
VAX Pascal Reference Manual
Order Number: AA-L369D-TE

December 1989

This document contains information about selected programming tasks using the VAX
Pascal programming language.

Revision/Update Information: This revised document supersedes the information in
VAX PASCAL Reference Manual
(Order No. Al-L369C-TE).

Operating System and Version: VMS Version 5.2 or higher

Software Version:

digital equipment corporation
maynard, massachusetts

VAX Pascal Version 4.0

First Printing, July 1983
Revised, March 1985
Revised, February 1987
Revised, December 1989

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Da~a and
Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1979, 1985, 1987, 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA MASS BUS VAX RMS
DDIF PrintServer 40 VAXstation
DEC Q-bus VMS
DECnet ReGIS VT
DECUS ULTRIX XUI
DECwindows UNIBUS
DIGITAL VAX mnmnnma™ LN03 VAXcluster

The following is a third-party trademark:

Postscript is a registered trademark of Adobe Systems, Inc.

ZK4569

- Contents

Preface . xvii

New and Changed Features . xxi

Chapter 1

1.1

1.2

1.3

1.4

Chapter 2

2.1

Language Elements

Pascal Language Standards .
1.1 .1 Unextended Pascal Standards .
1.1.2 Extended Pascal Standard .

Lexical Elements
1.2.1 Character Set
1.2.2 Special Symbols .
1.2.3 Reserved Words
1.2.4 Identifiers .

Comments ... · .. .

Page Breaks and Form Feeds .

Data Types and Values

Ordinal Types
.2.1.1 INTEGER Type ~
2.1.2 UNSIGNED Type
2.1.3 CHAR Type
2.1.4 BOOLEAN Type
2.1.5 Enumerated Types
2.1.6 Subrange Types

1-1
1-1
1-2

1-2
1-3
1-3
1-4
1-5

1-8

1-9

2-1
2-2
2-3
2-4
2-5
2-5
2-6

iii

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

Chapter 3

3.1

3.2

3.3

3.4

iv

Real Types .. .

Pointer Type .. .

Structured Types .
2.4.1 ARRAY Types

2.4.1.1 Array Constructors
2.4.2 RECORD Types

2.4.2.1 Records with Variants
2.4.2.2 Record Constructors

2.4.3 SET Type
2.4.3.1 Set Constructors

2.4.4 FILE Type
2.4.5 Nonstandard Constructors

2.4.5.1 Nonstandard Array Constructors · ..
2.4.5.2 Nonstandard Record Constructors

Schema Types ~ .

String Types .. .
2.6.1 PACKED ARRAY OF CHAR Types
2.6.2 VARYING OF CHAR Types
2.6.3 STRING Schema Type

Predefined Structured and Schema Types .
2.7.1 TEXT Type
2.7.2 TIMESTAMP Type

Static and Nonstatic Types .

Type Compatibility
2.9.1 Structural Compatibility
2.9.2 Assignment Compatibility

The Declaration Section

The CONST Section

The LABEL Section ·

The TO BEGIN DO Section

The TO END DO Section

2-7

2-9

2-11
2-12
2-13
2-15
2-17
2-20
2-23
2-24
2-25
2-26
2-26
2-28

2-29

2-33
2-34
2-35
2-36

2-38
2-38
2-39

2-39

2-40
2-40
2-42

3-2

3-3

3-3

3-5

3.5 The TYPE Section

3.6 The VALUE Section

3.7 The VAR Section

Chapter 4 Expressions and Operafors

4.1 Expressions .

4.2 Operators .. .
4.2.1 . Arithmetic Operators
4.2.2 Relational Operators .
4.2.3 Logical Operators
4.2.4 String Operators
4.2.5 Set Operators
4.2.6 Type Cast Operator
4.2. 7 Precedence of Operators

4.3 Type Conversions

Chapter 5 Statements

5.1 Assignment Statement

5.2 CASE Statement

5.3 Compound Statement

5.4 Empty Statement .

5.5 FOR Statement

5.6 GOTO Statement

5.7 IF Statement .. .

5.8 Procedure Call

5.9 REPEAT Statement

5.10 WHILE Statement

3-6

3-8

3-9

4-1

4-2
4-3
4-6
4-7
4-8

4-10
4-11
4-12

4-15

5-1

5-2

5-4

5-4

5-5

5-6

5-7

5-8

5-9

5-10

v

5.11

Chapter 6

6.1

6.2

6.3

Chapter 7

7.1

7.2

7.3

Chapter 8

8.1

8.2

8.3

vi

WITH Statement :

Procedures and Functions

Routine Declarations

Routine Calls .. .

Parameters .
6.3.1 Value Parameters
6.3.2
6.3.3
6.3.4
6.3.5

6.3.6

6.3.7
6.3.8

Variable Parameters .
Routine Parameters .
Foreign Parameters .
Schema Parameters -.................... .
6.3.5.1 Schema Parameter Sections
Conformant Parameters .
6.3.6.1 Conformant Array Parameters
6.3.6.2 Conformant VARYING Parameter
6.3.6.3 Conformant Parameter Sections
Parameter Association
Default Formal Parameters .

Program Structure and Scope

Blocks

Scope of Identifiers .

Modules and Programs
7.3.1 Compilation Units and Data Sharing

7.3.1.1 Environment Files
7.3.1.2 Global and External Identifiers

Predeclared Routines

ABS" Function .

ADD _INTERLOCKED Function

ADDRESS Function

5-11

6-2

6-5

6-6
6-8

6-10
6-13
6-15
6-17
6-19
6-20
6-20
6-22
6-23
6-24
6-25

7-1

7-2

7-4
7-6
7-6
7-8

8-3

8-3

8-3

8.4 ARCTAN Function . 8-4

8.5 ARGUMENT Function . 8-4

8.6 ARGUMENT _LIST _LENGTH Function . 8-5

8.7 BIN Function . 8-5

8.8 BITNEXT Function . 8-6

8.9 BIT_OFFSET Function . 8-7

8.10 BITSIZE Function . 8-7

8.11 BYTE_ OFFSET Function . 8-8

8.12 CARD Function . 8-8

8.13 CHR Function ·. . . 8-8

8.14 CLEAR_INTERLOCKED Function. 8-9

8.15 CLOCK Function . 8-9

8.16 COS Function . 8-9

8.17 CREATE_DIRECTORY Procedure 8-9

8.18 DATE and TIME Functions . 8-10

8.19 DATE and TIME Procedures . 8-11

8.20 DBLE Function . 8-11

8.21 DEC Function . 8-11

8.22 DELETE_FILE Procedure. 8-12

8.23 DISPOSE Procedure . 8-13

8.24 EQ Function . 8-13

8.25 ESTABLISH Procedure . 8-14

8.26 EXP Function . 8-14

vii

8.27 EXPO Function . 8-14

8.28 FIND_FIRST_BIT_CLEAR Function . 8-15

8.29 FIND_FIRST_BIT_SET Function . 8-15

8.30 FIND_MEMBER Function. 8-16

8.31 FIND_NONMEMBER Function . 8-16

8.32 GE Function _. 8-17

8.33 GT Function . 8-17

8.34 GETTIMESTAMP Procedure . 8-18

8.35 HALT Procedure. 8-19

8.36 HEX Function . 8-19

8.37 !ADDRESS Function . 8-20

8.38 INDEX Function . 8-21

8.39 INT Function . 8-21

8.40 LE Function . 8-22

8.41 LENGTH Function . 8-22

8.42 LN Function : . 8-22

8.43 LOWER Function . 8-23

8.44 LT Function . 8-23

8.45 MAX Function . 8-24

8.46 MFPR Function . 8-24

8.47 MIN Function . 8-24

8.48 MTPR Procedure . 8-24

8.49 NE Function. 8-25

viii

8.50

8.51

8.52

8.53

8.54

8.55

8.56

8.57

8.58

8.59

8.60

8.61

8.62

8.63

8.64

8.65

8.66

8.67

8.68

8.69

8.70

8.71

8.72

NEW Procedure

NEXT Function .

OCT Function

ODD Function

ORD Function

PACK Procedure

PAD Function .. .

PRED Function .

PRESENT Function

QUAD Function

READV Procedure

RENAME_FILE Procedure

REVERT Procedure

ROUND Function

SET _INTERLOCKED Function

SIN Function .. .

SIZE Function .

SNGL Function

SQR Function

SQRT Function .

STATUSV Function

SUBSTR Function

SUCC Function

8-25

8-27

8-28

8-28

8-28

8-29

8-29

8-30

8-30

8-31

8-31

8-32

8-32

8-33

8-33

8-33

8-33

8-35

8-35

8-35

8-36

8-36

8-37

ix

8.73 TIME Function . 8-37

8.74 TIME Procedure . 8-37

8.75 TRUNC Function . • 8-37

8.76 UAND Function 8-38

8.77 UDEC Function 8-38

8.78 UINT Function . 8-39

8.79 UNDEFINED Function . 8-39

8.80 UNOT Function . 8-40

8.81 UNPACK Procedure . 8-40

8.82 UOR Function . 8-41

8.83 UPPER Function . 8-41

8.84 UROUND Function . 8-42

8.85 UTRUNC Function . 8-42

8.86 UXOR Function . 8-43

8.87 WRITEV Procedure . 8-43

8.88 XOR Function . 8-44

8.89 ZERO Function . 8-44

Chapter 9 Input and Output Processing

9.1

9.2

x

Files and File Organizations .
9.1.1 Sequential File Organization
9.1.2 Relative File Organization
9.1.3 Indexed File Organization

9.1.3.1 Keys

Component Format~
9.2.1 Fixed-Length Component Format

9-1
9-2
9-3
9-4
9-6

9-8
9-9

9.3

9.4

9.5

9.6

9.2.2
9.2.3

Variable-Length Component Format
Stream Component Format ,

Component Access Modes
9.3.1 Sequential Access

9.3.1.1 Sequential Access to Sequential Files
9.3.1.2 Sequential Access to Relative Files
9.3.1.3 Sequential Access to Indexed Files

9.3.2 Random Access
9.3.2.1 Random Access by Relative Component Numbers

(Direct Access)
9.3.2.2 Random Access to Indexed Files (Keyed

Access)

File Locking .

TEXT Files
9.5.1 Carriage Control
9.5.2 Prompting on a Terminal
9.5.3 Delayed Device Access to Text Files
9.5.4 Writing Partial Lines to Terminals

110 Routines .
9.6.1 CLOSE Procedure
9.6.2 DELETE Procedure
9.6.3 EOF Function
9.6.4 EOLN Function
9.6.5 EXTEND Procedure
9.6.6 FIND Procedure
9.6. 7 FINDK Procedure
9.6.8
9.6.9
9.6.10
9.6.11
9.6.12
9.6.13
9.6.14
9.6.15
9.6.16
9.6.17
9.6.18
9.6.19
9.6.20
9.6.21
9.6.22

GET Procedure
LINELIMIT Procedure
LOCATE Procedure
OPEN Procedure
PAGE Procedure
PUT Procedure .
READ Procedure
READLN Procedure ~
RESET Procedure
RESETK Procedure · ..
REWRITE Procedure
STATUS Function
TRUNCATE Procedure
UFB Function
UNLOCK Procedure

9-10
9-10

9-10
9-12
9-13
9-14
9-15
9-16

9-17

9-17

9-18

9-18
9-19
9-20
9-21
9-23

9-24
9-25
9-27
9-28
9-29
9-30
9-31
9-32
9-34
9-36
9-37
9-38
9-43
9-44
9-45
9-49
9-51
9-52
9-53
9-55
9-56
9-57
9-57

xi

9.6.23
9.6.24
9.6.25
9.6.26

UPDATE Procedure
WRITE Procedure
WRITELN Procedure
Error Processing and Formatting Output
9.6.26.1 Error Processing Parameter
9.6.26.2 Output with Specified Field Width
9.6.26.3 Writing Binary, Decimal, Unsigned Decimal,

Hexadecimal, and Octal Values

9-58
9-59
9-60
9-62
9-62
9-63

9-64

Chapter 10 Attributes

10.1 Attribute Syntax . 10-1

10.2 Attributes . 10-4
10.2.1 ALIGNED . 10-4
10.2.2 ASYNCHRONOUS . 10-5
10.2.3 AT. 10-6
10.2.4 AUTOMATIC . 10-7
10.2.5 BIT . 10-'-8
10.2.6 BYTE . 10-9
10.2.7 CHECK . 10-9
10.2.8 CLASS_A. 10-11
10.2.9 CLASS_NCA. 10-12
10.2.10 CLASS_S. 10-12
10.2.11 COMMON.................................... 10-13
10.2.12 ENVIRONMENT . 10-14
10.2.13 EXTERNAL.. 10-14
10.2.14 G_FLOATING _. 10-'-15
10.2.15 GLOBAL . 10-'-16
10.2.16 HIDDEN. 10-17
10.2.17 IDENT . 10-'-17
10.2.18 IMMEDIATE . 10-18
10.2.19 INHERIT. 10-'-18
10.2.20 INITIALIZE . 10-19
10.2.21 KEY . 10-'-20
10.2.22 LIST . 10-21
10.2.23 LOCAL . 10-23
10.2.24 LONG . 10-24
10.2.25 NOG_FLOATING . 10-24
10.2.26 NOOPTIMIZE . 10-25
10.2.27 OCTA . 10-25
10.2.28 OPTIMIZE . 10-'-26
10.2.29 OVERLAID . 10-27

xii

10.2.30 POS . 10-27
10.2.31 PSECT . 10-28
10.2.32 QUAD . 10-29
10.2.33 READONLY . 10-29
10.2.34 REFERENCE . 10-31
10.2.35 STATIC . 10-31
10.2.36 TRUNCATE . 10--32
10.2.37 UNALIGNED . 10-34
10.2.38 UNBOUND . 10-35
10.2.39 UNSAFE . 10-36
10.2.40 VALUE . 10-39
10.2.41 VOLATILE . 10-40
10.2.42 WEAK_EXTERNAL . 10-43
10.2.43 WEAK_GLOBAL . 10-43
10.2.44 WORD . 10-43
10.2.45 WRITEONL Y . 10-44

10.3 Attribute Classes . 10-45

Chapter 11 Directives

11.1 %INCLUDE Directive. 11-1

11.2 %DICTIONARY Directive , . 11-4

11.3 %TITLE and %SUBTITLE.Directives.. 11-5

Appendix A ASCII Character Set

Appendix B Language Syntax Summary

Appendix C Compatibility of VAX Pascal Versions

C.1 Differences Between Version 1.0 and Subsequent Versions C-1

xiii

C.1.1 Decommitted Features .
C.1.1.1 Dynamic Array Parameters
C.1.1.2 LOWER and UPPER Functions
C.1.1.3 Printing Hexadecimal and Octal Values
C.1.1.4 The OPEN Procedure
C.1 . 1.5 Specifying Qualifiers in the Source Code

C.1.2 /OLD_VERSION Qualifier
C.1.2.1 Comment Delimiters
C.1.2.2 %INCLUDE Files
C.1.2.3 Multidimensional Packed Arrays
C.1.2.4 Storage of Components
C.1.2.5 Storage of Sets .
C.1.2.6 TEXT Files and FILE OF CHAR . ~
C.1.2.7 MOD Operator
C.1.2.8 String Variable Parameters to the READ

Procedure
C.1.2.9 Field Widths
C.1.2.1 O Global Identifiers
C.1.2.11 Allocation in Program Sections

C.1.3 Minor Language Changes

C.2 Differences Between the Current Version and Past Versions

Appendix D Summary of VAX Pascal Extensions

D.1 VAX Pascal Extensions to Unextended Pascal

D.2 VAX Pascal Extensions to Extended Pascal

Appendix E Description of Implementation Features

E.1 Implementation-Defined Features

E.2 Implementation-Dependent Features

Appendix F Error Detection

F.1 Error-Detection Information .

xiv

C-2
C-2
C-3
C-4
C-5
C-6
C-8
C-8
C-8
C-8
C-9
C-9
C-9

C-10

C-10
C-10
C-11
C-11
C-11

C-13

D-1

D-4

E-1

E-2

F-1

Index

Figures

3-1 Order of Execution for TO BEGIN DO and TO END DO Sections 3-5

7-1 Scope of Identifiers . 7-3

9-1 Sequential File Oi"ganization . 9-3

9-2 Relative File Organization 9-4

9-3 Indexed File Organization . 9-5

9-4 A First Alternate Key . 9-6

9-5 File Buffer Contents . 9-8

9-6 Sequential Access to a Sequential File . 9-13

9-7 Using Sequential Access to Read from a Relative File 9-14

9-8 Using Sequential Access to Write to· a Relative File 9-15

9-9 Using Random Access on Sequential1 and Relative Files 9-17

9-10 File Position After GET Procedure . 9-35

11-1 %INCLUDE File Levels. 11-3

Tables

Conventions Used in This Manual . xix

1-1 Special Symbols , . 1-4

1-2 Reserved Words . 1-4

1-3 Redefinable Reserved Words . 1-5

1-4 Predeclared Identifiers . 1-6

2-1 Predefined Identifiers For Use With Real Data Types 2-8

2-2 Precision in Exponential Notation . 2-9

2-3 Assignment Compatibility . 2-42

4-1 Arithmetic Operators. 4-3

4-2 Results of Negative Exponents . 4-4

4-3 Result Types of Arithmetic Operators . 4-5

4-4 Relational Operators . 4-6

4-5 Logical Operators. 4-7

4-6 String Operators . 4-8

4-7 Set Operators . 4-10

4-8 Precedence of Operators . 4-12

6-1 Formal Parameter Semantics . 6-7

6-2 Parameter Passing Mechanisms . 6-7

xv

xvi

6-3
6-4

8-1

8-2
8-3
9-1

9-2
9-3
9-4

9-5
10-1

10-2

10-3

10-4

10-5
10-6
A-1

C-1

D-1

D-2

Specifiers and Attributes for Passing Mechanisms

Default Values on Formal Parameters .

Predeclared Routine Categories •............................

Return Values of Alignment Predeclared Routines

Value of ZERO

File Organization Support for Component Format

File Organization Support for Component Access Modes

Carriage Control Characters .

File Mode During 1/0 Processing

Default Field Widths .

Summary of Checking Options

KEY Attribute Options : ~

OPTIMIZE Attribute Options

Attribute Classes .

Attributes on Routines and Compilation Units

Attributes on Data Items .

The ASCII Character Set

Summary of Version 1.0 OPEN Parameters

VAX Pascal Extensions to Unextended Pascal

VAX Pascal Extensions to Extended Pascal

6-15
6-26

8-1

8-34
8-44

9-9

9-11

9-20

9-25

9-63
10-10

10-20

10-26

10-45
10-47

10-48

A-1

C-5

D-1

D-5

Preface

This document is the complete description of the VAX Pascal programming
language. It contains information on the VAX Pascal language syntax and
semantics, on VAX Pascal adherance to various Pascal standards, and on the
VAX Pascal extensions to those standards.

Intended Audience

This manual is intended for experienced applications programmers with a
basic understanding of the Pascal language. Some familiarity with your
operating system is helpful. This is not a tutorial manual.

Document Structure

This manual consists of the following chapters and appendixes:

• Chapter 1 describes lexical elements.

• Chapter 2 describes data types.

• Chapter 3 describes declaration sections.

• Chapter 4 describes expressions.

• Chapter 5 describes statements.

• Chapter 6 ,describes user-written procedures and functions.

• Chapter 7 describes programs and modules.

• Chapter 8 describes predeclared procedures and functions.

• Chapter 9 describes the predeclared procedures and functions that
perform input and output.

• Chapter 10 describes attributes.

xvii

• Chapter 11 describes directives.

• Appendix A describes the ASCII character set.

• Appendix B provides syntax drawings of VAX Pascal constructs.

• Appendix C describes changes made to the VAX Pascal language after
VAX Pascal Version 1.0.

• Appendix D describes the VAX Pascal extensions to the Pascal
standards.

• Appendix E describes the VAX Pascal implementation features that the
Pascal standards allow each implementation to define.

• Appendix F describes how the VAX Pascal compiler detects errors
defined by the Pascal standard.

Associated Documents

xviii

The following documents may also be useful when programming in
VAX Pascal:

• VAX Pascal Reference Supplement for VMS Systems-Provides infor~
mation on the programming environment beyond the scope of the VAX
Pascal language syntax and semantics. It contains reference information
on VMS operating-system features, VAX architecture information, and
environment-specific affects of VAX Pascal language features.

• VAX Pascal User Manual-Provides information about programming
tasks, about using VAX Pascal features in conjunction with one another,
and about increasing the efficiency of program execution.

• VAX Pascal Installation Guide-Provides information on how to install
VAX Pascal on your operating system.

• VMS operating system manuals-Provide full information about the
system. The VMS Master Index briefly describes all VMS system docu
mentation, defines the intended audience for each manual, and provides
a synopsis of each manual's contents.

Conventions

Table 1 presents the conventions used in this manual.

Table 1 : Conventions Used in This Manual

Convention

{ }

{ } ' ...

{ }; ...

[]

Meaning

Large braces enclose lists from which you must
choose one item. For example:

{
expression }
statement

A horizontal ellipsis means that the item preceding
the ellipsis can be repeated. For example:

digit ...

Braces followed by a comma and a horizontal
ellipsis mean that you can repeat the enclosed
item one or more times, separating two or more
items with commas. For example:

{label}, ...

Braces followed by a semicolon and a horizontal
ellipsis mean that you can repeat the enclosed
item one or more times, separating two or more
items with semicolons. For example:

REPEAT {statement}; ... UNTIL expression

A vertical ellipsis in a figure or example means
that not all of the statements are shown.

Square brackets mean that the statement syntax
requires the square bracket characters. This
notation is used with arrays, sets, and attribute
lists. For example:

ARRAY[index1]

(continued on next page)

xix

xx

Table 1 (Cont.): Conventions Used in This Manual

Conventirin

[[]]

PROGRAM
WRITELN

temp : INTEGER;
PRED(n)

Extensions

module

Meaning

Double brackets enclose items that are optional.
For example:

EOLN [[(file-variable)]]

Uppercase letters and special symbols in syn
tax descriptions indicate reserved words and
predeclared identifiers. For example:

BEGIN END

Lowercase letters represent user-defined identi
fiers or elements that you must replace according
to the description in the text.

In the hardcopy version, VAX Pascal extensions to
the Extended Pascal standard are color coded in
blue. In the online version, these extensions are
shaded.

A term that appears in bold is defined in the
glossary in the VAX Pascal User Manual. ·

In this manual, complex examples and syntax diagrams have been divided
into several lines to make them easy to read. VAX Pascal does not require
that you format your programs in any particular way.

New and Changed Features

VAX Pascal Version 4.0 supports most (but not all) of the proposed Extended
Pascal standard. Also, VAX Pascal Version 4.0 accepts all programs that
compiled with previous versions of the compiler. VAX Pascal Version 4.0
accepts environment files created by previous versions of the compiler (2.0
through 3.n). However, previous versions of the compiler do not accept
environment files created by VAX Pascal Version 4.0.

The following are specific changes made to the VAX Pascal language since
VAX Pascal Version 3.5:

• Schema Types-This feature, defined by the Extended Pascal standard,
is a user-defined construct that provides a template for a family of
distinct data types. A schema type definition contains one or more
formal discriminants that take the place of specific boundary values or
variant-record selectors. By specifying boundary or selector values to
a schema type, you form a valid data type; the provided boundary or
selector values are called actual discriminants. See Section 2.5 for more
information.

• Declarations Checks-This feature of the compiler allows you to
use a compilation switch or an attribute within your program to tell
VAX Pascal the run-time checking of legal schema definitions and
uplevel GOTO usage. See Section 10.2. 7 or the VAX Pascal Reference
Supplement for VMS Systems for more information.

• Initial-State Specifiers-This feature, defined by the Extended Pascal
standard, allows you to use the VALUE reserved word to initialize
variables and record fields, and to initialize type identifiers so that
the value is propagated to all variables created from that type. See
Section 3.5 for more information.

xxi

xx ii

• Structured Constructors-This feature, defined by the Extended
Pascal standard, allows you to specify values of a structured type, and
to use run-time expressions in constructors. See Section 2.4 for more
information.

• Access to Structured Function-Return Values-This feature,
defined by the Extended Pascal standard, allows you to index arrays, to
select fields, and to dereference pointers that are returned by functions
at the time of the function call; you do not need to use an intermediate
variable to store the return value. See Section 6.2 for more information.

• AND_THEN and OR_ELSE Logical Operators-These new logical
operators, defined by the Extended Pascal standard, allow you to
guarantee left-to-right evaluation and short-circuiting in the expression.
See Section 4.2.3 for more information.

• DATE, TIME and GE'ITIMESTAMP Routines_:.The DATE and
TIME functions and the GETTIMESTAMP procedure, which are defined
by the Extended Pascal standard, allow you to use a standard method
of obtaining and using date and time values. See Chapter 8 for more
information.

• EQ, GE, GT, LE, LT, and NE Functions-These functions, defined by
the Extended Pascal standard, allow you to compare strings without the
compiler padding shorter strings with blanks. See Chapter 8 for more
information.

• FOR-IN Statement-This feature, defined by the Extended Pascal
Standard, allows you to use an incrementor to select from each item in a
set. See Section 5.5 for more information.

• Extended-Digit Integer Notation-This enhancement, defined by the
Extended Pascal standard, allows you to specify integer constants using
a base number, followed by a number sign (#), followed by the extended
digits. See Section 2.1.1 for more information.

• MFPR and MTPR Routines-These features allow you to manipulate
a VAX internal processor register. See Sections 8.46 and 8.48.

• Module Initialization and Finalization (TO BEGIN DO and
TO END DO Declaration Sections)-This feature, defined by the
Extended Pascal standard, allows you to specify a statement to be
executed either before (TO BEGIN DO) or after (TO END DO) the
activation of a module. See Sections 3.3 and 3.4 for more information.

• STRING Predefined Schema-This feature, defined by the Extended
Pascal standard, is a predefined schema type that you can use to
declare variable-length character strings. See Section 2.6.3 for more
information.

• WITH Statement Enhancement-This feature, defined by the
Extended Pascal standard, allows the WITH statement to open the scope
of discriminants of a schema type as well as the scope of fields of a
record variable. See Section 5.11 for more information.

• /DESIGN Qualifier-This new PASCAL command qualifier directs the
compiler to accept design phase placeholders and comments as valid
program elements. See the VAX Pascal Reference Supplement for VMS
Systems for more information.

• /STANDARD Qualifier Enhancement-This PASCAL command
qualifier has the new option EXTENDED, which controls flagging of
VAX. Pascal extensions to the Extended Pascal standard. See the VAX
Pascal Reference Supplement for VMS Systems for more information.

• /NOOPTIMIZE Qualifier·Enhancement-This PASCAL command
qualifier now guarantees left-to-right evaluation order with full
evaluation of both operands of AND and OR Boolean operators. See
Section 10.2.26 or the VAX Pascal Reference Supplement for VMS
Systems for more information.

Most of the information in the VAX Pascal Reference Supplement for VMS
Systems appeared in the VAX Pascal User Manual for VAX. Pascal Version
3.5. A few sections appeared in the VAX Pascal Reference Manual for VAX.
Pascal Version 3.5.

Most of the information in the VAX Pascal User Manual is new. The
program optimization chapter and some of the examples of calling system
services appeared in the VAX Pascal User Manual for VAX. Pascal
Version 3.5.

The following are changes made to the reference manual since VAX. Pascal
Version 3.5:

• Dictionary Approach-The predeclared routines, input and output
routines, attributes, and directives are presented in alphabetical order
instead of grouped by category. ;

• Removal of Programming Examples Appendix-All detailed
programming examples are now located in the VAX Pascal User Manual.

• Removal of Sharing Declarations and Definitions Section-This
information has been moved to the VAX Pascal User Manual.

xx iii

xx iv

• Removal of System or Architecture Information-Any information
that has to do with an operating system or machine architecture feature
has been removed and placed in the VAX Pascal Reference Supplement
for VMS Systems. Such information includes compilation information,
INTEGER and REAL number ranges, system-specific _input/output
information, system-specific parameter passing information, and other
programming information that is relevant to your particular machine or
operating system.

• Removal of Task Oriented Information-All tutorial and task
oriented information has been removed and placed in the VAX Pascal
User Manual.

• Removal of CDD Information-All Common Data Dictionary
information has been moved to the VAX Pascal Reference Supplement for
VMS Systems (%DICTIONARY syntax remains in Chapter 11).

For More Information:

• On Pascal standards (Section 1.1)

• On VAX. Pascal extensions to the Pascal standards.(Appendix E)

Chapter 1

Language Elements

VAX Pascal is a general-purpose programming language. This chapter
describes the following information and components of the VAX Pascal
language:

• Pascal standards (Section 1.1)

• Lexical elements (Section 1.2)

• Comments (Section 1.3)

1.1 Pascal Language Standards

The VAX Pascal compiler accepts programs that comply with two standards
and a subset of programs that comply with a third. Also, VAX Pascal
provides features that are not part of any standard (called extensions). If
you require portable code, do not use the VAX Pascal extensions.

1.1.1 Unextended Pascal Standards

The unextended Pascal standards are as follows:

• American National Standard ANSI/IEEE770x;3.97-1983 (ANSI)

• International Standard ISO 7185-1983(E) (ISO)

VAX Pascal accepts programs that comply to either standard. In the VAX
Pascal documentation set, the term "unextended Pascal" applies to both the
ANSI and ISO standards.

VAX Pascal contains FIPS-109 (Federal Information Processing Standard)
validation support.

Language Elements 1-1

The ISO standard is divided into two levels of standardization: Level 0 and
Level 1. An exa'.mple of a technical difference between the ANSI standard
and the ISO standard is that ANSI does hot include conformant arrays,
while ISO standard Level 0 does not, but Level 1 does.

VAX Pascal has passed the validation suite for Pascal compilers. It received
a CLASS A certificate for both levels of the ISO standard as well as the
ANSI standard. CLASS A certificates are given to compilers with a fully
conforming implementation.

For More Information:

• On VAX Pascal extensions to unextended Pascal (Appendix D)

• On VAX Pascal implementation-dependent features (Appendix E)

• On VAX Pascal error processing as defined by the standard (Appendix F)

• On flagging nonstandard constructs during compilation (VAX Pascal
Reference Supplement for VMS Systems)

1.1.2 Extended Pascal Standard

The Extended Pascal standard is a proposed standard at the time of this
writing. A joint American (X3J9/IEEE P770) and International
(ISO IEC/JTC1/SC22/WG2) cominittee is developing this standard. In the
VAX Pascal documentation set, the term 11 the Pascal standard" refers to
this propose~ standard. Extended Pascal is a superset of the unextended
Pascal standards. For your convenience, the VAX Pascal extensions to the
Extended Pascal standard are printed in blue in this manual.

Since VAX Pascal supports many (but not all) Extended Pascal standard
features, it cannot compile all programs that comply with Extended Pascal.

For More Information:

• On VAX Pascal support for Extended Pascal features (Appendix D)

• On flagging nonstandard constructs during compilation (VAX Pascal
Reference Supplement for VMS Systems)

1.2 Lexical Elements

This section discusses lexical elements of the VAX Pascal language.

1-2 Language Elements

1.2.1 Character Set

VAX Pascal uses the extended American Standard Code for Information
Interchange (ASCII) character set. This extended ASCII character set
contains 256 characters, which include the following:

• Uppercase letters A through Z and lowercase letters a through z

• Integers 0 through 9

• Special characters, such as the ampersand (&), question mark (?), and
equal sign (=)

• Nonprinting characters, such as the space, tab, line feed, carriage return,
and form feed (use of these characters may improve the legibility of your
programs)

• Extended, unspecified characters with numeric codes from 128 to 255

Each ASCII character corresponds to a numeric value.

The VAX Pascal compiler does not distinguish between uppercase and
lowercase characters except when they appear inside apostrophes. For
example, the word PROGRAM has the same meaning when written as any
of the following:

PROGRAM
PRogrArn
program

The following characters, however, represent different values:

'b'
'B'

For More Information:

For information on the ASCII character set, see Appendix A.

1.2.2 Special Symbols

Special symbols represent operators, delimiters, and other syntactic ele
ments. Some symbols are composed of more than one character; you cannot
place a space between the characters of these special symbols. Table 1-1
lists VAX Pascal special symbols.

Language Elements 1-3

Table 1-1: Special Symbols

Symbol Name Symbol Name

Apostrophe <= Less than or equal to

.- Assignment operator Minus sign

[] or (. .) Brackets * Multiplication

Colon <> Not equal

Comma () Parentheses

(* *) or { } Comments % Percent

I Division Period

Equal sign + Plus sign

** Exponentiation "or@ Pointer

> Greater than Semicolon

>= Greater than or equal to Subrange operator

< Less than .. Type cast operator

1.2.3 Reserved Words

Reserved words are used to designate data types, directives, identifiers,
specifiers, statements, and operators. You cannot redefine these identifiers.
Table 1-2 presents the VAX Pascal reserved words.

Table 1-2: Reserved Words

AND END NIL %STDESCR

ARRAY FILE NOT %SUBTITLE

BEGIN FOR OF THEN

CASE FUNCTION OR %TITLE

CONST GOTO PACKED TO

%DESCR IF PROCEDURE TYPE

%DICTIONARY %IMMED PROGRAM UNTIL

DIV IN RECORD VAR

DO %INCLUDE %REF WHILE

(continued on next page)

1-4 Language Elements

Table 1-2 (Cont.): Reserved Words

DOWNTO

ELSE

LABEL

MOD

REPEAT

SET

WITH

The manuals in the VAX Pascal documentation set show these reserved
words in uppercase letters. If you choose, you can express them in mixed
case or lowercase in your programs.

Table 1-3 presents the rede:finable reserved words that are used to name
operators and identifiers. You can redeclare these words, but, if you do,
the language extension becomes unavailable within the block in which you
redeclare the word.

Table 1-3: Redefinable Reserved Words

AND_THEN

MODULE

OR_ELSE

OTHERWISE

REM

VALUE

VARYING

This manual shows redefinable reserved words in uppercase letters. If you
choose, you can express them in mixedcase or lowercase in your programs.

1.2.4 ldentif iers

An identifier is a combination of letters, digits, dollar signs ($), and
underscores (_) that conforms to the following restrictions:

• An identifier cannot start with a digit.

• An identifier cannot contain spaces or special symbols.

• The first 31 characters of an identifier must denote a unique name
within the block in which the identifier is declared. An identifier longer
than 31 characters generates a warning message. The compiler ignores
characters beyond the thirty-first character.

• An identifier cannot start or end with an underscore, nor can two
adjacent underscores be used within an identifier. VAX Pascal allows
both cases of underscore use and generates an informational message if
/STANDARD=EXTENDED is specified.

Language Elements 1-5

The following examples show valid and invalid identifiers:

Valid:

For2n8
MAX WORDS
upto
LOGICAL NAME TABLE
Logical Name Scanner
SYS$CREMBX -

Invalid:
4Awhile
up&to

{Unique in first}
{ 31 characters}

YEAR END 87 MASTER FILE TOTAL DISCOUNT - - - - - -
Year End 87 Master File Total Dollars - - - - - -

{Starts with a digit}
{Contains an ampersand}
{Not unique in first}
{ 31 characters}

Table 1-4 presents the VAX Pascal predeclared identifiers that name
data types, symbolic constants, file variables, procedures, and functions. You
can redefine a predeclared identifier, but if you do, the original declaration
becomes unavailable within the block in which you redeclared the word.

Table 1-4: Predeclared Identifiers

ABS -

ARCTAN
BIN

BITSIZE

CARD

CLEAR_INTERLOCKED

cos
DBLE

DELETE_FILE

EOF

EPSQUADRUPLE

ESTABLISH

EXTEND

FIND_FIRST_BIT_CLEAR

1-6 Language Elements

- Read across -

ADD_INTERLOCKED

ARGUMENT

BITNEXT

BOOLEAN

CHAR

CLOCK

CREATE_DIRECTORY

DEC

DISPOSE

EOLN

EPSREAL

EXP

FALSE

FIND _FIRST_BIT_SET

ADDRESS

ARGUMENT_LIST_LENGTH

BIT_OFFSET

BYTE_ OFFSET

CHR

CLOSE

DATE

DELETE

DOUBLE

EPSDOUBLE

EQ

EXPO

FIND

FIND_MEMBER

(continued on next page)

Table 1-4 {Cont.): Predeclared Identifiers

- Read across -

FIND_NONMEMBER FINDK GE

GET GETTIMESTAMP GT

HALT HEX !ADDRESS

INDEX INPUT INT

INTEGER LE LENGTH

LINE LIMIT LN LOCATE

LOWER LT MAX

MAX CHAR MAXDOUBLE MAXiNT

MAXQUADRUPLE MAXREAL MAXUNSIGNED

MIN MINDOUBLE MINQUADRUPLE

MINREAL NE NEW

NEXT NIL OCT

ODD OPEN ORD

OUTPUT PACK PAD

PAGE PRED PRESENT

PUT QUAD QUADRUPLE

READ READLN READV

REAL RENAME_FILE RESET

RESETK REVERT REWRITE

ROUND SET_INTERLOCKED SIN

SINGLE SIZE SNGL

SQR SQRT STATUS

STATUSV STRING SUBSTR

succ TEXT TIME

TIMES TAMP TRUE TRUNC

TRUNCATE UAND UDEC

UFB UINT UNDEFINED

UNLOCK UNOT UNPACK

UNSIGNED UOR UPDATE

(continued on next page)

Language Elements 1-7

Table 1-4 (Cont.): Predeclared Identifiers

UPPER
UXOR
WRITEV

- Read across -

UROUND
WRITE

XOR

UTRUNC
WRITELN

ZERO

This manual shows predeclared identifiers in uppercase letters. If you
choose, you can express them in mixed case or lowercase in your programs.

1.3 Comments

Comments document the actions or elements of a program. The text of a
comment can contain any ASCII character except a nonprinting control
character, such as an ESCAPE character. You can place comments anywhere
in a program that white space can appear.

You signify a comment with braces or with a parenthesis and asterisk pair,
as follows:

{ This is a corrunent. }
(* This is a corrunent, too. *)

VAX Pascal allows you to mix the two symbol pairs in one comment, as
follows:

{ The delimiters of this corrunent do not match. *)
(* VAX Pascal allows you to mix delimiters in this way. }

VAX Pascal does not allow you to nest comments. The following example
causes a compile-time error because the comment ends at the first closing
delimiter (}).

(* Cannot { nest corrunents inside } of corrunents like this *)

1-8 Language Elements

1.4 Page Breaks and Form Feeds

A page break or form feed character can appear anywhere in your program
except on a line with text surrounding the form feed. For example, the
following lines are legal:

~ %TITLE 'Variable Declarations'
end; ~
~
~ VAR [ITJ

However, the following line generates an error:

BEGIN ~ END.

The page break does not affect the meaning of the program, but causes a
page to eject at the corresponding line in a listing file.

Language Elements 1-9

Chapter 2

Data Types and Value's

Every piece of data that is created or manipulated by a VAX Pascal program
has a data tYJ>e. The data type determines the range of values, set of valid
operations, and maximum storage allocation for each piece of data.

This chapter provides information on the following:

• Ordinal types (Section 2.1)

• Real types (Section 2.2)

• Pointer type (Section 2.3)

• Structured types (Section 2.4)

• Schema types (Section 2.5)

• String schemas and types (Section 2.6)

• Predefined structured and schema types (Section 2. 7)

• Static and nonstatic types (Section 2.8)

• Rules of type compatibility (Section 2.9)

For More Information:

• On user-defined types and the TYPE section (Section 3.5)

• On variable declarations and the VAR section (Section 3.7)

2.1 Ordinal Types

This section describes the ordinal types that are predefined by VAX Pascal
and user-defined ordinal types (types that require you to provide identifiers
or boundary values to completely define the data type).

Data Types and Values 2-1

The ranges of values for these types are ordinal in nature; the values are
ordered so that each has a unique ordinal value indicating its position in
a list of all the values of that type. There is a one-to-one correspondence
between the values in an ordinal type and the set of positive integers.

2.1.1 INTEGER Type

The range of the INTEGER values consists of positive and negative integer
values, and of the value O; the range boundaries may depend on the
architecture of the machine you are using. The largest possible value of
the INTEGER type is represented by the predefined constant MAXINT; the
smallest possible value of the INTEGER type is represented by the value of
the expression -MAXINT. The INTEGER type has the following form:

_ base-number#[[']] extended-digit[[']]
, I decimal-number)

ll { + }]] % { ~ } [[']]extended-digit[[']]

decimal-number
Specifies an integer in conventional Pascal integer notation. You cannot
specify commas or decimal points. Examples of decimal notation are as
follows:

17 0 89324

base-number
Specifies the base of the number. VAX Pascal accepts numbers in bases 2
through 36.

extended-digit
Specifies the notation that is appropriate for the specified base.

b
0
x
Specifies an integer in either binary (base 2), octal (base 8), or hexadecimal
(base 16) notation. VAX Pascal accepts either uppercase or lowercase letters.

2-2 Data Types and Values

Using Extended-Digit Notation:

You can use extended-digit notation in the same way you use the
conventional integer notation, with the following exceptions:

• Extended-digit values cannot be used as labels.

• Extended-digit notation for INTEGER objects cannot be used to express
numbers outside the range of 0 to MAXINT. (To express signed numbers,
place the unary plus operator (+) or the unary minus operator (-) in
front of the notation; setting or clearing the high order bit does not set
or clear the sign bit.)

VAX Pascal allows the use of spaces and tabs to make the extended-digit
notation easier to read. To use spaces and tabs, enclose the extended digit
in single quotation marks (' '). The following are integer values in the
extended-digit notation:

2#10000011
2#'1000 0011'

32#1J
-16#'7FFF FFFF'

VAX Pascal provides another extended integer convention only for the sake
of compatibility with previous versions of the language. The following are
extended integer values in the VAX Pascal specific notation:

%b' 1000 0011'
%0'7712'

-%x'DEC'

For More Information:

• On unary operators (Section 4.2)

• On value of MAXINT (VAX Pascal Reference Supplement for VMS
Systems)

2.1.2 UNSIGNED Type·

The UNSIGNED data type consists of nonnegative integer values. The
largest possible value of the UNSIGNED type is represented by the
predefined constant MAXUNSIGNED; the smallest possible value of the
uNSIGNED type is 0. The UNSIGNED data type is a VAX Pascal extension
that is provided to facilitate systems programming using certain operating
systems. Since this data type is not standard, you should not use it for every
application involving nonnegative integers.

Data Types and Values 2-3

When a VAX Pascal program contains an integer constant greater than
MAXINT, the constant is treated as being of type UNSIGNED. Unsigned
integers can be written using the conventional notation, the extended-digit
notation, or the VAX Pascal specific notation.

Integer expressions whose constant value is not greater than MAXINT and
not less then -MAXINT are always treated as being of type INTEGER. To
force an integer constant to become UNSIGNED rather than INTEGER, use
the UINT predeclared function.

For More Information:

• On INTEGER notations (Section 2.1.1)

• On the UINT function (Section 8.78)

• On the UNSIGNED value range (VAX Pascal Reference Supplement for
VMS Systems)

2.1.3 CHAR Type

The CHAR data type consists of single character values from the ASCII
character set. The largest possible value of the CHAR type is the predefined
constant MAXCHAR.

To specify a character constant, enclose a printable ASCII character in single
quotation marks. To specify the single-quote character, enclose two single
quotation marks in single quotation marks. Each of the following is a valid
character constant:

'A'
, z'
, 0' , , , ,
, ?'

This is the character 0, not the integer value 0
The apostrophe character }

The ORD function accepts parameters of type CHAR. The function return
value is the ordinal value of the character in the ASCII character set.

You can specify a nonprinting character, such as a control character, by
writing an empty string followed immediately by the ordinal value of the
character in the ASCII character set, or by using the CHR function followed
by the ordinal value of the character in the ASCII character set. The
following examples show the two ways to specify the bell control character:

, , (7)

CHR(7)

2-4 Data Types and Values

For More Information:

• On the ORD function (Section 8.54)

• On the CHR function (Section 8.13)

• On the ASCII character set (Appendix A)

• On character strings (Section 2.6)

2.1.4 BOOLEAN Type

Boolean values are the result of testing relationships for truth or validity.
The BOOLEAN data type consists of the two predeclared identifiers FALSE
and TRUE. The expression ORD(FALSE) results in the value O;
ORD(TRUE) returns the integer 1.

The relational operators operate on the ordinal, real, string, or set
expressions, and produce a Boolean result.

For More Information:

• On the ORD function (Section 8.54)

• On relational operators (Section 4.2.2)

2.1.5 Enumerated Types

An 'enumerated type is a user-defined ordered set of constant values specified
by identifiers. It has the following form:

{ {enumerated-identifier}, ...)

enumerated-identifier
The identifier of the enumerated type being defined. VAX Pascal allows a
maximum of 65,535 identifiers in an enumerated type.

The values of an enumerated type begin with the value 0 and follow a
left-to-right order. Subsequent identifiers have a value one greater than the
identifier preceding it. Consider the following:

TYPE
Seasons= (Spring, Surmner, Fall, Winter);

VAR
Some_Seasons : Seasons VALUE Winter; {Initialized}

In this enumerated type, Spring (value 0) and Summer (value 1) are less
than Fall (value 2) because they precede Fall in the list of constant values.
Winter (value 3) is greater than Fall because it follows· Fall.

Data Types and Values 2-5

The ORD function accepts expressions of an enumerated type.

An identifier in an enumerated type cannot be defined for any other purpose
in the same block. Consider the following:

TYPE
Seasons2 = (Fall, Winter, Spring);

This enumerated type cannot be defined in the same block as the previous
type, because the identifiers Spring, Fall, and Winter would not be unique.

For More Information:

For information on the ORD function, see Section 8.54.

2.1.6 Subrange Types

A subrange type is user-defined and specifies a limited portion of another
ordinal type (called the base type). It has the following form:

lower-bound .. upper-bound

lower-bound
A constant expression or a formal discriminant identifier that establishes
the lower limit of the subrange.

upper-bound
A constant expression or formal discriminant identifier that establishes the
upper limit of the subrange. The value of the upper bound must be greater
than or equal to the value of the lower bound.

The base type can be any enumerated or predefined ordinal type. The values
in the subrange type appear in the same order as they are in the base type.
For instance, the result of the ORD function applied to a value of a subrange
type is the ordinal value that is associated with the relative position of the
value in the base type, not in the subrange type.

You can use a subrange type anywhere in a program that its base type
is legal. A value of a subrange type is converted to a value of its base
type before it is used in an operation. All rules that govern the operations
performed on an ordinal type pertain to subranges of that type.

2-6 Data Types and Values

Consider the following:

TYPE
Day= (Mon, Tues, Wed, Thur, Fri, Sat, Sun);
Weekday= Mon .. Fri; {subrange of base type Day}
Weekend= Sat .. Sun; {subrange of base type Day}
Digit = '0' .. '9'; {subrange of base type CHAR}
Month = 1 .. 31; {subrange of base type INTEGER}

For More Information:

• On the ORD function (Section 8.54)

• On the TYPE section (Section 3.5)

• On discriminant identifiers in subranges (Section 2.5)

• On using the CHECK attribute for subrange checking (Section 10.2. 7)

2.2 Real Types

The following are real data types that are predefined by VAX Pascal:

• REAL

• SINGLE

• DOUBLE

• QUADRUPLE

The REAL, SINGLE, DOUBLE, and QUADRUPLE data types specify
real number values with different degrees of precision. The types REAL
and SINGLE are synonymous; both designate single-precision real values.
The type DOUBLE designates double-precision real values. The type
QUADRUPLE designates quadruple-precision real values. (In this manual,
the term "REAL type" refers to both the REAL and SINGLE types.)

Table 2-1 presents the identifiers that are predefined by VAX Pascal for use
with the real data types.

Data Types and Values 2-7

Table 2-1: Predefined Identifiers For Use With Real Data Types

Identifiers

MAXREAL
MAXDOUBLE
MAXQUADRUPLE

MINREAL
MINDOUBLE
MINQUADRUPLE

EPSREAL
EPSDOUBLE
EPSQUADRUPLE

Values

Maximum values of the REAL, DOUBLE, and
QUADRUPLE data types.

Minimum values of the REAL, DOUBLE, and
QUADRUPLE data types.

Smallest value of the REAL, DOUBLE, and
QUADRUPLE data types, such that (1.0 + EPSREAL) >
1.0, (1.0DO + EPSDOUBLE) > 1.0D, and
(l.OQO + EPSQUADRUPLE) > l.OQO.

To express REAL numbers, you can use either decimal or exponential
notation. To express DOUBLE or QUADRUPLE numbers, you must use
exponential notation.

To express REAL numbers in decimal notation, use the set of decimal digits
and a decimal point. At least one digit must appear on either side of the
decimal point. The following are valid real numbers in decimal notation:

2.4
893.2497

8.0
o.o

To express real numbers in exponential notation, you include a real number
or an integer, an uppercase or lowercase letter indicating the type of
precision, and an integer exponent with its minus sign or optional plus sign.
For example:

2.3E2
10 • .0E-l

9.14159e0

Table 2-2 presents the letters that indicate precision in exponential
notation.

2-8 Data Types and Values

Table 2-2: Precision in Exponential Notation

Letters

E ore

D ord

Q or q

Meaning

Single-precision real number. The integer exponent following this letter
specifies the power of 10.

Double-precision real number. All double-precision numbers in your
program must appear in this exponential format; otherwise, the
compiler reverts to single-precision representation.

Quadruple-precision real number. All quadruple-precision numbers in
y~ur program must appear in this exponential format; otherwise, the
compiler reverts to single-precision format.

To express negative real numbers in exponential notation, use the negation
operator (-). Remember that a negative real number such as -4.5E+3 is not
a constant, but is actually an expression consisting of the negation operator
(-) and the real number 4.5E+3. Use caution when expressing negative real
numbers in complex expressions.

For More Information:

• On operators (Section 4.2)

• On DOUBLE precisions:

G_FLOATING attribute (Section 10.2.14)

Compilation switches (VAX Pascal Reference Supplement for VMS
Systems)

• On the real value ranges (VAX Pascal Reference Supplement for VMS
Systems)

2.3 Pointer Type

A pointer type allows you to refer to a dynamic variable. Dynamic variables
do not have lifetimes that are strictly related to the scope of a routine,
module, or program; you can create and eliminate them at various times
during program execution. Also, pointer types clearly define the type of an
object, but you can create or eliminate objects during program execution.
The syntax of a pointer type is as follows:

11 [[attribute-list]] base-type-identifier

Data Types and Values 2-9

attribute-list
One or more identifiers that provide additional information about the base
type.

base-type-identifier
The type identifier of the dynamic variable to which the pointer refers. The
base type can be any type name or schema name. (If the base type is an
undiscriminated schema type, you need to supply actual discriminants when
you call the NEW function.)

Unlike other variables, dynamic variables do not have identifiers. Instead,
you access them indirectly with pointers.

When you use pointers, you call the procedure NEW to allocate storage
for dynamic variables. You call the procedure DISPOSE to deallocate this
storage.

A variable of a pointer type refers to a dynamic variable of the base type
and is said to be associated with that type. In the following example, the
pointer variable Ptr is associated with a record of type My _Rec:

TYPE
My_Rec = RECORD

Name : STRING(30);
Age : INTEGER;

END VALUE [Name: 'Barney Frank'; Age: 29); {Initialized}
VAR

Ptr : "My_Rec;

{In executable section:}
NEW(Ptr);

To reference the dynamic variable to which a pointer refers, you write the
pointer variable name followed by a circumflex ("). The following example
assigns values to the record variable Ptr":

Ptr" := My_Rec[Name: 'David Leavitt'; age: 65);

Pointers assume values through initialization, assignment, the READ
procedure, and the NEW procedure. The value of a pointer is either the
storage address of a dynamic variable or the predeclared identifier NIL. NIL
indicates that the pointer does not currently refer to a dynamic variable.

A file referenced by a pointer is not closed until the execution of the program
terminates or until the dynamic variable is deallocated with the DISPOSE
procedure. If you do not want the file to remain open throughout program
execution, you must use the CLOSE procedure to close it.

2-10 Data Types and Values

The following example declares the pointer variable Ptr as a pointer to an
integer and initializes Ptr to NIL:

VAR
Ptr : AINTEGER VALUE NIL;

For More Information:

• On the NEW procedure (Section 8.50)

• On the DISPOSE procedure (Section 8.23)

• On records (Section 2.4.2)

• On pointers to schema types (Section 2.5)

• On linked lists (VAX Pascal User Manual)

2.4 Structured Types

The structured data types are user defined and consist of components.
Each component of a structured data type has its own data type; components
can be any type.

To express values of structured objects (arrays, records, and sets), you can
use a list of values called constructors. Constructors are valid in the
TYPE, CONST, VAR, and executable sections of your program. Examples
of valid constructors are provided in examples throughout the following
sections. The following sections also contain examples that show how to
assign values to individual components of structured objects.

To save storage space, you can specify PACKED before any structured
type identifier except VARYING OF CHAR (for instance, PACKED ARRAY,
PACKED RECORD, and PACKED SET). Defining PACKED structured types
causes the compiler to economize storage by storing the structure in as few
bits as possible. Keep in mind, however, that a packed data item is not
compatible with a data item that is not packed. Also, accessing components
of some packed structures may be slower than accessing components of
unpacked structures.

VAX Pascal also provides predefined structured types for your use (for
instance, to more easily manipulate date and time information).

Data Types and Values 2-11

For More Information:

• On string data types (Section 2.6)

• On VARYING OF CHAR (Section 2.6.2)

• On predefined structured types (Section 2. 7)

• On array constructors (Section 2.4.1.1)

• On record constructors (Section 2.4.2.2)

• On set constructors (Section 2.4.3.1)

2.4.1 ARRAY Types

An array is a group of components (called elements) that all have the
same data type and share a common identifier. An individual element of an
array is referred to by an ordinal index (or subscript) that designates the
element's position (or order) in the array. An array type has the following
form:

[[PACKED]] ARRAY [{[[attribute-list]] index-type}, ...] OF [[attribute-list]] component-type

attribute-list
One or more identifiers that provide additional information about the
component type.

index-type
The type of the index, which can be any ordinal type or discriminated
ordinal schema type.

component-type
The type of the array components, which can be any type. The components
of an array can be another array.

The indexes of an array must be of an ordinal type. However, specifying
INTEGER as the index type may cause the memory request to exceed
available memory space. To use integer values as indexes, you must specify
an integer subrange in the data type definition (unless you are using a
conformant-array parameter).

You can use an array component (unless your array components are of a
FILE type) anywhere in a program that a variable of the component type
is allowed. Also, the only operation defined for entire array objects is the
assignment operation (:=)(unless your array components are of a FILE
type).

2-12 Data Types and Values

To refer to an array component, you specify the name of the array variable
(or the name of an object whose result, when used as an expression, is of an
array type), followed by an index value enclosed in brackets ([]). Consider
the following:

TYPE
Count= ARRAY[l .. 10] OF INTEGER; {Array type of 10 integers}

VAR
Numbers : Count; {Array variable}

{In the executable section:}
Numbers[S] := 18; {Assigns the value 18 to the fifth element}

VAX Pascal also allows array components to be arrays. These types of
arrays are called multidimensional an-ays. The following example shows
two ways of declaring the same multidimensional array:

VAR
Tic_Tac_Toe: ARRAY[l .. 3] OF ARRAY[' a' .. 'c'] OF CHAR;

{Or equivalently:}
Tic_Tac_Toe : ARRAY[l .. 3, 'a' .. 'c'] OF CHAR; {3x3 matrix}

{In the executable section:}
Tic_Tac_Toe[1, 'a'] := 'X'; {Or equivalently:}
Tic_Tac_Toe[l]['a'] := 'X';

For More Information:

• On character-string types (Section 2.6)

• On conformant-array parameters (Section 6.3.6.1)

• On attribµtes (Chapter 10)

• On the TEXT predefined data·type (Section 2.7.1)

2.4.1.1 Array Constructors

Array constructors are lists of values that you can use to specify an array
value; they have the following form:

{
component }

[[data-type]] [[[{{ component-subrange }, ... : component-value}; ...]]

[[OTHERWISE component-value [[;]]]]]

data-type
Specifies the constructor's data type. If you use the constructor in the
executable section or in the CONST section, a data-type identifier is
required. Do not use a type identifier in initial-state specifiers elsewhere
in the declaration section or in nested constructors.

Data Types and Values 2-13

component
component-subrange
Specifies an element number to which the component-value applies. You
can specify a subrange of components. Array elements do not have to be
specified in order. The component must be a compile-time value or constant.

component-value
Specifies the value to be assigned to the array elements in the
component-list; the value must be of the same data type as the
array..,component type. This value is a compile-time value; if you use the
construetor in the executable section, you can also use a run-time value.

OTHERWISE
Specifies a value to be assigned to all array elements that have not already
been assigned values.

When using array constructors, you must initialize all elements of the array;
you cannot partially initialize the array.

For instance, you can use either of these constructors to assign values to the
array variable:

VAR
Numbers : Count VALUE [1 .. 3,5 : 1; 4,6 : 2; 7 .. 9 : 3; 10 6];

{In the executable section, constructor type is required:}
Numbers := Count[l .. 3,5 : 1; 4,6 : 2; 7 .. 9 : 3; 10 : x+3];

These constructors give the first, second, third, and fifth component the
value 1; the fourth and sixth component the value 2;.and the seventh,
eighth, and ninth components the value 3. The first constructor gives
the tenth component the value 6; the second constructor, since it is in
the executable section, can assign the run-time value x+3 to the tenth
component.

To specify values for all remaining elements, you can use the OTHERWISE
clause, as follows:

Numbers := Count[4,6 : 2; 7 .. 9 3; 10 x+3; OTHERWISE 1];

2-14 Data Types and Values

When you specify constructors for multidimensional arrays in the executable
section, only specify the type of the outermost array. Consider the following
example:

TYPE
One_Dimension = ARRAY[l .. 3] OF CHAR;
Matrix= ARRAY[' a' .. 'b'] OF One_Dimension;

VAR
Tic_Tac_Toe : Matrix;

{In the executable section:}
Tic_Tac_Toe :=Matrix[1,3 [OTHERWISE' '];

2: [1,3:' '; 2: 'X']];

For More Information:

For information on nonstandard array constructors, see Section 2.4.5.1.

2.4.2 RECORD Types

A record is a group of components (called fields) that can be of various
data types. Each record component may contain one or more data items,
including embedded records. The record type has the following from:

[[PACKED]] RECORD [[field-list]] END

If field-list is_ not specified, an empty record is created. The syntax of
field-list is as follows:

{
{{field-identifier},... : [[attribute-list]] type};... [[; variant-clause]] [[;]] }

variant-clause [[;]]

field-identifier
The name of a field.

attribute-list
One or more identifiers that provide additional information about the field.

type
The type of the corresponding field. A field can be of any type.

variant-clause
The variant part of the record.

Data Types and Values 2-15

The names of the fields must be unique within one record type, but can be
repeated in different record types. You can specify the fields by specifying
the record variable name (or the name of an object whose result, when used
as an expression, is of an record type), followed by a period (.), and followed
by the field name. If the record is unpacked and if your record components
are not of a FILE type, you can use a field anywhere in a program that a
variable of the field type is allowed. (This manual flags circumstances in
which components of packed records cannot appear where a variable of the
field type is allowed.) The only operation defined for entire records is the
assignment operation (:=).

The following example shows how to assign a value to a record component:

TYPE
Player_Rec = RECORD

VAR

Wins INTEGER;
Losses INTEGER;
Percentage : REAL;
END;

Playerl, Player2 : Player_Rec;
{In the executable section:}
Playerl.Wins := 18; {Assigns the value 18 to the Wins field.}

You can partially initialize a record using the VALUE predeclared identifier
on individual fields, as follows:

VAR
Player = RECORD

Wins INTEGER VALUE 18; {Initial value for one field}
Losses INTEGER;
Percentage : REAL;
END;

A record type can include fields that are themselves records. In this case,
the name of the field includes the name of every record within which it is
nested. Consider the following:

TYPE

VAR

Team_Rec = RECORD
Total Wins
Total Losses
Total_Percentage
Playerl
Player2
Player3
END;

Team : Team_Rec;

2-16 Data Types and Values

INTEGER;
INTEGER;
REAL;
Player Rec;
Player~)ec;
Player_Rec;

{Defined in previous example}

You can calculate the team's wins with the following code:

Team.Total Wins := Team.Playerl.Wins +
Team.Player2.Wins +
Team.Player3.Wins;

For More Information:

• On variant clauses (Section 2.4.2.1)

• On record constructors (Section 2.4.2.2)

• On specifying record fields using the WITH statement (Section 5.11)

• On attributes (Chapter 10)

~.4.2.1 Records with Variants

A record can include one or more fields or groups of fields called variants,
which can contain different types or amounts of data at different times
during program execution. When you use a record with variants, two
variables of the same record type can represent different data. You can
define a variant clause only for the last field in the record. The syntax for
record variants is as follows:

CASE { [[tag-identifier :]] [[attribute-list]] tag-type-identifier } OF

discriminant-identifier

{case-label-list : (field-list)}; ...

[[[[;]] OTHERWISE (field-list)]]

tag-identifier
The name of the tag field.

attribute-list
One or more identifiers that provide additional information about the
variant.

tag-type-identifier
The type identifier for the tag field.

Data Types and Values 2-17

discriminant-identifier
The name of the formal discriminant of a schema type. The value of the
corresponding actual discriminant selects the active variant. Once you select
the variant by discrimination, you cannot change it again. Consider the
following:

TYPE
Record Template(a : INTEGER) =RECORD

Field_l : REAL;
CASE a OF

0 (x INTEGER);
1 : (y : REAL) ;

END;

case-label-list
One or more case constant values of the tag field type separated by commas.
A case constant is either a single constant value (for example, 1) or a range
of values (for example, 5 .. 10). You must enumerate one label for each
possible value in the tag-type-identifier.

field-list
The names, types, and attributes of one or more fields. At the end of a field
list, you can specify another variant clause. The field list can be empty.

The tag field consists of the elements between the reserved words CASE and
OF. The tag field is common to all variants in the record type. The tag field
data type corresponds to the case label values and determines the current
variant.

As the syntax description shows, the tag field can be a
discriminant-identifier or can be specified in one of the following ways:

• tag-identifier : [[attribute-list]] tag-type-identifier

The tag-identifier and tag-type-identifier define the name and type of the
tag field. The tag-type-identifier must denote an ordinal type. You refer
to the tag field in the same way that you refer to any 9ther field in the
record (with the record.field-identifier syntax).

The following example shows the use of the tag-identifier form:

TYPE
Orders = RECORD
Part : 1 .. 9999;
CASE On_Order : BOOLEAN OF

TRUE (Order Quantity INTEGER;
Price- REAL);

FALSE : (Rec_Quantity INTEGER;
Cost REAL);

END;

2-18 Data Types and Values

In this example, the last two fields in the record vary depending on
whether the part is on order. Records for which the value of the
tag-identifier On_Order is TRUE will contain information about the
current order; those for which it is FALSE, about the previous shipment.

• [[attribute-list]] tag-type-identifier

In the second form, there is no tag-identifier you can evaluate to
determine the current variant. If you use this form, you must keep track
of the current variant yourself. The tag-type-identifier must denote an
ordinal type.

The following example shows the specification of a tag field without a
tag-identifier:

TYPE
Characters = RECORD
CASE CHAR OF

END;

'A' .. ' Z'
'0' .. ' 9'
OTHERWISE

Capital INTEGER);
Number INTEGER);
Misc BOOLEAN);

In this example, the last field in this record will be one of the following:

• The integer field Capital if the range 'A1
•• 'Z 1 is the variant most

recently referred to

• The integer field Number if the range '0 1
•• '9 1 is the variant most

recently referred to

• The Boolean field Misc if the character value falls outside the
previous two variants

You can refer only to the fields in the current variant. You should not change
the variant while a reference exists to any field in the current variant.

You can include an OTHERWISE clause as the last case label list.
OTHERWISE is equivalent to a case label list that contains tag values ·
(if any) not previously used in the record. The variant labeled with
OTHERWISE is the current variant when the tag-identifier has a value
that does not occur in any of the case label lists.

Data Types and Values 2-19

The variant can contain a nested variant, as follows:

VAR
H9spital : RECORD
Patient : Name;
Birthdate : Date;
Age : INTEGER;
CASE Pat Sex : Sex OF

Male ();
Female : (CASE Births : BOOLEAN OF

FALSE ();
TRUE : (Num _Kids : INTEGER)) ;

END;

This record includes a variant field for each woman based on whether she
has children. A second variant, which contains the number of children, is
defined for women who have children.

For More Information:

• On the syntax of a field list (Section 2.4.2)

• On conditions that establish a variable reference (Section 3. 7)

• On attributes (Chapter 10)

2.4.2.2 Record Constructors

Record constructors are lists of values that you can use to initialize a record;
they have the following form:

[[data-type]] [[[{{component},... : component-value}; ...]]

{

CASE [[tag-identifier :]] tag-value OF }
[[[{{component},... : component-value}; ...]]]]

