
VAX LISP Implementation and Extensions to
Common LISP
Order Number: AA-MK70A-TE

July 1989

This manual describes VAX LISP implementation-dependent language features and extensions
to Common LISP. The information in this manual applies to both VMS and ULTRIX versions
of VAX LISP, except where specified otherwise.

Revision/Update Information: This is a new manual.

Operating System and Version: VMS Version 5.1 or ULTRIX 3.0

Software Version: VAX LISP Version 3.0

digital equipment corporation
maynard, massachusetts

July 1989

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1989.

All rights reserved.
Printed in USA

The Reader’s Comments form at the end of this document requests your critical evaluation to
assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

AI VAXstation
DEC
DECnet
DECUS
MicroVAX
MicroVAX II
MicroVMS

PDP
ULTRIX
ULTRIX—11
ULTRIX—32
UNIBUS
VAX
VAX LISP

VAX LISP/ULTRIX
VAX LISPA/MS
VAXstation
VAXstation II
VMS

TM

MLO-S832

This document was prepared using VAX DOCUMENT, Version 1.1.

Contents

P re face ... vii

Chapter 1 VAX LISP Implementation Notes

1.1 Data Representation.. 1-1
1.1.1 Numbers ... 1-2

1.1.1.1 Integers... 1-2
1.1.1.2 Floating-Point Numbers... 1-2
1.1.1.3 Complex Numbers ... 1-4

1.1.2 Characters.. 1-4
1.1.3 A rrays ... 1-5
1.1.4 Strings... 1-5
1.1.5 Functions... 1-5

1.2 Garbage C o lle c to r... 1-6
1.2.1 Memory Management ... 1-6
1.2.2 Types of Garbage Collection... 1—7
1.2.3 Tuning Garbage Collection Performance .. 1-7
1.2.4 Increasing Available S pace .. 1-8
1.2.5 Garbage Collection Failure .. 1-9
1.2.6 Controlling Messages ... 1—9
1.2.7 Effect on Static Space ... 1—10
1.2.8 Effect on VMS Interrupt Functions .. 1-10

1.3 Input and O u tp u t... 1-10
1.3.1 Newline Character.. 1-10
1.3.2 Terminal Inpu t... 1-11
1.3.3 Terminal Output on ULTRIX Systems ... 1-12
1.3.4 End-of-File Operations... 1-12
1.3.5 Record Length on VMS System s.. 1-12
1.3.6 File Organization.. 1-13
1.3.7 I/O Functions ... 1-13

1.3.7.1 OPEN Function... 1-13
1.3.7.2 WRITE-CHAR Function... 1-14
1.3.7.3 FILE-LENGTH Function on VMS Systems............................... 1-14
1.3.7.4 FILE-POSITION Function on VMS Systems.......................... 1-14

1.4 VAX LISP/VMS Interrupt and Keyboard Functions.. 1-14

1.5 VAX LISP/ULTRIX Keyboard Functions.. 1-15

1.6 Functions and M a c ro s .. 1-16

Chapter 2 VAX LISP Extensions to I/O

2.1 Defining New Types of Streams... 2-1
2.1.1 Overview of VAX LISP I/O .. 2-1
2.1.2 Defining Stream Structures.. 2-2
2.1.3 Stream Dispatch Functions.. 2-3

2.2 Getting Information About S tream s.. 2-^t

2.3 Additional I/O Functions... 2-5

Chapter 3 Window Streams

3.1 Creating and Changing Window S tream s... 3-2
3.1.1 Validity for Input Operations.. 3-2
3.1.2 Viewing Area.. 3-2

3.1.2.1 Viewing Area Coordinate Systems 3-2
3.1.2.2 Obtaining Viewing Area Dimensions..................................... 3-3
3.1.2.3 Changing Viewing Area Dimensions..................................... 3-3
3.1.2.4 Erasing Viewing Area Contents .. 3-3
3.1.2.5 Scrolling Viewing Area Contents.. 3-4

3.1.3 Vertical and Horizontal Overflow... 3-4
3.1.4 Font .. 3-5
3.1.5 Cursor Position... 3-6
3.1.6 Input History L im it .. 3-6
3.1.7 Window Exposure and Keyboard Connection... 3-7

3.2 Input from a Window Stream.. 3-7
3.2.1 Input Editing.. 3-7

3.2.1.1 Editing Without WITH-INPUT-EDITING 3-8
3.2.1.2 Using the WITH-INPUT-EDITING Macro 3-8
3.2.1.3 Using Options to WITH-INPUT-EDITING.............................. 3-10
3.2.1.4 Window Stream Editing Commands and Key Bindings 3-11

3.2.2 Recalling Input ... 3—13

3.3 Output to a Window S tre a m .. 3-14

3.4 Window System Dependencies... 3-14
3.4.1 VMS Workstation Software .. 3-14

3.4.1.1 Native Coordinate System.. 3-14
3.4.1.2 Fonts and Font Specification... 3-14
3.4.1.3 Multiple Stream Restriction... 3-14
3.4.1.4 Virtual Keyboard U s e ... 3-14
3.4.1.5 Using Attribute Blocks... 3-15
3.4.1.6 Resizing W indows.. 3-15

3.4.2 DECwindows ... 3-15
3.4.2.1 Native Coordinate System ... 3-15
3.4.2.2 Fonts and Font Specification... 3-15
3.4.2.3 Multiple Stream Restriction ... 3-15
3.4.2.4 Using Graphics Contexts ... 3-16
3.4.2.5 Resizing W indows.. 3-16
3.4.2.6 Repainting Windows .. 3-16

3.5 Window Stream Functions and Macros ... 3-16
ERASE-VIEWING-AREA FUNCTION... 3-17
MAKE-WINDOW-STREAM FUNCTION.. 3-17
SCROLL-VIEWING-AREA FUNCTION.. 3-18
SCROLL-VIEWING-AREA-CELL FUNCTION .. 3-19
VIEWING-AREA-HEIGHT FUNCTION.. 3-20
VIEWING-AREA-HEIGHT-CELL FUNCTION... 3-20
VIEWING-AREA-WIDTH FUNCTION... 3-21
VIEWING-AREA-WIDTH-CELL FUNCTION ... 3-21
WINDOW-STREAM TYPE SPECIFIER.. 3-22
WINDOW-STREAM-ATTRIBUTE-BLOCK FUNCTION.. 3-22
WINDOW-STREAM-FONT FUNCTION.. 3-22
WINDOW-STREAM-GCONTEXT FUNCTION.. 3-23
WINDOW-STREAM-HORIZONTAL-OVERFLOW FUNCTION.................................... 3-23
WINDOW-STREAM-INPUT-HISTORY-LIMIT FUNCTION... 3-23
WINDOW-STREAM-KB FUNCTION ... 3-24
WINDOW-STREAM-P FUNCTION ... 3-24
WINDOW-STREAM-SHOW-ON FUNCTION.. 3-24
WINDOW-STREAM-VERTICAL-OVERFLOW FUNCTION... 3-25
WINDOW-STREAM-VIEWING-AREA FUNCTION... 3-25
WINDOW-STREAM-WINDOW FUNCTION... 3-26
WINDOW-STREAM-X-POSITION FUNCTION.. 3-26
WINDOW-STREAM-X-POSITION-CELL FUNCTION .. 3-27
WINDOW-STREAM-Y-POSITION FUNCTION.. 3-27
WINDOW-STREAM-Y-POSITION-CELL FUNCTION... 3-28
WITH-INPUT-EDITING MACRO.. 3-28
WITH-WINDOW-STREAM MACRO... 3-30

Chapter 4 Pretty-Printing and Using Extensions to FORMAT

4.1 Pretty-Printing with D e fau lts ... 4-2

4.2 Pretty-Printing with Control Variables ... 4-2
4.2.1 Explicitly Enabling Pretty-Printing.. 4—3
4.2.2 Limiting Output by L ines ... 4-3
4.2.3 Controlling Margins .. 4-3
4.2.4 Conserving Space with Miser Mode ... 4—4

4.3 Extensions to the FORMAT Function .. 4-4
4.3.1 Using the Write FORMAT Directive.. 4-6
4.3.2 Controlling the Arrangement of Output... 4-7
4.3.3 Controlling Where New Lines Begin ... 4—9
4.3.4 Controlling Indentation ... 4-11
4.3.5 Producing Prefixes and Suffixes... 4—12
4.3.6 Using Tabs.. 4—13
4.3.7 Directives for Handling Lists ... 4-13

4.4 Defining Your Own Format Directives .. 4-15

4.5 Defining Print Functions for L is t s ... 4—16

4.6 Defining Generalized Print Functions.. 4-17

v

4.7 Abbreviating Printed O u tp u t.. 4—19
4.7.1 Abbreviating Output Length.. 4-19
4.7.2 Abbreviating Output Depth.. 4-20
4.7.3 Abbreviating Output by L ines... 4-20

4.8 Using Miser Mode ... 4-21

4.9 Handling Improperly Formed Argument L is ts .. 4-23

Chapter 5 Error Handling

5.1 Error Handler.. 5-1

5.2 VAX LISP Error Types.. 5-1
5.2.1 Fatal Errors.. 5—2
5.2.2 Continuable Errors.. 5-2
5.2.3 W arnings.. 5-3

5.3 Creating an Error Handler... 5-4
5.3.1 Defining an Error Handler.. 5-4

5.3.1.1 Function N a m e ... 5-5
5.3.1.2 Error-Signaling Function... 5-5
5.3.1.3 Arguments.. 5-5

5.3.2 Binding the ‘ UNIVERSAL-ERROR-HANDLER* Variable........................ 5-5

Index

Examples
3-1 Using the WITH-INPUT-EDITING Macro ... 3-9

Figures
3 - 1 Text Misalignment As a Result of Changing Fonts.. 3-5
4— 1 Variables Governing Miser Mode ... 4-22

Tables
1-1 VAX LISP Floating-Point Numbers .. 1-2
1—2 Floating-Point Constants... 1-3
1- 3 Summary of Implementation-Dependent Functions and M acros................................. 1-16
2 - 1 I/O Request Specifiers.. 2-3
2-2 Stream Data Types and Predicates.. 2—4
2 - 3 Stream Informational Functions ... 2-5
3 - 1 Window Stream Editing Commands and Key Bindings... 3-12
3- 2 Keyword Options to WITH-INPUT-EDITING.. 3-29
4 - 1 FORMAT Directives Provided by VAX L IS P .. 4—5
5 - 1 Error-Signaling Functions ... 5-5

Preface

VAX LISP is an extended implementation of Common LISP. The Common
LISP language is described in Common LISP: The Language * The VAX LISP
Implementation and Extensions to Common LISP manual describes the ways in
which VAX LISP differs from Common LISP.
Some Common LISP language elements are not fully specified in Common LISP.
The Language. This manual describes VAX LISP’s implementation-specific
details. VAX LISP extends the Common LISP language in some areas, such as
input and output and the definition of window streams. This manual describes
VAX LISP’s extensions to Common LISP.

Intended Audience

This manual is for programmers with a working knowledge of LISP. Detailed
knowledge of VMS is helpful but not essential; familiarity with the Introduction
to VMS is recommended. Detailed knowledge of ULTRIX— 32 is helpful but not
essential.
Some sections of this manual require more extensive understanding of the oper
ating system. In such sections, you are directed to the appropriate manual(s) for
additional information.

Structure

This manual is organized as follows:
• Chapter 1, VAX LISP Implementation Notes, describes the features of LISP

that are defined by or are dependent on the VAX implementation of Common
LISP.

• Chapter 2, VAX LISP Extensions to I/O, describes VAX LISP extensions to the
Common LISP I/O system.

• Chapter 3, Window Streams, explains how to use the VAX LISP window
streams facility.

• Chapter 4, Pretty-Printing and Using Extensions to FORMAT, explains how
to use the VAX LISP pretty-printer.

• Chapter 5, Error Handling, describes the VAX LISP error-handling facility.

vii

* Guy L. Steele, Jr., Common LISP: The Language, Digital Press (1984), Burlington, Massachusetts.

Associated Documents
The following documents are relevant to VAX LISP/VMS programming:
• VAX LISP/VMS Program Development Guide
• VAX LISP/VMS System Access Guide
• VAX LISP/VMS System-Building Guide
• VAX LISP/VMS DECwindows Programming Guide
• VAX LISP Editor Programming Guide
• VAX LISP/VMS Interface to VWS Graphics
• Introduction to VMS
• VMS DCL Dictionary
• VMS System Services Reference Manual
• VMS I/O User’s Reference Manual: Part I
• VMS RTL Library (LIB$) Manual
The following documents are relevant to VAX LISP/ULTRIX programming:
• VAX LISP/ULTRIX User’s Guide
• VAX LISP/ULTRIX System Access Guide
• VAX LISP/ULTRIX System-Building Guide
• ULTRIX-32 Programmer’s Manual
• ULTRIX-32 Supplementary Documentation
The following documents are always relevant:
• Common LISP: The Language
• VAX Architecture Handbook
For a complete list of VMS software documents, see the Overview of VMS
Documentation.

Conventions

The following conventions are used in this manual:

C onven tion M ean ing
UPPERCASE DCL commands and qualifiers and VMS file names are printed in

uppercase characters; however, you can enter them in uppercase,
lowercase, or a combination of uppercase and lowercase characters.
For example:
The examples directory (SYS$SYSROOT:[VAXLISP.EXAMPLES] by
default) contains sample LISP source files.

UPPERCASE
TYPEWRITER

Defined LISP functions, macros, variables, constants, and other
symbol names are printed in uppercase TYPEWRITER charac
ters; however, you can enter them in uppercase, lowercase, or a
combination of uppercase and lowercase characters. For example:
The CALL-OUT macro calls a defined external routine

low e r ca se
ty p ew r it e r

LISP forms are printed in the text in lowercase ty p ew r ite r
characters; however, you can enter them in uppercase, lowercase, or
a combination of uppercase and lowercase characters. For example:

SANS SERIF
(s e t f example-1 (m ake-space))
Format specifications of LISP functions and macros are printed in a
s a n s serif typeface. For example:
CALL-OUT external-routine &REST routine-arguments

ita lics Lowercase ita lics in format specifications and in text indicate argu
ments that you supply; however, you can enter them in lowercase,
uppercase, or a combination of lowercase and uppercase characters.
For example:
The routine-arguments must be compatible with the arguments
d e f in e d in the call to the DEFINE-EXTERNAL-ROUTINE macro.

() Parentheses used in examples of LISP code and in format spec
ifications indicate the beginning and end of a LISP form. For
example:

[]
(se tq name l i s p)
Square brackets in format specifications enclose optional elements.
For example:
[doc-string]
Square brackets do not indicate optional elements when they are
used in the syntax of a directory name in a VMS file specification.
Here, the square bracket characters must be included in the syntax.
For example:

U
(pathname "M IAM I: : DBA1: [SM ITH]LOGIN . COM;4")

In function and macro format specifications, braces enclose elements
that are considered one unit of code. For example:
{keyword value}

Conven tion M ean ing

{}* In function and macro format specifications, braces followed by
an asterisk enclose elements that are considered one unit of code,
which can be repeated zero or more times. For example:

{keyword value}*

&OPTIONAL In function and macro format specifications, the word &OPTIONAL
indicates that the arguments that follow it are optional. For exam
ple:
PPRINT object &OPTIONAL stream
Do not specify &OPTIONAL when you invoke a function or macro
whose definition includes &OPTIONAL.

&REST In function and macro format specifications, the word &REST
indicates that an indefinite number of arguments may appear. For
example:
CALL-OUT external-routine &REST routine-arguments
Do not specify &REST when you invoke a function or macro whose
definition includes &REST.

&KEY In function and macro format specifications, the word &KEY indi
cates that keyword arguments are accepted. For example:
COMPILE-FILE input-pathname

&KEY LISTING :MACHINE-CODE OPTIMIZE
:OUTPUT-FILE :VERBOSE WARNINGS

Do not specify &KEY when you invoke a function or macro whose
definition includes &KEY.
A horizontal ellipsis in a format specification means that the ele
ment preceding the ellipsis can be repeated. For example:
function-name . . .

| R eturn |

A vertical ellipsis in a code example indicates that all the informa
tion that the system would display in response to the function call
is not shown; or, that all the information a user is to enter is not
shown.
A word inside a box indicates that you press a key on the keyboard.
For example:
| R eturn | or |Tab|

In code examples, carriage returns are implied at the end of each
line. However, I R eturn | is used in some examples to emphasize car-
riage returns.

[c t f f i c l Two key names enclosed in a box indicate a control key sequence in
which you hold down Ctrl while you press another key. For example:
| Ctrl/C | or | Ctrl/S |

E3H A sequence such as [pfT] [xj indicates that you must first press and
release the key labeled PF1, then press and release another key.

C onven tion M ean ing

mouse The term mouse refers to any pointing device, such as a mouse, a
puck, or a stylus.

MB1, MB2, MB3 By default, MB1 indicates the left mouse button, MB2 indicates the
middle mouse button, and MB3 indicates the right mouse button.
You can rebind the mouse buttons.

Red print In interactive examples, user input is shown in red. For example:

Lisp> (cdr ' (a b c))
(B C)
Lisp>

xi

Chapter 1

VAX LISP Implementation Notes

VAX LISP is an implementation of LISP that is based on Common LISP
as described in Common LISP: The Language. This chapter describes how
implementation-dependent aspects of Common LISP are implemented on the
VMS and ULTRIX—32/32w operating systems. This chapter does not describe
all the implementation differences between VAX LISP/VMS (VAX LISP as
implemented on VMS) and VAX LISP/ULTRIX (VAX LISP as implemented on
ULTRIX). For a complete list of such differences, see the VAX LISP Release Notes.
These release notes are on line in the file SYS$HELP:LISPrcrm.RELEASE_
NOTES (on VMS systems) or /usr/lib/vaxlisp/lispnnn.mem (on ULTRIX systems),
where nnn is the VAX LISP version number. For example, LISP030.RELEASE_
NOTES or Iisp030.mem is the file containing the release notes for Version 3.0.
Most of the information in this chapter refers to subjects that Common LISP: The
Language refers to as implementation dependent. The purpose of this chapter is
to clarify the implementation specifics for the following topics:
• Data representation
• The garbage collector
• Input and output
• Interrupt functions (on VMS systems only) and keyboard functions that

execute asynchronously when you type a control character
• Functions and macros

NOTE

VAX LISP/VMS supports only symbols that are in the packages named
common-l is p , vax-l is p , editor, clx, dwt, and UIS. VAX LISP/ULTRIX
supports only symbols that are in the packages named common-l is p ,
vax-l is p , clx, and dwt.

1.1 Data Representation

Common LISP defines the data types implemented in VAX LISP but Common
LISP does not define implementation-dependent information related to the data
types. This section provides data type information specific to VAX LISP. Complete
descriptions of data types are provided in Common LISP: The Language. The
following data types require VAX LISP implementation information:
• Numbers
• Characters

VAX LISP Implementation Notes 1-1

• Arrays
• Strings

1.1.1 Numbers

Sections 1.1.1.1 through 1.1.1.3 explain how VAX LISP implements the integer,
floating-point, and complex number data types.

1.1.1.1 Integers
Common LISP defines two subtypes of integers: fixnums and bignums. In VAX
LISP, the integers in the range -2**28 to 2**28-l are represented as fixnums;
integers not in the fixnum range are represented as bignums. VAX LISP stores
bignums as two’s complement bit sequences.
In VAX LISP, the eq function returns T when it is called with two fixnums with
the same value.
The values of the Common LISP integer constants are implementation dependent.
The names of the constants and the corresponding VAX LISP values follow:
MOST-POSITIVE-FIXNUM 268435455

MOST-NEGATIVE-FIXNUM -268435456

NOTE

The range of integers represented as fixnums has been reduced by half
from the old range o f-2**29 to 2**29-l.

Descriptions of these constants are provided in Common LISP: The Language.

1.1.1.2 Floating-Point Numbers
Common LISP defines the following types of floating-point numbers:
• Short floating-point numbers
• S in g le floating-point num bers
• Double floating-point numbers
• Long floating-point numbers
In VAX LISP, these four types are implemented with VAX floating data types.
Table 1-1 lists the types of Common LISP floating-point numbers, the corre
sponding VAX data types, and the number of bits allocated for the exponent and
significand of each floating-point type. For information on the VAX floating data
types, see the VAX Architecture Handbook.

Table 1-1: VAX LISP Floating-Point Numbers

C om m on L ISP Type VAX Type E xpon en t S ign ificand
SHORT-FLOAT F_floating 8 24
SINGLE-FLOAT F_floating 8 24
DOUBLE-FLOAT G_floating 11 53
LONG-FLOAT ELfloating 15 113

1-2 VAX LISP Implementation Notes

On ULTRIX Systems

If your system does not have G and H floating-point instructions, see the
ULTRIX-32 Programmer’s Manual Binder IIIA “System Managers” for infor
mation on how to configure your system to use the g/h floating-point emulator.
The values of the Common LISP floating-point constants are implementation
dependent. You can use the values of these constants to compare the range
of values and the degrees of precision of the VAX LISP floating-point types.
Table 1-2 lists the names of the constants and provides the actual hexadecimal
values and the decimal approximations for VAX LISP.

Table 1-2: Floating-Point Constants

C on stan t
DOUBLE-FLOAT-EPSILON
DOUBLE-FLOAT-NEGATIVE-EPSILON
LEAST-NEGATIVE-DOUBLE-FLOAT
LEAST-NEGATIVE-LONG-FLOAT
LEAST-NEGATIVE-SHORT-FLOAT
LEAST-NEGATIVE-SINGLE-FLOAT
LEAST-POSITIVE-DOUBLE-FLOAT
LEAST-POSITIVE-LONG-FLOAT
LEAST-POSITIVE-SHORT-FLOAT
LEAST-POSITIVE-SINGLE-FLOAT
LONG-FLOAT-EPSILON
LONG-FLOAT-NEGATIVE-EPSILON
MOST-NEGATIVE-DOUBLE-FLOAT
MOST-NEGATIVE-LONG-FLOAT
MOST-NEGATIVE-SHORT-FLOAT
MOST-NEGATIVE-SINGLE-FLOAT
MOST-POSITIVE-DOUBLE-FLOAT
MOST-POSITIVE-LONG-FLOAT
MOST-POSITIVE-SHORT-FLOAT
MOST-POSITIVE-SINGLE-FLOAT
SHORT-FLOAT-EPSILON
S HORT-FLOAT-NEGATIVE-EPSILON
SINGLE-FLOAT-EP SILON
SINGLE-FLOAT-NEGATIVE-EPSILON

Approx im ate
H exadecim a l D ecim a l
R ep resen ta tion Value
00000000 00003CC0
00010000 00003CB0
00000000 00008010
00000000 00000000 00000000 00008001
00008080
00008080
00000000 00000010
00000000 00000000 0000000C 00000001
00000080
00000080
00000000 00000000 00000000 00003F90
00010000 00000000 00000000 00003F8F
FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF FFFF7FFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFF7FFF
FFFF7FFF
FFFF7FFF
00003480
00013400
00003480
00013400

l.lld-16
5.55d-17
-5.5d-309
-8.41L-4933
-2.94e-39
-2.94e-39
5.56d-309
8.41L-4933
2.94e-39
2.94e-39
9.63L-35
4.81L-35
-8.99d307
-5.95L4931
-1.70e38
-1.70e38
8.99d307
5.95L4931
1.70e38
1.70e38
5.96e-8
2.98e-8
5.96e-8
2.98e-8

Descriptions of these constants are provided in Common LISP: The Language.
Common LISP allows an implementation to define a floating-point minus zero. In
VAX LISP, floating-point minus zero does not exist.

