 

GET-STRING-TABLE-VALUE function, 
148 

"Grow Window" command, 149 

-H-

Help 
rela~ed functions, commands, 

and variables, A-11 
"Help on Editor Error" command, 

151 
using, 2-11, 15 

"Help Text" Editor variable, 151 
"Help" buffer, 150 
"Help" command, 150 
HIGHLIGHT-REGION-P function, 151 
Hook variables, 16 

provided with VAX LISP, A-11 
using, 16 

Hooks, 1-'-8, 16 
related functions, A-11 
setting, 6-11 
style activation, 6-21 

-I-

"Illegal Operation" command, 152 
"Indent LISP Line" command, 152 
"Indent LISP Region" command, 153 
"Indent Outermost Form" command, 

153 
Information area, 5-21, 18 

clearing, 5-22 
directing output to, 5-21 
size, 5-21 

"Information Area Pointer Pattern 
X" Editor variable, 155 

"Information Area Pointer Pattern 
Y" Editor variable, 155 

"Information Area Pointer 
Pattern" Editor variable, 154 

INFORMATION-AREA-HEIGHT funccion, 
154 

using, 5-21 

Index-6 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

INDEX 

*INFORMATION-AREA-OUTPUT-STREAM* 
variable, 154 

using, 5-21 
INITIALIZE-EDITOR function, 155 
"Insert Buffer" command, 156 
"Insert Close Paren and Match" 

command, 157 
"Insert File" command, 158 
INSERT-CHARACTER function, 157 

using, 2-11, 4-3 
INSERT-FILE-AT-MARK function, 158 

using, 2-12, 4-8, 4-21 
INSERT-REGION function, 159 

using, 4-6 
INSERT-STRING function, 159 

using, 4-3 
INVOKE-HOOK function, 160 

using, 16 
Invoking and exiting the Editor 

related functions, commands, 
and variables, A-12 

-K-

"Kill Enclosing List" command, 
161 

"Kill Line" command, 161 
"Kill Next Form" command, 162 
"Kill Paragraph" command, 163 
"Kill Previous Form" command, 164 
"Kill Region" command, 164 
"Kill Rest of List" command, 165 
Kill ring, 1-8 

related commands,. A-12 

-L-

"Last ~earch Direction" Editor 
variable, 166 

"Last Search Pattern" Editor 
variable, 166 

"Last Search String" Editor 
variable, 167 

using, 2-18 
*LAST-CHARACTER-TYPED* variable, 

166 
LAST-LINE-P function, 166 
"Line to Top of Window" command, 

172 
LINE-BUFFER function, 167 
LINE-CHARACTER function, 167 

· using, 4-22 

LINE-END function, 168 
LINE-LENGTH function, 168 
LINE-NEXT function, 169 

using, 4-23 
LINE-OFFSET function, 169 
LINE-PREVIOUS function, 170 

using, 4-23 
LINE-START function, 170 
LINE-STRING function, 171 

using, 4-22 
LINE-TO-REGION function, 171 
LINE/= function, 173 
LINE< function, 174 
LINE<= function, 174 
LINE= function, 175 
LINE> function, 175 
LINE>= function, 176 
LINEP function, 173 
Lines, 19 

moving by, 4-23 
operations on, 4-21 
related functions and commands, 

A-12 
testing relative positions, 

4-23 
LINES-RELATED-P function, 173 
"LISP Comment Column" Editor 

variable, 176 
a definition, 6-14 

"LISP Evaluation Result" Editor 
variable, 177 

LISP syntax 
related functions, commands, 

and variables, A-13 
"LISP Syntax" attribute, 177 

using, 4-14, 6-17 
"List Buffers" command, 179 
"List Key Bindings" command, 179 
LOCATE-ATTRIBUTE function, 180 