OTHERWISE ZERO [[;]]

data-type
Specifies the constructor's data. type. If you use the constructor in the
executable section or in the CONST section, a data-type identifier is
required. Do not use a type identifier in initial-state specifiers elsewhere
in the declaration section or in nested constructors.

component
Specifies a field in the fixed-part of the record. Fields in the constructor do
not have to appear in the same order as they do in the type definition. (If
you choose, you can specify fields from the variant-part as long as the fields
do not overlap.)

2-20 Data Types and Values

component-value
Specifies a value of the same data type as the component. The value is a
compile-time value; if you use the constructor in the executable section, you
can also use run-time values.

CASE
Provides a constructor for the variant portion of a record. If the record
contains a variant, its constructor must be the last component in the
constructor list.

tag-identifier
Specifies the tag-identifier of the variant portion of the record. This is only
required if the variant part contained a tag-identifier.

tag-value
Determines which component list is applicable according to the variant
portion of the record.

OTHERWISE ZERO
Sets all remaining components to their binary zero value. If you use
OTHERWISE ZERO, it must be the the last component in the constructor.

You can use either of the following constructors to assign values to the
record variable:

VAR

Playerl : Player_Rec VALUE [Wins: 18; Losses: 3;
Percentage: 21/18);

{In executable section, constructor type is required
and run-time expressions are legal:}

Playerl := Player_Rec[Wins: 18; Losses: y; Percentage: y+lB/18);

When you specify constructors for records that nest records, specify the type
of the outermost record, but do not specify the type of the constructors for
any nested records. Consider the following example:

TYPE
Team Rec = RECORD

Total Wins
Total Losses
Total_Percentage
Playerl
Player2
Player3
END;

INTEGER;
INTEGER;
REAL;
Player_Rec
Player_Rec
Player_Rec

Data Types and Values 2-21

VAR
Team : Team_Rec;

{In the executable section:
Team :=

Team Rec[Total Wins: 18; Total Losses: 3; Total Percentage: 21/18;
- Playerl: [Wins: 6; Losses: O; Percentage: 1.0 J;

Player2: [Wins: 5; Losses: 2; Percentage: 7/5];
Player3: [Wins: 7; Losses: l; Percentage: 8/7 JJ;

You can call the ZERO function within record constructors to initialize all
nonspecified components to their binary zero values, which are determined
by the data type of each component. Consider the following examples:

VAR
Team Team_Rec VALUE ZERO;
Team Team Rec VALUE

[Total Wins: 5; Total Losses: 2; Total Percentage: 7/5;
Player2: [Wins: 5; Losses: 2; Percentage: 7/5 J;
OTHERWISE ZERO]; {Initializes Playerl and Player3}

To create a constructor for a record that contains a variant, you use the
reserved word CASE, followed by one of the following:

• A tag-identifier and a colon (:), followed by a constant expression (if you
use both a tag-identifier and a tag-type-identifier in the declaration)

• A constant expression (if you use only a discriminant-identifier or a
tag-type-identifier in the declaration)

To complete the constructor, use the reserved word OF, followed by
component-list values contained in a nested constructor. Consider the
following valid constructors:

TYPE
Orders = RECORD
Part : 1 .. 9999;
CASE On Order : BOOLEAN OF

TRUE (Order_Quantity

FALSE

END;
VAR

Price
Rec_Quantit::
Cost

An Order Orders VALUE
[Part: 2358;

INTEGER;
REAL) ;
INTEGER;
REAL) ;

CASE On Order : FALSE OF
[Rec_Quantity: 10; Cost: 293.99]];

{In the executable section, constructor type is required:}
An Order := Orders

[Part: 2358;
CASE On Order FALSE OF [Rec_Quantity: 10; Cost: 293.99]];

2-22 Data Types and Values

Note that if you use a constructor in the type definition, you can specify an
initial state for only one variant in the type. To specify an initial state for
more than one variant, you must put initial state specifiers on the fields
themselves. For example:

TYPE
Orders = RECORD
Part : 1 .. 9999 VALUE 25;
CASE On Order : BOOLEAN OF

TRUE (Order_Quantity
Price

FALSE : (Rec_Quantity
Cost

END;

For More Information:

INTEGER VALUE 18;
REAL VALUE 4.65);
INTEGER VALUE 10;
REAL VALUE 46.50);

• On the ZERO function (Section 8.89)

• On nonstandard record constructors (Section 2.4.5.2)

2.4.3 SET Type

A set is a collection of data items of the same ordinal type (called the base
type). The SET type definition specifies the values that can be elements of
a variable of that type. The SET type has the following form:

[[PACKED]] SET OF [[attribute-list]] base-type

attribute-list
One or more identifiers that provide additional information about the base
type.

base-type
The ordinal type identifier or type definition, or discriminated schema type,
from which the set elements are selected. Real numbers cannot be elements
of a set type.

You define a set by listing all the values that can be its elements. A set
whose base type is INTEGER or UNSIGNED has two restrictions: the set
can contain no more than 256 elements, and the ordinal value of these
elements must be within the range of 0 and 255. For sets of other ordinal
base types, elements can include the full range of the type.

Data Types and Values 2-23

For More Information:

• On the INTEGER type (Section 2.1.1)

• On. the UNSIGNED type (Section 2.1.2)

• On the subrange types (Section 2.1.6)

• On attributes (Chapter 10)

• On schema discriminants in. sets (Section 2.5)

2.4.3.1 Set Constructors

Set constructors are lists of values that you can use to initialize a set; they
have the following form:

[[data-type]] [[[{component-value},. ..]]]

data-type
The data type of the constructor. This identifier is optional when used in the
CONST and executable sections; do not use this identifier in the TYPE and
VAR sections or in nested constructors.

component-value
Specifies values within the range of the defined data type. Component
values can be subranges (..) to indicate consecutive values that appear in
the set definition. These values are compile-time values; if you use the
constructor in the executable section, you can also use run-time values.

A set having no elements is called an empty set and is written as empty
brackets ([]).

A possible constructor for a variable of type SET OF 35 .. 115 is the following:

VAR
Numbers : SET OF 35 .. 115 VALUE (39, 67, 110 .. 115];

{In the executable section, run-time expressions are legal:}
Numbers := (39, 67, x+95, 110 .. 115];

The set constructors contain up to nine values: 39, 67, x+95 (in the
executable section only), and all the integers between 110 and 115, inclusive.
If the expression x+95 evaluates to an integer outside of the range 35 .. 115,
then VAX Pascal includes no set element for that expression.

To initialize a set to the empty set, do the following:

VAR
Day: SET OF 1 .. 31 VALUE [];

2-24 Data Types and Values

2.4.4 FILE Type

A file is a sequence of components of the same type. The number of
components is not fixed; a file can be of any length. The FILE type definition
identifies the component type and has the following form:

[[PACKED]] FILE OF [[attribute-list]] component-type

attribute-list
One or more identifiers that provide additional information about the file
components.

component-type
The type of the file components. This type can be any ordinal, real, pointer,
or structured type except for the following:

• A nonstatic type

• A structured type with a nonstatic component

• A file type

• A structured type with a file component

The arithmetic, relational, Boolean, and assignment operators cannot be
used with file variables or structures containing file components. You cannot
form constructors of file types.

Consider the following:

VAR
True_False_File : FILE OF BOOLEAN;

{File of TRUE and FALSE values}
Experiment_Records : FILE OF RECORD {File of records}

Trial : INTEGER; {To access, Experiment_RecordsA.Trial}
Date : RECORD

Month (Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec);

Day : 1 .. 31;
Year : INTEGER;
END;

Temp, Pressure INTEGER;
Yield, Purity : REAL;
END;

Data Types and Values 2-25

For More Information:

• On file organizations (Section 9.1)

• On component formats (Section 9.2)

• On conditions that establish a variable reference (Section 3. 7)

• On attributes (Chapter 10)

, 2.4.5 Nonstandard Constructors

As an option, you can use another format for constructors that is provided
as a VAX Pascal extension. VAX Pascal retains this format only for
compatibility with programs written for use with previous versions of
this product. Also, you cannot use nonstandard constructors for variables of
nonstatic types.

For all nonstandard constructors, you place constant values, of the same
type as the corresponding component, in a comma list within parentheses.
The compiler matches the values with the components using positional
syntax; you must provide a value for each component in the variable. Nested
structured components are designated by another comma list inside of
another set of parentheses. Nonstandard constructors are legal in the VAR
and VALUE initialization sections, and in the executable section. Specifying
a type identifier as part of a constructor is optional for constructors used in
the VAR and VALUE initialization sections, are required for constructors in
the executable section, and cannot be used for nested constructors.

For More Information:

• On Pascal standards (Section 1.1)

• On standard constructors (Section 2.4)

2.4.5.1 Nonstandard Array Constructors

The format for nonstandard array constructors is as follows:

[[data-type]] ([[{component-value}, ...]] [[REPEAT component-value]])

data-type
Specifies the constructor's data type. If you use the constructor in the
executable section, a data-type identifier is required. Do not use a type
identifier in the VAR or VALUE sections, or for a nested constructor.

2-26 Data Types and Values

component-value
Specifies the compile-time value to be assigned to the corresponding array
element. The compiler assigns the first value to the first element, the second
value to the second element, and so forth. If you want to assign more than
one value to more than one consecutive element, you can use the following
syntax for a component-value:

n OF value

For instance, the following component value assigns the value of 15 to the
first three components of an array:

VAR
Arrayl : ARRAY[l .. 4] OF INTEGER;

VALUE
Arrayl := (3 OF 15, 78);

You cannot use the OF reserved word in a REPEAT clause.

REPEAT
Specifies a value to be assigned to all array elements that have not already
been assigned values.

An example of an array constructor is as follows:

TYPE
Count= ARRAY[l .. 10] OF INTEGER;

VAR
Numbers : Count;

VALUE
Count : = (3 OF 1, 2, 1, 2, 3 OF 3, 3) ;

{In the executable section, constructor type is required:}
Numbers :=Count(3 OF 1, 2, 1, 2, REPEAT 3);

An example of a constructor for a multidimensional array is as follows:

TYPE
One_Dimension = ARRAY[l .. 3] OF CHAR;
Matrix= ARRAY[' a' .. 'b'] OF One_Dimension;

VAR
Tic Tac Toe : Matrix;
{ In the executable section: }

Tic_Tac_Toe :=Matrix((3 OF''), ('' 'X',' '), (3 OF''));

For More Information:

For information on standard array constructors, see Section 2.4.1.1.

Data Types and Values 2-27

2.4.5.2 Nonstandard Record Constructors

The format for a nonstandard record constructor is as follows:

[(data-type]] ([[{component-value}, ...]] [[tag-value, {component-value}; ...]])

data-type
Specifies the constructor's data type. If you use the constructor in the
executable section, a data-type identifier is required. Do not use a type
identifier in the VAR or VALUE sections, or for a nested constructor.

component-value
Specifies a compile-time value of the same data type as the component. The
compiler assigns the first value to the first record component, the second
value to the second record component, and so forth.

tag-value
Specifies a value for the tag-identifier of a variant record component. The
value that you specify as this component of the constructor determines the
types and positions of the remaining component values (according to the
variant portion of the type definition).

An example of a record constructor is as follows:

TYPE
Player_Rec = RECORD

Wins INTEGER;
Losses : INTEGER;
Percentage : REAL;

VAR
Playerl : Player_Rec := (18, 6, 24/18);

{In the executable section, constructor type is required:}
Playerl := Player_Rec (18, 6, 24/18) ;

The following is an example of a nested record constructor:

TYPE

VAR

Team_Rec = RECORD
Total Wins
Total Losses
Total_Percentage
Playerl
Player2
Player3
END;

Team : Team_Rec;

INTEGER;
INTEGER;
REAL;
Player_Rec;
Player_ Rec;
Player_Rec;

{In the executable section: }
Team := Team_Rec (18, 3, 18/21,

2-28 Data Types and Values

(6, 0, 1.0),
(5, 2, 5/7) '
(7, 1, 7/8));

The following is an example of a variant record constructor:

TYPE
Orders = RECORD
Part : 1 .. 9999;
CASE On Order : BOOLEAN OF

TRUE (Order_Quantity INTEGER;
Price REAL);

FALSE : (Rec_Quantity INTEGER;
Cost REAL);

END;
VAR

An order : Orders := (2358, FALSE, 10, 293.99);

For More Information:

• On standard record constructors (Section 2.4.2.2)

• On record variants (Section 2.4.2.1)

2.5 Schema Types

A schema type is a user-defined construct that provides a template for
a family of distinct data types. A schema type definition contains one or
more formal discriminants that take the place of specific boundary values
or variant-record selectors. By specifying boundary or selector values to a
schema type, you form a valid data type; the provided boundary or selector
values are called actual discriminants. Schema types have the following
form: ·

schema-identifier ({{discriminant-identifier},... : [[attribute-list]] ordinal-type-name}; ...)
= [[attribute-list]] type-denoter;

schema-identifier
The name of the schema.

discriminant-identifier
The name of a formal discriminant.

ordinal-type-name
The type of the formal discriminant, which must be an ordinal type.

attribute-list
One or more identifiers that provide additional information about the
type-denoter.

Data Types and Values 2-29

type-denoter
The type definition of the components of the schema. This must define a
new record, array, set, or subrange type.

Each schema type definition requires at least one discriminant identifier.
A discriminant identifier does not have to be used in the type-denoter
definition, but VAX Pascal still uses the discriminant identifier to determine
type compatibility. Discriminant identifiers can appear anywhere a value is
required in this definition.

Consider the following example:

TYPE
Array_Template(Upper_Bound : INTEGER)

= ARRAY[l .. Upper_Bound] OF INTEGER;

The identifier Upper_Bound is the formal discriminant of the
Array_Template schema. The Array_Template schema is not a complete
description of data. It is not a valid data type until you provide an actual
discriminant that designates the upper boundary of the array template.
Schema types that have not been provided actual discriminants are called
undiscriminated schema; in the previous example, Array_Template is an
undiscriminated schema. You can use an undiscriminated schema in the
following instances:

• As the domain type of a pointer

• As the type of a formal parameter

In a undiscriminated schema declaration, you can use a combination of
formal discriminants, compile-time values, and nested descriminants to
form subrange bounds. These types of expressions are called nonvarying
expressions. Consider the following:

TYPE
Vector(d: INTEGER) = ARRAY[O .. d-1] OF BOOLEAN;
Number_Line(Starting, Distance : INTEGER) =

Starting .. Starting+Distance;
My_Subrange(l,u: INTEGER) = l .. u;
Shift_Array_Index(12, u2, Length : INTEGER) =

ARRAY[My_Subrange(12+10, u2+10)] OF STRING(Length);

The following example provides the Array_Template schema with actual
discriminants to form complete data types (remaining examples in this
section use the Array_Template declaration).

2-30 Data Types and Values

TYPE
Atray_Template(Upper_Bound : INTEGER)

= ARRAY[l .. Upper_Bound] OF INTEGER;
VAR

Arrayl Array_Template(10); {ARRAY[l .. 10] OF INTEGER;}
Array2 Array_Template(x); {Upper boundary determined at

run-time by variable or
function call}

In the previous example, the actual discriminants 10 and x complete the
boundaries for Array_Template, forming two complete data types within
the same schema type family. A schema type that has been provided
actual discriminants is called a discriminated schema; discriminated
schema can appear in either the TYPE or VAR sections. The type specifiers
Array _Template(10) and Array _Template(x) are examples of discriminated
schema.

Actual discriminants cap. be compile- or run-time expressions. This
expression must be assignment compatible with the ordinal type specified
for the formal discriminant. Also, the actual discriminant value must
be inside the range specified for the formal discriminant; in the case of
subranges, the upper value must be greater than or equal to the lower
value. In the previous example, 10 and x must be within the range
-MAXINT .. MAXINT.

If you want to use a discriminated schema type as the domain type of a
pointer or as the type of a formal parameter, give the discriminated schema
type a name by declaring it in the TYPE section. Consider the following:

TYPE
Array_Typel = Array_Template(10);

PROCEDURE Example(Param: Array_Typel); {Procedure body ... }

For any undiscriminated schema, there is a range of possible data types that
you can form by discrimination. A schema family is the undiscriminated
schema type and the range of data types that can be formed from it. Also,
two separate discriminations that provide the same actual discriminant
value specify the same data type. Consider the following:

VAR
Arrayl
Array2
Array3

Array_Template(10);
Array_Template(10);
Array_Template(15);

Array _Template, Arrayl, Array2, and Array3 are all of the same schema
family. Arrayl and Array2 are of the same data type.

Data Types and Values 2-31

Once you create a discriminated schema, you can access the value of an
actual discriminant. Consider the following example:

VAR
Arrayl : Array_Template(10);

{In the executable section:}
WRITELN(Arrayl.Upper_Bound); {Writes 10 to the default device}

Discriminant values can appear in all expressions except constant
expressions. The following example shows a valid use of the
discriminant-value expression:

FOR i := 1 TO Arrayl.Upper_Bound DO
Arrayl [i] : = i;

You can use discriminated schema in the type-denoter of a schema definition.
You can also discriminate a schema in the type-denoter of a schema
definition, but the actual discriminants must be expressions whose values
are nonvarying; the actual discriminants cannot be variables or function
calls.

Consider the following valid schema definitions:

TYPE
{ Legal schema types:
Rangel(a, b : INTEGER) SET OF a .. b+l; {Run-time bounds checking}

My_Record(Number_Size, Status_Size : INTEGER) = RECORD
Part_Number : PACKED ARRAY[l .. Number_Size] OF INTEGER;
Status : STRING(Status_Size); {Nested schema}
END;

Range2(Low, Span : INTEGER) = Low .. Low +Span;
My Integer(Dummy: INTEGER) = -MAXINT-1 .. MAXINT;
Matrix(Bound: INTEGER) = ARRAY[l .. Bound, l .. Bound] OF REAL;

{ Illegal schema types (they do not form "new" types):
My_String(Len : INTEGER) = VARYING[Len] OF CHAR;
My_Integer(Dummy : INTEGER) = INTEGER;

For More Information:

• On ordinal types (Section 2.1)

• On compile-time and run-time expressions (Section 4.1)

• On attributes (Chapter 10)

• On predeclared routines (Chapter 8)

• On using schema types (VAX Pascal User Manual)

2-32 Data Types and Values

~.6 String Types

You can use schema and data types to store and to manipulate character
strings. These types have the following order of complexity:

1. CHAR type

2. PACKED ARRAY OF CHAR user-defined types

3. VARYING OF CHAR user-defined types

4. STRING predefined schema

Objects of the CHAR data type are character strings with a length of 1 and
are lowest in the order of character string complexity. You can assign CHAR
data to variables of the other string types.

The PACKED ARRAY OF CHAR types allow you to specify fixed"'.length
character strings. The VARYING OF CHAR types are a VAX.. Pascal
extension that allows you to specify varying-length character strings with a
constant maximum length. The STRING types provide a standard way for
you to specify storage for varying-length character strings with a maximum
length that can be specified at run time.

To provide values for variables of these types, you should use a
character-string constant (or an expression that evaluates to a character
string) instead of an array constructor. Using array constructors with
STRING and VARYING OF CHAR types generates an error; to use array
constructors with PACKED ARRAY OF CHAR types, you must specify
component values for every element in the array (otherwise, you generate an
error).

Consider the following example:

VAR
Stringl : VARYING[lOJ OF CHAR VALUE 'abc';

Generally, you can use any member of the ASCII character set in
character-string constants and expressions. However, some members of
the ASCII character set, including the bell, the backspace, and the carriage
return, are nonprinting characters. The extended string format for
printing character strings with nonprinting characters is as follows:

{'printing-string'({ordinal-value}, ...)} ...

Data Types and Values 2-33

printing-string
A character string constant.

ordinal-value
An integer denoting the ordinal value of an ASCII character.

Consider the following example:

'Two bells' (7, 7)' in a null-terminated ASCII string.' (0)

For More Information:

• On the CHAR data type (Section 2.1.3)

• On the ASCII chart (Appendix A)

2.6.1 PACKED ARRAY OF CHAR Types

User-defined packed arrays of characters with specific lower and upper
bounds provide a method of specifying fixed-length character strings. The
string's lower bound must equal 1. The upper bound establishes the fixed
length of the string.

The following example shows a declaration of a character string variable of
twenty characters:

VAR
My_String: PACKED ARRAY[l .. 20) OF CHAR;

NOTE

If the upper bound of the array exceeds 65,535, if the PACKED
reserved word is not used, or if the array's components are not
byte-sized characters, the compiler does not treat the array as a
character string.

To assign values to fixed-length character strings, you can use a
character-string constant (or an expression that evaluates to a character
string). When assigning into fixed-length strings, the compiler adds blanks
to extend a string shorter than the maximum characters declared. If
you specify a string longer than the maximum characters declared, an
error occurs. You can also use an array constructor as long as you specify
characters for every component of the array as specified in the declaration.
Consider the following.

2-34 Data Types and Values

VAR
States PACKED ARRAY[l .. 20] OF CHAR

VALUE 'Hello';
States PACKED ARRAY[l .. 20] OF CHAR

{Is legal}

VALUE [l:'H';2:'e';3:'1';4:'1';5:'o'J {Generates
an error}

States PACKED ARRAY[l .. 20) OF CHAR
VALUE [l:'H' ;2:'e' ;3:'1' ;4:'1' ;S:'o';
OTHERWISE' ') {Is legal,

but awkward}

For More Information:

For information on arrays, see Section 2.4.1.

2.6.2 VARYING OF CHAR Types

The VARYING OF CHAR user-defined types are a VAX Pascal extension
that provides a way of declaring variable-length character strings with
a compile-time maximum length. If you require portable code, use the
STRING predefined schema types to specify variable-length character
strings. VARYING OF CHAR types have the following form:

VARYING[upper-bound] OF [[attribute-list]] CHAR

upper-bound
An integer in the range from 1 through 65,535 that indicates the length of
the longest possible string.

attribute-list
One or more identifiers that provide additional information about the
VARYING OF CHAR string component.

You can assign string constants to VARYING OF CHAR variables from
length 0 to the specified upper-bound. The compiler allocates enough
storage space to hold a string of the maximum length. A VARYING OF
CHAR variable with length 0 is the empty string (''). You can only use
character-string constants (or expressions that evaluate to character strings)
to assign values to variables of these types; you cannot use standard array
constructors. Also, you can initialize a character string to the empty string
(' '), as follows:

VAR
Stringl : VARYING[lO] OF CHAR VALUE'';

Data Types and Values 2-35

The VARYING OF CHAR variable is stored as though it were a record with
two fields, as follows:

RECORD
LENGTH
BODY
END;

[WORD] O .. upper-bound; {Length of current string}
PACKED ARRAY[l .. upper-bound] OF CHAR; {Current string}

You can access the LENGTH and BODY predeclared identifiers as you would
access fields of a record. For instance, to determine the maximum length of
a VARYING OF CHAR variable, you can use the SIZE predeclared function
and the BODY predeclared identifier, as follows:

VAR
Stringl : VARYING[lO] OF CHAR VALUE 'Wolf';

{In the executable section: }
Max_Length :=SIZE(stringl.BODY);
WRITELN(Max_Length); {writes '10'}

To determine the current length of a VARYING OF CHAR variable, you can
use the LENGTH predeclared function. From the previous example, the
result of LENGTH(Stringl) is the same as Stringl.LENGTH.

You can refer to individual array components as you would individual
components of any array, as follows:

Stringl [8] := 'L';

You cannot specify an index value that is greater than the length of the
current string. VAX Pascal does not pad remaining characters in the current
string with blanks (' '). If you specify an index that is greater than the
current length of the string, an error occurs.

For More Information:

• On arrays (Section 2.4.1)

• On attributes (Chapter 10)

• On the SIZE predeclared function (Section 8.66)

• On the LENGTH predeclared function (Section 8.41)

2.6.3 STRING Schema Type

The STRING predefined schema provides a way of declaring variable-length
character strings. The compiler stores STRING data as though it were
stored in the following schema definition:

TYPE
STRING(Capacity : INTEGER) = VARYING[Capacity] OF CHAR;

2-36 Data Types and Values

The syntax of the discriminated schema is as follows:

STRING(CAPACITY)

CAPACITY
An integer in the range 1..65,535 that indicates the length of the longest
possible string.

To use the predefined STRING schema, you provide an upper bound as the
actual discriminant. Consider the following example:

VAR
Short String : STRING(5); {Maximum length of 5 characters}
Long_String : STRING(100); {Maximum length of 100 characters}

You can assign string constants to STRING variables from length 0 to the
specified upper bound. The compiler allocates enough storage space to hold
a string of the maximum length. A STRING variable with length 0 is the
empty string (' '). To provide values for variables of this type, you must
use character-string constants (or expressions that evaluate to character
strings); you cannot use array constructors. Also, you can initialize a
character string to the empty string (''), as follows:

VAR
Short_String : STRING(5) VALUE '';

You can access the CAPACITY predeclared identifier as you would a schema
discriminant, and you can access the LENGTH and BODY predeclared
identifiers as you would access fields of a record. The CAPACITY identifier
allows you to access the actual discriminant of the STRING schema; the
LENGTH identifier allows you to access the current length of the string
object; and, the BODY identifier contains the current string object, including
whatever is in memory up to the capacity of the discriminated schema.
Consider the following example:

VAR
Stringl : STRING(10) VALUE 'Wolf';

{In the executable section: }
WRITELN(Stringl.CAPACITY); {prints '10'}
WRITELN(Stringl.LENGTH); {prints '4'}

The value Stringl.BODY contains the four-character string 'Wolf' followed
by whatever is currently stored in memory for the remaining 6 characters.

To determine the current length of a STRING variable, you can use the
LENGTH predeclared function. The result of LENGTH(Stringl) is the
same as Stringl.LENGTH.

Data Types and Values 2-37

You can refer to individual STRING components as you would individual
components of any array, as follows:

Stringl [5] := 't';

The compiler does not pad remaining characters in the current string with
blanks (' '). If you specify an index that is greater than the current length
of the string an error occurs. Consider the following example:

VAR
Stringl : STRING(10) VALUE 'Wombat';
x : CHAR;

{In the executable section:}
x := String1[9]; {Generates an error}
x := Stringl.BODY[9]; {Provides whatever is in memory there}
x := Stringl[SJ; {Is legal}
String1[9] := 'X'; {Generates an error}

For More Information:

• On schema types (Section 2.5)

• On arrays (Section 2.4.1)

• On the SIZE predeclared function (Section 8.66)

2.7 Predefined Structured and Schema Types

The following sections discuss additional structured and schema types that
are predefined by VAX Pascal for your use.

2. 7 .1 TEXT Type

The TEXT predefined type is a file containing sequences of characters with
special markers (end-of-line and end-of-file) added to the file. Although each
character of a TEXT file is one file component, the end-of-line marker allows
you to process the file line-by-line, if you choose. The TEXT type has the
following form:

[[attribute-list]] TEXT

attribute-list
One or more identifiers that provide additional information about the file
components.

2-38 Data Types and Values

For More Information:

• On the FILE type (Section 2.4.4)

• On TEXT files (Section 9.5)

• On INPUT and OUTPUT identifiers (VAX Pascal Reference Supplement
for VMS Systems)

2.7.2 TIMESTAMP Type

The TIMESTAMP predefined type is used in conjunction with the
GETTIMESTAMP procedure or with the DATE or TIME functions.
GETTIMESTAMP initializes a variable of type TIMESTAMP; DATE and
TIME function results are of type TIMESTAMP.

For More Information:

• On the DATE and TIME functions (Section 8.18)

• On the layout of the GETTIMESTAMP type (Section 8.34)

2.8 Static and Nonstatic Types

Static types are types whose objects can be fully described at compile time.
For instance, the variables a and b are derived from static types in the
following example:

VAR
a : INTEGER;
b : ARRAY[l .. 10] OF INTEGER;

Nonstatic types are types whose objects potentially cannot be fully
described at compilation time (the type has a component that can be a
run-time value). Nonstatic types include the following types:

• Discriminated and undisriminated schema types

• Any type that contains a nonstatic component or index type

Nonstatic types require storage allocation to hold information about the type
at run time. This storage, called the control part, includes information
that cannot be determined until execution time; VAX Pascal needs this
information to allocate and to access variables and record fields of this type.

Data Types and Values 2-39

Consider the following nonstatic types:

TYPE
{Template is nonstatic:}

Template(Upper: INTEGER) = ARRAY[l .. Upper] OF INTEGER;
a= ATemplate; {a's base type is nonstatic}
b =Template(5); {bis nonstatic}
My_Subrange(x, y: INTEGER) = x .. y;

{c is nonstatic:}
c = ARRAY[My_Subrange(j, k), My_Subrange(1, m)] OF INTEGER;
d = ARRAY[l .. 10] OF Template(5); {dis nonstatic}
e = RECORD {e is nonstatic}

fl : TEMPLATE(5);
END;

f =SET OF My_Subrange(10, 20); {f is nonstatic}

Do not confuse static and nonstatic types with automatic and static variable
allocation.

For More Information:

• On automatic variable allocation (Section 10.2.4)

• On static variable allocation (Section 10.2.35)

• On storage representation of nonstatic types (the VAX Pascal Reference
Supplement for VMS Systems)

2.9 Type Compatibility

The following sections discuss the two forms of type compatibility: structural
and assignment compatibility. ·

2.9.1 Structural Compatibility

Two types are structurally compatible only if they have the same allocation
size and the same type structure. VAX Pascal requires that the type of
a variable passed to a routine as an actual parameter be structurally
compatible with the type of the corresponding formal variable parameter.
VAX Pascal also checks the structural compatibility of the base types when a
pointer expression is assigned to a pointer variable. Structural compatibility
does not apply to nonstatic types.

Two ordinal types are structurally compatible only if they have the same
base type and the same allocation size.

If two ordinal types are components of packed structured types, they are
structurally compatible only if the ranges of values they describe have
identical upper and lower bounds.

2-40 Data Types and Values

In general, each real type is structurally compatible only with itself.
However, because REAL and SINGLE are synonymous, they are structurally
compatible with each other.

For two structured types to be structurally compatible, they must have
the same allocation size, and both must be packed or both unpacked. The
following conditions also affect structural compatibility:

• If both types are record types, they must have the same number of fields,
and the types of corresponding fields must be structurally compatible
and identically positioned. If the record types have variant parts, the
corresponding variants must have identical case labels written in the
same order. The types of the fields within corresponding variants must
be structurally compatible.

• If both types are array types, the types of their components must be
structurally compatible. The index types must have identical base types
and identical upper and lower bounds.

• If both types are VARYING OF CHAR types, their maximum lengths
must be equal. The lengths of the current values of the VARYING OF
CHAR strings do not affect structural compatibility.

• If two components of packed structured types are set types, their base
types must have identical upper and lower bounds.

• If both types are set types, file types, or pointer types, their base types
must be structurally compatible. Because of the possibility that a
pointer type can be defined in terms of itself, the VAX Pascal compiler
begins the test for the structural compatibility of two pointer types by
assuming that they are compatible. Next, the compiler tests the two
base types for structural compatibility. If within the base type, the
compiler encounters the same pointer types it is testing, it still follows
the original assumption that the pointer types are compatible. If the
base types prove to be structurally compatible, then the two pointer
types are judged to be structurally compatible.

For More Information:

• On attributes that affect size and structure: ALIGNED, POS,
READONLY, UNALIGNED, UNSAFE, VOLATILE, and WRITEONLY
(Chapter 10)

• On ordinal types (Section 2.1)

• On real types (Section 2.2)

Data Types and Values 2-41

• On pointer types (Section 2.3)

• On structured types (Section 2.4)

• On default sizes (VAX Pascal Reference Supplement for VMS Systems)

2.9.2 Assignment Compatibility

Assignment compatibility rules apply to the types of values used to initialize
variables, the types of expressions assigned to variables with the assignment
operator (:=), and the types of actual parameters passed to formal value
parameters.

Table 2-3 shows the contexts in which the type of an expression is
assignment compatible with the type of a variable or a formal parameter.

Table 2-3: Assignment Compatibility

Type of Variable

INTEGER

UNSIGNED

CHAR

Subrange

REAL, SINGLE

DOUBLE

QUADRUPLE

PACKED ARRAY OF
CHAR

VARYING OF CHAR

STRING

Pointer

2-42 Data Types and Values

Type of Assignment-Compatible Expression

INTEGER

UNSIGNED INTEGER

CHAR

Base type of the subrange

REAL, SINGLE, UNSIGNED, INTEGER

DOUBLE, REAL, SINGLE, UNSIGNED, INTEGER

QUADRUPLE, DOUBLE, REAL, SINGLE, UNSIGNED,
INTEGER

CHAR, PACKED ARRAY OF CHAR with the same or
smaller length, VARYING or STRING string whose
current length is equal to or less than the packed array

CHAR, PACKED ARRAY OF CHAR, VARYING, STRING,
string whose current value does not exceed the maximum
length of the variable or parameter

CHAR, PACKED ARRAY OF CHAR, VARYING, STRING,
string whose current value does not exceed the maximum
length of the variable or parameter

Pointer to a structurally compatible type

Two record types or two array types are assignment compatible if they are
structurally compatible. When you assign one record variable to another,
or one array variable to another, the VAX Pascal compiler does not check
for out-of-range assignments to record fields or array components; such
assignments do not result in an error message, even if subrange checking is
enabled at compile time.

A set expression is assignment compatible with a set variable if the set's
base types are compatible. In addition, all elements of the set expression
must be included in the range of the variable's base type.

Note that assignment operations are not allowed on objects of file types or
structured types that have file components.

Two discriminated schema types are assignment compatible if they are of
the same type family and if their actual discriminant values are identical.
A dereferenced pointer to an undiscriminated schema type is actually
referencing a discriminated schema object whose discriminants were
specified in a call to the NEW function. Although STRING is a schema, the
rules in Table 2-3 take precedence.

For More Information:

• On attributes that affect assignment compatibility: POS, READONLY,
and UNSAFE (Chapter 10)

• On ordinal types (Section 2.1)

• On real types (Section 2.2)

• On pointer types (Section 2.3)

• On structured types (Section 2.4)

• On schema types (Section 2.5)

• On string types (Section 2.6)

Data Types and Values 2-43

Chapter 3

The Declaration Section

The declaration section contains declarations or definitions of constants,
labels, user-defined data types, variables, and user-defined functions
and procedures. In addition, only modules can contain initialization and
finalization sections. Each appears in a subsection introduced by VAX
Pascal reserved words.

This chapter discusses the following topics:

• The CONST section (Section 3.1)

• The LABEL section (Section 3.2)

• The TO BEGIN DO section (Section 3.3)

• The TO END DO section (Section 3.4)

• The TYPE section (Section 3.5)

• The VALUE section (Section 3.6)

• The VAR section (Section 3.7)

These sections appear after the header and before the executable section
(if any). The TO BEGIN DO and TO END DO sections may appear only in
modules and can appear only once within a module.

The remaining sections can appear in programs, modules, functions, or
procedures; they can appear more than once and in any order in a single
declaration section. If you use one kind of section more than once in a
declaration section, be sure to declare types, variables, and constants before
you use them in subsequent sections.

The Declaration Section 3-1

For More Information:

• On user-defined procedures and functions (Chapter 6)

• On program structure (Chapter 7)

• On modules (Section 7.3)

3.1 The CONST Section

The CONST section defines symbolic constants by associating identifiers
with compile-time expressions; it has the following form:

CONST
{constant-identifier = constant-expression}; ...

constant-identifier
The identifier of the symbolic constant being defined.

constant-expression
Any legal compile-time expression.

Once a constant identifier is associated with an expression, the identifier
retains the value of that expression throughout the scope in which it was
declared. You can change the value only by changing the definition in the
CONST section.

Consider the following example:

TYPE
array_typel = ARRAY[l .. 10] OF INTEGER;

CONST
Year = 1984;
Tiny = 1.7253;
Month = 'November';
Initial = 'P';
Lie = FALSE;
Untruth = Lie;
Almost Pi = 22.0/7.0;
array_const =

array_typel[l..3,5 1; 4,6 2; 7 .. 9 3; 10 7];

For More Information:

• On expressions (Section 4.1)

• On constructors (Section 2.4)

3-2 The Declaration Section

3.2 The LABEL Section

A label is a tag that makes an executable statement accessible to a GOTO
statement. The LABEL section declares labels and has the following form:

LABEL

{label}, ... ;

label
A decimal integer between 0 and 9999 (as an extension, between 0 and
MAXINT), or a symbolic name. When declaring several labels, you can
specify them in any order. The declaration and the occurrence of the label
must be at the same level in the program.

A label can appear only once within the scope of the label declaration. It
can precede any executable statement in the program. Use a colon (:)to
separate the label from the statement it precedes. Labels can be accessed
only by GOTO statements.

Consider the following example:

LABEL
marker, 5;

{In the executable section:
IF a <= 150 THEN GOTO 5
ELSE GOTO marker;

5: a := a + l;

marker: WHILE x < 20 DO {Statement ... }

For More Information:

For information on the GOTO statement, see Section 5.6.

3.3 The TO BEGIN DO Section

The TO BEGIN DO section allows you to specify a statement, in a module,
that is to be executed before the executable section of the main program; it
has the following form:

TO BEGIN DO statement;

The Declaration Section 3-3

statement
A VAX Pascal statement.

The TO BEGIN DO section can only appear in modules, can only appear
once in a module, and must appear as the last section in the declaration
section. (If appearing together, the TO BEGIN DO section must precede the
TO END DO section at the end of the declaration section.)

Consider the following example:

MODULE x(INPUT, OUTPUT);
VAR

Debug : BOOLEAN;
PROCEDURE Test(...); {Executable section ... }

TO BEGIN DO
BEGIN
WRITE('Debug Module x? ');
READLN(Debug);
END;

END.

As a general rule, if a program or module inherits an environment file,
the initialization section in the inherited module must be executed before
the initialization section in the program or module that inherited it. If
a module or program inherits more than one module that contains an
initialization section, the order of execution of the inherited modules cannot
be determined.

Consider the following example:

[ENVIRONMENT('Modl')] MODULE Modl;
VAR

i : INTEGER;
TO BEGIN DO

i := 5;

{In a separate compilation unit:}
[INHERIT('Modl')] MODULE Mod2;

VAR
j : INTEGER;

TO BEGIN DO
j := i + l; {First execute code in Modl for correct results}

Figure 3-1 illustrates the order of execution of initialization and finalization
sections. Each circle is a module that contains both a TO BEGIN DO and a
TO END DO section and each arrow indicates the order of inheritance for
the environment files.

3-4 The Declaration Section

=igure 3-1: Order of Execution for TO BEGIN DO and TO END DO ·Sections

Order of Execution:

TO BEGIN DO TO END DO

ZK-1321A-GE

The execution order for initialization and finalization sections in Modules 2
and 3 cannot be determined. The headers the modules in Figure 3-1 are as
follows:

[ENVIRONMENT] MODULE Modl; ...

[ENVIRONMENT, INHERIT('Modl')] MODULE Mod2;

[ENVIRONMENT, INHERIT(' Modl')] MODULE Mod3;

[INHERIT('Mod2', 'Mod3')] MODULE Mod4;

For More Information:

• On modules (Section 7.3)

• On environment files (Section 7.3.1.1)

3.4 The TO END DO Section

The TO END DO section allows you to specify a statement, in a module,
that is to be executed after the executable section of the main program; it
has the following form:

TO END DO statement;

The Declaration Section 3-5

statement
A VAX Pascal statement.

The TO END DO section can only appear in modules, can only appear once
in a module, and must appear as the last section in the declaration section.
(If appearing together, the TO END DO section must come after the TO
BEGIN DO section at the end of the declaration section.)

As a general rule, if a compilation unit inherits an environment file, the
finalization section in the inheriting compilation unit must be executed
before the finalization section in the inherited compilation unit. Also, if
more than one module with a finalization section inherits a single module,
the order of finalization of the inheriting modules cannot be determined.
Figure 3-1 illustrates an example of the order of execution of TO END DO
sections.

Consider the following example:

MODULE File_Output;
VAR

Out_File : TEXT;
t :

1
TIMESTAMP;

PROCEDURE Test(...); {Executable section ... }

TO BEGIN DO
OPEN(Out_File, 'foo.dat');
END;

TO END DO
BEGIN
GETTIMESTAMP(t);
WRITELN('foo.dat closed at', TIME(t));
CLOSE(Out_File)
END;

END.

For More Information:

• On modules (Section 7.3)

• On environment files (Section 7.3.1.1)

3.5 The TYPE Section

The TYPE section introduces the name and set of values for a user-defined
type or schema declaration; it has the following form:

TYPE
{ { type-identifier = [[attribute-list]] type-denoter }

schema-declaration

[[VALUE initial-state-specifier]]}; ...

3-6 The Declaration Section

type-identifier
The identifier of the type being defined.

attribute-list
One or more identifiers that provide additional information about the
type-denoter.

type-denoter
Any legal VAX Pascal type syntax.

schema-declaration
The declaration of a schema type.

initial-state-specifier
A compile-time expression that is assignment compatible with a variable
of the TYPE identifier being defined. VAX Pascal initializes all variables
declared to be of this type with the constant value or values provided (unless
there is an overriding initial-state specifier in the variable declaration).

Pascal requires that all user-defined type identifiers (except base types of
pointers) be defined before they are used in the definitions of other types. A
base type must be defined before the end of the TYPE section in which it is
first mentioned.

The following rules apply to the use of initial-state specifiers on data types:

• You must initialize a type with a compile-time expression of an
assignment-compatible type. Scalar types require scalar constants;
structured types require constant constructors.

• You cannot initialize file types.

• The predeclared function ZERO can be used to initialize an entire type
(except file types) to binary zero.

• The constant identifier NIL or a call to the ZERO function are the only
values with which you can initialize a pointer type.

Consider the following example:

TYPE
Ptr_to_Movie = AMovie; {Movie is defined later}
Name =PACKED ARRAY[l .. 20] OF CHAR; {Defined before used}
Movie = RECORD

Title, Director : Name;
Year INTEGER;
Stars FILE OF Name;
Next Ptr_to_Movie;
END;

The Declaration Section 3-7

Consider the following examples of type definitions:

TYPE
Days_of_Week = (Sun, Mon, Tues, Wed, Thurs, Fri, Sat

VALUE Mon;
Array_Template(Upper_Bound : INTEGER) =

ARRAY [1 .. Upper_Bound] OF INTEGER;
VAR {Declaring variables of user-defined types:}

weekl, week2, week3, week4 : Days_of_Week; {Initial value: Mon}
weekS : Days_of_Week VALUE Sun; {Initial value: Sun}
array_type2 : array_template(x); {xis a run-time expression}

For More Information

• On data types (Chapter 2)

• On schema types (Section 2.5)

• On pointers (Section 2.3)

• On attributes (Chapter 10)

3.6 The VALUE Section

If you choose, you can use the VALUE section as a VAX Pascal extension
that initializes ordinal, real, array, record, set, and string variables. (If
you require portable code, use the VALUE reserved word in either TYPE
definitions or VAR declarations.) The exact format of an initialization
depends on the type of the variable being initialized. The VALUE section
has the following form:

VALUE

{variable-identifier := constant-expression}; ...

variable-identifier
The name of the variable to be initialized. You cannot specify a list of
variable identifiers. You can initialize a variable or variable component only
once in the VALUE section. Any variables appearing in the VALUE section
must appear in a previous VAR section.

constant-expression
Any constant expression that is assignment compatible with the variable
identifier.

Unlike other declaration sections, the VALUE section can appear only
in a program or· module declaration section. You cannot use the VALUE
declaration section in procedures or functions. If you wish to initialize
variables in procedures and functions, use an initial-state specifier (by using
the VALUE reserved word in' either the TYPE or VAR section).

3-8 The Declaration Section

You can assign values to complete structured variables or to a single
component of that variable.

For More Information:

• On data types (Chapter 2)

• On expressions (Section 4.1)

3.7 The VAR Section

The VAR section declares variables and associates each variable with an
identifier, a type, and optionally an initial value; it has the following form:

VAR

{{variable-identifier},... : [[attribute-list]] type-denoter

[[{ :ALUE } initial-state~specifier]] }; ...

variable-identifier
The identifier of the variable being declared.

attribute-list
One or more identifiers that provide additional information about the
variable.

type-denoter
Any legal VAX. Pascal type syntax.

initial-state-specifier
Any constant expression that is assignment compatible with the variable
identifier. The variable is initialized to this expression.

You can combine several identifiers in the same variable declaration if the
variables are of the same type and are being initialized either with the same
value or not at all.

Consider the following example:

TYPE
Hours_Worked = ARRAY[l .. 10] OF INTEGER;

VAR
Answer, Rumor BOOLEAN;
Temp INTEGER VALUE 60;
Grade 'A' .. 'D';
Weekly_Hours Hours Worked VALUE [1 .. 3 7; OTHER~ISE 5];

The Declaration Section 3-9

The following rules apply to the use of initial-state specifiers on variables:

• You must initialize a variable with a constant expression of an
assignment-compatible type. Scalar variables require scalar constants;
structured variables require constant constructors.

• You cannot initialize file variables.

• You can use the predeclared function ZERO to initialize all or part of a
variable (except file variables and components) to binary zero.

• The constant identifier NIL or a call to the ZERO function are the only
values with which you can initialize a pointer variable.

A reference to a variable consists of the variable's use in one of the following
situations:

• The variable or one of its components is passed as a VAR, %REF, or
%DESCR parameter. The reference lasts throughout the call to the
corresponding routine.

• The variable or one of its components is used on the left side of an
assignment statement. The reference lasts throughout the execution of
the statement. ·

• The variable or one of its components is accessed by a WITH statement.
The reference lasts throughout the execution of the statement.

The existence of a variable reference sometimes prohibits certain operations
from being performed on the variable. Such restrictions are noted
throughout this manual.

For More Information:

• Constructors (Section 2.4)

• On data types (Chapter 2)

• On attributes (Chapter 10)

• On the ZERO function (Section 8.89)

• On pointers and NIL (Section 2.3)

• On the assignment and WITH statements (Chapter 5)

3-10 The Declaration Section

Chapter 4

Expressions and Operators

This chapter discusses the following:

• Expressions (Section 4.1)

• Operators (Section 4.2)

• Data type conversions (Section 4.3)

4.1 Expressions

VAX Pascal expressions consist of one or more operands that result in
a single value. If the expression contains more than one operand, the
operands are separated by operators. Operands include numbers, strings,
constants, variables, and function designators. Operators include arithmetic,
relational, logical, string, set, and typecast operators.

VAX Pascal recognizes two forms of expressions: constant expressions
and run-time expressions. Constant expressions result in a value at the
time you compile your program. These expressions can include constants,
constant identifiers, operators, and some predeclared functions. Constant
expressions cannot include the following:

• Variable references

• Schema discriminants

• Bound identifiers from conformant parameters

• Calls to user-defined functions

• Calls to EOF and EOLN predeclared functions

• Constructors of schema types or of types containing schema components

Expressions and Operators 4-1

Run-time expressions can only result in a value at the time you execute your
program. These expressions can include variables, predeclared functions,
user-declared functions, and everything that a constant expression cannot
contain.

When you form an expression, the operands must be of the same data type.
Under some circumstances, the compiler performs data type conversions and
allows you to form an expression with operands of different types.

VAX Pascal does not evaluate expressions contained within a single
statement in a predictable order. Also, the compiler does not always
evaluate all expressions in a single statement if the correct execution of
the statement can be determined by evaluation of fewer expressions. For
instance, some IF statement conditions can be determined TRUE or FALSE
by only evaluating one of the Boolean expressions in the condition. Do
not write code that depends on the evaluation order of expressions, and,
in some cases, on the evaluation of all expr~ssions in a single statement.
If you require a predictable order of evaluation, you may wish to use the
AND_THEN and OR_ELSE operators.

For More Information:

• On data type conversion (Section 4.3)

• On data types (Chapter 2)

• On evaluation of IF statement conditions (Section 5. 7)

• On the AND_THEN and OR_ELSE logical operators (Section 4.2.3)

4.2 Operators

VAX Pascal provides several classes of operators. You can form complex
expressions by using operators to combine constants, constant iQ.entifiers,
variables, and function designators.

VAX Pascal also provides the assignment operator (:=) for use in assignment
statements.

For More Information:

• Precedence of operators (Section 4.2. 7)

• Assignment statement (Section 5.1)

4-2 Expressions and Operators

t2.1 Arithmetic Operators

An arithmetic operator provides a formula for calculating a value. Table 4-1
lists the arithmetic operators that you can use, in combination with numeric
operands, to perform an arithmetic operation.

Table 4-1: Arithmetic Operators

Operator Example Result

+ A+B Sum of A and B

A-B B subtracted from A

* A*B Product of A and B

** A**B A raised to the power of B

I AIB A divided by B

DIV ADIVB Result of A divided by B
truncated toward zero

REM AREMB Remainder of A divided by B

MOD AMODB ·Modulus of A with respect to B

The+,-,*,** Operators:

Addition, subtraction, multiplication, and exponentiation operators can be
used on integer, unsigned, real, DOUBLE, and QUADRUPLE operands.
These operators produce a result of the same type as the values. In
exponentiation operations, if the data types of the operands are not the
same, the operand of the less-precise type is converted and the result is of
the more-precise type.

When you use a negative integer as an exponent, the exponentiation
operation may yield unexpected results. Table 4-2 shows the defined results
of integers raised to the power of negative integers.

Expressions and Operators 4-3

Table 4-2: Results of Negative Exponents

Base Exponent Result

0 Negative or 0 Error

1 Negative 1

-1 Negative and odd -1

-1 Negative and even 1

Any other integer Negative 0

For example, the expression 1<-3) equals 1; (-1)<-3) equals -1; (-1)<-4) equals
1; and 3<-3) equals 0.

The I Operator:

The division operator (I) can be used on integer, unsigned, real, DOUBLE,
and QUADRUPLE operands. The division operator always produces a real
result. This result may reflect some loss of precision as the compiler converts
integer and unsigned operands to their real equivalents. With one or more
operands of higher precision, the result is of the higher-precision type.

The DIV, REM, MOD Operators:

The DIY, REM, and MOD operators can be used only on integer and
unsigned operands. DIV divides one integer or unsigned operand by the
other, producing an integer or unsigned result. DIV truncates toward zero
any remaining fraction and does not round the result. For example, the
expression 23 DIV 12 equals 1, and (-5) DIV 3 equals -1.

REM returns the remainder after dividing the first operand by the second.
Thus, 5 REM 3 evaluates to 2. Similarly, 3 REM 3 evaluates to 0 and (-4)
REM 3 evaluates to -1.

MOD returns the modulus of the first operand with respect to the second.
The result of the operation A MOD B is defined only when B is a positive
integer. This result is always an integer between 0 and B-1. The modulus
of A with respect to Bis computed as follows:

• If A is greater than B, B is subtracted repeatedly from A until the result
is a nonnegative integer less than B.

• If A is less than B and not negative, the result is A.

• If A is less than zero, B is added repeatedly to A until the result is a
nonnegative integer less than B.

4-4 Expressions and Operators

For example, 5 MOD 3 equals 2, (-4) MOD 3 equals 2, and 2 MOD 5
equals 2.

When both operands are positive, the REM and MOD operators return the
same result. For example, 28 REM 5 equals 3 and 28 MOD 5 equals 3.
However, when the first operand is negative, REM produces a negative or
zero result, while MOD produces a positive or zero result. For example,
(-42) REM 8 equals -2 and (-42) MOD 8 equals 6.

Enabling subrange checking ensures that a MOD operation is legal by
verifying at run time that Bis a positive integer.

Note that the use of negative integer and real number constants as operands
in MOD and exponentiation operations may not produce the results you
expect because the minus sign (-) is actually a negation operator. For
example, the expression -2.0**2 is equivalent to the expression -(2.0**2)
and produces the result -4.0. Therefore, you should enclose a negative
constant in parentheses to make sure that it is interpreted as you intend.
The expression (-2.0)**2 produces the result 4.0.

Table 4-3 lists the result types of arithmetic operations with operands of
various types.

Table 4-3: Result Types of Arithmetic Operators

Operator

+

*
**

I

DIV
REM
MOD

Type of Operands

INTEGER, UNSIGNED,
REAL, DOUBLE,
QUADRUPLE

INTEGER, UNSIGNED,
REAL, DOUBLE,
QUADRUPLE

INTEGER and
UNSIGNED

Result Type

Same as the operands if both are
of the same type; otherwise, the
operand of the lower-ranked type
is converted and the result is of
the higher-ranked type.

One of the real types-REAL if
the operands are of type REAL
(or SINGLE) or a lower-ranked
type; other\\'.'ise, the operand
of the lower-ranked type is
converted and the result is of the
higher-ranked type.

INTEGER if both operands are
of type INTEGER; UNSIGNED
if the operands are of mixed
types or are both UNSIGNED;
otherwise, an error occurs.

Expressions and Operators 4-5

For More Information:

• On integers (Section 2.1.1)

• On real numbers (Section 2.2)

• On "more precise" and "less precise" operands, and on type conversions
(Section 4.3)

• On using the CHECK attribute and SUBRANGE option for MOD
run-time checking (Section 10.2. 7)

4.2.2 Relational Operators

A relational operator tests the relationship between two ordinal, real,
DOUBLE, or QUADRUPLE expressions and returns a Boolean result. If
the relationship holds, the result is TRUE; otherwise, the result is FALSE.
Table 4-4 lists the relational operators that you can apply to arithmetic
operands. You can also apply some of the relational operators to string
operands and to set operands.

Table 4-4:

Operator

=
<>
<
<=
>

>=

Relational Operators

Example

A=B
A<>B
A<B
A<=B
A>B
A>=B

Result

TRUE if A is equal to B

TRUE if A is not equal to B

TRUE if A is less than B

TRUE if A is less than or equal to B

TRUE if A is greater than B

TRUE if A is greater than or equal to B

Note that operators designated with two characters must appear in the
order specified and cannot be separated by a space.

For More Information:

• On relational operators in string expressions (Section 4.2.4)

• On relational operators in set expressions (Section 4.2.5)

• On the BOOLEAN data type (Section 2.1.4)

4-6 Expressions and Operators

4.2.3 Logical Operators

A logical operator evaluates one or more Boolean expressions and returns a
Boolean value. The logical operators are listed in Table 4-5.

Table 4-5:

Operator

AND

OR

NOT

AND_THEN

OR_ELSE

Logical Operators

Example

AANDB

AORB

NOTA

AAND_THENB

AOR_ELSE B

Result

TRUE if both A and B are TRUE

TRUE if either A or B is TRUE, or if both
are TRUE

TRUE if A is FALSE, and FALSE if A is
TRUE

TRUE if both A and B are TRUE; forces
left-to-right evaluation order with short
circuiting

TRUE if either A or B is TRUE, or if both
are TRUE; forces left-to-right evaluation
order with short circuiting

The AND, AND_THEN, OR, and OR_ELSE operators combine two
conditions to form a compound condition. The NOT operator reverses
the value of a single condition so that if A is TRUE, NOT A is FALSE, and
vice versa.

Normally, the compiler does not guarantee the evaluation order for logical
operations. The AND_THEN and OR_ELSE operators force the compiler to
evaluate an expression from left to right, stopping when the overall result
can be determined (also called short circuiting). The following example
forces the compiler to verify that an array element is within index bounds
before evaluating the element's contents:

IF (i < 11) AND_THEN (Array_A[i) = 0) THEN
WRITELN('Index bounds are legal and element contained 0');

The following examples show logical expressions and their Boolean results:

{ Expressions:
(4 > 3) AND (18 = 3 * 6)
(3 > 4) OR (18 = 3 * 6)

NOT (4 <> 5)
(i < 11) AND THEN (Array A[i]

p = NIL OR_ELSE PA = 0 -

Results:
{TRUE}
{TRUE}
{FALSE}

0) {Not known}
{Not known}

Expressions and Operators 4-7

Boolean variables and functions can be used as operands in logical
expressions. Consider the following example:

Flag AND ODD(i)

Suppose that Flag is a Boolean variable and ODD(i) is a function that
returns TRUE if the value of the integer variable i is odd and FALSE if the
value of i is even. Both operands, Flag and ODD(i), must be TRUE for the
expression to be TRUE.

For More Information: ·

• On precedence of operators (Section 4.2. 7)

• On Boolean data type (Section 2.1.4)

4.2.4 String Operators

A string operator concatenates or compares character-string expressions.
The result of the operation is either a string or a Boolean value. Table 4-6
lists the string operators.

Table 4-6: String Operators

Operator Example

+ A+B

<>

<

<= A<=B

> A>B

>=

4-8 Expressions and Operators

Result

String that is the concatenation of strings A
andB

TRUE if strings A and B have equal ASCII
values

TRUE if strings A and B have unequal ASCII
values

TRUE if ASCII value of string A is less than
that of string B

TRUE if ASCII value of string A is less than
or equal to that of string B

TRUE if ASCII value of string A is greater
than that of string B

TRUE if ASCII value of string A is greater
than or equal to that of string B

With the plus sign (+), you can concatenate any combination of STRING
and VARYING character strings, packed arrays of characters, and single
characters.

The result of a string comparison depends on the ordinal value in the ASCII ·
character set of the corresponding characters in the strings. For example:

'motherhood' > 'cherry pie'

This relational expression is TRUE because lowercase 'm' comes after
lowercase 'c' in the ASCII character set. If the first characters in the
strings are the same, VAX Pascal searches for differing characters, as in the
following:

'stringl' < 'string2'

This expression is TRUE because the digit 1 precedes the digit 2 in the
ASCII character set.

The relational operators are legal for character strings of different lengths
as well as for character strings of the same lengths. The shorter of the two
character strings is padded with blanks for the comparison. The following
two strings, for instance, result in a value of TRUE:

'John' < 'Johnny'
'abc' = 'abc '

The EQ, NE, GE, GT, LE, and LT predeclared routines make string
comparisons that are similar to the relational operators, but these routines
do not pad strings of unequal length with blanks. Instead, they halt string
comparison when they detect unequal lengths.

Enabling bounds checking cause'S the length of all character strings to be
checked at run time for illegal operations.

For More Information:

• On Boolean data types (Section 2.1.4)

• On string data types (Section 2;6)

• On the ASCII character set (Appendix A)

• On the CHECK attribute and the BOUNDS option for run-time
character-string checking (Section 10.2.7)

• On the EQ, NE, GE, GT, LE, and LT routines (Chapter 8)

Expressions and Operators 4-9

4.2.5 Set Operators

A set operator forms the union, intersection, difference, or exclusive-OR
of two sets, compares two sets, or tests an ordinal value for inclusion in
a set. Its result is either a set or a Boolean value. Table 4-7 lists the set
operators.

Table 4-7: Set Operators

Operator

+

*

<>
<=
>=
IN

Example

A+B
A*B
A-B

A=B
A<>B
A<=B
A>=B
CINB

Result

Set that is the union of sets A and B

Set that is the intersection of sets A and B

Set of those elements of set A that are not
also in set B

TRUE if set A is equal to set B

TRUE if set A is not equal to set B

TRUE if set A is a subset of set B

TRUE if set B is a subset of set A

TRUE if C is an element of set B

Most set operators require both operands to be set expressions. The IN
operator, however, requires an ordinal expression as its first operand and a
set expression as its second operand. The ordinal expression must be of the
same type as the set's base type. For example:

2*3 IN [1. .10)

The result of this IN operation is TRUE because 2 * 3 evaluates to 6, which
is a member of the set [1..10].

The XOR predeclared routine can return the set of elements that do not
appear in both sets.

For More Information:

• On the SET data type (Section 2.4.3)

• On the Boolean data type (Section 2.1.4)

• On the XOR function (Section 8.88)

4-10 Expressions and Operators

4.2.6 Type Cast Operator

Normally, VAX Pascal associates each variable with one type: the type
with which the variable was declared. In some systems' programming
applications, you can perform operations more efficiently by relaxing VAX
Pascal's strict type-checking rules. VAX Pascal provides the type cast
operator for this purpoae.

The type cast operator changes the context in which you can use a variable
or an expression of a certain data type. The act'ual representation of the
object being cast is not altered by the type cast operator. VAX Pascal
overrides the type only for the duration of one operation. It has one of the
following forms:

{
variable-identifier }

: : type-identifier
(expression)

The type cast operator (: :) separates the name of a variable or an expression
in parentheses from its target type, the type to which it is being cast. The
operator "alters" the type of the cast object at that point only. The compiler
assumes that a type cast will not affect the object at any other point in the
program. If the type cast is likely to affect the object elsewhere, you should
declare the object with the VOLATILE attribute.

Once you cast a variable or an expression, the object has all the properties
of its target type during the execution of the operation in which the type
cast operator appears. A variable and its target type must have the same
allocation size. Therefore, you cannot cast a conformant-array parameter,
although you can cast a fixed-size component of a conformant-array
parameter. A schema variable or parameter cannot be type cast since it
does not have a size that is known at compile-time.

When you cast an expression in parentheses, the value of that expression
can be either truncated on the left or padded on the left with zeros, so
that the allocation size of the expression's value and its target type become
the same. The type of a cast expression cannot be VARYING OF CHAR,
a conformant-array parameter, or a discriminated schema. In addition,
the target type of a cast expression cannot be VARYING OF CHAR or a
discriminated schema.

Expressions and Operators 4-11

Consider the following example:

TYPE
F Float = PACKED RECORD

Fracl 0 .. 127;

VAR
A : REAL;

Expo 0 •• 255;
Sign BOOLEAN;
Frac2 0 •• 65535;
END;

{In the executable section:}
A::F_Float.Expo := A::F_Float.Expo + 1;

In this example, the record type F _Float illustrates the layout of an
F _floating real number. The real variable A is cast as a record of this type,
allowing you to access the fields containing the mantissa, exponent, sign,
and fraction of A. Adding 1 to the field containing the exponent gives the
same result as multiplying A by 2.0.

For More Information:

• On data types (Chapter 2)

· • On the VOLATILE attribute (Section 10.2.41)

• Oh conformant-array parameters (Section 6.3.6.1)

4.2. 7 Precedence of Operators

The operators in an expression establish the order in which VAX
Pascal combines the operands. The compiler performs operations with
higher-precedence operators before operations with lower-precedence
operators. Table 4-8 lists the order of operator precedence, from highest to
lowest (operators on the same line are of equal precedence).

Table 4-8: Precedence of Operators

Operators Precedence

Highest

NOT

**
*,I, DIV, REM, MOD, AND, AND_THEN

(continued on next page)

4-12 Expressions and Operators

Table 4-8 (Cont.): Precedence of Operators

Operators

+, -, OR, OR_ELSE, unary +, unary -

=,<>,<,<=,>,>=,IN

Precedence

Lowest

In VAX Pascal, operators of equal precedence (such as plus and minus) are
combined from left to right within the expression.

You must use parentheses for correct evaluation of an expression that
combines relational operators. Consider the following expression:

a<=x AND b<=y

Without parentheses, this expression is interpreted as A<= (X AND B) <=Y.
The logical operator AND requires its operands X and B to be Boolean
expressions and returns a Boolean result, which is then used as an operand
in evaluating one of the relational operators (<=). This operation causes an
error because you cannot use relational operators with Boolean operands.
You can modify the expression with parentheses as follows:

(a<=x) AND (b<=y)

In the rewritten expression, the compiler combines the Boolean values of the
two relational expressions with the AND operator.

You can use parentheses in an expression to force a particular order for
combining the operands. For example:·

Expression

8*5DIV2-4

8 * 5 DIV (2-4)

Result

16

-20

The compiler evaluates the first expression according to normal precedence
rules.

First, 8 is multiplied by 5 and the result (40) is divided by 2. Then 4 is
subtracted to get 16. The parentheses in the second expression, however,
force the subtraction of 4 from 2 (yielding -2) to be performed before the
division of 40 by -2. The result is -20.

Expressions and Operators 4-13

Parentheses can help to clarify an expression. For instance, you could write
the first example as follows:

((8 * 5) DIV 2) -4

The parentheses eliminate any confusion about how the compiler associates
the operands in the expression.

The desired results of your program should not depend on the order of
subexpression evaluation. Unless you use the AND_THEN or
OR_ELSE operators, the compiler does not guarantee the order in which
subexpressions and complex expressions are evaluated. In fact, if the result
of an expression can be determined without complete evaluation, VAX Pascal
may only partially evaluate some logical operations.

Usually the order of evaluation does not prevent the correct result from
being produced. However, order of evaluation is very important when
you write logical operations involving function designators that have side
effects. (A side effect is an assignment to a nonlocal variable or to a variable
parameter within a function block.)

For example, the following IF statement contains two function designators
for function f:

IF f(a) AND f(b) THEN {Statement ... }

The compiler can evaluate these two function designators in any order.
Regardless which function designator the compiler evaluates first, if the
result is FALSE, the other function designator does not have to be evaluated.

Suppose that function f assigns the value of its parameter to a nonlocal
variable. Because you cannot know which function designator was evaluated
first, you cannot be sure of the value of the nonlocal variable after the IF
statement is performed.

