
0

0

0

0

0

VAXLISPNMS
User's Guide

Order Number: AA-Y9218-TE

May 1986

This document contains information required by a LISP language
programmer to interpret, compile, and debug VAX LISP programs.

Operating System and Version: VAX/VMS Version 4.2

Software Version:

digital equipment corporation
maynard, massachusetts

VAX LISPNMS Version 2.0

First Printing, June 1984
Revised, May 1986

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital EguipmPnt
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

© Digital Equipment Corporation 1984, 1986.
All Rights Reserved.

Printed in U.S.A.

A postage-paid READER'S COMMENTS form is included on the last page of
this document. Your comments will assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DECUS
MicroVAX
VAXstation
DECnet
ULTRIX-32
ULTRIX-32m

UNIBUS
VAX
MicroVAX II
VAXstation II
ULTRIX

PDP
VMS
MicroVMS
AI VAXstation
ULTRIX-11

0

0

0

0

0

OPREFACE

0

0

CHAPTER 1

1.1
1.1.1
1.1.1.1
1.1.1.2
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.1. 7
1.1. 8
1.1.9
1.1.10

1.2
1. 2 .1
1. 2. 2
1. 3
1.4
1.5

CHAPTER 2

0

0

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.9.1
2.9.2
2.9.3
2.9.4
2.10
2.10.1
2.10.2
2 .1.0. 3
2.10.4

CONTENTS

Part I
VAX LISP/VMS SYSTEM CONCEPTS AND FACILITIES

INTRODUCTION TO VAX LISP

OVERVIEW OF VAX LISP
DCL LISP Command

Interpreter
Compiler

Editor
Error Handler
Debugging Facilities
Pretty Printer
Call-Out Facility
Alien Structure Facility
Interrupt Function Facility
VAXstation Graphics Interface
VAX LISP/VMS Function, Macro,
Descriptions

HELP FACILITIES
DCL HELP
LISP HELP

VAX/VMS FILE SPECIFICATIONS
LOGICAL NAMES
ENTERING DCL COMMANDS

USING VAX LISP

INVOKING LISP
EXITING LISP
ENTERING INPUT
DELETING AND EDITING INPUT
ENTERING THE DEBUGGER
USING CONTROL KEY CHARACTERS
CREATING PROGRAMS
LOADING FILES
COMPILING PROGRAMS

and Variable

Compiling Individual Functions and Macros
Compiling Files
Advantages of Compiling LISP Expressions
Advantage of Not Compiling LISP Expressions

DCL LISP COMMAND QUALIFIERS
Five Ways to Use the DCL LISP Command
/COMPILE
/ERROR_ACTION
/[NO] INITIALIZE

iii

1-2
1-3
1-3
1-3
1-4
1-4
1-4
1-5
1-5
1-5
1-5
1-6

1-6
1-7
1-7.
1-7
1-7

1-10
1-10

2-1
2-2
2-2
2-2
2-3
2-4
2-5
2-5
2-6

. 2-7
2-7
2-9
2-9
2-9

2-12
2-13
2-14
2-15

2.10.5
2.10.6
2.10.7
2.10.8
2.10.9
2.10.10
2.10.11
2.10.12
2.10.13
2.10.14
2.10.15
2.11
2.11.1
2.11.2

CHAPTER 3

3.1
3.1.1
3.1.2
3.1.3
3.1.3.1
3.1.3.2
3.1.3.3
3.1.4
3.1.5
3.1.6
3.2
3.2.1
3.2.2
3.2.2.1
3.2.2.2
3.2.2.3
3.2.3
3.2.3.1
3.2.3.2
3.2.3.3
3.2.4
3.2.4.1
3.2.4.2
3.2.4.3
3.2.4.4
3.2.4.5
3.2.4.6
3.2.5
3.2.6
3.3
3.3.1
3.3.2
3.3.3
3.3.3.1

/INTERACTIVE
/INSTALL
/[NO]LIST
/[NO]MACHINE_CODE
/MEMORY
/[NO]OPTIMIZE
/[NO]OUTPUT_FILE
/REMOVE
/RESUME
/[NO]VERBOSE
/[NO]WARNINGS

USING SUSPENDED SYSTEMS
Creating a Suspended System
Resuming a Suspended System

USING THE VAX LISP EDITOR

INTRODUCTION TO THE EDITOR
Editing Cycle
Invoking the Editor
Interacting with the Editor

Getting Help
Input Completion and Alternatives
Errors and Other Problems

Moving Work Back to LISP
Returning to the LISP Interpreter
Summary of Commands

EDITING OPERATIONS
Keypad
Inserting and Formatting Text

Inserting Ordinary Text
Typing and Formatting LISP Code
Inserting Nongraphic Characters

Moving the Cursor
Moving with the Keypad and Arrow Keys
Moving in LISP Code
Moving with the Pointer (VAXstation Only)

Modifying Text
Deleting Text
Undeleting Text
Cutting and Pasting Text
Changing Case
Substituting Text
Inserting a File or Buffer

Repeating an Operation
Summary of Commands

USING MULTIPLE BUFFERS' AND WINDOWS
Introduction to Buffers and Windows
Creating New Buffers from Within the Editor
Working with Buffers

Saving Buffer Contents

iv

2-17
2-17
2-17
2-18
2-19
2-20
2-21
2-22
2-22
2-23
2-24
2-25
2-25
2-26

3-2
3-3
3-3
3-6
3-7
3-8
3-9

3-10
3-10
3-11
3-13
3-14
3-14
3-14
3-15
3-16
3-17
3-17
3-18
3-18
3-19
3-19
3-20
3-20
3-21
3-22
3-23
3-23
3-24
3-30
3-30
3-33
3-33
3-34

0

0

0

0

0

3.3.3.2 Deleting Buffers 3-34

0 3.3.3.3 Buffer Name Conflicts 3-34
3.3.4 Manipulating Windows 3-35
3.3.5 Moving Text Between Buffers 3-36
3.3.6 Summary of Commands 3-36
3.4 RECOVERING FROM PROBLEMS 3-37
3.5 CUSTOMIZING THE EDITOR 3-38
3.5.1 Binding Keys to Commands 3-38
3.5.1.1 Binding Within the Editor 3-39
3.5.1.2 Binding from the LISP Interpreter 3-40
3.5.1.3 Selecting a Key or Key Sequence 3-43
3.5.1.4 Key Binding Context and Shadowing 3-44
3.5.2 Keyboard Macros 3-45
3.5.3 Summary of Commands 3-46
3.6 USING THE EDITOR ON A VAXSTATION 3-46
3.6.1 Screen Appearance and Behavior 3-47

0
3.6.2 Editing with the Pointer 3-47
3.6.2.1 The Pointer Cursor 3-47
3.6.2.2 Selecting and Removing Windows 3-48
3.6.2.3 Moving the Text Insertion Cursor and Marking

Text 3-48
3.6.2.4 Cutting and Pasting 3-48

h/ 3.6.2.5 Invoking the DESCRIBE Function ,'(rid Matching
Parentheses 3-49

3.6.2.6 Information About Pointer Effects 3-49

0
3.6.3 Binding Pointer Buttons to Commands 3-49

CHAPTER 4 ERROR HANDLING

4.1 ERROR HANDLER 4-1
4.2 VAX LISP ERROR TYPES 4-1
4.2.1 Fatal Errors 4-2
4.2.2 Continuable Errors 4-3

0 4.2.3 warnings 4-4
4.3 CREATING AN ERROR HANDLER 4-5
4.3.1 Defining an Error Handler 4-5
4.3.1.1 Function Name 4-6
4.3.1.2 Error-Signaling Function 4-6
4.3.1.3 ,l\rguments 4-7
4.3.2 Binding the *UNIVERSAL-ERROR-HANDLER* Variable 4-7

CHAPTER 5 DEBUGGING FACILITIES

5.1 CONTROL VARIABLES 5-3
5.2 CONTROL STACK 5-3
5.3 ACTIVE STACK FRAME 5-4
5.4 BREAK LOOP 5-4
5.4.1 Invoking the Break Loop 5-5

0 5.4.2 Exiting the Break Loop 5-5
5.4.3 Using the Break Loop 5-6

v

5.4.4 Break Loop Variables 5-7
5.5 DEBUGGER 5-7 0 5.5.1 Invoking the Debugger 5-8
5.5.2 Exiting the Debugger 5-9
5.5.3 Using Debugger Commands 5-9
5.5.3.1 Arguments 5-11
5.5.3.2 Debugger Commands 5-13
5.5.4 Using the DEBUG-CALL Function 5-18
5.5.5 Sample Debugging Sessions 5-18
5.6 STEPPER 5-20
5.6.1 Invoking the Stepper 5-20
5.6.2 Exiting the Stepper 5-21
5.6.3 Stepper Output 5-21
5.6.4 Using Stepper Commands 5-24
5.6.4.1 Arguments 5-25
5.6.4.2 Stepper Commands 5-26
5.6.5 Using Stepper Variables 5-28
5.6.5.1 *STEP-FORM* 5-28 0 5.6.5.2 *STEP-ENVIRONMENT* 5-28
5.6.5.3 Example Use of Stepper Variables 5-29
5.6.6 Sample Stepper Sessions 5-31
5.7 TRACER 5-32
5.7.1 Enabling the Tracer 5-33
5.7.2 Disabling the Tracer 5-33
5.7.3 Tracer Output 5-34
5.7.4 Tracer Options 5-35
5.7.4.1 Invoking the Debugger 5-36 0 5.7.4.2 Adding Information to Tracer Output 5-36
5.7.4.3 Invoking the Stepper 5-36
5.7.4.4 Removing Information from Tracer Output 5-37
5.7.4.5 Defining When a Function or Macro Is Traced 5-37
5.7.5 Tracer Variables 5-37
5.7.5.1 *TRACE-CALL* 5-37
5.7.5.2 *TRACE-VALUES* 5-38
5.8 THE EDITOR 5-39

0
CHAPTER 6 PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

6.1 PRETTY PRINTING WITH DEFAULTS 6-2
6.2 HOW TO PRETTY-PRINT USING CONTROL VARIABLES 6-3
6.2.1 Explicitly Enabling Pretty Printing 6-3
6.2.2 Limiting Output by Lines 6-4
6.2.3 Controlling Margins . 6-4
6.2.4 Conserving Space with Miser Mode 6-5
6.3 EXTENSIONS TO THE FORMAT FUNCTION 6-5
6.3.1 Using the WRITE FORMAT Directive 6-7
6.3.2 Controlling the Arrangement of Output 6-8
6.3.3 Controlling Where New Lines Begin 6-11
6.3.4 Controlling Indentation 6-13
6.3.5 Producing Prefixes and Suffixes. 6-14 0 6.3.6 Using Tabs 6-15

vi

0

0

0

0

0

6.3.7
6.4
6.5
6.6
6.7
6.7.1
6.7.2
6.7.3
6.8
6.9

CHAPTER 7

7.1
7.1.1
7.1.1.1
7.1.1.2
7.1.2
7.1.3
7.1.4
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8
7.2.9
7.2.10
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7-. 4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.6.1
7.4.6.2
7.4.6.3
7.4.6.4
7.5
7.6

Directives for Handling Lists
DEFINING YOUR OWN FORMAT DIRECTIVES
DEFINING PRINT FUNCTIONS FOR LISTS
DEFINING GENERALIZED PRINT FUNCTIONS
ABBREVIATING PRINTED OUTPUT

Abbreviating Output Length
Abbreviating Output Depth
Abbreviating Output by Lines

USING MISER MODE
HANDLING IMPROPERLY FORMED ARGUMENT LISTS

VAX LISP/VMS IMPLEMENTATION NOTES

DATA REPRESENTATION
Numbers

Integers
Floating-Point Numbers

Characters
Arrays
Strings

PATHNAMES
Namestrings
Logical Names and Pathnames
When to Use Pathnames
Fields of a COMMON LISP Pathname
Field Values of a VAX LISP Pathname
Three Ways to Create Pathnames
Comparing Similar Pathnames
Converting Pathnames into Namestrings
Functions That Use Pathnames
Using the *DEFAULT-PATHNAME-DEFAUL.TS* Variable

GARBAGE COLLECTOR
Frequency of Garbage Collection
Static Space
LISP Processing
Messages
Available Space
Garbage Collection Failure

INPUT AND OUTPUT
Newline Character
Terminal Input
End-of-File Operations
Record Length
File Organization
Functions

FILE-LENGTH Function
FILE-POSITION Function
OPEN Function
WRITE-CHAR Function

INTERRUPT FUNCTIONS AND KEYBOARD FUNCTIONS
COMPILER

vii

6-16
6-18
6-19
6-21
6-23
6-24
6-24
6-25
6-26
6-28

7-2
7-2
7-2
7-3
7-5
7-6
7-6
7-6
7-7
7-7
7-8
7-8
7-9

7-11
7-12
7-13
7-15
7-15
7-17
7-17
7-17
7-18
7-18
7-18
7-19
7-19
7-19
7-20
7-21
7-21
7-22
7-22
7-23
7-23
7-23
7-24
7-24
7-25

7.6.1
7.6.1.1
7.6.1.2
7.6.2
7.7

Compiler Restrictions
COMPILE Function
COMPILE-FILE Function

Compiler Optimizations
FUNCTIONS AND MACROS

Part II
VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

APROPOS Function
APROPOS-LIST Function
ATTACH Function
BIND-KEYBOARD-FUNCTION Function
BREAK Function
CANCEL-CHARACTER-TAG Tag
CHAR-NAME-TABLE Function
COMPILEDP Function
COMPILE-FILE Function
COMPILE-VERBOSE Variable
COMPILE-WARNINGS Variable
CONTINUE Function
DEBUG Function
DEBUG-CALL Function
DEBUG-PRINT-LENGTH Variable
DEBUG-PRINT-LEVEL Variable
DEFAULT-DIRECTORY Function
DEFINE-FORMAT-DIRECTIVE Macro
DEFINE-GENERALIZED-PRINT-FUNCTION Macro
DEFINE-LIST-PRINT-FUNCTION Macro
DELETE-PACKAGE Function
DESCRIBE Function
DIRECTORY Function
DRIBBLE Function
ED Function
ERROR-ACTION Variable
EXIT Function
Format Directives Provided with VAX LISP
GC Function
GC-VERBOSE Variable
GENERALIZED-PRINT-FUNCTION-ENABLED-P Function
GET-DEVICE-INFORMATION Function.
GET-FILE-INFORMATION Function
GET-GC-REAL-TIME Function
GET-GC-RUN-TIME Function
GET-INTERNAL-RUN-TIME Function
GET-KEYBOARD-FUNCTION Function
GET-PROCESS-INFORMATION Function
GET-TERMINAL-MODES Function
GET-VMS-MESSAGE Function
HASH-TABLE-REHASH-SIZE Function
HASH-TABLE-REHASH-THRESHOLD Function

viii

7-25
7-25
7-26
7-26
7-29

1
3
4
6
9

10
11
13
14
17
18
20
21
22
23
24
25
27
30
32
34
35
37
40
41
43
44
45
48
49
50
51
55
59
61
63
64
65
73
76
77
78

0

0

0

0

0

0

0

0

0

APPENDIX A

0

A.1
A.1.1
A.1.2
A.1. 3
A.1. 4
A.LS
A.1.6
A.1. 7

HASH-TABLE-SIZE Function
HASH-TABLE-TEST Function
LOAD Function
LONG-SITE-NAME Function
MACHINE-INSTANCE Function
MACHINE-VERSION Function
MAKE-ARRAY Function
MODULE-DIRECTORY Variable
POST-GC-MESSAGE Variable
PPRINT-DEFINITION Function
PPRINT-PLIST Function
PRE-GC-MESSAGE Variable
PRINT-LINES Variable
PRINT-MISER-WIDTH
PRINT-RIGHT-MARGIN Variable
PRINT-SIGNALED-ERROR Function
PRINT-SLOT-NAMES-AS-KEYWORDS Variable
REQUIRE Function
ROOM Function
SET-TERMINAL-MODES Function
SHORT-SITE-NAME Function
SPAWN Function
STEP Macro
STEP-ENVIRONMENT Variable
STEP-FORM Variable
SUSPEND Function
THROW-TO-COMMAND-LEVEL Function
TIME Macro
TOP-LEVEL-PROMPT Variable
TRACE Macro
TRACE-CALL Variable
TRACE-VALUES Variable
TRANSLATE-LOGICAL-NAME Function
UNBIND-KEYBOARD-FUNCTION Function
UNCOMPILE Function
UNDEFINE-LIST-PRINT-FUNCTION Macro
UNIVERSAL-ERROR-HANDLER Function
UNIVERSAL-ERROR-HANDLER Variable
WARN Function
WITH-GENERALIZED-PRINT-FUNCTION Macro

PERFORMANCE HINTS

DATA STRUCTURES
Integers
Floating-Point Numbers
Ratios
Characters
Symbols
Lists and vectors
Strings, General Vectors, and Bit Vectors

ix

79
80
81
83
84
85
86
88
89
90
92
95
96
97
98

100
102
103
105
108
111
112
115
116
117
118
121
122
123
124
135
136
137
139
140
141
142
143
144
145

A-1
A-2
A-2
A-2
A-3
A-3
A-4
A-5

A.1. 8
A.1. 9
A. 2
A. 3
A. 4

APPENDIX B

B.1
B.2
B.2.1
B.2.2
B.3

APPENDIX C

INDEX

FIGURES

TABLES

C.1
C.2

3-1
6-1

1-1
2-1
2-2
2-3
2-4
3-1
3-2
3-3
3-4
3-5
4-1
5-1
5-2
5-3
5-4
6-1
7-1
7-2
7-3

Hash Tables
Functions

DECLARATIONS
PROGRAM STRUCTURE
COMPILER REQUIREMENTS

USING THE "EMACS" EDITOR STYLE

INTRODUCTION TO THE EDITOR
ACTIVATING THE "EMACS" STYLE

Activating "EMACS" as a Minor Style
Making "EMACS" the Major Style

"EMACS" STYLE KEY BINDINGS

EDITOR COMMANDS AND KEY BINDINGS

EDITOR COMMAND DESCRIPTIONS
EDITOR KEY BINDINGS

Numeric Keypad
Variables Governing Miser Mode

File Specification Defaults
Keys Used jn Line Editing
Control Characters
DCL LISP Command Qualifiers
DCL LISP Command Qualifier Modes
General-Purpose Commands and Key Bindings
Editing Commands /ffid Key Bindings
Commands for Manipulating Buffers f(nd Windows
Characters Generated by Keys
Commands for Customizing the Editor
Error-Signaling Functions
Debugging Functions and Macros
Debugger Commands
Debugger Command Modifiers
Stepper Commands
Format Directives Provided by VAX LISP
VAX LISP Floating-Point Numbers
Floating-Point Constants
VAX LISP Pathname Fields

x

A-6
A-6
A-6

A-10
A-12

B-1
B-3
B-3
B-4
B-4

C-1
C-14

3-15
6-26

1-9
2-3
2-4

2-10
2-13
3-11
3-24
3-36
3-41
3-46

4-7
5-1

5-10
5-12
5-24
6-6
7-3
7-4
7-9

0

0

0

0

0

7-4 Summary of Implementation-Dependent Functions and

0 Macros 7-29
1 Format Directives Provided with VAX LISP 45
2 GET-DEVICE-INFORMATION Keywords 51
3 GET-FILE-INFORMATION Keywords 55
4 GET-PROCESS-INFORMATION Keywords 65
5 GET-TERMINAL-MODES Keywords 73
6 Data Type Headings 106
7 TRACE Options 125
B-1 Differences Between "EMACS" Key Bindings and

Default Bindings B-2
B-2 "EMACS" Style Key Bindings B-4
C-1 Editor Commands ~nd Key Bindings C-2

,.
,k...

C-2 Editor Key Bindings C-14

0

0

0

0
xi

0

0

0

0

0

0

PREFACE

Manual Objectives

The VAX LISP/VMS User's Guide is intended for use in developing and
debugging LISP programs and for use in compiling and executing LISP

O programs on VAX/VMS systems. The VAX LISP language elements are
described in COMMON LISP: The Language.*

Intended Audience

This manual is designed for programmers who have a working knowledge
of LISP. Detailed knowledge of VAX/VMS is helpful but not essential;
familiarity with the Introduction to VAX/VMS is recommended. However, Osome sections of this manual require more extensive understanding of
the operating system. In such sections, you are directed to the
appropriate manual(s) for additional information.

Structure of This Document

An outline of the organization and chapter content of this manual
ofollows:

PART I: VAX LISP/VMS SYSTEM CONCEPTS AND FACILITIES

Part I consists of seven chapters, which explain VAX LISP concepts and
describe the VAX LISP facilities.

• Chapter 1, Introduction to VAX LISP, provides an overview of
VAX LISP, explains how to use the help facilities, describes
VAX/VMS file specifications and the logical name mechanism,
and provides hints on entering DCL commands. Chapter 1 also
describes where in the VAX LISP documentation you can find
information on each of the VAX LISP features.

O* Guy L. Steele Jr., COMMON LISP: The Language, Digital Press (1984),
Burlington, Massachusetts.

xiii

PREFACE

• Chapter 2, Using VAX LISP, explains how to invoke and exit
from VAX LISP; use control key sequences; enter and delete Q
input; create and compile programs; load files; and use
suspended systems. In addition, Chapter 2 describes the DCL
LISP command and its qualifiers.

• Chapter 3, Using the VAX LISP Editor, describes how to use the
Editor provided with VAX LISP to create and edit LISP code.

• Chapter 4, Error Handling,
error-handling facility.

describes the VAX LISP

• Chapter 5, Debugging Facilities, explains how to use the VAX
LISP debugging facilities.

•

•

Chapter 6, The Pretty Printer, explains how to use .the VAX
LISP pretty printer.

Chapter 7, VAX LISP Implementation Notes, describes the
features of LISP that are defined by or are dependent on the
VAX implementation of COMMON LISP.

PART II: VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

0

Part II describes functions, macros, and variables specific to VAX
LISP and any COMMON LISP objects that have specific implementation
characteristics in VAX LISP. Each function or macro description Q
explains the function's or macro's use and shows its format,
applicable arguments, return value, and examples of use. Each
variable description explains the variable's use and provides examples
of its use.

Associated Documents

The following documents are relevant to VAX LISP/VMS programming: Q
• VAX LISP/VMS Installation Guide

• COMMON LISP: The Language

• VAX LISP/VMS Editor Programming Gui.de

• VAX LISP/VMS System Access Programming Guide

• VAX LISP/VMS Graphics Programming Guide

• Introduction to VAX/VMS

• VAX/VMS DCL Dictionary

0
xiv

0

0

0

0

0

PREFACE

• VAX/VMS System Services Reference Manual

• VAX/VMS I/0 User's Reference Manual: Part I

• VAX/VMS Run-Time Library Routines Reference Manual

e VAX Architecture Handbook

For a complete list of VAX/VMS software documents, see the VAX/VMS
Information Directory and Index.

Conventions Used in This Document

The following conventions are used in this manual:

Convention

()

[]

UPPERCASE

lowercase
italics

; ...

Meaning

Parentheses used in examples of LISP code indicate the
beginning and end of a LISP form. For example:

(SETQ NAME LISP)

Square brackets enclose elements that are optional.
For example:

[doc-string]

Square brackets do not indicate optional elements when
they are used in the syntax of a directory name in a
VAX/VMS file specification. Here, the square bracket
characters must be included in the syntax.

DCL commands and qualifiers and defined LISP
functions, macros, variables, and constants are printed
in uppercase characters; however, you can enter them in
uppercase, lowercase, or a combination of uppercase and
lowercase characters.

Lowercase italics in function and macro descriptions
and in text indicate arguments that you supply;
however, you can enter them in lowercase, uppercase, or
a combination of lowercase and uppercase characters.

In a DCL command description, a horizontal ellipsis
indicates that the element preceding the ellipsis can
be repeated. For example:

function-name •.•

In LISP examples, a horizontal ellipsis indicates code
not pertinent to the example and not shown ..

xv

- ---------------------------------

Convention

{ }

{ } *

&OPTIONAL

&REST

&KEY

PREFACE

Meaning

A vertical ellipsis indicates that all the information
that the system would display in response to the
particular function call is not shown; or, that all the
information a user is to enter is not shown.

In function and macro format specifications, braces
enclose elements that are considered to be one unit of
code. For example:

{keyword value}

In function and macro format specifications, braces
followed by an asterisk enclose elements that are
considered to be one unit of code, which can be
repeated zero or more times. For example:

{keyword value}*

In function and macro format specifications, the word
&OPTIONAL indicates that the arguments after it are
defined to be optional. For example:

PPRINT object &OPTIONAL package

0

0

Do not specify &OPTIONAL when you invoke a function or Q
macro whose definition includes &OPTIONAL.

In function and macro format specifications, the word
&REST indicate·s that an indefinite number of arguments
may appear. For example:

BREAK &OPTIONAL format-string &REST args

Do not specify &REST when you invoke the function or Q
macro whose definition includes &REST.

In function and macro format specifications, the word
&KEY ·indicates that keyword arguments are accepted.
For example:

COMPILE-FILE input-pathname &KEY {keyword value}*

Do not specify &KEY when you invoke the function or
macro whose definition includes &KEY.

xvi

0

----------------------------------·--·---·------·----

0

0

0

0

0

PREFACE

• VAX/VMS System Services Reference Manual

• VAX/VMS I/0 User's Reference Manual: Part I

• VAX/VMS Run-Time Library Routines Reference Manual

e VAX Architecture Handbook

For a complete list of VAX/VMS software documents, see the VAX/VMS
Information Directory and Index.

Conventions Used in This Document

The following conventions are used in this manual:

Convention

()

[]

UPPERCASE

lowercase
italics

) ...

Meaning

Parentheses used in examples of LISP code indicate the
beginning and end of a LISP form. For example:

(SETQ NAME LISP)

Square brackets enclose elements that are optional.
For example:

[doc-string]

Square brackets do not indicate optional elements when
they are used in the syntax of a directory name in a
VAX/VMS file specification. Here, the square bracket
characters must be included in the syntax.

DCL commands and qualifiers and defined LISP
functions, macros, variables, and constants are printed
in uppercase characters; however, you can enter them in
uppercase, lowercase, or a combination of uppercase and
lowercase characters.

Lowercase italics in function and macro descriptions
and in text indicate arguments that you supply;
however, you can enter them in lowercase, uppercase, or
a combination of lowercase and uppercase characters.

In a DCL command description, a horizontal ellipsis
indicates that the element preceding the ellipsis can
be repeated. For example:

function-name ••.

In LISP examples, a horizontal ellipsis indicates code
not pertinent to the example and not shown •.

xv

Convention

{ }

{ }*

&OPTIONAL

&REST

&KEY

PREFACE

Meaning

A vertical ellipsis indicates that all the information
that the system would display in response to the
particular function call is not shown; or, that all the
information a user is to enter is not shown.

In function and macro format specifications, braces
enclose elements that are considered to be one unit of
code. For example:

{keyword value}

In function and macro format specifications, braces
followed by an asterisk enclose elements that are
considered to be one -unit of code, which can be
repeated zero or more times. For example:

{keyword value}*

In function and macro format specifications, the word
&OPTIONAL indicates that the arguments after it are
defined to be optional. For example:

PPRINT object &OPTIONAL package

0

0

Do not specify &OPTIONAL when you invoke a function or Q
macro whose definition includes &OPTIONAL.

In function and macro format specifications, the word
&REST indicate·s that an indefinite number of arguments
may appear. For example:

BREAK &OPTIONAL format-string &REST args

Do not specify &REST when you invoke the function or Q
macro whose definition includes &REST.

In function and macro format specifications, the word
&KEY indicates that keyword arguments are accepted.
For example:

COMPILE-FILE input-pathname &KEY {keyword value}*

Do not specify &KEY when you invoke the function or
macro whose definition includes &KEY.

xvi

0

Convention

0 <RET>

CTRL/x

0
Black print

Red print

0

0

0

PREFACE

Meaning

A symbol
indicates
example:

with
that

a 1-
you

to 3-character abbreviation
press a key on the terminal. For

<RET> or <ESC>

In examples, carriage returns are implied at the end of
each line. However, the <RET> symbol is used in some
examples to emphasize carriage returns.

CTRL/x indicates a control key sequence where you hold
down the CTRL key while you press another key. For
example:

CTRL/C or CTRL/Y

In examples, output lines and prompting characters that
the system displays are in black print. For example:

$ LISP/COMPILE
$_File(s): MYPROG.LSP

In examples, user input is shown in red print.
example:

$ LISP/COMPILE
$_File(s): MYPROG.LSP

xvii

For

0

0

0

0

t 0
I

, :

0

0 PART I

VAX LISP/VMS SYSTEM CONCEPTS AND FACILITIES

0

0

0

0

0

0

0

0

0

LISP is a general

CHAPTER 1

INTRODUCTION TO VAX LISP

O used extensively
and development
processing, game
characterized by:

purpose programming language. The. language has been
in the field of artificial intelligence for research
of robotics, expert systems, natural-language
playing, and theorem proving. The LISP language is

0

• Computation with symbolic expressions and numbers

• Simple syntax

• Representation of data by symbolic expressions or multilevel
lists

• Representation of LISP programs as LISP data, which enables
data structures to execute as programs and programs to be
analyzed as data

• A function named EVAL, which is the language's definition and
interpreter

Q • Automatic storage allocation and garbage collection

VAX LISP is implemented on both the VMS and the ULTRIX-32 operating
systems. VAX LISP as implemented on the VMS operating system is
formally named VAX LiSP/VMS. VAX LISP as implemented on the ULTRIX
operating system is formally named VAX LISP/ULTRIX. Both VAX
LISP/ULTRIX and VAX LISP/VMS are the same language but with some
differences. For the differences, see the VAX LISP/VMS Release Notes.
These notes are kept on line in the file LISP$SYSTEM:VAXLISPnnn.MEM,

,where nnn is the VAX LISP version number.

This manual describes VAX LISP/VMS, but refers to VAX LISP/VMS as VAX
LISP, where practicable.

This chapter provides an overview of the VAX LISP language. The

O overview is arranged so that it parallels the structure of this manual
and the remaining VAX LISP documentation. In additipn to the

1-1

INTRODUCTION TO VAX LISP

overview, the chapter explains how to get on-line help at the DCL and
the LISP language levels of operation and describes:

• VAX/VMS file specifications

• Logical names

• Hints for entering DCL commands

1.1 OVERVIEW OF VAX LISP

The VAX LISP language is an extended implementation of the COMMON LISP
language defined in COMMON LISP: The Language. In addition to the
features supported by COMMON LISP, VAX LISP provides the following
extensions:

• DCL (DIGITAL Command Language) LISP command

• Extensible editor

• Error handler

• Debugging facilities

• Extensible pretty printer

• Facility for calling out to external routines

• Facility for defining non-LISP
structures)

data structures (alien

• Facility for defining interrupt functions (that is, functions
that execute asynchronously)

• Window and graphics support for the VAXstation II workstation

These extensions are described in Sections 1.1.1 through 1.1.9.

VAX LISP
manipulate
facilities.

does not
complex

support complex numbers. However, you can
numbers by using the alien structure and call-out

0

0

0

0

Some of the functions, macros, and facilities defined by COMMON LISP
are modified for the VAX LISP implementation. Chapter 7 provides I
implementation-dependent information about the following topics:

• Data representation

• Pathnames 0
1-2

INTRODUCTION TO VAX LISP

• Garbage collector

0 • Input and output

0

0

0

0

• Asynchronous functions

• Compiler

• Functions and macros

The implementation-dependent functions and macros mentioned in Common
LISP: The Language are defined in Part II.

1.1.1 DCL LISP Command

The DCL LISP command invokes VAX LISP from the VMS command level.
Depending on the qualifier you use with the LISP command, you can
start the LISP interpreter or the LISP compiler. Chapter 2 describes
the LISP command and the qualifiers you can use with it. Chapter 2
also explains how to:

e Invoke LISP

e Exit LISP

• Create programs

• Load files

• Compile programs

• Use suspended systems

1.1.1.1 Interpreter - The VAX LISP interpreter reads an expression,
evaluates the expression, and prints the results. You interact with
the interpreter in line-by-line input.

While in the interpreter, you can create LISP programs. You can also
use programs that are stored in files if you load the files into the
interpreter. Chapter 2 explains how to create LISP programs and how
to load files into the VAX LISP interpreter.

1.1.1.2 Compiler - The VAX LISP compiler is a LISP program that
translates LISP code from text to machine code. Because of the
translation, compiled programs run faster than interpreted programs.

1-3

INTRODUCTION TO VAX LISP

You can use
compile a
can compile
Chapter 2).

the compiler to compile a single function or macro or to
LISP source file. If you are in the LISP interpreter, you
a single function or macro with the COMPILE function (see

You can compile a source file either at the VMS command level or the
LISP level of operation. If you are at the VMS command level, you
must specify the LISP DCL command with the /COMPILE qualifier; if you
are in the LISP interpreter, you must invoke the COMPILE-FILE
function. Chapter 2 explains how to compile LISP programs · that are
stored in files.

1. 1.2 Editor

VAX LISP includes a screen-oriented editor. You can use it to
text files, and funct1ons and macros that are-defined in the
system. The Editor provides specialized commands to help you
LISP code; they balance parentheses, properly indent text,
evaluate LISP text. Chapter 3 describes how to use the Editor
write and edit LISP code.

edit
LISP
edit

and
to

The Editor is written in LISP, so you can extend and customize it for
your needs. The Editor provides predefined commands and several
functions, macros, and data structures, which you can use to create
Editor commands. After you create an Editor command, you can bind it
to a key on your terminal keyboard. In this way, you can build up
alternative editing systems or complete applications based on the
Editor. See the VAX LISP Editor Programming Guide for more
information on programming the.Editor.

1. 1.3 Error Handler

VAX LISP contains an error handler, which is invoked when errors occur
during the evaluation of a LISP program. Chapter 4 describes the
error handler and explains how you can create your own error handler.

1.1.4 Debugging Facilities

VAX LISP provides several functions and macros that return or
information you can use when you are debugging a program.
also provides four debugging facilities: the break loop,
stepper, and tracer.

display
VAX LISP

debugger,

The functions· that return debugging information and the break _loop,
stepper, and tracer facilities are defined in COMMON LISP and are
extended in VAX LISP. The break loop lets you interrupt the

1-4

0

0

0

0

0

INTRODUCTION TO VAX LISP

evaluation of a prog_ram, the stepper lets you use commands to step

O through ~he evaluation of each form in a program, and the tracer lets
you examine the evaluation of a program.

The debugger is a VAX LISP facility. The facility provides commands
that let you examine and modify the information in the LISP system's
control stack frames.

Chapter 5 explains how to use the debugging facilities.

1.1.5 Pretty Printer

VAX LISP provides a pretty printer facility. You can use the facility
to control the format in which LISP objects are printed. The pretty

O printer can be helpful in making objects easier to understand by means
of indentation and spacing. You can use the pretty printer with the
existing defaults, control it with control variables, or extend it by
using special directives with the FORMAT function. Chapter 6 explains
how to use the pretty printer in each of these ways.

1.1.6 Call-Out Facility

QvAX LISP includes a call-out facility, which lets you call programs
written in other VAX/VMS programming languages and programs that
include run-time library (RTL) routines and VMS and RMS system
services. Chapter 2 of the VAX LISP/VMS System Access Programming
Guide describes the call-out process and explains how to use the
call-out facility.

Q1.1.1 Alien Structure Facility

VAX LISP supplies an alien structure facility. It lets you define,
create, and access VAX data structures that are used to communicate
between the VAX LISP language and other VAX/VMS languages or system
services. Chapter 3 of the VAX LISP/VMS System Access Programming
Guide describes the alien structure facility and explains how to use
it.

1.1.8 Interrupt Function Facility

VAX LISP allows you to define functions that can execute at arbitrary
and unpredictable points in your program, usually as the result of an

O event in the operating system. Such functions are called interrupt
functions, because they interrupt the normal flow of program

1-5

INTRODUCTION TO VAX LISP

execution. Chapter 4 of the VAX LISP/VMS System Access
Guide describes how to define and use interrupt functions.

1.1.9 VAXstation Graphics Interface

Programming

VAX LISP/VMS provides access to the graphics capabilities of the
VAXstation II family of workstations. You can create windows on the
screen, draw lines and write text in the windows, track the
workstation's pointing device and react to pointer buttons, and create
LISP streams to windows. The VAX LISP/VMS Graphics Programming Guide
describes this interface.

1.1.10 VAX LISP/VMS Function, Macro, and Variable Descriptions

VAX LISP/VMS contains many functions, macros, and
either not mentioned or are mentioned but not
COMMON LISP language. These functions, macros,
divided into the following categories:

variables that are
fully defined in the

and variables are

• Implementation-dependent
defined in Common LISP:

objects mentioned
The Language

but not fully

0

0

•. VAX LISP objects that implement the parts of VAX LISP that are-Q
described in this manual

• Editor-specific objects

• System access-specific objects (pertaining to
alien structure, interrupt function,
synchronization facilities)

• Graphics-specific objects

the call-out,
and program

These LISP objects let you use the VAX LISP facilities and some VMS
facilities without exiting or calling out from the LISP system.

The LISP objects in the first two categories listed above are
described in Part II of this manual. Editor-specific objects are
described in Part III of the VAX LISP/VMS Editor Programming Guide.
System access-specific objects are described in Part II of the VAX
LISP/VMS System Access Programming Guide. Graphics-specific objects
are described in Part II of the VAX LISP/VMS Graphics Programming
Guide.

1-6

0

0

0

0

INTRODUCTION TO VAX LISP

1.2 HELP FACILITIES

When using VAX LISP, you can get help at both the
levels of operation.

1.2.1 DCL HELP

DCL and the LISP

The VAX/VMS help facility lets you obtain on-line information about a
DCL command, its parameters, and its qualifiers. Invoke the help
facility by entering the HELP command. When the HELP command is
executed, the facility displays the information available.

To obtain information about VAX LISP, enter the following command:

$ HELP LISP

1.2.2 LISP HELP

VAX LISP provides two functions you can use to obtain help during a
LISP session: DESCRIBE and APROPOS. The DESCRIBE function displays
information about a specified LISP object. The type of information
the function displays depends on the object you specify as its

Qargument. You can use the APROPOS function to search through a
package for symbols whose print names.contain a specified string. See
COMMON LISP: The Language for information about packages.
Descriptions of the DESCRIBE and APROPOS functions are provided in
Part II.

0 1.3 VAX/VMS FILE SPECIFICATIONS

A VAX/VMS file specification indicates the input file to be processed
or the output file to be produced. File specifications have the
following format:

node::device:[directory]tilename.tiletype;version

A file specificati~n has the following components:

0
1-7

node

INTRODUCTION TO VAX LISP

The name of a network node. The name can be either an integer or
a string and can include an access control string. The following
node name includes an access control string:

MIAMI"SMITH MYPASSWORD"::

This component applies only to systems that support DECnet-VAX.

device

The name of the device on which the file is stored or is to be
written.

directory

0

The name of the directory under which the file is cataloged. The O
name must be a string. You can delimit the directory name with
either square brackets ([]) or angle brackets(<>).

You can specify a sequence of directory names where each name
represents a directory level. For example:

[SMITH.EXAMPLES]

In the preceding directory specification, EXAMPLES represents a Q
subdirectory.

filename

The name of the file.

filetype

An abbreviation that usually describes the type of data in the O
file.

version

An integer that specifies which version of the file is desired.
The version number is incremented by-· one each time you create a
new version of the file. You can use either a semicolon(;) or a
period (.) to separate the file type and ver.sion.

The punctuation marks (colons, brackets, period, and semicolon) in the
file specification format are required. The marks separate the
components of the file specification.

You do not have to supply all the components of a file specification
each time you compile a file, load an initialization file, or resume a Q
suspended system. The only component you must specify is the file

1-8

INTRODUCTION TO VAX LISP

name; the operating system supplies default values for the components

O that you do not specify. Table 1-1 summarizes the default values.
The special variable *DEFAULT-PATHNAME-DEFAULTS* contains the default
values for the node, device, and directory elements.

Table 1-1: File Specification Defaults

Optional Element Default Value

node Local network node

device User's current default device

directory User's current default directory

ofilename Input -- None
Output -- Same as input file; if no input file

is specified, there is n6 default

filetype

0
version

Depends
FAS
LIS
*LSC
LSP

SUS

on usage:
Fast-loading file (output from compiler)
Error listing (output from compiler)
Editor checkpointing file
Source file (input to LISP reader or
compiler)
Suspended system

Input -- Highest existing version number
Output -- If no existing version, 1

If existing version, highest version
number plus 1

OThe way the system fills in default values depends on the operation
being performed. For example, if you specify only a file name, the
compiler processes the source program if it finds a file with the
specified file name that is stored on the default device, is cataloged
under the default directory name, and has an LSP file type. If more
than one ·file meets these conditions, the compiler processes the file
with the highest version number. Suppose you pass the following file
specification to the compiler:

$ LISP/COMPILE DBAl:[SMITH]CIRCLE.LSP

The compiler searches directory SMITH on device DBAl, seeking the
highest version of CIRCLE.LSP. If you do not specify an output file,
the compiler generates the file CIRCLE.FAS, stores it in directory
SMITH on device DBAl, and assigns it a version number that is one
higher than any version of CIRCLE.FAS cataloged in directory SMITH on

Qdevice DBAl.

1-9

INTRODUCTION TO VAX LISP

1.4 LOGICAL NAMES

The VAX/VMS operating system provides a logical name mechanism that O
allows programs to be device and file independent. Programs do not
have to specify the device on which a file resides or the name of the
file that contains data if you use logical names. Logical names
provide great flexibility, because you can associate them not only
with a device or a complete file specification but also with a
directory or another logical name.

For more information on logical names, see the Guide to Using DCL and
Command Procedures on VAJ<../VMS.

1.5 ENTERING DCL COMMANDS

This section lists hints for entering DCL commands.

• You can abbreviate command and qualifier names to four
characters. You can use fewer than four characters if the
abbreviation is unambiguous.

• You must precede each qualifier name with a slash(/).

• If you omit a
specification),
the parameter.

required
the DCL

parameter (for example, a file
command interpreter prompts you for

• You can enter a command on more than one line if you end each
continued line with a hyphen(-).

• You must press the RETURN key after you enter a command;
pressing the RETURN key passes the command to the system for
processing.

• You can delete the current command line by typing CTRL/U.

e You can interrupt command execution by typing CTRL/Y. If you
do not enter a command that executes another image, you can
resume the interrupted command by entering the DCL CONTINUE
command. To stop processing compietely after typing CTRL/Y,
enter the DCL STOP command.

1-10

0

0

0

0

0

CHAPTER 2

USING VAX LISP

This chapter describes the DCL LISP command and its qualifiers and Q explains the following:

• Invoking LISP

• Exiting LISP

• Entering input

• Deleting input

0 • Entering the debugger

• Using control key characters

• Creating programs

• Loading files

0 • Compiling programs

• Using suspended systems

2.1 INVOKING LISP

You invoke an interactive VAX LISP session by typing the DCL command
LISP. When it is executed, a message identifying the VAX LISP system

, appears, and then the LISP prompt (Lisp>) is displayed. For example:

$ LISP

Welcome to VAX LISP, Version V2.0

O Lisp>

2-1

USING VAX LISP

See Section 2.10 for descriptions of the qualifiers you can
the LISP command.

2.2 EXITING LISP

use with

You can exit from LISP by using the LISP EXIT function. For example:

Lisp> (EXIT)
$

When you exit the LISP system, you are returned to the DCL level of
operation. If you have used the Editor, modified buffers are not
saved on exiting LISP. See Chapter 3 for information on how to save
modified buffers before exiting LISP.

0

You cannot exit the LISP system by typing CTRLIZ, as you can with many Q
other interactive programs that run on VMS.

2.3 ENTERING INPUT

You enter input into the VAX LISP system a line at a time. Once you
move to a new line, you cannot go back to the previous line. However,
you can recover an input expression or an output value by using the~
following 10 unique variables: "'-/

I
II
Ill

*
**

+
++
+++

These variables are described in COMMON LISP: The Language. The
following example illustrates the use of the plus sign(+) variableo
that is bound to the expression most recently evaluated:

Lisp> (CDR '(A B C))
(BC)
Lisp>+
(CDR (QUOTE (ABC)))
Lisp>

2.4 DELETING AND EDITING INPUT

The DELETE key deletes characters to the left of the cursor on the
current line of input. CTRL/U deletes the current line of input.

If you are using a video terminal, you can use control characters,o
function keys, and arrow keys on the terminal to edit the current line
of input.

2-2

----------------~

0

USING VAX LISP

Table 2-1 lists the keys you can use to delete and edit input.

NOTE

You can use the BIND-KEYBOARD-FUNCTION function to
bind most of the control characters listed in Table
2-1 to a LISP function. Binding a control character
in this way cancels the effect listed for that control
character in Table 2-1.

Table 2-1: Keys Used In Line Editing

Key Effect

O
CTRL/A and
F14*

Switches between overstrike and insert modes in the
current line.

CTRL/B and
Up Arrow

CTRL/D and
Left Arrow

CTRL/E

QCTRL/F and
Right Arrow

CTRL/H and
BACKSPACE and
F12*

CTRL/J and
QLINEFEED and

F13*

CTRL/U

Recalls the last line entered.

Moves the cursor one character to the left.

Moves the cursor to the end of the line.

Moves the cursor one character to the right.

Moves the cursor to the beginning of the line.

Deletes the word to the left of the cursor.

Deletes characters from the cursor position back to
the beginning of the line.

* This key is available only on the LK201 keyboard.

2.5 ENTERING THE DEBUGGER

If you make an error during an interactive VAX LISP session, the error
automatically invokes the debugger, which replaces the LISP prompt
(Lisp>) with the debugger prompt (Debug 1>). For information on how

Oto use the VAX LISP debugger, see Chapter 5.

USING VAX LISP

Typing CTRL/C is a quick way to recover from an error without using
the VAX LISP debugger. If you want to recover from an error byo
discarding the expression you typed and starting over, type CTRL/C.
CTRL/C returns you to the read-eval-print loop, which displays the
LISP prompt (Lisp>).

2.6 USING CONTROL KEY CHARACTERS

Table 2-2 lists the control characters you can use in VAX LISP.
CTRL/C is the only one whose listed function is specific to LISP. The
other control characters perform standard VMS functions.

NOTE

You can use the BIND-KEYBOARD-FUNCTION function to
bind most of the control characters listed in Table
2-2 to a LISP function. Binding a control character
in this way cancels the effect listed for that control
character in Table 2-2.

These control characters do not work in the VAX LISP
Editor.

Table 2-2: Control Characters

Control
Character Function

0

0

CTRL/C Returns you to the top-level loop from any other
command level. In LISP, CTRL/C invokes theo
CLEAR-INPUT function on the *TERMINAL-IO* stream,
then performs a throw to the catcher established
for CANCEL-CHARACTER-TAG. If you want to recover
from an error by discarding the expression you
typed and starting over, type CTRL/C. (See
CANCEL-CHARACTER-TAG in Part II for an example of
changing the behavior of CTRL/C.)

CTRL/0

CTRL/Q

CTRL/R

Discards output being sent to the terminal until
you type another CTRL/0.

Resumes terminal output that had been halted
CTRL/S.

Redisplays what is on a line.

2-4

with

0

0 Table 2-2 (cont.)

Control Character

CTRL/S

CTRL/T

CTRL/U

CTRL/X

USING VAX LISP

Function

Stops output to the terminal until a CTRL/Q is
typed.

Displays process information. This is useful
during a computation to watch the resour_ces used.

Deletes the current input line. The prompt is not
echoed in LISP.

Deletes all input that has not yet been read from
the type-ahead buffer.

O CTRL/Y Returns you to the DCL level of control and purges
the type-ahead buffer.

0

0

2.7 CREATING PROGRAMS

The most common way to create a LISP program is by using a text
editor. In this way, the program exists in a source file that can be
loaded into the LISP environment by the LISP LOAD function.

Although you can compose source programs with any text editor, the VAX
LISP Editor provides facilities that help you enter and edit LISP
source code. For example, the Editor helps you balance parentheses
and maintain proper indentation. Furthermore, .this editor, being
integrated into the LISP environment, can be extended with features
that fit your own style of editing. See Chapter 3 for a description
of how to use the Editor.

Another way to create LISP programs is to define them using the
interpreter in an interactive LISP session. If you define functions
with the DEFUN macro or macros with the DEFMACRO macro, the
definitions become a part of the interpreted LISP environment. You
can then invoke your defined functions and macros. However, since
these definitions are not in a permanent text file, your work .is
stored only temporarily and disappears when you exit VAX LISP.
Entering programs ·by typing to the interpreter is really useful only

, for experimenting with small functions and macros.

0
2.8 LOADING FILES

Before you ean use a file in interactive.LISP; you must load the file
into the LISP system. The file can be. compiled or interpreted;

2-5

USING VAX LISP

compiled files load more quickly.
system in three ways:

You can load a file into the LISP

• Load the file by specifying the DCL LISP INITIALIZE qualifier.
For example:

$ LISP/INITIALIZE=MYINIT.LSP

Welcome to VAX LISP, Version V2.0

Lisp>

0

The LISP prompt indicates the file has been successfully
loaded. If the file is not successfully loaded, an error
message indicating the reason appears on your terminal screen.
Include the /VERBOSE qualifier to cause the names of functions
loaded in an initialization file to be listed at the terminal. Q.
For more information on the /VERBOSE qualifier, see Section
2.10.14.

@ Load the file by using the LISP LOAD function when in an
interactive LISP session. For example:

Lisp> (LOAD "TESTPROG.LSP")
; Loading contents of file DBAl:[JONES]TESTPROG.LSP;l
; FACTORIAL O
; FACTORS-OF
; Finished loading DBAl:[JONES]TESTPROG.LSP;l
T
Lisp>

The file name ("TESTPROG.LSP" in the example) can be a string,
symbol, stream, or pathname. FACTORIAL and FACTORS-OF are the
functions contained in the file TESTPROG.LSP. The final T
indicates that the file has been successfully loaded. For
more information on the LOAD function, see Part II.

~ Evaluate the contents of a buffer in the Editor when that
buffer contains a file. See Chapter 3 for more information on
this topic.

With the /INITIALIZE qualifier, you can load more than one file at a
time. With the LOAD function, however,,you can specify only one file
at a time.

2.9 COMPILING PROGRAMS

0

You compile LISP programs by compiling the LISP expressions that make·n
up the programs. You can compile LISP expressions in two ways:
individually, by using the LISP COMPILE function; or in a· file, by ~

2-6

USING VAX LISP

using either the LISP. COMPILE-FILE function or the DCL LISP /COMPILE
ogualifier.

2.9.1 Compiling Individual Functions and Macros

In LISP, the unit of compilation is normally either a function or a
macro. You can compile a function or a macro in a currently running
LISP session by using the COMPILE function. This function is
described in COMMON LISP: The Language.

You normally call a LISP function first in interpreted form to see if
the function works. Once it works as interpreted, you can test it in
compiled form without having to write the function to a file. Use the
COMPILE function for this purpose.

Qwhen you compile a function or a macro that is not in a file, the
consequent compiled definition exists only in the current LISP; the
definition is not in a file. However, you can use the VAX LISP
UNCOMPILE function to retrieve the interpreted definition. This
function, described in Part II, is useful when debugging programs.
Because the interpreted cqde shows you more of your function's
evaluation than the compiled code, you can find the error more easily.
You can modify the function definition in the Editor to correct the

O error and also save your corrected version of the function in a file.
See Chapter 3 for further information on using the Editor to write
interpreted functions to files. ·

2.9.2 Compiling Files

Any collection of LISP expressions can make up a program and can

O stored in a file. The compiler processes such a file by compiling
LISP expressions in the file and writing each compiled result to
output file. .

be
the

an

You can compile VAX LISP files either at DCL level with the LISP
command and the /COMPILE qualifier or in interactive VAX LISP with the
LISP COMPILE-FILE function.

The /COMPILE qualifier is described in Section 2.10.2. The
COMPILE-FILE function is described in Part II. The following example
shows how the /COMPILE qualifier is used to compile the file
MYPROG.LSP at the DCL level:

$ LISP/COMPILE MYPROG.LSP
$

QThis example produces an output file named MYPROG.FAS.

USING VAX LISP

The next example shows how the COMPILE-FILE function can be used
compile the file MYPROG.LSP from within the LISP system:

Lisp> (COMPILE-FILE "MYPROG.LSP")
Starting compilation of file DBA1:[JONES]MYPROG.LSP;1

FACTORIAL compiled.

Finished compilation of file DBA1:[JONES]MYPROG.LSP;1
O Errors, 0 Warnings_
"DBA1:[JONES]MYPROG.FAS;1"
Lisp>

to

0

Both methods of compiling LISP files are equivalent except in their
defaults. The COMPILE-FILE function automatically lists the name of
each function it compiles at the terminal, but the /COMPILE qualifier
does not. Both methods produce fast-loading files (type FAS) that run 0 more quickly than uncompiled files. Fast-loading files are
automatically placed in the directory containing your source files.

The first method of compiling files, using the LISP /COMPILE
qualifier, has the advantage that you can compile several files in one
step. For example:

$ LISP/COMPILE FILE1.LSP, FILE2.LSP, FILE3.LSP

When you use the LISP COMPILE-FILE function, it takes several steps toQ
compile several files, since you can only compile one file in each
call to COMPILE-FILE.

The second method of compiling' files, using the LISP COMPILE-FILE
function, has the advantage of enabling you to stay in LISP both
during compilation and afterwards. This method is convenient if you
are using the LISP Editor to create a file and you do not want to
leave the LISP environment. The method is also convenient if you areo
compiling a single function and want to quickly check for errors and
correct them without leaving LISP. The method is necessary if the
compilation depends on changes you have made to the LISP environment;
that is, you have defined some macros or changed a package.

The COMPILE-FILE function returns a namestring corresponding to the
output file it generates. Therefore, immediately after using the
COMPILE-FILE function, you can load the resulting output file as
follows:

Lisp> (LOAD*)

2-8

0.

0

0

0

0

0

USING VAX LISP

2.9.3 Advantages of Compiling LISP Expressions

You can use both compiled and uncompiled (interpreted) files and
functions during a LISP session. Both compiled and uncompiled LISP
expressions have their advantages. The advantages of compiling a
file, a macro, or a function follow:

2.9.4

• Compiling a function or a macro is a good initial debugging
tool, since the compilation does static error checking, such
as checking the number of arguments to a function or a macro.
For example, consider the following function definition:

•

(DEFUN TEST (X)
(IF (> X O)

(+ 1 X)
(TEST (TRY X) X)))

In the definition of the function TEST, the alternate
consequent (the false part) of the IF condition invokes TEST
with two arguments, (TRY X) and X, while the function
definition of TEST calls for only one argument. Despite this
error, TEST might work correctly' as an interpreted
(uncompiled) function if the argument given is a positive
number, since it uses only the first consequent (the true
part); so you may not detect the error. But if you compiled·
the function, the compiler would detect the error in the
second consequent and issue a.warning.

A compiled file not only loads much faster, but the compiled
code executes significantly faster than the corresponding
interpreted code.

Advantage of Not Compiling LISP Expressions

You can debug run-time errors in an interpreted function more easily
than you can debug them in a compiled file or function. For example,
if the debugger is invoked because an error occurred in an uncompiled
function, .you can use the debugger to find out what code caused the
error •. If the debugger is invoked because an error occurred in a
compiled function, the ea:ode surrounding the form that caused an err.or
to be signaled may.not be accessible. The stepper facility is also
more informative with interpreted than with compiled functions. See

, Chapter 5 for information on the debugger and the stepper.

2.10 DCL LISP COMMAND QUALIFIERS

The LISP command can be specified with several qualifiers according to
the standard VMS conventions. The format of the LISP command with

2-9

USING VAX LISP

qualifiers f~llows: ·

LISP[/qualifier ••• J

Some qualifiers have a corresponding negative form, /NOqualifier,
which negates the specified action .. Other qualifiers accept values.
To specify a qualifier value, type the qualifier name followed by an
equal sign(=) and the value. For example:

/INITIALIZE=MYPROG.LSP

Qualifier values are surrounded by braces ({ }) when you can choose
only one value from a list. For example:

/ERROR_ACTION={EXIT or DEBUG}

0

To specify
parentheses.

a list of qualifier
For example:

values, enclose the values in Q
/INITIALIZE=(MYPROG1.LSP,MYPROG2.LSP)

You can define DCL symbols to represent LISP command lines that you
use frequently. For example:

$ BIGLISP :== LISP/INITIALIZE=SYS$LOGIN:LISPINIT/MEMORY=10000

Following this command, the DCL symbol BIGLISP, when typed at the DCL Q
prompt, results in execution of the LISP command line shown.

Table 2-3 summarizes the qual~fiers you can use with the LISP command.
Sections 2.10.2 through 2~10.15 describe each qualifier in detail.

Table 2-3: DCL LISP Command Qualifiers

Qualifier Function 0
/COMPILE

/ERROR_ACTION=fEXIT or DEBUG}

Invokes the VAX LISP compiler to
compile one or more source files
(input arguments that default to
the file type LSP).

EXIT causes your program to exit
LISP when an error occurs. EXIT is
the default in batch mode jobs and
in compile mode (with the /COMPILE;
qualifier). DEBUG invokes the VAX
LISP debugger when an error occurs •

. , DEBUG is the default in an
interactive LISP session.

2-10

0

USING VAX LISP

Table 2-3 (cont.)

Ooualifier

0

0

0

0

/[NOJINITIALIZE=(file-spec, ...)

/INTERACTIVE

/INSTALL=suspended-system-spec

/[NO]LIST=[file-spec]

/[NO]MACHINE_CODE

/MEMORY=number

/[NO]OPTIMIZE=(SPEED:n,SPACE:n,
SAFETY:n,COMPILATION_SPEED:n)

Function

causes the LISP system to load an
initialization file(s). The
default - file type for an
initialization file is LSP or FAS.
NOINITIALIZE suppresses the loading
of initialization files.

Starts an interactive LISP session.
/INTERACTIVE is the defa~lt
qualifier for the LISP command.

Causes the read-only code in
LISP suspended system to
shareable. The default file
for a suspended-system file is

the
be

type
SUS.

Specifies that a listing file be
created during compilation. A
listing consists of the file name,
date of compilation, names of the
LISP expressions compiled (if the
/VERBOSE qualifier is specified),
and warning and error messages.
The.default file type for a listing
file is LIS. /NOLIST suppresses a
listing file and is the default
except in batch mode. In such
jobs, /LIST is th• default.

Includes VAX LISP machine code in
the listing file. /NOMACHINE_CODE
suppresses a listing of the machine
code and is the default.

Specifies the amount
virtual memory LISP
512-byte pages.

of dynamic
allocates in

Tells the compiler that each
quality has the corresponding
value. SPEED is the speed at which
the object code runs, SPACE is the
space occupied or used by the code,
SAFETY is the run-time error
checking of the code, and
COMPILATION_SPEED is the speed . of
the compilation process. n is an
integer in the range Ota 3. The

2-11

USING VAX LISP

Table 2-3 (cont.)

Qualifier

/[NO]OUTPUT_FILE=[file-spec]

/REMOVE=suspended-syste~-spec

/RESUME=file

/[NO]VERBOSE

/[NO]WARNINGS

Function

value O is the lowest priority
value; the value 3 is the high~st.
The default value for n is 1. See
Chapter 7 for a description of
optimization declarations.

Causes the name of the compiled
file to be the specified name. The
default output file type is FAS.
/NOOUTPUT prevents compiled code
from being written to a file.
/OUTPUT_FILE is the default.

0

Deletes global sections installed Q
with the /INSTALL qualifier. .

Resumes a suspended LISP system.
The default file type for a
suspended LISP system is SUS. See
Section 2.11 on Using Suspended
Systems.

Lists on the output device and the Q
listing file, if any, the names of
functions and macros defined in a
file. /NOVERBOSE suppresses a
listing of function and macro names
defined in a file. /NOVERBOSE is
the default.

Specifies that the compiler is too
produce warning messages.
/NOWARNINGS suppresses warning
messages. /WARNINGS is the
default.

2.10. 1 Five Ways to Use the DCL LISP Command

Depending on the qualifier modifying it, you can use the DCL LISP
command in one of the following five ways called modes:

• INTERACTIVE -- to invoke an interactive LISP session (the
default)

• COMPILE to compile LISP files

2-12

0

0
• RESUME

• INSTALL

e REMOVE

USING VAX LISP

to resume a suspended LISP system

to create a global section for the read-only
code in a LISP suspended system

to delete a global section created with the
/INSTALL qualifier

Table 2-4 lists the LISP command qualifiers that apply to each mode.
Without a qualifier, the DCL LISP command puts you in an interactive
session (the default).

Table 2-4: DCL LISP Command Qualifier Modes
-----··----------------------
Qualifier Mode

01coMPILE COMPILE

/ERROR_ACTION INTERACTIVE or COMPILE or RESUME

/[NO]INITIALIZE INTERACTIVE or CONPILE

/INTERACTIVE INTERACTIVE

0/IKSTALL INSTALL

/[NO]LIST COMPILE

/[NO]MACHINE_CODE COMPILE

/MEMORY INTERACTIVE or COMPILE or RESUME

/[NO)OPTIMIZE COMPILE

0/[NO]OUTPUT_FILE COMPILE

/REMOVE REMOVE

/RESUME RESUME

/[NO]VERBOSE INTERACTIVE or COMPILE

/[NO]WARNINGS COMPILE
'

2.10.2 /COMPILE

OThe /COMPILE qualifier invokes the VAX LISP compiler to compile one or
more source files. The compiler creates a fast-loading (FAS) file
from each source file. Unlike other compilers, such as· those for

2-13

USING VAX LISP

BASIC and COBOL, the LISP compiler does not generate VMS object
modules. Consequently, the LISP compiler does not have an object file o
type. FAS is the default file type for a LISP compiled file. If the
/COMPILE qualifier is used with the /NOOUTPUT_FILE qualifier, the
compiler compiles the source file but does not put the compilation in
a file. That method is helpful if your purpose in compiling the file
is to check for errors. See Section 2.10.11 for more information on
the /[NO]OUTPUT_FILE qualifier.

By default, the compiler gives your newly compiled fi.le the same name
as your source file with a FAS file type, puts the new file in your
source file's directory, and returns you to DCL command level when the
compiler is finished. If you want functions to be listed on your
output device as they are compiled, you must specify the /VERBOSE
qualifier (see Section 2.10.14). If you want to compile files with
the aid of initialization files, use the /INITIALIZE qualifier (see
Section 2 .10. 4). For inf.ormation on how to load files, see Section Q
2.8.

If you do not specify a file name with the /COMPILE qualifier, DCL
prompts you for a file name. If you use the qualifiers /[NO]LIST,
/[NO]MACHINE_CODE, /OPTIMIZE, /[NO]OUTPUT, /[NO]VERBOSE, and
/[NO]WARNINGS with the /COMPILE qualifier and you specify them before
the files to be compiled, the qualifiers apply to all the files to be
compiled. If you use the preceding qualifiers with the /COMPILE
qualifier, but you specify them after a file name, the qualifierso
apply only to the immediately preceding file. If you specify
qualifiers for all the files and a conflicting qualifier for a

,. particular file, the LISP system uses the qualifier specified for the
particular file.

Format

LISP/COMPILE file-spec[, •••]

Example

Mode

$ LISP/COMPILE FACTORIAL.LSP
$

Compile

2.10.3 /ERROR_ACTION

The /ERROR_ACTION qualifier has two values: EXIT and DEBUG.

0

EXIT causes the evaluation of your program to stop and exitso
LISP if a fatal or a continuable error occurs (for a complete

2-14

0

USING VAX LISP

description of ·errors and warnings, see Chapter 4). EXIT is
the default in batch mode and in compile mode, that is, with
the /COMPILE qualifier.

DEBUG calls the VAX LISP debugger if an error occurs. Once
you are in the VAX LISP debugger, you can look at your error,
inspect the control stack, and continue your program from the
point at which it stopped. DEBUG is the default in an
interactive session. See Chapter 5 for more information on
the debugger.

You can use the /ERROR_ACTION qualifier when invoking an interactive
LISP session or when compiling files with the /COMPILE qualifier. The
/ERROR_ACTION qualifier is mainly useful for batch jobs .. It is
equivalent to the VAX LISP *ERROR-ACTION* variable (see Part II).

oFormat

LISP/ERROR_ACTION=value

Example

$ LISP/COMPILE/ERROR_ACTION=DEBUG MYPROG.LSP

Mode

Q Interactive, Compile, or Resume.

2.10.4 /[NO]INITIALIZE

The /INITIALIZE qualifier causes the LISP system to load one or more
initialization files containing LISP source code or compiled code. An

O initialization file's purpose is to predefine functions you might want
to use in a LISP session. The default is to have no initialization
file.

If the initialization files contain calls to exiting functions or if
these files contain errors and the /ERROR_ACTION qualifier is set to
EXIT (/ERROR_ACTION=EXIT), the LISP system returns to the DCL level
without prompting for interactive input. If the initialization_files
contain errors an_d the /ERROR_ACTION qualifier is set to DEBUG
(/ERROR_ACTION=DEBUG), the LISP system puts you into the debugger.

'See Section 2.10.3 for more information on the /ERROR_ACTION
qualifier.

The /INITIALIZE qualifier uses the LISP LOAD function to default the
proper type, directory, and other parts of a file specification. For
example, you do not have to specify the file type if your

Qinitialization file has a FAS or a LSP file type. If your directory
contains a file name with both a FAS and a LSP file type,· the LISP

2-15

USING VAX LISP

system selects the most recently created file as the initialization
file. If only a LSP type file or only a FAS type file of a given nameo
and directory exists, the LISP system selects the type file that
exists.

Use the /VERBOSE qualifier (see Section 2.10.14) to display
terminal screen the names of any functions or macros
initialization file.

on the
in the

You can use the /INITIALIZE qualifier when invoking
LISP session or when compiling files with the /COMPILE
cannot use the /INITIALIZE qualifier with the /RESUME
you do so, the /INITIALIZE qualifier is disregarded.

an interactive
qualifier. You
qualifier; if

Format

LISP/INITIALIZE=(file-spec, ...)

or

LISP/COMPILE/INITIALIZE=(file-spec, ...) file-spec

Example

$ LISP/INITIALIZE=MYINIT/VERBOSE

Welcome to VAX LISP, Version V2.0

Loading contents of file DBAl:[JONES]MYINIT.LSP;l
FACTORIAL
FACTORS-OF

; Finished loading DBAl:[JONES]MYINIT.LSP;l
*

0

0

In the preceding example, the file type defaults to LSP.
FACTORIAL and FACTORS-OF are functions that are loaded into theQ
LISP system from Jones's initialization file. The form (SETF
TOP-LEVEL-PROMPT "*") in the initialization file changes the
Lisp> prompt to an asterisk(*). The *TOP-LEVEL-PROMPT* variable

Mode

is described in Part II.

The SETF form and the prompt variable are not listed on an output
device when the file is loaded, because the /VERBOSE qualifier
lists only functions and macros defined in the file.

Interactive or Compile

2-16

0

0

0

USING VAX LISP

2.10.5 /INTERACTIVE

The /INTERACTIVE qualifier, the default, starts
session.

Mode

Interactive

2.10.6 /INSTALL

an interactive LISP

The /INSTALL qualifier causes the read-only code in a LISP suspended
system to be shareable, reducing the physical memory requirements in a
multiuser system. Making the code shareable enables several people to
simultaneously use the same read-only code. You need the SYSGBL ·
(system global pages) and the PRMGBL (permanent global section)
privileges to use the /INSTALL qualifier. A system manager generally
uses this qualifier once when installing VAX LISP on a multiuser
system. The default file type for a suspended system is SUS. For
more information on this qualifier, see the VAX LISP/VMS Installation
Guide.

Format

Q LISP/INSTALL=suspended-system-spec

Example

0

0

$ LISP/INSTALL=LISP$SYSTEM:LISPSUS.SUS

Mode

Install

2.10.7 /[NO]LIST

The /LIST qualifier is meaningful only if it is specified with the
/COMPILE qualifier. The /LIST qualifier specifies that the compiler
generate a listing file during compilation. You must specify this
qualifier if you want a listing file. A listing includes the name of
the file compiled, the date it was compiled, warning or error messages
produced during compilation, and a summary of warning and error
messages. If you specify the /VERBOSE qualifier with the /LIST
qualifier, the listing also includes the names of the functions
compiled.

Specify the /LIST qualifier with a file name value only when you want
the listing file name to be different from the name of the source

2-17

USINQ VAX LISP

file. If you specify the /LIST qualifier without a file name, the
LISP system produces a listing file with a LIS file type and the same Q
name as the source file.

The /NOLIST qualifier suppresses. a listing and is the default except
in batch mode. The /LIST qualifier is the default for batch mode
operations.

Format

LISP/COMPILE/LIST[=file-spec] file-spec

Example

$ LISP/COMPILE/LIST=FACTORIAL.LIS/VERBOSE MYPROG.LSP

Sample Listing File

Mode

Listing output for file DBAl:[JONES.LIS]MYPROG.LSP;l
Compiled at 10:33:30 on Friday, 20 December 1985 by JONES
Lisp Version V2.0

Starting compilation of file i'DBA1: [JONES. LIS]MYPROG. LSP; 1".
FACTORIAL compiled.

Finished compilation of file "DBA1:[JONES.LIS]MYPROG.LSP;1".
O Errors, 0 Warnings

Compile

2.10.8 /[NO]MACHINE_CODE

The /MACHINE_CODE qualifier is meaningful only if it is specified with
the /COMPILE qualifier. The /MACHINE~CODE qualifier requests the
compiler to put a listing of the VAX LISP machine code in a file
separate from the FAS file the compiler generates. The compiler also
puts anything usually included in a listing.file in this file (see
Section 2.10.7 fo~ a description of a listing file).

VAX LISP machine code is similar to a standard assembly language code.
However, compiling LISP source code does not generate object modules
that must be linked.

0

0

0

The /MACHINE_CODE qualifier has no effect o'n the production of machine
code; the qualifier produces only a machine-code listing file. The Q
machine-code listing file generated when you use the /MACHINE_CODE
qualifier has the same name as your source file and has a LIS file

, 2-18

USING VAX LISP

type (unless you also used the /LIST qualifier to specify a different
oname).

0

The /NOMACHINE_CODE qualifier, the default, suppresses a listing of
LISP machine code.

Format

LISP/COMPILE/MACHINE_CODE file-spec

Example

$ LISP/COMPILE/MACHINE_CODE MYPROG.LSP

Mode

Compile

2.10.9 /MEMORY

The /MEMORY qualifier lets you specify the amount of dynamic virtual
memory the LISP system allocates in 512-byte pages. This system
requires a minimum of 6000 pages of dynamic virtual memory to

Ofunction. This memory is in addition to the read-only and static
memory. Consequently, the default pa~e size for the dynamic virtual
memory is 6000 pages. If you specify fewer than 6000 pages with the
/MEMORY qualifier, the system disregards the requested page size and
uses the default page size. You do not need the /MEMORY qualifier if
you intend to use no more than 6000 pages of dynamic memory.

To see how many pages of memory are available at any point while you
are in LISP, use the LISP ROOM function. If you discover that you

Oneed more memory, save your work by creating a suspended system, and
exit LISP. Then reenter LISP with the /RESUME and the /MEMORY
qualifiers. Use the /MEMORY qualifier to specify a larger number of
pages than you had previously specified. For information on creating

0

a suspended system, see Section 2.11.1; for descriptions of the
/RESUME qualifier and the ROOM function, see Section 2.10.13 and Part
II, respectively.

Format

LISP/MEMORY=number-of-pages

or

LISP/COMPILE/MEMORY=number-of-pages file-spec

2-19

USING VAX LISP

Example

$ LISP/MEMORY=15000 0
Welcome to VAX LISP, V~rsion V2.0

Lisp>

Mode

Interactive or Compile or Resume

2.10.10 /[NO]OPTIMIZE

The /OPTIMIZE qualifier lets you optimize the results of compilation
of your program according to the following qualities: Q

e SPEED (execution speed of the code)

• SPACE (space occupied by the code)

• SAFETY (run-time error checking of the code)

e COMPILATION_SPEED (speed of the compilation process)

You can optimize your program by setting a priority value for each Q
quality. That value must be an integer in the range of. 0 to 3. The
value O means the quality has the lowest priority in relationship to
the other qualities; the value 3 means the quality has the highest
priority in relationship to the other qualities. When you do not
specify the /OPTIMIZE qualifier, the qualities each take the default
value of 1. To suppress optimization, use the /NOOPTIMIZE form of
this qualifier.

The /OPTIMIZE qualifier is meaningful only if it is specified with the Q
/COMPILE qualifier. The /OPTIMIZE qualifier affects only the
compiler, and does nothing to the interpreter, the debugger, or any
other VAX LISP facility. See Chapter 7, Appendix A, and COMMON
LISP: The Language for information on specifying optimization
declarations.

Format

LISP/COMPILE/OPTIMIZE=(guality:value[, ••• J) file-spec

0
2-20

0

0

0

USING VAX LISP

Example

$ LISP/COMPILE/OPTIMIZE=(SPEED:3,SAFETY:2) MYPROG.LSP

or

$ LISP/COMPILE/OPTIMIZE=SPEED:3 MYPROG.LSP

Mode

Compile

2.10.11 /[NO]OUTPUT _FILE

The /OUTPUT_FILE qualifier is meaningful only when it is specified
with the /COMPILE qualifier. The /OUTPUT_FILE qualifier tells the
compiler to write the compiled code to a specific file. If you
specify the /OUTPUT_FILE qualifier with a file name, the LISP system
puts the compiled code in a file with that specified name. Use the
/OUTPUT_FILE qualifier only when you want to change the name of the
compiled file so that the source file and the compiled file have
different names.

The /OUTPUT_FILE qualifier does not specify a
compiled file. See the /LIST qualifier
explanation of a listing file. ·

listing
(Section

file, only a
2.10.7) for an

If this qualifier is not specified, the compiler produces a file with
the same name as the source file and a type of FAS.

The /NOOUTPUT_FILE
to a file. If Q qualifier with the

Format

qualifier prevents compiled code from being written
you want only to check a file for errors, use this
/COMPILE qualifier.

LISP/COMPILE/OUTPUT_FILE[=file-spec] file-spec

Example

$ LISP/COMPIL~/OUTPUT_FILE=TEST.FAS FACTORIAL.LSP

Format

LISP/COMPILE/NOOUTPUT_FILE file-spec

Example

0 $ LISP/COMPILE/NOOUTPUT_FILE MYPROG.LSP

2-21

USING VAX LISP

Mode

Compile

2.10.12 /REMOVE

The /REMOVE qualifier deletes global sections installed by the
/INSTALL qualifier. You can use the /REMOVE qualifier to remove
outdated code when you add a new version of LISP to the system. You
need the SYSGBL (system global pages) and the PRMGBL (permanent global
section) privileges to use /REMOVE because it removes key system
resources.

NOTE

If a new version of VAX LISP has been installed and
you want to remove the old suspended system (the SUS
file), be sure to specify an explicit version number
with the /REMOVE qualifier.

Format

LISP/REMOVE=suspended-system-spec

Example

$ LISP/REMOVE=LISP$SYSTEM:LISPSUS.SUS;1

Mode

Remove

2. 10.13 /RESUME

The /RESUME qualifier
suspension occurred.
systems. The /RESUME
together.

Format

resumes a suspended LISP system where the
See Section 2.11 for an explanation of suspended
and the /INITIALIZE qualifiers cannot be used

LISP/RESUME=file-spec

2-22

0

0

0

0

0

USING VAX LISP

Example

0 $ LISP/RESUME=MYPROG.SUS
T
Lisp>

Mode

Resume

2.10.14 /[NO]VERBOSE

The /VERBOSE qualifier lists on the output device and in the listing
file the names of the functions defined or loaded in an initialization

0- file, and the names of functions in a file as they are compiled. The
/VERBOSE qualifier applies only to files loaded with /INITIALIZE
qualifier or compiled with the /COMPILE qualifier.

0

The /NOVERBOSE qualifier (the default) prevents the names of functions
compiled with the /COMPILE qualifier or loaded with the /INITIALIZE
qualifier from being listed in a file or at the terminal.

Format

LISP/VERBOSE/INITIALIZE=file-spec

or

LISP/COMPILE/VERBOSE file-spec

Examples

0 1. $ LISP/VERBOSE/INITIALIZE=MYINIT.LSP

Welcome to VAX LISP, Version V2.0

2.

0

; Loading contents of file DBA1:[JONES]MYINIT.LSP;1
; FACTORIAL
; FACTORS-OF
; Finished loading DBA1:[JONES]MYINIT.LSP;1
Lisp>

FACTORIAL and FACTORS-OF are functions that are loaded into
the LISP system from Jones's initialization file.

$ LISP/VERBOSE/COMPILE MYPROG.LSP

Starting compilation of file DBA1:[JONES]MYPROG.LSP;1

2-23

Mode

MULT compiled.
SUB compiled.
DIV compiled.

USING VAX LISP

Finished compilation of file DBA1:[JONES]MYPROG.LSP;1
O Errors, 0 Warnings
$

MULT, SUB, and DIV are functions compiled in the file,
MYPROG.LSP. The compiled definitions of t~ese functions are
written to the file, MYPROG.FAS.

Interactive or Compile

2.10.15 /[NO]WARNINGS

The /WARNINGS qualifier specifies that the LISP system is to produce
warning messages. Warning messages are the default when you use the
/COMPILE qualifier.

0

0

A warning message indicates that the LISP system has detected
something that is likely to be wrong. If warnings are signaled whileo
a file is being compiled and the value of the *BREAK-ON-WARNINGS*
variable is NIL (the default), the compilation continues. But, if
errors are signaled, compilation of the expression causing the error
is not continued though the rest of the file is compiled. See Chapter
4 for more information on the differences between warnings and errors.

The /NOWARNINGS qualifier suppresses warning messages.

The following example of a warning message is the message the compilero
displays for the TEST function defined in Section 2.9.3.

$ LISP/COMPILE TEST.LSP
Warning in TEST

TEST earlier called with 2 args, wants at most 1.
$

Format

LISP/COMPILE/NOWARNINGS file-spec

Example

$ LISP/COMPILE/NOWARNINGS MYPROG.LSP

2-24

0

0

0

0

0

0

USING VAX LISP

Mode

Compile

2.11 USING SUSPENDED SYSTEMS

A suspended system is a binary file that is a copy of the LIS~ memory
in use during an interactive LISP session up to the point at which you
create the suspended system. The purpose of a suspended system is to
save the state of an interactive LISP session. You might want to do
this if your work is incomplete. By resuming LISP from a suspended
system, you can continue your work from the point at which you
stopped.

2.11.1 Creating a Suspended System

The VAX LISP SUSPEND function puts in a file the LISP memory in use
during an interactive LISP session, enabling you to resume the same
LISP session at a later time. The SUSPEND function does not stop the
current LISP session; you can continue to use the LISP session after
the SUSPEND function has put a copy of memory into a file. The
SUSPEND function also automatically invokes a garbage collection of
dynamic memory space. See Chapter 7 for information on garbage
collections.

In the following example, the file FILEX.SUS is created and a copy of
the memory in a LISP session is put into that file. The file name can
be a string, symbol, or pathname. See Chapter 7 an~ COMMON LISP: The
Language for a description of pathnames.

Lisp> (SUSPEND "FILEX.SUS")
; Starting garbage collection due to GC function.
; Finished garbage collection due to GC function.
; Starting garbage collection due to SUSPEND function.
; Finished garbage collection due to SUSPEND function.
NIL
Lisp>

After your file is created, the system returns to your interactive
LISP session. You can exit LISP when you see the LISP prompt. Your
suspended system file is placed either in your default directory or in
the directory you specified in the file specification. The file is
usable only in an interactive LISP session.

If you use the Editor before using the SUSPEND function, Editor
buffers that are associated with files are deleted in the resumed
system. Consequently, if you want to save any material in a buffer,
put that material in a file. For a description of the VAX LISP

2-25

Editor, see Chapter 3.
Part II.

USING VAX LISP

For a description of the SUSPEND function, see

2.11.2 Resuming a Suspended System

To resume a suspended system, use the LISP command with the /RESUME
qualifier and the name of the file containing the suspended system.
Program execution continues from the point at which. you called the
SUSPEND function. See Section 2.10.13 for an explanation of the
/RESUME qualifier.

After it creates a suspended system, the SUSPEND function returns NIL

0

and execution continues with the LISP environment exactly as it was
before the call to SUSPEND. However, when execution resumes as a
result of using the /RESUME qualifier, the SUSPEND function returns T. Q
Therefore, a program can use the return value of SUSPEND to determine
if execution is resuming as the result of the /RESUME qualifier, and
take action if necessary. See the SUSPEND function in Part II for a
description of the effects of suspending a system.

0

0

0
2-26

0

CHAPTER 3

USING THE VAX LISP EDITOR

This chapter describes how to use the VAX LISP Editor to edit LISP

O objects and files containing LISP code. This chapter provides all the
information you need to edit LISP and general text. If you want to
learn more about the Editor, or wish to customize it in ways that are
not covered in this chapter, refer to the VAX LISP/VMS Editor

0

Programming Guide.

NOTE

This chapter assumes you are using the Editor in its
default form to edit LISP objects or LISP files. That
is, the Editor's major style 1s "EDT Emulation" and
its minor style is "VAX LISP". If you are using or
wish to use the "EMACS" style provided with the
Editor, see Appendix B of this manual.

