
·---------
~D~DD~D

VAX-11 PL/I
. Encyclopedic Reference

Order No. AA-H952A-TE

August 1980

Contains a definition of the VAX-11 Pltl programming language, including the
keywords and the semantic and syntax rules of PL/I statements, attributes, and
built-in functions.

VAX-11 PL/I
Encyclopedic Reference

Order No. AA-H952A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for thi$
release.

OPERATING SYSTEM AND VERSION: VAX/VMS V2.0

SOFTWARE VERSION: VAX-11 PL/I v1.o

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation • maynard, massachusetts

First Printing, August 1980

The information in this document is subject to change without notice and should not be construed as
a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied
in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright @ 1980 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this document requests the
user's critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:
'

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-11
VAX
DECnet
DATATRIEVE

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
IND AC
LAB-8
DECSYSTEM-20
RTS-8
VMS
IAS
TRAX

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10
SBI
PDT

ZKA27-80

Summary of Contents

Keywords in this manual are arranged in alphabetical order, as are numerous other
topics of interest. For your convenience, the following summary includes page num
bers for the general topics that are not associated with PL/I keywords.

Array 10
Attribute 25
Built-In Function 54
Conversion of Data 71
Data and Data Types 85
Declara~ions 92
Expression 126
File 134
Format Items and Their Uses 153
ON Conditions and ON-Units 214
Opening a File 223
Procedure 257
Program Structure 264
Punctuation Marks 266
Statement 303
Storage Classes 308
String Handling 321
Structure 323
Terminal Input/Output 332
Appendix A, Alphabetic Summary of PL/I Keywords 355
Appendix B, Compatibility of VAX-11 PL/I Compiler and Standard PL/I,

Subset G 360

iii

Figures

1 Documentation for VAX-11 PL/I Programmers vi
A-1 Specifying Array Dimensions 11
A-2 Specifying Elements of an Array 13
A-3 Connected and Unconnected Arrays 20
B-1 Using the ALLOCATE Statement 38
B-2 Using the READ Statement with a Based Variable 39
B-3 Using the ADDR Built-In Function 42
B-4 Relationship of Block Activations 51
B-5 Example of the BOOL Built-In Function 53
D-1 An Overlay Defined Variable 98
D-2 Forms of the DO Statement 105
E-1 External Variables 131
G-1 Forms of the GET Statement 165
L-1 Creating a Linked List 202
L-2 Processing a Linked List 203
0-1 Search for ON-Units 218
P-1 Parameters and Arguments 235
P-2 Invoking Internal Procedures 259
P-3 Invoking an External Procedure 259
P-4 Structure of a PL/I Program 265
P-5 Forms of the PUT Statement 268
S-1 Scope of Internal Names 299

Tables

A-1 ASCII Character Set 21
A-2 Alphabetical Summary of PL/I Attributes 28
B-1 Summary of PL/I Built-In Functions 56
C-1 Contexts in Which PL/I Converts Data 73
D-1 Implied Attributes for Computational Data 87
E-1 Derived Types 128
E-2 Converted Precision as a Function of Target and

Source Attributes 128
F-1 Summary of File Description Attributes 137
F-2 File Access Attributes 137
F-3 VAX Floating-Point Types 151
F-4 Floating-Point Types Used by PL/I 151
F-5 Summary of Format Items 154
0-1 Summary of ON Conditions 220
0-2 File Description Attributes Implied at Open Time 224
0-3 Operators 227
0-4 Precedence of Operations 228
P-1 ASCII Representation of Encoded-Sign Digits 246
P-2 Picture Characters 250
P-3 Punctuation Marks Recognized by PL/I 267
R-1 Access Modes for Record Files 284
S-1 Summary of PL/I Statements 306

iv

Preface

• Acknowledgment

The V AX-11 PL/I programming language is an implementation of the pro
posed PL/I G (General-Purpose) Subset, ANSI BSR X3.74.

• How to Use This Manual

This manual provides language reference information for V AX-11 PL/I. All
information in this manual is arranged in alphabetical order. For descriptions
of individual attributes, built-in functions, or PL/I statements, look up the
topic by its keyword.

• Who Can Use This Manual

The manual is intended for use by all programmers who are designing or
implementing applications using PL/I. Its readers should already understand
the concepts of programming in PL/I and be familiar with the keywords and
topics that will be searched for information. It is not, therefore, suitable for
use as a strictly tutorial document.

• Where to Find More Information

Introduction to VAX-11 PL/I contains an overview of the PL/I language and
its implementation for the VAX-11 computer. The Introduction is recom
mended for all programmers who are not familiar with PL/I or who need
information on the extensions made to PL/I for the V AX-11.

The companion document to this manual is the VAX-11 PL/I User's Guide. It
contains information on program development with the VAX/VMS command
language, on using the extensive 1/0 capabilities provided in V AX-11 PL/I,
and on programming techniques available to PL/I programs executing under
the exclusive control of the VAX/VMS operating system.

Figure 1 illustrates the relationship of documents available for VAX-11 PL/I,
and lists the VAX/VMS operating system manuals that contain information
of interest to PL/I programmers. For a complete list of all VAX/VMS docu
ments and the order numbers of documents, see the VAX-11 Information
f)irectory and Index.

v

Introduction to
VAX-11 PL/I

AA-H950A-TE

• Provides an overview of the
PU/ G Subset language

•Summarizes the VAX-11 extensions
to the PU/ language

• Introduces the tools for PU/
program development on VAX/VMS

VAX-11 PL/I
Encyclopedic Reference

AA-H952A-TE

VAX-11 PL/I
User's Guide

AA-H951A-TE

• Contains a complete definition
of the VAX-11 PU/ language

• Describes how to use

• Lists the semantics and syntax
rules for all standard PU/
language elements

~
VAX/VMS to compile, link, and run
PU/ programs

• Provides detailed information
on input/output processing

• Explains extensions to VAX-11
PU/ to support procedure calling
and condition handling

/
VAX-11 PL/I

Language Summary
AV-J757A-TE

• Gives a concise summary of PU/
attributes. statements, built-in functions,
and conversion rules

•Provides quick reference for VAX-11 PU/
ENVIRONMENT options, the ASCII character set,
and PL/ command qualifiers and options

VAX-11 PL/I Installation and
System Management Guide

AA-J179A-TE

• Gives step-by-step instructions for
installing the VAX-11 PU/ compiler

• Describes how to diagnose and report
problems with the compiler

VAX/VMS Documentation

• Contains a complete definition
of the VAX/VMS operating system
and its command language, DCL

• Provides specific reference
information for all operating
system components, facilities,
and utilities

The titles listed below may be of interest
to VAX-11 PU/ programmers:

VAX/VMS Command Language User's Guide

VAX-11 Linker Reference Manual

VAX-11 Record Manasement Services Reference Manual

Introduction to VAX-11 Record Manasement Services

VAX-11 SORT User's Guide

VAX-11 DECnet User's Guide

VAX/VMS System Services Reference Manual

VAX-11 Run-Time Library Reference Manual

VAX-11 Utilities Reference Manual

Figure 1: Documentation for V AX-11 PL/I Programmers

vi

• Conventions Used in This Document

/. ! J ..

Enter string> ABCD (@TI

DECLARE X FIXED;

option, ...

quotation mark
apostrophes

[OPTIONS (option, ...)]

[LIST]
EDIT

{
EXTERNAL}
INTERNAL

FILE (file-reference)

• Technical Assumptions

All language items that are not included in
the G Subset are printed fo green ink.

In computer dialogs, the user's response to a
prompt is printed in red ink.

Vertical ellipses indicate that not all of the
text of a program or program output is illus
trated. Only relevant material is shown in the
example.

Horizontal ellipses indicate that additional
parameters, options, or values can be entered.
When a comma precedes the ellipsis, it indi
cates that successive items must be separated
by commas.

The term quotation mark is used only to refer
to the quotation mark symbol ("). The term
apostrophe is used to refer to the single quota
tion mark symbol (').

Except in VMS file specifications, square
brackets indicate that a syntactic element is
optional and you need not specify it.

Brackets surrounding two or more stacked
items indicate conflicting options, one of
which may be chosen.

Braces surrounding two or more stacked items
indicate conflicting options, one of which
must be chosen.

An uppercase word or phrase indicates a key
word that must be entered as shown; a lower
case word or phrase indicates an item for
which a variable value must be supplied.

A delta symbol is used in some contexts to
indicate a single ASCII space character.

All descriptions of the effects of executing statements and evaluating expres
sions assume that the initial procedure activation of the program is through
an entry point with OPTIONS(MAIN).

It is further assumed that any non-PL/I procedures called by the program
follow all conventions of the PL/I run-time environment. Except as explicitly
noted, descriptions of input/output statements do not cover the effects of
VAX-specific options. For details on mixed-language programming and VAX
specific options, see the VAX-11 PL/I User's Guide.

vii

A
A Format Item

The A format item describes the representation of a character string in the
stream. The form of the A format item is:

A [(w)J

ll'

A nonnegative integer that specifies the width in characters of the field
in the stream. If it is not included (PUT EDIT only). the field width
equals the length of the converted output source.

The interpretation of the A format item on input and output is given below.
For a general discussion of format items, see "Format Items and Their Uses."

• Input with GET EDIT

The integer w must be included when the A format item is used with GET
EDIT. If w is positive, a character-string value is acquired, comprising the
next w characters in the input stream, and is assigned to the input variable. If
w is zero, no operation is performed on the input stream, and a null character
string is assigned to the input variable.

The acquired character string is converted, if necessary, to the data type of
the input target, following the usual rules (for details, see "Conversion of
Data"). Apostrophes should not enclose the stream data unless the apos
trophes are intended to be acquired as part of the data.

• Output with PUT EDIT

The output source associated with an A format item is converted, if necessary,
to a string of characters. The result is assigned to a string of w characters,
which are placed in the output stream. If w is omitted, the length of the
output string is equal to the length of the converted output source. If w is zero,
the A format item and the associated output source are skipped.

The output strings are not surrounded automatically by apostrophes. The
converted output source is truncated or appended with trailing spaces, as
required by the specification of w. The conversion is performed by the usual
procedure for conversion of a computational data item to a character string
(for details, see "Conversion of Data").

•Examples

The tables below show the relationship between the internal and external
representations of characters that are read or written with the A format item.

1

Input Examples
The "input stream" shown in the table is a field of characters begin
ning at the current position in the stream and continuing to the right.
The target type is the type of the variable to which the input value is
assigned.

Format Item Input Stream Target Type Target Value

A (10) 66S HR U BB ER Y 6 + + + CHAR<10) 66SHRUBBER
A (G) 66S HR U BB ER Y 6 • • • CHAR<10) 66S H R U 6666
A (G) 66S HR U BB ER Y 6 + + • CHAR (10) t.JAR 66SHRU
A< 10) 661+23456666+ + + DECIMAL(4t1) 001+2
A (5) 661+23456666+ + + DECIMAL<4t2) 01+20
A (G) 661+23456666+ + + DECIMAL<4t2) 01+ 23

Output Examples
The output source value shown in the table is either a constant or the
value of a variable that is written out with the associated format item.

Output Source Value Format Item Output Value

'STRING' A <10) STRING6666
'STRING' A STRING
1+2345 A (2) 66
1+2345 A 661+2345
-1+2345 A (4) 6-1 +

-1+2345 A 6~1.2345
I I A <10) 6666/:s.66666
I I A [no outPutJ
0 A (3) 666
0 A 6660
-12345 A (G) 66-123
-12345 A 66 12345

ABS Built-In Function

The ABS built-in function returns the absolute value of an arithmetic expres
sion x. Its format is:

ABS(x)

•Examples

t~ :3.:.5E7?
+3 ,, ~;(37

y :::: +3. 5(37

ROCH ~:: SC:JRT (?~f.3S (TFM P)) ;

The last example shows a common use for the ABS built-in function, that is,
to ensure that an expression has a positive value before requesting the square
root (SQRT) built-in function.

2 ABS Built-In Function

ACOS Built-In Function

The ACOS built-in function returns a floating-point value that is the arc
(inverse) cosine of an1-arithmetic expression x. The arc cosine is computed in
floating point. The returned value is an angle w such that

0 ~ w ~ 71"

The absolute value of x, after its conversion to floating point, must be less
than or equal to one. The format of the function is:

ACOS(x)

Addition

The plus sign character (+), when used as an infix operator, indicates an
addition operation between two operands in an expression; the result is the
sum of the operands. Both operands must be arithmetic or picture data.

The plus sign can also be used as a prefix operator. See "Operator."

• Conversion of Operands

If both operands have the same base, precision, and scale, so has the result.
The PL/I compiler converts operands of different data types as follows:

• If one operand has the FLOAT attribute and the other has the FIXED
attribute, the fixed-point operand is converted to floating point before the
operation.

• If one operand has the DECIMAL attribute and the other has BINARY, the
decimal operand is converted to binary before the operation is performed.
However, if a fixed-point decimal operand has fractional digits and the
other operand is fixed- point binary, the binary operand is converted to
fixed-point decimal, and a warning message is issued.

For an explanation of the precision of the value resulting from the conversion
of an operand, see "Expression."

• Precision of the Result

The precision of the resulting sum is based on the precision (or converted
precision) of the two operands. For example, the title "Floating-Point
Operands" below means that the operands were of floating-point types origi
nally or that one was converted to floating point.

Floating-Point Operands
The result has the maximum of the precisions of the operands.

Fixed-Point Decimal Operands
If (p,q) and (r,s) represent the precisions and scale factors of the two
operands, the resulting precision and scale factor are:

precision: min(31,max(p-q,r-s) +max(q,s) + 1)

scale factor: max(q,s)

Addition 3

Pixed-Point Rinary. Operands
H (p) and (r) represent the precisions of the two operands, the resulting
precision is:

MIN (31, MAX (p, r) + 1)

ADDR Built-In Function

The ADDR built-in function returns a pointer to storage denoted by a speci
fied variable. The only restriction on the variable reference is that it be ad
dressable. The format of the function is:

ADDR(reference)

H the reference is to a parameter (or any element or member of a parameter),
the pointer value obtained must not be used after return from the parameter's
procedure invocation. (This could occur, for example, if the pointer were
saved in a static variable or returned as a function value.)

See "Based Variable" for a general discussion of pointer v~lues.

ALIGNED Attribute

The· ALIGNED attribute controls the storage boundary of bit-string data in
storage.

Specify the ALIGNED attribute in conjunction with the BIT attribute in a
DECLARE statement to request alignment of a bit-string variable on a byte
boundary. (See "Bit-String Data.") If you specify ALIGNED for an array of
bit-string variables, each element of the array is aligned.

You can specify ALIGNED in the declaration of a nonvarying character-string
variable. However, all character strings are byte-aligned on the VAX-11 ma
chine; thus the specification of ALIGNED is superfluous and is not recom
mended. (See "Character-String Data.")

• Restrictions

The ALIGNED attribute conflicts with the VARYING attribute and is invalid
with all data type attributes other than BIT and CHARACTER. If you specify
ALIGNED, you must specify either BIT or CHARACTER.

ALLOCATE Statement

The ALLOCATE statemen:t obtains storage for a based variable and sets a
pointer variable equal to the address of the allocated storage. The format of
the ALLOCATE statement is:

{ ALLOCATE} variable-reference [SET(pointer-reference)J;
ALLOC

variable-reference
A based variable for which storage is to be allocated. The variable can
be any scalar value, array, area, or major structure variable; it must be
declared with the BASED attribute.

4 ADDR Built-In Function

SET(pointer-ref ere nee)
The specification of the pointer variable that is assigned the value of
the location of the allocated storage. If the SET option is omitted, the
based variable must have been declared with BASED(pointer-refer
ence), and the variable designated by that pointer reference is assigned
the location of the allocated storage.

•Examples

DECLARE STATE CHARACTER(100) BASED (STATE_POINTER) t
STATE_POINTER POINTER;

ALLOCATE STATE SET (STATE_POINTER);

This ALLOCATE statement allocates storage for the variable STATE and
sets the pointer STATE_POINTER to the location of the allocated storage.

The ALLOCATE statement obtains as much storage as is necessary to accom
modate the current extent of the specified variable. If, for example, a charac
ter-string variable is declared with an expression for its length, the ALLO
CATE statement evalutes the current value of the expression to determine the
amount of storage to allocate. For example:

DECLARE BUFFER CHARACTER (BUFLEN) BASEDt
BUF PTR PO INTER;

ALLOCATE BUFFER SET (5UF_PTRl;

Here, the value of BUFLEN is evaluted when the ALLOCATE statement is
executed. The ALLOCATE statement allocates 80 bytes of storage for the
variable BUFFER and sets the pointer variable BUF _PTR to its location.

For an additional example of the ALLOCATE statement and a description of
based variables, see "Based Variable."

Storage within an area must be allocated by a user-written allocation proce
dure. For an example, see the VAX-!! PL/I [1.'ier's Guide.

AND Operator

The & (ampersand) character is the logical AND operator in PL/I. In a logical
AND operation, two bit-string operands are compared bit by bit. If two corre
sponding bits are 1, the corresponding bit in the result is 1; otherwise, the
result is 0.

The result of a logical AND operation is a bit-string value. All relational
expressions result in bit strings of length one, and they may therefore by used
as operands in an AND operation. If the two operands ha've different lengths,
the shorter operand is converted to the length of the longer operand, and that
is the length of the result.

AND Operator 5

•Examples

DECLARE <BITAt BITBt BITC) BIT (4);
f.HTA '0011 'B;
f.HTB = '1111 'B;
BITC = BITA & BITB;

The resulting value of BITC is '0011 'B.

The AND operator can test whether two or more expressions are both true in
an IF statement. For example:

IF <LINENO<PRINT_FILE> < GO) &
(MORE_DATA =YES) THEN II I

See also "Bit-String Data," "Logical Operator," and "Operator."

ANY Attribute

The ANY attribute specifies, for a parameter, that the corresponding argu
ment can be of any data type. This attribute is applicable only to the declara
tion of entry names denoting non-PL/I procedures.

For complete details on using the ANY attribute, see the VAX-11 PL/I User's
Guide.

II Restricticrns

• If you specify ANY for a parameter, you cannot specify any data type
attributes for that parameter.

• The ANY attribute is valid only i'n a parameter descriptor.

•Example

DECLARE SYS$SETEF ENTRY (ANY VALUE>;

This statement identifies a system service procedure SYS$SETEF and indi
cates that the procedure accepts a single argument, which can be of any data
type, to be passed by value.

ANYCONDITION Condition Name

The ANYCONDITION keyword can be specified in an ON or REVERT state
ment. It designates an ON-unit established for all signaled conditions that are
not handled by specific ON-units.

The ANYCONDITION keyword is not defined in the PL/I language. It is
provided specifically for use in the VAX_-_11/VMS operating system environ-,
ment. For complete details on condition handling in VAX/VMS, see the
VAX-11 PL/I User's Guide.

For information on defining ON-units for PL/I-specific conditions and PL/I
default condition handling, see "ON Conditions and ON-Units" and "ON
Statement."

6 ANY Attribute

Area

An area is a region of storage in which based variables may be allocated and
freed. An area is defined by the declaration of a variable with the AREA
attribute. An area variable can belong to any storage class. Areas provide the
following programming capabilities:

• Based variables can be allocated within a specific area, and the entire area
can be assigned or transmitted in a single operation. The variables can be
referred to by offset values within the area; the offset values remain valid
through assignment or transmission.

• The program can control the allocation of storage for related variables by
placing them in the same area, thus improving the locality of reference.
Also, the storage for all allocations within an area may be recovered in one
operation by freeing the area itself.

• A structure containing an area can be used to represent a disk file that is
mapped into a process's virtual memory space.

It is the responsibility of the user, in the program that declares and allocates
an area, to control the allocation of variables within the area. Considerations
for writing allocation procedures, as well as for using areas in conjunction with
VAX/VMS memory allocation procedures, are discussed in the VAX--11 J>Ul
[Tst1r's Uuide.

• Restriction

Do not write data in the first longword (:32 bits) of an area. The first longword
is reserved for future use by DIGITAL.

• Area Assignment

You can specify an area variable as the target of an assignment statement
only in the following case:

area-variable-I =--= area-variable-2 ;

where both areas have the same extent. The complete contents of the source
are copied to the target.

All other specifications of an area variable as the target of an assignment
statement are invalid. An area variable cannot be used in an expression con
taining operators.

• Reading and Writing Areas

An area can be the source or target of data transmission in either of the record
I/O statements READ or WRITE. The complete contents of the area are
transmitted.

Area 7

AREA Attribute

The AREA attribute defines an area variable (see "Area"). Its format is:

AREA (extent)

extent
The size of the area in bytes. The extent must be a nonnegative integer
value. The maximum size is 500 million bytes. The rules for specifying
the extent are as follows:

• If AREA is specified for a static variable declaration, extent must be
a decimal integer constant.

• If AREA is specified in the declaration of a parameter or in a param
eter descriptor, extent may be specified as an integer constant or as
an asterisk (*).

• If AREA is specified for an automatic or based variable, extent may
be specified as an integer constant or as an expression. In the case
of automatic variables, the extent expression must not contain
any variables or functions declared in the same block, except for
parameters.

• Restrictions

• The AREA attribute conflicts with all other data type attributes.

Argument

An argument is an expression or variable reference denoting a value to be used
by a built-in function or a user-defined procedure or function. The maximum
number of arguments that can be passed to a procedure is 253.

For full details, see "Parameters and Arguments."

•,Argument List

An argument list consists of zero or more arguments specified in the invoca
tion of a procedure, built-in function, or built-in subroutine.

In the case of built-in functions, arguments are expressions that supply values
to the built-in function, and the argument types must be those required by
the specific function. In general, built-in functions can be considered as opera
tors and their arguments, operands. For example, if two arithmetic arguments
for a built-in function are of different arithmetic types, they are evaluated and
converted to a common type as are the operands of an arithmetic expression.
For further details, see "Built-In Function" and "Expression."

In the case of user-defined procedures, arguments correspond to parameters
defined on the PROCEDURE or ENTRY statement of the invoked procedure.

8 AREA Attribute

• Argument Passing

In PL/I, a parameter of a procedure is always associated with a variable
passed to it by the calling procedure. This variable may be the original argu
ment corresponding to the parameter or a dummy argument created by the
compiler and assigned the original argument's value.

• Dummy Argument

A dummy argument is a variable that is allocated by the compiler to pass an
argument to an invoked procedure. The compiler creates a dummy argument
when an argument specified in a procedure reference is a constant or an
expression, is a variable with a different data type than that required by the
corresponding parameter, or is enclosed in parentheses.

Arithmetic Data Types

Arithmetic data types are used for variables on which arithmetic calculations
are to -be performed. The arithmetic data types supported by V AX-11 PL/I
are:

• Fixed-point binary - for integers (see "Fixed-Point Binary Data")

• Fixed-point decimal - for decimal data with a fixed number of fractional
digits (see "Fixed-Point Decimal Data")

• Floating-point binary or decimal - for calculations on very large or very
small numbers, with the decimal point (number of fractional digits) allowed
to "float" (see "Floating-Point Data")

• Picture - for fixed-point decimal data that is stored internally in character
form, with special formatting characters (see "Picture")

Arithmetic Operators

The arithmetic operators perform calculations. Programs that accept numeric
input and produce numeric output use arithmetic operators to construct ex
pressions to perform the required calculations. The arithmetic operators are:

Operator Operation

+ Addition
Subtraction

* Multiplication
I Division
** Exponentiation

Included among the arithmetic operators are the two prefix operators:

Operator Meaning

+ Unary plus
Unary minus

The unary plus is valid on any arithmetic operand, but it performs no actual
operation.

The unary minus reverses the sign of any arithmetic operand.

Arithmetic Operators 9

For detailed descriptions of the other operands, see "Addition," "Division,"
"Exponentiation," "Multiplication," and "Subtraction."

For any arithmetic operator, operands must be arithmetic; that is, they must
be constants, variables, or other expressions with one of the data type attrib
utes BINARY, DECIMAL, or PICTURE. Operands of different arithmetic
types are converted to a common type before the operation is performed (see
''Expression'').

Arithmetic operators have a predefined precedence that governs the order in
which operations are performed. For further information, see "Operator." All
expressions can also be enclosed in parentheses to override the rules of preced
ence.

Array

Arrays provide an orderly way to manipulate related variables of the same
data type. An array variable is defined in terms of the number of variables, or
elements, that it contains and the organization of those elements. These at
tributes of an array are called its dimensions.

The following subsections describe arrays in terms of scalar elements. For
information on arrays whose elements are structures, see "Arrays of Struc
tures."

• Format of an Array Declaration

You specify the dimensions of an array in a DECLARE statement, as shown
below:

DECLARE identifier (bound-pair, ...) [attribute ...];

for declaring a single array; or

DECLARE (declaration, ...) (bound-pair, ...) [attribute ...];

for declaring two or more array variables with the same dimensions and
bounds. Each declaration in this form can consist of a simple identifier, the
declaration of another array, or the declaration of a structure. For further
details on the syntax of declarations, see "DECLARE Statement." See also
"Arrays of Structures."

identifier
A valid PL/I identifier to be used as the name of the array.

bound-pair

10 Array

A specification of the number of elements in each dimension of the
array. A bound pair can consist of:

• Two expressions separated by a colon, giving the lower and upper
bounds for that dimension; or

• A single expression giving the upper bound only (the lower bound is
then one by default); or

• An asterisk (*), used in the declaration of array parameters, and
indicating that the parameter can be matched to array arguments
with varying numbers of elements in that dimension.

The bound pairs must be separated by commas, and the list of bound
pairs must be enclosed in parentheses. The list of bound pairs must
immediately follow the identif'ier or the list of declarations.

Figure A-1 shows several forms of bound pairs as used in declarations.

attribute ...
One or more data type attributes of the elements of the array. All
attributes you specify apply to each of the elements in the array.

Elements of an array can have any data type. If the array has the FILE
or ENTRY attribute, it must also have the VARIABLE attribute.

ARRAY-NAME (Bound)

A single value specifies:

• That the array has a single dimension.

• That the dimension has 'bound' number of
elements; this is the extent of the dimension.

• That the value specified is the high bound,
that is, the largest numbered element. By
default, the low bound is 1.

ARRAY-NAME (Low-Bound:High-Bound)
A single range of values specifies:

• That the array has a single dimension.

• That the number of elements in the
dimension is (high-bound)-(low-bound)+1.

• The index value assigned to the lowest
numbered element and the index value
assigned to the highest-numbered element.

ARRAY-NAME (Bound1 ,Bound2, ...)
A list of values specifies:

• That the array is multidimensional.
Each bound value represents a
dimension in the array.

• The extent of each dimension. Each
bound defines the number of elements
in a dimension.

• The high-bound value of each dimension.
The low-bound value of each dimension
defaults to 1.

EXAMPLES
DECLARE VERBS C6l CHARACTER C12l

DECLARE TEMPERATURS C-60:1201

DECLARE TABLE 1101101 FIXED BINARY ;

DECLARE SETS 151515151 CHARACTER CBOl

ARRAY-NAME (Low-Bound1 :High-Bound1 ,Low-Bound2:High-Bound2, ...)

A set of ranges specifies:

• That the array is multidimensional.
Each range of values represents a
dimension in the array (ranges can
be intermixed with single-bound
specifications).

• The extent of each dimension.

• The low-bound and high-boun(:l values of
each dimension.

ARRAY-NAME (*, ...)

Asterisk extents specify:

• The number of dimensions in the array.
Each asterisk indicates a dimension.

• That the extent of each dimension will be
defined by the actual argument passed
to the procedure when it is invoked.

DECLARE WINDOWS 11:101-2:321 FIXED ;
DECLARE HISTORIES 110130:1021501 •••

ADDIT: PROCEDURE CARRI;
DECLARE ARRC*1*I FIXED

Figure A-1: Specifying Array Dimensions

Array 11

• Rules for Specifying Dimensions

The following rules apply to specifying the dimensions of an array and the
bounds of a dimension:

• The maximum number of dimensions that an array can have is eight.

• The values you can specify for bounds are restricted as follows:

- If the array has the STATIC attribute, you must specify all bounds as
rest.ricted integer expressions (see "Integer Data").

- If the array has the AUTOMATIC, BASED, or DEFINED attribute, you
can specify the bounds as optionally signed integer constants or as expres
sions that yield integer values at run time. If the array has AUTOMATIC
or DEFINED, the expressions must not contain any variables or functions
that are declared in the same block, except for parameters.

- If an array is a parameter, you can specify the bounds using optionally
signed integer constants or asterisks (*). If you specify any bound as an
asterisk, you must specify all bounds with asterisks. An array parameter
declared this way inherits the dimensions of the corresponding argument.
Passing array variables as arguments to a procedure is described below
under "Passing Arrays as Arguments."

• The value of the lower bound you specify must be less than the value of the
upper bound.

• References to Individual Elements

You refer to an individual element in the array by means of subscripts. Since
an array's attributes are common to all of its elements, a subscripted reference
has the same properties as a reference to a scalar variable with these attrib
utes.

Subscripts must be enclosed in parentheses in a reference to an array element.
For example, in a one-dimensional array named ARRAY declared with the
bounds (1:10), the elements are numbered 1 through 10 and are referred to as
ARRAY(l), ARRAY(2), ARRAY(3), and so on.

The lower and upper bounds that you declare for a dimension determine the
range of subscripts that you can specify for that dimension. If only an upper
bound was specified for a dimension, the lower bound (minimum subscript)
for that dimension is 1. The number of elements in any dimension of any array
is:

(upper-bound) - (lower-bound) + 1

The total number of elements in the array, called its "extent," is the product
of the numbers of elements in all the dimensions of the array.