For More Information:

• On expressions (Section 4.1)

• On the AND_THEN or OR_ELSE logical operators (Section 4.2.3)

• On user-defined functions (Chapter 6)

• On optimization, compiler switches, and order of evalutation
(VAX Pascal Reference Supplement for VMS Systems)

4-14 Expressions and Operators

4.3 Type Conversions

Since VAX Pascal is a strongly typed language, you cannot normally treat a
value of one type as though it were of a different type, as you can in many
languages. For example, you cannot assign the character ' 1' to a variable
of type INTEGER, because '1' is not an integer constant but a character
constant. However, there are times when it makes sense to combine values
of two different types because the values have some aspect in common.
For example, suppose you wish to add a value of type REAL to a value of
type INTEGER. This operation is legal because the value of type INTEGER
is converted to its equivalent value of type REAL before the operation is
performed. The result of the operation is of type REAL.

In VAX Pascal, values are converted from one type to anot~er when the
conversion is required for an operation, an assignment, or a formal/actual
parameter association. Before any type conversion, the arithmetic types are
ranked as follows, from lowest to highest:

• INTEGER

• UNSIGNED

• REAL or SINGLE

• DOUBLE

• QUADRUPLE

Similarly, the character types are also ranked as follows, from lowest to
highest:

• CHAR

• PACKED ARRAY OF CHAR

• STRING or VARYING OF CHAR strings

When values of two different arithmetic or character types are combined in
an expression, the lower-ranked operand is converted to its equivalent in the
higher-ranked type. The result of an operation in which conversion occurs is
always of the higher-ranked type.

Conversions to values of type UNSIGNED are never checked for overflow.
When combined with other unsigned values, negative integer values are
converted to large unsigned values by the calculation of the modulus with
respect to 232.

Expressions and Operators 4-15

A special case of conversion can occur when you attempt to assign an
expression of type VARYING OF CHAR or STRING strings to a variable of
type PACKED ARRAY OF CHAR or if you try to pass a string expression
to a formal value parameter of type PACKED ARRAY OF CHAR. If
the varying-length string has less than or exactly the same number of
components as the packed array, the varying-length string is converted to
a packed array of characters before the assignment is made and padded
with blanks as necessary. If you attempt to perform this assignment with a
varying-length string that has more components than the packed array, a
run-time error occurs.

For More Information:

For information on data types, see Chapter 2.

4-16 Expressions and Operators

Chapter 5

Statements

VAX Pascal statements specify actions to be performed and appear in
executable sections. This chapter discusses the following statements:

• Assignment statement (Sectiop 5.1)

• CASE statement (Section 5.2)

• Compound statement (Section 5.3)

• Empty statement (Section 5.4)

• FOR statement (Section 5.5)

• GOTO statement (Section 5.6)

• IF statement (Section 5. 7)

• Procedure call (Section 5.8)

• REPEAT statement (Section 5.9)

• WHILE statement (Section 5.10)

• WITH statement (Section 5.11)

When coding, separate statements with a semicolon (;). Since the semicolon
is not syntactically part of a statement, it is not included in the syntax
examples in this chapter.

5.1 Assignment Statement

The assignment statement uses an assignment operator(:=) to assign a
value to a variable or to a function identifier. An assignment statement has
the following form:

variable-access := expression

Statements 5-1

variable-access
An identifier, array component, record component, pointer dereference,
pointer-function dereference, or file buffer.

expression
A run-time expression whose type is assignment compatible with the type
of the variable. The value of the expression is the value assigned to the
variable.

You cannot assign values to a variable of a record type with variants if you
allocated this variable using the NEW procedure. You can assign values to a
field of such a record variable.

Consider the following example:

VAR
x INTEGER;
y, z RECORD

fl real;
f2 integer
END;

{In the executable section:}
x := 1; {type of expression is same type as the variable}
y := z; {variables are assignment compatible}
Func~Return_Ptr_To_Integer(3)A := 19;

For More Information:

• On the NEW procedure (Section 8.50)

• On assigning constructor values to structured variables (Section 2.4)

• On assignment compatibility (Section 2.9.2)

5.2 CASE Statement

The CASE statement causes one of several statements to be executed.
Execution depends on the value of an ordinal expression called the case
selector. A CASE statement has the following form:

CASE case-selector OF

[[{ {case-label-list}; ... : statement}; ...]]

[[[[;]] OTHERWISE {statement}; ...]]

[[;]]

END

5-2 Statements

case-selector
An expression of an ordinal type.

case-label-list
One or more case labels of the same ordinal type as the case selector,
separated by commas. A case label can be a single constant expression, such
as 1, or a range of expressions, such as 5 .. 10.

statement
Any statement to be executed depending on the values of both the
case-selector and the case-label.

You can specify case labels in any order within the case label list. Each case
label can appear only once within a given CASE statement.

At run time, the system evaluates the case selector expression and chooses
which statement to execute. If the value of the case selector does not appear
in the case label list,. the system executes the statement in the OTHERWISE
clause .. If you omit the OTHERWISE clause, the value of the case selector
must be equal to one of the case labels. If the value is not equal to a label,
the CASE statement result is undefined.

Consider the following example:

CASE Age OF
1 .. 4 School
5 .. 8 School
9 .. 13 School
14 .. 18 BEGIN

'preschool';
·= 'elementary';
:= 'middle';

School ·= 'high';

{Subranges}

WRITELN('Difficult years!');
END; {Compound statements}

19 School:= 'reform'; {Single ordinal value}
OTHERWISE School :='graduated'; {If 1 >Age> 18 ... }
END;

For More Information:

• On ordinal values (Section 2.1)

• On using the CHECK attribute to check selectors at run time
(Section 10.2. 7)

Statements 5-3

5.3 Compound Statement

A compound statement groups a series of statements so that they can appea
anywhere that language syntax calls for a single statement. A compound
statement has the following form:

BEGIN
{statement}; ...

END

statement
Any VAX Pascal statement, including other compound statements.

The statements that make up the compound statement must be separated
with semicolons (;), although the semicolon before the END delimiter is
optional.

Consider the following example:

IF a < 10 THEN
BEGIN {A compound statement}
x := 10;
y := 20;
z := x + y;
END {No semicolon in THEN clause before an ELSE}

ELSE z := 29; {A single statement}

For More Information:

• On program executable sections (Section 7.3)

• On function and procedure executable sections (Section 6.1)

5.4 Empty Statement

The empty statement causes no other action to occur than the advancement
of program flow to the next statement. To use the empty statement, place a
semicolon where the language syntax calls for a statement.

Consider the following example:

CASE Alphabetic OF

5-4 Statements

'A' ,'E' ,'I' ,'O' ,'U' : Alpha_Flag :=Vowel;
'Y' : ; {Empty statement as selector; no action}

OTHERWISE Alpha_Flag := Consonant;
END;

5.5 FOR Statement

The FOR statement is a looping statement that repeats execution of a
statement according to the value of a control variable. The control variable
assumes a value within a specified range or set. A FOR statement has one
of the following forms:

FOR control-variable := initial-value { TO } final-value DO
· DOWN TO

statement

FOR control-variable IN set-expression DO

statement

control-variable
The name of a previously declared variable of an ordinal type.

initial-value
final-value
Expressions that form a range and whose type is assignment compatible
with the type of the control variable.

set-expression
An expression resulting in a value of SET type. The base type of the set
must be assignment compatible with the control variable.

statement
Any VAX Pascal statement that does not change the value of the control
variable.

At run time, the initial and final values or the set expression is evaluated
before the loop body is executed. Execution or termination of the statement
occurs in the following cases:

• In the TO form, VAX Pascal checks to see if the value of the control
variable is less than or equal to the final value. If this condition is
met, the control variable takes on the value of the initial value for the
first loop iteration. During iterations, the control variable increments
according to its data type. Looping ceases when the. control variable is
greater than the final value.

Statements 5-5

• In the DOWNTO form, VAX Pascal checks to see if the value of the
control variable is greater than or equal to the final value. If this
condition is met, the control variable takes on the value of the initial
value for the first loop iteration. During iterations, the control variable
decrements according to its data type. Looping ceases when the control
variable is less than the final value.

• In the set expression form, VAX Pascal checks to see if the set expressio1
is not the empty set. If this condition is met, the control variable takes
on the value of one of the members of the set. Iterations occur for
each member of the set; the selection order of members of the set is
undefined. Looping stops after the loop body executes for each member
of the set.

In both the TO and the DOWNTO forms, incrementation of the control
variable depends on its type. For example, values expressed in type
INTEGER increment or decrement in units of 1. Values expressed in type
CHAR increment or decrement in accordance with the ASCII collating
sequence.

After normal termination of the FOR statement, the control variable does
not retain a value. You must assign a new value to this variable before you
use it elsewhere in the program. If the FOR loop terminates with a GOTO
statement, the control variable retains the last assigned value. In this case,
you can use the variable again without assigning a new value.

Consider the following examples:

FOR Year := 1899 DOWNTO 1801 DO {Print leap years in 1800's}
IF (Year MOD 4) = 0 THEN

WRITELN(Year:4, ' is a leap year');

FOR I IN Setl DO {Set2 members are successors of Setl members}
Set2 := Set2 + [I+ 1];

For More Information:

• On ordinal values (Section 2.1)

• On sets (Section 2.4.3)

5.6 GOTO Statement

The GOTO statement causes an unconditional branch to a statement
prefixed by a label. A GOTO statement has the following form:

GOTO label

5-6 Statements

label
An unsigned decimal integer or symbolic name that represents a statement
label.

The GOTO statement must be within the scope of the label declaration. A
GOTO statement that is outside a structured statement cannot jump to a
label within that structured statement. A GOTO statement within a routine
can branch to a labeled statement in an enclosing block only if the labeled
statement appears in the block's outermost level. Consider the following
example:

FOR I := 1 TO 10 DO
BEGIN
IF Real_Array[I] = 0.0 THEN

BEGIN
Result := 0.0;
GOTO 10; {Use GOTO to exit from loop}
END;

Result :=Result+ 1.0/Real_Array[I]; {Compute sum of inverses}
END;

10: Invertsum := Result;

For More Information:

• On label declarations (Section 3.2)

• On exiting FOR loops using GOTO (Section 5.5)

5.7 IF Statement

The IF statement tests a Boolean expression and performs a specified
action if the result of the test is TRUE. The ELSE clause, when it appears,
executes only if the test condition results to FALSE. An IF statement has
the following form:

IF boolean-expression THEN statement1 [[ELSE statement2]]

boolean-expression
Any Boolean expression.

statement1
The statement to be executed if the value of the Boolean expression is
TRUE.

statement2
The statement to be executed if the value of the Boolean expression is
FALSE.

Statements 5-7

If an IF statement contains an ELSE clause, the statement in the THEN
clause cannot be followed with a semicolon (;), since that completes the
IF statement and separates it from the following statement. The following
examples contain correct code:

IF x > 10 THEN y := 4
ELSE y := 5;

IF x > 10 THEN BEGIN y := 4;
z := 5;

END
ELSE y := 5;

The ELSE clause always modifies the closest IF-THEN statement. Use
caution to avoid logic errors in nested IF statements, as in the folloWing:

IF A = 1 THEN {First IF}
IF B<>l THEN {Second IF}

c := 1
ELSE {Appears to modify first IF}

C := O; {Actually modifies second IF}

VAX Pascal may not always evaluate all the terms of a Boolean expression if
it can evaluate the entire expression based on the value of one term. Either
do not write code that depends on actual evalution (or evaluation order) of
Boolean expressions, or use the AND_THEN and OR_ELSE operators for a
predictable order of evaluation.

For More Information:

• On Boolean expressions (Section 2.1.4)

• On forming and evaluating expressions (Section 4.1)

• On the AND_THEN and OR_ELSE logical operators (Section 4.2.3)

5.8 Procedure Call

Syntactically, a procedure call is a statement. A procedure call has the
following form:

routine-identifier [[({actual-parameter}, ...)]]

routine-identifier
The name of a procedure or function.

actual-parameter
An expression that is of a type that is compatible with the type of the formal
parameter, or the name of a procedure or function.

5-8 Statements

In VAX Pascal, you can use procedure-call syntax to call a function, even
though function calls are usually considered to be expressions. If you do
this, the compiler invokes the function but ignores the return value.

For More Information:

For information on procedures and functions, see Chapter 6.

5.9 REPEAT Statement

The REPEAT statement is a looping statement and executes one or more
statements until a specified condition is true. A REPEAT statement has the
following form:

REPEAT

{statement}; ...

UNTIL expression

statement
Any VAX Pascal statement.

expression
Any Boolean expression.

VAX Pascal always executes a REPEAT statement for one iteration;
iterations continue as long as the Boolean expression is FALSE. When
specifying more than one statement as the loop body to a REPEAT
statement, do not enclose the statements with the BEGIN and END
reserved words. Multiple statements are legal in the REPEAT loop body.

Consider the following example:

REPEAT
READ(x); {Attempts to read at least one character}
IF (x IN [I 0 I •• I 9 I]) THEN

BEGIN {Keep count of numbers and increase total}
Digit Count := Digit Count + l;
Digit=Sum := Digit_Sum +ORD(x) - ORD('0');
END

ELSE
Char_Count := Char_Count+l; {Count characters}

UNTIL EOLN(INPUT); {Reads from default device until end of line}

For More Information:

For information on Boolean expressions, see Section 2.1.4.

Statements 5-9

5.10 WHILE Statement .

The WHILE statement is a loop that executes a statement while a specified
condition is true. A WHILE statement has the following form:

WHILE expression DO

statement

expression
Any Boolean expression.

statement
Any VAX Pascal statement.

VAX Pascal checks the value of the Boolean expression before executing the
loop body for the first time; if the expression is FALSE, the loop body is not
executed. If the initial value is TRUE, loop iterations continue until the
condition is FALSE. When specifying more than one statement as the loop
body to a WHILE statement, enclose the statements with the BEGIN and
END reserved words, since the. syntax calls for a single statement to follow
the DO reserved word. If you do not use a compound statement for the loop
body, VAX Pascal executes the first statement following the DO reserved
word as the loop body.

Consider the following examples:

WHILE NOT EOF(Filel) DO {If EOF from the start, the loop}
READLN(Filel); { body is not executed. }

WHILE NOT EOLN(INPUT) DO
BEGIN {Use compound statement:}
READ(x);
IF NOT (x IN ['A' .. 'Z', 'a' .. 'z', '0' .. '9'])
THEN

Err := Err + 1;
END;

For More Information:

{Count odd characters as errors}

• On Boolean expressions (Section 2.1.4)

• On compound statements (Section 5.3)

5-10 Statements

;.11 WITH Statement

The WITH statement provides an abbreviated notation for references to the
fields of a record variable or to the formal discriminants of a discriminated
schema type. A WITH statement has the following form:

WIT, H { { record-variable } } 00 t t t ,... s aemen
schema-variable

record-variable
The name of the record variable being referenced.

schema-variable
The name of the variable being referenced whose type is a discriminated
schema type. This underlying type of the schema can be a record.

statement
Any VAX Pascal statement.

The WITH statement allows you to refer to the fields of a record or to a
formal discriminant of a schema by their names alone, rather than by
the record.field"'.identifier or schema-variable.formal-discriminant syntax.
In effect, the WITH statement opens the scope so that references to field
identifiers or to formal discriminants alone are unambiguous. When you
access a variable using a WITH statement, the reference syntax lasts only
throughout the execution of the statement.

Specifying more than one variable has the same effect as nesting WITH
statements. Consider the following example:

{The record Dog is nested in the record Cat:}
WITH Cat, Dog DO {Specify Cat before Dog}

Bills := Bills + Cat_Vet + Dog_Vet;

WITH Cat DO {This is equivalent to the previous WITH}
WITH Dog DO

Bills := Bills + Cat_Vet + Dog_Vet;

Statements 5-11

If you are specifying nested records, their variable names must appear in
the order in which they were nested in the record type definition. If you
are working with record and schema variables that are not nested, you
can specify variable names in any order. If you specify record or schema
variables whose field names or formal discriminants conflict with one
another, VAX Pascal uses the last record or schema in the comma list.
Consider the following example:

VAR
x : STRING(10);
y : STRING(15);

{In the executable section:}
WITH x, y DO

WRITELN(CAPACITY); {y.CAPACITY is used}

{The following is equivalent:}
WITH x DO

WITH y DO
WRITELN(CAPACITY);

For More Information:

• On records (Section 2.4.2)

• On schema types (Section 2.5)

5-12 Statements

Chapter 6

Procedures and Functions

Procedures and functions are subprograms. A procedure contains one or
more statements to be executed once the procedure is called. A function
contains one or more statements to be executed once the function is called;
in addition, functions return a single value. This manual refers to functions
and procedures collectively as routines.

This chapter discusse.s the following _information about user-defined routines:

• Routine declarations (Section 6.1)

• Routine calls (Section 6.2)

• Parameters (Section 6.3)

In addition to user-defined routines, VAX Pascal also allows you to access
external routines (routines that are globally available on your system, which ·
may or may not be written in VAX Pascal) and routines that are predeclared
by the compiler.

For More Information:

• On predeclared routines (Chapter 8)

• On calling external routines (VAX Pascal Reference Supplement for VMS
Systems)

Procedures and Functions 6-1

6.1 Routine Declarations

You must declare a routine before you call it. Routine declarations have the
following formats:

[[attribute-list]] PROCEDURE routine-identifier [[(formal-parameter-list)]];

l
[{[de~~;:~:~ctio}n]] BEGIN {statement};... END l

FORTRAN

FORWARD

[[attribute-list]] FUNCTION routine-identifier [[(formal-parameter-list)]]

: [[attribute-list]] result-type-id;

l
[[declaration-section]] BEGIN {statement}; ...

{

EXTERN }
EXTERNAL

FORTRAN

FORWARD

attribute-list

END l·

One or more identifiers that provide additional information about the
type-denoter.

routine-identifier
The name of the routine. If you use the routine-identifier within the routine
body (with the exception of assigning a value to the routine-identifier of a
function), the result is a recursive call to the routine. The routine-identifier
of a procedure can be redeclared in the procedure's declaration-section.
The routine-identifier of a function cannot be redeclared in the function's
declaration-section; however, it can be redeclared in any nested routines
within the function's declaration.section.

formal-parameter-list
A comma list of the routine's formal parameters. A procedure can have as
many as 255 formal parameters; depending on the function return value,
some functions are limited to 254 formal parameters. Optionally, you can
specify a mechanism specifier and an attribute list for each parameter.

6-2 Procedures and Functions

declaration-section
A routine declaration section can include all sections except TO BEGIN
DO, TO END DO, and VALUE sections. Data specified in this declaration
section is local to the routine and to any nested routines; you can redeclare
identifiers that are declared in an outer block. You cannot redeclare a formal
parameter identifier to be a local variable in the routine.

By default, the system does not retain the values of local variables after
it exits from a routine. Each call to a routine creates copies of the local
variables. This means you can call a routine recursively without affecting
the values held by the local variables at each activation of the routine. To
preserve the value of a local variable (not the copy) from one call to the next,
you must declare the local variable with the STATIC attribute.

statement
Any VAX Pascal statement. In a function executable section, there must be
at least one statement of the following form:

routine-identifier := result

The routine-identifier is the natne of the function. The result is a value of
either an ordinal, real, structured, or pointer type that VAX Pascal returns
when function is called. (This value cannot be a file type or a structured
type with a file component.) This value must be of the same type as the
result-type-id.

EXTERN
EXTERNAL
FORTRAN
FORWARD
Predeclared identifiers that direct VAX Pascal to find the hotly of the
routine elsewhere. The EXTERN, EXTERNAL, and FORTRAN identifiers
declare routines that are independently compiled by VAX Pascal or that are
written in other languages. In VAX Pascal, these identifiers are equivalent.
Although not part of the Pascal standard, many Pascal compilers only
accept the FORTRAN identifier for external routines actually written in
FORTRAN; if portability is a concern, you may wish to use FORTRAN only
for external FORTRAN routines.

The FORWARD identifier declares a routine whose block is specified in a
subsequent part of the same procedure and function section, allowing you
to call a routine before you specify its routine body. As an extension, VAX
Pascal will allow the body to be in a different declaration part. If the body
and heading are specified in different procedure and function sections, a
FORWARD declared function should not be used as an actual discriminant
to a schema type.

Procedures and Functions 6-3

When you specify the body of the routine in subsequent code, include
only the FUNCTION or PROCEDURE predeclared identifier, the
routine-identifier, and the body of the routine. Do not repeat the
formal-parameter, the attribute-list, or the result-type-id.

result-type-id
The type specification of the function return value. The function's result
must be of this data type. This type cannot be a file type or a structured
type with a file component.

Consider the following example:

{Function body contained in subsequent code:}
FUNCTION Adder(Opl, Op2, Op3 : REAL) : REAL; FORWARD;

PROCEDURE Introduction;
VAR

a, b, c, z : REAL;
BEGIN

{Variables local to the procedure}

WRITELN('This is the Inventory Program Version 5.6.');
WRITELN;
WRITELN('Press CTRL/H for help. Press RETURN to continue.');
a := 4.6; b := 12.1; c := 201.45;
z :=Adder(a, b, c); {Call the function Adder}
END;

{System Routine Tanh available with the operating system:}
FUNCTION System=Routine_Tanh(Angle : REAL) : REAL; EXTERNAL;

FUNCTION Adder; {Do not repeat attributes or parameters}
BEGIN
Adder := Opl + Op2 + Op3;
END;

For More Information:

{Assign a function return value}

• On attributes (Chapter 10)

• On declaration sections (Chapter 3)

• On the scope of identifiers (Section 7 .2)

• On parameters and passing mechanisms (Section 6.3)

• On recursive function calls (VAX Pascal User Manual)

• On calling external routines (VAX Pascal Reference Supplement for VMS
Systems)

• On functions limited to 254 parameters (VAX Pascal Reference
Supplement for VMS Systems)

6-4 Procedures and Functions

5.2 Routine Calls

A routine call executes all statements in the body of the declared routine.
You must declare a routine before you can call it. In addition, function
calls return a single value. Syntactically, procedure calls are statements,
and function calls are expressions. You can call routines in the executable
section of a program or in the body of another routine. Routine calls have
the following forms:

procedure-identifier [[({ [~:~~ED]
%DESCR

%STDESCR

actual-parameter}, ...)]]

function-identifier [[({ [~::~ED] actual-parameter}, .. _.)]]
%DESCR

. %STDESCR

procedure-identifier
function-identifier
The declared routine identifier.

actual-parameter
The actual parameter whose data type matches the type of the corresponding
formal parameter. Optionally, you can specify a passing mechanism for each
parameter.

Syntactically, procedure calls are statements, and function calls are
expressions. You can call a function anywhere that an expression of the
declared result type is legal.

If the result of a function is irrelevant, you can call the function as a
statement, in the same way that you call a procedure.

The scope of a routine identifier is the block in which it is declared,
excluding any nested blocks that redeclare the same identifier.

I

Consider the following example:

VAR
a, b, c, z : REAL;

PROCEDURE Introduction;
BEGIN
WRITELN('This is the Inventory Program Version 5.6.');
WRITELN;
WRITELN(' Press C~RL/H for help. Press RETURN to continue.');
END;

Procedures and Functions 6-5

FUNCTION Adder(Opl, Op2, Op3 : REAL) : REAL;
BEGIN
Adder := Opl + Op2 + Op3;
END;

{In the executable section:}

{Assign a function return value}

Introduction; {No parameters necessary in the call}
a:= 3.14; b := 14.78; c := 112.456;
z :=Adder(a, b, c); {Function used as an expression

evaluating to a REAL value}

If a function returns a value of an array, record, or pointer type, you can
index, select, or dereference the object at the time of the function call,
without first assigning the function result to a variable. Consider the
following:

TYPE
Player_Rec RECORD

VAR

Wins INTEGER;
Losses INTEGER;
Percentage REAL;
END;

Number : INTEGER;

FUNCTION Return_Player_Info(Player_Num : INTEGER) : Player_Rec;
{In the function body:}
Return Player Info := Player Rec[Wins: 3; Losses: 18;

- - - Percentage: 21/3);
{In the executable section:}
WRITELN(Return_Player_Info(Number) .Losses, 'losses is poor!');

For More Information:

• On expressions (Section 4.1)

• On parameters and passing mechanisms (Section 6.3)

6.3 Parameters

In VAX Pascal, there are two types of parameters: formal and actual
parameters. A formal parameter (also called an argument) is located
in the header of the routine declaration. You cannot redeclare a formal
parameter in a routine's declaration section, but you can redeclare it in
nested routines within the routine's declaration section.

The formal parameter establishes the semantics, the data type, and the
required passing mechanism of the parameter. The general format of the
formal parameter list is as follows.

6-6 Procedures and Functions

{

value-parameter-spec }

[[({
variable-parameter-spec

}; ...)]]
routine-parameter-spec

foreign-parameter-spec

The specific format of a formal parameter specification depends on the
semantics (value, variable, routine, foreign) of the formal parameter you are
declaring (conformant parameters also have a unique syntax).

Table 6-1 presents the VAX Pascal semantics for formal parameters.

Table 6-1 : Formal Parameter Semantics

Parameter Type

Value

Variable

Routine

Foreign

Description

Used only to provide input to the routine. After calling
the routine, the value of the actual parameter remains
unchanged.

Used to allow access to the actual parameter. If the rou
tine makes changes to the value of the formal parameter,
the value of the actual parame~r changes accordingly.

Used to call another routine.

Used to call a routine written in another language.

At run time, the formal parameter receives a value from the corresponding
actual parameter, which is located in the routine call. The passing
mechanism is the way in which the compiler passes the actual parameter
value to the corresponding formal parameter. Table 6-2 presents the passing
mechanisms supported by VAX Pascal.

Table 6-2: Parameter Passing Mechanisms

Mechanism Description

By immediate value The information passed to the formal parameter is the data.

By reference The information passed to the formal parameter is the
address of the data. By default, VAX Pascal passes all actual
parameters by reference, except for conformant parameters
and except when the formal parameter is an undiscriminated
schema parameter.

(continued on next page)

Procedures and Functions 6-7

Table 6-2 (Cont.): Parameter Passing Mechanisms

Mechanism

By descriptor

Description

The information passed to the formal parameter is the address
of a descriptor of the data. By default, VAX Pascal passes
all conformant parameters and undiscriminated schema
parameters by descriptor.

The actual parameter must be of the same data type and passing mechanism
as the corresponding formal parameter. VAX Pascal uses the default passing
mechanism for each actual parameter depending on its data type and formal
definition. If the called routine is external to VAX Pascal, you can specify an
explicit passing mechanism that overrides the type and number of formal
parameters.

For More Information:

• On undiscriminated schema types (Section 2.5)

• On descriptors (VAX Pascal Reference Supplement for VMS Systems)

6.3.1 Value Parameters

By the rules of value semantics defined by the Pascal standard, a formal
value parameter represents a local variable within the called routine. When
you specify value semantics, the address of the actual parameter is passed
to the called routine, which then copies the value from the specified address
to its own local storage. The routine then uses this copy. The copy is not
retained when control returns to the calling block. Therefore, if the called
routine assigns a new value to the formal parameter, the change is not
reflected in the value of the actual parameter.

When you do not include a reserved word before the name of a formal
parameter, you automatically cause VAX Pascal to use value semantics to
pass data to that parameter. A formal value parameter has the following
form:

{

type-identifier }
{identifier}, ... : [[attribute-list]] undiscriminated-schema-name

conformant-parameter-syntax

[[:= [[mechanism-specifier]] default-value]]

6-8 Procedures and Functions

identifier
The name of the formal parameter. Multiple identifiers must be separated
with commas.

attribute-I ist
One or more identifiers that provide additional information about the formal
parameter.

type-identifier
The type identifier of the parameters in this section.

undiscriminated-schema-name
The name of an undiscriminated schema type.

conformant-parameter-syntax
The type syntax of a conformant array or a conformant VARYING parameter.

mechanism-specifier
The mechanism by which a default value is to be associated with the formal
parameter.

default-value
A compile-time expression representing the default value for the formal
parameter.

Any attributes associated with a formal parameter become attributes of
the local variable. They do not affect the values that can be passed to the
parameter; they affect the behavior of the formal parameter only within the
routine block. When a formal parameter has the UNSAFE attribute, the
types of the actual parameters passed to it are not checked for compatibility.

An actual value parameter must be an expression whose type is assignment
compatible with the type of the corresponding formal parameter. Because
there is no assignment compatibility for file variables, undiscriminated
schema sets, and undiscriminated schema subranges, they can never be
passed as value parameters. Also, the names of routines are not allowed as
value parameters.

If necessary, the type of an actual parameter is converted to the type of
the formal parameter to which it is being passed. In this case, VAX Pascal
follows the same type conversion rules that it uses to perform any other
assignment. You may, for example, pass an integer expression to a formal
parameter of a real type. If an actual parameter has the UNSAFE attribute,
no conversion occurs.

Procedures and Functions 6-9

If you have a user-defined, formal parameter of an undiscriminated schema
type, the corresponding actual parameter must be discriminated from the
same schema type as that of the formal parameter.

When you pass a string expression to a formal value parameter of type
STRING, the actual parameter's current length (not its declared maximum
length) becomes both the maximum length and the current length ofthe
formal parameter.

You can also use the attributes [CLASS_S], [CLASS_A], and [CLASS_NCA]
on value parameters if a routine requires a specific type of descriptor for
VAX Pascal to build. A [CLASS_A], [CLASS_NCA] or [CLASS_S] formal
value parameter requires the actual value parameters to be passed with the
by descriptor mechanism.

Consider the following examples:

VAR
Old_Number, x, y : INTEGER;

FUNCTION Random(Seed: INTEGER): INTEGER; {Function body ..• }
PROCEDURE Alpha(a, b : INTEGER; c CHAR); {Procedure body ..• }

{In the executable section:}
New_Number :=Random(Old_Number);
Alpha (x+y, 11, 'G'); {Actual parameters are integer

and character expressions}

For More Information:

• On blocks and scope (Section 7 .2)

• On conformant parameters (Section 6.3.6)

• On default values for formal parameters (Section 6.3.8)

• On mechanism specifiers (Section 6.3.4)

• On the UNSAFE attribute (Section 10.2.39)

• On type conversions (Section 4.3)

6.3.2 Variable Parameters

By the rules of variable semantics defined by the Pascal standard, a formal
variable parameter represents another name for a variable in the calling
block. It is preceded by the reserved word VAR. When you specify variable
semantics, the address of the actual parameter is passed to the called
routine. In contrast to value semantics, the called routine directly accesses
the actual parameter. Thus, the routine can assign a new value to the
formal parameter during execution and the changed value is reflected
immediately in the calling block (the value of the actual parameter changes).

6-10 Procedures and Functions

VAX Pascal uses variable semantics to pass data to a formal parameter,
often called a formal VAR parameter, and has the following form:

{

type-identifier }
VAR {identifier}, ... : [[attribute-list]] undiscriminated-schema-name

conform ant-parameter-syntax

[[:= [[mechanism-specifier]] default-value]]

identifier
The name of the formal parameter. Multiple identifiers must be separated
with commas.

attribute-list
One or more identifiers that provide additional information about the formal
parameter.

type-identifier
The type identifier of the parameters in this parameter section.

undiscriminated-schema-name
The name of an undiscriminated schema type.

conformant-par~meter-syntax
The type syntax of a coriformant array or a conformant VARYING parameter.

mechanism-specifier
The mechanism by which a default value is to be associated with the formal
parameter. A mechanism specifier can be used only on a declaration for an
external routine.

default-value
A compile-time expression representing the default value for the parameter.
A default value can be used only on an external routine.

When you use variable semantics, the actual parameter must be a variable
or a component of an unpacked structured variable (you can pass an entire
packed structure); no expressions are allowed unless the formal parameter
has the READONLY attribute. The type of a variable passed to a routine
must be structurally compatible with the type of the corresponding formal
parameter, except for schema parameters. For a formal parameter that is an
undiscriminated schema type, the type of the variable must be discriminated
from the same type as that of the formal parameter (they must be of the
same schema type family). For a formal parameter that is a discriminated
schema type, the type of the variable must be of the same type family and
must have equivalent actual discriminants.

Procedures and Functions 6-11

The names of routines are never allowed as variable parameters. In
addition, you must use variable semantics when passing a file variable as an
actual parameter. Also, you cannot pass the tag field of a variant record to a
formal VAR parameter. ·

Consider the following example:

VAR My_String : VARYING [20] OF CHAR VALUE 'Harry Hayes';
PROCEDURE Name(VAR A_St~ing : VARYING [String_Size] OF CHAR); {Body}

{In the executable section:}
Name(My_String);
WRITELN('The new name is ', My_String);

This example declares a procedure, Name, which returns a new name
through the formal parameter A_String. Procedure Name modifies the
value of A_String; since My _String is passed by variable semantics, upon
completion of the routine the modified value is reflected in the variable
My_String.

In VAX Pascal, certain attributes in a routine declaration or a routine call
affect the rules of compatibility between actual and formal VAR parameters.
These rules also apply to the corresponding components of structured types
and to the base types of pointer types used as formal parameters. The
attributes that result in rule changes are the alignment, POS, READONLY,
size, UNSAFE, VOLATILE, and WRITEONLY attributes.

You can also use the attributes [CLASS_SJ, [CLASS_AJ, and [CLASS_NCA]
on variable parameters if a routine requires a specific type of descriptor for
VAX Pascal to build. A [CLASS_AJ, [CLASS_NCAJ or [CLASS_SJ formal
variable parameter requires the actual variable parameters to be passed
with the by descriptor mechanism.

For More Information:

•
•
•
•
•
•

On blocks and scope (Section 7.2)

On conformant parameters (Section 6.3.6)

On default values for formal parameters (Section 6.3.8)

On mechanism specifiers (Section 6.3.4)

On attributes and parameter compatibility (Chapter 10)

On type conversions (Section 4.3)

6-12 Procedures and Functions

6.3.3 Routine Parameters

To write a routine that invokes another routine whose effect is not
determined until the program is executed, use routine parameters. To
declare a procedure or a function as a formal parameter to another routine,
you must include a complete routine heading in the formal parameter list.
You can also associate a foreign mechanism specifier and a default value
with a formal procedure or function parameter.

The following examples show formal routine parameter sections in procedure
and function declarations:

PROCEDURE Apply(FUNCTION Operation(Left, Right : REAL) REAL;
VAR Result : REAL);

FUNCTION Copy(PROCEDURE Get_Char(VAR c : CHAR);
PROCEDURE,Put_Char(i : CHAR)) : BOOLEAN;

The identifiers listed as formal parameters to a formal procedure or
function parameter are not accessible outside the routine declaration;
they indicate the number and kind of actual parameters necessary. You refer
to these identifiers only when you use nonpositional syntax to call a routine
parameter.

In the previous example, the formal parametedist of Get_ Char informs the
compiler that Copy must pass one character parameter to Get_Char using
variable_ semantics. Copy does not refer explicitly to the formal parameter C
unless it calls Get_Char using nonpositional syntax.

To pass a routine as an actual parameter, the formal parameter list of the
routine being passed and the routine specified as the formal parameter must
be congruent. Two formal parameter lists are congruent if they have the
same number of sections and if the sections in corresponding positions meet
any of the following conditions:

• Both are value p~rameter sections containing the same number of
parameters. The types of parameters must either be compatible or be
equivalent conformant parameters.

• Both are variable parameter sections containing the same number of
parameters. The types of the parameters must either be compatible or
be equivalent conformant parameters. Any attributes associated with a
formal variable parameter affect the kinds of actual parameters that can
bepassed to it. ·

• Both are procedure parameter sections having either congruent formal
parameter lists or no formal parameters.

Procedures and Functions 6-13

• Both are function parameter sections having either congruent formal
parameter lists or no formal parameters, and having compatible result
types.

• Both are foreign parameter sections having the same mechanism
specifier and the same number of parameters, and whose types must be
compatible.

• If one formal parameter list has a LIST attribute on its last parameter
section, the other formal parameter list must also have this attribute.

The following program shows a function declaration that includes two
functions as formal parameters:

VAR
Costs, Pay, Fedtax, Food : REAL;
Housing : INTEGER;

FUNCTION Income(Salary, Tax: REAL) : REAL; {Function body ... }

FUNCTION Expenses(Rent : INTEGER; Grocery : REAL : REAL;
{Function body ... }

FUNCTION Budget(FUNCTION Credit(Earnings, UStax REAL
FUNCTION Debit(Housing : INTEGER; Eat REAL) REAL

VAR Deduct : REAL;
BEGIN {FUNCTION Budget}
Deduct :=Debit(Eat :=Food, Housing :=Housing);
Budget := Cr~dit(Pay, Fedtax) - Deduct;
END;

{In the executable section:}
Costs :=Budget(Income, Expenses);

REAL;
REAL;

When the function Budget is called, the function Income is passed to the
formal function parameter Credit, and the function Expenses is passed to the
formal function parameter Debit. When Credit is called, the program-level
variables Pay and Fedtax are substituted for Credit's formal parameters,
Earnings and UStax. In the call 'to Debit, nonpositional syntax is used to
associate Debit's formal parameters Housing and Eat with the program-level
variables Housing and Food. Note that the names of program-level variables
do not conflict with formal parameters of routine parameters.

The presence of the ASYNCHRONOUS and UNBOUND attributes in
routine declarations causes additional requirements to be imposed on the
routines that can legally be passed as actual parameters.

6-14 Procedures and Functions

For More Information:

• On routine headings (Section 6.1)

• On positional syntax (Section 6.3. 7)

• On default values for formal parameters (Section 6.3.8)

• On mechanism specifiers (Section 6.3.4)

• On conformant parameters (Section 6.3.6)

• On attributes (Chapter 10)

6.3.4 Foreign Parameters

When declaring an external routine (one written in a language other than
Pascal) that is called by a VAX Pascal routine, you must specify not only
the correct semantics but the correct mechanism as well. To allow you to
obtain these passing mechanisms, VAX Pascal provides foreign mechanism
specifiers and the passing mechanism attributes. Table 6-3 gives the
method specifier or attribute used for each passing mechanism.

Table 6-3: Specifiers and Attributes for Passing Mechanisms

Passing Mechanism

By immediate value

By reference

By descriptor

Specifiers and Attributes

%IMMED or [IMMEDIATE]

%REF or [REFERENCE]

%DESCR or %STDESCR

The foreign mechanism specifier %IMMED, %REF, %DESCR or %STDESCR
precedes a formal parameter in the declaration of an external routine. If
the formal parameter does not represent a routine, the mechanism specifier
must precede the parameter name. If the formal parameter represents
a routine, the specifier must precede the reserved word PROCEDURE or
FUNCTION in the parameter declaration.

In addition, it is possible to use the passing mechanism attributes
[IMMEDIATE] or [REFERENCE] in a formal parameter's attribute list
to obtain the same behavior as %IMMED or %REF, respectively.

When calling an external routine, you must make sure that you pass
actual parameters by the mechanism stated or implied in the routine
declaration. VAX Pascal allows you to use the foreign mechanism specifiers
%IMMED, %REF, %DESCR, and %STDESCR before an actual parameter
in a routine call. (Passing-mechanism attributes are valid only on formal

Procedures and Functions 6-15

·parameters.) When a mechanism specifier appears in a call, it overrides the
type, semantics, mechanism specified, and even the number of parameters
in the formal parameter declaration. Thus, type checking is suspended for
the parameter association to which the specifier applies.

The passing of an expression to a foreign mechanism parameter implies
foreign value semantics: the calling block makes a copy of the actual
parameter's value and passes this copy to the called routine. The copy is not
retained when control returns to the calling block. Foreign value semantics
differs from value semantics in that the calling block, not the called routine,
makes the copy.

The passing of a variable to a foreign mechanism parameter (except a
parameter with the %IMMED or [IMMEDIATE] specifier) implies foreign
variable semantics: the variable itself is passed.

A compile-time warning occurs if the compiler must convert the value of an
actual parameter variable to make it match the type of a foreign mechanism
parameter. In that case, the compiler passes a copy of the converted value by
foreign value semantics, using the specified mechanism. You can eliminate
this warning by enclosing the actual parameter variable in parentheses; by
doing so, you prevent the compiler from interpreting the actual parameter as
a variable. The compiler takes the same action, whether or not it produces a
warning message.

Mechanism specifiers on formal parameters produce the following results:

• A %REF or [REFERENCE] formal parameter requires actual parameters
to be passed by reference. %REF or [REFERENCE] implies variable
semantics unless the actual parameter is an expression; in that case, it
implies foreign value semantics.

• An %IMMED or [IMMEDIATE] formal parameter requires actual
parameters to be passed with the by immediate value· mechanism and
always implies value semantics. %IMMED or [IMMEDIATE] cannot be
used on formal parameters of type VARYING, or on conformant array
and conformant VARYING parameters.

• A %DESCR formal parameter requires actual parameters to be passed
with the by descriptor mechanism and interprets the semantics as %REF
or [REFERENCE] does.

• A %STDESCR formal parameter requires actual parameters to be passed
with the by string descriptor mechanism. An actual parameter variable
of type PACKED ARRAY OF CHAR implies variable semantics. An
actual parameter expression of either type PACKED ARRAY OF CHAR
or type VARYING OF CHAR implies foreign value semantics. You
cannot use %STDESCR on formal procedure and function parameters.

6-16 Procedures and Functions

Because the semantics are implicit in the mechanism, a formal parameter
cannot be declared with both the reserved word VAR and a mechanism
specifier.

Also, when passing an actual parameter to a formal foreign parameter, the
VAX Pascal compiler checks for type compatibility when an external routine
is called. However, at the time of the declaration, a formal parameter passed
by immediate value that does not represent a routine is checked to ensure
that it can be stored in 32 or fewer bits. A formal parameter passed by
immediate value that does represent a routine must be declared with the
UNBOUND attribute.

Special considerations arise when a function that has no formal parameters
of its own (or that has defaults that are being used for all its formal
parameters) and is passed as a formal parameter to another routine. The
appearance of the function identifier in an actual parameter list could
indicate the passing of either the address of the function or the function
result. In VAX Pascal, the address of the function is passed by default.
Therefore, to cause the function result to be passed, you must enclose the
function identifier in parentheses.

Consider the following example:

p(%IMMED f); {Address of function f is passed}
p(%IMMED (f)); {Result of function f is passed}

For More 'nformation:

• On conformant parameters (Section 6.3.6)

• On type conversions (Section 4.3)

• On attributes (Chapter 10)

• On calling external routines (VAX Pascal Reference Supplement for VMS
Systems)

• On compiler messages (VAX Pascal Reference Supplement for VMS
Systems)

6.3.5 Schema Parameters

VAX Pascal provides a method of processing schematic arrays, records, sets,
subranges, and STRINGs with potentially different actual discriminants. To
do this, you can use undiscriminated schema parameters.

Procedures and Functions 6-17

An undiscriminated schema formal parameter is a type name that repre
sents a specific schema family. The actual discrirninants are determined
each time you pass a corresponding actual parameter. The actual discrimi
nants are available within the routine through the formal parameter.

You can use undiscriminated schema formal parameters when declaring
value and variable parameters. When you use a formal, undiscriminated
schema parameter instead of a conformant parameter or a type identifier, a
call to the routine provides actual parameters that are discriminated from
the same schema type family. However, when using value semantics, there
are two exceptions, as follows:

• You cannot pass schema sets and schema subranges as value parame
ters, since there is no assignment compatibility for undiscriminated sets
and for undiscriminated subranges.

• You can pass a varying-length string expression to a formal STRING
parameter (the actual parameter does not have to be of the STRING
type).

Consider the following example:

TYPE
Array_Template(lbnd, hbnd : INTEGER) =

ARRAY[lbnd .. hbnd] OF INTEGER;
VAR

Even Numbers : Array_Template(1, 30);
Odd Numbers : Array_Template(1, 60);

PROCEDURE Print_Array(Array_To_Pr.int Array_Template);
VAR

i : INTEGER;
BEGIN
WRITELN('The maximum number of elements is

Array_To_Print.hbnd);
WRITELN;
FOR I := LOWER(Array_To_Print) TO UPPER(Array_To_Print) DO

WRITELN(Array_To_Print[i]);
END;

{In the executable section:}
Print_Array(Even_Numbers);
Print_Array(Odd_Numbers);

All passing mechanism specifiers and attributes (%REF, %IMMED,
%DESCR, %STDSCR, [REFERENCE], [IMMEDIATE], [CLASS_SJ,
[CLASS_A], [CLASS_NCA]) are illegal on parameters of nonstatic types.

For More Information:

• On schema types (Section 2.5)

• On the STRING predefined schema type (Section 2.6.3)

6-18 Procedures and Functions

6.3.5.1 Schema Parameter Sections

When you specify more than one formal schema parameter of the same
schema type in a single parameter section, there are additional program
ming considerations.

If you specify more than one formal parameter (separated by commas) of a
single, user-defined, undiscriminated schema type, the corresponding actual
parameters must be discriminated from the same type as the formal param
eter (they must be of the same schema type family), and the actual schema
parameters must have equivalent actual discriminant values. Consider the
following example:

TYPE
Array_Template(Upper_Bound : INTEGER)

= ARRAY[l .. Upper_Bound] OF INTEGER;
VAR

Actual_l, Actual_2 : Array_Template(10);
Actual 3 : Array_Template(20);

PROCEDURE Schema_Procl(Only_One Array_Template); {Body ... }
PROCEDURE Schema_Proc2(One, Two : Array_Template); {Body ... }

{In the executable section:}
Schema_Procl(Actual_l);
Schema_Procl(Actual_3);
Schema_Proc2(Actual_l, Actual_2);
Schema_Proc2(Actual_l, Actual_3);

{Legal}
{Legal}
{Legal}
{Illegal}

When using value semantics, if you specify more than one formal parameter
(separated by commas) of an undiscriminated STRING type, the correspond
ing actual parameters must have equivalent current values (not necessarily
equivalent maximum lengths). Consider the following example:

VAR
One_String, Two_String : STRING(15);
Three_String : STRING(20);

PROCEDURE Test_Strings(One, Two : STRING); {Body ... }

{In the executable section:}
Test_Strings('a', 'b'); {Legal}
Test_Strings('a', 'bb'); {Illegal}
One_String := 'Hello';
Two_String := 'Hello there';
Three_String := 'olleH';
Test_Strings(One_String, Two_String); {Illegal}
Test_Strings(One_String, Three_String); {Legal}

When using variable semantics, if you specify more than one formal pa
rameter (separated by commas) of an undiscriminated STRING type, the
corresponding discriminated, STRING, actual parameters must have an
equivalent maximum length.

Procedures and Functions 6-19

For More Information:

• On user-defined schema types (Section 2.5)

• On the STRING predefined schema type (Section 2.6.3)

6.3.6 Conf ormant Parameters

VAX Pascal provides a method of processing arrays and character strings
with potentially different maximum lengths. To do this, you can use
conformant array parameters or conformant varying parameters.

A conformant parameter is a syntax that represents a set of types that are
identical except for their bounds. The bounds of a conformant parameter
are determined each time a corresponding actual parameter is passed. The
bounds of an actual parameter are available within the routine through
identifiers declared in the conformant parameter. A conformant parameter
can appear only within a formal parameter list.

You can use conformant parameters when declaring value, variable, and
foreign mechanism parameters. When you use a conformant parameter
instead of a type identifier in a formal parameter declaration, a call to
the routine can provide static and nonstatic arrays, VARYING OF CHAR
strings, and discriminated strings (of the STRING schema family) of any
size.

In addition, two conformant parameters are equivalent if they have indexes
of the same ordinal type and components that either are compatible or are
equivalent conformant parameters. They must also have the same number
of dimensions and both must be packed or unpacked.

6.3.6.1 Conformant Array Parameters

The syntax for a conformant array has. the following form:

ARRAY[{lower-bound-identifier .. upper-bound-identifier :

[fattribute-list)] index-type-identifier}; ...] OF [[attribute-list]]

{
type-identifier }

conform ant-parameter-syntax

PACKED ARRAY[lower-bound-identifier .. upper-bound-identifier :

[[attribute-list]] index-type-identifier] OF [[attribute-list]] type-identifier

6-20 Procedures and Functions

lower-bound-identifier
An identifier that represents the lower bound of the conformant array's
index.

upper-bound-identifier
An identifier that represents the upper bound of the conformant array's
index.

attribute-list
One or more identifiers that provide additional information about the
conformant array.

index-type-identifier
The type identifier of the index, which must denote an ordinal type.

type-identifier
The type identifier of the array components, which can denote any type.

To specify the range and type of the index, you must use type identifiers
that represent predefined or user-defined ordinal types. The identifiers
that represent the index bounds can be thought of as READONLY value
parameters, implicitly declared in the procedure declaration.

Unless the conformant array is packed, the component can be either a
type identifier or another conformant parameter; therefore, only the last
dimension of a conformant parameter can be packed. For example, the
following is illegal because the component of the packed array in this
example is another conformant parameter:

PACKED ARRAY[ll .. ul: INTEGER; 12 .. u2: INTEGER) OF CHAR

However, the following is allowed because only the last component is packed:

ARRAY[ll .. ul: INTEGER) OF PACKED ARRAY[l2 .. u2: INTEGER] OF CHAR

Consider the following example:

TYPE
Workdays 1 .. 31;
Feb_Days 1 .. 28;
Mar_Days 1 .. 31;

VAR
Feb Arr
Mar Arr
Feb_Total, Mar_Total

ARRAY[Feb_Days] OF INTEGER;
ARRAY[Mar_Days] OF INTEGER;
INTEGER;

FUNCTION Inventory(VAR Amt_Sold :
ARRAY[First_Day .. Last_Day : Workdays] OF INTEGER) INTEGER;

Procedures and Functions 6-21

{In executable section:}
{Amt_Sold: ARRAY[l .. 28] OF INTEGER ... }
Feb Total :=Inventory(Feb_Arr);

{Amt_Sold: ARRAY[l .. 31] OF INTEGER ... }
Mar Total :=Inventory(Mar_Arr);

The formal parameter Amt_Sold can have index values from 1 to 31 to
indicate the number of workdays in each month. Thus, an actual parameter
passed to Amt_Sold could be an array whose index type is either Feb_Days
or Mar_Days. Using a conformant parameter in this example allows you to
write a general-purpose routine that sums the components of Amt_Sold and
returns the monthly inventory total to the calling block.

For More Information:

• On ordinal types (Section 2.1)

• On arrays (Section 2.4.1)

• On attributes (Chapter 10)

6.3.6.2 Conformant VARYING Parameter

The syntax for a conformant VARYING string has the following form:

VARYING [upper-bound-identifier] OF [[attribute-list]] CHAR

attribute-list
One or more identifiers that provide additional information about the
conformant VARYING string.

upper-bound-identifier
An identifier that represents the upper bound of the conformant VARYING
OF CHAR string's index. The type of the upper bound identifier is always
integer.

The upper bound identifier specifies the maximum length of the VARYING
OF CHAR string and must denote an integer. The upper bound identifier
that represents the maximum length can be thought of as a READONLY
value parameter, implicitly declared in the procedure declaration.

When you pass a string expression to a value conformant varying-length
parameter, the length of the actual parameter's current value parameter
(not its declared maximum length) becomes both the current length and
the maximum length of the formal parameter. When you pass either a con
formant VARYING OF CHAR string variable or a discriminated STRING
variable to a VAR conformant varying-length parameter, the declared max
imum length of the actual parameter becomes the maximum length of the
formal parameter.

6-22 Procedures and Functions

The following example shows how to declare and use a VARYING OF CHAR
conformant parameter:

VAR
Short_String: VARYING[40] OF CHAR:= PAD('', '-', 40);
Long_String : VARYING[80] OF CHAR:= PAD('', '-', 80);

PROCEDURE Dashed_Line(VAR String: VARYING[Len] OF CHAR); {Body ... }

{In the executable section:}
Dashed_Line(Short_String);
Dashed_Line(Long_String);

In this example, note that Len is not a previously declared identifier but is
instead an additional implicit parameter defined by the procedure declara
tion. The upper bound of the conformant parameter String is established
by the declared maximum length of the actual parameter passed to it when
the procedure Dashed_Line is called. The first call to Dashed_Line passes
a 40-character string, so Len has the value 40. The second call passes an
80-character string, so Len has the value 80.

For More Information:

• On VARYING OF CHAR data types (Section 2.6.2)

• On attributes (Chapter 10)

6.3.6.3 Conformant Parameter Sections

When you specify more than one conformant parameter of the same type in a
single parameter section, there are additional programming considerations.

When using value semantics, if you specify more that one formal parameter
(separated by commas) of a single, user-defined, conformant parameter,
the corresponding actual parameters must have either of the following
characteristics:

• Equivalent current lengths (in the case of passing a string expres
sion to a conformant PACKED array parameter of type CHAR or to a
conformant VARYING OF CHAR)

• Indexes that are equivalent and of the same ordinal type, the same
number of dimensions, and components that are compatible (in the case
of passing a static or nonstatic array to a conformant array parameter)

Procedures and Functions 6-23

Consider the following example:

VAR
Actual_l, Actual_2 : ARRAY[l .. 10) OF INTEGER;
Actual 3 ARRAY[S .. 10] OF INTEGER;

PROCEDURE TestArr(One, Two : ARRAY [Ll .. Ul : INTEGER) OF INTEGER};
{Procedure body ... }

PROCEDURE TestStr(One, Two : PACKED [L2 .. U2 : INTEGER) OF CHAR};
{Procedure body ... }

{In the executable section:}
TestArr(Actual_l, Actual_2};
TestArr(Actual_2, Actual_3);
TestStr('ABC', 'XYZ');
TestStr('HELLO', 'GOODBYE' };

{Legal}
{Illegal}
{Legal}
{Illegal}

When using variable semantics, if you specify more than one formal param
eter (separated by commas) of a single, user-defined, conformant parameter,
the corresponding actual variable parameters must be of the same type.

For More Information:

• On ordinal types (Section 2.1)

• On static and nonstatic types (Section 2.8)

6.3. 7 Parameter Association

In most cases, a routine call must pass exactly one actual parameter for
each formal parameter. The actual parameter is either listed explicitly
in the routine call or supplied by means of a default value in the routine
declaration.

One way of establishing the correspondence between actual and formal
parameters is to give the parameters in each list the same position. That
is, the association of actual and formal parameters proceeds from left to
right, item by item, through both lists. This form of association is called
positional syntax.

Another way of establishing correspondence is to specify the formal param
eter name and the actual parameter being passed to it. In VAX Pascal,
you can associate an actual with aformal parameter using the assignment
operator (:=). The actual parameters in the call do not have to appear in
the same order as the formal par

1

ameters appeared in the declaration. This
form of association is called nonpositional syntax.

You can use both positional and nonpositional actual parameters in the same
call. However, after you specify one parameter in nonpositional syntax, all
remaining parameters must be in nonpositional syntax (all parameters in
positional syntax must be at the front of the list).

6-24 Procedures and Functions

Consider the following example:

PROCEDURE Compute_Sum(x, y: INTEGER; VAR z INTEGER); {Body ... }

{In the executable section:}
{Positional syntax:}
Compute_Sum(Quantity+ 6, 15, Total);

{Nonpositional syntax:}
Compute_Sum(z :=Total, x :=Quantity+ 6, y := 15);

{Both syntaxes:}
Compute_Sum(Quantity+ 6, z :=Total, y := 15);

For More Information:

• On using the LIST and TRUNCATE attributes to specify variable-length
parameter lists (Sections 10.2.22 and 10.2.36)

• On scope (Section 7 .2)

6.3.8 Default Formal Parameters

VAX Pascal allows you to supply default values for formal parameters.
Using default parameter values, you do not need to pass actual parameters.
Also, you can specify an actual parameter in the position of a formal
parameter whose default value you want to override. To specify a default
value, use the following format:

parameter-spec := [[mechanism-specifier]] constant-expression;

parameter-spec
The parameter specification. The syntax for a parameter specification
depends on its semantics.

mechanism-specifier
The mechanism by which VAX Pascal associates a default value with a
formal parameter. You can only specify a mechanism-specifier on a foreign
routine.

constant-expression
A constant expression representing the default value for the formal
parameter.

This default value, plus the optional mechanism specifier, must be a legal
actual parameter for the kind of formal parameter with which the default is
associated. Table 6-4 shows when VAX Pascal allows a default value.

Procedures and Functions 6-25

Table 6-4: Default Values on Formal Parameters

Formal Parameter Type

Variable

Value

Routine

External Routine

Requires foreign
mechanism specifier

Allowed

Requires foreign
mechanism specifier

VAX Pascal Routine

Error

Allowed

Error

When you declare a formal parameter with a default value, you can either
omit it from the routine call or, if you use positional syntax, you can indicate
its position with a comma.

Consider the following example:

FUNCTION Net_Pay(Hours
Tax
Rate
Fie a

INTEGER;
REAL := 0.05;
REAL;
REAL := 0.07;

Overtime INTEGER) : REAL; {Body ... }
{In the executable section:}
{Nonpositional syntax:}
Take Home Year := Take Home Year + - - - -

Net_Pay (Overtime := Overtime_Week,
Rate := Pay_Rate,
Hours :=Hours Week);

{Positional syntax:}
Take Home Year := Take Home Year + - - - -

Net_Pay(Hours_Week, , Pay_Rate, ,
Overtime Week);

The formal parameters Tax and Fica are given the default values 0.05 and
0.07, respectively.

You can override a formal parameter's default value by associating the
formal parameter with an actual parameter in a routine call. For example,
if you wanted to replace the default value of the formal parameter Tax in
the previous example for one call, you could call Net_Pay as follows:

Take Home Year:= Take Home Year + - - - -
Net_Pay(Hours_Week, 0.06, Pay_Rate, , Overtime_Week);

As a result of this routine call, the default value of Tax would be replaced by
the value 0.06 supplied in the actual parameter list.

For More Information:

• On specifying passing mechanisms (Section 6.3.4)

• On postional and non positional syntax of parameters (Section 6.3. 7)

6-26 Procedures and Functions

Chapter 7

Program Structure and Scope

This chapter describes the following:

• Blocks (Section 7.1)

• Scope of Identifiers (Section 7 .2)

• Modules and Programs (Section 7.3)

7.1 Blocks

A block is a declaration section and an executable section. Programs,
modules, and routines are structured in blocks. A declaration section can
contain routine blocks nested within the outer program or module block;
routine blocks can also be nested within other routines.

The declaration section contains data definitions and declarations, and
nested routine declarations that are local to the enclosing block. The
executable section contains the statements that specify the block's actions.
You can cause an exit from a block with the last executable statement of the
block, which causes normal termination, or with a GOTO statement, which
transfers control to an outer block.

For More Information:

• On declaration sections (Chapter 3)

• On routine declarations (Section 6.1)

• On the GOTO statement (Section 5.6)

Program Structure and Scope 7-1

7 .2 Scope of Identifiers

The scope of an identifier is the part of the program in which the identifier
has a particular meaning. In VAX Pascal, the scope of an identifier is
the block in which it is defined or declared, including nested blocks (but
excluding any nested blocks that redeclare the same identifier). Outside its
scope and assuming that it is not declared elsewhere, an identifier has no
meaning; in this case, attempts to use the identifier generate an error.

All VAX Pascal identifiers observe the following scope rules:

• An identifier can be declared only once within a particular scope.

• A previously declared identifier can be redeclared in a nested block.

• An identifier declared in the main program or module block is accessible
in all nested blocks (except where it is redeclared).

Figure 7-1 illustrates the scope of identifiers that appear in several blocks
in a program. VAX Pascal scope rules make the following statements about
Figure 7-1 true:

• Variable identifiers A and B are declared at the outer level of the
example. Scope rules make them accessible throughout th.e example. In
the main program, Levella, and Levellb, identifiers A and B represent
integers. In Level2, A still represents an integer variable, but Bis
redeclared as a Boolean variable.

• Type identifier C and variable identifiers D and E are declared at the
next lower lever, Levella. Scope rules make them accessible only in this
block. They cannot be accessed from the higher-level main program.
They cannot be accessed from a lower-level block because Levella
contains no nested routine.

• Formal parameter identifiers V, U, and T are declared at the same level,
Levellb. They cannot be redeclared within this block. They could be
redeclared as local identifiers in the nested block of Function Level2.

• Procedure identifier Levella is declared in the outermost block of the
example. This identifier could be redeclared within its own declaration
section.

• Function identifier Level2 is declared in the next-highest level, Levellb.
It cannot be declared within this block. Level2 could be redeclared as a
local identifier within a nested block.

7-2 Program Structure and Scope

Figure 7-1: Scope of Identifiers

PROGRAM Scope (INPUT, OUTPUT);

VAR
a, b : INTEGER;

PROCEDURE Levella (z, y : INTEGER);

'IYPE
c = ARRAY[l .. 35] OF CHAR;

VAR
d,e: c;

END; (End procedure Levella}

PROCEDURE Level lb (v, u : CHAR; VAR t: INTEGER);

FUNCTION Level2: CHAR;

VAR
b:BOOLEAN;

END; {End function Level2}

END; {End procedure Levellb}

{Executable section of program Scope:}

ZK-1112A-GE

Program Structure and Scope 7-3

For More Information:

• On scope of routine identifiers (Section 6.1)

• On scope of formal parameters (Section 6.3)

• On scope of labels and GOTO statements (Section 5.6)

7.3 Modules and Programs

A module is a set of instructions that can be compiled, but not executed,
by itself. Module blocks contain only a declaration section and TO BEGIN
DO and TO END DO sections. A program is a set of instructions that can
be compiled and executed by itself. Program blocks contain a declaration
and an executable section. A compilation unit is a unit of VAX Pascal
code that can be compiled independently; the term compilation unit refers to
either a program or a module.

Each module and program must be in a separate file; you cannot place
multiple modules (or a module and a program) in the same file. You can
compile modules and a program together or separately (the syntax of
compilation depends on the operating system command-line interpreter you
are using).

The formats for compilation units are as follows:

[[attribute-list]] PROGRAM comp-unit-identifier [[({file-identifier}, ...)]];
[[declaration-section]]
BEGIN
{statement}; ...
END.

[[attribute-list]] MODULE comp-unit-identifier [[({file-identifier}, ...)]];
[[declaration-section])
[[TO BEGIN DO statement;]]
[[TO END DO statement;]]
END.

The module syntax of VAX Pascal is slightly different than that of Extended
Pascal. However, the concepts in both languages are the same.

attribute-list
One or more identifiers that provide additional information about the
compilation unit.

7-4 Program Structure and Scope

comp-unit-identifier
Specifies the name of the program or module. The identifier appears only in
the heading and has no other purpose within the compilation unit.

file-identifier
Specifies the names of any file variables associated with the external files
used by the compilation unit.

decl~uation-section
A VAX Pascal declaration section.

statement
A VAX Pascal statement.

The program or module heading includes all information preceding the
program or module block. ff your program contains any input or output
routines, you must list all the external file variables that you are using in
the compilation unit's heading. Fil~ variables listed in a heading must also
be declared locally in the block, except for the predeclared file variables
INPUT and OUTPUT. The INPUT identifier corresponds to a predefined
external file that accepts input from the default device (usually, your
terminal); the OUTPUT identifier corresponds to a predefined external
file that sends output to the default device (usually, your terminal). If you
redeclare INPUT and OUTPUT in a nested block, you lose access to the
default input and output devices.

Consider the following example:

PROGRAM Write_Var(OUTPUT); {Header}
VAR {Declaration section}

Number : INTEGER VALUE 3;
BEGIN {Executable section}
WRITELN(Number); {Writes 3 to the default device}
END.

For More Information:

• On INPUT and OUTPUT (Section 9.5)

• On compilation and command-line syntax (VAX Pascal Reference
Supplement for VMS Systems)

• On the TO BEGIN DO section (Section 3.3)

• On the TO END DO section (Section 3.4)

Program Structure and Scope 7-5

7.3.1 Compilation Units and Data Sharing

When dividing code into programs and modules, you may want to share
declarations among compilation units. The following sections discuss ways
of sharing data.

7.3.1.1 Environment Files

Environment files contain the definitions and declarations, from the
outermost level of declaration section of a compilation unit, that can be
shared with other compilation units that inherit the environment file.
Environment files exist in a form that the compiler can process more easily.
The following example shows how to use environment files:

{Contained in one file:}
[INHERIT ('File_Name')]

PROGRAM a(INPUT, OUTPUT);
BEGIN
READ(Amount);
Cale;
WRITELN('Purchase Amount:
WRITELN(' +
WRITELN('Pay This Total:
END.

{Contained in a separate file:}
[ENVIRONMENT('File_Name')]

Arnount:10:2)
Tax:10:2)
Total:10:2)

MODULE B; {Keep all global data in one module}
CONST {Compile this unit first to create file}

Rate = 0.06;
VAR

Amount, Total, Tax: REAL;
PROCEDURE Glf; BEGIN ... END;
PROCEDURE Cale;

BEGIN
Tax := Amount * Rate;
Total := Tax + Amount;
Glf;
END;

END.

Since the declarations in module B compose the environment file to be
inherited by another compilation unit, you must compile module B first to
create the environment file. When compiling module B, VAX Pascal creates
an environment file by the name of File_N ame, with a default file type of
.PEN (for Pascal Environment).

The environment file contains declaration information about the constant
Rate; about the variables Amount, Total, and Tax; and about the procedures
Glf and Cale. If there·are identifiers in a compilation unit that you do not
want to be included in an environment file, use the HIDDEN attribute.