This chapter is divided as follows:

0 • Section 3.1 introduces the Editor and explains how to start
it, how to get work into and out of it, and how to return to
the LISP interpreter.

0

• Section 3.2 explains how to edit text, including special
features for editing LISP objects and code.

• Section 3.3 shows how you can have more than one LISP object
or file available for editing at one time and explains how to
switch among the objects or files you are editing.

• Section 3.4 explains how to recover from problems while you
are using the Editor.

• Section 3.5 shows how you can customize the Editor to suit
your needs.

3-1

USING THE VAX LISP EDITOR

Each major section ends with a table of the commands and key
that are covered in that section.

bindings

Note to VAXstation users: When you use the Editor on a
VAXstation, screen behavior is different, and you can use
the pointer to perform some editing operatio~s. Throughout
this chapter, these differences are noted at appropriate
locations. Section 3.6 summarizes Editor behavior and use
on a VAXstation.

3.1 INTRODUCTION TO THE EDITOR

0

The VAX LISP Editor is a general-purpose text editor. It includes
some capabilities that make it particularly useful for editing LISP
code. For example, the Editor matches parentheses and indents lines Q
for you. It can also evaluate a LISP function definition or symbol
value that you are editing.

You use the Editor directly from the LISP environment. The Editor
a part of LISP and cannot be used outside of LISP. You can
freely between the Editor and the LISP interpreter. When you go
the Editor to the interpreter, the Editor preserves the state of
work until you return to it.

is
move
from
your

The Editor is designed to work only on a video terminal or aQ
VAXstation. It maintains the screen at all times to reflect the
contents of the LISP object or file. When you insert text in the
middle of lines or between lines, the Editor immediately adjusts the
screen to show your modification.

You communicate with the Editor by using commands. Many commands are
available. Keys or key sequences invoke the most useful commands, so
you do not have to type the command names. Keys on the numeric keypado
invoke a set of commands that emulate the. EDT keypad editor, making
the VAX LISP Editor similar to EDT.

The Editor allows you to have more than one LISP object or file
available for editing at one time. Each object or file resides in its
own buffer. Commands allow you to switch from one buffer to another,
and you can view more than one buffer at a time, or more than one
place in the same buffer.

The rest of this section describes the basics of using the Editor.
Section 3.1.6 contains a table of the commands presented in this
section.

3-2

0

0

0

0

USING THE VAX LISP EDITOR

3.1.1 Editing Cycle

An editing cycle starts when you are using the VAX LISP interpreter
and you want to create or modify a LISP object or a file containing
LISP code. The cycle is as follows:

• You start the Editor by calling the ED function, supplying as
an argument the name of the object or the file specification
of the file you wish to create or modify.

• You use Editor commands to edit the object or
frequently used Editor commands are invoked
characters or keys on the numeric keypad.

file. Most
by control

• If you are editing a LISP object, you use a command to make
your edited version replace the function definition or value.
If you are editing a file, you use a command to write the new
or modified file out to the disk.

• You use a command to pause the Editor, returning you to the
LISP interpreter.

• In the LISP interpreter, you can now use the new function
definition or value of the object or you can load the new or
modified file.

• If further modifications are required, you can use the ED
function without arguments ·to return you to the Editor.
Resuming the Editor in this way brings you back to the Editor
state that existed when you paused the Editor.

This cycle can occur as many times and on as many objects or files as
needed.

0 3.1.2 Invoking the Editor

The ED function invokes the VAX LISP editor. The first time you
invoke the Editor during a LISP session, you should be sure to supply
an argument to the ED function. The argument identifies the object or
file you want to edit.

To edit a LISP object, give the object's symbol as the argument. For
example, the following form edits the function definition of the

. symbol SHIP-ACCESSOR:

Lisp> (ED 'SHIP-ACCESSOR)

You can also edit the

O definition, by using
in this example:

value of a LISP symbol, rather than its function
the :TYPE keyword with the ED function, as shown

3-3

USING THE VAX LISP EDITOR \

Lisp> (ED 'SHIP-LIST :TYPE :VALUE)

To edit a file, give the file specificatjon as the argument to the
function. For example:

ED O
Lisp> (ED "CLOCK.LSP")

The first time you use the ED function, the screen clears. Then,
after some initialization messages appear, the screen looks like this:

I

Function SHIP-ACCESSOR For111ard EDT Emulation ("VAi\ LISP")

(New Function)

On a VAXstation: A new window appears; the window contains
the Editor display. The window is taller than a standard
24-line screen, but otherwise the display is identical to
that seen on a video terminal.

Note the following.points about this screen display:

0

0

0

• The label strip near the bottom of the screen tells you that
you are editing the function definition of SHIP-ACCESSOR, you
are using the major style called "EDT Emulation" and the minor
style called "VAX LISP", and your current movement direction
is forward. The movement direction is useful to you while you
are editing. You need not concern yourself with styles at Q
this point.

3-4

0

0

0

0

0

USING THE VAX LISP EDITOR

• The information area at the bottom of the screen tells you
that you are editing a new function definition. In general,
information area contains short informational messages about
Editor operations and errors.

• The cursor is positioned at the upper left corner of the
screen. The cursor shows where new text will be inserted.

After you have used the Editor, you can pause it (see Section 3.1.5)
and return to the LISP interpreter. Later, you may want to resume
your editing. If you want to return to the Editor state you left,
simply call the ED function without arguments:

Lisp> (ED)

You can also supply an argument -- another LISP symbol or file -- when
you resume the Editor. The LISP symbol or file you specify does not
replace the symbol or file you were editing when you paused the
Editor. The old symbol or file is made inactive, although it is still
available for editing. See Section 3.3 for details.

If you use the ED function without arguments to start the Editor, you
see the following sc~een display:

!!elcorrie to the YAX LISP Editor
Type PF2 (HELP) for Help

+

3-5

USING THE VAX LISP EDITOR

This means that the Editor is running but ha~ nothing to edit. You
can return to the LISP interpreter by typing CTRL/X CTRL/Z. Or, y~u O
can type CTRL/Z and enter an Editor command by name, as described in
Section 3.1.3.

NOTE

You can use the BIND-KEYBOARD-FUNCTION function to
bind a control character (such as CTRL/E) to the ED
function, allowing you to invoke or resume the Editor
asynchronously by typing the control character. If
you do this, do not specify a value greater than 1
with BIND-KEYBOARD-FUNCTION'S :LEVEL keyword. Using a
value greater than 1 may disrupt the Editor's
operation.

3.1.3 Interacting with the Editor

You interact with the Editor through commands.
following:

Commands do the

@ Control the operation of the Editor: pause it, change from
one buffer to another, set operating characteristics, and so
on.

CD Modify the LISP object or file that you are editing.

To enter a command to the Editor, you can type its name or type a key
or sequence of keys that causes the command to be executed. The two
ways are equivalent.

0

0

o To type a command by name, first type CTRL/Z, which
prompt to appear just below the label strip:

causes a Q

I Function SHIP-ACCESSOR Forward
Enter command name I

EDT Emulation ("VAX LI SP") I
Type the name of the command, then press RETURN. While you
are typing, you can use any of the editing keys described in
Section 3.2 to edit your input. You must supply the full name
of the command. (However, once you have typed part of the
command, the Editor can complete the name for you or display a
list of command names that start that way; see Section
3.1.3.2.)

If a key or key sequence is bound to the command, you can Q
enter the command by typing that key or key sequence. Most

3-6

0

0

USING THE VAX LISP EDITOR

frequently used. commands have keys or key sequences bound to
them. You can use the "List Key Bindings" command to see
which keys are currently bound to commands.

For example, to enter the "Pause Editor" command, you can type CTRL/Z,
type "Pause Editor" in response to the command prompt, and press
RETURN. Or, you can type CTRL/X CTRL/Z, which is bound to the "Pause
Editor" command. Both methods cause the Editor to pause and return
you to the LISP interpreter.

If you type CTRL/Z but then decide that you do not want to type a
command, or if you decide to cancel a command in the middle of its
execution, type CTRL/C. CTRL/C stops the current command and makes
the Editor ready to accept other commands.

Commands are introduced throughout this chapter. Appendix C contains
short descriptions of the available commands and their key bindings
(if any).

3.1.3.1 Getting Help - The Editor provides different kinds of help.
You can press the HELP key (either PF2 on the numeric keypad or the
key labeled "Help" on the LK201 keyboard) at any time to get help on
your current situation. A window called "VAX LISP Editor General

O Help" appears. It contains instructions on how to move around in a
window and between windows and how to remove a window from the screen.
To remove the window containing this help text from the screen, type
CTRL/X CTRL/R.

If you press the HELP key while the Editor is displaying a prompt
for example, after you have typed CTRL/Z -- the Ed.i tor displays help
on the prompt. Typically, the help explains the prompt and describes
the options you have. Press CTRL/V to scroll through this help text.

O The text will disappear from the screen when you have entered a
response to the prompt and pressed RETURN.

The Editor also provides the "Describe" and "Apropos" commands to
obtain information on Editor objects. These commands are similar to
the LISP functions of the same names. The "Describe" command displays
a description of an Editor command (by default) or other Editor
object. The "Apropos" command lists all Editor commands or other
specified Editor objects whose names contain a certain string. For
example, using the "Apropos" command for the string "file" produces

, the following display:

0
3-7

dit File
Insert File
ead File
ie1.11 File
ite Na!Tll!d Filel

USING THE VAX LISP EDITOR

A ro os of "'file"' for ob -ect t e Co~nd

Function SHIP-ACCESSOR Forward EDT Emulation (11 VAX LISP")

You can also obtain descriptions of LISP symbols through the Editor
when you are editing LISP 'code. The CTRL/? key invokes the LISP
DESCRIBE function on the word at the current cursor position.

On a VAXstation: You can also invoke the LISP DESCRIBE

0

0

0

function by moving the pointer cursor to the symbol to be Q
described and pressing the right pointer button.

You can use the cursor movement techniques described in Section 3.2.3
to move around in the window containing help text. When you are done,
use the key sequence CTRL/X CTRL/R to remove this window and return to
editing.

3.1.3.2 Input Completion and Alternatives - The Editor can help you
enter responses to prompts in two ways. The first way is input
completion. If you type CTRL/SPACE at any time while you are typing a
response to a prompt, the Editor will attempt to complete your input
for you. The Editor will complete as much of the input as it can, and
display the status of the completion.

3-8

0

0

0

0

0

USING THE VAX LISP EDITOR

For example, if, to the "Enter command name" prompt, you type the
string "pau" followed by CTRL/SPACE, the Editor will complete the
command name "Pause Editor" and inform you that the input is complete.
You can now press RETURN to execute the command. If, on the other
hand, you type the string "new" followed by CTRL/SPACE, the Editor
will be able to completa the input only as far as "New Li" and will
then report that the input is ambiguous, because more than one command
starts with the string "New Li".

At any point when entering information to a prompt, you can obtain a
list of the available alternatives by typing PF1 PF2 on the numeric
keypad. The Editor examines what you have typed so far and displays a
list of all the commands starting that way. For example, when you
have used input completion to get as far as "New Li", you can type PF1
PF2. The Editor will display a list of the commands beginning with
"New Li". You can choose the command you want, enter enough of it to·
make the input unambiguous, and then use input completion (CTRL/SPACE)
to complete the command name.

Input completion and alternatives are not restricted to command names.
You can also use them to fill out file specifications and to obtain a
list of all files matching a particular template. For example, assume.
you wish to edit an existing LISP file but are unsure of the name.
You type CTRL/Z and enter the "Edit File" command, which then prompts
you for a file name. You can type ".LSP" at this point, followed by
PF1 PF2, to see a list of all files in your current directory having
the file type "LSP". You can then edit your input by moving the
cursor back to the beginning of the ·file specification and typing
enough of the file name to distinguish it from other file names.
Typing CTRL/SPACE at this point fills in the rest of the file
specification.

3.1.3.3 Errors and Other Problems - If you make a minor error, the
Editor displays a short error message in the information area. These
error messages are usually sufficient to allow you to correct the
problem. If the short message is not sufficient, the CTRL/X? key
sequence may display more information on the error.

If you make a major error, or if the Editor encounters an internal
error from which it cannot recover, the Editor reports the error and
asks if you wish to attempt to save your work. Depending on the
nature and severity of the error, the Editor may not be able to save

. all your work. Section 3.4 contains more information on how to
recover from these problems.

0

If the screen should become disrupted for some reason -- for example,
MAIL messages arriving -- use the CTRL/W key to refresh the screen.

3-9

USING THE VAX LISP EDITOR

3.1.4 Moving Work Back to LISP

There are several ways to move your work back to the LISP environment.O
Use one of the methods described in this section if you want your work
to be available in LISP.

Two commands, "Write Current Buffer" and "Write Modified Buffers",
place your work back in a symbol or file:

s If you were editing the function definition or the value of a
symbol, the commands cause the new function definition or
value to replace the existing function definition or value.

• If you we.re editing a file, the commands write a new version
of the file.

The' difference between the two commands is that "Write Current Buffer" Q
affects only the current buffer; that is, the buffer whose window
contained the cursor when you entered the command. "Write Modified
Buffers" affects any buffer you have worked on since the last time the
buffer was written.

Neither of these commands pauses the Editor or alters the contents of
your buffers. After using either command, you can immediately return
to editing, or you can use the "Pause Editor" command to return to the
LISP interpreter. If you were editing the function definition or
value of a symbol, the new function definition or value is immediatelyo
available to you in LISP. If you were editing a file, you will have
to load the file before you can use the modifications you made.

You can also move a function definition to the LISP environment by
positioning the cursor in the function definition, then type CTRL/X
CTRL/SPACE CTRL/X CTRL/A. This procedure causes the function
definition containing the cursor to be evaluated. You can now return
to the LISP interpreter and use the modified function definition.
However, you must eventually include the definition in a file, or theQ
modification will be lost when you exit LISP. This procdure is
particularly useful when you are editing a file containing a number of
definitions, and you want to modify only one of them.

If you are editing a function definition and you want to save it in a
file, use the "Write Named File" command. This command prompts for
the name of a file, and then·writes the current buffer to the file.

3.1.5 Returning to the LISP Interpreter

When you have finished creating or modifying objects or files, - you
generally want to return to the LISP interpreter to test whatever you
have written. The "Pause Editor" command returns-control to the LISP o
interpreter; the key sequence CTRL/X CTRL/Z invokes "Pause Editor".

3-10

0

0

0

USING THE VAX LISP EDITOR

The "Pause Editor" comm,and saves the state of your editing session.
If you return to the session by calling the ED function without
arguments, the Editor will be as you left it.

The "Pause Editor" command does not cause any of your buffers to be
written. Before pausing the Editor, you must use one of the methods
described in Section 3.1.4 to make your work available in the LISP
environment. Also, if you pause the Editor without first writing your
modified files and then exit LISP, the work you did on your files will
be lost. (See Section 3.4 for information on partially recovering
from this situation.)

On a VAXstation: When you pause the Editor, the cursor
returns to the LISP window.

In contrast to the "Pause Editor" command, the "Exit" command shuts
down the Editor. If you use the "Exit" command, the Editor warns that
changes will be lost and asks if you want to continue. If you type Y,
the Editor allows you to save modified buffers on a buffer-by-buffer
basis.

3.1.6 Summary of Commands

Table 3-1 provides a summary of the commands presented in this section
and the keys (if any) that invoke those commands. These commands are
useful for controlling the operation of the Editor. Subsequent
sections in this chapter contain tables of commands that are useful in
specific situations. Appendix C provides an alphabetic table of all
the commands.

Table 3-1: General-Purpose Commands and Key Bindings

Q Name Binding* Description
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

Execute Named 
Command 

List Key 
, Bindings 

Pause Editor 

CTRL/Z 
or 
keypad PFl 7 
or 
DO* 

None 

CTRL/X CTRL/Z 

Prompts for the name of a 
command to execute; type the 
name of the command, followed by 
RETURN 