For multidimensional arrays, the subscript values represent an element's po
sition with respect to each dimension in the array. Figure A-2 illustrates
subscripts for elements of one-, two-, and three-dimensional arrays.

In subscripted references, the number of subscripts must match the number
of dimensions of the array. This includes any dimensions that are inherited
when an array results in. the declaration of a dimensioned structure (see
"Arrays of Structures").

12 Array

DECLARE ARRAY_ 1 (7);

2

3

4

5

6

7

DECLARE ARRAY _2 (5,5);

--

-

2 3 4 5

2 ________ _

3 ----------4 ________ _

5 ----------

DECLARE ARRAY _3 (3,4,4);

3 -- 2
/

/
/

2 - L

/ /
/ IL

.... L /

1 --r--

2

--
3 /

/
4 I/

3 4
/

/

II

7'

/
/

Ii'

Figure A-2: Specifying Elements of an Array

ARRAY _1(2)

ARRAY_1(6)

ARRAY _2(2,4)

ARRAY -2(4,2)

ARRAY _3(3, 1,2)

ARRAY _3(2,3,3)

ARRAY _3(1,3,4)

Array 13

• Variable Subscripts

You can specify the subscript of an array element using any variables or
expressions having integer values, that is, values that can be expressed as
fixed binary or fixed decimal with a zero scale factor. For example:

DECLARE DAYS_IN_MONTHC12> FIXED BINARY;
DECLARE <COUNT, TOTAL> FIXED BINARY;
TOTAL = o;
DO COUNT = 1 TO 12;

TOTAL = TOTAL + DAYS_IN_MONTHCCOUNT>;
END;

Here, the variable COUNT is used as a control variable in a DO loop. As the
value of COUNT is incremented from 1 to 12, the value of the corresponding
element of the array DA YS_IN_MONTH is added to the value of the varia
ble TOTAL.

• Initializing Arrays

The INITIAL attribute can be specified for arrays. For example:

DECLARE MONTHS <12) CHARACTER (8) VARYING
INITIAL ('January', 'February', 'March', 'APril''

'May', 'June', 'Jul-;''' 'f.~u~:ru~:;t't

'SePtember', 'October', 'November'' 'December');

In this example, each element of the array MONTHS is assigned a value
according to the order of the character-string constants in the initial list: that
is, MONTH(l) is assigned the value 'January'; MONTH(2) is assigned the
value 'February'; and so on.

'
If the array being initialized is multidimensional, the initial values are as
signed in row-major order.

For full details on the use of the INITIAL attribute, see "INITIAL Attribute."

• Iteration Factors

In the INITIAL attribute, when more than one successive element of an array
(or all elements of an array) are to be assigned the same value, you can specify
an iteration factor. An iteration factor indicates the number of times that a
specified value is to be used in the assignment of values to elements of an
array. You can specify an iteration factor in one of the following formats:

(iteration-factor) arithmetic-constant

(iteration-factor) scalar-reference

(iteration-factor) (scalar-expression)

(iteration-factor) *
iteration-{ actor

14 Array

An unsigned decimal constant indicating the number of times to use
the specified constant in the assignment of an array element. The
iteration factor can be zero.

arithmetic-constant
Any arithmetic constant whose data type is valid for conversion to the
data type of the array.

scalar-reference
A reference to any scalar variable or to the NULL built-in function.

scalar-expression .

*

Any arithmetic or string expression or string constant. The expression
or constant must be enclosed in parentheses.

Symbol used to indicate that the corresponding array elements an.· not

to be assigned initial values.

Any of the above forms may be used for arrays that have the AUTOMATIC
at tribute. For arrays with the STATIC attribute, only constants and the
NULL built-in function may be used.

For example, this declaration of the array SCORES initializes all elements of
the array to one: -

DECLARE SCORES <100) FIXED STATIC INITIAL < (100)1);

This declaration initializes the first 50 elements to 1 and the last 50 elements
to -1:

D E C L (-~ R E S C 0 R E '.:'.3 < 1 0 0) F I)< F D S T r.::, T I C I N J T I (.::, L < < ~5 0) :I. ; < 5 0 > ···· 1 > ?

The next example initializes all 10 elements of an array of character strings to
the 26-character value in apostrophes. Note that the string constant is en
closed in parentheses; this is required syntax.

DECLARE ALPHABETS (10) CHARACTFR<2G) STATIC
IN IT J 1-;L ((:I. 0) (I (."'.:1BCl::>FFCH IJF<LMl\IDPOF?~::;T!....1'..)!AIXYZ I)) :_;

• ~rray Variables in Assignment Statements

You can specify an array variable as the target of an assignment statement in
the following cases:

• array-variable = expression ;

where the expression yields a scalar value. Every element of the array is
assigned the resulting value. The array variable must be a connected array
whose elements are scalar. (See the subsection "Connected Arrays" in "Ar
rays of Structures.")

Note that the arithmetic operators, such as + and -, cannot have arrays as
operands. An assignment of the form:

ARRAYC = ARRAYA + ARRAYB;

is invalid.

• array-variable-1 = array-variable-2 ;

where the specified array variables have identical data type attributes and
dimensions. Each element in array-variable-1 is assigned the value of the
corresponding element in array-variable-2.

Array 15

In this type of assignment, both arrays must be connected. The actual storage
occupied by the arrays must not overlap, unless the arrays are identical.

All other specifications of an array variable as the target of an assignment
statement are invalid.

• Using GET and PUT Statements with Array Variables

When you specify an array variable name in the input-target list of a GET
LIST or GET EDIT statement, elements of the array are assigned values from
the data items in the input stream. For example:

D E C I.... r'..'.i R E 1..J E R B S (G) C H f~ R A C T E F? (1 5) t) A R Y I N Ci ; G E T I.... I S T (t,i F R B ~3) ;

When this GET LIST statement executes, it accepts data from the default
input stream. Each blank-, tab-, or comma-delimited input field is considered
a separate string. The values of these strings are assigned to elements of the
array VERBS in the order VERBS(l), VERBS(2), ... VERBS(6). If a multi
dimensional array appears in an input-target list, input data items are as
signed to the array elements in row-major order.

An array can also appear, with similar effects, in the output-source list of a
PUT statement. For information on using the GET and PUT statements with
arrays, see "GET Statement" and "PUT Statement."

• Order of Assignment and Output for Multidimensional Arrays

When a multidimensional array is initialized without references to specific
elements, PL/I assigns the values in row-major order. In row-major order, the
rightmost subscript varies the most rapidly. For example, an array can be
declared as follows:

DECLARE TESTS (2t2t3);

If TESTS is specified in a GET statement or in a declaration with the
INITIAL attribute, values are assigned to the elements in the following order:

TESTS (1,1,1)
TESTS (1,1,2)
TESTS (1,1,3)
TESTS (1,2,1)
TESTS (1,2,2)
TESTS (1,2,3)
TESTS (2,1,1)
TESTS (2,1,2)
TESTS (2, 1,3)
TESTS (2,2,1)
TESTS (2,2,2)
TESTS (2,2,3)

When an array is output with a PUT statement, PL/I uses the same order to
output the array elements. For example:

PUT LIST <TESTS);

This PUT statement outputs the contents of TESTS in the order shown
above.

16 Array

• Passing Arrays as Arguments

An array variable can be passed as an argument to another procedure. Within
the invoked procedure, the corresponding parameter must be declared with
the same number of dimensions. The rules for specifying the bounds in a
parameter descriptor for an array parameter are:

• If the bounds are specified using integer constants, they must match exactly
the bounds of the corresponding argument.

• All bounds can be specified as asterisks (*). In this case, the bounds of the
array are determined from the bounds of the corresponding argument when
the procedure is actually invoked. If any bound is specified as an asterisk,
all bounds must be specified as asterisks.

For example:

DECLARE SCAN ENTRY (
<5t5t5) FU<EDt
(*) FU<ED) t

MATRIX (5t5t5) FIXED,
OUTPUT <20> FIXED;
CALL SCAN <MATRIXtOUTPUT);

The procedure SCAN receives two arrays as arguments. The first is a three
dimensional array whose bounds are known. The second is a one-dimensional
array whose bounds are not kriown. The procedure SCAN may declare these
parameters as follows:

SCAN: PROCEDURE <INtOUT);
DECLARE IN <*t*t*) FIXEDt

OUT (*) FrnED;

An array whose storage is unconnected cannot be passed as an argument, nor
can an array whose elements are label constants. Arrays are always passed by
reference and cannot be passed by a dummy argument.

For full information on arguments and argument passing, see "Parameters
and Arguments."

• Array-Handling Functions

PL/I provides the following built-in functions that return information about
the dimensions of an array:

• DIMENSION - returns the number of elements in a given dimension.

• HBOUND - returns the value of the upper bound of the array in a given
dimension. ·

• LBOUND - returns the value of the lower bound of the array in a given
dimension.

For the first dimension of an array X, the relationship of these functions can
be expressed as follows:

DIMENSION (X,1) = HBOUND (X,1) - LBOUND (X,1) + 1

Array 17

The simple procedure shown below uses theHBOUND and LBOUND built-in
functions:

ADD IT: PROCEDURE CX>;
DECLARE X <*> FIXED BINARY,

CCOUNTtl) FIXED BINARY;
COUNT = o;
DO I = LBOUND CXt1) TO HBOUNDCXt1);

COUNT= COUNT+ 1;
)-((I)= COUNT;
END;

RETURN;
END;

This procedure receives a single-dimensioned array as a parameter and
initializes the elements of the array with integral values beginning with one.

For more information, see the entries for these built-in functions, "Function,"
and "Procedure."

Arrays of Structures

An array of structures is an array whose elements are structures. Each struc
ture has identical logical levels, minor structure names, and member names
and attributes.

For example, a structure STATE can be declared an array, as shown below:

DECLARE 1 STATE (50) t

2 NAME CHARACTER (20> VARYING,
2 POPULATION FU<ED (31),
2 CAPITAL t

3 NAME CHARACTER (30) VARYING,
3 POPULATION FIXED (31>

2 SYMBOLS,
3 FLOWER CHARACTER (20) t

3 BIRD CHARACTER (20);

A member of a structure that is an array inherits the dimensions of the
structure. For example, the member CAPITAL.NAME of the structure
STATE inherits the dimension 50. You must use a subscript whenever you
refer to the variable CAPITAL.NAME, as in the example below:

PUT LIST (CAPITAL,NAME(I)) ;

A subscript for a member of a structure that is an array element can appear
following any name within a qualified reference. For example, all of the
following references are equivalent:

STATEC10) .CAPITAL.NAME
STATE.CAPITALC10>.NAME
STATE,CAPITAL,NAME<10>

18 Arrays of Structures

• Arrays of Structures that 'Contain Arrays

A structure that is defined with a dimension can have members that are
arrays. For example:

DECLARE 1 STATE (50) t

2 AVERAGE_TEMPS(12) FIXED DECIMAL (5,2),

In this example, the elements of the array STATE are structures. At the
second level of the hierarchy . of each structure is an array of 12 elements.
Because this member of the structure inherits the dimension of the major
structure, any of these elements must be referred to by two subscripts:

1. The first subscript references an element in the array STATE.

2. The second subscript references an element in the array AVERAGE_
TEMPS.

These subscripts can appear following any name in the qualified reference.
For example:

STATE<3>.AVERAGE_TEMPSC4>
STATE.AVERAGE_TEMPSC314)

These references are equivalent.

Note the following rules for specifying subscripts for members of structures
containing arrays:

• The number of subscripts specified for any member must include any
dimensions inherited from a major or minor structure declaration, as well as
those specified for the member itself.

• The subscripts that refer to a member of a structure in an array do not have
to follow immediately the name to which they apply. However, the order of
subscripts must be preserved.

• The total number of dimensions, including the inherited dimensions, must
not exceed eight.

For information on structure declarations, see "Structure."

•Connected Arrays

A connected array is an array whose elements occupy consecutive locations in
storage. For example:

DECLARE NEWSPAPERS (10) CHARACTER (30) ;

In storage, the 10 elements of the array NEWSPAPERS occupy 10 consecu
tive 30-byte units. Thus, the array NEWSPAPERS is a connected array.

A connected array is valid as the target of an assignment statement, as long as
the source expression is a similarly dimensioned array or is a single scalar
value.

An unconnected array is an array whose elements do not occupy consecutive
storage locations. A structure with the dimension attribute always results in
unconnected arrays. When a structure is dimensioned, each member of the

Arrays of Structures 19

structure inherits the dimensions of the structure and becomes, in effect, an
array. For example:

DECLARE 1 STATE (50) t

2 NAME CHARACTER <20) VARYING,
2 POPUL.ATI ON F D(ED (31) ;

In the above example, the members NAME and POPULATION of the major
structure STATE inherit the dimension 50 from the major structure. When
PL/I allocates storage for a structure or a dimensioned structure, each
member is allocated consecutive storage locations; thus the elements of the
arrays NAME and POPULATION are not connected.

Figure A-3 illustrates the storage of connected and unconnected arrays.

CONNECTED:

DECLARE 1 ST ATE,
2 NAME (50) CHAR(20),
2 POP (50) FIXED(10);

The members NAME and POP of the
structure STATE are dimensioned. The
elements of each array occupy
consecutive storage locations.

UNCONNECTED:

DECLARE 1 ST ATE (50),
2 NAME CHAR(20),
2 POP FIXED(10):

The array STATE is dimensioned. Its
members NAME and POP inherit the
dimension: each of these variables
is an array of 50 elements, but the
elements do not occupy consecutive
storage locations.

name(1)

name(2)

name(3)

~
name(50)

pop(1)
pop(2)
pop(3)

~ ~

T pop(50) T

name(1)

pop(1)

pop(2)

I

*
I
I

pop(49) I
l

pop(50)

Figure A-3: Connected and Unconnected Arrays

ASCII Character Set

:.::~

1
name(2)

name(3)

name(50)

~~

The American Standard Code for Information Interchange (ASCII) is a set of
eight-bit numeric values that represent the alphabet, numerals, punctuation
and symbols used in text and in communications protocol. This is the ASCII
character set. Table A-1 lists the set and its numeric values.

20 ASCII Character Set

Table A-1: ASCII Character Set

ASCII ASCII
Decimal Decimal
Number Character Meaning Number Character Meaning

0 NUL Null 64 @ At sign
I SOH Start of heading 65 A Upper case A
2 STX Start of text 66 B Upper case B
3 ETX End of text 67 c Upper case C
4 EOT End of transmission 68 D Upper case D
5 ENO Enquiry 69 E Upper case E
6 ACK Acknowledgement 70 F Upper case F
7 BEL Bell 71 G Upper case G
8 BS Backspace 72 H Upper case H
9 HT Horizontal tab 73 I Upper case I

10 LF Line feed 74 J Upper case J

11 VT Vertical tab 75 K Upper case K

12 FF Form feed 76 L Upper case L

13 CR Carriage return 77 M Upper case M

14 so Shift out 78 N Upper case N

15 SI Shift in 79 0 Upper case 0

16 DLE Data link escape 80 p Upper case P
17 DCI Device control I 81 Q Upper case Q
18 DC2 Device control 2 82 R Upper case R
19 DC3 Device control 3 83 s Upper case S
20 DC4 Device control 4 84 T Upper case T
21 NAK Negative acknowledgement 85 u Upper case U
22 SYN Synchronous idle 86 v Upper case V
23 ETB End of transmission block 87 w Upper case W
24 CAN Cancel 88 x Upper case X
25 EM End of medium 89 y Upper case Y
26 SUB Substitute 90 z Upper case Z
27 ESC Escape 91 [Left square bracket
28 FS File separator 92 \ Back slash
29 GS Group separator 93 l Right square bracket
30 RS Record separator 94 ~or t Circumflex or up arrow
31 us Unit separator 95 _or_ Back arrow or underscore
32 SP Space or blank 96 I Grave accent
33 ! Exclamation mark 97 a Lower case a
34 " Quotation mark 98 b Lower case b
35 # Number sign 99 c Lower case c
36 $ Dollar sign 100 d Lower cased
37 % Percent sign 101 e Lower case e
38 & Ampersand 102 f Lower case f
39 Apostrophe 103 g Lower case g

40 (Left parenthesis 104 h Lower case h
41) Right parenthesis 105 i Lower case i
42 * Asterisk 106 j Lower case j
43 + Plus sign 107 k Lower case k
44

'
Comma 108 1 Lower case 1

45 Minus sign or hyphen 109 m Lower case m
46 Period or decimal point I IO n Lower case n
47 I Slash 111 0 Lower case o
48 0 Zero 112 p Lower case p
49 1 One 113 q Lower case q
50 2 Two 114 r Lower case r
51 3 Three 115 s Lower cases
52 4 Four 116 t Lower case t
53 5 Five 117 u Lower case u
54 6 Six 118 v Lower case v
55 7 Seven 119 w Lower case w
56 8 Eight 120 x Lower case x
57 9 Nine 121 y Lower case y
58 : Colon 122 z Lower case z
59 ; Semicolon 123 { Left brace
60 < Left angle bracket 124 I Vertical line
61 = Equal sign 125 } Right brace
62 > Right angle bracket 126 "' Tilde
63 ? Question mark 127 DEL Delete

ASCII Character Set 21

ASIN Built-In Function

The ASIN built-in function returns a floating-point value that is the arc
(inverse) sine of an arithmetic expression x. The arc sine is computed in
floating point. The returned value is an angle w such that

-7r/2 :::; w :::; 7r/2

The absolute value of x, after its conversion to floating point, must be less
than or equal to 1. The format of the function is:

ASIN(x)

Assignment Statement

The assignment statement gives a value to a specified variable. The format of
the assignment statement is:

target = expression ;

target
The name of the variable to be assigned a value. It can be:

• Any reference to a scalar variable or scalar array element

• A pseudovariable (for example, SUBSTR)

• A reference to a major or minor structure name or any mem her of a
structure

• A reference to an array variable

expression
Any valid expression.

PL/I evaluates an assignment statement and performs the assignment as
follows:

1. The target is evaluated. If it contains a pseudovariable, any expressions in
the argument list are evaluated.

2. The expression on the right-hand side of the assignment statement is
evaluated, producing a result. An expression can consist of many subex
pressions and operations, each of which must be evaluated. See "Expres
sion" for a complete description.

3. If the data type of the result does not match the data type of the target
variable, the resulting value is converted to the data type of the target.

Some general rules regarding the types of data you can specify in assignment
statements are given below. For the complete rules for data conversion in
assignments, see "Conversion of Data.''

• Arithmetic Data

PL/I converts an arithmetic expression to the type of the target, if their types
are different. If the target is a character- or bit-string variable, PL/I converts
the arithmetic expression to its character- or bit-string equivalent.

A character-string expression can be converted to the data type of an arith
metic target only if the string consists solely of characters that have numeric
equivalents.

22 ASIN Built-In Function

•Arrays

You can specify an array variable as the target of an assignment statement in
only the following ways:

• array-variable = expression ;

where exp~ession yields a scalar value. Every element of the array is
assigned the resulting value.

• array-variable-1 = array-variable-2 ;

where the specified array variables have identical data type attributes and
dimensions. Each element in array-variable-1 is assigned the value of the
corresponding element in array-variable-2.

The storage occupied by the two arrays must not overlap.

Any array variable specified in an assignment statement must occupy
connected storage.

All other specifications of an array variable as the target of an assignment
statement are invalid. ·

• Bit Data

When the target of an assignment is a bit-string variable, the resulting expres
sion is truncated or padded with trailing zeros to match the length of the
target.

• Character Data

When the target of an assignment is a fixed-length character string, the re
sulting expression is truncated on the right or padded with trailing spaces to
match the length of the target. If the target is a varying-length character
string, the resulting expression is truncated on the right if it exceeds the
maxim um length of the target.

When one character-string variable is assigned to another, the storage occu
pied by the two variables cannot overlap.

•Entry Data

If the specified expression is an entry constant, an entry variable, or a func
tion reference that returns an entry value, the target variable must be an entry
variable.

•Label Data

If the specified expression is a label constant, a label variable, or a func
tion reference that returns a label value, the target variable must be a label
variable.

• Pointer and Offset Data

If the specified expression is a pointer or offset, or a function reference that
returns a pointer or offset, the target variable must be a pointer or offset
variable.

Assignment Statement 23

• Structures

You can specify the name of a major or minor structure as the target of an
assignment statement only if the source expression is an identical structure
with members in the same hierarchy and with identical sizes and data type
attributes. The storage occupied by the two structures must not overlap.

Any structure variable specified in an assignment statement must occupy
connected storage.

ATAN Built-In Function

The ATAN built-in function returns a floating-point value that is the arc
tangent of an arithmetic expression y or an arc tangent computed from two
arithmetic expressions y and x. The arc tangent is computed in floating point.
If two arguments are supplied, they must not both be zero after their conver
sion to floating point.

The format of the function is:

ATAN (y[,x])

• Returned Values

The returned value represents an angle in radians.

If x is omitted, the returned value v equals arctangent(s), such that

-7r/2 < v < 7r/2

where s is the value of expression y after its conversion to floating point.

If x is present, the returned value v equals arctangent(s/r), such that

if s ;;::: 0 then 0 :'.S: v ~ 7r, and
if s < 0 then -7r < v < 0

where s and r are, respectively, the values of expressions y and x after their
conversion to floating point.

ATAND Built-In Function

The ATAND built-in function returns a floating-point value that is the arc
tangent of a single arithmetic expression y or an arc tangent computed from
two arithmetic expressions y and x. The arc tangent is computed in floating
point. If two arguments are supplied, they must not both be zero after their
conversion to floating point.

The format of the function is:

ATAND(y[,xl)

• Returned Value

The floating-point value returned, representing an angle in degrees, equals
ATAN (y,x)*180/7r.

24 ATAN Built-In Function

ATANH Built-In Function

The ATANH built-in function returns a floating-point value that is the
inverse hyperbolic tangent of an arithmetic expression x. After its conversion
to floating point, the absolute value of the argument x must be less than one.

The format of the function is:

ATANH(x)

Attribute

Attributes define and describe the characteristics of data used in a PL/I
program. Each data item in a PL/I program has a set of attributes associated
with it. Attributes can be specified in any of the following contexts:

• In a DECLARE statement for an identifier. These attributes are specified
either by keyword or by syntax. In this text, keyword attributes are shown in
uppercase letters. Attributes given by syntax are shown in lowercase letters.
For example:

DECLARE SIGNAL CHARACTER (20);

In this declaration, the keyword attribute CHARACTER is associated with
the identifier SIGNAL. The length attribute of the variable is specified in
parentheses following the CHARACTER keyword.

• In an OPEN statement to describe a particular file. During the opening of a
file, these attributes are merged with file description attributes specified in
the declaration of the file.

• Within the ENTRY attribute to describe the parameters of an external
procedure. These attributes must match the attributes given to correspond
ing parameters specified in the PROCEDURE or ENTRY statements of the
invoked subroutine or function.

• Within the RETURNS attribute of a PROCEDURE or ENTRY statement
to describe the value returned by a function.

Attributes can also be implied by the presence of other attributes. For exam
ple, if the RETURNS attribute is specified for an identifier, the compiler
supplies the ENTRY attribute· by default.

The entry for each attribute in this manual gives its syntax and abbreviation
(if any) and describes related and conflicting attributes. See Table A-2 at the
end of this entry for a concise alphabetical summary of PL/I attributes.

Attribute 25

• Computational Data Type Attributes

The attributes that define arithmetic and string data are:

CHARACTER [(length) J [VARYING J

BIT [(length) J [ALIGNED J

{
BINARY } {FLOAT} [(precision)]
DECIMAL . FIXED [(precision[,scale-fractor])]

PICTURE 'picture'

These attributes can be specified for all elements of an array and for individ
ual members of a structure.

• Other Data Type Attributes

The following attributes apply to program data that is not used for computa
tion:

AREA
ENTRY [V ARIABLEJ
FILE [V ARIABLEJ
LABEL
OFFSET
POINTER

• Storage Class and Scope Attributes

The following attributes control the allocation and use of storage for a data
variable and define the scope of the variable:

AUTOMATIC [INITIAL(initial-element, ...)]
BASED [(pointer-reference)]
DEFINED(variable-reference) [POSITION(expression)]
STATIC [READO NL YJ [INITIAL(initial-element, ...)J
parameter

EXTERNAL [GLOBALDEF [(psect-name)] [VALUE]]
GLOBALREF READONLY

INTERNAL

26 Attribut~

• File Description Attributes

The following attributes can be applied to file constants and used in OPEN
statements:

ENVIRONMENT(option, ...)

{ RECORD [KEYED] } { INPUT }
STREAM OUTPUT [PRINT 1

UPDATE

{
DIRECT }

. SEQUENTIAL

• Entry Name Attributes

The following attributes can be applied to identifiers of entry points:

ENTRY [VARIABLE] [OPTIONS (VARIABLE)]
BUILTIN
RETURNS (returns-descriptor)

II Argument-Passing Attributes

The following attributes describe parameters of external procedures that are
not written in PL/I:

ANY
VALUE

Attribute 27

Table A-2: Alphabetical Summary of PL/I Attributes

Attribute Use

ALIGNED Requests alignment of bit-string variables in storage

ANY Indicates that a parameter may have any data type

AREA Defines a unit of storage for the allocation of based
variables

{AUTOMATIC} Requests dynamic allocation of storage for a varia-
AUTO ble

BASED [(pointer-reference)] Indicates that a variable's storage is located by a
pointer

{BINARY} Defines a binary base for arithmetic data
BIN

BIT Defines bit-string data

BUILTIN Defines a built-in function name

{ g~1~ACTER } [(length)] Defines character-string data

{DECIMAL} Defines a decimal base for arithmetic data
DEC

{DEFINED} . Indicates that a variable will share the storage allo-
DEF (variable-reference) cated for another variable

dimension Indicates that a variable is an array and defines the
number and extent of its dimensions

DIRECT Specifies that a file ·will be accessed only randomly

ENTRY (descriptor, ...) Describes an external procedure and its parameters

{ENVIRONMENT } (t.) ENV op wn, ...
Specifies system-dependent information about a file

extent Gives the length or dimension of a variable

{EXTERNAL} Identifies the name of a variable whose storage is
EXT referenced or defined in other procedures

FILE Identifies a PL/I file constant or file variable

FIXED Defines a fixed-point arithmetic variable

FLOAT Defines a floating-point arithmetic variable

GLOBALDEF [(psect-name)J Defines an external variable and specifies the pro-
gram section in which the variable will reside

GLOBALREF Defines an external variable whose value is defined
in an external procedure

{INITIAL} INIT (value, ...)
Provides initial values for variables

INPUT Specifies that a file will be used for input

{INTERNAL} Limits the scope of a variable to the block in which
INT it is defined

(Continued on next page)

28 Attribute

Table A-2 (Cont.): Alphabetical Summary of PL/I Attributes

KEYED

LABEL

length

OFFSET

OPTIONS

OUTPUT

parameter

Attribute

{
PICTURE}
PIC 'picture

{
POINTER}
PTR

{
POSITION}
POS

precision, [scale-factor]

PRINT

READONLY

RECORD

RETURNS (returns-descriptor)

{
SEQUENTIAL }
SEQL

STATIC

STREAM

UPDATE

VALUE

VARIABLE

{
VARYING}
VAR

Use

Specifies that a file may be accessed randomly by
key

Defines a label variable

Specifies a length for a string variable

Defines an offset variable

Specifies attribute options

Specifies that a file will be used for output

Indicates that a variable will be assigned a value
when the procedure is invoked

Specifies the format of numeric data stored in char
acter form

Defines a pointer variable

Specifies the position within a variable at which a
defined variable begins

Specifies the number of digits in an arithmetic vari
able and, with fixed-point decimal data, the num
ber of fractional digits

Specifies that a file is to be formatted for printing

Specifies that a static variable's value does not
change during program execution

Specifies that a file will be accessed by record 1/0
statements

Specifies that an external entry is a function and
describes the value returned by it

Specifies that a file may be accessed sequentially

Requests static allocation of storage

Specifies that a file will be accessed by stream 1/0
statements

Specifies that records in a file may be rewritten or
deleted

Requests (1) that a global symbol be accessed by
value rather than by reference, or (2) that an argu
ment be passed to a non-PL/I procedure by immedi
ate value

Defines variable entry and file data

De~ines a varying-length character string

Attribute 29

AUTOMATIC Attribute

The AUTOMATIC attribute specifies, for one or more variables, that PL/I is
to allocate storage only for the duration of a block. An automatic variableis
not allocated storage until the block that declares it is activated. The storage
is released when the block is deactivated. The format of the AUTOMATIC
attribute is:

{
AUTOMATIC}
AUTO

AUTOMATIC is the default for internal variables.

AUTOMATIC explicitly defines the storage class of a variable, array, or major
structure in a DECLARE statement. Because AUTOMATIC is the default,
you need not specify it.

• Restrictions

• The AUTOMATIC attribute conflicts with the following attributes:

STATIC parameter
BASED EXTERNAL
DEFINED READO NL Y
GLOBALDEF GLOBALREF

• The AUTOMATIC attribute cannot be applied to minor structures, mem
bers of structures, parameters, or descriptions in an ENTRY or RETURNS
attribute.

For a discussion of PL/I storage allocation, see "Storage Classes."