7-6 Program Structure and Scope

When you compile the program A, which contains the INHERIT attribute,
VAX Pascal uses the specified environment file to allow the program access
to the data and routines declared in the module. ·variables that are inherited
from an environment file are not newly created variables, but are the same
variables that were allocated storage by the declaring compilation unit.

A compilation unit may create only one environment file, but may inherit
multiple files that must have been created by earlier compilations.
Declarations from inherited files are not included in any environment
files created by the compilation unit. An environment file must have been
created by a version of the compiler that is compatible with the version that
is compiling the compilation unit.

The identifiers in the outermost level of the declaration section of a
compilation unit and all inherited identifiers must be unique. However,
VAX Pascal allows the following exceptions to the redeclaration rules:

• A variable identifier can be multiply declared if all declarations of the
variable have the same type, and all but one declaration at most are
external.

• A procedure identifier can be multiply declared if all declarations of the
procedure have congruent parameter lists, and all but one declaration at
most are external.

• A function identifier can be multiply declared if all declarations of the
function have congruent parameter lists and identical result types, and
all but one declaration at most are external.

Consider the following example:

{In one compilation unit:}
[ENVIRONMENT('EXTERN.PEN')] MODULE Modl;
[EXTERNAL] PROCEDURE Inst; EXTERN;
END.

{In another compilation unit:}
[INHERIT('EXTERN.PEN')] MODULE Mod2;
[GLOBAL] PROCEDURE Inst; {Body ... }
END.

For More Information:

• On the ENVIRONMENT attribute (Section 10.2.12)

• On the INHERIT attribute (Section 10.2.19)

• On the HIDDEN attribute (Section 10.2.16)

Program Structure and Scope 7-7

• On VAX Pascal versions and environment file compatibility (Appendix C)

• On declaration sections (Chapter 3)

7.3.1.2 Global and External Identifiers

Global and external identifiers are accessible to other compilation units
(even to compilation units written in other languages) that make up one
executable unit. The GLOBAL attribute allows a declared identifier to be
globally accessible by other compilation units; the EXTERNAL attribute
specifies that another compilation unit allocates storage for the data or
routine. The compiler does not check to make sure that global and external
identifiers are declared as being of the same data type; you must ensure that
the data types are compatible.

You cannot use global and external names to share the declarations of
user-defined types. However, you can use the VALUE attribute to share
global and external literals.

The following example shows how to use global and external identifiers:

{Contained in one file:}
PROGRAM a(INPUT, OUTPUT);
VAR

Amount, Total, Tax : [EXTERNAL] REAL;
[EXTERNAL] PROCEDURE Cale; EXTERNAL;
[GLOBAL] PROCEDURE Glf; {Body ... }
BEGIN
READ(Amount);
Cale;

{Defined elsewhere}
{Defined elsewhere}
{Available outside}

WRITELN('Purchase Amount:
WRITELN (I +
WRITELN('Pay This Total:

Amount:10:2)
Tax:10:2)
Total:10:2)

END.

{Contained in a separate file:}
MODULE B;
CONST

Rate = 0.06;
VAR

Amount, Total, Tax: [GLOBAL] REAL; {Available outside}
[EXTERNAL] PROCEDURE Glf; EXTERNAL; {Defined elsewhere}
[GLOBAL] PROCEDURE Cale; {Available outside}

BEGIN
Tax := Amount * Rate;
Total .- Tax + Amount;
Glf;
END;

END.

7-8 Program Structure and Scope

The file containing the module can be compiled separately from the file
containing the program.

For More Information:

• On the GLOBAL attribute (Section 10.2.15)

• On the EXTERNAL attribute (Section 10.2.13)

DECLIT AA VAX L369D

VAX PASCAL reference manual

Program Structure and Scope 7-9

Chapter 8

Predeclared Routines

VAX Pascal supplies predeclared procedures and functions that perform
various commonly used operations. You do not have to declare these
routines in order to call them from your code.

In this chapter, the routines are presented in alphabetical order. Also in this
chapter, the term "arithmetic types" refers to those data types that can be
used in arithmetic operations: INTEGER, UNSIGNED, and the real types.

In some sections ot this manual, reference is made to entire categories of
routines. Table 8-1 lists the routines in each· category.

fable 8-1: Predeclared Routine Categories

Category

!\!location size

~thmetic

8haracter-string

:::!omponent position

Category Description
and Routines

Routines that provide information about the amount of storage allocated
for variables and for components of various types: BITNEXT, BITSIZE,
NEXT, and SIZE

Routines that perform mathematical computations: ABS, ARCTAN, COS,
EXP, LN, MAX, MIN, SIN, SQR, SQRT, UAND, UNOT, UOR, UXOR, and
XOR

Routines that manipulate character strings: BIN, DEC, FIND_MEMBER,
FIND_NONMEMBER, GE, GT, HEX, INDEX, LE, LENGTH, LT, NE OCT,
PAD, READV, STATUSV, SUBSTR, UDEC, and WRITEV

Routines that provide information about the offset of record components:
BIT_OFFSET and BYTE_OFFSET

(continued on next page)

Predeclared Routines 8-1

Table 8-1 (Cont.): Predeclared Routine Categories

Category

Date-time

Category Description
and Routines

Routines that provide information on the calendar date and time: CLOCK
DATE, GETTIMESTAMP, and TIME

Dynamic allocation Routines that provide for the creation and use of pointer variables:
ADDRESS, DISPOSE, !ADDRESS, and NEW

Input and Output Routines that you use for I/O; these routines are not described in this
chapter

Low-level

Ordinal

Parameter

Privileged

Transfer

Miscellaneous

Routines that allow for parallel processes and for asynchronous
routines to operate in a real-time or multitasking
environment: ADD_INTERLOCKED, CLEAR_INTERLOCKED,
FIND_FIRST_BIT_CLEAR, FIND_FIRST_BIT_SET, and
SET_INTERLOCKED

Routines that provide information on the ordered sequence of values:
PRED, SUCC, LOWER, and UPPER

Routines that give information about variable-length parameter lists:
ARGUMENT, ARGUMENT_LIST_LENGTH, and PRESENT

Routines that manipulate privileged hardware registers: MFPR and MTPli

Routines that convert an actual parameter to data of another type:
CHR, DBLE, INT, ORD, PACK, QUAD, ROUND, SNGL, TRUNC, UINT,
UNPACK, UROUND, and UTRUNC

CARD, CREATE_DIRECTORY, DELETE_FILE, ESTABLISH, EXPO,
HALT, ODD, RENAME_FILE, REVERT, UNDEFINED, and ZERO

For More Information:

• On ordinal types (Section 2.1)

• On arrays and records (Section 2.4)

• On pointers (Section 2.3)

• On data types (Chapter 2)

• On parameter lists (Section 6.3)

• On input and output routines (Section 9.6)

• On data storage (VAX Pascal Reference Supplement for VMS Systems)

8-2 Predeclared Routines

t 1 ABS Function

The ABS function returns a value (of the same data type as the specified
parameter) that is the absolute value of the parameter.

ABS(x)

The parameter x can be of any arithmetic type.

t2 ADD INTERLOCKED Function

The AQD_INTERLOCKED function adds the value of an expression to the
value of a variable, stores the newly computed value in the variable, and
returns an integer value: -1 if the new value is negative, 0 if it is zero, and
1 if it is positive.

ADD_INTERLOCKED(e, v)

The type of the expression e must be assignment compatible with that of
the variable v. The variable v must be an integer or an unsigned subrange;
v must have an allocation size of two bytes and must be aligned on a word
boundary. The type of e must be assignment compatible with that of v.

Note that unless the type of v is an integer subrange that includes negative
values, the result of the ADD_INTERLOCKED function is never -1.

Overflow and subrange checking are never performed on the
ADD_INTERLOCKED operation, even if these options are in effect for
the rest of the function or compilation unit.

~.3 ADDRESS Function

The ADDRESS function returns a pointer value that is the address of the
parameter.

ADDRESS(x)

The parameter x can be a variable of any type except a component of a
packed structured type. A compile-time warning results if x is a formal VAR
parameter, a component of a formal VAR parameter, or a variable that does
not have the READONLY or VOLATILE attribute.

A pointer can only refer to a VOLATILE variable or a variable allocated by
the NEW procedure.

Predeclared Routines 8-3

For More Information:

• Pointer data type (Section 2.3)

• On the VOLATILE attribute (Section 10.2.41)

• On the NEW procedure (Section 8.50)

8.4 ARCTAN Function

The ARCTAN function returns a real value that expresses in radians the
arctangent of the specified parameter.

ARCTAN(x)

The parameter x can be an INTEGER or REAL type.

8.5 ARGUMENT Function

The ARGUMENT function specifies an argument in a variable-length
parameter list that was created using the LIST attribute.

ARGUMENT(parameter-name, n)

The parameter-name argument specifies the name of a parameter declared
with the LIST attribute. The parameter n specifies a positive integer value
that identifies the argument. The first argument in a list is always 1.
An error occurs if the value supplied for n is less than 1, or exceeds the
ARGUMENT_LIST_LENGTH parameter (which indicates the total number
of arguments).

If the LIST parameter is a value parameter, ARGUMENT indicates the
corresponding value in the argument list. If the LIST parameter is a VAR
parameter, ARGUMENT is a reference to the corresponding variable in the
argument list.

Also, you can use the !ADDRESS function with the ARGUMENT function to
return the address of a selected argument.

For More Information:

• ·On variable-length parameter lists (the example in Section 8.6)

• On parameters (Section 6.3)

• On the LIST attribute (Section 10.2.22)

• On the !ADDRESS function (Section 8.37)

8-4 Predeclared Routines

B.6 ARGUMENT LIST LENGTH Function - -
The ARGUMENT_LIST_LENGTH function returns an integer value
representing the number of arguments in a variable-length parameter list
that was created using the LIST attribute.

ARGUMENT_LIST_LENGTH(parameter-name)

The parameter-name argument specifies the name of the parameter declared
with the LIST attribute.

When creating a variable-length parameter list, you can place the LIST
attribute on only the last formal parameter. When you call the routine, you
can specify any number of actual parameters, or arguments, that correspond
to the last formal parameter declared with LIST. Consider the following:

PROGRAM Show_Arg(OUTPUT);
{Ax corresponds to any number of char. arguments}

PROCEDURE Variable_Write(Fl VARYING[len] OF CHAR;
Ax : [LIST] CHAR);

VAR
i INTEGER;

BEGIN
WRITE (F 1, I I I) ;

{For however many arguments there are:}
FOR i := 1 TO ARGUMENT_LIST_LENGTH(Ax) DO

WRITE(ARGUMENT(Ax, i)); {Write an argument}
WRITELN;
END;

{In the executable section:}
Variable_Write (' hello', '*' ,) ; {One argument: Writes ' hello, *'}
Variable_Write(' hello','s','a','i','l','o','r','!');

{Seven arguments: Writes 'hello, sailor!'}

For More Information:

• On parameters (Section 6.3)

• On the LIST attribute (Section 10.2.22)

8.7 BIN Function

The BIN function returns a character-string value that is the binary
equivalent of the specified parameter. The return value is compatible with
all other string types.

BIN(x[[, length[[, digits]]]])

Predeclared Routines 8-5

The parameter xis the expression to be converted. This parameter must
have a size that is known at compile time; it cannot be VARYING OF CHAR,
a conformant parameter, or a schema type.

Two optional integer parameters specify the length of the resulting string
and the minimum number of significant digits to be returned. If you specify
a length that is too short to hold the converted value, the resulting string is
truncated on the left.

If you omit the optional parameters, the bit width of the converted
parameter value determines the string length and the number of significant
digits. By default, the number of significant digits is the minimum number
of characters necessary to express all the bits of the converted parameter.
This default length is one character more than the default number of digits,
which causes a leading blank to be included in the resulting string when
both parameters are omitted. Consider the following example:

TYPE
Month_Dates =SET OF 0 .. 31;

VAR
Days_Of_Rain : Month_Dates;

{In the executable section:}
Days_Of_Rain := [l, 2, 6, 10, 12, 14, 18, 22, 25, 30);
Result :=BIN (Days_Of_Rain, 32);
{Returns '01000010010001000101010001000110', 32 characters}

The binary representation is from right to left, with the leftmost bit being
bit 31 and the rightmost bit being bit 0.

For More Information:

• On character strings (Section 2.6)

• On conformant parameters (Section 6.3.6)

8.8 BITNEXT Function

The BITNEXT function returns an integer value that indicates the number
of bits that would be allocated for one component of the specified type in a
packed array or if the specified variable appeared as a cell in a packed array.

BITNEXT(x)

The parameter x can be a variable or any type identifier.

Cells in a packed array are affected by any alignment attributes placed on
them. By default, they are unaligned if less than 32 bits in size; otherwise,
they are byte aligned. Therefore, the size returned includes the actual size

8-6 Predeclared Routines

of the type or variable in addition to trailing space required to ensure proper
alignment.

The BITNEXT and BITSIZE functions return the same bit size for a given
type or variable, except where the components of the packed array are
padded to ensure proper alignment.

For More Information:

• On examples of return values for this function (Table 8-2)

• On packed arrays (Section 2.4)

8.9 BIT OFFSET Function

The BIT_OFFSET function returns an INTEGER value that represents the
bit position of a field in a record.

BIT_OFFSET(t, f)

The parameter t can be of any record type or variable, and the parameter f
can be any field contained in that record.

For More Information:

For information on records, see Section 2.4.2.

8.10 BITSIZE Function

The BITSIZE function returns an integer value that indicates the number
of bits that would be allocated for one field of the specified type in a packed
record or if the specified variable appeared as a field in a packed record.

BITSIZE(x)

The parameter x can be a variable or any type identifier.

Fields in a packed record are not affected by any alignment attributes placed
on subsequent fields. Therefore, the size returned indicates the actual size
of the type or variable.

The BITNEXT and BITSIZE functions return the same bit size for a given
type or variable, except where the components of the packed array are
padded to ensure proper alignment.

Predeclared Routines 8-7

For More Information:

• On possible return values for this function (Table 8-2)

• On packed arrays (Section 2.4)

8.11 BVTE_OFFSET Function

The BYTE_OFFSET function returns an integer value that represents the
byte position of a field in a record.

BYTE_ OFFSET(t, f)

The parameter t can be of any record type or variable, and the parameter f
can be any field contained in that record.

For More Information:

For information on records, see Section 2.4.2.

8.12 CARD Function

The CARD function returns an integer value indicating the number of
components that are currently elements of the set expression.

CARD(s)

The parameter s must be a set expression.

For More Information:

For information on sets, see Section 2.4.3.

8.13 CHR Function

The CHR function returns a char value whose ordinal value in the ASCII
character set is the parameter, provided such a character exists.

CHR(x)

The parameter x must be of type INTEGER or UNSIGNED and have a
value from 0 to 255.

For More Information:

For information on the ASCII character set, see Appendix A.

8-8 Predeclared Routines

8.14 CLEAR INTERLOCKED Function

The CLEAR_INTERLOCKED function assigns the value FALSE to the
parameter and returns the original Boolean value of the parameter.

CLEAR_INTERLOCKED(b)

The parameter b must be a variable of type BOOLEAN. The variable does
not have to be aligned; therefore, it can be a field of a packed record.

8.15 CLOCK Function

The CLOCK function returns an integer value indicating the amount of
central processor time (in milliseconds) used by the current process. This
function does not have a parameter list. The result of CLOCK includes the
amount of central processor time allocated to all previously executed images.

8.16 COS Function

The COS function returns a real value that represents the cosine of the
specified parameter.

COS(x)

The parameter x can be an INTEGER or REAL type, and is expressed in
radians.

8.17 CREATE DIRECTORY Procedure

The CREATE_DIRECTORY procedure creates a new directory or
subdirectory.

CREATE_DIRECTORY(file-name [[, error-return]])

The file-name parameter must be a directory name, and optionally can
contain a device name. The error return parameter is optional, and will
return an error recovery code if specified.

Predeclared Routines 8-9

For More Information:

• On device, directory, and file specifications (VAX Pascal Reference
Supplement for VMS Systems)

• On error recovery codes (VAX Pascal Reference Supplement for VMS
Systems)

8.18 DATE and TIME Functions

The DATE and TIME functions provide a standard way of returning a
character-string value that indicates the calender date and time. The return
value is compatible with all string types.

DATE(t)
TIME(t)

The parameter t is a variable of the predeclared type TIMESTAMP. You
can either call the GETTIMESTAMP procedure to initialize parameter t
before you pass t to either DATE or TIME, or you can construct your own
TIMESTAMP object.

The size of the function's return value depends on the string length that is
normally returned by your system for either date or time data. Consider the
following:

VAR
Time_Var : TIMESTAMP;
The Time, The Date : STRING(23);

{In the-executable section:}
GETTIMESTAMP(Time Var);
The Date :=DATE(Time Var);
The-Time :=TIME(Time-Var);
WRITELN(The_Date, The=Time); {Writes: 1-FEB-1989 14:20:25.98 }

For More Information:

For information on the GETTIMESTAMP predeclared procedure, see
Section 8.34.

8-10 Predeclared Routines

8.19 DATE and TIME Procedures

The DATE and TIME procedures write the date and the time to their
parameters.

DATE(str)

TIME(str)

The parameter str must be of type PACKED ARRAY[l..11] OF CHAR. After
execution of the procedure, the parameter str contains either the date or the
time. If the day of the month is a 1-digit number, the leading zero does not
appear in the result; that is, a space appears before the date string. The
time is returned in 24-hour format.

For More Information:

For information on standard ways to obtain the date and the time, see
Section 8.18.

8.20 DBLE Function

The DBLE function converts the parameter and returns its DOUBLE
equivalent.

DBLE(x)

The parameter x must be of an arithmetic type. The value of x must not be
too large to be represented by a double-precision number.

For More Information:

For information on precision and support for the DOUBLE data type, see
the VAX Pascal Reference Supplement for VMS Systems.

8.21 DEC Function

The DEC function returns a character-string value that is the decimal
equivalent of the specified parameter. The return value is compatible with
all other string types.

DEC(x[[, length[[, digits]]]])

The parameter xis the expression to be converted. DEC can take a
parameter of any type except VARYING OF CHAR, conformant parameters,
or schema types. DEC requires x to be 32 bits or less in length.

Predeclared Routines 8-11

Two optional integer parameters specify the length of the resulting string
and the minimum number of significant digits to be returned. If you
specify a length that is too short to hold the converted value, the resulting
string is truncated on the left. If you do not specify values for the optional
parameters, a default length and a default minimum number of significant
digits is used. The defaults are 11 characters for the length and 10
characters for the minimum number of digits. Because the default length
is 1 greater than the number of significant digits, positive numbers will be
preceded by a blank and negative numbers will be preceded by a minus sign.
Consider the following:

VAR
Account : INTEGER;

{In the executable section:}
Account := 16#F,;
WRITELN(DEC(Account, 8, 7));

The value of the integer variable Account is converted to its decimal
equivalent (16) and, in this example, printed in eight columns: seven digits,
and one leading blank.

For More Information:

• On character strings (Section 2.6)

• On conformant parameters (Section 6.3.6)

8.22 DELETE_FILE Procedure

The DELETE_FILE procedure deletes one or more files.

DELETE_FILE(file-name [[, error-return]])

The file-name specification can contain an explicit device and directory
name, plus it must contain a file name, a file type or extension, and a
version number. If you omit either the directory or device name, VAX Pascal
uses the directory you are working in at the time of program execution. The
error return parameter returns an error recovery code if specified.

For More Information:

• On device, directory, file, type or extension, and version number
specifications (VAX Pascal Reference Supplement for VMS Systems)

• On error recovery codes (VAX Pascal Reference Supplement for VMS
Systems)

8-12 Predeclared Routines

8.23 DISPOSE Procedure

The DISPOSE procedure deallocates memory for a dynamic variable.

DISPOSE(p [[, t1 , ... ,tn]])

The parameter p is a pointer variable. The t parameters are constant
expressions that match the corresponding t parameter used in the call to the
NEW procedure that allocated the memory. If you use t parameters in a call
to NEW, you must specify the same t parameters in the call to DISPOSE. If
you allocated memory using d parameters, just specify the pointer variable
to the corresponding DISPOSE call.

The DISPOSE procedure deallocates the object to which the pointer variable
points. You cannot call DISPOSE more than once for the same dynamic
variable. Consider the following:

DISPOSE(Ptr); {PtrA is distroyed; Ptr becomes undefined}

For More Information:

• On the pointer data type (Section 2.3)

• On the NEW procedure (Section 8.50)

8.24 EQ Function

The EQ function returns a Boolean value that specifies if the parameters are
equal according to the ASCII values of the strings' characters.

EQ(str1 , str2)

The parameters strl and str2 must be character-string expressions. If the
EQ function detects unequal string lengths, it stops comparison and returns
FALSE. Consider the following:

VAR
Match : BOOLEAN;

{In the executable section:}
Match := EQ('exit ', 'exit'); {Returns FALSE; unequal lengths}
Match:= EQ('exit', 'exit'); {Returns TRUE}

For More Information:

For information on string data types, see Section 2.6.

Predeclared Routines 8-13

8.25 ESTABLISH Procedure

The ESTABLISH procedure specifies a condition handler that executes if
your program generates operating-system events.

ESTABLISH(function-identifier)

The function-identifier parameter must be the name of a function that has
the ASYNCHRONOUS attribute. The function passed to ESTABLISH must
have two formal array parameters.

For More Information:

• On the ASYNCHRONOUS attribute (Section 10.2.2)

• On error and report processing (VAX Pascal Reference Supplement for
VMS Systems)

8.26 EXP Function

The EXP function returns a real value that represents the exponent of the
specified parameter (it represents ex).

EXP(x)

The parameter x can be an INTEGER or REAL type.

8.27 EXPO Function

The EXPO function returns the integer exponent of the floating-point
representation of the parameter.

EXPO(x)

The parameter x can be of any real type.

For More Information:

For information on precision and support for real numbers, see the VAX
Pascal Reference Supplement for VMS Systems.

8-14 Predeclared Routines

J.28 FIND_FIRST_BIT_CLEAR Function

The FIND_FIRST_BIT_CLEAR function locates the first bit in a Boolean
array whose value is 0 and returns an integer value that specifies the index
into the array.

FIND_FIRST_BIT_CLEAR(vector[[, start-index]])

The vector parameter is a variable of type PACKED ARRAY OF BOOLEAN
with an INTEGER index type. The optional start-index parameter must
be an INTEGER expression that indexes the element at the point at which
the search starts. The starting index must be greater than or equal to the
vector's lower bound, and less than or equal to 1 plus the vector's upper
bound; otherwise, a range violation occurs. If omitted, the starting index
defaults to the vector's first element.

The FIND_FIRST_BIT_CLEAR function returns a value indexing the first
element containing the value 0. If no bit is 0, the result is, 1 plus the vector's
upper bound. If the vector or the indexed part of the vector has a size of 0,
the result is start-index.

8.29 FIND_FIRST_BIT_SET Function

The FIND_FIRST_BIT_SET function locates the first bit in a Boolean array
whose value is 1 and returns an integer value that specifies the index into
the array.

FIND_FIRST_BIT_SET(vector[[, start-index]])

The vector parameter is a variable of type PACKED ARRAY OF BOOLEAN
with an INTEGER index type. The optional start-index parameter must be
an expression of an INTEGER type that indexes the element at the point at
which the search starts. The starting index must be greater than or equal to
the vector's lower bound, and less than or equal to 1 plus the vector's upper
bound; otherwise, a range violation occurs. If omitted, the starting index
defaults to the vector's first element.

The FIND_FIRST_BIT_SET function returns an integer value indexing the
first element containing the value 1. If no bit is 1, the result is 1 plus the
vector's upper bound. If the vector or the indexed part of the vector has a
size of 0, the result is start-index. Consider the following.

Predeclared Routines 8-15

VAR
Boo: PACKED ARRAY (0 .. 31] OF BOOLEAN;

{In the executable section:}
Boo::INTEGER := 128;
WRITELN(FIND_FIRST_BIT_SET(BOO));

For More Information:

For information on the type-cast operator (::), see Section 4.2.6.

8.30 FIND MEMBER Function

The FIND _MEMBER function locates the first character in a string that
is a member of a specified set and returns an integer value indicating
the position of the character in the string; the function returns 0 if the
characters in the string were not members of the set.

FIND_MEMBER(string, char-set)

The string parameter is a string value, 'and char-set is a value of type SET
OF CHAR.

For More Information:

• On string types (Section 2.6)

• On sets (Section- 2.4.3)

8.31 FIND_NONMEMBER Function

The FIND_NONMEMBER function locates the first character in a string
that is not a member of a specified set and returns an integer value
indicating the position of the character in the string; the function returns 0
if the characters in the string were all members of the set.

FIND_NONMEMBER(string, char-set)

The string parameter is a string value, and char-set is a value of type SET
OF CHAR.

For More Information:

• On string types (Section 2.6)

• On sets (Section 2.4.3)

8-16 Predeclared Routines

8.32 GE Function

The GE function returns a Boolean value that specifies if the first parameter
is greater than or equal to the second parameter, according to the ASCII
values of the strings' characters.

GE(str1, str2)

The parameters strl and str2 must be character-string expressions. VAX
Pascal does not pad shorter strings with blanks. Consider the following:

VAR
Match : BOOLEAN;
Test : STRING(8) VALUE 'ENTRANCE';

{In the executable section:}
Match :=GT('exit', 'exit'); {Returns TRUE}
Match:= GT(Test, 'EXIT'); {'N' less-than 'X': Returns FALSE}

For More Information:

For information on string data types, see Section 2.6.

8.33 GT Function

The GT function returns a BOOLEAN value that specifies if the first
parameter is greater than the second parameter, according to the ASCII
values of the strings' characters.

GT(str1, str2)

The parameters strl and str2 must be character-string expressions. VAX
Pascal does not pad shorter strings with blanks. Consider the following:

VAR
Match : BOOLEAN;
Test : STRING(8) VALUE 'ENTRANCE';

{In the executable section:}
Match :=GT('exit', 'exit'); {Returns FALSE}
Match :=GT(Test, 'EXIT'); {'N' less-than 'X': Returns FALSE}

For More Information:

For information on string data types, see Section 2.6.

Predeclared Routines 8-17

8.34 GETTIMESTAMP Procedure

The GETTIMESTAMP procedure initializes its parameter for use with the
DATE and TIME functions.

GETTIMESTAMP(t [[, str]])

The parameter t is a variable of the TIMESTAMP type, which is a
predeclared record type. The TIMESTAMP data type is as follows:

TIMESTAMP = PACKED RECORD
DATEVALID, TIMEVALID BOOLEAN;
YEAR INTEGER;
MONTH 1. .12;
DAY 1.. 31;
HOUR O .. 23;
MINUTE 0 .. 59;
SECOND 0 .. 59;
HUNDREDTH 0~.99;

{64-bit VMS binary time:}
BINARY_TIME [QUAD] RECORD Ll,L2:INTEGER END;
DAY OF WEEK : 1.. 7; {l is Monday and 7 is Sunday}
END;

The parameter str is a string type that represents a date or both a date and
time. The following rules apply to the specification of the str parameter:

• If you do not specify the parameter str, the GETTIMESTAMP procedure
initializes the variable to be the date and time at execution of the
procedure.

• If you specify an invalid date, the GETTIMESTAMP procedure sets the
date to be January 1, 1. If you omit the date, this procedure uses the
current date. If you specify an invalid time or if you omit the time, it
sets the time to be midnight.

Consider the following:

VAR
Time Var : TIMESTAMP;
The_Time, The_Date : STRING(23);

{In the executable section:}
GETTIMESTAMP(Time Var); {Get current date and time}
GETTIMESTAMP(Time-Var, 'TOMORROW'); {Midnight tomorrow}
GETTIMESTAMP(Time=Var, '22-Nov-1988:12:30:15.15');
GETTIMESTAMP(Time_Var, '22-Nov-1988'); {Midnight at that date}
GETTIMESTAMP(Time_Var, '41-Nov-1988:999:999:999.99');

{Midnight on January 1, l}

8-18 Predeclared Routines

For More Information:

For information on the DATE and TIME functions, see Section 8.18.

B.35 HALT Procedure

The HALT procedure uses operating system resources to stop execution
of your program unless you have written a condition handler (using the
ESTABLISH procedure) that enables continued execution.

For More Information:

• On the ESTABLISH procedure (Section 8.25)

• On environment-specific behavior of HALT (VAX Pascal Reference
Supplement for VMS Systems)

8.36 HEX Function

The HEX function returns a character-string value that is the hexadecimal
equivalent of the specified parameter. The return value is compatible with
all other string types.

HEX(x[[, length[[, digits]]]])

The parameter xis the expression to be converted. This parameter must
have a size that is known at compile time; it cannot be VARYING OF CHAR,
a conformant parameter, or a schema type.

Two optional integer parameters specify the length of the resulting string
and the minimum number of significant digits to be returned. If you
specify a length that is too short to hold the converted value, the resulting
string is truncated on the left. If you do not specify values for the optional
parameters, a default length and a default number of significant digits is
used. By default, the number of significant digits is the minimum number
of characters necessary to express all the bits of the converted parameter.
This default length is one character more than the default number of digits,
which causes a leading blank to be included in the resulting string when
both parameters are omitted. Consider the following.

Predeclared Routines 8-19

VAR
p : "Rec;

{In the executable section:}
Digits := 8;
NEW (p) ;
Result :=HEX(p, 10, Digits);

In this example, the HEX function returns a string of 10 characters
containing the hexadecimal equivalent of the value of the pointer variable p.
The string has eight significant digits, as specified by the value of the actual
parameter Digits.

8.37 IADDRESS Function

The !ADDRESS function returns an integer value that refers to the address
of either a VOLATILE parameter or a routine, and does not generate
compile-time warnings (as does the ADDRESS function). The !ADDRESS
function is commonly used for constructing arguments for system services of
the VMS operating system.

!ADDRESS(x)

The parameter x can be of any type except a component of a packed
structured type or a routine name.

NOTE

The VAX Pascal compiler automatically assumes that all pointers
refer either to dynamic variables allocated by the NEW procedure
or to variables that have the VOLATILE attribute; therefore, you
should use utmost caution when using the !ADDRESS function.
This function does not generate compile-time warnings.

Consider the following example:

VAR
Real_Addr : INTEGER;
Real_Var : [VOLATILE] REAL;

{In the executable section:}
Real Addr := IADDRESS(Real Var); {Returns address of Real_Var}
WRITELN('The address of Real_Var is', Real Addr);

For More Information:

• On the VOLATILE attribute (Section 10.2.41)

• On the ADDRESS function (Section 8.3)

• On the NEW procedure (Section 8.50)

8-20 Predeclared Routines

8.38 INDEX Function

The INDEX function searches a string for a specified substring and returns
an integer value that either indicates the location of the substring or the
status of the search.

INDEX(string, substring)

INDEX requires two character-string expressions as parameters: a string to
be searched and a substring to be found.

The search ends as soon as the first occurrence of the substring is located. If
the substring is found, INDEX returns the string component that contains
the first letter of the substring. If the substring is not found, INDEX returns
the value 0. If the substring is an empty string, INDEX returns the value 1.
If the string to be searched is an empty string, INDEX returns the value 0
unless the substring is also empty; in which case, INDEX returns the
value 1. Consider the following example:

The_String := 'The Pilgrims landed at Plymouth Rock';
Substring :='Plymouth Rock';
Position :=INDEX(The_String, Substring); {Returns 24}
Substring :='Mayflower';
Position :=INDEX(The_String, Substring); {Returns 0}

For More Information:

For information on character strings, see Section 2.6.

8.39 INT Function

The INT function converts the parameter and returns its INTEGER
equivalent.

INT(x)

The parameter x must be of an ordinal type.

No error results if xis of type UNSIGNED and has a value greater than
MAXINT. In that case, the value of x is converted to its equivalent as a
32-bit integer by subtracting 232 from it. For example, INT(3604928157)
returns the value -690,039,139, which is the negative integer with the same
32-bit representation as the unsigned integer value 3,604,928,157.

For More Information:

For information on range and support for the UNSIGNED data type, see the
VAX Pascal Reference Supplement for VMS Systems.

Predeclared Routines 8-21 '

8.40 LE Function

The LE function returns a Boolean value that specifies if the first parameter
is less than or equal to the second parameter, according to the ASCII values
of the strings' characters.

LE(str1 , str2)

The parameters strl and str2 must be character-string expressions. VAX
Pascal does not pad shorter strings with blanks.

The expression LE(Strl, Str2) is equivalent to the following:

(LENGTH (Strl) < LENGTH (Str2 ·) OR (Strl <= Str2)

Consider the following example:

VAR
Match : BOOLEAN;
Test : STRING(8) VALUE 'ENTRANCE';

{In the executable section:}
Match :=LE('exit', 'exit'); {Returns TRUE}
Match:= LE(Test, 'EXIT'); {'N' less-than 'X': Returns TRUE}

For More Information:

For information on string data types, see Section 2.6.

8.41 LENGTH Function

The LENGTH function returns an integer value that is the length of a
specified string expression.

LENGTH(str)

LENGTH requires a character-string expression as a parameter.

For More Information:

For information on character strings, see Section 2.6.

8.42 LN Function

The LN function returns a real value that represents the natural logarithm
of the specified parameter.

8-22 Predeclared Routines

LN(x)

The parameter x can be an INTEGER or REAL type. The value ofx must
be greater than zero.

S.43 LOWER Function

The LOWER function returns the lower bound for ordinal types, SET base
types, and array indexes.

LOWER(x [[, n]])

The parameter x is a type identifier or variable of an ordinal, SET, or ARRAY
type. The parameter n is an integer constant that denotes a dimension of x,
if x is an array. If x is an array and if you omit the parameter n, VAX Pascal
uses the default value 1. If x is an array, LOWER returns the lower bound
of the nth dimension of x. If x is an ordinal type, LOWER returns the lower
bound or smallest value. If x is a SET, LOWER returns the lower bound of
the SET base type.

For More Information:

For examples of the LOWER function, see Section 8.83.

8.44 LT Function

The LT function returns a Boolean value that specifies if the first parameter
is less than the second parameter, according to the ASCII values of the
strings' characters.

LT(str1, str2)

The parameters strl and str2 must be character-string expressions. VAX
Pascal does not pad shorter strings with blanks. Consider the following:

VAR
Match : BOOLEAN;
Test : STRING(8) VALUE 'ENTRANCE';

{In the executable section:}
Match:= LT('exit', 'exit'); {Returns FALSE}
Match :=LE(Test, 'EXIT'); {'N' less-than 'X': Returns TRUE}

For More Information:

For information on string data types, see Section 2.6.

Predeclared Routines 8-23

8.45 MAX Function

The MAX function returns a value (the same type as that of the parameters)
that is the maximum value of a specified list of parameters.

MAX(x1 , ... ,xn)

The parameters can be any arithmetic type, but must all be of the same
type.

8.46 MFPR Function

The MFPR function returns an unsigned value that is the value of a VAX
internal processor register.

MFPR(ipr-register-expression)

The ipr-register-expression parameter is an expression compatible with the
UNSIGNED type.

For More Information:

For information on running in kernel mode or on using the MFPR function,
see the VAX Pascal Reference Supplement for VMS Systems.

8.47 MIN Function

The MIN function returns a value (of the same type as that of the
parameters) that is the minimum value of a specified list of parameters.

MIN(x1 , ... ,xn)

The parameters can be any arithmetic type, but must all be of the same
type.

8.48 MTPR Procedure

The MTPR procedure assigns a value into a VAX internal processor register.

MTPR(ipr-register-expression, source-expression);

The ipr-register-expression and source-expression parameters are
expressions compatible with the unsigned type. VAX Pascal stores the
value specified by source-expression into the internal processor register
specified by the ipr-register-expression.

8-24 Predeclared Routines

For More Information:

For information on running in kernel mode or on using the MTPR procedure,
see the VAX Pascal Reference Supplement for VMS Systems.

8.49 NE Function

The NE function returns a Boolean value that specifies if the parameters
are not equal according to the ASCII values of the strings' characters.

NE(str1, str2)

The parameters strl and str2 must be character-string expressions. VAX
Pascal does not pad shorter strings with blanks. Consider the following:

VAR
Match : BOOLEAN;

{In the executable section:}
Match:= NE('exit ', 'exit'); {Returns TRUE}
Match:= NE('exit', 'exit'); {Returns FALSE}

For More Information:

For information on string data types, see Section 2.6.

8.50 NEW Procedure

The NEW procedure allocates memory for the dynamic variable to which
a pointer variable refers. The value of the newly allocated variable is set
to the initial value of the base type if defined; otherwise, the value of the
variable is undefined.

NEW(p [[, { t1 , ... ,tn }]])
d1, ... ,dn

The parameter p is a pointer variable.

The parameters tl, ... ,tn are constant expressions of an ordinal type that
represent nested tag-field values, where t1 is the outermost variant.

If the object of the pointer is a non-schema record type with variants, then
you have two ways of allocating memory. If you do not specify t parameters,
VAX Pascal allocates enough memory to hold any of the variants of the
record. If you do specify t parameters, then VAX Pascal allocates enough
memory to hold only the variant or variants that you specify.

Predeclared Routines 8-25

Since the t parameters cause VAX Pascal to''allocate memory for the variant
alone and not for the whole record, you cannot assign or evaluate the record
as a whole; you can assign and evaluate only the individual fields. Also, a
call to NEW sets the tag fields of a variant record.

The parameters dl , ... ,dn are compile-time or run-time ordinal values that
must be the same type as the formal discriminants of the object.

If the object of the pointer is of an. undiscriminated schema type, you must
specify a d parameter for each of the formal discriminants of the schema
type. The d parameters discriminate the schema type in much the same
way as actual discriminants in a discriminated schema. VAX Pascal bases
the size of the allocation on the value of the d parameters.

If the object is a schema record type, then you must use d parameters;
you cannot use t parameters or a combination of the syntaxes. If the
schema record type contains a variant (which depends on one of the formal
discriminants) then the d parameter discriminates the schema, determines
the variant, and allows VAX Pascal to compute the necessary size of the
allocation.

NOTE

If you specify t parameters to the NEW procedure, you must
specify the same t parameters to the DISPOSE procedure that
deallocates memory for the corresponding variable.

Consider the following examples:

TYPE
Meat Type= (Fish, Fowl, Beef);
Beef=Portion = (Oz_lO, Oz_16, Oz_32);
Var Record = RECORD

VAR

CASE Entree : Meat Type OF
Fish (Fish_Type : (Salmon, Cod, Perch, Trout);

Lemon : BOOLEAN);
Fowl : (Fowl Type : (Chicken, Duck, Goose);

Sauce: (Orange, Cherry, Raison));
Beef : (Beef Type : (Steak, Roast, Prime Rib);

CASE size :-Beef Portion OF -
Oz_l0,-0z_l6 : (Beef_Veg: (Pea, Mixed));

Oz 32 (Stomach Cure :
Bicarb, Antacid, None)));

END;
The_Schema(Upper_Bound : INTEGER)

=ARRAY [l .. Upper_Bound] OF INTEGER;

To Int AINTEGER;
To_Var_Record AVar_Record;
To_Schema AThe_Schema;
Bound INTEGER VALUE 32;

8-26 Predeclared Routines

{In the executable section:}
NEW(To_Int); {Memory for To_IntA allocated but not initialized}

NEW(To_Var_Record, Fish); {Memory allocated only for Fish variant}
DISPOSE(To_Var_Record, Fish); {Specify Fish to DISPOSE}
NEW(To_Var_Record, Beef, Oz_32); {Allocates more memory this time}
DISPOSE(To_Var_Record, Beef, Oz_32);

NEW(To_Schema, Bound); {Allocation for undisc. schema object}
DISPOSE(To_Schema);

For More Information:

• On variant records (Section 2.4.2.1)

• On schema types (Section 2.5)

• On the DISPOSE procedure (Section 8.23)

.51 NEXT Function

The NEXT function returns an integer value that indicates the number of
bytes that would be allocated for one component of the specified type in
an unpacked array or if the specified variable appeared as the cell in an
unpacked array.

NEXT(x)

The parameter x can be a type identifier or variable.

Cells in an unpacked array are affected by alignment attributes and, by
default, are byte aligned. Therefore, the size returned includes the actual
size of the type or variable, in addition to trailing space required to ensure
proper alignment.

If a variable that is not allocated to an integral number of bytes is passed
to NEXT, the number of bits are rounded down to the nearest byte and then
the number of bytes are returned.

For More Information:

• On examples of return values for this function (Section 8.66)

• On arrays (Section 2.4.1)

Predeclared Routines 8-27

8.52 OCT Function

The OCT function returns a character-string value that is the octal
equivalent of the specified parameter. The return value is compatible with
all other string types.

OCT(x[[, length[[, digits]]]])

The parameter xis the expression to be converted. This parameter must
have a size that is known at compile time; it cannot be VARYING OF CHAR,
a conformant parameter, or a schema tyi?e·

Two optional integer parameters specify the length of the resulting string
and the minimum number of significant digits to be returned. If you specify
a length that is too short to hold the converted value, the resulting string
is truncated on the left. By default, the number of significant digits is the
minimum number of characters necessary to express all the bits of the
converted parameter. This default length is one character more than the
default number of digits, which causes a leading blank to be included in the
resulting string when both parameters are omitted. Consider the following:

Int_Var := 427;
Result :=OCT(Int_Var, 10, 3); {Returns' 653'}

For More Information:

For information on character strings, see Section 2.6.

8.53 ODD Function

The ODD function returns a Boolean value that indicates if the parameter
is odd.

ODD(x)

The parameter x must be of type INTEGER or UNSIGNED. The function
returns TRUE if the value of xis odd and FALSE if the value ofx is even~

8.54 ORD Function

The ORD function returns an integer value that is the position of the
parameter in the ordered sequence of values of the parameter's type.

ORD(x)

8-28 Predeclared Routines

The parameter x must be of an ordinal type. Note that the ordinal value
of an INTEGER object is the integer itself. If x is of type UNSIGNED, its
value must not be greater than MAXINT.

B.55 PACK Procedure

The PACK procedure copies components of an unpacked array variable to a
packed array variable.

PACK(a, i, z)

The parameter a is an unpacked array. The parameter i is a value to
indicate the starting value of the index of a. The parameter z is a packed
array of the same component type as a.

The number of components in parameter a must be greater than or
equal to the number of components in z. The PACK procedure assigns
the components of a, starting with a[i], to the array z, starting with
z[low-bound], until all the components in z are filled.

In general, when specifying i, keep in mind that the upper bound of a (that
is, n) must be greater than or equal to i + v-u, where v is the upper bound
of z and u is the lower bound of z. That is, ORD(n) must be greater than or
equal to ORD(i) + ORD(v) - ORD(u). Consider the following:

VAR
a: ARRAY[l .. 25] OF 0 .. 15;
p : PACKED ARRAY[l .. 20] OF 0 .. 15;
i : INTEGER;

{In the executable section:}
FOR i := 1 TO 20 DO

READ (a[i]) ;
PACK(a, 5, p); {a[l] through a[4] are not used}
PACK(a, 1, p); {a[21] through a[25] are not used}

For More Information:

For information on arrays and packed arrays, see Section 2.4.

B.56 PAD Function

The PAD function returns a character-string value, of the specified size,
that contains padded fill characters. The return value is compatible with all
other string types.

PAD(str, fill, size)

Predeclared Routines 8-29

The parameter str is a character-string value to be padded; the parameter
fill is a value of type CHAR to be used as the fill character; and, the
parameter size is an integer value indicating the size of the final string.

This string is composed of the original string followed by the fill character,
which is repeated as many times as is necessary to extend the string to its
specified size. The :final size must be greater than or equal to the length of
the string to be padded.

For More Information:

For information on character strings, see Section 2.6.

8.57 PRED Function

The PRED function returns the value preceding the parameter according to
the parameter's data type.

PRED(x)

The parameter x can be of any ordinal type; however, there must be a
predecessor value for x in the type.

8.58 PRESENT Function

The PRESENT function returns a Boolean value that indicates whether the
actual argument list of a routine contains an argument that corresponds to
a formal parameter. (The PRESENT function is usually used to supply a
default value or to take a default action when the argument for a parameter
is omitted.)

PRESENT(parameter-name)

The parameter-name argument is the name of a formal parameter with
the TRUNCATE attribute. The parameter-name must be the name of
a formal parameter of the function from which PRESENT is called, or
from a subroutine of that function. The function result indicates whether
the argument list of the containing routine specifies an actual argument
corresponding to an optional parameter.

Parameters that do not have the TRUNCATE attribute and also do not
follow a parameter with the TRUNCATE attribute in the formal parameter
list, are allowed; in their case, the PRESENT function always returns
TRUE.

8-30 Predeclared Routines

Default parameters are considered to be present in the argument list, and
the PRESENT function returns TRUE when passed the name of a parameter
with a default value.

For More Information:

• On examples using PRESENT and TRUNCATE (Section 10.2.36)

• On parameters (Section 6.3)

B.59 QUAD Function

The QUAD function converts the parameter and returns its QUADRUPLE
equivalent.

QUAD(x)

The parameter x must be of an arithmetic type.

For More Information:

For information on precision and support for the QUADRUPLE data type,
see the VAX Pascal Reference Supplement for VMS Systems.

8.60 READV Procedure

The READV procedure reads characters from a character-string expression
and assigns them to parameters in the READV call. The behavior of
READV is analogous to that of READLN; the character string is analogous
to a one-line file.

READV(str, {variable-identifier[[: radix-specifier]]}, ... [[, ERROR := error-recovery]])

The parameter str is the string to be read. The parameter variable-identifier
is the variable to be assigned a value from str. The parameter radix-specifier
can be BIN, OCT, or HEX. You can read a. variable of any type by using
a radix specifier except a type that contains a file component. The
error-recovery parameter indicates the action to be taken in case of an
error. (An error occurs at run time if values have not been assigned to all
the parameters listed in the READV procedure call before the end of the
character string is reached.)

Predeclared Routines 8-31

TYPE
Color= (Yellow, Red, Blue);

VAR
Paint, Paint2 : Color;
Month : VARYING[5] OF CHAR;
Real_Var : REAL;
Read_String : VARYING[17] OF CHAR;

{In the executable section:}
Read_String := 'Red July 26.33805';

READV(Read String, Paint, Month, Real Var);
{Paint contains Red, Month contains 'July', and Real_Var contains 26.33805}

READV(Read_String, Paint, Month, Real_Var, Paint2);
{Error: end of string reached after assigning to Real_Var}

READV(Read_String, Paint, Month); {Legal: '26.33805' is not used}
READV(Read_String, Real_Var, Paint, Month); {Error: Red is not REAL}

For More Information:

• On input and output (Chapter 9)

• On character strings (Section 2.6)

• On error recovery codes (VAX Pascal Reference Supplement for VMS
Systems)

8.61 RENAME_FILE Procedure

The RENAME_FILE procedure renames a file.

RENAME_FILE(old-file:..name, new-file-name [[, error-return]])

The parameter old-file-name specifies the names of one or more files whose
specifications are to be changed. New-file-name provides the new file
specification to be applied. The error-return parameter contains an error
recovery code if specified.

For More Information:

For information on file specifications or on error processing, see the VAX
Pascal Reference Supplement for VMS Systems.

8.62 REVERT Procedure

The REVERT procedure cancels a condition handler activated by the
ESTABLISH procedure. This procedure does not have a parameter list.

8-32 Predeclared Routines

For More Information:

For information on error processing, see the VAX Pascal Reference
Supplement for VMS Systems.

8.63 ROUND Function

The ROUND function converts the value of the parameter by rounding the
fractional part of the value, and returns its integer equivalent.

ROUND(x)

The parameter x must be of type REAL, SINGLE, DOUBLE, or
QUADRUPLE. The value of x must not be too large to be represented
by an integer.

8.64 SET INTERLOCKED Function

The SET_INTERLOCKED function assigns the value TRUE to the
parameter and returns its original Boolean value.

SET _INTERLOCKED(b)

The parameter b must be a variable of type BOOLEAN. The variable does
not have to be aligned; therefore, it can be a field of a packed record.

8.65 SIN Function

The SIN function returns a real value that represents the sine of the
specified parameter.

SIN(x)

The parameter x can be an INTEGER or REAL type, and is expressed in
radians.

8.66 SIZE Function

The SIZE function returns an integer value that indicates the possible
or actual number of bytes that are allocated for a specified data, type or
variable.

SIZE(x[[,t1 , ... ,tn]])

Predeclared Routines 8-33

The parameter x can be a type identifier or variable. If x is a type identifier,
then SIZE returns an integer value which indicates the number of bytes that
would be allocated for~ a variable or record field of type x. If x is a variable,
then SIZE returns an integer value that indicates the number of bytes that
are allocated for that variable.

In the case where the parameter x is a variant record variable or variant
type identifier, SIZE returns an integer value that indicates the number of
bytes that are allocated (for a variant record variable) or would be allocated
(for a variant type identifier) for both the fixed portion of the record and
the largest variant. In addition, you can supply additional parameters
t1 through tn that correspond to the case labels of the record. The SIZE
routine returns an integer value that indicates the number of bytes that
would be allocated by the NEW procedure for a dynamic variable of the
specified variant.

If a variable that is not allocated to an integral number of bytes is passed
to SIZE, the number of bits will be rounded up to the nearest byte and then
the number of bytes will be returned.

Table 8-2 presents values returned by the alignment routines if the routines
accepted objects of the specified data types.

Table 8-2: Return Values of Alignment Predeclared Routines

Type or Variable
Size in Bits Size in Bytes

BITNEXT BITSIZE NEXT

[BIT(1)] BOOLEAN 11 1 12

0 .. 25 51 5 44
(subrange)

[BYTE] 0 .. 255 8 8 1
(byte)

[BYTE, ALIGNED(2)] 0 .. 225 325 8 45

1 By default, the variable is unaligned in a packed context.
2By default, the variable is byte aligned in an unpacked context.
3SIZE rounds up to the nearest byte for the bit-sized objects.
4Subranges assume the size of their base types in an unpacked context.
5Extra space is needed to fulfill alignment requirements.

SIZE

13

44

1

1

(continued on next page)

8-34 Predeclared Routines

Table 8-2 (Cont.): Return Values of Alignment Predeclared Routines

Type or Variable
Size in Bits Size in Bytes

BITNEXT BITSIZE NEXT SIZE

First element of: 5 5
PACKED ARRAY [1..10] OF
0 .. 25

PACKED ARRAY [1 .. 10] OF 567 567

0 .. 25

3SIZE rounds up to the nearest byte for the bit-sized objects.
6NEXT rounds down to the nearest byte for bit-sized objects.

06 13

7 7

7Items larger than 32 bits must be allocated in an integral number of bytes.

For More Information:

For information on data types, see Chapter 2.

8.67 SNGL Function

The SNGL function converts the parameter and returns its real equivalent.

SNGL(x)

The parameter x must be of an arithmetic type. The value of x must not be
too large to be represented by a single-precision number.

8.68 SQR Function

The SQR function returns a value (of the same type of the parameter) that
represents the square of the specified parameter.

SQR(x)

The parameter x can be of any arithmetic type.

8.69 SQRT Function

The SQRT function returns a real value that represents the square root of
the specified parameter.

SQRT(x)

Predeclared Routines 8-35

The parameter x can be of an INTEGER, UNSIGNED, or REAL type. If the
value of x is less than zero, an error occurs.

8.70 STATUSV Function

The STATUSV function returns an integer value that specifies the status of
the last READV or WRITEV procedure completed. STATUSV does not have
any parameters.

If you have an asynchronous system trap (AST) routine condition handler
written in your program that uses READV and WRITEV, the call of
STATUSV in your main program may not return the results you expected if
an AST occurred between the READV/WRITEV procedure and the STATUSV
procedure. Consider the following:

VAR
Vary_Src : VARYING [20) OF CHAR;
Int_Result : INTEGER;

{In the executable section:}
Vary_Src := '255';
READV(Vary Src, Int Result, ERROR :=CONTINUE);
IF STATUSV <> 0 THEN- {0 means READV executed successfully}

WRITELN('Error in READV');

For More Information:

• On the READV procedure (Section 8.60)

• On the WRITEV procedure (Section 8.87)

• On character strings (Section 2.6)

8.71 SUBSTR Function

The SUBSTR function returns a substring (from a string specified as a
parameter) that is of the specified starting point and length. The return
value is compatible with all other string types.

SUBSTR(str, start, length)

The parameter str is a character string value; the parameter start is an
integer value that indicates the starting position of the substring. The
parameter length is an integer value that indicates the length of the
substring.

The following rules apply to the use of the SUBSTR function: -

• The value of the starting position must be greater than 0.

8-36 Predeclared Routines

• The value of the length must be greater than or equal to 0.

• There must be enough characters following the starting position to
construct a substring of the specified length.

Consider the following:

Original_String := 'This is the original string';
Start_Position := 13;
Substring_Length := 15;
New_String := SUBSTR(Original_String, Start_Position,

Substring Length);
{New_String contains 'original string'}

For More Information:

For information on character strings, see Section 2.6.

8.72 SUCC Function

The SUCC function returns the value that succeeds the parameter according
to the parameter's data type.

SUCC{ x)

The parameter x can be of any ordinal type; however, there must be a
successor value for x in the type.

8.73 TIME Function

See Section 8.18.

8.74 TIME Procedure

See Section 8.19.

8.75 TRUNC Function

The TRUNC function converts the value of the parameter by truncating the
fractional part of the value and returns its integer equivalent.

TRUNC{x)

The parameter x must be of type REAL, SINGLE, DOUBLE, or
QUADRUPLE. The value of x must not be too large to be represented
by an integer.

Predeclared Routines 8-37

8.76 UAND Function

The UAND function returns an unsigned value that represents a binary
logical AND operation on each corresponding pair of bits of the specified
parameters.

UAND(u1, u2)

The parameters ul and u2 must be of type UNSIGNED. Consider the
following example:

Result := UAND(16#FF9, 16#703); {Returns 16#701}

For More Information:

For information on specifying extended-digit notation, see Section 2.1.1.

8.77 UDEC Function

The UDEC function returns a character-string value that is the unsigned
decimal equivalent of the specified parameter. The return value is
compatible with all other string types.

UDEC(x[[, length[[, digits]]]])

The parameter xis the expression to be converted. This parameter must
have a size that is known at compile time; it cannot be VARYING OF CHAR,
a conformant parameter, or a schema type. Parameter x must be 32 bits or
less in length.

Two optional integer parameters specify the length of the resulting string
and the minimum number of significant digits to be returned. If you
specify a length that is too short to hold the converted value, the resulting
string is truncated on the left. If you do not specify values for the optional
parameters, a default length and a default minimum number of significant
digits is used. The defaults are 11 characters for the length and 10
characters for the minimum number of digits. Consider the following:

VAR
Account : INTEGER;

{In the executable section:}
Account := 3;
WRITELN(UDEC(Account));

8-38 Predeclared Routines

For More Information:

• On conformant parameters (Section 6.3.6)

• On VARYING OF CHAR (Section 2.6.2)

B.78 UINT Function

The UINT function converts the value of the parameter and returns its
unsigned equivalent.

UINT(x)

The parameter x must be of an ordinal type.

No error results if xis of type INTEGER and has a negative value. In that
case, the internal representation of x is returned as an unsigned number.

For More Information:

For information on range and support for the UNSIGNED data type, see the
VAX Pascal Reference Supplement for VMS Systems.

8.79 UNDEFINED Function

The UNDEFINED function returns a Boolean value that specifies whether
the parameter contains a reserved operand.

UNDEFINED(x)

The parameter x must be a variable of type REAL, SINGLE, DOUBLE, or
QUADRUPLE. The function returns TRUE if x contains a value that has
been reserved by the system or machine architecture. If x does not contain
a reserved value, the function returns FALSE. If x contains a reserved
operand and if you attempt to use x in arithmetic computations, an error
results.

For More Information:

For information on operands reserved by the operating system or
architecture, see the VAX Pascal Reference Supplement for VMS Systems.

Predeclared Routines 8-39

8.80 UNOT Function

The UNOT function returns an unsigned value that represents a binary
logical NOT operation on each bit of the specified parameter.

UNOT(u)

The u parameter must be an expression of type UNSIGNED. Consider the
following example:

Result := UNOT(16#FF9); {Returns 16#FFFFF006}

For More Information:

For information on specifying extended-digit notation, see Section 2.1.1.

8.81 UNPACK Procedure

The UNPACK procedure copies components of a packed array to an
unpacked array variable.

UNPACK(z, a, i)

The parameter z is a packed array. The parameter a is an unpacked array
variable. The parameter i is the starting value of the index of a.

The number of components in parameter a must be greater than or equal
to the number of components in z. The UNPACK procedure assigns the
components of z, starting with z[low-bound], to the array a, starting with
a[i], until all the components in z are used.

In general, when specifying i, keep in mind that the upper bound of a (that
is, n) must be greater than or equal to i + v-u, where v is the upper bound
of a and u is the lower bound of a. That is, ORD(n) must be greater than or
equal to ORD(i) + ORD(v) - ORD(u).

Normally, you cannot pass the individual components of a packed array
to formal VAR parameters; you must unpack the array first. Consider the
following:

VAR
p : PACKED ARRAY[l .. 10] OF CHAR;
a: ARRAY[l .. 10] OF CHAR;
i : INTEGER;

PROCEDURE Process_Components(VAR Ch CHAR); {Body ... }

8-40 Predeclared Routines

{In the executable section:}
- READ(p);

UNPACK(p, a, l);
FOR i := 1 TO 10 DO

Process_Components(a[i]); {Pass each component to procedure}

For More Information:

For information on arrays and packed arrays, see Section 2.4.1.

8.82- UOR Function

The UOR function returns an unsigned value of a binary logical OR
operation on the corresponding pair of bits of two specified parameters.

UOR(u1, u2)

The ul and u2 parameters must be of type UNSIGNED. Consider the
following example:

Result := UOR(16#FF9, 16#703); {Returns 16#FFB}

For More Information:

For information on specifying extended-digit notation, see Section 2.1.1.

8.83 UPPER Function

The UPPER function returns the upper bound for ordinal types, SET base
types, and array indexes.

UPPER(x [[, n]])

The parameter x is a type identifier or variable of an ordinal, SET, or ARRAY
type. The parameter n is an integer constant that denotes a dimension of x,
if xis an array. Ifx is an array and if you omit the parameter n, VAX Pascal
uses the default value 1. If x is an array, UPPER returns the upper bound
of the nth dimension of x. If x is an ordinal type, UPPER returns the upper
bound or largest value. If x is a SET, UPPER returns the upper bound of -
the SET base type.

Consider the following example.

Predeclared Routines 8-41

TYPE
A_Schema(a, b) = a .. a+b;

VAR
x: A_Schema(5, 10);

{In the executable section:}
WRITELN(UPPER(BOOLEAN));
WRITELN(LOWER(x));
WRITELN(UPPER(x));

8.84 UROUND Function

{Writes TRUE}
{Writes 5}
{Writes 15}

The UROUND function converts the value of the parameter and returns its
unsigned equivalent by rounding the fractional part of the value.

UROUND(x)

The parameter x must be of type REAL, SINGLE, DOUBLE, or
QUADRUPLE.

No error results if the value of x is negative or greater than 4,294,967 ,295.
In that case, the unsigned result is the rounded parameter value MOD
4,294,967 ,296.

For More Information:

For information on range and support of the UNSIGNED data type, see the
VAX Pascal Reference Supplement for VMS Systems.

8.85 UTRUNC Function

The UTRUNC function converts the parameter and returns its unsigned
equivalent by truncating the fractional part of the value.

UTRUNC(x)

The parameter x must be of type REAL, SINGLE, DOUBLE, or
QUADRUPLE.

No error results if the value of xis negative or greater than 4,294,967,295.
In that case, the unsigned result is the truncated parameter value MOD
4,294,967 ,296.

For More Information:

For information on range and support of the UNSIGNED data type, see the
VAX Pascal Reference Supplement for VMS Systems.

8-42 Predeclared Routines

8.86 UXOR Function

The UXOR function returns an unsigned value of a binary logical
exclusive-OR operation on the corresponding pair of bits of two specified
parameters.

UXOR(u1, u2)

The ul and u2 parameters must be of type UNSIGNED.

Result := UXOR(16#FF9, 16#703); {Returns 16#8FA}

For More Information:

For information on specifying extended-digit notation, see Section 2.1.1.

8.87 WRITEV Procedure

The WRITEV procedure writes characters to a character-string variable
of type VARYING OF CHAR or discriminated STRING, by converting the
values of the parameters in the procedure call to textual representations.
The behavior of WRITEV is analogous to that of the WRITELN function; the
character-string parameter is analogous to a one-line file.

WRITEV(str, parameter-list [[, ERROR := error-recovery]])

The parameter str cannot appear within the parameter-list; if you attempt to
do this, unexpected results may occur. An error occurs if WRITEV reaches
the maximum length of the character string before the values of all the
parameters in the procedure call have been written into the string. The
error-recovery parameter indicates the action to be taken if an error occurs
while the WRITEV procedure is executing. Consider the following:

TYPE
Flower= (Daisy, Lily, Orchid, Tulip);

VAR
Real_Var : REAL VALUE 232.705;
Write_String : VARYING[21] OF CHAR;

{In the executable section:}
WRITEV(Write_String, Daisy, Real_Var:7:3, PRED(Bouquet));
{Write_String contains' DAISY232.705 LILY'}

WRITEV(Write_String, Daisy, Real_Var:7:3, PRED(Bouquet),
Bouquet);

{Error: there is no more room in the string parameter}

Predeclared Routines 8-43

For More Information:

• On VARYING OF CHAR strings (Section 2.6.2)

• On error recovery codes (VAX Pascal Reference Supplement for VMS
Systems)

8.88 XOR Function

The XOR function returns a value (of the same type as the parameters) of a
binary logical exclusive-OR operation on two specified parameters.

XOR(p1, p2)

The pl and p2 parameters must be of the same type and must be of either
. the BOOLEAN or SET types.

Result:= XOR(['A','B','C'],['B','C','D']); {Returns ['A','D']}

For More Information:

• On Boolean types (Section 2.1.4)

• On SET types (Section 2.4.3)

8.89 ZERO Function

The ZERO function returns data, whose type depends on the context of the
function call, that sets any variable (except a file variable) to its binary zero.
If you attempt to use the ZERO function to initialize a file variable, an error
occurs. Do not specify a parameter list when you call the ZERO function.

Table 8-3 shows the value that ZERO assigns for each data type.

Table 8-3: Value of ZERO

Data Type

INTEGER

UNSIGNED

CHAR

8-44 Predeclared Routines

Value

0

0

The character NUL

(continued on next page)

Table 8-3 (Cont.): Value of ZERO

Data Type

BOOLEAN

Enumerated

Subrange

REAL

DOUBLE

QUADRUPLE

ARRAY

RECORD

VARYING OF CHAR, STRING

SET

Pointer

Value

FALSE

The enumerated element
with ORD(element) = 0
01

0.0

0.0

0.0

ZERO applied to each component

ZERO applied to each field

The null string

The empty set

NIL

1 Note that an ordinal target with a subrange type can thus be initialized outside of the
subrange. The compiler treats this as an error, if used in a compile-time expression.

The ZERO function is used in two ways. It can be used on the right side of
an assignment statement that appears in the executable section where the
target is either a variable, or, within the body of a function, the function
identifier. It can also be used as a compile-time ~xpression to initialize a
variable in the TYPE, VAR, CONST, or VALUE sections.

For More Information:

• On data initialization (Chapter 2)

• Using the ZERO function with records (Section 2.4.2.2)

Predeclared Routines 8-45

Chapter 9

Input and Output Processing

The VAX Pascal I/O module provides an extensive set of predeclared
routines. This chapter discusses the following topics:

• File organizations (Section 9.1)

• File component formats (Section 9.2)

• File access methods (Section 9.3)

• File Locking (Section 9.4)

• TEXT files and formatting (Section 9.5)

• I/O routines (Section 9.6)

For More Information:

For information on environment-specific I/O details, see the VAX Pascal
Reference Supplement for VMS Systems.

9.1 Files and File Organizations

A file is an organized collection of logically related data items. Data items
within files are called file components. The file organization determines
how components are situated in the physical file, what types of access
information are present in each component, and how components may be
accessed by a program.

To open a file, you can call the OPEN procedure. Also, you usually call one
of the EXTEND, RESET, and REWRITE procedures to establish a starting
position for reading from or writing to a file. (For some files, you can use
procedures to locate a specific component to access.)

Input and Output Processing 9-1

VAX Pascal makes distinctions between external and internal files. An
external file has a name in a directory and exists outside the context of
a VAX Pascal program. An internal file has no name and is not retained
after the program finishes execution.

A file declared in the program heading is external by default. A file declared
in a nested block is internal by default. To change the default for internal
files, call the OPEN procedure. The file is then considered external and is
retained with the specified name after the program has finished execution.
If you open an internal file with the EXTEND, RESET, or REWRITE
procedure, the file remains an internal file. The EXTEND, RESET, and
REWRITE procedures do not allow you to explicitly rename your file.