VAX LISP Implementation Notes 1-3

1.1.1.3 Complex Numbers
VAX LISP Version 3.0 supports complex numbers of types rational and float,
with subtypes single-float, double-float, and long-float. A s specified in
Common LISP: The Language, both parts of a complex number must be of the
same type.

1.1.2 Characters

Common LISP defines characters as objects that have three attributes: code, bits,
and font. The code attribute is a numerical representation of the character itself.
The bits attribute allows extra flags (such as control or meta) to be associated
with a character. The font attribute permits a typographical style (such as italic)
or font to be associated with a character. Common LISP does not require that an
implementation honor bits or font attributes.
VAX LISP implements characters with eight bits for the code attribute, which is
encoded using the extended ASCII character set. The bits and font attributes are
no longer supported. The types character and string-char are now the same.
For compatibility, characters with bits attributes can still be read and printed,
but, if they are put into a string, they lose their bits attribute. The bits attribute
consists of the four Common LISP bits: control, hyper, me ta, and super. Note
that the control bits attribute is not associated with control characters in the
ASCII character set.
The VAX LISP implementation of Common LISP functions that take a font
argument ignores it.
The VAX LISP implementation of Common LISP functions that compare char
acters uses the numeric values that correspond to the extended 8-bit ASCII
character set. The character predicate functions and the rules that the functions
use to compare characters are described in Common LISP: The Language.
The ordering of two characters that have the same character code but different
bits and font attributes is undefined in VAX LISP.
The Common LISP character constants that are the exclusive upper limits on the
code, bits, and font attributes have the following values in VAX LISP:
CHAR-CODE-LIMIT 256
CHAR-BITS-LIMIT 1
CHAR-FONT-LIMIT 1

NOTE

The values of these constants have changed in this release of VAX
LISP.

Descriptions of these constants are provided in Common LISP: The Language.
You can obtain a table of valid VAX LISP character names by calling the VAX
LISP char-name-table function described in the VAX LISP/VMS Object Reference
Manual.
On ULTRIX Systems
The ULTRIX operating system masks the eighth bit, which produces the same
effect as having specified 7-bit characters. You can prevent this masking by
setting the terminal in RAW mode, but this is not recommended (see tty(4) in the
ULTRIX-32 Programmer’s Manual).

1-4 VAX LISP Implementation Notes

1.1.3 Arrays

Common LISP defines an array as an object whose components are arranged
according to a Cartesian coordinate system and whose number of dimensions
is called its rank. The names of the Common LISP array constants and the
corresponding VAX LISP values are:
ARRAY-DIMENSION-LIMIT 16777215
ARRAY-RANK-LIMIT 8

ARRAY-TOTAL-S IZE-L IM IT 16777215

These constants are described in Common LISP: The Language.
Common LISP defines a specialized array as an array that can contain only
elements of a specific type. Specialized arrays are more space efficient than
general arrays. VAX LISP creates a specialized array when you call the make-
array function with the : element-type keyword set to any of the types in the
following set:
CHARACTER
(UNSIGNED-BYTE 2)
(UNSIGNED-BYTE 12)
(UNSIGNED-BYTE 32)
(SIGNED-BYTE 8)
(SIGNED-BYTE 64)
SINGLE-FLOAT

BIT
(UNSIGNED-BYTE 4)
(UNSIGNED-BYTE 16)
(UNSIGNED-BYTE 64)
(SIGNED-BYTE 16)

DOUBLE-FLOAT

(UNSIGNED-BYTE 8)
(UNSIGNED-BYTE 24)

(SIGNED-BYTE 32)

LONG-FLOAT
If the element type is neither a member of this set nor a subtype of a member,
VAX LISP creates a general array (element type is t).
In VAX LISP Version 3.0, vectors of characters are implemented as strings.

1.1.4 Strings

Common LISP defines a string as a vector of string characters. In VAX LISP,
a string can be composed of as many as array-dimension-limit minus one
character.
A string character is a character that can be stored in a string object. In VAX
LISP Version 3.0, all characters are string characters. String characters cannot
have the bits or font attributes.
On ULTRIX Systems

You can prevent the ULTRIX operating system from masking the eighth bit of a
character by setting the terminal in RAW mode, but this is not recommended (see
tty (4) in the ULTRIX-32 Programmer’s Manual).

1.1.5 Functions

The Common LISP constants that are the exclusive upper bounds on the number
of arguments to a function, the parameters in a lambda list, and the return
values of a function have the following values in VAX LISP:
CALL-ARGUMENTS-LIMIT 1000000
lambda-parameters-limit 255
MULTIPLE-VALUES-LIMIT 1000000

VAX LISP Implementation Notes 1-5

1.2 Garbage Collector

When VAX LISP is executing, LISP objects are created dynamically in one area
of the total memory pool assigned to LISP by the operating system. Some objects
are always used and referred to, while others are referred to only for a short
time. When the amount of memory allocated to LISP objects reaches a certain
percentage of the LISP memory pool, all LISP processing is suspended. Objects
that can still be referred to are copied into another area of dynamic memory,
while objects that can no longer be referred to are not copied. The space that
such objects occupied is thus reclaimed by the VAX LISP system. This process of
reclaiming space is called garbage collection.
The following sections describe aspects of the VAX LISP garbage collector:
• Memory management
• Types of garbage collection
• Tuning garbage collection performance
• Increasing available space
• Garbage collection failure
• Controlling messages
• Effect on static space
• Effect on VMS interrupt functions
You can ignore garbage collections of dynamic memory space when you write
LISP programs. Section 1.2.7 explains how to create objects in static rather than
dynamic space.

1.2.1 Memory Management

When you start a LISP session, VAX LISP requests memory from the operating
system. By default, 5000 512-byte pages are assigned to LISP and 50 percent
may be used to allocate LISP objects. (See Section 1.2.4 for information on how
to change these defaults.) When the percentage is reached, a garbage collection
occurs, copying all live data from the current dynamic allocation area into
unused memory (called the unassigned area until used). The memory previously
allocated is then returned to the available LISP memory pool (to the unassigned
area). Objects that are not referred to are not copied. All LISP processing is
suspended during garbage collection.
To provide flexibility in allocation of objects and in garbage collection strategies,
the VAX LISP system divides its memory pool into a number of different spaces:
:read-only, -.STACK, :static, and :dynamic. The :read-only space contains
much of the LISP system. This space may not be written to and is shared among
multiple processes when installed properly with the VMS INSTALL utility.
Users building their own LISP systems with the System Build Utility may have
portions of their own application placed in : read-only memory as well. : stack
space contains control and binding stacks and tends to remain relatively stable
during a LISP session. Users’ objects are not allocated in : stack space. : static
space is used for allocation when users require allocated LISP objects which are
guaranteed not to be moved by the garbage collector during the LISP session.
: static space also contains all nonreadonly portions of user applications built
with the System Build Utility.

1-6 VAX LISP Implementation Notes

Garbage collection is not performed in the :re ad-only, : stack, and : static
spaces, only in the : dynamic space. Most LISP objects are allocated in : dynamic
space. When the ephemeral garbage collector is active, ephemeral areas are
created within the dynamic space.

1.2.2 Types of Garbage Collection

VAX LISP uses both full and ephemeral garbage collection methods. In general,
full collections happen infrequently (if enough memory is available) and free
large amounts of memory. However, full collections take time proportional to the
amount of : static space, which must be scanned, and the amount of live data in
: dynamic space, which must be copied. In full collections, all objects are scanned
and any dynamic objects that can be referred to are copied. In applications with
large amounts of dynamic data, the time required can be substantial. This can
present annoying pauses in interactive sessions, lb remedy this, the ephemeral
garbage collector may be used.
Ephemeral garbage collection takes the opposite approach: frequent small collec
tions rather than infrequent large garbage collections. There is some overhead
in doing ephemeral collection, because of the frequency of use; applications with
much live data will require more total CPU time than they would running only
the full garbage collection. On the other hand, user-visible garbage collection
activity is kept to a minimum. Also, ephemeral collection does not replace full
garbage collection because it only partially reclaims data. Depending on your
application, a full garbage collection may be required at some point. In general,
however, ephemeral garbage collection can postpone full garbage collections for a
long time.
Besides reducing the visibility of garbage collection activity, the ephemeral
collector also provides “age tracking” of data. The ephemeral collector maintains
three areas of dynamic memory: EO, El, and E2. Most allocation is done in the
EO area. When EO is full, an ephemeral collection occurs and live data is copied
(promoted) to El. When E l is full (presumably after many EO collections), an
ephemeral collection occurs and data that is still live is promoted to E2. When
E2 is full, live data is promoted to the : dynamic area where it remains in place
until a full collection is required. It is generally accepted that in most LISP
applications, most data has a short lifetime and becomes garbage very quickly.
The longer data remains live, the more likely it will never become garbage. By
using separate areas, ephemeral garbage collection eventually moves long-lived
data to more permanent memory.
The ephemeral garbage collector is automatically enabled when you invoke VAX
LISP, if enough memory is allocated (see Section 1.2.4 for details).

1.2.3 Tuning Garbage Collection Performance

The frequency of garbage collection is inversely proportional to the size of the
current dynamic memory space; the speed is directly proportional. The degree
to which the frequency of garbage collection and the size of dynamic memory
affect run-time efficiency depends on the program. If a program creates more
permanent objects than short-lived objects, the garbage collector has to perform
more copy operations, slowing execution.

VAX LISP Implementation Notes 1-7

You can make full garbage collections occur less frequently by increasing tbe
virtual memory allocated to LISP or increasing the percentage of dynamic space
that must be occupied before a full collection takes place. See Section 1.2.4
for information on ways to set the amount of available memory. The dynamic-
space-ratio function returns the current percentage, as a floating-point value,
of dynamic space that may be used before a full garbage collection is performed.
This ratio may be changed by using the setf macro. The new value must be
greater than zero and less than or equal to one. Setting the dynamic space ratio
can help the memory management system make more efficient use of memory,
but the ratio is only a guideline. The ratio may be reset when the memory
management system finds the current value to be inappropriate for existing
conditions.
You can make ephemeral collections occur less frequently by increasing the size
of the ephemeral areas. However, having too large an EO area causes ephemeral
garbage collections to take longer thus undoing the desired “user-invisible”
effect of frequent, fast ephemeral garbage collections. Having a large EO area
and a too small E l area may make most EO collections instantly cause an El
collection. While collection of the EO area is optimized for speed, the others are
used mostly for age tracking of data. It is recommended that E l be large enough
to give any live but soon-to-die data that survives an EO collection a chance to
die before promoting if to E2 or even : dynamic space. The limits on the sizes of
the ephemeral areas can be queried or changed with the ar ea-segment-limit
function. For example:
Lisp> (area-segment-limit 0)
10
Lisp> (setf (area-segment-limit 0) 40)
Under certain circumstances, ephemeral garbage collection is counterproduc
tive, as when loading files that create large amounts of permanent, live data.
Disabling ephemeral collections before loading the files causes the data to be
created directly in :dynamic space, avoiding the overhead of promotions through
the ephemeral areas However, garbage created by the loading is not discarded.
You can disable or enable ephemeral collection with the gc-mode function. For
example:
(gc-mode :full)

1.2.4 Increasing Available Space

Garbage collection generally occurs when a LISP object is being created. If a
garbage collection occurs and enough dynamic memory space to allocate the
object is not available, the LISP system grows dynamic space as needed by
requesting more memory from the operating system. The LISP system requests
at least the number of 64K-byte segments in the value bound to the memory-
allocation-extent function, depending on the size of the object. You can change
the allocation extent with the setf macro.
You can increase the total memory addressable by LISP with the enlarge-lisp-
memory function. Its format is:
ENLARGE-LISP-MEMORY segments
where segments is the number of 64K-byte segments by which the amount of
virtual memory available for LISP allocation should be increased by the operating
system.

1-8 VAX LISP Implementation Notes

You can also set the amount of memory available to LISP by specifying the
/MEMORY command qualifier (on VMS systems) or the MEMORY (-m) option
(on ULTRIX systems) when you invoke the LISP system. Garbage collection
occurs less often if you use the memory qualifier or option to increase the size
of the dynamic memory space. (See Chapter 2 of the VAX LISP /VMS Program
Development Guide for more information about setting the amount of memory
available to LISP.)
The ephemeral garbage collector is automatically turned on when the memory
allocation size is larger than approximately 10,000 pages. This size can vary
according to how the image was created and how it was started. In addition,
normal execution may use up free space so that there is not enough left over
after a garbage collection. In this situation, the ephemeral garbage collector is
automatically turned off.

1.2.5 Garbage Collection Failure

The ephemeral garbage collector will be disabled when the sum of the size of
the : dynamic space and the ephemeral area segment limits is more than the
dynamic-space-ratio of the LISP-allocated pool. If this is caused by a user
action, for example, you have enlarged an area segment limit, a warning message
is printed. A full garbage collection is performed regardless of cause. You can
reenable the ephemeral garbage collector by using the g c-mode function: (gc-
mode : ephemeral). This function may not enable ephemeral garbage collection if
there is insufficient memory.
The garbage collection process may fail to complete. If, for example, the LISP
system cannot allocate enough memory to contain all the LISP objects that can
be referred to without exceeding the process quota, the LISP image is terminated,
and control returns to the DCL level (on VMS systems) or to the shell (on
ULTRIX systems). The risk of this happening is greater when the value bound to
the dynamic-space-ratio function is large (for example, 90 percent) or if garbage
collection is turned off (gc-mode : none).
In previous versions of VAX LISP, a control stack overflow caused a garbage
collection. In Version 3.0, control stack overflow is a fatal error. You can increase
the allocation for control stacks with the /CSTACK qualifier to the DCL LISP
command. (See Chapter 2 of the VAX LISP/VMS Program Development Guide
for details.)

1.2.6 Controlling Messages

During a full garbage collection, messages are displayed when the operation
begins and when it is finished. You can suppress these messages by changing
the value of the VAX LISP *gc-ve rb ose* variable to n i l. When the value is nil,
messages are not displayed.
You can also specify the contents of the messages by changing the values of
the VAX LISP *pre-gc-message* and *post-gc-message* variables. The *gc-
verbose*, *pr e-gc-me ss age*, and *post-gc-me ss age* variables are described in
the VAX LISP /VMS Object Reference Manual.

VAX LISP Implementation Notes 1-9

1.2.7 Effect on Static Space

LISP objects that are created in static space are not collected by the garbage
collector. These objects do not move and they are not deleted, even if they can
no longer be referred to. You can create objects in static space by using the
: allocation keyword with the make-array function or by using the constructor
functions that are defined by the define-alien-structure macro for alien
structures. (See the VAX LISP /VMS Object Reference Manual for details.)

1.2.8 Effect on VMS Interrupt Functions

LISP processing is suspended during a garbage collection. The VMS operating
system queues interrupt functions, such as those defined by the VAX LISP
BIND-KEYBOARD-FUNCTION and INSTATE-INTERRUPT-FUNCTION functions, for
delivery after garbage collection is finished. Interrupt functions are discussed in
Section 1.4.

1.3 Input and Output

On VMS systems, VAX LISP I/O is implemented with two sets of low level
functions. One set of functions handles terminal I/O, using direct QIOs to the
terminal driver. The other set of functions handles all other I/O (particularly to
disk files), using calls to VAX Record Management Services (RMS). See the VMS
Record Management Services Manual for information about VAX RMS.
On ULTRIX systems, VAX LISP terminal I/O and file I/O are implemented by low
level ULTRIX system I/O routines. See the ULTRIX-32 Programmer’s Manual
for a description of ULTRIX I/O.
The following sections cover the specific VAX LISP I/O implementations of:
• Newline character
• Terminal input
• Terminal output (on ULTRIX systems)
• End-of-file operations
• Record length (on VMS systems)
• File organization
• Functions

1.3.1 Newline Character

Common LISP defines the #\newline character as a character that is returned
from the READ-CHAR function as an end-of-line indicator. In VAX LISP, the
character code for the #\newline character has an integer value of 255.
In VAX LISP, the write-char and write-string functions interpret the
#\newline character as follows:
• When the write-char function is called with the #\newline character as its

argument value, the function starts writing a new line. This call is equivalent
to a call to the terpri function (see Common LISP: The Language).

1-10 VAX LISP Implementation Notes

• When the write-string function is called with an argument string that
contains the #\newline character, the function divides the string into
multiple lines. The following example shows the output that is displayed by
the write-string function when the #\newline character is not used:
Lisp> (write-string (concatenate 'string

"NEW"
"LINE"))NEWLINE

"NEWLINE"
Both strings, "new" and "line", are displayed on the same line. A call to
the write-string function with a string argument that does include the
#\newline character, produces the following output:
Lisp> (write-string (concatenate 'string

"NEW"
(string #\newline)
"LINE"))

NEW
LINE
"NEW
LINE"
This call to the write-string function displays the strings "NEW" and "line"
on separate lines.

The #\newline character is the only character that moves the cursor to the
beginning of the next line. #\linefeed moves the cursor down one line; #\return
moves the cursor to the beginning of the current line.

1.3.2 Terminal Input

In VAX LISP, terminals perform input operations in line mode. Input is returned
by the read-char function only after you press the Return key.
On VMS Systems

The read-char function returns ASCII characters as data unless one of the
following conditions exists:
1. A character is used by the VMS terminal driver for terminal control.
2. A character is defined to invoke an interrupt function.
See the VMS I/O User’s Reference Manual: Part I for information on terminal
control characters, and see Section 1.4 of this manual for information about
interrupt functions.
You can change the mode in which your terminal performs input operations by
invoking the VAX LISP set-terminal-modes function with the :PASS-through
keyword set to t (see the 'VAX'LISP/VMS Object Reference Manual).
If the value of the : pass-through keyword is t, then the VAX LISP system does
not recognize control characters processed by the VMS system and characters de
fined to invoke interrupt functions. In addition, the read-char function performs
input operations differently than it does when the terminal is in line mode. In
line mode, the read-char function does not return a character until you press
the Return key; in pass-through mode, that function returns a character as soon as
the character is typed. See Common LISP: The Language for a description of the
read-char function.

VAX LISP Implementation Notes 1-11

To put your terminal back into line mode, invoke set-terminal-modes with
:PASS-THROUGH set to NIL.
On ULTRIX Systems

The read-char function returns ASCII characters as data unless a character is
used by the ULTRIX terminal driver for terminal control. See the ULTRIX-32
Programmer’s Manual (particularly ioctl(2), stty(l), and tty(4)) for information
on terminal control characters.

1.3.3 Terminal Output on ULTRIX Systems

ULTRIX truncates terminal output rather than wrapping it. To make output
more readable, set the *print-pretty* variable to T or *print-right-margin* to
the width of the screen.

1.3.4 End-of-File Operations

In VAX LISP, read operations from a file do not indicate the end of the file until
the operation after the last character in the file is performed.
Read operations from a terminal do not indicate the end of a file in VAX LISP.
In VAX LISP, you can close a stream that is connected to your terminal if the
stream is not related to the stream bound to the *terminal-io* variable. If you
attempt to close the stream bound to *terminal-io*, no action is performed.

1.3.5 Record Length on VMS Systems

VAX LISP/VMS uses VAX RMS to process file I/O. Therefore, the maximum
record length in VAX LISP must conform to the maximum record length in RMS.
A maximum of 32,767 characters can be written to a single record of a disk file,
and a maximum of 9995 characters can be written to a single record of a magnetic
tape. If you exceed these record-length limits, an error is signaled and nothing is
written to the file.
The write-char function causes an immediate operation when it is called with
a terminal stream. As a result, there is no limit on the number of calls you can
make to the write-char function before you invoke the terpri function if you are
writing to a terminal.
Your user-buffered I/O byte limit quota determines the maximum string length
you can write to your terminal. You can find out what the quota is by invoking
the VAX LISP/VMS get-process-information function with the :BIO-byte-
quota keyword (see VAX LISP/VMS Object Reference Manual). For example:
Lisp> (get-process-information "SMITH" :bio-byte-quota)
(:BIO-BYTE-QUOTA 30000)

NOTE

You can prevent your buffered I/O byte limit quota from overflowing
and avoid the RMS record length limits by including calls to the terpri
function, by inserting the #\newline character in your strings, or by
setting *print-right-margin* or *print-pretty*.

1-12 VAX LISP Implementation Notes

1.3.6 File Organization

VAX LISP/VMS reads RMS files sequentially. Character files created by VAX
LISP/VMS have sequential organization, variable-length records, and the implied
carriage-return attribute. Files created for binary output (with, for example, the
write-byte function) have sequential organization, variable-length records, and
no carriage-control attributes.
VAX LISP/ULTRIX creates ULTRIX files that are sequential streams.

1.3.7 I/O Functions

Some Common LISP functions used for I/O have VAX LISP dependencies and
need further explanation:
• OPEN
• WRITE-CHAR
• FILE-LENGTH (on VMS systems only)
• file-position (on VMS systems only)
Unless otherwise noted, the implementation information in the following sections
applies to both ULTRIX and VMS systems.

1.3.7.1 OPEN Function
Before you can access a file, you must open it with the open function or the
w i th-open-file macro. The open function can be specified with keywords that
determine the type of stream that is to be created and how errors are to be
handled. The keywords you can specify are:
: DIRECTION
:ELEMENT-TYPE
: IF-EXISTS
: IF-DOES-NOT-EXIST

VAX LISP restricts the values you can specify for these keywords. The rest of this
section explains the restrictions.
For the : if-exists keyword values of iRENAME, :rename-a n d-delete, and
: supersede, the old file is renamed to the same name with the string “old”
appended to the file type. On closing files opened with any of these three values,
and specifying : abort t, the new version is deleted and the old is restored to its
former name. On closing files with : abort ni l, on : rename, there is no action;
with : rename-a n d-delete or : supersede, the old file is deleted.
VAX LISP supports all the values for the : element-type keyword specified by
Common LISP. VAX LISP lets you open binary streams, but the maximum byte
size for a stream is 512 8-bit bytes.
On VMS Systems

In VAX LISP/VMS, you can specify the : io value for the : direction keyword only
if the specified stream is connected to a terminal or mailbox. When you specify
the : io value, the target device must exist before the open function is called.
Therefore, if you specify this value for the : direction keyword, you cannot
specify the : if-exists keyword, and you can specify the : if-does-no t-exist
keyword only with the : error value.