30 AUTOMATIC Attribute

B
B Format Items

The B format items-B, Bl, B2, B3, and B4-describe representations of bit
strings in a stream. The form of the B format items is:

m

w

B[m] [(w)]

The integer 1, 2, 3, or 4, specifying the radix factor.Band Bl have the
same meaning. When the radix factor is omitted or is 1, the bit string
is represented by the characters 0 and 1 in the stream. When the radix
factor is 2, the bit string is represented by the characters 0, 1, 2, and 3.
When the radix factor is 3, the bit string is represented by the charac
ters 0, 1, 2, 3, 4, 5, 6, and 7. When the radix factor is 4, the bit string is
represented by the characters 0 through 9 and A through F.

A nonnegative integer that specifies the width in characters of the field
in the stream.

The interpretation of the B format items on input and output is given below.
For a general discussion of format items, see "Format Items and Their Uses."

• Input with GET EDIT

The integer w must be included when the B format items are used with GET
EDIT. If it is zero, no operation is performed on the input stream, and a null
string is assigned to the input variable. The number of characters specified by
w is acquired. The input characters are converted to an intermediate bit
string of length w*m. If the input target is not a bit-string variable, then this
intermediate bit string is converted to the type of the input target, following
the usual rules (for details, see "Conversion of Data").

The string of characters in the stream can be preceded or followed by spaces,
which are ignored. All characters in the input field (except the leading/trailing
spaces) must be those implied by the radix factor; otherwise, the ERROR
condition is signaled. Consequently, input strings should not be enclosed in
apostrophes, nor should they include the suffix Bm.

• Output with PUT EDIT

The output source is converted, if necessary, to a bit string, following the
usual rules for conversion to bit strings (see "Conversion of Data"). If the
length of the resulting bit string is not a multiple of the radix factor (m), the
bit string is padded with zeros on the right to make its length the next higher
multiple (see "Examples" below).

31

The bit string is then converted to a character representation appropriate to
the radix factor and placed in the output stream. The character representa
tion is left-justified in the field specified by wand is truncated or padded with
spaces on the right if necessary. If w is not included, the output string is of the
same length as the converted output source. If w is zero, the B format item
and its associated output source are skipped.

•Examples

BFORMAT_XM: PROCEDURE OPTIONSCMAIN);
I* This Prosram Prints incorrect values for an inteser

*' DECLARE I FIXED BINARYC31);
DECLARE BFORM STREAM OUTPUT PRINT FILE;
I = 5;
OPEN FILECBFORM> TITLE< 'BFORMXM+OUT'>;
PUT SKIP FILECBFORM> EDIT ('DeciiTlal:' ti) (At}(tFC2));
PUT SKIP FILECBFORM) EDIT ('Binan':' ti) CAt)<tf.3.);
PUT SKIP FILECBFORM> EDIT C'Base·-4:'tl) CAt/tf.32);
PUT SKIP FILECBFORM) EDIT ('Octal:' ti) CA t>(tf.33);
PUT SKIP FILECBFORM) EDIT ('Hexadeci111al: / ti) CA t)< tB4);
END BFORMAT _){M;

The above program produces the output:

Deci111al: 5
Binary: 0000000000000000000000000000101
Base-4: 0000000000000022
Octal: 00000000024
Hexadecimal: OOOOOOOA

The base-4, octal, and hexadecimal representations of I are incorrect, because
the precision of I (31) is not a multiple of 2, 3, or 4. For the B2 and B4 format
items, an extra zero bit was appended to the intermediate bit string, multiply
ing it by two. For B3, two extra bits were appended, to make the string 33 bits
long and thus divisible into an exact number of three-bit segments. To avoid
this problem, the precision of the output source must be a number that is
evenly divisible by any radix factor with which it is to be written out, as in:

BFORMAT_XM: PROCEDURE OPTIONS<MAIN>;
I* This Prosram Prints correct values for an in~eser */
DECLARE I FIXED BINARYC24>; I* 24 is a multiPle of
2*3*4 */
DECLARE BFORM STREAM OUTPUT PRINT FILE;
I = 5;
OPEN FILECBFORM> TITLE< 'BFORMXM5+0UT');
PUT SKIP FILECBFORM> EDIT C'DeciMal:'tl) CAtX~F(2));

PUT SKIP FILECBFORM) EDIT ('Binan':' ti) CA ti< tB);
PUT SKIP FILECBFORM> EDIT ('Base-4:' ti) CA ti{ t52);
PUT SKIP FILECBFORM> EDIT ('Octal:'tl) CAti<tB3);
PUT SKIP FILECBFORM> EDIT ('Hexadeci111al:' ti) (A ti< t54);
END BFORMAT -><M;

This version of the program outputs:

Deci111al: 5
Binary: 000000000000000000000101
Base-4: 000000000011
Octal: 00000005
HexadeciMal: 000005

32 B Format Items

The output values are correct representations ofl because the precision (24) is
evenly divisible by 2, 3, or 4.

The tables below show the relationship between the internal and external
representations of characters that are read or written with the B format item.

Input Examples
The "input stream" shown in the table is a field of characters begin
ning at the current position in the stream and continuing to the right.
The target type is the type of the variable to which the input value is
assigned.

Format Target
Item Input Stream Type Target Value

B (12) 111000111110+++ 5IT(12) '111000111110'5
B (12) 66666.6 1 1 0 0 1 1 + + + 5IT(12) '110011000000'5
52(6) 123123+++ 5IT<12) '011011011011 '5
53(4) 1775+ ++ 5IT(12) '001111111101'5
54(3) 1 FA ••• 5IT(12) '000111111010'5

Output Examples
The output source value shown in the table is either a constant or the
value of a variable that is written out with the associated format item.

Output Source Value Format Item Output Value

4095 B 111111111111
4095 B (11) 11111111111
4095 52 333333
4095 53 7777
4095 54 FFF

BASED Attribute

The BASED attribute defines a based variable, that is, a variable whose
actual storage will be denoted by a pointer or offset reference. For general
information, see "Based Variable." The format of the BASED attribute is:

BASED [(reference)]

reference
A reference to a pointer or offset variable or pointer-valued function. If
the reference is to an offset variable, that variable must be declared
with a base area. Each time a reference is evaluated that is to the
based variable without an explicit pointer or offset qualifier, the refer
ence is evaluated to obtain the pointer or offset value.

• Restrictions

• The following attributes conflict with the BASED attribute:

AUTOMATIC GLOBALDEF
DEFINED GLOBALREF
EXTERNAL STATIC
READO NL Y INITIAL
VALUE parameter

BASED Attribute 33

• The BASED attribute cannot be applied to minor structures, members
of structures, parameters, or descriptions in an ENTRY or RETURNS
attribute.

Based Variable

A based variable is a variable that describes storage that will be accessed
through a pointer or offset value. PL/I does not automatically allocate any
storage for a based variable. Instead, storage is allocated or specified explicitly
by the user.

This entry gives the rules governing references to based variables and the use
of pointer values. It also presents examples of dynamic storage allocation, the
use of READ SET, and the use of the ADDR built-in function.

• References to Based Variables

A reference to a based variable (except in an ALLOCATE statement) must
specify a pointer or offset reference designating the storage to be accessed by
the reference. This qualifying pointer or offset reference may be specified
implicitly, by giving it in the BASED attribute, or explicitly, by prefixing the
based variable reference with a locator qualifier. A complete based variable
reference (with the locator qualifier) .has the form:

qualifying-reference -> base-reference

Whether explicit or implicit, the qualifying reference must be a reference to a
pointer variable, a pointer-valued function, or an offset variable declared with
a base area. The qualifying reference is evaluated each time the complete
reference is evaluated and must yield a valid poillter value (see "Pointer
Values" below). If the qualifying reference is to an offset variable, the offset
value is converted to a pointer using the base area specified in the offset
variable's declaration. (For more details on offsets and areas, see the VAX-11

·PL/I User's Guide and the entries "Offset" and "Area" in this manual.)

Both implicit and explicit qualification may be used with the same based
variable; the explicit qualifier overrides the implicit one. For example:

DECLARE X FIXED BIN BASED(P);
P = ADDR <A) ;
)-(= ADDR->)<;

In the second assignment statement, the reference to X on the left-hand side
of the assignment has the implicit qualifier P, which is the address of the
variable A. The reference to X on the right-hand side is explicitly qualified
with the address of another variable, B. This assigns the value of B to the
variable A.

• Pointer Values

In VAX-11 PL/I, a valid pointer value may be obtained in any of the following
ways:

• Through the SET option of the ALLOCATE statement

• From a user-provided storage allocation routine

34 Based Variable

• Through the SET option of the READ statement

• From applying the ADDR built-in function to an addressable variable (see
"Variable - Addressable Variable") '

• By converting an offset value to a pointer value

A pointer value is valid only as long as the storage to which it applies remains
allocated. Moreover, a pointer obtained by applying ADDR to a parameter is
valid only as long as the parameter's procedure invocation exists, even though
the storage to which the pointer points may exist longer.

The NULL built-in function returns a null pointer value that can be assigned
to pointer and offset variables, but the null value is not valid as the pointer
value qualifying a based variable reference.

It is possible, using the UNSPEC built-in function or based variables, to
assign an arbitrary value to a pointer variable. Such a value is invalid even if
it denotes allocated storage, and use of such values causes unpredictable
program behavior and errors that are difficult to diagnose. For example, the
following program attempts to use pointer arithmetic to "alias" two variables
X and Y:

ALIAS: PROCEDURE OPTIONS<MAIN);

DECLARE INDEX F I><ED BI NARY (31) t

P POINTER BASED<ADDR<INDEX));
DECLARE<>< tY) FLOAT BINARY<24) STATIC t /* 4 b~;tes apart(?) *.I

(At5) FLOAT BINARY<24) BASED;

X = 1EO; Y = 2EO;
P = ADDR(X); /* INDEX holds the address of X *.I
P->A = Y + 1; /* Ex Pe ct X = Y+1 *.I
INDE}< = INDE>(+ 4; /* INDE}< no1A1 holds address of Y (?) */
P->B = Y + 1; /* ExPect Y = Y + 1 *.I
PUT SKIP LIST('P->A: I tP->A t 'P->B: I tP-)5);
END ALI AS;

The program may produce incorrect results in at least two ways:

1. It can be assumed that the programmer knows, perhaps from a storage
map, that X and Y occupy adjacent storage and that Y can be accessed by
incrementing INDEX. However, this is not necessarily true for any two
variables, and the program does rely on the assumption.

2. If common subexpressions are eliminated during the compiler's optimiza
tion of this program, incorrect results occur. The optimization results in:

T = Y + 1 ;
P->A = T;
P->B = T;

The expected result of the program was to give B a value equal to the
original value of Y plus 2. However, the assignment to B yields an incor
rect result because the assignment to A modified Y, and the compiler had
no way to discover that Y was an aliased variable.

• Data Type Matching for Based Variables

In most applications, the data type of a based variable reference is identical to
the data type under which the accessed storage is allocated. (For a discussion

Based Variable 35

of identical data types, see "Data and Data Types.") However, it is not
required that the data types be identical. In standard PL/I, it is sufficient that
the data types match as for overlay defining or that they are left-to-right
equivalent. Moreover, in VAX-11 PL/I, the data types may be quite different,
although the program will then depend on the VAX internal representation of
data. The following subsections discuss these type-matching criteria in more
detail.

Matching by Overlay Defining
This type of matching is in effect if the based variable reference and
the variable for which the storage was originally allocated are both
suitable for character (or bit) string overlay defining. (See "Defined
Variable" for a discussion of string overlay defining.) The only further
restriction is that the size n (in characters or bits) of the based variable
must be less than or equal to the size in characters or bi ts of the
original variable. The based variable reference accesses the first n
characters or bits of the storage.

Matching by Left-to-Right Equivalence
This type of matching applies to structured variables that are identical
up to a certain point. To see if this applies, examine the declaration of
the based variable, and consider only the portion on the left that
includes the referenced member and all of the level-2 substructure
containing the referenced member (if the member is not itself at level
2). If the original variable's declaration has a similar left part with
identical data type, then the based variable reference and the original
reference match. For example:

DECLARE 1 S 1 BASED (P) t

2 >< t

3 (A tB) F I><ED BINt
2 y t

3 c CHAR (10) t

3 D (5) FLOAT;

DECLARE 1 SZ BASED<P);

3 <AtB) FIXED BINt
2 y t

3 C CHAR<10)t
3 E BIT<32);

ALLOCATE s1;

SZ.A = 3; I* valid left-to-risht Match */

SZ.C ='><';I* INt.JALID */

In the first assignment, 82.A is a valid reference because Sl and S2
match through the level-2 structure X. In the second assignment, 82.C
is invalid in standard PL/I because the level-2 structures 82.Y and
81.Y do not match. (However, the reference to 82.C does work in
VAX-11 PL/I.)

This sort of matching is useful in connection with data structures and
files, where the first part of a record contains a value indicating the
precise structure of the remainder of the record.

36 Based Variable

Nonmatching Based Variable References
In V AX-11 PL/I, the base variable in a based variable reference need
not match the variable for which the storage was originally allocated.
The only requirement is that the size of the based variable in bits is
less than or equal to the size of the original variable in bits. However,
use of such nonmatching references requires knowledge of the VAX
internal representation of data, and you should not expect the result
ing code to be transportable to other PL/I implementations. For
example:

DECLARE X FLOAT BINARY(24);
DECLARE S BASED (ADDR ()<)) t

2 FRAC_l BIT(7) t

2 E)<P BIT(8) 1

2 SIGN BIT(l) t

2 FRAC_2 BIT(1G);

EXP = 'O'B; I* set exPonent to 0 *I
SIGN= '1'5i I* set sisn nesatil.ie */
)-(=)<+1;

. The declaration of S describes the internal representation of a V AX-11
single-precision floating-point number. The first two assignments set
the sign and exponent fields to the reserved operand combination. The
assignment to X causes a reserved operand exception.

• Based Variables and Dynamic Storage Allocation

These subsections discuss the dynamic allocation of storage by the ALLO
CATE statement and the READ SET statement.

Using the ALLOCATE Statement
Each time it is executed, the ALLOCATE statement allocates storage
for a based variable and, optionally, sets a pointer variable to the
location of the storage in memory. For example:

DECLARE LIST (10) FIXED BINARY BASEDt
<LIST_PTR_A, LIST_PTR_B) POINTER;

ALLOCATE LIST SET <LIST_PTR_A);
ALLOCATE LIST SET <LIST_PTR_B);

In this example, the array LIST is declared with the BASED attribute;
however, the declaration does not reserve storage for this variable.
Instead, the ALLOCATE statements allocate storage for the variable
and set the pointers LIST_PTR._A and LIST_PTR._B to the storage
locations. LIST_PTR._A and LIST_PTR._B must both be declared
with the POINTER attribute.

In references, the different allocations of LIST can then be distin
guished (unless the pointers are assigned new values) by locator quali
fiers that identify the specific allocation of LIST. For example:

LIST_PTR_A -> LIST<l> = 10;
LIST_PTR_B -> LIST<l> = 15;

Based Variable 37

The phrase LIST_PTR_A-> is a locator qualifier; it specifies the
pointer that locates an allocation of storage for the variable. In this
example, the first element of the storage pointed to by LIST_PTR_A
is assigned the value 10. The first element of the storage pointed to by
LIST_PTR_B is assigned the value 15.

Figure B-1 illustrates this example.

DECLARE LIST (10) FIXED BINARY BASED; No storage is allocated for the array LIST.

DECLARE (LIST_PTR_A,LIST_PTR_B) POINTER;

ALLOCATE LIST SET (LIST_PTR_A):

ALLOCATE LIST SET (LIST_PTR __ B) ;

LIST _PTR_A LIST(1) = 10 ;
LIST_PTR_B LIST(1) = 15;

LIST_PTR_A LIST_PTR_B

I
LIST PTR_A -

~ J 10

LIST PTR_B -

[] 15

Figure B-1: Using the ALLOCATE Statement

Automatic storage is
allocated for the pointer
variables.

The ALLOCATE statement
allocates storage for
the array LIST in
dynamic memory.

This generation of storage
is pointed to by
LIST _PTR_A.

The ALLOCATE statement obtains
another allocation of storage
for the array LIST.

This allocation of storage is
pointed to by the pointer
LIST _PTR_B.

Locator-qualified references
to LIST indicate the specific
allocation that is to be
modified.

Any extent expressions in the based variable declaration are evaluated
each time the variable is allocated or referenced. Therefore, based
variables can be used for data aggregates whose size depends on input
data. Here is an example of dynamically allocating a matrix that will
be accessed by several external procedures:

DECLARE 1 MATRIX_CONTROL_BLOCK STATIC EXTERNAL,
2 MATRIX_POINTER POINTER,
2 <ROW_SIZEtCOL_SIZE> FIXED BINARY;

DECLARE 1 MATRIXCROW_SIZEtCOL_SIZE>
BASED<MATRIX_POINTER>;

GET LIST<ROW_SIZE,COL_SIZE)
ALLOCATE MATR Ii<;

38 Based Variable

The SET Option of the READ Statement
When you use the READ statement with a based variable, you do not
have to define storage areas within your program to buffer records for
input/output operations. If you specify the SET option on the READ
statement, the READ statement places an input record_ in a system
buffer and sets a pointer variable to the location of this buffer. For
example:

DECLARE REC_PTR POINTER t

INFILE FILE RECORD INPUT SEQUENTIAL
DECLARE 1 RECORD_LAYOUT BASED (REC_PTR)

2 NAME CHARACTER (15) t

2 AMOUNT PICTURE '999V99',
2 BALANCE FIXED DECIMAL (Gr2>;

READ FILE <INFILE) SET <REC_PTR>

REWRITE FILE <INFILE)

In this example, the structure defined to describe the records in a file
is declared with the BASED attribute; the declaration does not reserve
storage for this structure. When the READ statement is executed,
the record is actually read into a system buffer, and the pointer
REC_PTR is set to its location.

When the SET option is used with the READ statement, a subse
quently executed REWRITE statement need not specify the record to
be rewritten. PL/I rewrites the record indicated by the pointer variable
specified in the READ statement.

Figure B-2 illustrates this example.

DECLARE REC __ PTA POINTER ;

DECLARE 1 RECORD __ LAYOUT BASED (REC_PTR),
2 NAME CHARACTER (15),
2 AMOUNT PICTURE'99V99',
2 BALANCE FIXED DECIMAL (6,2);

READ FILE (INFILE) SET (REC ___ PTR) ;

REWRITE FILE (INFILE) ;

REC_ PTR

REC_PTR

A longword of storage is
allocated for the pointer.

No storage is allocated for the structure_

~ RECORD __ LAYOUT t ----! The READ 'tatement
locates the internal

- - - - - - buffer into which the
record is read and I r,;gn'1h;, rn/ue .,
REC PTR

Figure B-2: Using the READ Statement with a Based Variable

Based Variable 39

•Examples

The program DEFINED uses based variables and the READ SET statement
to process a file of personnel data (PERSONNEL.DAT), The file has two
types of valid records: a pay record and a health record. The different record
types are identified by a one-character code in the first position. The two
record types are declared as based structures (PAY _RECORD and
HEALTH_RECORD), one of which is selected based on the record type
character ('P' for pay, 'E' for health). Any record that does not begin with
one of these characters is invalid and is written out as a reference to the based
character variable INVALID_RECORD.

DEFINED: PROCEDURE OPTIONS<MAIN);

DECLARE P POINTER; /* Pointer to structures */

DECLARE 1 PAY _RECORD BASED (P) t

2 RECORD_. TYPE CHARACTER (1) t

2 NAME CHARACTERC20) t

I* the two structures differ in this MeMber~ *I
2 GROSS_PAY PICTURE '999999V,99';

DECLARE 1 HEALTH_RECORD BASEDCP) t

2 RECORD_ TYPE CHARACTE~· C 1) t

2 NAME CH1~RACTER C 20 > t

2 EXAM_DATE CHARACTER CS.);

DECLARE INVALID_RECORD CHARACTERC30) BASEDCP);

DECLARE PERSONNEL RECORD FILE;
DECLARE PERSOUT STREAM OUTPUT PRINT FILE;

I* used to control DO srouP~ */
%REPLACE NOTENDFILE BY '1'B;

ON ENDFILECPERSONNEL) BEGIN;
PUT FILECPERSOUT> SKIP LIST

STOP;
END;

('All Processins COMPiete. ');
I* ProsraM stops here */

OPEN FILECPERSONNEL> INPUT TITLE('PERSONNEL.DAT');

DO WHILECNOTENDFILE);
I* terminated by ENDFILE ON-unit *I

READ FILE<PERSONNEL) SETCP>;
I* P is the location of the
record ac~uired by the READ statement */

IF P->PAY_RECORD.RECORD_TYPE = 'P' THEN
PUT FILECPERSOUT) SKIP LIST
('Name= / tP->PAY_RECORD.NAME t

'Gross Pa"i·= / tP->GROSS_PAY);

40 Based Variable

ELSE /* either a health record or an invalid record */
Do;
IF P->HEALTH_RECORD+RECDRD_TYPE = 'E' THEN
PUT FILE<PERSOUT) SKIP LIST
('NaMe=' tP->HEALTH_RECORD.NAMEt
' E x a rr1 d a t e : ' t P - > E }{AM _DA TE) ;
ELSE /* invalid record tYPe *I
PUT FILE<PERSOUT) SKIP LIST

('Int.ialid record:' tP->INt.JALID_RECORD);

END; I* repeat DO srouP until ENDFILE is sisnaled */

END DEFINED;

For example, if the file PERSONNEL.DAT contains the following records:

PMarY A+ Ford 125000.55
EMarY A+ Ford 22JulY 80
t12345878901234587890PPPPPP+PP

then the output file (PERSOUT.DAT) will contain the following output:

NaMe= Mary A+ Ford Gross pay= 125000.55
NaMe= Mary A+ Ford ExaM date: 22JulY 80
Invalid record: t12345G78901234567890PPPPPP1PP
All Processins coMPlete+

Notice the following other features of the program:

• The references to based variables have a locator qualifier (P->} for clarity.
However, since all were declared with P as their pointer reference, the
locator qualifier could have been omitted.

• References to the structure members RECORD_ TYPE and NAME
must be fully qualified with the name of their containing structures
(PAY_RECORD and HEALTH_RECORD) because both structures have
members with these names. In contrast, GROSS_PAY and EXAM_DATE
are unique to their structures and need not be fully qualified.

• Using the ADDR Built-In Function

The ADDR built-in function returns the storage location of a variable. It can
be used to associate the storage occupied by a variable with the description of
a based variable. For example:

DECLARE A FIXED BINARY BASED <X> t

B FI><ED BINARY t

X POINTER;

>< ADDR <5);
A = 15;

In this example, the variable A is declared as a based variable, with the
pointer X designated as its pointer. The variable B is an automatic variable;
PL/I allocates storage for B when the block is activated. When the ADDR
built-in function is referenced, it returns the location in storage of the variable
B and the assignment statement gives this value to the pointer, X. This

Based Variable 41

assignment associates the variable A with the storage occupied by B. Because
A is based on X and X points to B, an assignment statement that gives a
value to A actually modifies the storage occupied by the variable B.

Figure B-3 illustrates this example.

DECLARE A CHARACTER (1000) BASED(X); No storage is allocated for A.

DECLARE B CHARACTER (1000) ; B I ______ I B is allocated a thousand bytes of storage.

DECLARE X POINTER ;

X =ADDA (B);
A = 'STRING' ; xf __ _

xi _______ I X is allocated a longword of storage.

--------8 ... ,------1 The value of Xis B's memory location.
string A reference to A is resolved as a

..__ _____ reference to B.

Figure B-3: Using the ADDR Built-In Function

• Based Variables and List Processing

Data structures in which the elements have complex interactions or may be
added or deleted are normally described with based variables. The simplest
such structure is a linked list. For an example, see "List Processing."

Begin Block

A begin block is a sequence of statements headed with a BEGIN statement
and terminated by an END statement. In general, a begin block can be used
wherever a single executable statement is valid, for instance, in an ON-unit.

The statements in a begin block can be any PL/I statements, and begin blocks
can contain DO-groups, DECLARE statements, procedures, and other
(nested) begin blocks.

A begin block provides a convenient way to localize variables. The variables
that are declared as internal variables within a begin block are not allocated
storage until the begin block is activated. When the begin block terminates,
storage for internal automatic variables is released. A begin block is termi
nated when:

• Its corresponding END statement is executed. Control continues with the
next executable statement in the program.

• It executes a nonlocal GOTO to transfer control to a previous block.

A begin block differs from a DO-group chiefly in its ability to localize varia
bles. Variables declared within DO-groups are not localized to the group (un
less, of course, the group contains a begin block or procedure that declares
internal variables). Begin blocks are preferable when you want to restrict the
scope of variables, and there are some cases (such as ON-units) in which DO
groups cannot be used. Otherwise, DO-groups are often more efficient than
begin blocks, because they do not have the overhead associated with block
activation.

For more information, see "Block."

· 42 Begin Block

A begin block can designate a series of statements to execute depending on
the success or failure of a test in an IF statement. For example:

IF A = B THEN BEGIN ;

END;

A begin block also provides the only way to denote a series of statements to be
executed when an ON condition is signaled. For example:

ON ERROR BEGIN; [state1T1ent ••• J END;

For further information, see "ON Conditions and ON-Units."

BEGIN Statement

The BEGIN statement denotes the start of a begin block. The format of the
BEGIN statement is:

BEGIN;

A begin block must be terminated with an END statement.

BINARY Attribute

The BINARY attribute specifies that an arithmetic variable has a binary
base. The format of the BINARY attribute is:

{ BINARY}
BIN

When you specify the BINARY attribute for an identifer, you can also specify
one of the following attributes to define the scale and precision of the data:

FIXED [(precision)]
FLOAT [(precision)]

where FIXED indicates a fixed-point binary value and FLOAT indicates a
floating-point binary value. The precision of a binary value indicates the
number of bits to be used to maintain its value. For a fixed-point binary
value, the precision specifies the number of bits representing an integer and
must be in the range 1-31. For a floating-point value, the precision specifies
the number of bits representing the mantissa of a floating-point number and
must be in the range 1-113. The maximum floating-point binary precision on
a standard V AX-11/780 is 53. (Use of precisions in the range 54-113 requires
optional hardware; see also "Floating-Point Data.") The default values ap
plied to the BINARY attribute are:

Attributes
Specified

BINARY
BINARY FIXED
BINARY FLOAT

Defaults Supplied

FIXED (31)
(31)
(24)

BINARY Attribute 43

• Restrictions

The BINARY attribute directly conflicts with the DECIMAL attribute and
with any other data type attribute.

BINARY Built-In Function

The BINARY built-in function converts an arithmetic or string expression x
to its binary representation with an optionally specified precision p. The
returned value is either fixed- or floating-point binary, depending on whether
x is a fixed- or floating-point expression.

The precision p, if specified, must be an integer constant greater than zero
and less than or equal to the maximum precision of the result type (31 if fixed
point binary and 113 if floating-point binary). P must be specified if x is a
fixed-point decimal value with fractional digits.

The scale factor q, if specified, must be the constant 0.

The format of the function is:

{ ~~~ARY} (x[,p[,q]])

• Returned Value

The result type is fixed- or floating-point binary, depending on whether the
argument xis a fixed- or floating-point expression. (If the argument is a bit- or
character-string expression, the result type is fixed-point binary.)

The argument xis converted to the result type, giving a value v, following the
usual rules for conversion (see "Conversion of Data" for details).

The returned value is the value v~ with precision p. If pis omitted (integer and
floating-point arguments only), the precision of the returned value is the
converted precision of x (see "Expression" for details). FIXEDOVERFLOW,
OVERFLOW, or UNDERFLOW is signaled if appropriate.

BIT Attribute

The BIT attribute identifies a variable as a bit-string variable. The format of
the BIT attribute is:

BIT [(length)]

length
The number of bits in the variable. If not specified, PL/I assumes a
default length of one bit. The length must be in the range of 0 through
32767.

The rules for specifying the length are as follows:

• If the attribute is specified for a static variable declaration or in a
returns descriptor, length must be an integer constant.

44 BINARY Built-In Function

• If the attribute is specified in the declaration of a parameter or in a
parameter descriptor, length may be specified as an integer constant
or as an asterisk (*).

• If the attribute is specified for an automatic, based, or defined varia
ble, length may be specified as an integer constant or as an expres
sion. In the case of automatic or defined variables, the expression
must not contain any variables or functions that are declared in the
same block, except for parameters.

If specified, the length must immediately follow the keyword BIT.

If you give a variable the BIT attribute, you can also specify the ALIGNED
attribute to request alignment of the variable on a byte boundary in storage.

• Restrictions

The BIT attribute directly conflicts with the CHARACTER and VARYING
attributes and with any other data type attribute.

BIT Built-In Function

The BIT built-in function converts an arithmetic or string expression x to a
bit string of an optionally specified length. If xis a string expression, it must
consist of Os and ls. If the length is specified, it must be a nonnegative integer.
If the length is omitted, the returned value has a length determined by the
usual rules for conversion to bit strings (see "Conversion of Data").

The format of the function is:

BIT(x[,length])

Bit-String Data

A bit string consists of a sequence of binary digits, or bits. A bit-string may be
used as a Boolean value. A Boolean value has one of two states: true (if any bit
is 1) or false (if all bits are 0).

Like a fixed-length character string, a bit string has a fixed length defined in
the declaration or specified by the number of bits in a bit-string constant; bit
string variables cannot be declared with the VARYING attribute.