Both internal and external files have a file organization. A file
organization defines the physical arrangement of components within
the file. The VAX Pascal I/O model includes three file organizations:
sequential, relative, and indexed. The following sections describe these
organizations.

Default Information:

If you do not specify a file organization at the time of file creation (using the
OPEN procedure), VAX Pascal creates a file with sequential organization.

9.1.1 Sequential File Organization

Sequential file organization specifies that file components are stored
one after the other, in the order in which they were enter~d into the file.
VAX Pascal supports this organization for files on disk. This is the only
organization supported for files on magnetic tape, on terminals, on card
readers, and on line printers. Figure 9-1 illustrates this file organization.

9-2 Input and Output Processing

Figure 9-1: Sequential File Organization

First Second Third Fourth Fifth Sixth
component component component component component component

ZK-1332A-GE

You cannot insert components between any two existing components,
because no physical space separates them. You can only add records to
the end of the file (the most recently added component), truncate the file
from a specified component to the end of the file, or rewrite the file.

For More Information:

• On component formats in sequential files (Section 9.2)

• On access methods for sequential files (Section 9.3)

9.1.2 Relative File Organization

Relative file organization consists of a series of fixed-length component
positions (called cells) numbered consecutively from 1 ton. The numbered,
fixed-length cells enable VAX Pascal to calculate the component's physical
position in the file. The cell numbers are called relative component
numbers. VAX Pascal supports this organization on disk files only.
Figure 9-2 illustrates this file organization.

Input and Output Processing 9-3

Figure 9-2: Relative File Organization

Relative Cells

2 3 4 5 6

T • • ,, ,, t_

First
Empty

Second Third Fourth Fifth
component component component component component

written
cell

written written written written

ZK-1333A-GE

Each component in the file may be randomly assigned to a specific cell. You
can place components in unused cells and in cells from which components
have been deleted. You cannot replace a component in a cell, but you can
modify an existing component.

The length of the actual component may vary even though the cell
containing the component is of a fixed length. If the component is smaller
than the cell, the remaining space in the cell is unused.

For More Information:

• On component formats in relative files (Section 9.2)

• On access methods for relative files (Section 9.3)

9.1.3 Indexed File Organization

Indexed file organization specifies that, in addition to the stored
components, there exists at least a primary key and possibly alternate
keys (first alternate key, second alternate key, and so forth). VAX Pascal
uses the primary key to store components and uses a program-specified key
or keys to retrieve data. VAX Pascal supports this organization on disk files
only.

9-4 Input and Output Processing

To define a key and certain characteristics of keys, use the KEY attribute.
You can define up to 254 alternate keys.

An index is a structure that provides a component collating sequence for
the file, a mechanism for accessing components in different orders depending
on the specified index (name, address, telephone number, and so forth).

Figure 9-3 illustrates an indexed file organization that uses only a primary
key.

Figure 9-3: Indexed File Organization

KEY DEFINITION

-~------- Prlmarylndex(ErrployeeName)

ADAMS • • • BAKER • • • CLARK • • • JONES • • • SMITH • • • TAYLOR • • • WYMAN

I I I I

ADAMS! PINEST! 351,12 ••• CLARK ELMAVE 24379 ••• JONES MAINST 19724 ••o SMITH HOLTRD 11733 ••• WYMANlMAINSTl 2254

'------------------ DataRecords

ZK-1335A-GE

Notice that in Figure 9-3, the components are logically stored in an order
that is determined by the primary index. (The actual physical location of
components is transparent to your program.) Figure 9-4 illustrates the
presence of a first alternate index (determined by the presence of first
alternate keys in the components) that points to components stored in order
by the primary key.

Input and Output Processing 9-5

Figure 9-4: A First Alternate Key

Primary Key
and Pointers

2254 11733 19724 21000 24379 35112

·---------------------------------~~~~~~~~=:=~~~~~~:~l ____________ J : ,' ',,:................. :
I r-------------------------------~-------:......---°:.":..~ -----------------------------J ! : I '',,,, ,,,,,,,,,,
I I I ' i : ,/ '',,,
I I I '
I I I ',

I ' ____ ~-

I I I I I I I I I I

ADAMS ! PINE ST I 35112 CLARK ! ELM AVE! 24379 JONES ! MAIN ST! 19724 SMITH !HOLTRD! 11733 WYMAN i MAIN ST I 2254

'-------------------D~A--------------------

For More Information:

• On component formats in indexed files (Section 9.2)

• On access methods for indexed files (Section 9.3)

• ,On the KEY attribute (Section 10.2.21)

9.1.3.1 Keys

ZK-1336A-G

In an indexed file, each component includes one or more key fields (or
simply keys) that VAX Pascal uses to build the specified indexes. Each key
is indentified by its location within the component, its length, and its data
type.

A key may be one of the following data types:

• A single, contiguous character string

• A 2- or 4-byte unsigned binary number

• A 1-, 2-, or 4-byte signed integer

9-6 Input and Output Processing

You can use the KEY attribute to specify certain characteristics about the
index and about the keys themselves. The following table describes these
characteristics:

Keys

Sort order

Duplicate keys

Changeable keys

Description

This characteristic determines how VAX Pascal creates an
index, and determines the order in which VAX Pascal accesses
components. The order can either be ascending or descending.
If you specify ascending order, VAX Pascal considers the
component with an equal or greater key value to be the "next"
component for access. If you specify descending order, VAX
Pascal considers the component with an equal or lesser key
value to be the "next" component for access. Using different
indexes and both ascending or descending order, you can use
different collating sequences for a file's components according
to the needs of your application.

This characteristic permits you to use the key value in more
than one component. However, only the first component
having the key value c;an be accessed randomly; other
components having the same key value can only be accessed
sequentially.

This characteristic applies to alternate keys only. When you
specify changeable keys, you can change the alternate keys
in a component when you update the component. When an
alternate key value changes, VAX Pascal automatically adjusts
the appropriate index to reflect the new key value.

If you do not allow duplicate keys, VAX Pascal rejects any attempt to place
a component into a file if it contains a key value that is a duplicate of an
existing component. If you do not explicitly create the file to accept alternate
key values, then attempts to change key values generate an error.

For More Information:

• On the KEY attribute (Section 10.2.21)

• On additional key characteristics (VAX Pascal Reference Supplement for
VMS Systems)

Input and Output Processing 9-7

9.2 Component Formats

When you declare a file variable in your program, VAX Pascal automatically
creates a file buffer variable of the component type. This variable takes
on the value of one file component at a time. You can access only one file
component, called the current component, at a given time.

To reference the file buffer variable, you write the name of the associated file
variable, followed by a circumflex (A). No operations can be performed on
the file while a reference to the file buffer variable exists.

Predeclared I/O procedures move the file position. As the file position
changes, the variable in the file buffer changes. Figure 9-5 shows how this
change occurs.

Figure 9-5: File Buffer Contents

one file component

70 73 81 89

t
file position

0 File buffer Math_Scores•

ZK-0101-GE

Suppose you declare a file variable Math_Scores of type FILE OF INTEGER.
You might call a procedure to move the file position to the first component
of this file. At this point, the file buffer variable Math_ScoresA equals the
value of the first component (here, 90). If you call other procedures to
advance the file position by three components, Math_~coresA then equals
the value of the third component (here, 70).

9-8 Input and Output Processing

In each file, all components are of the same file component format.
Component format defines the size (or maximum size) of each component
and any processing information needed in addition to the data portion of the
component. The VAX Pascal I/O model supports the following formats for
file components:

• Fixed-length format (Section 9.2.1)

• Variable-length format (Section 9.2.2)

• Stream format (Section 9.2.3)

Default Information:

For new TEXT and VARYING OF CHAR files, VAX Pascal creates
variable-length components by default. For other types of new files, VAX
Pascal creates fixed-length components. If you access an existing file, your
specified component type must match the component type specified at the
creation of the file; if it does not, you generate an error.

Table 9-1 shows which of the file organizations support which of the
component formats.

Table 9-1 : File Organization Support for Component Format

Organization Supported Component Format

Sequential

Relative1

Indexed

All component formats

Fixed length
Variable length

Fixed length
Variable length

1 Although the relative file organization allows variable-length components, those
variable-length components are contained in a fixed-length cell that must be large enough
to contain the largest stored component.

For More Information:

For information on TEXT files, see Section 9.5.

9.2.1 Fixed-Length Component Format

Fixed-length components are all the same length. The fixed-length
component format is supported in all file organizations. VAX Pascal
determines the length of a component at the time of file creation. You
cannot change the length of the components after you create the file.

Input and Output Processing 9-9

9.2.2 Variable-Length Component Format

The variable-length component format enables components to be only as
long as the data requires. The variable-length format is supported in all file
organizations.

When you use OPEN to create a file of variable-length components, you can
specify the value (in bytes) of the largest component permitted in the file.
Any attempt to store a component containing more bytes than the specified
value results in an error.

9.2.3 Stream Component Format

The stream component format is a continuous stream of bytes that
contains special delimiting characters (called terminators) that separate
components. In addition to being recognized as delimiters, VAX Pascal
considers the terminators to be a valid part of the component data. The
stream format is supported only in sequential files on disk.

The following are/ acceptable types of stream component formats:

Type

STREAM_ CR

STREAM_LF

STREAM

Description ,

This type recognizes a carriage return character as the component ·
terminator.

This type recognizes a line feed as the component terminator.

This type uses a terminator from a limited set of special
characters: the carriage return (CR); the carriage-return/line-feed
combination (CR/LF); or the form feed (FF).

9.3 Component Access Modes

A component access mode is a method by which VAX Pascal retrieves
components from a file. Although you cannot change the file organization or
component format after file creation, you can change the component access
mode each time you access a file. The VAX Pascal I/O model defines two
component access modes: sequential and random access. Random access can
be further broken down into the categories of random access by number (also
called direct access) and random access by key value (also called keyed
access). The sections that follow describe these access methods in further
detail.

9-10 Input and Output Processing

You specify the access method using the OPEN procedure when you open a
file. You cannot change the access method unless you first use the CLOSE
routine, and then reopen the file specifying a new access method.

Before attempting to use any of the access methods on a file, VAX Pascal
determines the organization of the file. The organization determines how
the specified access method works. For instance, sequential access on a
sequentially organized file works differently than sequential access on an
indexed file.

Default Information:

• The default is the sequential access method.

· • You can always process a file using sequential access, even when the
currently specified access method is one of the direct access methods.

• By default, VAX Pascal does not designate a component as a starting
point for access; you must do this explicitly using one of the RESET,
REWRITE, or REWIND procedures, or using an access-specific procedure .
to locate a specified component.

Table 9-2 shows which file organizations support which component access
modes.

Table 9-2: File Organization Support for Component Access Modes

Sequential Relative Indexed
Access Mode Organization Organization Organization .

Sequential Yes Yes Yes

Random by relative Yes1 Yes No
component number
(direct access)

Random by key No No Yes
value
(keyed access)

1This access is permitted with a fixed-length component format on disk only.

For More lnformatiQn:

• On file organizations (Section 9.1)

• On component formats (Section 9.2)

Input and Output Processing 9-11

9.3.1 Sequential Access

Using the sequential access method, storage or retrieval begins at a
designated position in the file and continues through the file according to
the component's position in storage. You can specify two starting points for
sequential access: the beginning of the file (using REWRITE, or RESET) or
the end of the file' (using EXTEND).

The following are the VAX Pascal I/O routines that are used for sequential
access:

EOF REWRITE
EXTEND STATUS
GET TRUNCATE
PUT UFB
READ UNLOCK
RESET WRITE

For More Information:

• On file organization (Section 9.1)

• On component format (Section 9.2)

9-12 . Input and Output Processing

~.3.1.1 Sequential Access to Sequential Files

To retrieve a component in a sequential file, you must retrieve all
components from the time you establish a current position (using either
EXTEND, RESET, or REWIND) to the desired component. After an
operation to the file, VAX Pascal positions the file pointer to the next file
component in anticipation of the next operation on the file.

To access a previous component, you must reopen (implicitly or explicitly)
and reread the previous components; or, you can reopen the file, switching to
random access mode.

You cannot add components in between any two components. You can add
components only to the current end of the file.

Figure 9-6 illustrates sequential access to sequential files.

=igure 9-6: Sequential Access to a Sequential File

User Program

Read
VAX Pascal

Next Com onent~r------:L---------: ---------~;:::::::::::::~~~

Read
Next Com onent

•
.----·---,_-1-------r---------·~=-------......
Next C~~d onentWl-------T---------

ZK-1338A-GE

Input and Output Processing 9-13

9.3.1.2 Sequential Access to Relative Files

VAX Pascal can use sequential access for relative files as long as the
components are fixed length. VAX Pascal tries to store or retrieve from
the cell whose relative component number is one higher than the most
recently accessed cell.

You cannot overwrite a component, but you can modify the contents of the
current component. If the cell with the next highest relative component
number contains a component and if you are trying to store data in that cell,
you generate an error.

Figure 9-7 illustrates the use of sequential access to read from a relative
file:

Figure 9-7: Using Sequential Access to Read from a Relative File

User Program

Read
VAX Pascal

Next Component r-ir------:1.---------
---------• •

Read
Next Component

• •

9-14 Input and Output Processing

ZK-1339A-GE

Figure 9-8 illustrates the use of sequential access to write to a relative file:

=igure 9-8: Using Sequential Access to Write to a Relative File

VAX Pascal

User Program Cell 1, start
of file

Write component i-+-----o1M--------------
F to cell 2

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I
I

I

~
Cell2,
now contains
record F

I

I
I

I

I I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I
I

I

ZK-1340A-GE

In Figure 9-8, VAX Pascal writes the component to the current cell. If
the program requests that another component be stored sequentially, then
VAX Pascal places that component in cell 3. If the program places another
request to store a component sequentially, an error occurs because cell 4
contains component B.

1.3.1.3 Sequential Access to Indexed Files

When sequentially accessing an indexed file, VAX Pascal uses a specified
index to determine the order in which to sequentially process the file
components. The specified keys are called the keys of reference.

If you specify ACCESS_METHOD := SEQUENTIAL when you open an
indexed file, you can only access components sequentially according to the
primary key. If you specify ACCESS := KEYED when you open an indexed
file, you can access components sequentially according to any key.

Input and Output Processing 9-15

When sequentially writing components to an indexed file, VAX Pascal stores
the component according to the primary key. If your program uses secondary
keys, VAX Pascal updates the secondary key pointers to include the newly
stored component. ·

9.3.2 Random Access

Random access allows you to access file components in an order that is not
dependent on the file organization or on the order in which the components
are stored. Random access is available for all relative and indexed files,
and for sequential files composed of fixed-length components (the fixed
length components allow VAX Pascal to "count" component positions in the
sequential file without having to worry about variations in the lengths of the
components).

VAX Pascal supports the following types of random access:

• Random access by relative component number (direct access)

• Random access by key value (keyed access)

The following are the VAX Pascal I/O routines that are used for random
access:

Random access by relative component number:

DELETE
EOF
FIND
LOCATE

UFB

UNLOCK
UPDATE

Random access by key:

EOF
FINDK
RESETK

UFB

UNLOCK
UPDATE

9-16 Input and Output Processing

For More Information:

• On file organization (Section 9.1)

• On component format (Section 9.2)

J.3.2.1 Random Access by Relative Component Numbers (Direct Access)

VAX Pascal supports random access by relative component numbers for
relative files and for sequential files with fixed-length components on disk.
To access the desired component, you need to specify the relative component
number of the corresponding cell; relative component numbers are relative
to the beginning of the file.

Figure 9-9 illustrates the process of randomly accessing cells in a file.

=igure 9-9: Using Random Access on Sequential1 and Relative Files-

User Program

1. Read Sixth
Cell

VAX Pascal

9.3.2.2 Random Access to Indexed Files (Keyed Access)

ZK-1354A-GE

VAX Pascal supports random access to indexed files. To retrieve a compo
nent, you must specify an index (primary index, first alternate index, second
alternate index, and so forth) and a key value. To store a component, VAX
Pascal determines existing keys from the file organization and stores the
record (and alternate key information) according to information as it exists
in the data portion of the component.

1 Fixed-length components on disk storage only.

Input and Output Processing 9-17

Your program can use several methods to randomly access a record by key:

• Exact match of key values.

• Approximate match of key values. When accessing an index in ascending
sort order, VAX Pascal returns the component that has the next higher
key value (in descending order, the component with next lower key
value).

• Generic match of key values. Generic matching is applicable to string
data-type keys only (PACKED ARRAY OF CHAR record fields). For a
generic match, the program need specify only a match of some specified
number of leading characters in the key.

• Combination of approximate and generic match.

9.4 File Locking

Under some circumstances, if a file component is in the process of being read
or written to by one program, VAX Pascal locks the component, preventing
other programs from accessing the component. This prevents programs from
accessing outdated or inaccurate data.

If you OPEN a file and specify that the file is not to be shared, or that
reading or writing sharing is allowed, VAX Pascal may not lock the record.

Record locking occurs most often when accessing relative and indexed files,
but it can happen when accessing sequential files as well. Successful calls
to FIND, FINDK, GET, RESET, and RESETK lock the current component.
If you want to make a locked file component available to other programs on
the system, you can call the UNLOCK procedure.

For More Information:

• On enabling other programs to access new files created with OPEN
(Section 9.6.11)

• On unlocking components (Section 9.6.22)

9.5 TEXT Files

Files of type TEXT are sequences of characters with special markers (end
of-line and end-of-file) added to the file. Although each character of a TEXT
file is one file component, the end-of-line marker allows you to process the
file line-by-line (using READLN, WRITELN, or EOLN), if you choose.

9-18 Input and Output Processing

The predeclared file variables INPUT and OUTPUT are files of type
TEXT. They refer to the standard input and output files. (When executing
programs at a terminal, INPUT and OUTPUT default to the terminal you
are using.)

The file type FILE OF CHAR differs from TEXT files in that FILE OF CHAR
allows a single character to be the unit of transfer between a program and
its associated I/O devices and that FILE OF CHAR files do not include
special markers. FILE OF CHAR components are always read with the
READ procedure, and must be read exclusively into variables of type CHAR,
including CHAR components of structured variables. You cannot use the
EOLN, READLN, and WRITELN routines on FILE OF CHAR files.

Default Information:

• A new file of type TEXT or FILE OF VARYING OF CHAR is a sequential
file with variable-length components.

• All TEXT file routines use the predefined files INPUT and OUTPUT by
default.

• VAX Pascal performs an implicit call to RESET on the predeclared
file INPUT and an implicit call to REWRITE on the predeclared file
OUTPUT.

• The default size for the output buffer is 255 characters for TEXT files.

The following are the VAX Pascal I/O routines that are used only with TEXT
files:

EOLN
LINE LIMIT

PAGE

9.5.1 Carriage Control

READLN
WRITELN

Some devices, such as printers and terminals, are carriage-control devices
and require characters to provide information regarding output. VAX Pascal
supports the following carriage-control options.

Input and Output Processing 9-19

OPEN Parameter
Option Description

LIST Single spacing between components. This is the default
carriage-control option for all TEXT files (including
OUTPUT) and VARYING OF CHAR files.

CARRIAGE, FORTRAN The first character of every output line is a carriage
control character.

NONE, NOCARRIAGE No carriage control. This is the default for all files other
than TEXT and VARYING OF CHAR files.

For FORTRAN carriage control, if output is directed to devices that do not
use carriage-control characters, the character is written into the file as a
component and is read back when the file is opened for input. If output is
directed to devices that do use carriage-control, then the OPEN parameter
options described previously determine the action taken by VAX Pascal.

Table 9-3 summarizes carriage control characters and their effects. For
purposes of carriage control, VAX Pascal ignores any characters other than
those listed in the table.

Table 9-3: Carriage Control Characters

Character

'+'

' '

'' (0)

Meaning

Overprinting: starts output at the beginning of the current line.

Single spacing: starts output at the beginning of the next line.

Double spacing: skips a line before starting output.

Paging: starts output at the top of a new page.

Prompting: starts output at the beginning of the next line and
suppresses carriage return at the end of the line.

Prompting with overprinting: suppresses line feed at the begin
ning of the line and carriage return at the end of the line; note
that this character is the ASCII character NUL.

9.5.2 Prompting on a Terminal

Normally, when you call the WRITE procedure to access a TEXT file
connected to a terminal, VAX Pascal accumulates the characters in a line
buffer until a subsequent WRITELN procedure is executed. In effect,
WRITELN generates an end-of-line marker. When you complete a line or
close a file, VAX Pascal writes a full line of characters to the specified TEXT
file.

9-20 Input and Output Processing

VAX Pascal can manipulate partial lines in a TEXT file; however, when
characters are being written to a terminal output file opened with the LIST
carriage control option (LIST is the default), partial lines are written to the
terminal before input is transferred from any terminal to the line buffer
of a TEXT file. In this situation, VAX Pascal searches for all TEXT files
opened for output on terminals; it then writes to those files any partial lines
contained in the files' respective line buffers. These partial lines, called
prompts, appear on the screen. You respond to a prompt by typing a line of
input data terminated by pressing RETURN.

Consider the following:

WRITE('Name three presidents:');
READ(Presl, Pres2, Pres3);

VAX Pascal stores the string 'Name three presidents:' in the output buffer;
when executing the READ procedure, VAX Pascal locates the TEXT file
opened for output to the appropriate terminal and the partial output buffer
is written, causing the string 'Name three presidents:' to appear on the
terminal screen. The user can then begin typing on the same line as the
prompt, providing the names of three presidents. Note that prompting
works only for files associated with interactive terminals. For any other
files, VAX Pascal does not write output until you start the new line with a
WRITELN procedure.

9.5.3 Delayed Device Access to Text Files

The Pascal standard requires that the file buffer always contain the next
file component that will be processed by the program. This definition can
cause problems when the input to the program depends on the output most
recently generated. To alleviate such problems in the processing of the
TEXT files, VAX Pascal uses a technique called delayed device access,
also known as lazy lookahead.

As a result of delayed device access, VAX Pascal does not retrieve an item
of data from a physical file device and does not insert it in the file buffer
until the program is ready to process it. VAX Pascal fills the file buffer when
the program makes the next reference to the file. A reference to the file
consists of any use of the file buffer variable, including its implicit use in the
GET, READ, and READLN procedures, or any test for the status of the file,
namely, the EOF, EOLN, STATUS, and UFB functions.

Input and Output Processing 9-21

The RESET procedure, which is required when any TEXT file is opened for
input, initiates the process of delayed device access. (Note that RESET is
done automatically on the predeclared file INPUT.) RESET expects to fill the
file buffer with the first component of the file. However, because of delayed
device access, an item of data is not supplied from the input device to fill the
file buffer until the next reference to the file.

When writing a program for which the input will be supplied by a TEXT
file, you should be aware that delayed device access occurs. Because RESET
initiates delayed device access, and because EOF and EOLN cause the
file buffer to be filled, you should place the first prompt for input before
any tests for EOF or EOLN. The information you enter in response to the
prompt supplies data that is retained by the file device until you make
another reference to the input file.

Consider the following:

VAR
i : INTEGER;

{In the executable section:}
WRITE('Enter an integer or an empty line: ');
WHILE NOT EOLN DO

BEGIN
READLN (i) ;
WRITELN('The integer was: ', i:l);
WRITE('Enter an integer or an empty line: ');
END;

WRITELN('Done');

The first reference to the file INPUT is the EOLN test in the WHILE
statement. When the test is performed, VAX Pascal attempts to read a line
of input from the TEXT file. Therefore, it is very important to prompt for
the integer or empty line before testing for EOLN.

Suppose you respond to the first prompt by supplying an integer as input.
Access to the input device is delayed until the EOLN function makes the
first reference to the file INPUT. The EOLN function causes a line of text to
be read into the internal line buffer. The subsequent READLN procedure
reads the input value from the line of text and assigns it to the variable i.
The WRITELN procedure writes the input value to the text file OUTPUT.
The final statement in the WHILE loop is the request for another input
value. The loop terminates when EOLN detects the end-of-line marker.

A sample run of a program containing this loop might be as follows:

Enter an integer or an empty line: 10
The integer was: 10
Enter an integer or an empty line: 99
The integer was: 99
Enter an integer or an empty line: lRETURNI
Done

9-22 Input and Output Processing

The following program fragment illustrates a method of writing the same
loop that does not take into account delayed device access and therefore
produces incorrect results:

WHILE NOT EOLN DO
BEGIN
WRITE('Enter an integer or an empty line: ');
READLN(i);
WRITELN('The integer was: ', i:l);
END;

The EOLN test at the beginning of the loop causes the file buffer to be
filled. However, because no input has been supplied yet, the prompt does
not appear on the screen until you have supplied input to fill the INPUT file
buffer.

A sample run of a program containing this loop might be as follows:

10
Enter an integer or an empty line: The integer was: 10
99
Enter an integer or an empty line: The integer was: 99
lRETURNl

The prompt always appears after you type a value for i.

Delayed device access can produce unexpected results if you try to use the
STATUS function' to test the status of a TEXT file after you have performed
a READLN procedure on the file. Remember that a READLN procedure call
actually performs a READ procedure on each variable listed as a parameter,
then performs a READLN procedure to position the file at the beginning
of the next line. Therefore, a call to STATUS after a READLN procedure
actually tests whether the file was successfully positioned. To test the status
of the file, STATUS causes delayed device access to occur, thereby filling
the file buffer with the next component. If you want to test the successful
reading of data from the input file, you should read the data with the
READ procedure, call the STATUS function, and then perform a READLN
procedure to advance the file to the beginning of the next line.

9.5.4 Writing Partial Lines to Terminals

The WRITE procedure buffers output to the terminal until the WRITELN
procedure is called. If too many characters are buffered, it can cause the
VAX Pascal buffer to overflow. The default size for this buffer is 255

Input and Output Processing 9-23

characters for TEXT files. If you want to increase the internal buffer size,
you can explicitly open the predeclared file OUTPUT with a larger record
length. Consider the following:

OPEN(OUTPUT, RECORD_LENGTH := 512);

If you want each record to go directly to the terminal without buffering
until the next WRITELN, you can explicitly open the predeclared file
variable OUTPUT without carriage control. In this mode, the WRITELN
procedure will write the information to the file without adding any carriage
control. However, you need to include the carriage return and the line feed
characters in the output strings; the WRITELN procedure no longer provides
these automatically. Consider the following:

CONST
LF = 10; {ASCII control characters}
CR = 13;

{In the executable section:}
OPEN(OUTPUT, CARRIAGE_CONTROL :=NONE);
WRITELN('' (LF)'Output this');
WRITELN('string directly');
WRITELN('to the terminal' (CR));

This is useful when you are writing escape sequences or other graphics
.. characters to terminal devices.

9.6 1/0 Routines

VAX Pascal provides predeclared procedures and functions to perform
input and output operations on file variables. These routines may operate
differently depending on a file's organization and the currently-defined
access method.

The I/O routines in the following sections appear in alphabetical order.

At any time during the execution of a process, a file variable is considered
to be in one of three modes: inspection, generation, or undefined. When
a file is reading input, it is in inspection mode. When output is being
written to a file, the file is in generation mode. A file in an undefined state
of processing is in undefined mode. The mode often determines the valid
operations for the file.

Table 9-4 shows the mode required before execution of each I/O routine and
shows the mode in which the file is left after each routine has executed.

9-24 Input and Output Processing

rable 9-4: File Mode During 1/0 Processing

JO Mode Before Mode After
loutine Execution Execution 1/0 Routine

JLOSE Any Undefined READ

)ELETE Inspection Inspection READLN

WF Inspection or No change RESET
generation

~OLN Inspection Inspection RESETK
~XTEND Any Generation REWRITE

?IND Any Inspection if STATUS
successful;
undefined if
unsuccessful

~INDK Any Inspection TRUNCATE
if successful;
undefined
if unsuccessful

GET Inspection Inspection UFB

LINE LIMIT Any No change UNLOCK

LOCATE Any Generation UPDATE

OPEN Undefined Undefined WRITE

PAGE Generation No change WRITELN

PUT Generation Generation

9.6.1 CLOSE Procedure

The CLOSE procedure closes an open file.

1. CLOSE (file_variable

,[[disposition]]

,[[user_action]]

,[[ERROR := error_recovery]])

Mode Before Mode After
Execution Execution

Inspection Inspection

Inspection Inspection

Any Inspection

Any Inspection

Any Generation

Any No change,
unless error

Inspection Generation

Any No change

Inspection Inspection

Inspection Inspection

Generation, Generation
unless keyed
access, which
may be any
mode

Generation Generation

Input and Output Processing 9-25

2. CLOSE (FILE_ VARIABLE := file_variable

[[,DISPOSITION := disposition]]

[[,USER_ACTION := user_action]]
[[,ERROR := error_recovery]] ...)

file_variable
no default
The name of the file variable associated with the file that VAX Pascal is to
close.

disposition
same as for OPEN procedure
A value that determines what VAX Pascal is to do with the file after
closing it. The disposition values are the same as those used for the OPEN
procedure. The disposition value in the CLOSE procedure supersedes a
disposition value specified in the OPEN procedure.

user_action
no default
A routine name that VAX Pascal calls to close the file. You can use a
user-action routine to close the file using environment-specific capabilities.

error _recovery
· stops execution after first error (default)

The action to be taken if an error occurs during execution of the routine.

Execution of the CLOSE procedure causes the system to close the file and,
if the file is internal, to delete it. Each file is automatically closed when
control passes from the block in which it is declared.

You cannot close a file that has not been opened (either explicitly by the
OPEN procedure, or implicitly by the EXTEND, RESET, or REWRITE
procedure). If you attempt to close a file that was never opened, an error
occurs.

The file can be in any mode (inspection, generation, or undefined) before the
CLOSE procedure is called. Execution of CLOSE sets the mode to undefined.

For More Information:

• On the OPEN procedure and parameters (Section 9.6.11)

• On the error processing parameter (Section 9.6.26.1)

9-26 Input and Output Processing

9.6.2 DELETE Procedure

The DELETE procedure deletes the current file component. DELETE can
be used only on files with relative or indexed organization that have been
opened for direct or keyed access; it cannot be used on files with sequential
organization.

DELETE{ file_variable[[, ERROR := error_recovery]]);

file_ variable
The name of the file variable associated with the file from which a
component is to be deleted.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file must be in inspection mode before DELETE is called; the mode does
not change after the procedure's execution.

When the DELETE procedure is called, the current component, as indicated
by the file buffer, must already have been locked by a successful FIND,
FINDK, GET, RESET, or RESETK procedure before it can be deleted. After
deletion, the component is unlocked and the UFB function returns TRUE.

Consider the following:

DELETE(Accounts_Payable);

This procedure call deletes the current component. When the component has
been deleted, it is unlocked and UFB(Accounts_Payable) returns TRUE. A
run-time error occurs if the current component of Accounts_Payable is not
locked.

For More Information:

• On file organizations (Section 9.1)

• On component access (Section 9.3)

• On the UFB function (Section 9.6.21)

• On the error processing parameter (Section 9.6.26.1)

Input and Output Processing 9-27

9.6.3 EOF Function

The EOF function indicates whether the file pointer is positioned after the
last component in a file by returning a Boolean value.

EOF[[(file_variable)]]

file_ variable
The name of the file variable associated with the input file. If you omit the
name of the file, the default is INPUT.

The file can be in either inspection or generation mode before EOF is called;
however, end-of-file must be defined. The input operations GET, RESET, and
FINDK are guaranteed to leave end-of-file defined. The file mode does not
change after EOF has been executed.

EOF returns TRUE when the file pointer is positioned after the last
component in the file, and returns FALSE up to and including the time
when the last component of the input file is read into the file buffer. You
must attempt to retrieve another file component after the last to determine
whether the file is positioned at end-of-file.

When EOF is tested for a file with relative organization opened for direct
access, the result is TRUE if the file is in inspection mode and the last GET
or RESET operation positioned the file beyond the last existing component.
If the file is in generation or undefined mode, the result of EOF is undefined.

When EOF is tested for a file with indexed organization opened for keyed
access, the result is TRUE if the file is in inspection mode and the last
FINDK, GET, RESET, or RESETK operation positioned the file beyond
the last component with the current key number. Successful attempts at
FINDK, GET, RESET, and RESETK cause EOF to be FALSE. If the file is
not in inspection mode, EOF is undefined.

If you attempt to read a file after EOF becomes TRUE, an error results.

Consider the following:

Coupons := O;
WHILE NOT EOF DO

BEGIN
READLN(Coupon_Amount);
Coupons := Coupons + Coupon_Amount;
END;

This example calculates the total value of the coupons contained in the file
INPUT. The loop is performed while the EOF function returns FALSE.

9-28 Input and Output Processing

For More Information:

• On component access (Section 9.3)

• On the error processing parameter (Section 9.6.26.1)

• On retrieval of file components (Section 9.5.3)

9.6.4 EOLN Function

The EOLN function tests for the end-of-line marker within a text file and
returns a Boolean value.

EOLN [[(file_variable)]]

file_ variable
The name of a file variable associated with a text file. If you omit the name
of the file, the default is INPUT.

The file must be in inspection mode and EOF must return FALSE before
EOLN is called. EOLN leaves the file in inspection mode.

The Boolean EOLN function returns TRUE when the file pointer is
positioned after the last character in a line. When the EOLN function
returns TRUE, the file buffer contains a blank character.

The EOLN function returns FALSE when the last component in the line is
read into the file buffer. Another character must be read to cause EOLN to
return TRUE and to cause the file buffer to be positioned at the end-of-line
marker following the last character of the line. If you use the EOLN
function on a nontext file, an error occurs.

Consider the following:

WHILE NOT EOF(Master_File) DO
BEGIN
WHILE NOT EOLN(Master_File) DO

BEGIN
READ(Master_File, x);
IF NOT (x IN ['A' .. ' Z', 'a' .. ' z', '0' .. ' 9'])
THEN

Err := Err + l;
END;

READLN(Master_File);
END;

This example scans the characters on each line of a TEXT file called
Master_File and checks for characters that are neither digits nor letters.
If a nonnumeric or nonalphabetic character is encountered in the file,
the counter Err is incremented by 1. The loop is executed until the last
component in the file is read.

\

Input and Output Processing 9-29

For More Information:

For information on TEXT files, see Section 9.5.

9.6.5 EXTEND Procedure

The EXTEND procedure opens an existing file, positions the file buffer after
the last component, and prepares it for writing. It is commonly used to
append to a file.

EXTEND(file_variable [[, ERROR := error-recovery]]);

file_ variable
The name of the file variable associated with the output file.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file can be in any mode before EXTEND is called to set the mode to
generation. If the file is an external file and is not already open, EXTEND
opens it using the defaults for the OPEN procedure.

After execution of EXTEND, the file is positioned after the last component,
and EOF and UFB return TRUE. If the file does not exist, EXTEND does
not create it, but returns an error at run time.

A call to EXTEND on a relative file opened for direct access positions the file
after its last existing component.

A call to EXTEND on an indexed file opened for random access by key
positions the file after the last component relative to the primary key.

Consider the following:

VAR
f : FILE OF INTEGER;

{In the executable section:}
OPEN(File_Variable := f,

File Name := 'sample.dat',
History := OLD,
Organization := Relative,
Access_Method :=Direct;);

EXTEND(f);
F" := 20;
PUT (f) ;

These statements open an existing relative file named SAMPLE.DAT. The
file will be positioned after the last record in the file. Subsequent PUT
statements will append new components to the end of the file.

9-30 Input and Output Processing

For More Information:

• On component access (Section 9.3)

• On default values for the OPEN procedure (Section 9.6.11)

• On the error processing parameter (Section 9.6.26.1)

9.6.6 FIND Procedure

The FIND procedure positions a file at a specified component. The file must
be open for direct access and must contain fixed-length components.

FIND(file_variable, component-number [(, ERROR := error-recovery]]);

tile_ variable
The name of a file variable associated with a file that is open for direct
access.

component-number
A positive integer expression that indicates the component at which the file
is to be positioned. If the component number is zero or negative, a run-time
error occurs.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The FIND procedure allows direct access to the components of a file. You
can use the FIND procedure to move forward or backward in a file.

After execution of the FIND procedure, the file is positioned at the specified
component. The file buffer variable assumes the value of the component,
and the file mode is set to inspection. If the file has relative organization,
the current file component is locked. If there is no file component at the
selected position, the file buffer is undefined (UFB becomes TRUE) and
the mode becomes undefined. After any call to FIND, the value of EOF is
undefined.

You can use the FIND procedure only when reading a file that was opened
by the OPEN procedure. If the file is open because of a default open (that is,
with EXTEND, RESET, or REWRITE), a call to FIND results in a run-time
error because the default access method is sequential.

Input and Output Processing 9-31

Consider the following:

FIND(Albums, Current+ 2);

If the value of Current is 6, this procedure causes the file position to move
to the eighth component; the file buffer variable Albums/\ assumes the value
of the component. If no eighth component exists, Albums A is undefined and
UFB (Albums) returns TRUE.

For More Information:

• On component access (Section 9.3)

• On the UFB function (Section 9.6.21)

• On the error processing parameter (Section 9.6.26.1)

9.6.7 FINDK Procedure

The FINDK procedure searches the index of an indexed file opened for keyed
access and locates a specific component.

FINDK(file_variable, key-number, key-value[[, match-type]]
[[, ERROR := error-recovery]]);

file_ variable
The name of the file variable associated with the file to be searched.

key-number
A positive integer expression that indicates the key position.

key-value
An expression that indicates the key to be found; it must be assignment
compatible with the key field in the specified key position.

match-type
An identifier that indicates the relationship between the key value in the
FINDK procedure call and the key value of a component.

error-recovery
The action to be taken if an error occurs during execution of the routine.

When you establish key fields with the KEY attribute, you assign each one a
key number from 0 to 254. Key number 0 represents the mandatory primary
key of the file. Separate indexes are built for each key number in the file.

9-32 Input and Output Processing

The key value and the match type provide information about the key to be
found. The key value must be assignment compatible with the key fields
of the key number being searched. The match type must be one of the
following identifiers:

• EQL---equal to the key value

• NXT-the next key in the collating sequence after the key value

• NXTEQL---the next or equal key in the collating sequence after the key
value

If the FINDK procedure was used on an ascending collating sequence,
NXT and NXTEQL would be equivalent to GTR and GEQ. If a descending
collating sequence was used, it would be the same as LSS and LEQ. The
match type is optional; if omitted, it defaults to EQL.

The FINDK procedure can be called for any indexed file opened for keyed
access, regardless of the file's mode. If the component described exists, the
file buffer is filled with that component; UFB and EOF both become FALSE.
The mode is set to inspection and the component is automatically locked. If
no component is found to match the description, UFB becomes TRUE and
EOF is undefined. The mode is set to undefined.

Consider the following:

FINDK(Book_Index, 1, 35, NXTEQL);

Assuming key number 1 is 1ascending, this procedure searches the index for
key number 1 in the file Book_Index until it finds the first component whose
key value is greater than or equal to 35. If the component matching the
description in the FINDK statement is found, UFB(Book_Index) and
EOF(Book_Index) return FALSE, and the component is locked. If the
component cannot be found, UFB(Book_Index) returns TRUE, and
EOF(Book_Index) is undefined. Book_Index must be an indexed file opened
for keyed access.

For More Information:

• On indexed files (Section 9.1.3)

• On random access by key (Section 9.3.2)

• On the UFB function (Section 9.6.21)

• On the error processing parameter (Section 9.6.26.1)

Input and Output Processing 9-33

9.6.8 GET Procedure

The GET procedure advances the file position and reads the next component
of the file into the file buffer variable. If the file has relative or indexed
organization, the component is also locked to prevent access by other
processes.

GET(file_variable [[, ERROR := error-recovery]]);

file_ variable
The name of the file variable associated with the input file.

error-recovery
The action to be taken if an error occurs during execution of the routine.

Before the GET procedure is used for the first time to read one or more file
components, the file must be in inspection mode and prepared for reading
input. Depending on the access method specified when the file was opened,
you can prepare the file for input in the following ways:

• If the file is open for sequential access, call the RESET procedure.
RESET sets the mode to inspection, advances the file position to the first
component, and assigns the component's value to the file buffer variable.

• If the file is open for direct access, call either the RESET or the FIND
procedure to position the file.

• If the file is open for keyed access, call the FINDK, RESET, or RESETK
procedure to position the file.

As a result of the GET procedure, the file remains in inspection mode, and
the file position advances to the next component. If a component is found
other than the end-of-file marker, the component is locked, EOF is set to
FALSE, the file buffer variable takes on the value of the component, and
UFB is set to FALSE. If a component is not found or the end of the file is
reached, EOF and UFB are set to TRUE. If the GET procedure fails, UFB is
set to TRUE and EOF becomes undefined. The following example shows the
use of the GET procedure:

RESET(Books);
New_Rec := BooksA;
GET(Books);

After execution of the RESET procedure, the value of the file buffer
variable BooksA is equal to the value of the first component of the file.
The assignment statement assigns this value to the variable New _Rec. The
GET procedure then assigns the value of the second component to Books A,
advancing the file position to the second component. Another GET procedure

9-34 Input and Output Processing

advances the file position to the third component. Figure 9-10 illustrates
this sequence of events.

Figure 9-10: File Position After GET Procedure

Beginning I • • • EOF
of File

•
f

RESET GET
(Books) (Books)

Beginning I • • • EOF
of File

+ +
f

I
I

!

RESET GET GET
(Books) (Books) (Books)

ZK-0103-GE

By using the GET procedure repeatedly, you can read sequentially through
a file. When called for a file with relative organization, GET skips any
nonexistent components to find the next component.

When you reach the end of the file and EOF returns TRUE, any GET
procedure used results in a run-time error.

Consider the following:

GET(Phones);

This example reads the next component of the file Phones into the file buffer
variable Phones A. Prior to executing GET, the value of EOF (Phones) must
be FALSE; if it is TRUE, an error occurs.

Input and Output Processing 9-35

For More Information:

• On component access (Section 9.3)

• On the UFB function (Section 9.6.21)

• On the error processing parameter (Section 9.6.26.1)

9.6.9 LINELIMIT Procedure

The LINELIMIT procedure stops execution of the program after a specified
number of lines has been written into a TEXT file.

LINELIMIT(file_variable, n [[, ERROR := error-recovery]]);

file_ variable
The name of the file variable associated with the TEXT file to which this
limit applies.

n
A positive integer expression that indicates the number of lines that can be
written to the file before execution terminates.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file can be in any mode before LINELIMIT is called; the file mode does
not change after LINELIMIT has been executed.

VAX Pascal first uses environment-specific means to determine if there is
a default line limit. If there is no environment-specific default, there is no
default line limit. You can use a call to LINELIMIT to override the default.

After the number of lines written into the file has reached the line limit,
program execution terminates unless the WRITELN procedure that exceeded
the line limit includes the ERROR := CONTINUE parameter.

Consider the following:

LINELIMIT(Debts, 100);

Execution of the program terminates after 100 lines have been written into
the text file Debts.

9-36 Input and Output Processing

For More Information:

• On TEXT files (Section 9.5)

• On the error processing parameter (Section 9.6.26.1)

• On environment specific line limits (VAX Pascal Reference Supplement
for VMS Systems)

9.6.10 LOCATE Procedure

The LOCATE procedure positions a random-access file at a particular
component so that the next PUT procedure can modify that component.

LOCATE(file_variable, component-number [[, ERROR := error-recovery]]);

file_ variable
The name of the file variable associated with the file to be positioned.

component-number
A positive integer expression that indicates the relative component number
of the component to be found.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file can be in any mode before LOCATE is called. The mode is set to
generation after the procedure's execution.

The LOCATE procedure positions the file so that the next PUT procedure
writes the contents of the file buffer into the selected component. After
LOCATE has been performed, UFB returns TRUE and EOF is undefined.

Consider the following:

LOCATE(Accounts_Receivable, 63);
Accounts_ReceivableA := Next_Account;
PUT(Accounts_Receivable);

The LOCATE procedure positions the file Accounts_Receivable before
relative component number 63. The call UFB(Accounts_Receivable)
now returns TRUE and EOF(Accounts_Receivable) is undefined. The
assignment statement loads the file buffer with the contents of file position
63. The PUT operation writes the file buffer into file component number 63.
UFB(Accounts_Receivable) remains TRUE.

Input and Output Processing 9-37

For More Information:

• On relative files (Section 9.1.2)

• On random access by relative component number (Section 9.3.2)

• On the UFB function (Section 9.6.21)

• On the error processing parameter (Section 9.6.26.1)

9.6.11 OPEN Procedure

The OPEN procedure opens a file and allows you to specify file
characteristics.

1. OPEN(file_variable

,[[file_name]]

,[[history]]

,[[record_length]]

,[[access_method]]

,[[record_type]]

,[[carriage _control]]

,[[organization]]

,[[disposition]]

,[[file_sharing]]

,[[user_action]]

,[[default_file _name]]

,[[ERROR := error_recovery]])

2. OPEN(FILE_ VARIABLE := file_variable

[[,FILE_NAME := file_name]]

[[,HISTORY := history]]

[[,RECORD_LENGTH := record_length]]

[[,ACCESS_METHOD := access_method]]

[[,RECORD_TYPE := record_type]]

[[,CARRIAGE_CONTROL := carriage_control]]

[[,ORGANIZATION :=organization]]

[[,DISPOSITION := disposition]]

[[,SHARING := file_sharing]]

[[,USER_ACTION := user_action]]

[[,DEFAULT := default_file_name]]

[[,ERROR := error_recovery]] ...)

9-38 Input and Output Processing

file_ variable
no default
The name of the file variable associated with the file that VAX Pascal is to
open.

file_name
environment specific (default)
A character-string expression containing the external file name. VAX Pascal
determines the default file name according to the environment in which you
are programming.

history
NEW (default for OPEN/REWRITE openings)
OLD (default for EXTEND/RESET openings)
A value that indicates whether the file exists or if VAX Pascal must create
the file. If you specify OLD and if VAX Pascal cannot find the file, an error
occurs. If you specify READONLY, you can only read from the file; if you
attempt to write to the file, an error occurs. If you specify UNKNOWN,
VAX Pascal looks for an existing file but creates a new file if an exisiting
file does not exist. If you specify OLD or UNKNOWN and if the attempt to
open the file generates a file protection error, VAX Pascal tries again using
READONLY.

record _length
255 bytes (default for TEXT and FILE OF VARYING)
ignored (default for other file types)
A positive integer that specifies the maximum size in bytes for a line in a
TEXT file or a file of type FILE OF VARYING. ("Record" length is equivalent
to "component" length.) The default is 255 bytes. For all other types of files,
VAX Pascal ignores this parameter.

If you do not specify a length for an existing file, VAX Pascal uses the length
specified at the file's creation.

If you use OPEN to create a sequentially organized file with variable-length
components, VAX Pascal records the maximum length of each component in
the file only if you specify a value for the record_type field.

access _method
SEQUENTIAL (default)
A value that specifies the component access method to use. The possible
values include SEQUENTIAL, DIRECT, and KEYED. The DIRECT access
method is equivalent to random access by relative component number. The
KEYED access method is equivalent to random access by key.

Input and Output Processing 9-39

record _type
VARIABLE (default for new TEXT and VARYING OF CHAR
FIXED (default for other new files)
A value that indicates the component format. ("Record" format and
"component" format are equivalent.) The available values are FIXED
(fixed-length components), VARIABLE (variable-length components),
STREAM (stream component format with either carriage return,
combination carriage return and line feed, or form feed delimiters),
STREAM_CR (stream component format with carriage return delimiters),
and STREAM_LF (stream component format with line feed delimiters).

carriage_ control
LIST (default for TEXT and VARYING OF CHAR files)
NONE (default for all other file types)
A value that indicates the carriage control format for the file. The value
LIST indicates single spacing between components. The values CARRIAGE
and FORTRAN are equivalent and indicate that the first character of
every output line is a carriage control character. The values NONE and
NOCARRIAGE indicate that the file has no carriage control.

organization
SEQUENTIAL (default for new files)
A value that specifies the file organization. If you are accessing an existing
file, the specified organization must match the organization of the existing
file; if it does not, an error occurs. The choices for this parameter are
SEQUENTIAL, RELATIVE, and INDEXED.

disposition
SAVE (default for external files)
DELETE (default for internal files)
A value that indicates what VAX Pascal should do with the file after you
close the file. Dispositions are as follows:

Disposition

SAVE

DELETE

PRINT

PRINT_DELETE

9-40 Input and Output Processing

Discription

VAX Pascal retains the file.

VAX Pascal deletes the file.

VAX Pascal prints the file on a line printer and
retains the file.

VAX Pascal prints the file on a line printer and
then deletes the file.

Disposition

SUBMIT

SUBMIT_DELETE

sharing

Discription

VAX Pascal submits to a queue or places the
print job in a background process and retains the
file.

VAX Pascal submits to a queue or places the
print job in a background process and deletes the
file.

READONLY (default for HISTORY := READONLY)
NONE (default for other histories)
A value that specifies whether another program can access the file while it
is open. A value of READONLY indicates that other programs can read but
not write to the file. A value of READWRITE indicates that a program can
both read and write to the file while it is open. A value of NONE indicates
that a program cannot read or write from the open file.

default
no default
A string expression containing default file specification information. For
instance, you can use this value to set a default directory specification.

user _action
no default
A name of a user-written routine that VAX Pascal calls to open the file
(instead of allowing VAX Pascal to open the file with the OPEN procedure).
You can use a user-action routine to open the file using environment-specific
capabilities of the I/O system underlying VAX Pascal.

error _recovery
stops execution after first error (default)
The action to be taken if an error occurs during execution of the routine.

Using the OPEN procedure:

Before the OPEN procedure is called, the file is in undefined mode; its mode
does not change after OPEN has been executed.

You cannot use OPEN on a file variable that is already open.

If you use INPUT and OUTPUT, VAX Pascal implicitly opens them just
before their first use. VAX Pascal implicitly opens INPUT with a history of
READONLY. If you choose, you can explicitly open INPUT and OUTPUT;
to do this, call the OPEN procedure at any point in your compilation unit
before you use the first I/O routine on that file.

Input and Output Processing 9-41

Because the RESET, REWRITE, and EXTEND procedures implicitly open
files, you need not always use the OPEN procedure. RESET, REWRITE, and
EXTEND impose the same defaults as OPEN, except where noted (in the
HISTORY parameter).

You must use the OPEN procedure to do the following:

• Create a TEXT file with fixed-length components

• Create a file with relative or indexed organization

• Open a file for direct or keyed access

• Specify a line length other than the default for a line in a TEXT file

Consider the following:

PROGRAM Main(User_Guide);
VAR

User Guide : TEXT;
{In the-executable section:}
OPEN(User_Guide);

When the OPEN procedure is executed, the system first attempts to find
an environment-specific translation for User_Guide. If no such translation
happens, the system creates the file USER_GUIDE.DAT in the default
device and directory on the local computer. If User_Guide had not been
specified as an external file in the program header, the OPEN procedure
would have created an internal file. By default, the file is created with a
record length of 255 bytes and components of variable length. The system
then opens the file for sequential access.

Consider the following:

OPEN (Journal_Accounts,
I JOURNAL.DAT' I

HISTORY := UNKNOWN,
ACCESS_METHOD := KEYED,
ORGANIZATION :=INDEXED);

If the file JOURNAL.DAT already exists, this procedure opens it; otherwise,
VAX Pascal creates a new file named JOURNAL.DAT with the specified
characteristics. If the file does exist, it must have the same characteristics
as those in the parameter list of the OPEN procedure. VAX Pascal opens the
file with indexed organization for keyed access.

9-42 Input and Output Processing

For More Information:

• On file organizations (Section 9.1)

• On component format (Section 9.2)

• On component access (Section 9.3)

• On carriage control (Section 9.5.1)

• On the error processing parameter (Section 9.6.26.1)

• On default file names (VAX Pascal Reference Supplement for VMS
Systems)

9.6.12 PAGE Procedure

The PAGE procedure skips from the current page to the next page of a TEXT
file.

PAGE(file_variable [[, ERROR := error-recovery]]);

file_ variable
The name of the file variable associated with a TEXT file.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file must be in generation mode before the PAGE procedure is called;
the mode does not change as a result of the procedure's execution.

Execution of the PAGE procedure clears the record buffer, if it contains data,
by performing a WRITELN procedure, and then advances the output to a
new page of the specified TEXT file. The next component written to the file
begins on the first line of a new page. You can use this procedure only on
TEXT files. If you specify a file of any other type, an error occurs.

The value of the page eject component that is output to the file depends on
the carriage control format for that file. When CARRIAGE or FORTRAN is
enabled, the page eject record is equivalent to the carriage control character
'l 1. When LIST, NOCARRIAGE, or NONE is enabled, the page eject record
is a single form feed character.

Consider the following:

PAGE(User_Guide);

This PAGE procedure causes a page eject record to be written in the text file
User_ Guide.

Input and Output Processing 9-43

For More Information:

• On TEXT files (Section 9.5)

• On the error processing parameter (Section 9.6.26.1)

9.6.13 PUT Procedure

The PUT procedure adds a new component to a file.

PUT(file_variable [[, ERROR := error-recovery]]);

file_ variable
The name of the file variable associated with the output file.

error-recovery
The action to be taken if an error occurs during execution of the routine.

Before executing the first PUT procedure on a file opened for sequential
access, you must execute an EXTEND, REWRITE or TRUNCATE procedure
to set the file to generation mode. EXTEND, REWRITE and TRUNCATE set
EOF to TRUE, thus preparing the file for output. (TRUNCATE is legal only
on files with sequential organization.) If the file has indexed organization,
the components to be written must be ordered by the primary key.

Before executing the first PUT statement on a file opened for direct access,
you must execute an EXTEND, REWRITE or LOCATE procedure to position
the file.

The PUT procedure writes the value of the file buffer variable at the end
of the specified sequential-file or direct-access file. You can use LOCATE to
position a direct-access file and then use PUT to write the value of the file
buffer variable at that position. After execution of the PUT procedure, the
value of the file buffer variable becomes undefined (UFB returns TRUE).
EOF remains TRUE and the file remains in generation mode.

You can call the PUT procedure for a keyed-access file, regardless of the
file's mode (inspection, generation, or undefined). PUT causes the file buffer
variable to be written to the file at the position indicated by the key. If the
component has more than one key, the file buffer variable is inserted in each
index at the appropriate location. After execution of PUT, a keyed-access file
is in generation mode.

9-44 Input and Output Processing

Consider the following:

PROGRAM Book_File(INPUT, OUTPUT, Books);
TYPE

My_String =PACKED ARRAY[l .. 40) OF CHAR;
Book_Rec = RECORD

VAR

Author My_String;
Title : My_String;
END;

New_Book Book_Rec;
Books : FILE OF Book_Rec;
n : INTEGER;

{In the executable section:}
REWRITE(Books);
FOR n := 1 TO 10 DO

BEGIN
WITH New_Book DO

BEGIN
WRITE('Title:');
READLN (Title) ;
WRITE('Author:');
READLN(Author);
END;

BooksA := New_Book;
PUT(Books);
END;

CLOSE(Books);

This program writes the first 10 components read from the terminal into
the file Books. The component data items are typed at the terminal and
assigned to the record variable New _Book. They consist of two 40-character
strings denoting a book's author and title. The FOR loop accepts 10 values
for New_Book, assigning each new record to the file buffer variable BooksA.
The PUT statement writes the value of Books/\ into the file for each input
record. ·

For More Information:

• On component access (Section 9.3)

• On the UFB function (Section 9.6.21)

• On the error processing parameter (Section 9.6.26.1)

~.6.14 READ Procedure

The READ procedure reads one or more file components into a variable.

READ([[file_variable,)] {variable-identifier [[:radix-specifier]]}, ...

[[, ERROR := error-recovery]]);

Input and Output Processing 9-45

file_ variable
The name of the file variable associated with the input file. If you omit the
name of the file, the default is INPUT.

variable-identifier
The name of the variable into which a file component will be read; multiple
identifiers must be separated with commas.

radix-specifier
One of the format values BIN, OCT, or HEX. These values, when used on
a variable identifier, will read the variable in binary, octal, or hexadecimal
radix respectively. You can use a radix specifier only when reading from a
TEXT file.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file must be in inspection mode before READ is called. The file remains
in inspection mode after execution of a READ procedure.

By definition, the READ procedure for a nontext file performs an assignment
statement, a GET procedure, and an UNLOCK procedure for each variable.
Consider the following:

{This call to READ ... }
READ(file_variable, variable-identifier);

{ •.. is equivalent to the following code:}
variable-identifier := file variableA;
GET(file_variable); -
UNLOCK(file_variable);

The READ procedure reads from the file until it has found a value for each
variable in the list. The first value read is assigned to the first variable in
the list, the second value read is assigned to the second variable, and so
on. The values and the variables must be of assignment-compatible types.
Reading stops if an error occurs.

For a TEXT file, more than one component (character) can be read into a
single variable. For example, many characters can be read into a string
or converted into a numeric variable. The READ procedure repeats the
assignment, GET, and UNLOCK process until it has read a sequence
of characters that represent a legal value for the next variable in the
parameter list. The procedure continues to read components from the file
until it has assigned a value to each variable in the list.

9-46 Input and Output Processing

After the last character has been read from a line of a TEXT file, EOLN
returns TRUE and the file buffer variable contains a space. Unless you are
reading into a character or string variable, a call to READ at this point
skips over the end-of-line marker and positions the file at the beginning of
the next line. If you are reading into a variable of type CHAR when EOLN
returns TRUE, the space is read and assigned to the variable, and the file
position advances. If you are reading into a string variable when EOLN
becomes TRUE, the file position does not change. In the latter case, you
should use the READLN procedure to advance the file position past the
end-of-line marker.

Values from a TEXT file can be read into variables of integer, real, Boolean,
character, string, and enumerated types. TEXT file values to be read into
integer, real, Boolean, and enumerated variables can be preceded in the file
by any number of spaces, tabs, and end-of-line markers. Values to be read
into character variables, however, must not be separated because they are
read and assigned character by character.

In a TEXT file, when VAX Pascal encounters a character that forms an
object of a data type that does not match the data type of the parameter,
reading stops. Consider the following:

VAR
i : INTEGER;

{In the executable section:}
READ(i);

If the object in the input file is 123ABC, the read stops at the character 'K,
and i contains the value 123.

When reading constant identifiers of an enumerated type from a TEXT file,
VAX Pascal reads all characters in the identifier, but recognizes only the first
31 characters. You need input only enough characters to make the identifier
unique among the other constant identifiers of its type. Text input data for
enumerated types can consist of both lowercase and uppercase characters.

Boolean input data in TEXT files follow the same rules as other enumerated
types. For example, the following character combinations, all of which could
appear in a TEXT file, are equivalent: TRUE, True, T, t, tr.

When using a radix specifier, values from a TEXT file can be read into a
variable of any type, except a type containing a file component. If the input
stream does not provide sufficent data, the high-order bits are set to zero.
When reading structured types, the input stream must account for any
padding required for alignment.

Input and Output Processing 9-47

You can use the READ procedure to read a sequence of characters from a
TEXT file into a variable of type PACKED ARRAY OF CHAR. Successive
characters from the file are assigned to components of the array, in order,
until each component has been assigned a value. If any characters remain
on the line after the array is full, the next READ procedure begins with the
next character on that line. If the end of the line is encountered before the
array is full, spaces are assigned to the remaining components.

You can also read TEXT file characters into a variable of types STRING or
VARYING OF CHAR. Characters are assigned to a STRING or VARYING
OF CHAR variable in a manner similar to that in which they are assigned
to a packed array. However, if the end-of-line marker is encountered
before the STRING or VARYING OF CHAR variable has been filled to
its maximum length, the STRING or VARYING OF CHAR value is not
padded with spaces. Instead, its current length is set equal to the number of
characters that have been read into it. If you call the READ procedure with
a parameter of type STRING or VARYING OF CHAR, and EOLN returns
TRUE, no characters are read into the STRING or VARYING OF CHAR
variable; its current length is set to zero.

Every nonempty TEXT file ends with an end-of-line marker and an
end-of-file marker. Therefore, EOF never becomes TRUE when you are
reading strings with the READ procedure. To test EOF when reading
strings, use a READLN procedure to advance the file beyond the end-of-line
marker.

Consider the following:

READ(Temp, Age, Weight);

Assume that Temp, Age, and Weight are real variables, and that the
following values have been entered at the terminal:

98.6 11 75

The variable Temp is assigned the value 98.6, Age is assigned the value 11.0,
and Weight is assigned the value 75.0. You need not type all three values on
the same line.

Consider the following:

TYPE
A_String =PACKED ARRAY[l .. 20) OF CHAR;

VAR
Names : TEXT;
Pres, Veep : A_String;

{In the executable section:}
READ(Names, Pres, Veep);

9-48 Input and Output Processing

This program fragment declares and reads the file Names, which contains
the following character strings:

John F. Kennedy Lyndon B. Johnson Lyndon B. Johnson <EOLN>
Hubert H. Humphrey <EOLN>
Richard M. Nixon Spiro T. Agnew <EOLN>

The first call to the READ procedure sets Pres equal to the 20-character
string 'John F. Kennedy ' and Veep equal to 'Lyndon B. Johnson
The second call to the procedure assigns the value 'Lyndon B. Johnson
to Pres and, after encountering the end-of-line marker, fills the array Veep
with spaces. The file position does not advance to the beginning of the next
line until a READLN is performed.

Consider the following:

TYPE
Color= (Red, Fire_Engine_Green, Blue, Black);

VAR
Light : Color;

{In the executable section:}
READ(Light);

In this example, if the letter R is read, the variable Light is assigned
the value Red. However, if the letters Redx are read, an error occurs.
If the letters Bl are read, an error also occurs because Bl is not unique.
However, the letters Blu are unique and would be interpreted as the
constant identifier Blue.

For More Information:

• On TEXT files (Section 9.5)

• On the error processing parameter (Section 9.6.26.1)

• On specifying radixes (Section 9.6.26.3)

9.6.15 READLN Procedure

The READLN procedure reads lines of data from a TEXT file.

READLN [[([[file_variable,]] {variable-identifier [[:radix-specifier]]}, ...

[[, ERROR := error-recovery]])]];

file_ variable
The name of the file variable associated with the TEXT file to be read. If
you omit the name of the file, the default is INPUT.

Input and Output Processing 9-49

variable-identifier
The name of the variable into which a value will be read; multiple identifiers
must be separated with commas. If you do not specify any variable names,
READLN skips a line in the specified file.

radix-specifier
One of the format values BIN, OCT, or HEX. These values, when used on
a variable identifier, read the variable in binary, octal, or hexadecimal,
respectively. You can use a radix specifier only when reading from a TEXT
file.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file must be in inspection mode before READLN is called; it remains in
that mode after the procedure's execution.

The READLN procedure reads values from a TEXT file. After reading values
for all the listed variables, the READLN procedure skips over any characters
remaining on the current line and positions the file at the beginning of the
next line. The values need not all be on a single line; READLN continues
until values have been assigned to all the specified variables, even if this
process results in the reading of several lines of the input file.

When applied to several variables, READLN performs the following
sequence:

READ(file_variable, {variable-identifier}, ...);

READLN(file_variable);

EOLN returns TRUE after a READLN procedure only if the new line is
empty.

You can use the READLN procedure to read integers, real numbers,
Booleans, characters, strings, and constants of enumerated types. The
values in the file must be separated as for the READ procedure. The rules
governing the reading of values from text files are presented with the READ
procedure.

Consider the following:

TYPE
String= PACKED ARRAY[l .. 20] OF CHAR;

VAR
Names : TEXT;
Pres, Veep : String;

{In the executable section:}
READLN(Names, Pres, Veep);

9-50 Input and Output Processing

This program fragment declares and reads the file Names, which contains
the following characters:

John F. Kennedy Lyndon B. Johnson Lyndon B. Johnson <EOLN>
Hubert H. Humphrey <EOLN>
Richard M. Nixon Spiro T. Agnew <EOLN>
<EOLN>
<EOF>

The READLN procedure reads the values 'John F. Kennedy ' for
Pres and 'Lyndon B. Johnson ' for Veep. It then skips to the next line,
ignoring the remaining characters on the first line. Subsequent execution
of the procedure assigns the value 'Hubert H. Humphrey ' to Pres
and the space detected as the end-of-line marker to Veep. A third call
to the procedure reads 'Richard M. Nixon ' into Pres and ' Spiro T.
Agnew ' into Veep. The procedure then skips past the end-of-line
marker to the beginning of the next line. If you call READLN again, EOF
becomes TRUE, and EOLN becomes undefined.

For More Information:

• On the READ procedure (Section 9.6.14)

• On the error processing parameter (Section 9.6.26.1)

• On the radix specifiers (Section 9.6.26.3)

9.6.16 RESET Procedure

The RESET procedure readies a file for reading.

RESET(file_variable [[, ERROR := error-recovery]]);

file_ variable
The name of the file variable associated with the input file.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file can be in any mode before you call RESET; a call to RESET sets
the file to inspection mode. If the file is an external file and is not already
open, RESET opens it using the same defaults as the OPEN procedure. You
cannot use RESET to create a file.