VAX LISP Implementation Notes 1-13

The : IF-EXISTS :overwrite option is not supported in VAX LISP/VMS.

On ULTRIX Systems

In VAX LISP/ULTRIX, if a file is opened with : direction : io, the user must set
the file position with the file-position function when changing from reading to
writing and vice versa. Not setting the file position will cause the file to be left in
an inconsistent state.

1.3.7.2 WRITE-CHAR Function
The write-char function disregards the bit and font attributes of characters.

1.3.7.3 FILE-LENGTH Function on VMS Systems
The length of a file is measured in units of the open function’s : element-type
keyword. In VAX LISP/VMS, files cannot be measured in these units for all the
supported element types. Therefore, the file-length function returns NIL.
You can determine the total number of 8-bit bytes in a file by invoking the get-
file-information function with the :en d-of-file-block and :first-free-byte
keywords, and then performing the following steps:
1. Multiply the value returned for the :END-o f-file-block keyword minus one

by 512.
2. Add the value you get in step 1 to the value returned for the :FIRst-free-

byte keyword.
For example:
(defun size-in-bytes (file)

(let ((blocks (cadr (get-file-information file :end-of-file-block)))
(bytes (cadr (get-file-information file :first-free-byte))))

(+ bytes (* 512 (- blocks 1)))))
For the more information on the get-file-information function, see the VAX
LISP/VMS Object Reference Manual.

1.3.7.4 FILE-POSITION Function on VMS Systems
The file-position function returns or sets the current position within a random-
access file. VAX LISP/VMS does not support random-access files; therefore, this
function returns n i l.

1.4 VAX LISP/VMS Interrupt and Keyboard Functions

An interrupt function is a function that is invoked when a specific event occurs.
If an interrupt function is defined for an event, the VAX LISP/VMS system
interrupts the current LISP processing and invokes the interrupt function when
the event occurs. When the interrupt function exits, the VAX LISP/VMS system
resumes processing at the point where it was interrupted.
VAX LISP/VMS provides two functions you can use to define interrupt functions:
INSTATE-INTERRUPT-FUNCTION and BIND-KEYBOARD-FUNCTION. The INSTATE-
INTERRUPT-FUNCTION function is part of a general mechanism that lets your
program respond to asynchronous events (ASTs) in the VMS operating system.
This mechanism is described in the VAX LISP/VMS System Access Guide.

1-14 VAX LISP Implementation Notes

bi nd-keyboard-function is a more specialized function that binds an ASCII
control character to an interrupt function. Once a control character is bound to
a function, you can cause the VAX LISP/VMS system to interrupt the current
evaluation and call the function asynchronously by typing the control character.
Functions bound using bind-keyboard-function are also called keyboard
functions.
Interrupt functions are not always called as soon as the defined event occurs. If
a low-level LISP function, such as write-char or cons, is being evaluated or a
garbage collection is being performed, interrupt functions are placed in a queue
until they can be evaluated. Delays in interrupt function evaluation are generally
not perceptible. An example of when you might perceive a delay is when the
system performs a garbage collection.
VAX LISP also provides a means by which you can assign different priorities for
interrupt and keyboard functions. These priorities, called interrupt levels, are
described in the VAX' LISP/VMS System Access Guide.
If you suspend the LISP system when interrupt functions are defined, the
functions that are defined by the bind-keyboard-function function are still
defined when the system is resumed. The key/function bindings are not lost. Any
other interrupt functions that you may have defined are uninstated when the
system is suspended and are not reinstated when the system is resumed.
Besides the bi nd-keyboard-function function are the VAX LISP functions
get-keyboard-function and unbind-keyboard-fu nc tio n. The get-keyboard-
function function returns information about a function that is bound to a control
character, and the unbind-keyboard-function function removes the binding of a
function from a control character.
Descriptions of the bind-keyboard-function, get-keyboard-function, and
unbind-keyboapd-function functions are provided in the VAX LISP/VMS Object
Reference Manual.

1.5 VAX LISP/ULTRIX Keyboard Functions

A keyboard function is a function that is invoked when the user types a
particular control key. The bind-keyboard-function function binds an ASCII
control character to a function, creating a keyboard function. A keyboard function
interrupts the current LISP processing when the specified control key is typed.
When the keyboard function exits, the VAX LISP/ULTRIX system resumes
processing at the point where it was interrupted.
Note that you can use the bind-keyboard-function to bind only three characters
(Ctrl/C, CtrlA, and Ctrl/Z. See Chapter 2 of the VAX’ LISP/VMS Program Development
Guide for more information on these characters.
Keyboard functions are not always called as soon as the specified control key
is typed. If a low-level LISP function, such as write-char or cons, is being
evaluated or a garbage collection is being performed, keyboard functions are
placed in a queue until they can be evaluated. Delays in keyboard function
evaluation are generally not perceptible. An example of when you might perceive
a delay is when the system performs a garbage collection.
VAX LISP also provides a means by which you can assign different priorities for
keyboard functions. These priorities, called interrupt levels, are described in the
VAX LISP/ULTRIX System Access Guide.

VAX LISP Implementation Notes 1-15

If you suspend the LISP system when keyboard functions are defined, the
functions are still defined when the system is resumed. The key/function bindings
are not lost.
Besides the bind-keyboard-function function are the VAX LISP functions
GET-KEYBOARD-FUNCTION and UNBIND-KEYBOARD-FUNCTION. The GET-KEYBOARD-
FUNCTION function returns information about a function that is bound to a control
character, and the unbind-keyboard-function function removes the binding of a
function from a control character.
Descriptions of the bind-keyboard-function, get-keyboard-function, and
unbind-keyboard-function functions are provided in the VAX LISP/VMS Object
Reference Manual.

1.6 Functions and Macros

Several functions and macros described in Common LISP: The Language have
implementation dependencies. Table 1-3 lists the names of these functions
and macros and provides a brief explanation of the type of information that is
implementation dependent. For a summary description of these functions and
macros, see the VAX LISP/VMS Object Reference Manual. Each description
consists of the function’s or macro’s use, implementation-dependent information,
format, applicable arguments, return value, and examples of use. See Common
LISP: The Language for further information regarding these functions and
macros.

Table 1-3: Summary of Implementation-Dependent Functions and Macros

Name Type
Im plem en tation-D ependen t
In form ation

APROPOS Function Optional argument and DO-SYMBOLS macro
APROPOS-LIST Function Optional argument and DO-SYMBOLS macro
BREAK Function Facility invoked
COMPILE-FILE Function Keywords and return value
DESCRIBE Function Displayed output
DIRECTORY Function Argument merged with wildcards
DRIBBLE Function Cannot nest calls

On VMS systems, also terminal I/O while in
the Editor is not saved

ED (on VMS systems only) Function Arguments
GET-INTERNAL-RUN-TIME Function Meaning of return value
LOAD Function Finds latest file
LONG-SITE-NAME Function On VMS systems, the logical name and

return value
On ULTRIX systems, the location of informa
tion for string returned

MACHINE-INSTANCE Function Return value
On VMS systems, also the logical name

MACHINE-VERSION Function Return value

(continued on next page)

1-16 VAX LISP Implementation Notes

Table 1-3 (Cont.): Summary of Implementation-Dependent Functions and
Macros

Name
Im plem en tation-D ependen t

Type In form ation

MAKE-ARRAY Function : ALLOCATION keyword
REQUIRE Function Modules
ROOM Function Displayed output
SHORT-SITE-NAME Function On VMS systems, the logical name and

return value
On ULTRIX systems, the location of informa
tion for string returned

TIME Macro Displayed output
TRACE Macro Keywords
WARN Function Facility invoked

NOTE

T, nil, and keywords are not legal function names in VAX LISP.

VAX LISP Implementation Notes 1-17

Chapter 2

VAX LISP Extensions to I/O

VAX LISP provides a number of extensions to the Common LISP I/O system.
These extensions fall into the following three categories:
• A facility for defining new stream types. VAX LISP lets you define new types

of character streams. Section 2.1 describes this facility.
• Information about streams. VAX LISP data types and functions provide

more information about streams than is possible using only Common LISP
facilities. Section 2.2 describes these data types and functions.

• New I/O functions. VAX LISP provides a number of I/O functions in addition
to those defined in Common LISP. Section 2.3 describes these functions.

2.1 Defining New Types of Streams

Common LISP provides several types of streams; for example, synonym streams,
broadcast streams, and echo streams. VAX LISP lets you define new types of
streams that have different characteristics from those defined in Common LISP.
You may want to define a new type of stream when you need input or output
operations to have side effects unavailable with Common LISP streams.
To define a new type of stream, do the following:
• Design the stream. You need to decide how instances of the stream should

respond to each valid I/O function.
• Define a means of creating instances of the stream. See Section 2.1.2.
• Define the action of each I/O function when acting on streams of that type.

See Section 2.1.3.

2.1.1 Overview of VAX LISP I/O

In the VAX LISP I/O system, every instance of a stream includes a function called
the stream dispatch function. Whenever an I/O function is called with a stream
as its argument, the stream dispatch function for that stream executes. The
stream dispatch function requires as its first argument an I/O request specifier
whose value indicates the I/O function that was called. The stream dispatch
function must, for every valid I/O request specifier, take the appropriate action
for that I/O function operating on that type of stream.
In VAX LISP, streams are implemented as structures. Every structure definition
of a stream type includes the stream structure definition provided in VAX LISP.
In addition, stream type definitions may contain slots specific to the type of

VAX LISP Extensions to I/O 2-1

stream. For example, the structure that implements a synonym stream contains
a slot for the symbol to whose value the synonym stream is equated.

2.1.2 Defining Stream Structures

To define a new stream type, use the defstruct macro to create a structure
definition that includes the stream structure definition. Define additional slots as
needed to satisfy the requirements of the stream type you have designed.
You must not use any of the following names for your slots:
CLASS
DISPATCH-FUNCTION
DOES-INPUT-P
DOES-OUTPUT-P
ELEMENT-SIZE

IMMEDIATE-OUTPUT-P
INPUT-BUFFER
INPUT-BUFFER-INDEX
INPUT-BUFFER-LIMIT
LINE-POS-BASE

OUTPUT-BUFFER
OUTPUT-BUFFER-LIMIT
RIGHT-MARGIN
SPECIFIC-STATE-1
SPECIFIC-STATE-2

These slots are used by the VAX LISP I/O system and must not be modified.
Your structure definition must set the following slots in the STREAM structure by
specifying default values in the : include stream form:
• The does- input-p and does-output-p slots, whose values indicate whether

input operations and output operations, respectively, are valid on the new
stream type.

• The dispatch-function slot, whose value is a function you write that
performs each of the input and/or output operations that can result from
function calls on the stream. (Section 2.1.3 describes stream dispatch
functions.) The value of the dispatch-function slot may also be a symbol
with a function definition.

The following example defines a new stream type called sample-stream:
(defstruct (sample-stream

(:constructor make-sample-stream
(input-stream output-stream))

(:copier nil)
(:include stream (does-input-p t)

(does-output-p t)
(dispatch-function

'sample-stream-dispatch)))
(input-stream nil :type stream :read-only t)
(output-stream nil ttype stream :read-only t))

This definition results in the following:
• A definition for the structure type sample-stream, instances o f which contain

the slots input-stream and output- stream in addition to those slots inherited
from the stream structure definition

• A new type, sample-stream

• A new predicate, sample-stream-p

• A by-position constructor function whose format is:
MAKE-SAMPLE-STREAM input-stream output-stream

• Accessor functions sample-stream- input-stream and sample-stream-output-
stream

2-2 VAX LISP Extensions to I/O

2.1.3 Stream Dispatch Functions

When an I/O function is called on a stream, the dispatch function for that stream
type executes. Each stream type’s dispatch function must perform the operations
for each I/O function that can be called on streams of that type.
When it executes, the stream dispatch function receives at least two arguments:
1. An I/O request specifier (a keyword that corresponds to the I/O function that

was called on the stream)
2. The stream on which the function was called
The stream dispatch function receives additional arguments that correspond
to the additional arguments with which the I/O function was called. A stream
dispatch function must be able to receive any number of arguments without error,
although it need not process all arguments it receives.
For example, if my-sample-stream is an instance of sample- stream, the following
call:
(read-char my-sample-stream nil 'eof-encountered nil)
results in a call to sample-stream-dispatch with five arguments. The first ar
gument is the I/O request specifier, : read-char in this case. The second through
fifth arguments are the value of my-sample-stream, n il , 'eof-encountered, and
NIL.
Table 2-1 lists the I/O request specifiers that stream dispatch functions must
handle. Not all I/O functions have a corresponding specifier, because some I/O
functions (such as write-line and terpri) are defined and implemented in terms
of lower level functions.

Table 2-1: I/O Request Specifiers

Must B e H and led b y A ll S tream s
:CLOSE :ELEMENT-TYPE

Must B e H and led b y All In pu t Stream s
:CLEAR-INPUT
:READ-CHAR

:LISTEN2 :NREAD-LINE
:READ-LINE :UNREAD-CHAR

Must B e H and led b y All O u tpu t S tream s
:CLEAR-OUTPUT
:FRESH-LINE
:RIGHT-MARGIN

:FINISH-OUTPUT :FORCE-OUTPUT
: IMMEDIATE-OUTPUT-P :LINE-POSITION
:WRITE-CHAR :WRITE-STRING

NOTE

See Section 2.3 for a description of the functions immediate-output-p ,
LINE-POSITION, LISTEN2, NREAD-LINE, and RIGHT-MARGIN. All Other
functions are described in Common LISP: The Language.
The : abort flag argument to close is passed as the first argument
with the : close request.

VAX LISP Extensions to I/O 2-3

The stream dispatch function sample-stream-dispatch might be written as
follows. Note the use of &rest to ensure that sample-stream-dispatch can be
called with an indefinite number of arguments without error.
(defun sample-stream-dispatch

(request stream Soptional argl arg2 arg3 Srest arg4)
(declare (ignore arg4))
(case (the keyword request)

(:read-char
(let ((char (read-char

(sample-stream-input-stream stream)
argl arg2 arg3)))

(unless (eq char arg2)
(write-char char

(sample-stream-output-stream stream)))
char))

(:write-char (write-char argl
(sample-stream-output-stream stream)))

(:unread-char (unread-char argl
(sample-stream-input-stream stream)))

(t (error "~A does not recognize the ~A request"
stream request))))

sample-stream-dispatch provides special handling when read-char is called on a
stream of type sample-stream. For other I/O functions, sample-stream-dispatch
simply calls the same function on either the input stream or the output stream.
sample-stream-dispatch signals an error if it is called with an unrecognized I/O
request specifier.

2.2 Getting Information About Streams

VAX LISP provides access to more detailed information about streams than is
called for in Common LISP: The Language. VAX LISP provides a separate data
type for each stream type, a predicate for each stream type, and functions to
retrieve elements that were used to construct streams.
Table 2-2 lists the stream data types and predicates. The streamp predicate is
satisfied by objects of any of the stream data types.

Table 2-2: Stream Data Types and Predicates

Data Type P red ica te F un ction
BROADCAST-STREAM BROADCAST-STREAM-P object
CONCATENATED-STREAM CONCATENATED-STREAM-P object
DRIBBLE-STREAM DRIBBLE-STREAM-P object
ECHO-STREAM ECHO-STREAM-P object
FILE-STREAM FILE-STREAM-P object
STRING-STREAM STRING-STREAM-P object
SYNONYM-STREAM SYNONYM-STREAM-P object
TERMINAL-STREAM TERMINAL-STREAM-P object
TWO-WAY-STREAM TWO-WAY-STREAM-P object

Table 2-3 lists functions that retrieve information from streams. You cannot use
setf with these functions.

2-4 VAX LISP Extensions to I/O

Table 2-3: Stream Informational Functions

Fun ction Call R etu rn Value
BROADCAST-STREAM-STREAMS broadcast-stream
CONCATENATED-STREAM-STREAMS concatenated-stream
ECHO-STREAM-INPUT-STREAM echo-stream
ECHO-STREAM-OUTPUT-STREAM echo-stream
SYNONYM-STREAM-SYMBOL synonym-stream
TWO-WAY-STREAM-INPUT-STREAM two-way-stream
TWO-WAY-STREAM-OUTPUT-STREAM two-way-stream

List of streams

List of streams

Stream

Stream

Symbol
Stream

Stream

2.3 Additional I/O Functions

VAX LISP provides several I/O functions in addition to those defined in Common
LISP: The Language. Most of these functions are variations on existing Common
LISP functions. This section describes the functions in alphabetical order. The
optional arguments input-stream and output-stream have the defaults specified in
Common LISP: The Language:
• input-stream defaults to *standard-input*. If a value of T is supplied, the

value of * terminal-io* is used.
• output-stream defaults to *standard-output*. If a value of T is supplied, the

value of * terminal-io* is used.
The immediate-OUTPUT-P predicate indicates whether an output stream does
not buffer its output. The VAX LISP I/O system uses this function to improve
output performance by buffering output when the stream itself does not perform
buffering. Its format is:
IMMEDIATE-OUTPUT-P [output-stream]
The line-position function returns the number of characters that have been
output on the current line if that number can be determined and nil otherwise.
Its format is:
LINE-POSITION [output-stream]
The function returns a fixnum or n i l.
The LISTEN2 function returns two values instead of the one returned by the
Common LISP listen function, enabling you to find out if end-of-file was
encountered on the input stream. You can use this function wherever you would
normally use listen.
LISTEN2 [input-stream]
The function returns two values:
• T if a character is immediately available from input-stream and NIL otherwise.
• t if end-of-file was encountered on input-stream and nil otherwise.

VAX LISP Extensions to I/O 2-5

The nread-line function, a destructive version of the Common LISP READ-LINE
function, places the characters that were read into the string supplied as its first
argument, nread-line returns the number of characters read, a flag indicating
whether end-of-file was encountered, and a string containing the line if the line
could not fit into the string supplied. The format of the nread-line function is:
NREAD-LINE string [input-stream

eof-error-p
eof-value-p
recursive-p]

The string argument is a character string, nread-line updates string with the
line that was read. If string has a fill pointer, the fill pointer is adjusted so
that string appears to contain exactly what was read from the stream. If string
is adjustable and the size of the line exceeds the size of string, then string is
extended. Since nread-line does not return string, you mu3t maintain a pointer
to string.
The optional arguments correspond to the arguments to read-LINE documented
in Common LISP: The Language.
The nread-line function returns three values:
• A fixnum indicating the number of characters that were in the line.
• T if the line was term inated by end-of-file and n il otherwise.
• n il if the line fit into string: otherwise a string containing the line.
The open-stream-p predicate indicates whether a stream is open. This function
takes one argument, which must be a stream.
The right-margin function returns the default right margin used by the pretty
printer when printing to the stream. The current margin used by the pretty
printer is controlled by the variable *print-right-margin*. Its format is:
RIGHT-MARGIN [output-stream]
The function returns a nonnegative fixnum.

2-6 VAX LISP Extensions to I/O

Chapter 3

Window Streams

VAX LISP lets you create a stream that can receive typed input from a window
and send character output to a window. This type of stream is called a window
stream and has the following characteristics:
• By default, it is a valid target for all Common LISP and VAX LISP input and

output functions that operate on character streams. (You can restrict window
streams to output operations when you create them.)

• Output to the stream appears in the window.
• Input from the stream is taken from the keyboard and echoed in the window.

A cursor marks the place where the next input character will be echoed.
• You can specify the font to be used for output and echoing to the stream.
• For output-only streams, you can specify whether to wrap, scroll, or truncate

overflow from the bottom of the window.
• You can specify whether to wrap or truncate output beyond the right edge of

the window.
• You can edit input.
• You can recall, edit, and reenter previous input.
This chapter describes the window stream facility in the following sections:
• Section 3.1 explains how to create window streams and describes their

characteristics in detail.
• Section 3.2 describes input from window streams and shows how to edit typed

input.
• Section 3.3 describes output to window streams.
• Section 3.4 lists window stream features and restrictions with each window

system that supports them. (For this release, the supporting window systems
are VMS Workstation Software and DECwindows.)

• Section 3.5 contains reference information on the window stream functions
and macros.

Window Streams 3-1

3.1 Creating and Changing Window Streams

The make-window-stream function creates and returns a window stream. The
single required argument is a window. Keyword arguments let you specify a
number of characteristics. You can also create a window stream, using the
with-window-stream macro. This macro creates a window stream and binds it
to a variable while the body of the macro executes. When the body returns, the
stream is closed. The keyword arguments taken by m a ke-window-stream are used
to specify the characteristics of the stream created by wi th-window-stream.
The following sections describe the characteristics of window streams and ways to
change these characteristics.

3.1.1 Validity for Input Operations

By default, a window stream is a valid target for input and output operations.
You can use the :DOES-input-p keyword with a value of nil to make the window
stream an output-only stream. Input operations on such a stream cause an error.
You can use the Common LISP input-stream-p function to determine whether a
window stream is valid for input operations.

3.1.2 Viewing Area

A window stream’s viewing area is the portion of the window in which window-
stream output or echoing of its input appears. By default, this area is the entire
window. You can use the : viewing-area keyword to specify a viewing area that is
smaller than the entire window, although the viewing area must be large enough
to contain at least one complete text character. When the viewing area is smaller
than the window, output or echoing never appears outside the viewing area.
The value of the : viewing-area keyword is a list of four numbers. These
numbers define a rectangle in the window’s coordinate system. The format of the
list is:
(xmin ymin xmax ymax)
where min and max refer to numeric values, not to spatial relationships in the
window. Since windows in different window systems have different coordinate
systems, specifying a viewing area necessarily introduces a dependence on the
window system being used.
You can modify the size of the viewing area and you can also modify its contents
in several ways besides input from or output to the window stream.

3.1.2.1 Viewing Area Coordinate Systems
Every viewing area has two coordinate systems. One coordinate system is the
native coordinate system; that is, the coordinate system used by the supporting
window system. The units and origin of the native coordinate system depend on
the window system.
For example, you can create a window stream with a viewing area as follows:
(setq *ws* (window-streamrmake-window-stream

win :viewing-area '(100 100 200 200)))
The native coordinate system of this viewing area extends from 100,100 at one
comer to 200,200 at the other.

3-2 Window Streams

The other coordinate system is the character-cell coordinate system. The
character-cell coordinate system is independent of the window system. In the
character-cell coordinate system, the viewing area is divided into character cells,
each the width and height of a character. The character cell at the upper-left
comer of the viewing area is 1,1, with coordinate values increasing to the right
and down. Character-cell coordinate values are always positive fixnums.
The dimensions and placement of the character-cell coordinate system inside the
viewing area are influenced by several factors:
• The font. The size of characters in the font determines the size of each char

acter cell. Changing the font used by the window stream (see Section 3.1.4)
may also change the dimensions of the character cells.

• The relationship of the viewing area’s size to the character cell’s size. If the
width and height of the viewing area are not exactly divisible by the width
and height of a character cell, there is space at the right and bottom of the
viewing area where no characters can be written.

• The position of the cursor when the character-cell coordinate system is
established or altered. Figure 3-1 shows this effect.