Displays a list of keys and key 
sequences currently bound to 
commands 

Pauses the Editor, 
state, and returns to 
interpreter 

saving its 
the LISP 

0 * Keys marked with an asterisk(*) available only on LK201 keyboard 

3-11 



USING THE VAX LISP EDITOR 

Table 3-1 (cont.) 
~~~~~~~~~~-o 
Name Binding* Description

Write Current
Buffer

Write Modified
Buffers

Select Outermost
Form

Evaluate LISP
Region

Write Named File

Next Window

Remove Current
Window

Remove Other
Windows

Help

Prompt Scroll
Help Window

None

None

CTRL/X
CTRL/SPACE

CTRL/X CTRL/A

None

CTRL/X CTRL/N

CTRL/X CTRL/R

None

keypad PF2
or
HELP*

CTRL/V
(only while
responding to
prompt)

3-12

Replaces a LISP symbol's
function definition or value
with the contents of the current
buffer, or writes a new version
of the file

Writes the contents of. all
modified buffers to the
corresponding LISP object or new
file version

Highlights the outermost LISP
form containing the cursor

Evaluates LISP code highlighted
by "Select Outermost Form" or by
other means, making the result
available in the LISP
interpreter

0

Prompts for a file
writes the current
that file

name, then
buffer to Q

Makes the next
current
moving
window

window;
into or

window be
useful

out of

the
for

help

Removes the current window from
the screen; useful for getting Q
rid of help window

Removes windows other than the
current window from the screen

Displays a window with help on
your current situation

When used while responding to a
prompt, causes the window
containing help text to scroll

0

USING THE VAX LISP EDITOR

Table 3-1 (cont.)

OName Binding* Description

Prompt Show
Alternatives

Prompt Complete
String

Q Describe

Apropos

Describe Word

Keypad PFl PF2
(only while
responding to
prompt)

CTRL/SPACE
(only while
responding to
prompt)

None

None

CTRL/?

When used while responding
prompt, displays a list of
alternatives based on
context and what you have
so far

to a
input

the
typed

When used while responding to a
prompt, attempts to complete the
input based on the available
alternatives and what you have
typed so far

Displays a description of a
command or other Editor object

Displays a list of Editor
commands or other Editor objects
containing the string you supply

Invokes the LISP DESCRIBE
function for the word at the

Q Help on

cursor location

Editor CTRL/X ? Displays help on the last Editor
Error error that occurred

Redisplay Screen CTRL/W Refreshes the screen

0 3.2 EDITING OPERATIONS

0

This section describes editing operations and how to perform them.
The operations are those that you can perform in a single buffer; that
is, while editing one LISP object or file. Section 3.3 explains how
to deal with multiple buffers.

This section is divided as follows:

e Section 3.2.1 describes the numeric keypad you use to perform
many editing operations.

• Section 3.2.2 describes how to insert text.

• Section 3.2.3 explains ways to move the cursor.

• Section 3.2.4 shows how you can modify text by deleting it and
moving it.

3-13

USING THE VAX LISP EDITOR

~ Section 3.2.5 explains how to cause an operation to occur more
than once. o

~ Section 3.2.6 summarizes the commands described in this
section.

3.2.1 Keypad

The Editor incorporates a
it to behave like the EDT
are bound to the EDT-like
keypad keys as if you
differences.

set of commands and key bindings that cause
text editor. The keys on the numeric keypad
commands. For the most part, you can use

were using EDT, although there are some

Figure 3-1 illustrates the numeric keypad. Each key has three itemso
on it. Whatever appears on the actual key is shown in the lower right
corner of each key in Figure 3-1. The meaning of the two names is as
follows:

o The top name specifies the action that occurs if you press the
key by itself.

@ The bottom name specifies the action that occurs if you press
and release the PFl key (sometimes called the GOLD key) beforeo
pressing the key.

For example, if you press the Okey by itself, the Editor moves the
cursor to the beginning of a line. If you first press PFl and then
the Okey, the Editor opens a new line at the cursor location.

For the rest of this section, keys will be referred to by the names of
the actions the keys invoke. For example, the Okey by itself is
called the BEGINNING OF LINE key, while the sequence PFl O is calledo
the OPEN LINE key.

3.2.2 Inserting and Formatting Text

create new text. Section 3.2.2.1
Section 3.2.2.2 describes how to
3.2.2.3 describes how to insert

This section describes ways you can
describes routine text insertion,
type and format LISP code, and Section
nongraphic characters in the text.

3.2.2.1 Inserting Ordinary Text - To insert text, simply type. All
the keys corresponding to printing characters cause that character to
appear preceding the character at the cursor location. If the cursor o
is in the middle of a line, the cursor and the characters to its right
will be displaced further to the right to make room.

3-14

0

0

0

Figure 3-1:

USING THE VAX LISP EDITOR

R
~

HELP

ALTERNATIVES
PF2

FIND NEXT

FIND
PF3

DEL LINE

UNDELLINE
... PF4

BREEN §END §WORD
REPIACE UNDEL WORD

8 9 -

§GARD

TOP
5

~
@]

CHAR

SPEC INSERT
3

BEGINNING OF LINE

OPEN LINE
0 G SET

DEL CHAR

UNDELCHAR

'
~

ENTER

SUBS

Nole: The llllters, numbe11, and characte11 In lhe lower right ccme11
ol lhe lceys are whal actually appear an lhe kays of a VT1DO
kaypm.

Numeric Keypad

You can start a new line
the cursor is at the
cursor at the beginning.
the line is broken in the

by typing RETURN. If you type
end of a line, you get a blank
If the cursor is in the middle
middle.

RETURN while
line with the
of a line,

The OPEN LINE key also starts a new line, but leaves the cursor at the
end of the old line instead of the beginning of the new line.

Q 3.2.2.2 Typing and Formatting LISP Code - The Editor includes several
commands that help you to enter LISP code. Whenever you are editing a
LISP object (either its function definition or value) or a file
containing LISP code, the following key bindings are in effect:

0

e If .you type a right parenthesis, the Editor highlights the
corresponding left parenthesis for a moment. If the
corresponding left parenthesis is not on the screen, the line
that contains it is displayed in the information area with the
parenthesis highlighted.

• The key sequence ESCAPE J closes the outermost form by
inserting the correct number of parentheses at the cursor
position. (Typing CTRL/[produces an ESCAPE.)

• The "New LISP Line" command is similar to RETURN, but it
indents the new line properly with respect to the preceding

3-15

USING THE VAX LISP EDITOR

line. CTRL/J is bound to the "New LISP Line" command. (On a
VT100 terminal, pressing the LINEFEED key results in CTRL/J.)

• The TAB key indents the line that currently contains the
cursor, relative to the preceding LISP code.

• The CTRL/X TAB key sequence indents all the lines in the LISP
outermost form that contains the cursor.

• Use CTRL/X; to start a LISP comment at the end of a line of
code. When you type CTRL/X ; , the Edi to'r inserts enough
spaces to move the cursor to the comment column, then inserts
a semicolon and another space. If there is already a comment
on the line, CTRL/X; moves the cursor to the beginning of the
comment.

0

On a VAXstation: Pressing the right pointer button when the Q
pointer cursor is positioned at a close-parenthesis
character highlights the matching open-parenthesis
character.

3.2.2.3 Inserting Nongraphic Characters - You cannot insert some
characters directly into your text. For example, you cannot insert a
#\AX character by typing CTRL/X because the Editor interprets that
character. The Editor provides two ways around this problem. In most Q
cases, you can use the CTRL/X \ key sequence. After typing this ·
sequence, the Editor will take the next character you type and insert
it without interpretation. This procedure would handle the case of
#\AX, for example; you would type:

CTRL/X \ CTRL/X

The Editor echo for this is

<"X>

In general, the Editor display for a nongraphic character is the
representation for the character, surrounded by angle brackets.

LISP

Some characters cannot be generated directly. from the keyboard. You
can use the SPEC(IAL) INSERT key to insert such characters. To use
SPEC INSERT, you must first supply the decimal ASCII value of the
character as a prefix argument (see Section 3.2.5). The SPEC INSERT
key then inserts the character at the cursor location.

3-16

0

0

0

0

0

0

0

USING THE VAX LISP EDITOR

3.2.3 Moving the Cursor

To insert text where you
that location first.
types. Section 3.2.3.1
the cursor. Section
within LISP code.

want it to go, you have to move the cursor to
A number of keys produce movements of various

describes how the keypad and arrow keys move
3.2.3.2 describes how you can move the cursor

3.2.3.1 Moving with the Keypad and Arrow Keys - The keypad
keys move the cursor in a way nearly identical to EDT.
familiar with EDT, you can skip this section; otherwise,
summary contained here should get you started.

and arrow
If you are
the brief

The action produced by some keys depends on the current direction of
movement. The current direction can be either forward or backward.
The FORWARD key sets the current direction to forward, and the
BACKWARD key sets it to backward. The label strip at the bottom of
the window displays the current direction.

For other keys, the direction is always the same, regardless of the
current direction.

The simplest way to move the cursor is with the arrow keys. Each
arrow key moves the cursor one unit in the indicated direction. The
left and right arrow keys move the cursor one character to the left or
right, while the up and down arrow keys move the cursor up or down by
one line in the current column. The arrow keys do not depend on the
current direction.

Other keys allow you to move by line:

• The BEGINNING OF LINE key moves the cursor to the beginning of
the next line (if the current direction is forward) or to the
beginning of the current or previous line (if the direction is
backward).

• The EOL (End Of Line) key moves to the end of the current or
following line (if the current direction is forward) or to the
end of the previous line (if the current direction is
backward).

• CTRL/H moves the cursor to the beginning of the current or
previous line, regardless of the current direction. (On a
VT100, pressing the BACKSPACE key results in CTRL/H. On the
LK201 keyboard, the F12 key produces the same action as
CTRL/H.)

The WORD key moves to the beginning of the next word, if the current
direction is forward, or to the beginning of the current or previous
word, if the current direction is backward. In finding the beginning

3-17

USING THE VAX LISP EDITOR

of the word, the WORD key passes over most LISP syntax characters,
such as parentheses, delimiters, single quote characters, and
semicolons. #\NEWLINE characters are also passed over. In EDT, only
spaces are passed over in finding the beginning of the next word.

The SCREEN key scrolls the text in the window. The text moves up if
the current direction is forward and down if the current direction is
backward. The amount of text that scrolls is equal to about
two-thirds of the height of the window. The cursor moves only as much
as is necesary to stay in the window. This behavior also differs from
EDT.

The BOTTOM and TOP keys move the cursor to the end or the beginning of
whatever you are editing.

0

You can also move the cursor to a specified text string. The FIND key
prompts for a search string. You enter the string and terminate it Q
with RETURN; the Editor then finds the first occurrence of that string
in the current direction. (EDT allows you to terminate the search
string with FORWARD or BACKWARD; the VAX LISP editor requires that you
first set the current direction, then terminate the search string with
RETURN or ENTER.) The FIND NEXT key finds the next occurrence of
whatever string was last searched for.

3.2.3.2 Moving in LISP Code - Four bound commands allow you to· move Q
by LISP forms. The key sequence CTRL/X. is bound to the command
"Next LISP Form", and the key sequence CTRL/X, is bound to the
command "Previous LISP Form". These commands move the cursor from
form to form within the current parentheses nesting level. The key
sequence CTRL/X > (bound to the command "End of Outermost Form") moves
the cursor to the end of the current or next outermost LISP form. The
key sequence CTRL/X < (bound to the command "Beginning of Outermost
Form") moves the cursor to the beginning of the current or previous Q
outermost LISP form.

Four other commands allow you to move in lists. By default, no key
sequences are bound to them. They are:

Backward Up List
Forward Up List
Beginning of List
End of List

See Appendix C for a brief description of these commands. Section 3.5
explains how you can bind keys .to these (and other) commands.

3.2.3.3 Moving with the Pointer (VAXstation Only) - You can move the Q
cursor by moving the pointer cursor to the desired spot in the text
and pressing the left mouse button.

3-18

0

0

USING THE VAX LISP EDITOR

3.2.4 Modifying Text

In addition to inserting text,
deleting it, moving it, and
describes ways to modify text:

you can modify
substituting in

existing
it. This

text by
section

• Section 3.2.4.1 describes ways to delete portions of text.

• Section 3.2.4.2 shows how to undelete text you have just
deleted.

• Section 3.2.4.3 explains how to move text from place to place
by cutting and pasting it.

• Section 3.2.4.4 describes commands that modify text by
changing its case.

• Section 3.2.4.S shows two ways to substitute one text string
for another.

• Section 3.2.4.6 explains how to insert text from a file or a
buffer into your work.

0 3.2.4.1 Deleting Text - This section describes how to delete parts of
your text by using keypad keys and·keys on the main keyboard. Text
that you delete disappears from the screen, but is not immediately
discarded. The Editor maintains three areas for deleted text, one
each for the last character, word, and line that you have deleted.
The next section shows how to recover the contents of these areas and
how to use them to move text from one place to another.

Two keys delete characters. The DELETE key (with the symbol <X] Othe LK201 keyboard) deletes the character just before the cursor.
DEL CHAR key deletes the character at the cursor.

on
The

One. or two keys delete words, depending on the terminal you are using.
The DEL WORD key deletes from the current cursor position to the
beginning .of the next word. To find the beginning of the next word,
the Editor passes over LISP syntax characters, such as parentheses,
delimiters, single quote characters, and semicolons. Thus, DEL WORD
deletes these syntax characters. DEL WORD also passes over and
deletes a #\NEWLINE character at the end of a line.

If you a.re ~di ting LISP code using a VT100, there is no key that
deletes from the cursor position to the beginning of the current word.
(In EDT, LINEFEED and CTRL/J do this; when editing LISP, however,
CTRL/J is bound to "New LISP Line".) If you are using a terminal with
the LK201 keyboard, the F13 key deletes to the beginning of the

O current word. It passes over LISP syntax characters and #\NEWLINE
characters the same way the DEL WORD key does.

3-19

USING THE VAX LISP EDITOR

Three keys delete lines or portions of lines:

• The DEL LINE key deletes from the current cursor position. to Q
the end of the current line, including the #\NEWLINE character
at the end of the line. If the cursor is positioned at the
end of the line, DEL LINE simply deletes the #\NEWLINE
character.

• The DEL EOL (End-Of-Line) key deletes from the current cursor
position to the end of the current line, not including the
#\NEWLINE character at the end of the line. If the cursor is
positioned at the end of the line, DELETE LINE deletes the
next line, including the #\NEWLINE.

• The CTRL/U key deletes from the current cursor position to the
beginning of the current line. If the cursor is positioned at
the beginning of the line, CTRL/U deletes the previous line.

3.2.4.2 Undeleting Text - Whenever you delete text, the Editor does
not immediately discard it the text. Instead, the Editor temporarily
saves the text, allowing you to put it back if you did not mean to
delete it or to move it somewhere else.

• The UNDEL(ETE) CHAR key places the last character that was
deleted at the cursor location.

• The UNDEL(ETE) WORD key places the last word or word portion
that was deleted at the cursor location.

• The UNDEL(ETE) LINE key places the last line or line. portion
that was deleted at the cursor location~

Thus, if you want to move text from one place to another, you can
first use the appropriate key to delete the text in its original
location. Then move the cursor to the text's new location and use the
appropriate UNDEL key to place the text there.

Copying text -- putting it in a new location while leaving it
original location is similar to moving text, except
undelete it in its original location before moving to
location. You can undelete text as many times as you want.

in its
that you
the new

3.2.4.3 Cutting and Pasting Text - Cutting and pasting consists of
marking a block of text, removing ("cutting") it from its original
location, then moving the cursor to a new location and inserting
("pasting") the text in the new location.

3-20

0

0

0

0

USING THE VAX LISP EDITOR

Before you cut text, you must mark the text to be cut. You use the

O SELECT key and the cur soi.' movement keys to mark text. Move the cursor
to one end of the text to be cut, then press SELECT. Move the cursor
to the other end of the text to be cut. The Editor highlights the
text between the character at which you pressed SELECT and the cursor.
The highlighted text is called a select region. If you make a mistake
while you are marking a select region, use the RESET key to cancel the
select region.

You can mark a select region from the outermost LISP form containing
the cursor by typing CTRL/X CTRL/SPACE.

On a VAXstation:
pointer cursor
holding the left
to the other end

You can mark a select region by moving the
to one end of the region, pressing and
pointer button, moving the pointer cursor
of the region, and releasing the button.

OThe CUT key removes all the text in the select region from the screen
and places it in an Editor buffer called the paste buffer, replacing
what was there. At this point, if you wish to replace the text, use
PASTE. PASTE restores the text to its orginal location but does not
remove the text from the paste buffer.

Now move the cursor to the desired location. Use the PASTE key to put
the text there. You can paste text as often as needed, up until the

O time you cut more text.

On a VAXstation: When a select region has been marked, you
can cut it by pressing the middle pointer button. Then move
the pointer cursor to the new location for the text and
paste it by pressing and holding the left pointer button,
then pressing the middle button.

The APPEND key is similar to the CUT key, except instead of replacing

O
the contents of the paste buffer with the select region, the APPEND
key appends the. select region to the paste buffer contents. APPEND is
convenient when you want to build a block of text by taking text from
different locations.

The REPLACE key is similar to the PASTE key, except the REPLACE key
requires that you have defined a select region before you use REPLACE.
The REPLACE key deletes the select region and replaces it with the
contents of the paste buffer.

3.2.4.4 Changing Case - One key and five ·:.:-,,;n.mands provide ways to
change the case of alphabetic characters i~ your text. Nonalphabetic
characters are not affected.

O The CHNG CASE key changes uppercase letters to lowercase and vice
versa. It works as follows:

3-21

USING THE VAX LISP EDITOR

If a select region is defined, CHNG CASE changes the
all letters in the select region.

case of

If no select region is defined, CHNG CASE changes the case of
the character at the cursor position and advances the cursor
one character.

Four commands that allow you to make all the alphabetic characters in
a select region or word be of one case are "Upcase Region", "Upcase
Word", "Downcase Region", and "Downcase Word". To u_se the commands
that affect a region, first define the select region, then type CTRL/Z
and enter the command. To use the commands that affect a word,
position the cursor anywhere in the word, then type CTRL/Z and enter
the command.

0

Finally, the "Capitalize Word" command makes the first
word uppercase. Position the cursor anywhere in the
CTRL/Z and enter the command.

character of a
word, then type Q

3.2.4.5 Substituting Text - Two mechanisms are available for
substituting one string for another throughout text. The first is
simpler; the second is more powerful.

The SUBS(TITUTE) key substitutes the contents of the paste buffer for
a search string. To use the SUBSTITUTE key, first load the pasteQ
buffer with the new string by typing SELECT, typing the new string,
and then typing CUT. Next, search for the string to be replaced. If
the first occurrence is in fact a string that you want to replace,
type SUBS. The Editor deletes the search string and replaces it with
the contents of the paste buffer, then automatically moves to the next
occurrence of the search string. If you want to pass over an
occurrence of the search string, type FIND NEXT to move to the next
occurrence.

The "Query Search Replace" command is similar to SUBS but more Q
versatile. The command prompts for a search string and a replacement
string. At each occurrence of the search string, the Editor queries
you. You can answer as follows:

@ SPACE -- replace this occurrence and move to the next one.

@ S -- replace this occurrence and stay here. This option
allows you to see the results of the change before moving on.
Use N to move to the next occurrence.

e • -- replace this occurrence and terminate the command.

• -- replace this occurrence and all remaining occurrences
without further querying.

3-22

0

0

0

0

0

0

USING THE VAX LISP EDITOR

• N -- do not .replace this occurrence and find the next
occurrence.

• CTRL/C -- do not replace this occurrence and terminate the
command.

• Q do not replace this occurrence and terminate the
operation, returning the cursor to the point at which the
search began.

• R -- enter a recursive edit, which you terminate with the
"Exit Recursive Edit" command. The recursive edit allows you
to clean up a replacement site without losing your place in
the search cycle.

• ? -- display help on the possible responses to the query.

3.2.4.6 Inserting a File or Buffer - You can insert the contents of a
file or a buffer at the cursor location, using the "Insert File" or
"Insert Buffer" command. Each of these commands prompts for the name
of a file or buffer and then inserts the contents of the file or
buffer at the cursor location. You can use the ALTERNATIVES key or
request input completion with CTRL/SPACE while responding to either
prompt. (Section 3.3 contains more information about buffers.)

3.2.5 Repeating an Operation

You can cause the Editor to perform an action more than once by
supplying a numeric prefix argument. The prefix argument causes the
next command to be executed the number of times specified by the
argument's value. For example, if the prefix argument is 3 and you
press the BEGINNING OF LINE key, the cursor will move three lines
instead of one.

You enter a prefix argument by using the PREFIX key and then typing
the number in response to the prompt, followed by RETURN. The prefix
affects only the next command you issue. You can issue the command
either by typing CTRL/Z and the command name or by typing the key or
key sequence bound to the command.

, The prefix argument also causes printing characters to be inserted
more than once. For example, to type 32 zeros, you could enter a
prefix argument of 32, then type "O" once.

For some commands, you can supply a negative prefix argument. In
general, the commands that are sensitive to the current direction will
accept a negative prefix argument. They interpret a negative argument
as an instruction to act in a direction opposite to the current

3-23

USING THE VAX LISP EDITOR

direction. For example, if the current direction is forward, a prefix
argument of -3 followed by the WORD key causes the cursor to move Q
three words backward. If the current direction is backward, a prefix
argument of -3 causes the cursor to move three words forward.

3.2.6 Summary of Commands

Table 3-2 summarizes the commands presented in this section and their
key bindings.

Table 3-2: Editing Commands And Key Bindings

Name Binding* Description

Text Insertion Commands 0
Open Line

Insert Close
Paren and Match

Close Outermost
Form

·Indent LISP Line

New LISP Line

Indent Outermost
Form

Move to LISP
Comment

OPEN LINE
(keypad PFl 0)

ESCAPE]

TAB
or
CTRL/I

LINEFEED
or
CTRL/J

CTRL/X TAB

CTRL/X;

Breaks a line at the cursor
location

Inserts a close parenthesis at
the cursor and highlights the
matching open parenthesis

Closes the outermost LISP form Q
by inserting sufficient
parentheses at the cursor
position

Indents the
appropriate
relationship
code

current line to
position

to preceding

Starts a new line, indenting
in the proper LISP fashion

Indents all the
outermost form
cursor

lines in
containing

the
in

LISP

it O

the
the

Starts or moves to a comment on
the current line

* Keys marked with an asterisk(*) available only on LK201 keyboard 0
3-24

Table 3-2 (cont.)

OName

Quoted Insert

EDT Special
Insert

Insert File

O Insert Buffer

EDT Set
Direction Q Forward

EDT Set
Direction
B~ckward

Forward
Character

oBackward
Character

Next Line

Previous Line

EDT Move
, Character

EDT Move Word

0

USING THE VAX LISP EDITOR

Binding*

CTRL/X \

SPEC INSERT
(keypad PFl 3)

None

None

Description

Causes
to be
without
Editor

th~ next character typed
inserted in the text
interpretation by the

Inserts the character whose
ASCII value is specified by the
prefix argument

Prompts for a file name, then
inserts the contents of the file
at the cursor location

Prompts for a buffer name, then
inserts the contents of the
buffer at the cursor location

Cursor Movement Commands

FORWARD
(keypad 4)

BACKWARD
(keypad 5)

Right arrow

Left arrow

Down arrow

Up arrow

CHAR
(keypad 3)

WORD
(keypad 1)

3-25

Sets the current direction to
forward

Sets the current direction to
backward

Moves the cursor to the next
character

Moves the cursor to the previous
character

Moves the cursor to current
column in next line

Moves the cursor to current
column in previous line

Moves the cursor to the next or
previous character, depending on
current direction

Moves the cursor to the
beginDing of the next, current,
or pr~vious word, depending on
current direction and starting
cursor location

USING THE VAX LISP EDITOR

Table 3-2 (cont.)

Name Binding* Description Q
-----------.
EDT Beginning of
Line

EDT End of Line

EDT Back to
Start of Line

EDT Scroll
Window

Previous Screen

Next Screen

End of Buffer

Beginning of
Buffer

EDT Move Page

EDT Query Search

BEGINNING
OF LINE
(keypad 0)

EOL
(keypad 2)

BACKSPACE
or
CTRL/H
or
F12*

SCREEN
(keypad 8)

PREV SCREEN*

NEXT SCREEN*

BOTTOM
(keypad PF1 4)

TOP
(keypad PF1 5)

PAGE
(keypad 7)

FIND
(keypad PFl PF3)
or
FIND*

3-26

Moves the cursor to the
beginning of the next, current,
or previous line, depending on
current direction and starting
cursor location

Moves the cursor to the end of
the next, current, or previous
line, depending on current
direction and starting cursor
location

Moves the cursor to the
the current line or
line, depending on
cursor location

start of
previous Q
starting

Scrolls text up or down in the
window, depending on current
direction

Moves the cursor up in the Q
buffer by one screenful

Moves the cursor down in the
buffer by one screenful

Moves the cursor to the end of
the current buffer

Moves the cursor to the Q
beginning of the current buffer

Moves the cursor to the top of
the next, current, or previous
page, depending on current
direction and starting cursor
location

and moves
the first

string in the

Prompts for a string
the cursor to
occurrence of that
current direction

0

0

0

0

0

0

Table 3-2 (cont.)

Name

EDT Search Again

USING THE VAX LISP EDITOR

Binding*

FIND NEXT
(keypad PF3)

Description

Moves the cursor to the
occurrence in the
direction of the last
searched for

first
current
string

Moving by LISP Entities

Previous Form

Next Form

Beginning of
Outermost Form

End of Outermost
Form

Deleting

EDT Delete
Character

EDT Delete
Previous
Character

EDT Delete Word

EDT Delete
Previous Word

EDT Delete Line

CTRL/X,

CTRL/X.

CTRL/X <

CTRL/X >

Moves the cursor to beginning of
current or previous LISP form in
the current nesting level

Moves the cursor to beginning of
next LISP form in the current
nesting level

Moves the cursor to beginning of
enclosing outermost form, or to
beginning of preceding outermost
form if the cursor starts
between outermost forms

Moves the cursor to end of
enclosing outermost form, or to
end of following outermost form
if the cursor starts between
outermost forms

Text Modification Commands

DEL CHAR
(keypad,)

DELETE (<X]

DEL WORD
(keypad-)

F13*

DEL LINE
(keypad PF4)

3-27

Deletes the character at the
cursor location

Deletes the character before the
cursor location

Deletes from cursor location to
beginning of next word

Deletes from cursor location to
beginning of current word

Deletes from cursor location to
beginning of next line

USING THE VAX LISP EDITOR

Table 3-2 (cont.)

Name

EDT Delete to
End of Line

EDT Delete
Previous Line

Undeleting

EDT Undelete
Character

EDT Undelete
Word

EDT Undelete
Line

Binding*

DEL EOL
(keypad PFl 2)

CTRL/U

UNDEL CHAR
(keypad PFl ,)

UNDEL WORD
(keypad PFl -)

UNDEL LINE
(keypad PFl PF4)

Cutting, Pasting, and Substituting

Set Select Mark

Unset Select
Mark

Select Outermost
Form

. EDT Cut

EDT Append

EDT Paste

SELECT
(keypad.)
or
SELECT*

RESET
(keypad PFl .)

CTRL/X
CTRL/SPACE

CUT
(keypad 6)
or
REMOVE*

· APPEND
(keypad 9)

PASTE
(keypad PFl 6)
or
INSERT*

3-28

Description

Deletes from cursor location to
end of line, or all of next line
if cursor is at end of line

Deletes from cursor location to
beginning of current line, or
all of previous line if cursor
is at beginning of line

Inserts the last character
deleted at the cursor location

Inserts the last word deleted at
the cursor location

Inserts the last line deleted at
the cursor location

0

0

Defines one
region

end of a select Q

Cancels a select region

Makes a select region from the
outermost LISP form containing
the cursor

Removes the select region from
the text and replaces the
contents of the paste buffer
with the select region

Removes the select region from
the text and appends the select
region to the contents of the
paste buffer

Inserts the contents of the
paste buffer at the cursor
location

0

0

Table 3-2 (cont.)

OName

0

EDT Replace

EDT Substitute

Query Search
Replace

Exit Recursive
Edit

Changing Case

Q EDT Change Case

0

0

Upcase Region

Downcase Region

Upcase Word

Downcase Word

Capitalize Word

Supply Prefix
Argument

USING THE VAX LISP EDITOR

Binding*

REPLACE
(keypad PF1 9)

SUBS
(keypad PF1
ENTER)

None

None

CHNG CASE
(keypad PF1 1)

None

None

None

None

None

Description

Deletes the select region and
replaces it with the contents of
the paste buffer

Substitutes the contents of the
paste buffer for the search
string and moves to the next
occurrence of the search string

Prompts for old and new strings,
and at each occurrence of the
old string prompts for an
action; more versatile than "EDT
Substitute"

a recursive edit and
the editing level
the recursive edit

Terminates
returns to
from which
was initiated

Changes the case of all
·characters in a select region or
of an individual character

Makes all characters in a select
region upperca~e

Makes all characters in a select
region lowercase

Makes all characters in the word
at the cursor location uppercase

Makes all characters in the word
at the cursor location lowercase

Makes the fir~t character of the
word at the cursor location
uppercase

General

PREFIX
(keypad PF1 PF1)

3-29

Prompts for a
argument, which
next command
action

numeric prefix
may cause the

to repeat its

USING THE VAX LISP EDITOR

3.3 USING MULTIPLE BUFFERS AND WINDOWS

The Editor can keep track of more than one LISP object or file at a O
time. The Editor holds each object or file that you are currently
editing in a buffer. Commands let you move between buffers, create
new buffers, and gain access to buffers through windows on the screen.

3.3.1 Introduction to Buffers and Windows

Buffers are Editor objects that contain the text of the symbol or file
that you are editing and some information about the text -- for
example, the position of the cursor when the text is displayed. The
Editor displays the contents of buffers through windows on the screen.
The Editor can keep track of many buffers at once, but normally
displays the contents of no more than two buffers it has created for Q
you at a time.

on a VAXstation: It is important to distinguish between the
VAXstation window that contains the Editor and the Editor
windows that display the contents of buffers. The
VAXstation window is equivalent to the screen of a video
terminal. Editor windows appear in the VAXstation window.

The first time you use the ED function, you supply an argument
specifying the symbol or file you want to edit. The Editor creates aQ
buffer having the same name as this symbol or file and a window on the
screen for this buffer. You can then enter and modify the text in the
buffer.

If, after you return to the LISP interpreter, you use the ED function
with a different symbol or file, the Editor creates another buffer and
window. Both windows appear on the screen, but the window for the
buffer most recently created is the current window. If you typeo
characters or enter Editor commands, the buffer viewed through the
current window will be affected.

For example, if you first typed

Lisp> (ED 'SHIP-ACCESSOR)

and then, after pausing the Editor, typed

Lisp> (ED "CLOCK.LSP")

the screen might look like this:

0
3-30

0

0

0

0

0

USING THE VAX LISP EDITOR

Function SHIP-ACCESSOR Forward EDT Emulation ("VAX LISP 11)

luse-package " ED !TOR 11)

(define-command (clock-command :display-name 11 Clock 11)

(prefix)
1111

(let ((buffer (find-buffer II Clock 11)))

(unless buffer
(setf buffer (make-buffer '(clock-buffer :display-name 11 Cloc1<. 11)

:major-style nil :minor-styles nil
: variables nil))

File CLOCK. LSP Fori.,.1ard EDT Ernulafion ("VA:,\ LISP")

Now, two label strips appear, one at the bottom of each window. The
reverse-video label strip and the presence of the cursor in a window
show you which window is current.

To change the current window, use the CTRL/X
making each window on the screen current in
from one window to another, the cursor moves
occupied when you last edited in that window.

CTRL/N key sequence,
turn. When you change
to the position it

Windows that display text you are editing are called anchored windows,
because they are fixed at a particular spot on the screen. Unless you
use the "Split Window" command, the Editor can by default display no
more than two anchored windows at once. However, you can have more
than two LISP objects or files available for editing at once, each
occupying its own· buffer. The "List Buffers" command displays a list
of all the buffers in the Editor. For example, if you had used the ED
function three times, "List Buffers" might result in the following
display:

3-31

USING THE VAX LISP EDITOR

Ckpting Pertr1anent
i

Lines I Chars Status

No Yes I
No No I

l
No Yes !'

ill Ring Efl'l)tg ~itable
HIP-ACCESSOR Efl'l)tg ~itable

Function of ~trliiol SHIP-ACCESSOR
6 I 262 rrlodified

LOCK.LSP 44 I 1660 Plodified Yes No
LISPwt:[BODGE]CLOCK.LSP:2

neral Pro"fting Efl'l)tg Plodified No Yes
HIP-TONNAGE Efl'l)tg Uri table No No

Function of mol SHIP-TONNAGE
mlmarJ~m.m:1-~~-----1

(prefix)
1111

(let ((buffer (find-buffer "Clocl<. 11)))

(unless buffer
(setf buffer (make-buffer '(clock-buffer :display-name "Clock")

:major-style nil :minor-styles nil
:variables nil))

File CLOCK. LSP Forward EDT Emulation ("VAX LISP")

I

The buffers holding the objects and files that you are editing are
identified by an additional line detailing the contents of the buffer.
For example, the buffer named SHIP-ACCESSOR contains the "Function of
symbol SHIP-ACCESSOR." The other buffers listed contain Editor
information.

You can select a buffer for editing that is not currently on the
screen with the "Select Buffer" command. This command prompts for the
name of a buffer to edit. You can type part of the name, then use
CTRL/SPACE to request that the Editor fill in the rest of the name.
If you do not know which buffers are available, use ALTERNATIVES to
see a list of their names.

When you select a buffer from among those not currently displayed, the
Editor displays it in a new anchored window .. If two anchored windows
are already there, the Editor removes the least current one and
replaces it with one displaying the contents of the buffer just
selected.

"Removing" a window does not delete or modify the contents of the
buffer. Removing a window simply causes the corresponding buffer to
be no longer displayed, until the next time you select it. You can
use the CTRL/X CTRL/R key sequence to remove the current window from
the screen and the "Remove Other Windows" command to remove all
windows other than the current window from the screen.

3-32

0

0

0

0

0

USING THE VAX LISP EDITOR

In addition to anchored. windows, the Editor also has floating windows.

O Floating windows may be displayed anywhere on the screen, overlaying
and obscuring the anchored windows that lie under the floating
windows. The window in which help appears is a floating window. For
the purpose of commands, these windows are just like anchored windows;
CTRL/X CTRL/N moves the cursor to them in turn, CTRL/X CTRL/R removes
them when they are current, and "Remove Other Windows" rE:Jnoves them
when they are not current.

3.3.2 Creating New Buffers from Within the Editor

You do not need to return to the LISP interpreter to create a new
buffer. Two commands allow you to start editing new LISP objects or
files without leaving the Editor.

O The "Ed" command works the same as the ED function. The "Ed" command
prompts for each of the arguments that you would enter to the ED
function. If you supply a symbol name, the Editor asks you to specify
whether you want to edit the function definition or the value of the
symbol. If you supply. a character string containing a file
specification, the Editor starts editing that file.

The "Edit File" command prompts you for a file to edit. The "Edit

O File" command differs from the "Ed" command in that the "Edit File"
command allows you to request comp~etion of the file name with
CTRL/SPACE and a listing of possible file names with ALTERNATIVES.
(See Section 3.1.3.2.)

3.3.3 _Working with Buffers

O Buffers generally take care of themselves. The only three
situations in which you need to deal with buffers directly are:

common

•
•
•

Buffers
· session
buffer.

•

When you need to save the contents of a buffer

When you need to delete a buffer

When two buffers have conflicting names

' maintain some information about the state of your editing
with regard to the LISP object or file contained in the
Specifically, a buffer keeps track of:

The position of the cursor in the text

0
• The select region, if one is active

3-33

USING THE VAX LISP EDITOR

Key bindings, if any keys are bound
buffer (see Section 3.5.1)

in the context of the

The major and minor styles that are active in that buffer (see
Section 3.5.1)

This information ensures that, when you select a buffer you worked on
previously, it will be in the same state as it was when you left it.

3.3.3.1 Saving Buffer Contents - Three commands save buffer contents.
The "Write Current Buffer" and "Write Modified Buffers" commands
(discussed in Section 3.1) save the contents of the single current
buffer and of all buffers that have been modified, respectively. The
third way to save buffer contents is to use the "Exit" command and
request that modified buffers be saved.

When you pause the Editor, your buffers are not written, but they are
available to you when you resume the Editor. If, however, you should
pause the Editor and then exit LISP, the contents of your buffers will
be lost. (Section 3.4 explains how you can partially recover from
this situation.)

0

0

3.3.3.2 Deleting Buffers - Two commands delete a buffer. "Delete Q
Current Buffer" deletes the buffer you are currently working on;
"Delete Named Buffer" prompts for a buffer name and deletes that
buffer. Both commands check to see if the buffer has been modified
and, if it has been, ask if you want to write the buffer before
deleting it.

If you are editing an existing file and you delete the buffer
associated with the file, the Editor does not delete the file.
However, the Editor also does not create a new version of the file. Q
For example, if you are editing the file CLOCK.LSP;l and you delete
the buffer "CLOCK.LSP", the file CLOCK.LSP;l is not deleted. However,
the file CLOCK.LSP;2, which would have been created if you had saved
the buffer contents, is not created.

3.3.3.3 Buffer Name Conflicts - The Editor requires that buffer names
be unique. This requirement can cause a problem in the following
situations:

@ You are trying to edit the function definition and the value
of the same symbol

You are trying to edit two files having the same name and type Q
but differing in some other respect (version number,
directory, and so on)

3-34

0

0

0

0

0

USING THE VAX LISP EDITOR

When your attempt to edit something creates a buffer name conflict,
the Editor requests a new buffer name. You can type in any name you
like. However, if you should type in no name and just type RETURN,
the Editor deletes the current contents of the buffer, replacing them
with whatever you are trying to edit.

3.3.4 Manipulating Windows

The commands most commonly used to manipulate windows have already
been presented in this chapter:

e CTRL/X CTRL/N (bound to "Next Window") to make the next window
the current window

e CTRL/X CTRL/R (bound to "Remove Current Window") to remove the
current window from the screen

~ "Remove Other Windows" to remove windows other than the
current window from the screen

Other commands allow you to manipulate windows in other ways.

The "Grow Window" and "Shrink Window" commands make the current window
larger and smaller, respectively. If no prefix argument is set, they
make the window one line larger or smaller. If a prefix argument is
set, they make the window larger or smaller by the number of lines
specified in the prefix argument.

The "Split Window" command allows you to open two or more windows on a
single buffer. The command causes the current win_dow to be split in
two, with identical text appearing in the two windows. Once created,
the two windows can be treated as ordinary windows; the
window-manipulation commands move between the two windows and remove
them in the normal fashion. Each window maintains its own cursor
position and scrolls separately from the other; but if you type or
edit in one window, the change will appear in the other as well.

Split windows are useful if you want to examine two parts of the same
buffer at· one time, or if you want to move text from one place to
another in a buffer. To move text, you would delete it or cut it in
one window, move to the other window, and undelete the text or paste
it.

You can have more than two windows on a buffer; just use "Split
Window" repeatedly. The number of windows is limited only by the size
of the.screen; each window must have at least one line.

Although the "Split Window" command initially creates two windows on
the same buffer, you can cause one of those windows to switch to
another buffer. Use the "Select Buffer" command and specify a buffer

3-35

USING THE VAX LISP EDITOR

not currently displayed in a window. By repeatedly splitting windows
and selecting new buffers, you can view as many buffers as you can fit
windows on the screen.

3.3.5 Moving Text Between Buffers

It is frequently useful to be able to move or copy text from one
buffer to another. For example, if you have worked on the definition
of a function, you may want to move it to a buffer in which you are
editing a file. Two general ways of doing this are:

• You can delete or cut the text from the source buffer, change
to the destination buffer, and undelete or paste the text in
the destination buffer

0

• To insert an entire buffer in another, use the "Insert Buffer" Q
command

3.3.6 Summary of Commands

Table 3-3 summarizes the commands presented in this section and their
key bindings. (Some of the general-purpose commands in Table 3-1 also Q
pertain to buffers and windows.)

Table 3-3: Commands For Manipulating Buffers And Windows

Name

Select Buffer

List Buffers

Delete Current
Buffer

Delete Named
Buffer

Ed

Binding

None

None

None

None

None

3-36

Description

Prompts for a buffer name, then
makes that buffer the current
buffer and displays it in a
window

Displays a list of all Editor
buffers

Deletes the current buffer

Prompts for the name of a
buffer, then deletes that buffer

Prompts for a symbol name or
file specification to edit, then
creates a new buffer for the
symbol or file

0

0

USING THE VAX LISP EDITOR

Table 3-3 (cont.)

OName Binding Description

Edit File None

Grow Window None

Shrink Window None

0
Split Window None

Insert Buffer None

Prompts for the name of a file,
then creates a buffer for that
file and a window into the
buffer

Enlarges the current window by
one line, or by the number of
lines specified by the prefix
argument

Shrinks the current window by
one line, or by the number of
lines specified by the prefix
argument

Splits the current windows into
two windows on the current
buffer

Prompts for the name of a
buffer, then inserts the
contents of that buffer at the O cursor location

3.4 RECOVERING FROM PROBLEMS

The Editor provides facilities that let you recover from problems with
all or most of your work intact. Section 3.1.3.3 contains information

O on how the Editor responds to minor errors. This section describes
checkpointing, by means of which the Editor protects work in progress.

Whenever you are editing a file, the Editor periodically makes a copy
of the current state of that file. The copy is a separate disk file,
called th~ checkpoint file. It has the same name as the file you are
editing, and a file type composed as follows:

type_version_LSC

,where type and version are the file type and version number,
respectively, of the file you are editing. For example, if you are
editing the file CLOCK.LSP;2, the associated checkpoint file will be
named CLOCK.LSP_2_LSC.

While you are using the Editor or the LISP interpreter, an error may

O occur that returns you to DCL, or you may inadvertently exit LISP
without first saving your Editor buffers, or the system may crash. In

3-37

USING THE VAX LISP EDITOR

any of these cases the current state of your Editor work is lost.
However, the checkpoint files for any files you were editing still O
remain, reflecting the state of those buffers at the last time that
checkpointing took place. To use a checkpoint file after you have
lost the associated b11-Ffe:r _ ,-hange its file type back to LSP. Then
use the Editor to edit tl~·~ file.

When checkpointing a file, the Editor displays the message
"Checkpointing ... " in the information area. You can continue to type
while checkpointing is taking place but whatever you type will not be
displayed until checkpointing is complete. By default, the Editor
checkpoints after every 350 commands that alter text in buffers.
(Each keystroke that inserts a text character counts as a command.)

3.5 CUSTOMIZING THE EDITOR

You can customize the Editor to make it more convenient or comfortable
to use. This section describes two ways to customize the Editor:

Section 3.5.1 explains how
commands. You can bind
bound to them by default,
bindings.

to bind keys or key sequences to
keys to commands that have no keys
or you can change the default

0

• Section 3.5.2 describes keyboard macros. A keyboard macro is Q
a sequence of keystrokes that the Editor captures for you; you
can then replay the sequence at a later time.

The VAX LISP/VMS Editor Programming
customize the Editor even further
editing styles.

3.5.1 Binding Keys to Commands

Guide explains how you can
by creating new commands or new

As previously stated, you interact with the Editor by using commands.
Many commands have keys or key sequences bound to them; others do not.
One way you can customize the Editor is to bind a key or key sequence
to a command. Once you have bound a key or.key sequence to a command,
typing that key or key sequence invokes the command.

The two ways to bind a key or key sequence to a command are:

• While using the Editor, you can use the "Bind Command"
command.

0

• While using the LISP interpreter, you can use the BIND-COMMAND
function. Your LISP initialization file.can contain calls to Q
BIND-COMMAND to set up the Editor.

3-38

0

0

USING THE VAX LISP EDITOR

These two methods are
respectively.

discussed in Sections 3.5.1.1 and 3.5.1.2,

No matter how you bind keys or key sequences to commands, there are
two pieces of information you must supply and a third that you may
supply:

• You must supply the name of the command to be invoked.

• You must supply the key or key sequence to bind to the
command. Sections 3.5.1.1 and 3.5.1.2 describe how to specify
the key or key sequence. Section 3.5.1.3 contains suggestions
on how to select a key or key sequence to bind.

• You can optionally supply the context in which the binding is
effective. Section 3.5.1.4 explains the key binding context.

3.5.1.1 Binding Within the Editor -
you to bind a key or key sequence to
This command prompts you for each of
specify a complete binding.

The "Bind Command" command allows
a command while using the Editor.

the three items you need to

The "Bind Command" command first prompts you for the name of the
command you wish to have bound. You can use input completion and

Qalternatives to get a complete command name.

The second prompt is for the key sequence. Type the actual key or key
sequence that you want to bind to the command not a LISP
representation of the characters. However, you cannot type control
characters or function keys unless you use CTRL/~ \ to quote them.
Since most bindings involve control characters or function keys, you
will tend to use CTRL/X \ most of the time.

QFor example, assume that you want to bind the key sequence CTRL/X
CTRL/0 to a command. Both CTRL/X and CTRL/0 are control characters so
they must both be quoted. In response to the "Enter key sequence"
prompt, you would type:

CTRL/X \ CTRL/X CTRL/X \ CTRL/0

After you completed this sequence, the prompting area would appear
like this:

.,Enter key seguence <"X><"O>I

Function keys, arrow keys, and keys on the numeric keypad must also be
quoted. Each of these keys generates more than one character when it
is struck, so more than one character appears in the prompting area.

oFor example, to bind the F12 key to a command, you would type:

CTRL/X \ F12

3-39

USING THE VAX LISP EDITOR

This sequence is echoed'in the prompting area as:

jeoter kev seguence <ESCAPE>[24~

The third prompt is for the binding context. The context can be
:GLOBAL (the default) or a particular style or buffer. Type :STYLE or
:BUFFER, followed by RETURN, to specify one of these options. The
Editor then prompts for the name of the style or the buffer. (See
Section 3.5.1.4 for more information on binding context.)

3.5.1.2 Binding from the LISP Interpreter - The BIND-COMMAND function
allows you to establish key bindings while you are using the LISP
interpreter. BIND-COMMAND is especially useful in your LISP
initialization file to set up the bindings you use all the time.

0

The BIND-COMMAND function takes three arguments. The first argument Q
is the name of the command you wish to have bound, in the form of a
character string.

The second argument is the key or key sequence that is to invoke the
command. A single key may be given as a LISP character. A key
sequence must be given as a vector or list of characters.

For all the keys on the main part of the keyboard -- those keys that Q
produce letters, numbers, and other printing symbols -- you may use
any valid LISP representation of the character. For example, "A" is
#\A, "a" is #\a, and "CTRL/A" is #\"A. The character transmitted by
the BACKSPACE key on a VT100 can be #\BACKSPACE, #\BS, or #\"'H. The
LISP function CHAR-NAME-TABLE displays a table of the LISP names for
control characters.

The remaining keys on the keyboard -- the numeric keypad, arrow keys,
editing keys, and function keys -- transmit more than one character Q
when struck. Table 3-4 lists each key and the character sequence it
generates. The VT100 keyboard lacks function and editing keypad keys,
but the numeric keypad keys and arrow keys generate the same
characters listed in Table 3-4.

Some of the function keys on the LK201 keyboard are commonly
associated with particular characters. For example, the F12 key is
associated with BACKSPACE and the F13 key with LINEFEED. However,
these function keys do not actually transmit these characters, and the
Editor does not treat them as having transmitted these characters.

3-40

0

USING THE VAX LISP EDITOR

Table 3-4: Characters Generated by Keys

0 Key Characters Generated

Numeric Keypad Keys (LK201 and VTlOO)

keypad 0 #\ESCAPE # 0 # p
keypad 1 #\ESCAPE # 0 # ,q
keypad 2 #\ESCAPE #'.0 # . r
keypad 3 #'"ESCAPE # 0 # ,S

keypad 4 #\ESCAPE #\0 #\t
keypad 5 #\ESCAPE #\0 #,u
keypad 6 #\ESCAPE #\0 #\V
keypad 7 #\ESCAPE #\0 #\W
keypad 8 #\ESCAPE #\0 #\x
keypad 9 #\ESCAPE #\0 #\y

0 keypad - #\ESCAPE #\0 #\m
keypad, #\ESCAPE #\0 #\1
keypad . #\ESCAPE #\0 #\n
keypad ENTER #\ESCAPE #\0 #'\M
keypad PFl #\ESCAPE #\0 #\P
keypad PF2 #\ESCAPE #\0 #\Q
keypad PF3 #\ESCAPE #\0 #\R
keypad PF4 #\ESCAPE #\0 #\S

0
Arrow Keys (LK201 and VT100)

Up Arrow #\ESCAPE #\[#\A
Down Arrow #\ESCAPE #\[#\B
Right Arrow #\ESCAPE #\[#\C
Left Arrow #\ESCAPE #\[#\D

Function, HELP, and DO keys (LK201)

0 F6 #\ESCAPE #\[#\1 #\7 #\-
F7 #\ESCAPE #\[#\1 #\8 #'\-
F8 #\ESCAPE #\[#\1 #\9 #\-
F9 #\ESCAPE #\[#\2 #\0 #\-
F10 #\ESCAPE #\[#\2 #\1 #\-
Fll #\ESCAPE #\[#\2 #\3 #\-
F12 #\ESCAPE #\[#\2 #\4 #\-
F13 #\ESCAPE #\[#\2 #\5 #\-
F14 #\ESCAPE #\[#\2 #\6 #\-
HELP (F15) #\ESCAPE #\[#\2 #\8 #\-
DO (F16) #\ESCAPE #\[#\2 #\9 #\-
F17 #\ESCAPE #\[#\3 #\1 #\-
F18 #\ESCAPE #\[#\3 #\2 #\-
F19 #\ESCAPE #\[#\3 #\3 #\-
F20 #\ESCAPE #\[#\3 #\4 #\-

0
·~-. 3-41

USING THE VAX LISP EDITOR

Table 3-4 (cont.)

Key Characters Generated 0
Editing Keys (LK201)

FIND (El) #\ESCAPE #\[#\1 #\-
INSERT HERE (E2) #\ESCAPE #\[#\2 #\-
REMOVE (E3) #\ESCAPE #\[#\3 #\-
SELECT (E4) #\ESCAPE #\[#\4 #\-
PREV SCREEN (E5) #\ESCAPE #\[#\5 #\-
NEXT SCREEN (E6) #\ESCAPE #\[#\6 #\-

The third argument to BIND-COMMAND, which is optional, specifies the
binding context. If you omit this argument, the context is global;
that is, the key binding is effective everywhere in the Editor. Ifo
you include this argument, supply it in the form

, (:STYLE "stylE-name")

or

'(:BUFFER "buffer-name")

Section 3.5.1.4 describes binding context in more detail.

The following example binds the key sequence CTRL/X CTRL/0 to
"Remove Other Windows" command globally:

(BIND-COJ\1M.AND "Remove Other Windows" '# (#\~ X #\~ 0))

Alternatively, you could globally bind the key sequence PFl REMOVE
(the REMOVE key is on the LK201's editing keypad) to "Remove Other
Windows" as shown here: Q

(BIND-COMMAND "Remove Other Windows"
'#(#\ESCAPE #\0 #\P #\ESCAPE#\[#\3 #\-))

To hind the F12 key on an LK201 keyboard to the "EDT Back to Start of
Line" command in the "EDT Emulation" style, you would use the
following function:

(BIND-COMMAND "EDT Back to Start of Line"
'#(#\ESCAPE#\[#\2 #\4 #\-)
'(:STYLE "EDT Emulation"))

Following execution of this function, the F12 key moves the cursor to
the beginning of the line, but only if the "EDT Emulation" style is
active. (This binding is in effect by default.)

3-42

0

0

0

0

0

USING THE VAX LISP EDITOR

On a VAXstation: . You can also bind actions of the pointing
device (movement and buttons) to commands. See the
description of the BIND-POINTER-COMMAND function in the VAX
LISP/VMS Editor Programming Guide.

3.5.1.3 Selecting a Key or Key Sequence - You can bind almost any key
or key sequence to a command, but you should be careful that your
selection does not interfere with Editor operation. This section
explains restrictions and provides hints to help you make a selection.

The three control characters you must not include anywhere in a key
sequence are:

• The cancel character, CTRL/C by default, which terminates an
Editor operation. You cannot include CTRL/C in a key sequence
because typing CTRL/C at any time stops the collection of
keystrokes and returns the Editor to the end of the last
completed command.

• CTRL/S and CTRL/Q, which are interpreted by the operating
system (they stop output to the terminal and resume it,
respectively) and therefore never reach the Editor for
interpretation.

You should not use any graphic (printing) character to start a key
sequence, although you can use graphic characters elsewhere in the
sequence. If you start a key sequence with, say, the letter A, you
will never be able to type the letter A as part of a word. The
Editor, as soon as it sees the A, will recognize it as the beginning
of a key sequence; unless the next character(s) complete the sequence,
the Editor will signal an error and discard the A.

When you include an alphabetic character in a key sequence, remember
that the Editor differentiates between upper- and lower-case. For
example, the following two key sequences are different:

I# (#\" x #\A)
'# (#\" x #\a)

By convention, the three keys used to start a key sequence are CTRL/X,
ESCAPE, and keypad PF1. You can, of course, use others if you choose,
as long as they are nonprinting. (On terminals that do not have an

, ESCAPE key, CTRL/[transmits the #\ESCAPE character.)

0

Finally, be careful not to select a key or key sequence that is
already bound to a useful command. Appendix C contains a list of all
the key bindings supplied with the Editor. Section 3.5.1.4 explains
how a single key or key sequence can be bound to two different
commands in different contexts.

3-43

USING THE VAX LISP EDITOR

3.5.1.4 Key Binding Context and Shadowing - When you bind a key or Q
key sequence to a command, you can specify the context in which that
binding is effective. Specifying a context means that the key or key
sequence invokes the command only in that particular context.

The three general types of context are:

•

•

Styles

The buffer context .
the key or key
buffer is current.

If the context is a particular buffer,
sequence invokes the command only if that

The
key
the
the

style context. If the context is a particular style, the
or key sequence invokes the command only if that style is

major style or one of the minor styles that is active in
current buffer.

The global context. If the context is global, the key or key Q
sequence always invokes the command. The default context is
global.

A style is a collection of key bindings and of other Editor
characteristics that cause the Editor to behave in a certain way. The
two styles that you encounter in the default Editor are named "EDT Q
Emulation" and "VAX LISP". The "EDT Emulation" style causes the
numeric keypad to generate editing actions similar to those of EDT.
The "VAX LISP" style provides access to the Editor's ability to edit
LISP code easily.

An Editor buffer can have one major style and one or more minor styles
active at any time. You can tell which styles are active by looking
at the label strip for the buffer:

1-----1illiD1Ii1MiuWwiWEiJhL1JidarnwillwUmMaM11Mlii1W1JJm110uM•iuii11iu§ffiw•1;1f11S!!ij[m);IW$lumal!l•11i~iili••---1 I Q

The major style is generally established before the Editor is started.
Minor styles are activated automatically, .depending on what is being
edited. For example, whenever you edit a LISP object or a file having
the type LSP, the "VAX LISP" style is activated for that buffer as a
minor style.

Shadowing

It is possible to bind the same key or
commands. If the contexts of the two
second binding replaces the first one.
have different contexts, then the

key sequence to two different
bindings are the same, then the
If, however, the two bindings Q

key or key sequence may invoke

3-44

USING THE VAX LISP EDITOR

either command, depending on the situation at the time. To locate a
Q command to execute when a key is pressed, the Editor:

1. First checks to see if that key is bound in the context of
the current buffer.

2. Next checks to see if that key is bound in the context of one
of the current minor styles, examining the most recently
activated style first.

3. Next checks to see if that key is bound in the context of the
current major style.

4. Next checks to see if that key is bound in the global
context.

As soon as the Editor finds a command to execute, it does so.
QTherefore, if the same key or key sequence is bound in, say, the

current minor style and the current major style, the binding in the
minor style "shadows," o'r takes precedence over, the binding in the
major style.

For example, the CTRL/J key is bound to "EDT Delete Previous Word" in
the "EDT Emulation" style and to "New LISP Line" in the "VAX LISP"
style. When you are editing LISP code, .. EDT Emulation" is the major
style and "VAX LISP" is the minor style. Therefore, the binding of

O CTRL/J to "New LISP Line" shadows the binding to "EDT Delete Previous
Word". ·

3.5.2 Keyboard Macros

A keyboard macro is a series of keystrokes that you ask the Editor to
"remember" for future use. The keystrokes can be keys that insert

Qcharacters, keys or key sequences that invoke editing commands, or
even commands that you type in and that issue additional prompts. A
keyboard macro is useful whenever you have a series of identical,
complicated operations to perform.

To begin a keyboard macro, type CTRL/X (. Everything you ~ype from
that point is executed normally, but is also stored for future use.
Typing CTRL/X) stops the storage of keystrokes. To execute a
keyboard macro, type CTRL/X CTRL/E. This sequence causes the current
keyboard macro to be "played back" starting at the current cursor

'location. A keyboard macro that you define in this way lasts until
you define another keyboard macro.

You can also use the "Start Named
keyboard macro having a name.

O command as you would the CTRL/X
you for a name. After you

Keyboard Macro" command to define a
Use the "Start Named Keyboard Macro"
key sequence. The command prompts

enter the name, the Editor starts

3-45

USING THE VAX LISP EDITOR

remembering keystrokes. Terminate the macro with CTRL/X). The macro
thus defined is the current keyboard macro (you can invoke it with O
CTRL/X CTRL/E) but it is also a named entity that you can treat like a
command. You can execute it as a named command or bind a key to it.
A named keyboard macro remains accessible by name even after another
keyboard macro has been defined.

A keyboard macro may not work properly if the context changes between
the time the macro is created and the time it is executed. For
example, if you switch to a buffer that has a different minor style
active, the commands invoked by the keyboard macro may fail.

3.5.3 Summary of Commands

Table 3-5 summarizes the commands presented in this section and their Q
key bindings.

Table 3-5: Commands For Customizing The Editor

Name Binding Description

Bind Command None

Start Keyboard
Macro

CTRL/X (

Prompts for a command name and a
key sequence to bind to it

Starts collecting keystrokes for Q
a keyboard macro

Start Named
Keyboard Macro

None Prompts for a name, then starts
collecting keystrokes for a
keyboard macro having that name

End Keyboard
Macro

CTRL/X} Terminates the collection of Q
keystrokes for a keyboard macro

Execute Keyboard
Macro

CTRL/X CTRL/E Executes the current keyboard
macro

3.6 USING THE EDITOR ON A VAXSTATION

The behavior and capabilities of the Editor when oper.ating on a
VAXstation are similar to its operation on an ordinary video terminal.
The same commands are available and the same key bindings are in
effect. However, the Editor incorporates several features that make
use of VAXstation capabilities. This section summarizes those
features.

3-46

0

0

0

0

USING THE VAX LISP EDITOR

3.6.1 Screen Appearance and Behavior

The most obvious difference in Editor behavior on a VAXstation is that
the Editor occupies a separate VAXstation window from the LISP
interpreter. This window has the title "VAX LISP Editor". It is
createn the first time you start the Editor, and the cursor is shifted
to it from the window containing the LISP prompt. The Editor window
is taller than the 24 lines normally contained in a video terminal but
is otherwise identical to the Editor display described throughout this
chapter.

When you pause the Editor, the cursor returns to the LISP prompt.
When you resume the Editor, the cursor moves to the spot it occupied
in the Editor window when you paused the Editor.

If you select the Delete option from the Window Options menu, the
Editor exits, giving you the opportunity to save buffers first.

While you are using the Editor, you cannot use the LISP interpreter,
even though the window containing the LISP prompt is still on the
screen. You cannot use the LISP interpreter until you pause or exit
from the Editor.

3.6.2 Editing with the Pointer

You can use the mouse or other pointing device to perform some editing
tasks. You can select a new window to be the current window, move the
text insertion cursor within the current window, and cut and paste
text. When you are editing LISP. code, you can also select LISP forms,
describe LISP symbols, and match parentheses.

0 3.6.2.1 The Pointer Cursor - The pointer cursor is the cursor
you move around the screen by moving the pointing device.
contrast, the text insertion cursor is the blinking cursor that
move around the Editor windows using conventional Editor commands.

that
By

you

0

The appearance of the pointer cursor changes when it is in. the LISP
Editor window. When the pointer cursor is in the window that
represents the current buffer, it looks like this:

[

When the pointer cursor is in a window that represents a buffer other
than the current buffer, it looks like this:

3-47

USING THE VAX LISP EDITOR

When the pointer cursor is in the information area,
this:

it looks like

3.6.2.2 Selecting and Removing Windows - When the pointer cursor is
in a window other than the current window, press the left pointer
button to make that window the current window. The text insertion
cursor is placed where it was the last time that window was current.
Press the middle pointer button in a window other than the current
window to remove that window from the screen.

3.6.2.3 Moving the Text Insertion Cursor and Marking Text - When the
pointer cursor is in the current window, press the left pointer button
to move the text insertion cursor to the pointer cursor. If you
release the left button without moving the pointer cursor, .the text
insertion cursor stays in the same place. However, you can also leave
the left button down and move the pointer cursor. If you do this, the
text insertion cursor also moves. The text between where you first
pressed the left button and where you finally release it is marked as
a select region.

If you are editing LISP code, you can use the left pointer button to
mark LISP forms as select regions. The first time you press the
button, the text insertion cursor moves to the pointer cursor. Each
time you press the button without moving the pointer cursor, a LISP
form that encloses the pointer cursor is marked. Enclosing forms are
marked until the outermost form is reached.

3.6.2.4 Cutting
pointer button
Press the middle
to paste text
To cut and paste

and Pasting - In the current window,
to cut text that has been marked as
pointer button with the left pointer
from the paste buffer at the pointer
text, follow these steps:

1. Mark the text to be cut using any method.

press the middle
a select region.
button depressed
cursor position.

2. Press the middle pointer button to cut the text.

3. Move the pointer cursor to the position at which you want to
paste the text.

()

()

()

()

4. Press and hold the left pointer button, then press the middle
button. . ()

3-48

USING THE VAX LISP EDITOR

3.6.2.5 Invoking the DESCRIBE Function And Matching Parentheses -

O When you are editing LISP code, you can use the right pointer button
to invoke the LISP DESCRIBE function. Move the pointer cursor to a
symbol, then press the right bu~ton. The Editor's help window appears
and displays the results of using the DESCRIBE function on that
symbol.

If you move the pointer cursor to a right parenthesis and press the
right-pointer button, the matching left parenthesis is highlighted.

3.6.2.6 Information About Pointer Effects - You can find out what
action a pointer button invokes by moving the pointer cursor to the
information area. The pointer cursor then appears as a large question
mark. When you press any pointer button, the name of the command

O invoked by that button is displayed in the information area. Note
that the command displayed is the one invoked by that button when the
pointer cursor is in the current window. When you release the button,
the command (if any) invoked by releasing the button is displayed.

Moving the pointer cursor in the information area with the buttons
held a certain way displays the command that is invoked by pointer
movement with the buttons in that state.

Q 3.6.3 Binding Pointer Buttons to Comm8nds

0

0

Binding pointer buttons to commands is analogous to binding keys or
key sequences to commands. See the VAX LISP/VMS Editor Progranuning
Guide for information.

3-49

0

0

0

0

0

0

0

CHAPTER 4

ERROR HANDLING

The LISP system invokes the VAX LISP error handler when errors are
signaled during program evaluation. This chapter explains what the
error handler does when an error is signaled. Because the system's
error handler might not meet your programming needs, VAX LISP allows
you to create your own error handler. The procedure for creating an
error handler is also explained in this chapter.

4.1 ERROR HANDLER o The VAX LISP error handler function, UNIVERSAL-ERROR-HANDLER, performs
four sequential steps.

1. Checks the number of nested errors that have
three nested errors have occurred, the error
your program, displays a message, and returns
top-level read-eval-print loop; otherw.ise,
continues to the next step.

occurred. If
handler aborts

you to the
the handler

Q 2. Checks the type of error.

0

3. Displays an error messa~e that provides you with information
about the error.

4. Performs the appropriate operation for the type of error that
was signaled.

4.2 VAX LISP ERROR TYPES

Three types of errors can occur during the evaluation of a LISP
program:

• Fatal error

4-1

ERROR HANDLING

• Continuable error

• Warning

When an error is signaled, the VAX LISP system displays an error
message that provides you with the following information:

• The type of error that was signaled
continuable error, or warning

• The name of the function that caused the error

fatal error,

• The name of the function that was used to signal the error
ERROR, CERROR, or WARN

• A description of the error

• If a continuable error, an explanation of what will happen if
you continue the program's evaluation from the point at which
the error occurred

The format of an error message and the information a message provides
depend on the type of the error. The next three sections describe the
types of errors; each description includes the error type's message
format and the operation the error handler performs.

4.2.1 Fatal Errors

When a fatal error is signaled; the error handler displays a message
in the following format:

Fatal error in function function-name (signaled with ERROR).
Error description.

In the preceding format description, function-name is the name of the
function that caused the error, and ERROR is the name of the function
that was used to signal the error (see Table 4-1). The error
description is a message telling why the error occurred. The message
is generated from the format string and the arguments in the call to
the ERROR function; the message can be -displayed on more than one
line.

An example of a fatal error message follows:

Fatal error in function MAKE-ARRAY (signaled with ERROR).
Only vectors can have fill pointers.

0

0

0

0

After the message is displayed, the error handler checks the value of
the VAX LISP *ERROR-ACTION* variable. Its value can be either the Q
:EXIT or the :DEBUG keyword. The /ERROR_ACTION DCL qualifier you use

4-2

ERROR HANDLING

with the LISP command sets the value of the *ERROR-ACTION* variable

Owhen you invoke the LISP system (see Chapter 2). When the value is
:EXIT (you used the ERROR_ACTION=EXIT form of the qualifier), the
error handler causes the LISP system to exit on an error; when the

0

value is :DEBUG (you used the ERROR_ACTION=DEBUG form of the
qualifier), the default in an interactive session), the handler
invokes the VAX LISP debugger.

If the debugger is invoked, you can use it to locate the error in your
program. After you locate the error, you can correct it and restart
your program's evaluation.

NOTE

You cannot continue your program's evaluation from the
point at which a fatal error occurred.

The *ERROR-ACTION* variable is described in Part II and the debugger
is described in Chapter 5.

4.2.2 Continuable Errors

c=)when a continuable error is signaled, the error handler displays a
message in the following format: ·

Continuable error in function function-name (signaled with CERROR).
Error description.
If continued: Continue explanation.

In the preceding format description, function-name is the name of the

Ofunction that caused the error, and CERROR is the name of the function
that was used to signal the error (see Table 4-1). The error
description is a message telling why the error occurred. The message
is generated from the format string-and the arguments in the call to
the CERROR function; the message can be displayed on more than one
line. A line of text that explains what will happen if you continue
your program's evaluation follows the error description.

An example of a continuable error message is:

Continuable error in function ENTER-NAME (signaled with CERROR).
The value you specified is not a string.
If continued: You will be prompted for~ new value.

After the message is displayed, the error handler checks the value of
the VAX LISP *ERROR-ACTION* variable in the same way it checks the

Qvalue after a fatal error (see Section 3.2.1).

4-3

ERROR HANDLING

If the debugger is invoked, you can do one of the following:

• Continue from the error; the CERROR function performs theO
corrective action that is specified in the error message.

e Locate the error in your program. After you locate the error,
you can correct it and restart your program's evaluation.

The *ERROR-ACTION* variable is described in Part II and the debugger
is described in Chapter 5.

4.2.3 Warnings

A warning is an error condition that exists in your program, which may
or may not affect your program's evaluation. When this type of error Q
occurs, the system displays a message for the following reasons:

@ You might want to correct the error later.

• Your program might correct the error, but you should know that
the error occurred.

When a warning is signaled, the error handler displays a message
the following format:

Warning in function function-name (signaled with WARN).
Error description.

in

0
In the preceding format description, function-name is the name of the
function that caused the error, and WARN is the name of the function
that was used to signal the error (see Table 4-1). The error
description is a message telling why the error occurred. The message
is generated from the format string and the arguments in the call to
the WARN function; the message can be displayed on more than one line. Q
An example of a warning error message is:

Warning in function TE (signaled with WARN).
3 is not a symbol.

After the message is displayed, the error handler checks the value of
the *BREAK-ON-WARNINGS* variable in the same way it checks the value
ERROR-ACTION variable after a fatal error (see Section 3.2.1).

NOTE

If the value of the *BREAK-ON-WARNINGS* variable is T,
the debugger is invoked when a warning is- signaled.

4-4

0

0

0

0

ERROR HANDLING

If the debugger is invoked, you can use it to locate the error in your
program. After you locate the error, you can correct it, exit the
debugger, and then continue your program's evaluation from the point
where the error occurred.

The *BREAK-ON-WARNINGS* variable is described in COMMON LISP: The
Language. The *ERROR-ACTION* variable is described in Part II, and
the debugger is described in Chapter 5.

4.3 CREATING AN ERROR HANDLER

The VAX LISP *UNIVERSAL-ERROR-HANDLER* variable is bound to the
system's error handler. This binding provides you with a way to
create your own error handler if the system's handler does not meet
your programming needs. To create an error handler you must:

1. Define the error handler.

2. Bind the *UNIVERSAL-ERROR-HANDLER* variable to your defined
handler.

The *UNIVERSAL-ERROR-HANDLER* variable is described in Part II.

4.3.1 Defining an Error Handler

To define an error handler, you must define an error handler function.
This function must be able to accept two or more arguments since the
LISP system passes at least two arguments to the error handler each
time an error occurs in a program. Therefore, specify the arguments
in an error-handler definition in the following format:

O function-name error-signaling-function &REST args

0

The arguments provide the error
information:

handler with the following

• The name of the function that called the error-signaling
function

• The name of the error-signaling function

• The arguments that were passed to the error-signaling function

4-5

ERROR HANDLING

An example of an error handler definition is:

Lisp> (DEFUN CRITICAL-ERROR-HANDLER (FUNCTION-NAME O
ERROR-SIGNALING-FUNCTION
&REST ARGS)

(WHEN (OR (EQ ERROR-SIGNALING-FUNCTION 'ERROR)
(EQ ERROR-SIGNALING-FUNCTION 'CERROR))

(FLASH-ALARM-LIGHT))
(APPLY #'UNIVERSAL-ERROR-HANDLER

FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
ARGS))

CRITICAL-ERROR-HANDLER

The preceding error handler checks whether a fatal or continuable
error is signaled. If either type of error is signaled, the handler
calls the function FLASH-ALARM-LIGHT and then passes the error signal O information to the VAX LISP error handler.

When you define an error handler, the definition can include a call to
the UNIVERSAL-ERROR-HANDLER function. If the definition does not
include a call to this function and you want the handler to check the
value of the *ERROR-ACTION* or *BREAK-ON-WARNINGS* variable, you must
include a check of the variable in the handler's definition.

If you want an error handler to
described in Sections 4.2.1
UNIVERSAL-ERROR-HANDLER or
Descriptions of these functions

display error messages in the formats
to 4.2.3, include a call to either the

PRINT-SIGNALED-ERROR function.
are provided in Part II.

The next three sections describe the arguments an error handler must
be able to accept.

0

4.3.1.1 Function Name - The function-name argument is the name of the Q
function that calls an error-signaling function. This argument
enables the error handler to include the function's name in the error
message the handler displays.

4.3.1.2 Error-Signaling Function - The error-signaling-function
argument is the name of the error-signaling function that is called to
generate the error signal. Depending on which function is called, a
fatal error, continuable error, or warning is signaled.

The error handler uses the error-signaling-function argument to
determine the contents of the args argument.

Table 4-1 lists the functions that can be passed as the o
error-signaling-function argument and briefly describes each function.

4-6

ERROR HANDLING

Table 4-1: Error-Signaling Functions

OFunction Description

CERROR Function Signals a continuable error

ERROR Function Signals a fatal error

WARN Function Signals a warning

See COMMON LISP: The Language for detailed descriptions of the CERROR
and ERROR functions. See Part II for a description of the WARN
function.

04.3.1.3 Arguments - The args argument is the list of arguments passed
to the error-signaling function when the error-signaling function is
invoked. The contents of the list depends on which function is
invoked. The list can include one or two format strings and their
corresponding arguments. The format strings and arguments are passed
to the FORMAT function, which produces the correct error message.

04,3.2 Binding the *UNIVERSAL-ERROR-HANDLER* Variable

0

0

Once you define an error-handling function, you must bind the
UNIVERSAL-ERROR-HANDLER variable to it. The following exa~ple shows
how to bind the variable to a function:

Lisp> (LET ((*UNIVERSAL-ERROR-HANDLER*
#'CRITICAL-ERROR-HANDLER))

(PERFORM-CRITICAL-OPERATION))

The LET special form binds the *UNIVERSAL-ERROR-HANDLER* variable to
the CRITICAL-ERROR-HANDLER function that was defined in Section 4.3.1
and calls a function named PERFORM-CRITICAL-OPERATION. When the form
is exited because the evaluation finished or the THROW function is
called, the *UNIVERSAL-ERROR-HANDLER* variable is restoreq to its
previous value.

4-7

0

0

0

0

0

0

0

CHAPTER 5

DEBUGGING FACILITIES

Debugging is the process of locating and correcting programming
errors. When an error is signaled, the VAX LISP error handler
displays a message, which provides you with your initial debugging
information: the error type, the name of the function that caused the
error, the name of the function the LISP system used to signal the
error, and a description of the error.

Once you know the name of the function that caused an error, you can
use the VAX LISP debugging functions and macros to locate and correct
the programming error. Table 5-1 lists the debugging functions and

O
macros with a brief description of each. See Part II for more
detailed descriptions.

Table 5-1: Debugging Functions and Macros

Name

OAPROPOS

APROPOS-LIST

BREAK

DEBUG

DESCRIBE

0

Function
or Macro

Function

Function

Function

Function

Function

Description

Locates symbols whose print names
contain a specified string argument as a
substring and displays information about
each symbol it locates.

Locates symbols whose
contain a specified string
substring and returns a
symbols it locates.

Invokes the break loop.

print names
argument as a
list of the

Invokes the v~.x LISP debugger.

Displays detailed information about a
specified object.

5-1

,,

DEBUGGING FACILITIES

Table 5-1 (cont.)

Function
Name or Macro Description

DRIBBLE Function Sends the input and the output of an
interactive LISP session to a specified
file.

ED Function Invokes the VAX LISP Eqitor.

ROOM Function Displays information about the state of
internal storage and its management.

STEP Macro Invokes the stepper.

TIME Macro Displays timing information about the
evaluation of a specified form.

TRACE Macro Enables the tracer for functions and
macros.

UNTRACE Macro Disables the tracer for functions and
macro·s.

This chapter provides the following:

• A list of the functions and the macro that provide you with
debugging information

• Descriptions of two variables that control the output of the
debugger, the stepper, and the tracer facilities

•
•

A description of the VAX LISP control stack

Explanations of how to use the following debugging facilities:

Break loop A read-eval-print loop you can invoke while
the LISP system is evaluating a program.

Debugger A control stack -debugger you can use
interactively to inspect and modify the LISP system's
control stack frames.

Stepper A facility you can use interactively to step
through a form's evaluation.

Tracer A facility you can use to inspect a program's
evaluation.

5-2

0

0

0

0

0

0

DEBUGGING FACILITIES

Editor ~n extensible editor that enables you to edit
programs and data structures.

5.1 CONTROL VARIABLES

VAX LISP provides two variables that control
debugger, the stepper, and the
DEBUG-PRINT-LENGTH and *DEBUG-PRINT-LEVEL*.
analogous to the COMMON LISP variables
PRINT-LEVEL but are used only in the debugger.

DEBUG-PRINT-LENGTH

the output of the
tracer facilities:
These variables are

PRINT-LENGTH and

0 *DEBUG-PRINT-LEVEL*

Controls the number of displayed elements at
each level of a nested data object. The
variable's value must either be an integer or
NIL. The default value is NIL (no limit).

a Controls the number of displayed levels of
nested data object. The variable's value
must either be an integer or NIL. The
default value is NIL (no limit).

0 5.2 CONTROL STACK

The control stack is the part of LISP memory that stores calls to
functions, macros, and special forms. The stack consists of stack
frames. Each time you call a function, macro, or special form, the
VAX LISP system does the following:

1. Opens a stack frame.

0 2. Pushes the name of the function associated with the function,
macro, or special form that was called onto the stack frame.

3. Pushes the function's arguments onto the stack frame.

4. Closes the stack frame when all the function's arguments are
on the stack frame.

5. Evaluates the function.

,The LISP system can have several open stack frames at a time because

0

the arguments used by LISP functions are frequently LISP expressions.

Each control stack frame has a frame number, which is displayed as
part of the stack frame's output. Stack frame numbers are displayed
in the output of the debugger, the stepper, and the tracer.

5-3

DEBUGGING FACILITIES

There is always one active stack frame, and it can either be
significant or insignificant. Significant stack frames are those that Q
invoke documented and user-created functions. Insignificant stack
frames are those that invoke undocumented functions.

Debugger commands show only significant stack frames unless you
specify the ALL modifier with a debugger command (see Section
5.5.3.1). Significant stack frames store one of the following calls:

• A call to a function named by a symbol that is in the current
package

• A call to a function that is accessible in the current package
and is explicitly or implicitly called by another function
that is in the current package

See COMMON LISP: The Language for information on packages.

Many stack frames in the control stack store internal, undocumented
functions. These stack frames are insignificant to most users;
therefore, by default, the debugger does not display their
representation. However, if you are using the debugger and you want
to examine these stack frames, you can specify the ALL modifier with
debugger commands.

5.3 ACTIVE STACK FRAME

The active stack frame is a stack frame that stores a call to a
function the LISP system is evaluating. The system can evaluate a
function call in the active stack frame because the frame contains all
the function's argument values. Only one stack frame is active at a
time and an active stack frame can exist anywhere on the control
stack.

The active stack
it can have a

·frame represents
stack frame.

5.4 BREAK LOOP

frame can have a previous active stack frame and/or
next active stack frame. The previous active stack

the caller of the function in the current active

The break loop is a read-eval-print loop that you can invoke to debug
a program. You can invoke the break loop while a program is being
evaluated. If you do, the evaluation is interrupted and you are
placed in the loop.

5-4

0

0

0

0

0

0

0

0

(J

DEBUGGING FACILITIES

5.4.1 Invoking the Break Loop

You can invoke the break loop by calling the BREAK function.
ways of using the BREAK function to debug a program are:

The two

• Use the VAX LISP BIND-KEYBOARD-FUNCTION function to bind an
ASCII keyboard control character to the BREAK function. Then
use the control character to invoke the BREAK function
directly while your program is being evaluated (see Part II
for a description of the BIND-KEYBOARD-FUNCTION function)

• Put the BREAK function in specific places in your program.

In either case, the BREAK function displays a message
specified one in your form calling the BREAK function) and
read-eval-print loop. If you specified a message, the BREAK
displays the message in the following format:

Break in function function-name (signaled with BREAK).
description.

(if you
enters a
function

In the preceding format description, function-name represents the name
of the function the LISP system was evaluating when you entered the
break loop. BREAK is the name of the function that caused the LISP
system to invoke the break loop. The description is optional and can
be printed on more than one line. A description usually provides the
reason the break loop was invoked.

An example of a break loop message follows:

Break in function CHECK-INPUT (signaled with BREAK).
Values are too high.

After the message is displayed, a prompt
margin of your terminal:

Break>

5.4.2 Exiting the Break Loop

is displayed at the left

When you are ready to exit the break loop and continue your program's
evaluation, invoke the VAX LISP CONTINUE function.

Break> (CONTINUE)

The CONTINUE function causes the evaluation of your program to
continue from the point where the LISP system encountered the BREAK
function.

5-5

DEBUGGING FACILITIES

If you are in a nested break loop and you invoke the CONTINUE
function, you are placed in the previous break-loop level. A o
description of the CONTINUE function is provided in Part II.

5.4.3 Using the Break loop

Once you are in the break loop, you can check what your program is
doing by interacting with the LISP system as though you were in the
top-level loop. For example, suppose you define a variable named
FIRST and a function named COUNTER, which uses the variable *FIRST*.

Lisp> (DEFVAR *FIRST* 0)
FIRST
Lisp> (DEFUN COUNTER NIL

(IF(< *FIRST* 100)
(PROGN (INCF *FIRST*) (COUNTER))
FIRST))

COUNTER

If you bind the
interrupt the
For example:

BREAK function to a control character, you can
function's evaluation by typing the control character.

Lisp> (BIND-KEYBOARD-FUNCTION #\AB #'BREAK)
T
Lisp> (COUNTER)<RET>
<CTRL/B>
Break>

Once you are in the break loop, you can check the value of the
variable *FIRST*.

Break> *FIRST*
16
Break>

If you call the CONTINUE function, the evaluation of the function
COUNTER continues.

Break> (CONTINUE)

After you call the CONTINUE function, you can see that the evaluation
was continued by invoking the break loop again and rechecking the
value of the variable *FIRST*.

CTRL/B
Break> *FIRST*
93
Break>

5-6

0

0

0

DEBUGGING FACILITIES

Use the CONTINUE functi9n again to complete the function's evaluation.

0

0

0

0

0

Break> (CONTINUE)
100

Ch~nges that you make to global variables and global definitions while
you are in the break loop remain in effect after you exit the loop and
your program continues. For example, if you are in the break loop and