using, 4-14 
LOCATE-PATTERN function, 182 

using, 4-11 

-M-

"Major Style Activation Hook" 
Editor variable, 183 

MAKE-BUFFER function, 183 
using, 6-4 

MAKE-COMMAND function, 184 
MAKE-EDITOR-STREAM-FROM-REGION 

function, 185 

Index-7 



INDEX 

MAKE-EDITOR-STREAM-TO-MARK 
function, 185 

MAKE-EMPTY-REGION function, 186 
using, 27 

MAKE-HIGHLIGHT-REGION function, 
186 

using, 5-12 
MAKE-MARK function, 187 
MAKE-REGION function, 188 

using, 4-5 
MAKE-RING function, 188 
MAKE-SEARCH-PATTERN function, 189 

using, 4-11 
MAKE-STRING-TABLE function, 190 
MAKE-STYLE macro, 190 

using, 6-20, 6-22 
MAKE-WINDOW function, 191 

using, 5-30 
MAP-BINDINGS function, 192 

using, 6-10 
MAP-BUFFERS function, 193 
MAP-STRINGS function, 194 
MARK-CHARPOS function, 194 

using, 4-23 
MARK-COLUMN function, 195 
MARK-LINE function, 195 

using, 4-23 
MARK-TYPE function, 195 
MARK-VISIBLE-P function, 196 
MARK-WINDOW-POSITION function, 

196 
MARK/= function, 197 
MARK< function, 198 
MARK<= function, 198 
MARK= function, 199 
MARK> function, 199 
MARK>= function, 200 
MARKP ~unction, 197 
Marks, 20 

accessing mark positions, 4-23 
behavior when searching, 4-15 
creating, 4-18 
current buffer point, 4-2 
defining regions, 4-5, 5-12 
making windows at, 5-30 
operations on, 4-2 
related functions, commands, 

and variables, A-14 
testing relative positions, 

4-23 
types, 4-18 
window display, 5-6 

Marks (Cont.) 
window point, 5-7 

"Maybe Reset Select at Pointer" 
command, 200 

"Minor Style Activation Hook" 
Editor variable, 201 

Mouse 
See Pointing device 

"Move Point and Select Region" 
command, 203 

"Move Point to Pointer" command, 
204 

"Move to LISP Comment" command, 
204 

MOVE-MARK function, 201 
MOVE-MARK-AFTER function, 202 

using, 4-9 
MOVE-MARK-BEFORE function, 202 

using, 4-9 
MOVE-MARK-TO-POSITION function, 

202 
MOVE-WINDOW function, 205 

using,- 5-26 

-N-

Named Editor objects, 22 
in string tables, 22 
listed, 1-10 
naming, 22 
specifying, 1-10, 22, 40, 41 

"New Line" command, 206 
"New LISP Line" command, 206 
"Next Form" command, 207 
"Next Line" command, 208 
"Next Paragraph" command, 209 
"Next Screen" command, 210 

a definition, 2-6 
"Next Window" command, 210 

a definition, 5-5 
NEXT-CijARACTER function, 207 

using, 4-3 
NEXT-LISP-FORM function, 209 
NEXT-WINDOW function, 211 

using, 5-4 
"Noncurrent Window Pointer 

Pattern X" Editor variable, 
212 

"Noncurrent Window Pointer 
Pattern Y" Editor variable, 
213 

Index-8 

0 

0 

0 

0 

0 



0 

0 

0 

0 

0 

INDEX 

"Noncurrent Window Pointer 
Pattern" Editor variable, 212 

-o-

"Open Line" command, 213 

-P-

Packages 
"EDITOR", 1-14 
for user-defined extensions, 

1-16 
using IN-PACKAGE, 1-16 
using package prefixes, 1-15 
using USE-PACKAGE, 1-15 

"Page Delimiter" attribute, 213 
a definition, 6-19 
using, 6-19 

"Page Next Window" command, 214 
"Page Previous Window" command, 

215 
PAGE-OFFSET function, 214 
"Pause Editor" command, 215 

using, 12 
Pointer-state object 

See GET-POINTER-STATE function 
POINTER-STATE-ACTION function, 

216 
using, 3-14 

POINTER-STATE-BUTTONS function, 
217 

using, 3-14 
POINTER-STATE-P function, 217 
POINTER-STATE-TEXT-POSITION 

function, 218 
using, 3-13 

POINTER-STATE-WINDOW-POSITION 
function, 218 

using, 3-14 
Pointing device 

See also BIND-POINTER-COMMAND 
and GET-POINTER-STATE 
functions 

button state, 3-11 
button transitions, 3-10 
movement of, 3-10 
related functions and commands, 