This discussion of bit-string data is divided into the following parts:

• Constants

• Variables

• Alignment

• Internal representation

Bit-String Data 45

• Bit-String Constants

To specify a bit-string constant, enclose the string in apostrophes and follow
the closing apostrophe with the letter B. Some examples of bit-string con
stants are:

'0101 'B
'10101010 'B
'1 'B

The length of a bit-string constant is always the number of binary digits
specified; the B does not count in the length of the string. The maximum
length of any bit string is 32767 bits. A bit-string constant can be specified
with a maximum of 1000 characters between the apostrophes.

You can also specify a bit-string constant using the syntax:

'character-string 'Bn

where n specifies the number of bits to be represented by each character in the
specified string. This format allows you to specify bit-string constants that
have bases other than two. For example:

'EF8 'B4
'117 'B3
'223 'B2

These constants specify the hexadecimal value EF8, the octal value 117, and
the base 4 value 223.

All such constants are stored internally as bit strings. See "Internal Represen
tation of Bit Data," below.

The characters that are valid for each type of bit-string constant are listed
here:

• For B or Bl, only the characters 0 and 1 are valid.

• For B2, only the characters 0, 1, 2, and 3 are valid.

• For B3, only the characters 0, 1, 2, 3, 4, 5, 6, and 7 are valid.

• For B4, the characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and Fare
valid. (The letters A-F can be either upper or lower case.)

Using the B format items, you can also acquire or output bit-string data in
binary, base 4, octal, or hexadecimal format. See "B Format Items."

• Bit-String Variables

Use the keyword BIT to declare a bit-string variable. The format is:

DECLARE variable-name BIT [(n)];

where n is the length of the variable.

When a program assigns a value to a bit-string variable, the value can be
larger or smaller than the defined length of the variable. In such cases, PL/I
does the following:

• If the assigned string is shorter than the defined target length, PL/I pads the
bit-string value in the direction of least significance with zeros. The "less
significant" bits are those shown on the right, as the string is represented by
PUT LIST.

46 Bit-String Data

• If the assigned string is longer than the target, PL/I truncates the least
significant bits from the bit-string value.

If you do not specify a length for a bit-string variable, PL/I uses the default
length of one bit.

NOTE

You should avoid using bit strings to represent integers. The
truncation or padding that occurs in assignments between
strings of different lengths results in an implicit division or
multiplication of the numeric interpretation of the string; these
implicit operations. can introduce subtle errors in computa
tions.

• Alignment of Bit-String Data

PL/I distinguishes between aligned and unaligned bit-string variables. (Bit
string constants are always unaligned.) A bit-string variable is aligned only if
it is declared with the ALIGNED attribute, as shown in the example below:

DECLARE FLAGS BIT (8) ALIGNED;

PL/I allocates storage for an aligned bit-string variable on a byte boundary
and reserves an integral number of bytes to contain the variable.

Unaligned bit-string variables always occupy only as many bits as are needed
to contain them. They need not be on byte boundaries.

In general, operations involving unaligned bit-string variables are less effi
cient than operations involving aligned bit-string variables. Unaligned bit
string variables are invalid as the targets of the FROM and INTO options of
record 1/0 statements and as the argument of the ADDR built-in function.
Moreover, most non-PL/I programs that accept bit-string arguments require
that the strings be aligned.

This distinction affects argument passing. If a procedure declares a parameter
as an aligned bit string, and if the corresponding argument that is passed to it
is an unaligned bit-string variable, or vice versa, the actual argument will be a
dummy variable. For example:

DECLARE GETSTRING ENTRY <BIT <*> ALIGNED>;
DECLARE STRING BIT (8);
CAL~ GETSTRING <STRING>;

In the above example, PL/I constructs a dummy variable to pass the argu
ment STRING to the called procedure GETSTRING, rather than passing the
actual argument by reference.

It ;is recommended that you declare bit-string variables using the ALIGNED
attribute in most cases. Use unaligned bit-string variables when bit strings
must be packed as tightly as possible, for example, in arrays and in
structures.

Bit-String Data 47

• Internal Representation of Bit Data

The way that PL/I allocates storage for a bit-string variable depends on
whether the variable is declared with the ALIGNED attribute.

In this discussion, the term "most significant bit" means the leftmost bit in
an external representation of the string, as, for example, when the string is
output by the PUT LIST statement. The "least significant bit" is the right
most bit in the external representation.

Of course, the notion of significance has no meaning for bit strings unless they
are used to store integers. VAX-11 PL/I permits the use of bit strings for this
purpose, and it has defined rules for conversions between bit strings and other
data types (see "Conversion of Data"). Nevertheless, the use of PL/I bit
string data to store integers is not recommended, for two reasons:

1. In assignments involving two bit strings of different lengths, the source
string is padded or truncated as required to make a string of the length of
the target.

2. As shown in the following discussions, bit strings are stored, in regard to
the "significance" of bits, in the reverse order from actual numeric data.
In consequence, the conversion of bit strings to arithmetic data is an
expensive one in terms of execution speed, except in the special case of a
one-bit string.

It is recommended instead that you use the UN,SPEC built-in function and
UNSPEC pseudovariable when it is absolutely necessary to store integers in a
compact form. Otherwise, use the data types FIXED BINARY and FIXED
DECIMAL for integer arithmetic.

Unaligned Bit Strings
An unaligned bit string is stored beginning at an arbitrary bit location
in storage; this location is the location of the most significant bit. The
subsequent, less significant, bits are stored in progressively higher lo
cations in memory, as shown here:

most significant bit

least significant bit

The following programming sequence illustrates how a value for an
unaligned bit-string variable is stored:

DECLARE ABIT BIT (10);
ABIT = '1011 'B;

48 Bit-String Data

After the assignment, the variable appears in storage like this:

most significant bit

0 0 0 0 0

least significant bit

Aligned Bit Strings
PL/I allocates storage for an aligned bit-string variable on a byte
boundary and allocates an integral number of bytes. The numqer of
bytes to allocate is calculated as follows:

ceil(n/8)

where n is the length specified for the bit string.

Beginning at bit 0 (the lowest memory location) of the lowest allocated
byte, the bit string is stored like unaligned bit-string data; that is, the
beginning bit is used to hold the most significant bit in the string. Less
significant bits are stored in progressively higher memory locations.
Unused bits are set to zeros each time the bit-string variable is as
signed a value.

The representation is as follows:

most significant bit

r

least significant bit

The following programming sequence illustrates how values are stored
for aligned bit strings:

DECLARE ABIT BIT (10) ALIGNED;
ABIT = '10011 'B;

Bit-String Data 49

Block

In this example, the variable ABIT is aligned. When it is assigned the
value 10011, its storage appears as follows:

Byte 1 Byte O
most significant bit

r-~~~----------------v-~----__.-------------,

0 00 0 0 0 00 0 00 0 0

Unused
least significant bit

A block is a sequence of PL/I statements. The types of block in a PL/I
program are:

• Procedure blocks. A procedure block begins with a PROCEDURE state
ment and terminates with an END statement. A procedure is the basic
program unit of PL/I; it also defines the scope of names declared within it.

• Begin blocks. A begin block begins with a BEGIN statement and terminates
with an END statement. A begin block delimits a portion of a program and
defines the scope of names declared within it.

Blocks control the scope of names, the allocation of storage for automatic
variables, and the search for ON-units to respond to a condition.

• Containment

A block A is said to be contained in another block B if all of A's source text,
from label (if any) to END statement inclusive, is between B's BEGIN or
PROCEDURE statement and B's END statement. If there is no block C
contained in B and containing A, A is also said to be immediately contained
in B. For example:

5: PROCEDURE OPTIONS<MAIN);
A: PROCEDURE;

CALL Q;
END A;

Q: PROCEDURE;

END Q;
BEGIN;

CALL A;
END; /* of besin blocK */

END s;

The procedures A and Q, and the begin block, all are immediately contained
in B.

If block A is contained in block B, they are also said to be nested. The
maximum nesting level is 64.

50 Block

• Block Activation

A block is activated when program execution flows into it. All automatic
variables declared in the block become active. When control leaves the block,
the variables become undefined and inaccessible.

A procedure block can be entered only by a CALL statement or a function
reference. If an internal procedure is declared within a source program,
control flows around the internal procedure during the normal sequence of
execution.

A begin block, on the other hand, is entered when it is encountered during the
normal flow of execution.

• Relationship of Block Activations

During the execution of a program, many blocks can be simultaneously active.
Two different relationships are defined among block activations and illus
trated in Figure B-4.

A

Begin
Block

Dynamic
Descendent
Chains

Q

A: PROCEDURE OPTIONS (MAIN) ;

P: PROCEDURE;
CALL Q;

END P;
Q: PROCEDURE;

END Q;

BEGIN;
CALL P;
END; /* of begin block *I

END A;

Figure B-4: Relationship of Block Activations

Block 51

1. The first relationship is "immediate dynamic descendence." A block
activation is the immediate dynamic descendent of the block that invoked
it. At a given time, the chain of immediate dynamic descendents includes
all existing block activations, starting with the activation of the main
procedure and terminating in the current block activation. For example,
in Figure B-4, the begin block is the immediate dynamic descendent of
procedure A; the complete chain is: A, begin block, P, Q. This chain is
used to find the applicable ON-unit when a condition is signaled. (See
also "ON Conditions and ON-Units.")

2. The second relationship applies to activations of nested blocks.
An activation of a block X that is a begin block or internal procedure has
an "immediate parent activation." The immediate parent activation of X
is an activation of the block that immediately contains X. The chain of
immediate parent activations extends back to an activation of the exter
nal procedure containing X. In Figure B-4, the parent chain for each of
the begin block, procedure P, and procedure Q leads directly back to the
activation of A, because each of these blocks is immediately contained in
A. This chain is used in interpreting references. (See also "Reference.")

When a block is activated, its immediate parent activation is determined as
follows:

1. If the block is an external procedure, it has no parent activation.

2. If the block is a begin block, its immediate parent activation is the activa
tion that invoked it. Therefore, the begin block is the immediate dynamic
descendent of its immediate parent.

3. If the block is an internal procedure invoked in block activation A by a
reference to an entry constant declared in block B, then the immediate
parent of the new block activation is the activation of B in the parent
chain starting at A.

4. If the block is an internal procedure invoked via an entry variable, the
parent activation is taken from the entry value. It was originally set when
the complete entry value was generated by assigning an entry constant to
an entry variable. (See "Entry Data.")

• Block Termination

When a block terminates normally, that is, when an END statement or a
RETURN statement is executed, the current block is released and control
goes to the preceding block activation. If a nonlocal GOTO statement is
executed that transfers control out of the current block, the current block and
any blocks between it and the block containing the label that is the target of
the GOTO statement are released.

For more information, see "Begin Block," "Procedure," "Procedure Block,"
and "Scope of Names."

52 Block

BOOL Built-In Function
The BOOL built-in function performs a Boolean operation on two bit-string
arguments and returns the result as a bit string with the length of the longer
argument. Its format is:

BOOL(string-1,string-2,operation-string)

string-1
A bit-string expression of any length.

string-2
A bit-string expression of any length.

operation-string
A bit-string expression that is converted to length 4. Each bit in the
operation string specifies the result of comparing two corresponding
bits in string-1 and string-2. Specify bit positions in the operation
string from left to right to define the operation, as follows:

string-1-bit string-2-bit Result specified as

0 0 Bit 1 of operation string
0 1 Bit 2 of operation string
1 0 Bit 3 of operation string
1 1 Bit 4 of operation string

If string-1 and string-2 are of different lengths, the smaller is extended on the
right with zeros to the length of the larger.

•Example

){ = '101010'5;
Y= '110011'5;
CHECK= BOOL 0(,Y,'0110'5);

The operation is the exclusive OR. The result is '011001 'B. Figure B-5
illustrates this example.

, 101010 (arg x)
110011 (arg y) operation defined: 0110

[tt result defined by bit 2 ~ 1
result defined by bit 4 = 0

result defined by bit 1 = 0
result defined by bit 3 = 1

result defined by bit 2 = 1
result defined by bit 4 = 0
value returned by the)
BOOL built-in function 011001

Figure B-5: Example of the BOOL Built-In Function

BOOL Built-In Function 53

BUil TIN Attribute

The BUIL TIN attribute indicates that the declared name is the name of a
PL/I built-in function. Within the block in which the name is declared, all
references to the name will be interpreted as references to the built-in
function or pseudovariable of that name.

The BUILTIN attribute is used when you want to refer to a built-in function
within a block in which the function's name has been used to declare a
variable.

The BUILTIN attribute is also used when you want to invoke a built-in
function that takes no arguments (such as the DATE function) and you do not
want to include a null argument list.

•Examples

OUTER: PROCEDURE;
DECLARE MAX FIXED BINARY STATIC INITIAL ClO>;

INNER: PROCEDURE;
DECLARE MAX BUILTIN;

TEST= MAi<CAtB);

END INNER;
END OUTER;

The keyword MAX is used here as a variable name. In the internal procedure
INNER, the MAX built-in function is invoked. Because the scope of the name
MAX includes the internal procedure, the function must be redeclared with
BUILTIN.

You can also use the BUILTIN attribute to declare PL/I built-in functions
that have no arguments, if you want to invoke them without the empty argu
ment list. For example:

DECLARE DATE BUILTIN;
PUT LIST COATE);

Without the declaration, the PUT LIST statement would have to include an
empty argument list for DATE:

PUT LISTCDATEC));

• Restrictions

When you specify the BUILTIN attribute, you cannot specify any other
attributes.

Built-In Function

Built-in functions are procedures provided by the PL/I language. They can be
used wherever an expression is valid.

54 BUIL TIN Attribute

• Built-In Function Arguments

Built-in functions are similar to operators, and their arguments, to operands.
Built-in function arguments, if arithmetic, are converted to their derived type
before the function reference is evaluated. (See also "Expression - Conver
sion of Operands.") All evaluations of built-in functions are performed in the
result type. The arguments are converted again from the derived type to the
result type if necessary. The precision of the the result is the greater of the
precisions of the two arguments.

For instance, all the mathematical functions listed in Table B-1 return float
ing-point values; their arguments are converted to floating point (binary or
decimal, depending on the base of the argument) before the operation is
performed.

•Example

Like all mathematical functions, ATAN returns a floating-point result and is
therefore computed in floating point. The base of the result is the same as the
base of the converted arguments.

DCL J FIXED BINARY CB>; FT= ATAN(J,2>;

The derived type of J and 2 is fixed-point binary. The converted precision of 2
is min(ceil(l/3.32)+1,31), or 2. The result type is FLOAT BINARY(8). Both
arguments are now converted to FLOAT BINARY(8), and the ATAN opera
tion is performed.

Note also the following restrictions on built-in function arguments:

• If one argument of a function is fixed-point binary, no other argument
should be fixed-point decimal with a nonzero scale factor or pictured with
fractional digits.

• All arguments of all built-in functions except the array-handling, storage,
file control, and STRING functions must be scalars of arithmetic, string, or
pictured data types, as specified for the individual function.

• A reference to a built-in function that takes no arguments must still contain
the pair of enclosing parentheses [example: NULL()] unless the function's
name has been declared with the BUILTIN attribute.

• Conditions Signaled

Built-in functions, like other operations, can signal conditions. The
mathematical functions, which are computed in floating point, can signal
OVERFLOW and UNDERFLOW under the appropriate conditions. Fu;nc
tions that are computed in fixed point can signal FIXEDOVERFLOW. In
general, string and other functions signal ERROR if a result cannot be
computed. See also the descriptions of individual conditions and built-in
functions.

Built-In Function 55

•Summary

The built-in functions are summarized in Table B-1, according to the follow
ing functional categories:

• Arithmetic built-in functions - functions that provide information about
the properties of arithmetic values, or that perform common arithmetic
calculations

• Mathematical built-in functions - functions that perform standard mathe
matical calculations in floating point

• String-handling built-in functions - functions that process character-string
and bit-string values

• Conversion built-in functions - functions that convert data from one data
type to another

• Condition-handling built-in functions - functions that provide information
about interrupts caused by signaled conditions

• Array-handling built-in functions - functions that provide information
about arrays

• Storage control built-in functions - functions that return values concerning
based variables

• Timekeeping built-in functions - functions that return the system date
and time of day

• File control built-in functions - functions that return the current line
number and page number of a file

• Miscellaneous - functions that check the validity of data, aid in argument
passing, and perform other convenient operations

Table B-1: Summary of PL/I Built-In Functions

Category Function Reference Value Returned

Arithmetic ABS(x) Absolute value of x

CEIL(x) Smallest integer greater than or equal to x

DIVIDE(x,y,p[,ql) Value of x divided by y, with precision p
and scale factor q

FLOOR(x) Largest integer that is less than or equal
to x

MAX(xl,x2) Larger of the values xl and x2

MIN(xl,x2) Smaller of the values xl and x2

MOD(x,y) Value of x mod y

ROUND(x,k) Value of x rounded to k digits

SIGN(x) -1, 0, or 1 to indicate the sign of x

TRUNC(x) Integer portion of x

(Continued on next page)

56 Built-In Function

Table B-1 (Cont.): Summary of PL/I Built-In Functions

Category Function Reference Value Returned

Mathematical ACOS(x) Arc cosine of x (angle, in radians, whose
cosine is x)

ASIN(x) Arc sine of x (angle, in radians, whose
sine is x)

ATAN(x) Arc tangent of x (the angle, in radians,
whose tangent is x)

ATAN(x,y) Arc tangent of x (the angle, in radians,
whose sine is x and whose cosine is y)

ATAND(x) Arc tangent of x (the angle, in degrees,
whose tangent is x)

ATAND(x,y) Arc tangent of x (the angle, in degrees,
whose tangent is sine is x and whose co-
sine is y)

ATANH(x) Hyperbolic arc targent of x

COS(x) Cosine of radian angle x

COSD(x) Cosine of degree angle x

COSH(x) Hyperbolic cosine of x

EXP(x) Base of the natural logarithm, e, to the
power x

LOG(x) Logarithm of x to the base e

LOGlO(x) Logarithm of x to the base 10

LOG2(x) Logarithm of x to the base 2

SIN(x) Sine of the radian angle x

SIND(x) Sine of the degree angle x

SINH(x) Hyperbolic sine of x

SQRT(x) Square root of x

TAN(x) Tangent of the radian angle x

TAND(x) Tangent of the degree angle x

TANH(x) Hyperbolic tangent of x

(Continued on next page)

Built-In Function 57

Table B-1 (Cont.): Summary of PL/I Built-Jn Functions

Category

String
Handling

Conversion

Condition
Handling

58 Built-In Function

Function Reference

BOOL(x,y,z)

COLLATE()

COPY(s,c)

INDEX(s,c)

LENGTH(s)

STRING(s)

SUBSTR(s,i[,jJ)

TRANSLATE(s,c[,dl)

VERIFY(s,c)

BINARY(x[,p[,Oll)

BIT(s[,ll)

BYTE(x)

CHARACTER(s[,lJ)

D~CIMAL(x[,p[,q]l)

FIXED(x,p[,ql)

FLOAT(x,p)

RANK(c)

UNSPEC(x)

ONARGSLIST()

ON CODE()

ONFILE()

ONKEY()

Value Returned

Result of Boolean operation z performed
on x and y

ASCII character set

c copies of specified string, s

Position of the character string c within
the strings

Number of characters or bits in the
strings

Concatenation of values in array or struc
tures

Part of string s beginning at i for j charac
ters

String s with substitutions defined in c
and d

Position of the first character in s which is
not found in c

Binary value of x to the precision p and
scale factor 0

Value of s converted to a bit string of
length 1

ASCII character represented by the inte
ger x

Value of s converted to a character string
of length 1

Decimal value of x

Fixed arithmetic value of x

Floating arithmetic value of x

Integer representation of the ASCII char
acter c

Internal coded form of x

Pointer to argument lists of exception
condition

Error code of the most recent run-time
error

Name of file constant for which the most
recent ENDFILE, ENDPAGE, KEY, or
UNDEFINEDFILE condition was sig
naled

Value of key that caused KEY condition

(Continued on next page)

Table B-1 (Cont.): Summary of PL/I Built-In Functions

Category

Array
Handling

Storage

Timekeeping

File Control

Miscellaneous

BY Option

Function Reference

DIMENSION(x,n)

HBOUND(x,n)

LBOUND(x,n)

ADDR(x)

NULL()

OFFSET(p,a)

POINTER(o,a)

DATE()

TIME()

LINENO(x)

PAGENO(x)

DESCRIPTOR(x)

VALID(p)

Value Returned

Extent of the nth dimension of x

Higher bound of the nth dimension of x

Lower bound of the nth dimension of x

Pointer identifying the storage referenced
by x

A null pointer value

An offset into the location m area a
pointed to by pointer p.

A pointer to the location at offset o within
area a.

System date in the form YYMMDD

System time of day in the form
HHMMSSXX

Line number of the print file identified
by x

Page number of the print file identified
by x

(The function forces its argument to be
passed by descriptor to a non-PL/I proce
dure)

Boolean value, indicating whether the
pictured variable p has a value consistent
with its picture specification

The BY option defines a value by which a control variable in a DO statement
specification is modified. For example:

DO I = 10 BY 10 WHILE ex < Y);

The DO-group following this statement executes with values for I of 10, 20,
and so on, until the specification in the WHILE option is no longer true. If no
BY option is specified in a controlled DO statement, the default value of 1 is
used. See "DO Statement."

BY Option 59

BYTE Built-In Function

The BYTE built-in function returns the ASCII character whose ASCII code
is the integer x; x must not be negative. The returned value is a char
acter equivalent to BYTE(y), where y equals x mod 128. The format of the
function is:

BYTE(x)

•Example

DECLARE CHAR CHARACTER(1);
f.">YTE:(G'.'5);

60 BYTE Built-In Function

/·ii· CHtil~'

/·ii· CH{:if<
l {~ l ·ii-./

c
CALL Statement

The CALL statement transfers control to an entry point of a procedure and
optionally passes arguments to the procedure. The format of the CALL state
ment is:

CALL entry-name [(argument, ...)] ;

entry-name
The name of an external or internal procedure that does not have the
RETURNS attribute, or the name of an alternate entry point to a
procedure. (The entry-name can also be an entry variable or a refer
ence to a function that returns an entry value.)

argument, ...
The argument list to be passed to the called procedure. If specified,
the arguments must correspond to the parameters specified in the
PROCEDURE or ENTRY statement that identifies the entry name of
the called procedure.

Unless OPTIONS(V ARIABLE) is specified in the declaration of an
external entry name, the number of arguments must match the num
ber of parameters in the parameter list of the invoked entry name.
OPTIONS(V ARIABLE) is valid only for use with non-PL/I proce
dures.

Arguments must be enclosed in parentheses. Multiple arguments must
be separated by commas.

The CALL statement can be used to call an internal or external subroutine.
The following example illustrates a main procedure, CALLER, and a call to
an internal subroutine, PUT_OUTPUT. PUT_OUTPUT has two parame
ters, INSTRING and OUTFILE, that correspond to the arguments LINE and
DEVICE specified in the CALL statement.

CALLER: PROCEDURE OPTIONS<MAIN);

CALL PLJT_OUTPUT<LINEtDEVICE>;

PUT_OUTPUT: PROCEDURE<INSTRINGtOUTFILE);

END PUT_OUTPUT;
END CALLER;

For more information, see "Entry Data," "Parameters and Arguments,"
"Procedure," "Procedure Block," and "PROCEDURE Statement."

61

CEIL Built-In Function

The CEIL function returns the smallest integer that is greater than or equal to
an arithmetic expression x. Its format is:

CEIL(x)

• Returned Value

If x is a floating-point expression, a floating-point value is returned with the
same precision as x. If x is a fixed-point expression, the returned value is a
fixed-point value of the same base as x and with

precision = min(31,p-q+l)

scale factor = 0

where p and q are the precision and scale factor of x.

•Examples

A :: LL 3;
y :: CEIL<A>; I* Y = 5 */

A :: -4 + 3;
y :: CEIL<A>; I* Y = -4 *I

CHARACTER Attribute

The CHARACTER attribute identifies a variable as a character-string varia
ble. The format of the CHARACTER attribute is:

{ CHARACTER} [(length)]
CHAR

length
The number of characters in a fixed-length string or the maximum
length of a varying-length string. If not specified, a length of 1 is
assumed. The length must be in the range of 0 through 32767 charac
ters.

The rules for specifying the length are as follows:

• If the attribute is specified for a static variable declaration or in a
returns descriptor, length must be an integer constant.

• If the attribute is specified in the declaration of a parameter or in a
parameter descriptor, length may be specified as an integer constant
or as an asterisk (*).

• If the attribute is specified for an automatic, based, or defined varia
ble, length may be specified as an integer constant or as an expres
sion. In the case of automatic or defined variables, the expression
must not contain any variables or functions that are declared in the
same block, except for parameters.

If specified, the length must immediately follow the keyword CHAR
ACTER, and it must be enclosed in parentheses.

62 CEIL Built-In Function

If you give a variable the CHARACTER attribute, you can also specify the
attribute VARYING.

• Restrictions

The CHARACTER attribute directly conflicts with the BIT attribute and
with any other data type attribute.

CHARACTER Built-In Function

The CHARACTER built-in function converts an arithmetic or string expres
sion x to a character string of an optionally specified length. If the length is
specified, it must be a nonnegative integer. If the length is omitted, the length
of the returned value is determined by the usual rules for conversion to char
acter strings (see "Conversion of Data"). The format of the function is:

CHARACTER(x[,length])

•Examples

CHAR: PROCEDURE OPTIONS<MAIN);
DECLARE EXPRES FIXED DECIMAL(7,5);
DECLARE OUTPUT PRINT FILE;
EXPRES = 12.34587;
0 PEN FI LE <OUT PUT) TITLE (I CHAR2 I OUT I) ;

PUT SKIP FILE<OUTPUT)
LIST('No lensth arsu1r1ent: 'tCHARACTER(E)<PRES));

PUT SKIP FILE<OUTPUT)
LIST('Lensth = 4: 'tCHARACTER<EJ<PRESt4));

END CHAR;

The program CHAR produces the following output:

No lensth ars'uMent: 12+34587
Lensth = 4: 12

In the first PUT LIST statement, CHARACTER has only one argument, so
the entire string is written out. The string '12.34567' is actually preceded by
two spaces; that is the case with any nonnegative number converted to a
character string (see "Conversion of Data"). In the second PUT LIST state
ment, CHARACTER has a length argument of 4, so the first four characters of
the converted string are written out: '6612 '.

Character-String Data

A character string is a sequence of ASCII characters (see "ASCII Character
Set"). Every character-string variable has a length attribute that specifies
either the length of all values of the variable (fixed-length strings) or the
maximum length of a value of the variable (varying-length strings).

A character-string value can consist of any ASCII characters, to a maximum
length of 32767 bytes.

Character-String Data 63

This discussion of character-string data is divided into the following, parts:

• Constants

• Variables

• Varying character strings

• Alignment of character strings

• Internal representation

• Character-String Constants

When you use character-string constants in a program, you must enclose the
character strings in apostrophes, as shown in the following examples:

'Total is: /

'Enter Your naMe and ase'
'Error - value is out of ranse'

To specify a string containing a literal apostrophe, use two apostrophes within
the string, for example:

'Life isn''t fair'

When a character string that has embedded apostrophes is specified as shown
above, the final result contains only a single apostrophe.

• Character-String Variables

The CHARACTER keyword identifies a variable as a character-string varia
ble in a declaration. The format for specifying a fixed-length character-string
variable is:

DECLARE variable-name CHARACTER [(n)];

where n is the length of the variable, that is, the number of bytes needed to
contain the value of the variable. If not specified, PL/I uses the default length
of one character, or byte.

Fixed-Length Character-String Variables
When a program assigns a value to a fixed-length character-string
variable, the value is not always exactly the same as the length defined
for the variable. Depending on the size of the value, PL/I does the
following:

• If the value is smaller than the length of the character string, PL/I
pads the value with spaces on the right. For example:

DECLARE STRING CHARACTER (10);
STRING = 'ABCDEF I;

The final value of the variable STRING in the above example is
'ABCDEF1:::,.1:::,.10.1:::,. ', that is, the characters ABCDEF followed by four
space characters.

• If the value is larger than the length of the variable, PL/I truncates
the value on the right. For example:

DECLARE STRING CHARACTER (4);
STRING = I ABCDEF I ;

The final value of the variable STRING in this example is 'ABCD ',
that is, the first four characters of the value 'ABCDEF '.

64 Character-String Data

Initializing Character-String Variables
You can use the INITIAL attribute to supply an initial value for the
variable. For example:

DECLARE MESSAGE CHARACTER (20)
INITIAL< 'BeSin enterins text');

If the initial value for a variable is longer than the length, the value is
truncated. If the initial value is shorter than the specified length, it is
padded with spaces on the right.

• Varying Character Strings

When you define a character-string variable, you can also specify the VARY
IN G attribute. A varying character-string variable is a variable whose length
is not fixed. The length specified in the declaration of the variable defines the
maximum length of any value that can be assigned to the variable. Each time
a value is assigned to the variable, the current length changes. For example:

DECLARE NAME CHARACTER (20) VARYING;
NAME = I COOPER I;
NAME= 'RANDOM FACTOR';

The declaration of the variable NAME indicates that the maximum length of
any character-string value it can have is 20. Although the maximum length of
NAME is 20, the current length becomes 6 when NAME is assigned the value
COOPER; the length becomes 13 when NAME is assigned the value
RANDOM FACTOR; and so on.

When a varying character string is assigned a value with a length greater than
the maximum defined, the value is truncated on the right.

The initial length of an automatic varying-length character-string variable is
undefined. A static variable is initially a null string with a length of zero.

You can use the LENGTH built-in function to determine the current length of
any string. See "LENGTH Built-In Function."