you find that the value of the variable named *FIRST* has an incorrect
value, you can change the variable's value. The change remains in
effect after you exit the break loop and continue your program's
evaluation.

5.4.4

NOTE

The forms you type while you are in the break loop are
evaluated in a null lexical environment, as though
they are evaluated at top level. Therefore, you
cannot examine the lexical variables of a program that
you interrupt with the break loop. To examine those
lexical variables, invoke the debugger (see Section
5.5). For information on lexical environments, see
COMMON LISP: The Language.

Break Loop Variables

The break loop uses a copy of the top-level-loop variables (plus (+),
hyphen (-), asterisk (*), slash (/), and so on) the same way the
top-level loop uses them (see COMMON LISP: The _Language). These
variables preserve the input expressions you specify and the output
values the VAX LISP system returns while you are in the break loop.

5.5 DEBUGGER

The VAX LISP debugger is a control stack debugger. You can use it
interactively to inspect and modify the LISP system's control stack
frames. The debugger has a pointer that points to the current stack
frame. The current stack frame is the last frame for which the
debugger displayed information. The debugger provides several
commands that:

• Display help

• Evaluate a form or reevaluate a function call a stack frame
stores

5-7

DEBUGGING FACILITIES

• Handle errors

• Move the pointer from one stack frame to another

• Inspect or modify the function call in a stack frame

• Display a summary of the control stack

The debugger reads its input from and prints its output to the stream
bound to the *DEBUG-IO* and the *TRACE-OUTPUT* variables.

NOTE

The stack frames the debugger displays are no longer
active.

0

Before you use the debugger, you should be familiar with the VAX
control stack. The control stack is described in Section 5.2.

LISP O

5.5.1 Invoking the Debugger

can The VAX LISP system invokes the debugger when errors occur. You
invoke the debugger by calling the VAX LISP DEBUG function.
example:

For Q
Lisp> (DEBUG)

When the debugger is invoked,
a message that identifies
prompt are displayed at the
following format:

Control Stack Debugger
Frame #5: (DEBUG)
Debug n>

a message that identifies the debugger,
the current stack frame, and the command

left margin of your terminal in the

The letter n in the prompt represents an integer, which indicates the
number of the nested command level you are in. The value of n
increases by one each time the command level increases. For example,
the top-level read-eval-print loop is level 0. If an error is invoked
from the top-level loop, the debugger displays the prompt Debug 1>.
If you make a mistake again causing an error while within the
debugger, that error causes the debugger to display the prompt
Debug 2>.

After the debugger is invoked, you can use the debugger commands
inspect and modify the contents of the system's control stack.

5-8

to

0

0

0

0

0

0

DEBUGGING FACILITIES

A description of the D~BUG function is provided in Part II.

5.5.2 Exiting the Debugger

To exit the debugger, use the QUIT debugger command. It causes the
debugger to return control to the previous command level.

Debug 2> QUIT
Debug 1>

If you specify the QUIT command when the debugger command level is 1
(indicated by the prompt Debug 1>), the command causes the debugger to
exit and returns you to the system's top level. For example:

Debug 1> QUIT
Lisp>

By default, the QUIT command displays a confirmation message before
the debugger exits if a continuable error causes the debugger to be
invoked. For example:

Debug 1> QUIT
Do you really want to return to the previous command level?

If you type YES, the debugger returns control to the previous
level.

command

Do you really want to return to the previous command level? YES
Lisp>

If you type NO, the debugger prompts you for another command.

Do you really want to return to the previous command level? NO
Debug 1>

You can prevent the debugger from displaying the confirmation message
by specifying the QUIT command with a value other than NIL. For
example:

Debug 1> QUIT T
Lisp>

. A description of the QUIT command is provided in Section 5.5.3.2.

0
5.5.3 Using Debugger Commands

The debugger commands let you inspect and modify the current control
stack frame and move to other stack frames. You must specify many of

5-9

DEBUGGING FACILITIES

the debugger commands with one or more arguments that qualify command
operations. These arguments are listed in Section 5.5.3.1. Q
You can abbreviate debugger commands to as few characters as you like,
as long as no ambiguity is in the abbreviation.

Enter a debugger command by typing the command name or abbreviation
and then pressing the RETURN key. For example:

Debug 1> BACKTRACE<RET>

If you press only the RETURN key, the debugger prompts you for another
command.

Table 5-2 provides a summary of the debugger commands.
descriptions of the commands are provided in Section 5.5.3.2.

Detailed

Table 5-2:

Command

BACKTRACE

BOTTOM

CONTINUE

DOWN

ERROR

EVALUATE

GOTO

HELP (or) ?

QUIT

REDO

RETURN

SEARCH

Debugger Commands

Description

Displays a backtrace of the control stack.

Moves the pointer to the first stack frame on the
control stack.

Enables you to correct a continuable error.

Moves the pointer down the control stack.

Redisplays the error message that was displayed
when the debugger was invoked.

Evaluates a specified form.

Moves the pointer to a specified stack frame.

Displays help text about the debugger commands.

Exits to the previous command level.

Invokes the function in the current stack frame.

Evaluates its arguments and causes
stack frame to return the same
evaluation returns.

Searches the control stack for
function.

5-10

a

the current
values the

specified

0

0

0

0

DEBUGGING FACILITIES

Table 5-2 (cont.)

Ocommand Description

SET

SHOW

STEP

TOP

OUP

WHERE

Sets the values of the components in the current
stack, frame.

Displays information stored in the current stack
frame.

Invokes the stepper for the function in the
current stack frame.

Moves the pointer to the last stack frame in the
control stack.

Moves the pointer up the control stack.

Redisplays the argument list and the function name
in the current stack frame.

5.5.3.1 Arguments - Some debugger
debugger commands accept optional

commands require an argument; other
arguments. An argument whose value
an argument whose value is a symbol
do not specify an argument that is
for the argument. For example:

O
is an integer is usually optional;
or form is required. If you
required, the debugger prompts you

Debug 1> RETURN<RET>
First Value:

The debugger does not prompt for arguments if you specify them in
command line.

the

OEnter an argument after the command it qualifies and then press
RETURN key. For example:

Debug 1> DOWN ALL<RET>

The types of arguments you can specify with debugger commands are:

e Debugger command

o Symbol

• Form

• Integer

Q • Function name

5-11

the

DEBUGGING FACILITIES

• Modifier

NOTE

Only parenthesized expressions
evaluate (that is, arguments
EVALUATE command) are evaluated.

and arguments
specified with

to
the

The preceding arguments are self-explanatory with the exception of the
integer and modifier arguments.

Integer arguments represent control stack frame numbers. Each stack
frame on the control stack has a frame number, which the debugger
displays as part of the stack frame's output. The debugger reassigns
these numbers each time it is invoked. You can specify a frame number
in a debugger command to refer to a specific stack frame. If you
refer to a frame number that is outside the current debugging session,
an error is signaled. If you refer to the stack frame number of a
frame that was established in another debugging session in a current
nested session, the command in which you specify the frame number
results in an erroneous or unpredictable result.

Table 5-3 provides a summary of the modifier arguments you can specify
with debugger commands.

Table 5-3: Debugger Command Modifiers

Modifier Command Modification

ALL Operates on both significant and insignificant
stack frames.

0

0

0

ARGUMENTS Operates on the arguments specified with the Q
function in the current stack frame.

CALL

DOWN

FUNCTION

HERE

NORMAL

QUICK

Operates on the call to the current stack frame.

Moves the pointer down the control stack.

Operates on the function object in the current
stack frame.

Operates on the current stack frame.

Displays the function name and the argument list
in the control stack frames.

Displays the function name in· the
frames.

5-12

control stack 0

0

0

0

0

Table 5-3 (cont.)

Modifier

TOP

UP

VERBOSE

DEBUGGING FACILITIES

Command Modification

Starts a backtrace at the top of the control
stack.

Moves the pointer up the control stack.

Displays the function name, _argument list, local
variable bindings, and special variable bindings
in the control stack frames.

5.5.3.2 Debugger Commands - The VAX LISP debugger provides commands
that you can use to move through and modify the system's control
stack.

HELP
?

Help Command

The HELP command displays help text about the debugger
commands. You can specify this command with one
argument, which is the name of the debugger command
about wh~ch you want help text. If you specify the
HELP command without an argument, the debugger displays
a list of the debugger·commands.

You can abbreviate this command by using a question
mark(?).

Evaluation Command

You can evaluate LI~P expressions while you are in the
debugger. If you want the LISP system to evalute a
parenthesized form, you can specify the form and then
press the RETURN key. If you want the system to
evaluate a symbol, you must use the EVALUATE command.
You can also evaluate expressions by entering the break
loop. For information on the break loop, see Section
5.4.

, EVALUATE The EVALUATE command explicitly evaluates a specified
form. You must specify the command with an argument
that is the form you want the LISP system to evaluate.
The system evaluates the form in the lexical
environment of the current stack frame.

0
5-13

CONTINUE

QUIT

REDO

RETURN

STEP

DEBUGGING FACILITIES

Error-Handling Commands

The debugger deals with errors that invoke the
debugger. Each of the following debugger commands
deals with errors in a different way.

The CONTINUE command causes the debugger to return NIL,
letting you return from a continuable error or from a
warning if the value of the *BREAK-ON-WARNINGS*
variable is T. This command is not the same as the
CONTINUE function. See Chapter 3 for a description of
error types.

The QUIT command lets you exit to the previous command
level. If the current level of the debugger is 1, the
command causes the debugger to exit to the LISP prompt
(Lisp>). You can specify this command with an optional
argument. If a continuable error invokes the debugger
and the argumen~ is NIL, the debugger displays a
confirmation message. If you respond to the message by
typing YES, the command returns control to the previous
command level. If the argument is not NIL, the
debugger does not display a message. The default value
for the optional argument is NIL.

The REDO command invokes the function in the current
stack frame, causing the LISP system to reevaluate the
function in that frame. This command is useful for
correcting errors that are not continuable, such as
unbound variables and undefined functions. To do so,
first bind the variables or define the function with
the SET command, then use the REDO command.

The RETURN command evaluates its arguments and causes
the debugger to force the current stack frame to return
the same values the evaluation returns. You must
specify the command with an argument that is a form.
When the command is executed, the form is evaluated.
When the evaluation is complete, the current stack
frame returns the same values that the evaluated form
returns.

The STEP command invokes the stepper for the function
that is in the current stack frame. When the stepper
is invoked, the LISP system reevaluates the function.
This command is useful if you want to repeat an error
to get information about the cause of the error.

5-14

0

0

0

0

0

0

BOTTOM

DOWN

0

OGOTO

SEARCH

0

TOP

0

DEBUGGING FACILITIES

Movement Commands

The movement commands move the debugger's pointer to
another stack frame. The debugger displays the new
stack frame's information.

The BOTTOM command moves the pointer
significant stack frame on the control
specify the ALL modifier with the BOTTOM
command moves the pointer to the first
frame on the control stack whether
significant or insignificant.

to the first
stack. If you

command, the
(oldest) stack
the frame is

The DOWN command moves the pointer toward the bottom of
the control stack, one frame at a time. You can
specify this command with optional arguments. One of
the optional arguments is the ALL modifier. If you
specify ALL, the command moves the pointer down the
significant and insignificant stack frames on the
control stack.

You can also specify an optional integer argument,
which indicates the number of stack frames down which
the command is to move the pointer.

The GOTO command moves the pointer to a specified stack
frame. You must specify this command with an integer
that specifies the number of the stack frame.

The SEARCH command searches the control stack for a
specified function name. You must specify this command
with two arguments. The first argument must be either
the UP or the DOWN modifier to specify the direction of
the command's search. The second argument must be the
name of the function for which the command is to
search.

You can also specify an optional integer argument.
This argument must follow the function name argument in
the command specification. The integer you specify
indicates the number of occurrences of the specified
function name that you want the command to skip.

The TOP command moves the pointer to the last (newest)
significant stack frame on the control stack. If you
specify the ALL modifier with the TOP command, the
command moves the pointer to the last stack frame on
the control stack whether the frame is significant or
insignificant.

5-15

UP

WHERE

ERROR

SET

SHOW

DEBUGGING FACILITIES

The UP command moves the pointer toward the top of the
control stack. You can specify this command witho
optional arguments. One of the optional arguments is
the ALL modifier. If you specify it, the command moves
the pointer up the significant and insignificant stack
frames on the control stack.

You can also specify an optional integer argument. It
indicates the number of stack frames up which the
command is to move the pointer.

The WHERE command redisplays the function name and
argument list in the current stack frame.

Inspection and Modification Commands

You can inspect and
function call before
call. To do this, use
commands.

change the information in a Q
the LISP system evaluates the

the inspection and modification

The ERROR command redisplays the error message that was
displayed for the error that invoked the debugger.

The SET command sets the values of the components in
the current stack frame. You must specify this command Q
with three arguments. The first argument must be
either the ARGUMENTS or the FUNCTION modifier. The
modifier determines what the command sets. The
following list describes what is set when you specify
each modifier:

e ARGUMENTS -- The value of an argument in the current
stack frame. Q

• FUNCTION -- The function object in the current stack
frame.

If you specify the ARGUMENTS modifier, the second
argument must be the symbol that names the argument to
be set, and the third argument must be a form that
evaluates to the new value. If you specify the
FUNCTION modifier, the second argument must be a form
that evaluates to a function or the name of a function.
The new function must take the same number of arguments
the old function takes.

The SHOW command displays information stored in the
current stack frame. You must specify this command
with the ARGUMENTS, CALL, FUNCTION; or HERE modifier.
The modifier determines what the command is to display.

5-16

0

0

0

BACKTRACE

0

0

0

DEBUGGING FACILITIES

The foll.owing list describes what the command displays
when you specify each modifier:

• ARGUMENTS -- A list of the arguments in the current
stack frame.

• CALL -- The function call that created the current
stack frame. The command displays the function call
so that its output is easy to read. The arguments
in the call are represented by their values.

• FUNCTION -- The function in the current stack frame.
The function can be either interpreted or compiled
with the COMPILE function. The function cannot be
displayed if it is a system function or if it is
loaded in a compiled file.

• HERE -- A description of the current stack frame.

Backtrace Command

The BACKTRACE command displays the argument list of
each stack frame in the control stack, starting from
the top of the stack. You can specify the command wi.th
modifiers to specify the style and extent of the
backtrace.

The modifiers you can specify are ALL, NORMAL, QUICK,
HERE, TOP, or VERBOSE. By default, the command uses
the NORMAL and the TOP modifiers. The following list
describes the style or extent the. BACKTRACE command
uses when you specify each modifier:

• ALL -- Displays significant and insignificant stack
frames.

• NORMAL -- Displays the function name and argument
list in each stack frame.

• QUICK -- Displays the function name in each stack
frame.

• HERE -- Starts the backtrace at the current stack
frame.

• TOP -- Starts the backtrace at the top of the
control stack.

• VERBOSE
list, and
frame.

Displays the function name, argument
local variable bindings in each stack

5-17

DEBUGGING FACILITIES

5.5.4 Using the DEBUG-CALL Function

The DEBUG-CALL function returns a list representing the call at the
current debug stack frame. This function is a debugging tool and
takes no arguments. The list returned by DEBUG-CALL can be used to
access the values passen to the function in the current stack frame.
If used outside the debugger, DEBUG-CALL returns NIL. The following
example shows how to use the function:

Lisp> (SETF THIS-STRING "abed")
"abed"
Lisp> (FUNCTION-Y THIS-STRING 4)
.... Error in function FUNCTION-Y
Frame #4 (FUNCTION-Y "abed" 4)
Debug 1> (SETF STRING (SECOND (DEBUG-CALL)))
"abed"
Debug 1> (EQ "abed" STRING)
NIL
Debug 1> (EQ THIS-STRING STRING)
T

In this case, the function in the current stack frame is FUNCTION-Y.
The call to (DEBUG-CALL) returns the list (FUNCTION-Y "abed" 4). The
form (SECOND (DEBUG-CALL)) evaluates "abed", the first argument to
FUNCTION-Y in the current stack frame. Note that the string returned
by the call (SECOND (DEBUG-CALL)) is the same string passed to the
function FUNCTION-Y. See the description of the TRACE macro for
another example of the use of the DEBUG-CALL function.

5.5.5 Sample Debugging Sessions

1. Lisp> (DEFUN FIRST-ELEMENT (X) (CAR X))
FIRST-ELEMENT
Lisp> (FIRST-ELEMENT 3)

Fatal error in function CAR (signaled with ERROR).
Argument must be a list: 3

Control Stack Debugger
Frame #11: (CAR 3)
Debug 1> DOWN
Frame #8: (BLOCK FIRST-ELEMENT (CAR X))
Debug 1> DOWN
Frame #5: (FIRST-ELEMENT 3)
Debug 1> SHOW HERE
It is a cons

0

0

0

0

Format: FIRST-ELEMENT x
-- Arguments
x : 3 0

5-18

0

0

0

0

0

DEBUGGING FACILITIES

Debug 1> SET
Type of SET operation: ARGUMENT
Argument Name: X
New Value: '(1 2 3)
Debug 1> WHERE
Frame #5: (FIRST-ELEMENT (1 2 3))
Debug 1> REDO
1
Lisp>

The argument in a stack frame is changed from an integer to a
list, and the function is reevaluated with the correct
argument.

2. Lisp> (DEFUN PLUS-Y (X) (+ X Y))
PLUS-Y
Lisp> (PLUS-Y 4)

Fatal error in function SYSTEM::%EVAL (signaled with ERROR).
Symbol has no value: Y

Control Stack Debugger
Frame #8: (BLOCK PLUS-Y (+ X Y))
Debug 1> DOWN
Frame #5: (PLUS-Y 4)
Debug 1> UP
Frame #8: (BLOCK PLUS-Y (+ X Y))
Debug 1> (SETF Y 1)
1
Debug 1> WHERE
Frame #8: (BLOCK PLUS-Y (+ X Y))
Debug 1> EVALUATE
Evaluate: Y
1
Debug 1> DOWN
Frame #5: (PLUS-Y 4)
Debug 1> REDO
5
Lisp>

The value of the variable Y is set with the SETF ~aero, and
the body of the function PLUS-Y is reevaluated.

3. Lisp> (DEFUN ONE-PLUS (X) (1+ X))
ONE-PLUS
Lisp> (ONE-PLUS '(1 2 3 4))

Fatal error in function 1+ (signaled with ERROR).
Argument must be a number: (1 2 3 4)

Control Stack Debugger
Frame #11: (1+ (1 2 3 4))

5-19

DEBUGGING FACILITIES

Debug 1> SET FUNCTION
Function: 'CAR
Debug 1> WHERE
Frame # 11 : (CAR (1 2 3 4))
Debug 1> DOWN
Frame #8: (BLOCK ONE-PLUS (1+ X))
Debug 1> UP
Frame #11: (CAR (1 2 3 4))
Debug 1> REDO
1
Lisp> (PPRINT-DEFI~ITION 'ONE-PLUS)
(DEFUN ONE-PLUS (X) (1+ X))
Lisp>

_This example shows that changing the contents of a stack
frame does not change the contents of other stack frames or
the function that was originally evaluated.

5.6 STEPPER

The stepper is a facility you can use
the evaluation of a form. You can
commands as it displays and evaluates
form.

to step interactively through
control the stepper with stepper
each subform of a specified

0

0

The stepper has a pointer that points to the current stack frame on O
the system's control stack. The current stack frame is the last frame
for which the stepper displayed information.

The stepper prints its command interaction to the stream bound to the
DEBUG-IO variable; it prints its output to the stream bound to the
TRACE-OUTPUT variable.

5.6.1 Invoking the Stepper

You can invoke the stepper by calling the STEP macro with a form as an
argument. The following example invokes the stepper with a call to a
function named FACTORIAL:

Lisp> (STEP (FACTORIAL 3))

When the stepper is invoked, it displays a line of text that includes
the first subform of the specified form and the stepper prompt. The
output is displayed at the left margin of your terminal in the
following format:

: #9: (FACTORIAL 3)
Step>

5-20

0

0

0

0

0

DEBUGGING FACILITIES

After the stepper is invoked, you can use the stepper commands to
control the operations the stepper performs and the way the stepper
displays output.

5.6.2 Exiting the Stepper

Usually, when you use the stepper, you press the RETURN key until the
stepper steps through the entire specified form. If you want to exit
from the stepper before it steps through a form, use the QUIT stepper
command. This command causes the stepper to return control to the
previous command level that was active when the stepper was invoked.

Step> QUIT
Lisp>

By default, the QUIT command displays a confirmation message before it
causes the stepper to exit. For example:

Step> QUIT
Do you really want to exit the stepper?

If you type YES, the stepper exits and returns control to the command
level that was active when the stepper was invoked.

Do you really want to exit the stepper? YES
Lisp>

If you type NO, the stepper prompts you for another command.

Do you really want to exit the stepper? NO
Step>

O You can prevent the stepper from displaying the confirmation message
by specifying the QUIT command with a value other than NIL. For
example:

0

Step> QUIT T
Lisp>_

A description of the QUIT command is provided in Section 5.6.4.2.

5.6.3 Stepper Output

Once you
displays
form:

invoke the
two types

stepper with a specified form, the stepper
of information as the LISP system evaluates the

5-21

DEBUGGING FACILITIES

• A description of each subform of the specified form

• A description of the return value from each subform

If the subform being evaluated is a symbol, the stepper
descriptions in a line of text that includes
information:

displays the
the following

G The nested level of the symbol

• The control stack frame number that indicates where the symbol
and its return value are stored

cg The symbol

G The return value

0

The stepper indicates the nested level of a symbol with indentation. Q
When the number of nested levels increases, the indentation increases.
After making the appropriate indentation, the stepper displays the
control stack frame number, the symbol, and the return value in the
following format:

#n: symbol=> return-value

If the subform being evaluated is not a symbol, the stepper displays Q
the descriptions in a line of text that includes the following
information:

e The nested level of the subform

e The control stack frame number that indicates where the
subform is stored

e The subform

The stepper indicates the nested level of a subform with indentation.
When the number of nested levels increases, the indentation increases.
After making the appropriate indentation, the stepper displays the
control stack frame number and the subform in the following format:

#n: (subform)

The description of a return value includes the following information:

e The nested level of the return value

• The control stack frame number that indicates where the return
value is stored

@ The return value

5-22

0

0

0

0

0

0

0

DEBUGGING FACILITIES

The stepper also indicates the nested level of each return value with
indentation. The indentation matches the indentation of the
corresponding call. After making the appropriate indentation, the
stepper displays the control stack frame number and the return value
in the following format:

#n => return-value

Suppose you define a function named FACTORIAL.

Lisp> (DEFUN FACTORIAL (N)
(IF(<= N 1) 1 (* N (FACTORIAL (- N 1)))))

FACTORIAL

The following example illustrates the format of the output the stepper
displays when you invoke it with the form (FACTORIAL 3):

Liap> (STEP (FACTORIAL 3))
#4: (FACTORIAL 3)
Step> STEP
: #10: (BLOCK FACTORIAL (IF(<• H 1) 1 (• H (FACTORIAL (- H 1)))))
Step> STEP
: : 814: (IF(<• H 1) 1 (• H (FACTORIAL (- H 1))))
Step> STEP
: : : #18 : (<• H 1)
Step> STEP
: : : : #22: Nm> 3
: : : #18 •> HIL
: : : #17: (• H (FACTORIAL (- H 1)))
Step> STEP
: : : : #21: H •> 3
: : : : #21: (FACTORIAL (- H 1))
Step> STEP
: : : : : #25: (- H 1)
Step> STEP ,
: : : : : : #29: H •> 3
: : : : : #25 •> 2
: : : : : #27: (BLOCK FACTORIAL (IF(<• H 1) 1 (• H (FACTORIAL (- H 1)))))
Step> OVER

::::#27•>2
: : : : #21·-> 2
: : : #17 .. > 6
: : #14 •> 6
: #10 •> 6
#4.•> 6
6

Note that the FACTORIAL function is a recursive function and, in the
prece,ding example, has three levels of recursion. The stepper
indicates the nested level of each subform with an indentation,
indicated with a colon followed by a space (:). The stepper
indicates the number of the stack frame in which a call is stored with
an integer. The integer is preceded with a number sign and followed
by a colon (#n:).

5-23

DEBUGGING FACILITIES

The nested level of each return value matches the indentation of the
corresponding subform. The stepper indicates the number of the
control stack frame onto which the LISP system pushes the value with
an integer that matches the stack frame number of the corresponding
subform. The integer is preceded by a number sign and followed by an
arrow (#n =>) that points to the return value.

5.6.4 Using Stepper Commands

Stepper commands let you use the stepper to step through the
evaluation of a LISP expression, form by form. You must specify some
commands with arguments. They provide the stepper with additional
information on how to execute the command.

You can abbreviate stepper commands to as few characters as you
as long as no ambiguity is in the abbreviation.

like,

Each time a command is executed, the stepper displays a return value
if the subform returns a value, displays the next subform, and prompts
you for another command. Enter a stepper command by typing the
command name or abbreviation and then pressing the RETURN key. For
example:

Step> STEP<RET>
: : : #22: (IF (<= N 1) 1 (* N (FACTORIAL (- N 1))))
Step>

If you press only the RETURN key, the LISP system evaluates the
subform the stepper displays. If the evaluation returns a value, the
stepper displays the value and the next subform and then prompts you
for another command.

Step><RET>
: : : #22: (IF (<= N 1) 1 (* N (FACTORIAL (- N 1))))
Step>

Table 5-4 provides a summary of the stepper commands. Descriptions of
the stepper commands are provided in Section 5.5.4.2.

Table 5-4: Stepper Commands

Command Description

BACKTRACE Displays a backtrace of a form's evaluation-.

DEBUG Invokes the debugger.

0

0

0

0

EVALUATE Evaluates a specified form with the
disabled.

stepper Q

5-24

O
Table 5-4 (cont.)

Command

FINISH

HELP (or)?

OVER

SHOW

QUIT

ORE TURN

STEP

UP

0

DEBUGGING FACILITIES

Description

Finishes the evaluation of the form that was
specified in the call to the STEP macro with the
stepper disabled.

Displays help text about the stepper commands.

Evaluates the subform in the current stack frame
with the stepper disabled.

Displays the subform in the current stack frame.

Exits the stepper.

Forces the current stack frame to return_a value.

Evaluates the subform in the current stack frame
with the stepper enabled.

Evaluates subforms with the stepper disabled until
the stepper gets back to a subform that contains
the subform in the current stack frame.

5.6.4.1 Arguments - Stepper command arguments modify the
the stepper commands perform. Some stepper commands
argument, and some commands accept optional arguments. The
you can specify with the stepper commands are:

operations
require an
arguments

0
• Integer

• Form

• Stepper command

NOTE

Only parenthesized expressions
evaluate (that is, arguments
EVALUATE command) are evaluated.

and arguments
specified with

to
the

Enter an argument after the command it modifies and press the RETURN
key. For example:

O Step> EVALUATE(<= N l)<RET>

5-25

DEBUGGING FACILITIES

If an argument is required and you omit it, the
for the argument. For example:

stepper prompts you Q
Step> EVALUATE<RET>
Evaluate: (<= N 1)

The stepper does not prompt for arguments if you specify them in the
command line.

5.6.4.2 Stepper Commands - The stepper provides commands that let you
control how it steps through a form's evaluation.

HELP
?

EVALUATE

DEBUG

Help Command

The HELP command displays help text about the stepper Q
commands. You can specify this command with one
argument, the name of the stepper command about which
you want help text. If you specify the HELP command
without an argument, the stepper displays a list of the
stepper commands.

You can abbreviate this command by using
mark (?).

Evaluation Command

a question

0

You can evaluate expressions while you are in the
stepper. If you want the LISP system to evaluate a
parenthesized form, you can specify the form and then
press the RETURN key. If you want the system to
evaluate a symbol, you must use the EVALUATE command. Q
The EVALUATE command causes the LISP system to
explicitly evaluate a specified form. You must specify
the command with an argument, which must be the form
you want the system to evaluate. The system evaluates
the form in the lexical environment of the form
currently being stepped.

Debugger Command

The DEBUG command invokes
stack frame that stores
When the debugger returns
stepper prompts you for a

5-26

the debugger at the control
the call to the current form.
control to the stepper, the
command.

0

O SHOW

QUIT

0

BACK TRACE

0

DEBUGGING FACILITIES

Display Command

The SHOW command displays the subform in the current
stack frame.

Exiting Command

The QUIT command causes the stepper to exit and return
control to the command level that was active when the
stepper was invoked. You can specify this command with
an optional argument. If you specify NIL, the stepper
displays a confirmation message before it causes the
stepper to exit. If you respond to the message by
typing YES, the stepper exits. If you specify a value
other than NIL, the stepper does not display a message.
The default value for the optional argument is NIL.

Backtrace Command

The BACKTRACE command lists the subforms of the form
being stepped through. You can specify the command
with an optional integer, which determines the number
of subforms that are to be listed. The stepper works
its way back the specified number of subforms and then
lists the subforms in the order in which they were
invoked. If you do not specify the argument, the
stepper lists all the subforms the LISP system is
evaluating.

Commands That Continue Evaluation of the Form Being Stepped Through

0
FINISH

0

Several stepper commands continue the evaluation of the
form being stepped through, each command continuing the
evaluation in a different way.

The FINISH command evaluates the form you specified in
the call to the STEP macro. You can specify the
command with an optional argument that is a form. When
the stepper executes the command, the LISP system
evaluates the form. If the evaluation returns a value
other than NIL, the stepper steps through the
evaluation of the form until it reaches the end of the
evaluation. If the evaluation returns NIL, the LISP
system disables the stepper and then evaluates the form
you specified in the call to the STEP macro. The
default value for the optional argument is NIL.

5-27

OVER

RETURN

STEP

----~-----·

DEBUGGING FACILITIES

The OVER command causes the LISP system to evaluate the
subform in the current stack frame with the stepper o
disabled.

The RETURN command causes the LISP system to evaluate
the RETURN command's argument and causes the stepper to
force the current stack frame to return the values
returned by the evaluation. This command must be
specified with an argument that must be a form. When
you execute the command, the LISP system evaluates the
form. When the evaluation is complete, the current
stack frame returns the values returned by the
evaluated form.

The STEP command causes the LISP system to evaluate the
subform in the current stack frame with the stepper
enabled. This command is equivalent to pressing the
RETURN key. 0

UP The UP command causes the LISP system to evaluate
subforms with the stepper disabled until control
returns to the subform that contains the subform in the
current stack frame. You can specify the command with
an optional integer argument (n). If you specify the
argument, the system evaluates subforms with the
stepper disabled until control returns to the subform
that contains the subform in the current stack frame n Q
levels deep. The default value of the argument is 1.

5.6.5 Using Stepper Variables

The stepper facility has
debugging tools when
STEP-ENVIRONMENT.

two special
in the

variables
stepper:

that are useful
STEP-FORM and O

5.6.5.1 *STEP-FORM* - The *STEP-FORM* variable is bound to the form
being evaluated while stepping. For example, while executing the form

(STEP (FUNCTION-Z ARGl ARG2))

the value of *STEP-FORM* is the list (FUNCTION-Z ARGl ARG2). When not
stepping, the value is undefined.

5.6.5.2 *STEP-ENVIRONMENT* - The *STEP-ENVIRONMENT* variable is bound
to the lexical environment in which *STEP-FORM~ is being evaluated. Q
By default in the stepper, the lexical environment is used if you use

5-28

0

0

0

0

0

DEBUGGING· FACILITIES

the EVALUATE command .. See COMMON LISP: The Language for a description
of dynamic and lexical environment variables.

Some COMMON LISP functions (for example, EVALHOOK, APPLYHOOK, and
MACROEXPAND) take an optional environment argument. The value bound
to the *STEP-ENVIRONMENT* variable can be passed as an environment to
these functions to allow evaluaton of forms in the context of the
stepped form.

5.6.5.3 Example Use of stepper Variables - The following example
illustrates the use of the *STEP-FORM* and *STEP-ENVIRONMENT* special
variables.

Lisp> (SETF X "Top level value of X")
"Top level value of X"
Lisp> (DEFUN FUNCTION-X (X)

(IF (< X 3) 1
(+ (FUNCTION-X (- X 1)) (FUNCTION-X (- X 2)))))

FUNCTION-X
Lisp> (STEP (FUNCTION-X 5))
#4: (FUNCTION-X 5).
Step> STEP
: #10: (BLOCK FUNCTION-X (IF(< X 3) 1

(+ (FUNCTION-X (- X 1))
(FUNCTION-X (- X 2)))))

Step> STEP
: : #14: (IF (< X 3) 1 (+ (FUNCTION-X (- X 1))

(FUNCTION-X (- X 2))))
Step> . : . . .
Step>

.
Step>
Step> . . : . .
Step> . .

Step>

Step>

STEP
#18: (< X 3)
STEP
: #22: X => 5
#18 => NIL
#17: (+ (FUNCTION-X (- X 1)) (FUNCTION-X (- X 2)))
STEP
: #21: (FUNCTION-X (- X 1))
STEP
: : #25: (- X 1)
STEP

: #29: X => 5
#25 => 4
#27: (BLOCK FUNCTION-X (IF(< X 3) 1

STEP

STEP
:

#31: (IF (< X 3) 1
(+ (FUNCTION-X

(FUNCTION-X

#35: (< x 3)

5-29

(+ (FUNCTION-X (- X 1))
(FUNCTION-X (- X 2)))))

(- x 1))
(- x 2))))

DEBUGGING FACILITIES

Step> STEP
: : : : : :
: : : . . :

: #39: x => 4 0
#35 => NIL . . . : : : : : . #34: (+ (FUNCTION-X (- X 1)) (FUNCTION-X (- X 2)))

Step> STEP
: : : : : : : #38: (FUNCTION-X (- X 1))
Step> EVAL *STEP-FORM*
(FUNCTION-X (- X 1))
Step> STEP
Step> STEP

#42: (- X 1)

: #46: X => 4
#42 => 3
#44: (BLOCK FUNCTION-X

(IF (< X 3) 1
(+ (FUNCTION-X (- X 1))

(FUNCTION-X (- X 2)))))
Step> EVAL *STEP-FORM*
(BLOCK FUNCTION-X

(IF(< X 3) 1 (+ (FUNCTION-X (- X 1)) (FUNCTION-X (- X 2)))))
Step> STEP
: : : : : : : : : : #48: (IF(< X 3) 1

Step> STEP
Step> STEP

.
Step> STEP :
Step> EVAL X
3
Step> (EVAL 'X)
"Top level value of X"
Step> EVAL *STEP-FORM*
(FUNCTION-X (- X 1))

#52: (<

. #56: .
#52 =>
#51: (+

#55:

(+ (FUNCTION-X (- X 1))
(FUNCTION-X (- X 2))))

x 3)

x => 3
NIL

(_FUNCTION-X (- X 1))
(FUNCTION-X (- X 2)))

(FUNCTION-X (- X 1))

Step> (EVALHOOK 'X NIL NIL NIL)
"Top level value of X"
Step> (EVALHOOK 'X NIL NIL *STEP-ENVIRONMENT*)
3
Step> (EVALHOOK (CADR *STEP-FORM*) NIL NIL *STEP-ENVIRONMENT*)
2
Step>
Step> . .

STEP
: . .
STEP

. .

. .
. :

#59: (- X 1)

. #63: x •> 3 .
#59 => 2
#61: (BLOCK FUNCTION-X

(IF (< x 3) 1

5-30

0

0

0

0

0

0

DEBUGGING FACILITIES

Step> FINISH
5

(+ (FUNCTION-X (- X 1))
(FUNCTION-X (- X 2)))))

This example shows that the *STEP-FORM* special variable is bound to
the form being evaluated while stepping. The example also shows that
the *STEP-ENVIRONMENT* special variable is bound to the lexical
environment in which the currently stepped form is being evaluated.

The ca.11 to EVALHOOK evaluates the form (- X 1) in the lexical
environment of the stepper, that is, with the local binding of x. A
call to EVALHOOK with a null environment specified shows that X's
value in the null lexical environment differs from that in the
stepper. The EVAL command uses the *STEP-ENVIRONMENT* environment;
the EVAL function uses the null lexical environment.

5.6.6 Sample Stepper Sessions

1. Lisp> (DEFUN FIRST-ELEMENT (X) (CAR X))
FIRST-ELEMENT
Lisp> (SETF MY-LIST '(FIRST SECOND THIRD))
(FIRST SECOND THIRD)

0
Lisp> (STEP (FIRST-ELEMENT MY-LIST))
: #9: (FIRST-ELEMENT MY-LIST)
Step> STEP

0
2.

0

: : #14: MY-LIST=> (FIRST SECOND THIRD)
: : #15: (BLOCK FIRST-ELEMENT (CAR X))
Step> STEP
: : : #22: (CAR X)
Step> EVALUATE (CAR X)
FIRST
Step> FINISH
FIRST
Lisp>

Lisp> (DEFUN PLUS-Y (X) (+ X Y))
PLUS-Y
Lisp> (SETF Y 5)
5
Lisp> (STEP (PLUS-Y 10))
: #9: (PLUS-Y 10)
Step> STEP
: : #15: (BLOCK PLUS-Y (+ X Y))
Step> EVALUATE
Evaluate: (+ X Y)
15
Step> STEP
: : : #22: (+ X Y)

5-31

DEBUGGING FACILITIES

Step> BACKTRACE
(PLUS-Y 10)
: (BLOCK PLUS-Y (+ X Y))
: : (+ X Y)
Step> SHOW
(+ X Y)
Step> OVER

: : #22 => 15
: : #15 => 15
: #9 => 15
15
Lisp>

3. Lisp> (DEFUN ADDITION (X) (+ X Y))
ADDITION
Lisp> (SETF Y 5)
5
Lisp> (STEP (ADDITION 4))
: #9: (ADDITION 4)
Step> STEP
: : #15: (BLOCK ADDITION(+ X Y))
Step> STEP
: : : #22: (+ X Y)
Step> BACKTRACE
(ADDITION 4)
: (BLOCK ADDITION(+ X Y))
: : (+ X Y)
Step> EVALUATE
Evaluate: (+ X Y)
9
Step> STEP

9

: #27: X => 4
: #26: Y => 5
#22 => 9

#15 => 9
#9 => 9

Lisp>

5.7 TRACER

The VAX LISP tracer is a macro you can use to inspect a program's
evaluation. The tracer informs you when a function or macro is called
during a program's evaluation by printing information about each call
and return value to the stream bound to the *TRACE-OUTPUT* variable.
To use the tracer, you must enable it for each function and macro you
want traced.

5-32

0

0

0

0

0

0

0

DEBUGGING FACILITIES

NOTE

You cannot trace special forms.

5.7.1 Enabling the Tracer

You can enable the tracer for one or more functions and/or macros by
specifying the function and macro names as arguments in a call to the
TRACE macro. For example:

Lisp> (TRACE FACTORIAL ADDITION COUNTER)
(FACTORIAL ADDITION COUNTER)

The TRACE macro returns a list of the functions and macros that are to
be traced.

If you try to trace a function or macro that is already
a warning message is displayed. To avoid this error,
macro without an argument to produce a list of the
macros for which tracing is enabled. For example:

Lisp> (TRACE)
(FACTORIAL ADDITION COUNTER)

being traced,
call the TRACE
functions and

QA description of the TRACE macro is provided in Chapter 8.

0

0

5.7.2 Disabling the Tracer

To disable the tracer for a function or macro, specify the name of the
function or macro in a call to the UNTRACE macro. It returns a list
of the functions and macros for which tracing has just been disabled.
For example:

Lisp> (UNTRACE FACTORIAL ADDITION COUNTER)
(FACTORIAL ADDITION COUNTER)

You can disable tracing for all the functions
enabled by calling the UNTRACE macro without
to disable tracing for a function that is not
message is displayed.

for which tracing is
an argument. If you try
being traced, a warning

The UNTRACE macro is described in COMMON LISP: The Language.

5-33

DEBUGGING FACILITIES

5. 7 .3 Tracer Output

Once you enable the tracer for a function or macro, the tracer
displays two types of information each time that function or macro is
called during a program's evaluation:

• A description of each call to the specified function or macro

• A description of each return value from the specified function
or macro

The description of a call to a function or macro consists of a line of
text that includes the following information:

• The nested level of the call

• The control stack frame number that indicates where the call
is stored

• The name and arguments of the function associated with the
function or macro that is called

The tracer indicates the nested level of
When the number of nested levels increases,
After making the appropriate indentation,
control stack frame number, the function
the following format:

#n: (function-name arguments)

a call with indentation.
the indentation increases.
the tracer displays the
name, and the arguments in

The tracer also displays a lin~ of text for the return value of each
evaluation. The line of text the tracer displays for each value
includes the following information:

• The nested level of the return value

• The control stack frame number that indicates where the return
value is stored

• The return value

The tracer indicates
indentation. The
corresponding call.
the control stack
format:

the nested level of . each return value with
indentation matches the indentation of the

After making the indentation, the tracer displays
frame number and the return value -in the following

#n => return-value

5-34

0

0

0

0

0

DEBUGGING FACILITIES

Suppose you define a function named FACTORIAL.

O Lisp> (DEFUN FACTORIAL (N)

0

(IF(<= N l) 1 (* N (FACTORIAL (- N 1)))))
FACTORIAL

The following example illustrates the format of the output the tracer
displays when the function FACTORIAL is called with the argument 3:

Lisp> (FACTORIAL 3)
#11: (FACTORIAL 3)
. #27: (FACTORIAL 2)
.. #43: (FACTORIAL 1)
.. #43 => 1
• #27 => 2
#11 => 6
6

The FACTORIAL function is a recursive one and, in the case of the
preceding example, has three levels of recursion. The tracer
indicates the nested level of each call with indentation. Each level
of indentation is indicated with a period followed by a space (.).
The tracer indicates the number of the stack frame in which a call is
stored with an integer. The integer is preceded with a number sign
and followed by a colon (#n:).

c=)The nested level of each return value.matches the indentation of the
corresponding call. The tracer indicates the number of the control
stack frame onto which the LISP system pushes the value with an
integer. This integer matches the stack frame number of the
corresponding call and is preceded with a number sign and followed by
an arrow (#n =>) that points to the return value.

Os.7.4 Tracer Options

0

You can modify the output of the tracer by specifying options in the
call to the TRACE macro. Each option consists of a keyword-value
pair. The format in which to specify keyword-value pairs for the
TRACE macro is:

(TRACE (function-name keyword-1 value-1
keyword-2 value-2 ...))

You can also specify options for a list of functions and/or macros.
The TRACE macro format in which to specify the same options for a list
of functions and macros is:

(TRACE ((name-1 name-2 .••) keyword-1 value-1
keyword-2 value-2
...))
5-35

DEBUGGING FACILITIES

NOTE

Forms the system evaluates just before or just after a
call to a function or macro for which tracing is
enabled are evaluated in a null lexical environment.
For information on lexical environments, see COMMON
LISP: The Language.

The keywords you can use to specify options are:

e :DEBUG-IF
:PRE-DEBUG-IF 1-- Invoke the debugger
:POST-DEBUG-IF

e :PRINT
:PRE-PRINT 1-- Add information to tracer output
:POST-PRINT

• :STEP-IF -- Invokes the stepper

• :SUPPRESS-IF -- Removes information from tracer output

• :DURING -- Determines when a function or macro is traced

5.7.4.1 Invoking the Debugger - You can cause the tracer to invoke
the debugger by specifying the :DEBUG-IF, :PRE-DEBUG-IF, or
:POST-DEBUG-IF keyword. These keywords must be specified with a form.
The LISP system evaluates the.form before, after, or before and after
each call to the function or macro being traced. If the form returns
a value other than NIL, the tracer invokes the debugger after each
evaluation.

5.7.4.2 Adding Information to Tracer Output - You can add information
to tracer output by specifying the :PRINT, :PRE-PRINT, or :POST-PRINT
keyword. You must specify these keywords with a list of forms. The
LISP system evaluates the list of forms and the tracer displays the
return values before, after, or before and .after each call to the
function or macro being traced. The tracer displays the values one
per line and indents them to match other tracer output. If the forms
to be evaluated cause an error, the debugger is invoked.

0

0

0

0

5.7.4.3 Invoking the Stepper - You can cause the tracer to invoke the
stepper by specifying the :STEP-IF keyword. You must specify this
keyword with a form. The LISP system evaluates the form before each Q
call to the function or macro being traced. If the form returns a
value other than NIL, the tracer invokes the stepper.

5-36

0

0

0

DEBUGGING FACILITIES

5. 7. 4. 4 Removing Infor.mation from Tracer Output - You can remove
information from tracer output by specifying the :SUPPRESS-IF keyword.
You must specify this keyword with a form. The LISP system evaluates
the form before each call to the function or macro being traced. If
the form returns a value other than NIL, the tracer does not display
the arguments and the return value of the function or macro being
traced.

5.7.4.5 Defining When a Function or Macro Is Traced - You can define
when a function or macro, for which tracing is enabled, is to be
traced by specifying the :DURING keyword. You must specify this
keyword with a function o·r macro name or a list of function and/or
macro names. The·functions and macros for which the tracer is enabled
are traced only when they are called (directly or indirectly) from
within one of the functions or macros whose names are specified with
the keyword.

5.7.5 Tracer Variables

You can use two special variables with the TRACE macro. These are
helpful debugging tools: *TRACE-CALL* and *TRACE-VALUES*. With these
variables and the preceding tracer options, you can control when to
debug or step depending on the argu~ents to a function or the return
values from a function.

5.7.5.1 *TRACE-CALL* - The *TRACE-CALL* variable is bound to the
function or macro call being tracea. ·The following example shows how
to use the variable:

0 . Lisp> (DEFUN FUNCTION-X (X)
(IF (< X 3) 1

0

(+ (FUNCTION-X (- X 1)) (FUNCTION-X (- X 2)))))
FUNCTION-X

Lisp>.(TRACE (FUNCTION-X
:PRE-DEBUG-IF(< (SECOND *TRACE-CALL*) 2)
:SUPPRESS-IF T))

(FUNCTION-X)
Lisp> (FUNCTION-X 5)
Control Stack Debugger
Frame #26: (DEBUG)
Debug 1> DOWN
Frame #21: (BLOCK FUNCTION-X

(IF(< X 3) 1
(+ (FUNCTION-X (- X 1))

(FUNCTION-X (- X 2)))))

5-37

DEBUGGING FACILITIES

Debug 1> DOWN
Frame #19: (FUNCTION-X 3)
Debug 1> (CADR (DEBUG-CALL))
3
Debug 1> CONTINUE
Control Stack Debugger
Frame #19: (DEBUG)
Debug 1> CONTINUE
5

• In this example, FUNCTION-Xis first defined.

• Then the TRACE macro is called for FUNCTION-X. TRACE is
specified to invoke the debugger if the first argument to
FUNCTION-X (the function call being traced) is less than 2.

0

Since the PRE-DEBUG-IF option is specified, the debugger is
invoked before the call to FUNCTION-X. As the :SUPPRESS-IF O
option has a value of T, calls to FUNCTION-X do not cause any
trace output.

• The DOWN command moves the pointer down the control stack.

•

•

The DEBUG-CALL function returns
current debug frame function call.
the list is 3. This accesses the
function in the current stack frame.

a list representing the
In this case, the CADR of
first argument to the

Finally the CONTINUE command continues the evaluation of
FUNCTION-X.

5.7.5.2 *TRACE-VALUES* - The *TRACE-VALUES* variable is bound to the

0

list of values returned by a traced function. Consequently, the
variable can be used only with the :POST- options to the TRACE macro. Q
Before being bound to the return values, the variable returns NIL.
The following example shows how to use the variable:

Lisp> (TRACE (FUNCTION-X
:POST-DEBUG-IF(> (FIRST *TRACE-VALUES*) 2)))

(FUNCTION-X)
Lisp> (FUNCTION-X $)
#4: (FUNCTION-X 5)
• #11: (FUNCTION-X 4)

#18: (FUNCTION-X 3)
.•• #25: (FUNCTION-X 2)

#25=> 1
••• #25: (FUNCTION-X 1)
• • • #25=> 1
• • #18=> 2

#18: (FUNCTION-X 2)
• • #18=> 1

5-38

0

0

0

0

5.8

DEBUGGING FACILITIES

Control Stack Debugger
Frame #12: (DEBUG)
Debug 1> BACKTRACE
-- Backtrace start -­
Frame #12: (DEBUG)
Frame #7: (BLOCK FUNCTION-X

(IF (< X 3) 1
(+ (FUNCTION-X (- X 1))

(FUNCTION-X (- X 2)))))
Frame #5: (FUNCTION-X 5)
Frame #1: (EVAL (FUNCTION-X 5))
-- Backtrace ends --
Frame #12: (DEBUG)
Debug 1> CONTINUE
• #11=> 3
. #11: (FUNCTION-X 3)
.• #18: (FUNCTION-X 2)
• • #18=> 1

#18: (FUNCTION-X 1)
. • #18=> 1
. #11=> 2
Control Stack Debugger
Frame #5: (DEBUG)
Debug 1> CONTINUE
#4=> 5

TRACE is called for FUNCTION-X (the same function as in the
previous example) to start the debugger if the value returned
exceeds 2. The value returned exceeds 2 twice once when it
returns 3 and at the end when it returns 5.

THE EDITOR

~e VAX LISP Editor is a powerful, extensible editor that enables you
co create and edit LISP programs. Once you have located an error and
you know which function in your program is causing the error, you can
use the Editor to correct the error. Use the ED function to invoke
the Editor. For a complete description of the ED function, the VAX
LISP Editor, and instructions on how to use the Editor, see the VAX
LISP Editor Manual. ·

0
5-39 i

0

0

0

0

0

CHAPTER 6

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

Pretty printing clarifies the meanings of LISP objects by modifying
their printed representations. It inserts indentation and line breaks
at appropriate places, making pretty-printed output easier to read
than. output produced with standard print functions. Pretty printing
is an alternative to standard printing for all LISP objects, but is
particularly useful for printing LISP code, complex data lists, and
arrays.*

When pretty printing is enabled, any output function that prints
output can potentially perform pretty printing. The following example
contrasts the standard and pretty-printed treatments of a COND
structure:

Lisp> (SETF T-QUESTION '(COND ((EQUAL TERMINAL
'VT240) START) (T (PR~N1 '(WHAT TERMINAL TYPE ARE YOU
USING?)))))
(COND ((EQUAL TERMINAL (QUOTE VT240)) START) (T (PRIN1
(QUOTE (WHAT TERMINAL TYPE ARE YOU USING?)))))
Lisp> (PPRINT T-QUESTION)
(COND ((EQUAL TERMINAL 'VT240) START)

{T (PRIN1 '(WHAT TERMINAL TYPE ARE YOU USING?))))

The first version (produced by the standard read-eval-print loop)
breaks the line at an awkward place and provides no indentation. Only
orie line is being printed. The line is either wrapped or truncated,
depending on the operating system (VMS or ULTRIX-32) and the setting
of the terminal. The pretty-printed (PPRINT) version is more readable
because it starts a new line at the beginning of a nested list,
indenting the list to line up with the struct~re nested to the
equivalent level in the first line.

0

0

0

0

*-VAX LISP pretty printing and the extensions to FORMAT are based on a
program described in the paper PP: A Lisp Pretty Printing System,
A.I. Memo No. 816, December, 1984. The paper and the program were
written by Richard C. Waters, Ph.D., of the MIT Artificial Q
Intelligence Laboratory.

6-1

0

0

0

0

0

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

This chapter describes four ways to print LISP objects:

• Section 6.1 tells how to pretty-print objects.

• Section 6.2 tells how to control the format of pretty-printed
objects using print control variables.

• Section 6.3 tells how to use the VAX LISP FORMAT directives
that support pretty-printing.

• Sections 6.4 through 6.9 tell how you can extend the VAX LISP
print functions to handle specific structures and types of
structures by defining new print functions.

6.1 PRETTY PRINTING WITH DE FAUL TS

Three print functions let you pretty-print without explicitly using
print control variables:

• PPRINT formats an object and prints it to a stream.

• PPRINT-DEFINITION formats the function object of a symbol and
prints it to a stream.

• PPRINT-PLIST formats the property list of a symbol and prints
it to a stream.

Use PPRINT when you want to let the system decide how best to format
an object. PPRINT prints whatever object is given as its argument.
The COND structure at the beginning of this chapter is an example of
the output format specified for lists starting with a particular
symbol.

' You can use PPRINT~DEFINITION to print the definition of a LISP
function. Supply the function name as the argument, as follows:

Lisp> (DEFUN BELONGS (THIS PILE) (COND ((NULL PILE) NIL) ((EQUAL
THIS (CAR PILE)) PILE) (T (BELONGS THIS (CDR PILE)))))
BELONGS
Lisp> (PPRINT-DEFINITION 'BELONGS)
(DEFUN BELONGS (THIS PILE)

(COND ((NULL PILE) NIL)
((EQUAL THIS (CAR PILE)) PILE)
(T (BELONGS THIS (CDR PILE)))))

If the object to be printed is the property list of a symbol, use
PPRINT-PLIST, as shown in the following example:

Lisp> (SETF (GET 'PLACES 'CITIES) '(AUGUSTA SACRAMENTO))
(AUGUSTA SACRAMENTO)

6-2

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

Lisp> (SETF (GET ~PLACES 'STATES) '(MAINE CALIFORNIA))
(MAINE CALIFORNIA)
Lisp> (PPRINT-PLIST 'PLACES)
(STATES (MAINE CALIFORNIA)
CITIES (AUGUSTA SACRAMENTO))

PPRINT-PLIST prints only indicator-value pairs for which the indicator
is accessible in the current package. PPRINT-PLIST emphasizes the
relationships between the indicator-value pairs.

6.2 HOW TO PRETTY-PRINT USING CONTROL VARIABLES ,

VAX LISP supports the global print control variables included in
COMMON LISP. In addition, VAX LISP provides three variables that
affect only pretty-printed output:

e *PRINT-RIGHT-MARGIN*

e *PRINT-MISER-WIDTH*

e *PRINT-LINES*

By changing the values of these variables, you
pretty-printed output to suit a variety of situations.

can adjust

You can also specify values for these three variables in calls to the
WRITE and WRITE-TO-STRING functions. These functions have been
extended to accept the following keyword arguments:

:RIGHT-MARGIN
:MISER-WIDTH
:LINES

If you specify any of these arguments, the corresponding special
variable is bound to the value you supply with the argument before any
output is produced.

6.2.1 Explicitly Enabling Pretty Printing

When the COMMON LISP variable *PRINT-PRETTY* is non-NIL, it enables
. pretty printing. If you set *PRINT-PRETTY* to T, you can pretty print

by calling any print function. The LISP read-eval-print loop will
also pretty-print when *PRINT-PRETTY* is non-NIL.

The following example shows the effect of a PRINl function call when
pretty printing is enabled:

6-3

0

0

0

0

0

0

0

0

0

0

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

Lisp> (SETF *PRINT-PRETTY* T)
T
Lisp> (PRINl '((TIGER TIGER BURNING BRIGHT) (IN THE FORESTS OF
THE NIGHT) (WHAT IMMORTAL HAND OR EYE) (COULD FRAME THY FEARFUL
SYMMETRY)))
((TIGER TIGER BURNING BRIGHT)

(IN THE FORESTS OF THE NIGHT)
(WHAT IMMORTAL HAND OR EYE)
(COULD FRAME THY FEARFUL SYMMETRY))

You can also enable pretty printing by specifying a non-NIL value for
the :PRETTY keyword in functions such as WRITE and WRITE-TO-STRING.

6.2.2 Limiting Output by Lines

Pretty printing lets you abbreviate output by controlling the number
of lines printed. With the variable *PRINT-LINES* set to any integer
value, the print function you use stops after printing the specified
number of lines. The output stream replaces omitted output with the
characters" ... ". Abbreviation by number of lines occurs only when
pretty printing is enabled. See Section 6.7 for more details on
abbreviating output.

The following example shows pretty-printed output with *PRINT-LINES*
set to 2.

6.2.3

Lisp> (SETF *PRINT-LINES* 2)
2
Lisp> (SETF *PRINT-PRETTY* T)
T
Lisp> (PRINT '((IN WHAT DISTANT DEEPS OR SKIES) (BURNT THE FIRE
OF THINE EYES) (ON WHAT WINGS DARE HE ASPIRE) (WHAT THE HAND
DARE SEIZE THE FIRE)))
((IN WHAT DISTANT DEEPS OR SKIES)

(BURNT THE FIRE OF THINE E ...

Controlling Margins

The *PRINT-RIGHT-MARGIN* vari;able lets you adjust the width of
pretty-printed output. The value should be an integer; it specifies
the exclusive upper limit on column numbers. With the left margin at
0, *PRINT-RIGHT-MARGIN* specifies the number of columns in which you
can print. The default value, NIL, causes the print functions to
query the output stream for the right margin value. The default
varies, but is always appropriate to the output device.

Output may exceed the right margin if the printer· encounters a long
symbol name or string. The left margin is normally 0, but you can

6-4

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

change it by using logical blocks with the FORMAT function to indent Q
(see Section 6.3).

6.2.4 Conserving Space with Miser Mode

Miser mode can help you avoid running out of horizontal space when you
print complicated structures. Pretty printing adds line breaks and
indentation to output to indicate levels of nesting, so that deeply
nested structures often use up much of the line width. Miser mode
conserves line width by minimizing indentation and inserting new lines
where possible. You can use this feature by setting the variable
PRINT-MISER-WIDTH to an integer value two or three times the length
of the longest symbol in the output (usually a value between 20 and 40
is appropriate).

The system subtracts the value of *PRINT-MISER-WIDTH* from the right
margin of the output stream to determine the column at which miser
mode takes effect. In other words, miser mode becomes effective when
the total line width available for printing after indentation is less
than the value of *PRINT-MISER-WIDTH*. You can set
PRINT-MISER-WIDTH to NIL to disable miser mode. See Section 6.8 for
more details.

The default value of *PRINT-MISER-WIDTH* is 40.

6.3 EXTENSIONS TO THE FORMAT FUNCTION

VAX LISP provides eight
specified in COMMON LISP.

FORMAT directives in addition to those
The added directives allow you to specify:

• Logical blocks, which are groupings of related output tokens

• Multiline mode new lines, which result in new lines if output
cannot fit on one line

• Indentation, which aids in indenting portions of a form

Table 6-1 lists and briefly describes the FORMAT directives that VAX
LISP provides. This section provides a guide to their use. The
section presupposes ·a thorough knowledge of the LISP FORMAT function.

· See COMMON LISP: The Language for a full description of FORMAT.

Use the FORMAT function_as follows:

FORMAT destination control-string &REST arguments

This function formats the arguments according
specify with directives in the control string.

6-5

to the format you
destination specifies

0

0

0

0

0

0

0

0

0

-~ ------~- --- - -- ----------------- .. --- -- . ·-

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

the output stream. The arguments identify the objects to be opefated
on by the control string. The sections that follow describe the
application of these directives and the effects of the colon and
at-sign modifiers on them.

Table 6-1: Format Directives Provided by VAX LISP

Directive Effect

- !

-n/FILL/

-n/LINEAR/

Prints the corresponding argument under direction of
the current print variable values.

Begins a logical block. Depending on modifiers, this
directive causes FORMAT to print one or more of the
arguments following the control string.

Ends a logical block.

Specifies a multiline mode new line. This directive is
effective only in a logical block.

Sets indentation ton columns after the logical block
or after the prefix. This directive is effective only
in a logical block.

Prints the elements of a list with as many elements as
possible on each line. If n is 1, FORMAT encloses the
printed list in parentheses. This directive is
effective only in a logical block.

If the elements of the list to be printed cannot be
printed on a single line, this directive prints each
element on a separate line. If n is 1, FORMAT encloses
the printed list in parentheses. This directive is
effective only in a logical block.

-n,m/TABULAR/ Prints the list in tabular form. If n is 1, FORMAT
encloses the list in parentheses; m specifies the
column spacing. This directive is effective only in a
logical block.

These FORMAT directives provide the sole means of performing pretty
printing in VAX LISP. All functions that explicitly perform pretty
printing (for example, PPRINT and PPRINT-DEFINITION) do so by using
these directives. Objects printed with FORMAT are printed normally
unless pretty printing is enabled. Pretty printing is enabled when
both the following conditions exist:

6-6

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

1. A logical block is started.

2. *PRINT-PRETTY* is non-NIL, or the colon modifier is specified
in the logical block directive (-:!).

Nothing prevents you from starting a logical block when *PRINT-PRETTY*
is NIL. However, any conditional new lines or indentation specified
within the logical block will be ignored. This feature results in
normal-looking output, as opposed to pretty-printed output. By
allowing this flexibility, FORMAT lets you use one control string to
format data, and the data is either printed normally or
pretty-printed, according to the value of *PRINT-PRETTY*.

6.3.1 Using the WRITE FORMAT Directive

Use the -w FORMAT directive
the current values of the
-w can be any LISP object.
of print control variables.

to print an element when you want to use
print control variables. The argument for
In contrast, -A and -s specify the values

You can use up to four prefix parameters with -w to pad the printed
object:

-mincol,colinc,minpad,padcharw

For an explanation of these parameters, see the description under
"FORMAT Directives Provided with VAX LISP" in Part II of this manual.

The colon modifier (-:W) binds the following print control variables
for the duration of the WRITE: *PRINT-ESCAPE* to T,_ *PRINT-PRETTY* to
T, *PRINT-LENGTH* to NIL, *PRINT-LEVEL* to NIL, and *PRINT-LINES* to
NIL. The following example contrasts the effects of using-wand -:w.

Lisp> (SETF *PRINT-PRETTY* NIL)
NIL
Lisp> (SETF *PRINT-ESCAPE* NIL)
NIL
Lisp> (SETF *PRINT-LENGTH* 2)
2
Lisp> (SETF COLORS '(("Yellow" "Purple" "Orange" "Green")
"Pink" "Beige" "Buff") ("Peach" "Violet" "Chartreuse")))

Lisp> (FORMAT T .. -w" COLORS)
((Yellow Purple •..) (Aqua Pink •.•) •.•)
NIL
Lisp> (FORMAT T .. -:w" COLORS)
(("Yellow" "Purple" "Orange" "Green")

("Aqua" "Pink" "Beige" "Buff")
("Peach" "Violet" "Chartreuse"))

6-7

("Aqua"

0

0

0

0

CJ

0

0

0

c.

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

The first FORMAT call truncates the first two sublists to two colors
and truncates the outer list to two sublists. This truncation occurs
because *PRINT-LENGTH* is 2. The first FORMAT call omits quotation
marks because *PRINT-ESCAPE* is NIL. The second FORMAT call produces
the full list of colors and includes quotation marks, because it
implicitly sets *PRINT-LENGTH* to NIL and *PRINT-ESCAPE* to T. The
second FORMAT call also indents the lists because it implicitly sets
PRINT-PRETTY to T.

6.3.2 Controlling the Arrangement of Output

Two concepts support the dynamic arrangement of output for pretty
printing: logical blocks and conditional new lines. Logical block
directives divide the total output into hierarchical groupings, which
are referred to as logical blocks or subblocks. The goal of FORMAT is
to print an entire logical block (including all its subblocks) on one
line. If pretty printing is enabled, the logical block is printed on
one line only if the logical block fits between the current left and
right margins. Printing all the output on one line is referred to as
single-line mode printing.

The output for a logical block may not fit on one line when pretty
printing. In this case, the block must be subdivided into sections at
points where it may be split into multiple lines. Conditional new
line directives specify these points. Multiline mode printing is the
name given to the condition where a logical block must occupy multiple
lines.

When pretty printing is enabled, FORMAT buffers the contents of a
logical block until it can decide whether to use single-line mode or
multiline mode printing.

A third mode, miser mode, is described briefly in Section 6.2.4 and in
detail in Section 6.8.

Use the-! and - directives to specify a logical block in the form:

- ! block-.

where block can include any FORMAT directives. A logical block takes
one argument from the FORMAT argument list. If that argument is a
list, any directives within the logical block that take arguments take
them from that list, as shown in the following example:

Lisp> (SETF *PRINT-RIGHT-MARGIN* 40)
40
Lisp> (SETF *PRINT-PRETTY* T)
T

6-8

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

Lisp> (FORMAT T "- .! -w- . " ' ((STARS (BETELGEUSE
DENEB SIRIUS)) (PLANETS (MERCURY VENUS EARTH
MARS JUPITER SATURN NEPTUNE PLUTO))))
(STARS (BETELGEUSE DENEB SIRIUS))
(PLANETS (MERCURY VENUS EARTH MARS

JUPITER SATURN URANUS NEPTUNE
PLUTO))

The logical block takes the entire list as its argument. The -w
directive within the logical block causes FORMAT to pretty-print the
list because *PRINT-PRETTY* is set to T.

If the argument is not a list, the logical block is effectively
replaced by the -w directive.

You can alter the directive to start a logical block (-!) by adding
two modifiers. When the directive includes a colon (-:!), the
directive sets *PRINT-PRETTY* and *PRINT-ESCAPE* to T and
PRINT-LENGTH, *PRINT-LEVEL*, and *PRINT-LINE$* to NIL for all the
printing controlled by the logical block.

When the-! directive includes an at-sign (-@!), the directives
within the logical block take successive arguments from the FORMAT
argument list. The logical block uses up all the arguments, not just
a single list argument. Therefore, no directives that take arguments
from the argument list can appear after a logical block modified by an
at-sign in the logical block directive (see the last example in this
section). You can use the -A directive inside a logical block to
check whether the logical block arguments have been reduced to a
non-NIL atom. See Section 6.9 for information on handling improperly
formed argument lists.

The output associated with any FORMAT directive is subject
printing when the directive occurs within a logical
PRINT-PRETTY is non-NIL.

to pretty
block and

A logical block defines an indentation level and can define a prefix
and a suffix. By default, when pretty printing is enabled, the
indentation level is the position of the first character in the
logical block. Each line following the first line in the logical
block is printed preserving indentation and per-line prefixes, so that
the first character in the line normally lines up with the first
character in the block following the prefix. However, no default
prefix or suffix is associated with a logical block.

You can create nested logical blocks within a logical block, using the
-!block-. directive. For example:

6-9

()

0

0

0

0

0

0

0

0

- ---- ------ - --·· - ·--------- ·--·-· ·---

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

Lisp> (SETF *PRINT-RIGHT-MARGIN* 70)
70
Lisp> (SETF *PRINT-PRETTY* T)
T
Lisp> (FORMAT T ""' !Stars: "'!"'S "'S"'. Planets: "'!"'S "'S"' .- ."

'((BETELGEUSE DENEB) (MARS JUPITER)))
Stars: BETELGEUSE DENEB Planets: MARS JUPITER

In this example, two logical blocks are created within
logical block. Each logical block uses the next
printing:

the principal
argument for

• The enclosing logical block uses the elements of the principal
list ((BETELGEUSE DENEB) (MARS JUPITER)) as its arguments.

• The first inner logical block uses the elements of the list
(BETELGEUSE DENEB) as its arguments.

• The second inner logical block uses the elements of the list
(MARS JUPITER) as its arguments.

Lisp> (FORMAT T .. - : !Stars: ... !"'S "'s"'. Planets: - !"'S "'s"' II

'((BETELGEUSE DENEB) (MARS JUPITER)))
Stars: BETELGEUSE DENEB Planets: MARS JUPITER

In this example, the
printing implicitly,
example.

colon in
producing

the
the same

directive enables pretty
output as the previous

Lisp> (SETF *PRINT-PRETTY* T)
T
Lisp> (FORMAT T ""'@ ! "'S "'%"' S - %"' S "'%"' S"' • "

'(BETELGEUSE DENEB SIRIUS) 'POLARIS 'VEGA 'ALGOL
'ALDEBERAN)

(BETELGEUSE DENEB SIRIUS)
POLARIS
VEGA
ALGOL

In this example, the at-sign causes the logical block to use all
following arguments. unneeded arguments are used up by the logical
block but not printed. The first "'s applies to the first argument
(the list (BETELGEUSE DENEB SIRIUS)). The rema1n1ng three "'s
directives apply to POLARIS, VEGA, and ALGOL. ALDEBERAN goes
unprinted, because there is no corresponding directive.

Lisp> (FORMAT T ""'@!Stars: "'!"'S -s-. Planets: "'!"'S "'s"' .- ."
'(BETELGEUSE DENEB) '(MARS JUPITER))

Stars: BETELGEUSE DENEB Planets: MARS JUPITER

In this example the at-sign in the outermost logical block
("'@!) directs the logical block to use all the arguments.

6-10

directive
The first

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

inner logical block uses the elements of the list (BETELGEUSE DENEB);
the second inner logisal block uses the elements of the list (MARS
JUPITER).

6.3.3 Controlling Where New Lines Begin

Five FORMAT directives let you specify
start according to the demands of
delimits a section in a logical block.

places where
the situation.

new lines can
Each directive

• The-% directive produces an unconditional new line. When
used within a logical block, the directive preserves
indentation and per-line prefixes.

•

•

•

•

The -& directive produces a fresh line. When
logical block, the directive preserves
per-line prefixes.

used within a
indentation and

The - directive produces a multiline mode new line when used
within a logical block.

The -:_ directive produces an if-needed line when used new
within a logical block.

The-@_ directive produces a miser-mode new line when used
within a logical block.

You can specify unconditional new lines(-%) and fresh lines (-&) if
you know in advance how the text should be laid out. If a new line is
produced by one of these directives when the FO.RMAT function is
printing a logical block, FORMAT prints the logical block in the
multiline mode, preserving indentation and per-line prefixes.

0

0

0

The -& directive specifies a fresh line, whether or not pretty Q
printing is enabled. If the -& directive occurs inside a logical
block when pretty printing is enabled and any output is on the line
other than prefixes and indentation, the FORMAT call starts a fresh
line, preserving indentation and per-line prefixes. The following
examples show the use of the-% and -& directives:

6-11

0

0

0

0

0

0

-------- ----------

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

Lisp> (FORMAT T "Stars-:l;-@;_%_S -%-s -%-s-."
'(BETELGEUSE DENEB SIRIUS))

Stars;

NIL

BETELGEUSE
DENEB
SIRIUS

Lisp> (FORMAT T "Stars-:l;-@;_&_S -&-s -&-s-."
'(BETELGEUSE DENEB SIRIUS))

Stars; BETELGEUSE
DENEB
SIRIUS

The first FORMAT call starts a new line after the prefix";",
the -% directive starts a new line wherever the directive
Replacing the-% directive with the -& directive changes the
because the fresh line is not needed after the prefix.

because
occurs.
output,

The remaining three
are conditional.
length abbreviation
enabled.

new line directives offer flexibility because they
However, they have no effect on output (except
-- see Section 6.7.1) when pretty printing is not

The - directive (multiline mode new line) starts a new line if the
output for the enclosing logical block is too long to fit on one line
or if any other directive in the logical block causes a new line.
When the output is too long, FORMAT uses multiline mode, and every -­
directive in a logical block starts a new line. The - directive
(if-needed new line) produces a new line if it is needed: if the
following section of output is too long to fit on the current line.
The -@_ directive (miser-mode.new line) produces a new line if pretty
printing is enabled with miser mode in effect (see Section 6.8 for
details). The FORMAT function ignores the three conditional new line
directives when they occur outside a logical block.

The following example shows how you can specify a multiline mode new
line and an if-needed new line:

Lisp> (SETF *PRINT-RIGHT-MARGIN* 16)
16
Lisp> (FORMAT T .. - : 1-s - _-s - :_-s - _-s-."

'(BETELGEUSE ALDEBERAN MERCURY JUPITER))
BETELGEUSE
ALDEBERAN
MERCURY
JUPITER

This FORMAT function produces output in the multiline mode, because
the output will not fit on one line. The multiline mode new line
directives(-_) produce a new line for each element. The
directive directs FORMAT to start a new line bef-0re MERCURY if needed
(and a new line is needed).

6-12

PRETT)' PRINTING AND USING EX.TENSIONS TO FORMAT

You can produce printed output that fills up the space available in
each line by using the at-sign(@) modifier with the directive that Q
ends the logical block (-!block-@.). This modifier causes FORMAT to
start a new line if needed following every blank space or tab and is
equivalent to inserting a-=- directive after each element to be
printed, as shown in the following example:

Lisp> (SETF *PRINT-RIGHT-MARGIN* 25)
25
Lisp> (FORMAT T "-@:!ANTARES ALPHECCA ALBIREO CANOPUS CASTOR

POLLUX MIRZAM ALGOL BELLATRIX CAPELLA MIRA
MIRFAK DUBHE POLARIS-@.")

ANTARES ALPHECCA ALBIREO
CANOPUS CASTOR POLLUX
MIRZAM ALGOL BELLATRIX
CAPELLA MIRA MIRFAK DUBHE
POLARIS

6.3.4 Controlling Indentation

' With pretty printing enabled, a call to FORMAT indents the output for
a ,logical block so that the first character in each succeeding line
falls under the first character f~llowing the prefix in- the first

0

line. When pretty printing is not enabled, the FORMAT call does not Q
produce indentation, and the indentation directive has no effect.

Use the -nI directive or the -n:I directive if you want to change the
standard pretty-printed indentation. The -nI directive causes FORMAT
to indent subsequent lines n spaces from the position of the first
character in the logical block. The -n:I directive, on the other
hand, causes FORMAT to indent subsequent lines n spaces from the
output column corresponding to the position of the directive. If you
omit the parameter n, the.default is 0. Although this parameter can Q
be less than O when used with the colon, the indentation cannot move
to the left of the first char.acter in the logical block. An
indentation directive affects only indentation produced -on subsequent
new lines.

The following example s_hows several variations of the indentation
di rec ti ve: ·

Lisp> (SETF *PRINT-RIGHT-MARGIN* 15)
15
Lisp> (FORMAT T ""': !"' S

'(BETELGEUSE
BETELGEUSE

DENEB SIRIUS
VEGA

ALDEBERAN

- 21"' : _ - s - : 1-s - _- s -11"' _- s- . "
DENEB SIRIUS VEGA ALDEBERAN))

6-13

0

0

0

0

0

0

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

DENEB lines up under the Tin BETELGEUSE, because the directive
produces a new line and -2I causes an indentation of 2 spaces past the
beginning of the block. The -:I directive for the third argument sets
the indentation to the column of the first Sin SIRIUS, so that the V
of VEGA lines up with the S. ALDEBERAN lines up with the first E in
BETELGEUSE, because the -1I directive resets the indentation to one
column past the first character in the logical block.

The -I directives only set the indentation. They do not
lines and they do not take effect until new lines begin.
in the directives for DENEB and ALDEBERAN, the indentation
precede the new line directives.

6.3.5 Producing Prefixes and Suffixes

start new
Therefore,
directives

You can specify FORMAT control strings that add prefixes and suffixes
to the printed output produced for a logical block. Several options
are available.

If you divide the format control string into three sections by
inserting the-; directive twice, the string will specify a prefix and
a suffix, as follows: -1prefix-;body-;suffix-.. The first ;
directive marks the end of the prefix; the second marks the beginning
of the suffix. If you omit the second -; directive, no suffix is
specified. Although the body can be any FORMAT control string, the
prefix and suffix cannot include FORMAT directives.

When a FORMAT call prints output for a logical block that includes a
prefix and pretty printing is· enabled, the second line of the output
is indented so that the second line lines up with the first character
in the block following the prefix. When the logical block includes a
suffix, the FORMAT call always prints the suffix at the end, even if
abbreviation directives eliminat~ some of the body of the block.

In the following examples, "Stars<" forms the prefix, and ">" forms
the suffix.

Lisp> (FORMAT T 11-1stars <-;-s -,-s -_-s-;>-."
'(SIRIUS VEGA DENEB))

Stars <SIRIUS
VEGA
DENEB>

NIL
Lisp> (SETF *PRINT-LENGTH* 2)
2
Lisp> (FORMAT T "-!stars <-;-s -,-s -_-s-;>-."

'(SIRIUS VEGA DENEB))
Stars <SIRIUS

VEGA ••• >

6-14

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

In the second example, .FORMAT truncates the list to two elements,
because *PRINT-LENGTH* is set to 2 (see Section 6.7), but it still o
adds the suffix after the last list element. VEGA lines up under
SIRIUS in the first column for the body of the logical block.

You can specify the prefix parameter 1 in the logical block directive
(-l!block- .), causing the FORMAT call to use parentheses for the
prefix and suffix, as shown:

Lisp> (FORMAT T 11 -1: 1-s -%-s-."
'(CASTOR POLLUX))
(CASTOR
POLLUX)

You can create per-line prefixes in a logical block by specifying the
at-sign modifier in the-; directive used to indicate the end of the
prefix (-@;). This modifier causes FORMAT to repeat the prefix at the O
beginning of each line, as shown in the following example:

Lisp> (FORMAT T "-:!<C@;-S -%-S -_-s -_-S-;>>-."
'(ALGOL ANTARES ALBIREO ALPHECCA))
<<ALGOL
<<ANTARES
<<ALBIREO
<<ALPHECCA>>

The prefixes and the list elements line up.

If you nest logical blocks, you can specify a prefix with each block,
as shown:

Lisp> (FORMAT T n-: !Bright stars-; -@!<C@;-s -.s -%-S -
- s-; >>-. - ;
still twinkle.-."
'(SIRIUS VEGA DENEB ALGOL))
Bright stars <<SIRIUS VEGA

<<DENEB ALGOL>> still twinkle.

The prefix and suffix for the outer logical block are "Bright stars"
and "still twinkle". The prefix for the inner logical block, "<<", is
printed on·each line after the indentation required by the prefix for
the first logical block. The suffix for the inner logical block,
">>", is printed once at the end of the block.

6.3.6 Using Tabs

0

0

You can use the tab directive to arrange output in columns. When
pretty printing is enabled, the -n,mT tab directive counts spaces,
beginning with the indentation of the immediately enclosing logical Q
block. The integer n specifies a number of columns. The integer m

6-15

0

0

0

0

0

PRE.TTY PRINTING AND USING EXTENSIONS TO FORMAT

specifies an increment: the number of columns to be added at one time
until.· the column width is at least n columns. The at-sign modifier
makes the tab directive relative, so that -n,m@T counts spaces
beginning with the current output column. When pretty printing is not
enabled, on the other hand, the -n,mT directive counts spaces from the
beginning of the line, as specified in COMMON LISP. The defaults for
n and mare 1 (see COMMON LISP:. The Language for details).

In the iterative example that follows, the tab directive precedes the
if-needed new line directive:

Lisp> (SETF *PRINT-RIGHT-MARGIN* 29)
29
Lisp> (FORMAT T "Stars: -:@!_{_S_"' -11T-s - ... -=--}- ."

'(POLARIS DUBHE MIRA MIRFAK BELLATRIX CAPELLA ALGOL
MIRZAM POLLUX CANOPUS ALBIREO CASTOR ALPHECCA
ANTARES))

Stars: POLARIS DUBHE
MIRA MIRFAK
BELLATRIX CAPELLA
ALGOL MIRZAM
POLLUX CANOPUS
ALBIREO CASTOR
ALPHECCA ANTARES

Since the tabs are counted from the indentation of the logical block,
the tab directives do not have to account for the fact that the whole
block is shifted seven columns to the right.

6.3.7 Directives for Handling Lists

VAX LISP provides three FORMAT directives that simplify the printing
of lists. Each implicitly uses the -w directive repeatedly to print
elements.

• If pretty printing is enabled, the -n/FILL/ directive causes
FORMAT to fill the available line width by inserting a space
and an if-needed new line after each list element except the
last. FORMAT encloses the list in parentheses if n is 1. If.
pretty printing is not enabled, -n/FILL/ causes FORMAT to
print the output in single-line mode.

• If pretty printing is enabled, the -n/LINEAR/ directive causes
FORMAT to print the list on a single line if the list fits.
Otherwise, FORMAT prints each element on a separate line.
FORMAT encloses the list in parentheses if n is 1. If pretty
printing is not enabled, -n/LINEAR/ causes FORMAT to print the
output in single-line mode.

6-16

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

• If pretty printing is enabled, the "'n,m/TABULAR/ directive Q
causes FORMAT to print the list as a table, using columns of m
spaces for list elements. The default value for m is 16.
FORMAT encloses the list in parentheses if n is 1. If pretty
printing is not enabled, "'n,m/TABULAR causes FORMAT to print
the output in single-line mode.

The following examples show the kinds of formats you can produce with
the list-handling directives:

Lisp> (SETF *PRINT-RIGHT-MARGIN* 36)
36
Lisp> (FORMAT T "Stars: -@:!"'/FILL/."

'(POLARIS DUBHE MIRA MIRFAK BELLATRIX CAPELLA ALGOL
MIRZAM POLLUX CANOPUS ALBIREO CASTOR ALPHECCA
ANTARES))

Stars: POLARIS DUBHE MIRA MIRFAK
BELLATRIX CAPELLA ALGOL
MIRZAM POLLUX CANOPUS
ALBIREO CASTOR ALPHECCA
ANTARES

NIL
Lisp> (SETF *PRINT-RIGHT-MARGIN* NIL)
NIL
Lisp> (FORMAT T "Stars: -@:!"'/LINEAR/."
'(POLARIS DUBHE MIRA MIRFAK BELLATRIX CAPELLA ALGOL
MIRZAM POLLUX CANOPUS ALBIREO CASTOR ALPHECCA
ANTARES))
Stars: POLARIS

NIL

DUBHE
MIRA
MIRFAK
BELLATRIX
CAPELLA
ALGOL
MIRZAM
POLLUX
CANOPUS
ALBIREO
CASTOR
ALPHECCA
ANTARES

Lisp> (FORMAT T "Stars: -@:!"'0,20/TABULAR/ ."
'(POLARIS DUBHE MIRA MIRFAK BELLATRIX CAPELLA ALGOL
MIRZAM POLLUX CANOPUS ALBIREO CASTOR ALPHECCA
ANTARES))
Stars: POLARIS

MIRFAK
ALGOL
CANOPUS
ALPHECCA

DUBHE
BELLATRIX
MIRZAM
ALBIREO
ANTARES

6-17

MIRA
CAPELLA
POLLUX
CASTOR

0

0

0

0

0

0

0

0

0

PRETTY PRINTING AND USING EXTENSIONS .TO FORMAT

6.4 DEFINING YOUR OWN FORMAT DIRECTIVES

,VAX LISP lets you define your own FORMAT directives to supplement the
directives supplied with the system. Any FORMAT directive that you
define you can use in the control string argument to a FORMAT call.

DEFINE-FORMAT-DIRECTIVE name
(arg stream colon at-sign
&OPTIONAL (parameterl default)

(parameter2 default)
...)

&BODY forms

This macro defines a directive named name. After you define a FORMAT
directive, you can use it (whether or not pretty printing is enabled)
by including -;name/ in a FORMAT control string.

NOTE

If you do not specify a package with name when you
define the directive, name is placed in the current
package. If you do not specify a package when you
refer to the directive, the FORMAT directive looks in
the USER package for the directive definition.

For the body of the macro call, the symbols you supply for arg,
stream, colon, and at-sign are bound as follows:

• arg is bound to the argument list for the FORMAT directive you
define.

• stream is bound to the stream on which the printing is to be
done.

• The colon and at-sign arguments are bound to NIL unless the
colon and at-sign modifiers are used with the directive.

There must be one optional argument for each prefix parameter that is
allowed in the directive. A parameter argument will receive the
corresponding prefix parameter if it was specified in the directive.
Otherwise, the default value will be used, as with all optional
arguments.

The body is evaluated to
A user-defined FORMAT
level of indirection.
repeatedly, which may
following example shows
messages:

print the argument argon the output stream.
directive can be useful because it provides a
In addition, you can call the directive
save you some time coding and debugging. The

a format directive used to produce error

6-18

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

Lisp> (DEFINE-FORMAT-DIRECTIVE EVALUATION-ERROR
(SYMBOL STREAM COLON-P ATSIGN-P
&OPTIONAL (SEVERITY 0))

(DECLARE (IGNORE ATSIGN-P))
(FRESH-LINE STREAM)
(PRINC (CASE SEVERITY

(0 "Warning: ")
(1 "Error: ")
(2 "Severe Error: "))

STREAM)
(FORMAT STREAM "-:!The symbol -s -:_does not have an -

integer value.-%Its value is: -=_-s-."
SYMBOL (SYMBOL-VALUE SYMBOL))

(WHEN COLON-P
(WRITE-CHAR #\BELL STREAM)))

EVALUATION-ERROR
Lisp> (SETF PROCESS NIL)
NIL
Lisp> (FORMAT T "-1:/EVALUATION-ERROR/" 'PROCESS)
Error: The symbol PROCESS does not have an integer value.

Its value is: NIL
<BEEP>

This e~ample shows the definition of a FORMAT directive, an
application of the directive, and the printed output. It assumes that

0

0

the current package is USER. The prefix parameter 1 in
"-:/EVALUATION-ERROR/" indicates the severity of the error being Q
signaled. The colon·in the FORMAT call produces a beep on the
terminal.

6.5 DEFINING PRINT FUNCTIONS FOR LISTS

You can use DEFINE-LIST-PRINT-FUNCTION to define functions to print
specific kinds of lists in formats of your choice. Functions that you
define are effective only if pretty printing is enabled. The printer
checks the first element of each list that it prints. If the first

. element of a list matches the name of a list-print function, the list
is printed according to the format you have specified. Create a
list-print function according to the following format:

DEFINE-LIST-PRINT-FUNCTION symbol (list stream)
&BODY forms

This macro defines or redefines a print function for lists for which
the first element is symbol. list is bound to the list to be printed
and stream is bound to the stream on which the printing is to be done.
The forms are evaluated to output list.

~or example, if you
MY-SETQ, any list

define a list-print function for the symbol
beginning with MY-SETQ will be printed in your

6-19

0-

0

0

0

0

0

0

----- - ------- -------

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

format when pretty-printing is enabled:

Lisp> (DEFINE-LIST-PRINT-FUNCTION MY-SETQ (LIST STREAM)
(FORMAT STREAM

.. -1!-w- ... -:i-@{-w- ... -=_-w- ... -%-}-."
LIST))

MY-SETQ
Lisp> (SETF BASE '(MY-SETQ HI 3 BYE 4))
(MY-SETQ HI 3 BYE 4)
Lisp> (PRINT BASE)
(MY-SETQ HI 3 BYE 4)
(MY-SETQ HI 3 BYE 4)
Lisp> (PPRINT BASE)
(MY-SETQ HI 3

BYE 4)

When pretty printing is not enabled, the value of BASE is printed
without regard to the list-print function defined for MY-SETQ. PPRINT
enables pretty printing, producing a representation of the value of
BASE using the specified list-print function.

VAX LISP pretty printing incorporates predefined list-print functions
for many standard LISP functions. However, if you define a list-print
function for a LISP keyword, your function will override the one built
into the system.

NOTE

When you use DEFINE-LIST-PRINT-FUNCTION, you may
encounter two kinds of.output that you do not expect:

• In most cases, a list whose first element is the
symbol for a defined list-print function will be
printed- in the format specified, even if the
context and meaning of the list are irregular and
the format is inappropriate. For example, if your
data says (LET IT BE) and LET is the symbol of_a
defined list-print function, the resulting output
may be inappropriate.

• List-print functions are not used when you print a
list under control of a user-defined FORMAT
directive.

You can disable any defined list-print function by using the
UNDEFINE-LIST-PRINT-FUNCTION macro. Its format is:

UNDEFINE-LIST-PRINT-FUNCTION symbol

6-20

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

This macro disables the list-print function defined for symbol. The
following example disables the LET list-print function defined in the
example at the beginning of,this section:

Lisp> (UNDEFINE-LIST-PRINT-FUNCTION MY-SETQ)
MY-SETQ

6.6 DEFINING GENERALIZED PRINT FUNCTIONS

Using generalized print functions, you can specify how any object is
pretty-printed, regardless of its form. Functions that you define and
enable are effective only if pretty printing is enabled. First you
define a function with DEFINE-GENERALIZED-PRINT-FUNCTION. Then you

0

enable the function. You can enable it globally, using
GENERALIZED-PRINT-FUNCTION-ENABLED-P. Or you can enable it locally, O
using WITH-GENERALIZED-PRINT-FUNCTION.

Use the following format when you define a generalized print function:

DEFINE-GENERALIZED-PRINT-FUNCTION name (object stream)
predicate
&BODY forms

This macro defines or redefines a print function with the name name. Q
object is bound to the object to be printed. stream is bound to the
stream to which output is to be· sent. predicate governs the
application of the generalized print function. The predicate is
operative on any LISP object. A generalized print function will be
used if it is enabled and the predicate evaluates to true on the
object to be printed. (NULL OBJECT) is the predicate in the sample
generalized print function shown at the end of this section. The
output stream can use your generalized print function to print any
object for which the predicate does not evaluate to NIL. forms Q
identifies arguments to be evaluated in the call to FORMAT.

If a generalized print function and a list-print function for the same
symbol are both enabled, the generalized print function will be used.

A related function lets you test whether a specific generalized print
function is enabled:

GENERALIZED-PRINT-FUNCTION-ENABLED-P name

You can also use this function to globally change the status of the
function, using SETF as shown:

6-21

0

0

0

0

0

0

----------- -- --

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

(SETF (GENERALIZED-PRINT-FUNCTION-ENABLED-P name) T)

or

(SETF (GENERALIZED-PRINT-FUNCTION-ENABLED-P name) NIL)

Use the WITH-GENERALIZED-PRINT-FUNCTION macro to locally enable a
generalized print function in the following format:

WITH-GENERALIZED-PRINT-FUNCTION name &BODY forms

This macro locally enables the generalized print function named name
when it evaluates the specified forms.