3.1.2.2 Obtaining Viewing Area Dimensions
You can obtain the dimensions of the viewing area in either native coordinates or
character-cell coordinates. The viewing-ar ea-height and viewing-ar ea-width
functions return the height and width in native coordinate units. The viewing-
area-height-cell and viewing-a r ea-width-cell functions return the height
and width in chararacter-cell units.
The window-stream-viewing-area function returns the list of native-coordinate
values that defines the viewing area. This function always returns a list of
numbers, even if the viewing area was created using NIL to specify the entire
window.

3.1.2.3 Changing Viewing Area Dimensions
You can use the window-stream-viewing-area function with the setf macro to
specify a new viewing area for a window stream. Use the same values as when
creating the window stream; that is, a list of four numbers or nil to specify the
entire window. You always use native coordinates to specify a new viewing area.
Changing the viewing area positions the cursor to the upper-left corner of the new
viewing area. The character-cell coordinate system is automatically realigned to
the new viewing area.
It is an error to make the viewing area so small that it cannot contain at least
one character cell.

3.1.2.4 Erasing Viewing Area Contents
Use the erase-viewing-area function to erase the contents of a window stream’s
viewing area. Erasing the viewing area repositions the cursor to the upper-left
comer of the viewing area.

Window Streams 3-3

3.1.2.5 Scrolling Viewing Area Contents
Use the scroll-viewing-area and scroll-viewing-area-cell functions to scroll
the contents of the viewing area horizontally or vertically, scroll-viewing-area
scrolls by native-coordinate units, while scroll-viewing-area-cell scrolls by
character cells. Without optional arguments, these functions scroll the viewing
area contents up one native-coordinate unit or one line:
(window-stream:scroll-viewing-area-cell *ws*)
You can supply two optional arguments. The first argument specifies horizontal
motion, with positive values moving viewing area contents to the left. The second
argument specifies vertical motion, with positive values moving viewing area
contents up. The following example moves the contents of *ws*’s viewing area
five characters to the left and down three lines:
(window-stream:scroll-viewing-area-cell wc-stream 5 -3)
The SCROLL-VIEWING-AREA and SCROLL-VIEWING-AREA-CELL functions may per
form vertical and horizontal scrolling separately when both are specified. This
assures correct results in the viewing area.
Text that disappears as a result of scrolling cannot be recovered by scrolling in
the opposite direction. Once it disappears from the viewing area, it is gone.
Scrolling moves everything within the viewing area, not just text that results
from operations on the window stream.

3.1.3 Vertical and Horizontal Overflow

By default, a window stream scrolls when the output position goes past the
bottom of the viewing area. That is, everything in the viewing area moves up;
whatever was at the top of the viewing area disappears and is lost. The new
output appears at the bottom of the viewing area. Unless you specify :DOES-
input-p nil when you create the stream, this is the only available way to treat
vertical overflow.
Window streams that are restricted to output allow more flexible treatment of
vertical overflow. With the :WRAP value for : vertical-overflow, you can specify
that output is to wrap around to the top of the viewing area, overwriting what
was there before. : truncate discards output that would be off the bottom of the
viewing area.
By default, output that would go past the right edge of the viewing area is
wrapped to the next line. You can change this by specifying : truncate with
the :horizontal-overflow keyword. Excess output is then discarded until a
#\ newline character is encountered.
You can change the horizontal and vertical overflow behaviors after the window
stream has been created. Use the setf macro with the window-stream-vertical-
overflow and window-stream-horizontal-overflow functions. However, for
window streams capable of input, values other than : scroll for window-stream-
vertical-overflow produce an error.

3-4 Window Streams

3.1.4 Font

When you create a window stream, you can use the :FONT keyword to specify a
font. The value you supply for this keyword depends on the supporting window
system. See Section 3.4 for information that depends on the window system.
You must specify a fixed-width font in a window stream. If you specify a variable-
width font, the results are unpredictable.
Specifying a font has two effects:
• It establishes the appearance of output and echoing characters on the screen.
• It establishes the dimensions and location of the character-cell coordinate

system that is superimposed on the viewing area.
You can use the window-stream-font function with the setf macro to change a
window stream’s font. If the character-cell size of the new font is different, the
upper-left comer of the first character in the new font will be at the same place
that the upper-left corner of a character in the old font would have occupied.
If you change the font when the cursor is in the middle of the viewing area, the
new character-cell coordinate system may not align with the left edge of the
viewing area. As a result, text using the new font also will not align at its left
margin with previously output text. Figure 3—1 shows this effect in a CLX-based
window.

Figure 3-1: Text Misalignment As a Result of Changing Fonts

These lines are in a small font. These lines are in a sma
11 font. These lines are in a small font. These lines ar
e in a small font. These lines are in a small font. Thes
e lines are in a small f°nt.lJ l|^0 g 0 Ü I 1 0 S cLZ?

e in a large font.
ines are in a large
These lines are in a large
font. These lines are in a
large font.

These
font.

MLO-003303

If changing to a larger font causes the viewing area to be too small for at least
one complete character cell, an error results.

Window Streams 3-5

3.1.5 Cursor Position

A window stream’s cursor indicates the position of the next input character in the
window. You can determine the position of the cursor and change its position in
the viewing area.
The cursor does not appear when a window stream is not capable of input.
However, you can still obtain and change the cursor position for such streams.
Cursor position can be expressed in two ways: as a native-coordinate position or
as a cell-coordinate position. A native-coordinate cursor position is expressed in
native-coordinate units. It is always the cursor’s position in the window, even
when the stream operates in a viewing area that is smaller than the window. The
cell-coordinate cursor position is always relative to the viewing area.
In window systems where the distinction is meaningful, the native-coordinate
cursor position corresponds to the upper-left corner of the cell-coordinate cursor
position.
The following accessor functions return the X or Y component of the cursor
position:
WINDOW-STREAM-X-POSITION
WINDOW-STREAM—X-POSITION-CELL
WINDOW-STREAM-Y-POSITION
WINDOW-STREAM-Y-POSITION-CELL

You can use the setf macro with each of these functions to change a window
stream’s cursor position.
When you change the native-coordinate cursor position, the position you specify
may not align properly with the viewing area’s character-cell coordinate system.
For example, the new native-coordinate cursor position could be in the middle of
one of the old character cells. When this happens, the character-cell coordinate
system is reset to align with the native-coordinate cursor position you specify.
This may result in space at the top and left edges of the viewing area that is not
occupied by character cells.
It is an error to attempt to move the cursor position outside the viewing area. It
is also an error to specify a native-coordinate cursor position that results in the
viewing area no longer containing at least one complete character cell.

3.1.6 Input History Limit

Each window stream that performs input operations maintains a history of the
input that has been typed to it. You can recall previous input to edit and reenter.
The units of input in the history may be lines terminated by the Return key, or
they may be complete input forms whose syntax is determined by a parser.
Section 3.2.2 describes input recall and the scope of units of input.
The default number of input units maintained by the input history is 100. When
you create a window stream, you can specify this number by using the : input-
history-limit keyword. After a window stream has been created, you can
change this number by using the setf macro with the window-stream-input-
history-limit function. A value of nil specifies no limit. If you specify 0, no
input history is maintained.

3-6 Window Streams

3.1.7 Window Exposure and Keyboard Connection

By default, calling an input function on a window stream makes the associated
window visible and connects the keyboard to the window. Calling an output
function on a window stream does not affect the associated window’s visibility.
To make the window visible, the stream takes whatever action is appropriate
under a particular window system. This may include bringing the window to
the front of the screen, expanding it from an icon, or retrieving it from off-screen
storage.
When you create a window stream, you can use the : show-on keyword to specify
when its window becomes visible and when the keyboard is connected to it. The
: show-on keyword takes the following values:
• : input requests the default behavior.
• : io makes the window visible and tries to connect the keyboard when an

input function is called; it makes the window visible when an output function
is called.

• : OUTPUT requests that the window be made visible for output, but not for
input.

• n il keeps window visibility and keyboard connection from being affected for
either input or output.

The window-stream-show-on function returns the current setting of this value for
a window stream. You can change the setting after you have created a window
stream by using the setf macro with window-stream-show-on.

3.2 Input from a Window Stream

Input from a window stream is the same as input from any stream defined by
Common LISP, with the following additions:
• Input characters are echoed in the window stream’s viewing area.
• You can edit the input after you have typed it and before it is read by the

input function.
• The stream maintains a history of units of input. You can recall, edit, and

reenter these input units later.
Section 3.2.1 describes input editing. Section 3.2.2 describes input recall.

3.2.1 Input Editing

When you type text as input to a window stream, certain keys and key sequences
are bound to input editing commands. The commands reposition the cursor,
delete units of text, or recall previously entered text. As you enter text or editing
commands, the window stream’s viewing area is updated to reflect the current
input. The cursor shows where new characters will be inserted.
Input editing is described in the following subsections:
• Section 3.2.1.1 describes input editing without the w ith - in pu t-ed it in g

macro. In this mode, the Return key delimits units of input.
• Section 3.2.1.2 describes input editing with the w i t h-i n p u t-e d i t i n g macro.

In this mode, units of input are determined by code in the body of the macro.

Window Streams 3-7

Section 3.2.1.3 describes options to the with-input-editing macro.
Section 3.2.1.4 lists the editing commands and their key bindings.

3.2.1.1 Editing Without WITH-INPUT-EDITING
When an input function that is not enclosed by the w i th-input-editing macro
reads from a window stream, you can edit your typed input until you press the
Return key. When you press the Return key, all your input is made available to the
input function. Your input is also added to the stream’s input history.
Even though the Return key ends your input, the input may occupy more than one
line in the window as a result of:
• Text wrapping at the right edge of the viewing area
• The insertion of a #\ newline character with Ctrl/J or Ctrl/O
An input line that wraps is considered a single line; that is, it does not contain a
#\newline character. On the other hand, input that breaks because you type Ctrl/J
or Ctrl/O does contain embedded #\newline characters, which delimit logical lines
within the input. The distinction is important because you can use the up-arrow
key to move the cursor to preceding logical lines, but not to text on the same,
wrapped line. (However, you can move over line-wrap breaks with the left-arrow
and right-arrow keys.)

3.2.1.2 Using the WITH-INPUT-EDITING Macro
The w i th-input-editing macro lets you enter, edit, and recall units of text that
are not unconditionally terminated when you press the Return key. Instead, forms
in the body of the macro determine when the input unit is complete. As long
as the body of the macro is still consuming input, you can edit anywhere in the
input. When the last form in the body returns, all the text that was consumed by
the body is added to the stream’s input history as a single unit.
The chief advantage of the with-input-editing macro is that you can specify the
syntactic content of an input unit by the code in the body of the macro. Typically,
this code reads characters from the stream and parses them. As soon as the input
satisfies the syntactic requirements of the code in the body, the body returns.
The read function is an example of a parser that reads characters from a stream
and does not return until it has parsed a syntactically complete unit. For the
read function, the unit of input is a LISP form. The following example reads
complete LISP forms from the window stream *ws*:
(window-stream:with-input-editing (*ws*)

(read *ws*))
If you type to the stream *ws* while the read function in the example is taking
input, you can break your input lines with the Return key. The read function does
not return until you have entered a complete LISP form, followed by Return. The
read function then returns the LISP object it has read, and this value is the
return value of the wi th-input-editing form.
If you notice an error in a line that you have already typed while you are typing
the LISP form, you can use the up-arrow key to move the cursor to a previous
line, then edit within the line. You can edit all your input until you have entered
a complete form. If you later recall your input, you will recall the entire LISP
form that you typed, not just individual lines.

3-8 Window Streams

You can write your own parser in the body of a with-input-editing macro.
Example 3—1 shows a parser that reads a specified number of words from a
specified window stream and returns a list of these words. For the purposes of
this example, a word consists of contiguous nonwhitespace characters, where the
whitespace characters are #\space and #\newline.

Example 3-1: Using the WITH-INPUT-EDITING Macro

(defun read-n-words (stream n)
(let ((str (make-array 40 :element-type 'string-char

:adjustable t :fill-pointer t))
(whitespace '(#\space #\newline))) ; Define whitespace

(window-stream:with-input-editing (stream)
(do ((word-list '()) ; Initialize list

(c) ; Input characters
(word-count 0 (1+ word-count)))

((= word-count n) (nreverse word-list)) ; Stop after N words
(setf (fill-pointer str) 0)
(loop ; Find non-whitespace
(unless (member

(setq c (read-char stream))
whitespace
:test #'char=)

(return)))
(loop ; Form word
(vector-push-extend c str)
(when (member

(setq c (read-char stream))
whitespace
:test #'char=)

(return)))
(push (copy-seq str) word-list))))) ; Add word to list

If you write your own parser, it should not perform output or other side effects
during execution. (In particular, it should not perform output to the window
stream, as this will disrupt the echoed input.) To understand why, it is necessary
to understand how the w i th-input-editing macro operates.
Calling an input function on a window stream invokes an input editor. The input
editor takes characters from the keyboard and places them in an editing buffer,
echoing them as it does so. The input editor responds to certain characters, keys,
or sequences by editing within the editing buffer and displaying the edited buffer
in the window. The input editor does not pass the characters in the editing buffer
to the input function until a terminating character is typed. By default, the
terminating character is #\return.
If w i th-input-editing has not been used, typing Return passes the contents of
the editing buffer to the input function, adds the input to the input history,
and terminates the input editor. However, if the input function is in a with-
input-editing macro, Return passes the contents of the editing buffer to the input
function but does not add the input to the input history or terminate the input
editor. Instead, if the input function exhausts the editing buffer and still wants
more characters, the input editor again takes characters from the keyboard and
places them in the editing buffer. This cycle continues until the body of the
w i th-input-editing macro returns.

Window Streams 3-9

While typing input, the user can move the cursor to previous lines and edit them.
But those lines have already been consumed by the input function; editing them
invalidates the processing performed so far by the body. Therefore, when previous
lines are edited, the with- input-ed iting macro reexecutes its entire body, using
the edited text typed thus far as input. This process is called rescanning.
Because the body of a with- input-ed iting macro may be executed more than
once, it should not perform output or other side effects as it executes. Output or
side effects would occur each time the input was rescanned. Instead, the body of
a with- input-ed iting macro should build a data structure as it parses the input
characters, then return that data structure when the parse completes. The body
must initialize the data structure, since it must build the data structure from the
beginning each time rescanning occurs.
In Example 3—1, the body of the with- input-ed it ing macro consists of a single
do macro. The DO macro initializes the list word-l is t each time it executes.
When the do terminates, indicating a successful parse, it returns word-l ist as its
value.

3.2.1.3 Using Options to WITH-INPUT-EDITING
with- input-ed iting takes a number of options. You specify these options as
keyword-value pairs following the window-stream, argument. The options let you:
• Specify a prompt for input.
• Specify which characters are considered terminators.
• Specify whether input should be rescanned if previous lines are edited.
The :prompt option lets you specify a string that is printed in the viewing area
before input is echoed. For example, you could change Example 3-1 to read in
part:
(window-stream:with-input-editing

(stream :prompt (format nil "type ~d words: " n))
The : terminators option lets you supply a list of terminating characters. When
the input editor encounters a terminating character, it passes the contents of its
editing buffer to the input function.
By default, the only terminating character is #\RETURN. You may want to specify
other characters as terminators. For example, when reading LISP forms you may
want the right-parenthesis character to be a terminating character. That way,
the read function can examine the input at every right-parenthesis, instead of
waiting for Return. For example:
(window-stream:with-input-editing

(*ws* :terminators ' (#\return #\)))
(read *ws*))

This form reads from stream *ws*. Typing the final right-parenthesis character of
a LISP form immediately causes the read function to return. #\return remains a
terminating character.
In Example 3-1, in the second lo op macro, you might want to have input passed
to the read-char function as soon as a whitespace character is typed, instead of
waiting for Return. You could change Example 3—1 to read in part:
(window-stream:with-input-editing

(stream :terminators (cons #\return whitespace))

3-10 Window Streams

Note that you must specify #\return as a terminator if you want the Return key
to signal termination. The input editor receives a #\ return character from the
keyboard, even though the input function reading from the stream receives a
#\NEWLINE.
Do not specify NIL as the value of : terminators. If you do not specify terminating
characters, the input editor can never return.
The : rescan option lets you specify whether your input should be subject to
rescanning. The default value for this option is T. Specifying nil defeats much
of the purpose of the wi th-input-editing macro. You can no longer edit lines
already consumed by the body, and the input units retained by the input history
are lines instead of complete forms. In other words, specifying : rescan nil is
much like reading from a window stream without using wi th-input-editing. You
can, however, use the other options to with-input-editing to specify a prompt or
a set of terminating characters.

3.2.1.4 Window Stream Editing Commands and Key Bindings
In general, keys and key sequences that perform editing operations are bound as
in the EMACS editor. Table 3-1 lists the editing commands and the keys bound
to them. Table 3-1 also includes keys such as Ctrl/S and Ctrl/Q that are not editing
keys, but that have the effect described when the keyboard is connected to the
window associated with the window stream.
The “logical line” referred to in Table 3-1 is delimited by a #\ newline character.
A logical line can span more than one line in the viewing area as a result of line
wrapping. An input unit can contain more than one logical line, either as a result
of Ctrl/J or Ctrl/O or because the input is being read using w i th-input-editing.
If you use the bind-keyboard-function function to bind a control key, this
binding overrides any editing binding for that key. For example, if you bind Ctrl/E
to invoke the VAX LISP Editor, typing Ctrl/E during input to a window stream
invokes the Editor, rather than moving the window stream cursor to the end of a
line.
The only control key bound by default, Ctrl/C, retains its binding when you are typ
ing input to a window stream. That is, it clears the input and calls the condition
system abort function. You can use bind-keyboard-function to override this
binding.

NOTE

The default behavior of Ctrl/C has changed in Version 3.0. The previous
default was to call the clear-input function on *terminal-io* and
throw to the current cancel-character-tag.

Keypad keys 0 through 9, period (.), comma (,), and minus sign (—) insert those
characters at the cursor position.
Generate an Escape key by typing the combination Ctrl/[. A letter following an
Escape key may be either uppercase or lowercase.

Window Streams 3-11

Table 3-1: Window Stream Editing Commands and Key Bindings

Name B in d in g D escr ip t ion
C u rso r M ovem en t C om m ands

Move Forward Character 1 Ctrl/F |
or

Moves cursor forward one character

Move Backward Character
F H
| Ctri/B |

or
Moves cursor backward one character

Move Forward Word
F F
| E s c a p e 11 f | Moves cursor forward one word

Move Backward Word | E s c a p e | | b | Moves cursor backward one word
Move to End of Line | Ctrl/E | Moves cursor to end of logical line
Move to Beginning of Line I Ctrl/A | Moves cursor to beginning of logical line
Move to Next Line 1 Ctrl/N I Moves cursor to next logical line o f current input unit

or (down arrow recalls previously recalled input unit if you
m are not currently editing an input unit)

Move to Previous Line | Ctrl/P | Moves cursor to previous logical line of current input
or unit (up arrow recalls previous input unit if you are not
m currently editing an input unit)

Move to End of Input | E s c a p e 11 > | Moves cursor to end of current input unit
Move to Beginning of Input | E s c a p e 11 < | Moves cursor to beginning of current input unit

Text D e le tion C om m ands
Delete Next Character Deletes the character at the cursor position| Ctrl/D |

Delete Previous Character < 3
or
| Ctrl/H |

or
piT|

Deletes the character preceding the cursor position

Delete Forward Word | E s c a p e 11 d | Deletes from the cursor position through the next end of
word

Delete Backward Word | E s c a p e 11 h |

or
| E s c a p e |

Deletes from the character preceding the cursor position
back to the preceding beginning of word

Delete to End of Line I Ctrl/K | Deletes from the cursor position to the end of the logical
line

Delete to Beginning of Line [E s c a p e || k | Deletes from the cursor position to the beginning of the
logical line

Clear Input | Ctrl/G | Deletes all input currently being entered or edited

(continued on next page)

3-12 Window Streams

Table 3-1 (Cont.): Window Stream Editing Commands and Key Bindings

Name

Insert Newline

Open Current Line Here

Insert Newline at End and
Terminate

B in d in g D escr ip t ion
L in e B reak in g and In pu t T erm ination
| ctri/J | Inserts new line, moving cursor to beginning of new line;
or does not terminate input editor
FISI
I ctri/o | Inserts new line, leaving cursor at end of current line;

does not terminate input editor
| R eturn | Inserts new line at end of input unit and terminates
or input editor (unless WITH-INPOT-EDITING is used, in
| ciri/M | which case input editor may not terminate); cursor is at

beginning of new line

In pu t R eca ll
Recall Previous Input m When you are not entering or editing text, recalls previ

ous input units
Recall Previously Recalled Q j When recalling input units, recalls the unit following the
Input one currently displayed

M isce llan eou s
Escape r w i

or
CED

Insert Close Parenthesis and
Match

m

Insert Multiple Spaces

Describe LISP Function | Ctrl/? |

Refresh Input 1 Ctrl/L I

Clear Viewing Area | E s c a p e 11 Ctrl/L |

Help on Input Editor | E s c a p e | | ? |

Generates an escape prefix

Inserts a close parenthesis and highlights the correspond
ing open parenthesis, if one exists
Inserts multiple spaces at the cursor position and passes
multiple spaces to the input function: does not pass a
#\ TAB character to the input function
Describes the current LISP function
Refreshes input, including the prompt if any; forces input
editor to recalculate viewing area dimensions
Clears the viewing area associated with the window
stream
Prints a list of input editor key bindings

3.2.2 Recalling Input

You can recall input units that were previously entered to a window stream. Tb
do so, you either must not have entered anything to the current input request,
or you must clear what you have entered with Ctrl/G. You can then recall previous
input units by pressing the up-arrow key. After you have pressed the up-arrow
key, you can recall subsequent input units with the down-arrow key.
When you reach an input unit that you want to reenter, either press Return to
reenter it as is, or edit it before reentering it. Once you have started to edit an
input unit, you cannot use the up-arrow or down-arrow keys to move to other
input units unless you clear the current input with Ctrl/G.
You can recall all the input units that were previously entered to a window
stream, up to the limit set when the stream was created. The recall buffer is
circular; that is, an attempt to recall the input unit preceding the oldest one
recalls the input unit most recently entered.

Window Streams 3-13

3.3 Output to a Window Stream

Output to a window stream is the same as output to any other Common LISP
stream. By default, calling an output function on a window stream does not
make the stream’s associated window visible. See Section 3.1.7 for information on
changing this behavior.

3.4 Window System Dependencies

This section describes aspects of window streams that depend on the window
system in use. Each major subsection covers one window system on which the
window stream facility is implemented. Within each subsection, the following
system-dependent items are described:
• Native coordinate system
• Fonts and font specification
Other window system dependencies, if any, are described following these two.

3.4.1 VMS Workstation Software

This section covers the window stream facility running on a VAXstation using the
VMS Workstation Software, also known as UIS.