A-15 
state of, 3-12 

POSITION-WINDOW-TO-MARK function, 
219 

using, 5-9 
PREFIX-ARGUMENT function, 220 
"Previous Form" command, 221 
"Previous Line" command, 222 
"Previous Paraqraph" command, 223 
"Previous Screen" command, 224 
"Previous Window" command, 224 

a definition, 5-5 
PREVIOUS-CHARACTER function, 220 

using, 4-3 
*PREVIOUS-COMMAND-FUNCTION* 

variable, 220 
using, 2-17 

PREVIOUS-LISP-FORM function, 222 
"Print Representation" attribute, 

6-15, 225 
"Prompt Alternatives Arguments" 

Editor variable, 226 
"Prompt Alternatives" Editor 

variable, 225 
"Prompt Complete String" command, 

226 
"Prompt Completion Arguments" 

Editor variable, 227 
"Prompt Completion" Editor 

variable, 227 
"Prompt Default" Editor variable, 

227 
"Prompt Error Message Arguments" 

Editor variable, 228 
"Prompt Error M~ssage" Editor 

variable, 227 
"Prompt Help Arguments" Editor 

variable, 232 
"Prompt Help Called" Editor 

variable, 232 
"Prompt Help" command, 231 
"Prompt Help" Editor variable, 

232 
"Prompt Read and validate" 

command, 233 
"Prompt Rendition Complement" 

Editor variable, 233 
"Prompt Rendition Set" Editor 

variable, 234 
"Prompt Required" Editor variable, 

234 
"Prompt Scroll Help Window" ' 

command, 234 

Index-9 



INDEX 

"Prompt Show Alternatives" 
command, 235 

"Prompt Start" Editor variable, 
236 

"Prompt Validation" Editor 
variable, 236 

PROMPT-FOR-INPUT function, 228 
using, 2-14, 24 

Prompting, 2-12, 24 
providing alternatives, 2-15, 

26 
providing help, 26 
providing input completion, 

2-15, 25, 31 
related functions, commands, 

and variables, A-16 
validating user input, 2~15, 25 

PUSH-WINDOW function, 236 
using, 5-29 

-Q-

"Query Search Replace" command, 
237 

"Quoted Insert" command, 238 

-R-

"Read File" command, 239 
"Redisplay Screen" command, 240 
REDISPLAY-SCREEN function, 240 
REGION-END function, 2t0 
REGION-READ-POINT function, 241 
REGION-START function, 241 
REGION-TO-STRING function, 242 
REGIONP function, 242 
Regions, 27 

buff~r regions, 4-5, 4-7, 4 
copying, 4-6 
creating, 4-5, 5-12 
deleting, 4-6 
highlight regions, 5-12, 27 
inserting, 4-6 
operations on, 4-5 
related functions, commands, 

and variables, A-16 
writing to files, 4-7 

"Remove Current Window" command, 
243 

"Remove Other Windows" command, 
244 

a definition, 5-4 

REMOVE-HIGHLIGHT-REGION function, 
243 

using, 5-14 
REMOVE-STRING-TABLE-ENTRY 

function, 244 
REMOVE-WINDOW function, 245 

using, 5-4, 5-29 
REPLACE-PATTERN function, 246 

using, 4-12 
RETURN-FROM-EDITOR macro, 246 
REVERSE-INVOKE-HOOK function, 247 

using, 16 
RING-LENGTH function, 248 
RING-POP function, 248 
RING-PUSH function, 249 
RING-REF function, 249 
RING-ROTATE function, 250 
RINGP function, 250 
Rings, 1-8, 29 

related functions, A-17 

-s-

SAME-LINE-P function, 251 
"Screen Modification Hook" Editor 

variable, 252 
SCREEN-HEIGHT function, 251 

using, 5-20 
SCREEN-WIDTH function, 252 

using, 1-5, 5-20 
"Scroll Window Down" command, 253 
"Scroll Window Up" command, 253 
SCROLL-WINDOW function, 252 