The printer checks generalized print functions that have been enabled
in reverse order from the order of their enabling. This means that in
cases where two or more generalized print functions apply, the most
recently enabled function is used.

Enabling a generalized print function globally is less efficient than
enabling it locally, because the printer must check the predicate of
globally enabled print functions against every object to be printed.
If you enable the generalized print function locally, the printer
checks the function's predicate against the object being printed only
during execution of the code within the macro, instead of on every
call to a print function. Since the read-eval-print loop is used
often, the difference in efficiency can be significant.

Consider the following examples:

Lisp> (SETF *PRINT-RIGHT-MARGIN* 25)
25
Lisp> (GENERALIZED-PRINT-FUNCTION-ENABLED-P 'PRINT-NIL-AS-LIST)
NIL
Lisp> (DEFINE-GENERALIZED-PRINT-FUNCTION PRINT-NIL-AS-LIST

(OBJECT STREAM)
(NULL OBJECT)

(PR INC II () II STREAM))
PRINT-NIL-AS-LIST
Lisp> (PRINT NIL)
NIL
NIL
Lisp>(PPRINT NIL)
NIL
Lisp> (WITH-GENERALIZED-PRINT-FUNCTION 'PRINT-NIL-AS-LIST

(PRINT NIL)

NIL
()

(PPRINT NIL))

6-22

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

Lisp> (SETF (GENER.ALIZED-PRINT-FUNCTION-ENABLED-P
'PRINT-NIL-AS-LIST) T)

T
LISP> (PPRINT NIL)
()

The first PRINT call prints NIL, because pretty printing is not
enabled. The first PPRINT call prints NIL, because the generalized
print function PRINT-NIL-AS-LIST is not enabled. The second PRINT
call prints NIL, because pretty printing is again not enabled. The
second PPRINT call prints (), because the generalized print function
is enabled locally and pretty printing is enabled. The third PPRINT
call prints (), because the generalized print function is enabled
globally and pretty printing is enabled.

NOTE

A generalized print function controls the printing of
an object only if the following conditions exist:

1. The generalized print function is enabled globally
or locally.

2. The predicate specified with DEFINE-GENERALIZED­
PRINT-FUNCTION is true.

3. The object to be printed does not come under
control of a user-defined FORMAT directive.

In cases where two or more generalized print functions
are applicable, only one is chosen. The one chosen is
the most recently enabled (globally or locally)
generalized print function for which the predicate
specified with DEFINE-GENERALIZED-PRINT-FUNCTION is
true.

Generalized print functions are not used when you
print an object under control of a user-defined FORMAT
directive.

6. 7 ABBREVIATING PRINTED OUTPUT

You can abbreviate printed output according to:

• The length of the object to be printed

• The depth of nested logical blocks

• The number of lines in the output

6-23

0

0

0

0

0

0

0

0

0

0

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

Length and depth abbreviation are supported in COMMON LISP and are
effective whether or not pretty printing is enabled. In addition,
abbreviation based on the number of lines of output is supported in
VAX LISP; this is effective only when pretty printing is enabled.

6.7.1 Abbreviating Output Length

You can control the number of sections of printed output by setting
the *PRINT-LENGTH* variable. The value you supply specifies the
number of sections to be printed for any affected logical block. The
directives _, -%, and -& mark the sections of a logical block (see
Section 6.3.3 for details). After the output stream prints
PRINT-LENGTH sections of a logical block, it prints an ellipsis
(•..) and stops processing the logical block. If the logical block
is nested with other logical blocks, the output stream terminates only
the processing of the immediately enclosing logical block. Output is
not truncated if the value of *PRINT-LENGTH* is NIL.

The following example shows output abbreviation based on length:

Lisp> (SETF *PRINT-RIGHT-MARGIN* 47)
47
Lisp> (SETF *PRINT-LENGTH* 11)
11
Lisp> (SETF *PRINT-PRETTY* T)
T
Lisp> (FORMAT T "Stars: -@!-{-w"'" -=--}-."

'(POLARIS DUBHE MIRA MIRFAK BELLATRIX CAPELLA ALGOL
MIRZAM POLLUX.CANOPUS ALBIREO CASTOR ALPHECCA
ANTARES))

Stars: POLARIS DUBHE MIRA MIRFAK BELLATRIX
CAPELLA ALGOL MIRZAM POLLUX CANOPUS
ALBIREO •••

Each star name in the list constitutes a separate logical block
section. FORMAT prints " " after the eleventh star name to
indicate that the list has been abbreviated at that point.

6.7.2 Abbreviating Output Depth

Use the variable *PRINT-LEVEL* to control the depth of printed output.
PRINT-LEVEL specifies the lowest level of dynamically nested logical
blocks to be printed. When your program calls FORMAT recursively, the
output stream keeps track of the actual nesting level and abbreviates
output when the level reaches *PRINT-LEVEL*. The printed character #
indicates where the stream has truncated the output. You can prevent.
depth abbreviation by setting *PRINT-LEVEL* to Nii.

6-24

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

Dynamic nesting of logical blocks occurs frequently when you print O complicated structures. This nesting may not be obvious as you read
the program. For example, if you have defined list-print functions
for the primitives IF and PROGN, printing a program that uses a
combination of these primitives would involve dynamic nesting of
logical blocks, since each list print function uses the -w directive
implicitly. The following example shows how the output stream
abbreviates the printing of a structure in accord with the value of
PRINT-LEVEL:

Lisp> (SETF *PRINT-LEVEL* 3)
3
Lisp> (PPRINT '(LEVEL! (LEVEL2 (LEVEL3 (LEVEL4 (LEVELS))))))
(LEVEL! (LEVEL2 (LEVEL3 #)))
Lisp> (SETF *PRINT-LEVEL* 2)
2
Lisp> (PPRINT '(LEVEL! (LEVEL2 (LEVEL3 (LEVEL4 (LEVELS))))))
(LEVEL! (LEVEL2 #))
Lisp> (PPRINT '(LEVEL! 4 S 6 (LEVEL2 (LEVEL3 (LEVEL4

(LEVELS))))))
(LEVEL! 4 S 6 (LEVEL2 #))

6. 7 .3 Abbreviating Output by Lines

0

You can control the number of lines printed in the output by setting O
the *PRINT-LINES* variable. The value you supply specifies the number
of lines to be printed for the outermost logical block. The output
stream prints" .•. " at the end of the last line to indicate where it
has truncated the output. If *PRINT-LINES* is NIL, the output stream
will not abbreviate the number of lines printed •. This abbreviation
mechanism is effective only when pretty printing is.enabled.

In the following example, printing stops at the end of the fourth
line:

Lisp> (SETF *PRINT-LINES* 4)
4
Lisp> (FORMAT T "Stars: - : !- /LINEAR/"."

'(POLARIS DUBHE MIRA MIRFAK BELLATRIX CAPELLA ALGOL
MIRZAM POLLUX CANOPUS ALBIREO CASTOR ALPHECCA
ANTARES))

Stars: POLARIS
DUBHE
MIRA
MIRFAK

6-25

0

0

0

0

0

0

0

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

6.8 USING MISER MODE

If you print large structures with deeply nested logical blocks, you
may find the miser mode useful. Indentation produced in the output by
the nesting of logical blocks, prefixes, and the -nI directive reduces
the line length available for printing. Miser mode helps you avoid
running out of space and printing beyond the right margin. Miser mode
does not, however, guarantee the elimination of these problems.

Pretty printing uses single-line mode if the output fits on one line.
If the FORMAT control string permits new lines and the output requires
two or more lines, pretty printing normally uses multiline mode. The
printer determines whether to print a logical block in miser mode
according to the current column of the output at the beginning of the
logical block and the values of two variables:

e *PRINT-RIGHT-MARGIN*

e *PRINT-MISER-WIDTH*

PRINT-RIGHT-MARGIN specifies the location of the right margin.
PRINT-MISER-WIDTH specifies a number of columns before the right
margin. When the current output column at the beginning of a logical
block is equal to or greater than the difference between
PRINT-RIGHT-MARGIN and *PRINT-MISER-WIDTH*, then the logical block
is printed in miser mode. This condition occurs when the total
available line width is less than the value of *PRINT-MISER-WIDTH*, as
shown in Figure 6-1.

COLUMN AT WHICH
PRINTER I

ENTERS MISER MODE *PRINT-RIGHT-MARGIN*

L "PRINT-MISER-WIDTH"_J

Figure 6-1: Variables Governing Miser Mode

You can disable miser mode by setting *PRINT-MISER-WIDTH* to NIL.

Miser mode saves space by:

e Ignoring indentation FORMAT directives

6-26

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

• Starting a new .line at every conditional new line directive:

Multiline mode new line (-_)

If-needed new line (-:_)

Miser mode new line (-@_)

The two examples that follow contrast pretty printing in multiline
mode and miser mode:

Lisp> (SETF *PRINT-RIGHT-MARGIN* 60)
60
Lisp> (SETF *PRINT-MISER-WIDTH* 35)
35
Lisp> (FORMAT T "-:!Stars with Arabic names: -s -s -21i-:_-s -

'(BETELGEUSE (DENEB SIRIUS VEGA)
ALDEBERAN ALGOL (CASTOR POLLUX) BELLATRIX)

Stars with Arabic names: BETELGEUSE (DENEB SIRIUS VEGA)
ALDEBERAN ALGOL

(CASTOR POLLUX)
BELLATRIX

NIL
Lisp> (FORMAT T .. - !Stars with Arabic names: - :@!-s - :_-s -

"'27I-:_"'s "':I-@_-s -_-s "'lI"'_-s-.-."
'(BETELGEUSE (DENEB SIRIUS VEGA)

ALDEBERAN ALGOL (CASTOR POLLUX) BELLATRIX)
Stars with Arabic names: BETELGEUSE

(DENEB SIRIUS VEGA)
ALDEBERAN
ALGOL
(CASTOR POLLUX)
BELLATRIX

In the first output sample, FORMAT uses multiline mode. Miser mode is
never enabled, because the logical block begins at column O and miser
mode takes effect only if the column begins at column 25 (60 35).
ALDEBERAN lines up with the T in BETELGEUSE, because the "'27I
directive sets the indentation for following lines at column 27 and
the - directive produces a new line. The "':I-@_"'s directive sets
the column for the next line at the level of the A in ALGOL. The "'1I
directive controls the last argument, BELLATRIX, setting the
indentation to column 1.

The second output example shows the effects of miser mode, because the
text in the outer logical block, "Stars with Arabic names:", causes
the inner logical block to begin at column 26. With
PRINT-MISER-WIDTH set to 35, FORMAT enables miser mode when the
logical block begins past column 25. FORMAT conserves space by
starting a new line at every multiline mode new line directive("'_)
and every if-needed new line directive ("':_). FORMAT also inserts a

6-27

0

0

0

0

0

0

0

0

0

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

new line at the miser mode new line directive (-@_) and ignores the
indentation directives (-nI).

6.9 HANDLING IMPROPERLY FORMED ARGUMENT LISTS

VAX LISP provides a method for gracefully handling argument lists that
are improperly formed. The function of the -A directive, when used in
a logical block, differs slightly from the corresponding function in
COMMON LISP.

In COMMON LISP the -A directive is used with the iteration directives
-{ and-} to check whether the argument list has been reduced to NIL.
If the list is NIL, iteration stops.

You can also use the -A directive to check whether the argument list
for a logical block has been reduced to a non-NIL atom. If the check
shows that the argument list is a non-NIL atom, the printer prints
space-dot-space (.) and uses the -w directive to print the value of
the atom. FORMAT then stops processing the immediately enclosing
logical block, after printing the suffix (if one is there). No error
condition results. The following example shows the use of FORMAT to
print a dotted pair:

Lisp> (FORMAT T "-1:!-@{_S_" -}-."
'(CASTOR POLLUX DENEB. ALDEBERAN))

(CASTOR POLLUX DENEB. ALDEBERAN)

This feature serves as a useful debugging tool, because it lets the
FORMAT function work even when ·the argument list is improperly formed.

NOTE

When the- ... directive is included in a logical block,
the FORMAT function checks whether the argument list
is a non-NIL atom, even when pretty printing is not
enabled.

6-28

0

CHAPTER 7

VAX LISP/VMS IMPLEMENTATION NOTES

VAX LISP is an implementation of LISP that is based on COMMON LISP as
described in COMMON LISP: The Language. This chapter describes how Q
implementaton-dependent aspects of COMMON LISP are implemented on the
VMS operating system. This chapter does not describe implementation
differences between VAX LISP/VMS (VAX LISP as implemented on VMS) and
VAX LISP/ULTRIX (VAX LISP as implemented on ULTRIX). For such
differences, see the VAX LISP/VMS Release Notes. For example,
LISP020.MEM is the file containing the release notes for Version V2.0.

Most of the information in this chapter refers to subjects that COMMON
LISP: The Language refers to as implementation dependent. The purpose Q
of this chapter is to clarify the implementation specifics for the
following topics:

• Data representation

• Pathnames

• The garbage collector

• Input and output

• Interrupt functions, including keyboard functions that execute
asynchronously when you type a control character

• The compiler

• Functions and macros

NOTE

Complex numbers are documented in COMMON LISP: The
Language, but they are not implemented in VAX LISP.

T, NIL, and keywords are not legal function names in
VAX LISP.

7-1

0

0
:,

,'

0

0

0

0

VAX LISP/VMS IMPLEMENTATION NOTES

VAX LISP supports only symbols that are in the
packages named LISP, EDITOR, and UIS.

7.1 DATA REPRESENTATION

COMMON LISP defines the data types implemented in VAX LISP but COMMON
LISP does not define implementation-dependent information related to
the data types. This section provides data type information specific
to VAX LISP. Complete descriptions of data types are provided in
COMMON LISP: The Language. The following data types require VAX LISP
implementation information:

• Numbers

• Characters

• Arrays

• Strings

7.1.1 Numbers

Sections 7.1.1.1 and 7.1.1.2 provide implementation information about
the integer and floating-point number data types.

7.1.1.1 Integers - COMMON LISP defines two subtypes of integers:
fixnums and bignums. The ranges of these two integer types depend on
the implementation. In VAX LISP, the integers in the range -2**29 to
2**29-1 are represented as fixnums; integers not in the fixnum range
are represented as bignums. VAX LISP stores bignums as two's
complement bit sequences.

In VAX LISP, the EQ function returns T when it is called with two
fixnums having the same value.

The values of the COMMON LISP integer constants are implementation
dependent. The names of the constants and the corresponding VAX LISP
values follow:

• MOST-POSITIVE-FIXNUM

• MOST-NEGATIVE-FIXNUM

536870911

-536870912

7-2

VAX LISP/VMS IMPLEMENTATION NOTES

NOTE

The range of integers represented as fixnums will
likely be cut in half in VAX LISP Version 3.0. That
is, integers in the range -268,435,456 to +268,435,456
f-2**28 to 2**28-1) will be represented as fixnums.
The current range for fixnums is -2**29 to 2**29-1.
Remember this note when placing FIXNUM declarations in
your programs.

Descriptions of these constants are provided in COMMON LISP: The
Language.

0

7.1.1.2 Floating-Point Numbers - COMMON LISP defines the following Q
types of floating-point numbers:

• Short floating-point numbers

• Single floating-point numbers

• Double floating-point· numbers

• Long floating-point numbers

In VAX LISP, these four types are implemented with VAX floating data
types. Both the short and single floating-point numbers are
implemented as VAX F_floating data. Double floating-point numbers are
implemented as VAX G_floating data. Long floating-point numbers are
implemented as VAX H_floating data. For information on the VAX
floating data types, see the VAX Architecture Handbook.

0

Table 7-1 lists the types of COMMON LISP floating-point numbers, the o
corresponding VAX data types, and the number of bits allocated for the
exponent and significand of each floating-point type.

Table 7-1: VAX LISP Floating-Point Numbers

COMMON LISP Type VAX Type Exponent Significand

SHORT-FLOAT F_floating 8 24

SINGLE-FLOAT F_floating 8 24

DOUBLE-FLOAT G_floating 11 53

LONG-FLOAT H_floating 15 113

0
7-3

0

0

0

0

0

. VAX LISP/VMS IMPLEMENTATION NOTES

The values of the COMMON LISP floating-point constants are
implementation dependent. You can use the values of these constants
to compare the range of values and the degrees of precision of the VAX
LISP floating-point types. Table 7-2 lists the names of the constants
and provides the actual he~adecimal values and the decimal
approximations for VAX LISP.

Table 7-2: Floating-Point Constants

Constant

DOUBLE-FLOAT-EPSILON

Hexadecimal
Representation

Approximate
Decimal
value

DOUBLE-FLOAT-NEGATIVE-EPSILON BMl88118 IM883CCI

l.lld-16

l.lld-16

-S.56d-3'9 LEAST-NEGATIVE-DOUBLE-FLOAT

LEAST-NEGATIVE-LONG-FLOAT

LEAST-NEGATIVE-SHORT-FLOAT

LEAST-NEGATIVE-SINGLE-FLOAT

LEAST-POSITIVE-DOUBLE-FLOAT

LEAST-POSITIVE-LONG-FLOAT

LEAST-POSITIVE-SHORT-FLOAT

LEAST-POSITIVE-SINGLE-FLOAT

LONG-FLOAT-EPSILON

LONG-FLOAT-NEGATIVE-EPSILON

MOST-NEGATIVE-DOUBLE-FLOAT

NOST-NEGATIVE-LONG-FLOAT

MOST-NEGATIVE-SHORT-FLOAT

HOST-NEGATIVE-SINGLE-FLOAT

MOST-POSITIVE-DOUBLE-FLOAT

MOST-POSITIVE-LONG-FLOAT

MOST-POSITIVE-SHORT-FLOAT

MOST-POSITIVE-SINGLE-FLOAT

IBIUBU8d 11888111

88881888 88BBIIIB IBIIH818 IIIB8181 -8.ClL-4933

UBl88188 -2.94ct-39

88888888 -2.94e-39

88888888 18181811 5.56d-389

19888811 881U88ff8 USl8188M 88188111 8.tlL-4933

IIUBSIIIB811 2.94e-39

IIUIIM9U811 2.94e-39

UIIU8818 118881118 1881UU81 118883P91 9.63L-35

88888888 IBBBUBII IB8188MI 18813F91 9.63L-35

FFFFFFFF FFFFFFFF -8.994317

FFFFFFFF FFFFFFFF FFFFFFFF PFFFFPPP -S.95L4931

FFPFFFPF -l.71e38

FFFFFFFF -l.71e38

FFFFFFFF PFFP7FFF 8.99d317

FFFFFFFP FFFFFFFF FFFFFFFF FFFF7FPP S.95L4931

FFFF7FFP

FFFF7FFF

SHORT-FLOAT-EPSILON MIBB3481

SHORT-FLOAT-NEGATIVE-EPSILON 18&83481

SINGLE-FLOAT-EPSILON 111013481

SINGLE-FLOAT-NEGATIVE-EPSILON 111113481

l.711e38

1. 71'e38

5,96e-8

5.96e-8

5,96e-8

S.96e-8

Descriptions of these constants are provided in COMMON LISP: The
Language.

COMMON LISP allows an implementation to define a floating-point minus
zero. In VAX LISP, floating-point minus zero does not exist.

7-4

VAX LISP/VMS IMPLEMENTATION NOTES

7 .1.2 Characters

COMMON LISP defines characters as objects that have three
code, bits, and font. The code attribute specifies
character is printed or formatted. The bits and font
specify extra flags to be associated with a character.

attributes:
the way a
attributes

In VAX LISP, the character attributes are defined as follows:

•

•

•

The code attribute consists of eight bits and is
the extended ASCII character set.

The bits attribute consists of the four COMMON
CONTROL, HYPER, META, and SUPER.

The font attribute consists of four bits.

NOTE

The CONTROL attribute bit has no association
control characters in the ASCII character set.

encoded using

LISP bits:

with

0

0

The VAX LISP implementation of COMMON LISP functions that perform
character comparisons bases its comparisons on the numeric values that Q
correspond to the extended 8-bit ASCII character set. The character
predicate functions and the rules that the functions use to compare
characters are described in COMMON LISP: The Language.

The ordering of two characters that have different bits and font
attributes and the same character code is undefined in VAX LISP.

The COMMON LISP character constants
limits on the code, bits,
implementation-dependent values. The
corresponding VAX LISP values are:

• CHAR-CODE-LIMIT 256

• CHAR-BITS-LIMIT 16

• CHAR-FONT-LIMIT 16

NOTE

that are the exclusive
and font attributes

names of the constants and

The values of these constants might change in future
releases of VAX LISP.

upper
have

the

Descriptions of these constants are provided in COMMON LISP: The
Language.

7-5

0

0

0

0

0

0

VAX LISP/VMS IMPLEMENTATION NOTES

You can obtain a table of valid VAX LISP character names by calling
the VAX LISP CHAR-NAME-TABLE function described in Part II.

7 .1.3 Arrays

COMMON LISP defines an array as an object whose components are
arranged according to a Cartesian coordinate system and whose number
of dimensions is called its rank. The limits on an array's rank,
dimensions, and total size are implementation depende.nt.

The names of the array constants and the corresponding VJlJX LISP values
are:

e ARRAY-DIMENSION-LIMIT 536870911

e ARRAY-RANK-LIMIT 536870911

• ARRAY-TOTAL-SIZE-LIMIT 536870911

These constants are described in COMMON LISP: The Language.

COMMON LISP defines a specialized array as an array that can contain
only elements of a specific type. VAX LISP creates a more efficient
specialized array when an array's element type is STRING-CHAR,
(SIGNED-BYTE 32), or a subtype of FLOAT or (UNSIGNED-BYTE 1-29). If
an array does not have one of these element types, VAX LISP creates a
general array (element type is T).

7 .1., Strings

COMMON LISP defines a string to be a vector of string characters. In
VAX LISP, a string can be composed of as many as 65,535 characters.

A string character is a character that can be stored in a string
object. In VAX LISP, the characters that compose the 8-bit ASCII
character set are string characters. String characters cannot have a
bits or font attribute.

7.2 PATHNAMES

In COMMON LISP, a pathname is a LISP data object that represents a
file specification. This section describes how VAX LISP implements
COMMON LISP pathnames as VMS file specifications. The section is
divided as follows:

7-6

0

0

0

0

0

VAX LISP/VMS IMPLEMENTATION NOTES

• Namestrings

e Logical names and pathnames

• When to use pathnames

e Fields of a COMMON LISP pathname

• Field values of a VAX LISP pathname

• Three ways to create pathnames

• Comparing similar pathnames

• Converting pathnames into namestrings

• Functions that use pathnames

• Using the *DEFAULT-PATHNAME-DEFAULTS* variable

7 .2.1 Namestrings

In VAX LISP, file names can be represented by pathnames, namestrings,
symbols, or streams. Besides the term PATHNAME, COMMON LISP uses the
term NAMESTRING. Since computer systems (for example, VMS and ULTRIX)
have different ways of formatting· file names, COMMON LISP uses
namestrings to translate between pathnames (implementation-independent
names) and file names (implementation-dependent names).

A namestring is a string naming a file in an implementation-dependent
form customary for the file system. A VAX LISP namestring is a string
containing a valid VMS file specification. For example, if a file in
the VMS file system is called SYS$LOGIN:LOGIN.COM;4, the equivalent
namestring would be displayed as "SYS$LOGIN:LOGIN.COM;4".

File system functions, such as LOAD, accept pathnames
convert pathnames to namestrings. For more
namestrings, see Section 7.2.8.

7.2.2 Logical Names and Pathnames

but internally
information on

In VAX LISP/VMS, logical names are translated at the time a pathname
is created. This is to allow pathnames to be merged properly.
Translation of logical names is not normally a problem unless the
logical name has multiple translations. In general, use of strings
(rather than pathnames) for file specifications improves the utility
of logical names with multiple translations. Some functions that
accept pathnames or strings as arguments (such as OPEN and PROBE-FILE)

7-7

VAX LISP/VMS IMPLEMENTATION NOTES

can be passed a string including a reference to such a logical name,
and the appropriate translation will be used. Other functions, 0
however, (such as LOAD and COMPILE-FILE) convert string arguments to
pathnames in order to merge in the file type and directory, if not
specified. In that case, the first translation for which the device
and directory exist is used. Providing a complete file specification
in the string argument to LOAD or COMPILE-FILE allows all the
translations of included logical names to be used.

If a file specification includes a reference to a remote node, logical
names are not translated in the resulting pathname.

7 .2.3 When to Use Pathnames

Pathnames do not replace the traditional ways of representing a file
in LISP. Instead, the pathnames add a new way of representing a file Q
to make LISP programs portable between systems with different
file-naming conventions.

Pathnames, however, do not have to refer to an existing file or give
complete file specifications; pathnames can exist as data objects in
themselves and are used as arguments to pathname functions (see
Section 7.2.9 and COMMON LISP: -The Language).

Several pathname functions and most functions that deal with the file Q
system can take either pathnames, namestrings, symbols, or streams as
their arguments. However, the values of the following variable and
arguments must be pathnames:

• The *DEFAULT-PATHNAME-DEFAULTS* variable

• The defaults argument in a call to the PARSE-NAMESTRING
function

See Section 7.2.10 and COMMON LISP: The Language for a description
the preceding variable and function.

7 .2.4 Fields of a COMMON LISP Pathname

A COMMON LISP pathname is a LISP data object composed of six
Each field represents one of the following aspects of
specification:

• Host

• Device

- file system

- file structure or a (physical or logical)
device on which files are stored

7-8

fields.
a file

0

0

0

0

VAX LISP/VMS IMPLEMENTATION NOTES

• Directory - group of related files

• Name

• Type

• Version

- file name

- file extension

number incremented every time the file is
modified

7.2.5 Field Values of a VAX LISP Pathname

For a description of a VAX LISP file specification, see Chapter 1.
The following examples show how the components of a VAX LISP file
specification are mapped into the fields of a VAX LISP pathname. The
first example shows a VAX LISP file specification:

MIAMI::DBA1:[SMITH]LOGIN.COM;4

The second example shows the pathname that represents the preceding
file specification:

#S(PATHNAME :HOST "MIAMI" :DEVICE "DBAl" :DIRECTORY "SMITH"
:NAME "LOGIN" :TYPE "COM" :VERSION 4)

Table 7-3 names the fields of a VAX LISP pathname, the VMS file
components that correspond to those fields, and the VAX LISP data type
each field accepts.

Table 7-3: VAX LISP Pathname Fields

Pathname Field VMS Component Value

0 :HOST node String, integer, or NIL. If you
specify a string, the field value
can include an acce~s control
string, and you must omit the
final double colon(::). Examples
of host field values are 0, "0",
"HOST", "A: :B: :C", and' "A\"NAME
password\"".

:DEVICE device

:DIRECTORY directory

,,Q

7-9

String or NIL. If you specify a
string, you must omit the final
colon(:). An example of a device
field value is "DBAl".

String, NIL, or the :WILD keyword.
The :WILD keyword is translated to
the VMS wildcard symbol

--------------- ·-·------··"-- ------~

Table 7-3 (cont.)

Pathname Field

:NAME

:TYPE

:VERSION

VAX LISP/VMS IMPLEMENTATION NOTES

VMS Component

filename

filetype

version

Value

asterisk (*). If you specify a
string, you must omit the square
brackets ([]) or angle brackets
(< >). Examples of directory
field values are "SMITH",
"SMITH.COMMAND", and "SMITH ... ".

String, NIL, or the :WILD keyword.
The :WILD keyword is translated to
the VMS wildcard symbol
asterisk (*). If you specify a
string, you must omit the period

0

(.) that follows the name. Q
Examples of name field values are
"LISP" and "L*SP".

String, NIL, or the :WILD keyword.
The :WILD keyword is translated to
the VMS wildcard symbol

- asterisk (*). If you specify a
string, you must omit the period
(.) that precedes the type. Q
Examples of type field values are
"LSP" and "FAS".

String, integer, NIL, or keyword.
An integer can be positive,
negative, or zero. Zero
represents the newest version of a
file, and minus one (-1)
represents the previous version of Q
a file. The following keywords
can be specified:

:NEWEST
:PREVIOUS
:WILD

equivalent to O
equivalent to -1
equivalent to"*"

If you specify a string, you must
omit the initial semicolon(;).
Examples of version field values
are 0, -14, "2%", and "4*"·

7-10

0

0

0

0

0

0

VAX LISP/VMS IMPLEMENTATION NOTES

7.2.6 Three Ways to Create Pathnames

You can create a pathname in any one of three ways, depending on which
of the following functions you use:

• The MAKE-PATHNAME function

Lisp> (MAKE-PATHNAME :HOST "MIAMI"
:DEVICE "DBAI"
:DIRECTORY "SMITH"
:NAME "TEST"
:TYPE "LSP"
:VERSION 0)

#S(PATHNAME :HOST "MIAMI" :DEVICE "DBA1" :DIRECTORY "SMITH"
:NAME "TEST" :TYPE "LSP" :VERSION 0)

• The PATHNAME function

•

Lisp> (PATHNAME "MIAMI::DBA1:[SMITH]LOGIN.COM;4")
#S(PATHNAME :HOST "MIAMI" :DEVICE "DBA1" :DIRECTORY "SMITH"

:NAME "LOGIN" :TYPE "COM" :VERSION 4)

The PARSE-NAMESTRING function

Lisp> (PARSE-NAMESTRING "MIAMI::DBA1:[SMITH]LOGIN.COM")
#S(PATHNAME :HOST "MIAMI" :DEVICE "DBAI" :DIRECTORY "SMITH"

:NAME "LOGIN" :TYPE "COM" :VERSION 4)

The MAKE-PATHNAME function
user-input keywords :HOST,
the PATHNAME function and
pathname by:

directly creates a
:DIRECTORY, and so on.
the PARSE-NAMESTRING

pathname from the
On the other hand,

function create a

• Using a pathname, namestring, symbol, or stream as
argument.

• Parsing the argument.

• Returning a pathname, if the parse operation is a success.

NOTE

The LISP system does not check that you enter an
existing or a complete file specification when you
create a pathname. So, you can create a pathname that
is not usable in VMS. If that situation occurs, and
you perform a file operation, the operation will not
succeed. To correct the problem, you must change the
pathname to conform with a VMS file specification.
See Chapter 1 for a description of VMS file
specifications and see Section 7.2.5 for a description
of the field values in a VAX LISP pathname.

7-11

an

VAX LISP/VMS IMPLEMENTATION NOTES

You can specify any valid DECnet-VAX node specification in the host
field of a pathname when you are calling a parsing function. Eacho
host name in the specification must be followed by two colons (::) as
shown in the following example:

Lisp> (PATHNAME "FIRST::SECOND::THIRD::DBA1:[SMITH]PATHNAME")
#S(PATHNAME :HOST "FIRST::SECOND::THIRD" :DEVICE "DBA1"

:DIRECTORY "SMITH" :NAME "PATHNAME" :TYPE NIL
:VERSION NIL)

The PATHNAME function concatenated the three nodes, FIRST, SECOND, and
THIRD, into a single string in the pathname's host field.

If the namestring argument in
PARSE-NAMESTRING function is a
translated ..

a call
logical

to the PATHNAME or the
name, the logical name is

The values that the PATHNAME and PARSE-NAMESTRING functions return o
make the functions different from each other. The PATHNAME function
returns a pathname if the parse operation succeeds and returns an
error signal if the operation fails. The PARSE-NAMESTRING function
also returns a pathname if the parse operation succeeds; if the
operation fails, the function either returns NIL or signals an error,
depending on the value of the :JUNK-ALLOWED keyword.

Descriptions of the MAKE-PATHNAME, PATHNAME, and
functions are provided in COMMON LISP: The Language.

7.2.7 Comparing Similar Pathnames

PARSE-NAMESTRING

0

You should use the EQUAL function to compare pathnames with the same
field entries. This function is sensitive to keywords and their
equivalent symbols (that is, :WILD is equivalent to"*"), and case is Q
not considered in comparisons. ·ror example, if the MAKE-PATHNAME and
PARSE-NAMESTRING functions create different pathnames for the file
TEST.*;, you can use the EQUAL function to compare the pathname that
is returned by each function (see COMMON LISP: The Language). The
following calls to the SETF macro set the pathnames created by the
MAKE-PATHNAME and PARSE-NAMESTRING functions to the variables x and Y:

Lisp> (SETF x (MAKE-PATHNAME :NAME "Test"
:TYPE :WILD
:VERSION 0))

#S(PATHNAME :HOST "MIAMI" :DEVICE NIL :DIRECTORY NIL
:NAME "Test" :TYPE :WILD :VERSION 0)

Lisp> (SETF y (PARSE-NAMESTRING "Test.*;"))
#S(PATHNAME :HOST "MIAMI" :DEVICE NIL :DIRECTORY NIL

:NAME "TEST" :TYPE "*" :VERSION :NEWEST)

7-12

0

0

0

0

0

0

VAX LISP/VMS IMPLEMENTATION NOTES

The EQUAL function can .be used to compare the variables X and Y, even
though the case of the characters is not the same and the keyword
:WILD and its string equivalent ("*") are used.

Lisp> (EQUAL X Y)
T

The function returns T, indicating that the pathname values of X and Y
are equal.

7.2.8 Converting Pathnames into Namestrings

You can convert a pathname into a namestring by specifying the
pathname in a call to the NAMESTRING function.

If the argument you specify contains the name of a host, the function
invokes DECnet-VAX to perform network operations whether or not the
specified host is the current host. To avoid using DECnet-VAX, the
VAX LISP implementation of the NAMESTRING function removes the host
value if the value is the same as the translation value of SYS$NODE.
The following call to the TRANSLATE-LOGICAL-NAME function shows that
the current node is MIAMI:

Lisp> (TRANSLATE-LOGICAL-NAME "SYS$NODE")
("_MIAMI : : ")

If you use the PATHNAME function to create a pathname called
THIS-PATHNAME, whose host field value is the current node, the
NAMESTRING function does not include the host in the namestring it
returns. The following call to the SETF macro set_s THIS-PATHNAME to
the pathname that is created with the PATHNAME function:

Lisp> (SETF THIS-PATHNAME
(PATHNAME "MIAMI::DBA1:[SMITH]LOGIN.COM;4"))

#S(PATHNAME :HOST "MIAMI" :DEVICE "DAB1" :DIRECTORY "SMITH"
:NAME "LOGIN" :TYPE "COM" :VERSION 4)

When the NAMESTRING function is
argument, the namestring that
pathname's host:

called with
is returned

Lisp> (NAMESTRING THIS-PATHNAME)
"DBA1:[SMITH]LOGIN.COM;4"

THIS-PATHNAME as its
does not include the

Suppose you use the PATHNAME function to create a pathname called
THAT-PATHNAME whose host field value is BOSTON. The following call to
the SETF macro sets THAT-PATHNAME to the pathname that is created with
the PATHNAME function:

7-13

-----·-· ·- -- ·-------

VAX LISP/VMS IMPLEMENTATION NOTES

Lisp> (SETF THAT-PATHNAME
(PATHNAME "BOSTON: :DBAl: [SMITH]LOGIN.COM;4")) 0

#S(PATHNAME :HOST "BOSTON" :DEVICE "DBAl" :DIRECTORY "SMITH"
:NAME "LOGIN" :TYPE "COM" :VERSION 4)

Because the current node is MIAMI and the host field value of
THAT-PATHNAME is BOSTON, the NAMESTRING function returns a namestring
that includes all the pathname field values:

Lisp> (NAMESTRING THAT-PATHNAME)
"BOSTON::DBA1:[SMITH]LOGIN.COM;4"

If you want to invoke DECnet-VAX and you want to specify the current
host, specify the host with an access control string or specify zero
as the host. For example:

Lisp> (SETF THAT-PATHNAME O
(PATHNAME "0::THATDEVICE:[SMITH]LOGIN.COM"))

#S(PATHNAME :HOST "0" :DEVICE "THATDEVICE" :DIRECTORY "SMITH"
:NAME "LOGIN" :TYPE "COM" :VERSION NIL)

Lisp> (NAMESTRING THAT-PATHNAME)
"0::THATDEVICE:[SMITH]LOGIN.COM"

Table 7-3 noted that in VAX LISP the host field of a pathname can
include an access control string. If the NAMESTRING function is
called with a pathname argument whose host field includes an access Q
control string, the namestring that is returned includes the host,
even if the value in the pathname's host field is the same as the
current node.

Assume that the current host is MIAMI. The following SETF expression
sets THIS-PATHNAME to the pathname that is created with the PATHNAME
function:

Lisp> (SETF THIS-PATHNAME O
(PATHNAME

#S(PATHNAME
"MIAMI\"SMITH MYPASSWORD\"::THISDEVICE:[SMITH]FILE"))

:HOST "MIAMI:\SMITH mypassword\"" :DEVICE "THISDEVICE"
:DIRECTORY "SMITH" :NAME "FILE" :TYPE NIL VERSION: NIL)

The host field of the pathname that is created contains the host MIAMI
and the access control string SMITH MYPASSWORD. The NAMESTRING
function, when called with THIS-PATHNAME as its argument, returns a
namestring that includes all the pathname field values:

Lisp> (NAMESTRING THIS-PATHNAME)
"MIAMI\"SMITH mypassword\"::THISDEVICE:[SMITH]FILE"

7-14

0

VAX LISP/VMS IMPLEMENTATION NOTES

7.2.9 Functions That Use Pathnames

OMost of the functions you can use to create and manipulate VAX LISP
pathnames are described in COMMON LISP: The Language. These functions
have at least one required argument and some have optional arguments.
In VAX LISP, the value of a pathname function's required argument can
be a pathname, namestring, symbol, or stream.

0

0

The following two functions need further explanation than is given in
COMMON LISP: The Language.

• The DIRECTORY function

•

7.2.10

The DIRECTORY function (described in Part II) converts its
argument to a pathname and merges that pathname with the
following VMS file specification:

host::device:[directory]*.*;*

The values for the host, device, and directory fields are
supplied by the *DEFAULT-PATHNAME-DEFAULTS* variable (see next
section).

The DEFAULT-DIRECTORY function

The DEFAULT-DIRECTORY function (described in Part II) is
supplied by VAX LISP in addition to the pathname functions
described in COMMON LISP: The Language. This function returns
a pathname that refers to the current directory.

Using the *DEFAULT-PATHNAME-DEFAULTS* Variable

O
The value of the *DEFAULT-PATHNAME-DEFAULTS* variable is used by
pathname functions to fill pathname fields not specified in
arguments. The default value of this variable is a pathname
host and directory fields indicate the current directory and

some
their
whose
whose

0

device, name, type, and version fields contain NIL.

In VAX LISP, you can change the value of the
DEFAULT-PATHNAME-DEFAULTS variable in two ways:

• With the SETF macro

The following example illustrates using the SETF macro to
change a pathname's directory from [SMITH] to [SMITH.TEST]:

7-15

VAX LISP/VMS IMPLEMENTATION NOTES

Lisp> (SETF *DEFAULT-PATHNAME-DEFAULTS*
(MAKE-PATHNAME :DIRECTORY "[SMITH.TEST)"))

#S(PATHNAME :HOST "MIAMI" :DEVICE "DBA1"
:DIRECTORY "[SMITH.TEST)" :NAME NIL
:TYPE NIL :VERSION NIL)

• With the DEFAULT-DIRECTORY function

The value of the *DEFAULT-PATHNAME-DEFAULTS* variable is set
to the value of your default directory when LISP starts and
when you change your directory with the form (SETF
(DEFAULT-DIRECTORY) ...). To check the value of your default
directory, call the DEFAULT-DIRECTORY function. For example:

Lisp> (DEFAULT-DIRECTORY)
#S(PATHNAME :HOST "MIAMI" :DEVICE "DBA1"

:DIRECTORY "SMITH" :NAME NIL
:TYPE NIL :VERSION NIL)

The pathname returned in this example indicates that the
default directory is SMITH on host MIAMI. In this case, each
time a pathname function fills a pathname field with a default
value, the corresponding value in the directory SMITH is used.

To change the value of your default direct--ory, set it with the
SETF macro. For example, the following illustrates how to

0

0

change a default directory from SMITH to SMITH.TEST: Q
Lisp> (SETF (DEFAULT-DIRECTORY) "[.TEST]")
11 [• TEST 1"

The next example illustrates that when the directory is
changed, the DEFAULT-DIRECTORY function returns a new pathname
referring to the new default directory:

Lisp> (DEFAULT-DIRECTORY)
#S(PATHNAME :HOST "MIAMI" :DEVICE "DBA1"

:DIRECTORY "SMITH.TEST" :NAME NIL
:TYPE NIL :VERSION NIL)

NOTE

The value of the *DEFAULT-PATHNAME-DEFAULTS* variable
must be a pathname. Do not set this variable to a
namestring, symbol, or stream.

7-16

0

0

----------------------------·-------------

VAX LISP/VMS IMPLEMENTATION NOTES

7.3 GARBAGE COLLECTOR

C)when VAX LISP is executing, LISP objects are created dynamically.
Some of the objects that are created are always used and referred to,
while others are referred to for only a short time. When a LISP
object can no longer be referred to, the space that the object
occupies can be reclaimed by the VAX LISP system. This process of
reclaiming sp.ace is called garbage collection.

The VAX LISP garbage collector is a stop-and-copy garbage collector.
The LISP system includes a dynamic memory pool, which is divided into
two equal-sized spaces: dynamic-0 space and dynamic-1 space. At a
given time, LISP objects are allocated in either dynamic-0 or
dynamic-1 space. When the memory in the current space is exhausted,
LISP processing is temporarily suspended, and the LISP data obj"ects
that can still be referred to are copied to the other space. The
objects that cannot be referred to are not copied.

C)You can ignore garbage collections of dynamic memory space when you
are writing LISP programs. Garbage collections occur automatically
when the current dynamic space is exhausted, and LISP processing
continues when a garbage collection is complete.

C)

Sections 7.3.1 through 7.3.6 provide information about the VAX LISP
garbage collector.

7.3.1 Frequency of Garbage Collection

The frequency of garbage collection is proportional to the amount of
dynamic memory space that is available in the VAX LISP system. You
can set the amount of dynamic memory space that is t·o be available by
specifying the DCL /MEMORY command qualifier (see Chapter 2) when you

~invoke the LISP system. Garbage collection occurs less often if you
_)use this qualifier to increase the size of the dynamic memory space.

The degree to which the frequency of garbage collection and the size
of dynamic memory affects run-time efficiency depends on the program
being executed. If a program creates more permanent objects than
objects that can be referred to for a short period of time, the
garbage collector has to perform more copy operations. As a result,
the program slows down. The fewer the copy operations the garbage
collector has to perform, the faster the garbage collection is
finished.

7 .3.2 Static Space

~LISP objects that are created in static space are not collected by the
_)garbage collector. These objects do not move and they are not

7-17

·---------------------------------··- -· ---· ·-· ·------------------------

VAX LISP/VMS IMPLEMENTATION NOTES

deleted, even if they can no longer be referred to. You can create
objects in static space by using the :ALLOCATION keyword with the .Q
MAKE-ARRAY function (see Part II) or with the constructor functions
that are defined by the DEFINE-ALIEN-STRUCTURE macro for alien
structures. (See the description of the DEFINE-ALIEN-STRUCTURE macro
in Part II.).

7.3.3 LISP Processing

LISP processing is suspended during a garbage collection. The VMS
operating system queues interrupt functions, such as those defined by
the VAX LISP BIND-KEYBOARD-FUNCTION and INSTATE-INTERRUPT-FUNCTION
:~nctions, for delivery after garbage collection is finished.
Interrupt functions are discussed in Section 7.5.

7 .3.4 Messages

When a garbage collection occurs, a message is displayed when the
operation begins and when it is finished. You can suppress these
messages by changing the value of the VAX LISP *GC-VERBOSE* variable
to NIL. When the value is NIL, messages are not displayed.

You can also specify the contents of the messages
values of the VAX LISP *PRE-GC-MESSAGE* and
variables. The *GC-VERBOSE*, *PRE-GC-MESSAGE*, and
variables are described in Part II.

NOTE

by changing the
POST-GC-MESSAGE
POST-GC-MESSAGE

If you suppress or change the garbage collection
messages and a garbage collection is initiated due to
a control stack overflow, to determine whether your
program is in a recursive loop is difficult.
Therefore, you should not suppress or change the
messages before you debug your program.

7.3.5 Available Space

0

0

0

Garbage collection generally occurs when a LISP object is being
created. If a garbage collection occurs and not enough dynamic memory
space is available to allocate the object, an error is signaled. When
this situation exists, you can suspend the LISP image and resume it
later with more dynamic-memory space. For information about how to
suspend and resume a LISP image, see Chapter 2. Q

7-18

VAX LISP/VMS IMPLEMENTATION NOTES

7.3.6 Garbage Collection Failure

c=)The garbage collection process may fail to complete. If, for·example,
a garbage collection is initiated because of control stack overflow,
the size of the control stack must increase, and the amount of dynamic
memory space must decrease. If the reducec dynamic memory space
cannot contain all the LISP objects that can be referred to, the LISP
image is terminated, and control returns to the DCL level. This
condition is usually caused by a user programming error, such as a
function that is recursive and nonterminating.

7.4 INPUT AND OUTPUT

VAX LISP I/0 is implemented with two sets of low-level functions. One

Oset of functions handles terminal I/0 by way of direct QIOs to the
terminal driver. The other set of functions handles all other I/0
(particularly to disk files) by way of calls to VAX Record Management
Services {RMS). See the VAX Record Management Services Reference
Manual for information about VAX RMS.

The VAX LISP implementation dependencies for I/0 have to do with the
following topics:

• Newline character

• Terminal input 0
• End-of-file operations

• Record length

• File organization

0 • Functions

The implementation-dependent information about these
provided in Sections 7.4.1 through 7.4.6.

7.4.1 Newline Character

topics is

. COMMON LISP defines the #\NEWLINE character as a character that is
returned from the READ-CHAR function as an end-of-line indicator. In
VAX LISP, the character code for the #\NEWLINE character has an
integer value of 255.

In VAX LISP, the WRITE-CHAR and WRITE-STRING functions interpret the
Q#\NEWLINE character as follows:

7-19

VAX LISP/VMS IMPLEMENTATION NOTES

• When the WRITE-CHAR function is called with the #\NEWLINE
character as its argument value, the function starts writing?.~
new line. This call is equivalent to a call to the TERPR~~
function (see COMMON LISP: The Language).

• When the WRITE-STRING function is called with an argument
string that contains the #\NEWLINE character, the function
divides the string into two lines. The following example
shows the output that is displayed by the WRITE-STRING
function when the #\NEWLINE character is not used:

Lisp> (WRITE-STRING (CONCATENATE 'STRING
"NEW"
"LINE"))

NEWLINE
"NEWLINE"

Both of the strings NEW and LINE are displayed on the same~
line. A call to the WRITE-STRING function, which includes a_____,)
string argument that contains the #\NEWLINE character, looks
like the following:

Lisp> (WRITE-STRING (CONCATENATE 'STRING
"NEW"

NEW
LINE
"NEW
LINE"

(STRING #\NEWLINE)
"LINE"))

0

This call to the WRITE-STRING function displays the strings
NEW and LINE on separate lines.

The #\NEWLINE character is the only character that causes a new line
to be written. VAX LISP writes carriage returns and linefeeds withoutC)
special interpretation.

7 .4.2 Terminal Input

In VAX LISP, terminals perform input operations in line mode. Input
is returned by the READ-CHAR function only after you press the RETURN
key.

The READ-CHAR function returns ASCII characters as data unless one of
the following conditions exists:

• A character is used by the VMS terminal driver
control.

7-20

for terminal

0

0

0

0

0

0

VAX LISP/VMS IMPLEMENTATION NOTES

• A character is .defined to invoke an interrupt function.

See the VAX/VMS I/0 Reference Manual: Part I for information on
terminal control characters, and see Section 7.5 for information about
interrupt functions.

You can change the mode in which your terminal performs input
operations by invoking the VAX LISP SET-TERMINAL-MODES function with
the :PASS-THROUGH keyword (see Part II). For example:

Lisp> (SET-TERMINAL-MODES :PASS-THROUGH T)
T

If the value of the :PASS-THROUGH keyword is T, the SET-TERMINAL-MODES
pass-through mode, control characters processed by the VMS system and
characters defined to invoke interrupt functions are not recognized by
the LISP system. In addition, the READ-CHAR function performs input
operations differently than it does when the terminal is in line mode.
In line mode, the READ-CHAR function does not return a character until
you press the RETURN key; in pass-through mode, that function returns
a character as soon as the character is typed. See COMMON LISP: The
Language for a description of the READ-CHAR function.

To put your terminal back into line mode, invoke the
SET-TERMINAL-MODES function with the :PASS-THROUGH keyword set to NIL.

7.4.3

Lisp> (SET-TERMINAL-MODES :PASS-THROUGH NIL)
T

End-of-File Operations

In VAX LISP, read operations from a file do not indicate the end of
the file until the operation after the last character in the file is
performed.

Read operations from a terminal do not indicate the end of a file in
VAX LISP.

In VAX LISP, you can close a stream that is connected to your terminal
if the stream is not related to the stream bound to the *TERMINAL-IO*
variable. If you attempt to close the stream bound to *TERMINAL-IO*,
no action is performed.

7.4.4 Record Length

VAX LISP uses RMS to process file I/0. Therefore, the maximum record
length in VAX LISP must conform to the maximum record length in RMS.
A maximum of 32,767 characters can be written to a disk file, and a

7-21

VAX LISP/VMS IMPLEMENTATION NOTES

maximum of 9995 characters can be written to a magnetic tape. If you
exceed these record-length limits, an error is signaled and nothing is
written to the file.

The WRITE-CHAR function causes an immediate operation when it is
called with a terminal stream. As a result, there is no limit on the
number of calls you can make to the WRITE-CHAR function before you
invoke the TERPRI function if you are writing to a terminal.

Your user-buffered I/0 byte limit quota determines the maximum string
length you can write to your terminal. You can find out what the
quota is by invoking the VAX LISP GET-PROCESS-INFORMATION function
with the :BIO-BYTE-QUOTA keyword (see Part II). For example:

Lisp> (GET-PROCESS-INFORMATION "SMITH" :BIO-BYTE-QUOTA)
(:BIO-BYTE-QUOTA 30000)

NOTE

You can prevent your buffered I/0 byte
from overflowing by including calls
function or by specifying the #\NEWLINE
your output.

7.4.5 File Organization

limit quota
to the TERPRI
character in

VAX LISP reads RMS files sequentially. Character files created by VAX
LISP have sequential organization, variable-length records, and the
implied carriage-return attribute. Files created for binary output
(for example, the WRITE-BYTE function) have sequential organization,
variable-length records, and no carriage-control attributes.

7 .4.6 Functions

Four COMMON LISP functions used for I/0 have VAX LISP dependencies and
need further explanation. The implementation information for the
following functions is provided in the next. four sections:

• FILE-LENGTH

• FILE-POSITION

• OPEN

e WRITE-CHAR

7-22

0

0

0

0

0

0

0

0

0

0

VAX LISP/VMS IMPLEMENTATION NOTES

7.4.6.1 FILE-LENGTH Function - The length of a file is measured in
units of the OPEN function's :ELEMENT-TYPE keyword. In VAX LISP/VMS,
files cannot be measured in these units for all the supported element
types. Therefore, the FILE-LENGTH function returns NIL.

You can determine the total number of 8-bit bytes that car. occupy a
file by invoking the GET-FILE-INFORMATION function with the
:END-OF-FILE-BLOCK and :FIRST-FREE-BYTE keywords, and then performing
the following steps:

1. Multiply the value returned for the
keyword minus one by 512

:END-OF-FILE-BLOCK

2. Add the value you get in Step 1 to the value returned for the
:FIRST-FREE-BYTE keyword

For more information on the GET-FILE-INFORMATION
II.

function, see Par~

7.4.6.2 FILE-POSITION Function - The FILE-POSITION function returns
or sets the current position within a random-access file. VAX
LISP/VMS does not support random-access files; therefore, the function
returns NIL.

7.4.6.3 OPEN Function - Before you can access a file, you must
it with the OPEN function or the WITH-OPEN-FILE macro. The
function can be specified with keywords that determine the type
stream that is to be created and how errors are tp be handled.
keywords you can specify are the following:

e :DIRECTION

e :ELEMENT-TYPE

e :IF-EXISTS

e :IF-DOES-NOT-EXIST

open
OPEN

of
The

VAX LISP restricts.the values you can specify for the preceding
keywords. The rest of this section explains the restrictions.

In VAX LISP/VMS, you can specify the :IO value for the :DIRECTION
keyword only if the specified stream is connected to a terminal or
mailbox. When you specify the :IO value, the target device· must exist
before the OPEN funciton is called. therefore, if you specify this
value for the :DIRECTION keyword, you cannot specify the :IF-EXISTS
keyword, and you can specify the :IF-DOES-NOT-=EXIST keyword only with
the :ERROR value.

7-23

. VAX LISP/VMS IMPLEMENTATION NOTES

The :IF-EXISTS :OVERWRITE option is not supported in VAX LISP/VMS.

For the :IF-EXISTS keyword values of :RENAME, :RENAME-AND-DELETE, and
:SUPERSEDE, the old file.is renamed to the same name with the string
"old" appended to the file type. On closing files opened with any of
these three values, ~nd specifying :ABORT T, the new version is
deleted and the old is restored to its former name. On closing files
with :ABORT NIL, on :RENAME, there is no action; with
:RENAME-AND-DELETE or :SUPERSEDE, the old file is deleted.

VAX LISP supports all the values for the :ELEMENT-TYPE keyword except
CHARACTER. VAX LISP allows you to open binary streams, but the
maximum byte size for a stream is 512 8-bit bytes.

0

7.4.6.4 WRITE-CHAR Function - The WRITE-CHAR function disregards the Q
bit and font attributes of characters.

7 .5 INTERRUPT FUNCTIONS AND KEYBOARD FUNCTIONS

An interrupt function is a function that is invoked when a specific
event occurs. If an interrupt function is defined for an event, the
VAX LISP system interrupts the current LISP processing and invokes the
interrupt function when the event occurs. When the interrupt function Q
exits, the VAX LISP system resumes processing at the point where it
was interrupted.

VAX LISP provides two functions you can use to define interrupt
functions: INSTATE-INTERRUPT-FUNCTION and BIND-KEYBOARD-FUNCTION.
The INSTATE-INTERRUPT-FUNCTION function is part of a general mechanism
that lets your program respond to asynchronous events (ASTs) in the
VMS operating system. This mechanism is described in the VAX LISP/VMS Q
System Access Prograrmning Guide.

The BIND-KEYBOARD-FUNCTION function is a more specialized function
that binds an ASCII control character to an interrupt function. Once
a control character is bound to a function, you can cause the VAX LISP
system to interrupt the current evaluation and call the function
asynchronously by typing the control character. Functions bound using
BIND-KEYBOARD-FUNCTION are also c~lled keyboard functions.

Interrupt functions are not always called as soon as the defined event
occurs. If a low-level LISP function, such as CDR or CONS, is being
evaluated or a garbage collection is being performed, interrupt
functions are placed in a queue until they can be evaluated. Delays
in interrupt function evaluation are generally not perceptible. An
example of when you might perceive a delay is when the system performs
a garbage collection.

7-24

0

VAX LISP/VMS IMPLEMENTATION NOTES

VAX LISP also provides ·a means by which you can

Opriorities for interrupt and keyboard functions.
called interrupt levels, are described in the VAX
Access Programming Guide.

assign different
These priorities,

LISP/VMS System

If you suspend the LISP system when interrupt functions are defined,
the functions that are defined by the BIND-KEYBOARD-FUNCTION function
are still defined when the system is resumed. The key/function.
bindings are not lost. Any other interrupt functions that you may
have defined are uninstated when the system is suspended and are not
reinstated when the system is resumed.

Besides the BIND-KEYBOARD-FUNCTION function are the VAX LISP functions
GET-KEYBOARD-FUNCTION and UNBIND-KEYBOARD-FUNCTION. The
GET-KEYBOARD-FUNCTION function returns information about a function
that is bound to a control character, and the UNBIND-KEYBOARD-FUNCTION

ofunction removes the binding of a function from a control character.

Descriptions of the BIND-KEYBOARD-FUNCTION, GET-KEYBOARD-FUNCTION, and
UNBIND-KEYBOARD-FUNCTION functions are provided in Part II.

7 .6 COMPILER

OFor information on how to compile LISP expressions and the advantages
and disadvantages of compiling LISP expressions, see Chapter 2. This
section describes two compiler restrictions (one with the COMPILE
function and one with the COMPILE-FILE function) and compiler
optimizations.

7.6.1 Compiler Restrictions

c=)rhe VAX LISP compiler translates interpreted function definitions into
function objects that contain VAX instructions. The COMPILE function
causes these objects to be bound as the definitions of the symbols

•that name them. The COMPILE-FILE function puts the objects into an
output file. Because of the way these two functions handle such
objects, a restriction exists for the use of each of the functions.

· 7.6.1.1 COMPILE Function - The compiler cannot compile pieces of code
unless they are function definitions defined at top level. •Therefore,
you cannot use the COMPILE function to compile a function unless you
create the function in a null lexical environment (not top level). An
example of a LISP expression that cannot be evaluated follows:

0 Lisp> (LET ((COUNTER 0))
(COMPILE NIL #'(LAMBDA() (INCF COUNTER))))

7-25

VAX LISP/VMS IMPLEMENTATION NOTES

The COMPILE function cannot compile the function object in the
preceding example because the object depends on the lexical
environment in which it was created. In the following example, the
COMPILE function is called with a lambda expression rather than a
function object:

Lisp> (LET ((COUNTER 0))
(COMPILE NIL '(LAMBDA() (INCF COUNTER))))

The call to the COMPILE function in the preceding example compiles the
lambda expression. The value that is returned is a compiled object
that increments the dynamic value of COUNTER. The compiled object
does not increment the local value of COUNTER, which encloses the call
to the COMPILE function.

0

7.6.1.2 COMPILE-FILE Function - The COMPILE-FILE function encloses O
each top-level form of the file it is compiling with an anonymous
function definition. Therefore, the function cannot put a compiled
function object that is recognized as data into an output file.
Consider the following form:

Lisp> (SETF F '#.(COMPILE NIL '(LAMBDA (C) (PRINT C))))
#<Compiled Function #:G1149 #x504C4C>

When the COMPILE-FILE function reads the preceding form from a file Q
that is being compiled, an anonymous function is created. This
function becomes part of the third element of the list whose first
element is the SETF special form. The preceding call to the SETF
special form can be compiled but the list cannot be put into the
output file.

7.6.2 Compiler Optimizations

In VAX LISP, you can control two qualities of compiled code: the
speed of the generated code and whether run-time safety checking is to
be performed. The default value for these qualities is 1. You can
set the values globally and locally. To set the values globally in
VAX LISP, you can either use the DCL LISP command with the /COMPILE
and /OPTIMIZE qualifiers (see Chapter 2) or specify the OPTIMIZE
declaration in a call to the PROCLAIM function (see COMMON LISP: The
Language). Both methods of setting the quality values produce the
same results. For example, if you are at the DCL level of operation
and you want to set the global values of the speed quality (speed of
object code) to 3 and the safety quality (run-time error checking) to
2, use the following DCL command specification:

$ LISP/COMPILE/OPTIMIZE=(SPEED:3,SAFETY:2) MYPROG.LSP

7-26

0

0

VAX LISP/VMS IMPLEMENTATION NOTES

If you are in LISP and.you want to set the global values of the speed

O and safety qualities, specify the PROCLAIM function as the first form
in the file. For example, to set the values of the qualities to the
same values that were set in the preceding example, specify the
following call to the PROCLAIM function as the first form in the file

· MYPROG. LSP:

(PROCLAIM '(OPTIMIZE (SPEED 3) (SAFETY 2)))

You can also set the quality values locally. To do this, you must use
the OPTIMIZE declaration within the form for which you want the values
to be set. Local optimization quality values override global quality
values.

All proclamations are put into the fastload file so that they also
occur when fastloaded. However, the compiler observes INLINE

O proclamations only when the OPTIMIZE SPEED quality is greater than the
OPTIMIZE SPACE quality, and does not check for stack overflow.

If you are more concerned about the safety of your code than the speed
at which it is evaluated, the value of the safety quality must be
greater than 1, or the value of the speed quality must be less than 2.
When this relationship exists between the two quality values, the
compiler generates safe code. Safe code is code that checks arguments
to ensure that the arguments are of the proper data type. Examples of

O safe code are the following:

• Code that uses generic arithmetic

• Code that checks if the arguments of calls to functions that
require list arguments are lists

• Code that checks whether indices used to access arrays are
bound

Qrf you are more interested in producing code that is evaluated fast
than in producing safe code, the value of the speed quality must be
greater than or equal to 2, and the value of the safety quality must
be less than or equal to 1. When this relationship exists between the
two quality values, the compiler considers type declarations and
generates type-specific code. Type-specific code executes faster than
safe code. If you want the compiler to generate type-specific code,
you must specify declarations in your code in addition to setting the
values of the speed and the safety qualities to the correct values.

0

Consider the following code and suppose the value of the safety
quality is 1 and the speed quality is 2:

7-27

VAX LISP/VMS IMPLEMENTATION NOTES

(DEFUN LOOP-OVER-A-SUBLIST (INPUT-LIST)
(DO ((I (GET-INITIAL-VALUE) (1+ I))

(L INPUT-LIST (CDR L)))
((OR(>= I (THE FIXNUM *FINAL-VALUE*))

(ENDP L))
L)

(DECLARE (FIXNUM I)
(LIST L))

(DO-SOME-WORK LI)))

Since the value of the safety quality is less than 2 and the value of
the speed quality is greater than 1, the compiler regards the type
declarations. In this example, the types FIXNUM and LIST are declared
with the following form:

(DECLARE (FIXNUM I)
(LIST L))

When the example code is compiled, the compiler uses the type
declarations and translates the 1+, CDR, ENDP, and>= functions in the
code as follows:

• The 1+ function becomes one VAX instruction.

• The CDR function becomes one VAX instruction.

• The ENDP function is transformed into the NULL function.

• The>= function becomes two VAX instructions:
comparison and a branch.

a longword

The value of the *FINAL-VALUE* variable and the return value of the
GET-INITIAL-VALUE function must be fixnums. Also, the INPUT-LIST
argument specified for the LOOP-OVER-A-SUBLIST function must be a true
list (not an atom or a dotted list).

If a declaration is violated, the error that results is not signaled.
For example, if you call the LOOP-OVER-A-SUBLIST function with the
symbol LOOP, an error results because the argument is not a list, but
the error is not signaled. Errors such as this can cause damage to
the LISP environment, which cannot be repaired. By default, the
values of the speed and safety qualities are set such that error
checking and signaling code are generated for all operations; such
values prevent you from damaging the LISP environment.

If the INPUT-LIST argument in the preceding example is not guaranteed
to always be a list, you can add an explicit type check before the DO
loop. The following form is an example of an explicit type check:

0

0

0

0

(UNLESS (LISTP INPUT-LIST)
;but doesn't check for a dotted-list Q

(ERROR "Cannot loop through this object: -s." INPUT-LIST))

7-28

VAX LISP/VMS IMPLEMENTATION NOTES

The check performed by ·the LISTP function is evaluated at run time,
oeven though the compiler might heed the FIXNUM and LIST declarations.

If you want a function to be compiled inline, you must proclaim it
INLINE. Declaring a function INLINE has no effect. However, once a
function has been proclaimed INLINE, it will be compiled inline unless
specifically declared NOTINLINE.

For more information on making LISP compiled code run fast, see the
release notes.

7.7 FUNCTIONS AND MACROS

Several functions and macros described in COMMON LISP: The Language

C have implementation dependencies. Table 7-4 lists the names of these
)functions and macros and provides a brief explanation of the type of

information that is implementation dependent. For a summary
description of these functions and macros, see Part II. Each
description consists of the function's or macro's use,
implementation-dependent information, format, applicable arguments,
return value, and examples of use. See COMMON LISP: The Language for
further information regarding these functions and macros.

Q Table 7-4: Summary of lmplementation-Oependent Functions and Macros

Name

APROPOS

O APROPOS-LIST

BREAK

COMPILE-FILE

DESCRIBE

DIRECTORY

DRIBBLE

ED

OGET-INTERNAL-RUN-TIME

Function
or Macro

Function

Function

Function

Function

Function

Function

Function

Function

Function

7-29

Implementation-Dependent
Information

Optional argument and DO-SYMBOLS
macro

Optional argument and DO-SYMBOLS
macro

Facility invoked

Keywords and return value

Displayed output

Argument merged with wildcards

Terminal I/0 while in the Editor
is not saved; cannot nest calls

Arguments

Meaning of return value

---------- ---- -----·-- -----~

VAX LISP/VMS IMPLEMENTATION NOTES

Table 7-4 (cont.)

Function Implementation-Dependent 0
Name or Macro Information

LOAD Function Finds latest file

LONG-SITE-NAME Function Logical name and return value

MACHINE-INSTANCE Function Logical name and return value

MACHINE-VERSION Function Return value

MAKE-ARRAY Function :ALLOCATION keyword

REQUIRE Function Modules

ROOM Function Displayed output 0
SHORT-SITE-NAME Function Logical name and return value

TIME Macro Displayed output

TRACE Macro Keywords

WARN Function Facility invoked

0

0

0
7-30

0

0
PART II

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

0

0

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

APROPOS Function

c=)earches through packages for symbols whose print names contain a
specified string. The function is not sensitive to the case of
characters. The string can be either the print name or a substring of
the symbol's print name.

The APROPOS function displays a message that shows the string that is
being searched for and the name of the package that is being searched.
When the function finds a symbol whose print name contains the string,
the function displays the symbol's name. If the symbol has a value,
the function displays the phrase "has a value" after the symbol as
follows:

MY-SYMBOL, has a value

If the symbol has a function definition, the
c,hrase "has a definition" after the symbol as

function
follows:

displays the

MY-FUNCTION, has a definition

In VAX LISP, the APROPOS function uses the DO-SYMBOLS macro rather
than the DO-ALL-SYMBOLS macro. As a result, the function displays by
default only symbols that are accessible from the current or specified
package. For information on packages, see COMMON LISP: The Language.

Qormat

APROPOS string &OPTIONAL package

Arguments

string

0
The string to be searched for in the symbols' print names. If
you specify a symbol for this argument, the symbol's print name
is used.

package

An optional argument. If you specify the argument, the symbols
in the specified· package are searched. If you specify T, all
packages are searched. If you do not specify the argument, the
symbols that are accessible in the current package are searched.

Return Value

No value.

0
1

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

APROPOS Function (cont.)

Example

Lisp> (APROPOS "*PRINT")

Sy~bols in package USER containing the string "*PRINT":
PRINT-CIRCLE, has a value
PRINT-SLOT-NAMES-AS-KEYWORDS, has a value
PRINT-RADIX, has a value
PRINT-ESCAPE, has a value
PRINT-ARRAY, has a value
PRINT-GENSYM, has a value
PRINT-LEVEL, has a value
PRINT-PRETTY, has a value
PRINT-LENGTH, has a value

0

PRINT-RIGHT-MARGIN, has a value O
PRINT-MISER-WIDTH, has a value
PRINT-BASE, has a value
PRINT-CASE, has a value
PRINT-LINES, has a value

Searches the package USER for the string *PRINT and displays a
list of the symbols that contain the specified string.

2

0

0

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

APROPOS-LIST Function

Searches through packages for symbols whose print names contain a
specified string. The function is not sensitive to the case of
characters. The string can be either the print name or a substring of
the symbol's print name.

When the function completes its search, it returns a list of the
symbols whose print names contain the string.

In VAX LISP, the APROPOS-LIST function uses the DO-SYMBOLS macro
rather than the DO-ALL-SYMBOLS macro. As a result, the function
includes by default only symbols that are accessible from the current
package in the list it returns. For information on packages, see
COMMON LISP: The Language.

Format

APROPOS-LIST string &OPTIONAL package

Arguments

string

The string to be searched for in the symbols' print names. If
you specify a symbol for this argument, the symbol's print name
is used.

package

An optional argument. If you specify the argument, the symbols
in the specified package are searched. If you specify T, all
packages are searched. If you do not specify the argument, the
symbols that are accessible in the current package are searched.

Return Value

A list of the symbols whose print names contain the string.

Example

Lisp> (APROPOS-LIST "ARRAY")
(ARRAY-TOTAL-SIZE ARRAY-DIMENSION ARRAY-DIMENSIONS
SIMPLE-ARRAY ARRAY-DIMENSION-LIMIT ARRAY-ELEMENT-TYPE
ARRAYP *PRINT-ARRAY* ARRAY-RANK ARRAY-RANK-LIMIT
MAKE-ARRAY ARRAY-TOTAL-SIZE-LIMIT ARRAY-ROW-MAJOR-INDEX
ADJUST-ARRAY ARRAY ARRAY-IN-BOUNDS-P ADJUSTABLE-ARRAY-P
ARRAY-HAS-FILL-POINTER-P)

Searches the symbols that are accessible in the current package
for the string ARRAY and returns a list of the symbols that
contain the specified string.

3

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

ATTACH Function

Connects your terminal to a process and puts the current LISP process
into a VMS hibernation state, a state in which a process is inactive
but can become active at a later time. You can use this function to
switch terminal control from one process to another.

The ATTACH function is similar to the DCL ATTACH command. For
information about the ATTACH command, see the VAX/VMS DCL Dictionary.

Format

NOTE

The ATTACH function can be used only if LISP is
invoked from DCL; it cannot be used if LISP is invoked
from another command language interpreter (CLI).

ATTACH process

Argument

process

0

0

The name or identification (PID) of the process to which your Q
terminal is to be connected. To specify the process name, use a
string or a symbol; to specify the PID, use an integer.

Return Value

Undefined.

Examples

1. Lisp> (SPAWN)
$ ATTACH SMITH
Lisp> (ATTACH "SMITH_l")
%DCL-S-RETURNED, control returned to process SMITH_l
$

• The call to the SPAWN function creates a subprocess named
SMITH_l.

• The DCL ATTACH command attaches your terminal back to the
process SMITH.

• The call to the VAX LISP ATTACH function returns control
to the process SMITH_!.

4

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

ATTACH Function (cont.)

0 2. Lisp> (DEFUN ATTACH-MAIN NIL

0

0

0

0

(ATTACH (SECOND (GET-PROCESS-INFORMATION
NIL
:OWNER-PIO))))

ATTACH-MAIN

Defines a function that attaches back to the main process if
the LISP system is running as a subprocess.

5

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

BIND-KEYBOARD-FUNCTION Function

Binds an ASCII keyboard control character (characters of codes O too
31) to a function. When a control character is bound to a function,
you can execute the function by typing the control character on your
terminal keyboard. A function bound in this way is called a keyboard
function.

When you type the control character, the LISP system is interrupted at
its current point, and the function the control character is bound to
is called asynchronously. The LISP system then evaluates the function
and returns control to where the interruption occurred.

You can delete the binding of a function and a control character by
using the UNBIND-KEYBOARD-FUNCTION function. You can use the
GET-KEYBOARD-FUNCTION function to get infor~ation about a function
that is bound to a control character. Q

You can specify an interrupt level (an integer in the range O through
7) for a keyboard function by using the :LEVEL keyword. A keyboard
function can only interrupt code that is executing at an interrupt
level below its own. Keep the following guidelines in mind when
specifying an interrupt level:

• The default interrupt level for keyboard functions is 1 •

• Interrupt level 6 is used by LISP to handle keyboard input;Q
therefore, a keyboard function executing at interrupt level 6
cannot receive input from the keyboard. For this reason, be
careful when using interrupt level 6.

• Interrupt level 7 can interrupt any code that is not in the
body of a CRITICAL-SECTION macro. A keyboard function
executing at interrupt level 7 must terminate by executing a
THROW to a tag, such as ~ANCEL-CHARACTER-TAG. o

• If you bind a control character to the BREAK or DEBUG
functions, use a level that is high enough to interrupt your
other keyboard and interrupt functions but that is less than
6.

• If you bind a control character to the ED function, use the
default interrupt level (1) or a lower level.

The VAX LISP/VMS System Access Programming Guide contains more
information about using interrupt levels and about the
CRITICAL-SECTION macro and interrupt functions.

6

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

BIND-KEYBOARD-FUNCTION Function (cont.)

NOTE

When you bind a control character to a function, the
stream bound to the *TERMINAL-IO* variable must be
connected to your terminal.

See Chapter 7
asynchronously.

Format

for an explanation about calling

BIND-KEYBOARD-FUNCTION control-character function
&KEY :ARGUMENTS :LEVEL

functions

Q Arguments

control-character

The ASCII control character to be bound to the function. You can
bind a function to any control character except CTRL/Q or CTRL/S.

function

Q The function to which the control character is to be bound.

:ARGUMENTS

0

0

A list containing arguments to be passed to the specified
function when it is called. The argument.s in the list are
evaluated when the BIND-KEYBOARD-FUNCTION function is called.

:LEVEL

An integer in the range 0-7, specifying the interrupt level for
the keyboard function. The default is 1.

Return Value

T.

Examples

1. Lisp> (BIND-KEYBOARD-FUNCTION #\AB #'BREAK)
T
Lisp> <CTRL/B>
Break>

Binds CTRL/B to the BREAK function. You can then invoke a
break loop by typing CTRL/B.

7

J

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

BIND-KEYBOARD-FUNCTION Function (cont.)

2. Lisp> (BIND-KEYBOARD-FUNCTION #\AE #'ED)
T
Lisp> <CTRL/E>

(now in the Editor)

Binds CTRL/E to the ED function. You can then invoke the
Editor by typing CTRL/E.

8

0

0

0

0

0

VAX LISP/VMS. FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

BREAK Function

()Invokes a break loop. A break loop is a nested read-eval-print
For more information about break loops, see Chapter 5.

loop.

Format

BREAK &OPTIONAL format-string &REST args

Arguments

format-string

C)args

The string of characters that is passed to the FORMAT function to
create the break-loop message.

The arguments that are passed to the FORMAT function as arguments
for the format string.

Return Value

When the CONTINUE function is called to exit the break loop, the
BREAK function returns NIL.

()Example

()

()

(WHEN (UNUSUAL-SITUATION-P STATUS)
(BREAK "Unusual situation -n encountered. Please investigate"

STATUS))

Calls the BREAK function if the value of the UNUSUAL-SITUATION-P
function is not NIL. The break message contains the condition
code.

9
I -.:.,

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

CANCEL-CHARACTER-TAG Tag

CANCEL-CHARACTER-TAG, when used in
throw that occurs whenever the
keyboard. In VAX LISP/VMS, CTRL/C
can use CANCEL-CHARACTER-TAG in
behavior when a user types CTRL/C.

a CATCH construct, catches
cancel character is typed at

is the cancel character. Thus,
a CATCH construct to alter

the Q
the
you
the

You can also use CANCEL-CHARACTER-TAG in a THROW construct to cause an
e.xit to the VAX LISP read-eval-print loop. In .this way, you can
partially simulate the action of the cancel character from within your
code. (The cancel character also invokes the CLEAR-INPUT function on

Format

CANCEL-CHARACTER-TAG

Example

Lisp> (DEFUN TRAPPER()

TRAPPER

(CATCH 'CANCEL-CHARACTER-TAG
(LOOP))

(PRINC "Execution came through here"))

Lisp> (TRAPPER)
<CTRL/C>
Execution came through here
"Execution came through here"
Lisp>

e The TRAPPER function sets up a catcher
CANCEL-CHARACTER-TAG, then enters an infinite loop.

• The user types CTRL/C.

for

• The PRINC function prints a string, indicating that execution
continued following the CATCH form rather than returning
directly to the Lisp> prompt.

10

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

CHAR-NAME-TABLE Function

0 Displays a formatted list of the VAX LISP character names.

Format

CHAR-NAME-TABLE

Return Value

No value.

Example

Lisp> (CHAR-NAME-TABLE)

0 NUL

Hex Code Preferred Name Other Names

00 NULL
01 "'A SOH
02 "'B STX
03 "'C ETX
04 "'D EOT
05 "'E ENQ
06 "'F ACK

0
"'G BEL
"'H BS
.... I HT

07 BELL
08 BACKSPACE
09 TAB
OA LINEFEED "'J LF
OB "'K VT
oc PAGE "'L FORMFEED FF
OD RETURN "'M CR
OE "'N so
OF "'O SI

0 OLE
XON DCl
DC2

10 "'P
11 "'Q
12 "'R
13 "'S XOFF DC3
14 "'T DC4
15. "'U NAK
16 "'V SYN
17 "W ETB
18 "'X CAN
19 "Y EM
1A z SUB
1B ESCAPE ESC ALT MODE
1C FS
10 GS
1E RS
1F us

0 20 SPACE
7F RUBOUT

SP
DELETE DEL

11

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

CHAR-NAME-TABLE Function (cont.)

84 IND
85 NEL

0
86 SSA
87 ESA
88 HTS
89 HTJ
BA VTS
BB PLD
BC PLU
SD RI
BE SS2
8F SS3
90 DCS
91 PUl
92 PU2
93 STS
94 CCH 0
95 MW
96 SPA
97 EPA
9~ CSI
9C ST
9D osc
9E PM
9F APC
FF NEWLINE 0

0

0
12

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

COMPILEDP Function

A predicate that checks whether an object
compiled function definition.

is a symbol that has a

Format

COMPILEDP name

Argument

name

The symbol whose function, macro, or special form definition is
to be checked.

Return Value

The interpreted function, macro, or special form definition, if
the symbol has an interpreted definition that was compiled with
the COMPILE function. Returns T, if the symbol has a compiled
definition that was not compiled with the COMPILE function.
Returns NIL, if the symbol does not have a compiled function
definition.

O Example

Lisp> (DEFUN ADD2 (X) (+ X 2))
ADD2

0

0

Lisp> (COMPILEDP 'ADD2)
NIL
Lisp> (COMPILE 'ADD2)
ADD2 compiled.
ADD2
Lisp> (COMPILEDP 'ADD2)
(LAMBDA (X) (BLOCK ADD2 (+ X 2)))

• The call to the DEFUN macro defines a function named ADD2.

• The first call to the COMPILEDP function returns NIL, because
the function ADD2 has not been compiled.

• The call to the COMPILE function compiles the function ADD2.

• The second call to the COMPILEDP function returns the
interpreted function definition, because the function ADD2 was
previously compiled.

13

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

COMPILE-FILE Function

Compiles a specified LISP source file and writes the compiled code
a binary fast-loading file (type FAS).

Format

COMPILE-FILE input-pathname

Arguments

&KEY :LISTING :MACHINE-CODE :OPTIMIZE
:OUTPUT-FILE :VERBOSE :WARNINGS

input-pathname

aso

A pathname, namestring, symbol, or stream. The compiler uses the
value of the *DEFAULT-PATHNAME-DEFAULTS* variable to fill in fileo
specification components that are not specified. The file type
defaults to LSP.

:LISTING

Specifies whether the compiler is to produce a listing file. The
value can be T, NIL, or a pathname, namestring, symbol, or
stream. If you speeify T, the compiler produces a listing file.
The listing file is assigned the same name as the source fileo
with the file type LIS, and is placed in the directory that
contains the source file.

If you specify NIL, no listing is produced. The default value is
NIL.

If you specify a pathname, namestring, symbol, or stream, the
compiler uses the value as the specification of the listing file.
The compiler uses the LIS file type and the value of theo
input-pathname to fill the components of the file specification
that are not specified.

:MACHINE-CODE

Specifies whether the compiler is to include the machine code it
produces for each function and macro-it compiles in the listing
file. The value can be Tor NIL. If you specify T, the listing
file contains the machine code. If you specify NIL, the listing
file does not contain the machine code. The default value is
NIL.

:OPTIMIZE

Specifies the optimization qualities the compiler is to use
during compilation. The value must be a list of sublists. Each Q
sublist must contain a symbol and a value, which specify the

14

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

COMPILE-FILE Function (cont.)

optimization qualities and corresponding values that the compiler
is to use during compilation. For example:

_((SPACE 2) (SAFETY l)}

The default value for each quality is one. For a detailed
discussion of compiler optimizations, see Chapter 7.

:OUTPUT-FILE

Specifies whether the compiler is to produce a fast-loading file.
The value can be T, NIL, or a pathname, namestring, symbol, or
stream. If you specify T, the compiler produces a fast-loading
file. The output file is assigned the same name as the source
file with the file type FAS and is placed in the directory that
contains the source file. The default value is T.

If you specify NIL, no fast-loading file is produced.

If you specify a pathname, namestring, symbol, or stream, the
compiler uses the value as the specification of the output file.
The compiler uses the FAS file type and the value of the
input-pathname to fill the components of the file specification
that are not specified.

:VERBOSE

Specifies whether the compiler is to display the name of
functions and macros it compiles. The value can be Tor NIL. If
you specify T, the compiler displays the name of each function
and macro. If a listing file exists, the compiler also includes
the names in the listing file. If you specify NIL, the names are
not displayed or included in the listing file. The default value
is the value of the *COMPILE-VERBOSE* variable (By default, T).

:WARNINGS

Specifies whether the compiler is to display warning messages.
The value can be T or NIL. If you specify T, the compiler
displays warning messages. If a listing file exists, the
compiler also includes the messages in the listing file. If you
specify NIL, warning messages are not displayed or included in
the listing file. The default value is the value of the
COMPILE-WARNINGS variable (By default, T).

Return Value

If the compiler generated an output file, a namestring is
returned. Otherwise, NIL is returned.

15

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

COMPILE-FILE Function (cont.)

Examples O
1. Lisp> (COMPILE-FILE "FACTORIAL" :VERBOSE T)

Starting compilation of file DBA1:[SMITH]FACTORIAL.LSP;1

FACTORIAL compiled.

Finished compilation of file DBA1:[SMITH]FACTORIAL.LSP;1
O Errors, 0 warnings
"DBA1:[SMITH]FACTORIAL.FAS;1"

Compiles the file FACTORIAL.LSP, which is in the current
directory. A fast-loading file named FACTORIAL.FAS is
produced. The compilation is logged to the terminal, because
the :VERBOSE keyword is specified with the value T. Q

2. Lisp> (COMPILE-FILE "FACTORIAL" :OUTPUT-FILE NIL
:LISTING T
:WARNINGS NIL
:VERBOSE NIL)

NIL

Compiles the file FACTORIAL.LSP, which is in the current
directory. A fast-loading file is not produced, because the
:OUTPUT-FILE keyword is specified with the value NIL. A
listing file named FACTORIAL.LIS is produced. Warning
messages are suppressed, because the :WARNINGS keyword is
specified with the value NIL.

16

0

0

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

COMPILE-VERBOSE Variable

Controls the amount of information that the compiler displays.

The COMPILE-FILE function binds the *COMPILE-VERBOSE* variable to the
value supplied by the :VERBOSE keyword. If the :VERBOSE keyword is
not specified, the function uses the existing value of the
COMPILE-VERBOSE variable. If the value is not NIL, the compiler
displays the name of each function as it is compiled; if the value is
NIL, the compiler does not display the function names. The default
value is T.

Example

Lisp> (COMPILE-FILE 'MATH)
Starting compilation of file DBAl:[SMITH]MATH.LSP;l

FACTORIAL compiled.
FIBONACCI compiled.

Finished compilation of file DBAl:[SMITH]MATH.LSP;l
O Errors, 0 Warnings
"DBAl:[SMITH]MATH.FAS;l"
Lisp> (SETF *COMPILE-VERBOSE* NIL)
NIL
Lisp>. (COMPILE-FILE 'MATH)
"DBA1:[SMITH]MATH.FAS;2"

e The first call to the COMPILE-FILE function shows the output
the compiler displays during the compilation of a file, when
the *COMPILE-VERBOSE* variable is set to T.

o The call to the SETF macro sets the value of the variable to
NIL.

0 The second call to the COMPILE-FILE function compiles the file
without displaying output, because the variable's value is
NIL.

17

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

COMPILE-WARNINGS Variable

Controls whether the compiler displays warning messages during a
compilation.
The COMPILE-FILE function binds the *COMPILE-WARNINGS* variable to the
value supplied with the :WARNINGS keyword. If the :WARNINGS keyword
is not specified, the function uses the existing value of the
COMPILE-WARNINGS variable. If the value is not NIL, the compiler
displays warning messages; if the value is NIL, the compiler does not
display warning messages. The default value is T.

NOTE

The compiler always displays fatal and continuable
error messages.

Example

Lisp> (COMPILE-FILE 'MATH)
Starting compilation of file DBA1:[SMITH]MATH.LSP;2

Warning in FACTORIAL
N bound but value not used.

FACTORIAL compiled.
Warning in FIBONACCI

N bound but value not used.
FIBONACCI compiled.

Finished compilation of file DBA1:[SMITH)MATH.LSP;2
O Errors, 2 Warnings
"DBA1:[SMITH]MATH.FAS;3"
Lisp> (SETF *COMPILE-WARNINGS* NIL)
NIL
Lisp> (COMPILE-FILE 'MATH)
Starting compilation of file DBA1:[SMITH]MATH.LSP;2

FACTORIAL compiled.
FIBONACCI compiled.

Finished compilation of file DBA1:[SMITH]MATH.LSP;2
O Errors, 2 Warnings
"DBA1:[SMITH]MATH.FAS;4"

• The first call to the COMPILE-FILE function shows the output
the compiler displays during the compilation of a file, when
the *COMPILE-WARNINGS* variable is set to T.

0

0

0

0

e The call to the SETF macro sets the value of the variable to Q
NIL.

18

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

COMPILE-WARNINGS Variable (cont.)

• The second call to the COMPILE-FILE function compiles the file
without displaying warning messages in the output, because the
variable's value is NIL.

19

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

CONTINUE Function

Enables you to exit the break loop. When you call this function, it
causes the BREAK function to return NIL and the evaluation of your
program to continue from the point at which the break loop was
entered.

Format

CONTINUE

Return Value

NIL.

Example

Lisp> (BIND-KEYBOARD-FUNCTION #\AB #'BREAK)
Lisp> (LOAD "FILEB.LSP")
; Loading contents of file LISPW$:[SMI ...
AB
Break> (LOAD "FILEA.LSP")

Loading contents of file LISPW$:[SMITH]FILEA.LSP;1
FUNCTION-A

Finished loading LISPW$:[SMITH]FILEA.LSP;1
T
Break> (CONTINUE)
Continuing from break loop ...
; FUNCTION-B
; Finished loading LISPW$:[SMITH]FILEB.LSP;1
T
Lisp>

• The BREAK function is bound to CTRL/B.

• FILEB.LSP is loaded.

• The programmer, realizing that FILEA.LSP (which is needed to
initialize an environment for FILEB.LSP) is not yet loaded,
invokes the BREAK loop .

• FILEA.LSP is then loaded.

• Finally, the call to
loading of FILEB.LSP
top-level loop.

the CONTINUE function continues the
and then returns the programmer to the

20

0

0

0

0

0

0

O·

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DEBUG Function

Invokes the VAX LISP debugger.

For information about how to use the VAX LISP debugger, see Chapter 5.

Format

DEBUG

Return Value

Returns NIL. You can cause the debugger to return other values
(see Chapter 5).

Example

Lisp> (DEBUG)
Control Stack Debugger
Frame #5: (DEBUG)
Debug 1>

Invokes the VAX LISP debugger. When you invoke the debugger, it
displays an iden~ifying message, stack frame information, and the
debugger prompt.

21

---·-· ·- - - ----------

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DEBUG-CALL Function

Returns a list representing the current debug frame function call.o
This function is a debugging tool and takes no arguments. The list
returned by the DEBUG-CALL function can be used to access the values
passed to the function in the current stack frame.

Format

DEBUG...1.CALL

Return Value

A list representing the current debug frame function call.
is returned if this function is called outside the debugger •

. Example

Lisp> (SETF THIS-STRING "abed")
"abed"
Lisp> (FUNCTION-Y THIS-STRING 4)
.••. Error in function FUNCTION-Y
Frame #4 (FUNCTION-Y "abed" 4)
Debug 1> (SETF STRING (SECOND {DEBUG-CALL)))
"abed"
Debug 1> (EQ "abed" STRING)
NIL
Debug 1> {EQ THIS-STRING STRING)
T

NIL

0

0

In this case, the function in the. current stack frame is
FUNCTION-Y. The call to (DEBUG-CALL) returns the list
(FUNCTION-Y "abed 4). The form (SECOND (DEBUG-CALL)) evaluates
"abed", the first argument to FUNCTION-Yin the current stack
frame. Note that the string returned by the call (SECONDO
(DEBUG-CALL)) is the same string passed to the function
FUNCTION-Y. See the description of the TRACE macro for another
example of the use of the DEBUG-CALL function.

0
22

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DEBUG-PRINT-LENGTH Variable
.-~
~' Controls the output that the debugger, stepper, and tracer facilities

display. This variable controls the number of objects these
facilities can display at each level of a nested data object. The
variable's value can be either a positive integer or NIL. If the
value is a positive integer, the integer indicates the number of
objects at each level of a nested object to be displayed. If the
value is NIL, no limit is on the number of objects that can be
displayed. The default value is NIL.

The value of this variable might cause the printer to truncate output.
An ellipsis (•..) indicates truncation.

This variable is similar to the *PRINT-LENGTH* variable described in
COMMON LISP: The Language.

Q Example

0

0

0

Lisp> (SETF ALPHABET '(ABC DEF G HI J K))
(ABC DEF G HI J K)
Lisp> (SETF *DEBUG-PRINT-LENGTH* 5)
5
Lisp> (+ 2 ALPHABET)

Fatal error in function+ (signaled with ERROR).
Argument must be a number: (ABC DEF G HI J K)

Control Stack Debugger
Frame # 5 : (+ 2 (A B c D E •.•))
Debug 1> (SETF *DEBUG-PRINT-LENGTH* 3)
3
Debug 1> WHERE
Frame #5: ·c + 2 (A B C .••))

• The call to the SETF macro sets the symbol ALPHABET to a list
of single-letter symbols.

• The value of the *DEBUG-PRINT-LENGTH* variable is set to 5.

• The illegal call to the plus sign(+) function causes the LISP
system to invoke the debugger. The debugger displays only
five elements of· the list that is the value of the symbol
ALPHABET the first time it displays the stack frame numbered
5.

• The call to the SETF macro within the debugger sets the value
of the *DEBUG-PRINT-LENGTH* variable to 3.

• The debugger displays three elements of the list, after you
change the value of the variable.

23

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DEBUG-PRINT-LEVEL Variable

Controls the output that the debugger, stepper, and tracer facilities
display. This variable controls the number of levels of a nested
object these facilities can display. The variable's value can be
either a positive integer or NIL. If the value is a positive integer,