3.4.1.1 Native Coordinate System
The native coordinate system is the window’s device coordinate system. Native
coordinate values must be fixnums. The origin is at the lower left comer.

3.4.1.2 Fonts and Font Specification
The default font is the font specified by attribute block 0. You can specify a font
in the same way as with the u i s : set-attribute function.

3.4.1.3 Multiple Stream Restriction
You can create multiple window streams to the same window, but only one
can perform input. All other streams associated with the window must specify
:DOES-INPUT-P NIL.

3.4.1.4 Virtual Keyboard Use
Window streams use virtual keyboards to get input from a window. When you
create a window stream that performs input, any previous association between
the window and a virtual keyboard is broken. After you create a window stream,
you must not associate another virtual keyboard with the window, or the associa
tion between the window and the virtual keyboard that feeds the stream will be
broken.
The UIS:window-stream-kb function returns the virtual keyboard used by a
window stream that performs input. You cannot use the setf macro with
this function. Do not attempt to specify a new interrupt function for a virtual
keyboard used by a window stream.

3-14 Window Streams

3.4.1.5 Using Attribute Blocks
Each window stream requires the use of two dedicated attribute blocks. A window
stream always uses attribute block 255, and all window streams associated with
windows into a single display can share attribute block 255.
The other attribute block required by a window stream stores the font and,
therefore, cannot be shared among streams. The first window stream associated
with a window into a particular virtual display uses attribute block 254. The
second stream uses attribute block 253, and so on.
To summarize: Window streams require dedicated attribute blocks and they
take the highest-numbered blocks in each virtual display. The highest-numbered
attribute block available is 254 minus the number of window streams associated
with windows into that virtual display. Do not modify the contents of either
attribute block. Results may be unpredictable.
The u i s :window-stream-attribute-block function returns the variable attribute
block used by a window stream (that is, the one that is not attribute block 255).
You cannot use the setf macro with this function.

3.4.1.6 Resizing Windows
If the user resizes a window associated with a window stream, the window stream
facility does not automatically resize the viewing area for streams associated with
that window. You can specify an interrupt function that resizes the viewing area
or takes other appropriate action by using the u i s :set-resize-action function.
You can also prevent the user from resizing the window by using a value of
:DISALLOW with UIS:SET-RESIZE-ACTION.

3.4.2 DECwindows

This section covers the window stream facility running on a VAXstation using
DECwindows and implemented in Common LISP X (CLX).

3.4.2.1 Native Coordinate System
The native coordinate system in CLX is pixel coordinates with the origin at the
upper-left corner. CLX does not provide world coordinates.

3.4.2.2 Fonts and Font Specification
The default font is Courierl4Bold, the same as in the LISP Listener.
The font is determined by the :GCONTEXT slot of the window stream structure.
You can specify a value for this slot when you create a window stream or use
the default value. However, changing the graphics context of an existing window
stream does not affect the window stream font. You can change the window
stream font only by using setf on the window-stre am:WINDOW-stream-font
function. The window stream has to know that font has changed so that it can do
output.

3.4.2.3 Multiple Stream Restriction
You can create multiple window streams to the same window, but only one
can perform input. All other streams associated with the window must specify
:DOES-INPUT-P NIL.

Window Streams 3-15

In addition, only one window in a tree can perform input.

3.4.2.4 Using Graphics Contexts
There is one graphics context per window stream, used for all text output opera
tions to that window stream. The CLX: window-stream-gcontext function returns
the graphics context used by a window stream. You cannot use the SETF macro
with this function.
With the exception of the font slot, you can modify components of a window
stream’s graphics context. For example, the following code is “legal” and will
make the text blue:
(let ((gc (window-stream:window-stream-gcontext v i s)))

(setf (clx:gcontext-foreground gc) "blue")
(format ws "Am I blue?"))

3.4.2.5 Resizing Windows
If the user resizes a window associated with a window stream, the window stream
facility does not automatically resize the viewing area for streams associated with
that window.

3.4.2.6 Repainting Windows
CLX-based windows do not automatically repaint themselves after they have been
obscured. It is advisable to draw to an image or drawable and copy from there,
rather than drawing directly to a window.

3.5 Window Stream Functions and Macros

This section contains reference descriptions of all the functions and macros
exported from the window-st re am: package.

3-16 Window Streams

ERASE-VIEWING-AREA Function

ERASE-VIEWING-AREA Function
Erases the viewing area of a window stream, repositioning the cursor to the
upper-left corner. See Chapter 4 for more information on using this function.

Format

WINDOW-STREAM:ERASE-VIEWING-AREA window-stream

Arguments
window-stream
A window stream.

Return Value
Undefined.

MAKE-WINDOW-STREAM Function
Creates and returns a window stream. Keywords control the characteristics of
the stream.

Format

WINDOW-STREAM:MAKE-WINDOW-STREAM window
&KEY :DOES-INPUT-P :FONT :HORIZONTAL-OVERFLOW

:INPUT-HISTORY-LIMIT :SHOW-ON
:VERTICAL-OVERFLOW :VIEWING-AREA

Arguments
window
A window.
:DOES-INPUT-P
t (the default) or n il , indicating whether this stream is a valid target for input
function calls.

:FONT
A font specification; the default and format depend on the window system in use.
At least one complete character cell in the specified font must fit into the specified
viewing area.
:HORIZONTAL-OVERFLOW
Either :WRAP (the default) or :truncate.

Window Streams 3-17

MAKE-WINDOW-STREAM Function

:INPUT-HISTORY-LIMIT
A nonnegative fixnum, specifying the number of input units maintained by the
window stream’s input history; or n i l, indicating no limit on the number of input
units. A value of 0 requests that no input history be kept. The default is 100.
:SHOW-ON
A value indicating, for both input and output, whether windows should be made
visible and (for input) whether the keyboard should be connected to the window:
: INPUT makes the window visible (and connects the keyboard) for input only. This is

the default.
: 10 makes the window visible on input and output and connects the keyboard for

input.
: OUTPUT makes the window visible for output only.
NIL prevents the window from being made visible (and the keyboard from connect

ing) for both input and output.

:VERTICAL-OVERFLOW
:scroll (the default), iWRAP, or :t r u n c a t e. Unless you specify .-d o e s-i np ut-p
n i l, the value of :v e r t i c a l-o v e r f l o w must be : scroll or an error results.
:VIEWING-AREA
Either n i l, indicating that the viewing area should occupy the entire window, or
a list of native-coordinate values in the form:
(xmin ymin xmax ymax)
n il is the default. The viewing area must be able to contain at least one complete
character cell.

Return Value
A window stream.

SCROLL-VIEWING-AREA Function
Moves the contents in the viewing area of a window stream by native-coordinate
units. The contents can be moved horizontally, vertically, or both. Contents
that scroll off the edge of the viewing area are lost and cannot be recovered by
scrolling in the opposite direction.
Calling this function without optional arguments scrolls up the contents of the
viewing area by one native-coordinate unit.

Format

WINDOW-STREAM:SCROLL-VIEWING-AREA window-stream
&OPTIONAL x y

3-18 Window Streams

SCROLL-VIEWING-AREA Function

Arguments
window-stream
A window stream.
x
A number specifying how many native-coordinate units to scroll horizontally.
Positive values move viewing area contents to the left. The default is 0.

y
A number specifying how many native-coordinate units to scroll vertically.
Positive values move up the viewing area contents. The default is 1.

Return Value
Undefined.

SCROLL-VIEWING-AREA-CELL Function
Moves the contents in the viewing area of a window stream by cell-coordinate
units. Contents can be moved horizontally, vertically, or both. Contents that
scroll off the edge of the viewing area are lost and cannot be recovered by scrolling
in the opposite direction.
Calling this function without optional arguments scrolls up the contents of the
viewing area by one line.

Format

WINDOW-STREAM:SCROLL-VIEWING-AREA-CELL window-stream
&OPTIONAL x y

Arguments
window-stream
A window stream.
x
A fixnum specifying how many cell-coordinate units to scroll horizontally. Positive
values move viewing area contents to the left. The default is 0.

y
A fixnum specifying how many cell-coordinate units (lines) to scroll vertically.
Positive values move up the viewing area contents. The default is 1.

Window Streams 3-19

SCROLL-VIEWING-AREA-CELL Function

Return Value
Undefined.

VIEWING-AREA-HEIGHT Function
Returns the height of a window stream’s viewing area in native-coordinate units.
You cannot use the setf macro with this function. Use the window-stream
viewing-area function to change the size of the viewing area.

Format

WINDOW-STREAM:VIEWING-AREA-HEIGHT window-stream

Arguments
window-stream
A window stream.

Return Value
A number.

VIEWING-AREA-HEIGHT-CELL Function
Returns the height of a window stream’s viewing area in character-cell units. You
cannot use the setf macro with this function. Use the WINDOW-STREAM-VIEWING-
area function to change the size of the viewing area.

Format

WINDOW-STREAM:VIEWING-AREA-HEIGHT-CELL window-stream

Arguments
window-stream
A window stream.

Return Value
A fixnum.

3-20 Window Streams

VIEWING-AREA-WIDTH Function

VIEWING-AREA-WIDTH Function
Returns the width of a window stream’s viewing area in native-coordinate units.
You cannot use the setf macro with this function. Use the window-stream
viewing-area function to change the size of the viewing area.

Format

WINDOW-STREAM:VIEWING-AREA-WIDTH window-stream

Arguments
window-stream
A window stream.

Return Value
A number.

VIEWING-AREA-WIDTH-CELL Function
Returns the width of a window stream’s viewing area in character-cell units. You
cannot use the setf macro with this function. Use the window-stream-viewing-
area function to change the size of the viewing area.

Format

WINDOW-STREAM:VIEWING-AREA-WIDTH-CELL window-stream

Arguments
window-stream
A window stream.

Return Value
A fixnum.

Window Streams 3-21

WINDOW-STREAM Type Specifier

WINDOW-STREAM Type Specifier
Designates objects of type window-stream created by the make-window-stream
function.

Format

WINDOW-STREAM: WINDOW-STREAM

Arguments
None.

Return Value
None.

WINDOW-STREAM-ATTRIBUTE-BLOCK Function
See the description of u i s : window-stream-attribute-block in Part II of VAX
LISP/VMS Interface to VWS Graphics.

WINDOW-STREAM-FONT Function
Returns a window system-dependent value indicating the font used by a window
stream. You can use the s e t f macro with this function to change the font. If
the size of the new fon t is different, the viewing area’s character-cell coordinate
system is realigned; the upper-left comer of the first character output in the new
font is placed at the native-coordinate cursor position. If changing to a larger font
causes the viewing area to be too small for a complete character cell, an error
results.
See Sections 3.1.4 and 3.4.2.2 for information on using this function.

Format

WINDOW-STREAM:WINDOW-STREAM-FONT window-stream

Arguments
window-stream
A window stream.

3-22 Window Streams

WINDOW-STREAM-FONT Function

Return Value
Depends on the window system in use.

WINDOW-STREAM-GCONTEXT Function
See the description of CLX: window-stream-gcontext in Part IV of DECwindows
Programming Guide.

WINDOW-STREAM-HORIZONTAL-OVERFLOW Function
Returns the horizontal overflow action for a window stream. You can use the setf
macro with this function to change the horizontal overflow action.
See Section 3.1.3 for information on using this function.

Format

WINDOW-STREAM:WINDOW-STREAM-HORIZONTAL-OVERFLOW window-stream

Arguments
window-stream
A window stream.

Return Value
:WRAP Or :TRUNCATE.

WINDOW-STREAM-INPUT-HISTORY-LIMIT Function
Returns the maximum number of input units maintained by a window stream’s
input history or nil if there is no limit. You can use the SETF macro with this
function to change the input history limit. Reducing the limit truncates the
window stream’s input history. If you set the limit to 0, no input history is
maintained.
See Section 3.1.6 for information on using this function.

Format

WINDOW-STREAM:WINDOW-STREAM-INPUT-HISTORY-LIMIT window-stream

Window Streams 3-23

WINDOW-STREAM-INPUT-HISTORY-LIMIT Function

Arguments
window-stream
A window stream.

Return Value
A nonnegative fixnum or NIL.

WINDOW-STREAM-KB Function
See the description of u i s : window-stream-kb in Part II of VAX LISP/VMS
Interface to VWS Graphics or the description of CLX: window-stream-kb in Part IV
of DECwindows Programming Guide.

WINDOW-STREAM-P Function
Returns T if its argument is a window stream or n il otherwise.

Format

WINDOW-STREAM:WINDOW-STREAM-P object

Arguments
object
Any LISP object.

Return Value
T or NIL.

WINDOW-STREAM-SHOW-ON Function
Returns the type of operation that makes a window stream’s window visible and
(for input operations) connects the keyboard to the window. You can use the setf
macro with this function.
See Section 3.1.7 for information on using this function.

Format

WINDOW-STREAM:WINDOW-STREAM-SHOW-ON window-stream

3-24 Window Streams

WINDOW-STREAM-SHOW-ON Function

Arguments
window-stream
A window stream.

Return Value
: INPUT, : 10, :OUTPUT, or NIL.

WINDOW-STREAM-VERTICAL-OVERFLOW Function
Returns the vertical overflow action for a window stream. You can use the
SETF macro with this function to change a stream’s vertical overflow behavior.
However, unless you created the stream with :DOES-input-p n il , any value other
than : scroll results in an error.
See Section 3.1.3 for information on using this function.

Format

WINDOW-STREAM:WINDOW-STREAM-VERTICAL-OVERFLOW window-stream

Arguments
window-stream
A window stream.

Return Value
: SCROLL, :WRAP, or :TRUNCATE.

WINDOW-STREAM-VIEWING-AREA Function
Returns a list of four numbers representing the native-coordinate viewing area
of a window stream. This function returns a list even if the viewing area was
specified with n il and thus occupies the entire window.
You can use the setf macro with this function to change a window stream’s
viewing area. Changing the viewing area moves the cursor to the upper-left
corner of the new viewing area and resets the viewing area’s character-cell
coordinate system. An error results if the specified viewing area is too small to
contain at least one complete character cell.
See Section 3.1.2.3 for information on using this function.

Window Streams 3-25

WINDOW-STREAM-VIEWING-AREA Function

Format

WINDOW-STREAM:WINDOW-STREAM-VIEWING-AREA window-stream

Arguments
window-stream
A window stream.

Return Value
A list of four native-coordinate values in the form:
(xmin ymin xmax ymax)
See Section 3.1.2 for details.

WINDOW-STREAM-WINDOW Function
Returns the window associated with a window stream. You cannot use the setf
macro with this function.

Format

WINDOW-STREAM:WINDOW-STREAM-WINDOW window-stream

Arguments
window-stream
A window stream.

Return Value
A window in the representation of the supporting window system.

WINDOW-STREAM-X-POSITION Function
Returns the horizontal component of a window stream’s native-coordinate cursor
position. You can use the setf macro with this function to change the cursor
position. It is an error to specify a cursor position that results in the viewing area
no longer containing at least one complete character cell.
See Section 3.1.5 for information on using this function.

3-26 Window Streams

WINDOW-STREAM-X-POSITION Function

Format

WINDOW-STREAM:WINDOW-STREAM-X-POSITION window-stream

Arguments
window-stream
A window stream.

Return Value
A number.

WINDOW-STREAM-X-POSITION-CELL Function
Returns the horizontal component of a window stream’s character-cell coordinate
cursor position. You can use the setf macro with this function to change the
cursor position.
See Section 3.1.5 for information on using this function.

Format

WINDOW-STREAM:WINDOW-STREAM-X-POSITION-CELL window-stream

Arguments
window-stream
A window stream.

Return Value
A fixnum.

WINDOW-STREAM-Y-POSITION Function
Returns the vertical component of a window stream’s native-coordinate cursor
position. You can use the setf macro with this function to change the cursor
position. It is an error to specify a cursor position that results in the viewing area
no longer containing at least one complete character cell.
See Section 3.1.5 for information on using this function.

Window Streams 3-27

WINDOW-STREAM-Y-POSITION Function

Format

WINDOW-STREAM:WINDOW-STREAM-Y-POSITION window-stream

Arguments
window-stream
A window stream.

Return Value
A number.

WINDOW-STREAM-Y-POSITION-CELL Function
Returns the vertical component of a window stream’s character-cell coordinate
cursor position. You can use the setf macro with this function to change the
cursor position.
See Section 3.1.5 for information on using this function.

Format

WINDOW-STREAM:WINDOW-STREAM-Y-POSITION-CELL window-stream

Arguments
window-stream
A window stream.

Return Value
A fixnum.

WITH-INPUT-EDITING Macro
Establishes a context in which code in the body of the macro determines when a
complete input unit has been entered. An input unit is the unit of text that can
be recalled and edited.
See Section 3.2.1.2 for more information about using this macro.

3-28 Window Streams

WITH-INPUT-EDITING Macro

Format

WINDOW-STREAM:WITH-INPUT-EDITING (window-stream {option}*)
{form}*

Arguments
window-stream
A window stream.
option
Keyword-value pairs. Table 3-2 lists the keywords and the meanings of their
values.

Table 3-2: Keyword Options to WITH-INPUT-EDITING

K eyw ord Values and M ean in g
:PROMPT A string, a function of no arguments, or NIL. The string or return value

of the function is printed in the viewing area before the input editor is
called. If NIL, "Lisp>" is used. By default, no prompt is printed.

:RESCAN T (the default) or NIL. If T, the input editor can rescan input that has
already been consumed by the body of the macro. Rescanning, which
occurs when the user edits lines already typed, forces reexecution of the
body of the macro. NIL disables rescanning and prevents the user from
editing input already consumed.

:TERMINATORS A list of terminating characters. When the input editor encounters a
terminating character, it performs the action specified by the character
(if any), then passes the contents of the input buffer to the input function
requesting input from the stream. The default value is (#\RETURN).
Do not specify NIL as the value of : TERMINATORS. If no terminating
characters are specified, the input editor can never return.

form
One or more forms that make up the body of the macro. Usually, the body
consumes and parses input from window-stream. Since the body is reexecuted
whenever rescanning takes place, it should not perform output or have other side
effects. The input consumed by the body is added to the input history.

Return Value
The value returned by the last form.

Window Streams 3-29

WITH-WINDOW-STREAM Macro

WITH-WINDOW-STREAM Macro
Creates a window stream associated with a specified window, binds a variable
to the stream, and executes forms with the variable bound to the stream. The
stream is automatically closed upon exit from the with-window- stream form, and
the value of the last form executed in the body is returned as the value of the
macro.

Format

WINDOW-STREAM:WITH-WINDOW-STREAM (var window {option}*)
{form}*

Arguments
var window
A window stream associated with window is created and bound to var.
option
Keyword-value pairs that specify characteristics of the window stream. The
keywords are the same ones you specify with make-window-stream.

form
Forms that execute while the window stream is open.

Return Value
The value of the last form executed.

3-30 Window Streams

Chapter 4

Pretty-Printing and Using Extensions to FORMAT

Pretty-printing clarifies the meanings of LISP objects by modifying their printed
representations. It inserts indentation and line breaks at appropriate places,
making pretty-printed output easier to read than output produced with standard
print functions. Pretty-printing is an alternative to standard printing for all LISP
objects, but is particularly useful for printing LISP code, complex data lists, and
arrays.*
When pretty-printing is enabled, any function that prints output can potentially
perform pretty-printing. The following example contrasts the standard and
pretty-printed treatments of a cond structure:
Lisp> (setf t-question ' (cond ((equal terminal
'vt240) start) (t (prinl ' (what terminal type are you
using?)))))
(COND ((EQUAL TERMINAL (QUOTE VT240)) START) (T (PRIN1
(QUOTE (WHAT TERMINAL TYPE ARE YOU USING?)))))
Lisp> (pprint t-question)
(COND ((EQUAL TERMINAL 'VT240) START)

(T (PRIN1 '(WHAT TERMINAL TYPE ARE YOU USING?))))
The first version (produced by the standard read-eval-print loop) breaks the line
at an awkward place and provides no indentation. Only one line is being printed.
The line is either wrapped or truncated, depending on the operating system (VMS
or ULTRIX—32) and the setting of the terminal. The pretty-printed (pprint)
version is more readable because it starts a new line at the beginning of a nested
list, indenting the list to line up with the structure nested to the equivalent level
in the first line.
This chapter describes four ways to print LISP objects:
• Section 4.1 tells how to pretty-print objects.
• Section 4.2 tells how to control the format of pretty-printed objects, using

print control variables.
• Section 4.3 tells how to use the VAX LISP format directives that support

pretty-printing.
• Sections 4.4 through 4.9 tell how you can extend the VAX LISP print

functions to handle specific structures and types of structures by defining new
print functions.

* VAX LISP pretty-printing and the extensions to FORMAT are based on a program described in the paper PP : A L isp
Pretty P r in t in g System , A.I. Memo No. 816, December 1984. The paper and the program were written by Richard C.
Waters, Ph.D., of the MIT Artificial Intelligence Laboratory.

Pretty-Printing and Using Extensions to FORMAT 4-1

4.1 Pretty-Printing with Defaults

Three print functions let you pretty-print without explicitly using print control
variables:
• pprint formats an object and prints it to a stream.
• pprint-defin it ion formats the function object o f a symbol and prints it to a

stream.
• pprint-pl ist formats the property list o f a symbol and prints it to a stream.

Use pprint when you want to let the system decide how best to format an object.
pprint prints whatever object is given as its argument. The cond structure at
the beginning of this chapter is an example of the output format specified for lists
starting with a particular symbol.
You can use pprint-defin it ion to print the definition of a LISP function. Supply
the function name as the argument, as follows:
Lisp> (defun belongs (this pile) (cond ((null pile) nil) ((equal
this (car pile)) pile) (t (belongs this (cdr pile)))))
BELONGS
Lisp> (pprint-definition 'belongs)
(DEFUN BELONGS (THIS PILE)

(COND ((NULL PILE) NIL)
((EQUAL THIS (CAR PILE)) PILE)
(T (BELONGS THIS (CDR PILE)))))

If the object to be printed is the property list of a symbol, use pprint-p l is t , as
shown in the following example:
Lisp> (setf (get 'places 'cities) ' (augusta Sacramento))
(AUGUSTA SACRAMENTO)
Lisp> (setf (get 'places 'states) '(maine California))
(MAINE CALIFORNIA)
Lisp> (pprint-plist 'places)
(STATES (MAINE CALIFORNIA)
CITIES (AUGUSTA SACRAMENTO))

PPRINT-PLIST prints only indicator-value pairs for which the indicator is
accessible in the current package, pprint-pl ist em phasizes the relationships
between the indicator-value pairs.

4.2 Pretty-Printing with Control Variables

VAX LISP supports the global print control variables included in Common LISP
and provides three additional variables:
• *PRINT-RIGHT-MARGIN*
• *PRINT-MISER-WIDTH*
• *PRINT-LINES*

By changing the values of these variables, you can adjust printed output to suit a
variety of situations. Note that *pr int-m iser-width* and *print-l in es* affect
pretty-printed output only.
You can also specify values for these three variables in calls to the write and
write-to-string functions. These functions have been extended to accept the
following keyword arguments:

4-2 Pretty-Printing and Using Extensions to FORMAT

RIGHT-MARGIN
MISER-WIDTH
LINES

If you specify any of these arguments, the corresponding special variable is bound
to the value you supply with the argument before any output is produced.