using, 5-8 
Scrolling 

See Windows 
Searching through text, 4-9 

and replacing text, 4-12 
by attribute, 4-13 
by character positions, 4-9 
by pattern, 4-11 
relat~d functions, commands, 

and variables, A-17 
"Select Buffer" command, 254 
"Select Enclosing Form at 

Pointer" command, 255 
"Select Outermost Form" command, 

255 
"Select Region Rendition 

Complement" Editor variable, 
256 

using, 6-12 

Index-10 

0 

0 

0 

0 

0 



INDEX 

"Select Region Rendition Set" 

O Editor variable, 256 
"Self Insert" command, 257 

0 

"Set Screen Height" command, 257 
"Set Screen Width" command, 258 
"Set Select Mark" command, 258 
Shadowing 

See Contexts, search order 
"Show Time" command, 260 

a definition, 2-7 
SHOW-MARK function, 259 
SHOW-WINDOW function, 260 

using, 5-28 
"Shrink Window" command, 262 
SIMPLE-PROMPT-FOR-INPUT function, 

262 
using, 2-13, 24 

"Split Window" command, 263 
"Start Keyboard Macro" command, 

263 
"Start Named Keyboard Macro" 

command, 264 
START-OF-LINE-P function, 265 
Streams, 1-8, 30 
String tables, 1-8, 31 

provided with VAX LISP, A-18 Q related functions, A-18 
STRING-TABLE-P function, 265 
STRING-TO-REGION function, 265 
STYLE-NAME function, 266 
STYLE-VARIABLES function, 266 

usirtg, 6-11 
STYLEP function, 267 
Styles, 32 

accessing active styles, 6-7 Q activating, 6-2, 6-20, 6-24, 33 
by default, 6-4 
in--- a new buffer, 6-4 
in an existing buffer, 6-7 
ma j or , 6 - 2 , 3 3 
minor, 6-2, 33 

activation hooks, 6-21 
as a binding context, 1-7, 3-7, 

6-1, 6-20, 6-22 
creating, 6-20, 17 
modifying, 6-9 
operations on, 6-2 
provided with VAX LISP, A-18 
related functions, commands, 

and variables, A-18 0 "Supply EMACS Prefix" command, 
267 

"Supply Prefix Argument" command, 
268 

"Switch Window Hook" Editor 
variable, 268 

-T-

"Target Column" Editor variable, 
269 

Text operations, 4-1 
related data types, 4-2 
related functions, commands, 

and variables, A-22 
subsystem overview, 1-6 

"Text Overstrike Mode" Editor 
variable, 269 

"Transpose Previous Characters" 
command, 270 

"Transpose Previous Words" 
command, 270 

-u-

UNBIND-ATTRIBUTE function, 271 
UNBIND-COMMAND function, 271 

using, 3-3 
UNBIND-POINTER-COMMAND function, 

272 
UNBIND-VARIABLE function, 272 
"Undo Previous Yank" command, 273 
*UNIVERSAL-ERROR-HANDLER* 

variable 
using, 2-11, 6-16 

Unnamed Editor objects 
listed, 1-10 

"Unset Select Mark" command, 273 
"Upcase Region" command, 274 
"Upcase Word" command, 274 
UPDATE-DISPLAY function, 275 

using, 5-32 
UPDATE-WINDOW-LABEL function, 275 

-v-

VARIABLE-BOUNDP function, 276 
using, 6-12 

VARIABLE-FBOUNDP function, 276 
VARIABLE-FUNCTION function, 277 

using, 1-14, 6-12, 13 
VARIABLE-NAME function, 277' 
VARIABLE-VALUE function, 278 

using, 1-3, 1-14, 6-12, 13 

Index-11 



INDEX 

Variables 
See Editor variables 

"VAX LISP" style, 278 
"View File" command, 279 
Virtual displays 

compared to Editor windows, 5-1 
VISIBLE-WINDOWS function, 279 

using, 5-3 

-w-

"What Cursor Position" command, 
280 

"Whitespace" attribute, 280 
using, 4-13 

WHITESPACE-AFTER-P function, 281 
WHITESPACE-BEFORE-P function, 281 
WHITESPACE-BETWEEN-P function, 