the integer indicates the number of levels of a nested object to be
displayed. If the value is NIL, no limit is on the number of levels
that can be displayed. The default value is NIL.

The value of this variable might cause the printer to truncate output.
A number sign(#) indicates truncation.

This variable is similar to the *PRINT-LEVEL* variable described in
COMMON LISP: The Language.

Example

Lisp> (SETF ALPHABET '(A (B (C (D (E))))))
(A (B (C (D (E)))))
Lisp> (SETF *DEBUG-PRINT-LEVEL* 3)
3
Lisp> (+ 2 ALPHABET)

Fatal error in function+ (signaled with ERROR).
Argument must be a number: (A (B (C (D (E)))))

Control Stack Debugger
Frame # 5 : (+ 2 (A (B #)))
Debug 1> (SETF *DEBUG-PRINT-LEVEL* NIL)
NIL
Debug 1> WHERE
Frame # 5 :- (+ 2 (A (B (c (D (E))))))

• The call to the SETF macro
nested list.

sets the symbol ALPHABET to

• The value of the *DEBUG-PRINT-LEVEL* variable is set to 3.

• The illegal call to the plus sign(+) function causes the LISP
system to invoke the debugger. The debugger displays only
three levels of the nested list (that is the value of the
symbol ALPHABET) the first time it displays the stack frame
numbered 5.

• The call to the SETF macro within the debugger sets the value
of the *DEBUG-PRINT-LEVEL* variable to NIL.

• The debugger displays all the levels of the nested list, after
you change the value of the variable.

24

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DEFAULT-DIRECTORY Function

()Returns a pathname with the host, device, and directory fields
with the values of the current default directory.

filled

The DEFAULT-DIRECTORY function is similar to the DCL SHOW DEFAULT
command. For information about the SHOW DEFAULT command, see the
VAX/VMS DCL Dictionary.

You can change the default directory by using the SETF macro. Setting
your default directory with this macro also resets the value of the
DEFAULT-PATHNAME-DEFAULTS variable. Performing this operation is
similar to using the DCL SET DEFAULT command. See Chapter 7 and
COMMON LISP: The Language for information about pathnames and the
DEFAULT-PATHNAME-DEFAULTS variable.

()
Note that the directory must exist for
succeed.

the change of directory to

Format

DEFAULT-DIRECTORY

Return Value

() The pathname that refers to the default directory.

Examples

()

()

1. Lisp> (DEFAULT-DIRECTORY)
#S(PATHNAME :HOST "MIAMI" :DEVICE "DBAl"
:DIRECTORY "SMITH" :NAME NIL :TYPE NIL
:VERSION NIL)
Lisp> (SETF (DEFAULT-DIRECTORY) "[.TESTS]")
II [• TESTS] II
Lisp> (DEFAULT-DIRECTORY)
#S(PATHNAME :HOST "MIAMI" :DEVICE "DBAl"
:DIRECTORY "SMITH.TESTS" :NAME NIL :TYPE NIL
:VERSION NIL)

• The first call to the DEFAULT-DIRECTORY function returns
the pathname that points to the default directory.

o The call to the SETF macro changes the value of the
default directory to SMITH.TESTS.

• The second call to the DEFAULT-DIRECTORY function verifies
the directory change.

25

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DEFAULT-DIRECTORY Function (cont.)

2. Lisp> (DEFAULT-DIRECTORY)
#S(PATHNAME :HOST "MIAMI" :DEVICE "DBAl"
:DIRECTORY "SMITH.TESTS" :NAME NIL :TYPE NIL
:VERSION NIL)
Lisp> *DEFAULT-PATHNAME-DEFAULTS*
#$(PATHNAME :HOST "MIAMI" :DEVICE "DBAl"
:DIRECTORY "SMITH.TESTS" :NAME NIL :TYPE NIL
:VERSION NIL)
Lisp> (NAMESTRING (DEFAULT-DIRECTORY))
"DBA1:[SMITH.TESTS]"
Lisp> (SETF (DEFAULT-DIRECTORY) "[-]")
"[-]"
Lisp> (NAMESTRING (DEFAULT-DIRECTORY))
"DBA1:[SMITH]"
Lisp> (NAMESTRING *DEFAULT-PATHNAME-DEFAULTS*)
"DBA1:[SMITH]"

e The first call to the DEFAULT-DIRECTORY function returns
the pathname that points to the default directory .

• The call to the *DEFAULT-PATHNAME-DEFAULTS* variable shows
that its. value is the same as the value returned by the
DEFAULT-DIRECTORY function.

0

0

• The call to the NAMESTRING function returns
as a string.

the pathname Q

• The call to the SETF macro changes the value of the
default directory to DBAl:[SMITH].

• The last two calls to the NAMESTRING function show that
the· return values of the DEFAULT-DIRECTORY function and
the *DEFAULT-PATHNAME-DEFAULTS* variable are still the O
same.

0
26

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DEFINE-FORMAT-DIRECTIVE Macro

Defines a directive for use in a FORMAT control string, supplementing
directives supplied with VAX LISP. In a call to FORMAT, specify a
directive you have defined in the form:

- /name/

You can also specify colon and at-sign modifiers:

-@:/name/

You can also specify one or more parameters:

-n,n/name/

DEFINE-FORMAT-DIRECTIVE provides means for the body of the format
directive you define to receive the value of parameters and the
presence or absence of colon and at-sign modifiers.

See Section 6.4 for more information about defining format directives.

Format

DEFINE-FORMAT-DIRECTIVE name
(arg stream colon-p atsign-p
&OPTIONAL (parameter1 default)

(parameter2 default) .••)
&BODY forms

Arguments

name

arg

The name of the FORMAT directive defined with this macro.

NOTE

If you do not specify a package with name when
you define the directive, name is placed in the
current package. If you do not specify a package
when you refer to the directive, the FORMAT
directive looks in the USER package for the
directive definition.

A symbol that is bound to the argument to be formatted by the
directive.

27

. - --- ------- -·--·--- ---

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DEFINE-FORMAT-DIRECTIVE Macro (cont.)

stream

A symbol that is bound to the stream to which the printing is
be done.

to

colon-p

A symbol that is bound to Tor NIL, indicating whether a colon
was specified in the directive.

atsign-p

A symbol that is bound to Tor NIL, indicating whether an at-sign
was specified in the directive.

parameters

forms

There must be one optional argument for each prefix parameter
that is allowed in the directive. A symbol supplied as a
parameter argument will be bound to the corresponding prefix
parameter if it was specified in the directive. Otherwise, the
default value wiil be used, as with all optional arguments.

Forms which are evaluated to print argument to stream. The
can begin with a declaration and/or documentation string.

body

Return value

The name of the FORMAT directive that has been defined.

Example

Lisp> (DEFINE-FORMAT-DIRECTIVE EVALUATION-ERROR
(SYMBOL STREAM COLON-P ATSIGN-P
&OPTIONAL (SEVERITY 0))

(DECLARE (IGNORE ATSIGN-P))
(FRESH-LINE STREAM)
(PRINC (CASE SEVERITY

(0 "Warning: ")
(1 "Error: ")

-(2 "Severe Error: "))
STREAM)

(FORMAT STREAM ""':!The symbol ... s - :_does not have an ...
integer value.-%Its value is: -=_-s "
SYMBOL (SYMBOL-VALUE SYMBOL))

(WHEN COLON-P
(WRITE-CHAR #\BELL STREAM)))

EVALUATION-ERROR

28

0

0

0

0

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DEFINE-FORMAT-DIRECTIVE Macro (cont.)

Lisp> (SETF PROCESS NIL)
NIL
Lisp> (FORMAT T "-1:/EVALUATION-ERROR/" 'PROCESS)
Error: The symbol PROCESS does not have an integer value.

Its value is: NIL
<BEEP>

• This example shows the definition of a FORMAT directive, a use
of the directive, and the printed output.

• The prefix parameter 1 in "-1:/EVALUATION-ERROR/" indicates
the severity of the error being signaled. The colon produces
a beep on the terminal.

29

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DEFINE-GENERALIZED-PRINT-FUNCTION Macro

Defines a function that specifies how any object is to be prettyO
printed, regardless of its form. Generalized print functions are
effective only when they are enabled (globally or locally) and when
pretty printing is enabled. You can enable a generalized print
function globally, using GENERALIZED-PRINT-FUNCTION-ENABLED-P. Or,
you can enable it locally, using WITH-GENERALIZED-PRINT-FUNCTION. An
enabled generalized print function is used if its predicate evaluates
to a non-NIL value.

See Section 6.6 for more information about
functions.

Format

generalized print

DEFINE-GENERALIZED-PRINT-FUNCTION name (object stream) predicate O
&BODY forms

Arguments

name

The name of the generalized print function being defined.

object

A symbol that is bound to the object to be printed.

stream

A symbol that is bound to the stream to which output is to be
sent.

0

predicate

enabledo A form. When the generalized print function has been
(globally or locally), the system evaluates this form for every
object to be pretty printed. If the form evaluates to non-NIL on
the object to be pretty printed, the generalized print function
will be used.

forms

Forms that print object to stream, or take any
These forms can refer to the object and stream
symbols used for object and stream. The body can
declaration and/or documentation string.

Return Value

other action.
by means of the
begin with a

The name of the generalized print function that has been defined.Q

30

.0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DEFINE-GENERALIZED-PRINT-FUNCTION Macro (cont.)

Example

Lisp> (DEFINE-GENERALIZED-PRINT-FUNCTION PRINT-NIL-AS-LIST
(OBJECT STREAM)
(NULL OBJECT)
(PR INC " () " STREAM))

PRINT-NIL-AS-LIST
Lisp> (PRINT NIL)
NIL
NIL
Lisp>(PPRINT NIL)
NIL
Lisp> (WITH-GENERALIZED-PRINT-FUNCTION 'PRINT-NIL-AS-LIST

(PRINT NIL)

NIL
()

(PPRINT NIL))

Lisp> (SETF (GENERALIZED-PRINT-FUNCTION-ENABLED-P
'PRINT-NIL-AS-LIST)

T)
T
Lisp> (PPRINT NIL)
()

e The first PRINT call prints NIL, because the generalized print
function PRINT-NIL-AS-LIST is not enabled.

e The first PPRINT call prints NIL, because PRINT-NIL-AS-LIST is
still not enabled.

• The secpnd PRINT call prints NIL, because pretty printing is
not enabled.

Q e The second PPRINT call prints (), because the generalized
print function is enabled locally.

0

• The third PPRINT call prints (), because the generalized
print function is enabled globally.

31

~----------------------

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DEFINE-LIST-PRINT-FUNCTION Macro

Defines and enables a function to print lists that begin with a
specified element. Defined functions are effective only when pretty
printing is enabled. The system checks the first element of each list
to be printed for a match. If the first element of a list matches the
name of a list-print function, the list is printed according to the
format you have defined.

See Section 6.5 for more information about list-print functions.

Format

DEFINE-LIST-PRINT-FUNCTION symbol (list stream) &BODY forms

Arguments

.symbol

list

The first element of any list to be printed in the defined
format.

A symbol that is bound to the list to be printed.

stream

forms

A symbol that is bound to the stream on which printing is to be
done.

Forms to be evaluated. The forms refer to the list to be printed

0

0

0

and the stream by means of the symbols you supply for list and
stream. The body can include declarations. Calls to FORMAT may Q
also be included.

Return Value

The name of the list-print function that has been defined.

Example

Lisp> (DEFINE-LIST-PRINT-FUNCTION MY-SETQ (LIST STREAM)
(FORMAT STREAM

11-11-w-A -=I-@{-w-A -=_-w-,..-%-}-."
LIST))

MY-SETQ
Lisp> (SETF BASE '(MY-SETQ HI 3 BYE 4))
(MY-SETQ HI 3 BYE 4)

32

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DEFINE-LIST-PRINT-FUNCTION Macro (cont.)

O Lisp> (PRINT BASE)
(MY-SETQ HI 3 BYE 4)
(MY-SETQ HI 3 BYE 4)
Lisp> (PPRINT BASE)
(MY-SETQ HI 3

0-

0

0

0

BYE 4)

• The list-print function MY-SETQ is defined.

• The call to PRINT does not use the list-print function MY-SETQ
to print the value of BASE, because pretty-printing is not
enabled.

o The call to PPRINT does use the list-print function MY-SETQ to
print the value of BASE.

33

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DELETE-PACKAGE Function

Uninterns all the symbols interned in the package, unuses all theO
packages the function uses, and deletes the package. An error is
signaled if the package is used by any other package.

Format

DELETE-PACKAGE package

Argument

package

A package, or a string or symbol naming a package

Return Value

T.

Example

Lisp> (DELETE-PACKAGE "TEST-PACKAGE")
T
Lisp> (FIND-PACKAGE "TEST-PACKAGE")
NIL

34

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DESCRIBE Function

Displays information about a specified object. If the specified
object has a documentation string, this function displays the string
in addition to the other information the function displays. The type
of information the function displays depends on the type of the
object. For example, if a symbol is specified, the function displays
the symbol's value, definition, properties, and other types of
information. If a floating-point number is specified, the number's
internal representation is displayed in a way that is useful for
tracking such things as roundoff errors.

Format

DESCRIBE object

Argument

object

The object about which information is to be displayed.

Return Value

No value.

O Examples

0

0

1. Lisp> (DESCRIBE 'C)

It is the
Package:
Value:
Function:

symbol C
USER
unbound
undefined

2. Lisp> (DESCRIBE 'FACTORIAL)

It is the symbol FACTORIAL
Package: USER
Value: unbound
Function: a compiled-function

FACTORIAL n

3. Lisp> (DESCRIBE PI)

It is the long-float 3.1415926535897932384626433832795LO
Sign:
Exponent:
Significand:

+
2 (radix 2)
0.78539816339744830961566084581988LO

35

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DESCRIBE Function (cont.)

4. Lisp> (DESCRIBE '#(1 2 3 4 5))
It is a simple-vector
Dimensions: (5)
Element type: t
Adjustable: no
Fill Pointer: no
Displaced: no

Displays information about the simple-vector #(1 2 3 4 5).

36

0

0

0

0

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DIRECTORY Function

Converts its argument to a pathname and returns a
pathnames for the files matching the specification.
function is similar to the DCL DIRECTORY command.

Format

DIRECTORY pathname

Argument

pathname

list of the
The DIRECTORY

The pathname, namestring, stream, or symbol for which the list of
file system pathnames is to be returned. In VAX LISP/VMS, this
argument is merged with the following default file specification:

host::device:[directory]*.*;*

The host, device, and directory values are supplied by the
DEFAULT-PATHNAME-DEFAULTS variable.

Specifying just a directory is
directory with wild cards (*)
fields of the argument. For
expressions are equivalent:

(DIRECTORY "[MYDIRECTORY]")

equivalent to specifying a
in the name, type, and version

example, the following two

(DIRECTORY "[MYDIRECTORY]*.*;*")

Both expressions return a list of pathnames that represent the
files in the directory MYDIRECTORY.

Specifying just a directory with a specified version field is
equivalent to specifying a directory and version with wild cards
(*) in the name and type fields of the argument. For example,
the following two expressions are equivalent:

(DIRECTORY "[MYDIRECTORY];O")

(DIRECTORY "[MYDIRECTORY]*.*;")

Both expressions return a list of the pathnames that represent
the newest versions of the files in the directory MYDIRECTORY.

The following equivalent expressions return the list of pathnames
for files in your default directory:

37

------------- ----------

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DIRECTORY Function (cont.)

(DIRECTORY 1111)

(DIRECTORY (DEFAULT-DIRECTORY))

Return Value

A list of pathnames, if the specified pathname is matched, and
NIL, if the pathname is not matched.

Example

Lisp> (DEFUN MY-DIRECTORY (&OPTIONAL (FILENAME 1111))

(LET ((PATHNAME (PATHNAME FILENAME))
(DIRECTORY (DIRECTORY FILENAME)))

0

(COND ((NULL DIRECTORY) 0
(FORMAT T

"-%No files match -A.-% 11

(NAMESTRING FILENAME)))
(T (FORMAT T

"-%The following -:[files are-;file is ·1
in the directory -A:[-A]: 11

(EQUAL (LENGTH DIRECTORY) 1)
(PATHNAME-DEVICE

(NTH O DIRECTORY)). 0
(PATHNAME-DIRECTORY

(NTH O DIRECTORY)))
(DOLIST (DIRECTORY)

(FOR~T T "-&-2T-A" (FILE-NAMESTRING X)))
(TERPRI)))

(VALUES)))
MY-DIRECTORY
Lisp> (MY~DIRECTORY)
The following files are in the directory DBAl:[SMITH.TESTS]: Q

TESTS.DRB;l
TEST1.LSP;7
TEST1.LSP;6
TESTl.LSP;S
EXAMPLE.TXT;2
TEST3.LSP;15
TEST6.LSP;1

Lisp> (MY-DIRECTORY 11 .LSP;")
The following files are in the directory DBAl:[SMITH.TESTSJ:

TESTl. LSP; 7
TEST3.LSP;15
TEST6.LSP;1

• The call to the DEFUN macro defines a function that formats
the output of the DIRECTORY function, making the output more
readable. The function is defined such that it accepts anQ
optional argument and does not return a value.

38

0

O·

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DIRECTORY Function (cont.)

• The first call to the function MY-DIRECTORY shows how the
function formats the directory output when an argument is not
specified.

• The second call to the function MY-DIRECTORY includes an
argument; the output includes only the latest versions of file
names of type LSP.

39

---- -------------

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DRIBBLE Function

Echoes the input and output of an interactive LISP session to a
specified file, enabling you to save a record of what you do during
the session in the form of a file.

When you want to stop the DRIBBLE function from echoing input and
output to the pathname, close the file by calling the DRIBBLE function
without an argument.

In VAX LISP/VMS, the two restrictions on the use of the DRIBBLE
function are:

o When you are in the Editor, terminal I/0 is not recorded in
dribble file.

o You cannot nest calls to the DRIBBLE function.

Format

DRIBBLE &OPTIONAL pathname

Argument

pathname

a

0

0

The pathname to which the input and output of the LISP session is Q
to be sent.

Return Value

If an argument is specified with the function,
returned and dribbling is turned on. If debugging
function is called with no arguments, then T is
dribbling is turned off. If dribbling is off
without an argument, NIL is returned.

Examples

1. Lisp> (DRIBBLE "NEWFUNCTION.LSP")
Dribbling to DBA1:[SMITH]NEWFUNCTION.LSP;1
Lisp>

no value is
is on and the
returned and
and is called

Creates a dribble file named NEWFUNCTION.LSP. The LISP
system sends input and output to the file until you call the
DRIBBLE function again (without an argument) or exit LISP.

2. Lisp> (DRIBBLE)
T

Closes the dribble file that was previously opened.

40

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

ED Function

O Invokes the VAX LISP Editor. This function can be specified with an
optional argument whose value can be a namestring, pathname, or
symbol. In VAX LISP, the argument's value can also be a list. In
addition, you can specify a :TYPE argument whose value can be the
:FUNCTION or :VALUE keyword.

0

0

0

NOTE

If you bind a control character (such as CTRL/E) to
the ED function using BIND-KEYBOARD-FUNCTION, specify
an interrupt level of 1 (the default) or O with the
:LEVEL keyword. Do not specify a higher interrupt
level.

See Chapter 3 for information on using the VAX LISP Editor.

Format

ED &OPTIONAL x &KEY :TYPE

Arguments

:TYPE

The namestring, pathname, symbol, or list that is to be edited.
If you specify a list, the list must be a generalized variable
that can be specified in a call to the SETF macro. The list is
evaluated and it returns a value you can edi_t. When you write·
the buffer containing the value, the Editor replaces the value of
the generalized variable with the new value.

If you specify a symbol, you can also specify the keyword
argument. The value of the keyword informs the Editor whether
you want to edit the symbol's function or macro definition or its
value.

You can specify this argument if the x argument is a symbol. The
value is a keyword that affects the interpretation of the x
argument's value. You can specify one of the following keywords:

:FUNCTION

:VALUE

The Editor is invoked to edit the
or macro definition associated
specified symbol.

function
with the

The Editor is invoked to edit the specified
symbol's value.

41

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

ED Function (cont.)

The default value for the :TYPE keyword is the :FUNCTION keyword. 0
Return Value

No value.

Examples

1. Lisp> (ED "[SMITH.LISP]NEWPROG.LSP")

Invokes the Editor to edit the file NEWPROG.LSP in the
directory [SMITH.LISP].

2. Lisp> (ED 'FACTORIAL)

Invokes the Editor to edit a function named FACTORIAL.

3. Lisp> (ED 'GAMEBOARD-ARRAY :TYPE :VALUE)

Invokes the Editor to edit the value of
GAMEBOARD-ARRAY.

4. Lisp> (DEFSTRUCT ROOM
DOORS

ROOM

WINDOWS
OUTLETS
COLOR)

Lisp> (SETQ ROOM2 (MAKE-ROOM :DOORS 1
:WINDOWS 3
:OUTLETS 4
:COLOR 'BLUE))

the

iS(ROOM :DOORS 1 :WINDOWS 3 :OUTLETS 4 :COLOR BLUE)
Lisp> (ED '(ROOM-COLOR ROOM2))

symbol

• The call to the DEFSTRUCT macro defines a structure named
ROOM.

• .The call to the SETQ special form creates an instance of
the structure ROOM.

• The call to the ED function invokes the Editor to edit the
COLOR slot of the structure bound to ROOM2.

42

0

0

0

0

VAX LISP/VMS FUNCTION, MACRL, ~NL.J VARIABLE DESCRIPTIONS

ERROR-ACTION Variable

O Determines the action the VAX LISP error handler is to take when an
error occurs. The value of this variable can be the :EXIT or the
:DEBUG keyword. If the value is :EXIT, the error handler causes the
LISP system to exit; if the value is :DEBUG, the handler invokes the
VAX LISP debugger. The default value is :DEBUG for interactive LISP
sessions; the default value is :EXIT otherwise.

O·

0

In addition to setting this variable within a LISP form, you can also
set it on LISP initialization with the /ERROR_ACTION qualifier (see
Chapter 2).

Example

Lisp> (CAR 'A)

Fatal error in function CAR (signaled with ERROR).
Argument must be a list: A.

Control Stack Debugger
Frame #5: (CAR A)
Debug 1> QUIT
Lisp> (SETF *ERROR-ACTION* :EXIT)
:EXIT
Lisp> (CAR 'A)

Fatal error in function CAR (signaled with ERROR).
Argument must be a list: A.
$

• When the first error occurs, the LISP system. invokes the VAX
LISP depugger because the value of the *ERROR-ACTION* variable
is :DEBUG (the default).

Q • The call to the SETF macro sets the value of the variable to
:EXIT.

0

• The second time the error occurs, the LISP system exits and
control returns to the VMS command level.

43

------------·------

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

EXIT Function

Invokes the VMS Exit system service, causing the LISP system to
and to return control to the VMS command level.

exit Q

You can pass the status of the LISP system to the VMS command level
when you exit the LISP system by specifying an optional argument.
When the LISP system exits, the argument's value is passed to the VMS
command level.

Format

EXIT &OPTIONAL status

Argument

status

A fixnum or a keyword that indicates the status of the LISP
system that is to be returned to the VMS command level when the
LISP system exits. The keywords you can specify and the types of
status they return are the following:

:ERROR
:SUCCESS
:WARNING

Error status
Success status
Warning status

Return Value

The EXIT function does not return to LISP.

Examples

1. Lisp> (EXIT)
$

Exits the LISP system.

2. Lisp> (EXIT :ERROR)

$ SHOW SYMBOL $STATUS
$STATUS= "%X112D8012"

Exits the LISP system. When control returns to the VMS
command level, the VAX LISP exit status contains an error
status.

44

0

0

0

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

Format Directives Provided with VAX LISP

VAX LISP provides eight directives for the
addition to those described in COMMON LISP:
lists and describes these directives. See
information about using these directives.

FORMAT function, in
The Language. Table 1

Section 6.3 for more

Table 1: Format Directives Provided with VAX LISP

Directive Effect

-w Prints the corresponding argument under direction of
the current print variable values. The argument for -w
can be any LISP object. This directive takes a colon
modifier and four prefix parameters.

Use the colon modifier (-:W) when you want to set
PRINT-PRETTY and *PRINT-ESCAPE* to T, and set
PRINT-LENGTH, *PRINT-LEVEL*, and *PRINT-LINES* to
NIL.

The prefix parameters
parameters are identical
di recti.ve.

specify
to those

padding. These
used with the - A

-mincol,colinc,minpad,padcharw

mincol specifies the m1n1mum width of the printed
representation of the object. FORMAT inserts padding
characters on the right, until the width is at least
mincol columns. Use the at-sign with minpad to insert
the padding characters on the left instead. The
default for mincol is 0.

colinc specifies an increment: the number of padding
characters to be inserted at one time until the width
is at least mincol columns. The default is 1.

minpad specifies the m1n1mum number of padding
characters to be inserted. The default is 0.

padchar, preceded by a
padding character.
character.

single quote,
The default

specifies the
is the space

Begins a logical block. A logical block is a
hierarchical grouping of FORMAT directives treated as a
unit. FORMAT must be processing a logical block with
PRINT-PRETTY true to enable pretty printing.
Directives inside a logical block refer to elements of
a single list taken from the argument list to FORMAT.

45

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

Format Directives Provided with VAX LISP (cont.)

0 Table 1 (cont.)

Directive Effect

(If the argument supplied
list, then the logical
argument is printed as if
directive takes colon and

to the logical block is not a
block is skipped and the

with -w.) The logical block
at-sign modifiers.

When the directive is modified by a colon (-:!), the
directive sets *PRINT-PRETTY* and *PRINT-ESCAPE* to T
and *PRINT-LENGTH*, *PRINT-LEVEL*, and *PRINT-LINES* to
NIL.

When the directive is modified by an at-sign (-@!), the Q
directives within the logical block take successive
a rgurr,ents from the FORMAT argument list. The logical
block uses up all -the arguments, not just a single list
argument. Arguments not needed by the logical block
are used up as well, so that they are not available for
subsequent directiv~s.

Specify a parameter of 1 (-1!) to enclose the output in
parentheses. 0
Ends a logical block. If modified by'an at-sign(-@!),
the directive inserts a new line if needed after every
blank space cha~acter.

Specifies a multiline mode new line and marks a logical
block section. This directive takes colon and at-sign
modifiers. When modified by a colon (-:_}, the -
directive starts· a new line if not enough space is onQ
the line to print the next logical block section. When
modified by an at-sign(-@_), the directive starts a
new line if miser mode is enabled.

The - directive and its variants are effective only
when used within a logica~ block with pretty printing
enabled.

Sets ·indentation for subsequent lin~s to n columns
after the beginning of the logical block or after the
prefix. When modified by a colon (-n:I}, the directive
causes FORMAT to indent subsequent lines n spaces from
the column corresponding to the position of the
directive. The -nl directive and the -n:I variant are
effective only when used within a. logical block witho
pretty printing enabled.

46

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

Format Directives Provided with VAX LISP (cont.)

O Table 1 (cont.)

0

0

0

0

Directive

-n/FILL/

-n/LINEAR/

Effect

Prints the elements of a list with as many elements as
possible on each line. If n is 1, FORMAT encloses the
printed list in parentheses. If pretty printing is not
enabled, the directive causes FORMAT to print the
output on a single line.

If the elements of the list to be printed cannot be
printed on a single line, this directive prints each
element on a separate line. If n is 1, FORMAT encloses
the printed list in parentheses. If pretty printing is
not enabled, this directive causes FORMAT to print the
output on a single line.

-n,m/TABULAR/ Prints the list in tabular form. If n is 1, FORMAT
encloses the list in parentheses; m specifies the
column spacing. If pretty printing is not enabled,
this directive causes FORMAT to priht the output on a
single line.

47

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GC Function

Invokes the garbage collector. The LISP system initiates garbage
collection during normal system use whenever necessary. You cannot
disable this process. However, the GC function enables you to
initiate garbage collection during system interaction.

NOTE

The LISP system does not use the GC function to
initiate garbage collections. Therefore, redefining
the GC function does not prevent garbage collection.

You might want to use the GC function to invoke
just before a time-critical part of a LISP
function this way reduces the possibility
initiating a garbage collection when a critical
executing.

the garbage collector
program. Using the GC
of the LISP system
part of the program is

See Chapter 7 for a description of the garbage collector.

Format

GC

Return Value

T, when garbage collection is completed.

Example

Lisp> (GC)

T

Starting garbage collection due to GC function.
Finished garbage collection due to GC function.

Invokes the garbage collector. Whether the messages are printed
when a garbage collection occurs depends on the value of the
GC-VERBOSE variable.

48

0

0

0

0

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GC-VERBOSE Variable .

A variable whose value is used as a flag to determine whether the LISP
system is to display messages when a garbage collection occurs. If
the flag is NIL, the system displays messages. If the flag is not
NIL, the system displays a message before and after a garbage
collection occurs. The default value is T.

The messages the LISP system displays are controlled by the VAX LISP
PRE-GC-MESSAGE and *POST-GC-MESSAGE* variables.

For more information on garbage collector messages, see Chapter 7.

Example

Lisp> *GC-VERBOSE*
T
Lisp> (GC)
; Starting garbage collection due to GC function.
; Finished garbage collection due to GC function.
T
Lisp> (SETF *GC-VERBOSE* NIL)
NIL
Lisp> (GC)
T

• The first evaluation of the *GC-VERBOSE* variable returns the
default value T, which indicates that the LISP system will
display a message before and after a garbage collection occurs
(depending on the values of the *PRE-GC-MESSAGE* and
POST-GC-MESSAGE variables).

• The call to the GC function shows the default messages the
system displays when a garbage collection occurs and the
variable's value is T.

• The call to the SETF macro sets the value of the variable to
NIL.

• The second call to the GC function shows that the system does
not display messages when the variable's value is NIL.

49

-------------- ----------- --

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GENERALIZED-PRINT-FUNCTION-ENABLED-P Function

Used to globally enable a generalized print function or test whether a Q
generalized print function is enabled. GENERALIZED-PRINT-FUNCTION­
ENABLED-P is a predicate, and it can be used as a place form with
SETF.

See Chapter 6 for more information about using generalized print
functions.

Format

GENERALIZED-PRINT-FUNCTION-ENABLED-P name

Argument

name

A symbol identifying the generalized print function to be enabled
or tested.

Return Value

Tor NIL.

Example

Lisp> (GENERALIZED-PRINT-FUNCTION-ENABLED-P 'PRINT-NIL-AS-LIST)
NIL
Lisp> (DEFINE-GENERALIZED-PRINT-FUNCTION PRINT-NIL-AS-LIST

(OBJECT STREAM)
(NULL OBJECT)

(PRINC II () II STREAM))
PRINT-NIL-AS-LIST
Lisp> (SETF (GENERALIZED PRINT-FUNCTION-ENABLED-P

'PRINT-NIL-AS-LIST)
T)

T
Lisp> (PPRINT NIL)
()

• The" first use of the GENERALIZE-D-PRINT-FUNCTION-ENABLED-P
function returns NIL, because no generalized print function
named PRINT-NIL-AS-LIST has been defined •

• The call to DEFINE-GENERALIZED-PRINT-FUNCTION defines the
generalized print function PRINT-NIL-AS-LIST.

• The call to SETF globally enables the generalized print
function PRINT-NIL-AS-LIST.

The PPRINT call prints (), because the generalized print
function is enabled globally and pretty printing is enabled.

50

0

0

0

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-DEVICE-INFORMATION Function

Returns information about a device. The keywords you specify with the
function determine the type of information the function returns.

This function is similar to the $GETDVI VMS system service. For more
information on the $GETDVI system service, see the VAX/VMS System
Services Reference Manual and the VAX/VMS I/0 User's Reference Manual:
Part I.

Format

GET-DEVICE-INFORMATION device &REST {keyword}*

Arguments

device

The string that names the device about which information is to be
returned.

keyword

Optional keywords that specify types of information about the
specified device. Do not specify values with the keywords.

Table 2 lists the keywords that you can specify and the values
they return.

Table 2: GET-DEVICE-INFORMATION Keywords

Keyword Return Value

:ACP-PID

:ACP-TYPE

:BUFFER-SIZE

:CLUSTER-SIZE

:CYLINDERS

51

An integer that specifies the
ACP process ID.

An integer that specifies the
ACP type code.

An integer that specifies the
buffer size.

An integer that specifies the
volume-cluster size.

An integer
number of
device.

that specifies
cylinders on

the
the

V 1-\A LI..:>,, VIVI..::> rUl'II\,., I IVl',1, IVll-\\.,nv, 1-\l'IU V Mnll-\&:JLf;;; ui;;;..;:,\,,,n1r I IV1'8..:,

GET-DEVICE-INFORMATION Function (cont.)

Table 1 (cont.)

Keyword

:DEVICE-CHARACTERISTICS

:DEVICE-CLASS

:DEVICE-DEPENDENT-0

:DEVICE-DEPENDENT-1

:DEVICE-NAME

:DEVICE-TYPE

:ERROR-COUNT

:FREE-BLOCKS

:LOGICAL-VOLUME-NAME

:MAX-BLOCKS

:MAX-FILES

:MOUNT-COUNT

52

Return Value

A vector of 32 bits that
specifies the device
characteristics. See the
VAX/VMS I/0 User's Reference
Manual for information about
device characteristics.

An integer that specifies the
device class.

0

A bit vector that specifies
device-dependent information. Q
A bi't vector that specifies
device-dependent information.

A string that specifies
device name.

An integer that specifies
device type.

An integer that specifies
number of errors that
occurred on the device.

An integer that specifies
number of free blocks on

the

theo

the
has

the
.the

device; otherwise, NIL.

A string that specifies the Q
logical name associated with the
volume on the device. This
keyword is valid only for disks.

An integer that specifies the
maximum number of logical blocks
that can exist on the device.

An integer that specifies the
maximum number of files that can
exist on the device.

An integer that specifies the.
number of .times the device has o
been mounted.

0

VAX Ll::SP/VM::S t-UNt; I IUN, MAt;HU, ANU VAHIAtsLt: Ut:::»l,;Hlt" 1 IUN::,

GET-DEVICE-INFORMATION Function (cont.)

Table 1 (cont.)

Keyword

:NEXT-DEVICE-NAME.

:OPERATION-COUNT

:OWNER-UIC

Return Value

A string that specifies the name
of the next volume in the volume

.set.

An integer that specifies the
number of operations that has
been performed on the device.

An integer that specifies the
UIC of the owner.

An integer that specifies the
of the

0 :PID

:RECORD-SIZE

:REFERENCE-COUNT

0 :ROOT-DEVICE-NAME

:SECTORS

0 :SERIAL-NUMBER

:TRACKS

:TRANSACTION-COUNT

:UNIT

:VOLUME-COUNT

0
53

process ID owner.

An integer that specifies the
blocked record size.

An integer
number of
the device.

that specifies the
channels assigned to

A string that specifies the name
of the root volume in the volume
set.

An integer that specifies the
number of sectors per track.

An integer that specifies the
serial number.

An integer that specifies the
number of tracks per cylinder.

An integer
number of
device.

An integer
unit number.

that
files

that

specifies
open on

specifies

the
the

the

An integer that specifies the
number of volumes in the volume
set.

~------- --- ----- - -

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-DEVICE-INFORMATION Function (cont.)

Table 1 (cont.)

Keyword

: VOLUME-r;AME

:VOLUME-NUMBER

:VOLUME-PROTECTION

Return Value

Return Value

A string that specifies the name
of the volume on the device.

An integer that specifies the
number of the volume on the
device.

A vector
specifies
mask.

of 32 bits that
the volume protection

The keywords and their values are returned as a property list in
the following format:

(:keyword-1 value-1 :keyword-2 value-2 •••)

The function preserves the order of the keywor9-value pairs
the argument list.

If you do not specify keywords, the function returns a list of
all the keyword-value pairs. If _the device does not exist, the
function returns NIL.

Example

Lisp> (GET-DEVICE-INFORMATION "DBAl"
:DEVICE-NAME
:ERROR-COUNT
:MOUNT-COUNT)

(:DEVICE-NAME "_DBA1:" :ERROR-COUNT O :MOUNT-COUNT 1)

Returns the device name, the error count, and the mount count for
the device DBA1.

54

0

0

0

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-FILE-INFORMATION Function

Returns information about a file. The keywords that you specify with
the function determine the type of information the function returns.
The keywords correspond to RMS file access block (FAB) and extended
attribute block (XAB) fields. See the VAX Record Management Services
Reference Manual for information on FAB and XAB fields.

Format

GET-FILE-INFORMATION pathname &REST {keyword}*

Arguments

pathname

A pathname, namestring, symbol, or stream that represents the
name of the file about which information is to be returned.

keyword

Optional keywords that return specific types of information about
the specified file. Do not specify values with the keywords.

Table 3 lists the keywords that you can specify and the values
they return.

Table 3: GET-FILE-INFORMATION Keywords

Keyword Return Value

:ALLOCATION-QUANTITY

:BACKUP-DATE

:BLOCK-SIZE

:CREATION-DATE

:DEFAULT-EXTENSION

55

An integer that specifies the
number of blocks that is
allocated for the file.

The last universal date and time
the file was backed up. If the
file has not been backed up, the
function returns NIL.

An integer that specifies the
block size.

The universal date and time the
file was created.

An integer that specifies the
number of blocks that was added
to the file's size when the file
was extended.

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-FILE-INFORMATION Function (cont.)

Table 3 (cont.)

Keyword

:END-OF-FILE-BLOCK

:EXPIRATION-DATE

:FIRST-FREE-BYTE

:FIXED-CONTROL-SIZE

:GROUP

:LONGEST-RECORD-LENGTH

:MAX-RECORD-SIZE

:MEMBER

:ORGANIZATION

:PROTECTION

:RECORD-ATTRIBUTES

:RECORD-FORMAT

:REVISION

:REVISION-DATE

56

Return Value

An integer that specifies the
block in which the file ends.

The universal date and time the
file expires. If an expiration
date is not recorded, the
function returns NIL.

An integer that specifies the
offset of the first byte in the
file's end-of-file block.

An integer that specifies the
fixed control area size.

An integer that specifies the
owner group number.

An integer that specifies the
length of the longest record in
the file.

An integer that
maximum size a
file can be.

specifies the
record in the

An integer that specifies the
owner member number.

0

0

0

An integer that
organization.

specifies the Q
A vector of 16 bits that
specifies the protection code.

An integer that specifies the
record attributes.

An integer that specifies the
record format.

An integer that specifies the
revision number.

The last universal date and time Q
the file was revised.

0

0

VAX LISP/VMS FUNCTlON, MACRO, AND VARIABLE DESCRIPTIONS

GET-FILE-INFORMATION Function (cont.)

Table 3 (cont.)

Keyword Return Value

:UIC An integer that specifies the
owner UIC.

:VERSION-LIMIT An integer that specifies the
maximum version number the file
can have.

Return Value

The keywords and their values are returned as a property list in
the following format:

(:keyword-1 value-1 :keyword-2 value-2 •.•)

The function preserves the order of the keyword-value pairs in
the argument list. If you do not specify keywords, the function
returns a list of all the keyword-value pairs. If the file does
not exist, the function returns NIL.

Q Examples

0

0

1. Lisp> (GET-FILE-INFORMATION "IMPORTANT.DAT"
:ALLOCATION-QUANTITY
:BACKUP-DATE)

(:ALLOCATION-QUANTITY 252 :BACKUP-DATE 2654~02351)

Returns the allocation quantity and backup date for the file
IMPORTANT.DAT.

2. Lisp> (DEFUN SHOW-FILE-SIZE (FILE)
(LET ((SIZE-LIST

(GET-FILE-INFORMATION FILE
:ALLOCATION-QUANTITY
:END-OF-FILE-BLOCK)))

(FORMAT T

SHOW-FILE-SIZE

- 3T Blocks allocated: _ D_ %_
-3T Blocks used:. -D-%"

(NAMESTRING (TRUENAME FILE))
(GETF SIZE-LIST :ALLOCATION-QUANTITY)
(GETF SIZE-LIST :END-OF-FILE-BLOCK))))

57

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-FILE-INFORMATION Function (cont.)

Lisp> (SHOW-FILE-SIZE "MYFILE.TXT")
DBA1:[SMITH]MYFILE.TXT;4

Blocks allocated: 240

NIL

•

Blocks used: 239

The call to the
SHOW-FILE-SIZE,
allocated for a
file uses.

DEFUN macro defines a function named
which displays the amount .of space that is
specified file and the amount of space the

• The call to SHOW-FILE-SIZE displays the amount of space
that is allocated for the file MYFILE.TXT and the amount
of space the file uses.

58

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-GC-REAL-TIME FuncUon

Lets you inspect the elapsed time used by the garbage collector during
program execution. This function is useful for tuning programs.

The function measures its value in terms of the
INTERNAL-TIME-UNITS-PER-SECOND constant. This value is cumulative.
It includes the elapsed time used for all the garbage collections that
have occurred. A description of the INTERNAL-TIME-UNITS-PER-SECOND
constant is provided in COMMON LISP: The Language.

When a suspended system is resumed, the elapsed time is set to 0.

For more information on the garbage collector, see Chapter 7.

Format

O GET-GC-REAL-TIME

0

0

0

Return Value

The real time that has been used by the garbage collector.

Examples

1. Lisp> (GET-GC-REAL-TIME)
3485700000
Lisp> (GC)
; Starting garbage collection due to GC function.
; Finished garbage collection due to GC function.
T
Lisp> (GET-GC-REAL-TIME)
401210000

• The first call to the GET-GC-REAL-TIME function returns
the real time used by the garbage collector.

• The call to the GC function invokes a garbage collection.

• The second call to the GET-GC-REAL-TIME function returns
the updated real time that has been used by the garbage
collector.

59

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-GC-REAL-TIME Function (cont.)

2. Lisp> (DEFM.ACRO GC-ELAPSED-TIME (FORM)
'(LET* ((START-GC (GET-GC-REAL-TIME))

(VALUE ,FORM)
(END-GC (GET-GC-REAL-TIME)))

(FORM.AT *TRACE-OUTPUT*
"-%GC elapsed time: -o seconds-%"
(TRUNCATE

(- END-GC START-GC)
INTERNAL-TIME-UNITS-PER-SECOND))))

GC-ELAPSED-TIME
Lisp> (GC-ELAPSED-TIME (SUSPEND "MYFILE.SUS"))

Starting garbage collection due to GC function.
Finished garbage collection due to GC function.

; Starting garbage collection due to SUSPEND function.
; Starting garbage collection due to SUSPEND function.
GC elapsed time: 54 seconds
NIL

The call to the DEFM.ACRO macro defines
GC-ELAPSED-TIME, which evaluates a form
amount of elapsed time that was used
collector during a form's evaluation.

a macro named
and displays the
by the garbage

0

0

• The call to the GC-ELAPSED-TIME function displays the
amount of elapsed time the garbage collector used when the Q
LISP system evaluated the form (SUSPEND "MYFILE.SUS").

0

0
60

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-GC-RUN-TIME Function

O Lets you inspect the CPU time used by the garbage collector during
program execution. This function is useful for tuning programs.

The function measures its value in terms of the
INTERNAL-TIME-UNITS-PER-SECOND constant. This value is cumulative.
It includes the CPU time used for all the garbage collections that
have occurred. A description of the INTERNAL-TIME-UNITS-PER-SECOND
constant is provided in COMMON LISP: The Language.

When a suspended system is resumed, the CPU time is set to 0.

For more information on the garbage collector, see Chapter 7.

Format

O GET-GC-RUN-TIME

Return Value

0

0

0

The CPU time that has been used by the garbage collector.

Examples

1. Lisp> (GET-GC-RUN-TIME)
6933
Lisp> (GC)

Starting garbage collection due to GC function.
; Finished garbage collection due to GC function.
T
Lisp> (GET-GC-RUN-TIME)
8423

• The first call to the GET-GC-RUN-TIME function returns the
CPU time used by the garbage collector.

• The call to the GC function invokes a garbage collection.

• The second call to the
the updated CPU time
collector.

61

GET-GC-RUN-TIME function returns
that has been used by the garbage

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-GC-RUN-TIME Function (cont.)

2. Lisp> (DEFMACRO GC-CPU-TIME (FORM)
'(LET* ((START-GC (GET-GC-RUN-TIME))

(VALUE ,FORM)
(END-GC (GET-GC-RUN-TIME)))

(FORMAT *TRACE-OUTPUT*
"-%GC CPU time: -D seconds-%"
(TRUNCATE

(- END-GC START-GC)
INTERNAL-TIME-UNITS-PER-SECOND)))

GC-CPU-TIME
Lisp> (GC-CPU-TIME (SUSPEND "MYFILE.SUS"))
; Starting garbage collection due to GC function.
; Finished garbage collection due to GC function.
; Starting garbage collection due to SUSPEND function.
; Starting garbage collection due to SUSPEND function.
GC CPU time: 10 seconds
NIL

• The call to the DEFMACRO macro defines a macro named
GC-CPU-TIME, which evaluates a form and displays the
amount of CPU time that was used by the garbage collector
during a form's evaluation.

• The call to the GC-CPU-TIME function displays the amount
of CPU time the garbage collector used when the LISP
system evaluated the form (SUSPEND "MYFILE.SUS").

62

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-INTERNAL-RUN-TIME .Function

~) Returns an integer that represents the elapsed CPU time used for the
current process. The function value is measured in terms of the
INTERNAL-TIME-UNITS-PER-SECOND constant. A description of the
INTERNAL-TIME-UNITS-PER-SECOND constant is provided in COMMON LISP:

0

0

0

0

The Language.

Format

GET-INTERNAL-RUN-TIME

Return Value

The elapsed CPU time used for the current process.

Example

Lisp> (DEFMACRO MY-TIME (FORM)

MY-TIME

'(LET* ((START-REAL-TIME (GET-INTERNAL-REAL-TIME))
(START-RUN-TIME (GET-INTERNAL-RUN-TIME))
(VALUE ,FORM)
(END-RUN-TIME (GET-INTERNAL-RUN-TIME))
(END-REAL-TIME (GET-INTERNAL-REAL-TIME)))

(FORMAT *TRACE-OUTPUT*

VALUE))

"-&Run Time: -,2F sec., -
Real Time: -,2F sec.-%"

(/ (- END-RUN-TIME START-RUN-TIME)
INTERNAL-TIME-UNITS-PER-SECOND)

(/ (- END-REAL-TIME START-REAL-TIME)
INTERNAL-TIME-UNITS-PER-SECOND))

Defines a macro that displays timing information about the
evaluation of a specified form.

63

____________ ¥ __ _

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-KEYBOARD-FUNCTION Function

Returns information about the function that
character.

is bound to a control O
Format

GET-KEYBOARD-FUNCTION control-character

Argument

control-character

The control character to which a function is bound.

Return Value

Three values: 0
1. The function that is bound to the control character.

2. The function's argument list.

3. The function's interrupt level.

If a function is not bound to the specified control character, Q
the function returns NIL for all three values.

Examples

1. Lisp> (BIND-KEYBOARD-FUNCTION #\AB #'BREAK)
T
Lisp> (GET-KEYBOARD-FUNCTION #\AB)
#<Compiled Function BREAK #x261510> ;
NIL;
1

9 The call to the BIND-KEYBOARD-FUNCTION function binds
CTRL/B to the BREAK function .

• The call to the GET-KEYBOARD-FUNCTION function returns the
function to which CTRL/B is bound, the function's argument
list (which is NIL), and the function's interrupt level
(which is 1).

2. Lisp> (GET-KEYBOARD-FUNCTION #\AS)
NIL;
NIL;
NIL

All three values returned are
bound to a function.

64

NIL, because CTRL/S is not

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-PROCESS-INFORMATION Function

Returns information about a process. If the process is nonexistent,
this function returns NIL. The keywords you specify with the function
determine the type of information the function returns.

This function is similar to the $GETJPI VMS system service. For more
information on the $GETJPI system service, see the VAX/VMS System
Services Reference Manual.

Format

GET-PROCESS-INFORMATION process &REST {keyword}*

Arguments

process

The name or the identification of the process (PID) about which
information is to be returned. You can specify a string, an
integer, or NIL. If you specify a string, the argument is the
process name; if you specify an integer, the argument is the PID.
If you specify NIL, the information the function returns
corresponds to the current process.

keyword

Optional keywords that return specific types of information about
the process. Do not specify values with the keywords.

Table 4 lists the keywords that you can specify and the values
they return.

Table 4: GET-PROCESS-INFORMATION Keywords

Keyword Return Value

:ACCOUNT

:ACTIVE-PAGE-TABLE-COUNT

:AST-ACTIVE

:AST-COUNT

65

A string that specifies
account.

the

An integer that specifies the
active page table count.

A vector of four bits
specifies the number of
modes that has
asynchronous system traps
for the process.

that
access
active
(ASTs)

An integer that specifies the
remaining AST quota.

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-PROCESS-INFORMATION Function (cont.)

Table 4 (cont.)

Keyword

:AST-ENABLED

:AST-QUOTA

:AUTHORIZED-PRIVILEGES

:BASE-PRIORITY

:BATCH

:BIO-BYTE-COUNT

:BIO-BYTE-QUOTA

:BIO-COUNT

:BIO-OPERATIONS

:BIO-QUOTA

:CLI-TABLENAME

:CPU-LIMIT

66

Return Value

A vector of four bits that
specifies the number of access
modes that has enabled ASTs for
the process.

An integer that specifies the
AST quota.

A vector of 64 bits that
specifies the privileges the
process is authorized to enable.

An integer that specifies the
base priority.

Either Tor NIL. The function
returns T if the process is a
batch job; otherwise, returns
NIL.

An integer that specifies
remaining buffered I/0
count quota.

the
byte

An integer that specifies the
buffered I/0 byte count quota.

An integer that specifies the
remaining buffered I/0 operation
quota.

An integer
number
operations
performed.

that specifies
of buffered

the process

the
I/0
has·

An integer that specifies the
buffered I/0 operation quota.

A string that specifies the file
name of the current command
language interpreter table.

0

0

0

An integer that specifies the
CPU time limit of the process in Q
10-millisecond units.

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

O GET-PROCESS-INFORMATION Function (cont.)

Table 4 (cont.)

Keyword

:CPU-TIME

:CURRENT-PRIORITY

:CURRENT-PRIVILEGES

0 :DEFAULT-PAGE-FAULT-CLUSTER

:DEFAULT-PRIVILEGES

:DIO-COUNT

0
:DIC-OPERATIONS

:DIO-QUOTA

0 :ENQUEUE-COUNT

:ENQUEUE-QUOTA

:EVENT-FLAG-WAIT-MASK

:FIRST-FREE-PO-PAGE

0
:FIRST-FREE-Pl-PAGE

67

Return Value

An integer that specifies the
accumulated CPU time of the
process in 10-millisecond units.

An integer that specifies the
current priority.

A vector of
specifies
privileges.

64 bits that
the current

An integer that specifies the
default page fault cluster size.

A vector of
specifies
privileges.

64 bits that
the default

An integer that
remaining direct

.quota.

specifies the
I/0 operation

An integer that specifies the
number of direct I/0 operations
the process has performed.

An integer that specifies the
direct I/0 operation quota.

An integer that specifies the
number of lock manager enqueues.

An integer that specifies the
lock manager enqueue quota.

A vector
specifies
mask.

of 32 bits that
the event flag wait

An integer that specifies the
first free page at the end of
the program region.

An integer that specifies the
first free page at the end of
the control region.

V 1""1"- l.,IVI I Y IVh..1 I Ul"\J I'""''"' IVI"""'' ''-'' l""'\l.,,IJ' Y M.1111"'\LIL.1- Ul-...,Vlllr I l'-11"""

GET-PROCESS-INFORMATION Function (cont.)

Table 4 (cont.)

Keyword

:GLOBAL-PAGES

:GROUP

:IMAGE-NAME

:IMAGE-PRIVILEGES

:JOB-SUBPROCESS-COUNT

:LOCAL-EVENT-FLAGS

:LOGIN-TIME

:MEMBER

:MOUNTED-VOLUMES

:OPEN-FILE-COUNT

:OPEN-FILE-QUOTA

:OWNER-PIO

:PAGE-FAULTS

68

Return Value

An integer that specifies the
number of global pages in the
working set.

An integer that specifies the
group field of the UIC.

A string that specifies the
current image file name.

A vector of 64 bits that
specifies the privileges with
which the current image of the
process was installed.

An integer that specifies the
number of subprocesses.

A vector of 32 bits that
specifies the local event flags
the process has in effect.

An integer in internal time that
specifies the time the process
was created.

An integer that specifies the
member field of the UIC.

0

0

An integer that specifies the Q
number of mounted volumes.

An integer that specifies the
remaining open file quota.'

An integer that specifies the
open file quota.

An integer that specifies the
process ID of the owner.

An integer that specifies the
number of page faults.

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-PROCESS-INFORMATION Function (cont.)

Table 4 (cont.)

Keyword

:PAGE-FILE-COUNT

:PAGE-FILE-QUOTA

:PAGES-AVAILABLE

:PIO

:PIO-OF-PARENT

:PROCESS-CREATION-FLAGS

:PROCESS-INDEX

:PROCESS-NAME

:SITE-SPECIFIC

:STATE

:STATUS

69

Return Value

An integer that specifies the
number of paging file pages
being used by the process.

An integer that specifies the
paging file quota.

An integer that specifies the
number of virtual pages
available for expansion.

An integer that specifies the
process ID.

An integer that specifies the
PID of the parent process. This
integer differs from :OWNER-PIO
in that :PIO-OF-PARENT refers to
the top-level process, while
:OWNER-PIO refers to the process
immediately above the current
process or subprocess.

A 32-bit bit-vector that
specifies the flags used to
create the process.

An integer that specifies the
index number of the process at a
given instant. (Process index
numbers are reassigned to
different processes over time.)

A string that specifies the name
of the process.

A longword that
contents of the
longword.

specifies the
site-specific

An integer that specifies the
state.

A vector of 32 bits that
specifies the status flags.

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-PROCESS-INFORMATION Function (cont.)

0 Table 4 (cont.)

Keyword

:SUBPROCESS-COUNT

:SUBPROCESS-QUOTA

:TERMINAL

:TERMINATION-MAILBOX

:TIMER-QUEUE-COUNT

:TIMER-QUEUE-QUOTA

:UAF-FLAGS

:UIC

:USERNAME

:VIRTUAL-ADDRESS-PEAK

:WORKING-SET-AUTHORIZED-EXTENT

:WORKING-SET-AUTHORIZED-QUOTA

:WORKING-SET-COUNT

70

Return Value

An integer that specifies the
number of subprocesses owned by
the process.

An integer that specifies the
subprocess quota.

A string that specifies the name
of the terminal with which the
process is interacting.

An integer that specifies the Q
termination mailbox unit number.

An integer that specifies the
remaining timer queue entry
quota.

An integer that specifies the
timer queue entry quota.

A 12-bit bit-vector that
specifies the UAF flags of the
user who owns the process.

An integer that specifies the
UIC.

0

A string that specifies the user Q
name.

An integer that specifies the
peak virtual address space size.

An integer that specifies the
maximum authorized working set
extent.

An integer that specifies the
authorized working set quota.

An integer that specifies the
number of process pages in the
working set.

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

O GET-PROCESS-INFORMATION Function (cont.)

Table 4 (cont.)

0

0

0

0

Keyword

:WORKING-SET-DEFAULT

:WORKING-SET-EXTENT

:WORKING-SET-PEAK

:WORKING-SET-QUOTA

:WORKING-SET-SIZE

Return Value

Return Value

An integer that specifies the
default working set size.

An integer that specifies the
current working set size extent.

An integer that specifies the
peak working set size.

An integer that specifies the
current working set quota.

An integer that specifies the
current working set size.

The keywords and their values are returned as a list in the
following format:

(:keyword-1 value-1 :keyword-2 value-2 •••)

The function preserves the order of the keyword-value pairs in
the argument list.

If you do not specify keywords, the function returns a list of
all the keyword-value pairs. If the specified process does not
exist, the function returns NIL.

Examples

' 1. Lisp> (GET-PROCESS-INFORMATION "SMITH"
:BATCH
:CPU-TIME
:BASE-PRIORITY
:GLOBAL-PAGES)

(:BATCH NIL :CPU-TIME 45884 :BASE-PRIORITY 4
:GLOBAL-PAGES 68)

Returns the value of the batch setting, the CPU time, the
base priority, and the number of global pages used for the
process SMITH.

71

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-PROCESS-INFORMATION Function (cont.)

2. Lisp> (DEFUN PARENT NIL
(LET ((PIO

PARENT

(SECOND (GET-PROCESS-INFORMATION
NIL
: OWNER-PIO))))

(IF (ZEROP PIO) NIL (ATTACH PID))))

Defines a function that just returns NIL if the LISP system
is running in the main process and attaches you to the parent
process if the system is running in a subprocess.

72

0

0

0

0

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-TERMINAL-MODES Function

Returns information about the terminal characteristics of the device
associated with the *TERMINAL-IO* variable when you invoke the LISP
system. If the specified stream is not connected to a terminal, the
LISP system signals an error. The keywords you specify with the
function determine the type of information the function returns.

This function is similar to the DCL SHOW TERMINAL command. For more
information on the SHOW TERMINAL command, see the VAX/VMS DCL
Dictionary.

Format

GET-TERMINAL-MODES &REST {keyword}*

Argument

keyword

Optional keywords that return the terminal characteristics of the
stream that is bound to the *TERMINAL-IO* variable. Do not
specify values with the keywords.

Table 5 lists the keywords that you can specify and the values
they return.

Table 5: GET-TERMINAL-MODES Keywords

Keyword Return Value

:BROADCAST

:ECHO

:ESCAPE

73

Either Tor NIL. The function
returns T if your terminal can
receive broadcast messages such
as MAIL notifications and REPLY
messages;
NIL.

otherwise, returns

Either Tor NIL. The function
returns T if the terminal
displays the input character
that it receives; otherwise,
returns NIL. If the function
returns NIL, the terminal
displays only data output from
the system or a user application
program.

Either Tor NIL.
returns T if
escape sequences

The function
ANSI standard

transmitted

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-TERMINAL-MODES Function (cont.)

Table 5 (cont.)

Keyword

:HALF-DUPLEX

:PASS-ALL

Return Value

from the terminal are handled as
a single multi character
terminator; otherwise, returns
NIL. The terminal driver checks
the escape sequences for syntax
before passing them to the
program. For more information
on escape sequences, see the
VAX/VMS I/0 User's Reference
Manual: Part I.

Either Tor NIL. The function
returns T if the terminal's
operating mode is half-duplex,
and the function returns NIL if
the operating mode is
full-duplex. For a description
of terminal operating modes, see
the VAX/VMS I/0 User's Reference
Manual: Part I.

Either Tor NIL. The function
returns T if the system does not
expand tab characters to blanks,
fill carriage return or line
feed characters, recognize
control characters, and receive
broadcast messages. The
function returns NIL if the
system passes all data to an
application program as binary
data.

NOTE

:PASS-ALL has been kept for the sake of
compatibility with Version 1 of VAX LISP, but it
is not recommended that you use :PASS-ALL.

:PASS-THROUGH Either Tor NIL. This mode is

0

0

0

0

the same as the :PASS-ALL mode,
except that "TTSYNC" protocol
(CTRL/S, CTR-L/Q) is still used. o

74

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-TERMINAL-MODES Function (cont.)

Table 5 (cont.)

Keyword

:TYPE-AHEAD

:WRAP

Return Value

Either Tor NIL. The function
returns T if the terminal
accepts input that is typed when
there is no outstanding read,
and the function returns NIL if
the terminal driver is dedicated
and accepts input only when a
program or the system issues a
read.

Either Tor NIL. The function
returns T if the terminal
generates a carriage return and
a line feed when the end of a
line is reached. Otherwise, the
function returns NIL. The end
of the line is determined by the
terminal-width setting.

Q Return Value

0

0

The keywords and their values are returned as a list in the
following format:

(:keyword-1 value-1 :keyword-2 value-2 •..)

The function preserves the order of the keyword-value pairs in
the argument list.

If you do not specify keywords, the function returns a list of
the keyword-value pairs. The list is returned in a format such
that the list can be specified as an argument in a call to the
SET-TERMINAL-MODES function.

Example

Lisp> (GET-TERMINAL-MODES)
(:BROADCAST T :ECHO T :ESCAPE NIL :HALF-DUPLEX NIL :PASS-ALL NIL
:TYPE-AHEAD T :WRAP T :PASS-THROUGH NIL)

Returns a list of all the keyword-value pairs.

75

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-VMS-MESSAGE Function

Returns the system message associated with a specified VMS status. 0
Format

GET-VMS-MESSAGE status &OPTIONAL flags

Arguments

status

flags

A fixnum that specifies the VMS status code of the message that
is to be returned. See the VAX/VMS System Messages and Recovery
Procedures Reference Manual for information on VMS message status
codes.

A bit vector of length four that specifies the content of the
message. The default value is #*0000, which indicates that the
process default message flags are to be used. The information
that is included in the message when each of the four bits is set
follows:

Bit Information

0 Text
1 Message ID
2 Severity
3 Facility

Return Value

0

0

Returns the message that corresponds to the specified status codeo
as a string. The function returns NIL if you specify a status
code that does not exist.

Examples

1. Lisp> (GET-VMS-MESSAGE 32)
"%SYSTEM-W-NOPRIV, no privilege for attempted operation"

Returns the VMS message text for message 32 with all flags
set.

2. Lisp (GET-VMS-MESSAGE 32 #*1001)
"%SYSTEM, no privilege for attempted operation"

Returns the VMS message text for message
facility and text flags set.

76

32 with only the

0

·O

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

HASH-TABLE-REHASH-SIZE Function

Returns the rehash size of a hash table. The rehash size indicates
how much a hash table is to increase when it is full. You specify
that value when you create a hash table with the MAKE-HASH-TABLE
function. For information on hash tables, see COMMON LISP: The
Language.

Format

HASH-TABLE-REHASH-SIZE hash-table

Argument

hash-table

The name of the hash table whose rehash size is to be returned.

Return Value

An integer greater than O or a floating-point number greater than
1. If an integer is returned, the value indicates the number of
entries that are to be added to the table. If a floating-point
number is returned, the value indicates the ratio of the new size
to the old size.

Q Example

0

0

Lisp> (SETF *PRINT-ARRAY* NIL)
NIL
Lisp> (SETF TABLE-1 (MAKE-HASH-TABLE :TEST #'EQUAL

#<Hash Table #x503BA8>

: SIZE 200 .
:REHASH-SIZE 1.5
:REHASH-THRESHOLD .95))

Lisp> (HASH-TABLE-REHASH-SIZE TABLE-1)
1.5

• The first call to the SETF macro sets the value of the
PRINT-ARRAY variable to NIL.

• The second call to the SETF macro sets TABLE-1 to the hash
table created by the call to the MAKE-HASH-TABLE function.

e The call to the HASH-TABLE-REHASH-SIZE function returns the
rehash size of the hash table, TABLE-1.

77

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

HASH-TABLE-REHASH-THRESHOLD Function

Returns the rehash threshold for a hash table. The rehash threshold
indicates how full a hash table can get before its size has to be
increa-sed. You specify that value when you create a hash table with
the MAKE-HASH-TABLE function. For information on hash tables, see
COMMON LISP: The Language.

Format

HASH-TABLE-REHASH-THRESHOLD hash-table

Argument

hash-table

The hash table whose rehash threshold is to be returned.

Return Value

An integer greater than O and less than hash table's rehash
or a floating-point number greater than O and less than 1.

Example

Lisp> (SETF *PRINT-ARRAY* NIL)
NIL
Lisp> (SETF TABLE-1 (MAKE-HASH-TABLE :TEST #'EQUAL

:SIZE 200
:REHASH-SIZE 1.5
:REHASH-THRESHOLD .95))

#<Hash Table #x503BA8>
Lisp> (HASH-TABLE-REHASH-THRESHOLD TABLE-1)
0.95

size

0

0

0

• The first call to the SETF macro
PRINT-ARRAY variable to NIL.

sets the value of the Q
• The second call to the SETF macro sets TABLE-1 to the hash

table created by the call to the MAKE-HASH-TABLE function •

• The call to the HASH-TABLE-REHASH-THRESHOLD function returns
the rehash threshold of the hash table, TABLE-1.

78

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

HASH-TABLE-SIZE Function

Q Returns the current size of
you create a hash table
information on hash tables,

a hash table. You specify that value when
with the MAKE-HASH-TABLE function. For

see COMMON LISP: The Language.

Format

HASH-TABLE-SIZE hash-table

Argument

hash-table

The hash table whose initial size is to be returned.

oReturn Value

0

0

0

An integer that indicates the initial size of the hash table.

Example

Lisp> (SETF *PRINT-ARRAY* NIL)
NIL
Lisp> (SETF TABLE-1 (MAKE-HASH-TABLE :TEST #'EQUAL

#<Hash Table #x503BA8>
Lisp> (HASH-TABLE-SIZE TABLE-1)
233

:SIZE 200
:REHASH-SIZE 1.5
:REHASH-THRESHOLD .95))

• The first call to the SETF macro sets the value of the
PRINT-ARRAY variable to NIL.

• The second call to the SETF macro sets TABLE-1 to the hash
table created by the call to the MAKE-HASH-TABLE function.

• The call to the HASH-TABLE-SIZE function returns the initial
size of the hash table, TABLE-1.

79

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

HASH-TABLE-TEST Function

Returns a value or a symbol that indicates how a hash table's keys areO
compared. The value is specified when you create a hash table with
the MAKE-HASH-TABLE function. For information on hash tables, see
COMMON LISP: The Language.

Format

HASH-TABLE-TEST hash-table

Argument

hash-table

The hash table whose test value is to be returned.

Return Value

Either a function (#'EQ, #'EQL, or #'EQUAL) or a symbol (EQ, EQL,
or EQUAL). EQL is the default when creating a hash table.

Example

Lisp> (SETF *PRINT-ARRAY* NIL)
NIL

0

Lisp> (SETF TABLE-1 (MAKE-HASH-TABLE :TEST #'EQUAL O
:SIZE 200

#<Hash Table #x503BA8>
Lisp> (HASH-TABLE-TEST TABLE-1)
EQUAL

:REHASH-SIZE 1. 5
:REHASH-THRESHOLD .95))

• The first call to the SETF macro
PRINT-ARRAY variable to NIL.

sets the value of

• The second call to the SETF macro sets TABLE-1 to the hash
table created by the call to the MAKE-HASH-TABLE function.

• The call to the HASH-TABLE-TEST function returns the test for
the hash table, TABLE-1.

80

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

LOAD Function

Reads and evaluates the contents of a file into the LISP environment.

In VAX LISP, if the specified file name does not specify an explicit
file type, the LOAD function locates the source file (type LSP) or
fast-loading file (type FAS) with the latest file write date and loads
it. This ensures that the latest version of the file is loaded,
whether or not the file is compiled.

Format

LOAD filename
&KEY :IF-DOES-NOT-EXIST :PRINT :VERBOSE

Arguments

Q filename

0

0

0

The name of the file to be loaded.

:IF-DOES-NOT-EXIST

Specifies whether the LOAD function signals an error if the file
does not exist. The value can be Tor NIL. If you specify T,
the function signals an error if the file does not exist. If you
specify NIL, the function returns NIL if the file does not exist.
The default value is T.

:PRINT

Specifies whether the value of each form that is loaded is
printed to the stream bound to the *STANDARD-OUTPUT* variable.
The value can be Tor NIL. If you specify T, the value of each
form in the file is printed to the stream. If you specify NIL,
no action is taken. The default value is NIL. This keyword is
useful for debugging.

:VERBOSE

Specifies whether the LOAD function is to print a message in the
form of a comment to the stream bound to the *STANDARD-OUTPUT*
variable. The value can be Tor NIL. If you specify T, the
function prints a message. The message includes information such
as the name of the file that is being loaded. If you specify
NIL, the function uses the value of *LOAD-VERBOSE* variable. The
default is T.

Return Value

A value other than NIL if the load operation is successful.

81

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

LOAD Function (cont.)

Example

Lisp> (COMPILE-FILE "FACTORIAL")

Starting compilation of file DBAl:[SMITH]FACTORIAL.LSP;l

FACTORIAL compiled.

Finished compilation of file DBA1:[SMITH]FACTORIAL.LSP;1
O Errors, 0 Warnings
"DBAl:[SMITH]FACTORIAL.FAS;l"
Lisp> (LOAD "FACTORIAL")

T

Loading contents of file DBA1:[SMITH]FACTORIAL.FAS;1
FACTORIAL

Finished loading DBA1:[SMITH]FACTORIAL.FAS;1

• The call to the COMPILE-FILE function produces a fast-loading
file named FACTORIAL.FAS.

• The call to the LOAD function locates the fast-loading file
FACTORIAL.FAS and loads the file into the LISP environment.

82

0

0

0

0

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

LONG-SITE-NAME Function

Translates the logical name LISP$LONG_SITE_NAME. If the first
character of the resulting string is an at sign{@), the rest of the
string is assumed to be a file specification. The file is read and
its content is returned as a string that represents the physical
location of the computer hardware on which the VAX LISP system is
running. If the first character of the translation is not an at sign,
the translation itself is returned as the long-site name.

Format

LONG-SITE-NAME

Return Value

The contents of a file or the translation of
LISP$LONG_SITE_NAME is returned as a string
physical location of the computer hardware on
system is running. If a long-site name is
returned.

Example

Lisp> (LONG-SITE-NAME)
"Smith's Computer Company
Artificial Intelligence Group
22 Plum Road
Canterbury, Ohio 47190"

83

the logical name
that represents the
which the VAX LISP
not defined, NIL is

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

MACHINE-INSTANCE Function

Translates the logical name LISP$MACHINE_INSTANCE.

Format

MACHINE-INSTANCE

Return Value

The translation of the logical name LISP$MACHINE_INSTANCE is
returned as a string. If the logical name is not defined and
DECnet-VAX is running, the node name is returned. If the logical
name is not defined and DECnet-VAX is not running, NIL is
returned.

Example

Lisp> (MACHINE-INSTANCE)
"MIAMI"

0

0

0

0

0
84

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

MACHINE-VERSION Functi.on

Returns the content of the system identification (SID) register as a
string that represents the version of computer hardware on which the
VAX LISPsystem is running. The contents of the SID are determined by
the type of CPU for example, 780, 750, or 730. For more
information about CPU types, see the VAX Architecture Handbook.

Format

MACHINE-VERSION

Return Value

The contents of the SID register are returned as a string.

Example

Lisp> (MACHINE-VERSION)
"SID Register: #x01383550"

85

-----~-------------- - - - - - - ---

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

MAKE-ARRAY Function

Creates and returns an array. VAX LISP has added the :ALLOCATION
keyword to this COMMON LISP function. When the function is used with
the :ALLOCATION keyword and the value :STATIC, the function creates a
statically allocated array.

During system usage, the garbage collector moves LISP objects. You
can prevent the garbage collector from moving an object by allocating
it in static space. Arrays, vectors, and strings can be statically
allocated if you use the :ALLOCATION keyword and :STATIC value in a
call to the MAKE-ARRAY function. Once an object is statically
allocated, its virtual address does not change. Note that such
objects ar never garbage collected and their space cannot be
reclaimed. By default, LISP objects are allocated in dynamic space.

NOTE

A statically allocated
address even if a
performed.

object maintains its memory
SUSPEND/RESUME operation is

Calling the MAKE-ARRAY function with the
keyword-value pair is useful if you are
Preventing the garbage collector from moving
garbage collector to go faster.

:ALLOCATION :STATIC
creating a large array.
the array causes the

The MAKE-ARRAY function has a number of other keywords that can be
used. See COMMON LISP: The Language for information on the other
MAKE-ARRAY keywords.

0

0

0

VAX LISP creates a specialized array when the array's element type is
STRING-CHAR, (SIGNED-BYTE 32), or a subtype of FLOAT or (UNSIGNED BYTE O 1-29). For all other element types, VAX LISP creates a generalized
array, with the element type T. For compatibility of VAX types with
LISP types when calling external routines, see the tables on data
conversion in the call-out chapter of the VAX LISP/VMS System Access
Programming Guide.

Format

MAKE-ARRAY dimensions
&KEY :ALLOCATION other-keywords

Arguments

dimensions

A list of positive integers that are to be the dimensions of
array.

86

the Q

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

MAKE-ARRAY Function (cont.)

:ALLOCATION

Specifies whether the LISP object is to be statically allocated.
You can specify one of the following values with the :ALLOCATION
keyword:

:DYNAMIC

:STATIC

other-keywords

The LISP object is not to be statically
allocated. This value is the default.

The LISP object is to be statically
allocated.

See COMMON LISP: The Language.

Return Value

The statically allocated object.

Example

Lisp> (DEFPARAMETER BIT-BUFFER
(MAKE-ARRAY '(1000 1000) :ELEMENT-TYPE 'BIT

:ALLOCATION :STATIC))
BIT-BUFFER

Creates a large array of bits named BIT-BUFFER, which is not
intended to be removed from the system. The :ELEMENT-TYPE
keyword is one of the other keywords (described. in COMMON LISP:
The Language) that this function accepts.

87

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

* MODULE-DIRECTORY* Variable

A variable whose value refers to the directory containing the moduleO
that is being loaded into the LISP environment due to a call to the
REQUIRE function. The value is a pathname.

This variable is useful to determine the location of a module if
additional files from the same directory must be loaded by the module.
For example, consider the following contents of a file called

'\
REQUIREDFILEl.LSP:

(PROVIDE "REQUIREDFILEl")
(LOAD (MERGE-PATHNAMES "REQUIREDFILE2" *MODULE-DIRECTORY*))
(DEFUN TEST

...)
When you specify the preceding module with the REQUIRE function, you 0 do not have to identify the module's directory if it is in one of the
places the REQUIRE function searches (see the description of the
REQUIRE function later in Part II). Furthermore, using the
MODULE-DIRECTORY variable as in this example ensures that the file
REQUIREDFILE2 will be loaded from the same directory. After the
module is loaded, the *MODULE-DIRECTORY* variable is rebound to NIL.

NOTE

As this variable is bound during calls to the REQUIRE
function, nested calls to the function cause its value
to be updated appropriately.

88

0

0

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

* POST-GC-MESSAGE* Variable

Controls the message the LISP system displays after a garbage
collection occurs. The value of this variable can be NIL, a string of
message text, or the null string(""). If the value is NIL, the
system displays a system message. If the value is a string, the
system displays the string. If the variable's value is the null
string (""), the system displays no output. The default value is NIL.

The system messages appear in the following form:

; Finished garbage collection due to GC function.

System messages differ according to the cause of the garbage
collection. If you set the *POST-GC-MESSAGE* variable, the message
you establish supersedes all system messages displayed after a garbage
collection, regardless of cause.

Example

Lisp> (GC)
; Starting garbage collection due to GC function.
; Finished garbage collection due to GC function.
T
Lisp> (SETF *POST-GC-MESSAGE* "")
""
Lisp> (GC)
; Starting garbage collection due to GC function.
T
Lisp> (SETF *POST-GC-MESSAGE* "GC finished")
"GC -- finished"
Lisp> (GC)
; Starting garbage collection due to GC function.
GC -- finished
T

• The first call to the GC function shows the garbage collection
messages the LISP system displays by default.

• The first call to the SETF macro sets the value of the
POST-GC-MESSAGE variable to the null string("").

• The second call to the GC function shows that the system does
not display a message when a garbage collection is finished
when the variable's value is the null string.

• The second call to the SETF
variable to the string "GC

macro sets
finished".

the value of the

• The third call to the GC function shows that the system
displays the new message when a garbage collection is finished
if the variable's value is a string.

89

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

PPRINT-DEFINITION Function

0 Pretty prints to a stream the function definition of a symbol.

Format

PPRINT-DEFINITION symbol &OPTIONAL stream

Arguments

symbol

The symbol whose function value is to be pretty-printed.

stream

The stream to which the
default stream is the
variable.

code is to be pretty-printed. The Q
stream bound to the *STANDARD-OUTPUT*

Return Value

No value.

Examples

1. FACTORIAL (N)
factorial of an integer." ·

Lisp> (DEFUN
"Returns the
(COND ((<= N
FACTORIAL

1) 1) (T (* N (FACTORIAL (- N 1))))))

Lisp> (PPRINT-DEFINITION 'FACTORIAL)
(DEFUN FACTORIAL (N)

N 1))))))

0

•

"Returns the factorial of an integer."
(COND ((<= N 1) 1) (T (* N (FACTORIAL (-

The call to the DEFUN macro defines a function called Q
FACTORIAL, which returns the factorial of an integer •

• The call to the PPRINT-DEFINITION function pretty-prints
the function value of the symbol FACTORIAL.

2. Lisp> (DEFUN RECORD-MY-STATISTICS
(NAME AGE SIBLINGS MARRIED?)
(UNLESS (SYMBOLP NAME)
(ERROR ""'S must be a symbol." NAME))
(SETF (GET NAME 'AGE) AGE
(GET NAME 'NUMBER-OF-SIBLINGS) SIBLINGS
(GET NAME 'IS-THIS-PERSON-MARRIED?) MARRIED?) NAME)
RECORD-MY-STATISTICS

90

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

QPPRINT-DEFINITION Function (cont.)

Lisp> (PPRINT-DEFINITION 'RECORD-MY-STATISTICS)

0

0

0

0

(DEFUN RECORD-MY-STATISTICS (NAME AGE SIBLINGS MARRIED?)
(UNLESS (SYMBOLP NAME)

(ERROR 11 -s must be a symbol." NAME))
(SETF (GET NAME 'AGE) AGE

(GET NAME 'NUMBER-OF-SIBLINGS) SIBLINGS
(GET NAME 'IS-THIS-PERSON-MARRIED?) MARRIED?)

NAME)

• The call to the DEFUN macro defines a function called
RECORD-MY-STATISTICS .

• The call to the PPRINT-DEFINITION function pretty-prints
the function value of the symbol RECORD-MY-STATISTICS.

91

VAX LISP/VMS FUNCTION, MACRO, AND VARIA,BLE .DESCRIPTIONS

PPRINT-PLIST Function

Pretty-prints to a stream the property list of a symbol. A property
list is a list of symbol-value pairs; each symbol is associated with a
value or an expression. The PPRINT-PLIST function prints the property
list in a way that emphasizes the relationship between the symbols and
their values.

PPRINT-PLIST prints only the symbol-value pairs for which a symbol is
accessible in the current package. (For information on packages, see
COMMON LISP: The Language.) On the other hand, SYMBOL-PLIST returns
all the symbol-value pairs (the entire property list) of a symbol,
even those not accessible in the current package. So, the form
(PPRINT-PLIST 'ME) is not equivalent to the form (PPRINT (SYMBOL-PLIST
'ME). The following example shows the differences between the two
forms:

0

Lisp> (MAKE-PACKAGE 'PLANET) 0
Lisp> (SETF (SYMBOL-PLIST 'ME)

'(GIRL "SAMANTHA" BOY "DANIEL"
PLANET::INHABITANT-OF "EARTH"))

(GIRL "SAMANTHA" BOY "DANIEL" PLANET::INHABITANT-OF "EARTH")
Lisp> (PPRINT (SYMBOL-PLIST 'ME))
(GIRL "SAMANTHA" BOY "DANIEL" PLANET::INHABITANT-OF "EARTH")
Lisp> (PPRINT-PLIST 'ME)
(GIRL "SAMANTHA"
BOY "DANIEL") 0

The form (PPRINT (SYMBOL-PLIST 'ME)) prints the symbol-value pair
PLANET::INHABITANT-OF "EARTH", but the form (PPRINT-PLIST 'ME) does
not print that pair. This is because the symbol INHABITANT-OF in the
package PLANET is not accessible in the current package (a symbol can
be in another package but still be accessible in the current package).
The symbol ME in the current package is associated with the
symbol-value pair INHABITANT-OF "EARTH" in the PLANET package, but the O
PPRINT-PLIST function does not print that symbol-value pair because it
is not accessible in the current package.

Format

PPRINT-PLIST symbol &OPTIONAL stream

Arguments

symbol

The symbol whose property list is to be pretty-printed.

0
92

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

PPRINT-PLIST Function (cont.)

Ostrearn

The stream to which the pretty-printed output is to be sent. The
default stream is the stream bound to the *STANDARD-OUTPUT*
variable.

Return Value

No value.

Examples

0

0

0

0

1. Lisp> (SETF (GET 'CHILDREN 'SONS) '(DANNY GEOFFREY))
(DANNY GEOFFREY)
Lisp> (SETF (GET 'CHILDREN 'DAUGHTERS) 'SAMANTHA)
SAMANTHA
Lisp> (PPRINT-PLIST 'CHILDREN)
(DAUGHTERS SAMANTHA
SONS (DANNY GEOFFREY))

• The calls to the SETF macro give the symbol CHILDREN the
properties SONS and DAUGHTERS. The property list of the
symbol CHILDREN has two properties: DAUGHTERS whose value
is SAMANTHA and SONS whose value is the list (DANNY
GEOFFREY).

• The call to the PPRINT-PLIST function pretty-prints the
property list of the symbol CHILDREN. The pretty-printed
output emphasizes the relationship between each property
and its value.

2. Lisp> (DEFUN RECORD-MY-STATISTICS (NAME AGE SIBLINGS MARRIED?)
(UNLESS (SYMBOLP NAME)

(ERROR .. - s must be a symbol." NAME))
(SETF (GET NAME 'AGE) AGE

(GET NAME 'NUMBER-OF-SIBLINGS) SIBLINGS
(GET NAME 'IS-THIS-PERSON-MARRIED?) MARRIED)

NAME)
RECORD-MY-STATISTICS
Lisp> (DEFUN SHOW-MY-STATISTICS (NAME)

(UNLESS (SYMBOLP NAME)
(ERROR "-s must be a symbol." NAME))
(PPRINT-PLIST NAME))

SHOW-MY-STATISTICS
Lisp> (RECORD-MY-STATISTICS 'TOM 29 3 NIL)
TOM
Lisp> (SHOW-MY-STATISTICS 'TOM)
(IS-THIS-PERSON-MARRIED? NIL
NUMBER-OF-SIBLINGS 3
AGE 29)

93

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

PPRINT-PLIST Function (cont.)

• The first call to the DEFUN macro defines a function named
RECORD-MY-STATISTICS.

• The second call to the DEFUN macro defines a function
named SHOW-MY-STATIST!CS. The definition includes a call
to the PPRINT-PLIST function •

• The call to the RECORD-MY-STATISTICS function inputs the
properties for the symbol TOM •

• The call to the SHOW-MY-STATISTICS function pretty-prints
the property list for the symbol TOM.

94

0

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

* PRE-GC-MESSAGE* Vari.able

Controls the message the LISP system displays when a garbage
collection starts. The value of this variable can be NIL, a string of
message text, or the null string(""). If the value is NIL, the
system displays a system message. If the value is a string of message
text, the system displays the message text. If the variable's value
is the null string, the system displays no output. The default value
is NIL.

System messages appear in the following form:

Starting garbage collection due to GC function.

VAX LISP messages preceding garbage collection differ depending on the
cause of the garbage collection. If you set the *PRE-GC-MESSAGE*
variable, the message you establish supersedes all system messages,
regardless of cause.

Example

Lisp> (GC)
; Starting garbage collection due to GC function.
; Finished garbage collection due to GC function.
T

0- Lisp> (SETF *PRE-GC-MESSAGE* "")
""
Lisp> (GC)

0

0

; Finished garbage collection due to GC function.
T
Lisp> (SETF *PRE-GC-MESSAGE* "GC -- started")
"GC -- started"
Lisp> (GC)
GC -- started
; Finished garbage collection due to GC function.
T

• The first call to the GC function shows the garbage collection
messages that are printed by default.

• The first call to the SETF macro sets the value of the
PRE-GC-MESSAGE variable to the null string("").

• The second call to the GC function causes the system not to
display a message when the garbage collection starts.

• The second call to the SETF macro sets the value of the
variable to the string "GC -- started".

• The third call to the GC function causes the system to display
the new message text when the garbage collection starts.

95

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

PRINT-LINES Variable

Specifies the number of lines to be printed by- an outermost logical O
block. The default for this variable is NIL, which specifies no
abbreviation. *PRINT-LINES* is effective only when pretty printing is
enabled. When the system limits output to the number of lines
specified by *PRINT-LINES*, it indicates abbreviation by replacing the
last four characters on the last line printed with" ... ".

The WRITE and WRITE-TO-STRING functions have been extended in VAX LISP
to accept the :LINES keyword. If you specify this keyword,
PRINT-LINES is bound to the value you supply with the keyword before
any output is produced.

See Chapter 6 for more information on using the *PRINT-LINES*
variable.

Example

Lisp> (SETF *PRINT-LINES* 4)
4
Lisp> (FORMAT T "Stars: -=!-/LINEAR/"."
'(POLARIS DUBHE MIRA MIRFAK BELLATRIX CAPELLA ALGOL
MIRZAM POLLUX CANOPUS ALBIREO CASTOR ALPHECCA
ANTARES))
Stars: POLARIS

DUBHE
MIRA
MI ...

• With *PRINT-LINES* set to 4, printing stops at the end of the
fourth line.

• The last four characters of the last line are not printed.
MIRFAK becomes MI.

96

0

0

0

0

·O

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

* PRINT-MISER-WIDTH* Variable

Controls miser mode printing. If the available line width between the
indentation of the current logical block and the end of the line is
less than the value of this variable, the pretty printer enables miser
mode. When output is printed in miser mode, all indentations are
ignored. In addition, a new line is started for every conditional new
line directive (- _, . _, - @_). The default value for
PRINT-MISER-WIDTH is 40.

You can prevent the use of miser
PRINT-MISER-WIDTH variable to NIL.

mode by setting the

The WRITE and WRITE-TO-STRING functions have been extended in VAX LISP
to accept the :MISER-WIDTH keyword. If you specify this keyword,
PRINT-MISER-WIDTH is bound to the value you supply with the keyword
before any output is produced.

For more information about miser mode and the use
PRINT-MISER-WIDTH variable, see Sections 6.5 and 6.8.

Example

Lisp> (SETF *PRINT-RIGHT-MARGIN* 60)
60
Lisp> (SETF *PRINT-MISER-WIDTH* 35)
35

of

Lisp> (FORMAT T "-!Stars with Arabic names: -:@!-S -=_-s -
-211- :_-s - :r@_-s -_-s -1r _-s- .- . "

Stars

'(BETELGEUSE (DENEB SIRIUS VEGA)
ALDEBERAN ALGOL (CASTOR POLLUX) BELLATRIX)

with Arabic names: BETELGEUSE
(DENEB SIRIUS VEGA)
ALDEBERAN
ALGOL
(CASTOR POLLUX)
BELLATRIX

the

• The text, "Stars with Arabic names:", in the outer logical
block causes the inner logical block to begin at column 26.
With *PRINT-MISER-WIDTH* set to 35, FORMAT enables miser mode
when the logical block begins past column 25.

• FORMAT conserves space by starting a new line at every
multiline mode new line directive (-_)and every if-needed new
line directive (- :_).

• FORMAT starts a new line at the miser mode new line directive
(-@_) and ignores the indentation directives (-nI).

97

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

PRINT-RIGHT-MARGIN Variable

Specifies the right margin for pretty printing. Output may exceed
this margin if you print long symbol names or strings, or if your
FORMAT control string specifies no new line directives of any type.
If the value of *PRINT-RIGHT-MARGIN* is NIL, the print function uses a
value appropriate to the output device.

The WRITE and WRITE-TO-STRING functions have been extended in VAX LISP
to accept the :RIGHT-MARGIN keyword. If you specify this keyword,
PRINT-RIGHT-MARGIN is bound to the value you supply with the keyword
before any output is produced.

See Chapter 6 for more
PRINT-RIGHT-MARGIN variable.

Example

information

Lisp> (DEFUN.RECORD-MY-STATISTICS
(NAME AGE SIBLINGS MARRIED?)
(UNLESS (SYMBOLP NAME)
(ERROR "-s must be a symbol." NAME))
(SETF (GET NAME 'AGE) AGE
(GET NAME 'NUMBER-OF-SIBLINGS) SIBLINGS
(GET NAME 'IS-THIS-PERSON-MARRIED?) MARRIED)
NAME)
RECORD-MY-STATISTICS
Lisp> (SETF *PRINT-RIGHT-MARGIN* 40)
40

about

Lisp> (PPRINT-DEFINITION 'RECORD-MY-STATISTICS)
(DEFUN_ .
RECORD-MY-STATISTICS
(NAME AGE SIBLINGS MARRIED?)
(UNLESS

(SYMBOLP NAME)
(ERROR

.. - S must be a symbol. "
NAME))

(SETF
(GET NAME 'AGE) AGE
(GET NAME 'NUMBER-OF-SIBLINGS)
SIBLINGS
(GET

NAME
'IS-THIS-PERSON-MARRIED?)

MARRIED)
NAME)

using

e The call to the DEFUN macro defines a function
RECORD-MY-STATISTICS.

98

the

named

0

0

0

0

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

PRINT-RIGHT-MARGIN Variable (cont.)

• The call to the SETF macro sets
PRINT-RIGHT-MARGIN variable to 40.

the value of the

• The call to the PPRINT function shows the effect the
variable's value has on the pretty-printed output.
PPRINT-DEFINITION stops printing each line before reaching
column 40.

99

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

PRINT-SIGNALED-ERROR Function

Used by the VAX LISP error handler to display a formatted error
message when an error is signaled. The function prints all output to
the stream bound to the *ERROR-OUTPUT* variable. The error message
formats are described in Chapter 4.

You can include a call to this function in an error handler that you
create (see Chapter 4).

Format

PRINT-SIGNALED-ERROR function-name
error-signaling-function &REST args

Arguments

function-name

The name of the function that is to call the
error-signaling function.

error-signaling-function

specified

The name of an error-signaling function.
are ERROR, CERROR, and WARN.

Valid function names

args

The specified error-signaling function's arguments.

Return Value

Undefined.

Example

Lisp> (DEFUN CONTINUING-ERROR-HANDLER (FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
&REST ARGS)

(IF (EQ ERROR-SIGNALING-FUNCTION 'CERROR)
(PROGN

(APPLY #'PRINT-SIGNALED-ERROR
FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
ARGS)

(FORMAT *ERROR-OUTPUT*
"-&rt will be continued automatically.-2%.")

NIL)

100

0

0

0

0

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

PRINT-SIGNALED-ERROR .Function (cont.)

(APPLY #'UNIVERSAL-ERROR-HANDLER
FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
ARGS)))

CONTINUING-ERROR-HANDLER

Defines an error handler that automatically continues from a
continuable error after displaying an error message. All other
errors are passed to the system's error handler.

101

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

PRINT-SLOT-NAMES-AS-KEYWORDS Variable

Determines how the slot names of a structure are formatted when theyO
are displayed. The value can be Tor NIL. If the value is T, slot
names are preceded with a colon(:). For example:

#S(SPACE :AREA 4 :COUNT 10)

If the value is NIL, slot names are not preceded with a colon. For
example:

#S(SPACE AREA 4 COUNT 10)

The default value is T.

Example

Lisp> (DEFSTRUCT HOUSE
ROOMS
FLOORS)

HOUSE
Lisp> (MAKE-HOUSE :ROOMS 8 :FLOORS 2)
#S(HOUSE :ROOMS 8 :FLOORS 2)
Lisp> (SETF *PRINT-SLOT-NAMES-AS-KEYWORDS* NIL)
NIL
Lisp> (MAKE-HOUSE :ROOMS 8 :FLOORS 2)
#S(HOUSE ROOMS 8 FLOORS 2)

a The call to the DEFSTRUCT macro defines a structure named
HOUSE.

•

•

•

The first call to the constructor function MAKE-HOUSE creates
a structure named HOUSE. Colons are included in the output
because the value of the *PRINT-SLOT-NAMES-AS-KEYWORDS*
variable is T.

The call to the SETF macro changes the value
PRINT-SLOT-NAMES-AS-KEYWORDS variable to NIL.

of the

The second call to the constructor function MAKE-HOUSE creates
a structure named HOUSE. Colons are not included in the
output because the value of the *PRINT-SLOT-NAMES-AS-KEYWORDS*
variable is NIL.

102

0

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

REQUIRE Function