• Alignment of Character Strings

The PL/I language makes a distinction between aligned and unaligned (fixed
length) character-string variables. (No such distinction is made for varying
character strings or for character-string constants.) A character-string varia
ble is aligned if it is declared with the ALIGNED attribute.

In VAX-11 PL/I, this distinction affects only argument passing. If a procedure
declares a parameter as ALIGNED CHARACTER, and if the corresponding
argument is an unaligned character-string variable or vice versa, the actual
argument will be a dummy variable. For example:

DECLARE GETSTRING ENTRY <CHARACTER (*) ALIGNED>;
DECLARE STRING CHARACTER (8);
CALL GETSTRING <STRING);

PL/I constructs a dummy variable here to pass the unaligned string variable
STRING to the called procedure GETSTRING, rather than passing the ac
tual argument by reference. (See "Argument Passing.")

Character-String Data 65

Note that all character strings on the VAX-11 hardware are aligned on byte
boundaries. Thus it is recommended that you do not use the ALIGNED
attribute to declare character-string variables.

• Internal Representation of Character Data

PL/I stores fixed-length character-string data from right to left, with each
character occupying a byte of storage, as shown here:

Byte Byte Byte Byte

~~~~ 

c4 c3 c2 c1 

c8 c7 c6 c5 

For example, a character string whose value is 'CHARLIE6ALPHA' appears 
as follows in storage: 

Byte Byte Byte Byte 

~~~~ 

R A H c

6 E I L

H p L A

A

Varying-length strings are stored in a number of bytes equal to n+2, where n is
the declared maximum length. The two additional bytes contain, in the first
two byte addresses, the current length of the value in bytes.

CLOSE Statement

The CLOSE statement dissociates a PL/I file from the physical file with
which it was associated when it was opened. The format of the CLOSE state
ment is:

CLOSE FILE(file-reference) [ENVIRONMENT(option, ...)J ;

file-reference
The file to be closed. If the file is already closed, the CLOSE statement
has no effect.

66 CLOSE Statement

ENVIRONMENT(option, ...)

One or more of the ENVIRONMENT options listed below, separated
by commas.

BATCH
DELETE
REWIND_ON_CLOSE
SPOOL
TRUNCATE

No other ENVIRONMENT options are valid. All ENVIRONMENT
options are described in detail in the VAX-11 PL/I User's Guide.

•Examples

CLOSE FILE(INFILE);

This CLOSE statement closes the file constant INFILE.

DECLARE STATE_FILE FILE KEYED;

OPEN FILE(STATE_FILE) DIRECT UPDATE;

CLOSE FILE(STATE_FILE);
OPEN FILE(STATE_FILE) INPUT SEQUENTIAL;

The file STATE_FILE is declared with the KEYED attribute. On the first
OPEN statement that specifies this file, it is given the DIRECT and
UPDATE attributes and opened for updating; that is, it can only be accessed
by key.

The CLOSE statement closes the file and the second OPEN statement speci
fies the INPUT and SEQUENTIAL attributes; the file may now be accessed
sequentially.

COLLATE Built-In Function

The COLLATE built-in function returns a 256-character string consisting of
the ASCII character set in ascending order. Its format is:

COLLATE()

COLUMN Format Item

The COLUMN format item sets a stream file to a specific character position
within a line. Effectively, COLUMN determines the position at which the
next data will be output qr from which the next data will be input. The
COLUMN format item refers to an absolute character position in a line; to
refer to a relative position, see "X Format Item."

COLUMN Format Item 67

The form of the COLUMN format item is:

w

{ COLUMN} (w)
COL

An integer that identifies the wth position from the beginning of the
current line. The value of w must be zero or positive. If w is zero, a
value of one is assumed.

If the file is already at the specified position, no operation is per
formed. If the file is already beyond the specified position, the format
item is applied to the next line.

The interpretation of the COLUMN format item on input and output is given
below. For a general discussion of format items, see "Format Items and Their
Uses."

• Input with GET EDIT

The file is positioned at the column specified by w. Characters between the
beginning of the line and this column are ignored. If the file is already posi
tioned beyond the specified column, the remainder of the line is skipped and
the format item is applied to the next line.

• Output with PUT EDIT

The file is positioned at the column specified by w. Within the current line,
positions between the wth column and the position of the last output data are
filled with spaces.

If the file is already positioned beyond the specified column, the format item
is applied to the next line. If w exceeds the line size, a value of one is assumed.
See also "LINESIZE Option."

•Examples

COL: PROCEDURE OPTIONS<MAIN);

DECLARE IN STREAM INPUT FILE;
DECLARE OUT STREAM OUTPUT FILE;
DECLARE LETTER CHARACTER(1);

PUT FILE<OUT) SKIP
ED IT (I 123458789012345878901234587890 I) (A) ;

PUT FILE<OUT) SKIP
EDIT('COL1 It 'COL28') (A tCOL(28) tA);

GET FILE<IN) EDIT <LETTER) (A(l));
PUT FILE<OUT) SKIP(2)

LIST('Letter in colurtin 1: 'tLETTER);

GET FILE<IN)
EDIT (LETTER) (COL<25) tA(1));

PUT FILE<OUT) SKIP
LIST ('Letter in colurtin 25:' tLETTER);

END COL;

68 COLUMN Format Item

If the stream input file IN .DAT contains the text:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

then the program COL writes the following output to the stream output file
OUT.DAT:

123456788012345678801234567880
COL1 GDL28

'Letter in coluMn 1:' 'A'
'Letter in coluMn 25:' 'Y'

Comment

A comment is an informational tool for documenting a PL/I program. To
insert a comment in a program, enclose the comment within the character
pairs/* and */. For example:

/* This is a comment.... *I
Wherever the characters/* appear in a program, the compiler ignores all text
until it encounters the characters*/. Thus, a comment can span several lines.

The rules for entering comments are:

• A comment can appear anywhere that a space can appear, that is:

- Between any identifiers, keywords, or constants. In this context, a com
ment separates tokens, or discrete text items, in a statement.

- 'Preceding or following any other punctuation marks that normally delimit
tokens, for example, spaces, tabs, or commas.

• A comment can contain any character except the pair*/; comments cannot
be nested. ·

Some examples of comments are:

A = B + C ; I* Add B and C */

I* ********* START OF SECOND PHASE ********* *I

DECLARE/*COUNTER*/A FIXED BINARY (7);

I* This Module PerforMs the followins steps:
1+ Initializes all arrays and data structures+
2. Establishes default condition handlers.

Although complete comments cannot be nested, you can "comment out" a
statement such as

DECLARE EDF BIT<1>; I* end-of-file *I

This statement can be commented out by preceding the DECLARE with
another /* pair. The compiler will then ignore all text, including the DE
CLARE statement, until it reaches the *I pair.

Comment 69

Comparison Operator

See "Relational Operator."

Concatenation Operator

The concatenation operator produces a single string from two strings specified
as operands. The concatenation operator is:

: : or!!

Both operands must be character strings, or else both must be bit strings. The
result of the operation is a string of the same type as the operands.

•Examples

CONCAT: PROCEDURE OPTIONS< MAIN);

DECLARE OUTFILE STREAM OUTPUT PRINT FILE;

PUT FI LE (OUTF I LE) SK IP LI ST (/ ABC / : : / DEF 1
) ;

PUT FILE<OUTFILE) SKIP LIST< ,,001 1 B:: 1 1.l.O'B);

PUT FIL.E<OUTFILE) Sl{IP LIST(1 001. ,,B:: '07'B:3);

END CONCAT;

The program CONCAT writes the following output to the file
OUTFILE.DAT:

r.~BCDEF

'001110'B
'001.00011 l 'B

Condition Handling

A PL/I condition is any occurrence that causes the interruption of a program
and a signal. When a condition is signaled, PL/I initiates a search for a user
written program unit called an ON-unit, to handle the condition. See "ON
Conditions and ON-Units."

Constant

A constant is a data item whose value cannot change during the execution of a
PL/I program. The converse of a constant is a variable, that is, a data item to
which various values can be assigned during the execution of a program.

V AX-11 PL/I allows the following kinds of constants:

• Literal constants, which are actual numbers and strings written in the
source program. Literal constant types are restricted to character strings,
bit strings, and fixed- or floating-point decimal numbers. Unscaled fixed
decimal numbers can be written with or without a decimal point. Arith
metic constants can be signed.

70 Comparison Operator

• Label constants, which are established by using a label in the source pro
gram. (Label constants cannot be declared in a DECLARE statement.)

• Declared constants (file and entry constants), which generally are estab
lished by DECLARE statements. (The default file constants SYSIN and
SYSPRINT need not be declared.)

• Constant identifiers, which are identifiers assigned literal constant values
with the %REPLACE statement. Constant identifiers are restricted to the
same types as literal constants. See "%REPLACE Statement."

PL/I also has the computational types FIXED BINARY, FLOAT BINARY,
and PICTURE, but there are no literal constants nor constant identifiers
associated with these types. Binary variables usually are assigned values by
assigning decimal constants or other binary variables to them and allowing
PL/I to convert the assigned value to binary. Pictured variables are usually
assigned values by assigning fixed-point decimal constants to them. For fur
ther details, see "Conversion of Data."

•Examples

t.!tJ 5
·-445 +
16+2
129E-3

'00101111 'B

I* a fixed-Point deciMal constant */
I* a fixed-Point deciMal constant */
I* a fixed-Point deciMal constant */
I* f loatinS-Point deciMal constant *I

I* a bit-strins constant */
'This is a strins' /* a character-strins constant */

DECLARE E ENTRY;
DECLARE F FILE;

STARTUP:

I* an entry constant */
I* a file constant */

I* a label constant */

%REPLACE PI BY 3+14158 I* a fixed-Point deciMal
constant identifier */

STATUS

C ::: 3E10;

Conversion of Data

I* assiSnMent of a fixed
deciMal constant to a
1.1 a r i a b 1 e * I

I* assiSnMent of a f loatins
deciMal constant to a
1.i a r i a b 1 e * I

Conversion is the changing of a data item from one data type to another. This
entry describes the conversions performed in assignments. Conversions are
also performed on operands in arithmetic expressions; see "Expression" for
details of operand conversions.

Conversion of Data 71

In assignments, conversions are defined between the noncomputational types
POINTER and OFFSET, and between any two computational types. The
rules for assignments apply to:

• Assignment statements

• Arguments passed to a procedure

• Values specified in a RETURN statement

• An argument converted by the built-in function FIXED, FLOAT, BINARY,
DECIMAL, BIT, or CHARACTER

• Conversions to and from character strings performed by the PUT and GET
statements, respectively

If an attempt is made to assign a value to a target for which there is no defined
conversion, the compiler generates a diagnostic message. For example, if Fis a
variable with the attributes FIXED DECIMAL (5,2), then the statement

assigns the numeric value 133.45 to F, as expected. However,

F ::: 'ABCIJ I;

signals the ERROR condition.

Table C-1 illustrates the contexts in which PL/I performs conversions. Table
C-1 also lists the built-in conversion functions, such as BINARY and
CHARACTER. You can use these functions when you want to explicitly indi
cate a conversion and to specify such characteristics as the precision or string
length of the converted result.

The rest of this section defines the rules and results of the following types of
conversion:

• Assignments to arithmetic variables

- from any arithmetic data type to any other arithmetic data type

- from pictured to any arithmetic type

- from a bit string to any arithmetic data type

- from a character string to any arithmetic data type

• Assignments to bit-string variables

- from any arithmetic data type to a bit string

- from pictured to bit string

- from a character string to a bit string

• Assignments to character-string variables

- from any arithmetic data type to a character string

- from pictured to character string

- from a bit string to a character string

• Assignments to pictured variables

- from any computational type to pictured

• Conversions between offsets and pointers

72 Conversion of Data

Table C-1: Contexts in Which PL/I Converts Data

Context

target = expression ;

entry-name
RETURNS (attribute ...) ;

RETURN (value) ;

x + y
x-y
x * y
x/y
x**y

BINARY (expression)
BIT (expression)
CHARACTER (expression)
FIXED (expression)
FLOAT (expression)
OFFSET (variable)
POINTER (variable)

PUT LIST (item, ...) ;

GET LIST (item, ...) ;

PAGESIZE (expression)
LINESIZE (expression)
DO control-variable ...
SKIP (expression)
LINE (expression)

Assignments to Arithmetic Variables

Conversion Performed

In an assignment statement, the given expression
is converted to the data type of the target.

In a RETURN statement, the specified value is
converted to the data type specified by the RE
TURNS option on the PROCEDURE or ENTRY
statement.

In any arithmetic expression, if operands do not
have the same data type, they are converted to a
common data type before the operation. (See
"Expression.")

PL/I provides built-in functions that perform
specific conversions.

Items in a PUT LIST statement are converted to
character-string data.

Character-string input data is converted to the
data type of the target item.

Values specified for various options to PL/I state
ments must be converted to integer values.

Expressions of any computational type can be assigned to arithmetic varia
bles. The conversion rules are described below for each source type.

• Arithmetic to Arithmetic Conversions

A source expression of any arithmetic type can be assigned to a target variable
of any arithmetic type. Note the following qualifications:

• If the target is a variable of type FIXED BINARY or FIXED DECIMAL,
then the FIXEDOVERFLOW condition is signaled when the source value
has a larger number of integral digits than are specified in the precision of
the target. If the target is a fixed-point binary variable, FIXEDOVER
FLOW is signaled if the source value exceeds the storage allocated for the
target, which may be larger than the target's declared precision (see "Fixed
Point Binary Data").

Conversion of Data 73

• If the target is a variable of type FIXED DECIMAL(p,q) and the source
value has more than q fractional digits, then the excess fractional digits of
the source are truncated, and no condition is signaled. If the source has
fewer than q fractional digits, the source value is padded on the right with
zeros.

• If the target value is floating point and the absolute source value is too large
to be represented by a VAX floating-point type (see "Floating-Point
Data"), then the OVERFLOW condition is signaled, and the value of the
target is undefined. If the absolute source value is too small to be repre
sented, the value zero is assigned to the target, and, if enabled, the
UNDERFLOW condition is signaled.

Conversions to Fixed Point
In the following examples, the specified source values are converted to
FIXED DECIMAL(4,1):

Source Value

25+505
--2 + 582
101
5385

Converted Value

25+5
-2+5
101 + 0
FIXEDOVERFLOW - value undefined

Conversions to Floating Point
Let p be the precision of the floating-point target. If the source value is
an integer that can be represented exactly in p digits, then the source
value is converted to floating-point binary with no loss of accuracy.

Otherwise, 'the source value is converted to floating-point binary with
rounding to precision p. For example, the constant 479 will be con
verted to FLOAT BINARY(24) without loss of accuracy, while the
constant 16777217, which cannot be represented exactly in 24 bits, will
be rounded during conversion.

• Pictured to Arithmetic Conversions

In VAX-11 PL/I all pictured values have the associated attributes FIXED
DECIMAL(p,q), where p is the total number of characters in the picture
specification that specify decimal digits, and q is the total number of these
digits that occur to the right of the V character. If the picture specification
does not include a V character, then q is zero. This associated fixed-point
decimal value is assigned to the target, following the usual rules for arithmetic
to arithmetic conversion.

• Bit String to Arithmetic Conversions

When a bit-string value is assigned to an arithmetic variable, PL/I treats the
bit string as a fixed-point binary value. A string of type BIT(n) is converted to
FIXED BINARY(m), where

m = min(n,31)

If the converted value is greater than or equal to 231
, then FIXEDOVER

FLOW is signaled. The leftmost bit in the bit string (as output by PUT LIST)
is the most significant bit in the fixed-point binary value, not its sign. If the
bit string is null, the fixed-point binary value is zero.

. 7 4 Conversion of Data

The intermediate· fixed-point binary value is then converted to the target
arithmetic type.

Note that bit strings are stored internally with the leftmost bit in the lowest
address. The conversion to an arithmetic type must reverse the bits from this
representation and should therefore be avoided when performance is a consid
eration.

•Examples

CONVTB: PROCEDURE OPTIONS<MAIN>;

DECLARE STATUS FIXED BINARY;
DECLARE STATUS_D FIXED DECIMAL<lO>;
DECLARE OUT PRINT FILE;

OPEN FILE<OUT> TITLE< 'CONVTB+OUT');
ON FIXEDOVERFLOW PUT SKIP FILE<OUT>

LIST< 'Fixedoverflow: ');

STATUS = '1001101 'B;
PUT SKIP FILE<OUT> LIST< STATUS);

STATUS_D = '001101'B;
PUT SKIP FILE<OUT) LIST<STATUS_D);

STATUS = '1232'B2;
PUT SKIP FILE<OUT> LIST<STATUS);

STATUS = 'FF /BL!;
PUT SKIP FILE<OUT) LIST<STATUS>;

STATUS_D = '10111111111111111111111111111111/B;
PUT SKIP FILE<OUT> LIST<STATUS_D);

END CONl.JTB;

The program CONVTB produces the output:

77

110
255

13

Fixed o 1.i er f 1 01A1:

13

Notice that the leftmost bit of all the bit-string constants is treated as the
most significant numeric bit, not as a sign. For instance, the hexadecimal
constant 'FF 'B4 is converted to 255 instead of -127. The last assignment to
STATUS_D signals the FIXEDOVERFLOW condition, because the bit
string constant, when represented as a binary integer, is greater than 231

• The
resulting value of STATUS_D is undefined.

• Character String to Arithmetic Conversions

When a character string is assigned to an arithmetic value, PL/I creates an
intermediate numeric value based on the characters in the string. The type of

Conversion of Data 75

this intermediate value is the same as that of an ordinary arithmetic constant
comprising the same characters; that is, 342.122E-12 and '342.122E-12' are
both floating-point decimal.

The character string can contain any series of characters that describes a valid
arithmetic constant. That is, the character string can contain any of the
numeric digits 0 through 9, optionally preceded by a plus (+) or minus (-) sign
and optionally containing a decimal point. It can also contain the letter E
followed by a signed exponent, and it can contain a single decimal point(.). If
the character string contains any invalid characters, the ERROR condition is
signaled. See "Examples," below.

If the implied data type of the character string does not match the data type
of the arithmetic target, PL/I converts the intermediate value to the data type
of the target, following the rules for arithmetic to arithmetic conversions. In
conversions to fixed point, FIXEDOVERFLOW is signaled if the character
string specifies too many integral digits. Excess fractional digits are truncated
without signaling a condition.

If the source character string is null or contains all spaces, the resulting
arithmetic value is zero.

•Examples

DECLARE SPEED FIXED DECIMAL (9,4);

SPEED '23344+3882,.;
I* strins converted to 23344.3882 *I

s PEED ::: l 32423 I 23SD I ;

I* ERROR condition */

SPEED= '4324324.3933';
I* FIXEDOVERFLOW condition */

SPEED= '1.33336,.;
I* strins converted to 1.3333 *I

Assignments to Bit-String Variables

In the conversion of any data type to a bit string, PL/I first converts the source
data item to an intermediate bit-string value. Then, based on the length of
the target string, it performs the following:

• If the length of the target bit-:string value is greater. than the length of the
intermediate string, the target bit string (as represented by PUT LIST) is
padded with zeros on the right.

• If the length of the target bit-string value is less than the length of the
intermediate string, the intermediate bit string (as represented by PUT
LIST) is truncated on the right.

The next sections describe how PL/I arrives at the intermediate bit-string
value for each data type.

76 Conversion of Data

• Arithmetic to Bit String Assignments

In converting an arithmetic value sv to a bit-string value, PL/I performs the
following steps:

1. Let v = abs(sv)

2. Determine a precision p as follows:

Source

FIXED BINARY(r)
FLOAT BINARY(r)
FIXED DECIMAL(r,s)
FLOAT DECIMAL(r)

Precision p

min(31,r)
min(31,r)
min(31,ceil((r-s) *3.32))
min(31,ceil(r*3.32))

3. If p=O (for example, when r=s), the intermediate string is a null bit string.
Otherwise, the value v is converted to an integer n of type FIXED
BINARY(p). If n;;:::2P, the FIXEDOVERFLOW cond_ition is signaled; oth
erwise, the intermediate bit string is of length p, and each of its bits
represents a binary digit of n.

Note that bit strings are stored internally with the leftmost bit in the lowest
address. The conversion must reverse the bits from this representation and
should therefore be avoided when performance is a consideration. Note also
that during the conversion, the sign of the arithmetic value and any fractional
digits are lost.

•Examples

CONt.15: PROCEDURE OPTIONS<MAIN);

DECLARE NEW_STRING 5IT(10);
DECLARE LONGSTRING BIT<lG);
DECLARE OUT PRINT FILE;

OPEN FI LE <OUT> TITLE (I CONl.JB 1 +OUT I) ;

NEW_STRING = 35;
PUT FILE<OUT> SKIP

LIST('35 con\.lerted to BIT< 10):' tNEW_STRING);

NEW_STRING = -35;
PUT FILE<OUT) SKIP

LIST< '-35 con\.lerted to BIT< 10):' tNEW_STRING>;

NEW_STRING = 23.12;
PUT FILE<OUT) SKIP

LIST< '23+ 12 converted to BIT< 10):' tNEW_STRING);

NEW_STRING = +2312;
PUT FILE<OUT) SKIP

LIST< '+2312 con\.lerted to BIT<lO>:' tNEW_STRING);

Conversion of Data 77

NEW_STRING::: 0001;
PUT FILE<OUT) SKIP

L I ST < ' 8 O o 1 c o n 1.1 e r t e d t o B I T < 1 o) : ' t NE W _ S TR I NG) ;

LONGSTRING = 8001;
PUT FILE<OUT> SKIP

LIST< '8001 converted to BIT< 18): 'tLONGSTRING);

END C0Nl.J5;

The program CONVB produces the output:

35 converted to 5IT<10):
-35 converted to 5IT<10):
23.12 converted to 5IT<10):

· +2312 converted to 5ITC10):
8001 converted to 5IT<10):
8001 converted to 5IT(18):

'0100011000'5
'0100011000'5
'0010111000'5
'0000000000'5
'0111110100'5
'0111110100000100'5

Note that 35 and -35 produce the same bit string, since the sign is lost in
the conversion. In the first assignment, the constant 35 [type: FIXED
DECIMAL(2,0)] is converted to FIXED BINARY(7) and then to a seven-bit
string ('0100011 'B). Three additional bits are appended to this intermediate
bit string when it is assigned to NEW_STRING. Notice also that the low
order bit of 8001 is lost when the constant is assigned to a BIT(lO) variable.

• Pictured to Bit-String Conversions

If the source value is pictured, its associated fixed-point decimal value is
extracted. The fixed-point decimal value is then converted to a bit string,
following the previous rules for arithmetic to bit-string conversion.

• Character-String to Bit-String Conversions

PL/I can convert a character string of Os and ls to a bit string. Any character
in the character string other than 0 or 1, including spaces, will signal the
ERROR condition.

PL/I converts each 0 or 1 character in the character string to a 0 or a 1 bit in
the corresponding position (as represented by PUT LIST) in the intermediate
bit string.

If the source is a null character string, the intermediate string is a null bit
string.

•Examples

DECLARE NEW_STRING 5ITC4);

NEW._STR I NG ::: / 0010 I ;

I* NEW_STRING = '0010'5 */

NEW_STRING = '11';
I* NEW_STRING '1100 1 5 *I

NEW_STRING = 'AS110';
I* ERROR condition *I

78 Conversion of Data

Assignments to Character-String Variables

In the conversion of any data type to a character string, PL/I first converts the
source value to an intermediate character-string value. Then it performs one
of the following:

• If the length of the intermediate string is zero, a null string is assigned to the
target.

• If the target is a parameter or return value with an asterisk extent (as in
RETURNS CHAR(*)), the intermediate string is assigned to the target.

• If the target is of type CHARACTER, and the intermediate string is shorter
than the maximum length of the target, the target is assigned the value of
the intermediate string without trailing spaces if the target has the VARY
ING attribute. If the target does not have the VARYING attribute, the
string is padded with trailing spaces.

• If the maximum length of the target character string is less than the length
of the intermediate string, the intermediate string is truncated.

The next sections describe how PL/I arrives at the intermediate string for
conversion of each data type. Examples at the end of each section illustrate
the intermediate value, as well as the resulting value.

• Arithmetic to Character-String Conversions

The manner in which PL/I converts the arithmetic item depends on the data
type of the source, as described below.

Conversion from Fixed-Point Binary or Decimal
If the source value is of type FIXED BINARY(pl), PL/I first converts
it to type FIXED DECIMAL(p2,0), where p2 is given by

p2 = min(ceil(pl/3.32)+1,31)

PL/I converts a value with attributes FIXED DECIMAL(p,q) to an
intermediate string of length p+3. The numeric value is right justified
in the string. If the value is negative, a minus sign immediately
precedes the value. If q is greater than zero, the value contains a
decimal point followed by q digits. When p equals q, a 0 character
precedes the decimal point. When q equals zero, a value of zero is
represented by the zero character.

Alternately, the format of the intermediate string can be described by
picture specifications, as follows:

1. If q=O, the intermediate string is the string created by the picture
specification:

'BB(p)-9'

That is, the first two characters of the string are spaces. The last p
characters in the string are the digit characters representing the
integer; leading zeros are replaced by spaces except in the last
position. If the integer is negative, a minus sign immediately
precedes the first digit; if the number is not negative, this position
contains a space. At least one digit always appears, in the last
position in the string.

Conversion of Data 79

2. If p=q, the intermediate string is the string created by the picture
specification:

'-9V.(q)9'

That is, the first three characters are (in order) an optional minus
sign if the fraction is negative, the digit 0, and a decimal point. If
the number is not negative, the first character is a space. The last
q characters in the string are the fractional digits of the number.

3. If p>q, the intermediate string is the string created by the picture
specification:

'B(p-q)-9V.(q)9'

That is, the first character is always a space; the last q characters
are the fractional digits of the number and are preceded by a
decimal point; the decimal point is always preceded by at least one
digit, which may be O; all integral digits appear before the decimal
point, and leading zeros are replaced by spaces; a minus sign
precedes the first integral digit if the number is negative; if the
number is not negative then the minus sign is replaced by a space.

•Examples

DECLARE STRING_1 CHARACTER (8) t

STR I NG_2 CHARACTER (4) ;

STRING_1 = 283472+;
I* interMediate strins

s TR I NG - 1 = I 6.6.6.2 8 3 4 7 I * I

STR I NG_2 = 283472 + ;

I 6,.6,.6,2 8 3 4 7 2 I t

I * i n t e r r11 e d i a t e s t r i n s = ' 6.6.6.2 8 3.4 7 2 ' ,
s TR I NG - 2 = I 6.6.6.2 I * I

STRING_2 = -283472.;
I* inter r11 e di ate st r ins = '6.6.- 2 8 3 4 7 2 ' t

STRING_2 = 1 6.6.-2 1 *I

STRING_2 = -+003344;
I* interMediate strins = '-0+003344' t

STRING_2 = '-0+0' *I

STRING_2 = -283.472;
I* interMediate strins = '6.-283.472' t

STRING_2 = '6.-28' *I

STRING_2 = 283+472;
I* interMediate strins = '6.6.283.472',
STR I NG_2 = I 6.6.28 I *I

80 Conversion of Data

Conversion from Floating-Point Binary or Decimal
If the source value is of type FLOAT BINARY(pl), it is converted to
FLOAT DECIMAL(p2), where p2 is given by

p2 = min(ceil(pl/3.32),34)

For a value of type FLOAT DECIMAL(p), where p is less than or
equal to 34, the intermediate string is of length p+6; this allows extra
characters for the sign of the number, the decimal point, the letter E,
the sign of the exponent, and the two-digit exponent.

NOTE

If the value is a floating-point number of the VAX type
G-float, three characters are allocated to the exponent,
and the length of the string is p+ 7. If the value is of type
H-float, four characters are allocated to the exponent,
and the length of the string is p+8. (See "Floating-Point
Data.")

If the number is negative, the first character is a minus sign; other
wise, the first character is a space. The subsequent characters are a
single digit (which may be 0), a decimal point, p-1 fractional digits,
the letter E, the sign of the exponent (always+ or-), and the exponent
digits. The exponent field is of fixed length, and the zero exponent is
shown as all zeros in the exponent field.

•Examples

CONCH: PROCEDURE OPTIONS< MAIN);

DECLARE OUT PRINT FILE;

OPEN FILE<OUT) TITLE< 'CONCH.OUT');

PUT SKIP FILE(OLJT) EDIT(I Ill t25E25t 111
') (A)

PUT SKIP FILE(OUT) EDIT(I Ill t-25E25t' I I') (A
PUT SKIP FILE(OLJT) EDIT(Ill I t1+233325E-5t'' I) (A);
PUT SKIP FILE(OLJT) EDIT(I Ill t-1+233325E-5t' II

1
) (A);

END CONCH;

The program CONCH produces the output:

I 2+5E+26'
'-2+5E+26'
I 1+233325E-05'
'-1+233325E-05'

The PUT statement converts its output ·sources to character strings, following
the rules described in this section. (The output strings were surrounded with
apostrophes to make the spaces distinguishable.) Note that, in each case, the
width of the quoted output field (that is, the length of the converted character
string) is the precision of the floating-point constant plus 6.

Conversion of Data 81

• Pictured to Character-String Conversion

If the source value is pictured, its internal, character-string representation is
used without conversion as the intermediate character string.

• Bit String to Character String Conversion

When PL/I converts a bit string to a character string, it converts each bit in
the bit string (as represented by PUT LIST) to a 0 or 1 character in the
corresponding position of the intermediate character string.