After execution of RESET, the file is positioned at the first component, and
the file buffer variable contains the value of this component. If the file is not
empty, EOF and UFB return FALSE and the first component is locked to
prevent access by other processes. If the file is empty, EOF and UFB return

Input and Output Processing 9-51

TRUE. If the file does not exist, RESET does not create it, but returns an
error at run time.

You should call RESET before reading any file with sequential organization
except the predeclared file INPUT. The RESET procedure removes the
end-of-file marker from any file connected to a terminal device (including
INPUT), thus allowing reading from the file to continue. If you call RESET
for the predeclared file OUTPUT, an error occurs.

A call to RESET on a relative file opened for direct access positions the file
at its first existing component.

A call to RESET on an indexed file opened for keyed access positions the file
at the first component relative to the primary key.

Consider the following:

VAR
f : FILE OF INTEGER;

{In the executable section:}
OPEN(f, 'file.dat', ACCESS METHOD :=DIRECT);
RESET (f) ; -

These statements open the file variable f for direct access. After execution
of the OPEN and RESET procedures, you can use the FIND procedure for
direct access to the components of the file.

RESET(Weights);

If the file variable Weights is already open, this procedure call prepares it
for reading and assigns the value of the first file component to Weights A. If
the file is not open, RESET causes VAX Pascal to open the file by default. If
Weights is an external file, its file history will be OLD. Otherwise, an error
occurs.

For More Information:

• On component access (Section 9.3)

• On the default parameter values for OPEN (Section 9.6.11)

• On the error processing parameter (Section 9.6.26.1)

9.6.17 RESETK Procedure

The RESETK procedure, like the RESET procedure, readies a file for
reading.

RESETK(file_variable, key-number[[, ERROR := error-recovery]]);

9-52 Input and Output Processing

file_ variable
The name of the file variable associated with the input file.

key-number
A nonnegative integer expression that indicates the key position.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file can be in any mode before RESETK is called to set the mode to
inspection.

RESETK can be applied only to indexed files opened for random access
by key. You assign a key number from 0 to 254 to each key field of a file
component with the KEY attribute. The file is searched for the component
with the lowest value in the specified key number. This component becomes
the current component in the file and is locked. The value of the current
component is copied into the file buffer; EOF and UFB are set to FALSE.
If the component does not exist, EOF and UFB become TRUE. Note that a
RESETK procedure on key number 0 is equivalent to a RESET procedure.

Consider the following:

RESETK(Book_Index, 0);

This procedure searches the file Book_Index for the component with the
lowest value in the primary key. If this component exists, it becomes the
current file component and is locked. The function calls UFB(Book_Index)
and EOF(Book_Index) return FALSE. If the procedure was unable to find
the component, UFB(Book_Index) and EOF(Book_Index) return TRUE.

For More Information:

• On indexed files (Section 9.1.3)

• On random access by key (Section 9.3.2)

• On the UFB function (Section 9.6.21)

• On the error processing parameter (Section 9.6.26.1)

t.6.18 REWRITE Procedure

The REWRITE procedure readies a file for output.

REWRITE(file_variable [[, ERROR := error-recovery]]);

Input and Output Processing 9-53

file_ variable
The name of the file variable associated with the output file.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file can be in any mode before REWRITE is called to set the mode to
generation. If the file variable has not been opened, REWRITE creates and
opens it using the same defaults as the OPEN procedure.

The REWRITE procedure truncates a file to length zero and sets EOF and
UFB to TRUE. You can then write new components into the file with the
PUT, WRITE, and WRITELN procedures (WRITELN is defined only for
text files). After the file is open, successive calls to REWRITE truncate the
existing file to a length of zero; they do not create new versions of the file.

To update an existing file with sequential organization, you must either
use the EXTEND procedure, use the TRUNCATE procedure, or copy the
contents to another file, specifying new values for the components you need
to update.

When applied to a file .with relative or indexed organization, REWRITE
deletes the contents of the file and sets the file position to the beginning of
an empty file.

Consider the following:

REWRITE(Storms);

If the file variable Storms is already open, this REWRITE procedure
prepares the file for writing, clears it of old data, and sets the file position
to the beginning of the file. If Storms is not open, a new version is created
with the same defaults as for the OPEN procedure.

Consider the following:

VAR
Ratings : FILE OF INTEGER;

{In the executable section:}
OPEN(Ratings, 'cars.dat', HISTORY :=OLD, RECORD_TYPE :=FIXED);
REWRITE(Ratings);

The OPEN procedure opens the file variable Ratings, which is associated
with the file CARS.DAT. The REWRITE procedure discards the current
contents of the file f and sets the file position to the beginning of the file.
After execution of this procedure, EOF(Ratings) returns TRUE.

9-54 Input and Output Processing

For More Information:

• On component access (Section 9.3)

• On the default parameters for OPEN (Section 9.6.11)

• On the error processing parameter (Section 9.6.26.1)

9.6.19 STATUS Function

The STATUS function indicates the status of a file following the last
operation performed on it.

STATUS(file_variable)

file_ variable
The name of the file variable associated with the file to be tested.

The file can be in any mode before STATUS is called; unless an error occurs,
STATUS does not change the file mode upon executiofl:.

The STATUS function returns one of the following integer codes that
indicate the previous operation's effect on the file:

Code

0

-1

Positive integer1

Description

Successful operation

End-of-file encountered

Error encountered

1 The actual number is environment-specific and indicates the exact error that occured.

A test by the STATUS function on a TEXT file causes delayed device access
to occur, thus filling the file buffer with the next file component. Therefore,
EOF, EOLN, UFB, and STATUS never return an error code following a
successful STATUS function call.

Consider the following:

RESET(Filel, ERROR :=CONTINUE);
IF STATUS(Filel) > 0 THEN WRITELN('Cannot access first record')
ELSE

IF STATUS(Filel) < 0 THEN WRITELN('File is empty')
ELSE READ(Filel);

If the RESET procedure encounters either an error condition or an
end-of-file, an appropriate error message is displayed. If the STATUS
function indicates that the RESET procedure was successful, the first record
is read from the file.

Input and Output Processing 9-55

For More Information:

• On TEXT files (Section 9.5)

• On the error processing parameter (Section 9.6.26.1)

• On delayed device access (Section 9.5.3)

• On status code translations (VAX Pascal Reference Supplement for VMS
Systems)

9.6.20 TRUNCATE Procedure

The TRUNCATE procedure indicates that the current file component and all
components following it are to be deleted. TRUNCATE can be used only on
a file that has sequential organization.

TRUNCATE(file_variable [[, ERROR := error-recovery]]);

file_ variable
The name of the file variable associated with the file to be truncated.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file must be in inspection mode before TRUNCATE is called. After the
procedure has been executed, the mode is set to generation so that you can
write to the file.

After the appropriate components have been deleted, the file remains
positioned at the new end-of-file, but the file buffer itself is undefined. Thus,
EOF and UFB are both set to TRUE.

Consider the following:

TRUNCATE(Master_File);

This procedure deletes components from Master_File, beginning with the
current component and continuing until EOF returns TRUE. When the
operation is complete, EOF(Master_File) and UFB(Master_File) are
TRUE, and new data can be written at the end of Master_File.

For More Information:

• On sequential files (Section 9.1.1)

• On the error processing parameter (Section 9.6.26.1)

9-56 Input and Output Processing

9.6.21 UFB Function

The UFB (Undefined File Buffer) function returns a Boolean value to
indicate whether the last file operation gave the file buffer an undefined
status.

UFB(file_variable)

file_ variable
The name of the file variable associated with the file whose buffer is being
tested.

The file can be in any mode before UFB is called; execution of UFB does not
change the file mode.

UFB tests the effect of the last I/O operation done to the file. UFB returns
FALSE if a successful GET, FIND, FINDK, RESET, or RESETK operation
has filled the file buffer. GET, FIND, FINDK, RESET, and RESETK
procedure calls that do not fill the file buffer set UFB to TRUE. UFB
also returns TRUE after DELETE, EXTEND, LOCATE, PUT, REWRITE,
TRUNCATE, and UPDATE procedures have left the contents of the file
buffer unknown.

Assigning a new value to the file buffer with an assignment statement does
not change the value of UFB. Consider the following:

FIND(Supplies, December);
IF NOT UFB(Supplies) THEN

Inventory := Inventory - SuppliesA;

If the variable December has a value of 12, the FIND procedure attempts to
find the twelfth component of the file Supplies. If the FIND procedure
is successful, Supplies" assumes the value of this component and
UFB(Supplies) is FALSE. If, however, the FIND procedure is unable to find
the twelfth component of the file, UFB(Supplies) returns TRUE. In this
example, the value of Supplies" is subtracted from the value of Inventory
only if the FIND procedure is successful.

9.6.22 UNLOCK Procedure

The UNLOCK procedure releases the current file component for access by
other processes.

UNLOCK(file_variable [[, ERROR := error-recovery]]);

Input and Output Processing 9-57

file_ variable
The name of the file variable associated with the file whose component is to
be unlocked.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file must be in inspection mode before UNLOCK is called; it remains in
inspection mode after UNLOCK has executed.

If the component at which the file pointer is positioned has been locked, the
UNLOCK procedure releases it.

Consider the following:

UNLOCK(Sales_File);

The UNLOCK procedure releases the contents of the current component.

For More Information:

For information on the error processing parameter, see Section 9.6.26.1.

9.6.23 UPDATE Procedure

The UPDATE procedure writes the contents of the file buffer into the current
component.

UPDATE(file_variable[[, ERROR := error-recovery]]);

file_ variable
The name of the file variable associated with the file whose component is to
be updated.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file must be in inspection mode before UPDATE is called; it remains in
that mode after the procedure's execution.

The UPDATE procedure is legal for files that have been opened for random
access ("direct" or "keyed"). The current component must already have been
locked by a successful FIND, FINDK, GET, RESET, or RESETK procedure
before the contents of the file buffer can be rewritten into it. After the
update has taken place, the component is unlocked and UFB returns TRUE.

9-58 Input and Output Processing

Consider the following:

UPDATE(October_Sales);

This procedure writes the file buffer contents (October_Sales") back into the
current file component October_Sales. The component is then unlocked and
UFB(October_Sales) returns TRUE.

For More Information:

• On component access (Section 9.3)

• On the error processing parameter (Section 9.6.26.1)

9.6.24 WRITE Procedure

The WRITE procedure assigns data to an output file.

WRITE([[file_variable,]]{expression}, ... [[, ERROR := error-recovery]])

file_ variable
The name of the file variable associated with the output file. If you omit the
name of the file, the default is OUTPUT.

expression
An expression whose value is to be written; multiple output values must
be separated with commas. An output value must have the same type as
the file components; however, values written to a TEXT file can also be
expressions of any ordinal, real, or string type.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file (unless it is a random-access by key file) must be in generation mode
before WRITE is called; it remains in that mode after WRITE has executed.

By definition, a WRITE statement to a nontext file performs an assignment
to the file buffer variable and a PUT statement for each output value. For
nontext files, the types of the output values must be assignment compatible
with the component type of the file. For example:

WRITE(file_variable, expression);

This procedure call is similar to the following example:

file variableA := expression;
PUT(-file_variable);

Input and Output Processing 9-59

For TEXT files, the WRITE procedure converts the value of each expression
to a sequence of characters. It repeats the assignment and PUT process
until all the values have been written to the file.

Consider the following:

TYPE
String= PACKED ARRAY[l .. 20] OF CHAR;

VAR
Names : FILE OF String;

· Pres String;
{In the executable section:}
WRITE (Names, 'Millard Fillmore ', Pres);

This example writes two components in the file Names. The first is the
20-character string constant ' Millard Fillmore ' . The second is the
value of the string variable Pres.

For More Information:

• On TEXT files (Section 9.5)

• On component format (Section 9.2)

• On prompting from the terminal (Section 9.5.2)

• On the error processing parameter (Section 9.6.26.1)

9.6.25 WRITELN Procedure

The WRITELN procedure writes a line of data to a text file.

WRITELN [[([[file_variable,]] {expression}, ... [[, ERROR := error-recovery]])]]

file_ variable
The name of the file variable associated with the text file to be written. If
you o~it the name of the file, the default is OUTPUT.

expression
An expression whose value is to be written; multiple output values must be
separated by commas. The expressions can be of any ordinal, real, or string
type and are written with a default field width.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file must be in generation mode before WRITELN is called; it remains
in that mode after WRITELN has been executed.

9-60 Input and Output Processing

The WRITELN procedure writes the specified values into the TEXT file,
inserts an end-of-line marker after the end of the current line, and then
positions the file at the beginning of the next line. When applied to several
expressions, WRITELN performs the following sequence:

WRITE (file_variable, {expression}, ...);

WRITELN (file_variable);

Consider the following:

WRITELN(User_Guide, 'This manual describes how to interact');

This procedure writes the string to the TEXT file User_Guide, follows it with
an end-of-line marker, and skips to the next line.

You can specify a carriage-control character as the first item in an output
line. When you use carriage-control characters, make sure that the file
is open with either the CARRIAGE or FORTRAN option. Consider the
following:

WRITELN(Tree, Stringl, String2);

The first item in the list is a space character. The space indicates that the
values of Stringl and String2 are printed on a new line when the file is
written to a terminal, line printer, or similar carriage control device.

If you specify a carriage format but use an invalid carriage control character,
the first character in the line is ignored. The output appears with the first
character truncated. Consider the following:

TYPE
A_String =PACKED ARRAY[l .. 25] OF CHAR;

VAR
New Hires : TEXT;
n : INTEGER;
New Rec : RECORD

Id INTEGER;
Name,
Address : A_String;
END;

{In the executable section:1
OPEN(New_Hires, 'new_hires.dat', CARRIAGE CONTROL:= FORTRAN);
REWRITE(New_Hires);
WITH New Rec DO

BEGIN
WRITELN(New Hires, 'lNew hire# , ID:l, ' is' Name);
WRITELN(New-Hires, ' ', Name, 'lives at:');
WRITELN(New=Hires, ' ');
WRITELN(New_Hires, ' ', Address);
END;

Input and Output Processing 9-61

In this example, four lines are written to the TEXT file New...;..Hires. The
output starts at the top of a new page, as directed by the carriage-control
character '1' , and appears in the following format:

New hire # 73 is Irving Washington
Irving Washington lives at:

22 Chestnut St, Seattle

For More Information:

• On TEXT files (Section 9.5)

• On carriage-control characters in new files (Section 9.6.11)

• On formatting output (Section 9.6.26.2)

• On the error processing parameter (Section 9.6.26.1)

9.6.26 Error Processing and Formatting Output

This section contains information on error processing and on formatting
written output.

9.6.26.1 Error Processing Parameter

For 1/0 procedures, the last parameter (which is optional) specifies the
action to be taken should the procedure fail to execute successfully. You
must use nonpositional syntax in order to pass the error recovery parameter
to the called procedure. This parameter is called ERROR and can accept two
values: CONTINUE and MESSAGE.

If you specify ERROR := CONTINUE, the program continues to execute
regardless of any error conditions encountered during execution of the
procedure. If you specify this value, you should use the STATUS function to
be certain that the I/O routine worked as expected.

If you specify ERROR := MESSAGE and if an error occurs, VAX Pascal
generates an appropriate error message and program execution stops. By
default, VAX Pascal displays an error message and program execution stops
after the first error in an 1/0 operation.

You cannot use the error recovery parameter with the I/O functions EOF,
UFB, and EOLN, nor with any reference to the file buffer.

9-62 Input and Output Processing

9.6.26.2 Output with Specified Field Width

The output values of a WRITE, WRITELN, or WRITEV procedure can be
compile-time or run-time expressions, with values of any ordinal, real, or
string type. Each value is written with a default field width, which specifies
the minimum number of characters to be written for the value. Table 9-5
lists the default field widths.

Table 9-5: Default Field Widths

Type of Item Printed

INTEGER, UNSIGNED

CHAR

BOOLEAN

Enumerated

REAL

DOUBLE

QUADRUPLE

Character string

Number of Characters

10

1

6

Size of longest identifier plus 1, up to 32

12

20

40

Length of string

You can override these defaults for a particular value by specifying a field
width in the print list, using the following format:

output:minimum[[:fraction]]

Both minimum and fraction represent integer expressions with positive or
zero values. The minimum indicates the minimum number of characters to
be written for the value. The fraction, which is permitted only for values of
real types, indicates the number of digits to be written to the right of the
decimal point. The format of the field width specification is identical for the
WRITE, WRITELN, and WRITEV procedures.

By default, real numbers are written in exponential format. Regardless of
the real number's type, output procedures always prefix the exponent with
the letter E. Each real number in exponential format is preceded by a blank
or a minus sign, and the value of the rightmost digit is rounded. Consider
the following:

WRITELN(Shoe_Size);

If the value of Shoe_Size is 12.5, this procedure produces the following
output:

l.25000E+Ol

Input and Output Processing 9-63

To write the value in decimal format, you must specify a field width, as in
this example:

WRITELN(Shoe_Size:5:1);

The first integer indicates that a minimum of five characters will be written.
The minimum includes the minus sign, if needed, and the decimal point.
The second integer specifies one digit to the right of the decimal point. The
resulting output is as follows:

12.5

If the field specified is wider than necessary, the value is written with
leading blanks.

If you try to write an integer, unsigned, or real value in a field that is too
narrow, the field width is expanded to the minimum necessary to write the
value. If you try to write a value of an enumerated type, a Boolean value, a
character, or a string value in a field that is too narrow, the value is trun
cated on the right. The truncated identifier is not checked for uniqueness.

For an expression of an enumerated type, the constant identifier denoting
the expression's value is written. Consider the following:

VAR
Color : (Blue, Yellow, Black, Fire_Engine_Green);

{In the executable section:}
WRITE('My favorite color is', Color:l5);

When the value of Color is Yellow, the following is written:

My favorite color is YELLOW

When the value of Color is Fire_Engine_Green, the following appears:

My favorite color is FIRE_ENGINE_GRE

Because the field width specified in this case is not wide enough for all
17 characters in the identifier, the identifier is truncated after the field is
filled. Note that constants of enumerated types are written in all uppercase
characters.

9.6.26.3 Writing Binary, Decimal, Unsigned Decimal, Hexadecimal, and Octal Values

You can use the predeclared conversion functions BIN, DEC, UDEC, HEX,
and OCT in combination with the WRITE, WRITELN, and WRITEV pro
cedures to write binary, decimal, unsigned decimal, hexadecimal, and octal
values. Also, the DEC and UDEC functions return values with leading ze
ros; by default,, the I/O routines use leading blanks with decimal numbers,
not leading zeros. Consider the following syntax for the WRITE procedure.