Examines the *MODULES* variable to determine if a specified module
been loaded. If the module is not loaded, the function loads
files that you specify for the module. If the module is loaded,
files are not reloaded.

has
the
its

When you call the REQUIRE function in VAX LISP, the function checks
whether you explicitly specified pathnames that name the files it is
to load. If you specify pathnames, the function loads the files the
pathnames represent. If you do not specify pathnames, the function
searches for the module's files in the following order:

1. The function searches the current directory for a source file
or a fast-loading file with the specified module name. If
the function finds such a file, it loads the file into the
LISP environment. This search forces the function to locate
a module you have created before the function locates a
module of the same name that is present in one of the public
places (see following steps).

2. If the logical name LISP$MODULES is defined, the function
searches the directory this logical name refers to for a
source file or a fast-loading file with the specified module
name. This search enables the VAX LISP sites to maintain a
central directory of modules.

3. The function searches the directory to which the logical name
LISP$SYSTEM refers for a source file or a fast-loading file
with the specified module name. This search enables you to
locate modules that are provided with the VAX LISP system.

4. If the function does not find a file with the specified
module name, an error is signaled.

Q When you load a module, the pathname that refers to the directory that
contains the module is bound to the *MODULE-DIRECTORY* variable. A
description of the *MODULE-DIRECTORY* variable is provided earlier in
Part II.

0

The REQUIRE function checks the *MODULES* variable to determine if a
module has already been loaded. However, the REQUIRE function, when
loading a module, does not update the *MODULES* variable to indicate
that the module has been loaded. The PROVIDE function (described in
COMMON LISP: The Language) does update the *MODULES* variable. use
the PROVIDE function in a file containing a module to be loaded to
indicate to the LISP system that the file contains a module of this
name.

If the loaded file does not contain a corresponding PROVIDE,
subsequent REQUIRE of the module will cause the file to be reloaded.

103

a

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

REQUIRE Function (cont.)

Format

REQUIRE module-name &OPTIONAL pathname

Arguments

module-name

A string or a symbol that names the module whose files are to be
loaded.

pathname

0

A pathname or a list of pathnames that represent the files to be
loaded into LISP memory. The files are loaded in the same order Q
the pathnames are listed, from left to right.

Return Value

Undefined.

Example

Lisp> *MODULES*
("CALCULUS" "NEWTONIAN-MECHANICS")
Lisp> (REQUIRE 'RELATIVE)
T
Lisp> *.MODULES*
("RELATIVE" "CALCULUS" "NEWTONIAN-MECHANICS")

~ The first evaluation of the *MODULES* variable shows that the
modules CALCULUS and NEWTONIAN-MECHANICS are loaded.

0

@ The call to the REQUIRE function checks whether the module Q
RELATIVE is loaded. The previous evaluation of the *MODULES*
variable indicated that the module was not loaded; therefore,
the function loaded the module RELATIVE.

@ The second evaluation of the *MODULES* variable shows that the
module RELATIVE was loaded.

104

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

ROOM Function

CJisplays information
the following memory

about LISP memory.
spaces:

Information is displayed for

e Read-only space

• Static space

• Dynamic space

The following information is provided for each type of space:

• Total number of memory pages that can be used

• Current number of memory pages being used

Q • Percentage of free memory pages available for use

The information for each storage type is displayed on one line in the
following format:

Read-Only Storage Total Size: 4362, Current Allocation: 4113, Free: 6%

All counts are in 512-byte pages.

Cormat

ROOM &OPTIONAL value

Argument

value

0

0

Optional argument whose value can be Tor NIL. If you specify
NIL, the function displays the same information that it displays
when the argument is not specified. If you specify T, the
function displays additional information for the read-only,
static, and dynamic storage spaces. The additional information
consists of a breakdown of the storage space being used by each
VAX LISP data type. The information is displayed in the
following tabular format:

Read-Only Storage Total Size: 4362, Current Allocation: 4113, Free: 6%
(reserved) 0 Functions: 191 Arrays: 0 B-Vectors: 6
Strings: 381 U-Vectors: 3403 S Flo Vecs: 0 D Flo Vecs: 0
L Flo Vecs: 0 L Wrd Vecs: 0 Bignums: 1 (reserved) 0
Sngl Flos: 1 Dbl Flos: 1 Long Floe: 1 Ratios: 0
Complexes: 0 Symbols: 0 Conses: 128 (reserved) 0
Ctrl Stack: 0 Bind Stack: 0

Table 6 lists the headings and VAX LISP data types the ROOM
function displays for each type of storage space.

105

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

ROOM Function (cont.)

Return Value

No value.

Table 6: Data Type Headings

Heading Data Type

Functions Compiled function descriptors

Arrays Nonsimple array descriptors

B-Vectors Boxed vectors -- simple vectors of LISP objects

Strings

u-vectors

S Flo Vecs

D Flo Vecs

L Flo Vecs

L Wrd Vecs

Bignums

Sngl Flos

Dbl Flos

Long Flos

Ratios

Complexes

Symbols

Cons es

Ctrl Stack

Bind Stack

Character strings

Unboxed vectors -- simple vectors that contain
compiled code, alien structures, or integers of
type (mod n)

Simple float vectors

Simple double float vectors

Simple long float vectors

Simple longword vectors

Bignums

Single float numbers

Double float numbers

Long float numbers

Ratios

Complex numbers

Symbols

Conses

Control Stack

Binding Stack

106

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

ROOM Function (cont.)

O Examples

0

0

0

0

1. Lisp> (ROOM)

Read-Only Storage
Static Storage
Dynamic-0 Storage

Total Size: 4362, Current Allocation: 4113, Free: 5%
Total Size: 2176, Current Allocation: 2146, Free: 1%
Total Size: 3065, Current Allocation: 1292, Free: 68%

Displays a list of the current memory storage information.

2 • Lisp> (ROOM T)

Read-Only Storage Total Size: 4352, Current Allocation: 4113, Free: 5%
(reserved) 0 Functions: 191 Arrays: 0 B-Vectors: 6
Strings: 381 U-Vectors: 3403 S Flo Vecs: 0 D Flo Vecs: 0
L Flo Vecs: 0 L Wrd Vecs: 0 Bignums: 1 (reserved) 0
Sngl Floe: 1 Dbl Floe: 1 Long Floe: 1 Ratios: 0
Complexes: 0 Symbols: 0 Conses: 128 (reserved) 0
Ctrl Stack: 0 Bind Stack: 0

Static Storage Total Size: 2176, Current Allocation: 2146, Free: 1%
(reserved) 0 Functions: 322 Arrays: 1 B-Vectors: 81
Strings: 676 U-Vectors: 257 S Flo Vecs: 0 D Flo Vecs: 0
L Flo Vecs: 0 L Wrd Vecs: 0 Bignums: 1 (reserved) 0
Sngl Floe: 2 Dbl Floe: 2 Long Floe: 0 Ratios: 0
Complexes: 0 Symbols: 360 Conses: 644 (reserved) 0
Ctrl Stack: 0 Bind Stack: 0

Dynamic-0 Storage Total Size: 3065, Current Allocation: 1280, Free: 68%
(reserved) 0 Functions: 3 Arrays: 1 B-Vectors: 214
Strings: 254 U-Vectors: 12 S Flo Vecs: 1 D Flo Vecs: 0
L Flo Vecs: 0 L Wrd Vecs: 0 Bignums: 3 (reserved) 0
Sngl Floe: 1 Dbl Floe: 1 Long Floe: 1 Ratios: 0
Complexes: 0 Symbols: 4 Conses: 656 (reserved) 0
Ctrl Stack: 129 Bind Stack: 36

Read-Only Storage Total Size: 4352, Current Allocation: 4113, Free: 5%

Displays a detailed list of the current memory storage
information.

107

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

SET-TERMINAL-MODES Function

Sets the terminal characteristics of the stream bound to the
TERMINAL-IO variable when you invoke the LISP system. Changes to
the stream affect all streams attached to the terminal.

Be careful when you change the settings of terminal modes. A change
to terminal modes affects all the streams that are open to the
terminal. If you put a stream into pass-through mode, for example,
all the streams open to the terminal are_put into pass-through mode.

NOTE

Create an error handler to prevent your terminal from
being placed in a nonstandard state. See Section 3.3
for information about how to create an error handler.

Format

SET-TERMINAL-MODES
&KEY :BROADCAST :ECHO :ESCAPE :HALF-DUPLEX

:PASS-ALL :TYPE-AHEAD :WRAP :PASS-THROUGH

Arguments

:BROADCAST

:ECHO

Specifies whether the terminal can receive broadcast messages
such as MAIL notifications and REPLY messages. The value can be
either Tor NIL. If you specify T, the terminal can receive
messages; if you specify NIL, the terminal cannot receive
messages.

Specifies whether the terminal displays the input characters it
receives. The value can be either Tor NIL. If you specify T,
the terminal displays input characters; if you specify NIL, the
terminal displays only data output from the system or from a user
application program.

:ESCAPE

Specifies whether ANSI standard escape sequences transmitted from
the terminal are handled as a single multicharacter terminator.

0

0

0

0

The value can be either Tor NIL. If you specify T, the escape
sequences are handled as a single multicharacter terminator. The
terminal driver checks the escape sequences for syntax before
passing them to the program. For more information on escape Q
sequences, see the VAX/VMS I/0 user's Reference Manual: Part r.

108

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

SET-TERMINAL-MODES Function (cont.)

:HALF-DUPLEX

Specifies the terminal's operating mode. The value can be either
T or NIL. If you specify T, the terminal's operating mode is
half-duplex. If you specify NIL, the operating mode is
full-duplex. For a description of terminal operating modes, see
the VAX/VMS I/0 User's Reference Manual: Part I.

:PASS-ALL

Specifies whether the terminal is in pass-all mode. The value
can be either Tor NIL. If you specify T, the system does not
expand tab characters to blanks, fill carriage return or line
feed characters, recognize control characters, or receive
broadcast messages. If you specify NIL, the system passes all
data to an application program as binary data.

NOTE

:PASS-ALL has been kept for compatibility with
with Version 1 of VAX LISP, but it is not
recommended that you use :PASS-ALL.

:PASS-THROUGH

Specifies whether the terminal is in pass-through mode. The
value can be either T or NIL. This mode is the same as the
:PASS-ALL mode, except that "TTSYNC" protocol (CTRL/S, CTRL/Q) is
still used.

:TYPE-AHEAD

:WRAP

Specifies whether the terminal accepts input that is typed when
there is no outstanding read. The value can be either Tor NIL.
If you specify T, the terminal accepts input even if there is not
outstanding read. If you specify NIL, the terminal is dedicated
and accepts input only when a program or the system issues a
read.

Specifies whether the terminal driver generates a carriage return
and a line feed when the end of a line is reached. The value can
be either Tor NIL. If you specify T, the terminal driver
generates a carriage return and a line feed when the end of a
line is reached. The end of the line is determined by the
terminal width setting.

109

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

SET-TERMINAL-MODES Function (cont.)

Return Value

Undefined.

Example

Lisp> (DEFVAR *OLD-TERMINAL-STATE*)
OLD-TERMINAL-STATE
Lisp> (DEFUN PASS-THROUGH-HANDLER (FUNCTION ERROR &REST ARGS)

(LET ((CURRENT-SETTINGS (GET-TERMINAL-MODES)))
(APPLY #'SET-TERMINAL-MODES *OLD-TERMINAL-STATE*)
(APPLY #'UNIVERSAL-ERROR-HANDLER FUNCTION ERROR ARGS)
(APPLY #'SET-TERMINAL-MODES CURRENT-SETTINGS)))

PASS-THROUGH-HANDLER
Lisp> (DEFUN UNUSUAL-INPUT NIL

(LET ((*OLD-TERMINAL-STATE* (GET-TERMINAL-MODES))
(*UNIVERSAL-ERROR-HANDLER* #'PASS-THROUGH-HANDLER))

(UNWIND-PROTECT (PROGN
(SET-TERMINAL-MODES
:PASS-THROUGH

UNUSUAL-INPUT

T
:ECHO
NIL)

(GET-INPUT))
(APPLY #'SET-TERMINAL-MODES

OLD-TERMINAL-STATE))))

• The call to the DEFVAR macro informs the LISP system that
OLD-TERMINAL-STATE is a special variable.

0

0

0

• The first call to the DEFUN macro defines an error handler
named PASS-THROUGH-HANDLER, which is used when the terminal is Q
placed in an unusual state. The handler assumes that the
normal terminal modes are stored as the value of the
OLD-TERMINAL-STATE variable.

• The second call to the DEFUN macro defines a function named
UNUSUAL-INPUT, which causes the function PASS-THROUGH-HANDLER
to be the error handler while the function GET-INPUT is being
executed. The -GET-INPUT function is inside a call to the
UNWIND-PROTECT function so an error or throw puts the terminal
back in its original state.

110

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

SHORT-SITE-NAME Functi.on

Translates the logical name LISP$SHORT_SITE_NAME.

Format

SHORT-SITE-NAME

Return Value

The translation of the logical name LISP$SHORT_SITE_NAME is
returned as a string. If the logical name is not defined, NIL is
returned.

Example

Lisp> (SHORT-SITE-NAME)
"Smith's Computer Company"

111

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

SPAWN Function

Creates a subprocess for executing Command Language Interpreter (CLI)
commands. This function causes the LISP system to interrupt execution
of a LISP process and to optionally execute the specified CLI command.
If you specify the :PARALLEL keyword with a value of T, the LISP
process continues to execute while the subprocess is executing. If
you do not specify this keyword or if you specify it with NIL, the
LISP process is put into a hibernation state until the subprocess
completes its execution.

This function is equivalent to the DCL SPAWN command. For more
information on the SPAWN command, see- the VAX/VMS DCL Dictionary.

Format

SPAWN

Arguments

&KEY :COMMAND-STRING :DCL-SYMBOLS :INPUT-FILE
:LOGICAL-NAMES :OUTPUT-FILE :PARALLEL
:PROCESS-NAME

:COMMAND-STRING

0

0

A string that specifies a DCL command the specified subprocess is Q
to process. The value must be a DCL command. By default, the
SPAWN function does not process a command. -

:DCL-SYMBOLS

Specifies whether the spawned subprocess is to acquire the
currently defined CLI symbols from the LISP process. The value
can be either T or NIL. If you specify T, the subprocess
acquires the CLI symbols. If you specify NIL, the subprocess Q
does not,acquire the CLI symbols. The default value is T.

:INPUT-FILE

A pathname, namestring, symbol, or stream that specifies an input
file containing one or more DCL commands to be associated with
the logical name SYS$INPUT and to be .executed by the spawned
subprocess. If you specify both a command string and an input
file, the command string is processed before the commands in the
input file. The subprocess is terminated when processing is
complete.

'

112

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

SPAWN Function (cont.).

OLOGICAL-NAMES

Specifies whether the spawned subprocess is to acquire the
currently defined logical names. The value can be either Tor
NIL. If you specify T, the subprocess acquires the logical
names; if you specify NIL, the subprocess does not acquire the
logical names. The default value is T.

:OUTPUT-FILE

Specifies a pathname, namestring, symbol, or stream that names
the output file to be associated with the logical name SYS$OUTPUT
and to which the results of the spawned subprocess are to be
written.

CPARALLEL

Specifies whether the execution of the LISP system and the
created subprocess are to be parallel. The value can be either T
or NIL. If you specify T, the execution of the system and the
subprocess are parallel. If you specify NIL, the LISP system
remains in a hibernation state until the created subprocess
completes its execution and exits. The default value is NIL.

C'ROCESS-NAME

Specifies the name of the subprocess to be created. If you omit
this keyword, the system generates a unique name.

Return Value

Undefined.

Qamples

0

1. Lisp> (SPAWN)
$

C~eates a uniquely named subprocess and attaches the terminal
to it. The commands typed at the terminal are directed to
the subprocess until the subprocess exits.

2. Lisp> (SPAWN :INPUT-FILE "START.COM"
:OUTPUT-FILE "START.LOG"
:PARALLEL T)

Lisp>

Creates a subprocess that will execute the contents of
START.COM.

113

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

SPAWN Function (cont.)

3. Lisp> (DEFUN SPAWN-IN-WINDOW
(&OPTIONAL (PROCESS-NAME NIL))

(LET ((DEVICE-STRING
(UIS:CREATE-TERMINAL

:BANNER-TITLE
(OR PROCESS-NAME "Subprocess"))))

(SPAWN :INPUT-FILE DEVICE-STRING
:OUTPUT-FILE DEVICE-STRING
:PROCESS-NAME PROCESS-NAME
:PARALLEL T)))

SPAWN-IN-WINDOW
Lisp> (SPAWN-IN-WINDOW "Smith_!")
Lisp>

0

This example works only on a VAXstation. It defines a
function named SPAWN-IN-WINDOW that creates a process in(~
VAXstation terminal emulator window. The function~/
UIS:CREATE-TERMINAL creates a terminal emulator window and
returns the window's device name. By supplying this return
value with the :INPUT-FILE and :OUTPUT-FILE keyword
arguments, SPAWN-IN-WINDOW arranges for input to and output
from the subprocess to be directed through the terminal
emulator window. SPAWN-IN-WINDOW accepts an optional
argument that becomes the name of the subprocess and thoe
title of the window.

When the SPAWN-IN-WINDOW function is called, a subprocess and
a terminal emulator window named "Smith_!" are created. The
cursor switches to the terminal emulator window. However,
the user can switch the cursor back to the LISP prompt and
continue to use LISP without logging out of the subprocess.

See the VAX LISP/VMS Graphics Programming Guide
information about the UIS:CREATE-TERMINAL function.

114

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

STEP Macro

Invokes the VAX LISP stepper.

The STEP macro evaluates the form that is its argument and returns
what the form returns. In the process, you can interactively step
through the evaluation of the form. Entering a question mark (?) in
response to the stepper prompt displays helpful information. The
stepper is command oriented rather than expression oriented - do not
surround commands with parentheses. For further information on using
the VAX LISP stepper, see Chapter 5.

Format

STEP form

Argument

form

A form to be evaluated.

Return Value

The value returned by form.

Q Example

0

0

Lisp> (STEP (FACTORIAL 3))
: #9: (FACTORIAL 3)
Step 1>

Invokes the VAX LISP stepper for the function call (FACTORIAL 3).

115

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

STEP-ENVIRONMENT Variable

The *STEP-ENVIRONMENT* variable, a debugging tool, is
lexical environment in which *STEP-FORM* is being
default in the stepper, the lexical environment is used
EVALUATE command. See COMMON LISP: The Language for a
dynamic and lexical environment variables.

bound to the C
evaluated. By
if you use the
description of

Some COMMON LISP functions (for. example, EVALHOOK, APPLYHOOK, and
MACROEXPAND) take. an optional environm~nt argument. The value bound
to the *STEP-ENVIRONMENT* variable can be passed as an environment to
these functions to allow evaluiton of forms in the context of the
stepped form.

Example

Step> EVAL *STEP-FORM*
(FUNCTION-X (- X 1))
Step> (EVALHOOK '(- x 1) NIL NIL *STEP-ENVIRONMENT*)
2

The use of the *STEP-ENVIRONMENT* variable in this call to the
EVALHOOK function causes the local value of X to be used in the
evaluation of the form (- X 1). See Chapter 5 for the full
stepper sessions from which this excerpt is taken.

116

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

STEP-FORM Variable

~}he *STEP-FORM* variable, a debugging tool, is bound to the form being
evaluated while stepping. For example, while executing the form

(STEP (FUNCTION-Z ARGl ARG2))

the value of *STEP-FORM* is the list (FUNCTION-Z ARGl ARG2). When not
stepping, the value is undefined.

Example

0

-o

0

0

Step>
STEP

. : #39: X => 4
#35: => NIL
#34: (+ FUNCTION-X (- X 1)) (FUNCTION-X (- X 2)))

Step> STEP
: : : : : : : #38: (FUNCTION-X (- X 1))
Step> EVAL *STEP-FORM*
(FUNCTION-X (- X 1))

See Chapter 5 for the full stepper session from which this·
excerpt is taken. In this case, the *STEP-FORM* variable is
bound to (FUNCTION-X (- X 1)).

117

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

SUSPEND Function

Writes information about a LISP system to a file, making it possibl~
to resume the LISP system at a later time. The function does not stop
the current system, but copies the state of the LISP system when the
function is invoked to the specified file. When you reinvoke the LISP
system with the /RESUME qualifier and the file name that was specified
with the SUSPEND function, program execution continues from the point
where the SUSPEND function was called~

Only the static and dynamic portions of the LISP environment are
written to the specified file. When you resume a suspended system,
the read-only sections of the LISP environment are taken from
LISP$SYSTEM:LISPSUS.SUS. You must make sure that your original LISP
system is in LISP$SYSTEM:LISPSUS.SUS; if it is not, you will not be
able to resume the system.

When a suspended system is resumed, the LISP environment is identicaO
to the environment that existed when the suspend operation occurred,
with the following exceptions:

• All streams except the standard streams are closed .

• The *DEFAULT-PATHNAME-DEFAULTS* variable is set to the current
directory.

• Call-out state might be lost (see Chapter
LISP/VMS System Acess Programming Guide).

2 of the

e Any interrupt functions are uninstated (see Chapter 4 of the
VAX LISP/VMS System Access Programming Guide). They are not
automatically reinstated upon resuming.

• For all workstation-related. functions that take an action
argument, the action is reset to the system default state. f~
action that you have established is not automaticall~_)
reestablished upon resuming.

• Some Editor state is changed (see the VAX LISP Editor
Programming Guide).

• On a workstation, windows, displays~ and display lists are
lost.

Format

SUSPEND pathname

0
118

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

SUSPEND Function (cont..)

Argument

pathname

A pathname, na1nestring, or symbol that represents the file name
to which the function writes the LISP-system state.

Return Value

T, when the LISP system is resumed at a later time and NIL, when
execution continues after a suspend operation.

Example

Lisp> (DEFUN PROGRAM-MAIN-LOOP NIL
(LOOP (PRINC "Enter number>")

(SETF X (READ *STANDARD-INPUT*))
(FORMAT *STANDARD-OUTPUT*

"-%The square root of-Fis -F. -%"
x
(SQRT X))))

PROGRAM-MAIN-LOOP
Lisp> (DEFUN DUMP-PROGRAM NIL

(SUSPEND "MYPROG.SUS")
(FRESH-LINE)
(PRINC "Welcome to my program!")
(TERPRI)
(PROGRAM-MAIN-LOOP))

DUMP-PROGRAM
Lisp> (DUMP-PROGRAM)
; Starting garbage collection due to GC function.
; Finished garbage collection due to GC function.
; Starting garbage collection due to SUSPEND function.
; Finished garbage collection due to SUSPEND function.
Welcome to my program
Enter number> 25
The square root of 25.0 is 5.0.
Enter number> 5
The square root of 5.0 is 2.236038.
Enter number>

<CTRL/C>
Lisp> (EXIT)
$ LISP/RESUME=MYPROG.SUS
Welcome to my program
Enter number>

119

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

SUSPEND Function (cont.)

• The first call to the DEFUN macro defines a function named
PROGRAM-MAIN-LOOP.

• The second call to the DEFUN macro defines a function named
DUMP-PROGRAM.

• The call to the DUMP-PROGRAM function copies the current state
of the LISP environment to the file MYPROG.SUS. The LISP
system continues to run, displaying the message "Welcome to my
program" and then executes the PROGRAM-MAIN-LOOP function.

• The call to the EXIT function exits the LISP system.

• The LISP/RESUME=MYPROG.SUS specification
system, displays the message,
PROGRAM-MAIN-LOOP function.

120

reinvokes the LISP
and executes the

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

THROW-TO-COMMAND-LEVEL Function

O Transfers control. This function exists only for compatibility with
VAX LISP/VMS Vl.x, in which it transferred control to a numbered
command level. VAX LISP V2 does not have numbered command levels. In
VAX LISP V2, THROW-TO-COMMAND-LEVEL either throws to the
CANCEL-CHARACTER-TAG tag or does nothing.

0

Format

THROW-TO-COMMAND-LEVEL level

Argument

level

Either an integer or a keyword. Depending on the argument,
THROW-TO-COMMAND-LEVEL takes the following action:

integer
:CURRENT
:PREVIOUS
:TOP

No action
Throw to CANCEL-CHARACTER-TAG
No action
Throw to CANCEL-CHARACTER-TAG

Return Value

Q Undefined.

0

0

Example

Lisp> (FACTORIAL M)

Fatal error in function SYSTEM::%EVAL (signaled with ERROR).
Symbol has no value: M

Control Stack Debugger
Frame #3: (EVAL (FACTORIAL M))
Debug> (THROW-TO-COMMAND-LEVEL :TOP)
Lisp>

• Th~ debugger is invoked, because an error was signaled when
the FACTORIAL function was called •

• The call to the THROW-TO-COMMAND-LEVEL function
control to the top-level loop.

121

returns

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TIME Macro

Evaluates a form, displays the form's CPU time and real time,
returns the values the form returns.

ando

The time information is displayed in the following format:

CPU Time: 0.03 sec., Real Time: 0.23 sec .
.

If garbage collections occur during the evaluation of a call to the
TIME macro, the macro displays another fine of time information. This
line includes information about the CPU time and real time used by the
garbage collector.

Format

TIME form

Argument

form

The form that is to be evaluated.

Return Value

The form's return values are returned.

Example

Lisp> (TIME (TEST))
CPU Time: 0.03 sec., Real Time: 0.23 sec.
6

122

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TOP-LEVEL-PROMPT Var.iable

O Lets you change the top-level prompt.
be:

The value of this variable can

0

0

0

0

• A string

• A function of no arguments that returns a string

e NIL

If you specify NIL, the default prompt "Lisp>" is used.

Example

Lisp> (SETF *TOP-LEVEL-PROMPT* "TOP>")
"TOP> II

TOP>

Sets the value of the variable *TOP-LEVEL-PROMPT* to "TOP> II

123

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro

Enables tracing for one or more functions and macros.

VAX LISP allows you to specify a number of options that suppress the
TRACE macro's displayed output or that cause additional information to
be displayed. The options are specified ctS keyword-value pairs. The
keyword-word value pairs you can specify are listed in Table 7.

Format

NOTE

The arguments specified in a call to the TRACE macro
are not evaluated when the call to TRACE is executed.
Some forms are evaluated repeatedly, as described
below.

TRACE &REST trace-description

Argument

trace-description

0

0

One or more optional arguments. If an argument is not specified, Q
the TRACE macro returns a list of the functions and macros that
are currently being traced. Trace-description arguments can be
specified in three formats:

• One or more function and/or macro names can be specified which
enables tracing for that function(s) and/or macro(s).

•
name-1 name-2 •.•

The name of each function or macro can be specified with
keyword-value pairs. The keyword-value pairs specify the
operations the TRACE macro is to perform when it traces the
specified function or macro. The name and the keyword-value
pairs must be specified as a list whose first element is the
function or macro name.

(name keyword-1 value-1
keyword-2 value-2 ...)

0

• A list of function and/or macro names can be specified with
keyword-value pairs. The keyword-value pairs specify the
operations the TRACE macro is to perform when it traces each
function and/or macro in the list. The list of names and the
keyword-value pairs must be specified as a list whose first o
element is the list of names.

124

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

0

0

0

0

0

((name-1 name-2 ...) keyword-! value-1
keyword-2 value-2 ... }

Table 7 lists the keywords and values that can be specified. The
forms that are referred to in the value descriptions are
evaluated in the null lexical environment and the current dynamic
environment.

Table 7: TRACE Options

Keyword-Value Pair

:DEBUG-IF form

:PRE-DEBUG-IF form

:POST-DEBUG-IF form

:PRINT form-list

Description

Specifies a form that is to be
evaluated before and after each
call to the specified function or
macro. If the form returns a value
other than NIL, the VAX LISP
debugger is invoked before and
after the function or macro is
called.

Specifies a form that is to be
evaluated before each call to the
specified function or macro. If
the form returns a value other than
NIL, the VAX LISP debugger is
invoked before the specified
function or macro is called.

Specifies a form that is to be
evaluated after each call to the
specified function or macro. If
the form returns a value other than
NIL, the VAX LISP debugger is
invoked after the specified
function or macro is called.

Specifies a list of forms that are
to be evaluated and whose values
are to be displayed before and
after each call to the specified
function or macro. The values are
displayed one per line and are
indented to match other output
displayed by the TRACE macro. If
the TRACE macro cannot evaluate the
argument, the debugger is invoked
(see Chapter 5).

125

-------·-··----·· -··· - --·--··---·--------

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

Table 7 (cont.)

Keyword-Value Pair

:PRE-PRINT form-list

:POST-PRINT form-list

:STEP-IF form

:SUPPRESS-IF form

:DURING name

0
Description

Specifies a list of forms that are
to be evaluated and whose values
are to be displayed before each
call to the specified function or
macro. The values are displayed
one per line and are indented to
match other output displayed by the
TRACE macro. If the TRACE macro
cannot evaluate the argument, the
debugger is invoked (see Chapter
5). 0
Specifies a list of forms that are
to be evaluated and whose values
are to be displayed after each call
to the specified function or macro.
The values are displayed one per
line and are indented to match
other output displayed by the TRACE
macro. If the TRACE macro canno
evaluate the argument, the debugg
is invoked (see Chapter 5).

Specifies a form that is to be
evaluated before each call to the
specified function or macro. If
the form returns a value other than
NIL, the stepper is invoked and the
function or macro is steppo
through. See Chapter 5 f,
information on the stepper.

Specifies a form that is to be
evaluated before each call to the
specified function or macro. If
the form. returns a value other than
NIL, the TRACE macro does not
display the arguments and the
return value of the specified
function or macro.

Specifies a function or macro name
or a list of function and macro
names. The function or macro
specified by the TRACE function()
traced only when it is call~

126

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

0 Table 7 (cont.)

Keyword-Value Pair

Return Value

Description

(directly or
within one of
macros specified
keyword.

A list of the functions currently being traced.

indirectly) from
the functions or

by the :DURING

QExamples

1. Lisp> (TRACE FACTORIAL COUNT! COUNT2)
(FACTORIAL COUNT! COUNT2)

0

0

0

Enables the tracer for the functions FACTORIAL, COUNT!, and
COUNT2.

2. Lisp> (TRACE)
(FACTORIAL COUNT! COUNT2)

Returns a list of the functions for which the tracer is
enabled.

3. Lisp> (DEFUN REVERSE-COUNT (N)
(DECLARE (SPECIAL *GO-INTO-DEBUGGER*))
(IF(> N 3)

(SETQ *GO-INTO-DEBUGGER* T)
(SETQ *GO-INTO-DEBUGGER* NIL))

(COND ((= N 0) 0)
(T (PRINT N) (+ 1 (REVERSE-COUNT (- N 1))))))

Lisp> (SETQ *GO-INTO-DEBUGGER* NIL)
NIL
Lisp> (REVERSE-COUNT 3)
3
2
1
3
Lisp> (TRACE (REVERSE-COUNT :DEBUG-IF *GO-INTO-DEBUGGER*))
(REVERSE-COUNT)
Lisp> (REVERSE-COUNT 3)
#4: (REVERSE-COUNT 3)
3
. #16: (REVERSE-COUNT 2)
2
.• #28: (REVERSE-COUNT 1)

127

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

1
... #40: (REVERSE-COUNT 0)
... #40=> 0
. . #28=> 1
. #16=> 2
#4=> 3
3 '
Lisp> (REVERSE-COUNT 4)
#4: (REVERSE-COUNT 4)
4
. #16: (REVERSE-COUNT 3)
Control Stack Debugger
Frame #17: (DEBUG)
Debug 1> CONTINUE
3

#28: (REVERSE-COUNT 2)
2

. #40: (REVERSE-COUNT 1)
1

.. #52: (REVERSE-COUNT 0)

.. #52=> 0

. #40=> 1
.. #28=> 2
• #16=> 3
#4=> 4
4
Lisp>

The recursive function REVERSE-COUNT is defined to count down
from the number it is given and to return that number after
the function is evaluated. If, however, the number given is
greater than 3 (set low to simplify the example), the global
variable *GO-INTO-DEBUGGER* (preset to NIL) is set to T.

The first time the REVERSE-COUNT function is traced using the
DEBUG-IF keyword, the argument is 3. The second time the
function is traced, the argument is over 3. This sets the
global variable *GO-INTO-DEBUGGER* to T, which causes the
debugger to be invoked during a trace of the REVERSE-COUNT
function. The debugger is invoked after the function's
argument is evaluated.

To reset the global variable *GO-INTO-DEBUGGER* to NIL, the
REVERSE-COUNT function must be completed. So, the evaluation
of the function was continued with the Debug command
CONTINUE.

4. Lisp> (TRACE (REVERSE-COUNT
:PRE-DEBUG-IF *GO-INTO-DEBUGGER*))

(REVERSE-COUNT)

128

0

0

0

0

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

Lisp> (REVERSE-COUNT 4)
#4: (REVERSE-COUNT 4)
4
. #16: (REVERSE-COUNT 3)
Control Stack Debugger
Frame #17:
Debug 1>

The 4 argument to the REVERSE-COUNT function causes the
GO-INTO-DEBUGGER variable to be set to T, which in turn
causes the debugger to be invoked before the first recursive
call to the REVERSE-COUNT function.

5. Lisp> (TRACE (REVERSE-COUNT
:POST-DEBUG-IF *GO-INTO-DEBUGGER*))

(REVERSE-COUNT)
Lisp> (REVERSE-COUNT 4)
#4: (REVERSE-COUNT 4)
4
. #16: (REVERSE-COUNT 3)
3
.. #28: (REVERSE-COUNT 2)
2

. #40: (REVERSE-COUNT 1)
1

.. #52: (REVERSE-COUNT 0)
. #52=> 0

. #40=> 1
. . #28=> 2
. #16=> 3
#4=> 4
4
Lisp> (TRACE (REVERSE-COUNT

:POST-DEBUG-IF (NOT *GO-INTO-DEBUGGER*)))
(REVERSE-COUNT)
Lisp> (REVERSE-COUNT 4)
#4: (REVERSE-COUNT 4)
4
. #16: (REVERSE-COUNT 3)
3
•• #28: (REVERSE-COUNT 2)
2
.•. #40: (REVERSE-COUNT 1)
1
..•. #52: (REVERSE-COUNT 0)
Control Stack Debugger
Frame #53: (DEBUG)
Debug 1> CONTINUE

• #52=> 0

129

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

6.

Control Stack Debugger
Frame #41: (DEBUG)
Debug 1> CONTINUE

... #40=> 1
Control Stack Debugger
Frame #29: (DEBUG)
Debug 1> CONTINUE

. . #28=> 2
Control Stack Debugger
Frame #17: (DEBUG)
Debug 1> CONTINUE

. #16=> 3
Control Stack Debugger
Frame #5: (DEBUG)
Debug 1> CONTINUE

#4=> 4
4
Lisp>

0

0

Here, the first time the REVERSE-COUNT function is evaluated, Q
the debugger is not invoked despite the :POST-DEBUG-IF
keyword, because the keyword invokes the debugger only if its
condition is met after the function is evaluated. However,
after the function is evaluated, the *GO-INTO-DEBUGGER*
variable is reset· back to NIL. If the form (SETO
GO-INTO-DEBUGGER NIL) were removed from the definition of
the REVERSE-COUNT function, the variable would not have been
reset to NIL, and the debugger would have been invoked.

The second time the REVERSE-COUNT function is invoked, the Q
form (NOT *GO-INTO-DEBUGGER*) evaluates to T, since the value
of its argument is NIL. This gives the :POST-DEBUG-IF
keyword a T value, which in turn fulfills the condition of
invoking the debugger after the function is evaluated.

In this situation, the Debug CONTINUE command causes only one
evaluation. Here, the CONTINUE command must be repeated to
evaluate all the recursive calls. This example differs from
example 1, where the CONTINUE command did not have to be
repeated.

Lisp> (SETF *L* 5 *M* 6 *N* 7)
7
Lisp> (TRACE (* :PRINT (*L* *M* *N*)))
(*)
Lisp> (+ 2 3 *L* *M* *N*)

130

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

O TRACE Macro (cont.)

23

0

0

0

0

Lisp> (* 2 3 *L* *M* *N*)
#4: (* 2 3 5 6 7)
#4 *L* is 5
#4 *M* is 6
#4 *N* is 7
#4=> 1260
#4 *L* is 5
#4 *M* is 6
#4 *N* is 7
1260

The+ function is not traced, but the*
The values of the global variables
displayed before and after the call to
evaluated.

function is traced.
L, *M*, and *N* are
the * function is

7. Lisp> (TRACE(* :PRE-PRINT (*L* *M* *N*)))
(*)

8.

Lisp> (* 2 3 *L* *M* *N*)
#4: (* 2 3 5 6 7)
#4 *L* is 5
#4 *M* is 6
#4 *N* is 7
#4=> 1260
1260

The values of the global variables *L*, *M*, and *N* are
displayed before the call to the* function is evaluated.

Lisp> (TRACE (* :POST-PRINT (*L* *M* *N*)))
(*)
Lisp> (* 2 3 *L* *M* *N*)
#4: (* 2 3 5 6 7)
#4=> 1260
#4 *L* is 5
#4 *M* is 6
#4 *N* is 7
1260

The values of the global variables *L*, *M*, and *N* are
displayed after the call to the* function is evaluated.

9. Lisp> (TRACE+)
(+)
Lisp> (+ 2 3 (SQUARE 4) (SQRT 25))
#4: (+ 2 3 16 5.0)
#4=> 26.0
26.0
Lisp> (SETQ *STOP-TRACING* T)

131

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

NIL
Lisp>
(+)
Lisp>
26.0

(TRACE(+ :SUPPRESS-IF *STOP-TRACING*))

(+ 2 3 (SQUARE 4) (SQRT 25))

In the first example, the call to the+ function is traced.
In the second example, the _ call to the + function is not
traced because of the form(+ :SUPPRESS-IF *STOP-TRACING*).

10. Lisp> (TRACE (FACTORIAL :STEP-IF T))
(FACTORIAL)
Lisp> (+ (FACTORIAL 2) 3)
#5: (FACTORIAL 2)

0

#9: (BLOCK FACTORIAL (IF (> 2 N) 1 (* N (FACTORIAL (1- N)))))o
Step>
: #16: (IF(> 2 N) 1 (* N (FACTORIAL (1- N))))
Step>
: : #22: (> 2 N)
Step>

The call to the FACTORIAL function invokes the stepper. Q
11. Lisp> (TRACE (LIST-LENGTH :DURING PRINT-LENGTH))

(LIST-LENGTH)
Lisp> (PRINT-LENGTH ,·(CAT DOG PONY))
#13: (LIST-LENGTH (CAT DOG PONY))
#13=> 3

The length of (CAT DOG PONY) is 3.
NIL

The PRINT-LENGTH function has been defined
of its argument with the function
LIST-LENGTH function is traced during
PRINT-LENGTH function.

12. Lisp> (DEFUN FUNCTION-X (X)
(IF (< X 3) 1

to find the length
LISP-LENGTH. The
the call to the

(+ (FUNCTION-X (- X 1)) (FUNCTION-X (- X 2)))))
FUNCTION-X

Lisp> (TRACE (FUNCTION-X

(FUNCTION-X)

:PRE-DEBUG-IF(< (SECOND *TRACE-CALL*) 2)
:SUPPRESS-IF T))

Lisp> (FUNCTION-X 5)

132

0

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

13.

Control Stack Debugger
Frame #26: (DEBUG)
Debug 1> DOWN
Frame #21: (BLOCK FUNCTION-X

(IF (< X 3) 1

Debug 1> DOWN

(+ (FUNCTION-X (- X 1))
(FUNCTION-X (- X 2)))))

Frame #19: (FUNCTION-X 3)
Debug 1> (CADR (DEBUG-CALL))
3
Debug 1> CONTINUE
Control Stack Debugger
Frame #19: (DEBUG)
Debug 1> CONTINUE
5

• In this example, FUNCTION-Xis first defined.

• Then the TRACE macro is called for FUNCTION-X. TRACE is
specified to invoke the debugger if the first argument to
FUNCTION-X (the function call being traced) is less than
2. Since the PRE-DEBUG-IF option is specified, the
debugger is invoked before the call to FUNCTION-X. As the
:SUPPRESS-IF option has a value of T, calls to FUNCTION-X
do not cause any trace ou·tput.

• The DOWN command moves the pointer down the control stack.

• The DEBUG-CALL function returns a list representing the
current debug frame function call. In this case, the CADR
of the list is 3. This accesses the first argument to the
function in the current stack frame.

• Finally the CONTINUE command continues the evaluation of
FUNCTION-X.

Li.sp> (TRACE (FUNCTION-X
:POST-DEBUG-IF(> (FIRST *TRACE-VALUES*) 2)))

(FUNCTION-X)
Lisp> (FUNCTION-X 5)
#4: (FUNCTION-X 5)
• #11: (FUNCTION-X 4)

#18: (FUNCTION-X 3)
••• #25: (FUNCTION-X 2)

#25=> 1
• • • #25: (FUNCTION-X 1)

• #25=> 1
• • #18=> 2

133

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)
I

.. #18: (FUNCTION-X 2)

. . #18=> 1
Control Stack Debugger
Frame #12: (DEBUG)
Debug 1> BACKTRACE
-- Backtrace start -­
Frame #12: (DEBUG)
Frame #7: (BLOCK FUNCTION-X

(IF (< X 3) 1
(+ (FUNCTION-X (- X 1))

(FUNCTION-X (- X 2)))))
Frame #5: (FUNCTION-X 5)
Frame #1: (EVAL (FUNCTION-X 5))
-- Backtrace ends --
Frame #12: (DEBUG)
Debug 1> CONTINUE
. #11=> 3
• #11: (FUNCTION-X 3)
.. #18: (FUNCTION-X 2)
. . #18=> 1
•• #18: (FUNCTION-X 1)
• • #18=> 1
. #11=> 2
Control Stack Debugger
Frame #5: (DEBUG)
Debug 1> CONTINUE
#4=> 5

TRACE is called for FUNCTION-X (the same function as in the
previous example) to start the debugger if the value returned
exceeds 2. The value returned exceeds 2 twice once when
it returns 3 and at the end when it returns 5.

134

0

0

0

0

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE-CALL Variable .

The *TRACE-CALL* variable, a debugging tool, is bound to the
or macro call being traced.

function

Examples

1. Lisp> (TRACE (FUNCTION-X

2.

3.

:SUPPRESS-IF(> (SECOND *TRACE-CALL*) 1)))

This causes FUNCTION-X to be traced only if its first
argument is 1 or less

Lisp> (TRACE (FUNCTION-X
:SUPPRESS-IF(<= (LENGTH *TRACE-CALL*) 2)))

This causes FUNCTION-X to be traced if it is called with more
than 1 argument.

Lisp> (TRACE (FUNCTION-X

FUNCTION-X

:PREDEBUG-IF (< (SECOND *TRACE-CALL*) 2)
:SUPPRESS-IF(< (SECOND *TRACE-CALL*) 2)))

In this case, the TRACE macro is enabled for FUNCTION-X. The
debugger will be invoked and tracing suppressed if the first
argument to FUNCTION-X (the SECOND of the value of the
TRACE-CALL variable) is less than 2. So for example, if
FUNCTION-Xis called with the arguments 3 and 5, *TRACE-CALL*
is bound- to the form (FUNCTION-X 3 5); as 3 is greater than
2, the call is traced and the debugger not entered. See the
description of the TRACE macro for further examples of the
use of *TRACE-CALL*.

135

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE-VALUES Variable

The *TRACE-VALUES* variable, a debugging tool, is bound to the list ofO
values returned by the traced function. You can use the value bound
to this variable in the forms used with the trace option keywords such
as :DEBUG-IF.

Example

Lisp (FACTORIAL 4)
#4: (FACTORIAL 4)
. #11: (FACTORIAL 3)
.. #18: (FACTORIAL 2)

. #25: (FACTORIAL 1)
..• #25=> 1

. #25=> *TRACE-VALUES* is (1)
#18=> 2

.. #18=> *TRACE-VALUES* is (2)

. #11=> 6
• #11=> *TRACE-VALUES* is (6)
#4=> 24
#4=> *TRACE-VALUES* is (24)
24

0

In this case, the values returned by the FACTORIAL function and
bound to the *TRACE-VALUES* variable are displayed as (1), (2),Q
(6)-, and (24). Since the *TRACE-VALUES* variable is bound to the
list of values returned by a function, it can be used only in the
:POST- options to the TRACE macro. Before being bound to the
return values, it retur~s NIL. See the description of the TRACE
macro for further examples of the use of the *TRACE-VALUES*
variable.

0

0
136

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRANSLATE-LOGICAL-NAME Function

Searches a logical name table for a logical name, translates
returns it as a list of strings.

it, and

The TRANSLATE-LOGICAL-NAME function performs only one level of
logical-name translation.

This function is equivalent to the DCL SHOW LOGICAL command. For
additional information about the SHOW LOGICAL command or about using
logical names, see the VAX/VMS DCL Dictionary.

Format

TRANSLATE-LOGICAL-NAME string &KEY :TABLE :CASE-SENSITIVE

Arguments

string

The logical name for which the function is to search.

:TABLE

The logical name table that the function is to search. If you do
not specify a table name, the process, group, and system name
tables are searched in that order. The values you can specify
with the :TABLE keyword are the following:

:PROCESS Process name table (LNM$PROCESS_TABLE)

:GROUP Group name table (LNM$GROUP)

:SYSTEM System name table (LNM$SYSTEM_TABLE)

:ALL

:CASE-SENSITIVE

Search all three tables (LNM$DCL_LOGICAL)
(the default)

Used to restrict the search to a case-sensitive search.
values are T (for case-sensitive search) or NIL
case-insensitive search). The default is NIL. Use a value
if you have multiple logical names that differ only in case.

Return Value

Valid
(for

of T

If the logical name has any translations, they are returned as a
list of strings. If is match found, NIL is returned.

137

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE _DESCRIPTIONS

TRANSLATE-LOGICAL-NAME Function (cont.)

Example

Lisp> (DEFUN SHOW-WHERE-I-AM (&OPTIONAL
(STREAM *STANDARD-OUTPUT*))

(FORMAT STREAM
"-¤t host is -A -
-%current device is -A -
-%Current directory is -A-%"

(CAR (TRANSLATE-LOGiCAL-NAME "SYS$NODE"))
(CAR (TRANSLATE-LOGICAL-NAME "SYS$DISK"))
(CONCATENATE 'STRING

(VALUES))
SHOW-WHERE-I-AM
Lisp> (SHOW-WHERE-I-AM)
Current host is MIAMI::
Current device is DBA1:

" ["
(PATHNAME-DIRECTORY

(DEFAULT-DIRECTORY)) ..] "))

Current directory is [VAXLISP]
Lisp> (SETF (DEFAULT-DIRECTORY) "SYS$LIBRARY")
"SYS$LIBRARY"
Lisp> (SHOW-WHERE-I-AM)
Current host is MIAMI::
Current device is SYS$SYSROOT:
Current directory is [SYSLIB]

• The call to the
SHOW-WHERE-I-AM,
directory.

DEFUN macro defines a function named
which displays the current host, device, and

0

0

0

• The first call to the function SHOW-WHERE-I-AM displays
current host, device, and directory.

the o
• The call to the SETF macro changes the directory to SYSLIB.

• The second call to the function SHOW-WHERE-I-AM includes the
new directory in the output the function displays.

138

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

UNBIND-KEVBOARD-FUNC_TION Function

Removes the binding of a function from a control character.

Format

UNBIND-KEYBOARD-FUNCTION control-character

Argument

control-character

The control character from which a function's binding is to be
removed.

Return Value

T, if a binding is removed. NIL, if the control character is not
bound to a function.

Example

Lisp> (BIND-KEYBOARD-FUNCTION #\AB #'BREAK)
T
Lisp> (UNBIND-KEYBOARD-FUNCTION #\AB)
T

e The call to the BIND-KEYBOARD~FUNCTION function binds CTRL/B
to the BREAK function .

• The call to the UNBIND-KEYBOARD-FUNCTION function removes the
binding of the function that is bound to CTR~/B.

139

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

UNCOMPILE Function

Restores the interpreted function definition of a symbol, if theO
symbol's definitiqn was compiled with a call to the COMPILE function.

The UNCOMPILE function is useful for editing function definitions and
debugging. For example, if you are not satisfied with the results of
a function compilation, you can uncompile the function, edit it, and
then recompile it.

Format

NOTE

You cannot uncompile system functions and
functions and macros that were loaded from
were compiled by the COMPILE-FILE function
/COMPILE qualifier of the LISP command.

UNCOMPILE symbol

Argument

macros or
files that

or the DCL

0

symbol

The symbol that represents the function that is to be uncompiled. Q
Return Value

The name of the function, if the specifed symbol
existing compiled lambda expression and has
definition; NIL, if it does not.

Example

Lisp> (DEFUN ADD2 (FIRST SECOND) (+ FIRST SECOND))
ADD2
Lisp> (COMPILE 'ADD2)
ADD2 compiled.
ADD2
Lisp> (UNCOMPILE 'ADD2)
ADD2

represents an
an interpreted

• The call to the DEFUN macro defines the function ADD2.

• The call to the COMPILE function compiles the function ADD2.

• The call to
interpreted
function is
function.

the UNCOMPILE function successfully restores the
definition of the function ADD2, because the
defined and was compiled with the COMPILE

140

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

UNDEFINE-LIST-PRINT-FU~CTION Macro

Disables the list-print function defined for a
list-print function was superseded by the
undefined, the older function is reenabled.
list-print function exists for the given symbol.

symbol. If
li,st-print

Otherwise,

another
function

no other

See Chapter 6 for more information about list-print functions.

Format

UNDEFINE-LIST-PRINT-FUNCTION symbol

Argument

symbol

Q The name of the list-print function to be disabled.

0

0

0

Return Value

The name of the list-print function that has been disabled.

Example

Lisp> (UNDEFINE-LIST-PRINT-FUNCTION MY-SETQ)
MY-SETQ

Undefines the list-print function named MY-SETQ.

141

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

UNIVERSAL-ERROR-HANDLER Function

The function to which the VAX LISP system sends all errors that are
signaled during program execution. By default, the VAX LISP
UNIVERSAL-ERROR-HANDLER variable is bound to this function.

The VAX LISP error handler is described in Chapter 4.

Format

UNIVERSAL-ERROR-HANDLER function-name
error-signaling-function &REST args

Arguments

function-name

The name of the function that produced or signaled the error.

error-signaling-function

args

The name of an error-signaling function.
are ERROR, CERROR, and WARN.

Valid function names

The specified error-signaling function's arguments.

Return Value

Invokes the VAX LISP debugger, exits the LISP system, or returns
NIL.

Example

Lisp> (DEFUN CRITICAL-ERROR-HANDLER (FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
&REST ARGS)

(WHEN (OR (EQ ERROR-SIGNALING-FUNCTION 'ERROR)
(EQ ERROR-SIGNALING-FUNCTION 'CERROR))

(FLASH-ALARM-LIGHT))
(APPLY #'UNIVERSAL-ERROR-HANDLER

FUNCTION-NAME .
ERROR-SIGNALING-FUNCTION
ARGS))

CRITICAL-ERROR-HANDLER

Defines an error handler that checks whether a fatal or
continuable error is signaled. If either type of error is
signaled, the handler flashes an alarm light and then passes the
error signal information to the universal error handler. For
information on how to create an error handler, see Chapter 4.

142

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

0 *UNIVERSAL-ERROR-HANDLER* Variable

By default, this variable is bound to the VAX LISP error handler, the
UNIVERSAL-ERROR-HANDLER function. If you create an error handler, you

0

0

0

0

must bind the *UNIVERSAL-ERROR-HANDLER* to it.

Example

Lisp> (DEFUN CRITICAL-ERROR-HANDLER (FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
&REST ARGS)

(WHEN (OR (EQ ERROR-SIGNALING-FUNCTION 'ERROR)
(EQ ERROR-SIGNALING-FUNCTION 'CERROR))

(FLASH-ALARM-LIGHT))
(APPLY #'UNIVERSAL-ERROR-HANDLER

FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
ARGS))

CRITICAL-ERROR-HANDLER
Lisp> (LET ((*UNIVERSAL-ERROR-HANDLER*

#'CRITICAL-ERROR-HANDLER))
(PERFORM-CRITICAL-OPERATION))

e The call to the DEFUN macro defines an error handler named
CRITICAL-ERROR-HANDLER.

• The call to the special form LET binds the
UNIVERSAL-ERROR-HANDLER variable to the error handler named
CRITICAL-ERROR-HANDLER, while the PERFORM-CRITICAL-OPERATION
function is evaluated.

143

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

WARN Function

Invokes the VAX LISP error handler. The error handler displays anO
error message and checks the value of the *BREAK-ON-WARNINGS*
variable. If the va'1ue is NIL, the WARN functions returns NIL; if the
value is not NIL, the error handler checks the value of the
ERROR-ACTION variable. The value of the *ERROR-ACTION* variable can
be either the :EXIT or the :DEBUG keyword. If the value is :EXIT, the
error handler causes the LISP system to exit; if the value is :DEBUG,
the handler invokes the VAX LISP debugge_r.

For more information on warnings, see Chapter 4.

Format

WARN format-string &REST args

Arguments

format-string

args

The string of characters that is passed to the FORMAT function to
create a warning message.

0

The arguments that are passed to the FORMAT function as arguments Q
for the format string.

Return Value

NIL.

Example

Lisp> (DEFUN LOG-ERROR-STATUS (VMS-STATUS) 0
(DECLARE (SPECIAL *ERROR-LOG*))
(LET ((MESSAGE (GET-VMS-MESSAGE VMS-STATUS #*1111)))
(IF MESSAGE

(WRITE-LINE MESSAGE *ERROR-LOG*)
(WARN
"There is no message for VMS status #X-8,'0X."

VMS-STATUS)))
LOG-ERROR-STATUS

Defines a function that is an error-logging facility. The
function logs the VMS status that is returned from a call-out to
a system service or an RTL routine. If the call-out facility
returns an error status that has no corresponding message text, a
warning message is displayed, and no log entry is produced.

144

0

0

0

0

0

0

VAX LISP/VMS FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

WITH-GENERALIZED-PRINT-FUNCTION Macro

Locally enables a generalized print function when it evaluates the
specified forms. See Chapter 6 for more information about using
generalized print functions.

Format

WITH-GENERALIZED-PRINT-FUNCTION name &BODY forms

Arguments

name

forms

A symbol identifying the generalized print function to be
enabled. The enabled generalized print function supersedes any
previously enabled generalized print function for name.

A call or calls to print functions.

Return Value

Output generated by the call or calls to print functions.

Example

Lisp> (DEFINE-GENERALIZED-PRINT-FUNCTION PRINT-NIL-AS-LIST
(OBJECT STREAM)
(NULL OBJECT)

(PRINC II () II STREAM))
PRINT-NIL-AS-LIST
Lisp> (WITH-GENERALIZED-PRINT-FUNCTION 'PRINT-NIL-AS-LIST

(PPRINT NIL))
()

The PPRINT call prints (), because the generalized print
function is enabled locally and pretty printing is enabled.

145

0

0

0

0

0

0

APPENDIXES

0

0

0

0

0

0

0

0

0

0

0

0

0

0

APPENDIX A

PERFORMANCE HINTS

LISP code normally does much type checking at runtime.
execution time and amount of memory required by using
more efficiently and by using certain programming
techniques.

You can reduce
data structures

and debugging

This appendix lists what you can do to optimize the speed of execution
of your LISP code and the amount of memory requi~ed. The sections
also give the following information:

~ Number of instructions executed by certain functions

• Relative speed of certain functions compared with others that
can be used to achieve the same result

• Explanations of why certain functions and operations require
so much time and memory

@ Data structure representation

This information can help you choose the most efficient way to code
program.

a-

Some VAX instructions are mentioned in this appendix. Refer to the
VAX Architecture Handbook for more information on the VAX instruction
set.

A.1 DATA STRUCTURES

This section describes how to optimize the use of data structures in
your code.

A-1

PERFORMANCE HINTS

A.1.1 Integers

Fixnum arithmetic is much faster than bignum arithmetic. Therefore,
if possible use numbers in the range -2**29 to 2**29-1. (The range of
integers represented as fixnums in future versions is likely to be cut
in half: -2**28 to 2**28-1. Keep this in mind when placing fixnum
declarations in your ,rograms.) You must use fixnum declarations for
each argument to an arithmetic function and for the result as well to
generate fixnum-only in-line VAX instructions. The result must be
declared to be type fixnum, and even though all input values for an
ari~hmetic function may be fixnums, the ~esult may not be. (That is,
fixnums are not closed under arithmetic operations).

When fixnum declarations are used, fixnum arithmetic takes two
instructions for each addition or subtraction operation (except
incrementing and decrementing, which require one instruction each) and
four instructions for each multiplication and division operation.
Fixnum comparisons consist of a CMPL instruction and the appropriate
branch; the result's type need not be declared.

Fixnums are never allocated (they are immediate: they
manipulated directly, rather than through pointers).
fixnum arithmetic requires less memory and less time
collection than arithmetic with bignums.

are always
Therefore,

for garbage

0

0

Bignums require two longwords for a header and enough space to Q
represent the number in two's complement format. Therefore, working
with bignums consumes much more time t~an working with fixnums. For
example, to print 1000 factorial takes much longer than to compute it.
Much more garbage is p~oduced while calculating the print
representation than in calculating the result •

. A.1.2 Floating-Point Numbers

When using floating-point arithmetic, the system allocates new space
for the results. In-line code is generated only when both arguments
to an arithmetic function are declared to be of the same
floating-point type. In-line conversions (CVTxx) are not done. The
VMS math library routines are used for complicated functions, such as
trigonometric functions.

Floating-point numbers always have a 1-longword header.

A.1.3 Ratios

0

When working with ratios, the system calls the GCD function after each
ratio is created, and stores the ratio in canonical form. Use the Q
TRUNCATE or REM function when you do not need exact answers or when

A-2

0

0

0

0

0

PERFORMANCE HINTS

you want a remainder. The TRUNCATE function executes faster if you
can declare the result to be a fixnum. The TRUNCATE and REM functions
are faster than the FLOOR and MOD functions. These in turn are faster
than the ROUND function.

Ratios occupy two longwords; they do not have headers.

A.1 .4 Characters

When representing characters, it is usually not necessary to specify
bit and font attributes. String characters utilize an 8-bit code that
is compatible with the ASCII and DIGITAL multinational standards, and
with the VAX architecture.

The CHAR= function used without type checking is the same as the EQ
function. The CHAR<, CHAR<=, CHAR>, and CHAR>= functions generate the
same code as the fixnum comparisons when no type checking is required
because declarations were used. This code consists of a CMPL
instruction followed by the appropriate branch. Like fixnums,
characters are never allocated (they are immediate), thereby requiring
less memory and less time for garbage collection.

A.1.5 Symbols

Symbols let you easily associate data with a name. Symbols are
interned when read by the READ function, and remain interned until
they are uninterned from all packages using them. So, when you create
anonymous variables and functions, use uninterned symbols (created
using the MAKE-SYMBOL or GENSYM function).

For VAX LISP, accessing a dynamic variable may require several
instructions, depending on the declarations and optimizations used.
Normally, accessing a dynamic variable is slower than accessing local
variables but faster than accessing closed-over lexical variables. A
local variable can be accessed quickly because it is stored on the
stack. A closed-over variable is stored in a vector and passed to
other functions that use them. Therefore, to access a closed-over
variable may require several instructions. To reduce the overhead of
dynamic variable access to one instruction, set the optimization
declaration SPEED to 3 and SAFETY to 0, eliminating unbound variable
checking, and thus reducing execution time.

When a special variable is bound to a new value, LISP saves the symbol
and its old value on the binding stack and stores the new value in the
value cell of the symbol. This requires either four or five
instructions. Unbinding a special variable requires one instruction.
Accessing the parts of a symbol, such as its name, property list,
package, and value, requires only one instruction each, if you have

A-3

PERFORMANCE HINTS

used the appropriate declarations to declare the variable as a symbol.
However, setting a symbol's function cell is very slow.

Symbols occupy five longwords each.

A.1.6 Lists and Vectors

Use lists when the number of elements changes often. Typically, you
push elements onto and pop elements off the front of the list to
simulate a stack. Conses are convenient for creating tree structures,
especially when you need values only at the leaves. If you must
access many values at each internal node of a tree, use structures
rather than lists. Conses require two longwords.

0

Use vectors when you must access elements often at any position.
Vectors use half as much space as lists, and can cause less paging Q
when accessed because vector elements are stored in adjacent memory
locations. A simple-vector has a single-longword header.

Use the noncopying (or destructive) versions of the sequence and list
functions whenever possible. For example, the NCONC function is
faster than the APPEND function and the NSTRING-UPCASE function is
faster than the STRING-UPCASE function. You can use the form
(NREVERSE (THE LIST x)) rather than the copying version (the REVERSE
function) to get elements back to their original order if you are just Q
gathering the results in a list. To copy input lists or strings once
and then do destructive operations is more efficient than to always
use copying versions of functions.

Copying vectors by using the COERCE or SUBSEQ function results in
simple vectors (of the type SIMPLE-VECTOR, SIMPLE-STRING,
SIMPLE-BIT-VECTOR, or SIMPLE-ARRAY) which can be manipulated by
simpler, faster operations. Therefore, you can copy a vector to
manipulate it quickly thereafter. However, to avoid numerous garbage Q
collections, do not use copying versions of functions unless you must.

NOTE

Use destructive versions of functions with care, as
shared data may be modified.

CAR, CDR, and the other list-manipulating functions by default always
check their arguments to make sure they are lists and not atoms. To
increase the speed of list-intensive applications, properly declare
all lists and use the optimization declaration SPEED= 2 or use SPEED
= 3 and SAFETY= o. The CAR, CDR, RPLACA, and RPLACD functions each.
require one instruction when used with these declarations.

A-4

0

PERFORMANCE HINTS

If"you frequently splic~ or concatenate lists, use a pointer to the Omiddle or end of the list. This is faster than using the NTHCDR,
MEMBER, APPEND, and NCONC functions on the entire list, as they always
process from the beginning of the list. The fastest (and default)

0

tests for the MEMBER, ASSOC, and RASSOC functions are EQ and EQL.

Use property lists when you want values for keys to be global in
scope. Do not use property lists if the number of keys is fairly
constant and known in advance. Instead, use structures and include a
slot in the structure for a list to be used like a property list for
the keys that change.

Use association lists when you want values for keys to be dynamic in
scope, since pushing entries onto the front of an association list
shadows later entries. You can use dynamic variables as pointers into
association lists to help you recall additions to the lists.

A.1.7 Strings, General Vectors, and Bit Vectors

Simple-vectors are processed faster than nonsimple vectors (vectors
with fill pointers, adjustable vectors, or displaced vectors).
Simple-vectors take less space since they do not have separate array
headers and they are created faster.

QAvoid using lists of characters when manipulating symbol names (that
is, never implement EXPLODE or IMPLODE). Strings are fully supported
in this language, unlike in older versions of LISP. Some common
operations on simple strings use the VAX character instructions.

Many data structures that used to be implemented with lists can be
more efficiently implemented with simple-vect6rs (the default
DEFSTRUCT representation). If the domain of a set is fixed and set

Ooperations are frequent, using simple bit vectors is much faster than
using lists. Accessing or updating slots of a declared structure
takes only one instruction given the appropriate declarations.

0

Accessing or updating characters in a simple string or bits in a
simple bit vector is slower than accessing or updating elements of a
simple-vector; when accessing or updating characters in a simple
string or bits in a simple bit vector, data must be converted between
the internal representation and the LISP representation. For both
characters and fixnums, this involves at least an ASHL instruction.
However, there are specialized routines for handling simple strings
and simple bit vectors (for example, the STRING-UPCASE and BIT-AND
functions with the proper declarations).

These representations take less space than simple vectors that hold
characters or bits.

A-5

PERFORMANCE HINTS

A.1.8 Hash Tables

Hash tables provide a good way of storing and accessing arbitrary
objects. Although some overhead is required for each access or store,
the total time required is usually reasonable even for large numbers
of objects. VAX LISP hash tables use chains to resolve collisions.

You can access hash tables that use the EQ and EQL functions faster
than hash tables that use the EQUAL function, because the comparisons
are faster. However, hash tables that use the EQ and EQL functions
must be completely rehashed after each garbage collection. Hash
tables are preferable to lists and bit vectors for representing sets,
when the number of objects may be large and extremely variable.

A.1.9 Functions

Compiled code is faster than interpreted code; when interpreted code
is evaluated, much consing occurs.

Closures are slower than regular functions.

0

0

You can compile single functions at any time without using files. For
example, to compile a function you have just defined, you can use
(COMPILE 'FUNCTION-NAME) or (COMPILE NIL '(LAMBDA() , ...) if you want O
to create anonymous code to be stored and executed later. You can use
the FUNCTION or FTYPE type specifier in a declaration or proclamation
to inform the compiler about the types of the arguments and the return
type of a function.

A.2 DECLARATIONS

This section describes how to use declarations to optimize LISP code.

By default, most standard VAX LISP functions check their arguments for
type and other attributes. The compiler can generate much faster code
for many simple operations by assuming the arguments are of the
correct type. Therefore, use declarations to supply this information.

Whether the compiler takes advantage of declarations, and to what
extent it does, is controlled by the OPTIMIZE declaration. Depending
on the values of the optimization qualities, different code may be
generated, given the presence of type declarations or the assumption
of such type declarations.

A-6

0

0

0

PERFORMANCE HINTS

NOTE

Currently, the COMPILATION-SPEED quality is ignored.

The format for using the OPTIMIZE declaration and its qualities with
the PROCLAIM and DECLARE functions is as follows:

(PROCLAIM '(OPTIMIZE (SPEED x) {SAFETY y) (SPACE z)))

or

(DECLARE (OPTIMIZE (SPEED x) (SAFETY y) (SPACE z)))

The possible switch values are:

ox=l,y=l,z=l (the default)

No particular optimizations done. Generally, type checking will
be done on all arguments to LISP functions.

0

x=2,y<2

Observes user supplied declarations. Useful when some variables
are guaranteed to be of the declared type and speed is desired,
but when not all variables (such as function arguments) can be
guaranteed to be correct. Some macros (such as DOTIMES and
DOLIST) expand into code with these declarations already
supplied.

x>l,y=O

Skips bounds checking for vector and array references.

Qx=3,y=O

x>y

y=3

0

Assumes correct argument types to many functions, such as CAR,
SYMBOL-NAME, and SCHAR. Useful for guaranteed correct and
debugged functions. Special variable references do not check for
unbound values.

Does tail recursion removal, if it can.

The THE function generates tests for objects being the specified
type. Useful for fixnum declarations to detect overflows into
bignums.

A-7

PERFORMANCE HINTS

x>z

Tries to open-code some sequence
declarations.

functions. Observes in-line O
Explicit type checking code, such as (IF (CONSP X) ...), is always
executed regardless of a type declaration for X and the optimization
settings. Therefore, you can retain type checking and still increase
the speed of execution by using declarations. In the following
example, faster code is generated for i~crementing X by using the
appropriate optimization settings without having to rebind X.
Meanwhile, type checking is retained at the start of the function by
using the explicit type checking code (IF (FIXNUMP X).

(DEFUN FOO (X)
(DECLARE (FIXNUM X))

(IF (FIXNUMP X)
(LET ... (INCF X) ...)
(ERROR ...)))

Another function that always executes is COERCE, since it is assumed
that a type check will be executed, even if no coercion needs to be
done.

0

Use fixnum and floating-point declarations for fast arithmetic. The
compiler needs to know the types of all the arguments (and for Q
fixnums, the result type, too) before it can generate the fast,
type-specific code available on a VAX. Floating-point operations with
operands (and therefore results) of the same type can also generate
fast code.

Use simple-vector and similar array declarations for fast sequence and
array operations. Declaring structures is equally helpful.

The PROCLAIM and DECLARE functions are used to declare a function's Q
arguments and results whenever the function is called. For example,
when the proclamation (PROCLAIM '(FTYPE (FUNCTION (FIXNUM)
SINGLE-FLOAT) MYFUNCTION)) is used, each time MYFUNCTION is called the
arguments are automatically declared to be fixnums and its result is
automatically declared to be a single-float. An FTYPE declaration
does not automatically provide declaration of the LAMBDA-LIST variable
in the function definition.

It is important to provide type declarations, especially for the
SIMPLE-VECTOR, SIMPLE-STRING, and SIMPLE-BIT-VECTOR types, for the
arguments to sequence functions. The compiler can generate fast code
for many common cases such as calls without any keyword arguments.

Multidimensional array operations also need declarations. Unlike the
vector operations, multidimensional arrays need the actual (fixnum)
bounds for each dimension at compile-time, to generate efficient array o
indexing code. In these cases it is helpful to use the DEFTYPE macro
or a macro that expands into a call to the DECLARE function.

A-8

0

0

0

PERFORMANCE HINTS

The functions defined ~n the following examples will be compiled with
either (1) type-checking code if SPEED is less than 2, or (2)
non-type-checking code if SPEED equals 3 and SAFETY equals 0.
However, the second example produces code that does not check the type
of X but does check the type of (CDR X), when SPEED equals 2 and
SAFETY is less than 2. This is because there is a declaration
allowing the optimization of the CDR operation, but no declaration for
the CAR operation.

(DEFUN EXAMPLE1 (X)
(CADR X))

(DEFUN EXAMPLE2 (X)
(DECLARE (LIST X))
(CADR X))

In the following examples, a call to EXAMPLE3 always produces generic
code, since it is not known that the result of the addition will
necessarily be a fixnum. The declaration in EXAMPLE4 provides that
information, and all the arithmetic operations are fixnum-specific.

(DEFUN EXAMPLE3 (X Y)
(DECLARE (FIXNUM X Y))
(+ X Y))

(DEFUN EXAMPLE4 (X Y)
(DECLARE (FIXNUM X Y))
(THE FIXNUM (+ X Y)))

The next example returns a list of the first, indexed, and last
characters. With SPEED greater than or equal to 2 and SAFETY equal to
0, all the character fetching from the STRING argument will be very
fast. The LENGTH operation will also be very fast,.since it need not
check for the type of the argument like the generic sequence function

O normally would. (This also means executing the form (LENGTH (THE LIST
X)) is faster than executing the form {LENGTH X).) If SAFETY is
greater than 0, bounds checking is still done, but type checking {of
the string, for example) may not be, depending on what optimizations

0

are used.

(DEFUN EXAMPLES {STRING INDEX)
{DECLARE

(SIMPLE-STRING STRING)
(FIXNUM INDEX))

{LIST (AREF STRING 0)
(CHAR STRING INDEX)
(SCHAR STRING (1- (LENGTH STRING)))))

Array access is fast in the following code:

A-9

PERFORMANCE HINTS

(EVAL-WHEN (COMPILE LOAD EVAL)
(DEFCONSTANT I-SIZE 3) 0
(DEFCONSTANT J-SIZE 4)
(DEFCONSTANT K-SIZE 5)
(DEFTYPE FOOARRAY (&OPTIONAL ELEMENT-TYPE)

'(SIMPLE-ARRAY ,ELEMENT-TYPE (,I-SIZE ,J-SIZE ,K-SIZE))))

(DE FUN FOO ()
(DECLARE (TYPE (FOOARRAY T) X)

(TYPE (FOOARRAY STRING-CHAR) Y))

(DOTIMES (I I-SIZE)
(DOTIMES (J J-SIZE)

(DOTIMES (K K-SIZE)
(SETF (AREF XI J K)
(FOO (AREF YI J K)))))))

A.3 PROGRAM STRUCTURE

Avoid using closed-over variables (that is, lexical variables used in
functions created within their scope). References to closed-over
variables are slower than references to true local variables (which
are stack allocated), because closed-over variables must be found in
simple vectors that represent the lexical environment that may take
several instructions.

In tight inner loops, use macros or in-line functions rather than
called functions. Always compile macros, functions declared in-line,
and calls to the DEFSTRUCT macro before compiling code that uses them.
Normally, you proclaim a function in-line just before defining it.
Any calls to that function will then have the body expanded in-line at
the calling site, unless you use the NOTINLINE declaration. If you
declare or proclaim a function using the INLINE declaration without
later providing a definition, a compiler error will result because no
definition was provided for an in-line function.

The FUNCALL and APPLY functions are slower
whose names are known at compile time.
system must check the following:

e Whether the object is a function

than calls to functions
This is because the LISP

• What kind of function (by symbol or
interpreted or compiled)

function object,

A-10

0

0

0

0

PERFORMANCE HINTS

the function takes • The number of arguments

O The FUNCALL and APPLY functions
than a compiled call to a
arguments.

are usually two to three times slower
fixed function with a fixed number of

The CATCH
mechanism
function.

special form and
are slower than

operations
calling a

that use the
function, using

catch-throw
the APPLY

No more penalty is inflicted for using the lambda-list keyword
&OPTIONAL than for using required arguments. However, an &REST
variable causes a list to be created for those arguments passed after
the required and &OPTIONAL arguments. &KEY arguments are the slowest;
they have the consing overhead of &REST keyword, plus the run-time
code to parse that list and assign the proper values for the given o keywords.

Using multiple
or vector of
single values.

values requires less time and space than consing a list
results. Both methods are slower than just returning
(Consing requires garbage collections later.)

The READ function is slower than the READ-LINE or READ-CHAR
since READ has to parse the input according to the current
syntax, create numbers, an~ intern symbols. The READ-CHAR

O slower than the READ-LINE function, due to the general
streams and RMS.

function,
LISP reader
function is
overhead of

The WRITE, FORMAT, and PPRINT functions are slower than explicit calls
to the PRINC and PRINl functions. ·

Using the xxx-TO-STRING functions for getting a stripg representation
of a LISP object is faster than using the WITH-OUTPUT-TO-STRING
function. The WITH-OUTPUT-TO-STRING function must create a stream and

O use the usual stream functions. The READ-FROM-STRING and
PARSE-INTEGER functions are faster than the WITH-INPUT-FROM-STRING
function for the same reason.

The compiler compiles each top-level form in a file when it compiles a·
file by surrounding arbitrary forms in the following manner:

(PROGN (DEFUN #:TOP-LEVEL-FUNCTION() arbitrary-top-level-form)
(#:TOP-LEVEL-FUNCTION))

An arbitrary-top-level-form is any LISP form other than a call to the
EVAL-WHEN or PROGN special form, the DEFUN or DEFMACRO macro, the
PROCLAIM function, or a package function. Creating, compiling,
dumping, and loading these temporary functions takes time, so it is
wise to gather many arbitrary forms into functions of reasonable size.

O Typically, such forms can be calls to data initialization functions
(such as (SETF (GET •••) •••)). To have these function calls inside a
function definition anyway is desirable so that you can do selective
initialization from the program without having to reload the file.

A-11

PERFORMANCE HINTS

A.4 COMPILER REQUIREMENTS

The PROCLAIM, PROVIDE, REQUIRE, and package functions like USE-PACKAGE
and IN-PACKAGE must be used at "top level" for the compiler to
recognize them. A top-level form is defined as a form without
surrounding parentheses, or a form at top level within a call to
either the EVAL-WHEN or PROGN special form. Uses of the DEFUN macro
and anonymous lambdas that would get evaluated in code get compiled as
separate functions (closures if they use closed-over variables). This
is true in the following call to the DEFUN macro and to the anonymous
lambda that follows. -

(LET ((COUNTER 0)) (DEFUN NEXT() (INCF COUNTER)))

(TRY #'(LAMBDA (X) (PRINT X)))

0

If you want functions as data objects (that is,, in data structures
where they would not be processed during normal evaluation), you must Q
compile them explicitly. This is exemplified by the difference
between the following:

and

(LIST #'(LAMBDA() (FOO))
' (LAMBDA () (BAR))

' (# ' (LAMBDA () (FOO))
#'(LAMBDA() (BAR))

In the first case, the compiler recognizes the functions and creates
compiled-function objects for'them. In the second case, the compiler
does not notice the fucntions since the entire form is quoted.

If you leave the code in the list at run time, the explicit calls to

0

the FUNCALL function on each element of the list would run the code
interpretively. So, to have compiled code in the list, you must fill Q
it with compiled functions. You can do this at run time by using the
COMPILE function with NIL as the first argument, or you can fill the
list with compiled functions once, when loading. Or, you can compile
a file, using macros that expand into definitions of functions with
names created using the GENSYM function. Then, have an initialization
function fill up the list with those compiled functions at load time.

A-12

0

0

0

0

APPENDIX B

USING THE "EMACS" EDITOR STYLE

This appendix provides information on the "EMACS" Editor style. The
"EMACS" style consists of a collection of key bindings that cause the
Editor to behave like the EMACS editor. This appendix lists these
bindings and explains how to activate the "EMACS" style in the Editor,
but does not provide any tutorial information on using EMACS.

This appendix is organized as follows:

• Section B.1 explains to a new user how to learn about the
Editor.

• Section B.2 describes how to activate the "EMACS II style as a
minor or major style, thus making the "EMACS II key bindings
available to you.

• Section B.3 lists the key bindings in the "EMACS II style.

O B.1 INTRODUCTION TO THE EDITOR

To learn about the Editor, read Chapter 3 of this manual. Most of the
information in Chapter 3 is also true when you are using the "EMACS"
style. The chief difference when you are using the "EMACS" style lies
in the key bindings. In many instances, keys or key sequences that
invoke one _command when you are not using the "EMACS" style invoke a
different command when the "EMACS" style is active. Table B-1
compares default Editor key bindings with EMACS key bindings, showing
where differences exist. When reading in Chapter 3, keep these key

. binding differences in mind. Table B-1 is arranged in the approximate
order that the key bindings and commands are presented in Chapter 3.
(Table B-1 lists only those commands listed in Chapter 3. The full
set of "EMACS" style key bindings is presented in Section B.3.)

Section 3.2, which concerns editing operations, contains information

O on editing using (among other things) the numeric keypad. Keys and
key sequences on the numeric keypad are set up to emulate the EDT

B-1

USING 1 HE "U/1ACS" l:01.i OR s·1 YLE

editor. If you are using the "EMACS" style,
keypad keys to do editing (as long as the "EDT
active). However, the operations performed
similar to EMACS editing operations, may be
produce confusion in a seasoned EMACS user.

you still can use the
Emulation" style is O
by these keys, while
different enough to

Table B-1: Differences Between "EMACS" Key Bindings and Default
Bindings

Default Binding "EMACS" Binding Command

General-Purpose Commands

CTRL/Z ESCAPE x Execute Named Command
CTRL/X CTRL/Z CTRL/G Pause Editor
None CTRL/X s Write Current Buffer
None CTRL/X CTRL/M Write Modified Buffers
None CTRL/X CTRL/W Write Named File
CTRL/X CTRL/N CTRL/X p Next Window
CTRL/X CTRL/R CTRL/X d Remove Current Window
None CTRL/X 1 Remove Other Windows
CTRL/W CTRL/L Redisplay Screen

Editing Commands

None CTRL/X CTRL/I Insert File
None ESCAPE q Query Search Replace
None ESCAPE CTRL/G Exit Recursive Edit
None ESCAPE u Upcase Word
None ESCAPE 1 Downcase Word
None ESCAPE c Capitalize Word

Buffer and Window Commands

None CTRL/X b Select Buffer
None CTRL/X CTRL/B List Buffers
None CTRL/X CTRL/D Delete Current Buffer
None CTRL/X CTRL/E Ed
None CTRL/X CTRL/V Edit File
None CTRL/X z Grow Window
None CTRL/X CTRL/Z Shrink Window
None CTRL/X 2 Split Window

Customizing Commands

CTRL/X CTRL/E CTRL/X e Execute Keyboard Macro

B-2

0

0

0

0

USING THE "EMACS" EDITOR STYLE

8.2 ACTIVATING THE "EMACS" STYLE

OBy default, the Editor.has "EDT Emulation" as its major style and "VAX
LISP" as its only minor style. (If you are not editing LISP code, the
"VAX LISP" style will not be active.) Section 3. 5 .1. 4 contains
information about styles. To summarize: Whenever you press a key,
the Editor looks in various placeG to see if that key is bound to a
command. The Editor first checks the current buffer; then checks the
minor styles, looking at the most recently activated minor style
first; then checks the major style; and finally checks to see if the
key is bound globally. This means that key bindings in minor styles
take precedence over, or "shadow," key bindings in the major style or
global key bindings.

0

0

You can
style:

activate the "EMACS" style as either a minor or the major

If you leave "EDT Emulation" as the major style and activate
"EMACS" as a minor style, key binding conflicts between "EDT
Emulation" and "EMACS" (such as CTRL/U and CTRL/W) will be
settled in favor of "EMACS".

If you make "EMACS" the major style and activate "EDT
Emulation" as a minor style, key binding conflicts will be
settled in favor of "EDT Emulation".

• If you make "EMACS" the major style and do not activate "EDT
Emulation" as a minor style·, you will not have access to the
keypad editing capabilities of "EDT Emulation". (However, you
can bind the keypad keys to any commands you like in the
"EMACS" style; see Section 3. 5 .1.)

08.2.1 Activating "EMACS" as a Minor Style

0

You can activate "EMACS" as a minor style from within the Editor by
using the "Activate Minor Style" command. This command activates a
minor style for the current buffer only. However, use of this command
may cause problems if you are editing LISP code, because "EMACS" will
become the .most recently activated style; thus, "EMACS" key bindings
will take precedence over conflicting "VAX LISP" key bindings.

A better approach is to make "EMACS" a default minor style, which will
cause "EMACS" to be activated before the "VAX LISP" style when you
start editing LISP code. To make "EMACS" a default minor style, call
the following function from the LISP interpreter or in your LISP
initialization file:

(PUSH "EMACS" (EDITOR:VARIABLE-VALUE "Default Minor Styles"))

B-3

USING THE "EMACS" EDITOR STYLE

B.2.2 Making "EMACS" the Major Style

To make "EMACS" the Editor's major style, call the following functionO
from the LISP interpreter or in your LISP initialization file:

(SETF (EDITOR:VARIABLE-VALUE "Default Major Style") "EMACS")

This call causes "EMACS" to replace "EDT Emulation" as the Editor's
major style. If you wish to reinstate "EDT Emulation" as one of the
minor styles, call the following:

(PUSH "EDT Emulation"
(EDITOR:VARIABLE-VALUE "Default Minor Styles"))

8.3 "EMACS" STYLE KEY BINDINGS

Table B-2 lists the key bindings supplied in the "EMACS" style. Q
Appendix c contains short descriptions of the available commands, and
a list of the key bindings supplied with the Editor. The table of key
bindings in Appendix C is especially useful for finding key binding
conflicts; that is, where the same key or key. sequence is bound to two
or more different commands in different contexts.

Key sequences containing alphabetic characters are case-sensitive; you0 must enter the alphabetic character in the case shown.

Use CTRL/[to generate an #\ESCAPE character from keyboards not
possessing an ESCAPE key.

Table B-2: "EMACS" Style Key Bindings

Key(s)

CTRL/F
CTRL/B
ESCAPE f
ESCAPE b
CTRL/A
CTRL/E
CTRL/P
CTRL/N
ESCAPE a
ESCAPE e
ESCAPE p
ESCAPE n
ESCAPE v
CTRL/V

Command

Cursor Movement

Forward Character
Backward Character
Forward Word
Backward Word
Beginning of Line
End of Line
Previous Line
Next Line
Beginning of Paragraph
End of Paragraph
Previous Paragraph
Next Paragraph
Previous Screen
Next Screen

B-4

0

0

0

0

0

0

0

Table ~-2 (cont.)

Key(s)

ESCAPE <
ESCAPE >
ESCAPE,
ESCAPE.
CTRL/Z
ESCAPE z
ESCAPE

USING THE "EMACS" EDITOR STYLE

Command

Beginning of Buffer
End of Buffer
Beginning of Window
End of Window
Scroll Window Down
Scroll Window Up
Line to Top of Window

Searching

CTRL/\
CTRL/R

EMACS Forward Search
EMACS Backward Search

Deleting

DELETE
CTRL/D
ESCAPE DELETE
ESCAPE d
ESCAPE CTRL/D

Delete Previous Character
Delete Next Character
Delete Previous Word
Delete Next Word
Delete Whitespace

Killing, Yanking, and Regions

CTRL/K Kill Line
ESCAPE k Kill Paragraph
CTRL/W Kill Region
CTRL/Y Yank
ESCAPE y Yank Previous
ESCAPE CTRL/Y Yank Replace Previous
ESCAPE CTR.L/W Undo Previous Yank
CTRL/SPACE Set Select Mark
ESCAPE CTRL/SPACE Unset Select Mark
CTRL/X CTRL/X Exchange Point and Select Mark

Text Insertion and Modification

CTRL/0
CTRL/X q
CTRL/X CTRL/I
ESCAPE c
ESCAPE 1
ESCAPE u
CTRL/T
ESCAPE t
ESCAPE q

Open Line
Quoted Insert
Insert File
Capitalize Word
Downcase Word
Upcase Word
Transpose Previous Characters
Transpose Previous Words
Query Search Replace

B-5

USING THE "EMACS" EDITOR STYLE

Table B-2 (cont.)

Key(s) Command

Multiple Windows and Buffers

CTRL/X n
CTRL/X p
CTRL/X d
CTRL/X 1
CTRL/X z
CTRL/X CTRL/Z
ESCAPE CTRL/V
CTRL/X 2
CTRL/X b
CTRL/X CTRL/B
CTRL/X CTRL/D

Starting and

CTRL/X CTRL/E
CTRL/X CTRL/V
CTRL/X CTRL/R
CTRL/X CTRL/F
CTRL/X s
CTRL/X CTRL/M
CTRL/X CTRL/W

Editor

ESCAPE x
CTRL/G
ESCAPE CTRL/G
CTRL/L
ESCAPE CTRL/U
CTRL/U
CTRL/X e
CTRL/X CTRL/T
CTRL/X =

Previous Window
Next Window
Remove Current Window
Remove Other Windows
Grow Window
Shrink Window
Page Next Window
Split Window
Select Buffer
List Buffers
Delete Current Buffer

Saving Work

Ed
Edit File
Read File
View File
Write Current Buffer
Write Modified Buffers
Write Named File

Control

Execute Named Command
Pause Editor
Exit Recursive Edit
Redisplay Screen
Supply Prefix Argument
Supply EMACS Prefix
Execute Keyboard Macro
Show Time
What Cursor Position

B-6

0

0

0

0

0

0

APPENDIX C

EDITOR COMMANDS AND KEY BINDINGS

This appendix briefly describes the Editor commands and lists the key

O bindings that are supplied with the Editor. The appendix is organized
as follows:

0

• Section C.1 lists the Editor commands, along with each
command's key bindings and a brief description of the command.

• Section C.2 lists the keys and key sequences that are bound to
commands and explains how to determine to which command a key
or key sequence is bound in a given context~

C.1 EDITOR COMMAND DESCRIPTIONS

Table C-1 alphabetically lists the Editor commands. The second column
of the table lists the keys or key sequences that. are bound to that
command (if any) and the context in which they are bound. The third
column contains a brief description of the command. For a full

O description of each command, refer to the VAX LISP/VMS Editor
Programming Guide.

0
C-1

EDITOR COMMANDS AND KEY BINDINGS

Table C-1: Editor Commands And Key Bindings

Name

Activate_ Minor Style

Apropos

Apropos Word

Backward Character

Backward Kill Ring

Backward Page

Backward Search

Backward Word

Beginning of Buffer

Binding(s) 1

None

None

(:STYLE 11 VAX LISP")
!ESCAPE!?

:GLOBAL,_ I

(:STYLE 11 EMACS11) lCTRLtBI

None

None

None

(:STYLE II EMACS")
!ESCAPE! b

(:STYLE II EDT Emulation")
!PF1j@J

(:STYLE 11 EMACS11)

!ESCAPE!<

Description

Prompts for the name of a minor style and then
activates that style as a minor style in the current
buffer

Prompts for a string, then displays the names of
objects of a specified type containing that string

Displays the result of evaluating the APROPOS
function with the word at the cursor location ·as the
argument

Moves the cursor backward one character, or by the
number of characters specified by the prefix argument

Rotates the kill ring backward by one element, or
by the number of elements specified by the prefix
argument

Moves the cursor to the previous page break, or to the
preceding page break specified by the prefix argument

Prompts for a search string, then moves the cursor.to
the beginning of the first preceding occurrence of that
string, or to the preceding occurrence specified by the
prefix argument

Moves the cursor to the end of the previous word,
or to the end of the preceding word specified by the
prefix argument

Moves the cursor to the beginning of the buffer

Beginning of Line (:STYLE II EMACS 11) I CTRLtAI Moves the cursor to the beginning of the current line,
or to the beginning of the following line specified by
the prefix argument

Beginning of
Outermost Form

Beginning of
Paragraph

(:STYLE 11 VAX LISP11)

!CTRL!X! <

(:STYLE II EMACS11)

!ESCAPE! A

Beginning of Window (:STYLE II EMACS11)

!ESCAPE!,

Bind Command None

Capitalize Region None

Moves the cursor to the beginning of the outermost
form currently containing it, or, if the cursor is not
currently contained in a form, to the beginning of the
preceding outermost form

Moves the cursor to the beginning of the current
paragraph

Moves the cursor to the top of the current window

Prompts for a command name, a key sequence to
bind to the command, and a context in which to bind
the key sequence, then binds the key sequence to the
command

Capitalizes the first letter of each word in the current
select region

10 indicates nonprinting characters or pointer activity. !CTRLtDI Hold down !CTRL! while typing letter. !PF1!@)
[J Numeric keypad keys. EJ [] Arrow keys. ffiPointer button transition: obutton up; ebutton held down;
!button pressed; jbutton released; lo•ol-+ pointer movement with buttons in specified state. Pointer buttons
invoke command only when pointer cursor is in the current window.

C-2

0

0

0

0

0

0

0

I

0

0

0

EDITOR COMMANDS AND KEV BINDINGS

Table C-1 (cont.)

Name Binding(s) 1

Capitalize Word (:STYLE 11 EMACS11)

!ESCAPE! c

Close Outermost (:STYLE 11 VAX LISP11)

Form !ESCAPE! J

Deactivate Minor None
Style

Delete Current Buffer (:STYLE II EMACS")
ICTRLJXI iCTRL/DI

Delete Line None

Delete Named Buffer None

Delete Next (:STYLE "EMACS11) I CTRL/D!
Character

Delete Next Word (:STYLE "EMACS")
!ESCAPE! d

Delete Previous :GLOBAL I DELETE!
Character (:STYLE II EMACS11)

!DELETE!

Delete Previous (:STYLE 11 EMACS11)

Word I ESCAPE 11 DELETE!

Delete Whitespace (:STYLE II EMACS11)

!ESCAPE! iCTRL/DI·

Delete Word None

Describe None

Describe Word (:STYLE 11 VAX LISP11)

!CTRLJ?!

Describe Word at (:STYLE 11 VAX LISP11) ~
Pointer2

Downcase Region None

Downcase Word (:STYLE 11 EMACS11)

!ESCAPE! I

Description

Capltallzes the first letter of the word at the cursor
location

Completes the outermost LISP form by inserting
close-parentheses characters at the cursor position

Prompts for the name of a minor style, then
deactivates that minor style in the current buffer

Deletes the current buffer; for modified buffers, asks if
the contents of the buffer should first be saved

Deletes everything between the cursor and the end
of the current llne, or to the end of the following llne
specified by the prefix argument

Prompts for the name of a buffer, then deletes that
buffer; if the buffer is modified, asks if the contents of
the buffer should first be saved

Deletes the character following the cursor, or the
number of following characters specified by the prefix
argument

Deletes everything from the cursor position to the end
of the current word, or the number of following words
specified by the prefix argument

Deletes the character preceding the cursor position, or
the number of preceding characters specified by the
prefix argument

Deletes everything from the cursor position to the
beginning of the current word, or the number of
preceding words specified by the prefix argument

Deletes whitespace characters following the cursor
location up to the next nonwhitespace character

Deletes everything from the cursor position to the