If the bit string is a null string, the intermediate character string is also a null
string.

•Examples

DECLARE STRING_l CHARACTER (4) t

STRING_2 CHARACTER (8);

STRING_l = '1010'B;
I* STRING_l = '1010' *I

STRING_2 = '1010'B;
I .'ifl: s TR I NG - 2 = I 1 0 1 0 6666 I * I

STRING l = '010011 'B;
/~· STRING .. _1 = '0100' */

Assignments to Pictured Variables

A source expression of any computational type can be assigned to a pictured
variable. The target pictured variable has a precision (p), which is defined as
the number of characters in its picture specification that specify decimal
digits. It also has a scale factor (q), which is defined as the number of picture
characters that specify digits and occur to the right of the V character in the
picture specification. If the picture specification contains no V character, or if
all digit-specification characters are to the left of V, then q is zero.

The source expression is converted to a fixed-point decimal value v of preci
sion (p,q), following the usual rules for the source data type. This value is
then edited to a character string s, as specified by the picture specification
(see also "Picture"), and the value s is assigned to the pictured target.

When the value v is being edited to the string s, the ERROR condition is
signaled if the value of v is less than zero and the picture specification does
not contain one of the characters S, +, -, T, I, R, CR, or DB. The value of sis
then undefined. FIXEDOVERFLOW is also signaled if the value v has more
integral digits than are specified by the picture specification of the target.

Conversions Between Offsets and Pointers

Offset variables are given values by assignment from existing offset values or
from conversion of pointer values. Pointer variables are given values by as
signment from existing pointer values or from conversion of offset values.

82 Conversion of Data

The OFFSET built-in function converts a pointer value to an offset value.
The POINTER built-in function converts an offset value to a pointer.

PL/I also automatically converts a pointer value to an offset value, and vice
versa, in an assignment statement. The following assignments are valid:

1. pointer-variable = pointer-value ;

2. offset-variable = offset-value ;

:3. pointer-variable = offset-variable ;

4. offset-variable = pointer-value ;

In (~1) and (4), above, the offset variable must have been declared with an area
reference. See also "Offset," "OFFSET Built-In Function," "Pointer," and
"POINTER Built-In Function."

COPY Built-In Function

The COPY built-in function copies a given string a specified number of times
and concatenates the result into a single string. Its format is:

COPY(string,count)

string
Any bit- or character-string expression. If the expression is a bit string,
the result is a bit string. Otherwise, the result is a character string.

count
Any expression that yields a nonnegative integer. The specified count
controls the number of copies of the string that are concatenated, as
follows:

Value of
Count

0
1
n

•Example

The function reference

COPY< '12' t3)

String Returned

a null string
the string argument
concatenated copies of the string argument

returns the character-string value '121212 '.

COS Built-In Function

The COS function returns a floating-point value that is the cosine of an
arithmetic expression x, where x represents an angle in radians. The cosine is
computed in floating point. The format of the function is:

COS(x)

COS Built-In Function 83

COSD Built-In Function

The COSD built-in function returns a floating-point value that is the the
cosine of an arithmetic expression x, where xis an angle in degrees. The cosine
is computed in floating point. The format of the function is:

COSD(x)

COSH Built-In Function

The COSH built-in function returns a floating-point value that is the hyper
bolic cosine of an arithmetic expression x. The hyperbolic cosine is computed
in floating point. The format of the function is:

COSH(x)

84 COSD Built-In Function

D
Data and Data Types

All programs process information, or data. The way you choose to represent
different items of data in a program depends on how the program will use or
manipulate the data.

The data type of a variable or a constant reflects the kind of information that
is being processed. For example, names and addresses within a personnel
record are character-string data; weekly salaries and taxes and cumulative
totals of salaries and taxes are arithmetic data.

Variables that represent single elements or items of data are called scalar
variables. Variables can also be grouped into aggregates. There are two types
of aggregate:

• An array is an aggregate in which all items, called elements, have the same
data type. Individual elements of an array are referred to by position, or
order, in the array by using subscripts. Elements can be scalar data items or
structures. (See "Array.")

• A structure is an aggregate in which individual items, called members, can
have different data types. Indiv~dual members are referred to with qualified
references that give, in general, the names of the structure itself and of the
individual member. (See "Structure.")

Aggregates can also be formed from arrays whose elements are structures, or
from structures whose individual members are arrays.

• Summary of Data Types

VAX-11 PL/I supports the following data types that are used in computations
and, therefore, called "computational" data types.

• The arithmetic data types define values that can be used in arithr~£etic
computation. These data types are:

fixed-point binary (for integers)
fixed-point decimal_ (for decimal integers and fractions)
floating-point (binary and decimal)

See "Fixed-Point Binary Data," "Fixed-Point Decimal Data," and "Float
ing-Point Data."

85

• Picture data represents fixed-point decimal values that are stored as char
acter strings; the strings contain the characters representing the numeric
value, formatted with special symbols. In computations and other expres
sions, a data item of this type (that is, a "pictured value") can be used
wherever an arithmetic value is valid.

See "Picture."

• Character-string data consists of a sequence of ASCII characters. VAX-11
PL/I supports:

fixed-length character strings
variable-length character strings

See "Character-String Data."

• Bit-string data consists of sequences of binary digits. VAX-11 PL/I sup
ports:

aligned bit strings
unaligned bit strings

See "Bit-String Data."

The following data types represent noncomputational program values that are
used within a PL/I program for control:

areas
entry data
file data
label data
offsets
pointers

The rest of this section discusses declarations and default attributes, includ
ing the default attributes of constants, for computational data types. For
similar information on the noncomputational types, see "Area," "Entry,"
"File," "Label," "Offset," and "Pointer."

• Declarations

All variables in a PL/I program must be declared. With the exception of entry
point names, statement labels, built-in functions, and the default file con
stants SYSIN and SYSPRINT, all names referenced must be declared expli
citly. You declare a name and its data type attributes in a DECLARE state
ment. For example:

DECLARE AVERAGE FIXED DECIMAL;
DECLARE NAME CHARACTER (20);

The keywords DECIMAL, FIXED, and CHARACTER describe characteris
tics, or attributes, of the variables AVERAGE and NAME. (See "DECLARE
Statement.")

86 Data and Data Types

• Default Attributes

It is not always necessary to define all the characteristics, or attributes, of a
variable; the PL/I compiler makes assumptions about attributes that are not
explicitly defined. For example:

DECLARE NUMBER FIXED;

The FIXED attribute implies the attributes BINARY(31). Thus, the variable
NUMBER has the attributes FIXED BINARY(31).

Table D-1 shows the default attributes implied by each computational data
attribute.

Table D-1: Implied Attributes for Computational Data

Specified Implied

FIXED BINARY(31)
FLOAT BINARY(24)
BINARY FIXED(31)
DECIMAL FIXED(lO,O)

FIXED BINARY (31)
FLOAT BINARY (24)
FIXED DECIMAL (10,0)
FIXED DECIMAL(p) (p,O)
FLOAT DECIMAL (7)

BIT [ALIGNED] (1)
CHARACTER [VARYING] (1)

PICTURE 'picture' see "Picture"

Attributes of Constants
Constants have attributes implied by the characters used to specify
them:

• A series of characters enclosed in apostrophes is assumed to be a
string constant:

- If the letter b or :B is appended after the closing apostrophe, the
constant is a bit-string constant, for example, '00010101 'B. If the
integer 2, 3, or 4 is appended to the letter B, the constant is a bit
string constant with the base 4, 8, or 16, respectively. For example,
, 17777 'B3 is an octal constant that is represented internally as a
string of 13 bits.

- If the constant does not have the letter B or b appended, it is a
character-string constant even when it contains only the charac
ters 0 and 1. (However, a character string of Os and ls can be
converted by a simple assignment to a bit string.)

• If the constant is an integer, it has the attributes FIXED
. DECIMAL(n,O), where n is the number of digits in the integer.

For example, the constant 1777 is a constant of type FIXED
DECIMAL(4,0).

Data and Data Types 87

• Constants with an appended or embedded decimal point, but with
no following exponent, are of type FIXED DECIMAL(p,q), where p
is the total number of digits and q is the number of digits to the right
of the decimal point.

• If a fixed-point decimal constant has the appended characters

E [~] digit ...

then it is of type FLOAT DECIMAL(p), where pis the total number
of digits in the fixed-point constant (that is, the total number to the
left of the letter E).

Note that PL/I has no constants with the attributes FIXED BINARY, FLOAT
BINARY, or PICTURE. However, this presents no problems in programming,
since constants of any computational type can be assigned to variables of any
computational type and are converted automatically to the target type (see
"Conversion of Data" for details).

Binary variables are usually given values by assigning decimal constants to
them. For example,

I = 1 ;

converts the decimal integer 1 and assigns the converted value to a fixed-point
binary variable I; also,

F = 1+333E-12;

converts the floating-point decimal constant 1.333E-12 and assigns the con
verted value to a floating-point binary variable F.

Picture variables are usually given values by assigning fixed-point decimal
constants. For example,

PAY_PIC = 123.44;

assigns the fixed-point decimal value 123.44 to a picture variable PAY_PIC.
The value of PAY_PIC is a "pictured value," stored internally as a character
string containing the characters 1, 2, 3, 4, and 4, along with any special
formatting symbols defined for PAY_PIC (see "Picture" for details).

Arithmetic Operands
The implied data types of constants are important primarily because
of PL/I's rules for converting operands in an arithmetic operation.
(Bit-string and character~string operations must have bit- and charac
ter-string operands, respectively.) All operations, including arithmetic
operations, must be performed in a single data type, and automatic
conversions are performed on arithmetic operands to make this possi
ble. For example:

DECLARE X FLOAT DECIMAL (9) ;
)-{::: x + 1+3;

In this example, the fixed-point decimal constant 1.3 is converted to
floating-point decimal before the addition is performed. For the de-

88 Data and Data Types

tailed definition of operand conversion, see "Expression." Stated
briefly, the rules for operand conversion are as follows:

• If either operand is binary, the operation is performed in binary.

• If either operand is floating point, the operation is performed in
floating point.

These rules apply both to the declared attributes of variable operands
and to the implied attributes of constant operands. Operands are con
verted as required to follow these rules; each converted operand then
has the type (for instance, floating-point decimal) in which the opera
tion will be performed, but it also has an individual precision based on
its own attributes. These "converted precisions" (which include scale
factors in fixed- point decimal operations) are used to determine the
precision of the result of the operation.

• Identical Data Types

In PL/I, the notion of identical data types is used in the rules for passing
arguments by reference, for defined variables, for based variables, and for
external variables. For two nonstructure variables to have identical data
types, the following attributes must agree. That is, if one variable has the
attribute, the other must also have it after the applicatlon of default rules:

ALIGNED FILE picture
BINARY FIXED PICTURE
BIT FLOAT POINTER
CHARACTER LABEL precision
DECIMAL length VARYING
ENTRY OFFSET array bounds
AREA

The lowercase word "picture" in the list means that two pictured variables
must have identical pictures after the expansion of iteration factors.

In addition, the following values must be equal:

• Precisions and scale factors for arithmetic data

• String lengths and area sizes

• Number of dimensions for arrays and bounds in each dimension

Two structure variables have identical data types if they have the same num
ber of immediate members and if corresponding members have identical data
types.

In general, string lengths, area sizes, and array bounds may be specified by
expressions or by asterisks for parameters. The values used to ,determine
whether two variables have identical data types are obtained as follows:

• For STATIC variables, 'the values must be constants.

• For AUTOMATIC and DEFINED variables, the expressions are evaluated
when the block is activated that contains such a variable's declaration. The
n~sulting values are used for all references to the variable within that block
activation.

Data and Data Types 89

• For parameters, the declaration specifies any extents either with constants
or with asterisks. In the case of asterisks, the extent in a particular proce
dure invocation is determined by the argument passed to the parameter.
The extent remains the same throughout the procedure invocation.

• For based variables, extent expressions are evaluated each time the based
variable is referenced.

•Example

I* ExaMPle of extent deterMination *I

DATAT: PROCEDURE <PTR1);

DECLARE N FIXEDt S CHARACTER(N) BASED<PTR1>;
DECLARE PTR1 POINTER;

CALL PCS);

P: PROCEDURE <A) ;

DECLARE A CHARACTER (*) t 5 CHARACTER (N) ;
N = 20;
PUT LIST<LENGTH(A) tLENGTH tLENGTH<S>);
END p;

END DATAT;

The PUT statement writes out:

10 10 20

The assignment to N inside the procedure P affects the extent of S, but not
the extents of A or B, which were "frozen" when P was invoked.

DATE Built-In Function
The DATE built-in function returns a six-character string in the form
yymmdd, where:

yy is the current year (00-99)
mm is the current month (01-12)
dd is the current day of the month (01-31)

Its format is:

DATE()

DECIMAL Attribute

The DECIMAL attribute specifies that an arithmetic variable has a decimal
base. The format of the DECIMAL attribute is:

{
DECIMAL}
DEC

90 DATE Built-In Function

When you specify the DECIMAL attribute for a variable, you can also specify
the following attributes to define the scale factor and precision of the data:

FIXED (precision[,scale-factor])
FLOAT (precision)

where FIXED indicates a fixed-point value and FLOAT indicates a floating
point decimal value. The precision specifies the number of decimal digits that
represent values of the variable. The precision of a fixed-point decimal value
is the total number of integral and fractional digits. The precision of a float
ing-point decimal value is the total number of digits in the mantissa. The
precision for a fixed-point decimal value must be in the range 1-31; the scale
factor, if specified, must be greater than or equal to zero and less than or equal
to the specified precision. The precision for a floating-point decimal value
must be in the range 1-34.

The default values applied to the DECIMAL attribute are:

Attributes
Specified

DECIMAL
DECIMAL FIXED
DECIMAL FIXED (n)
DECIMAL FLOAT

Defaults Supplied

FIXED (10,0)
(10,0)
(n,O)
(7)

(See "Fixed-Point Decimal Data" and "Floating-Point Data.")

• Restrictions

The DECIMAL attribute conflicts with the BINARY attribute and with any
other data type attribute.

DECIMAL Built-In Function

The DECIMAL built-in function converts an arithmetic or string expression x
to a decimal value of an optionally specified precision p and scale factor q.

P and q, if specified, must be integer constants. P must be greater than zero
and less than or equal to the maximum precision for the result type (31 for
fixed-point decimal, 34 for floating-point decimal). If q is specified, x must be

. a fixed-point expression and p must also be specified; if q is omitted, the scale
factor of the result is zero.

The format of the function is:

{ g~gIMAL} (x[,p[,q]])

• Returned Value

The result type is fixed-point or floating-point decimal, depending on whether
x is a fixed- or floating-point expression. (If x is a bit- or character-string
expression, the result type is fixed-point decimal.)

DECIMAL Built-In Function 91

The expression x is converted to a value v of the result type, following the
usual rules (see "Conversion of Data" for details). The returned value is
v with precision p and scale factor q. If p and q are omitted, they are
the converted precision and scale factor of x (see "Expression" for details).
FIXEDOVERFLOW, UNDERFLOW, or OVERFLOW is signaled if
appropriate.

Declarations

The declaration of a name in a PL/I program consists of a user-specified
identifier and the attributes of the name. The attributes describe:

• The data type of the name, that is, whether it is a computational data item
such as a number or a string, or whether it is noncomputational program
data

• The storage class to which the name belongs, that is, whether the compiler
allocates storage for it, and how the storage is allocated

• The scope of the name, that is, whether the name is known only within the
block in which it is declared and its contained blocks, or is known in
external blocks

A name is declared either explicitly in a DECLARE statement or implicitly
by its appearance in a particular context. Only two types of name can be
declared implicitly. These are entry constants and label constants. For
example:

CAL...C :: PROCEDURE;

This statement is an implicit declaration of the name CALC as an entry
constant. All other names must be declared explicitly.

In a PL/I source program, the DECLARE statements that provide the decla
rations of names to be used in a given block may appear anywhere in that
block. However, for clarity and readability of programs, most programmers
place all the declarations for a block at the beginning of the block, and follow
the declarations with the executable statements of the program. For example:

CAL...C: PROCEDURE <)-{, Y) ;
DECLARE CX,Y) FL.OAT,

CO PYSTR I NG ENTRY (CHARACTER C *)) ,

MESSAGE_TEXT CHARACTERC40);

See "Attribute," "Data and Data Types," and "DECLARE Statement."

DECLARE Statement

The DECLARE statement specifies the attributes associated with names. The
general format of the DECLARE statement is:

{ g~~LARE} declaration[, ...];

92 Declarations

declaration
One or more declarations consisting of an identifier and attributes.

Formally, each declaration has the format:

[level] identifier· [(bound-pair, ...)] [attribute ...]

or

[level] (declaration, ...) [(bound-pair, ...)] [attribute ...]

The format of the DECLARE statement varies according to the number and
nature of the items being declared. The DECLARE statement can list a single
identifier, optionally specifying a level, bound-pair list, and other attributes
for that identifier. Alternately, the statement can include, in parentheses, a
list of declarations to which the level and all subsequent attributes apply. The
declarations in the second case can be simple identifiers or can include attrib
utes that are specific to individual identifiers (see "Factored Declarations"
below).

Bound pairs are used to specify the dimensions of arrays. If bound pairs are
present, they must be in parentheses and must immediately follow the identi
fier or the parenthetical list of declarations.

Levels are used to specify the relationship of members of structures; if a level
is present in the declaration, it must be written first.

The various formats are described individually, below. See also "Array" and
''Structure.''

• Simple Declarations

A simple declaration defines a single name and describes its attributes. The
format of a simple declaration is:

DECLARE identifier [attribute ...] ;

identifier
A 1- to 31-character user-supplied name. The name must be unique within
the current block.

An identifier can consist of any of the alphanumeric characters A through
Z, a through z, 0 through 9, $ and _, but must begin with an alphabetic
letter, dollar sign, or underline. See also "Identifier."

attribute ...
One or more attributes of the name. Attributes, if specified, must be sepa
rated by spaces. They can appear in any order.

The valid attribute keywords and their meanings are summarized under
"Attribute."

Some examples of simple declarations are:

DECLARE COUNTER FIXED BINARY (7);
DECLARE TEXT_STRING CHARACTER (80) VARYING;
DECLARE INFILE FILE;

DECLARE Statement 93

Names that are not given specific attributes in a DECLARE statement or that
are referenced without being declared are given the default attributes:

BINARY FIXED (31,0) AUTOMATIC

Note that the compiler issues a warning message whenever it gives a name
these default attributes.

•Multiple Declarations

Multiple declarations define two or more names and their individual attrib
utes. This format of the DECLARE statement is:

DECLARE identifier [attribute ...]
[,identifier [attribute ...]] ... ;

When you specify more than one set of names and their attributes, separate
each name and attribute set from the preceding set with a comma. A semi
colon must follow the last name.

Some examples of multiple declarations are:

DECLARE COUNTER FIXED BINARY (7) t
TEXT_STRING CHARACTER (80) VARYINGt
Y FILE;

This DECLARE statement defines the variables COUNTER, TEXT_
STRING, and Y. The attributes for each variable follow the name of the
variable.

• Factored Declarations

When two or more names have the same attribute, you can combine the
declarations into a single, factored declaration. This format of the DECLARE
statement is:

DECLARE (identifier[, identifier, ...])
[attribute ...] ;

When you use this format, you must place names that share common attrib
utes within parentheses, separated by commas. The attributes that follow the
parenthetical list of names are applied to all the named identifiers.

Some examples of factored declarations are:

DECLARE <COUNTER, RATE, INDEX> FIXED BINARY (7);
DECLARE CINPUT_MESSAGE, OUTPUT_MESSAGE1 PROMPT>

CHARACTER <BO> VARYING;

In the preceding declarations, the variables COUNTER, RATE, and INDEX
share the attributes FIXED BINARY (7). The variables INPUT_MESSAGE,
OUTPUT_MESSAGE, and PROMPT share the attributes CHARACTER
(80) VARYING.

You can also specify, within the parentheses, attributes that are unique to
specific variable names, using this format:

DECLARE (identifier attribute ... ,
identifier [attribute ...], ...)
attribute ...

94 DECLARE Statement

For example:

DECLARE <INFILE INPUT RECORDt
OUTFILE OUTPUT STREAM> FILE;

The DECLARE statement declares INFILE as a RECORD INPUT file and
OUTFILE as an OUTPUT STREAM file.

The parentheses can be nested. For example:

DECLARE (<INFILE INPUT, OUTFILE OUTPUT> RECORD,
SYSFILE STREAM) FILE;

The DECLARE statement declares INFILE as a RECORD INPUT file, OUT
FILE as a RECORD OUTPUT file, and SYSFILE as a STREAM INPUT file
(STREAM implies INPUT).

• Array Declarations

The declaration of an array specifies the dimensions of the array and the
bounds of each dimension. This format of a DECLARE statement is:

DECLARE identifier (bound-pair, ...) [attribute ...];

or

DECLARE (declaration, ...) (bound-pair, ...) [attribute ...];

where each bound pair has the format:

[lower-bound:]upper-bound

or

*
One bound pair is specified for each dimension of the array. The number of
elements per dimension is defined by the bound pair. The extent of an array is
the product of the numbers of elements in its dimensions. If the lower bound
is omitted, the lower bound for that dimension is 1 by default.

The asterisk (*) can be used as the bound pair when arrays are declared as
parameters of a procedure. The asterisk indicates that the parameter can
accept array arguments with any number of elements. (If one dimension is
specified with an asterisk, all must be specified with asterisks.)

As an example, the statement:

DECLARE SALARIES(100) FIXED DECIMALC7,2);

declares a 100-element array with the identifier SALARIES. Each element is
a fixed-point decimal number with a total of seven digits, two of which are
fractional. The identifier in the statement can be replaced with a list of
declarations, to declare several objects with the same attributes. For instance,

DECLARE <SALARIES tPAYMENTS) (100) FI)<ED DECIMALC7 ,z);

declares SALARIES and another array, PAYMENTS, with the same dimen
sions and other attributes.

For further details on how to specify the bounds of an array, and for examples
of array declarations, see "Array."

DECLARE Statement 95

• Structure Declarations

The declaration of a structure defines the organization of the structure and
the names of members at each level in the structure. This format of a
DECLARE statement is:

DECLARE declaration[, ... J

where each declaration is:

level identifier [(bound-pair, ...)] [attribute ...]

or

level (declaration, ...) [(bound-pair, ...)] [attribute ...]

Each declaration specifies a member of the structure and must be preceded by
a level number. As shown, a single variable can be declared at a particular
level; or the level can contain one or more complete declarations, including
declarations of arrays or of other structures. The major structure name is
declared as structure level 1; minor members must be declared with level
numbers greater than 1. For example, the statement:

DECLARE 1 PAYROLL,
2 NAME,

3 LAST CHARACTER(80) VARYING,
3 FIRST CHARACTER(BO> VARYING,

2 SALARY FIXED DECIMAL(712);

declares a structure named PAYROLL. The last name can be accessed with a
qualified reference:

PAYROLL+ w::iME + u::isT ::: 'RDo::>Et.JEL..T 1
;

Alternately, since the last and first names have the same attributes, the same
structure can be declared as:

DECLARE 1 PAYROLLr
2 NAMEt

3 (LASTrFIRSTl CHARACTERCBOl VARYING,
2 SALARY FIXED DECIMALC7r2l;

For details and examples of structure declarations, see "Structure."

DEFINED Attribute

The DEFINED attribute indicates that PL/I is not to allocate storage for the
variable, but is to map the description of the variable onto the storage of a
base variable. The DEFINED attribute :provides a way to access the same
data using different names. Its format is:

{ g:~INED} (variable-reference)

variable-reference
A reference to a base variable that has storage associated with it. The base
variable must not have the BASED or DEFINED attribute. The base varia
ble and the declared variable must satisfy the rules given under "Defined
Variable."

96 DEFINED Attribute

The DEFINED attribute may optionally specify a position within the base
variable at which the definition begins. For example:

DECLARE ZONE CHARACTER<10>
DEFINED<ZIP) POSITIONU.l);

For more information, see "POSITION Attribute" and "Defined Variable."

• Restrictions
• The following attributes conflict with the DEFINED attribute:

AUTOMATIC GLOBALDEF
BASED GLOBALREF
EXTERNAL READONLY
INITIAL STATIC
VALUE parameter

• The DEFINED attribute cannot be applied to minor structures, members
of structures, parameters, or descriptions in an ENTRY or RETURNS
attribute.

For additional information on defined variables, see "Defined Variable."

Defined Variable

A defined variable is a variable for which no storage is allocated. Instead, the
variable shares the storage of a specified base variable. A defined variable is
declared with the DEFINED attribute, which also specifies the base variable.
Any reference to the defined variable is a reference to part or all of the storage
of the base variable. For example:

DECLARE A(10) FI>(ED t B· FI><ED DEFINED<A< I));

The variable Bis a defined variable, with A as its base reference. A reference
to B is a reference to the element of A denoted by the current value of I.

The extents of a defined variable are determined at the time of block activa
tion, but the base reference (and the position, if the POSITION attribute is
also specified) are interpreted each time the defined variable is referenced.

For example:

DECLARE A< 10) FI><ED t B FI><ED DEFINED<A< I));
DO I :::: 1 TO 10;
B :::: I ;
END;

The DO group assigns I to A(I) for I = 1,2, .. 10.

The base reference of a defined variable may not be a reference to a based
variable or to another defined variable.

A defined variable and its base reference must satisfy one of the following
criteria:

• They must have identical data types (see "Data and Data Types").

• They must both be suitable for character-string overlay defining.

• They must both be suitable for bit-string overlay defining.

Defined Variable 97

If the defined variable is specified with the POSITION attribute, then both
the defined variable and the base reference must be suitable for bit- or charac
ter-string overlay defining.

Roughly, a variable is suitable for overlay defining if it consists entirely of
characters or bits, and these characters or bits are packed into adjacent stor
age without gaps. (Precise rules are given below.) Such a variable can be
treated as a string (see also "STRING Built-In Function" and "STRING
Pseudovariable") or can be interpreted as different types of aggregates. For
example, Figure D-1 shows a 50-byte region of storage treated either as a
10-element array (A) of five-character strings or as a five-element array (B) of
10-character strings.

DECLARE A (10) CHARACTER (5) ;

DECLARE B (5) CHARACTER (10) DEFINED(A);

A(1) 'AAAAA';
A(2) 'BBBBB';
PUT LIST (8(1)) ;

Result: AAAAABBBBB

A

AAAAA

BBB BB

Figure D-1: An Overlay Defined Variable

The declaration of A reserves
storage for a 10-element array
of 5-byte character strings.

The declaration of B defines
B's storage as equivalent to
A's. Any reference to B will
access the same storage as
that allocated for A.

If the defined variable and its base reference have identical data types, a
reference to the defined variable is equivalent to the base reference. In the
case of overlay defining, the defined variable maps onto part of the base
reference's storage as follows:

1. If the POSITION attribute was specified, let pos be its value at the
moment of reference; otherwise, let pos equal one.

2. Let m be the total number of characters (or bits) specified by the data
type of the defined variable. (Note that, for pictured data, m is the total
number of characters in the picture specification, exclusive of the V char
acter.)

3. A reference to the defined variable accesses m characters (or bits) of the
base reference, beginning with the character or bit specified by pos. The
reference must lie entirely within the base reference; that is, pos and m
must satisify

1 ~ pos ~ pos+m ~ n+l

where n is the total number of characters or bits in the base reference.

98 Defined Variable

• Precise Rules for Overlay Defining

A variable V is suitable for character-string overlay defining if V is not an
unconnected array and if one of the following criteria is satisfied:

1. V has the attribute CHARACTER but not ALIGNED or VARYING.

2. V has the attribute PICTURE.

3. V is a structure, and each of V's members and submembers that is not a
structure satisfies criterion 1 or 2.

A variable V is suitable for bit-string overlay defining if V is not an uncon
nected array and if one of the following criteria is satisfied:

1. V has the attribute BIT but not ALIGNED.

2. V is a structure, and each of V's members or submembers that is not a
structure satisfies criterion 1.

DELETE Statement

The DELETE statement deletes a record from a file, either the current record
(see "Record Input/Output") or the record specified by the KEY option. The
file must have the UPDATE attribute.

The format of the DELETE statement is:

DELETE FILE(file-reference) [KEY (expression)]

[OPTIONS(option, ...) J

file-ref ere nee
A reference to the file from which the specified record is to be deleted. If the
file is not currently opened, PL/I opens the file with the implied attributes
RECORD and UPDATE; these attributes are merged with the attributes
specified in the file's declaration.

KEY (expression)
An option specifying that the record to be deleted is to be located using the
key specified by expression. The file must have the KEYED attribute.

The nature of the key depends on the file's organization, as follows:

• If the file is a relative file, the key is a fixed binary value indicating the
relative record number of the record to be deleted.

• If the file is an indexed sequential file, the key is contained in the record;
its position in the record and its data type are as determined when the file
was created.

The value of the specified expression is converted to the data type of the key.
If no record with the specified key exists in the file, or if the value specified is
not valid for conversion to the data type of the key, the KEY condition is
signaled.

DELETE Statement 99

OPTIONS(option, ...)
An option giving one or more of the DELETE statement options listed
below, separated by commas:

FAST_DELETE
INDEx_NUMBER (expression)
MATCILGREATER
MATCH_GREATER_EQUAL
RECORD_ID (expression)

These options are described fully in the VAX-11 PL/I User's Guide.

• File Positioning

The next record is set to denote the record following the deleted record. The
current record is undefined.