9-64 Input and Output Processing

I BIN l DEC

~~~c , ... ) 
WRITE( [[file_variable,)) 

The predeclared conversion functions convert the value of the first 
expression in the list to its equivalent as a binary, decimal, unsigned 
decimal, hexadecimal, or octal number. The resulting digits are returned 
in a VARYING OF CHAR string. 

For every expression whose binary, decimal, unsigned decimal, hexadecimal, 
or octal value you wish to write, you must call the appropriate conversion 
function separately with an actual parameter list. You can call more than 
one conversion function in the same output procedure call. Variables of 
any type (including pointers) can be written to text files in binary, decimal, 
unsigned decimal, hexadecimal, or octal notation. 

You can specify field widths with the conversion functions; however, the 
results are not likely to be what you expect. For example, if you want 
to convert the value of i to its hexadecimal equivalent and you want the 
converted value to be written in a field three characters wide, you might 
write the following procedure call: 

WRITELN( HEX( i) :3 ); 

However, because the converted value is longer than the field width 
specification, the value is truncated on the right rather than on the left. 
Therefore, the output generated by this procedure would be as follows: 

00 

So, you should be careful about specifying field widths with BIN, DEC, 
UDEC, HEX, and OCT when the converted value could exceed the field 
width given. 

Consider the following: 

WRITE( HEX( Payroll, 10 ), HEX( Salary, 12) ); 

The values of the variables Payroll and Salary are converted to their 
hexadecimal equivalents. Payroll is printed with 10 characters and Salary 
is printed with 12 characters. The output values, preceded by two initial 
blanks, could look like this: 

000031F2 000058AB 

Input and Output Processing 9-65 



Consider the following: 

WRITELN( OCT( Social_Security, 14 ), BIN( Survey, 8) ); 

The value of the variable Social_Security is converted to its octal equivalent 
and printed with 14 characters. Then the value of the variable Survey is 
converted to its binary equivalent and printed with eight characters. A 
sample line of output, preceded by three blanks, could look like this: 

0271137762500101110 

Consider the following: 

WRITEV( Final_Balance, OCT( Debits, 16 ), OCT( Credits, 16) ); 

The values of the variables Debits and Credits are converted to their 
octal equivalents and written to the string variable Final_Balance with 
16 characters each. The output string, preceded by five blanks, could look 
like this: 

77777770342 00000033766' 

For More Information: 

• On the WRITEV procedure (Section 8.87) 

• On the BIN function (Section 8. 7) 

• On the DEC function (Section 8.21) 

• On the UDEC function (Section 8. 77) 

• On the HEX function (Section 8.36) 

• On the OCT function (Section 8.52) 

9-66 Input and Output Processing 



Chapter 10 

Attributes 

An attribute is an identifier that directs the VAX Pascal compiler to change 
its behavior in some way. This chapter discusses the following information 
about attributes: 

• Attribute syntax (Section 10.1) 

• Attributes (Section 10.2) 

• Attribute classes (Section 10.3) 

When an attribute is not explicitly stated, the compiler follows the default 
rules to assign properties to program elements. However, using attributes 
to override the defaults allows additional control over the properties of data 
items, routines, and compilation units. 

For convenience in description, the attributes are grouped in attribute 
classes. All attributes in a given class share common characteristics 
(sometimes there is only one attribute to a class). 

For More Information: 

For information on environment-specific issues about attributes, see the VAX 
Pascal Reference Supplemerit for VMS Systems. 

10.1 Attribute Syntax 

The following syntax applies to all VAX Pascal attributes: 

[ {identifier1 [[ ( { ~ons~~nt-expression } , ... ) ]] }, ... ] 
1dent1f 1er2 

Attributes 10-1 



identifier1 
The name of the attribute. 

constant-expression 
A compile-time integer expression, represented in this chapter by n, that 
qualifies several of the VAX Pascal attributes. 

identifier2 
The name of an option available in one of the following instances: 

• With the CHECK, OPTIMIZE, or KEY attributes 

• With COMMON and PSECT attributes, indicating the name of a storage 
area 

• With the GLOBAL, EXTERNAL, WEAK_GLOBAL, and 
WEAK_EXTERNAL attributes, indicating an external name 

A list of attributes can appear anywhere in the VAR, TYPE, and CONST 
declaration sections, and anywhere in a program that a type, a type 
identifier, or the heading of a routine or compilation unit is legal. However, 
only one attribute from a particular class can appear in a given attribute 
list. The use of attribute lists is illustrated in examples throughout this 
chapter. The names of attributes, when used in a suitable context, cannot 
conflict with other identifiers with the same name in the program. 

Syntactically, an attribute list can appear before a VAR, TYPE, and CONST 
section in the declaration section. In this case, the attributes would apply to 
all elements in that particular section. However, at this time, VAX Pascal 
only allows you to use the HIDDEN attribute in this way. 

Some attributes require a special form of constant expression called a name 
string. The syntax of a name string differs from that of other strings in 
VAX Pascal only in that a name string cannot use the extended-string 
syntax. 

Every program element must be associated with one property for each 
applicable attribute class. The VAX Pascal compiler automatically supplies 
the defaults for the unspecified classes at the time of the element's 
declaration. In some classes, as described in the following sections, the 
default property is not available through an explicit attribute. 

Attributes can be associated with data items in the following ways: 

• By appearing in a type definition in a TYPE section; the item is later 
declared to be of that type. 

• By appearing in the declaration of an item preceding its type. 

10-2 Attributes 



• By appearing before the current declaration section. 

NOTE 

In VAX Pascal, the presence of constant expressions and attribute 
lists leads to a minor ambiguity in the language syntax. If the 
compiler finds a left bracket ( [) symbol when it expects to find 
a type or type identifier, it always assumes that the bracket 
indicates the beginning of an attribute list. The ambiguity arises 
because the left bracket could also represent the beginning of 
a set constructor that denotes the low bound of a subrange 
type. If the latter case is in fact what you intend, enclose the 
set constructor in parentheses; the compiler will interpret the 
expression correctly. For example: 

TYPE X = ([l] <= [2]) .. True; 

When a type definition includes a list of attributes, the type has only those 
attributes specified. The compiler does not supply the defaults for the 
unspecified classes until a data item is declared to be of that type. Two rules 
govern the use of attributes in a TYPE section: 

• The attributes of the type can neither conflict with nor duplicate any 
attributes explicitly stated in the data item's declaration. 

• The type cannot be used anywhere that its accompanying attributes are 
illegal. 

The following example shows both legal and illegal use of attributes in type 
definitions: 

TYPE 
A= 
B = 

VAR 
Al 

A2 

Bl 

c 

[GLOBAL] INTEGER; 
[UNALIGNED] INTEGER; 

[GLOBAL] A; 

[EXTERNAL] A; 

"B; 

A; 

Illegal; duplicates GLOBAL 
attribute of type A 

Illegal; conflicts with 
GLOBAL attribute of type A 

Illegal; pointer base type 
cannot be UNALIGNED 

Legal } 

The first three variable declarations are illegal for the reasons shown in the 
comments. The declaration of C is legal; C is declared as a global INTEGER 
because of the characteristics of its type. The compiler supplies defaults for 
all other classes applicable to the variable C. 

Attributes associated with data items usually modify type compatibility 
rules. These modifications are explained in the sections describing 
individual attributes. 

Attributes 10-3 



For More Information: 

• On extended-string syntax (Section 2.6) 

• On program elements and attribute properties (Section 10.3) 

• On type compatibility (Section 2.9) 

10.2 Attributes 

The following sections describe each attribute in alphabetical order. 

10.2.1 ALIGNED 

The ALIGNED attribute indicates the object is to be aligned on a specific 
memory boundary. 

ALIGNED [[( n )]] 

An aligned object is aligned on the memory boundary indicated by n. 
The constant expression n indicates that the address of the object 
must end in at least n zeros. ALIGNED( 0 ) specifies byte alignment, 
ALIGNED( 1 ) specifies word alignment, ALIGNED( 2) specifies longword 
alignment, ALIGNED( 3 ) specifies quadword alignment, ALIGNED( 4 ) 
specifies octaword alignment, and ALIGNED( 9) specifies page alignment. 

Usage and Default Information: 

• The default alignment of an object depends on its size. 

• The constant expression n must denote an integer. If you omit n, the 
default is 0, indicating byte alignment. 

• ALIGNED(9) is the largest alignment allowed. 

• An automatic variable cannot have alignment greater than a longword. 

• The minimum alignment for an object of a structured type is the greatest 
alignment specified for any of its components. 

• Alignment attributes are illegal on nonstatic types, components of files, 
and on VARYING OF CHAR strings. 

• The alignment of a formal VAR parameter cannot be greater than 
the alignment of a corresponding actual parameter, either by default 
or by means of an alignment attribute. In an array variable passed 
to a conformant formal parameter, alignment and size attributes are 
illegal on all dimensions of the actual parameter, except the first, that 
correspond to the dimensions of the formal parameter. 

10-4 Attributes 



• The base type of a pointer variable passed to the NEW procedure cannot 
have alignment greater than a quadword. 

• If the base type of a pointer variable has a specified alignment, then the 
base type of a pointer expression assigned to it must have an alignment 
equal to that of the variable. 

• Pointer types are structurally compatible only if their base types have 
identical alignment. 

The following is an example of the ALIGNED attribute: 

VAR 
Free_Buffers : [ALIGNED( 1 ), WORD] -2**15 .. 2**15-1; 

{In the executable section:} 
IF ADD_INTERLOCKED( -1, Free_Buffers ) <= 0 THEN 

{Statement:} 

The predeclared function ADD_INTERLOCKED requires that the second 
parameter passed to it have word alignment and an allocation size of one 
word. In this example, the variable Free_Buffers is declared with alignment 
and size attributes to meet these restrictions. 

For More Information: 

• On automatic and size attribute classes (Section 10.3) 

• On static and nonstatic types (Section 2.8) 

• On default alignments (VAX Pascal Reference Supplement for VMS 
Systems) 

10.2.2 ASYNCHRONOUS 

The ASYNCHRONOUS attribute indicates that a routine may be called 
by an asynchronous event (such as a condition handler). Since such an 
event can alter the values of variables within the. routine upredictably, this 
attribute forces the routine to reference only local variables or variables 
declared with the VOLATILE attribute. 

Usage and Default Information: 

• This attribute can be applied to routines and to routine parameters 
declared in external routines. 

• In the absence of the ASYNCHRONOUS attribute, the compiler assumes 
that the routine can be activated only by actual calls within the program. 

• All predeclared routines are asynchronous by default. 

Attributes 10-5 



• Any routines called from within the block of an asynchronous routine 
must be local to the asynchronous routine or must themselves be 
asynchronous, either by default or by an explicit attribute. 

• All nonlocal variables accessed from within the block of an asynchronous 
routine must be declared VOLATILE or READONLY 

• If a formal routine parameter is asynchronous, all actual parameters 
passed to it must also be asynchronous. 

• An asynchronous routine can be passed as an actual parameter to a 
formal routine parameter that does not have this attribute. 

Consider the following: 

PROCEDURE Do_Something; 
VAR 

i : [VOLATILE] INTEGER; 
j : INTEGER 

[ASYNCHRONOUS] FUNCTION Handler {Two array parameters} BOOLEAN; 
BEGIN 
i := i + 1; 
{Remaining function body ... } 

{In the executable section of the procedure:} 
ESTABLISH( Handler ); 

This example illustrates the declaration of the asynchronous function 
Handler. The executable section of Handler cannot access variables declared 
in the enclosing block of the procedure Do_Something unless those variables 
are declared VOLATILE. So, Handler can access the variable i, which has 
the VOLATILE attribute, but cannot access the variable j. 

For More Information: 

• On the VOLATILE attribute (Section 10.2.41) 

• On the READONLY attribute (Section 10.2.33) 

• On the ESTABLISH procedure (Section 8.25) 

10.2.3 AT 

The AT attribute specifies that VAX Pascal allocates no storage for the 
object (storage has already been allocated) and that it resides at the exact, 
specified address. 

AT( n) 

The exact address is specified by the constant expression n. Variables 
representing machine-dependent entities are frequently given the AT 
attribute. 

10-6 Attributes 



Usage and Default Information: 

• A variable having the AT, COMMON, or PSECT attribute is implicitly 
static. 

• AT cannot be applied to routines or to compilation units. 

• AT cannot be applied to variables of nonstatic types. 

For More Information: 

• On default allocation for variables declared in the outermost block of a 
program or in nested blocks (Section 10.2.4) 

• On default allocation for variables declared iri the outermost block of a 
module (S~ction 10.2.35) 

• On static and nonstatic types (Section 2.8) 

10.2.4 AUTOMATIC 

The AUTOMATIC attribute specifies that storage for the variable be 
allocated each time the program enters the routine in which the variable 
is declared. The storage is deallocated each time the program exits from 
that routine. An automatic variable exists· as long as the declaring routine 
remains active. 

Usage and Default Information: 

• By default, variables declared in nested blocks are automatic. 

• By default, variables declared at the outermost level o~ a program are 
automatic, though for efficiency they can be made static. 

• By default, the control part of the nonstatic types and the pointer part of 
variables of nonstatic types follow the same rules as regular variables: 
they are static or automatic depending on the location of the declaration 
and the usage of the data. 

• Global and external variables are implicitly static. Thus, they conflict 
with the AUTOMATIC attribute. 

• Program-level variables with the AUTOMATIC attribute are not 
recorded in environment files. 

• AUTOMATIC cannot be applied to routines and compilation units. 

• AUTOMATIC cannot be applied to nonstatic types. 

Attributes 10-7 



For More Information: 

• On an example of the STATIC attribute (Section 10.2.35) 

• On the GLOBAL attribute (Section 10.2.15) 

• On the EXTERNAL attribute (Section 10.2.13) 

• On static and nonstatic types (Section 2.8) 

• On default allocation for automatic variables (VAX Pascal Reference 
Supplement for VMS Systems) 

10.2.5 BIT 

The BIT attribute specifies the amount of storage in bits to be received by 
the object. 

BIT[[( n )]] 

The optional constant n indicates the number of bit storage units. 

Usage and Default Information: 

• The default size of an object depends on its type. 

• The constant expression n must denote a positive integer. If you omit n, 
the default value is 1. 

• In VAX Pascal, the following size rules apply: 

Objects of ordinal types cannot have sizes larger than 32 bits. 

Objects of REAL, SINGLE, and pointer types must have sizes of 
exactly 32 bits. 

Objects of type DOUBLE must have sizes of 64 bits. 

Objects of type QUADRUPLE must have sizes of 128 bits. 

• The amount of storage described must be large enough to contain an 
object of the specified type; otherwise, a compile-time error occurs. 

• Assignment to variables with a size attribute are zero-extended (if 
necessary) and all bits are written. 

• When you fetch from variables with a size attribute, you need only 
reference sufficient bits to access the legal value of the type. The 
contents of a variable are undefined if it does not contain a zero-extended 
legal value of the variable's type. 

10-8 Attributes 



• A size attribute is illegal on a conformant parameter, on a component 
of a VARYING string, on an object of a structured type having a file 
component, or on a nonstatic type. In an array variable passed to 
a conformant formal parameter, size and alignment attributes are 
illegal on all dimensions of the actual parameter, except the first, that 
correspond to the dimensions of the formal parameter. 

• Two variables of the same type that have different allocation sizes are 
assignment compatible, but are not structurally compatible. 

For More Information: 

• On alignment attributes (Section 10.3) 

• On type compatibility (Section 2.9) 

• On size attributes and return values of size functions (Section 8.66) 

• On default sizes of objects (VAX Pascal Reference Supplement for VMS 
Systems) 

10.2.6 BYTE 

The BYTE attribute specifies the amount of storage in bytes to be received 
by the object. 

BYTE [[( n)]] 

The optional constant n indicates the number of byte storage units. 

For More Information: 

• On VAX Pascal size rules (Section 10.2.5) 

• On default sizes of objects (VAX Pascal Reference Supplement for VMS 
Systems) 

10.2.7 CHECK 

The CHECK attribute specifies error .. checking options that are to be enabled 
during program execution. 

CHECK [[( {identifier}, ... )]] 

An identifier specifies an option to be enabled. If you omit the list of options, 
all available positive options are enabled. 

Attributes 10-9 



Table 10-1 presents the options that allow you to choose which aspects of a 
program should be checked. The negations of an option disable checking for 
that option. 

Table 10-1: Summary of Checking Options 

Option Action Negation 

ALL Enables all forms of checking. NONE 

BOUNDS Verifies that an index NOBOUNDS 
expression is within the bounds 
of an array's index type and 
that character-string sizes are 
compatible with the operations 
being performed and that 
schema types are compatible. 

CASE_SELECTORS Verifies that the value of a case NOCASE_SELECTORS 
selector is contained in the 

DECLARATIONS 

OVERFLOW 

POINTERS 

SUBRANGE 

corresponding case label list. 

Verifies that schema definitions NODECLARATIONS 
yield valid types and that uses 
of GOTO from one block to an 
enclosing block are correct. 

Verifies that the result of an NOOVERFLOW 
integer computation does 
not exceed the machine 
representation. 

Verifies that the value of a 
pointer variable is not NIL. 

NO POINTERS 

Verifies that values assigned NOSUBRANGE 
to variables of subrange types 
are within the subrange; 
verifies that a set expression is 
assignment compatible with a 
set variable. 

Usage and Default Information: 

• This attribute can be applied to routines and compilation units. 

• BOUNDS and DECLARATIONS are the only options enabled by 
default. The defaults for the other options are NOCASE_SELECTORS, 
NOOVERFLOW, NOPOINTERS, and NOSUBRANGE. If you specify 
options for CHECK, VAX Pascal enables only the specified options. 
Consider the following. 

10-10 Attributes 



[CHECK] [CHECK ( ALL ) ] 
[CHECK( option)] 
{No attribute} 

s equivalent to 
s equivalent to 
s equivalent to 

[CHECK( NONE, option)] 
[CHECK ( BOUNDS, 

DECLARATIONS ) ] 

Consider the following: 

PROGRAM Check_Features; 

[CHECK( POINTERS, CASE_SELECTORS )] PROCEDURE Linked_List 
(VAR Client : Info_Rec); {Body of the procedure ... } 

[CHECK( OVERFLOW)] FUNCTION Integer_Compute 
(VAR Intl, Int2, Int3 : INTEGER) INTEGER; 
{Body of the function ... } 

PROCEDURE Bounds Check (VAR A_String VARYING[30] OF CHAR; 
VAR Char_Array : ARRAY[l .. 25] OF CHAR; 
VAR Half_Alpha : 'A' .. 'M'); {Body ... } 

For the routines Linked_List and Integer_Compute, VAX Pascal enables 
only the specified options. The procedure Bounds_ Check has only the 
BOUNDS and DECLARATIONS options enabled by default (unless you use 
a compilation switch to override the default). 

For More Information: 

For information on type compatibility, see Section 2.9. 

0.2.8 CLASS_A 

The CLASS_A attribute causes a formal parameter to be passed by an 
array descriptor that describes contiguous arrays of atomic data types or 
contiguous arrays of fixed-length strings. This is the default mechanism 
for conformant array parameters. This attribute is illegal on parameters of 
schema types. 

Consider the following example: 

PROCEDURE Test2( P3 : [CLASS_S] PACKED ARRAY[L .. U: INTEGER] OF CHAR; 
P4 : [CLASS_A] ARRAY[L2 .. U2 : INTEGER] OF REAL); EXTERN; 

This example defines a procedure Test2, which has two parameters. The first 
parameter, P3, is passed by descriptor of CLASS_S. The second parameter, 
P4, is passed by a CLASS_A descriptor. 

For More Information: 

• On VAX Pascal parameter defaults (Section 6.3) 

• On CLASS_A descriptors (Introduction to VMS System Routines) 

Attributes 10-11 



10.2.9 CLASS_NCA 

The CLASS_NCA attribute causes a formal parameter to be passed by a 
noncontiguous array descriptor. This attribute is illegal on parameters of 
schema types. 

For More Information: 

• On VAX Pascal parameter defaults (Section 6.3) 

•· On CLASS_NCA descriptors (Introduction to VMS System Routines) 

10.2.10 CLASS_S 

The CLASS_S attribute causes a formal parameter to be passed by a single 
descriptor form that is used for scalar data artd fixed-length strings. This 
attribute allows routines written in VAX Pascal to accept actual parameters 
from languages, such as VAX FORTRAN, that generate CLASS_S 
descriptors. 

Usage and Default Information: 

• In order to pass a CLASS_S string descriptor, you must use a packed 
conformant array of characters. This overrides the string-descriptor 
default for conformant formal parameters (CLASS_A). 

• This attribute is illegal on parameters of schema types. 

• When the packed conformant array is passed by CLASS_S descriptor, 
the lower bound of the conformant schema is always 1 and the upper 
bound of the conformant schema is the length of the string being passed. 

Consider the following example: 

PROCEDURE Print_String( String_Parm 
[CLASS_S] PACKED ARRAY[LOW .. HIGH: INTEGER] OF CHAR); 

BEGIN 
WRITELN( 'The CLASS_S string is', String_Parm ); 
WRITELN( 'The lowerbound is', Low); 
WRITELN( 'The upperbound is'' High); 

END; 

The previous example defines the procedure Print_String, which has one 
parameter. The CLASS_S attribute on the VAX Pascal routine specifies 
that the calling routine passes the String_Parm parameter by a CLASS_S 
descriptor. 

10-12 Attributes 



For More Information: 

• On VAX Pascal parameter defaults (Section 6.3) 

• On mixed-language programming (VAX Pascal Reference Supplement for 
VMS Systems) 

• On CLASS_A and CLASS_S descriptors (Introduction to VMS System 
Routines) 

0.2.11 COMMON 

The COMMON attribute specifies that storage for a variable be allocated in 
an overlaid program section called a common block. 

COMMON [[( identifier )]] 

If you include an identifier in the attribute, it indicates the name of the 
common block. If you omit the identifier, the name of the variable is used as 
the name of the common block. 

This attribute allows you to share variables with other VAX languages, such 
as FORTRAN. 

Usage and Default Information: 

• A variable having the AT, COMMON, or PSECT attribute is implicitly 
static. 

• The COMMON attribute can be applied only to variables. 

• Only one variable can be allocated in a particular common block. 
Therefore, the name of the common block cannot be used as the name of 
another common block or program section. 

• If a VAX Pascal program shares a record variable with a FORTRAN 
program, the fields must be laid out identically in both common blocks. 

• Variables declared with the COMMON attribute are longword aligned by 
default for compatibility with other VAX languages. 

For More Information: 

• On default allocation for variables declared in the outermost block of a 
program or in nested blocks (Section 10.2.4) 

• On default allocation for variables declared in the outermost block of a 
module (Section 10.2.35) 

• On environment-specific information on common blocks (VAX Pascal 
Reference Supplement for VMS Systems) 

Attributes 10-13 



10.2.12 ENVIRONMENT 

The ENVIRONMENT attribute can be applied to compilation units and 
causes the unit's program or module level declarations and definitions to be 
saved. 

ENVIRONMENT [[( name-string )]] 

If the name string is omitted, the name of the source file is used as the 
environment file name. 

The declarations and definitions made at the outermost level of the 
compilation unit (provided they do not have the AUTOMATIC or HIDDEN 
attribute) are saved in a newly created environment file. If the name string 
is specified, you must include a legal file specification. 

Usage and Default Information: 

• The default file type for an environment file is .PEN. 

• The ENVIRONMENT attribute may not be specified on a program that 
declares nonstatic types or variables of nonstatic types at the outermost 
level. 

• The ENVIRONMENT attribute may be specified on a module that 
declares nonstatic types or variables of nonstatic types at the outermost 
level. 

• Programs and modules may access definitions and declarations in a 
created environment file by using the INHERIT attribute. 

For More Information: 

• On name-string syntax (Section 10.1) 

• On static and nonstatic types (Section 10.2.35) 

• On programs and modules (Section 7.3) 

• On examples of separate compilation (VAX Pascal User Manual) 

10.2.13 EXTERNAL 

The EXTERNAL attribute indicates a variable or routine that is assumed to 
be global in another independently compiled unit. 

EXTERNAL [[( identifier )]] 

If you specify an identifier with EXTERNAL, VAX Pascal supplies that 
name, rather than the identifier being declared, to the linker. 

10-14 Attributes 



Usage and Default Information: 

• The names available to the linker for corresponding global and external 
variables and routines must be identical. 

• Global and external variables are implicitly static. Thus, they conflict 
with the AUTOMATIC attribute. 

• Compilation units cannot have the EXTERNAL or WEAK_EXTERNAL 
attribute. 

• By default, global and external routines have the characteristics of 
unbound routines. 

• External routines must be followed by the directive EXTERN, 
EXTERNAL, or FORTRAN when they are declared. 

Consider the following: 

PROGRAM Freshman_Class; 

[GLOBAL( Sort_Students )] 
PROCEDURE Class_List( VAR Register_List, Sorted List Student Rec ); 
{Procedure body ... } 

{In another compilation unit:} 
MODULE Senior_Class; 

[EXTERNAL( Sort Students)] 
PROCEDURE Roll_Call( VAR Start_List, End_List : Senior_Rec ); EXTERNAL; 

This example shows the global declaration of a procedure with the name 
Sort_Students and an external reference to the same procedure in a different 
compilation unit. 

For More Information: 

• On default visibility attribute information (Section 10.2.23) 

• On the GLOBAL attribute (Section 10.2.15) 

• On the AUTOMATIC attribute (Section 10.2.4) 

• On the UNBOUND attribute (Section 10.2.38) 

• On compiling and linking (VAX Pascal Reference Supplement for VMS 
Systems) 

10.2.14 G_FLOATING 

. The G_FLOATING attribute specifies that the double-precision variables 
and expressions in the compilation unit are to be represented in G_floating 
format. 

Attributes 10-15 



Usage and Default Information: 

• NOG_FLOATING is the default double-precision attribute. 

• All independently compiled units that are linked together should use th4 
same double-precision format. If you are passing data between routines 
written in different compilation units that may be using different 
precisions, you need to check to make sure that the precisions are 
the same. 

• You can use both types of double-precision in the same compilation unit. 
However, they may not be used together in the same expression, and ym 
cannot assign a value of one double-precision format into a variable of 
the other format. 

Consider the following: 

[G_FLOATING, ENVIRONMENT( 'REALDATA.PENl )] MODULE Real_Data; 
{Module declarations ... } 

[G_FLOATING, ENVIRONMENT( 'STRINGDATA.PEN' )] MODULE String_Data; 
{Module declarations ... } 

[G_FLOATING, INHERIT( 'REALDATA.PEN' I 'STRINGDATA.PEN' )] 
PROGRAM Record_Keeping; 

{Program declarations and body ... } 

This example shows the headings of a program and the two modules whose 
environments it inherits. All three compilation units must specify the 
G_FLOATING attribute in order for the G_fioating format of representation 
to be used. 

For More Information: 

• On the NOG_FLOATING attribute (Section 10.2.25) 

• On the precison of G_floating objects (VAX Pascal Reference Supplement 
for VMS Systems) 

10.2.15 GLOBAL 

The GLOBAL attribute provides a strong definition of a variable or routine 
so that other independently compiled units can refer to it. 

GLOBAL [[( identifier )]] 

If you specify an identifier with GLOBAL, VAX Pascal supplies that name, 
rather than the identifier being declared, to the linker. 

10-16 Attributes 



Usage and Default Information: 

• You can apply the GLOBAL attribute to variables, routines, and 
compilation units. 

• Global and external variables are implicitly static. Thus, they conflict 
with the AUTOMATIC attribute. 

• By default, global and external routines have the characteristics of 
unbound routines. 

• You cannot apply the GLOBAL attribute to variables of nonstatic types. 

For More Information: 

• On default visibility attribute information (Section 10.2.23) 

• On an example of GLOBAL and on the EXTERNAL attribute 
(Section 10.2.13) 

• On compiling and linking (VAX Pascal Reference Supplement for VMS 
Systems) 

10.2.16 HIDDEN 

The HIDDEN attribute prevents information concerning a constant 
definition or a type, variable, procedure, or function declaration from 
being included in a generated environment file. The HIDDEN attribute can 
be used only on objects at the outermost level of the compilation unit. 

It is possible to prevent all declarations within a declaration section from 
being included in the environment file by preceding the reserved word 
CONST, TYPE, or VAR with the HIDDEN attribute. 

For More Information: 

For information on environment files, see Section 10.2.12. 

10.2.17 IDENT 

The IDENT attribute can be used to qualify the name of a compilation unit. 
In the absence of an !DENT attribute, the string '01' is supplied to the 
linker. ' 

IDENT( name-string ) 

The name-string can contain additional information whose use is 
implementation specific. The VAX Pascal compiler uses this string to 
supply identification information to the linker. 

Attributes 10-17 



Consider the following: 

[IDENT( '100.5' ),ENVIRONMENT( 'SAMPLE.PEN' )] MODULE SAMPLE; 

In this example, the IDENT string '100.5' is supplied to the linker. 

For More Information: 

• On name-string syntax (Section 10.1) 

• On compiling and linking (VAX Pascal Reference Supplement for VMS 
Systems) 

10.2.18 IMMEDIATE 

The IMMEDIATE attribute causes a formal parameter value in a routine 
declaration to be passed by immediate value. 

Usage and Default Information: 

• The IMMEDIATE attribute can appear only in external routine 
declarations. 

• The IMMEDIATE attribute is not allowed on formal parameters of 
schema types. 

For More Information: 

• On default parameter passing (Section 6.3) 

• On an example of IMMEDIATE and on the REFERENCE attribute 
(Section 10.2.34) 

10.2.19 INHERIT 

The INHERIT attribute indicates the environment file or files to be inherited 
by a compilation unit. The environment files specified by the INHERIT 
attribute must already have been created in compilation units (by either the 
ENVIRONMENT attribute or a compilation switch). 

INHERIT( {name-string},... ) 

The compilation unit inherits one or more environment files named by the 
file specifications in the name strings. The default file type for an inherited 
environment file is .PEN. 

10-18 Attributes 



For More Information: 

• On programs and modules (Section 7.3) 

• On file specifications and on compilation switches (VAX Pascal Reference 
Supplement for VMS Systems) 

• On separate compilation (VAX Pascal User Manual) 

10.2.20 INITIALIZE 

The INITIALIZE attribute can be applied to procedures to indicate that the 
procedure is to be called before the main program is entered. A compilation 
unit might include any number of INITIALIZE procedures, all of which are 
called in an unspecified order before the main program is entered. 

Usage and Default Information: 

• In the absence of the INITIALIZE attribute, the compiler assumes that 
a routine can be activated only by actual calls within the program. 

• Within modules, you should use the TO BEGIN DO section instead of 
the INITIALIZE attribute. All TO BEGIN.DO clauses are executed 
before INITIALIZE routines. 

• By default, INITIALIZE procedures have the characteristics of unbound 
routines. 

• An INITIALIZE procedure cannot have a formal parameter list. 

• An INITIALIZE procedure cannot be external. 

Consider the following: 

PROGRAM Routine_Activate; 

[INITIALIZE] PROCEDURE Check_Open; {Procedure body ... } 

{In the executable section:} 
BEGIN {VAX Pascal activates Check_Open} 

{Body of program ... } 

In this example, the body of the INITIALIZE procedure Check_Open is 
executed before the main program is activated. 

For More Information: 

• On procedures (Section 6.1) 

• On the UNBOUND attribute (Section 10.2.38) 

Attributes 10-19 



10.2.21 KEY 

The KEY attribute can be applied to record fields to indicate that the field is 
to be used as a key field when the record is part of an indexed file. 

KEY [[( { n [[,. {options},... ]] } )]] 
{options}, ... 

The parameter n represents the key number. A key number of 0 indicates 
that the field is the primary key of the record. All other key numbers 
indicate alternate keys. The key number must be a constant expression that 
denotes an integer value in the range from 0 through 254. 

In addition, you can specify certain characteristics of the record key by 
listing the desired options on the KEY attribute. 

Table 10-2 lists the possible KEY attribute options. 

Table 10-2: KEY Attribute Options 

Option Action Negation 

ASCENDING Specifies an ascending collating DESCENDING 
sequence 

CHANGES Specifies that changes can be NOCHANGES 
performed on the key 

DUPLICATES Specifies that duplicates of the NO DUPLICATES 
key are allowed 

Usage and Default Information: 

• If you omit the key number, the default value is 0. 

• By default, the primary key is ASCENDING, NOCHANGES, and 
NODUPLICATES. It is possible to override these defaults, with the 
exception of the NOCHANGES option. It is illegal to specify CHANGES 
on the primary key. 

• The default for an alternate key is ASCENDING, CHANGES, and 
DUPLICATES. 

• When you create a new indexed file with more than one key field, you 
cannot omit any key numbers in the range from 0 through the highest 
key number specified. 

• The KEY attribute is ignored except when the record is a component of 
a file. 

10-20 Attributes 



• A key field can be of any ordinal type or of type PACKED ARRAY OF 
CHAR. If the key field is of type PACKED ARRAY OF CHAR, its length 
cannot exceed 255 characters. 

• The KEY attribute does not affect type compatibility rules. 

• A key field cannot be unaligned. 

• A key field of an ordinal type must be allocated in exactly one byte, one 
word, or one longword. 

• An integer key field that is allocated one byte cannot have negative 
values. 

Consider the following: 

TYPE 
Register = RECORD 

Student No : [KEY( 0, DESCENDING)] INTEGER; 
Student Name : RECORD 

Last Name PACKED ARRAY[l .. 20] OF CHAR; 
First Name : PACKED ARRAY[l .. 15] OF CHAR; 
Initial : CHAR; 
END; 

Course Load INTEGER; 
Grade_Average REAL; 
Class [KEY( 1 )] PACKED ARRAY[l .. 9] OF CHAR; 
END; 

This example defines the identifier Register to denote a record type. The 
first field, Student_N o is the primary key of the record. Notice that it has 
been defined as a DESCENDING, NOCHANGES and NODUPLICATES key. 
Register contains another field, Class, which is established as the alternate 
ASCENDING, CHANGES and DUPLICATES key. 

For More Information: 

• On indexed files (Section 9.1.3) 

• On the UNALIGNED attribute (Section 10.2.37) 

I 0.2.22 LIST 

The LIST attribute can be applied to a formal parameter of a routine and 
indicates that the routine can be called with multiple actual parameters that 
correspond to the last formal parameter named in the routine heading. 

You can also use the ARGUMENT and ARGUMENT_LIST_LENGTH 
predeclared routines when writing procedures and functions that use the 
LIST attribute. 

Attributes 10-21 



Usage and Default Information: 

• In the absence of a LIST attribute, an error results if the number of 
actual parameters exceeds the number of formal parameters. 

• The LIST attribute can be applied only to the last formal parameter in a 
parameter list. 

• You can supply zero, one, or more than one actual parameter to 
correspond to a LIST formal parameter, but you must use positional 
syntax when supplying them. The number of actual parameters you can 
supply is limited to 255. 

• You can use the LIST attribute on the parameter list of a routine 
parameter, but you must use positional syntax when specifying them. 
Using the LIST attribute on routine parameters is allowed only on 
external routines. 

• You can use the LIST attribute on conformant parameters to indicate 
that an external routine can take an arbitrary number of arrays or 
VARYING OF CHAR parameters, respectively. Using the LIST attribute 
on conformant parameters is allowed only on external routines. 

• All actual parameters that correspond to a LIST formal parameter must 
be compatible or congruent with the type of the formal parameter. 

• For formal and actual parameter lists of routine parameters to be 
congruent, the actual routine parameter and the corresponding formal 
routine parameter must either both have the LIST attribute or both lack 
the LIST attribute. Consider the following: 

10-22 Attributes 

PROCEDURE Foo( PROCEDURE q( x : [LIST] CHAR) ); 

This defines the routine Foo with the formal routine parameter q that 
defines the formal list parameter x. Consider the following: 

PROCEDURE Bar( x : [LIST] CHAR); 

This defines Bar to have a formal list parameter x. Consider this call to 
Foo: 

Foo( Bar); 

This calls Foo passing the actual routine parameter Bar. Notice the 
formal parameters of q and Bar contain the LIST attribute; therefore, 
this is a legal call. 



Consider the following: 

PROGRAM Arg_Mech; 

[EXTERNAL( MTH$JMAXO )) FUNCTION JMaxO 
(Int_List : [LIST) INTEGER) : INTEGER; EXTERNAL; 

VAR 
i, j, k, l : INTEGER; 
Int_Array : ARRAY[l .. 10) OF INTEGER; 

{In the executable section:} 
i := JMaxO( j, k, 1, Int_Array[ j+l ], Int_Array[ k+2 ), 

Int_Array[ 1+3 J ); 

The program Arg_Mech illustrates the effect of the LIST attribute on the 
external function MTH$JMAXO. Within the program, this routine is known 
as the function JMaxO. JMaxO is declared with one formal LIST parameter; 
therefore, the function designator in this example contains excess actual 
parameter entries. Any number of integer expressions can be passed as 
actual parameters when JMaxO is called. 

For More Information: 

• On the ARGUMENT function (Section 8.5) 

• On the ARGUMENT_LIST_LENGTH function (Section 8.6) 

• On type compatibility (Section 2.9) 

10.2.23 LOCAL 

The LOCAL attribute indicates that an object is unavailable to other 
independently compiled units. 

Usage and Default Information: 

• By default, all variables and routines are local. 

• Variables with any visibility attribute other than LOCAL are implicitly 
static. 

• Routines with any visibility attribute other than LOCAL cannot refer to 
automatic variables declared in enclosing blocks and can call only those 
routines that are local, predeclared, or unbound. (By default, routines 
declared at program or module level have the characteristics of unbound 
routines.) 

Attributes 10-23 



For More Information: 

• On the AUTOMATIC attribute (Section 10.2.4) 

• On static and nonstatic types (Section 10.2.35) 

• On the UNBOUND attribute (Section 10.2.38) 

10.2.24 LONG 

The LONG attribute specifies the amount of storage in longwords to be 
received by the object. 

LONG [[( n )]] 

The optional constant n indicates the number of longword storage units. 

Consider the following: 

PROGRAM Size; 
TYPE 

Status = [LONG] BOOLEAN; 
VAR 

Return Status : Status; 

FUNCTION Example( Paraml, Param2 : INTEGER ) : Status; EXTERNAL; 
{Function body ... } 

The program Size defines a BOOLEAN type Status and declares a variable 
Return_Status of this type. So, the result type of the function is declared to 
have a size of one longword. The machine code that references the result 
type may not copy the entire longword, as the lower order byte contains 
sufficient room to represent .a Boolean value. 

For More Information: 

For information on VAX Pascal size rules, see Section 10.2.5. 

10.2.25 NOG_FLOATING 

The NOG_FLOATING attribute specifies that the double-precision variables 
and the expressions in the compilation unit are to be represented in 
D_floating format. 

Usage and Default Information: 

NOG_FLOATING is the default double-precision attribute. 

10-24 Attributes 



For More Information: 

• On the G_FLOATING attribute (Section 10.2.14) 

• On the precison of F _floating objects (VAX Pascal Reference Supplement 
for VMS Systems) 

10.2.26 NOOPTIMIZE 

The NOOPTIMIZE attribute prohibits the compiler from optimizing code for 
the compilation unit or routine. 

Consider the following: 

PROGRAM Numbers; 

[NOOPTIMIZE] PROCEDURE Process_Negative; {Procedure body ... } 

This example shows the use of the NOOPTIMIZE attribute to disable 
optimization of the code for the procedure Process_Negative. , VAX Pascal 
optimizes code for the rest of the compilation unit. 

The NOOPTIMIZE attribute guarantees left-to-right evaluation order with 
full evaluation of both operands of the AND and OR Boolean operators to 
aid in diagnosing all potential programming errors. If you wish to have 
short circuit evaluation even with the NOOPTIMIZE attribute, then use the 
AND_THEN and OR_ELSE Boolean operators. 

For More Information: 

• On the OPTIMIZE attribute (Section 10.2.28) 

• On the AND_THEN and OR_ELSE logical operators (Section 4.2.3) 

10.2.27 OCTA 

The OCTA attribute specifies the amount of storage in octawords to be 
received by the object. 

OCTA [[( n )]] 

The optional constant n indicates the number of octaword storage units. 

For More Information: 

• On VAX Pascal size rules (Section 10.2.5) 

• On default sizes of objects (VAX Pascal Reference Supplement for VMS 
Systems) 

Attributes 10-25 



10.2.28 OPTIMIZE 

The OPTIMIZE attribute specifies optimization options that are to be 
enabled during compilation of a compilation unit or routine. 

OPTIMIZE [[( {identifier}, ... )]] 

The options listed with the OPTIMIZE attribute are enabled. The negations 
of options disable optimization of those options. Table 10-3 presents the 
program options for VAX Pascal to optimize~ 

Table 10-3: OPTIMIZE Attribute Options 

Option 

ALL 

INLINE 

Action Negation 

Enables all optimization components NONE 

Enables inline expansion of user-defined NOINLINE 
routines 

Usage and Default Information: 

• If you omit the list of options, all positive options are enabled. 

• If an explicit OPTIMIZE( INLINE ) attribute exists on a routine 
declaration, the compiler checks for anything that prohibits the routine 
from being inline expanded, such as being an external routine. However, 
the compiler does not check the call environment, such as the size of the 
calling and called routine. Instead, if it is legal to expand the routine, it 
always expands the code regardless of the call environment. This gives 
you more control over the decision to inline a routine. 

• VAX Pascal does not inline routines that have formal parameters of 
nonstatic types, or that declare or access objects of nonstatic types. 

For More Information: 

• On the NOOPTIMIZE attribute (Section 10.2.26) 

• On the rules for routine inlining (VAX Pascal Reference Supplement for 
VMS Systems) 

10-26 Attributes 



10.2.29 OVERLAID 

The OVERLAID attribute indicates how storage should be allocated for 
variables declared within a compilation unit. If you specify OVERLAID on a 
compilation unit, the variables declared at program or module level (unless 
they have the STATIC or PSECT attribute) overlay the storage of static 
variables in all other overlaid compilation units. 

Usage and Default Information: 

• By default, variables are not stored in overlaid compilation units. 
This attribute is intended for use only with programs that use the 
decommitted separate compilation facility provided by VAX Pascal 
Version 1.0. 

• This attribute is not allowed on a compilation unit that contains or uses 
nonstatic types at the outermost level. 

For More Information: 

• On static and nonstatic types (Section 2.8) 

• On the PSECT attribute (Section 10.2.31) 

10.2.30 POS 

The POS attribute forces the field to a specific bit position within the record. 

POS(n) 

The constant expression n specifies the bit location, relative to the beginning 
of the record, at which the field begins. 

Usage and Default Information: 

• The POS attribute can be applied to a field of a packed or an unpacked 
record. 

• The constant expression n cannot denote a negative integer. 

• The beginning position of a field must be greater than the ending 
position of the field preceding it. 

• The POS attribute cannot be used on a field that follows (not necessarily 
immediately) a field whose type has run-time size and is nonstatic. 

• Inside a record variant, the beginning position of a field must be greater 
than the ending position of the preceding field within the same variant. 
The variants themselves may overlap. 

Attributes 10-27 



• 

• 

• 

• 

A record variable containing a field of a file type cannot include a POS 
attribute for any field. 

A field whose allocation size is greater than 32 bits must be positioned 
on a byte boundary. 

The specified bit position must not conflict with the alignment explicitly 
required by an alignment attribute. 

'I\vo record types in which corresponding fields are not identically 
positioned are neither assignment compatible nor structurally 
compatible. 

Consider the following: 

TYPE 
Control = RECORD 

Flag_l 
Flag_2 
Count 
Error 
END; 

[ BIT, POS( 0 ) ] BOOLEAN; 
[ BIT, POS( 1 ) ] BOOLEAN; 
[BYTE, ALIGNED] 0 .. 100; 
[ BIT, POS( 31 ) ] BOOLEAN; 

This example uses the POS attribute to position the fields of an unpacked 
record such that Flag_l occupies bit 0, Flag_2 occupies bit 1, and Error 
occupies bit 31. Because the Count field has size and alignment attributes, 
it is allocated one byte of storage and is aligned on the byte boundary 
following Flag_2; that is, storage for Count occupies bits 8 through 15. Bits 
2 through 7 and 16 through 30 are left empty; you cannot refer to them. 

For More Information: 

• On static and nonstatic types (Section 2.8) 

• On type compatibility (Section 2.9) 

• On default positioning of record fields (VAX Pascal Reference Supplement 
for VMS Systems) 

10.2.31 PSECT 

The PSECT attribute is useful for placing static variables and executable 
blocks in program sections that are shared among executable images. 

PSECT( identifier ) 

The identifier designates the program section in which storage for a variable, 
routine, or compilation unit is to be allocated. This name can designate a 
program section that is created by the compiler or by the user. Storage for 
the object remains allocated as long as the executable image in which the 
object was declared remains active. 

10-28 Attributes 



Usage and Defau It Information: 

• A variable having the AT, COMMON, or PSECT attribute is implicitly 
static. 

• PSECT is the only allocation attribute that can be applied to routines 
and compilation units. 

For More Information: 

• On default allocation for variables declared in the outermost block of a 
program or in nested blocks (Section 10.2.4) 

• On default allocation for variables declared in the outermost block of a 
module (Section 10.2.35) 

• On program sections (VAX Pascal Reference Supplement for VMS 
Systems) 

10.2.32 QUAD 

The QUAD attribute specifies the amount of storage in quadwords to be 
received by the object. 

QUAD [[( n )]] 

The optional constant n indicates the number of quadword storage units. 

For More Information: 

• On VAX Pascal size rules (Section 10.2.5) 

• On default sizes of objects (VAX Pascal Reference Supplement for VMS 
Systems) 

10.2.33 READONLY 

The READONLY attribute specifies that an object can be read by a program, 
but cannot have values assigned to it. 

Usage and Default Information: 

• This attribute can be applied to variables, formal parameters, the base 
types of pointer variables, and components of structured variables. 

• By default, an object can be both read and written. 

• No value of any type is assignment compatible with a read-only object. 

Attributes 10-29 



• The presence of a read-only component in an object of a structured type 
prohibits the object from having values assigned to it. 

• A read-only actual VAR parameter can be passed only to a read-only 
formal VAR parameter. 

• A pointer expression whose base type is read-only is assignment 
compatible only with a pointer variable whose base type is also read-only. 

Consider the following example: 

TYPE 
t = RECORD 

i : INTEGER; 
END; 

P_Read_Only = A [READONLYJ t; 
VAR 

Pro : P_Read_Only; 
Prw:AT; 

PROCEDURE q( p : P_Read_Only); 
VAR 

x : INTEGER; 
BEGIN 
X := pA.i; 
{More statements ... } 
END; 

{In the executable section:} 
NEW( Pro ) : 
NEW ( Prw ) ; 
Q ( Pro ) ; 
Q( Prw ) ; 
PrwA. I := 0; 

This example shows the declaration of two pointer variables, Pro and Prw, 
and the calls to NEW that create the dynamic variables Pro" and Prw". 
The type of the formal parameter p requires that a corresponding actual 
parameter have read access; therefore, both Pro and Prw can legally be 
passed to Q as actual parameters. Because Pis a READONLY parameter, 
the value of the dynamic variable P" (which corresponds to either Pro" or 
Prw") can be assigned to a variable, as shown in the assignment statement 
in the body of Q. However, only Prw" can have values assigned to it, as 
shown in the last statement. 

For More Information: 

• On the NEW procedure (Section 8.50) 

• On parameters (Section 6.3) 

• On type compatibility (Section 2.9) 

10-30 Attributes 



10.2.34 REFERENCE 

The REFERENCE attribute causes the formal parameter value in a routine 
to be passed by reference using foreign semantics. 

Usage and Default Information: 

• The REFERENCE attribute can appear only in external routine 
declarations. 

• The REFERENCE attribute is not allowed on formal parameters of 
schema types. 

Consider the following: 

PROCEDURE Testl( Pl : [REFERENCE] INTEGER; 
P2 : [IMMEDIATE] INTEGER); EXTERNAL; 

This example defines a procedure, Test!, which has two parameters. The 
first parameter, Pl, is passed by reference. The second parameter, P2, is 
passed by immediate value. 

For More Information: 

• On default parameter passing (Section 6.3) 

• On the IMMEDIATE attribute (Section 10.2.18) 

10.2.35 STATIC 

The STATIC attribute causes VAX Pascal to create a static object, which 
is allocated only once and which exists as long as the executable image in 
which it is allocated remains active. 

Usage and Default Information: 

• You can override the default (automatic) for variables declared in nested 
blocks or in the outermost level of compilation units by specifying the 
STATIC attribute on the variable. 

• By default, variables declared at the outermost level of a module are 
static. 

• Global and external variables are implicitly static. Thus, they conflict 
with the AUTOMATIC attribute. 

Attributes 10-31 



• A variable having the AT, COMMON, or PSECT attribute is implicitly 
static. 

• Allocation attributes may not be applied to nonstatic types. 

Consider the following example: 

PROGRAM Print_Random( OUTPUT); 

VAR 
i : [AUTOMATIC] INTEGER; 

FUNCTION Random : INTEGER; 
VAR 

x : [STATIC] INTEGER VALUE 15; 
BEGIN 
x := (( 9 * x) + 7) MOD 11; 
Random := x; 
END; 

{In the executable section:} 
FOR i := 1 TO 20 DO 

WRITELN( Random); 
END. 

The program Print_Random includes a function that generates a random 
integer. Because the variable xis declared STATIC, its value is preserved 
from one activation of the function to the next. By default, the storage for 
x would have been deallocated when control returned to the main program. 
Because xis static, it retains the value it had when Random ended and 
assumes this value the next time Random is called. In the program 
Print_Random, the program-level variable i is declared AUTOMATIC. 

For More Information: 

• On the AUTOMATIC attribute (Section 10.2.4) 

• On allocation attributes (Section 10.3) 

• On default storage of objects (VAX Pascal Reference Supplement for VMS 
Systems) 

10.2.36 TRUNCATE 

The TRUNCATE attribute indicates that an actual parameter list for a 
routine can be truncated at the point that the attribute was specified. 
(TRUNCATE can be used with the PRESENT function.) 

10-32 Attributes 



Usage and Default Information: 

• This attribute can be specified on a formal parameter in a routine 
declaration. 

• If a parameter with the TRUNCATE attribute is specified either in the 
actual parameter list or is specified by default, the list is not truncated 
at that point, and any parameters that follow must be present in the 
actual parameter list (unless they also have the TRUNCATE attribute, 
or are present by default). 

• If a parameter is physically positioned after the TRUNCATE parameter 
in the formal parameter list, and is present (or defaulted), then the list 
is not truncated at the TRUNCATE parameter, and any parameters 
after the TRUNCATE parameter must be present (or present by default) 
up to the next parameter that specifies the TRUNCATE attribute. 

• You can specify actual parameters· either positionally or non positionally; 
it is the order in the formal parameter list that is used to determine 
where the list has been truncated and which parameters are required. 

Consider the following example: 

PROGRAM Trunc( OUTPUT); 
VAR 

w CHAR VALUE 'w'; 
x : CHAR VALUE 'x'; 
y : CHAR VALUE 'y'; 
z : CHAR VALUE 'z'; 

PROCEDURE p( a [TRUNCATE] 
b 

BEGIN 

c [TRUNCATE] 
d 

CHAR 
CHAR 
CHAR 
CHAR 

:= 
:·= 
.-
.-

IF PRESENT( a 
IF PRESENT( b 
IF PRESENT( c 
IF PRESENT( d 

THEN WRITE( a); 
THEN WRITE ( b ) ; 
THEN WRITE( c ); 
THEN WRITE ( d ) ; 

WRITELN; 
END; 

{In the executable section:} 
{ CALL LIST 

, a'; 
'b'; 
, c'; 
'd' ) ; 

p; NO PARAMETERS--TRUNCATE AT a 
p (); DEFAULT a AND b--TRUNCATE AT 
p (,); DEFAULT a AND b--TRUNCATE AT 
p (,,); DEFAULT a, b, c AND d 
p (,,,); DEFAULT a, b, c AND d 
p( w ) ; DEFAULT b--TRUNCATE AT c 
p( w, x ) ; TRUNCATE AT c 
p( w, x, y ) ; DEFAULT d 
p( w, x, y, z ) ; { NO DEFAULTS 

____ . _ _/ 

RESULT 

c "a:b" 
c "ab" 

"abed" 
"abed" 
"wb" 
"wx" 
"wxyd" 
"wxyz" 

Attributes 1 o-33 



p( a := w DEFAULT b--TRUNCATE AT c "wb" 
p( b := x DEFAULT a--TRUNCATE AT c "ax" 
p( c := y DEFAULT a, b AND d "abyd" 
p( d := z ) ; DEFAULT a, b AND c "abcz" 

In this example, each call to procedure p in the main body of the program 
has a comment that shows the expected parameter list behavior and the 
expected output. The parameter list is truncated at either parameter a or 
parameter c. 

If parameters b and d did not have defaults, the call p( w ) or p( w, x, y ) 
would be illegal because the list cannot be truncated at the second or fourth 
positions. 

For More Information: 

• On the PRESENT function (Section 8.58) 

• On parameters (Section 6.3) 

10.2.37 UNALIGNED 

The UNALIGNED attribute specifies that an object can be aligned on any 
bit boundary. 

Usage and Default Information: 

• Alignment attributes are illegal on nonstatic types, components of files, 
and on VARYING OF CHAR strings. 

• In VAX Pascal, an unaligned variable cannot have an allocation size 
greater than 32 bits. 

• A formal parameter cannot be unaligned. Thus, an unaligned variable 
cannot be passed to a formal variable parameter. 

• The base type of a pointer variable passed to the NEW procedure cannot 
have alignment greater than a quadword, nor can it be unaligned. 

For More Information: 

• On allocation size attributes (Section 10.3) 

• On VAX Pascal alignment rules (Section 10.2.1) 

10-34 Attributes 



10.2.38 UNBOUND 

The UNBOUND attribute specifies that a routine does not access automatic 
variables outside the scope in which it is declared. That is, the bound 
procedure value of an unbound routine does not include the static scope 
pointer. 

Usage and Default Information: 

• This attribute can be applied to routines and formal routine parameters. 

• In the absence of an UNBOUND attribute, the compiler assumes that 
the bound procedure value of a routine includes the static scope pointer. 

• By default, all predeclared routines and all routines declared at program 
or module level have the characteristics of unbound routines. All 
routines declared in nested blocks are considered bound unless they have 
an UNBOUND, GLOBAL, WEAK_GLOBAL, or INITIALIZE attribute. 

• All routines called from within the block of an unbound routine must be 
local to the unbound routine, or be unbound, whether by default or by an 
explicit attribute. 

• Nonlocal variables accessed from within the block of an unbound routine 
cannot have automatic allocation. 

• If a formal routine parameter is unbound, all actual routine parameters 
passed to it must also be unbound. 

• You can pass an unbound routine as an actual parameter to a formal 
routine parameter that is not unbound. 

Consider the following: 

[EXTERNAL] FUNCTION f( [IMMEDIATE, UNBOUND] PROCEDURE Count ) 
: BOOLEAN; EXTERNAL; 

PROCEDURE a; 
VAR 

i : [STATIC] INTEGER; 
b : BOOLEAN; 

[UNBOUND] PROCEDURE p; 
BEGIN 
i := i + 1; 
{Additional statements ... } 
END; 

b := f( p ); 
END; 

Attributes 10-35 



This example illustrates the declaration of the unbound procedure p and th€ 
unbound formal procedure parameter Count. Note that the executable 
section of p cannot access variables declared in the enclosing block of 
procedure a unless those variables are statically allocated. Thus, procedure 
p can access the variable i, which is declared with the STATIC attribute~ bu1 
cannot access the variable b, which is automatically allocated. Because the 
formal parameter Count is unbound, only other unbound routines (such as 
p) can be passed to function fas actual parameters. Count must be declared 
UNBOUND because it is passed by immediate value. 

For More Information: 

• On the AUTOMATIC attribute (Section 10.2.4) 

• On parameters (Section 6.3) 

10.2.39 UNSAFE 

The UNSAFE attribute indicates that an object can accept values of any 
type without type checking. The exact properties of an unsafe object depend 
on the object's machine representation. 

Usage and Default Information: 

• This attribute can be applied to variables, formal parameters, formal 
discriminants, the base types of pointer variables, components of 
structured variables, function results, and the types of other data items 
listed in Table 10-6. 

• A conformant VARYING parameter or a formal schema parameter 
cannot be declared UNSAFE. 

• UNSAFE is the only attribute allowed on schema formal discriminants. 

• An expression of any type is assignment compatible with an unsafe 
object. However, neither the expression nor the object can contain a file 
component. If the machine representations of the expression and the 
unsafe object differ, the compiler forces them to have the same number 
of bits by modifying the value of the expression as follows: 

10-36 Attributes 

Assignment to a variable with the UNSAFE attribute causes the 
value of the right-hand side to be truncated or zero-extended to the 
bit size of the left-hand variable. Note this may not always be its 
natural bit size; for example, if the variable you are assigning a 
value to was declared with an explicit size attribute. If that value 
is the legal value of the left-hand type, then the assignment occurs; 
otherwise, the variable is undefined. 



The UNSAFE attribute has no effect on variable fetches. 

Consider the following examples: 

v : [LONG, UNSAFE] ( aa, bb, cc); 

As an enumeration of less than 256 elements, its natural size is one byte. 
But because of the LONG attribute, it is allocated a longword in memory. 
However, all fetches from the variable are BYTE fetches, because 
the explicit size attribute has no effect on any fetches. Assignments 
correctly assign the lowest byte of V, but the contents of the extra bits 
are zero-extended after the assignment. 

• A pointer expression is assignment compatible with a pointer variable 
whose base type is unsafe only if the base types have the same allocation 
size and if they have compatible alignment, READONLY, VOLATILE, 
and WRITEONLY attributes. 

• An actual parameter variable can be passed to an unsafe formal VAR 
parameter if the types have the same allocation size and if they have 
compatible alignment, READONLY, VOLATILE, and WRITEONLY 
attributes. 

• When a formal parameter is an unsafe conformant array, the VAX 
Pascal compiler must be able to establish bounds for the corresponding 
actual parameter that exactly describe the amount of storage the 
parameter occupies. If the conformant array is one-dimensional, the 
actual parameter need not be an array. The compiler constructs the 
bounds of the formal array so that the actual parameter and the formal 
array have the same size. 

For this construction to be possible, the size of the actual parameter 
must be an exact multiple of the size of the formal array component. 
The compiler chooses the low bound of the formal parameter's index to 
be the smallest possible value of the index type. If the formal conformant 
parameter is a multidimensional array with n dimensions, the actual 
parameter must be an array having no fewer than n-1 dimensions. The 
first n-1 dimensions of the two arrays will have identical array bounds. 
The compiler chooses bounds for the last dimension of the conformant 
array so that the conformant as a whole describes the exact size of the 
actual parameter. 

Attributes 10-37 



VAX Pascal allows you to pass an actual parameter of a schema type 
to the an unsafe conformant array; however, since VAX Pascal cannot 
determine the size of the actual parameter until run-time, you must be 
sure that the actual parameter is an exact multiple of the size of the 
formal array component. 

Consider the following example: 

PROGRAM Output_Buffer( Data_File ); 
TYPE 

Natural= O .. MAXINT; 
VAR 

Data File 
Int_Array 
A_String 
Chr_Array 
Status 

FILE OF ARRAY[0 .. 511] OF CHAR; 
ARRAY[0 .. 1023] OF INTEGER; 
VARYING[2048] OF CHAR; 
ARRAY[O .. 4095] OF CHAR; 
BOOLEAN; 

FUNCTION Put_Buf( VAR Buffer : 

VAR 

[UNSAFE] ARRAY[ a .. b Natural] OF CHAR) 
: BOOLEAN; 

Cur [STATIC] INTEGER VALUE 0; 
i INTEGER; 

BEGIN 
FOR i .- a TO b DO 

BEGIN 
Data_FileA(Cur] := Buffer[i]; 
Cur := Cur + 1; 
IF Cur > 511 THEN 

BEGIN 
PUT( Data_File); 
Cur := O; 
END; 

END; 
Put_Buf := (Cur= 0); 
END; 

{In the executable section:} 
Status :=Put Buf( Int Array); 
Status := Put=Buf( A_String ); 
Status := Put_Buf( Chr_Array ); 

The function Put_Buf assigns successive components of the conformant array 
parameter to the file buffer variable of Data_File. If Data_File" is filled, the 
function returns TRUE; otherwise, it returns FALSE. 

The program issues three calls to Put_Buf. In the first and second calls, the 
actual parameters are not of the same type as the formal parameter Buffer. 
However, because Buffer has the UNSAFE attribute, it accepts an actual 
parameter of any type and treats it as though it were an array of characters. 
The third call to Put_Buf passes an actual parameter of the same type as 
the formal parameter. 

10-38 Attributes 



For More Information: 

• On type compatibility (Section 2.9) 

• On machine representation of data (VAX Pascal Reference Supplement 
for VMS Systems) 

10.2.40 VALUE 

The VALUE attribute causes the variable to be a reference to an external 
constant or to be the defining point of a global constant. 

Usage and Default Information: 

• The VALUE attribute can be used only on a variable that has the 
EXTERNAL or GLOBAL attribute. 

• A value variable with global visibility must be initialized in the VAR, 
TYPE, or VALUE declaration sections. 

• The VALUE attribute cannot be applied to variables larger than 32 bits. 

• The VALUE attribute is legal only on ordinal or real types. 

• The VALUE attribute causes the READONLY attribute to be placed on 
the variable. 

Consider the following: 

PROGRAM Value_Test( OUTPUT ); 
VAR 

CLI$_PRESENT : [VALUE, EXTERNAL] INTEGER; 
My_Global : [VALUE, GLOBAL] INTEGER VALUE 1985; 

{In the executable section:} 
WRITELN( 'The value is' I CLI$_PRESENT ); 

The linker resolves the reference to CLl$_PRESENT, and the example writes 
the decimal value to OUTPUT. This example also defines a global symbol 
with the name My_Global and with a value of 1985. 

For More Information: 

• On the EXTERNAL attribute (Section 10.2.13) 

• On the GLOBAL attribute (Section 10.2.15) 

• On the READONLY attribute (Section 10.2.33) 

Attributes 10-39 



10.2.41 VOLATILE 

The VOLATILE attribute indicates to the compiler that the value of 
an object is subject to change at unusual points in program execution. 
Normally, during execution, an object's value generally changes only under 
the following circumstances: 

• When another value is assigned to it 

• When it is passed as a writeable VAR parameter 

• When it is read into by a READ, READLN, or READV procedure 

• When it is used as the control variable of a FOR loop 

In addition, the compiler expects to evaluate the object only when it appears 
in an expression. 

The value of a volatile object may change as the result of an action not 
directly specified in the program. Thus, the compiler assumes that the 
value of a volatile object can be changed or evaluated at any time during 
program execution. Consequently, a volatile object does not participate in 
any optimization based on assumptions about its value. 

The behavior of many device registers, and modifications by asynchronous 
processes and exception handlers, are two examples that demonstrate 
volatile behavior. 

Usage and Default Information: 

• This attribute can be applied to variables, formal parameters, the base 
types of pointer variables, components of structured variables, and 
function results. 

• By default, objects are not volatile. 

• An object of a structured type that has a volatile component is volatile as 
a whole. However, the presence of a volatile component does not make 
other components of the same variable volatile. 

• The presence of the VOLATILE attribute guarantees that operations are 
performed on scalar objects in a single machine instruction. Because 
operations on structured objects may require more than one instruction, 
the use of the VOLATILE attribute on an object of a structured type may 
not produce the expected results. 

• A volatile variable is structurally compatible only with a formal variable 
parameter that is volatile. 

1 G-40 Attributes 



• A pointer expression whose base type is volatile is assignment 
compatible only with a pointer variable whose base type is volatile. 

• Two pointer types are structurally compatible only if their base types 
have identical volatility. 

Consider the following: 

VAR 
x : CHAR; 
a : [VOLATILE] RECORD 

CASE BOOLEAN OF 
FALSE ( i INTEGER); 
TRUE : ( c : CHAR ) ; 

END; 
{In the executable section:} 
a.c .- 'A'; {TRUE becomes the current variant} 
a.i 66; {Assignment makes FALSE the current variant} 
x a.c; {TRUE is again the current variant; 

X is assigned the value 'B', which 
has an ordinal value of 66} 

As the comments in this example show, a reference to one field identifier 
causes the corresponding variant to become the current variant. In addition, 
each reference immediately causes the other variant to become undefined. 
So, when the assignment a.i := 66 is made, the reference to a.i causes FALSE 
to become the current variant and a.c to become undefined. As a result of 
the statement x := a.c, the value last assigned to the variant is assigned to x. 
Ordinarily the compiler could assume that a.c had retained the value 'A', 
because no further assignments had been made directly to a.c. However, the 
value of a.c changed unexpectedly through the assignment to a.i. Therefore, 
unless the record a is declared VOLATILE, the result of the assignment 
x := a.c would be undefined because the compiler's legitimate assumptions 
had been incorrect. 

Consider the following: 

PROGRAM Volatility( OUTPUT); 
VAR 

Pint A[VOLATILE] INTEGER; 
i INTEGER; 

[VOLATILE] INTEGER; 
a ARRAY[0 .. 10] OF INTEGER; 

{In the executable section:} 
NEW( Pint); 
i 0; 

:= O; 
PintA := 0; 

{Compiler may assume i = 0, makes no assumptions about j} 
WRITELN( i, j, Pint A, a[i] ) ; {Values are 0, 0, O, a[O] 
Pint :=ADDRESS( j ); {PintA now j} 
PintA := l; {Therefore j now = l} 

Attributes 10-41 



{Compiler may assume i = 0, makes no assumptions about j} 
WRITELN( i, j, PintA, a[i] ) ; {Values are 0, 1, 1, a[O)} 
Pint :=ADDRESS( i ); {Causes a warning message 

since i is not VOLATILE} 
PintA := 2; 

{Compiler may assume i = 0 and a[I] = a(OJ, 
May make no assumptions about j} 
WRITELN( i, j, PintA, a[i] ); {Actual values are 2, 1, 2, a[2]} 

This example assigns values to the variables i and j and to the newly 
created variable Pint". The comments illustrate the difference between 
the assumptions the compiler can legally make about the values of the 
variables and the values actually contained in the variables. The compiler's 
assumption about the value of i was incorrect because the value of i changed 
unexpectedly. The ADDRESS( i ) call caused Pint to point to i (that is, Pint" 
and i became the same variable). When Pint" was assigned the value 2, the 
variable i also received the value 2. Since i had been initialized to 0 and 
was not directly referred to in the rest of the program, the compiler assumed 
that a reference to i at this point would be equivalent to a reference to 
0. Likewise, the compiler also assumed that a reference to a[i] would be 
equivalent to a reference to a[O]. In fact, however, when execution ceases, 
the value of i is 2 and the value of a[i] is the value of a[2]. 

Depending on the optimizations the compiler made based on the value of i, 
any operations performed after the unanticipated assignment to i could yield 
unexpected results. Because j was declared VOLATILE, the compiler did not 
optimize code based on the value of j. Therefore, any reference to j yields the 
expected results. 

The ADDRESS( i ) call in this program causes a warning message. The VAX 
Pascal compiler assumes that pointer variables point only to variables in 
heap-allocated storage and not to statically allocated, nonvolatile variables 
such as i. So, ADDRESS( i) in this case differs from the expected usage. 

For More Information: 

• On use of VOLATILE with the ASYNCHRONOUS attribute 
(Section 10.2.2) 

• On the VOLATILE attribute or on exception handlers (VAX Pascal 
Reference Supplement for VMS Systems) 

10-42 Attributes 



0.2.42 WEAK_EXTERNAL 

The WEAK_EXTERNAL attribute specifies that a variable or routine is not 
critical to the linking operation. To resolve a weak reference, the linker 
searches only the named input modules. 

WEAK_EXTERNAL [[(identifier)]] 

You can specify an identifier with this attribute to indicate the name by 
which the corresponding object is known to the linker. Compilation units 
cannot have the EXTERNAL or WEAK_EXTERNAL attribute. 

For More Information: 

• On the EXTERNAL attribute (Section 10.2.13) 

• On linking (VAX Pascal Reference Supplement for VMS Systems) 

0.2.43 WEAK_GLOBAL 

The WEAK_GLOBAL attribute specifies that an object is linked only when it 
is specifically included in the linking operation. To resolve a weak reference, 
the linker searches only the named input modules. 

WEAK_GLOBAL [[( identifier)]] 

You can specify an identifier to indicate the name by which the 
corresponding object is known to the linker. 

For More Information: 

• On the GLOBAL attribute (Section 10.2.15) 

• On linking (VAX Pascal Reference Supplement for VMS Systems) 

0.2.44 WORD 

The WORD attribute specifies the amount of storage in words to be received 
by the object. 

WORD [[( n)]] 

The optional constant n indicates the number of word storage units. 

Attributes 10-43 



For More Information: 

• On VAX. Pascal size rules (Section 10.2.5) 

• On default sizes according to type (VAX Pascal Reference Supplement for 
VMS Systems) 

10.2.45 WRITEONLY 

The WRITEONLY attribute specifies that an object can have values assigned 
to it but cannot be read by a program. 

Usage and Default Information: 

• This attribute can be applied to variables, formal parameters, the base 
types of pointer variables, and components of structured variables. 

• By default, objects can be both read and written. 

• A write-only object cannot be used in expressions. 

• A write-only component in an object of a structured type prohibits the 
object from being read. 

• A write-only actual variable parameter can be passed only to a formal 
variable parameter that is write-only. 

• A pointer expression whose base type is write-only is assignment 
compatible only with a pointer variable whose base type is write-only. 

Consider the following: 

PROGRAM SAMPLE; 
TYPE 

W_Only = [WRITEONLY] INTEGER; 
VAR 

Writ Int : W_Only; 
Norm Int : INTEGER; 

PROCEDURE Try_Access( VAR Write_Param W_Only ); EXTERNAL; 

{In the executable section:} 
Writ_Int := SQR( Norm_Int ); 
Try_Access( Writ_Int ); 

This example shows legal statements involving write-only variables. The 
write-only variable Writ_Int is assigned the result of the square root 
operation, and is then passed as an actual parameter to a write-only formal 
parameter. 

For More Information: 

For information on the READONLY attribute, see Section 10.2.33. 

10-44 Attributes 



I 0.3 Attribute Classes . 

An attribute class can consist of a single attribute or of several attributes 
with a common characteristic. Table 10-4 lists the classes and their 
attributes. 

Table 10-4: Attribute Classes 

Class Attributes 

Alignment ALIGNED, UNALIGNED 

Allocation AT, AUTOMATIC, 
COMMON, STATIC, 
PSECT 

Asynchronous ASYNCHRONOUS 

Check CHECK 

Double G_FLOATING, 
precision NOG_FLOATING 

Environment ENVIRONMENT 

Hidden HIDDEN 

Ident ID ENT 

Inherit INHERIT 

Description of Attributes 

Indicate whether the object should 
be aligned on a specific address 
boundary in memory. 

Indicate the form of storage that the 
object should occupy. 

Indicates that the routine may be 
called by an asynchronous event, such 
as a condition handler. 

Indicates error-checking options to be 
enabled or disabled. 

Indicate the type of precision to use 
for objects of type DOUBLE. 

Indicates that VAX Pascal creates 
an environment file, which allows 
compilation units to sh.are data 
definitions and declarations. 

Indicates exclusion of a declaration or 
definition from a created environment 
file. 

Indicates the identification of a 
compilation unit to be passed to the 
linker. 

Indicates that the compilation 
unit can use the definitions and 
declarations specified in the inherited 
environment file. 

(continued on next page) 

Attributes 10-45 



Table 10-4 (Cont.): Attribute Classes 

Class Attributes 

Initialize INITIALIZE 

Key KEY 

List LIST 

Optimization OPTIMIZE, 
NOOPTIMIZE 

Overlaid OVERLAID 

Parameter CLASS_A, CLASS_NCA, 
passing CLASS_S, IMMEDIATE, 

REFERENCE 

Pos POS 

Read-only READONLY 

Size BIT, BYTE, WORD, 
LONG, QUAD, 
OCTA 

Truncate TRUNCATE 

Unbound UNBOUND 

Unsafe UNSAFE 

10-46 Attributes 

Description of Attributes 

Indicates that the procedure is to be 
called before execution of the main 
program. 

Indicates key information for a record 
field that is used when accessing data 
in an indexed file. 

Indicates that the routine can be 
called with actual parameter lists of 
various lengths. 

Indicate whether VAX Pascal should 
optimize code. 

Indicates how storage should be 
allocated for variables. 

Indicate the passing mechanism to be 
used for a parameter. 

Indicates that a record field should be 
forced to a specific bit position. 

Indicates that the object can be read 
but cannot be written to. 

Indicate the amount of storage to· be 
reserved for the object. 

Indicates that the actual parameter 
list can be truncated at the position of 
this attribute in the formal parameter 
list. 

Indicates that the routine does not 
access automatic variables outside its 
scope. 

Indicates that an object can accept 
values of any type without type 
checking. 

(continued on next page) 



Table 10-4 (Cont.): Attribute Classes 

Class 

Value 

Visibility 

Volatile 

Write-only 

Attributes 

VALUE 

LOCAL, EXTERNAL, 
GLOBAL, 
WEAK_EXTERNAL, 
WEAK_ GLOBAL 

VOLATILE 

WRITE ONLY 

Description of Attributes 

Indicates that the variable is a 
reference to an external constant 
or is the defining point of a global 
constant. 

Indicate the ability of an object to be 
shared by compilation units. 

Indicates that the value of an object 
may change at unusual points in 
program execution. 

Indicates that the object can be 
written to but cannot be read. 

Some attributes are allowed to appear on routine declarations, routine 
parameters, and compilation units. Table 10-5 lists these attribute classes. 

'able 10-5: Attributes on Routines and Compilation Units 

a ass 

Jlocation 

'8ynchronous 

:heck 

louble-precision 

:nvironment 

:lent 

1herit 

1itialize 

rist 

Routine 
Parameter 

No 

Yes 

No 

No 

No 

No 

No 

No 

Yes2 

?SECT is the only allocation attribute allowed. 
\!lowed only on EXTERNAL routine definitions. 

Program Element 

Compilation 
Routine Unit 

Yes1 Yes1 

Yes No 

Yes Yes 

No Yes 

No Yes 

No Yes 

No Yes 

Yes No 

No No 

(continued on next page) 

Attributes 10-47 



Table 10-5 {Cont.): Attributes on Routines and Compilation Units 

Class 
Program Element 

Routine Compilation 

Optimization 

Overlaid 

Truncate 

Unbound 

Visibility 

Parameter 

No 

No 

Yes 

Yes 

No 

3EXTERNAL and WEAK_EXTERNAL are not allowed. 

Routine Unit 

Yes Yes 

No Yes 

No No 

Yes No 

Yes Yes3 

Attribute classes are allowed on various data items. Table 10-6 lists the 
classes that can be applied to various data items. 

Table 10-6: Attributes on Data Items 

Class 
Data Item 

Pointer 
Formal Base Function Various 

Variable Parameter Type Component1 Result Items2 

Alignment Yes3 Yes4 Yes4 Yes5 Yes No 

Allocation Yes 6 No No No No No 

Hidden Yes No Yes No No No 

Key No No No Yes7 No No 

List No Yes8 No No No No 

1 Component of a record, array, VARYING OF CHAR string, or file· (includes conformant parameters). 
2Index of an array, tag field of a variant record (when no tag identifier is present), base type of a set, formal 
discriminant. 
3Variables of nonstatic types must be byte aligned. 
4UNALIGNED not allowed. 
5Not allowed on components of files or VARYING OF CHAR strings. 
6Not allowed on variables of nonstatic types. 
7 Allowed only on record fields (including the tag field of a variant record). 
8Procedure parameters and conformant parameters are allowed only on EXTERNAL routines. 

(continued on next page) 

10-48 Attributes 



Table 10-6 (Cont.): Attributes on Data Items 

Class Data Item 

Pointer 
Formal Base Function Various 

Variable Parameter Type Component1 Result ltems2 

Parameter- No Yes9 No No No No 
passing 

Pos No No No Yes7 No No 

Read-only Yes Yes Yes Yes No No 

Size Yes6 Yes 10 Yes Yes 11 Yes No 

Truncate No Yes No No No No 

Unsafe6 Yes Yes9 Yes Yes Yes Yes 

Value Yes 12 No No No No No 

Visibility6 Yes No No No No No 

Volatile Yes Yes Yes Yes Yes No 

Write-only Yes Yes Yes Yes No No 

1 Component of a record, array, VARYING OF CHAR string, or file (includes conformant parameters). 
2Index of an array, tag field of a variant record (when no tag identifier is present), base type of a set, formal 
discriminant. 
6Not allowed on variables of nonstatic types. 
7 Allowed only on record fields (including the tag field of a variant record). 
9Not allowed on confonnant VARYING parameters; not allowed on schematic parameters. 
10Not allowed on conformant parameters; not allowed on schematic parameters. 
11 Not allowed on components of files or VARYING OF CHAR strings, or on structured types with file 
components. 
12Not allowed on variables larger than 32 bits or structured variables. 

Attributes 10-49 





Chapter 11 

Directives 

This chapter provides information on the following: 

• The %INCLUDE directive (Section 11.1) 

• The %DICTIONARY directive (Section 11.2) 

• The %TITLE and %SUBTITLE directives (Section 11.3) 

11.1 °/olNCLUDE Directive 

The %INCLUDE directive inserts the contents of a file at the location of the 
directive in the code, and has the following form: 

%INCLUDE 'file-spec [[/[[NO]]LIST]]' 

file-spec 
environment specific (default) 
The name of the file to be included. 

/[[NO]]LIST 
/LIST (default) 
The /LIST qualifier indicates that the included file should be printed in 
the listing of the program if a listing is being generated. If not specified, 
the default is determined by the use of compilation switches. Use of this 
parameter overrides compilation switches. 

This directive can appear anywhere that a comment is legal. 

Directives 11-1 



In the following example, the %INCLUDE directive specifies the file 
CONDEF.PAS, which contains constant definitions: 

Main Pascal Program: 
PROGRAM Student_Courses( INPUT, OUTPUT, Sched ); 
CONST 

%INCLUDE 'CONDEF.PAS/LIST' 
TYPE 

Schedules = ~ECORD 
Year (Fr, So, Jr, Sr); 
Name PACKED ARRAY[l .. 30) OF CHAR; 
Parents PACKED ARRAY[l .. 40) OF CHAR; 
College ( Arts, Engineering, Architecture, 

Agriculture, Hotel); 
END; 

File CONDEF.PAS: 
Max_Class 300; 
N Profs = 140; 
Frosh = 3000; 

The main program Student_Courses is compiled as though it were written 
as follows: 

PROGRAM Student_Courses( INPUT, OUTPUT, Sched ); 
CONST 

Max Class = 300; 
N Profs = 140; 
Frosh = 3000; 

Schedules = RECORD 
Year (Fr, So, Jr, Sr); 
Name PACKED ARRAY[l .. 30) OF CHAR; 
Parents PACKED ARRAY[l .. 40) OF CHAR; 
College ( Arts, Engineering, Architecture, 

Agriculture, Hotel ); 
END; 

You can use the %INCLUDE directive in another included file; however, two 
files cannot attempt to include each other. 

A file included at the outermost level of a program is said to be included at 
the first level. A file included by a first-level file is said to be included at 
the second level, and so on. In general, a program may not include any files 
beyond the fifth level; it may not include any files beyond the fourth level if 
you have included a %DICTIONARY directive in the fourth level. Nesting 
levels may be further restricted by the number of files you are allowed to 
have open at one time. Figure 11-1 illustrates the legal levels of included 
files. 

11-2 Directives 



Figure 11-1: %INCLUDE File Levels 

PROGRAM P 
%INCLUDE 'A.PAS' {level 1} 

A.PAS 
{TYPE definitions} 
%INCLUDE 'B.PAS' {level 2} 

B.PAS 
{ VAR declarations } 

%INCLUDE 'C.PAS' {level 2} 

C.PAS 
{CONST definitions} 
%INCLUDE 'D.PAS' {level 3} 

D.PAS 
{ VAR declarations } 
%INCLUDE 'E.PAS' {level 4} 

E.PAS 
{ FUNCTION declaration } 
%INCLUDE 'F.PAS' {level 5} 

F.PAS 
{ may not have any 

included files} 

ZK-0285-GE 

Directives 11-3 



For More Information: 

• On the Common Data Dictionary (CDD) (Section 11.2) 

• On default file specifications and on including text libraries (VAX Pascal 
Reference Supplement for VMS Systems) 

11.2 °kDICTIONARV Directive 

The %DICTIONARY directive allows access to data definitions stored in 
the VAX Common Data Dictionary (CDD), which is a product that must be 
purchased separately and may not be available on your environment; the 
directive has the following form: 

%DICTIONARY 'cdd-path-name [[/[[NO]]LIST]] ' 

cdd-path-name 
A character string that represents the full or relative path name of a CDD 
record description to be extracted. The resulting path name must conform to 
the rules for forming VAX CDD path names. 

A full path name is one that begins with CDD$TOP and specifies the 
names of all its descendants; it is a complete path to the record definition. 
Descendant names are separated from each other by a period. 

A relative path name begins with any generation other than CDD$TOP, and 
specifies the names of the descendants after that point. You can create a 

- relative path by establishing a default directory with a logical name. 

/[[NO]]LIST 
/LIST (default) 
Indicates that the included declarations should be printed in the listing 
of the program if a listing is being generated. If not specified, the default 
is determined by compilation switches. Use of this parameter overrides 
compilation switches. 

For More Information: 

For information on using the Common Data Dictionary with VAX Pascal, see 
the VAX Pascal Reference Supplement for VMS Systems. 

11-4 Directives 



11.3 °/o TITLE and o/oSUBTITLE Directives 

The %TITLE and %SUBTITLE directives allow you to specify a compile-time 
string expression for the listing title and subtitle lines; they have the 
following form: 

%TITLE 'character string' 
%SUBTITLE 'character string' 

The compiler listing header includes the %TITLE and %SUBTITLE strings 
in the title and subtitle sections. If you do not specify these directives, VAX 
Pascal fills the %TITLE field with blanks and the first %SUBTITLE field 
with ' source listing' . If a specified character string is too long to fit in the 
predefined title and subtitle sections, the string will be truncated on the 
right without warning. 

If a %TITLE directive appears on the first line of a page, it sets the title area 
for the current page and any following pages until the compiler encounters 
another %TITLE directive. If the %TITLE directive does not appear on the 
first line of a page, then the title area is not set until the next page. 

The %SUBTITLE directive affects only the subtitle area in the source listing 
section. If a %SUBTITLE directive appears on the first or second line of a 
page, then the subtitle area is set for the current page. If the %SUBTITLE 
directive does not appear in the first two lines of a page, then the subtitle 
area is not set until the next page. 

If either of these directives is used and if a listing is being generated, VAX 
Pascal generates a table of contents page by default. It appears first in the 
listing, preceding the source listing section. To disable the table of contents 
option, you must use a compilation switch. 

For More Information: 

For information on creating listings and on using compilation switches, see 
the VAX Pascal Reference Supplement for VMS Systems. 