282 
WHITESPACE-LINE-P function, 282 
"Window Buffer Hook" Editor 

variable, 283 
"Window Creation Hook" Editor 

variable, 283 
"Window Deletion Hook" Editor 

variable, 284 
"Window Modification Hook" Editor 

variable, 289 
WINDOW-BUFFER function, 283 

using, 5-16 
WINDOW-CREATION-TIME function, 

284 
WINDOW-DISPLAY-COLUMN function, 

284 
using, 5-25 

WINDOW-DISPLAY-END function, 285 
using, 5-6 

WINDOW-DISPLAY-ROW function, 285 
using, 5-25 

WINDOW-DISPLAY-START function, 
286 

using, 5-6 
WINDOW-HEIGHT function, 286 

using, 2-6, 5-24 
WINDOW-LABEL function, 286 

using, 5-15 
WINDOW-LABEL-EDGE function, 287 

using, 5-16 
WINDOW-LABEL-OFFSET function, 287 

using, 5-16 

WINDOW-LABEL-RENDITION function, 
288 

using, 5-17 
WINDOW-LINES-WRAP-P function, 288 

using, 5-9 
WINDOW-POINT function, 289 

using, 5-7 
WINDOW-RENDITION function, 289 

using, 5-11 
WINDOW-TRUNCATE-CHAR function, 

290 
using, 5-10 

WINDOW-TYPE function, 290 
using, 5-23 

WINDOW-WIDTH function, 291 
using, 5-24 

WINDOW-WRAP-CHAR function, 291 
using, 5-10 

WINDOWP function, 292 
Windows, 5-1, 36 

See also Display 
accessing, 5-2 
borders, 5-14, 5-24, 5-27 
compared to virtual displays, 

5-1 
creating, 5-30 
current window, 5-3, 5-30 
deleting, 5-31 
display types, 5-4, 5-23, 5-28, 

5-31 
anchored, 5-23 
floating, 5-23 

displaying, 5-28 
labels, 5-14 
moving in a buffer, 5-7, 5-8 
moving on the screen, 5-26 
overlapping, 5-23, 5-27 
position in a buffer, 5-6 
position on the screen, 5-25~ 

5-31, 5-32 
prompting window, 2-12, 5-21 
related functions, commands, 

and variables, A-23 
removing, 5-29 
scrolling, 5-8 
size, 5-24, 5-31 
truncating text in, 5-9 
video rendition, 5-11 
window point, 5-7 
wrapping text in, 5-9 

WITH-INPUT-FROM-REGION macro, 292 

Index-12 

0 

0 

0 

0 

Ci 



0 

0 

0 

0 

0 

INDEX 

WITH-MARK macro, 293. 
using, 4-20 

WITH-OUTPUT-TO-MARK macro, 293 
using, 2-12 

WITH-SCREEN-UPDATE macro, 294 
"Word Delimiter" attribute, 294 

using, 4-13, 6-17, 6-18 
WORD-OFFSET function, 295 

using, 2-10 
"Write Current Buffer" command, 

295 
"Write Modified Buffers" command, 

297 

"Write Named File" command, 297 
WRITE-FILE-FROM-REGION function, 

296 
using, 4-7 

-Y-

"Yank at Pointer" command, 298 
a definition, 3-13 

"Yank Previous" command, 299 
"Yank Replace Previous" command, 

300 
"Yank" command, 298 

Index-13 



0 

0 

0 

0 


	Contents
	Preface
	Summary of new and changed information
	Part I: Guide to Editor programming
	1. Editor overview
	2. Creating Editor commands
	3. Binding commands to keys and pointer actions
	4. Text operations
	5. Window and display operations
	6. Operations on styles

	Part II: Concepts in Editor programming
	Part III: Editor object descriptions
	Appendixes
	A: Editor objects by category
	B: Editor commands and bindings
	C: Bound keys and key sequences
	D: Function keys and keypad keys

	Index