•Examples

The program BAD_RECORD, below, deletes an erroneous record in an
indexed sequential file containing data about states. The primary key in the
file is the name of a state.

BAD_RECORD: PROCEDURE OPTIONS(MAIN);

DECLARE STATE_FILE FILE KEYED UPDATE;
OPEN FILE<STATE_FILE) TITLE< 'STATEDATA+DAT');
DELETE FILE<STATE_FILE) KEY< 'ArUansas 1

);

CLOSE FILE<STATE_FILE);
RETURN;
END;

The file is opened with the UPDATE attribute, and the OPEN statement
gives the file specification of the file from which the record is to be deleted.

DESCRIPTOR Built .. ln Function

The DESCRIPTOR built-in function forces its argument to be passed by
descriptor to a non-PLI procedure. The corresponding parameter descriptor
must specify the ANY attribute without the VALUE attribute. A reference to
the built-in function may occur only as an argument in such a context and has
no other use. The format of the function is:

DESCRIPTOR(expression)

expression
The argument to be passed by descriptor. Its data type must be computa
tional but may not be pictured. (It may be an array variable.)

For a full discussion of argument passing to non-PL/I procedures, see the
VAX-11 PL/I User's Guide and the entry "ANY Attribute" in this manual.

100 DESCRIPTOR Built-In Function

Diagnostic Messages

Diagnostic messages are produced by the PL/I compiler to inform you of
programming errors detected by the compiler, and to warn you of certain
exceptional conditions, such as the compiler's assignment of type and preci
sion to an undeclared variable.

For full details on diagnostic messages, see the VAX-11 PL/I User's Guide.

Dimension Attribute

The dimension attribute defines a variable as an array. It specifies the num
ber of dimensions of the array and the bounds of each dimension. The format
of the dimension attribute is:

(bound-pair[, bound-pair] ...)

bound-pair
One or two expressions that indicate the number of elements in a single
dimension of the array. The list of bound pairs must be specified immedi
ately following the name of the identifier in the array declaration.

The maximum number of dimensions allowed is eight.

A bound pair can be specified as follows:

• [lower-bound:]upper-bound

This format of a bound pair specifies the minimum and maximum sub
scripts that can be used for the dimension. The number of elements is
therefore:

(upper-bound - lower-bound) + 1

If the lower bound is omitted, it is assumed to be one.

• *
This format of a bound pair, when used to define a parameter for a
procedure or function, indicates that the bounds are to be determined
from the associated argument. If one bound pair is specified as an aster
isk, all bound pairs must be specified as asterisks.

For the complete rules for specifying dimensions and bounds, see "Array -
Rules for Specifying Dimensions."

DIMENSION Built-In Function·

The DIMENSION built-in function returns a fixed-point binary integer that
is the number of elements in a specified dimension of an array. Its format is:

{ g~~ENSION} (reference, dimension)

reference
The name of an array variable.

dimension
An integer constant specifying the dimension of the array for which the
extent is to be determined.

DIMENSION Built-In Function 101

•Example

INIT: PROCEDURE <ARRAY>;
.DECLARE ARRAY(*) FIXED,

I FD(ED;

DO I = 1 TO DIM<ARRAY,1>;
ARRAY<I> = 1;
END;

This procedure is passed a one-dimensional array of an unknown extent. The
DIMENSION built-in function is used as the end value in a controlled DO
statement. This DO-group assigns integral values to each element of the array
ARRAY so that the first element has the value 1, the second element has the
value 2, and so on to the last element of the array.

DIRECT Attribute

The DIRECT file description attribute indicates that a file will be accessed
only in a nonsequential manner, that is, by key or by relative record number.

The DIRECT attribute implies the RECORD and KEYED attributes.

Specify the DIRECT attribute on a DECLARE statement for a file constant
or on an OPEN statement to access the file. A file declared with the DIRECT
attribute must be one of the following:

• A relative file

• An indexed sequential file

• A sequential disk file with fixed-length records

• A sequential file opened with ENVIRONMENT(BLOCK_IO)

See "File" and "Record Input/Output."

To access a file both randomly and sequentially, use the SEQUENTIAL
attribute instead of DIRECT (see "SEQUENTIAL Attribute").

• Restrictions

The DIRECT attribute conflicts with the SEQUENTIAL, STREAM, and
PRINT attributes.

DIVIDE Built-In Function

The DIVIDE built-in function divides an arithmetic expression x by an
arithmetic expression y and returns the quotient with a specified precision p
and optionally specified scale factor q. The scale factor q must be a nonnega
tive integer following these rules:

• If either x or y is binary, q must be zero.

• If q is not zero, both expressions must be fixed-point decimal.

• If q is omitted, it is assumed to be zero.

102 DIRECT Attribute

The expressions x and y are converted to their derived type before the division
is performed (see "Expression"). If y is zero after this conversion, the
ZERODIVIDE condition is signaled. The quotient has the derived type of the
two arguments.

Division of fixed-point binary data must be performed with the DIVIDE
built-in function, to avoid a result with a nonzero scale factor.

The format of the function is:

DIVIDE(x,y,p[,q])

Division

The slash sign character (/) indicates a division operation in an expression;
the result is the quotient of the first operand divided by the second operand.
Both must be arithmetic or picture data. The division operator should not be
used to divide two fixed-point binary operands; use the DIVIDE built-in
function instead.

• Precision of the Result

Before the division is performed, the two operands are converted to their
derived type (see "Expression - Conversion of Operands"). Each converted
operand has an individual converted precision, and the two precisions are
used to determine the precision of the result.

Floating-Point Operands
The floating-point result has the maximum of the converted precisions
of the operands.

Fixed-Point Operands
If (p,q) and (r,s) represent the converted precisions and scale factors of
the two operands, the resulting precision and scale are:

precision: 31
scale factor: 31-p+q-s

If the quotient exceeds the precision of the result, the least significant digits of
the quotient are truncated.

• Restrictions

• The divisor (that is, the second operand) must not be zero. If the divisor
equals zero, the ZERODIVIDE condition is signaled; if no ON-unit exists to
handle this condition, the program terminates.

• Both operands cannot be fixed binary. To divide fixed-point binary
operands, use the DIVIDE built-in function.

• For division of fixed-point decimal operands, the precisions of the operands
must be such that the result does not have a negative scale factor.

The DIVIDE built-in function also performs division on arithmetic data; it
allows you to control precisely the precision of the result.

Division 103

DO-Group

A DO-group is a sequence of PL/I statements delimited by a DO statement
and its corresponding END statement. The statements in a DO-group are
executed as the result of an unconditional DO statement or as the result of the
successful test of a conditional DO.

For example:

IF A > B THEN DO

END

The statements that occur between the DO and the END are a DO-group.
After all statements are executed in this unconditional DO-group, execution
continues with the next executable statement following the END statement.

Normally, all the statements in the group are executed. However, control can
be transferred out of a DO-group in the following ways:

• Execution of a GOTO statement that transfers control outside of the
DO-group. The GOTO statement can be present in the DO-group itself, in a
procedure invoked from within the DO-group, or in an ON-unit executed
while the DO-group is active.

• Execution of a RETURN or STOP statement that terminates the current
procedure or program.

DO-groups can be nested to a maximum level of- 64.

DO Statement

The DO statement defines the beginning of a sequence of statements to be
executed in a group. The group begins with the DO statement and ends with
the nonexecutable statement END. DO-groups have several formats. These
formats are summarizeQ. in Figure D-2 and described individually, below,
under the following subheadings:

• Simple DO

•DO WHILE

• Controlled DO

•DO REPEAT

104 DO-Group,

DO;

END;

The statements in a simple, noniterative DO-group are executed a sin- '
g/e time.

DO WHILE (test-expression) ;

The statements in the DO-group following a DO WHILE are executed in
a loop as Jong as the condition specified in the test expression is satis-

END; fied

DO control-variable start-value TO end-value [WHILE (test-expression)];

END;

Each time the statements in the DO-group are executed, the specified
control variable has a different value. When the DO statement is evalu
ated at the start of each execution, the control variable is incremented
by 1. When its value exceeds the specified end value, control passes
out of the DO-group.

Optionally, a WHILE clause can provide a condition that must also be
satisfied in order for the DO-group to be executed.

DO control-variable start-value BY modify-value [WHILE (test-expression)];

The value of the control variable is modified by a specified positive or
negative value; for each iteration of the DO-group, it has a different

END ; value. The DO-loop is terminated by a statement within the loop or, if
the optional WHILE clause is specified. when the test expression yields
a false value.

DO control-variable start-value TO end-value BY modify-value [WHILE (test-expression)] ;

The DO statement can specify a range of values to use for the control
variable as well as a value by which it is to be modified.

END;

DO control-variable

Optionally, a WHILE clause can provide a condition that must be met in
order for the DO-group to be executed.

start-value REPEAT expression WHILE (test-expression);

The repetition of the statements in the DO-group is controlled by the
expression in the REPEAT option. This expression defines how the
control variable is to be modified.

The WHILE clause provides the condition that must be met in order for
execution to continue.

Figure D-2: Forms of the DO Statement

•Simple DO

A simple DO statement is a noniterative DO. The format of a simple DO
statement is:

DO;

END;

The statements that appear between the DO statement and its corresponding
END statement are executed once. After all statements in the group are
executed, control passes to the next executable statement in the program.

DO Statement 105

•Examples

IF A < B THEN Do;
PUT LIST ('More data needed 1

);

GET LIST <VALUE>;
A= A+ t.JALUE;
END;

A common use of the simple DO statement is as the action of the THEN
clause of an IF statement, as shown above, or of an ELSE option.

•DO WHILE

A DO WHILE statement executes a group of statements as long as a particu
lar condition is satisfied. When the condition is not true, the group is not
executed. This format of the DO statement is:

DO WHILE (test-expression);

END;

test-expression
Any expression that yields a scalar bit-string value. If any bit of the
value is a 1, then the test expression is true; otherwise, the test expres
sion is false. The test expression must be enclosed in parentheses.

This expression is evaluated before each execution of the DO-group. It
must have a true value in order for the DO-group to be executed.
Otherwise, control passes outside of the DO-group, to the next execut
able statement following the END statement that terminates the
group.

•Examples

DD WHILE <A < B>;

The DO-group executes as long as the value of the variable A is less than the
value of the variable B.

DO WHILE <LIST->NE><T ···= NULL());

The DO-group executes until a forward pointer in a linked list has a null
value. (See "List Processing.")

DECLARE EDF BIT (1) INITIAL< 'O 'B);

ON ENDFILE<INFILE) EDF= '1'B;
DO WHILE (···EDF);
READ FILE<INFILE> INTO<INREC);

This DO-group reads records from the file INFILE until the end of the file is
reacped. At the beginning of each iteration of the DO-group, the expression

106 DO Statement

AEOF is evaluated; the expression is '1 'B until the ENDFILE ON-unit sets
the value of EOF to '1 'B.

• Controlled DO

A controlled DO statement identifies a variable whose value controls the
execution of the DO-group and defines the conditions under which the control
variable is to be modified and tested. The format of the controlled DO state
ment is:

DO control-variable = start-value

{
TO end-value [BY modify-value]}
BY modify-value

[WHILE (test-expression)] ;

END;

control-variable
A reference to a 'variable whose current value determines whether the
DO-group is executed. The control variable must be of an arithmetic
data type.

start-value
An expression specifying the initial value to be given to the control
variable. Evaluation of this expression must yield an arithmetic value.

end-value
An expression giving the value to be compared with the control varia
ble during successive iterations. Evaluation of this expression must
yield an arithmetic value.

modify-value
An expression giving a value by which the control value is to be
modified. Evaluation of this expression must yield an arithmetic
value. If the BY option is not specified, the modify value is 1 by
default.

WHILE (test-expression)
An option specifying a condition that further controls the execution of
the DO-group. The specified test expression must yield a scalar
bit-string value. If any bit in the value is a 1, then the test expression
is true; otherw~"\. the test expression is false. The test expression must
be enclosed in parentheses.

The controlled DO-group is executed by the following steps:

1. The following steps are taken to prevent the allocation of a new control
variable during the execution of the DO-group:

• If the control variable is based, its pointer qualifier is evaluated
and a temporary reference of the control variable type is created. The
temporary reference is used as the control variable in subsequent steps.

DO Statement 107

• If the control variable is subscripted, its subscripts are evaluated and a
temporary reference of the control variable type is created. The tempo
rary reference is used as the control variable in subsequent steps.

1

• If the control variable is neither based nor subscripted, its reference is
used in subsequent steps.

2. The start value expression is evaluated and assigned to the control varia
ble. The expressions specified in the TO and (if specified) BY options are
evaluated and their values are stored. These expressions may contain
references to the object referenced by the control variable. If so, the origi
nal reference, not the temporary reference, is used in evaluation of the
express10ns.

3. If the TO option is present, the value of the control variable is compared
with the end value specified in the TO option. Otherwise, this step is
skipped. Execution of the DO-group terminates if either of the following is
true:

• The modify value is greater than zero and the control variable is greater
than the end value.

• The modify value is less than zero and the control variable is less then
the end value.

Note that if this step terminates the DO-group on the first iteration, the
control variable has a final value assigned by the start value. If the group
is terminated on a subsequent iteration, the control variable has a final
value assigned by step 6.

4. If a test expression is present, it is evaluated. If it does not produce a true
value, the execution of the DO-group terminates.

5. The body of the DO-group is executed. The execution of the DO-group
may be terminated during this step by the execution of a STOP or
RETURN statement or by the execution of a GOTO statement that trans
fers control out of the DO-group.

The body of the DO-group may also contain statements that change the
values of the control variable, modify value, end value, or test expression.

6. The value of the control variable is modified as follows:

control variable = control variable + modify value ;

7. Execution continues at step 3.

•Examples

DO I = 2 TO 100 BY 2;

The DO-group executes 50 times, with values for I of 2, 4, 6, and so on.

DO I = LBOUND(ARRAYt1) TO HBOUND(ARRAY,1>;

The DO-group executes as many times as there are elements in the array
variable ARRAY, using the subscript values of the array's elements.

DO I = 1 BY 1 WHILE ()< < Y);

108 DO Statement

The DO-group continues executing with successively higher values for I
until the value of the variable X equals or is greater than the value of the
variable Y.

•DO REPEAT

The DO REPEAT statement executes a DO-group repetitively for different
values of a control variable. The control variable is assigned a start value
that is used on the first iteration of the group. The REPEAT expression is
evaluated before each subsequent iteration, and its result is assigned to the
control variable. A WHILE clause may also be included; if it is, the WHILE
expression is evaluated before each iteration, including the first. The format
of the DO REPEAT statement is:

DO control-variable = start-value REPEAT expression

[WHILE (test-expression)] ;

control-variable
A reference to a variable whose current value determines whether the
DO-group is executed. The control variable can be a scalar varjable of
any computational type.

start-value
An expression specifying the initial value to be given to the control
variable. The evaluation of this expression must yield a value that is
valid for assignment to the control variable.

expression
An expression giving the value to be assigned to the control variable on
reiterations of the DO REPEAT group. The expression is evaluated
before each reiteration. Evaluation of this expression must yield a
result that is valid for assignment to the control variable.

WHILE (test-expression)
An option specifying a condition that controls the termination of the
DO REPEAT group. The specified test expression must yield a scalar
bit-string value. If any bit of the value is 1, then the test expression is
true; otherwise, the test expression is false. The test expression must
be enclosed in parentheses.

This expression is evaluated each time control reaches the DO
statement; the test expression must have a true value in order for the
DO-group to be executed. Otherwise, control passes outside of the
DO-group, to the next executable statement following the END state
ment that terminates the group.

NOTE

If the WHILE option is omitted, the DO REPEAT
statement specifies no means for terminating the group;
the execution of the group must be terminated by a
statement or condition occurring within the group.

DO Statement 109

A DO REPEAT group is executed in the following manner:

1. The following steps are taken to prevent the allocation of a new control
variable during the execution of the DO-group:

• If the control variable is based, its pointer qualifier is evaluated and a
temporary reference of the control variable type is created. The
temporary reference is used as the control variable in subsequent steps.

• If the control variable is subscripted, its subscripts are evaluated and a
temporary reference of the control variable type is created. The tempo
rary reference is used as the control variable in subsequent steps.

• If the control variable is neither based nor subscripted, its reference is
used in subsequent steps.

2. The start value expression is evaluated and assigned to the control
variable.

3. If the test expression is present, it is evaluated. If it does not produce a
true value, the execution of the DO-group terminates. If the test expres
sion is not present, execution continues.

4. The body of the DO-group is executed. The execution of the DO-group
may be terminated during this step by the execution of a STOP or
RETURN statement or by the execution of a GOTO statement that trans
fers control outside the DO-group. Statements in the group can also
modify the values of the control variable, REPEAT expression, and test
expression.

5. The REPEAT expression is evaluated and its value is assigned to the
control variable.

6. Execution continues at step 3, above.

•Examples

DO LETTER='A' REPEAT BYTECI>;

This example will repeat the group with an initial LETTER value of 'A, and
with subsequent values assigned by the built-in function BYTE(I). The varia
ble I may be assigned new values within the group. The group will iterate
endlessly unless terminated by a statement or condition within the group.

DO I = 1 REPEAT I + 2 WHILE C I <= 100) ;

This example has the same effect as the controlled DO statement:

DO I = 1 TO 100 BY 2;

110 DO Statement

The most common use of the DO REPEAT statement is in the manipulation
of lists. For example:

DO P = LIST_HEAD REPEAT P->LIST.NEXT
WHILE (P .·. = NULL ()) ;

In this example, the pointer P is initialized with the value of the pointer
variable LIST_HEAD. The DO-group is executed with this value of P. The
REPEAT option specifies that, each time control reaches the DO statement
after the first execution of the DO-group, P is to be set to the value of
LIST.NEXT in the structure currently pointed to by P. For an expanded
example of this technique, see "List Processing."

DO Statement 111

E
E Format Item

The E format item describes the representation of a fixed- or floating-point
value as a decimal floating-point number in a stream.

The form of the item is:

w

d

E(w[,d])

A nonnegative integer that specifies the total width in characters of
the field in the stream.

An optional nonnegative integer that specifies the number of fractional
digits in the stream representation. If d is omitted on output, all frac
tional digits are written out. If d is omitted on input, it is assumed to
be zero (no fractional digits). If the input value contains a decimal
point, the value of d is ignored.

The interpretation of the E format item on input and output is given below.
For a general discussion of format items, see "Format Items and Their Uses."

• Input with GET EDIT

Used with GET EDIT, the E format item acquires a character-string value
representing a floating-point decimal value and assigns it, with necessary
conversions, to an input target of any computational type. If w is zero, no
operation is performed on the input stream, and a null character string is
converted and assigned to the input target.

For input, floating-point values can be represented in the stream in the
following forms:

Form

mantissa

sign mantissa

sign mantissa sign exponent

sign mantissa E exponent

sign mantissa E sign exponent

Example

124333

-123.333

-123.333-12

-123.333E12

-123.343E-12

The mantissa is a fixed-point decimal constant, the sign is a + or - symbol,
and the exponent is a decimal integer. A zero exponent is assumed if both the
letter E and the exponent are omitted.

If, on input, the mantissa includes a decimal point, it overrides the specifica
tion of d. If no decimal point is included, then d specifies the number of
fractional digits.

112

The value of w should be only large enough to include the mantissa, the
optional decimal point in the mantissa, the signs on the exponent and
mantissa, the optional letter E, and the exponent. If the field width is too
narrow, the stream representation may be truncated on the right; if the field
width is too wide, excess characters are acquired on the right and may contain
invalid input.

Spaces can precede or follow the value in the stream and are ignored. If the
entire field contains spaces, zero is assigned to the input target. If the stream
representation is not one of the forms shown previously, the ERROR condition
is signaled.

• Output with PUT EDIT

Used in a PUT EDIT statement, the E format item converts an output source
of any computational type to the following form for representation in the
stream:

[-] digit . [fractional-digits] E sign exponent

Typical representations are:

1.E+07
3.33E-10
-2. 7186E+OO

If d is omitted from the format item, then d = s-1, where s is the precision of
the output source expressed in decimal. The decimal value is rounded before
being written out.

The exponent ordinarily is a two-digit decimal integer and is always signed.
The exponent is adjusted so that the first digit of the mantissa is not zero,
except that the value 0 is represented as

0.0000 ... E+OO

with a number of zeros to the right of the decimal point equal to the specified
number of fractional digits.

To account for negative values with fractional digits, the specified width
integer should be 6 greater than the number of digits to be represented in the
mantissa: one character for the preceding m1nus sign, one for the decimal
point in the mantissa, one for the letter E, one for the sign of the exponent,
and two for the exponent itself. (For values of type G-float or H-float, the
value of w should be 7 or 8 greater than the number of digits, respectively.)

If the number's representation is shorter than the specified field, the represen
tation is right-justified in the field and the number is extended on the left
with spaces.

If the field specified by w is too narrow, the ERROR condition is signaled.

E Format Item 113

•Examples

The tables below show the relationship between the internal and external
representations of numbers that are read or written with the E format item.

Input Examples
The "input stream" shown in the table is a field of characters begin
ning at the current position in the stream and continuing to the right.
The target type is the type of the variable to which the input value is
assigned.

Format Input
Item Stream Target Type Target Value

ECGtO) 124333+•• DECIMAL(10t2) 124333.00
E<G tO) --123333+ + + DECIMAL< 10 t2) --12333.00
E(8) -123.333,,, DECIMALC8t5) -123.33300
EC11) -123.333-12++• FLOAT DECC7> -1.233330E--10
EC11 t3) -123343E-12 ••• FLOAT DECC15) -1.2J342999813758E-07

Output Examples
The output source value shown in the table is either a constant or the
value of a variable that is written out with the associated format item.

Output Source Value

-12234
-12234
-12+234
-1.2345GE3
-1+2345GE3

EDIT Option

Format Item

E < 11)
E(11 t2)
E(11t1)
EC 12)

Output Value

-1+2234E+04
66-1.22E+04
666-1+2E+01
-1.2345GE+03
666-1+23E+03

The EDIT option is used with the GET and PUT statements to perform
edit-directed stream input or output.

The EDIT option allows you to include a format-specification list that
matches the list of input targets (GET statement) or output sources (PUT
statement). When used in the GET statement, the EDIT option and format
specification list control the interpretation of ASCII characters being input
from a stream file. When used with the PUT statement, the two items control
the representation of program data as ASCII characters in a stream output
file.

For further details, see "GET Statement" and "PUT Statement."

114 EDIT Option

ELSE Option

The ELSE option may be specified in an IF statement to define the action to
be taken if a given expression is false. For example:

IF .·.SUCCESS THEN
CALL PRINT_ERROR;

ELSE
CALL PRINT_SUCCEss;

The action following the ELSE option may be null. For more information, see
"IF Statement."

END Statement

The END statement terminates a block or a group that is headed by the most
recent BEGIN, DO, or PROCEDURE statement. The format of the END
statement is:

END [label-reference] ;

label-reference
A reference to the label on the PROCEDURE, BEGIN, or DO state
ment for which the specified END statement is the termination. A
label is not required. If specified, the label reference must match only
one label, which is the label of the most recent BEGIN, DO, or
PROCEDURE statement that is not already matched with an END
statement. If the label reference is omitted, the most recent statement
is matched by default.

The END statement performs one of the following actions, depending on the
type of block or group that it terminates:

• When an END statement denotes the end of a procedure, the current proce
dure is terminated. The storage allocated for the block is released, and all
automatic variables are made inaccessible. If the current procedure is the
main, or only, procedure, the program terminates. Otherwise, control is
returned to the point following the CALL statement or function
reference that invoked the procedure.

• When an END statement denotes the end of a BEGIN block, the storage
allocated for the block is released, and all automatic variables are made
inaccessible. Control passes to the next executable statement following the
END statement.

• When an END statement denotes the end of a DO-group, control returns
either to the DO statement that heads the group or to the next outer state
ment. If the DO-group is headed by a noniterative DO, that is, a DO-group
that is executed only once, control passes to the next executable statement.
Otherwise, control returns to the head of the DO-group; where the control
variable or expression is tested.

END Statement 115

ENDFILE Condition Name

The ENDFILE condition name can be specified in an ON, SIGNAL, or
REVERT statement to designate an end-of-file condition or ON-unit for a
specific file.

PL/I signals the ENDFILE condition when a GET or READ statement
attempts an input operation on a file or device after the last data item has
been input. The format of the ENDFILE condition name is:

ENDFILE (file-reference)

file-reference
The name of a file constant or file variable for which the ENDFILE
ON-unit is established. If the name of a file variable is specified, the
variable must be resolved to the name of a file constant when the
condition is signaled.

An ENDFILE ON-unit can be established for any input file. For any particu
lar file, the meaning of the end-of-file condition depends on the type of device.
For example, end-of-file is signaled for a terminal device when the CTRL/Z
character is read.

For a stream file, an end-of-file condition is signaled whenever a GET state
ment attempts to access an empty file or attempts to access a file after its last
input field has been read.

For a record file, an end-of-file condition is signaled when a READ statement
is executed with the file at the end-of-file position or when a read is attempted
beyond the last record in the file. For example:

ON ENDFILE <RECEIPTS> GOTO PRINT_REPORT;
OPEN FILE <RECEIPTS> RECORD SEQUENTIAL;

LOOP: READ FILE <RECEIPTS) INTO <RECORD>;

GOTO LOOP;

In this example, the ON statement establishes the default action to take when
the last record in the input file has been processed: control is transferred to
the label PRINT_REPORT.

An ON-unit established to handle end-of-file conditions can reference the
ONFILE built-in function to determine the name of the file constant for
which the condition was signaled.

• ON-Unit Completion

If the ON-unit for the ENDFILE condition does not transfer control elsewhere
in the program, control returns to the statement following the GET or READ
statement that caused the condition to be signaled.

When the ENDFILE condition is signaled, it remains in effect until the file is
closed. Subsequent GET or READ statements for the file cause the ENDFILE
condition to be signaled repeatedly.

For more information, see "ON Conditions and ON-Units" and "ON State
ment."

116 ENDFILE Condition Name

ENDPAGE Condition Name

The ENDPAGE condition name can be specified in an ON, SIGNAL, or
REVERT statement to designate an end-of-page condition or ON-unit for a
specific print file. The format of the ENDPAGE condition name is:

ENDPAGE (file-reference)

file-reference
The name of the file constant or file variable for which the ENDPAGE
ON-unit is to be established. If the name of a file variable is specified,
the variable must be resolved to the name of a file constant when the
condition is signaled. The file must have the PRINT attribute.

The maximum number of lines that can be output on a single page is set by
the PAGESIZE option of the OPEN statement. If not specified, PL/I uses the
default page size (see "PAGESIZE Option").

PL/I signals the ENDPAGE condition when a PUT statement attempts to
output a line beyond the last line specified for an output page. When the
ENDPAGE condition is signaled, the current line number associated with the
file is (pagesize+l). An ENDPAGE ON-unit allows you to provide special
processing before output continues on a new page. For example:

ON ENDPAGE <PRINTFILE) BEGIN;
PUT FILE (PRINTFILE) PAGE;
PUT FILE CPRINTFILE) LIST<HEADER_LINE);
PUT FILE CPRINTFILE) SKIPCZ);
END;

The ON-unit for the ENDPAGE condition for the file PRINTFILE outputs a
page eject and a header line for the new output page.

To cause PL/I to ignore the ENDPAGE condition when a lot of output is
written to a terminal, you can use the following ON-unit, which contains only
the null statement:

ON ENDFILECSYSPRINT);

An ON-unit established to handle end-of-page conditions can reference the
ONFILE built-in function to determine the name of the file constant for
which the condition was signaled.

• ON-Unit Completion

If the ON-unit does not transfer control elsewhere in the program, the line
number is set to one and the program continues execution of the PUT state
ment. Note that:

• If the ENDPAGE condition was signaled during data transmission, the data
is written on the new current line.

• If the ENDPAGE condition was caused by a LINE or a SKIP option on the
PUT statement, then the action specified by these options is ignored on
return.

ENDPAGE Condition Name 117

An ENDPAGE condition can occur only once per page of output. If the
1 ON-unit specified does not specify a new page, then execution and output

continue. The current line number can increase indefinitely; PL/I does not
signal the ENDPAGE condition again. If, however, a LINE option on a PUT
statement specifies a line number that is less than the current line, a new page
is output and the current line is set to one.

• Default PL/I Action

If the ENDPAGE condition is signaled during file processing, PL/I starts
output on a new page and continues processing. If the ENDPAGE condition is
signaled as a result of a SIGNAL statement, the statement following the
SIGNAL statement is executed and no page is output by default.

ENTRY Attribute

The ENTRY attribute declares a constant or variable whose value is an entry
point, and it describes the attributes of the parameters (if any) that are
declared for the entry point. The format of the ENTRY attribute is:

ENTRY [(parameter-descriptor, ...)]

[OPTIONS (VARIABLE) J

[RETURNS (returns-descriptor)]

parameter-descriptor
A set of attributes describing a parameter of the specified entry. (See
also "Procedure - Entry Points.") Attributes describing a single
parameter must be separated by spaces; sets of attributes (each set
describing a different parameter) must be separated by commas.
Parameter descriptors are not allowed if the ENTRY attribute is
within a RETURNS descriptor (see "RETURNS Attribute and Op
tion" for more information on RETURNS descriptors).

The following rules apply to the specification of a parameter descriptor
for an array or structure:

• If the parameter is an array, the dimensions must be specified first;
otherwise, the attributes can be specified in any order.

• If the parameter is a structure, the level number must precede the
attributes for each member.