Directives 11-5 





Appendix A 

ASCII Character Set 

Table A-1 summarizes the ASCII character set. Each element of the 
character set is a constant of the predefined VAX Pascal type CHAR. An 
ASCII decimal number in Table A-1 is the same as the ordinal value (as 
returned by the VAX Pascal ORD function) of the associated character in the 
type CHAR. 

Note that VAX Pascal uses an extended implementation of the ASCII 
character set. The extended characters, which do not appear in Table A-1, 
have the following decimal values: 

ASCII 

128-160 

161-254 

255 

Table A-1: 

ASCII 
Decimal 
Number 

0 

1 

2 

3 

Meaning 

Extended control characters 

Extended graphics characters 

Eight binary one values 

The ASCII Character Set 

Character Meaning 

NUL Null 

SOH Start of heading 

STX Start of text 

ETX End of text 

(continued on next page) 

ASCII Character Set A-1 



Table A-1 (Cont.): The ASCII Character Set 

ASCII 
Decimal 
Number Character Meaning 

4 EOT End of transmission 

5 ENQ Enquiry 

6 ACK Acknowledgement 

7 BEL Bell 

8 BS Backspace 

9 HT Horizontal tab 

10 LF Line feed 

11 VT Vertical tab 

12 FF Form feed 

13 CR Carriage return 

14 so Shift out 

15 SI Shift in 

16 DLE Data link escape 

17 DCl Device control 1 

18 DC2 Device control 2 

19 DC3 Device control 3 

20 DC4 Device control 4 

21 NAK Negative acknowledgement 

22 SYN Synchronous idle 

23 ETB End of transmission block 

24 CAN Cancel 

25 EM End of medium 

26 SUB Substitute 

27 ESC Escape 

28 FS File separator 

29 GS Group separator 

30 RS Record separator 

(continued on next page) 

A-2 ASCII Character Set 



Table A-1 (Cont.): The ASCII Character Set 

ASCII 
Decimal 
Number Character Meaning 

31 us Unit separator 

32 SP Space or blank 

33 Exclamation point 

34 " Quotation mark 

35 # Number sign 

36 $ Dollar sign 

37 % Percent sign 

38 & Ampersand 

39 Apostrophe 

40 Left parenthesis 

41 Right parenthesis 

42 * Asterisk 

43 + Plus sign 

44 Comma 

45 Minus sign or hyphen 

46 Period or decimal point 

47 I Slash 

48 0 Zero 

49 1 One 

50 2 Two 

51 3 Three 

52 4 Four 

53 5 Five 

54 6 Six 

55 7 Seven 

56 8 Eight 

57 9 Nine 

(continued on next page) 

ASC 11 Character Set A-3 



Table A-1 (Cont.): The ASCII Character Set 

ASCII 
Decimal 
Number Character Meaning 

58 Colon 

59 Semicolon 

60 < Left angle bracket 

61 Equal sign 

62 > ·Right angle bracket 

63 ? Question mark 

64 @ At sign 

65 A Uppercase A 

66 B Uppercase B 

67 c Uppercase C 

68 D Uppercase D 

69 E Uppercase E 

70 F Uppercase F 

71 G Uppercase G 

72 H Uppercase H 

73 I Uppercase I 

74 J Uppercase J 

75 K Uppercase K 

76 L Uppercase L 

77 M UppercaseM 

78 N Uppercase N 

79 0 Uppercase 0 

80 p Uppercase P 

81 Q Uppercase Q 

82 R Uppercase R 

83 s Uppercase S 

84 T Uppercase T 

(continued on next page) 

A-4 ASCII Character Set 



Table A-1 (Cont.): The ASCII Character Set 

ASCII 
Decimal 
Number Character Meaning 

85 u Uppercase U 

86 v Uppercase V 

87 w Uppercase W 

88 x Uppercase X 

89 y Uppercase Y 

90 z Uppercase Z 

91 [ Left square bracket 

92 \ Back slash 

93 ] Right square bracket 

94 A or j Circumflex or up arrow 

95 +-or Back arrow or underscore 

96 Grave accent 

97 a Lowercase a 

98 b Lowercase b 

99 c Lowercase c 

100 d Lowercased 

101 e Lowercase e 

102 f Lowercase f 

103 g Lowercase g 

104 h Lowercase h 

105 Lowercase i 

106 j Lowercasej 

107 k Lowercase k 

108 Lowercase 1 

109 m Lowercase m 

110 n Lowercase n 

111 0 Lowercase o 

(continued on next page) 

ASCII Character Set A-5 



Table A-1 (Cont.): The ASCII Character Set 

ASCII 
Decimal 
Number Character Meaning 

112 p Lowercase p 

113 q Lowercase q 

114 r Lowercase r 

115 s Lowercases 

116 t Lowercase t 

117 u Lowercase u 

118 v Lowercase v 

119 w Lowercase w 

120 x Lowercase x 

121 y Lowercase y 

122 z Lowercase z 

123 Left brace 

124 I Vertical line 

125 } Right brace 

126 Tilde 

127 DEL Delete 

A-6 ASCII Character Set 



Appendix B 

Language Syntax Summary 

The diagrams in this section illustrate the syntax of the following items: 

• Actual parameter list 

• Array constructor (standard and nonstandard) 

• Attribute list 

• Binary digits 

• Block 

• Compilation unit 

• Conformant parameter 

• Decimal digits 

• Declaration part 

• Expression 

• Factor 

• Field list 

• Formal parameter list 

• Formal parameter section 

• Function heading 

• Hexadecimal digits 

• Identifier 

• Initial value 

• Mechanism specifier 

• Numeric constant 

• Octal digits 

• Primary 

Language Syntax Summary B-1 



• Procedure heading 

• Real constant 

• Record constructor (standard and nonstandard) 

• Routine declaration 

• Set constructor 

• Simple expression 

• Simple statement 

• Simple type 

• Statement 

• String constant 

• Structured statement 

• Term 

• Type 

• Variable 

An example of how to interpret a diagram follows: 

B-2 Language Syntax Summary 

decimal 
digits 

ZK-0129-GE 



actual parameter list 

The diagram illustrates that the first character of an identifier can be either 
an underscore ( _ ), a dollar sign ( $ ), or a letter. The next character is 
chosen from the section labeled A and can be a digit, a letter, a dollar sign, 
or an underscore. Section A is repeated until the identifier is defined. Note 
that rounded symbols (circles or ovals) denote elements that must appear 
exactly as shown; rectangular symbols denote elements for which there is a 
separate diagram. 

NOTE 

A few of the rectangular elements contained in the diagrams do 
not have corresponding diagrams that expand on their meaning. 
Further information on these elements can be found in the syntax 
examples in the chapters of this manual. 

expression 

procedure 
identifier 

function 
identifier 

expression 

variable 

expression expression 

ZK-0571-GE 

Language Syntax Summary B-3 



array constructor 

OTHERWISE 

nonstandard array constructor 

constant 
expression 

REPEAT 

B-4 Language Syntax Summary 

initial value 

initial 
value 

constant expression 

initial value 

initial 
value 

ZK-0570-GE 

ZK-1397A-GE 



attribute list 

identifier expression 

ZK-0131-GE 

binary digits 

ZK-0132-GE 

Language Syntax Summary B-5 



block 

----- declaration part i---------------

BEGIN END 

ZK-0107-GE 

B-6 Language Syntax Summary 



compilation unit 

PROGRAM identifier 

block 
attribute list 

MODULE identifier 

declaration part 

ZK-0111-GE 

Language Syntax Summary B-7 



cqntormant parameter 

VARYING identifier 

attribute list 

PACKED ARRAY 

ARRAY Identifier 

attribute list 

attribute list 

B-8 Language Syntax Summary 

type 
identifier 

identifier 

attribute list 

attribute list 

Identifier 

type 
identifier 

conform ant 
parameter 

identHier 

se<ilartype 
Identifier 

scalar type 
identifier 

ZK-0133-GE 



decimal digits 

ZK-0566-GE 

Language Syntax Summary B-9 



declaration part 

VAR 

VALUE 

routine 
declaration 

B-10 Language Syntax Summary 

VALUE 

type 

ordinal
type 

identifier 

Initial 
value 

ZK-0109-GE 



expression 

simple expression 

simple expression 

ZK-0119-GE 

Language Syntax Summary B-11 



factor 

function 
identifier 

variable 

constant 
identifier 

string 
constant 

real 
constant 

expression 

NOT 

array type 
identifier 

record type 
identifier 

set type 
identifier 

factor 

array 
constructor 

record 
constructor 

set 
constructor 

B-12 Language Syntax Summary 

type 
identifier 

ZK-0115-GE 



ielcllist 

field list 

ZK-0134-GE 

formal parameter list 

ZK-0568-GE 

Language Syntax Summary B-13 



formal parameter section 

mechanism 
s ifier 

VAR 

mechanism 
s ifier 

function heading 

attribute list 

function 
heading 

FUNCTION 

attribute list 

B-14 Language Syntax Summary 

identifier 

type identifier 

schema 
name 

type 
identifier 

conformant 
parameter 

initial 
value 

formal 
parameter list 

ZK-0136-GE 

ZK-1035-GE 



hexadecimal digits 

identifier 

decimal 
digits 

ZK-0121-GE 

ZK-0112-GE 

Language Syntax Summary B-15 



initial value 

nonstandard 
array 

constructor 

nonstandard 
1.----.i record 

mechanism specifier 

constructor 

constant 
expression 

array 
constructor 

record 
constructor 

set 
constructor 

ZERO 

%REF 

%IMMED 

%DESCR 

%STDESCR 

B-16 Language Syntax Summary 

ZK-0565-GE 

ZK-0564-GE 



numeric constant 

octal digits 

decimal 
digits 

ZK-0114-GE 

ZK-0120-GE 

Language Syntax Summary B-17 



primary 

factor 

procedure heading 

attribute list PROCEDURE 

B-18 Language Syntax Summary 

factor 

ZK-0116-GE 

identifier 
formal 

parameter list 

ZK-1034-GE 



real constant 

decimal 
digits 

decimal 
digits 

decimal 
digits 

ZK-0113-GE 

Language Syntax Summary B-19 



record constructor 

field-identifier 

CASE tag-field identifier 

record constructor 

__ __,••OTHERWISE ZERO 

nonstandard record constructor 

initial 
vak.Je 

B-20 Language Syntax Summary 

ZK-0567-GE 

initial value 

constant expression 

ZK-1398A-GE 



routine declaration 

set constructor 

procedure 
heading 

function 
heading 

expression 

block 

EXTERN 

EXTERNAL 

FORTRAN 

FORWARD 

ZK-0130-GE 

expression 

ZK-0569-GE 

Language Syntax Summary B-21 



simple expression 

simple statement 

variable 

function 
identifier 

procedure 
identifier 

function 
identifier 

GOTO 

term 

term 

actual 
s-~.._-- paramerer i----~-- 1 

list 

decimal 
digits 

identifier 

ZK-0108-GE 

B-22 Language Syntax Summary 

ZK-0118-GE 



simple type 

statement 

constant 
expression 

sd1erna 
name 

identifier 

decimal digits 

type identifier 

identifier 

constant 
expression 

expression 

simple statement 

structured statement 

ZK-0124-GE 

ZK-0137-GE 

Language Syntax Summary B-23 



string constant 

structured statement 

BEGIN 

CASE 

A 

space 

tab 

printing character 
other than' 

END 

8-24 Language Syntax Summary 

constant 
expression 

ZK-0572-GE 

END 

B 

ZK-0110-1-GE 



B 

WHILE 

REPEAT 

DOWNTO 

ZK-0110-2-GE 

term 

primary 

primary 

ZK-0117-GE 

Language Syntax Summary B-25 



type 

VARYING 

ARRAY 

FILE 

RECORD field list 

SET 

B-26 Language Syntax Summary 

type 
identifier 

constant 
expression 

END 

attribute list 

simple type 

type 

type 
identifier 

type 

simple type 1--------------
ZK-0125-GE 



variable 

variable identifier 

field identifier 

type identifier 

field identifier 

ZK-0127-GE 

Language Syntax Summary B-27 





Appendix C 

Compatibility of VAX Pascal Versions 

This appendix provides the following information: 

• Differences between Version 1.0 and subsequent versions (Section C.1) 

• Differences between this version and past versions back to Version 2.0 
(Section C.2) 

This appendix describes the differences between VAX Pascal Version 1.0 and 
all subsequent higher versions. In this appendix, the term Version 2+ will 
refer to Version 2.0, Version 3.0, and Version 4.0. 

NOTE 

This appendix is intended for users migrating from Version 1.0 
to Version 2+. If you are migrating from Version 2.0 to a higher 
version, you can disregard this appendix, as there have been no 
incompatible changes made between Version 2.0 and Version 4.0. 

C.1 Differences Between Version 1.0 and Subsequent 
Versions 

The differences between Version 1.0 and Version 2+ fall into three categories: 

• Features that have been decommitted. The previous versions of these 
. features are still supported in Version 2+ to allow you to run existing 
programs; however, it is recommended that you modify your programs to 
reflect the new changes. 

• Features that are controlled by the /OLD_ VERSION compile-time 
qualifier. 

Compatibility of VAX Pascal Versions C-1 



• Minor changes that are not likely to affect the vast majority of existing 
VAX Pascal programs. 

If you modify a program that executed successfully under Version 1.0 of 
VAX Pascal, you should not make changes that conflict with the Version 2+ 
standard. If conflicts exist and you compile the program with Version 2+, 
one of two problems may result: 

• You may get warning messages at compile time. 

• The program may compile successfully but may not run. 

If you must use language features that conflict with Version 2+, you can use 
the /OLD_ VERSION qualifier at compile time to produce the desired results. 
The /OLD_ VERSION qualifier and the conflicts that it resolves are described 
in Section C.1.2. 

C.1.1 Decommitted Features 

The following decommitted features are described in this section: 

• Syntax of dynamic array parameters 

• Predeclared functions LOWER and UPPER 

• Printing of hexadecimal and octal values with the WRITE procedure 

• Syntax of the OPEN procedure 

• Specification of compiler qualifiers in the source code 

C.1.1.1 Dynamic Array Parameters 

Some programming applications require general routines that can process 
arrays with different bounds. Version 1.0 of VAX Pascal allows you to 
declare routines with dynamic array parameters. You can call the routine 
with arrays of different sizes, as long as their bounds are within those 
specified by the formal parameter. 

For example, you can write a procedure that sums the components of a 
one-dimensional array. Each time you use the procedure, you might vvant to 
pass arrays with different bounds. Instead of declaring multiple procedures 
using arrays of each possible size, you could use a dynamic array parameter. 
The procedure will treat the formal parameter as though its bounds were 
those of the actual parameter. 

C-2 Compatibility of VAX Pascal Versions 



In routines that contain dynamic array parameters, you use the predeclared 
functions LOWER and UPPER to return the lower and upper bounds of the 
actual array parameter (see Section C.1.1.2). An array parameter has the 
following form: 

array-identifier, ... : PACKED ARRAY [{index-type-identifier}, ... ] OF type-identifier 

Note that you must use a type identifier to specify the range of the indexes. 
You cannot use a subrange. The type identifier can be any of the predefined 
ordinal types (for example, INTEGER). 

The components and indexes of the actual and formal dynamic array 
parameters must be of compatible types. The rules for dynamic array 
compatibility are identical to those for compatibility between other arrays, 
with one exception: the range of the index types of the actual array 
parameter must be within the range specified for the formal parameter. 

The following differences exist between Version 1.0 and Version 2+ syntax: 

• In Version 2+, dynamic arrays are known as conformant arrays, and the 
syntax that describes them is called a conformant array schema. 

• The conformant array schema for Version 2+ requires that the upper 
and lower bounds of the conformant array parameter be declared 
with identifiers in the formal parameter list. You can then use these 
identifiers within the routine block to refer to the upper and lower 
bounds of the parameter. 

• Version 2+ allows the type identifier of a conformant array parameter to 
be another conformant array schema. 

C.1.1.2 LOWER and UPPER Functions 

Version 1.0 of VAX Pascal includes the predeclared functions LOWER and 
. UPPER, which you can use to determine the upper and lower bounds of 
dynamic array parameters (see Section C.1.1.1). Because the syntax of 
conformant array parameters has changed, these functions are no longer 
necessary. They ·are supported, however, for programs that use the old 
syntax. These functions have the following form: 

LOWER( a [[, n]] } UPPER( a [[, n]] } 

The parameter a denotes an array variable; the optional parameter n is 
an integer constant that denotes a dimension of a. If you omit a value for 
the parameter n, it defaults to 1.0. The LOWER function ~eturns the lower 
bound of the nth dimension of a; the UPPER function returns the upper 
bound of the nth dimension of a. 

Compatibility of VAX Pascal Versions C-3 



C.1.1.3 Printing Hexadecimal and Octal Values 

Version 2+ provides the predeclared functions HEX and OCT, which return 
the hexadecimal and octal equivalents of the input value. You can use 
these functions in conjunction with the WRITE, WRITELN, and WRITEV 
procedures to print values in hexadecimal and octal notation. 

The following formats of the WRITE procedure are used to print hexadecimal 
and octal values in Version 1.0: 

WRITE (expression:field-width HEX, ... ) 
WRITE (expression:field-width OCT, ... ) 

expression 
The value to be written. Arbitrary items (including pointers) can be written 
in hexadecimal or octal notation to text files. 

field-width 
A positive integer expression indicating the length of the print field. 

For hexadecimal values, if the field width specified is less than eight 
characters, and the output value is greater than the field width, the value 
being printed is truncated on the left. If the field width is greater than eight 
characters, and the output value is less than the field width, the field is 
padded with blanks on the left. 

For octal values, if the field width specified is less than 11 characters, and 
the output value is greater than the field width, the value being printed is 
truncated on the left. If the field width is greater than 11 characters, and 
the output value is less than the field width, the field is padded with blanks 
on the left. 

Example 1 

WRITE (Payroll:lO HEX); 

The value of the variable Payroll is printed in a field of 10 hexadecimal 
characters. 

Example 2 

WRITE (Social_Security:14 OCT); 

The value of the variable Social_Security is printed in a field of 14 octal 
characters. -

C-4 Compatibility of VAX Pascal Versions 



C.1.1.4 The OPEN Procedure 

The OPEN procedure opens a file and allows you to specify file parameters. 
Version 2+ includes new parameters and additional parameter values, and 
has changed some defaults. Table C-1 lists the file parameters available 
under Version 1.0, their possible values, and their defaults. 

Table C-1: Summary of Version 1.0 OPEN Parameters 

Parameter 

History 

Record length 

Access method 

Record type 

Carriage control 

Parameter Values 

OLD or NEW 

Any positive integer 

DIRECT or SEQUENTIAL 

FIXED or VARIABLE 

LIST, CARRIAGE, 
FORTRAN, 
NOCARRIAGE, or NONE 

Default 

NEW (OLD, if the file is opened 
with RESET). 

133 bytes. 

SEQUENTIAL. 

VARIABLE for new files; for 
old files, the record type is 
established at the file creation. 

LIST for all text files; 
NOCARRIAGE for all other 
files. Old files use their existing 
carriage control parameter. 

The following differences exist between the Version 1. 0 and Version 2+ 
OPEN syntax. 

• In Version 1.0, the file name is specified as a string constant (VMS 
file specification) or a logical name. In Version 2+, a string expression 
containing a file specification can be used as the file name. 

• In Version 2+, the parameter values READONLY and UNKNOWN have 
been added to the history parameter. 

• In Version 2+, the parameter value KEYED has been added to the access 
method parameter. 

• ·In Version 2+, the default record type is VARIABLE for new text files 
and files of type FILE OF VARYING; for all other new files, the default 
is FIXED. The default for old files remains the same. 

Compatibility of VAX Pascal Versions C-5 



• In Version 2+, the default carriage control is LIST for text files and files 
of type FILE OF VARYING. The default for all other file types and for 
old files remains the same. 

• Version 2+ includes six new parameters for the OPEN procedure: 
organization, disposition, sharing, user action, default, and error 
recovery. 

Note that although direct access to text files is prohibited in both Version 
1.0 and Version 2+, the point at which the error occurs differs. In Version 
1.0, an OPEN procedure is allowed to specify direct access for a text file; the 
error occurs when a FIND procedure attempts to access the file. In Version 
2+, an OPEN procedure that specifies direct access to a text file causes an 
error to be generated. 

C.1.1.5 Specifying Qualifiers in the Source Code 

In Version 1.0 of VAX Pascal, you can specify compiler qualifiers within 
comments in the source code. VAX Pascal Version 2+ does not support 
this feature. It is recommended that you specify these qualifiers with the 
Pascal command when you compile the program. Alternatively, you can use 
attributes in your program to perform some of the same, operations that are 
performed by compiler qualifiers. 

In Version 1.0, the following is true: 

• The CHECK qualifier (abbreviated C) generates code to perform 
run-time checks. 

• The CROSS_REFERENCE qualifier (X) produces a cross-reference 
listing of identifiers. 

• The DEBUG qualifier ( D) generates records for the VMS Debugger. 

• The LIST qualifier ( L) produces a source listing file. 

• The MACHINE_ CO DE qualifier ( M) includes machine code in the 
source listing file. 

• The STANDARD qualifier ( S) prints informational messages indicating 
the use of VAX Pascal extensions. 

• The WARNINGS qualifier ( W) prints diagnostics for warning-level 
errors. 

C-6 Compatibility of VAX Pascal Versions 



The following syntax indicates how to specify qualifiers: 

(*${qualifier { ~ } }, ... [[; comment]] *) 

qualifier 
A qualifier name or a 1-character abbreviation. 

comment 
The text of a comment, which is optional. 

+ 

Enables ( + ) or disables ( - ) the qualifier. 

The first character after the comment delimiter must be a dollar sign ( $ ), 
which cannot be preceded by a space. 

You can specify any number of qualifiers in a single comment. You can also 
include text in the comment after the qualifiers. The text must be separated 
from the list of qualifiers by a semicolon ( ; ). 

You can use qualifiers in the source code to enable and disable options during 
compilation. For example, to generate check code for only one procedure in 
a program, insert a comment that enables the CHECK qualifier before the 
procedure declaration. After the end of the procedure declaration, include a 
comment that disables the qualifier. For example: 

(*$C+; enable CHECK for TESTl only *) 

PROCEDURE TESTl; 

END; 
(*$C-; disable CHECK option *) 

You can specify qualifiers in both the source code and the PASCAL 
command line. Command line qualifiers override source code qualifiers. 
If, for example, the source code specifies DEBUG+, but you type 
PASCAL/NODEBUG, the DEBUG option will not be in effect. 

Compatibility of VAX Pascal Versions C-7 



C.1.2 /OLD_ VERSION Qualifier 

The VAX Pascal standard in Version 1.0 conflicts in some respects with 
that of Version 2+, which is based on Level 0 of the Pascal standard. The 
/OLD_ VERSION qualifier on the Pascal command cause the compiler to 
default to the VAX Pascal Version 1.0 standard when conflicts arise. By 
default, /OLD_ VERSION is disabled so that the compilation conforms to the 
Pascal standard. 

Because the Version 2+ compiler performs many optimizations on the 
source code, you should also enable the /NOOPTIMIZE qualifier during the 
recompilation of old programs. The /NOOPTIMIZE qualifier prevents the 
compiler from making optimizations that might cause an old program to 
behave unexpectedly when it is recompiled. 

The following sections describe the conflicts between Version 1.0 and Version 
2+ and explain how they are resolved by the /OLD_ VERSION qualifier. 

C.1.2.1 Comment Delimiters 

Unlike Version 1.0, Version 2+ considers the opening comment delimiters, 
(* and {, equivalent; likewise, the closing delimiters, *) and } , are considered 
equivalent. Therefore, a comment begun with (* can be terminated with } , 
and a comment begun with { can be terminated by *). 

Recompilation of the program with the /OLD_ VERSION qualifier will 
cause the Version 1.0 restriction to be enforced so that you cannot combine 
comment delimiters in this way. 

C.1.2.2 %INCLUDE Files 

In Version 1.0 of VAX Pascal, the default file type of a %INCLUDE file is 
.DAT. However, in Version 2+, the default file type is .PAS. 

You must use the /OLD_ VERSION qualifier to recompile a program that 
includes one or more files that have a file type of .DAT. 

C.1.2.3 Multidimensional Packed. Arrays 

Version 1.0 of the VAX Pascal compiler interprets the shorthand form of the 
array type definition to be equivalent to the longer definition, ·as follows: 

PACKED ARRAY[x,y,z] 
ARRAY[x] OF ARRAY[y] OF PACKED ARRAY[z] 

C-8 Compatibility of VAX Pascal Versions 



That is, only the last dimension of the array is packed. In Version 2+, 
however, the shorthand definition above is equivalent to this longer 
definition: 

PACKED ARRAY[x] OF PACKED ARRAY[y] OF PACKED ARRAY[z] 

In the Version 2+ interpretation, all dimensions of the array· are packed. 

You must use the /OLD_ VERSION qualifier to recompile a program that 
includes a multidimensional packed array of which you want only the last 
dimension to be packed. 

C.1.2.4 Storage of Components 

In Version 1.0 of VAX Pascal, a component of the subrange type 0 .. 0 in 
a packed record or array is allocated one bit of storage. In Version 2+, 
however, a component of this type is not allocated any storage. 

You must use the /OLD_ VERSION qualifier to recompile a program in which 
one bit of storage is required.to be allocated for such a component. 

C.1.2.5 Storage of Sets 

In Version 1.0 of VAX Pascal, an unpacked set type is allocated 256 bits. 
In Version 2+, the allocation size of an unpacked set depends on the set's 
base type and on whether the unpacked set is allocated in a packed or an 
unpacked context. 

You ·must use the /OLD_ VERSION qualifier to recompile a program in which 
an unpacked set requires an allocation size of 256 bits. 

C.1.2.6 TEXT Files and FILE OF CHAR 

Version 1.0 of VAX Pascal considers the predefined file types TEXT and 
FILE OF CHAR to be equivalent. In Version 2+, however, files of type TEXT 
are composed of complete lines of characters terminated by an end-of-line 
marker, while files of type FILE OF CHAR are composed of individual 
characters. 

You must use the /OLD_ VERSION qualifier to recompile a program that 
requires a TEXT file and a FILE OF CHAR to be treated identically. 

Compatibility of VAX Pascal Versions C-9 



C.1.2. 7 MOD Operator 

The MOD operator, as defined by Version 1.0 of VAX Pascal, returns the 
remainder that results from the DIV operation. In Version 2+, the MOD 
operator is equivalent to the mathematical modulus operation. Therefore, 
Version 2+ allows you to perform the operation I MOD J only when J is a 
positive number; the MOD function always returns a value from 0 to J - 1. 
To compute the remainder from the DIV operation, Version 2+ provides the 
REM operator. 

You must use the /OLD_ VERSION qualifier to recompile a program in which 
you use the MOD operator to compute the remainder. 

C.1.2.8 String Variable Parameters to the READ Procedure 

In Version 1.0 of VAX Pascal, if a READ procedure encounters an end-of-line 
marker as the first character to be read into a string variable, it ignores the 
marker and advances the file position to the beginning of the next line of 
input. In Version 2+, a READ procedure never skips an end-of-line marker 
that is the first character to be read into a string variable. If a READ 
procedure encounters an initial end-of-line, the file remains positioned at 
the end of the line; you must call a READLN procedure to advance the file 
position to the next line. 

You must recompile with the /OLD_ VERSION qualifier to cause a READ 
procedure to skip one end-of-line marker that it encounters as the first 
character to be read into a string variable. 

C.1.2.9 Field Widths 

In Version 1.0 of VAX Pascal, a value oftype REAL or SINGLE is written 
with a default field width of 16 characters; a value of type DOUBLE, with 
24. In Version 2+, the default field width for a value of type REAL or 
SINGLE is 12 characters; for a value of type DOUBLE, 20. 

In addition, Version 1.0 of VAX Pascal always expands the field width of a 
real number written in decimal format (when necessary) so that the real 
number is preceded by a leading blank. No leading blank is inserted in 
Version 2+. 

You must use the /OLD_ VERSION qualifier to recompile a program in which 
you want to use the default field width specifications of Version 1.0. 

C-10 Compatibility of VAX Pascal Versions 



:.1.2.10 Global Identifiers 

In Version 1.0 of VAX Pascal, the names of program-level procedures and 
functions are considered global identifiers. However, in Version 2+, such 
names are not considered global unless they have the GLOBAL attribute. 

You must use the /OLD_ VERSION qualifier to recompile a program in which 
the names of program-level routines are to be made global by default. 

:.1.2.11 Allocation in Program Sections 

Unlike Version 1.0, Version 2+ of VAX Pascal does not allocate storage for 
static, program-level variables in an overlaid program section. 

To cause the Version 2+ compiler to treat static, program-level variables and 
routine identifiers in the same manner as in Version 1.0, you must use the 
/OLD_ VERSION qualifier. You can also apply the OVERLAID attribute to a 
compilation unit to cause the storage for its static, program-level variables 
to be allocated in an overlaid program section. Enabling /OLD_ VERSION 
has the same effect as applying the OVERLAID attribute to all compilation 
units in a program. 

~.1.3 Minor Language Changes 

Some minor language changes that were made in Version 1.0 cannot be 
controlled by the /OLD_ VERSION qualifier. Such changes, however, are not 
likely to have adverse affects on most existing VAX Pascal programs. These 
changes are as follows: 

• To flag language extensions when the /STANDARD qualifier is enabled, 
Version 2+ uses the Pascal standard proposed by the International 
Organization for Standardization (ISO). The Version 1.0 language is 
defined by the Pascal User Manual and Report by Jensen and Wirth. 

• In Version 2+, the /STANDARD qualifier is disabled by default. The 
Version 2+ compiler does not automatically flag extensions to the Pascal 
language definition contained in the ISO standard. /STANDARD is 
enabled in Version 1.0. 

• Version 2+ ignores all comments whose first character (inside the 
opening delimiter) is a dollar sign ( $ ). Note that this behavior prohibits 
the specification of compile-time qualifiers in the source code, which is 
legal in Version 1.0 (see Section C.1.1.5). 

Compatibility of VAX Pascal Versions C-11 



• In Version 2+, the /CHECK qualifier is enabled by default to check 
the bounds of array and character-string assignments. You can change 
the default if you wish, and you can also specify the checking of other 
aspects of your program. /CHECK is disabled by default in Version 1.0 
and does not allow you to specify checking options. 

• In Version 2+, a change in the value of the control variable inside the 
body of a FOR statement does not affect the number of times the loop 
body is executed. (This behavior is the reverse of Version 1.0.) 

• Version 2+ considers the value of EOLN to be FALSE when the value of 
EOF is TRUE. (In Version 1.0, EOLN returns the value of TRUE at the 
end-of-file.) This change is necessary to make VAX Pascal conform to the 
ISO standard, which forbids a program from testing for EOLN at the 
end-of-file. 

• A negative field-width value in a WRITE or WRITELN procedure call 
generates an error in Version 2+. In Version 1.0, a negative field-width 
value defaults to 0. 

• When writing double-precision values, Version 2+ output procedures 
indicate the exponent by the letter E. (Version 1.0 uses the letter Don 
output values.) The input procedures in both Version 1.0 and Version 2+ 
accept either Dor E as the exponent letter of double-precision values. 

• Under VMS Version 4.6 or higher and Version 2+, the default length of 
a record in a text file is 255 bytes. Under a VMS version prior to VMS 
4.6 and Version 2+, the default length of a record is 133 bytes. Because 
of an error in Version 1.0, the default length is actually 254, contrary to 
the description in the documentation. 

• Sets in Version 2+ have allocation sizes different from those in Version 
1.0. 

• LIB$ESTABLISH, the VMS Run-Time Library procedure that sets up 
condition handlers, cannot be used in Version 2+. Instead, use the new 
predeclared procedures ESTABLISH and REVERT. 

• Run-time condition values have new values in Version 2+. These values 
are contained in the file SYS$LIBRARY:PASDEF.PAS. To make them 
available i1,1 your program, include the file in a CONST section. 

C-12 Compatibility of VAX Pascal Versions 



• In Version 2+, when a nonlocal GOTO statement transfers control from 
a routine to a labeled statement in an enclosing block, any condition 
handlers established by intervening routines are called first with the 
condition SS$_UNWIND. In Version 1.0, a nonlocal GOTO statement 
transfers control directly to the labeled statement; no condition handlers 
are executed for intervening routines. 

• In Version 2+, you cannot use the predeclared functions SNGL and ORD 
as function parameters using the Version 1.0 syntax for function 
parameter declarations. You must rewrite the formal parameter 
declarations to use the newer syntax. 

C.2 Differences Between the Current Version and Past 
Versions 

With this version of VAX Pascal, programs that ran on previous versions 
(back to Version 2.0) run without errors on this version. Even though this 
version introduces new standard features of the language, VAX Pascal 
retains the extensions that were available with previous versions. 

When converting old programs for use with this version, remember that 
VAX Pascal accepts environment files created by VAX Pascal Versions 2.0 
through 3.n. However, Versions 2.0 through 3.n of the compiler do not accept 
environment files created by this version of the compiler. 

For More Information: 

• On environment files (Section 7.3) 

• On compilation switches (VAX Pascal Reference Supplement for VMS 
Systems) 

Compatibility of VAX Pascal Versions C-13 





Appendix D 

Summary of VAX Pascal Extensions 

If you need to write portable code, you should not use the language features 
that are VAX Pascal extensions. The following sections provide information 
on VAX Pascal extensions: 

• Extensions to the unextended Pascal standards (Section D.1) 

• Extensions to the Extended Pascal standard (Section D .2) 

For More Information: 

For information on Pascal standards, see Section 1.1. 

D.1 VAX Pascal Extensions to Unextended Pascal 

Table D-1 summarizes the language features provided in VAX Pascal that 
are not part of the unextended Pascal language definitions. 

Table D-1 : VAX Pascal Extensions to Unextended Pascal 

Category 

Lexical and syntactical 
extensions 

Extension 

Reserved words: MODULE, OTHERWISE, REM, 
VALUE, VARYING, %DESCR, %STDESCR, %IMMED, 
%REF, %INCLUDE, %TITLE, %SUBTITLE, and 
%DICTIONARY 

Exponentiation operator ( ** ) 
REM operator 

(continued on next page) 

Summary of VAX Pascal Extensions D-1 



Table D-1 (Cont.): VAX Pascal Extensions to Unextended Pascal 

Category 

Predefined types 

Predeclared procedures 

Predeclared functions 

D-2 Summary of VAX Pascal Extensions 

Extension 

AND_THEN and OR_ELSE operators 

Type cast operator (::)for variables and expressions 

%radix-specifier and extended-digit ( #) form for binary, 
hexadecimal, and octal notation for integers 

Double- and quadruple-precision real numbers 

Dollar sign ( $ ) and underscore ( _) characters in 
identifiers 

Identifiers that can begin with any character other than 
a letter and whose first 31 characters must be unique 

Extended syntax for inclusion of nonprinting characters 
in character strings 

Compile-time constant expressions allowed anywhere a 
constant is allowed -

Constructors of structured types used anywhere in place 
of a constant of the structured type 

Attributes used with data items, routines, and 
compilation units 

Relaxed rules for assignment compatibility 

Structural compatibility enforced between actual and 
formal parameters 

UNSIGNED, SINGLE, DOUBLE (D_floating and 
G_floating), QUADRUPLE, STRING, TIMESTAMP 

VARYING OF CHAR structured type and concatenation 
operator for all strings 

CLOSE, CREATE_DIRECTORY, DATE, DELETE, 
DELETE_FILE, ESTABLISH, EXTEND, FIND,, 
FINDK, HALT, LINELIMIT, LOCATE, OPEN, 
READV, RENAME_FILE, RESETK, REVERT, 
TIME, TRUNCATE, UNLOCK, UPDATE, WRITEV, 
GETTIMESTAMP 

Transfer functions: DBLE, INT, QUAD, SNGL, TRUNC, 
UINT, UROUND, UTRUNC 

Dynamic allocation function: ADDRESS, !ADDRESS 

(continued on next page) 



Table D-1 (Cont.): VAX Pascal Extensions to Unextended Pascal 

Category 

READ, READLN, 
WRITE, WRITELN 
extensions 

Extended 1/0 
capabilities 

Declarations 

Extension 

Character-string functions: BIN, DEC, HEX, INDEX, 
LENGTH, OCT, PAD, STATUSV, SUBSTR, UDEC, GT, 
GE, LT, LG, EQ, NE 

Parameter functions: ARGUMENT, 
ARGUMENT_LIST_LENGTH, PRESENT 

Privileged routines: MTPR, MFPR 

Arithmetic functions: UAND, UNOT, UOR, UXOR, XOR, 
MIN, MAX 

Allocation size functions: SIZE, NEXT, BITSIZE, 
BITNEXT 

Low-level interlocked functions: ADD_INTERLOCKED, 
CLEAR_INTERLOCKED, FIND_FIRST_BIT_CLEAR, 
FIND_FIRST_BIT_SET, FIND_MEMBER, 
FIND_NONMEMBER, SET_INTERLOCKED 

1/0 functions: STATUS, UFB 

Field position functions: BIT_OFFSET, BYTE_OFFSET 

Additional functions: CARD, CLOCK, EXPO, 
UNDEFINED, ZERO, DATE, TIME, UPPER, LOWER 

Parameters of character-string and enumerated types for 
READ and READLN 

Parameters of enumerated types for WRITE and 
WRITELN 

Prompting at the terminal with a WRITE/READ or 
WRITE/READLN sequence 

Optional carriage-control specification for text files with 
WRITE and WRITELN 

Optional radix specification for READ and READLN 

Direct access and relative file organization 

Keyed access and indexed. file organization 

Declaration and definition sections that can appear more 
than once and in any order 

Initialization of variables, types, and record fields in VAR 
declaration sections at program or module level 

(continued on next page) 

Summary of VAX Pascal Extensions D-3 



Table D-1 (Cont.): VAX Pascal Extensions to Unextended Pascal 

Category 

Statements 

Procedures and 
functions 

Compilation 

Extension 

Schema types 

VALUE initialization section 

OTHERWISE clause in variant records 

Ranges in variant label lists 

OTHERWISE clause in CASE statement 

Ranges in CASE label lists 

FOR statement with SET iterations 

Functions that return values of structured types (other 
than file types) 

Functions called as procedures 

External procedure and function declarations 

Default values for formal parameters 

Nonpositional parameter passing 

Extended mechanism specifiers and parameter passing 
attributes for passing parameters to external procedures 
and functions: %IMMED, %REF, %DESCR, %STDESCR, 
IMMEDIATE, REFERENCE, CLASS_S, CLASS_A, 
CLASS_NCA 

MODULE capability for combining declarations and 
definitions to be compiled independently from the main 
program 

ENVIRONMENT and INHERIT attributes to control 
independent compilation 

Module initialization and finalization 

D.2 VAX Pascal Extensions to Extended Pascal 

Table D-2 summarizes the language features provided in VAX Pascal that 
are not part of the Extended Pascal language definitions. 

D-4 Summary of VAX Pascal Extensions 



Table D-2: VAX Pascal Extensions to Extended Pascal 

Category 

Lexical and syntactical 
extensions 

Predefined types 

Predeclared procedures 

Predeclared functions 

Extension 

Reserved words: REM, VARYING, %DESCR, 
%STDESCR, %IMMED, %REF, %INCLUDE, %TITLE, 
%SUBTITLE, and %DICTIONARY 

REM operator 

Type cast operator (::)for variables and expressions 

"%radix-specifier number" form for binary, hexadecimal, 
and octal notation for integers 

Double- and quadruple-precision real numbers 

Dollar sign ( $ ) characters in identifiers 

Identifiers that can begin with any character other than 
a letter and whose first 31 characters must be unique 

Extended syntax for inclusion of nonprinting characters 
in character strings 

Parenthetical form ((constructor)) for constructors of 
structured types, used anywhere in place of a constant of 
the structured type 

Attributes 

Relaxed rules for assignment compatibility 

Structural compatibility enforced between actual and 
formal parameters 

UNSIGNED, SINGLE, DOUBLE (D_fioating and 
G_fioating), QUADRUPLE 

VARYING OF CHAR structured type and concatenation 
operator for all strings 

CLOSE, CREATE_DIRECTORY, DATE, DELETE, 
DELETE_FILE, ESTABLISH, FIND, FINDK, 
LINELIMIT, LOCATE, OPEN, READV, RENAME_FILE, 
RESETK, REVERT, TIME, TRUNCATE, UNLOCK, 
UPDATE, WRITEV 

Transfer functions: DBLE, INT, QUAD, SNGL, TRUNC, 
UINT, UROUND, UTRUNC 

Dynamic allocation function: ADDRESS, !ADDRESS 

(continued on next page) 

Summary of VAX Pascal Extensions D-5 



Table D-2 (Cont.): VAX Pascal Extensions to Extended Pascal 

Category 

READ, READLN, 
WRITE, WRITELN 
extensions 

Extended 1/0 
capabilities 

Declarations 

0-6 Summary of VAX Pascal Extensions 

Extension 

Character-string functions: BIN, DEC, HEX, OCT, PAD, 
STATUSV, UDEC 

Parameter functions: ARGUMENT, 
ARGUMENT_LIST_LENGTH, PRESENT 

Arithmetic functions: UAND, UNOT, UOR, UXOR, XOR, 
MIN, MAX 

Allocation size functions: SIZE, NEXT, BITSIZE, 
BITNEXT 

Low-level interlocked functions: ADD_INTERLOCKED, 
CLEAR_INTERLOCKED, FIND_FIRST_BIT_CLEAR, 
FIND_FIRST_BIT_SET, FIND_MEMBER, 
FIND_NONMEMBER, SET_INTERLOCKED 

Privileged routines: MTPR, MFPR 

1/0 functions: STATUS, UFB 

Field position functions: BIT_OFFSET, BYTE_OFFSET 

Additional predeclared functions: CLOCK, EXPO, 
UNDEFINED, ZERO, UPPER, LOWER 

Parameters of enumerated types for READ and READLN 
Parameters of enumerated types for WRITE and 
WRITELN 

Prompting at the terminal with a WRITE/READ or 
WRITE/READLN sequence 

Optional carriage-control specification for text files with 
WRITE and WRITELN 

Optional radix specification for READ and READLN 

Direct access and relative file organization 
Keyed access and indexed file organization 

VALUE initialization section 

(continued on next page) 



Table D-2 (Cont.): VAX Pascal Extensions to Extended Pascal 

Category 

Procedures and 
functions 

Compilation 

Extension 

Functions called as procedures 
External procedure and function declarations 

Default values for formal parameters 

Nonpositional parameter passing 

Extended mechanism specifiers and parameter passing 
attributes for passing parameters to external procedures 
and functions: %IMMED, %REF, %DESCR, %STDESCR, 
IMMEDIATE, REFERENCE, CLASS_S, CLASS_A, 
CLASS_NCA 

MODULE syntax differs from the syntax provided by 
Extended Pascal. 

ENVIRONMENT and INHERIT attributes to control 
independent compilation 

Summary of VAX Pascal Extensions D-7 





Appendix E 

Description of Implementation Features 

The standards for Pascal allow some features of the language to be defined 
by a particular implementation or to be dependent on an implementation. 
This appendix describes the VAX Pascal treatment of the following: 

• Implementation-defined features (Section E.1) 

• Implementation-dependent features (Section E.2) 

For More Information: 

For information on Pascal standards, see Section 1.1. 

E.1 Implementation-Defined Features 

The value of each character allowed in a character string 

Treatment: See Appendix A. 

The range of real number ,values represented by the type REAL 

Treatment: See the VAX Pascal Reference Supplement for VMS 
Systems. 

The characters represented by the type CHAR and their ordinal values 

Treatment: See Appendix A. 

The point at which the REWRITE, PUT, RESET, and GET procedures are 
performed on a file 

Treatment: Performed immediately unless the file is a terminal 
file, in which case delayed device access occurs (see Section 9.5.3). 

Description of Implementation Features E-1 



The value of MAXINT 

Treatment: 2,147,483,647. 

The accuracy to which the results of real-number operations are calculated 

Tre~tment: See the VAX MACRO and Instruction Set Volume and 
VMS Run-Time Library Routines Volume. 

Default field widths 

Treatment: 

Values of type INTEGER 10 

Values of type REAL 12 

Values of type BOOLEAN 6 

The number of digits used to represent the exponent of a floating-point 
number 

Treatment: See the VAX Pascal Reference Supplement for VMS 
Systems. 

The value of the exponent character 

Treatment: 'E' . 

The case (upper or lower) in which the Boolean values TRUE and FALSE 
are printed as output 

Treatment: Uppercase; that is, TRUE and FALSE. 

The effect of the PAGE procedure 

Treatment: PAGE writes a line containing only the form-feed 
character (ASCII value 12). 

E.2 Implementation-Dependent Features 

The order of evaluation of the following items: 

• Index values of an array variable 

• Expressions in a set constructor 

• Operands in a dyadic operation 

Treatment: Random order. 

E-2 Description of Implementation Features 



Order of evaluating, and accessing of actual parameters in a function 
designator and a procedure call 

Treatment: Random order. 

Order of accessing the variable and evaluating the expression in an 
assignment statement 

Treatment: Random order. 

The effect of reading a text file for which the PAGE procedure was called 

Treatment: Reads a line containing only the form-feed character 
(ASCII value 12). 

Description of Implementation Features E-3 





Appendix F 

Error Detection 

This appendix describes how the VAX Pascal compiler and run-time system 
detect violations of the Pascal language standards. Errors detected·at 
run time cause a program to terminate and return appropriate error 
messages. Errors described here as not detected cause a program to produce 
unexpected results. 

For More Information: 

• On standards (Section 1.1) 

• On VAX Pascal error messages (VAX Pascal Reference Supplement for 
VMS Systems) 

F.1 Error-Detection Information 

The type of an index value is not assignment compatible with the index type 
of an array. 

Explanation: Detected at run time if bounds checking was 
enabled during compilation. 

The current variant changes while a reference to it exists. 

Explanation: Not detected. An example of a reference to a variant 
is the passing of the variant to a formal VAR parameter. 

The value of a variable to which a pointer refers ( p"' ) is NIL. 

Explanation: Usually detected at run time. Always detected if 
pointers checking was enabled during compilation. 

Error Detection F-1 



The value of a variable to which a pointer refers ( p" ) is undefined. 

Explanation: Not detected. 

The DISPOSE procedure is called to dispose of a heap-allocated variable 
while a reference to the variable exists. 

Explanation: Not detected. Examples of such references are 
passing the variable, or a component of it, to a formal VAR 
parameter, or using the variable in a WITH statement (if the 
variable is a record). 

The value of file f changes while a reference to f" exists. 

Explanation: Not detected. An example of a reference to f" is the 
passing of f" by reference to a routine; until the routine has ceased 
execution, you cannot perform any operation on file f. 

The ordinal type of an actual parameter is not assignment compatible with 
the type of the corresponding formal parameter. 

Explanation: Detected at run time if subrange checking was 
enabled during compilation of the called routine. 

The set type of an actual parameter is not assignment compatible with the 
type of the corresponding formal parameter. 

Explanation: Detected at run time if subrange checking was 
enabled during compilation of the called routine. 

A file is not in generation mode when a PUT, WRITE, WRITELN, or PAGE 
procedure is attempted. 

Explanation: Detected at run time. 

A file is in undefined mode when a PUT, WRITE, WRITELN, or PAGE 
procedure is attempted. 

Explanation: Not detected. 

The result of an EOF function is not TRUE when a PUT, WRITE, 
WRITELN, or PAGE procedure is attempted. 

Explanation: Detected at run time. The operation is illegal only 
when the file is accessed sequentially~ 

The value of the file buffer variable is undefined when a PUT procedure is 
attempted. · 

Explanation: Not detected. 

F-2 Error Detection 



A file is in undefined mode when a RESET procedure is attempted. 

Explanation: Not detected. 

A file is not in inspection mode when a GET, READ, or READLN procedure 
is attempted. 

Explanation: Detected at run time. 

A file is in undefined mode when a GET, READ, or READLN procedure is 
attempted. 

Explanation: Not detected. 

The result of an EOF function is TRUE when a GET, READ, or READLN 
procedure is attempted. 

Explanation: Detected at run time. 

The type of the file buffer variable is not assignment compatible with the 
type of the variable that is a parameter to a READ or READLN 
procedure. 

Explanation: Detected at run time. 

The type of the expression being written by a WRITE or WRITELN 
procedure is not assignment compatible with the type of the file 
buffer variable. 

Explanation: Detected at run time. 

The current variant does not exist in the list of variants specified with the 
NEW procedure. 

Explanation: Not detected. 

The DISPOSE( p ) procedure is called to deallocate a pointer variable that 
was created using the variant form of the NEW procedure. 

Explanation: Not detected. 

The variant form of the DISPOSE procedure does not specify the disposal of 
the same number of variants that were created by the variant form 
of the NEW procedure. 

Explanation: Not detected. 

Error Detection F-3 



The variant form of the DISPOSE procedure does not specify the disposal 
of the same variants that were created by the variant form of the 
NEW procedure. 

Explanation: Not detected. 

The value of the parameter to the DISPOSE procedure is NIL. 

Explanation: Detected at run time. 

The value of the parameter to the DISPOSE procedure is undefined. 

Explanation: Not detected. 

A variant record created by the NEW procedure is accessed as a whole, 
rather than one component at a time. 

Explanation: Not detected. 

In the PACK( a,i,z ) procedure, the type of the index value i is not 
assignment compatible with the index type of a. 

Explanation: Detected at run time if subrange checking was 
enabled during compilation. 

The PACK procedure is attempted when the value of at least one component 
of a is undefined. 

Explanation: Not detected. 

The index value i in the PACK procedure is greater than the upper bound of 
the index type of a. 

Explanation: Detected at run time if subrange checking was 
enabled during compilation. 

In the UNPACK( z,i,a ) procedure, the type of the index value i is not 
assignment compatible with the index type of a. 

Explanation: Detected at run time if subrange checking was 
enabled during compilation. 

The UNPACK procedure is attempted when the value of at least one 
component of z is undefined. 

Explanation: Not detected. 

F-4 Error Detection 



The index value i in the UNPACK procedure is greater than the upper 
bound of the index type of a. 

Explanation: Detected at run time if subrange checking was 
enabled during compilation. 

The resulting value of SQR( x ) does not exist. 

Explanation: Detected at run time for integers if overflow 
checking was enabled during compilation; always detected at run 
time for real numbers. 

In the expression LN( x ), the value of x is negative. 

Explanation: Detected at run time. 

In the expression SQRT( x ), the value of xis negative. 

Explanation: Detected at run time. 

The resulting value of TRUNC( x ) does not exist after the following 
calculations have been done: if the value of x is positive or zero, 
then 0 <= x-TRUNC( x) < 1; otherwise, -1 < x-TRUNC( x) <=0. 

Explanation: Detected at run time if overflow checking was 
enabled during compilation. 

The resulting value of ROUND( x) does not exist after the following 
calculations have been done: if the value of x is positive or zero, 
then ROUND( x ) is equivalent to TRUNC( x + 0.5 ); otherwise, 
ROUND( x ) is equivalent to TRUNC( x-0.5 ). 

Explanation: Detected at run time if overflow checking was 
enabled during compilation. 

The resulting value of CHR( x ) does not exist. 

Explanation: Detected at run time if subrange checking was 
enabled during compilation. 

The resulting value of SUCC( x ) does not exist. 

Explanation: Detected at run time if subrange checking was 
enabled during compilation. 

The resulting value of PRED( x ) does not exist. 

Explanation: Detected at run time if subrange checking was 
enabled during compilation. 

Error Detection F-5 



The function EOF( f) is called when the file f is undefined. 

Explanation: Not detected. 

The function EOLN( f ) is called when the file f is undefined. 

Explanation: Not detected. 

The function EOLN( f) is called when the result of EOF( f) is TRUE. 

Explanation: Not detected. 

A variable is not initialized before it is first used. 

Explanation: Not detected. 

In the expression x/y, the value of y is zero. 

Explanation: Detected at run time. 

In the expression i DIV j, the value of j is zero. 

Explanation: Detected at run time. 

In the expression i MOD j, the value of j is zero or negative. 

Explanation: Detected at run time if subrange checking was 
enabled during compilation. 

An operation or function involving integers does not conform to the 
mathematical rules for integer arithmetic. 

Explanation: Detected at run time if overflow checking was 
enabled during compilation. 

A function result is undefined when the function returns control to the 
calling block. 

Explanation: Not detected. 

The ordinal type of an expression is not assignment compatible with the 
type of the 'variable or function identifier to which it is assigned. 

Explanation: Detected at run time if subrange checking was 
enabled during compilation. 

The set type of an expression is not assignment compatible with the type of 
the variable or function identifier to which it is assigned. 

F-6 Error Detection 

Explanation: Detected at run time if-subrange checking was 
enabled during compilation. 



None of the case labels is equal in value to the case selector in a CASE 
statement. 

Explanation: Detected at run time if case selector checking was 
enabled during compilation. 

In a FOR statement, the type of the initial value is not assignment 
compatible with the type of the control variable, and the statement 
in the loop body is executed. 

Explanation: Detected at run time if subrange checking was 
enabled during compilation. Assignment compatibility is not 
enforced if the statement in the loop body can never be executed. 

In a FOR statement, the type of the final value is not assignment compatible 
with the type of the control variable and the statement in the loop 
body is executed. 

Explanation: Detected at run time if subrange checking was 
enabled during compilation. Assignment compatibility is not 
enforced if the statement in the loop body can never be executed. 

When an integer is being read from a text file, the digits read do not 
constitute a valid integer value. (Initial spaces and end-of-line 
markers are skipped.) 

Explanation: Detected at run time. 

When an integer is being read from a text file, the type of the value read is 
not assignment compatible with the type of the variable. 

Explanation: Detected at run time if subrange checking was 
enabled during compilation. 

When reading a real number from a text file, the digits read do not 
constitute a valid real number. (Initial spaces and end-of-line 
markers are skipped.) 

Explanation: Detected at run time. 

The value of the file buffer variable is undefined when a READ or READLN 
procedure is performed. 

Explanation: Not detected. 

Error Detection F-7 



A WRITE or WRITELN procedure specifies a field width in which the 
integers representing the total width and the number of fractional 
digits are less than 1. 

Explanation: Not detected. 

The bounds of an array passed to a conformant array parameter are outside 
the range specified by the conformant array's index type. 

F-8 Error Detection 

Explanation: Detected at run time If bounds checking was enabled 
during compilation. 



A 
ABS function, 8-3 
Absolute value 

of a parameter, 8-3 
Access methods, 9-1 o to 9-18 
Actual discriminants, 2-29 
Actual parameter 

associated with formal, 6-25 
description of, 6-8 
effect of UNSAFE attribute, 6-9 
foreign mechanism, 6-17 
function, 6-13 
passing mechanisms, 6-8 
procedure, 6-13 
routine, 6-13 
value semantics, 6-2, 6-8 
variable semantics, 6-2, 6-1 o 

Actual parameter list 
syntax diagram, B-3 

Addition operator, 4-3 
ADDRESS function, 8-3 
ADD _INTERLOCKED function, 8-3 
ALIGNED attribute, 1 Q-4 

Alignment 
of key fields, 1 0-21 

Alignment routines 
return values of, 8-34 

Allocation 
automatic, 1 0-7 
in common block, 10-13 
in program section, 10-28 
overlaid, 10-27 
static, 10-31 
version compatibility in storage, C-9 

Index 

Alternate key 
default options for, 10-20 
in indexed file, 9-4 

AND operator, 4-7 
AND_ THEN operator, 4-7 
ANSI standard, 1-1 
ARCTAN function, 8-4 
Arctangent of parameter, 8-4 
ARGUMENT function, 8-4 
Argument in parameter list, 8-4 
ARGUMENT _LIST _LENGTH function, 8-5 
Arithmetic operators, 4-3 to 4-6 
Array, 2-12 

conformant, 6-21 
copying, 8-29, 8-40 
multidimensional, 2-13 

version compatibility in packing, C-8 
Array constructor, 2-13 

syntax diagram, B-3 to B-4 
ARRAY type, 2-12 

bounds checking, 10-10 
character strings, 2-34 
component of, 2-12 
index of, 2-12 
packed, 2-34 
use of multidimensional array, 2-13 

ASCII character set, 1-3, 2-4, A-1 to A-6 
extended characters, A-1 
nonprinting characters in, 2-4 

Assignment compatibility, 2-42 
effect of POS, 10-28 
effect of read-only, 10-29 
effect of UNSAFE, 10-36 

Assignment operator, 5-1 
Assignment statement, 5-1 
Asynchronous Attribute, 10-5 

lndex-1 



AT attribute, 10-6 
Attribute class, 10-1 

default for, 10-2 
list of, 10-45 

Attribute list 
syntax diagram, 8-4 

Attributes, 1 0-1 to 10-49 
See also individual attributes by name 
associating with data, 10-2 
effect on compatibility, 10-3 
effect on formal parameter, 6-9 
effect on structural compatibility, 6-12 
specified in TYPE section, 10-3 
syntax of, 10-1 

AUTOMATIC attribute, 10-7 
Automatic variable allocation, 10-7 

B 
Base type 

of set, 2-23 
of subrange, 2-6 

Binary digits 
syntax diagram, B-5 

Binary notation, 2-2 
in output procedure, 9-64 

BIN function, 8-5 
in output procedure, 9-64 

BIT attribute, 10-8 
BITNEXT Function, 8-6 
BITSIZE Function, 8-7 
BIT_OFFSET Function, 8-7 
Block 

contents of, 7-1 
syntax diagram, B-5 

BOOLEAN type, 2-5 
default field width of, 9-63 
reading from text file, 9-47 

Bound procedure value, 10-35 
Buffer 

increasing internal size, 9-23 
Buffer variable, 9-8 
Built-ins 

See Predeclared routines 
BYTE attribute, 10-9 
BYTE_ OFFSET function, 8-8 

c 
CARD function, 8-8 
Cardinality of set, 8-8 

lndex-2 

Carriage control 
characters, 9-20 
OPEN parameter options, 9-19 

Case label, 5-3 
Case selector, 5-2 

checking, 5-3 
CASE statement, 5-2 

case label, 5-3 
case selector, 5-2 

checking, 10-10 
examples, 5-3 
in records with variants, 2-18 
with OTHERWISE clause, 5-3 

COD, 11-4 
Cells 

definition of, 9-3 
Character 

form feed, 1-9 
nonprinting, 2-4 
of type CHAR, 2-4 
ordinal value of, 2-4 
page break, 1-9 

Character set 
See ASCII character set 

Character string, 2-34 
comparing for equality, 8-13, 8-17, 8-22 
comparing for inequality, 8-17, 8-22, 8-23, 8-25 
default field width of, 9-63 
extracting substring from, 8-36 
finding length of, 8-22 
fixed-length, 2-34 
locating pattern in, 8-21 
operators, 4-8 
padding, 8-29 
reading from, 8-31 
reading from text file, 9-47 
using predeclared routines, 4-9 
using relational operators, 4-9 
varying-length, 2-35 
writing to, 8-43 

Character-string parameters 
compatibility between product versions, C-1 O 

CHAR type, 2-4 
default field width of, 9-63 
reading from text file, 9-47 

CHECK attribute, 10-9 
summary of options, 10-1 O 

CHR function, 8-8 
Classes of attributes, 10-45 to 10-47 
CLASS_A attribute, 10-11 

used to specify descriptor in parameter, 6-15 



CLASS_NCA attribute, 10-12 
used to specify descriptor in parameter, 6-15 

CLASS_S attribute, 10-12 
used to specify descriptor in parameter, 6-15 

CLEAR_INTERLOCKED function, 8-9 
CLOCK function, 8-9 
CLOSE procedure, 9-25 
Comments, 1-8 

nested, 1-8 
version compatibility of delimiters, C-8 

COMMON attribute, 10-13 
Common block 

definition of, 10-13 
Common Data Dictionary 

See CDD 
Compatibility 

assignment, 2-42 
structural, 2-40 

Compilation unit 
attributes, 1 o-47 
definition of, 7-4 
sharing data, 7-6 
syntax diagram, 8-6 

Compile-time expressions, 4-1 
Component 

access mode, 9-10 
format of, 9-8 
in a file, 9-1 
length of, 9-4 
of array, 2-12 
of structured type, 2-11 

Component format, 9-9 
fixed-length, 9-9 
stream, 9-1 O 
variable-length, 9-1 O 

Compound statement, 5-4 
Concatenation 

of string operators, 4-9 
Conditional statements 

CASE, 5-2 
IF, 5-7 

Condition handler 
cancelling, 8-32 
establishing, 8-14 

Conformant array 
compatibility between product versions, C-3 
effect of UNSAFE attribute, 10-37 

Conformant parameter 
array, 6-21 
description of, 6-20 
syntax diagram, 8-7 

Conformant parameter (Cont.) 

VARYING string, 6-23 
Congruence of formal routine parameters, 6-13, 

10-22 
Constant 

definition of, 3-2 
expressions, 4-1 
identifier, 2-5 
symbolic, 3-2 

Constructor 
array, 2-13 
nonstandard array, 2-26 
nonstandard record, 2-28 
pointer, 2-11 
record, 2-20 
set, 2-24 
to decimal value, 8-11 
variant record, 2-22 

CONST section, 3-2 
Control variable, 5-5 
Conversion 

of actual parameter type, 6-9 
of type, 4-15 
to ASCII binary value, 8-5 
to ASCII decimal value, 8-11 
to ASCII hexadecimal value, 8-19 
to ASCII octal value, 8-28 
to double-precision, 8-11 
to integer, 8-21 

by rounding, 8-33 
by truncation, 8-37 

to quadruple-precision, 8-31 
to single-precision, 8-35 
to unsigned ASCII decimal value, 8-38 
to unsigned integer, 8-39 

by rounding, 8-42 
by truncation, 8-42 

COS function, 8-9 
Cosine of parameter, 8-9 
Count-controlled loop 

See FOR statement 
CREATE_DIRECTORY procedure, 8-9 
Current component, 9-8 

D 
%DESCR foreign mechanism 

on actual parameter, 6-17 
%DICTIONARY directive, 11-4 
Data type, 2-1 to 2-43 

arithmetic, 8-1 

lndex-3 



Data type (Cont.) 
ARRAY, 2-12 to 2-15 
BOOLEAN, 2-5 
CHAR, 2-4 
DOUBLE, 2-7 
enumerated, 2-5 
FILE, 2-25 
initial-state specifier for, 3-7 
INTEGER, 2-2 
nonstatic, 2-39 
ordinal, 2-1 to 2-7 
pointer, 2-9 
predefined structured and schema, 2-38 
QUADRUPLE, 2-7 
REAL, 2-7 to 2-9 
RECORD, 2-15 
SET, 2-23 
SINGLE, 2-7 
size in bytes, 8-33 
static, 2-39 
STRING, 2-33 
structured, 2-11 
subrange, 2-6 
UNSIGNED, 2-3 
values assigned by ZERO function, 8-44 
VARYING OF CHAR, 2-35 

DATE function, 8-1 O 
DATE procedure, 8-11 
DBLE function, 8-11 
DEC function, 8-11 
Decimal digits 

syntax diagram, B-8 
Decimal notation 

in output procedure, 9-64 
integer, 2-2 
real number, 2-8 

Declaration 
See also Definition 
function, 6-2 
label, 3-3 
procedure, 6-2 
variable, 3-9 

Declaration part 
syntax diagram, B-9 

Declaration section, 3-1 to 3-1 O 
CONST, 3-2 
contents of, 3-1 
FUNCTION, 6-2 
LABEL, 3-3 
PROCEDURE, 6-2 
TYPE, 3-6 

lndex-4 

Declaration section (Cont.) 
VALUE, 3-8 
VAR, 3-9 

Decommitted features, C-2 to C-7 
Default parameter 

values, 6-26 
Definition 

See also Declaration 
constant, 3-2 
label, 3-3 
type, 3-6 

Delayed device access 
to TEXT files, 9-21 

DELETE procedure, 9-27 
DELETE_FILE procedure, 8-12 
Descriptor mechanism, 6-7 

for strings, 6-16 
Directive 

%DICTIONARY, 11-4 
%INCLUDE, 11-1 
%SUBTITLE, 11-5 
% TITLE, 11-5 

Discriminants 
actual and formal, 2-29 

Discriminated schema, 2-31 
DISPOSE procedure, 8-13 
Division operator, 4-4 
DIV operator, 4-4 
Double-precision real number, 2-7 
DOUBLE type, 2-7 

allocation size of, 10-8 
default field width of, 9-63 

Dynamic array 
See also Component array 
decommitted features 

of parameters, C-2 
using LOWER function, C-3 
using UPPER function, C-3 

Dynamic variable, 2-9 
allocating, 8-25 
disposing of, 8-13 

E 
ELSE clause 

in IF statement, 5-8 
Empty set, 2-24 
Empty statement, 5-4 
End-of-file condition, 9-28 
End-of-line condition, 9-29 

version compatibility in reading, C-1 O 



Enumerated type, 2-5 
default field width of, 9-63 
reading from text file, 9-47 

ENVIRONMENT attribute, 10-14 
Environment file 

creation of, 10-14 
example of, 7-6 
inheriting, 10-18 
rules for creating, 7-7 

EOF function, 9-28 
EOLN function, 9-29 
EQ function, 8-13 
Error 

detection, F-1 to F-8 
processing, 9-62 

Error messages 
violating language standard, F-1 to F-8 

ERROR parameter, 9-62 
ESTABLISH procedure, 8-14 
EXP function, 8-14 
EXPO function, 8-14 
Exponent 

of real number, 8-14 
value returned, 8-14 

Exponential notation, 2-8 
in output procedure, 9-63 

Exponentiation operator, 4-3 
Expression 

syntax diagram, B-10 
Expressions, 4-1 to 4-14 

compile-time, 4-1 
order of evaluation, 4-2, 4-12 to 4-14 
run-time, 4-1 
use of parentheses in, 4-13 

Extended-digit notation, 2-3 
Extended Pascal 

extensions to, D-4 to D-7 
Extended Pascal standard, 1-2 
Extended-string format, 2-33 
EXTEND procedure, 9-30 
Extensions 

effect on portable code, 1-1 
summary of, D-1 to D..,..7 

EXTERNAL attribute, 10-14 
External file 

definition of, 9-2 
listed in heading, 7-5 

EXTERNAL identifier, 6-3 
External identifiers 

sharing of, 7-8 

External routine 
passing mechanisms for, 6-15 to 6-17 

EXTERN identifier, 6-3 

F 
Factor 

syntax diagram, B-11 
Features 

decommitted, C-2 to C-7 
Field 

of record, 2-15 
position of in record, 10-27 
width of, 9-63 

Field List 
syntax diagram, B-12 

Field width 
compatibility between product versions, C-10 

File 
access, 9-10 
carriage control in, 9-19 
closing, 9-25 
component format, 9-8, 9-9 
components in, 9-1 
default organization in OPEN procedure, 9-2 
definition of, 9-1 
external, 9-2 
internal, 9-2 
listed in heading, 7-5 
locking, 9-18 
mode, 9-24 
opening, 9-38 
preparing for input, 9-34 
procedure for deleting, 8-12 
procedure for renaming, 8-32 
TEXT, 9-18 

File buffer 
undefined, 9-57 
variable, 9-8 

File component 
adding to sequential file, 9-3 
definition of, 9-1 

File levels 
nesting in %INCLUDE, 11-2 

File locking, 9-18 
File organization 

definition of, 9-2 
indexed, 9-4 
relative, 9-3 
sequential, 9-2 

lndex-5 



FILE type, 2-25 
examples, 2-25 

FINDK procedure, 9-32 
FIND procedure, 9-31 
FIND_FIRST_BIT_CLEAR function, 8-15 
FIND_FIRST_BIT_SET function, 8-15 
FIND_MEMBER function, 8-16 , 
FIND_NONMEMBER function, 8-16 
Fixed-length component format, 9-9 
Floating-point notation 

See Exponential notation 
Foreign mechanism parameter 

actual, 6--17 
formal, 6--15 

Foreign semantics 
value, 6--16 
variable, 6--16 

Formal discriminants, 2-29 
Formal parameter 

associated with actual, 6--25 
congruence of, 6--13, 10-22 
default value for, 6--26 
description of, 6--6 
effect of attributes, 6--9 
effect of LIST, 6--14 
effect of READONL Y, 6--11, 10-30 
effect of UNSAFE, 6--9 
foreign mechanism, 6--15 
function, 6--13 
passing mechanisms, 6--1 o 
procedure, 6--13 
routine, 6--13 
semantics of, 6--7 
value semantics, 6-8 
variable, 6--1 O 

Formal parameter list 
syntax diagram, B-13 

Formal parameter section 
syntax diagram, B-13 

Form feed character, 1-9 
FOR statement, 5-5 

examples, 5--6 
execution and termination of, 5-5 

FORTRAN identifier, 6--3 
FORWARD identifier, 6-3 
Function, 6--1 

calling of, 6--5 
declaration of, 6--2 
heading, 6--2 

lndex-6 

Function 
predeclared 

See Predeclared routines, or individual 
functions by name 

used as actual parameter, 6-13 
used as formal parameter, 6-13 

Function call, 6--5 
Function designators 

side effects, 4-14 
Function heading 

syntax diagram, B-14 

G 
GE function, 8-17 
Generation file mode 

description of, 9-24 
GET procedure, 9-34 

file position after, 9-35 
GETIIMESTAMP ·Procedure, 8-18 
GLOBAL attribute, 10-16 
Global identifiers 

compatibility between product versions, C-11 
sharing of, 7~ 

GOTO statement, 5-6 
terminating a FOR loop, 5-6 
using to access labels, 3-3 

GT function, 8-17 
G_FLOATING Attribute, 10-15 

H 
HALT Procedure, 8-19 
Heading 

of function, 6--2 
of procedure, 6--2 

Hexadecimal digits 
syntax diagram, 8-14 

Hexadecimal notation, 2-2 
compatibility between versions, G-4 
in output procedure, 9-64 

HEX function, 8-19 
compatibility between product versions, C-4 
in output procedure, 9-64 

HIDDEN attribute, 10-17 

%1MMED foreign mechanism 
on actual parameter, 6--16 
with UNBOUND attribute, 6-16 



%INCLUDE directive, 11-1 
example of, 11-2 
nesting file levels, 11-2 
version compatibility of file type, C-8 

110 procedures 
additional error recovery parameter, 9-62 

110 processing, 9-1 to 9-66 
file modes during, 9-24 

110 routines, 9-24 to 9-62 
random access, 9-16 
sequential access, 9-12 
used with TEXT files, 9-19 

!ADDRESS function, 8-20 
IDENT attribute, 10-17 
Identifier 

constant, 2-5, 3-2 
description of, 1-5 
external, 7-8 
global, 7-8 
predeclared, 1-6 
scope of, 7-2 to 7-4 
syntax diagram, B-15 
type, 3-6 

IF statement, 5-7 
examples, 5-8 
with ELSE clause, 5-8 

IMMEDIATE attribute, 10-18 
Immediate value mechanism, 6-7 
Implementation features, E-1 to E-3 
Index 

of array, 2-12 
Indexed file 

index structure of, 9-5 
key fields, 9-6 
organization, 9-4 
random access to, 9-17 
sequential access to, 9-15 

INDEX function, 8-21 
Index structure 

characteristics defined with KEY attribute, 9-7 
key fields, 9-6 
of indexed file, 9-5 

INHERIT attribute, 10-18 
Initialization 

in VALUE section, 3-8 
of variable; 3-7, 3-10 

INITIALIZE attribute, 10-19 
Initial-state specifier 

example for a record field, 2-16 
example for arrays, 2-14 
example for enumerated type, 2-5 

Initial-state specifier (Cont.) 

example for fields of variant records, 2-23 
example for PACKED ARRAY OF CHAR, 2-34 
example for pointers, 2-11 
example for records, 2-21 
example for sets, 2-24 
example for STRING, 2-37 
example for variant records, 2-22 
example for VARYING OF CHAR, 2-35 
on a data type, 3-7 
on a variable, 3-9 

Initial Value 
syntax diagram, 8-15 

IN operator, 4-10 
Inspection file mode 

description of, 9-24 
Integers 

decimal notation for, 2-2 
negative, 2-2 
radix notation for, 2-2 
unsigned, 2-3 

INTEGER type, 2-2 
default field width of, 9-63 
reading from text file, 9-47 

Internal file 
definition of, 9-2 

INT function, 8-21 
ISO standard, 1-1 

K 
Key 

alternate and primary, 9-4 
characteristics defined with KEY attribute, 9-7 
fields, 9-6 

KEY attribute, 9-5, 10-20 
Key field 

L 

alignment of, 10-21 
allocation of, 10-21 
defining in record, 10-20 
description of, 9-6 
type of, 10-20 

'Label 
accessing, 3-3 
case, 5-3 
definition of, 3-3 
in GOTO statement, 5-6 

LABEL section, 3-3 

lndex-7 



Language changes between versions, C-11 
Language extensions 

summary of, D-1 to D-7 
Language standard 

violation of, F-1 to F-8 
Language standards 

Extended Pascal, 1-2 
Pascal, 1-1 
unextended Pascal, 1-1 

Language syntax 
summary, 8-1 to 8-27 

Lazy lookahead 
access to TEXT files, 9-21 

LE function, 8-22 
LENGTH function, 8-22 
Lexical elements, 1-2 

identifiers, 1-5 
reserved words, 1-4 
special symbols, 1-3 

LINELIMIT procedure, 9-36 
LIST attribute, 10-21 

on formal parameter, 6-14 
/LIST qualifier 

use with %DICTIONARY directive, 11-4 
use with %INCLUDE directive, 11-1 

LN function, 8-22 
LOCAL attribute, 10-23 
LOCATE procedure, 9-37 
Logarithm of parameter, 8-22 
Logical operators, 4-7 

evaluating, 4-7 
LONG attribute, 10-24 
Loop 

in FOR statement, 5-5 
in REPEAT statement, 5-9 
in WHILE statement, 5-10 

LOWER function, 8-23 
compatibility between product versions, C-3 
example of, 8-41 

LT function, 8-23 

M 
MAXCHAR, 2-4 
MAX function, 8-24 
MAXINT, 2-2 
MAXUNSIGNED, 2-3 
Mechanism specifier 

on actual parameter, 6-17 
on formal parameter, 6-15 
syntax diagram, B-16 

Index-a 

Messages 
See Error messages 

MFPR function, 8-24 
MIN function, 8-24 
Mode 

of file, 9-24 
MOD operator, 4-4 

decommitted definition of, C-10 
use with negative integers, 4-5 

Module 
definition of, 7-4 
finalization, 3-5 
heading, 7-5 
initialization, 3-3 

MTPR procedure, 8-24 
Multidimensional array, 2-13 

version compatibility in packing, C-8 
Multiplication operator, 4-3 

N 
Name string 

in attribute list, 1 0-2 
NE function, 8-25 
Negation operator, 2-9 
Nesting file levels, 11-2 
NEW procedure, 8-25 
NEXT Function, 8-27 
NOG_FLOATING, attribute, 10-24 
Nonpositional syntax, 6-25 
Nonprinting character, 2-4 
Nonstandard constructor, 2-26 

array, 2-26 
record, 2-28 

Nonstatic type 
description of, 2-39 
parts of, 2-39 

NOOPTIMIZE attribute, 10-25 
Notation 

binary, 2-2 
decimal · 

integer, 2-2 
real numbers, 2-8 

exponential, 2-8 
extended-digit, 2-3 
hexadecimal, 2-2 
octal, 2-2 

NOT operator, 4-7 
Numeric constant 

syntax diagram, 8-17 



D 
)CTA attribute, 10-25 
)ctal digits 

syntax diagram, 8-17 
)ctal notation, 2-2 

compatibility between versions, C-4 
in output procedure, 9-64 

)CT function, 8-28 
compatibility between versions, C-4 
in output procedure, 9-64 

)00 function, 8-28 
'OLD_VERSION qualifier, C-8 

changes not controlled by, C-11 
)PEN procedure, 9-38 

carriage control parameter, 9-19 
decommitted syntax of, C-5 
syntax, · 9-38 

::>perator 
assignment, 5-1 
negation, 2-9 

Operators, 4-2 to 4-14 
arithmetic, 4-3 to 4-6 
logical, 4-7 
precedence of, 4-12 
relational, 4-6 
set, 4-10 
string, 4-8 
type cast, 4-11 

Optimization 
disabling during recompilation, C-8 
effect of VOLATILE, 10-40 

OPTIMIZE attribute, 10-26 
ORD function, 8-28 
Ordinal types, 2-1 to 2-7 

allocation size of, 10-S 
Ordinal value, 2-1 

of Boolean values, 2-5 
of case label, 5-3 
of characters, 2-4 
of characters in comparisons, 4-9 
of enumerated type, 2-5 
of parameter, 8-28 
of subrange type, 2-6 

OR operator, 4-7 
OR_ELSE operator, 4-7 
OTHERWISE clause 

in array constructor, 2-14 
in CASE statement, 5-3 
in record constructor, 2-21 
in records, 2-19 

OVERLAID attribute, 10-27 

p 
Packed array 

copying from unpacked array, 8-29 
PACKED ARRAY OF CHAR, 2-34 

reading from text file, 9-48 
PACK procedure, 8-29 
PAD function, 8-29 
Page break character, 1-9 
PAGE procedure, 9-43 
Parameter 

absolute value of, 8-3 
actual variable, 6-11 
address of, 8-3 
arctangent of, 8-4 
association of formal and actual, 6-25 
conformant array, 6-21 
conformant VARYING string, 6-23 
congruence of, 6-13 
cosine of, 8-9 
default value for, 6-26 
effect of attributes, 6-9 
effect of UNSAFE, 6-9 
error processing, 9-62 
foreign mechanism, 6-15, 6-17 
formal schema, 6-19 
formal value, 6-8 
formal variable, 6-10 
function, 6-13 
ordinal value of, 8-28 
passing mechanisms, 6-7 
predecessor of, 8-30 
procedure, 6-13 
rounding numbers in, 8-33 
routine, 6-13 
sine of, 8-33 
square of, 8-35 
square root of, 8-35 
successor of, 8-37 
truncating numbers in, 8-37 
version compatibility of dynamic array, C-2 

Pascal language standards, 1-1 
Passing mechanisms 

for parameters, 6-7 
Pointer type, 2--9 

allocation size of, 10-8 
checking, 10-10 
effect of READONLY, 10-30 
effect of UNSAFE, 10-37 

lndex-9 



Pointer type (Cont.) 
effect of VOLATILE, 1Q-41 
effect of WRITEONLY, 1Q-44 

Pointer variable, 8-13, 8-25 
POS attribute, 10-27 

effect on compatibility, 10-28 
Positional syntax, 6-25 
Precedence 

of operators, 4-12 
Predecessor of parameter, 8-30 
Predeclared identifier 

real data types, 2-7 
Predeclared identifiers, 1-6 
Predeclared routines 

See also individual routines by name 
categories of, 8-1 
1/0 processing, 9-24 to 9-62 

PRED function, 8-30 
PRESENT function, 8-30 
Primary 

syntax diagram, 8-18 
Primary key 

default options for, 10-20 
in indexed file, 9-4 

Procedure, 6-1 
calling of, 5-8, 6-5 
declaration of, 6-2 
heading, 6-2 
predeclared 

See Predeclared routines, or individual 
procedures by name 

used as actual parameter, 6-'13 
used as formal parameter, 6-13 

Procedure call, 5-8, 6-5 
effect when calling a function, 5-9 

Procedure heading 
syntax diagram, B-18 

Program 
definition of, 7-4 
heading, 7-5 

Program section 
allocation in, 10-28 
version compatibility of allocation in, C-11 

PSECT attribute, 10-28 
PUT procedure, 9-44 

Q 
QUAD attribute, 10-29 
QUAD function, 8-31 
Quadruple-precision real number, 2-7 

lndex-10 

QUADRUPLE type, 2-7 
allocation size of, 10-8 
default field width of, 9-63 

Qualifiers 
decommitted in source code, C-6 

R 
%REF foreign mechanism 

on actual parameter, 6-17 
Random access, 9-16 

to indexed files, 9-17 
using relative component numbers, 9-17 

READLN procedure, 9-49 
READONL Y attribute, 10-29 

on formal parameter, 6-11 
READ procedure, 9-45 

compatibility between product versions, C-10 
READV procedure, 8-31 

status of, 8-36 
Real constant 

syntax diagram, B-18 
Real number 

double-precision, 2-7 
negative, 2-9 
quadruple-precision, 2-7 
single-precision, 2-7 

REAL type, 2-7 
allocation size of, 10-8 
default field width of, 9-63 
reading from text file, 9-47 

Record constructor, 2-20 
syntax diagram, B-19 to 8-20 

RECORD type, 2-15 to 2-23 
constructor with variant for, 2-22 
field of, 2-15 
nested, 2-21 
OTHERWISE clause in, 2-19 
position of fields in, 10-27 
using WITH statement, 5-11 
variant clause in, 2-17 

Reference 
to variable, 3-10 

REFERENCE attribute, 10-31 
Reference mechanism, 6-7 
Relational operators, 4-6 

evaluating, 4-13 
Relative component number, 9-3 

use with random access, 9-17 
Relative file 

cells, 9-3 



Relative file {Cont.) 

organization, 9-3 
sequential access to, 9-14 

REM operator, 4-4 
RENAME_FILE procedure, 8-32 
REPEAT statement, 5-9 
Repetitive statements 

FOR, 5-5 
REPEAT, 5-9 
WHILE, 5-10 

Reserved words, 1-4 
redefinable, 1-5 

RESETK procedure, 9-52 
RESET procedure, 9-51 

initiating delayed device access, 9-22 
REVERT procedure, 8-32 
REWRITE procedure, 9-53 
ROUND function, 8-33 
Rounding numbers 

of a parameter, 8-33 
Routine, 6-1 

attributes, 1 Q-47 
calling of, 6-5 
categories, 8-1 
declaration of, 6-2 
heading, 6-2 
predeclared, 8-1 

See also individual routines by name 
used as actual parameter, 6-13 
used as formal parameter, 6-13 

Routine call, 6-5 
Routine declaration 

syntax diagram, B-20 
Routines 

1/0 processing, 9-24 to 9-62 
Run-time expressions, 4-1 

s 
%STDESCR foreign mechanism 

on actual parameter, 6-17 
%SUBTITLE directive, 11-5 
Schema parameters, 6-19 
Schema types, 2-29 to 2-32 

predefined, 2-38 
STRING, 2-36 
using the NEW procedure, 8-25 

Scope of identifiers, 7-2 to 7-4 
example of, 7-2 
in a routine, 6-5 
rules for, 7-2 

Semantics 
value, 6-8 
variable, 6-1 O 

Sequential access, 9-12 
to indexed file, 9-15 
to relative file, 9-14 
to sequential file, 9-13 

Sequential file 
organization, 9-2 
sequential access to, 9-13 

Set constructor, 2-24 
syntax diagram, 8-21 

Set operators, 4-1 O 
SET type, 2-23 

bounds checking, 10-10 
cardinality of, 8-8 
constructor for, 2-24 
examples of, 2-24 
operators, 4-1 O 
version compatibility in storage of, C-9 

SET _INTERLOCKED function, 8-33 
Side effects 

of volatile objects, 1 Q-40 
with function designators, 4-14 

Simple expression 
syntax diagram, B-21 

Simple statement 
syntax diagram, B-22 

Simple type 
syntax diagram, 8-22 

Sine of parameter, 8-33 
SIN function, 8-33 
Single-precision real number, 2-7 
SINGLE type, 2-7 

allocation size of, 10-8 
default field width of, 9-63 

SIZE function, 8-33 
SNGL function, 8-35 
Source code 

qualifiers decommitted in, C-6 
Special symbols, 1-3 
SOR function, 8-35 
SQRT function, 8-35 
Square of parameter, 8-35 
Square root of parameter, 8-35 
Statement, 5-1 to 5-12 

assignment, 5-1 
CASE, 5-2 
compound, 5-4 
description of, 5-1 
empty, 5-4 

lndex-11 



Statement (Cont.) 
FOR, 5-5 
GOTO, 5-6 
IF, 5-7 
procedure call, 5-8 
REPEAT, 5-9 
syntax diagram, B-23 
WHILE, 5-10 
WITH, 5-11 

Static 
allocation, 10-31 
type, 2-39 

STATIC attribute, 10-31 
STATUS function, 9-55 
STATUSV function, 8-36 
Stream component format, 9-1 o 
String 

See Character string 
String constant 

syntax diagram, B-23 
String-descriptor mechanism, 6-16 
String operators, 4-8 

concatenation of, 4-9 
STRING schema type, 2-36 
String types, 2-33 to 2-38 
Structural compatibility, 2-40 

affected by ASYNCHRONOUS, 10-6 
effect of allocation size, 10-9 
effect of attributes, 6-12 
effect of POS, 1 0-28 
effect of UNBOUND, 10-35 
effect of UNSAFE attribute, 10-37 
effect of VOLATILE, 10-40 
effect of WRITEONLY, 10-44 

Structured statement 
syntax diagram, 8-24 to B-25 

Structured type 
allocation size of, 10-8 
description of, 2-11 
effect of READONLY, 10-30 
effect of VOLATILE, 10-40 
effect of WRITEONLY, 10-44 
predefined, 2-38 

Subrange type, 2-6 
bounds checking for, 2-6, 10-1 O 

Subscript 
See Index 

SUBSTR function, 8-36 
Subtraction operator, 4-3 
Successor of parameter, 8-37 
SUCC function, 8-37 

lndex-12 

Symbolic constant 
definition, 3-2 

Syntax diagrams 

T 

actual parameter list, 8-3 
array constructor, 8-3 to 8-4 
attribute list, 8-4 
binary digits, 8-5 
block, 8-5 
compilation unit, 8-6 
conformant parameter, 8-7 
decimal digits, 8-8 
declaration part, 8-9 
expression, 8-1 O 
factor, 8-11 
field list, 8-12 
formal parameter list, B-13 
formal parameter section, 8-13 
function heading, 8-14 
hexadecimal digits, B-14 
identifier, B-15 
initial value, 8-15 
mechanism specifier, B-16 
numeric constant, B-17 
octal digits, 8-17 
primary, 8-18 
procedure heading, 8-18 
real constant, B-18 
record constructor, 8-19 to 8-20 
routine declaration, B-20 
set constructor, 8-21 
simple expression, B-21 
simple statement, 8-22 
simple type, 8-22 
statement, 8-23 
string constant, B-23 
structured statement, 8-24 to 8-25 
term, B-25 
type, B-25 
variable, 8-26 

% TITLE directive, 11-5 
Term 

syntax diagram, 8-25 
Terminal 

prompting, 9-20 
before EOF and EOLN tests, 9-22 

writing partial lines to, 9-23 
Terminal output 

formatting, 9-63 



Terminal output (Cont.) 

using conversion functions, 9-64 
Terminator 

in stream component format, 9-10 
TEXT file 

compared to FILE OF CHAR, 9-19 
version compatibility of, C-9 

default component length, 9-9 
default information, 9-19 
delayed device access to, 9-21 
description of, 9-18 
1/0 routines, 9-19 
reading, 9-46 

TEXT type, 2-38 
TIME function, 8-10 
TIME procedure, 8-11 
TIMESTAMP type, 8-18 
TO BEGIN DO section, 3-3 

See also TO END DO section 
execution order of, 3-4 

TO END DO section, 3-5 
See also TO BEGIN DO section 
execution order of, 3-4 

TRUNCATE attribute, 10-32 
TRUNCATE procedure, 9-56 
Truncating numbers of parameter, 8-37 
TRUNC function, 8-37 
Type 

See also Data type 
cast operator, 4-11 
definitions 

example of, 3-7 
definitions of, 3-6 
syntax diagram, B-25 

Type compatibility, 2-40 
assignment, 2-42 
structural, 2-40 

Type conversion, 4-15 
of actual parameter, 6-9 
to packed array, 4-16 

TYPE section, 3-6 

u 
UAND function, 8-38 
UDEC function, 8-38 
UFB function, 9-57 
UINT function, 8-39 
UNALIGNED attribute, 10-34 
UNBOUND attribute, 10-35 

with %1MMED routine parameter, 6-17 

Undefined file mode 
description of, 9-24 

UNDEFINED function, 8-39 
Undiscriminated schema, 2-30 
Unextended Pascal 

extensions to, D-1 to D-4 
Unextended Pascal standard, 1-1 
UNLOCK procedure, 9-57 
UNOT function, 8-40 
Unpacked array 

copying from packed array, 8-40 
UNPACK procedure, 8-40 
UNSAFE attribute, 10-36 

effect on formal parameter, 6-9 
on actual parameter, 6-9 

UNSIGNED type, 2-3 
default field width of, 9-63 

UOR function, 8-41 
UPDATE procedure, 9-58 
UPPER function, 8-41 

compatibility between product versions, C-3 
UROUND function, 8-42 
UTRUNC function, 8-42 
UXOR function, 8-43 

v 
VALUE attribute, 10-39 
Value parameter 

actual, 6-8 
formal, 6-8 

VALUE section, 3-8 
initialization in, 3-8 

Value semantics, 6-8 
by foreign mechanism, 6-16 
for actual parameter, 6-8 

Variable 
control in FOR statement, 5-5 
declaring, 3-9 
dynamic, 2-9 
dynamic allocation of, 8-25 
dynamic disposal of, 8-13 
initializing, 3-7, 3-8, 3-10 
initial-state specifier for, 3-9 
reference to, 3-10 
sharing, 10-13 
side effects on, 4-14, 1 0-40 
size in bytes, 8-33 
syntax diagram, B-26 

Variable-length component format, 9-1 O 

lndex-13 



Variable parameter 
actual, 6-11 
formal, 6-1 O 

Variable semantics, 6-10 
by foreign mechanism, 6-16 
for actual parameter, 6-11 

Variant record, 2-17 
constructor, 2-22 

VAR section, 3-9 
initialization in, 3-7, 3-10 

VARYING OF CHAR type, 2-35 
bounds checking for, 10-10 
reading from text file, 9-48 

VARYING string 
conformant, 6-23 

VOLATILE attribute, 1 Q-40 
in type cast operation, 4-11 

w 
WEAK_ EXTERNAL attribute, 1 Q-43 
WEAK_GLOBAL attribute, 1Q-43 
WHILE statement, 5-10 

lndex-14 

WITH statement, 5-11 
specifying nested records, 5-12 

WORD attribute, 1 Q-43 
WRITELN procedure, 9-60 

default field width for types, 9-63 
using predeclared conversion functions, 9-64 

WRITEONL Y attribute, 1 Q-44 
WRITE procedure, 9-59 

default buffer size, 9-23 
default field width for types, 9-63 
using predeclared conversion functions, 9-64 

WRITEV procedure, 8-43 

x 

default field width for types, 9-63 
status of, 8-36 
using predeclared conversion functions, 9-64 

XOR function, 8-44 

z 
ZERO function, 8-44 

use within record constructor, 2-22 



How to Order Additional Documentation 

Technical Suppott 
If you need help deciding which documentation best meets your needs, call 800-343-4040 
before placing your electronic, telephone, or direct mail order. 

Electronic Orders 
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using 
a 1200- or 2400-baud modem. If you need assistance using the Electronic Store, 
call 800-DIGITAL (800-344-4825). 

Telephone and Direct Mail Orders 

Your Location 
Continental USA, 
Alaska, or Hawaii 

Puerto Rico 

Canada 

International 

Internal1 

Call 

800-DIGITAL 

809-754-7575 

800-267-6215 

Contact 
Digital Equipment Corporation 
P.O. Box CS2008 
Nashua, New Hampshire 03061 

Local Digital subsidiary 

Digital Equipment of Canada 
Attn: DECdirect Operations KA02/2 
P.O. Box 13000 
100 Herzberg Road 
Kanata, Ontario, Canada K2K 2A6 

Local Digital subsidiary or 
approved distributor 

USASSB Order Processing - WMO/E15 
or 
U.S. Area Software Supply Business 
Digital Equipment Corporation 
Westminster, Massachusetts 01473 

1 For internal orders, you must submit an Internal Software Order Form (EN-01740-07). 





Reader's Comments VAX Pascal Reference Manual 
AA-L369D-TE 

Please use this postage-paid form to comment on this manual. If you require a written 
reply to a software problem and are eligible to receive one under Software Performance 
Report (SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: Excellent 

Accuracy (software works as manual says) D 
Completeness (enough information) D 
Clarity (easy to understand) D 
Organization (structure of subject matter) D 
Figures (useful) D 
Examples (useful) D 
Index (ability to find topic) D 
Page layout (easy to find information) D 

I would like to see more/less 

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 
Page Description 

Good 

D 
D 
D 
D 
D 
D 
D 
D 

Additional comments or suggestions to improve this manual: 

I am using Version ___ of the software this manual describes. 
Nametritle Dept. 

Company 

Mailing Address 

Phone 

Fair Poor 

D D 
D D 
D D 
D D 
D D 
D D 
D D 
D D 

Date 



Do Not Tear - Fold Here and Tape 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POST AGE WILL BE PAID BY ADDRESSEE 

DIGIT AL EQUIPMENT CORPORATION 
Corporate User Publications-Spit Brook 
ZK01-3/J35 
110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

I II ... .. 11.11 ... 1II1111I1II1I11 I 1I11I11I1 I 111 I 1II11 I 

No Postage 
Necessary 
if Mailed 

in the 
United States 

Do Not Tear - Fold Here --------------------------------------------

c 

.! 