4.2.1 Explicitly Enabling Pretty-Printing

When the Common LISP variable *print-pretty* is non-NiL, it enables pretty
printing. If you set *print-pretty* to t, you can pretty-print by calling any
print function. The LISP read-eval-print loop will also pretty-print when *print-
PRETTY* is non-NIL.
The following example shows the effect of a prini function call when pretty
printing is enabled:
Lisp> (setf *print-pretty* t)
T
Lisp> (prini ' ((tiger tiger burning bright) (in the forests of
the night) (what immortal hand or eye) (could frame thy fearful
symmetry)))
((TIGER TIGER BURNING BRIGHT) (IN THE FORESTS OF THE NIGHT)
(WHAT IMMORTAL HAND OR EYE) (COULD FRAME THY FEARFUL SYMMETRY))

You can also enable pretty-printing by specifying a non-NiL value for the : pretty
keyword in functions such as write and write-to-string.

4.2.2 Limiting Output by Lines

Pretty-printing lets you abbreviate output by controlling the number of lines
printed. With the variable *print-lines* set to any integer value, the print
function you use stops after printing the specified number of lines. The output
stream replaces omitted output with the characters “ . . . ”. Abbreviation by
number of lines occurs only when pretty-printing is enabled. See Section 4.7 for
more details on abbreviating output.
The following example shows pretty-printed output with *print-lines* set to l:
Lisp> (setf *print-lines* 1)
1
Lisp> (setf *print-pretty* t)
T
Lisp> (PRINT '((in what distant deeps or skies) (burnt the fire
of thine eyes) (on what wings dare he aspire) (what the hand
dare seize the fire))) ,
((IN WHAT DISTANT DEEPS OR SKIES) (BURNT THE FIRE OF THINE EYES) ...

4.2.3 Controlling Margins

The *print-right-marg in* variable lets you adjust the width of printed output.
An integer value of *print-right-margin* specifies how wide to print, even if
not pretty-printing. With the left margin at 0, *print-right-margin* specifies
the approximate number of columns in which the print function will try to print.
The default value, ni l, causes the print functions to query the output stream for
the right margin value. There needs to be a reasonable right margin value when
pretty-printing and *print-right-margin* are n i l. The default varies, but is
always appropriate to the output device.

Pretty-Printing and Using Extensions to FORMAT 4-3

The example below shows how setting *print-right-marg in* affects the width of
pretty-printed output:
Lisp> (setf *print-pretty* t)
T
Lisp> (setf *print-right-margin* 38)
38
Lisp> (prinl '((and what shoulder, & what art) (could twist
the sinews of thy heart) (and when thy heart began to beat) (what
dread hand & what dread feet)))
((AND WHAT SHOULDER, & WHAT ART)
(COULD TWIST THE SINEWS OF THY HEART)
(AND WHEN THY HEART BEGAN TO BEAT)
(WHAT DREAD HAND & WHAT DREAD FEET))

Output may exceed the right margin if the printer encounters a long symbol
name or string. The left margin is normally 0, but you can change it by using
logical blocks with the format function to indent (see Section 4.3).

4.2.4 Conserving Space with Miser Mode

Miser mode can help you avoid running out of horizontal space when you print
complicated structures. Pretty-printing adds line breaks and indentation to
output to indicate levels of nesting, so that deeply nested structures often use
up much of the line width. Miser mode conserves line width by minimizing
indentation and inserting new lines where possible. You can use this feature
by setting the variable *print-miser-wi d t h* to an integer value two or three
times the length of the longest symbol in the output (usually a value around 40 is
appropriate).
The system subtracts the value of *pr int-m iser-width* from the right margin of
the output stream to determine the column at which miser mode takes effect. In
other words, miser mode becomes effective when the total line width available for
printing after indentation is less than the value of *print-m iser-width* . You
can set *print-miser-width* to n il to disable miser mode. See Section 4.8 for
more details.
The default value of *print-miser-width* is 40.

4.3 Extensions to the FORMAT Function

VAX LISP provides nine format directives in addition to those specified in
Common LISP. The added directives allow you to specify:
• Logical blocks, which are groupings of related output tokens
• Multiline mode new lines, which result in new lines if output cannot fit on

one line
• Indentation, which aids in indenting portions of a form
Table 4-1 lists and briefly describes the format directives that VAX LISP
provides. This section provides a guide to their use. The section presupposes a
thorough knowledge of the LISP format function as described in Common LISP:
The Language.

4-4 Pretty-Printing and Using Extensions to FORMAT

Table 4-1: FORMAT Directives Provided by VAX LISP

D irectiv e E ffect
~w

-!

Prints the corresponding argument under direction of the current print
control variable values. Similar to ~A and ~S in Common LISP.
Begins a logical block. Without modifiers, this directive causes FORMAT
to print a single argument following the control string, which should be
a list. I f the argument is not a list, the entire logical block is effectively
a ~W.
~: ! The colon modifier sets values of the print control variables:

PRINT-PRETTY =>• T
PRINT-ESCAPE =J> T
»PRINT-LENGTH* =>■ NIL
»PRINT-LEVEL* => NIL
»PRINT-LINES* =*- NIL

~ r

~0 ! The at-sign modifier causes directives within the logical block
to print successive elements from the argument that follows the
control string.

~1! The numeral one modifier specifies parentheses for the print
prefix and suffix.

Ends a logical block.
. The at-sign modifier effectively inserts an if-needed newline

directive (~ :) before each whitespace in the logical block.
Specifies a multiline mode new line. This directive is effective only in a
logical block.
~: The colon modifier specifies a conditional, or if-needed, newline.
~Q The at-sign modifier specifies a miser-mode newline. This is

the least likely to split lines.
Marks the end of the print prefix or the beginning of the print suffix.
(The prefix also sets indentation.)
~0; The at-sign modifier causes the prefix to be printed on every

line.
~nl Sets indentation to n columns after the beginning print column of the

logical block. This directive is effective only in a logical block.
~n: I The colon modifier sets indentation to n columns after the

current print column.
~n/FILL/ Prints the elements of a list with as many elements as possible on each

line. If n is 1, FORMAT encloses the printed list in parentheses. This
directive is effective only in a logical block.

~n/LINEAR/ If the elements of the list to be printed cannot be printed on a single
line, this directive prints each element on a separate line. If n is 1,
FORMAT encloses the printed list in parentheses. This directive is
effective only in a logical block.

~ n ,m / TABULAR/ Prints the list in tabular form. If n is 1, FORMAT encloses the printed
list in parentheses, m specifies the column spacing; the default is 16.
This directive is effective only in a logical block.

Use the format function as follows:
FORMAT destination control-string &REST arguments
This function prints the arguments according to the format you specify with
directives in the control-string. destination specifies the output stream.

Pretty-Printing and Using Extensions to FORMAT 4-5

The format directives provide the sole means of performing pretty-printing in
VAX LISP. All functions that explicitly perform pretty-printing (for example,
pprint and pprint-def in it ion) do so by using these directives. Objects printed
with format are printed normally unless pretty-printing is enabled. Pretty
printing is enabled when both the following conditions exist:
• A logical block is started.
• *print-pretty* is non-NiL, or the colon modifier is specified in the logical

block directive (~:!).

Nothing prevents you from starting a logical block when *print-pretty* is
n il . However, any conditional new lines or indentation specified within the
logical block will be ignored. This feature results in normal output, as opposed to
pretty-printed output. By allowing this flexibility, format lets you use one control
string to format data, and the data is either printed normally or pretty-printed,
according to the value of *print-pretty* .
The sections that follow describe the application of the nine VAX LISP format
directives and the effects of the colon and at-sign modifiers on them.

4.3.1 Using the Write FORMAT Directive

Use the ~w format directive to print an element when you want to use the current
values of the print control variables. The argument for ~w can be any LISP object.
In contrast, ~a and ~s specify the values of print control variables.
You can use up to four prefix parameters with ~w to pad the printed object:
~ mincol, colinc, m in pad, padchatSN
For an explanation of these parameters, see the description under “format
Directives Provided with VAX LISP” in the VAX LISP/VMS Object Reference
Manual.
The colon modifier (~: w) binds the following print control variables for the
duration of the write: *pr int-escape* to T, *pr int-pretty* to T, ♦print-
length* to n il , *pr int-level* to n il , and *pr int-l in e s* to n il . The following
example contrasts the effects of using ~w and ~: w:
Lisp> (setf *print-pretty* nil)
NIL
Lisp> (setf ‘print-escape* nil)
NIL
Lisp> (setf *print-length* 2)
2
Lisp> (setf colors '(("Yellow" "Purple" "Orange" "Green")
"Pink" "Beige" "Buff") ("Peach" "Violet" "Chartreuse")))
((Yellow Purple ...) (Aqua Pink ...) ...)
Lisp> (format t "~W" colors)
((Yellow Purple ...) (Aqua Pink ...) ...)
NIL

("Aqua"

Lisp> (format t "~:W" colors)
(("Yellow" "Purple" "Orange" "Green") ("Aqua" "Pink" "Beige" "Buff")
("Peach" "Violet" "Chartreuse"))

The first format call truncates the first two sublists to two colors and truncates
the outer list to two sublists. This truncation occurs because *print-length* is 2.
The first format call omits quotation marks because *print-escape* is n il . The
second format call produces the full list of colors and includes quotation marks,
because it implicitly sets *print-length* to n il and *print-escape* to T. The
second format call also indents the lists because it implicitly sets *print-pretty*
to T.

4-6 Pretty-Printing and Using Extensions to FORMAT

4.3.2 Controlling the Arrangement of Output

Two concepts support the dynamic arrangement of output for pretty-printing:
logical blocks and conditional new lines. Logical block directives divide the total
output into hierarchical groupings, which are referred to as logical blocks or
subblocks. The goal of format is to print an entire logical block (including all its
subblocks) on one line. If pretty-printing is enabled, the logical block is printed on
one line only if the logical block fits between the current left and right margins.
Printing all the output on one line is referred to as single-line mode printing.
The output for a logical block may not fit on one line when pretty-printing. In
this case, the block must be subdivided into sections at points where it may be
split into multiple lines. Conditional new line directives specify these points.
Multiline mode printing is the name given to the condition where a logical block
must occupy multiple lines.
When pretty-printing is enabled, format buffers the contents of a logical block
until it can decide whether to use single-line mode or multiline mode printing.
A third mode, miser mode, is described briefly in Section 4.2.4 and in detail in
Section 4.8.
Use the ~! and ~. directives to specify a logical block in the form:
~! block-.
where block can include any format directives. A logical block takes one argu
ment from the format argument list. If that argument is a list, any directives
within the logical block that take arguments take elements from that list, as
shown in the following example:
Lisp> (setf *print-pretty* t)
T
Lisp> (setf *print-miser-width* nil)
NIL
Lisp> (setf *print-right-marg±n* 40)
40
Lisp> (format t '((stars (betelgeuse deneb sirius)) (planets
(mercury venus earth mars jupiter saturn uranus neptune pluto))))
(STARS (BETELGEUSE DENEB SIRIUS))
NIL
The logical block takes the entire list as its argument. The list contains two
elements but, since there is only one ~w directive, only the first element is
printed.
With two Write directives (~w) and a multiline mode new line directive (~_), both
elements of the list are printed:
Lisp> (format t "~!~w~_~W~." '((stars (betelgeuse deneb sirius))
(planets (mercury venus earth mars jupiter saturn uranus neptune
pluto))))
(STARS (BETELGEUSE DENEB SIRIUS))
(PLANETS
(MERCURY VENUS EARTH MARS JUPITER
SATURN URANUS NEPTUNE PLUTO))

NIL
(See the next section for more information on new line directives.)
If the argument is not a list, the logical block is effectively replaced by the ~w
directive.

Pretty-Printing and Using Extensions to FORMAT 4-7

You can alter the directive to start a logical block (~!) by adding two modifiers.
When the directive includes a colon (~:!), the directive sets *print-pretty* and
PRINT-ESCAPE to T and *PRINT-LENGTH*, *PRINT-LEVEL*, and *PRINT-LINES* to
nil for all the printing controlled by the logical block.
When the ~! directive includes an at sign (~0 !), the directives within the logical
block take successive arguments from the format argument list. The logical
block uses up all the arguments, not just a single list argument. Therefore, no
directives that take arguments from the argument list can appear after a logical
block modified by an at sign in the logical block directive (see the last example in
this section). You can use the ~~ directive inside a logical block to check whether
the logical block arguments have been reduced to a non-NiL atom. See Section 4.9
for information on handling improperly formed argument lists.
The output associated with any format directive is subject to pretty-printing
when the directive occurs within a logical block and *print-pretty* is non-NiL.
A logical block defines an indentation level and can define a prefix and a suffix.
By default, when pretty-printing is enabled, the indentation level is the position
of the first character in the logical block. Each line following the first line in the
logical block is printed preserving indentation and per-line prefixes, so that the
first character in the line normally lines up with the first character in the block
following the prefix. However, no default prefix or suffix is associated with a
logical block.
You can create nested logical blocks within a logical block, using the ~\biock~.
directive. For example:
Lisp> (setf *print-right-margin* 70)
70
Lisp> (setf *print-pretty* t)
T
Lisp> (format t "~!Stars: ~!~S ~S~. Planets: ~!~S ~S~.~ "

' ((betelgeuse deneb) (mars jupiter)))
Stars: BETELGEUSE DENEB Planets: MARS JUPITER
In this example, two logical blocks are created within the principal logical block.
Each logical block uses the next argument for printing:
• The enclosing logical block uses the elements of the principal list

((BETELGEUSE deneb) (mars jupiter)) as its arguments.
• The first inner logical block uses the elements of the list (betelgeuse de ne b)

as its arguments.
• The second inner logical block uses the elements of the list (mars jupiter) as

its arguments.
Lisp> (setf *print-pretty* nil)
NIL
Lisp> (format t "~:!Stars: ~!~S ~S~. Planets: ~!~S ~S~.~."

'((betelgeuse deneb) (mars jupiter)))
Stars: BETELGEUSE DENEB Planets: MARS JUPITER
In this example, the colon in the ~:! directive enables pretty-printing implicitly,
producing the same output as the previous example.

4-8 Pretty-Printing and Using Extensions to FORMAT

Lisp> (setf *print-pretty* t)
T
Lisp> (format t "~@!~S ~%~S ~%~S

'(betelgeuse deneb sirius) 'polaris 'vega 'algol
'aldebaran)

(BETELGEUSE DENEB SIRIUS)
POLARIS
VEGA
ALGOL
In this example, the at sign causes the logical block to use all following argu
ments. Unneeded arguments are used up by the logical block but not printed.
The first ~s applies to the first argument (the list (betelgeuse deneb sirius)).
The remaining three ~s directives apply to polaris, vega, and algol. aldebaran
goes unprinted, because there is no corresponding directive.
Lisp> (format t "~0!Stars: ~!~S ~S~. Planets: ~!~S ~S~.~."

' (betelgeuse deneb) ' (mars jupiter))Stars: BETELGEUSE DENEB Planets: MARS JUPITER
In this example, the at sign in the outermost logical block directive (~@!) directs
the logical block to use all the arguments. The first inner logical block uses the
elements of the list (betelgeuse deneb) ; the second inner logical block uses the
elements of the list (mars jupiter) .

4.3.3 Controlling Where New Lines Begin

Five format directives let you specify places where new lines can start according
to the demands of the situation. Each directive delimits a section in a logical
block.
• The ~% directive produces an unconditional new line. When used within a

logical block, the directive preserves indentation and per-line prefixes.
• The directive produces a fresh line. When used within a logical block, the

directive preserves indentation and per-line prefixes.
• The directive produces a multiline mode new line when used within a

logical block.
• The ~:_ directive produces an if-needed new line when used within a logical

block.
• The ~0_ directive produces a miser-mode new line when used within a logical

block.
You can specify unconditional new lines (~%) and fresh lines (~&) if you know in
advance how the text should be laid out. If a new line is produced by one of these
directives when the format function is printing a logical block, format prints the
logical block in the multiline mode, preserving indentation and per-line prefixes.
The directive specifies a fresh line, whether or not pretty-printing is enabled.
If the directive occurs inside a logical block when pretty-printing is enabled
and any output is on the line other than prefixes and indentation, the FORMAT call
starts a fresh line, preserving indentation and per-line prefixes.

Pretty-Printing and Using Extensions to FORMAT 4-9

The following examples show the use of the ~% and directives:
Lisp> (format t "Stars-:!;~0;~%~S ~%~S

' (betelgeuse deneb sirius))
Stars;

;BETELGEUSE
;DENEB
;SIRIUS

NIL
Lisp> (format t "Stars-:!;-0;-&-S ~&~S

' (betelgeuse deneb sirius))
Stars;BETELGEUSE

;DENEB
;SIRIUS

The first format call starts a new line after the prefix because the ~% directive
starts a new line wherever the directive occurs. Replacing the ~% directive with
the directive changes the output, because the fresh line is not needed after the
prefix.
The remaining three new line directives offer flexibility because they are condi
tional. However, they have no effect on output (except length abbreviation—see
Section 4.7.1) when pretty-printing is not enabled.
The directive (multiline mode new line) starts a new line if the output for
the enclosing logical block is too long to fit on one line or if any other directive
in the logical block causes a new line. When the output is too long, format uses
multiline mode, and every directive in a logical block starts a new line. The

directive (if-needed new line) produces a new line if it is needed: if the
following section of output is too long to fit on the current line. The ~@_ directive
(miser-mode new line) produces a new line if pretty-printing is enabled with
miser mode in effect (see Section 4.8 for details). The format function ignores the
three conditional new line directives when they occur outside a logical block.
The following example shows how you can specify a multiline mode new line and
an if-needed new line:
Lisp> (setf *print—miser-width* nil)
NIL
Lisp> (setf *print-right-margin* 16)
16
Lisp> (format t " —: !~S —_—S —:_~S —_—S—."

'(mercury venus earth mars))
MERCURY
VENUS EARTH
MARS
NIL
This format function produces output in the multiline mode, because the output
will not fit on one line with the right margin set to 16. The multiline mode new
line directives (~_) produce new lines for venus and m a rs. The if-needed new line
directive (~:_) directs format to start a new line before earth if needed (but no
new line is needed).
You can produce printed output that fills up the space available in each line
by using the at-sign (@) modifier with the directive that ends the logical block
(~<block~Q.). This modifier causes FORMAT to start a new line if needed following

4-10 Pretty-Printing and Using Extensions to FORMAT

every blank space or tab and is equivalent to inserting a ~direc t ive after each
element to be printed, as shown in the following example:
Lisp> (setf *print-right-margin* 25)
25
Lisp> (setf *print-miser-mode* nil)
NIL
Lisp> (format t "~0:!antares alphecca albireo canopus castor

pollux mirzam algol bellatrix capella mira
mirfak dubhe polaris)

ANTARES ALPHECCA ALBIREO
CANOPUS CASTOR POLLUX
MIRZAM ALGOL BELLATRIX
CAPELLA MIRA MIRFAK DUBHE
POLARIS
NIL

4.3.4 Controlling Indentation

With pretty-printing enabled, a call to format indents the output for a logical
block so that the first character in each succeeding line falls under the first
character following the prefix in the first line. When pretty-printing is not
enabled, the format call does not produce indentation, and the indentation
directive has no effect.
Use the ~ni or the ~n:i directive if you want to change the standard pretty-
printed indentation. The ~ni directive causes format to indent subsequent lines
n spaces from the position of the first character in the logical block. The ~n:i
directive, on the other hand, causes format to indent subsequent lines n spaces
from the output column corresponding to the position of the directive. If you omit
the parameter n, the default is 0. Although this parameter can be less than 0
when used with the colon, the indentation cannot move to the left of the first
character in the logical block. An indentation directive affects only indentation
produced on subsequent new lines.
The following example shows several variations of the indentation directive:
Lisp> (setf *print-miser-mode* nil)
NIL
Lisp> (setf *print-right-margin* 15)
15
Lisp> (format t "~:!~S ~2I~:_~S ~:I~S ~_~S ~1I~_~S~."

' (betelgeuse deneb sirius vega aldebaran))
BETELGEUSE

DENEB SIRIUS
VEGA

ALDEBARAN
NIL
deneb lines up under the t in betelgeuse, because the directive produces
a new line and ~2i causes an indentation of two spaces past the beginning of
the block. The ~: I directive sets the indentation to the column one space after
the end of the second argument. This indentation takes effect on the next new
line, so that vega lines up under sirius. aldebaran lines up with the first E in
betelgeuse, because the ~ll directive resets the indentation to one column past
the first character in the logical block.
The ~i directives only set the indentation. They do not start new lines and they
do not take effect until new lines begin. Therefore, in the directives for deneb and
aldebaran, the indentation directives precede the new line directives.

Pretty-Printing and Using Extensions to FORMAT 4-11

4.3.5 Producing Prefixes and Suffixes

You can specify format control strings that add prefixes and suffixes to the
printed output produced for a logical block. Several options are available.
If you divide the format control string into three sections by inserting the
separator directive twice, the string will specify a prefix and a suffix, as
follows: -\prefix-;body-;su ffix-.. The first directive marks the end of the
prefix; the second marks the beginning of the suffix. If you omit the second
directive, no suffix is specified. Although the body can be any format control
string, the prefix and suffix cannot include format directives.
When a format call prints output for a logical block that includes a prefix and
pretty-printing is enabled, the second line of the output is indented so that the
second line lines up with the first character in the block following the prefix.
When the logical block includes a suffix, the format call always prints the suffix
at the end, even if abbreviation directives eliminate some of the body of the block.
In the following examples, “Stars <” forms the prefix, and “>” forms the suffix.
Lisp> (setf *print-pretty* t)
T
Lisp> (format t "~!Stars <~;~S ~%~S

' (sirius vega deneb))
Stars <SIRIUS

VEGA
DENEB>

NIL
Lisp> (setf *print-length* 2)
2
Lisp> (format t "~!Stars <~;~S ~%~S

' (sirius vega deneb))
Stars <SIRIUS

VEGA ...>
NIL
In the second example, format truncates the list to two elements, because
print-length is set to 2 (see Section 4.7) but it still adds the suffix after the
last list element, vega lines up under sirius in the first column for the body of
the logical block.
You can specify the prefix parameter l in the logical block directive (-1 [block-.),
causing the format call to use parentheses for the prefix and suffix, as shown
below.
Lisp> (format t "~1:!~S ~%~S~." '(castor pollux))
(CASTOR
POLLUX)

NIL
You can create per-line prefixes in a logical block by specifying the at-sign
modifier in the directive used to indicate the end of the prefix (). This
modifier causes format to repeat the prefix at the beginning of each line, as
shown in the following example:
Lisp> (format t "~:!«~0;~S ~%~S ~ _~ S ~_~S~;»~."