beginning of the next word, including whitespace, or
deletes the number of following words specified by the
prefix argument

Prompts for the name and type of an object, then
displays a description of that object

Calls the DESCRIBE function with the word at the
cursor position as the argument

Calls the DESCRIBE function with the word at the
pointer position as the argument

Makes all alphabetic characters in the current select
region lower case

Makes all alphabetic characters in the word at the
cursor position lower case

10 indicates nonprlnting characters or pointer activity. I CTRLJDI Hold down I CTRLI while typing letter. I PF1 I [Q]
Q Numeric keypad keys. I- I IIJ Arrow keys. [£li]Pointer button transition: obutton up; •button held down;
!button pressed; lbutton released; !=>•ol- pointer movement with buttons in specified state. Pointer buttons
invoke command only when pointer cursor is in the current window.

2Available only on VAXstation.

C-3

EDITOR COMMANDS AND KEV BINDINGS

Table C-1 (cont.)

Name Binding(s) 1

Ed (:STYLE "EMACS11)

!CTRLIX! !CTRL/Ej

Edit File (:STYLE 11 EMACS11)

!CTRLIX! !CTRLNI

EDT Append (:STYLE 11 EDT Emulation")
[ID

EDT Back to Start of (:STYLE "EDT Emulation")
Line !CTRL/H! and !BACKSPACE!4

and!F1213

EDT Beginning of
Line

EDT Change Case

EDT Cut

EDT Delete
Character

EDT Delete Line

EDT Delete Previous
Character

EDT Delete Previous
Line

EDT Delete Previous
Word

(:STYLE 11 EDT Emulation")
[Q]

(:STYLE 11 EDT Emulation")
!PF1j[D

(:STYLE 11 EDT Emulation")
[fil and I REMOVE! 3 and
~
(:STYLE 11 EDT Emulation")
CJ

(:STYLE 11 EDT Emulation")
IPF4!

(:STYLE 11 EDT Emulation")
!DELETE!

(:STYLE 11 EDT Emulation")
!CTRL/U!

(:STYLE "EDT Emulation")
ICTRL/J! and I LINEFEEDj4
and !F13j3

Description

Prompts for a LISP object to edit and, if the object is
a symbol, whether to edit its function definition or Its
value

Prompts for the specification of a file to edit;
completion and alternatives are available during
your response to the prompt

Appends the current select region to the contents of
the paste buffer

Moves the cursor to the beginning of the current line,
or to the beginning of the previous line if the cursor is
already at the beginning of a line; or moves back the
number of lines specified by the prefix argument

Moves the cursor to the beginning of the next line, if
the current direction is forward, or to the beginning of
the current or previous line, if the current direction is
backward; moves by the number of lines specified by
the prefix argument

Changes the case (lower to upper and vice versa) of all
characters in the select region, or, if no select region
is defined, of the character at the cursor position

Deletes the current select region and replaces the
contents of the paste buffer with it

Deletes the character at the cursor position and stores
it in the deleted character area; deletes the number of
characters specified by the prefix argument

Deletes from the cursor position to the beginning of
the next line and stores the deleted line in the deleted
line area; deletes the number of lines specified by the
prefix argument

Deletes the character preceding the cursor and stores
it in the deleted character area; deletes the number of
characters specified by the prefix argument

Deletes from the cursor position to the beginning of
the current line or, if the cursor is at the beginning of
a line, to the beginning of the previous line; stores the
result in the deleted line area; deletes the number of
lines specified by the prefix argument

Deletes from the cursor position to the beginning of
the current word or, if the cursor is between words, to
the beginning of the previous word; stores the result
in the deleted word area; deletes the number of lines
specified by the prefix argument

10 indicates nonprlnting characters or pointer activity. I CTRLtDI Hold down !CTRL! while typing letter. I PF1 I [Q]
CJ Numeric keypad keys. !-+ I[[] Arrow keys. ~Pointer button transition: obutton up; ebutton held down;
!button pressed; jbutton released; lo•o!-+ pointer movement with buttons in specified state. Pointer buttons
invoke command only when pointer cursor is in the current window.

3Key available only on U<201 keyboard.

4Key available only on VT100 terminal.

C-4

0

0

0

0

0

0

0

0

0

EDITOR COMMANDS AND KEV BINDINGS

Table C-1 (cont.)

Name Binding(s) i Description

EDT Delete to End (:STYLE 11 EDT Emulation") Deletes from the cursor position to the end of the
of Line !PF1! [gj current line or, If the cursor is at the end of a line,

to the end of the next line; stores the result In the
deleted line area; deletes the number of lines specified
by the prefix argument

EDT Delete Word (:STYLE 11 EDT Emulation") Deletes from the cursor position to the beginning of
El the next word; stores the result in the deleted word

area; deletes the number of words specified by the
prefix argument

EDT Deselect (:STYLE "EDT Emulation") Cancels the current select region; equivalent to "Unset
!PF1![J Select Mark"

EDT End of Line (:STYLE 11 EDT Emulation") Moves the cursor to the end of the current, next, or
[g] previous line, depending on starting cursor position

and current direction; moves by the number of lines
specified by the prefix argument

EDT Move Character (:STYLE 11 EDT Emulation") Moves the cursor forward or backward by one
@] character, according to the current direction; moves

the number of characters specified by the prefix
argument

EDT Move Page (:STYLE 11 EDT Emulation") Moves the cursor to the preceding or following page
[r] break, depending on the current direction; moves the

number of pages specified by the prefix argument

EDT Move Word (:STYLE 11 EDT Emulation") Moves the cursor to the beginning of the next, current,
OJ or preceding word, depending on current direction and

cursor starting position; moves the number of words
specified by the prefix argument

EDT Paste (:STYLE II EDT Inserts the contents of the paste buffer at the cursor
Emulation") I P~1 ! [ID and location
!INSERT HERE!

EDT Paste at (:STYLE II EDT Emulation") Inserts the contents of the paste buffer at the pointer
Polnter2 I!@ cursor location

EDT Query Search (:STYLE II EDT Emulation") Prompts for a search string and moves the cursor to
!PF1 ! !PF3! and I FINDj3 the following or preceding occurrence of the string,

depending on the current direction; moves to the
occurrence specified by the prefix argument

EDT Replace (:STYLE "EDT Emulation") Replaces the current select region with the contents
! PF1 ! (ID of the paste buffer

EDT Scroll Window (:STYLE 11 EDT Emulation") Scrolls the window In the direction Indicated by the
~ current direction

EDT Search Again (:STYLE II EDT Emulation") Searches for the next or previous occurrence of the
!PF3! search string that was last entered, according to the

current direction

10 indicates nonprinting characters or pointer activity. !CTRLID! Hold down !CTRL! while typing letter. !PF1 I [QI
Q Numeric keypad keys. !-+ I [I] Arrow keys. ~Pointer button transition: obutton up; ebutton held down;
!button pressed; f button released; lo•o!-+ pointer movement with buttons In specified state. Pointer buttons
Invoke command only when pointer cursor Is in the current window.

2Available only on VAXstation. 0 3Key available only on LK201 keyboard.

c-s

EDITOR COMMANDS AND KEY BINDINGS

Table C-1 (cont.)

Name

EDT Select

EDT Set Direction
Backward

EDT Set Direction
Forward

EDT Special Insert

EDT Substitute

EDT Undelete
Character

EDT Undelete Line

EDT Undelete Word

EMACS Backward
Search

EMACS Forward
Search

End Keyboard Macro

End of Buffer

End of Line

End of Outermost
Form

Binding(s) 1

(:STYLE 11 EDT Emulation")
D and I SELECTj3

(:STYLE 11 EDT Emulation")
[§]
(:STYLE "EDT Emulation")
BJ
(:STYLE 11 EDT Emulation")
! PF1 i@:]

(:STYLE II EDT Emulation")
!PF1i!ENTER!

(:STYLE 11 EDT Emulation")
iPF1! [J
(:STYLE "EDT Emulation")
i PF1 i !PF4i

(:STYLE 11 EDT Emulation")
!PF1j EJ
(:STYLE II EMACS 11) I CTRL/R I

(:STYLE 11 EMACS11) iCTRLl\i

:GLOBAL I CTRLtxl)

(:STYLE II EDT Emulation")
iPF1 i BJ
(:STYLE II EMACS11)

!ESCAPE! >

(:STYLE 11 EMACS11) iCTRLIEi

(:STYLE 11 VAX LISP11)

iCTRLtx! >

Description

Places a mark at the cursor position to indicate one
end of a select region; equivalent to "Set Select
Mark"

Sets the current direction to backward

Sets the current direction to forward

Inserts the character whose ASCII code is specified by
the prefix argument at the cursor position

If the cursor is located at the beginning of the current
search string, replaces the search string with the
contents of the paste buffer, then finds the next
occurrence of the search string

Inserts the contents of the deleted character area at
the cursor location

Inserts the contents of the deleted line area at the
cursor location

Inserts the contents of the deleted word area at the
cursor location

Searches backward for the first occurrence of the
search string specified in the previous command;
prompts for a search string if the previous command
was not a searching command; searches for the
occurrence of the search string specified by the prefix
argument

Searches forward for the first occurrence of the search
string specified in the previous command; prompts for
a search string if the previous command was not a
searching command; searches for the occurrence of
the search string specified by the prefix argument

Ends the collection of keystrokes for a keyboard macro

Moves the cursor to the end of the buffer

Moves the cursor to the end of the current line, or
forward by the number of lines specified by the prefix
argument and then to the end of the line

Moves the cursor to the outermost form currently
surrounding the cursor, or, if the cursor is between
outermost forms, to the end of the following outermost
form

10 indicates nonprinting characters or pointer activity. I CTRL/Di Hold down I CTRLj while typing letter. I PF1 I [Q]
GI Numeric keypad keys. EJ [I] Arrow keys. ~Pointer button transition: obutton up; ebutton held down;
! button pressed; t button released; io•o 1-+ pointer movement with buttons in specified state. Pointer buttons
invoke command only when pointer cursor is in the current window.

3Key available only on LK201 keyboard.

c-6

0

0

0

0

0

0

0

0

0

0

EDITOR COMMANDS AND KEY BINDINGS

Table C-1 (cont.)

Name Binding(s), Description

End of Paragraph (:STYLE 11 EMACS")
!ESCAPE! e

Moves the cursor to the end of the current paragraph

End of Window (:STYLE "EMACS") Moves the cursor to the end of the text In the current
!ESCAPE!. window

Evaluate LISP (:STYLE 11 Vt,;X. LISP11) Evaluates the select region as LISP code; displays the
Region I CTRL/Xl I CTRL/Al result of the evaluation in the Information area

Exchange Point and (:STYLE 11 EMACS11) Moves the cursor to the other end of the current select
Select Mark !CTRL/Xl !CTRL/Xl region, and the mark delimiting the select region to

the old cursor position; in other words, preserves the
select region but places the cursor at the other end of
It

Execute Keyboard :GLOBAL I CTRL/Xl I CTRL/El Executes the current keyboard macro once, or the
Macro (:STYLE "EMACS11)

number of times specified by the prefix argument

!CTRL/Xl e

Execute Named :GLOBAL I CTRL/Zl and Prompts for the name of a command to execute; Input
Command jooj3 completion and alternatives are available during your

(:STYLE 11 EDT Emulation")
!PFt! II]

response to the prompt

(:STYLE 11 EMACS11)

!ESCAPE! x

Exit Editor None Returns control to the LISP Interpreter, discarding the
current Editor state; asks if modified buffers should
first be saved

Exit Recursive Edit (:STYLE II EMACS11) Terminates a recursive edit, or pauses the Editor if not
!ESCAPE! !CTRL/Gl doing a recursive edit

Forward Character :GLOBAL I- I Moves the cursor forward one character

(:STYLE 11 EMACS11) !CTRL/Fl

Forward Kill Ring None Rotates the kill ring forw~rd by one element, or by the
number of elements specified by the prefix argument

Forward Page None Moves the cursor to the next page break, or to the
following page break specified by the prefix argument

Forward Search None Prompts for a search string, then moves the cursor
forward to the end of the first occurrence of the string;
moves the cursor to the occurrence of the string
specified by the prefix argument

Forward Word (:STYLE II EMACS11) Moves the cursor to the beginning of the next word,
!ESCAPE! f or the beginning of the word specified by the prefix

argument

Grow Window (:STYLE II EMACS11) Increases the height of the current window by one
!CTRL/Xl z row, or by the number of rows specified by the prefix

argument

Help :GLOBAL I PF2l and I HELPj3 Displays help on your current situation

10 Indicates non printing characters or pointer activity. I CTRL/Dl Hold down I CTRL! while typing letter. I PF1 I [Q]
Q Numeric keypad keys. !--+ I [1J Arrow keys. [iliPointer button transition: obutton up; ebutton held down;
!button pressed; f button released;~ pointer movement with buttons In specified state. Pointer buttons
Invoke command only when pointer cursor is In the current window.

3Key available only on LK201 keyboard.

C-7

EDITOR COMMANDS AND KEV BINDINGS

Table C-1 (cont.)

Name Binding(s) 1 Description

Help on Editor Error :GLOBAL I CTRLIX! ? Displays Information on the last Editor error that
occurred

Illegal Operation

Indent LISP Line

Indent LISP Region

Indent Outermost
Form

Insert Buffer

Insert Close Paren
and Match

Insert File

Kill Enclosing List

Kill Line

Kill Next Form

Kill Paragraph

None

(:STYLE 11 VAX LISP") !TAB!

None

(:STYLE ttVAX LISP11)

jCTRLIX! !TAB!

None

(:STYLE 11 VAX LISP11))

(:STYLE II EMACS")
jCTRL/Xj jCTRL/1!

None

Signals an Editor error; use to disable a key binding
locally within a style or buffer

Adjusts the current LISP line so that it is indented
properly in the context of the program

Adjusts the indentation of the LISP code in t~e current
select region

Indents each line in the outermost LISP form
containing the cursor

Prompts for a buffer name, then Inserts the contents
of the specified buffer at the cursor location

Inserts a close-parenthesis character at the cursor
location and highlights the corresponding open­
parenthesis character

Prompts for a file specification, then Inserts the
contents of the file at the cursor location; input
completion and alternatives are available during your
response to the prompt

Deletes the LISP list that encloses the cursor and
adds it to the current kill-ring region if the previous
command was a kill-ring command, or creates a new
kill-ring region to hold the deleted list; deletes the
number of enclosing lists specified by the prefix
argument

(:STYLE 11 EMACS11) !CTRL/K! Deletes the rest of the current line and adds It to the
current kill-ring region if the previous command was
a kill-ring command, or creates a new kill-ring region
to hold the deleted line; deletes the number of lines
specified by the prefix argument

None

(:STYLE "EMACS11)

!ESCAPE! k

Deletes the LISP form immediately following the cursor
and adds it to the current kill-ring region If the previous
command was a kill-ring command, or creates a new
kill-ring region to hold the deleted form; deletes the
number of following forms specified by the prefix
argument within the current parentheses nesting level

Deletes the rest of the current paragraph and adds It
to the current kill-ring region if the previous command
was a kill-ring command, or creates a new kill-ring
region to hold the deleted paragraph; deletes the
number of paragraphs specified by the prefix argument

10 indicates nonprinting characters or pointer activity. jCTRL/D! Hold down !CTRL! while typing letter. jPF1 I [ID
GI Numeric keypad keys. I-+ I [I] Arrow keys. ~Pointer button transition: obutton up; ebutton held down;
!button pressed; f button released;~ pointer movement with buttons In specified state. Pointer buttons
Invoke command only when pointer cursor is in the current window. '

C-8

0

0

0

0

0

0

0

0

0

0

EDITOR COMMANDS AND KEV BINDINGS

Table C-1 (cont.)

Name

Kill Previous Form

Kill Region

Kill Rest of List

Line to Top of
Window

List Buffers

Binding(s) 1

None

(:STYLE 11 EMACS11)

!CTRLJW! and~

None

(:STYLE II EMACS11)

!ESCAPE! I

(:STYLE II EMACS11)

!CTRL/XI ICTRL/BI

List Key Bindings None

Maybe Reset Select :GLOBAL~
at Pointer2

Move Point and
Select Reglon2

Move Point to
Polnter2

Move to LISP
Comment

New Line

New LISP Line

Next Form

:GLOBAL~

:GLOBAL l•ool

(:STYLE 11 VAX LISP11)

!CTRL/XI;

:GLOBAL I RETURN I

(:BUFFER "General
Prompting") !LINEFEED!

(:STYLE "EMACS11)

I RETURN!

(:STYLE 11VAX LISP")
I LINEFEED I

(:STYLE 11 VAX LISP11)

!CTRL/XI.

Description

Deletes the LISP form immediately preceding the
cursor and adds It to the current kill-ring region If the
previous command was a kill-ring command, or creates
a new kill-ring region to hold the deleted form; deletes
the number vi preceding forms specified by the prefix
argument within the current parentheses nesting level

Deletes the current select region and adds It to the
current kill-ring region If the previous command was a
kill-ring command, or creates a new kill-ring region to
hold the deleted region

Deletes the rest of the enclosing list and adds It to the
current kill-ring region If the previous command was a
kill-ring command, or creates a new kill-ring region to
hold the deleted list fragment

Moves the llne containing the cursor to the top of the
window

Displays a list of all buffers

Displays a list of all visible key bindings or of all keys
bound in a specified context

If the pointer cursor has not moved, cancels the select
region that was started with ~; if the pointer cursor
has moved since ~. does nothing

Moves the text cursor with the pointer cursor, marking
a select region

Moves the text cursor to the pointer cursor ,

If there Is no comment on the current line, moves
the cursor to the comment column and inserts a
semicolon and space; if there Is a comment, moves
the cursor to the comment

Breaks a line at the cursor position, leaving the cursor
at the start of the new line

Breaks a line at the cursor position, and Indents the
new line by the appropriate amount In the context of
the program

Moves the cursor to the end of the next form, or
to the end of the following form specified by the
prefix argument; does not move outside the current
parentheses nesting level

10 Indicates nonprlntlng characters or pointer activity. I CTRL/DI Hold down !CTRLI while typing letter. I PF1 I [ID
Q Numeric keypad keys. I-+ I IJJ Arrow keys. [ili]Polnter button transition: obutton up; ebutton held down;
!button pressed; fbutton released;~ pointer movement with buttons in specified state. Pointer buttons
Invoke command only when pointer cursor Is in the current window.

2Avallable only on VAXstatlon.

C-9

EDITOR COMMANDS AND KEY BINDINGS

Table C-1 (cont.)

Name

Next Line

Next Paragraph

Next Screen

Next Window

Open Line

Page Next Window

Pause Editor

Previous Form

Previous Line

Previous Paragraph

Previous Screen

Previous Window

Prompt Complete
String

Prompt Help

Binding(s) 1

:GLOBAL[]

(:STYLE 11 EMACS11) jCTRLIN!

(:STYLE II EMACS11)

[ESCAPE! n

:GLOBAL! NEXT SCREENj3

:GLOBAL !CTRL/Xj jCTRL/Nj

(:STYLE II EMACS11)

!CTRLIX! p

(:STYLE II EDT Emulation")
jPF1j@J

(:STYLE II EMACS11)

!CTRLIO!

(:STYLE II EMACS")
I ESCAPE 11 CTRLN!

:GLOBAL I CTRLIX! I CTRLIZ!

Description

Moves the cursor to the next line or down by the
number of lines specified by the prefix argument,
keeping the cursor In the same column If possible

Moves the cursor to the beginning of the next
paragraph, or to the following paragraph specified
by the prefix argument

Moves the _window down In the buffer by one screenful,
or by as many screenfuls as are specified by the prefix
argument

Selects another window on the screen to be the
current window; eventually circulates through all the
windows on the screen

Breaks a line at the cursor location, leaving the cursor
at the end of the old line

Scrolls the next window on the screen down one page;
or, If a prefix argument Is supplied, scrolls the next
window by that many rows

Saves the Editor state and returns control to the LISP

(:STYLE "EMACS") I CTRLIG! interpreter

(:STYLE "VAX LISP11)

!CTRLIX!,

:GLOBAL[]

(:STYLE 11 EMACS") jCTRLIP!

(:STYLE 11 EMACS11)

!ESCAPE! p

:GLOBAL! PREV SCREENj3

(:STYLE II EMACS11)

!ESCAPE! v

(:STYLE II EMACS11)

!CTRLIX! n

(:BUFFER II General
Prompting") jCTRL/ I

(:BUFFER II General
Prompting") I PF2j

Moves the cursor to the beginning of the previous
form, or to the beginning of the preceding form
specified by the prefix argument; does not move
outside the current parentheses nesting level

Moves the cursor to the previous line, or up by the
number of lines specified by the prefix argument;
keeps the cursor In the same column if possible

Moves the cursor to the end of the previous
paragraph, or to the end of the preceding paragraph
specified by the prefix argument

Moves the cursor up In the buffer by one screenful, or
by as many screenfuls as are specified by the prefix
argument

Makes another window on the screen Into the current
window; eventually circulates through all windows on
the screen

Attempts to complete your response to a prompt,
based on what you have typed already and the
choices avallab!e In the situation

Displays information on whatever is being prompted
for

0

0

0

0

10 Indicates nonprintlng characters or pointer activity. !CTRUD! Hold down !CTRL! while typing letter. jPF1!@1
Q Numeric keypad keys. !--+ I[] Arrow keys. ~Pointer button transition: obutton up; ebutton held down;
!button pressed; fbutton released;~ pointer movement with buttons In specified state. Pointer buttons
Invoke command only when pointer cursor is In the current window.

3Key available only on LK201 keyboard. 0
C-10

0

0

0

0

0

EDITOR COMMANDS AND KEY BINDINGS

Table C-1 (cont.)

Name Blnding(s), Description

Prompt Read and (:BUFFER II General Used to terminate prompt Input
Validate Prompting") !RETURN!

and !ENTER!

Prompt Scroll Help (:BUFFER 11 General Scrolls the Help window down while another buffer
Window Prompting") I CTRLIV! is current; supplied to allow you to scroll the Help

window while responding to a prompt

Prompt Show (:BUFFER "General Displays a list of alternatives that can be entered in
Alternatives Prompting") I PF111 PF2! response to the current prompt, based on what you

have typed already

Query Search (:STYLE 11 EMACS11) Prompts for a search string and a replacement; offers
Replace !ESCAPE! q a number of options at each replacement opportunity

Quoted Insert :GLOBAL I CTRLIX! \ Inserts the next character typed at the cursor location

(:STYLE 11 EMACS11)
without Editor Interpretation

!CTRL/X! q

Read File (:STYLE "EMACS") Prompts for a file specification, then replaces the
!CTRLIX! !CTRUR! contents of the current buffer with the file; If the

current buffer Is modified, prompts for confirmation

Redisplay Screen (:STYLE 11 EDT Emulation") Erases and redisplays everything on the screen
iCTRLIW!

(:STYLE 11 EMACS11) iCTRL/L!

Remove Current :GLOBAL !CTRLIX! !CTRLIR! Removes the current window from the screen; does
Window (:STYLE 11 EMACS11)

not delete the associated buffer

!CTRL/X! d

Remove Other (:STYLE "EMACS") Removes all windows but the current window from the
Windows !CTRLIX! 1 screen

Scroll Window Down (:STYLE 11 EMACS11) iCTRUZ! Scrolls the current window down In the buffer by one
row, or by the number of rows specified by the prefix
argument

Scroll Window Up (:STYLE 11 EMACS11) Scrolls the current window up in the buffer by one
!ESCAPE! z row, or by the number of rows specified by the prefix

argument

Select Buffer (:STYLE "EMACS") Prompts for a buffer name, then makes that buffer the
!CTRLIX! b current buffer; creates a new buffer if necessary

Select Enclosing (:STYLE 11 VAX LISP") ~ Places the form enclosing the cursor in a select
Form at Pointer region; If the cursor Is already In a select region,

expands the region to the next outermost form

Select Outermost (:STYLE 11 VAX LISP11) Makes the outermost LISP form containing the cursor
Form !CTRL/XHCTRL/ I Into a select region

Self Insert :GLOBAL All graphic Inserts the last character typed at the cursor location
characters

Set Screen Height None Sets the screen height to the number of rows specified
by the prefix argument; prompts for height if no prefix
argument is defined

10 indicates nonprlntlng characters or pointer activity. !CTRLtDI Hold down !CTRL! while typing letter. !PF1!@]
~Numeric keypad keys. !-+ I IIJ Arrow keys. ~Pointer button transition: obutton up; ebutton held down;
!button pressed; fbutton released;~ pointer movement with buttons In specified state. Pointer buttons
Invoke command only when pointer cursor is in the current window.

C-11

EDITOR COMMANDS AND KEY BINDINGS

Table C-1 (cont.)

Name Binding(s) 1 Description

Set Screen Width None Sets the screen width to the number of columns
specified by the prefix argument; prompts for the width
if no prefix argument is defined

Set Select Mark (:STYLE 11 EDT Emulation") Places a mark at the cursor position to indicate one
[J end of a select region

(:STYLE 11 EMACS 11) !CTRL/ I
Show Time (:STYLE "EMACS")

I CTRL/XJ I CTRL/TJ
Displays the time and date In the Information area

Shrink Window (:STYLE 11 EMACS11) Shrinks the current window by one row, or by the
I CTRL/XJ I CTRL/ZJ number of rows specified by the prefi?C argument

Split Window (:STYLE II EMACS") Splits the current window Into two Identical windows
!CTRLIX! 2

Start Keyboard :GLOBAL I CTRL/XJ (Starts collecting keystrokes for a keyboard macro,
Macro replacing any unnamed keyboard macro that already

exists

Start Named None Prompts for a name, then starts collecting keystrokes
Keyboard Macro for a keyboard macro; the resulting keyboard macro

Is catalogued under the name you give and can be
treated as a command

Supply EMACS (:STYLE "EMACS") !CTRL/UJ Sets the prefix argument to four, if no prefix argument
Prefix was defined, or to four times its former value, If a

prefix argument was defined

Supply Prefix (:STYLE 11 EDT Emulation") Prompts for a prefix argument; If a prefix argument Is
Argument !PF1ilPF1! already defined, multiplies it by the number you enter

(:STYLE 11 EMACS11)

I ESCAPE 11 CTRL/U I
Transpose Previous (:STYLE 11 EMACS11) !CTRL/TJ Transposes the two characters preceding the cursor
Characters

Transpose Previous (:STYLE 11 EMACS11) Transposes the words at and preceding the cursor
Words !ESCAPE! t

Undo Previous Yank (:STYLE II EMACS11) Deletes the previously yanked region without pushing
!ESCAPE! !CTRL/Wl it onto the kill ring; more generally, deletes the select

region without pushing It onto the kill ring

Unset Select Mark (:STYLE II EDT Emulation")
!PF1 j[J

Cancels the current select region

(:STYLE II EMACS11)

!ESCAPE! !CTRL/ I
Upcase Region None Changes all alphabetic characters in the current select

region to upper ·case

Upcase Word (:STYLE II EMACS11) Changes all alphabetic characters In the word at the
!ESCAPE! u cursor location to upper case

View File (:STYLE 11 EMACS11) Prompts for a file specification, then reads the
!CTRLtx! !CTRL/Fj specified file into a read-only buffer

10 indicates nonprinting characters or pointer activity. !CTRL/Dl Hold down !CTRL! while typing letter. 1 PF1 I [Q]
GI Numeric keypad keys. 1- l [[] Arrow keys. ~Pointer button transition: obutton up; ebutton held down;

0

0

0

0

!button pressed; fbutton released;~ pointer movement with buttons in spe~ified state. Pointer buttons O
invoke command only when pointer cursor is In the current window.

C-12

0

0

0

0

0

EDITOR COMMANDS AND KEV BINDINGS

Table C-1 (cont.)

Name

What Cursor Position

Write Current Buffer

Write Modified
Buffers

Write Named File

Yank

Yank at Polnter2

Yank Previous

Yank Replace
Previous

Binding(s)

(:STYLE 11 EMACS 11)

!CTRL/Xj ==

(:STYLE 11 EMACS11)

!CTRL/X! s

(:STYLE II EMACS11)

!CTRL/X! !CTRLtMI
_!

(:STYLE "EMACS11)

I CTRL/X! I CTRLIW!

(:STYLE 11 EMACS11) !CTRLIY!

(:STYLE 11 EMACS11) ~

(:STYLE 11 EMACS11)

!ESCAPE! y

(:STYLE "EMACS")
I ESCAPE II CTRLIY!

Description

Displays Information about the cursor location

Writes out the current buffer; creates a new file
version, or updates the LISP symbol whose function or
value slot is being edited

Performs the "Write Current Buffer" operation for each
buffer that has been modified

Prompts for a file specification, then creates a file
having that specification from the contents of the
current buffer

Inserts the current kill-ring region at the cursor
location; inserts as many copies as are specified
by the prefix argument

Inserts the current kill-ring region at the pointer cursor
location

Rotates the kill ring forward, then inserts the new
current kill-ring region at the cursor location; inserts as
many copies as are specified by the prefix argument

Deletes the previously yanked region, rotates the kill
ring forward, and inserts the new current kill-ring region
at the cursor location; inserts as many copies as are
specified by the prefix argument

10 indicates nonprinting characters or pointer activity. ICTRLID! Hold down ICTRL! while typing letter. I PF1 I [Q]
G] Numeric keypad keys. I- I II] Arrow keys. [£E]Pointer button transition: a button up; obutton held down;
!button pressed; tbutton released; !o•ol- pointer movement with buttons in specified state. Pointer buttons
invoke command only when pointer cursor is in the current window.

2Available only on VAXstation.

C-13

EDITOR COMMANDS AND KEY BINDINGS

C.2 EDITOR KEY BINDINGS

Table C-2 lists the
commands, and the
sequences are bound
command a key or
procedure:

keys and key sequences that are
context in which they are bound.
to more than one command. To

bound to EditorO
Some keys or key
find out which

the following key sequence will invoke, use

1. If your current buffer is "General Prompting" (that is, you
are typing in response to a prompt) and the key or key
sequence is bound to a command in the context (:BUFFER
"General Prompting"), then the key or key sequence invokes
that command.

2. Otherwise, if the key or key sequence is bound to a command
in one or more minor styles, then the key or key sequence
invokes the command to which it is bound in the most recently Q
activated minor style. You can tell which minor style was
activated most recently by examining the window's label
strip. The label strip contains a list of the active minor
styles, with the most recently activated style at the front
of the list.

3. Otherwise, if the key or key sequence is bound to a command

4.

5.

in the current major style, then the key or key sequence
invokes that command. You can identify the major style by
looking at the label strip; it precedes the list of minor Q
styles. (If the list of minor styles is too long, the major
style is omitted.)

Otherwise, if the key ·or key sequence is bound to a command
in the :GLOBAL context, then the key or key sequence invokes
that command.

Otherwise, the key or key sequence is unbound; typing it O results in an error.

Table C-2: Editor Key Bindings

Key{s) Context and Command

CTRL/SPACE

CTRL/A

CTRL/B

Single Keys

(:BUFFER "General Prompting") Prompt Complete
String

(:STYLE "EMACS") Set Select Mark

(:STYLE "EMACS") Beginning of Line

(:STYLE "EMACS") Backward Character

C-14

0

Table c-2

0 Key(s)

CTRL/D

CTRL/E

CTRL/F

CTRL/G

CTRL/H or
BACKSPACE

TAB or
CTRL/I

O CTRL/J or
LINEFEED

CTRL/K

CTRL/L

ORETURN
or CTRL/M

CTRL/N

CTRL/0

QcTRL/P

CTRL/R

CTRL/T

CTRL/U

<;:TRL/V

CTRL/W

OcTRL/Y

(cont.)

EDITOR COMMANDS AND KEY BINDINGS

Context and Command

(: STYLE "EMACS") Delete Next Character

(:STYLE "EMACS") End of Line

(: STYLE "EMACS") Forward Character

(: STYLE "EMACS") Pause Editor

(: STYLE "EDT Emulation") EDT Back to Start

(:STYLE "VAX LISP") Indent LISP 'Line

(:BUFFER "General Prompting") New Line
(:STYLE "VAX LISP") New LISP Line

of Line

(:STYLE "EDT Emulation") EDT Delete Previous Word

(:STYLE "EMACS") Kill Line

(:STYLE "EMACS") Redisplay Screen

(:BUFFER "General Prompting") Prompt Read and
Validate ·

(:STYLE "EMACS") New Line
:GLOBAL New Line

(: STYLE II EMACS II) Next Line

(: STYLE II EMACS II) Open Line

(:STYLE "EMACS II) Previous

(: STYLE II EMACS II) Backward

Line

Search

(: STYLE "EMACS II) Transpose Previous

(:STYLE "EMACS") Supply EMACS Prefix

Characters

(:STYLE "EDT Emulation") EDT Delete Previous Line

(:BUFFER "General Prompting") Prompt Scroll Help
Window

(:STYLE "EMACS") Next Screen

(:STYLE "EMACS") Kill Region
(:STYLE "EDT Emulation") Redisplay Screen

(:STYLE "EMACS") Yank

C-15

----·---------------------------

Table C-2 (cont.)

Key(s)

CTRL/Z

CTRL/\

CTRL/?

DELETE
or <X]

keypad O

keypad 1

keypad 2

keypad 3

keypad 4

keypad 5

keypad 6

keypad 7

keypad 8

keypad 9

keypad.

keypad ENTER

keypad,

keypad -

keypad PF2

keypad PF3

EDITOR COMMANDS AND KEV BINDINGS

Context and Command

(:STYLE "EMACS") Scroll Window Down
:GLOBAL Execute Named Command

(:STYLE "EMACS") EMACS Forward Search

(:STYLE "VAX LISP") Describe word

(:STYLE "EMACS") Delete Previous Character
(:STYLE "EDT Emulation") Delete Previous Character
:GLOBAL Delete Previous Character

(:STYLE "VAX LISP") Insert Close Paren and Match

(:STYLE "EDT Emulation") EDT Beginning of Line

(:STYLE "EDT Emulation") EDT Move Word

(:STYLE "EDT Emulation") EDT End of Line

(:STYLE "EDT Emulation") EDT Move Character

(:STYLE "EDT Emulation") EDT Set Direction Forward

(:STYLE "EDT Emulation") EDT Set Direction
Backward

(:STYLE "EDT Emulation") EDT Cut

(:STYLE "EDT Emulation") EDT Move Page

(:STYLE "EDT Emulation") EDT Scroll Window

(:STYLE "EDT Emulation") EDT Append

(:STYLE "EDT Emulation") Set Select Mark

(:BUFFER "General Prompting") Prompt Read and
Validate

(:STYLE "EDT Emulation") EDT Delete Character

(:STYLE "EDT Emulation") EDT Delete Word

(:BUFFER "General Prompting") Prompt Help
(:STYLE "EDT Emulation") Help
:GLOBAL Help

(:STYLE "EDT Emulation") EDT Search Again

C-16

0

0

0

0

0

Table C-2 (cont.)

OKey(s)

0

keypad PF4

Up arrow

Down arrow

Right arrow

Left arrow

All graphics
characters

F12

F13

HELP

DO

OF IND

INSERT HERE

REMOVE

SELECT

CPREV SCREEN

NEXT SCREEN

EDITOR COMMANDS AND KEY BINDINGS

Context and Command

(:STYLE "EDT Emulation") EDT Delete Line

:GLOBAL Previous Line

:GLOBAL Next Line

:GLOBAL Forward Character

:GLOBAL Backward Character

:GLOBAL Self Insert

Single Keys -- LK201 Keyboard Only

(:STYLE "EDT Emulation") EDT Back to Start of Line

(:STYLE "EDT Emulation") EDT Delete Previous Word

:GLOBAL Help

:GLOBAL Execute Named Command

(: STYLE "EDT Emulation") EDT Query Search

(: STYLE "EDT Emulation") EDT Paste

(: STYLE "EDT Emulation") EDT Cut

(: STYLE "EDT Emulation") EDT Select

:GLOBAL Previous Screen

:GLOBAL Next Screen

Two-Key Sequences starting with CTRL/X

CTRL/X CTRL/SPACE (:STYLE "VAX LISP") Select Outermost Form

CTRL/X CTRL/A (:STYLE "VAX LISP") Evaluate LISP Region

CTRL/X CTRL/B (: STYLE "EMACS") List Buffers

CTRL/X CTRL/D (: STYLE "EMACS") Delete Current Buffer

CTRL/X CTRL/E (: STYLE "EMACS") Ed

0 :GLOBAL Execute Keyboard Macro

C-17

Table C-2 (cont.)

Key(s)

CTRL/X CTRL/F

CTRL/X TAB
or
CTRL/X CTRL/I

CTRL/X RETURN
or
CTRL/X CTRL/M

CTRL/X CTRL/N

CTRL/X CTRL/R

CTRL/X CTRL/T

CTRL/X CTRL/V

CTRL/X CTRL/W

CTRL/X CTRL/X

CTRL/X CTRL/Z

CTRL/X

CTRL/X

CTRL/X,

CTRL/X.

CTRL/X 1

CTRL/X 2

CTRL/X

CTRL/X <

CTRL/X >

CTRL/X =

CTRL/X?

EDITOR COMMANDS AND KEY BINDINGS

Context and Command

(:STYLE "EMACS") View File

(:STYLE "EMACS") Insert File
(:STYLE "VAX LISP") Indent Outermost Form

(:STYLE "EMACS") Write Modified Buffers

:GLOBAL Next Window

(:STYLE "EMACS") Read File
:GLOBAL Remove Current Window

(:STYLE "EMACS") Show Time

(:STYLE "EMACS") Edit File

(:STYLE "EMACS") Write Named File

(:STYLE "EMACS") Exchange Point and Select Mark

(:STYLE "EMACS") Shrink Window
:GLOBAL Pause Editor

:GLOBAL Start Keyboard Macro

:GLOBAL End Keyboard Macro

(:STYLE "VAX LISP") Previous Form

(:STYLE "VAX LISP") Next Form

(:STYLE "EMACS") Remove Other Windows

(: STYLE "EMACS") Split _Window

(:STYLE "VAX LISP") Move to LISP Comment

(:STYLE "VAX LISP") Beginning of Outermost Form

(:STYLE "VAX LISP") End of Outermost Form

(:STYLE "EMACS") What Cursor Position

:GLOBAL Help on Editor Error

C-18

0

0

0

0

0

0

0

0

0

0

Table C-2 (cont.)

Key(s)

t:.UI I UH L,UIVIIVIAI\IU;:) AI\IU l'\.C T CII\IUII\IU;:>

Context and Command

:GLOBAL Quoted Insert

(:STYLE "EMACS") Select Buffer

(:STYLE "EMACS") Remove Current Window

:GLOBAL Execute Keyboard Macro

(:STYLE "EMACS") Previous Window

(:STYLE "EMACS") Next Window

(:STYLE "EMACS") Quoted Insert

(:STYLE "EMACS") Write Current Buffer

CTRL/X \

CTRL/X b

CTRL/X d

CTRL/X e

CTRL/X n

CTRL/X p

CTRL/X q

CTRL/X s

CTRL/X z (:STYLE "EMACS") Grow Window

Two-Key Sequences Starting with ESCAPE

ESCAPE CTRL/SPACE

ESCAPE CTRL/D

ESCAPE CTRL/G

ESCAPE CTRL/U

ESCAPE CTRL/V

ESCAPE CTRL/W

ESCAPE CTRL/Y

ESCAPE

ESCAPE,

ESCAPE.

ESCAPE<

ESCAPE>

ESCAPE?

ESCAPE

(:STYLE "EMACS") Unset Select Mark

(:STYLE "EMACS") Delete Whitespace

(:STYLE "EMACS") Exit Recursive Edit

(:STYLE "EMACS") Supply Prefix Argument

(:STYLE "EMACS") Page Next Window

(:STYLE "EMACS") Undo Previous Yank

(:STYLE "EMACS") Yank Previous Replace

(:STYLE "EMACS") Line to Top of Window

(:STYLE "EMACS") Beginning of Window

(:STYLE "EMACS") End of Window

(:STYLE "EMACS") Beginning of Buffer

(:STYLE "EMACS") End of Buffer

(:STYLE "VAX LISP") Apropos Word

(:STYLE "VAX LISP") Close Outermost Form

C-19

Table c-2 (cont.)

Key(s)

ESCAPE a

ESCAPE b

ESCAPE c

ESCAPE d

ESCAPE e

ESCAPE f

ESCAPE k

ESCAPE 1

ESCAPE n

ESCAPE p

ESCAPE q

ESCAPE t

ESCAPE u

ESCAPE v

ESCAPE x

ESCAPE y

ESCAPE z

ESCAPE DELETE
or
ESCAPE <X]

EDITOR COMMANDS AND KEV BINDINGS

Context and Command

(:STYLE "EMACS") Beginning of Paragraph

(:STYLE "EMACS") Backward Word

(:STYLE "EMACS") Capitalize Word

(:STYLE "EMACS") Delete Next Word

(:STYLE "EMACS") End of Paragraph

(:STYLE "EMACS") Forward Word

(:STYLE "EMACS") Kill Paragraph

(:STYLE "EMACS") Downcase Word

(:STYLE "EMACS") Next Paragraph

(:STYLE "EMACS") Previous Paragraph

(:STYLE "EMACS") Query Search Replace

(:STYLE "EMACS") Transpose Previous Words

(:STYLE "EMACS") Upcase Word

(:STYLE "EMACS") Previous Screen

(:STYLE "EMACS") Execute Named Command

(:STYLE "EMACS") Yank Previous

(:STYLE "EMACS") Scroll Window Up

(:STYLE "EMACS") Delete Previous Word

Two-Key Sequences Starting with Keypad PF1

keypad PFl 0 (: STYLE "EDT Emulation") Open Line

keypad PFl 1 (: STYLE "EDT Emulation") EDT Change Case

keypad PFl 2 (: STYLE "EDT Emulation") EDT Delete to End

keypad PFl 3 (: STYLE "EDT Emulation") EDT Special Insert

C-20

0

0

0

0

of Line

0

t:.UI I UH t;UIVIIVIANU::S ANU Kt:.Y ijlNUINl:i::S

Table C-2 (cont.)

0 Key(s) Context and Command

keypad PF! 4 (: STYLE "EDT Emulation") End of Buffer

keypad PF! 5 (:STYLE "EDT Emulation") Beginning of Buffer

keypad PF! 6 (: STYLE "EDT Emulation") EDT Paste

keypad PF! 7 (:STYLE "EDT Emulation") Execute Named Command

keypad PF! 9 (:STYLE "EDT Emulation") EDT Replace

keypad PF! . (:STYLE "EDT Emulation") Unset Select Mark

0 keypad PF! ENTER (:STYLE "EDT Emulation") EDT Substitute

keypad PF1 "EDT Emulation") Undelete Character ' (: STYLE EDT

keypad PF1 - (:STYLE "EDT Emulation") EDT Undelete Word

keypad PF1 PF1 (:STYLE "EDT Emulation") Supply Prefix Argument

keypad PF! PF3 (:BUFFER "General Prompting") Prompt Show

0
Alternatives

keypad PF! PF3 (:STYLE "EDT Emulation") EDT Query Search

keypad PF1 PF4 (: STYLE "EDT Emulation") EDT Undelete Line

0

0
C-21

"::I ' ~ •

0

0

0

0

0

0

0

0

0

0

INDEX

Page numbers in the Index in the form c-n (for example, 2-13) refer to
a page in Part I. Page numbers in the form n (for example, 25) refer
to a page in Part II.

?
debugger command

description, 5-13
(table), 5-10

stepper command
description, 5-26
(table), 5-25

-A-

Abbreviating output by lines,
6-25

Abbreviating output depth, 6-24
Abbreviating output length, 6-24
Abbreviating printed output, 6-23
Access control string, 7-9, 7-14
:ACCOUNT keyword

GET-PROCESS-INFORMATION
function, 65

:ACP-PID keyword
GET-DEVICE-INFORMATION function,

51
:ACP-TYPE keyword

GET-DEVICE-INFORMATION function,
51

"Activate Minor Style" Editor
command

using, B-3
Active stack frame, 5-4
:ACTIVE-PAGE-TABLE-COUNT keyword

GET-PROCESS-INFORMATION
function, 65

Alien structure facility, 1-5
ALL debugger command modifier,

5-12
with BACKTRACE command, 5-17
with BOTTOM command, 5-15
with DOWN command, 5-15
with TOP command, 5-15
with UP command, 5-16

:.ALL keyword
TRANSLATE-LOGICAL-NAME function,

137

:ALLOCATION keyword
MAKE-ARRAY function, 7-18, 86

:ALLOCATION-QUANTITY keyword
GET-FILE-INFORMATION function,

55
Alternatives

Editor prompt input, 3-9
files, 3-9

Anchored windows, 3-31
APROPOS function

debugging information, 5-1
description, 1
help, 1-7
(table), 7-29

"Apropos" Editor command, 3-13
using, 3-7

APROPOS-LIST function
debugging information, 5-1
description, 3
(table), 7-29

ARGUMENTS debugger command
modifier, 5-12

with SET command, 5-16
with SHOW command, 5-17

ARRAY-DIMENSION-LIMIT constant,
7-6

ARRAY-RANK-LIMIT constant, 7-6
ARRAY-TOTAL-SIZE-LIMIT constant,

7-6
Arrays, 7-6

constants, 7-6
creating, 86
specialized, 7-6, 86

Arrow keys
Editor usage, 3-17
specifying in BIND-COMMAND

function, 3-40
:AST-ACTIVE keyword

GET-PROCESS-INFORMATION
function, 65

:AST-COUNT keyword
GET-PROCESS-INFORMATION

function, 65

Index-1

:AST-ENABLED keyword
GET-PROCESS-INFORMATION

function, 66
:AST-QUOTA keyword

GET-PROCESS-INFORMATION
function, 66

ATTACH function
description, 4

:AUTHORIZED-PRIVILEGES keyword
GET-PROCESS-INFORMATION

function, 66

-B-

BACKTRACE
debugger command

description, 5-17
(table), 5-10

stepper command
description, 5-27
(table), 5-24

:BACKUP-DATE keyword
GET-FILE-INFORMATION function,

55
"Backward Character" Editor

command, 3-25
"EMACS" style binding, B-4

"Backward Word" Editor command
"EMACS" style binding, B-4

:BASE-PRIORITY keyword
GET-PROCESS-INFORMATION

function, 66
:BATCH keyword

GET-PROCESS-INFORMATION
function, 66

"Beginning of Buffer" Editor
command, 3-26

"EMACS" style binding, B-5
"Beginning of Line" Editor

command
"EMACS" style binding, B-4

"Beginning ·of Outermost Form"
Editor command, 3-27

"Beginning of Paragraph" Editor
command

"EMACS" style binding, B-4
"Beginning of Window" Editor

command
"EMACS" style binding, B-5

"Bind Command" Editor command,
3-46

specifying context, 3-40

INDEX

"Bind Command" Editor command
(Cont.)

specifying keys, 3-39
using, 3-39

BIND-COMMAND function
specifying context, 3-42
specifying keys, 3-40
using, 3-40

BIND-KEYBOARD-FUNCTION
anq ED, 3-6

BIND-KEYBOARD-FUNCTION function
description, 6
garbage collector, 7-18
interrupt functions, 7-24
invoking the break loop, 5-5

Binding stack, 105
:BIO-BYTE-COUNT keyword

GET-PROCESS-INFORMATION
function, 66

:BIO-BYTE-QUOTA keyword
GET-PROCESS-INFORMATION

function, 7-22, 66
:BIO-COUNT keyword

GET-PROCESS-INFORMATION
function, 66

:BIO-OPERATIONS keyword
GET-PROCESS-INFORMATION

function, 66
:BIO-QUOTA keyword

GET-PROCESS-INFORMATION
function, 66

Bits attribute, 7-5
:BLOCK-SIZE keyword

GET-FILE-INFORMATION function,
55

BOTTOM debugger command
description, 5-15
(table), 5-10

BREAK function, 20
binding control character to, 6
debugging information, 5-1
description, 9
invoking the break loop, 5-5
(table), 7-29

Break loop, 1-5, 5-4 to 5-7
exiting, 5-5, 9, 20
invoking, 5-5, 9
message, 5-5
prompt, 5-5
using, 5-6
variables, 5 .. 7

Index-2

0

0

0

0

0

0

0

0

0

0

INDEX

BREAK-ON-WARNINGS variable,
5-14

defining an error handler, 4-6
WARN function, 144

:BROADCAST keyword
GET-TERMINAL-MODES function, 73
SET-TERMINAL-MODES function,

108
:BUFFER-SIZE keyword

GET-DEVICE-INFORMATION function,
51

Buffers
Editor

see Editor buffers

-c-

CALL debugger command modifier,
5-12

with SHOW command, 5-17
Call-out facility, 1-5
Cancel character, 10
CANCEL-CHARACTER-TAG tag

description, 10
"Capitalize Word" Editor command,

3-29
"EMACS" style binding, B-5

CERROR function, 142
defining an error handler, 4-7
error messages, 4-3

CHAR-BITS-LIMIT constant, 7-5
CHAR-CODE-LIMIT constant, 7-5
CHAR-FONT-LIMIT constant, 7-5
CHAR-NAME-TABLE function, 7-6

description, 11
Characters, 7-5

attributes, 7-5
changing case with editor, 3-21
comparisons, 7-5
constants, 7-5
names, 11.
nongraphic

Editor representation, 3-16
inserting with Editor, 3-16
specifying in "Bind Command",

3-39
Checkpoint file, 3-37
"Close Outermost Form" Editor

command, 3-24
:CLUSTER-SIZE keyword

GET-DEVICE-INFORMATION function,
51

Code attribute, 7-5
Command Language Interpreter

(CLI) commands, 112
Command levels, 121

debugger, 5-8
stepper, 5-27
tracer, 5-34

Command modifiers
See Debugger

:COMMAND-STRING keyword
SPAWN function, 112

Commands
Editor

see Editor commands
Comments

LISP
Inserting with Editor, 3-16

COMMON LISP, 1-2
COMPILE function, 1-4, 13, 140

compiler restrictions, 7-25
compiling functions and macros,

2-7
/COMPILE qualifier, 1-3

compiling files, 2-7
description, 2-14
modes, 2-13
optimizing compiler, 7-26
(table), 2-10
with /ERROR_ACTION qualifier,

2-15
with /INITIALIZE qualifier,

2-16
with /LIST qualifier, 2-18
with /MACHINE_CODE qualifier,

2-19
with /NOOUTPUT_FILE qualifier,

2-21
with /OPTIMIZE qualifier, 2-20
with /OUTPUT_FILE qualifier,

2-21
with /VERBOSE qualifier, 2-23
with /WARNINGS qualifier, 2-24

COMPILE-FILE function, 1-4, 17,
18

compiler restrictions, 7-26
compiling files, 2-7
description, 14 to 16
(table), 7-29

COMPILE-VERBOSE variable
default for :VERBOSE keyword,

15
description, 17

Index-3

INDEX

COMPILE-WARNINGS variable
default for :WARNINGS keyword,

15
description, 18

COMPILEDP function
description, 13

Compiler, 1-3, 7-25 to 7-29
optimizations, 2-20, 7-26 to

7-29, 14
fast code, 7-27
safe code, 7-27

restrictions, 7-25
COMPILE function, 7-25
COMPILE-FILE function, 7-26

Completion
Editor prompt input, 3-8

files, 3-9
Conditional new line directives,

6-8
Constructor function

allocating static space, 7-18
CONTINUE

DCL command, 1-10
debugger command

description, 5-14
(table), 5-10

function
description, 20
exiting the break loop, 5-5,

9
Control characters

binding to functions, 7-24, 6
Editor representation, 3-16
inserting with Editor, 3-16
returning information about

bindings, 7-25, 64
specifying in "Bind Command",

3-39
specifying in BIND-COMMAND

function, 3-40
(table), 2-4
unbinding from functions, 7-25,

139
Control stack, 5-3

debugger, 5-7
overflow, 7-18, 7-19
stack frame

See Stack frame
storage allocation, 105

Controlling indentation, 6-13
Controlling margins, 6-4

Controlling where new lines begin,
6-11 0

CPU time
displaying, 122
garbage collector, 61
getting, 63

:CPU-LIMIT keyword
GET-PROCESS-INFORMATION

function, 66
:CP~-TIME keyword

GET-PROCESS-INFORMATION
function, 67

:CREATION-DATE keyword
GET-FILE-INFORMATION function,

55
CTRL/C

and CANCEL-CHARACTER-TAG, 10
prohibition in Editor key Q

binding, 3-43
recovering from an error, 2-4
to cancel Editor command, 3-7

CTRL/0, 2-4
CTRL/Q, 2-4

prohibition in Editor key
binding, 3-43

CTRL/R, 2-4
CTRL/S, 2-4 0

prohibition in Editor key
binding, 3-43

CTRL/T, 2-4
CTRL/U, 1-10, 2-4
CTRL/X, 2-4
CTRL/Y, 1-10, 2-4
Current direction

Editor, 3-17 Q
:CURRENT keyword

THROW-TO-COMMAND-LEVEL function,
121

Current package, 92
Current stack frame, 5-7
:CURRENT-PRIORITY keyword

GET-PROCESS-INFORMATION
function, 67

:CURRENT-PRIVILEGES keyword
GET-PROCESS-INFORMATION

function, 67
:CYLINDERS keyword

GET-DEVICE-INFORMATION function,
51

0
Index-4

0

0

0

0

0

-D-

Data
representation, 7-2 to 7-6
structure, 1-1

Data types
arrays, 7-6, 86

constants, 7-6
specialized, 7-6

characters, 7-5
attributes, 7-5
comparisons, 7-5
constants, 7-5
names, 11

floating-point numbers, 7-3
constants, 7-4

integers, 7-2
constants, 7-2

numbers, 7-2
package, 3
packages, 1
pathnames, 37

See Pathnames
strings, 7-6, 86
vectors, 86

DCL commands
CONTINUE, 1-10
entering, 1-10
LISP, 1-3, 2-1
STOP, 1-10

:DCL-SYMBOLS keyword
SPAWN function, 112

DEBUG
function

debugging information, 5-1
description, 21
invoking the debugger, 5-8

stepper command
description, 5-26
(table), 5-24

DEBUG function

INDEX

DEBUG-PRINT-LENGTH variable
controlling output, 5-3
description, 23

DEBUG-PRINT-LEVEL variable
controlling output, 5-3
description, 24

Debugger, 1-5, 5-7 to 5-20
commands

arguments, 5-11
entering, 5-11

descriptions, 5-13 to 5-17
modifiers (table), 5-12
(table), 5-10

controlling output, 23, 24
error handler, 4-2 to 4-4
exiting, 5-9, 5-14
invoking, 5-8, 5-26, 5-36, 21,

125
prompt, 5-8
sample sessions, 5-18
using, 5-10

Debugging facilities, 1-5
See also Break loop, Debugger,

Stepper, Tracer, Editor
Debugging functions and macros

(table), 5-1
Declarations, 7-27
DECnet-VAX

network operations, 7-13
Default directory

changing, 25
DEFAULT-DIRECTORY function, 25

See also
DEFAULT-PATHNAME-DEFAULTS
variable

binding control character to, 6
:DEBUG keyword

description, 25
:DEFAULT-EXTENSION keyword

GET-FILE-INFORMATION function,
55

:DEFAULT-PAGE-FAULT-CLUSTER
keyword

GET-PROCESS-INFORMATION
function, 67

DEFAULT-PATHNAME-DEFAULTS See *ERROR-ACTION* variable
DEBUG-CALL

function, 5-18
description, 22

:DEBUG-IF keyword
TRACE macro, 5-36, 125

'*DEBUG-IO* variable
debugger, 5-8
stepper, 5-20

Index-5

variable
default directory, 25
DIRECTORY function, 7-15, 37
filling file specification

components, 14
resuming a suspended system,

118
using, 7-15, 7-16

INDEX

:DEFAULT-PRIVILEGES keyword
GET-PROCESS-INFORMATION

function, 67
DEFINE-ALIEN-STRUCTURE macro

allocating static space, 7-18
DEFINE-FORMAT-DIRECTIVE macro

description, 27
DEFINE-GENERALIZED-PRINT

-FUNCTION
macro, 6-21

DEFINE-GENERALIZED-PRINT­
FUNCTION macro

description, 30
DEFINE-LIST-PRINT- FUNCTION

macro, 6-19
DEFINE-LIST-PRINT-FUNCTION macro

description, 32
Defining list-print functions,

6-19
DEFMACRO macro

creating programs, 2-5
DEFUN macro

creating programs, 2-5
"Delete Current Buffer" Editor

command, 3-36
"EMACS" style binding, B-6
using, 3-34

DELETE key, 2-4
"Delete Named Buffer" Editor

command, 3-36
using, 3-34

"Delete Next Character" Editor
command

"EMACS" style binding, B-5
"Delete Next Word" Editor command

"EMACS" style binding, B-5
"Delete Previous Character"

Editor command
"EMACS" style binding, B-5

"Delete Previous Word" Editor
command

"EMACS" style binding, B-5
"Delete Whitespace" Editor

command
"EMACS" style binding, B-5

DELETE-PACKAGE
function

description, 34
DESCRIBE function

debugging information, 5-1
description, 35
help, 1-7

DESCRIBE function (Cont.)
invoking from Editor, 3-8

using pointer, 3-49
(table), 7-29

"Describe Word" Editor command,
3-13

"Describe" Editor command, 3-1.3
using, 3-7

Device, 1-8
getting information, 51

:DEVICE keyword
pathname field, 7-9

:DEVICE-CHARACTERISTICS keyword
GET-DEVICE-INFORMATION function,

52
:DEVICE-CLASS keyword

GET-DEVICE-INFORMATION function,
52

:DEVICE-DEPENDENT-0 keyword
GET-DEVICE-INFORMATION function,

52
:DEVICE-DEPENDENT-1 keyword

GET-DEVICE-INFORMATION function,
52

:DEVICE-NAME keyword
GET-DEVICE-INFORMATION function,

52
:DEVICE-TYPE keyword

GET-DEVICE-INFORMATION function,
52

:DIC-COUNT keyword
GET-PROCESS-INFORMATION

function, 67
:DIC-OPERATIONS keyword

GET-PROCESS-INFORMATION
function, 67

:DIO-QUOTA keyword
GET-PROCESS-INFORMATION

function, 67
:DIRECTION keyword

OPEN function, 7-23
-! directive, 6-6
-% directive, 6-11
-& directive, 6-11

• directive, 6-6
N:_ directive, 6-11
-@_ directive, 6-11
-A directive, 6-28
-- directive, 6-6, 6-11
Directives for handling lists,

6-16
Directory, 1-8

Index-6

0

0

0

0

0

0

0

0

0

0

INDEX

DIRECTORY function
description, 37
pathnames, 7-15
(table), 7-29

:DIRECTORY keyword
pathname field, 7-9

DO-ALL-SYMBOLS macro, 1, 3
DO-SYMBOLS macro, 1, 3
Documentation string, 35
Double floating-point numbers,

7-3
DOUBLE-FLOAT-EPSILON constant,

7-4
DOUBLE-FLOAT-NEGATIVE-EPSILON

constant, 7-4
DOWN

debugger command
description, 5-15
(table), 5-10

debugger command modifier, 5-12
with SEARCH command, 5-15

"Downcase Region" Editor command,
3-29

"Downcase Word" Editor command,
3-29

"EMACS" style binding, B-5
DRIBBLE function

debugging information, 5-2
description, 40
(table), 7-29

:DURING keyword
TRACE macro, 5-37, 126

Dynamic memory, 2-19, 105, 118
garbage collector, 7-17, 7-18

-E-

:ECHO keyword
GET-TERMINAL-MODES function, 73
SET-TERMINAL-MODES function,

108
ED function

and BIND-KEYBOARD-FUNCTION, 3-6
binding control character to, 6
debugging information, 5-2
description, 41
resuming Editor with, 3-5
starting Editor with, 3-3
(table), 7-29

•1Ed 11 Editor command, 3-36
"EMACS" style binding, B-6
using, 3-33

"Edit File" Editor command, 3-37
"EMACS" style binding, B-6
using, 3-33

Editing keys
specifying in BIND-COMMAND

function, 3-40
Editor, 1-4

checkpointing, 3-37
checkpointing file

file type, 1-9
copying text, 3-20, 3-21
creating programs, 2-5
cursor movement, 3-17

by LISP entities, 3-18
current direction, 3-17
moving by lines, 3-17
moving by words, 3-17
searching, 3-18
using pointer, 3-48

customizing, 3-38
debugging facility, 5-39
errors while using, 3-9
exiting, 3-11

by deleting VAXstation window,
3-47

getting help, 3-7
help window, 3-7

removing, 3-7
scrolling, 3-7

information area, 3-5
invoking, 3-3, 41
invoking with.control character,

6
keyboard macros, 3-45
label strip, 3-4
loading files, 2-6
modifying function and macro

definitions, 2-7
moving text, 3-20

using pointer, 3-48
overview of operation, 3-3
pausing, 3-10

on VAXstation, 3-47
protection against work loss,

3-37
refreshing the screen, 3-9
repeating operations, 3-23
restoring deleted text, 3-20
resuming, 3-5
saving work, 3-10
searching, 3-18
substituting in text, 3-22

Index-7

INDEX

Editor (Cont.)
table of commands, C-2
text deletion, 3-19

by characters, 3-19
by lines, 3-20
by words, 3-19

text insertion, 3-14
typing LISP code, 3-15
undeleting text, 3-20
using on VAXstation, 3-46

editing with pointer, 3-47
Editor buffers, 3-30

as context, 3-44
creating, 3-30

from within Editor, 3-33
current buffer, 3-30

changing, 3-31
deleting, 3-34
displaying more than two, 3-35
"General Prompting", C-14
information maintained by, 3-33
inserting into other buffers,

3-23
listing, 3-31
moving text between, 3-36
moving to endpoints, 3-18
name conflicts, 3-34
saving contents, 3-34
selecting, 3-32

Editor commands, 3-6
binding keys to, 3-38

conflicts in "EMACS" style,
B-2

from LISP interpreter, 3-40
key binding shadowing, 3-44
multiple bindings, C-14
table of bindings, C-2
table of bindings by key,

C-14
within Editor, 3-39

buffer and window
summary, 3-36

cancelling, 3-7
capturing sequences of, 3-45
creating

with "Start Named Keyboard
Macro", 3-45

customizing
summary, 3-46

descriptions, C-2
editing

summary, 3-24

Editor commands (Cont.)
general-purpose

summary, 3-11
invoking with keys, 3-6
issuing, 3-6
repeating, 3-23
typing, 3-6

Editor context
buffer, 3-44
ef~ect on key bindings; 3-44
effect on keyboard macro

execution, 3-46
global, 3-44
order of search, 3-45
specifying

in "Bind Command", 3-40
styles, 3-44

Editor styles, 3-44
as context, 3-44
major style, 3-44
minor style, 3-44
order of search, 3-45

Editor windows, 3-30
anchored windows, 3-31
changing size, 3-35
creating, 3-30
current window, 3-30

changing, 3-31
changing with pointer, 3-48
indicated by pointer cursor,

3-47
floating windows, 3-33
noncurrent window

indicated by pointer cursor,
3-47

removing, 3-32
with pointer, 3-48

scrolling text in, 3-18
splitting, 3-35

"EDT Append" Editor command, 3-28
"EDT Back to Start of Line"

Editor command, 3-26
"EDT Beginning of Line" Editor

command, 3-26
"EDT Change Case" Editor command,

3-29
"EDT Cut" Editor command, 3-28
"EDT Delete Character" Editor

command, 3-27
"EDT Delete Line" Editor command,

3-27

Index-a

0

0

0

0

0

0

0

0

0

0

INDEX

"EDT Delete Previous Character"
Editor command, 3-27

"EDT Delete Previous Line" Editor
command, 3-28

"EDT Delete Previous Word" Editor
command, 3-27

"EDT Delete to End of Line"
Editor command, 3-28

"EDT Delete Word" Editor command,
3-27

"EDT Emulation" Editor style,
3-44

"EDT End of Line" Editor command,
3-26

"EDT Move Character" Editor
command, 3-25

"EDT Move Page" Editor command,
3-26

"EDT Move Word" Editor command,
3-25

"EDT Paste" Editor command, 3-28
"EDT Query Search" Editor command,

3-26
"EDT Replace" Editor command,

3-29
"EDT Scroll Window" Editor

command, 3-26
"EDT Search Again" Editor command,

3-27
"EDT Set Direction Backward"

Editor command, 3-25
"EDT Set Direction Forward"

Editor command, 3-25
"EDT Special Insert" Editor

command, 3-25
"EDT Substitute" Editor command,

3-29
"EDT Undelete Character" Editor

command, 3-28
"EDT Undelete Line" Editor

command, 3-28
"EDT Undelete Word" Editor

command, 3-28
:ELEMENT-TYPE keyword

OPEN function, 7-23
"EMACS Backward Search" Editor

command
"EMACS" style binding, B-5

. "EMACS Forward Search" Edi tor
command

"EMACS" style binding, B-5

"EMACS" Editor style, B-1
activating, B-3

as major style, B-4
as minor style, B-3

key binding conflicts, B-2
key bindings, B-4

Enabling pretty printing, 6-3
"End Keyboard Macro" Editor

command, 3-4 6
"End of Buffer" Editor command,

3-26
"EMACS" style binding, B-5

"End of Line" Editor command
"EMACS" style binding, B-4

"End of Outermost Form" Editor
command, 3-27

"End of Paragraph" Editor command
"EMACS" style binding, B-4

"End of Window" Editor command
"EMACS" style binding, B-5

End-of-file operations, 7-21
:END-OF-FILE-BLOCK keyword

GET-FILE-INFORMATION function,
56

END-OF-FILE-BLOCK keyword
GET-FILE-INFORMATION function,

7-23
:ENQUEUE-COUNT keyword

GET-PROCESS-INFORMATION
function, 67

:ENQUEUE-QUOTA keyword
GET-PROCESS-INFORMATION

function, 67
EQ function, 7-2
EQUAL function, 7-12
ERROR

debugger command
description, 5-16
(table), 5-10

function, 142
defining an error handler,

4-7
error messages, 4-2

Error
listing

file type, 1-9
messages

compiler, 18
debugger, 5-16
error handler, 100
error-handler definition, 4-6
format, 4-2

Index-9

INDEX

Error
messages (Cont.)

warnings, 2-24, 18
types, 4-2 to 4-5

continuable, 4-3
fatal, 4-2
warning, 4-4, 144

Error handler, 1-4, 43
binding *UNIVERSAL-ERROR-

HANDLER* variable, 4-7
creating, 143
debugging information, 5-1
defining, 4-5
description, 4-1
error message, 100
invoking, 144
UNIVERSAL-ERROR-HANDLER

function, 142
:ERROR keyword

EXIT function, 44
Error messages

Editor, 3-9
ERROR-ACTION variable, 43

See also /ERROR_ACTION
qualifier

continuable error, 4-3
defining an error handler, 4-6
description, 43
fatal error, 4-3
WARN function, 144
warning, 4-4

:ERROR-COUNT keyword
GET-DEVICE-INFORMATION function,

52
ERROR-OUTPUT variable

PRINT-SIGNALED-ERROR function,
100

Error-signaling functions, 142
(table), 4-7

/ERROR_ACTION qualifier, 2-15
See also *ERROR-ACTION*

variable
description, 2-14
fatal error, 4-3
modes, 2-13
(table), 2-10
with /INITIALIZE qualifier,

2-15
Errors

Editor protection against file
loss, 3-37

while using Editor, 3-9

ESCAPE character
transmitting, 3-43

:ESCAPE keyword
GET-TERMINAL-MODES function, 73
SET-TERMINAL-MODES function,

108
EVAL function, 1-1
EVALUATE

debugger command
description, 5-13
·(table), 5-10

stepper command
description, 5-26
(table), 5-24

"Evaluate LISP Region" Editor
command, 3-12

:EVENT-FLAG-WAIT-MASK keyword
GET-PROCESS-INFORMATION

function, 67
"Exchange Point and Select Mark"

Editor command
"EMACS" style binding, B-5

"Execute Keyboard Macro" Editor
command, 3-46

"EMACS" style binding, B-6
"Execute Named Command" Editor

command, 3-11
"EMACS" style binding, B-6

EXIT function
description, 44
exiting LISP, 2-2

:EXIT keyword
See *ERROR-ACTION* variable

"Exit Recursive Edit" Editor
command, 3-29

"EMACS" style binding, B-6
"Exit" Editor command

using, 3-11, 3-34
:EXPIRATION-DATE keyword

GET-FILE-INFORMATION function,
56

Extende.d attribute block (XAB),
55

Extensions to the FORMAT function,
6-5 to 6-17

-F-

Fast-loading file, 2-8, 2-14
file type, 1-9
loading, 81.
locating, 81

Index-10

0

0

0

0

0

0

0

0

0

0

INDEX

Fast-loading file (Con~.)
producing, 14, 15

File
compiling, 2-7
getting information, 55
loading, 2-6
name, 1-8

representation, 7-8
organization, 7-22
specification

See also Pathnames,
Namestrings

components, 1-7 to 1-8
defaults (table), 1-9
format, 1-7

type, 1-8
version number, 1-8

File access block (FAB), 55
File name representation

See File
FILE-LENGTH function, 7-23
FILE-POSITION function, 7-23
Files

creating
from Editor, 3-10

editing with Editor, 3-4
saving edited version, 3-10

Editor checkpoint file, 3-37
Editor input completion, 3-9
Editor protection against loss,

3-37
inserting in Editor buffer,

3-23
-/FILL directive, 6-6
FINISH stepper command

description, 5-27
(table), 5-25

:FIRST-FREE-BYTE keyword
GET-FILE-INFORMATION function,

7-23, 56
:FIRST-FREE-PO-PAGE keyword

GET-PROCESS-INFORMATION
function, 67

:FIRST-FREE-Pl-PAGE keyword
GET-PROCESS-INFORMATION

function, 67
:FIXED-CONTROL-SIZE keyword

GET-FILE-INFORMATION function,
56

Floating windows, 3-33
Floating-point numbers, 7-3

constants (table), 7-4

Floating-point numbers (Cont.)
(table), 7-3

Font attribute, 7-5
FORMAT

function, 6-5 to 6-17
FORMAT directives

user defined, 6-18
FORMAT directives in VAX LISP,

6-6
Format Directives Provided with

VAX LISP, 45
FORMAT function

break-loop messages, 9
error messages, 4-7
warning messages, 144

"Forward Character" Editor
command, 3-25

"EMACS" style binding, B-4
"Forward Word" Editor command

"EMACS" style binding, B-4
:FREE-BLOCKS keyword

GET-DEVICE-INFORMATION function,
52

Fresh line directive, 6-11
Function

compiled, 13
compiling, 2-7
defining, 2-5
definition

editing, 140
pretty printing, 90

implementatio~-dependent
(table), 7-29

interpreted, 13
interrupt, 7-18, 7-24

garbage collector, 7-24
suspended systems, 7-25

keyboard
creating, 6

modifying, 2-7
FUNCTION debugger command

modifier, 5-12
with SET command, 5-16
with SHOW command, 5-17

Function keys
specifying

in "Bind Command", 3-39
specifying in BIND-COMMAND

function, 3-40
:FUNCTION keyword

ED function, 42

Index-11

INDEX

Functions
editing definition, 3-3

moving back to LISP, 3-10
evaluating

in Editor, 3-10

-G-

Garbage collector, 7-17 to 7-19
available space, 7-18
changing messages, 7-18
control stack overflow, 7-18,

7-19
CPU time, 61
displaying time, 122
dynamic memory, 7-17, 7-18
elapsed time, 59
failure, 7-19
frequency of use, 7-17
interrupt functions, 7-18, 7-24
invoking, 48
message, 95

See also *POST-GC-MESSAGE*
variable

messages, 49, 89
See also *PRE-GC-MESSAGE*

variable, *POST-GC
-MESSAGE* variable

run-time efficiency, 7-17
static memory, 7-18, 86
suspended systems, 2-25

GC function
description, 48

GC-VERBOSE variable
changing garbage collector

messages, 7-18
description, 49

"General Prompting" Editor buffer,
C-14

Generalized print functions, 6-21
GENERALIZED-PRINT-FUNCTION­

ENABLED-P
function, 6-21

GENERALIZED-PRINT-FUNCTION­
ENABLED-P function

description, 50
GET-DEVICE-INFORMATION function

description, 51 to 54
keywords (table), 51 to 54

GET-FILE-INFORMATION function
description, 55 to 58
keywords (table), 55

GET-FILE-INFORMATION function
(Cont.)

number of bytes in a file, 7-23
GET-GC-REAL-TIME function

description, 59
GET-GC-RUN-TIME function

description, 61
GET-INTERNAL-RUN-TIME function

description, 63
(t~ble), 7-29

GET-KEYBOARD-FUNCTION function, 6
description, 64
returning information about key

bindings, 7-25
GET-PROCESS-INFORMATION function

description, 65 to 72
keywords (table), 65 to 71
record length, 7-22

GET-TERMINAL-MODES function
description, 73 to 75
keywords (table), 73

GET-VMS-MESSAGE function
description, 76

Global
definitions, 5-7
sections

deleting, 2-22
installing, 2-17

variables, 5-7
:GLOBAL-PAGES keyword

GET-PROCESS-INFORMATION
function, 68

GOTO debugger command
description, 5-15
(table), 5-10

Graphics interface, 1-6
:GROUP keyword

GET-FILE-INFORMATION function,
56

GET-PROCESS-INFORMATION
function, 68

TRANSLATE-LOGICAL-NAME function,
1-37

"Grow Window" Editor command,
3-37

"EMACS" style binding, B-6
using, 3-35

-H-

:HALF-DUPLEX keyword
GET-TERMINAL-MODES function, 74

Index-12

0

0

0

0

0

0

0

0

0

0

:HALF-DUPLEX keyword (Cont.)
SET-TERMINAL-MODES function,

109
Handling lists, 6-16
Hash table

comparing keys, 80
initial size, 79
rehash size, 77
rehash threshold, 78

HASH-TABLE-REHASH-SIZE function
description, 77

HASH-TABLE-REHASH-THRESHOLD
function

description, 78
HASH-TABLE-SIZE function

description, 79
HASH-TABLE-TEST function

description, 80
HELP

debugger command
description, 5-13
(table), 5-10

stepper command
description, 5-26
(table), 5-25

Help
Editor, 3-7

Help facilities
DCL, 1-7
debugger, 5-13
LISP, 1-7
stepper, 5-26

"Help on Editor Error" Editor
command, 3-13

"Help" Editor command, 3-12
HERE debugger command modifier,

5-12
with BACKTRACE command, 5-17
with SHOW command, 5-17

Hibernation state, 112
:HOST keyword

pathname field, 7-9

-I-

-I directive, 6-6
:IF-DOES-NOT-EXIST keyword

LOAD function, 81
OPEN function, 7-23

:IF-EXISTS keyword
OPEN function, 7-23

INDEX

If-needed new line directive,
6-11

:IMAGE-NAME keyword
GET-PROCESS-INFORMATION

function, 68
:IMAGE-PRIVILEGES keyword

GET-PROCESS-INFORMATION
function, 68

Implementation notes, 7-1 to 7-30
Improperly formed argument lists,

6-28
"Indent LISP Line" Editor command,

3-24
"Indent Outermost Form" Editor

command, 3-24
Indentation, 6-13

preserving, 6-9
Information area, 3-5

pointer cursor in, 3-48
/INITIALIZE qualifier

description, 2-15
modes, 2-13
(table), 2-11
with /COMPILE qualifier, 2-14
with /RESUME qualifier, 2-22
with /VERBOSE qualifier, 2-23

:IN~UT-FILE keyword
· SPAWN function, 112

Input/Output, 7-19 to 7-24
end-of-file operations, 7-21
file organization, 7-22
FILE-LENGTH f~nction, 7-23
FILE-POSITION function, 7-23
functions, 7-22, 7-23
#\NEWLINE character, 7-19
record length, 7-22
terminal input, 7-20
WRITE-CHAR function, 7-24

"Insert Buffer" Editor command,
3-25, 3-37

using, 3-23, 3-36
"Insert Close Paren and Match"

Editor command, 3-24
"Insert File" Editor command,

3-25
"EMACS" style binding, B-5
using, 3-23

Insignificant stack frame, 5-4
/INSTALL qualifier

description, 2-17
modes, 2-13
(table), 2-11

Index-13

INDEX

Integers, 7-2
constants, 7-2

/INTERACTIVE qualifier, 1-3
description, 2-17
modes, 2-13
(table), 2-11

INTERNAL-TIME-UNITS-PER-SECON~
constant, 59, 61, 63

Interpreted function definition
restoring, 140

Interpreter, 1-3
creating programs, 2-5

Interrupt function facility, 1-6
Interrupt functions, 7-18, 7-24

garbage collector, 7-24
suspended systems, 7-25
terminal input, 7-21

Interrupt levels
keyboard functions, 6

-J-

:JOB-SUBPROCESS-COUNT keyword
GET-PROCESS-INFORMATION

function, 68

-K-

Keyboard functions
creating, 6
interrupt level, 6

specifying, 7
passing arguments to, 7

Keyboard macros, 3-45
named, 3-45

Keypad
numeric

see Numeric keypad
Keys

binding to commands, 3-38
binding to Editor commands

conflicts in "EMACS" style,
B-2

from LISP interpreter, 3-40
key binding shadowing, 3-44
multiple bindings, C-14
selecting key or sequence,

3-43
specifying in "Bind Command",

3-39
specifying in BIND-COMMAND

function, 3-40

Keys
binding to Editor commands

(Cont.)
table of bindings, C-14
table of bindings by command,

C-2
within Editor, 3-39

function
see Function keys

"Kill Line" Editor command
"EMACS" style binding, B-5

"Kill Paragraph" Editor command
"EMACS" style binding, B-5

"Kill Region" Editor command
"EMACS" style binding, B-5

-L-

Label strip, 3-4
LEAST-NEGATIVE-DOUBLE-FLOAT

constant, 7-4
LEAST-NEGATIVE-LONG-FLOAT

constant, 7-4
LEAST-NEGATIVE-SHORT-FLOAT

constant, 7-4
LEAST-NEGATIVE-SINGLE-FLOAT

constant, 7-4
LEAST-POSITIVE-DOUBLE-FLOAT

constant, 7-4
LEAST-POSITIVE-LONG-FLOAT

constant, 7-4
LEAST-POSITIVE-SHORT-FLOAT

constant, 7-4
LEAST-POSITIVE-SINGLE-FLOAT

constant, 7-4
:LEVEL keyword

BIND-KEYBOARD-FUNCTION function,
6

Lexical environment
compiler restrictions, 7-26

Limiting output by lines, 6-4,
6-25.

"Line to Top of Window" Editor
command

"EMACS" style binding, B-5
-;LINEAR/ directive, 6-6
:LINES keyword

WRITE and WRITE-TO-STRING, 6-3
LISP

command, 1-3, 2-1
qualifier descriptions, ·2-10

to 2-25

Index-14

0

0

0

0

0

0

0

0

0

0

INDEX

LISP
command (Cont.)

qualifier modes (table), 2-13
qualifiers (table), 2-10

exiting, 2-2, 44
implementation notes, 7-1 to

7-30
input/output

See Input/Output
invoking, 2-1
processing during garbage

collection, 7-18
program, 1-1

compiling, 2-7
creating, 2-5
loading

See File
programming language, 1-1
prompt, 2-1
storage allocation, 1-1

See also Memory
LISP code

indenting with Editor, 3-15
typing and formatting with

Editor, 3-15
"List Buffers" Editor command,

3-36
"EMACS" style binding, B-6
using, 3-31

"List Key Bindings" Editor
command, 3-11

using, 3-7
/LIST qualifier

description, 2-18
modes, 2-13
(table}, 2-11
with /COMPILE qualifier, 2-14

List-print functions, 6-19
Listing file, 2-18

producing, 14
:LISTING keyword

COMPILE-FILE function, 14
LOAD function, 2-6, 2-16·

description, 81
(table}, 7-30

LOAD-VERBOSE variable
load message, 81

:LOCAL-EVENT-FLAGS keyword
GET-PROCESS-INFORMATION

function, 68
Logical block, 6-5
Logical name table, 137

Logical names, 1-10, 137
translating, 83, 84

:LOGICAL-NAMES keyword
SPAWN function, 113

:LOGICAL-VOLUME-NAME keyword
GET-DEVICE-INFORMATION function,

52
:LOGIN-TIME keyword

GET-PROCESS-INFORMATION
function, 68

Long floating-point numbers, 7-3
LONG-FLOAT-EPSILON constant, 7-4
LONG-FLOAT-NEGATIVE-EPSILON

constant, 7-4
LONG-SITE-NAME function

description, 83
(table}, 7-30

:LONGEST-RECORD-LENGTH keyword
GET-FILE-INFORMATION function,

56

-H-

:MACHINE-CODE keyword
COMPILE-FILE function, 14

Machine-code listing, 2-18
MACHINE-INSTANCE function

description, 84
(table}, 7-30

MACHINE-VERSION function
description, 85
(table}, 7-30 ·

/MACHINE_CODE qualifier, 2-18
modes, 2-13
(table), 2-11
with /COMPILE qualifier, 2-14

Macro
compiling, 2-7
defining, 2-5
implementation-dependent

(table}, 7-29
modifying, 2-7

Major style, 3-44
default, B-4
establishing default, B-4

MAKE-ARRAY function
allocating static space, 7-18
description, 86
(table}, 7-30

MAKE-HASH-TABLE function, 77 to
80

Index-15

INDEX

MAKE-PATHNAME function
constructing pathnames, 7-11
creating pathnames, 7-11
setting pathnames, 7-12

:MAX-BLOCKS keyword
GET-DEVICE-INFORMATION function,

52
:MAX-FILES keyword

GET-DEVICE-INFORMATION function,
52

:MAX-RECORD-SIZE keyword
GET-FILE-INFORMATION function,

56
:MEMBER keyword

GET-FILE-INFORMATION function,
56

GET-PROCESS-INFORMATION
function, 68

Memory, 105
control stack, 5-3
dynamic, 2-19, 105, 118

garbage collector, 7-17, 7-18
read-only, 2-19, 105, 118
static, 2-19, 86, 105, 118

garbage collector, 7~18
/MEMORY qualifier

description, 2-19
garbage collector, 7-17
modes, 2-13
(table), 2-11

Minor style, 3-44
activating

from Editor, B-3
from LISP interpreter, B-3

activation, 3-44
default, B-3
determining most recently

activated, C-14
Miser mode, 6-5, 6-26, 97
Miser-mode new line directive,

6-11
:MISER-WIDTH keyword

WRITE and WRITE-TO-STRING, 6-3
Modifiers

See Debugger
Module, 103
MODULE-DIRECTORY variable, 103

description, 88
Modules, 88
MOST-NEGATIVE-DOUBLE-FLOAT

constant, 7-4

MOST-NEGATIVE-FIXNUM constant,
7-2 0

MOST-NEGATIVE-LONG-FLOAT constant,
7-4

MOST-NEGATIVE-SHORT-FLOAT
constant, 7-4

MOST-NEGATIV~-SINGLE-FLOAT
constant, 7-4

MOST-POSITIVE-DOUBLE-FLOAT
constant, 7-4

MOST-POSITIVE-FIXNUM constant,
7-2

MOST-POSITIVE-LONG-FLOAT constant,
7-4

MOST-POSITIVE-SHORT-FLOAT
constant, 7-4

MOST-POSITIVE-SINGLE-FLOAT
constant, 7-4

:MOUNT-COUNT keyword
GET-DEVICE-INFORMATION function,

52
:MOUNTED-VOLUMES keyword

GET-PROCESS-INFORMATION
function, 68

0

"Move to LISP Comment" Editor
command, 3-24

Multiline mode, 6-8 Q
Multiline mode new line directive,

6-11

-N-

-n,m/TABULAR/ directive, 6-6
-n/FILL/ directive, 6-6, 6-16
-n/LINEAR/ directive, 6-6, 6-16 Q
-n/TABULAR/ directive, 6-17
:NAME keyword

pathname field, 7-10
NAMESTRING function

creating namestrings, 7-13
Namestrings, 7-7, 7-9, 7-13

See also File
creating, 7-13

New lines, 6-11
"New LISP Line" Editor command,

3-24
using, 3-15

:NEWEST keyword
See :VERSION keyword

#\NEWLINE character
description,. 7-19

"Next Form" Editor command, 3-27 0
Index-16

0

0

0

0

0

INDEX

"Next Line" Editor comniand, 3-25
"EMACS" style binding, B-4

"Next Paragraph" Editor command
"EMACS" style binding, B-4

"Next Screen" Editor command,
3-26

"EMACS" style binding, B-4
"Next Window" Editor command,

3-12
"EMACS" style binding, B-6

:NEXT-DEVICE-NAME keyword
GET-DEVICE-INFORMATION function,

53
-nI directive, 6-6
Node, 1-8

pathnames, 7-12
/NOINITIALIZE qualifier

modes, 2-13
/NOLIST qualifier

description, 2-18
modes, 2-13
(table), 2-11
with /COMPILE qualifier, 2-14
with /MACHINE_CODE qualifier,

2-18
/NOMACHINE_CODE qualifier

description, 2-19
modes, 2-13
(table), 2-11
with /COMPILE qualifier, 2-14

/NOOPTIMIZE qualifier
modes, 2-13

/NOOUTPUT_FILE qualifier
description, 2-21
modes, 2-13
(table), 2-12
with /COMPILE qualifier, 2-14

NORMAL debugger command modifier,
5-12

with BACKTRACE command, 5-17
/NOVERBOSE qualifier

description, 2-23
modes, 2-13
(table), 2-12
with /COMPILE qualifier, 2-14

/NOWARNINGS qualifier
description, 2-24
modes, 2-13
(table), 2-12
with /COMPILE qualifier, 2-14

Null lexical environment
break loop, 5-7

Null lexical environment (Cont.)
compiler restrictions, 7-25
tracer, 5-36, 125

Numbers, 7-2
Numeric keypad

Editor use of, 3-14
illustration, 3-15

Numeric keypad keys
specifying in BIND-COMMAND

function, 3-40

-o-

OPEN function, 7-23
"Open Line" Editor command, 3-24

"EMACS" style binding, B-5
:OPEN-FILE-COUNT keyword

GET-PROCESS-INFORMATION
function, 68

:OPEN-FILE-QUOTA keyword
GET-PROCESS-INFORMATION

function, 68
:OPERATION-COUNT keyword

GET-DEVICE-INFORMATION function,
53

Optimization qualities
See Compiler

OPTIMIZE declaration, 7-26
:OPTIMIZE keyword

COMPILE-FILE function, 14
/OPTIMIZE qualifier

description, 2-20
modes, 2-13
optimizing compiler, 7-26
(table), 2-11
with /COMPILE qualifier, 2-14

:ORGANIZATION keyword
GET-FILE-INFORMATION function,

56
Outermost form

making select region from, 3-21
:OUTPUT-FILE keyword

COMPILE-FILE function, 15
SPAWN functipn, 113

/OUTPUT_FILE qualifier
description, 2-21
modes, 2-13
(table), 2-12
with /COMPILE qualifier, 2-14

OVER stepper command
description, 5-28
(table), 5-25

Index-17

INDEX

:OWNER-PIO keyword
GET-PROCESS-INFORMATION

function, 68
:OWNER-UIC keyword

GET-DEVICE-INFORMATION function,
53

-P-

Packages, 1, 3
current, 1,, 3, 92

"Page Next Window" Editor command
"EMACS" style binding, B-6

:PAGE-FAULTS keyword
GET-PROCESS-INFORMATION

function, 68
:PAGE-FILE-COUNT keyword

GET-PROCESS-INFORMATION
function, 69

:PAGE-FILE-QUOTA keyword
GET-PROCESS-INFORMATION

function, 69
:PAGES-AVAILABLE keyword

GET-PROCESS-INFORMATION
function, 69

:PARALLEL keyword
SPAWN function, 113

Parentheses
matching with Editor, 3-15

using pointer, 3-49
PARSE-NAMESTRING function

constructing pathnames, 7-11
creating pathnames, 7-11
setting pathnames, 7-12

:PASS-ALL keyword
GET-TERMINAL-MODES function, 74
SET-TERMINAL-MODES function,

109
Pass-all mode, 7-21, 109
:PASS-THROUGH keyword

GET-TERMINAL-MODES function, 74
SET-TERMINAL-MODES function,

7-21, 109
Pass-through mode, 108
Paste buffer, 3-21

appending text to, 3-21
PATHNAME function

constructing pathnames, 7-11
creating pathnames, 7-11

Pathnames, 7-6 to 7-14
See also File
constructing, 7-11

Pathnames (Cont.)
creating, 7-11
default directory, 25
description, 7-9
DIRECTORY function, 37
fields, 7-9, 7-10

(table), 7-9
functions, 7-15

"Pause Editor" Editor command,
3-11

effect on buffers, 3-34
"EMACS" style binding, B-6
using, 3-10

Per-line prefix, 6-15
Per-line prefixes

preserving, 6-9
:PID keyword

GET-DEVICE-INFORMATION function,
53

GET-PROCESS-INFORMATION
function, 69

Pointer
determining Editor commands

bound to, 3-49
Pointer cursor

VAXstation
appearance in Editor, 3-47

Pointing device
VAXstation

using in Editor, 3-47
:POST-DEBUG-IF keyword

TRACE macro, 5-36, 125
POST-GC-MESSAGE variable, 49

changing garbage collector
messages, 7-18

description, 89
:POST-PRINT keyword

TRACE macro, 5-36, 126
PPR INT

function, 6-2
PPRINT-DEFINITION

function, 6-2
PPRINT-DEFINITION function

description, 90
PPRINT-PLIST

function, 6-2
PPRINT-PLIST function

description, 92
:PRE-DEBUG-IF keyword

TRACE macro, 5-36, 125

Index-18

0

0

0

0

0

0

0

0

0

0

INDEX

PRE-GC-MESSAGE variable, 49
changing garbage collector

messages, 7-18
description, 95

:PRE-PRINT keyword
TRACE macro, 5-36, 126

Prefix, 6-14
per-line, 6-15

Prefix argument, 3-23
entering, 3-23
negative, 3-23

Preserving indentation, 6-9
Preserving per-line prefixes, 6-9
Pretty printer, 1-5

controlling margins, 98
miser mode, 97

Pretty printing, 6-1 to 6-28
"Previous Form" Editor command,

3-27
:PREVIOUS keyword

See :VERSION keyword
THROW-TO-COMMAND-LEVEL function,

121
"Previous Line" Editor command,

3-25
"EMACS" style binding, B-4

"Previous Paragraph" Editor
command

"EMACS" style binding, B-4
"Previous Screen" Editor command,

3-26
"EMACS" style binding, B-4

"Previous Window" Editor command
"EMACS" style binding, B-6

Print control variables, 6-3
:PRINT keyword

LOAD function, 81
TRACE macro, 5-36, 125

PRINT-LENGTH, 6-24
PRINT-LEVEL, 6-24
PRINT-LINES, 6-4, 6-25
PRINT-LINES variable

description, 96
PRINT-MISER-WIDTH, 6-26

variable, 6-5
PRINT-MISER-WIDTH variable

description, 97
PRINT-RIGHT-MARGIN, 6-26

variable, 6-4
PRINT-RIGHT-MARGIN variable

description, 98

PRINT-SIGNALED-ERROR function
defining an error handler, 4-6
description, 100

PRINT-SLOT-NAMES-AS-KEYWORDS
variable

description, 102
Process

connecting to, 4
getting information, 65
identification, 4

:PROCESS keyword
TRANSLATE-LOGICAL-NAME function,

137
:PROCESS-NAME keyword

GET-PROCESS-INFORMATION
function, 69

SPAWN function, 113
PROCLAIM function, 7-26
Prompt

break loop, 5-5
debugger, 5-8
Editor

completing input, 3-8
displaying alternative

choices, 3-9
help on, 3-7

LISP, 2-1
stepper, 5-20
top-level, 2-1

changing, 123
"Prompt Complete String" Editor

command, 3-1, 3
"Prompt Scroll Help Window"

Editor command, 3-12
"Prompt Show Alternatives" Editor

command, 3-13
Property list

pretty-print, 92
:PROTECTION keyword

GET-FILE-INFORMATION function,
56

-o-
"Query Search Replace" Editor

command, 3-29
"EMACS" style binding, B-5
using, 3-22

QUICK debugger command modifier,
5-12

with BACKTRACE command, 5-17

Index-19

INDEX

QUIT
.debugger command, 5-9

description, 5-14
(table), 5-10

stepper command
description, 5-27
exiting stepper, 5-21
(table), 5-25

"Quoted Insert" Editor command,
3-25

"EMACS" style binding, B-5

-R-

"Read File" Editor command
"EMACS" style binding, B-6

READ-CHAR function
#\NEWLINE character, 7-19
terminal input, 7-20

Read-only memory, 2-19, 105, 118
Real time

displaying, 122
garbage collector, 59

Record length, 7-22
Record Management Services (RMS)

input/output, 7-19
record l~ngth, 7-22

:RECORD-ATTRIBUTES keyword
GET-FILE-INFORMATION function,

56
:RECORD-FORMAT keyword

GET-FILE-INFORMATION function,
56

:RECORD-SIZE keyword
GET-DEVICE-INFORMATION function,

53
"Redisplay Screen" Editor command,

3-13
"EMACS" style binding, B-6

REDO debugger command
description, 5-14
(table) I ·5-10

:REFERENCE-COUNT keyword
GET-DEVICE-INFORMATION function,

53
Relative tabbing, 6-16
"Remove Current Window" Editor

command, 3-12
"EMACS" style binding, B-6

"Remove Other Windows" Editor
command, 3-12

"EMACS" style binding, B-6

"Remove Other Windows" Editor
command (Cont.)

using, 3-32
/REMOVE qualifier

description, 2-22
modes, 2-13
(table), 2-12

REQUIRE function, 88
description, 103
(table), 7-30

/RESUME qualifier, 2-26, 118
description, 2-22
modes, 2-13
(table), 2-12
with /INITIALIZE qualifier,

2-16
with /MEMORY qualifier, 2-19

RETURN
debugger command

description, 5-14
(table), 5-10

key
as a stepper command, 5-28
entering

debugger command arguments,
5-11

debugger commands, 5-10
stepper commands, 5-24

terminal input, 7-20
stepper command

description, 5-28
(table), 5-25

:REVISION keyword
GET-FILE-INFORMATION function,

56
:REVISION-DATE keyword

GET-FILE-INFORMATION function,
56

:RIGHT-MARGIN keyword
WRITE and WRITE-TO-STRING, 6-3

ROOM function
debugging information, 5-2
description, 105
specifying memory, 2-19
(table), 7-30

:ROOT-DEVICE-NAME keyword
GET-DEVICE-INFORMATION function,

53
Run-time efficiency, 7-17

Index-20

0

0

0

0

0

0

0

0

0

0

INDEX

-s-

Screen
refreshing, in Editor, 3-9

"Scroll Window Down" Editor
command

"EMACS" style binding, B-5
"Scroll Window Up" Editor command

"EMACS" style binding, B-5
SEARCH debugger command

description, 5-15
(table), 5-10

:SECTORS keyword
GET-DEVICE-INFORMATION function,

53
"Select Buffer" Editor command,

3-36
"EMACS" style binding, B-6
using, 3-32

"Select Outermost Form" Editor
command, 3-12, 3-28

Select region
cancelling, 3-21
changing case of, 3-22
defining, in Editor, 3-21
from outermost form, 3-21
marking with pointer, 3-48
replacing with paste buffer,

3-21
:SERIAL-NUMBER keyword

GET-DEVICE-INFORMATION function,
53

SET debugger command
description, 5-16
(table), 5-11

"Set Select Mark" Editor command,
3-28

"EMACS" style binding, B-5
SET-TERMINAL-MODES function

changing terminal input mode,
7-21

descript1on, 108
SETF macro

changing the default directory,
25

setting pathnames, 7-12
Short floating-point numbers, 7-3
SHORT-FLOAT-EPSILON constant, 7-4
SHORT-FLOAT-NEGATIVE-EPSILON

constant, 7-4
SHORT-SITE-NAME function

description, 111

SHORT-SITE-NAME function (Cont.)
(table), 7-30

SHOW
debugger command

description, 5-17
(table), 5-11

stepper command
description, 5-27
(table), 5-25

"Show Time" Editor command
"EMACS" style binding, B-6

"Shrink Window" Editor command,
3-37

"EMACS" style binding, B-6
using, 3-35

Significant stack frame, 5-4
Single floating-point numbers,

7-3
SINGLE-FLOAT-EPSILON constant,

7-4
SINGLE-FLOAT-NEGATIVE-EPSILON

constant, 7-4
:SITE-SPECIFIC keyword

GET-PROCESS-INFORMATION
function, 69

Source file
compiling, 14
file type, 1-9
loading, 81
locating, 81

SPAWN function
description, 112

Specialized arrays, 7-6
"Split Window" Editor command,

3-37
"EMACS" style binding, B-6
using, 3-35

Stack frame, 5-3
active, 5-4
current, 5-7
insignificant, 5-4
number

debugger command argument,
5-12

stepper output, 5-22
tracer output, 5-34

significant, 5-4
STANDARD-OUTPUT variable

LOAD function, 81
PPRINT-DEFINITION function, 90
PPRINT-PLIST function, 93

Index-21

INDEX

"Start Keyboard Macro" Editor
command, 3-46

"Start Named Keyboard Macro"
Editor command, 3-46

using, 3-45
:STATE keyword

GET-PROCESS-INFORMATION
function, 69

:STATIC keyword
See :ALLOCATION keyword

Static memory, 2-19, 86, 105, 118
garbage collector, 7-18

Status code, 76
:STATUS keyword

GET-PROCESS-INFORMATION
function, 69

Status return, 44
STEP

debugger command
description, 5-14
(table), 5-11

macro
debugging information, 5-2
invoking stepper, 5-20

stepper command
description, 5-28
(table), 5-25

Step
macro

description, 115
STEP-ENVIRONMENT

variable, 5-28
description~ 116

STEP-FORM
variable, 5-28

description, 117
:STEP-IF keyword

TRACE macro, 5-36, 126
Stepper, 1-5, 5-20 to 5-32

commands
arguments, 5-25
descriptions, 5-26 to 5-28
(table), 5-24

exiting, 5-21, 5-27
invoking, 5-14, 5-20, 5-36, 115,

126
output, 5-21

controlling, 23, 24
prompt, 5-20
sample sessions, 5-31
using, 5-24

STOP command, 1-10

Storage allocation, 1-1
See also Memory

Streams, 118
String

searching for
with Editor, 3-18

Strings, 7-6
creating, 86

Subprocess, 112
:SUBPROCESS-COUNT keyword

GET-PROCESS-INFORMATION
function, 70

:SUBPROCESS-QUOTA keyword
GET-PROCESS-INFORMATION

function, 70
:SUCCESS keyword

EXIT function, 44
Suffix, 6-14
"Supply EMACS Prefix" Editor

command
"EMACS" style binding, B-6

"Supply Prefix Argument" Editor
command, 3-29

"EMACS" style binding, B-6
:SUPPRESS-IF keyword

TRACE macro, 5-37, 126
SUSPEND function

creating suspended systems,
2-25

description, 118
Suspended systems, 118

creating, 2-25
file type, 1-9
garbage collector, 2-25
Internal time, 61
interrupt functions, 7-25
real time, 59
resuming, 2-22, 2-26

Symbolic expressions, 1-1
Symbols

editing function definition,
3-~

moving back to LISP, 3-10
editing value, 3-3

moving back to LISP, 3-10
System identification (SID)

register, 85
:SYSTEM keyword

TRANSLATE-LOGICAL-NAME function,
137

Index-22

0

0

0

0

0

0

0

0

0

0

INDEX

-T-

-T directive, 6-15
Tab directive, 6-15
Tabs, 6-15
-/TABULAR/ directive, 6-6
Terillinal

getting information, 73
input, 7-20

changing modes, 7-21
pass-all mode, 7-21

:TERMINAL keyword
GET-PROCESS-INFORMATION

function, 70
TERMINAL-IO variable

BIND-KEYBOARD-FUNCTION function,
7

end-of-file operations, 7-21
GET-TERMINAL-MODES function, 73
SET-TERMINAL-MODES function,

108
:TERMINATION-MAILBOX keyword

GET-PROCESS-INFORMATION
function, 70

TERPRI function
#\NEWLINE character, 7-20
record length, 7-22

Text
changing case of characters,

3-21
copying with Editor, 3-20, 3-21
cutting and pasting, 3-20
deleting with Editor, 3-19

restoring deleted, 3-20
inserting with Editor, 3-14

starting new line, 3-15
moving between Editor buffers,

3-36
moving with Editor, 3-20
substituting in, 3-22

THROW-TO-COMMAND-LEVEL function
description, 121

TIME macro
debugging information, 5-2
description, 122
(table), 7-30

:TIMER-QUEUE-COUNT keyword
GET-PROCESS-INFORMATION

function, 70
:TIMER-QUEUE-QUOTA keyword

GET-PROCESS-INFORMATION
function, 70

TOP
debugger command

description, 5-15
(table), 5-11

debugger command modifier, 5-13
with BACKTRACE command, 5-17

:TOP keyword
THROW-TO-COMMAND-LEVEL function,

121
Top-level loop

prompt, 2-1
variables, 2-2

TOP-LEVEL-PROMPT variable
description, 123

TRACE macro
debugging information, 5-2
description, 124
enabling the tracer, 5-33
options, 5-35
(table), 7-30

TRACE-CALL
Variable

description, 135
variable, 5-37

TRACE-OUTPUT variable
stepper, 5-20
tracer, 5-32

TRACE-VALUES
variable, 5-38

description, 136
Tracer, 1-5, 5-32 to 5-39

disabling, 5-~3
enabling, 5-33, 124
options

adding to output, 5-36
defining when to trace a

function, 5-37
invoking the debugger, 5-36
invoking the stepper, 5-36
removing information from

output, 5-37
options (table), 125
output, 5-34

controlling, 23, 24
:TRACKS keyword

GET-DEVICE-INFORMATION function,
53

:TRANSACTION-COUNT keyword
GET-DEVICE-INFORMATION function,

53
TRANSLATE-LOGICAL-NAME function

description, 137

Index-23

INDEX

TRANSLATE-LOGICAL-NAME function
(Cont.)

using, 7-13
"Transpose Previous Characters"

Editor command
"EMACS" style binding, B-5

"Transpose PrPvious Words" Editor
command

"EMACS" style binding, B-5
:TYPE keyword

pathname field, 7-10
:TYPE-AHEAD keyword

GET-TERMINAL-MODES function, 75
SET-TERMINAL-MODES function,

109

-u-

:UIC keyword
GET-FILE-INFORMATION function,

57
GET-PROCESS-INFORMATION

function, 70
UNBIND-KEYBOARD-FUNCTION function,

6
description, 139
unbinding control characters,

7-25
UNCOMPILE function

description, 140
retrieving interpreted

definitions, 2-7
Unconditional new-line directive,

6-11
UNDEFINE-LIST-PRINT-FUNCTION

macro, 6-20
UNDEFINE-LIST-PRINT-FUNCTION

macro
description, 141

"Undo Previous Yank" Editor
command

"EMACS" style binding, B-5
:UNIT keyword

GET-DEVICE-INFORMATION function,
53

UNIVERSAL-ERROR-HANDLER function,
4-1

defining an error handler, 4-6
description, 142

UNIVERSAL-ERROR-HANDLER
variable, 4-5, 142

description, 143

"Unset Select Mark" Editor
command, 3-28

"EMACS" style binding, B-5
UNTRACE macro

debugging information, 5-2
disabling the tracer, 5-33

UP
debugger command

description, 5-16
(table), 5-11

debugger command modifier, 5-13
SEARCH debugger command, 5-15

stepper command
description, 5-28
(table), 5-25

"Upcase Region" Editor command,
3-29

"Upcase Word" Editor command,
3-29

"EMACS" style binding, B-5
User defined FORMAT directives,

6-18
:USERNAME keyword

GET-PROCESS-INFORMATION
function, 70

-v-

:VALUE keyword
ED function, 42

Variable
print control, 6-3

"VAX LISP" Editor style, 3-44
automatic activation, 3-44

VAX/VMS file specification
See File

VAXstation
pointing device

using in Editor, 3-47
using Editor on, 3-46

Vectors
creating, 86

VERBOSE debugger command modifier,
5-13

with BACKTRACE command, 5-17
:VERBOSE keyword

COMPILE-FILE function, 15, 17
LOAD function, 81

/VERBOSE Qqualifier
loading files, 2-6

/VERBOSE qualifier
description, 2-23

Index-24

0

0

0

0

0

0

0

0

0

0

INDEX

/VERBOSE qualifier (Cont.)
modes, 2-13
(table), 2-12
with /COMPILE qualifier, 2-14
with /INITIALIZE qualifier,

2-16
with /LIST qualifier, 2-18

:VERSION keyword
pathname field, 7-10

Version number, 1-8
:VERSION-LIMIT keyword

GET-FILE-INFORMATION function,
57

"View File" Editor command
"EMACS" style binding, B-6

:VIRTUAL-ADDRESS-PEAK keyword
GET-PROCESS-INFORMATION

function, 70
VMS

hibernation state, 4
:VOLUME-COUNT keyword

GET-DEVICE-INFORMATION function,
53

:VOLUME-NAME keyword
GET-DEVICE-INFORMATION function,

54
:VOLUME-NUMBER keyword

GET-DEVICE-INFORMATION function,
54

:VOLUME-PROTECTION keyword
GET-DEVICE-INFORMATION function,

54

-w-

-w directive, 6-6
WARN function, 142

description, 144
error messages, 4-4
(table), 7-30

WARNING function
defining an error handler, 4-7

:WARNING keyword
EXIT function, 44

:WARNINGS keyword
COMPILE-FILE function, 15, 18

/WARNINGS qualifier
description, 2-24
modes, 2-13
(table}, 2-12
with /COMPILE qualifier, 2-14

"What Cursor Position" Editor
command

"EMACS" style binding, B-6
WHERE debugger command

description, 5-16
(table), 5-11

:WILD keyword
See :VERSION keyword

Windows
Editor

see Editor windows
WITH-GENERALIZED-PRINT-FUNCTION

macro, 6-22
WITH-GENERALIZED-PRINT-FUNCTION

macro
description, 145

:WORKING-SET-AUTHORIZED-EXTENT
keyword

GET-PROCESS-INFORMATION
function, 70

:WORKING-SET-AUTHORIZED-QUOTA
keyword

GET-PROCESS-INFORMATION
function, 70

:WORKING-SET-COUNT keyword
GET-PROCESS-INFORMATION

function, 70
:WORKING-SET-DEFAULT keyword

GET-PROCESS-INFORMATION
function, 71

:WORKING-SET-EXTENT keyword
GET-PROCESS-~NFORMATION

function, 71
:WORKING-SET-PEAK keyword

GET-PROCESS-INFORMATION
function, 71

:WORKING-SET-QUOTA keyword
GET-PROCESS-INFORMATION

function, 71
:WORKING-SET-SIZE keyword

GET-PROCESS-INFORMATION
function, 71

:WRAP keyword
GET-TERMINAL-MODES function, 75
SET-TERMINAL-MODES function,

109
WRITE

FORMAT directive, 6-7
"Write Current Buffer" Editor

command, 3-12
"EMACS" style binding, B-6
using, 3-10, 3-34

Index-25

WRITE function
pretty-printing control

keywords, 6-3
"Write Modified Buffers" Editor

command, 3-12
"EMACS" style binding, B-6
using, 3-10, 3-34

INDEX

WRITE-STRING function, 7-20
WRITE-TO-STRING function

pretty-printing control
keywords, 6-3

-Y-

"Write Named File" Editor command,
3-12

"Yank Previous" Editor command
"EMACS" style binding, B-5

"Yank Replace Previous" Editor
command

"EMACS" style binding, B-6
using, 3-10

WRITE-CHAR function, 7-24
#\NEWLINE character, 7-20
record length, 7-22

"EMACS" style binding, B-5
"Yank" Editor command

"EMACS" style binding, B-5

Index-26

0

0

0

0

0

0

0

c:::

____ I

---·------- -------·------·-----------

0

0

	Contents
	Preface
	Part I: System concepts and facilities
	1. Introduction to VAX LISP
	2. Using VAX LISP
	3. Using the VAX LISP editor
	4. Error handling
	5. Debugging facilities
	6. Pretty printing and using extensions to FORMAT
	7. VAX LISP/VMS implementation notes

	Part II: VAX LISP/VMS functions, macros, and variable descriptions
	Appendixes
	A: Performance hints
	B: Using the "EMACS" editor style
	C: Editor commands and key bindings

	Index