'(algol antares albireo alphecca))
«ALGOL
«ANTARES
«ALBIREO
«ALPHECCA»
The prefixes and the list elements line up.

4-12 Pretty-Printing and Using Extensions to FORMAT

If you nest logical blocks, you can specify a prefix with each block, as shown:
Lisp> (format t (Bright stars»; ~0!«~@;~S ~S ~%~S ~
~S~;»~.~;still twinkle.
' (sirius vega deneb algol))
Bright stars «SIRIUS VEGA

«DENEB ALGOL» still twinkle.
The prefix and suffix for the outer logical block are “Bright stars” and “still
twinkle”. The prefix for the inner logical block, “«”, is printed on each line after
the indentation required by the prefix for the first logical block. The suffix for the
inner logical block, “»”, is printed once at the end of the block.

4.3.6 Using Tabs

You can use the tab directive to arrange output in columns. When pretty-printing
is enabled, the ~n,mT tab directive counts spaces, beginning with the indentation
of the immediately enclosing logical block. The integer n specifies a number of
columns. The integer m specifies an increment: the number of columns to be
added at one time until the column width is at least n columns. The at-sign
modifier makes the tab directive relative, so that ~n,m@T counts spaces beginning
with the current output column. When pretty-printing is not enabled, on the
other hand, the ~n,mT directive counts spaces from the beginning of the line, as
specified in Common LISP. The default for n and m is l (see Common LISP: The
Language for details).
In the iterative example that follows, the tab directive precedes the if-needed new
line directive:
Lisp> (setf *print-pretty* t)
T
Lisp> (setf *print-right-margin* 29)
29
Lisp> (format t "Stars: ~:0!~{~S~-' ~11T~S

' (polaris dubhe mira mirfak bellatrix capella algol
mirzam pollux canopus albireo castor alphecca
antares))

POLARIS DUBHE
MIRA MIRFAK
BELLATRIX CAPELLA
ALGOL MIRZAM
POLLUX CANOPUS
ALBIREO CASTOR
ALPHECCA ANTARES

NIL
Since the tabs are counted from the indentation of the logical block, the tab
directives do not have to account for the fact that the whole block is shifted seven
columns to the right.

4.3.7 Directives for Handling Lists

VAX LISP provides three format directives that simplify the printing o f lists.
Each implicitly uses the ~w directive repeatedly to print elements.
• If pretty-printing is enabled, the ~n/FiLL/ directive causes format to fill the

available line width by inserting a space and an if-needed new line after each
list element except the last, format encloses the list in parentheses if n is l.
If pretty-printing is not enabled, ~n/FiLL/ causes format to print the output
in single-line mode.

Pretty-Printing and Using Extensions to FORMAT 4-13

• If pretty-printing is enabled, the ~n/L inear/ directive causes format to print
the list on a single line if the list fits. Otherwise, format prints each element
on a separate line, format encloses the list in parentheses if n is l. If pretty
printing is not enabled, ~n/LiNEAR/ causes format to print the output in
single-line mode.

• If pretty-printing is enabled, the ~n, m /tabular/ directive causes format to
print the list as a table, using columns of m spaces for list elements. The
default value for m is 16. format encloses the list in parentheses if n is l.
If pretty-printing is not enabled, ~n, m l tabular causes format to print the
output in single-line mode.

The following examples show the kinds of formats you can produce with the
list-handling directives:
Lisp> (setf *print-miser-width* nil)
NIL
Lisp> (setf *print-right-margin* 36)
36
Lisp> (format t "Stars: :!~/FILL/~."

' (polaris dubhe mira mirfak bellatrix capella algol
mirzam pollux canopus albireo castor alphecca
antares))

Stars: POLARIS DUBHE MIRA MIRFAK
BELLATRIX CAPELLA ALGOL
MIRZAM POLLUX CANOPUS
ALBIREO CASTOR ALPHECCA
ANTARES

NIL
Lisp> (setf *print-right-margin* nil)
NIL
Lisp> (format t "Stars: ~@:!-/LINEAR/-."

'(polaris dubhe mira mirfak bellatrix capella algol
mirzam pollux canopus albireo castor alphecca
antares))

Stars: POLARIS
DUBHE
MIRA
MIRFAK
BELLATRIX
CAPELLA
ALGOL
MIRZAM
POLLUX
CANOPUS
ALBIREO
CASTOR
ALPHECCA
ANTARES

NIL
Lisp> (format t "Stars: -6:!-0,20/TABULAR/-.

' (polaris dubhe mira mirfak bellatrix capella algol
mirzam pollux canopus albireo castor alphecca
antares))

Stars: POLARIS DUBHE
BELLATRIX
MIRZAM
ALBIREO
ANTARES

MIRA
MIRFAK
ALGOL
CANOPUS
ALPHECCA

CAPELLA
POLLUX
CASTOR

NIL

4-14 Pretty-Printing and Using Extensions to FORMAT

4.4 Defining Your Own Format Directives

VAX LISP lets you define your own format directives to supplement the directives
supplied with the system. Any format directive that you define you can use in
the control string argument to a format call.
(DEFINE-FORMAT-DIRECTIVE name

(arg stream colon at-sign
&OPTIONAL (parameterl default)

(parameter default)
. . .)

&BODY forms)
This macro defines a directive named name. After you define a format directive,
you can use it (whether or not pretty-printing is enabled) by including -/name/ in
a format control string.

NOTE

If you do not specify a package with name when you define the
directive, name is placed in the current package. If you do not specify a
package when you refer to the directive, the format directive looks in
the USER package for the directive definition.

For the body of the macro call, the symbols you supply for arg, stream, colon, and
at-sign are bound as follows:
• arg is bound to the argument list for the format directive you define.
• stream is bound to the stream on which the printing is to be done.
• The colon and at-sign arguments are bound to nil unless the colon and

at-sign modifiers are used with the directive.
There must be one optional argument for each prefix parameter that is allowed
in the directive. A parameter argument will receive the corresponding prefix
parameter if it was specified in the directive. Otherwise, the default value will be
used, as with all optional arguments.
The body is evaluated to print the argument arg on the output stream. A user-
defined format directive can be useful because it provides a level of indirection.
In addition, you can call the directive repeatedly, which may save you some time
coding and debugging. The following example shows a format directive used to
produce error messages:
Lisp> (define-format-directive evaluation-error

(symbol stream colon-p atsign-p
Soptional (severity 0))

(declare (ignore atsign-p))
(fresh-line stream)
(princ (case severity

(0 "Warning: ")
(1 "Error: ")
(2 "Severe Error: "))

stream)
(format stream "~0:!The symbol ~S ~:_does not have an ~

integer value.~%Its value is: ~:_~S~."
symbol (symbol-value symbol))

(when colon-p
(write-char #\BELL stream)))

EVALUATION-ERROR

Pretty-Printing and Using Extensions to FORMAT 4-15

Lisp> (setf process nil)
NIL
Lisp> (format t "~1:/evaluation-error/" 'process)
Error: The symbol PROCESS does not have an integer value.

Its value is: NIL
<BEEP>
NIL
This example shows the definition of a format directive, an application of the
directive, and the printed output. It assumes that the current package is user
The prefix parameter l in "~i:/evaluation-error/" indicates the severity of
the error being signaled. The colon in the FORMAT call produces a beep on the
terminal.

4.5 Defining Print Functions for Lists
You can use define-li st-print-function to define functions to print specific
kinds of lists in formats of your choice. Functions that you define are effective
only if pretty-printing is enabled. The printer checks the first element of each
list that it prints. If the first element of a list matches the name of a list-print
function, the list is printed according to the format you have specified. Create a
list-print function according to the following format:
DEFINE-LIST-PRINT-FUNCTION symbol (list stream)

&BODY forms
This macro defines or redefines a print function for lists for which the first
element is symbol, list is bound to the list to be printed and stream is bound
to the stream on which the printing is to be done. The forms are evaluated to
output list.
For example, if you define a list-print function for the symbol m y-setq, any list
beginning with m y-setq will be printed in your format when pretty-printing is
enabled:
Lisp> (setf *print-pretty* nil)
NIL
Lisp> (define-list-print-function my-setq (list stream)

(format stream
" ~ 1 ! ~W~A ~ : I~@ {~W~~
list))

MY-SETQ
Lisp> (setf base '(my-setq hi 3 bye 4))
(MY-SETQ HI 3 BYE 4)
Lisp> (print base)
(MY-SETQ HI 3 BYE 4)
(MY-SETQ HI 3 BYE 4)
Lisp> (pprint base)
(MY-SETQ HI 3

BYE 4)
When pretty-printing is not enabled, the value of base is printed without regard
to the list-print function defined for m y-setq. pprint enables pretty-printing,
producing a representation of the value of base using the specified list-print
function.
VAX LISP pretty-printing incorporates predefined list-print functions for many
standard LISP functions. However, if you define a list-print function for a LISP
keyword, your function will override the one built into the system.

4-16 Pretty-Printing and Using Extensions to FORMAT

NOTE

When you use define-list-print-function, you may encounter two
kinds of output that you do not expect:
• In most cases, a list whose first element is the symbol for a defined

list-print function will be printed in the format specified, even if
the context and meaning of the list are irregular and the format is
inappropriate. For example, if your data says (let it b e) and let
is the symbol of a defined list-print function, the resulting output
may be inappropriate.

• List-print functions are not used when you print a list under
control of a user-defined format directive.

You can disable any defined list-print function by using the undefine-list-
print-function macro. Its format is:
UNDEFINE-LIST-PRINT-FUNCTION symbol
This macro disables the list-print function defined for symbol. The following
example disables the m y-setq list-print function defined in the example at the
beginning of this section:
Lisp> (undefine-Iist-print-function my-setq)
MY-SETQ

4.6 Defining Generalized Print Functions

Using generalized print functions, you can specify how any object is pretty-
printed, regardless of its form. Functions that you define and enable are effective
only if pretty-printing is enabled. First you define a function with define-
generalized-print-function. Then you enable the function. You can enable it
globally, using generalized-print-function-enabled-p . Or you can enable it
locally, using with-generalized-print-function.
Use the following format when you define a generalized print function:
DEFINE-GENERALIZED-PRINT-FUNCTION name (object stream) predicate

&BODY forms
This macro defines or redefines a print function with the name name, object is
bound to the object to be printed, stream is bound to the stream to which output
is to be sent, predicate governs the application of the generalized print function.
The predicate is operative on any LISP object. A generalized print function will
be used if it is enabled and the predicate evaluates to true on the object to be
printed, null object is the predicate in the sample generalized print function
shown at the end of this section. The pretty-printer uses your generalized print
function to print any object for which the predicate does not evaluate to n i l .
Evaluation of the specified forms must write a representation of object to stream.
If a generalized print function and a list-print function for the same symbol are
both enabled, the generalized print function will be used.
A related function lets you test whether a specific generalized print function is
enabled:
GENERALIZED-PRINT-FUNCTION-ENABLED-P name

Pretty-Printing and Using Extensions to FORMAT 4-17

You can also use this function to globally change the status of the function, using
setf as shown:
(SETF (GENERALIZED-PRINT-FUNCTION-ENABLED-P name) T)

or
(SETF (GENERALIZED-PRINT-FUNCTION-ENABLED-P name) NIL)

Use the wi th-generalized-print-function macro to locally enable a generalized
print function in the following format:
WITH-GENERALIZED-PRINT-FUNCTION name &BODY forms
This macro locally enables the generalized print function named name when it
evaluates the specified forms.
The printer checks generalized print functions that have been enabled in reverse
order from the order of their enabling. This means that in cases where two or
more generalized print functions apply, the most recently enabled function is
used.
Enabling a generalized print function globally is less efficient than enabling it
locally, because the printer must check the predicate of globally enabled print
functions against every object to be printed. If you enable the generalized print
function locally, the printer checks the function’s predicate against the object
being printed only during execution of the code within the macro, instead of on
every call to a print function. Since the read-eval-print loop is used often, the
difference in efficiency can be significant.
Consider the following examples:
Lisp> (setf *print-pretty* nil)
NIL
Lisp> (setf *print-right-margin* 25)
25
Lisp> (generalized-print-function-enabled-p 'print-nil-as-list)
NIL
Lisp> (define-generalized-print-function print-nil-as-list

(object stream)
(null object)

(princ "()" stream))
PRINT-NIL-AS-LIST
Lisp> (print nil)
NIL
NIL
Lisp> (pprint NIL)
NIL
Lisp> (with-generalized-print-function 'print-nil-as-list

(print nil)
(pprint nil))

NIL
()Lisp> (setf (generalized-print-function-enabled-p

'print-nil-as-list) t)
T
Lisp> (pprint nil)
()
The first print call prints ni l, because pretty-printing is not enabled. The first
pprint call prints ni l, because the generalized print function print-ni l-a s-list
is not enabled. The second print call prints nil, because pretty-printing is again
not enabled. The second pprint call prints (), because the generalized print
function is enabled locally and pretty-printing is enabled. The third pprint
call prints (), because the generalized print function is enabled globally and
pretty-printing is enabled.

4-18 Pretty-Printing and Using Extensions to FORMAT

NOTE

A generalized print function controls the pretty-printing of an object
only if the following conditions exist:
• The generalized print function is enabled globally or locally.
• The predicate specified with define-generali zed-print-function

is true.
• The object to be printed does not come under control of a user-

defined format directive.
In cases where two or more generalized print functions are applicable,
only one is chosen. The one chosen is the most recently enabled
(globally or locally) generalized print function for which the predicate
specified with define-generalized-print-function is true.
Generalized print functions are not used when you print an object
under control of a user-defined format directive.

4.7 Abbreviating Printed Output

You can abbreviate printed output according to:
• The length of the object to be printed
• The depth of nested logical blocks
• The number of lines in the output
Length and depth abbreviation are supported in Common LISP and are effective
whether or not pretty-printing is enabled. In addition, abbreviation based on the
number of lines of output is supported in VAX LISP; this is effective only when
pretty-printing is enabled.

4.7.1 Abbreviating Output Length

You can control the number of sections of printed output by setting the *PRINT-
length* variable. The value you supply specifies the number of sections to be
printed for any affected logical block. The directives ~%, and mark the
sections of a logical block (see Section 4.3.3 for details). After the output stream
prints *print-length* sections of a logical block, it prints an ellipsis (...) and
stops processing the logical block. If the logical block is nested with other logical
blocks, the output stream terminates only the processing of the immediately
enclosing logical block. Output is not truncated if the value of *print-length* is
NIL.
The following example shows output abbreviation based on length:
Lisp> (setf *print-pretty* t)
T
Lisp> (setf *print-right-margin* 47)
47
Lisp> (setf *print-length* 11)
11

Pretty-Printing and Using Extensions to FORMAT 4-19

Lisp> (format t "Stars: ~@!~{~W~A
' (polaris dubhe mira mirfak bellatrix capella algol
mirzam pollux canopus albireo castor alphecca
antares))

Stars: POLARIS DUBHE MIRA MIRFAK BELLATRIX
CAPELLA ALGOL MIRZAM POLLUX CANOPUS
ALBIREO ...

NIL
Each star name in the list constitutes a separate logical block section, format
prints “ . . . ” after the eleventh star name to indicate that the list has been
abbreviated at that point.

4.7.2 Abbreviating Output Depth

Use the variable *print-level* to control the depth of printed output. *print-
le ve l* specifies the lowest level of dynamically nested logical blocks to be printed.
When your program calls format recursively, the output stream keeps track of
the actual nesting level and abbreviates output when the level reaches *print-
level* . The printed character # indicates where the stream has truncated the
output. You can prevent depth abbreviation by setting *print-le ve l* to NIL.
Dynamic nesting of logical blocks occurs frequently when you print complicated
structures. This nesting may not be obvious as you read the program. For
example, if you have defined list-print functions for the primitives if and
progn, printing a program that uses a combination of these primitives would
involve dynamic nesting of logical blocks, since each list-print function uses the
~w directive implicitly. The following example shows how the output stream
abbreviates the printing of a structure in accord with the value of *print-level*:
Lisp> (setf *print-level* 3)
3
Lisp> (pprint '(levell (level2 (level3 (level4 (level5))))))
(LEVEL1 (LEVEL2 (LEVEL3 #)))
Lisp> (setf *print-level* 2)
2
Lisp> (pprint ' (levell (level2 (level3 (level4 (level5))))))
(LEVEL1 (LEVEL2 #))
Lisp> (pprint '(levell 4 5 6 (level2 (level3 (level4

(level5))))))
(LEVEL1 4 5 6 (LEVEL2 #))

4.7.3 Abbreviating Output by Lines

You can control the number of lines printed in the output by setting the *print-
li ne s* variable. The value you supply specifies the number of lines to be printed
for the outermost logical block. The output stream prints “ at the end of
the last line to indicate where it has truncated the output. If *print-lines*
is ni l, the output stream will not abbreviate the number of lines printed. This
abbreviation mechanism is effective only when pretty-printing is enabled.

4-20 Pretty-Printing and Using Extensions to FORMAT

In the following example, printing stops at the end of the fourth line:
Lisp>
T
Lisp>
NIL
Lisp>
4
Lisp>

Stars:

(setf *print-pretty* t)
(setf *print-miser-width* nil)
(setf *print-lines* 4)
(format t "Stars: !~/LINEAR/~."

'(polaris dubhe mira mirfak bellatrix capella algol
mirzam pollux canopus albireo castor alphecca
antares))

POLARIS
DUBHE
MIRA
MIRFAK ...

NIL

4.8 Using Miser Mode

If you print large structures with deeply nested logical blocks, you may find
the miser mode useful. Indentation produced in the output by the nesting of
logical blocks, prefixes, and the ~ni directive reduces the line length available for
printing. Miser mode helps you avoid running out of space and printing beyond
the right margin. Miser mode does not, however, guarantee the elimination of
these problems.
Pretty-printing uses single-line mode if the output fits on one line. If the format
control string permits new lines and the output requires two or more lines,
pretty-printing normally uses multiline mode. The printer determines whether to
print a logical block in miser mode according to the current column of the output
at the beginning of the logical block and the values of two variables:
• *PRINT-RIGHT-MARGIN*
• *PRINT-MISER-WIDTH*

print-right-margin specifies the location of the right margin. *print-miser-
w i d t h* specifies a number of columns before the i ght margin. When the current
output column at the beginning of a logical block is equal to or greater than
the difference between *print-right-margin* and *print-miser-width*, then
the logical block is printed in miser mode. This condition occurs when the total
available line width is less than the value of *print-miser-width*, as shown in
Figure 4—1.

Pretty-Printing and Using Extensions to FORMAT 4-21

Figure 4-1: Variables Governing Miser Mode

Column at which
printer enters
miser mode ‘PRINT-RIGHT-MARGIN*

‘PRINT-MISER-WIDTH* *
MLO-003304

You can disable miser mode by setting *PRINT-MISER-WIDTH* to n i l.
Miser mode saves space by:
• Ignoring indentation format directives
• Starting a new line at every conditional new line directive:

Multiline mode new line (~_)
If-needed new line (~:_)
Miser mode new line (~0_)

The next two examples contrast pretty-printing in multiline mode and miser
mode:
Lisp> (setf *print-pretty* t)
T
Lisp> (setf *print-right-margin* 60)
60
Lisp> (setf *print-miser-width* 35)
35
Lisp> (format t "~:!Stars with Arabic names: ~S ~S ~27I~:_~S ~

~:I~0_~S ~_~S "
' (betelgeuse (deneb sirius vega)
aldebaran algol (castor pollux) bellatrix))

Stars with Arabic names: BETELGEUSE (DENEB SIRIUS VEGA)
ALDEBARAN ALGOL

(CASTOR POLLUX)
BELLATRIX

NIL
Lisp> (format t "~!Stars with Arabic names: ~:0!~S ~:_~S ~

~27I~:_~S ~:I~0_~S ~_~S ~1I~_~S~.~."
'(betelgeuse (deneb sirius vega)
aldebaran algol (castor pollux) bellatrix))

Stars with Arabic names: BETELGEUSE
(DENEB SIRIUS VEGA)
ALDEBARAN
ALGOL
(CASTOR POLLUX)
BELLATRIX

NIL
In the first output sample, format uses multiline mode. Miser mode is never
enabled, because the logical block begins at column 0 and miser mode takes effect
only if the column begins at column 25 (60 — 35). aldebaran lines up with the T
in betelgeuse, because the ~27i directive sets the indentation for following lines
at column 27 and the directive produces a new line. The -: I~@_~S directive
sets the column for the next line at the level of the A in algol. The ~li directive
controls the last argument, bellatrix, setting the indentation to column 1.

4-22 Pretty-Printing and Using Extensions to FORMAT

The second output example shows the effects of miser mode, because the text in
the outer logical block, “Stars with Arabic names:”, causes the inner logical block
to begin at column 26. With *print-miser-wi d t h* set to 35 and ♦print-right-
marg in* set to 60, format enables miser mode when the logical block begins past
column 25. format conserves space by starting a new line at every multiline
mode new line directive (~_) and every if-needed new line directive (~) format
also inserts a new line at the miser mode new line directive (~0_) and ignores
the indentation directives (~m).

4.9 Handling Improperly Formed Argument Lists

VAX LISP provides a method for gracefully handling argument lists that are
improperly formed. The function of the ~A directive, when used in a logical block,
differs slightly from the corresponding function in Common LISP.
In Common LISP the ~A directive is used with the iteration directives ~{ and -}
to check whether the argument list has been reduced to n i l. If the list is nil,
iteration stops.
You can also use the ~A directive to check whether the argument list for a logical
block has been reduced to a non-NlL atom. If the check shows that the argument
list is a non-NiL atom, the printer prints space-dot-space (.) and uses the
~w directive to print the value of the atom, format then stops processing the
immediately enclosing logical block, after printing the suffix (if one is there). No
error condition results. The following example shows the use of format to print a
dotted pair:
Lisp> (format t "~1:!~Q(~S~A

' (castor pollux deneb . aldebaran))
(CASTOR POLLUX DENEB . ALDEBARAN)
This feature serves as a useful debugging tool, because it lets the format function
work even when the argument list is improperly formed.

NOTE

When the ~A directive is included in a logical block, the format function
checks whether the argument list is a non-NiL atom, even when
pretty-printing is not enabled.

Pretty-Printing and Using Extensions to FORMAT 4-23

Chapter 5

Error Handling

The LISP system invokes the VAX LISP error handler when errors are signaled
during program evaluation. This chapter explains what the error handler does
when an error is signaled. Because the system’s error handler may not meet
your programming needs, VAX LISP lets you create your own error handler. The
procedure for creating an error handler is also explained in this chapter.

5.1 Error Handler

The VAX LISP error handler function, universal-error-handler, performs four
sequential steps:
1. Checks the number of nested errors that have occurred. If three nested errors

have occurred, the error handler aborts your program, displays a message,
and returns you to the top-level read-eval-print loop; otherwise, the handler
continues to the next step.

2. Checks the type of error.
3. Displays an error message that provides you with information about the error.
4. Performs the appropriate operation for the type of error that was signaled.

5.2 VAX LISP Error Types
Three types o f errors can occur du rin g the eva luation o f a L ISP program :
• Fatal error
• Continuable error
• Warning
When an error is signaled, the VAX LISP system displays an error message that
provides you with the following information:
• The type of error that was signaled—fatal error, continuable error, or warning
• The name of the function that caused the error
• The name of the function that was used to signal the error—error, cerror, or

WARN
• A description of the error
• If a continuable error, an explanation of what will happen if you continue the

program’s evaluation from the point at which the error occurred

Error Handling 5-1

The format of an error message and the information a message provides depend
on the type of error. The next three sections describe the types of errors; each
description includes the error type’s message format and the operation the error
handler performs.

5.2.1 Fatal Errors

When a fatal error is signaled, the error handler displays a message in the
following format:
Error in function-name: error-description.
In this format description, function-name is the name of the function that caused
the error, and error-description is a message telling why the error occurred. The
message is generated from the format string and the arguments in the call to the
error function; the message can be displayed on more than one line.
An example of a fatal error message follows:
Error in SYSTEM::MAKE-ARRAY-UK: Only vectors can have fill pointers.
After the message is displayed, the error handler checks the value of the VAX
LISP *error-action* variable. This value is set when you invoke VAX LISP and
can be either the :EXIT or the : debug keyword. When the value is :EXIT (the
default in a batch session), the error handler causes the LISP system to exit on
an error; when the value is : debug (the default in an interactive session), the
handler invokes the VAX LISP debugger.
On VMS systems, you use a command qualifier to set the value of the *error-
action* variable:
$ LISP/ERROR_ACTION=va/ue

On ULTRIX systems, you use an option to set the value of the *error-action*
variable:
% vaxlisp -V ERROR_ACTION=va/ue

In either case, the value must be either EXIT or debug.
If the debugger is invoked, you can use it to locate the error in your program.
After you locate the error, you can correct it and restart your program’s evalua
tion.

NOTE

You cannot continue your program’s evaluation from the point at which
a fatal error occurred.

The *error-action* variable is described in the VAX LISP/VMS Object Reference
Manual, and the debugger is described in Chapter 4 of the VAX LISP/VMS
Program Development Guide.

5.2.2 Continuable Errors

When a continuable error is signaled, the error handler displays a message in the
following format:
Continuable error in function-name: error-description.

Control Stack Debugger
If continued: continue-explanation.

5-2 Error Handling

In the preceding format description, function-name is the name of the function
that caused the error, and error-description is a message telling why the error
occurred. The message is generated from the format string and the arguments in
the call to the cerror function; the message can be displayed on more than one
line. A line of text that explains what will happen if you continue your program’s
evaluation follows the error description.
An exam ple o f a con tinuable error m essa g e is:
Continuable error in FACTORIAL: Too few arguments: 0
Contro Stack Debugger
If continued: Proceed with unsupplied arguments defaulting to NIL.
After the message is displayed, the error handler checks the value of the VAX
LISP *error-action* variable in the same way it checks the value after a fatal
error (see Section 5.2.1).
If the debugger is invoked, you can do one of the following:
• Continue from the error; the cerror function performs the corrective action

that is specified in the error message.
• Locate the error in your program. After you locate the error, you can correct

it and restart your program’s evaluation.
The *error-acti on* variable is described in the VAX LISP/VMS Object Reference
Manual, and the debugger is described in Chapter 4 of your Program Development
Guide.

5.2.3 Warnings

A warning is an error condition that may or may not affect your program’s
evaluation. When this type of error occurs, the system displays a message for the
following reasons:
• You might want to correct the error later.
• Your program might correct the error, but you should know that the error

occurred.
When a warning is signaled, the error handler displays a message in the following
format:
Warning in function-name: error-description.
function-name is the name of the function that caused the error, and error-
description is a message telling why the error occurred. The message is generated
from the format string and the arguments in the call to the warn function; the
message can be displayed on more than one line.
An example of a warning error message is:
Warning in function TE: 3 is not a symbol.
After the message is displayed, the error handler checks the value of the *break-
on-warnings* variable in the same way it checks the value *error-action*
variable after a fatal error (see Section 5.2.1).

NOTE

If the value of the * break-o n-warnings* variable is T, the debugger is
invoked when a warning is signaled.

Error Handling 5-3

If the debugger is invoked, you can use it to locate the error in your program.
After you locate the error, you can correct it, exit the debugger, and then continue
your program’s evaluation from the point where the error occurred.
The *break—on—warnings* variable is described in Common LISP: The Language.

5.3 Creating an Error Handler
The VAX LISP *universal-error-handler* variable is bound to the system’s
error handler. This binding provides you with a way to create your own error
handler if the system’s handler does not meet your programming needs. To create
an error handler you must:
1. Define the error handler.
2. Bind the *universal-error-handler* variable to your defined handler.
The *universal-error-handler* variable is described in the VAX LISP/VMS
Object Reference Manual.

5.3.1 Defining an Error Handler

To define an error handler, you must define an error handler function. This
function must be able to accept two or more arguments because the LISP system
passes at least two arguments to the error handler each time an error occurs in a
program. Therefore, specify the arguments in an error-handler definition in the
following format:
(DEFUN handler (function-name error-signaling-function &REST args) . ..)
The arguments provide the error handler with the following information:
• The name of the function that called the error-signaling function
• The name of the error-signaling function
• The arguments that were passed to the error-signaling function
An example of an error handler definition is:
Lisp> (defun critical-error-handler (function-name

error-signaling-function
Srest args)

(when (or (eq error-signaling-function 'error)
(eq error-signaling-function 'cerror))

(flash-alarm-light))
(apply #'universal-error-handler

function-name
error-signaling-function
args))

CRITICAL-ERROR-HANDLER
This error handler checks whether a fatal or continuable error is signaled. If
either type of error is signaled, the handler calls the function flash-alarm-light
and then passes the error signal information to the VAX LISP error handler.
When you define an error handler, the definition can include a call to the
universal-error-handler function. If the definition does not include a call to
this function and you want the handler to check the value of the *error-action*
or *BREAK-ON-warnings* variable, you must include a check of the variable in the
handler’s definition.

5-4 Error Handling

If you want an error handler to display error messages in the formats described
in Sections 5.2.1 through 5.2.3, include a call to either the universal-error-
handler or print-signaled-error function. Descriptions of these functions are
provided in the VAX LISP/VMS Object Reference Manual.
The next three sections describe the arguments an error handler must be able to
accept.

5.3.1.1 Function Name
The function-name argument is the name of the function that calls an error
signaling function. This argument enables the error handler to include the
function’s name in the error message the handler displays.

5.3.1.2 Error-Signaling Function
The error-signaling-function argument is the name of the error-signaling function
that is called to generate the error signal. Depending on which function is called,
a fatal error, continuable error, or warning is signaled.
The error handler uses the error-signaling-function argument to determine the
contents of the args argument.
Table 5-1 lists the functions that can be passed as the error-signaling-function
argument and briefly describes each function.

Table 5-1: Error-Signaling Functions

Fun ction D escr ip t ion
CERROR Signals a continuable error
ERROR Signals a fatal error
WARN Signals a warning

See Common LISP: The Language for detailed descriptions of the cerror and
error functions. See the VAX LISP/VMS Object Reference Manual for a descrip
tion of the warn function.

5.3.1.3 Arguments
The args argument is the list of arguments passed to the error-signaling function
when the error-signaling function is invoked. The contents of the list depends
on which function is invoked. The list can include one or two format strings and
their corresponding arguments. The format strings and arguments are passed to
the format function, which produces the correct error message.

5.3.2 Binding the *UNIVERSAL-ERROR-HANDLER* Variable

Once you define an error-handling function, you must bind the * universal-
error-handler* variable to it. The following example shows how to bind the
variable to a function:
Lisp> (let ((‘universal-error-handler*

#'critical-error-handler))
(perform-critical-operation))

Error Handling 5-5

The LET special form binds the *universal-error-ha nd ler* variable to the
critical-error-handler function that was defined in Section 5.3.1 and calls a
function named perform-critical-operation. When the form is exited because
the evaluation finished or the throw function is called, the *universal-ERROR-
handler* variable is restored to its previous value.

5-6 Error Handling

Index

A________________________
Abbreviating printed output, 4-19 to 4-21

by depth, 4-20
by length, 4-19 to 4-20
by lines, 4-3, 4-20 to 4-21

Arrays, 1-5
constants, 1-5
specialized, 1-5

B________________________
B IND-KEYBOARD-FUNCTION function

garbage collector, 1-10
interrupt functions, 1-15
keyboard functions, 1-15

: B IO -BY TE -QU O TA keyword
G ET -PRO CE SS- IN FO RM A T ION function, 1-12

Bits attribute, 1-4
BREAK-ON-W ARN INGS variable

defining an error handler, 5-4

c________________
Character-cell coordinate system, 3-3

and font, 3-3
realigning

by changing cursor position, 3-6
by changing font, 3-5

Characters, 1-4
attributes, 1—4
comparisons, 1-4
constants, 1-4

Code attribute, 1-4
Common LISP

VAX LISP extensions to I/O, 2-1 to 2-6
VAX LISP implementation notes, 1-1 to 1-17

Complex numbers, 1-4
Conditional new line directives, 4-7
Constructor function

allocating static space, 1-10
Control characters

binding to functions, 1-15
returning information about bindings, 1-15, 1-16
unbinding from functions, 1-15, 1-16

Controlling output
arrangement, 4-7 to 4-9
indentation, 4-11
margins, 4-3 to 4—4
newlines, 4-9 to 4-11

Control stack
overflow, 1-9

Control variab les
for printing, 4—2 to 4-4

C oord in ate sy s tem s
character-cell, 3-3
for view ing areas, 3-2

Cursor
w indow stream

S ee Window stream cursor

D __________________________________

Data
representation, 1-1 to 1-5

Data typ es
arrays, 1-5

constants, 1-5
specia lized , 1-5

characters, 1—4
attributes, 1—4
com parison s, 1-4
con stants, 1-4

com p lex numbers, 1—4
floating-point numbers, 1-2

constants, 1-3
functions, 1-5
integers, 1-2

constants, 1-2
numbers, 1-2 to 1—4
strings, 1-5

D ebu gger
error handler, 5-2 to 5-3

: DEBUG keyword
S e e *ERR OR -A CT ION * variable

Defining
error handler, 5-4 to 5-5
gen era lized print functions, 4-17 to 4-19
list-print functions, 4-16 to 4—17

D irectives for handling lists, 4-13 to 4-14
D oub le floating-point numbers, 1-2
Dynam ic m em ory

ga rb a g e collector, 1-6, 1-8

E________________________
: ELEMENT-TYPE keyword

MAKE-ARRAY function, 1-5
OPEN function, 1-14

Enabling pretty-printing, 4-3
: EN D -O F -F IL E -B L O CK keyword

G E T -F IL E - IN FO R M A T IO N function, 1-14
End-of-file operations, 1-12

lndex-1

Ephem eral g a r b a g e collector, 1-7
Error

handling, 5-1 to 5-6
m e s s a g e s

error-handler definition, 5-5
format, 5-1

types, 5-1 to 5-4
continuable, 5-2 to 5-3
fatal, 5-2
warning, 5-3 to 5-4

Error handler
binding *UNIVERSAL-ERROR-HANDLER*

variable, 5-5
defining, 5-4 to 5-5

Error-signaling functions
(table), 5-5

ERROR_ACTION option
fatal error, 5-2

/ERROR_ACTION qualifier
fatal error, 5-2

E SCAPE key
terminal input, 1-12

: E X IT keyword
S e e *ERROR-ACTION* variable

E xten sion s to the FORMAT function, 4-4 to 4-14

F______________________ _
File

organization, 1-13
FILE-LENGTH function, 1-14
FILE-POSITION function, 1-14
Fill directive, 4-13
: FIRST-FREE-BYTE keyword
GET-FILE-INFORMATION function, 1-14

Floating-point numbers, 1-2
con stan ts (table), 1-3
(table), 1-2

Font
influence on character-cell coord inate system , 3-3

Font attribute, 1-4
Fonts

specify in g for w indow stream s, 3-5
FORMAT d irectives in VAX LISP (table), 4-5
FORMAT function

~% directive, 4-9
directive, 4-9
directive, 4-9

~ d i r e c t i v e , 4-9
~ 0 _ directive, 4-9
~ ; directive, 4-12
-/FILL/ directive, 4-13
- I directive, 4-11
-/LINEAR/ directive, 4-14
-/TABULAR/ directive, 4-14
~T directive, 4-13
user-defined directives, 4-15 to 4—16
~W directive, 4-6

Fresh line directive, 4-9
Function

im plem entation-dependent (table), 1-16
interrupt, 1-10, 1-14 to I -15

ga rb a g e collector, 1-15
su sp en d ed sy stem s, 1-15

keyboard, 1-15 to 1-16
ga rb a g e collector, 1-15

Function
keyboard (cont'd.)

su sp en d e d sy stem s, 1-16
Functions, 1-5

CERROR, 5-3
ERROR, 5-2
FORMAT, 4—4 to 4-14

error m e s sa g e s , 5-5
GENERALIZED-PRINT-FUNCTION-

ENABLED -P, 4-17
PPRINT, 4-2
P P R IN T -D E F IN IT IO N , 4-2
P P R IN T - P L IS T , 4-2
PR IN T -S IG N A LED -ERROR , 5-5
UN IVERSAL-ERROR-HANDLER, 5-1
WARN, 5-3
WRITE, 4-2
W R ITE -TO -STR IN G , 4-2

G______________________
G arba ge collector, 1-6 to 1-10

available sp a ce , 1-8
changin g m e s sa g e s , 1-9
control stack overflow, 1-9
dynam ic memory, 1- 6 , 1-8
ephem eral, 1-7
failure, 1-9
interrupt functions, 1-10,1-15
keyboard functions, 1-15
perform ance, 1-7
run-time efficiency, 1-7
static memory, 1-10
tuning, 1-7

G en era lized print functions, 4-17 to 4-19
G E T -F IL E - IN FO R M A T IO N function

number of b y te s in a file, 1-14
GET-KEYBOARD-FUNCTION function

returning information about key bindings, 1-15,
1-16

GET -PRO CE SS- IN FO RM A T ION function
record length, 1-12

H_______________________
Handling lists, 4-13 to 4-14

I_______________________
I/O requ est specifiers, 2-3

table, 2-3
lf-needed new line directive, 4-9
Implementation notes, 1-1 to 1-17
Indentation, 4-11

directive, 4-11
preserving, 4-8

Input/Output, 1-10 to 1-14
end-of-file operations, 1-12
F IL E -LENGTH function, 1-14
file organization, 1-13
F IL E - P O S IT IO N function, 1-14
functions, 1-13
#\NEW LINE character, 1-10
record length, 1-12
terminal input, 1-11
terminal output, 1-12
W RITE-CHAR function, 1-14

lndex-2

pInput form s
editing typed, 3-8

INSTATE-INTERRUPT-FUNCTION function
g a r b a g e collector, 1-10

Integers, 1-2
constants, 1-2

Interrupt functions, 1-10,1-14 to 1-15
g a rb a g e collector, 1-15
su sp en d ed sy stem s, 1-15
terminal input, 1-11

K___________________________
Keyboard functions, 1-15 to 1-16

ga rb a g e collector, 1 -15
su sp en d ed sy stem s, 1-16

L________________________
Limiting output, 4-19 to 4-21

by depth, 4-20
by length, 4-19 to 4-20
by lines, 4-3, 4-20 to 4-21

Linear directive, 4-14
LISP

implem entation notes, 1-1 to 1-17
input/output

S e e Input/Output
p r o c e s s in g during g a r b a g e collection, 1-10

List-print functions, 4-16 to 4-17
L ogica l block, 4—4
Long floating-point numbers, 1-2

M_______________________
Macro

im plem entation-dependent (table), 1-16
M acros

D E F IN E -G E N E R A IilZ E D —PR IN T-FU N CT ION ,
4-17

D E F IN E -L IS T -P R IN T -F U N C T IO N , 4-16 to
4-17

U N D EF IN E -L IST -P R IN T -FU N CT IO N , 4-17
W ITH -G EN ERA L IZED -PR IN T-FU N CT ION ,

4-18
Margins

controlling, 4-3 to 4—4
Memory

dynam ic
ga rb a g e collector, 1-6, 1-8

static
g a rb a g e collector, 1-10

M iser m ode, 4-4, 4-21 to 4-23
M iser-m ode new line directive, 4-9
Multiline m ode, 4—7
Multiline-mode new line directive, 4-9

N
New lines, 4-9 to 4—11
Numbers, 1-2 to 1—4

o
OPEN function, 1-14

Pass-all m ode, 1-11
: PASS-THROUGH keyword

SET-TERM INAL-M ODES function, 1-11
Per-line prefix, 4-12

preserving, 4-8
Prefix

per-line, 4—12
Prefix to printed output, 4-12 to 4-13
Preserv ing indentation, 4-8
Preserv ing per-line prefixes, 4-8
Pretty-printing, 4—1 to 4-23

enabling, 4-3
improperly form ed argum ent lists, 4-23
with control variables, 4-2 to 4—4
with defaults, 4-2

♦ PR IN T -M ISER -W ID TH * variable, 4-4
♦ PR IN T-R IGHT-M ARG IN * variable, 4-3

R___________________
R ecord length, 1-12
R ecord M anagem en t S e rv ic e s (RMS)

input/output, 1-10
record length, 1-12

Relative tabbing, 4-13
R escann in g

by W ITH - IN P U T -E D IT IN G , 3-10
Return key

terminal input, 1-11
Run-time efficiency, 1-7

s_______________
Separa tor directive, 4-12
SET-TERM INAL-M ODES function

chang in g terminal input m ode, 1-11
Short floating-point numbers, 1-2
S in g le floating-point numbers, 1-2
S p ec ia liz ed arrays, 1-5
Static m em ory

ga rb a g e collector, 1-10
Stream d ispatch function, 2-3

argum ents, 2-3
Stream s

defin ing new types, 2-1
information about, 2—4

Stream structure, 2-2
Strings, 1-5
Suffix to printed output, 4—12 to 4-13
S u sp en d e d sy s tem s

interrupt functions, 1-15
keyboard functions, 1-16

T____________________
Tab directive. 4-13
Tabs in printed output, 4-13
Tabular directive, 4-14
Terminal

input, 1-11
chang in g m od es, 1-11
pass-ail m ode, 1-11

Terminating characters
for w indow stream input editor, 3-9

lndex-3

TE R PR I function
record length, 1-12

Tuning, g a r b a g e collector, 1-7

u __________
UNBIND-KEYBOARD-FUNCTION function

unbinding control characters, 1-15, 1-16
Unconditional new line directive, 4-9
UNIVERSAL-ERROR-HANDLER function

defin ing an error handler, 5-4
U ser defin ed FORMAT directives, 4-15 to 4-16

V__________________________
Variables

BREAK-ON-W ARN INGS, 5-3
*ERROR -A CT ION *, 5-2
print control, 4-2 to 4-4
*P R IN T -L E N G T H \ 4-19
* P R IN T -L IN E S * , 4-2 ,4-3 ,4-20
* PR IN T -M ISER -W ID TH *, 4-2, 4-4
*P R IN T -PR E TTY * , 4-3, 4-6
*PR IN T -R IG H T -M A RG IN *, 4-2, 4-3
UN IVERSAL-ERROR-HANDLER, 5-4 to

5-6
V iewing area

changing, 3-3, 3-25
effect on cursor, 3-3

coord inate sy stem s, 3-2
erasing, 3-3, 3—17
obtaining d im en sion s, 3-3
scrollin g contents, 3-4
specify ing, 3-18
w indow stream s, 3-2

W indow stream s
input from (cont’d.)

editing, 3-7
prompting, 3-10
reading com p le te forms, 3-8

input history
and W ITH - IN P U T -E D IT IN G , 3-8
limit, 3-18

output-only, 3-2
specify in g characteristics, 3-2
vertical overflow

scrolling, 3-4
truncating, 3-4
wrapping, 3-4

W R ITE-CHAR function
record length, 1-12

Write directive, 4-6

w
W indow s

sen d in g character output to, 3-1
taking character input from, 3-1
visibility

w indow stream s, 3-7
W indow stream

input history
limit, 3-6

scrolling
cell coord inates, 3-19
native coord inates, 3—18

W indow stream cursor, 3-6
position

changing, 3-6
obtaining, 3-6

W indow stream s, 3-1 to 4—1
and keyboard, 3-7
creating, 3-2
cu rsor

S e e W indow stream cursor
font

changing, 3-5, 3-22
specify ing, 3-5, 3-17

horizontal overflow
truncating, 3-4
wrapping, 3-4

input editor, 3-9
terminating character, 3-9

input from, 3-7

Index-4

HOW TO ORDER ADDITIONAL DOCUMENTATION

From Call Write
Alaska, Hawaii,
or New Hampshire

603-884-6660 Digital Equipment Corporation
P.O. Box CS2008
Nashua NH 03061

Rest of U.S.A.
and Puerto Rico1

800-DIGITAL

'Prepaid orders from Puerto Rico, call Digital’s local subsidiary (809-754-7575)

Canada 800-267-6219
(for software
documentation)

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: Direct Order Desk

613-592-5111
(for hardware
documentation)

Internal orders
(for software
documentation)

— Software Supply Business (SSB)
Digital Equipment Corporation
Westminster MA 01473

Internal orders
(for hardware
documentation)

DTN: 234-4323
508-351-4323

Publishing & Circulation Services (P&CS)
NR03-1/W3
Digital Equipment Corporation
Northboro MA 01532

Reader’s Comments VAX LISP Implementation and Extensions to
Common LISP
AA-MK70A-TE

Your comments and suggestions will help us improve the quality of our future documentation. Please note
that this form is for comments on documentation only.
I ra te th is m anual’s: Excellent Good Fair Poor
Accuracy (product works as described) □ □ □ □
Completeness (enough information) □ □ □ □
Clarity (easy to understand) □ □ □ □
Organization (structure of subject matter) □ □ □ □
Figures (useful) □ □ □ □
Examples (useful) □ □ □ □
Index (ability to find topic) □ □ □ □
Page layout (easy to find information) □ □ □ □

What I like best about this manual:

What I like least about this manual:

I found the following errors in this manual:
Page Description

My additional comments or suggestions for improving this manual:

Please indicate the type of user/reader that you most nearly represent:

□ Administrative Support
□ Computer Operator
□ Educator/Trainer
□ Programmer/Analyst
□ Sales

□ Scientist/Engineer
□ Software Support
□ System Manager
□ Other (please specify)

N am e/T itle__ Dept. ------
C om p a n y __ Date
Mailing Address -- -----------------
___ Phone ------

10/87

— Do Not Tear — Fold Here and TapeSDSDDSO' NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE W ILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
CORPORATE USER PUBLICATIONS
PKO3-1/30D
129 PARKER STREET
MAYNARD, MA 01754-2198

— Do Not Tear — Fold Here