• Extents for any parameter may be specified using only integer
constants, restricted integer expressions, or asterisks (*).

• No storage class attributes may be specified.

OPTIONS (VARIABLE)
An option indicating that the specified external procedure can be
invoked with a variable number of arguments. At least one parameter
descriptor must be specified following the ENTRY keyword if
OPTIONS(V ARIABLE) is specified.

This option is provided for use in calling non-PL/I procedures. For
complete details on using OPTIONS (VARIABLE), see the VAX-11
PL/I User's Guide.

118 ENTRY Attribute

RETURNS (returns-descriptor)
An option giving, for an entry that is invoked as a function reference,
the data type attributes of the function value returned. (See also
"RETURNS Attribute and Option.") For entry points that are
invoked by function references, the RETURNS attribute is required;
for procedures that are invoked by CALL statements, the RETURNS
attribute is invalid.

The ENTRY attribute without the VARIABLE attribute implies the
EXTERNAL attribute (and implies that the declared item is a constant),
unless the ENTRY attribute is used to declare a parameter.

You must declare all external entry constants with the ENTRY attribute.
When you declare an external entry constant, you must also specify the
RETURNS attribute if the constant will be used to invoke a function. The
RETURNS attribute indicates that the entry point is invoked via a function
reference and defines the data type of the value it returns. See "RETURNS
Attribute and Option."

• Restrictions
• Internal entry constants must not be declared with the ENTRY attribute in

the procedure to which they are internal. Internal entry constants are
declared implicitly by the labels on the PROCEDURE or ENTRY state
ments of an internal procedure.

• The ENTRY attribute conflicts with all other data type attributes.

•Example

DECLARE COPYSTRING ENTRY (CHARACTER (40) VARYING,
FIYED BINARY(7))

RETURNS (CHARACTER(*));

This declaration describes the external entry COPYSTRING. This entry has
two parameters: (1) a varying-length character string with a maximum length
of 40 and (2) a fixed-point binary value. The RETURNS attribute indicates
that COPYSTRING is invoked as a function and that it returns a character
string with any length.

Entry Data

Entry constants and variables are used to invoke procedures through specified
entry points. An entry value specifies an entry point and a block activation of
a procedure.

• Entry Constants

Entry constants are declared by writing labels on PROCEDURE or ENTRY
statements.

Internal entry constants are declared by writing labels on PROCEDURE or
ENTRY statements whose procedure blocks are nested in another block. An
internal entry constant can be used anywhere within its scope to invoke its
procedure block.

Entry Data 119

External entry constants are declared either by writing labels on
PROCEDURE or ENTRY statements that belong to external procedures, or
by explicitly declaring the name with the ENTRY attribute. An external
entry constant can be used to invoke its procedure block from any program
location that is within its scope. Its scope is either the scope of its declaration
(as a label) or the scope of a DECLARE statement for the constant.

In DECLARE statements, external entry constants are declared with the
ENTRY attribute. The declaration must agree with the actual entry point.
That is, the declaration of the external entry constant must contain parame
ter descriptors for any parameters specified at the entry point, and, if the
entry constant is to be used in a function reference, the declaration must have
a returns descriptor describing the returned value. For the syntax and rules
governing parameter descriptors, see "ENTRY Attribute." For the syntax
and rules governing returns descriptors, see "RETURNS Attribute and
Option."

• Entry Values

Whenever a reference to an entry constant is interpreted, the result is an entry
value. An entry value has two components:

1. The first component designates an entry point of a procedure.

2. The second component designates an activation of the block in which the
entry point is declared (that is, the block in which the entry point's name
appears as the label of a PROCEDURE or ENTRY statement). This block
activation is the current block activation if the entry point belongs to the
current block. If the entry point belongs to a containing block, the activa
tion is on the chain of parent activations that ends at the current block
activation. (For additional details on block activations, see "Block.")

No conversions are defined between entry data and other data types. An entry
variable can be assigned only the value of an entry constant or the value of
another entry variable. The only operations that are valid for entry data are
comparisons for equality (=) and inequality C =). Two entry values are equal
if they refer to the same entry point in the same block activation.

• Entry Variables

Entry variables are variables (including parameters) that take entry values. If
the VARIABLE attribute is specified with the ENTRY attribute in a
DECLARE statement, the declared identifier is an entry variable. You can
assign an entry constant to an entry variable, or you can assign to it the value
of another entry variable.

When an entry variable is used to invoke a procedure, its declaration must
agree with the definition of the entry point. If the value you assign to an entry
variable specifies an entry point with parameters, the parameters must be
described with parameter descriptors in the declaration of the variable. If the
assigned value specifies an entry point that is invoked as a function, then the
declaration of the entry variable must have a RETURNS attribute that
describes the data type of the returned value.

120 Entry Data

The scope of an entry variable name can be either INTERNAL or
EXTERNAL. If neither EXTERNAL nor INTERNAL is specified with
ENTRY VARIABLE, the- default is INTERNAL. (See also "Scope of
Names.")

The entry variable can be used to represent different entry points during the
execution of the PL/I program. For example:

DECLARE E ENTRY VARIABLEt
(AtB) ENTRY;

E = A;
CALL E;

In this example, the entry constant A is assigned to the entry variable E. The
CALL statement results in the invocation of the external entry point A.

You can also declare arrays of entry variables. The following example shows
an array of external functions:

DECLARE EXTRACT(10) ENTRY CFIXEDtFIXED>
VARIABLE RETURNS CFLOAT>,

GEHJAL FLOAT;

GEHJAL = E><TRACT (3) C 1 ,3) ;

This assignment statement references the third element of the array
EXTRACT. When the statement is executed, this array element must contain
a valid entry value.

Exercise caution using static entry variables. The value of a static entry
variable is valid only as long as the block in which that value was declared is
active.

• Internal Representation of Variable Entry Data

31

ENTRY Statement

address of procedure mask for
this entry point

parent frame pointer

0

The ENTRY statement defines an alternate entry point to a procedure. Its
format is:

entry-name: ENTRY [(parameter, ...) l

[RETURNS (returns-descriptor) l

ENTRY Statement 121

entry-name
A 1- 'to 31-character identifier for the entry point. Specifying the entry
name declares the name as an entry constant. The scope of the name
is external if the ENTRY statement is contained in an external
procedure and internal if it is contained in an internal procedure.

parameter, ...
One or more parameters that the procedure requires at this entry
point. Each parameter specifies the name of a variable declared in the
block to which this ENTRY statement belongs. The parameters must
correspond, one by one, with arguments specified for the procedure
when it is invoked via this ENTRY statement.

For more information, see "Parameters and Arguments."

RETURNS (returns-descriptor)
An option giving, for an entry that is invoked as a function reference,
the data type attributes of the function value returned. , (See also
"RETURN.S Attribute and Option.") For entry points that are
invoked by function references, the RETURNS option is required; for
procedures that are invoked by CALL statements, the RET1URNS op
tion is invalid.

II Restrictions

An ENTRY ·statement is not aliowed in a begin biock, in an ON-unit, or in a
DO-group except for a simple DO.

For more information on entry data, see "Entry Data." For more information
on entry points, see "Procedure."

ENVIRONMENT Attribute

The ENVIRONMENT file description attribute specifies options that:

• Define file characteristics that are specific to the V AX-11 file system

• Request special processing not available in the standard PL/I language

The format of the ENVIRONMENT attribute is:

ENVIRONMENT(option, ...)

option, ...
One or more keyword options, separated by commas. Options are
summarized below. The options are described in detail in the VAX-11
PL/I User's Guide.

• Specifying Values for ENVIRONMENT Options

All ENVIRONMENT options may be specified in DECLARE and OPEN
statements. Certain disposition options may al~o be specified in a CLOSE
statement.

Options that require values may be specified using only literal constants
in DECLARE statements; in an OPEN or CLOSE statement, they may be
specified using expressions or literal constants.

122 ENVIRONMENT Attribute

Any option that does not require a value may optionally be specified with a
Boolean constant or expression that indicates whether the option is to be
enabled (if true) or disabled (if false). For example:

DECLARE IFOELETE BIT(1);

OPEN FILE <XYZ> ENVIRDNMENT<DELETECIFDELETE>>;

This DELETE option specifies a Boolean variable whose value may be true or
false at run-time. Boolean values must be specified using only constants in a
DECLARE statement; in an OPEN statement or CLOSE statement, Boolean
values may be specified using constants or expressions.

Options that require variable references may be specified only on OPEN
statements.

• Alphabetic List of Options

An item with an asterisk (*) indicates an option that may be specified in a
CLOSE statement.

APPEND
*BATCH
BLOCK_BOUNDARY_FORMAT
BLOCK-10
BLOCK_SIZE(expression)
BUCKET _SIZE(expression)
CARRIAGE_RETURN_FORMAT
CONTIGUOUS
CONTIGUOUS_BEST_TRY
CREATION_DATE(variable-reference)
CURRENT_POSITION
DEFAULT _FILE_N AME(character-expression)
DEFERRED_ WRITE
*DELETE
EXPIRATION_DATE(variable-reference)
EXTENSION _SIZE(expression)
FILE_ID(variable-reference)
FILE_ID_ TO (variable-reference)
FILE_SIZE(expression)
FIXED_CONTROL_SIZE(expression)
FIXED_CONTROL_SIZE_ TO(variable-reference)
FIXED_LENGTH_RECORDS
GROUP _PROTECTION (character-expression)
IGNORE_LINE_MARKS
INDEX_NUMBER(expression)
INDEXED
INITIAL_FILL
MAXIMUM_RECORD_NUMBER(expression)
MAXIMUM_RECO.RD_SIZE (expression)
MULTIBLOCK_COUNT(expression)
MULTIBUFFER_COUNT(expression)

ENVIRONMENT Attribute 123

NO_SHARE
OWNER_GROUP(expression)
0 WNER_MEMBER(expression)
0 WNER_PROTECTION (character-expression)
PRINTER_FORMAT .
READ_AHEAD
READ_CHECK
RECORD_ID_ACCESS
RETRIEVAL_POINTERS(expression)
*REWIND_ON_CLOSE
REWIND_ON_OPEN
SCALARVARYING
SHARED_READ
SHARED_ WRITE
*SPOOL
SUPERSEDE
SYSTEM_PROTECTION (character-expression)
TEMPORARY
TRUNCATE
WORLD_PROTECTION (character-expression)
WRITE_BEHIND
WRITE_ CHECK

Error and Condition Handling

All error conditions that occur during the execution of PL/I run-time proce
dures result in the interruption of the program and a signal that indicates the
type of error, or condition, that occurred.

When an error is signaled, PL/I attempts to locate a user-written program
unit, called an ON-unit, to handle the condition. An ON-unit is established
for a specific condition by means of an ON statement. If no ON-unit exists for
a specific condition, PL/I performs a default action, which in most cases
results in the termination of the program.

PL/I conditions have language keywords, or ON condition names. For
example, the keyword ENDFILE is the name of the condition that is signaled
when an end-of-file is encountered during an input operation. Thus, a pro
gram could handle an end-of-file condition for a given file as follows:

DECLARE INFILE FILE RECORD INPUT;

ON ENDFILE <INFILE) GOTO LAST;

OPEN FILE (INFILE);

For details on condition handling, see "ON Conditions and ON-Units." For
additional information on end-of-file handling, see "ENDFILE Condition
Name."

124 Error and Co~dition Handling

ERROR Condition Name

The ERROR condition name can be specified in an ON, SIGNAL, or
REVERT statement to designate an error condition or ON-unit.

PL/I signals the ERROR condition in the following contexts:

• When a condition occurs for which the default PL/I action is to signal
ERROR

• When the SIGNAL ERROR statement signals the condition

• When there is a default PL/I ON-unit and a condition is signaled for which
there is no corresponding ON-unit

When any condition is signaled for which no specific ON-unit is established,
the default PL/I action for all conditions except ENDPAGE is to signal the
ERROR condition.

When any ON-unit is executed, the ON-unit can reference the built-in func
tion ONCODE. This function returns the numeric condition value associated
with the specific error that signaled the condition.

• ON-Unit Completion

If an ERROR ON-unit does not handle the condition, the program is termi
nated at the completion of the ON-unit.

For more information, see "ON Conditions and ON-Units" and "ON State
ment." For more details on condition handling in the VAX/VMS environ
ment, see the VAX-11 PL/I User's Guide.

EXP Built-In Function

The EXP built-in function returns a floating-point value that is the base e to
the power of an arithmetic expression x. The computation is performed in
floating point. The format of the function is:

EXP(x)

Exponentiation

Double asterisks (**) indicate exponentiation in an expression; the result is
the value of the first operand raised to the power of the second operand. Both
operands must have arithmetic data types.

• Conversion of Operands

If the second operand is not a decimal integer constant, both operands are
converted to FLOAT BINARY.

Exponentiation 125

• Precision of the Result

If the operation is expressed as x**y and if y is a positive decimal integer
constant, the following rules apply to the result precision based on the data
type of x and the value of y:

•where x is FIXED BINARY(p) and ((p+l)*y-1) :=:; 31, the result has the
fixed binary precision:

((p+l)*y-1)

• where xis FIXED DECIMAL(p,q) and ((p+l)*y-1) :=:; 31, the result has the
fixed decimal precision:

((p+l)*y-1)

and scale factor:

q*y

In all other cases, the operands are converted to floating point as described
above. The result is a floating-point binary value whose precision is the
maximum precision of the converted operands.

Expression

An expression is a representation of a value or of the computation of a value.
In a PL/I program, you can use expressions to:

• Indicate constant values or scalar variables. For example:

5 = 55;
NAME = I HECTOR I ;

5 = A;

• Perform algebraic or logical calculations on variables or constants. For
example:

5 A + 10;
C = A + 5 * 40;
5 = ... A;

COMMON= A&: 5;

• Compare the values of two or more expressions and obtain a Boolean result.
For example:

IF A < B THEN C = 10;
IF NAME = SAVED_NAME THEN GOTO REPEAT;

• Concatenate character- or bit-string values. For example:
NAME = FIRST __ NAME: : LAST __ r··rnME;

All expressions except simple constants and references consist of an operator
and one or more operands. Each operator requires operands of specific types
(either arithmetic, character string, or bit string) and produces a result of a
specific type. The operands may be constants, variable references, function
references, or other expressions, so long as they are objects of the type required
by the operator.

Built-in functions may also be considered operators in this sense, and their
arguments, operands.

All PL/I expressions and functions have scalar results.

126 Expression

Arithmetic expressions must have arithmetic operands. See "Arithmetic
Operator," "Addition," "Subtraction," "Multiplication," "Division," and
"Exponentiation."

Logical expressions must have bit-string operands, and all logical expressions
have bit-string results. See "Logical Operator."

Relational, or comparison, expressions must have two operands of the same
type. All relational expressions have Boolean results of type BIT(l), where
'O 'B signifies "false" and '1 'B signifies "true." See "Relational Operator."

Concatenation expressions must have two string operands of the same type
(bit or character). The result is a string of the operands' type. See "Concate
nation Operator."

• Expression Evaluation and Precedence of Operations

Expressions may be evaluated in any order, with the following qualifications:

• Some PL/I operators take precedence over others used in the same expres
sion. Operations with higher priority are evaluated first, and their results
are used as single operands. The rules of precedence usually guarantee an
algebraically correct result without the use of parentheses. All built-in func
tions are of equal priority. See "Operator" for a table listing the priorities of
PL/I operators.

• Any expression can be enclosed in parentheses, to override the usual rules of
precedence. Expressions at the deepest level of nested parentheses are al
ways evaluated first, and their results are used as single operands.

• Exponential operations of the form A **B**C are evaluated from right to
left.

• The run-time evaluation of a logical expression may be terminat~d as soon
as its result is known. For instance, evaluation of the expression

A & USER_FUNCTION(ALPHAtBETA>

may be terminated without evaluating the USER-FUNCTION reference if
the evaluation of A results in a "false" Boolean value.

• If a function referenced in an expression executes a nonlocal GOTO state
ment, the expression is not evaluated further.

• Conversion of Operands

This section applies only to arithmetic operations, which must always have
arithmetic operands. (However, see also "Built-In Conversion Functions,"
below.)

Even though arithmetic operands can be of different arithmetic types, all
operations must be actually performed on objects of the same type. Any set of
operands of different arithmetic types has an associated derived type, as
follows:

• If any operand has the attribute BINARY, the derived base is BINARY.
Otherwise, the derived base is DECIMAL.

• If any operand has the attribute FLOAT, the derived scale is FLOAT.
Otherwise, the derived scale is FIXED.

Expression 127

Table E-1 gives the derived data type for two arithmetic operands of different
types. (Note that the types derived from FIXED DECIMAL in Table E-1 also
are derived when one operand is pictured.)

Table E-1: Derived Types

Operand-I Type Operand-2 Type Derived Type

FIXED BINARY FLOAT BINARY FLOAT BINARY

FIXED BINARY FLOAT DECIMAL FLOAT BINARY

FIXED DECIMAL FLOAT DECIMAL FLOAT DECIMAL

FIXED DECIMAL FLOAT BINARY FLOAT BINARY

FIXED BINARY FIXED DECIMAL FIXED BINARY

NOTE

If one operand is fixed-point binary, the other should not be
fixed-point decimal with a nonzero scale factor (or pictured
with fractional digits). Because VAX-11 PL/I does not support
fixed-point binary data with fractional digits, the conversion of
the decimal operand would result in the loss of its fractional
digits.

Table E-2 gives the precision resulting from the conversion of an operand to
its derived type. The values p and q are known as the converted precision of
an operand and are based on the values p and q of the source operand.

Table E-2: Converted Precision as a Function of Target and Source
Attributes

Source Data Type 1

Target
Data Type

Binary Fixed Decimal Fixed Binary Float 2 Decimal Float 2

Binary p min(cei!(p*3.32) + 1,31)
Fixed

Decimal min(ceil(p/:3.32) + 1,31) p
Fixed scale factor: 0 scale factor: q

Binary min(p,113) min(ceil(p*3.32),l 13) p min(ceil(p*:t'.i2U l:i)
Float

Decimal min(ceil(p/3.32),34) min(p,34) min(ceil(p/:i.32),:34) p
Float

1. The constant :i.32 is an approximation of log2(10), the number of bits required to represent a decimal digit.
2. The blank entries are cases that never occur in the language.

128 Expression

All arithmetic operations except exponentiation are performed in the derived
type of the two operands. Note that the two converted operands, although
they have the same derived base and scale, may have different values for p
and q, as shown by Table E-2. Exponential operations are performed in a
data type that is based on the derived type of the operands; for details, see
"Exponentiation."

All operations, including exponentiation, have results of the same type as the
type in which they are performed. The precision and scale factor of the result
differ depending on the operation being performed. For details, see "Addi
tion," "Subtraction," "Multiplication," "Division," "Exponentiation,"
"Built-In Function," or the section on an individual built-in function.

When the result of an arithmetic operation is assigned to a target variable, the
target variable can be of any computational type. The result is converted to
the target type, following the rules in "Conversion of Data."

• Built-In Conversion Functions

The built-in conversion functions FLOAT, FIXED, BINARY, and DECIMAL
can take arguments that are either arithmetic or string expressions. They are,
in fact, often used to convert an operand to the type required in a certain
context, for instance, to convert a bit string to an arithmetic value for use as
an arithmetic operand.

For the purpose of these functions, and a few other contexts, derived arithme
tic attributes are also defined for bit- and character-string expressions:

• The derived type of a bit string is fixed-point binary; its converted precision
is 31.

• The derived type of a character string is fixed-point decimal; its converted
precision is also 31.

These derived attributes are used to determine the precision of values re
turned by the conversion functions if no precision is specified in the functions'
argument lists. Of course, the value of a string argument must also be convert
ible to the result type; for instance, '1.333' is convertible to arithmetic, but
'ABCD ' is not. For more information, see "Conversion of Data" and the
sections on the FLOAT, FIXED, BINARY, and DECIMAL built-in functions.

Extent

An extent gives a length or dimension of a variable. The rules for specifying
extents apply to the length of a character-string or b~t-string variable and to
the dimensions of an array. The length of a character string or a bit string is
the number of characters or bits of its value. The dimensions of an array are
expressed in terms of bounds, and the rules for specifying extents apply to
those bounds. These rules are:

• If an extent is specified in a static variable declaration, the extent must be
specified as an integer constant or as a restricted integer expression. (A
restricted integer expression is an expression consisting solely of integer
constants, identifiers given values by %REPLACE statements, and any of
the operators +, -, *, or the DIVIDE built-in function.)

Extent 129

• If an extent is specified in the declaration of a parameter, in a parameter
descriptor, or in a returns descriptor, the extent may be specified as an
integer constant, as a restricted integer expression, or as an asterisk (*). If
one dimension of an array is specified with an asterisk, all must be specified
with asterisks.

• If the extent is specified for an automatic, based, or defined variable it may
be specified as an integer constant or as an expression.

• The maximum value that can be specified for an extent is 500 million bytes.

EXTERNAL Attribute

The EXTERNAL attribute declares an external name, that is, a name whose
value can be known to blocks outside the block in which it is declared.

The format of the EXTERNAL attribute is:

{
EXTERNAL}
EXT

The EXTERNAL attribute is implied by the FILE, GLOBALDEF, and
GLOBALREF attributes. EXTERNAL is also implied by declarations of en
try constants (that is, declarations that contain the ENTRY attribute but not
the VARIABLE attribute). For variables, the EXTERNAL attribute implies
the STATIC attribute.

• Restrictions

The following rules apply to the use of external names:

• The EXTERNAL attribute directly conflicts with the AUTOMATIC,
BASED, and DEFINED attributes.

• The EXTERNAL attribute cannot be applied to minor structures, members
of structures, parameters, or descriptions in an ENTRY or RETURNS
attribute.

• The EXTERNAL attribute is invalid for variables that are the parameters
of a procedure.

• If a variable is declared as EXTERNAL STATIC INITIAL, all blocks that
declare the variable must initialize the variable with the same value.

• The maximum number of external variables that can be declared in a single
compilation is 254. This number includes file constants.

External Procedure

An external procedure is one whose text is not contained within another
procedure. An external procedure must be explicitly declared with the
ENTRY attribute before it can be invoked or referenced.

See ''Procedure.''

130 EXTERNAL Attribute

External Variable

An external variable provides a way for external procedures to share common
data. All declarations that refer to an external variable must also declare the
variable with the attribute EXTERNAL and with identical data type attrib
utes. Figure E-1 illustrates how procedures can use external variables.

Block activation created when
the main program is executed

APPLIC

Storage for static and static l Tl
external variables - T.___F-LA_G_s _ __,_

APPLIC: PROCEDURE OPTIONS(MAIN);
DECLARE FLAGS BIT(64) ALIGNED EXTERNAL;

CALL READY;
END;

READY: PROCEDURE;
DECLARE FLAGS BIT (64) ALIGNED EXTERNAL:

READY

t

A reference to FLAGS in either procedure
is resolved to the same storage
location when these procedures are linked.

Block activation created when
READY is invoked

Figure E-1: External Variables

The VAX/VMS linker allows more control than does PL/I over the definition
and allocation of external variables. With the GLOBALDEF attribute, you
can define the allocation and initialization of an external variable in a single
module. Other PL/I modules can then declare the variable with the GLOBAL
REF attribute and with no INITIAL attribute.

Further control is provided by the VALUE attribute, which can be used in
conjunction with GLOBALDEF and GLOBALREF. A variable declared in
this way is actually a constant whose value is used imme9iately in instruc
tions gene~ated by the compiler.

Declarations of names with the attributes FILE, GLOBALREF, and
GLOBALDEF are not subject to the limit of 254 per compilation.

For more information, see "GLOBALDEF Attribute," "GLOBALREF Attrib
ute," and "VALUE Attribute." For more information on the use of the linker,
see the VAX-11 PL/I User's Guide.

External Variable 131

F
F Format Item

The F format item describes the representation of a fixed- or floating-point
value as a decimal fixed-point number in a stream.

The form of the item is:

w

d

F(w[,d])

A nonnegative integer that specifies the total width in characters of
the field in the stream.

An optional nonnegative integer that specifies the number of fractional
digits in the stream representation.

The interpretation of the F format item on input and output is given below.
For a general discussion of format items, see "Format Items and Their Uses."

• Input with GET EDIT

Used with GET EDIT, the F format item acquires a fixed-point decimal value
from the next W· characters in the stream and assigns it to an input target of
any computational type. For input, fixed-point decimal values can be repre
sented in the stream in the following forms:

number
sign number

The number is a fixed-point decimal constant and the sign is a + symbol or -
symbol.

The following are valid representations:

124333
-123333
-123.333

The ERROR condition is signaled if the field is not blank and does not
contain one of the valid representations shown above; otherwise, the fixed
point decimal number is extracted from the field and is assigned to the input
target, with any necessary conversions. If the number includes a decimal
point, it overrides the specification of d. If no decimal point is included, d
specifies the number of fractional digits. If d is omitted, it is assumed to be
zero.

132

The integer w should be only large enough to include the number, the optional
decimal point in the number, and the optional sign. If w is too small, the
stream representation is truncated on the right. If w is too large, extra charac
ters are acquired, which may include invalid syntax.

If w is zero, a null character string is converted and assigned to the input
target, and no operation is performed on the stream.

Spaces can precede or follow the number in the stream and are ignored. If the
entire string contains spaces or is a null string, the fixed-point decimal con
stant 0 is converted and assigned to the input target.

• Output with PUT EDIT

Used in a PUT EDIT statement, the F format item converts an output source
of any computational type to one of the following forms for representation in
the stream:

integer
integer.fractional-digits
-integer.fractional-digits

Typical representations are:

3234
0.23432
3.33
-3234.33

The decimal value is rounded before being written out. If d is omitted from
the format item, the decimal point is not shown, and only the integral part of
the number is shown.

If d is larger than the number of fractional digits to be output, trailing zeros
are appended to the output number. All leading zeros to the left of the deci
mal point are suppressed unless the integral part of the number is zero, in
which case one 0 appears to the left of the decimal point.

To account for negative values with fractional digits, the specified width
integer should be two greater than the number of digits to be represented: one
character for the preceding minus sign and one for the decimal point in the
number.

If the number's representation is shorter than the specified field, the represen
tation is right-justified in the field and the number is extended on the left
with spaces.

If the field is too narrow to represent the integral portion of the output num
ber, the ERROR condition is signaled.

•Examples

The tables below show the relationship between the internal and external
representations of numbers that are read or written with the F format item.

F Format Item 133

File

Input Examples
The "input stream" shown in the table is a field of characters begin
ning at the current position in the stream and continuing to the right.
The target type is the type of the variable to which the input value is
assigned.

Input Format
Item Stream Target Type Target Value
F(10,2)
F (10, 4)
F' (8, 5)
F (l 0)

-123458.78 ••• DECIMAL(l.0,2) -123458,78
.... 1231.J I 5870~:'.i. ,, i· DEC I M,~:iL (10 ,z) J. :?3d + ~5[)
-.123458788 •• , DECIMAL(5,5) -0+12345
1231.J. 58788.,.. F1....or1T i::::iEc (7) l. :?3i.~~:.=;c::;ut:::+o:::::

Output Examples
The output source value shown in the table is either a constant or the
value of a variable that is written out with the associated format item.

Output Source Value Format Item Output Value

-12+234 F < 3 t 0) -12
-12+234 F (8 t2) -12+23
-12+234 F (7 t3) -12.234
-1+23458E3 F (8) 666-1235
-1+23458E3 F (8 t2) -1234.58
'1000'53 F < 4) 6512
'1000000000000000'5 F (5) 32788
'100000'53 F (5) 32788
'A5CEDF'54 F (10) 6611258815

A PL/I file is a source of input data or a target for output data. All I/0
operations must specify the name of the PL/I file on which the operation is to
be performed; the name of a PL/I file is declared in a DECLARE statement.
When a file is opened, it must also be associated with an external, or physical,
file or device.

PL/I provides two distinct types of I/O processing. Each type of processing
handles input and output data in a different manner, and each has a unique
set of input/output statements. These types of input/output are:

• Stream input/output, or simply stream I/0. The stream I/0 statements are
GET and PUT.

• Record input/output, or simply record I/0. The record I/O statements are
READ, WRITE, DELETE, and REWRITE.

When a file is read or written using stream I/0, the data is treated as if it
forms a continuous stream. Individual fields of data within the stream are
delimited by commas, spaces, and record boundaries. A stream I/0 statement
specifies one or more fields to be processed in a single operation.

When a file is read or written using record I/0, however, a single record is
processed upon the execution of an I/O statement.

The following subsections discuss input/output concepts that apply to both
stream and record 1/0. Additional details on each of these forms of I/0 can be
found under the entries "Stream Input/Output" and "Record Input/Output."

134 File

• File Declarations

A file declaration specifies an identifier, the FILE attribute, and one or more
file description attributes that describe the type of input/output operation
that will be used to process the file.

A file is denoted in an input/output statement by a FILE option:

FILE(file-reference)

where file-reference is the name specified in the file's declaration. For
example:

DECLARE INFILE FILE SEQUENTIAL INPUT;
OPEN FILECINFILE>;

Here, INFILE is the name of a file constant. A file constant is an identifier
declared with the FILE attribute and without the VARIABLE attribute. Ex
cept for the default file constants SYSIN and SYSPRINT, all files must be
declared before they can be opened and used.

By default, all file constants have the EXTERNAL attribute. Any external
procedure that declares the identifier with the FILE attribute and without the
INTERNAL attribute can access the same file constant and therefore the
same physical file.

• File Variables

In PL/I, you can also refer to files using file variables and file-valued func
tions. For example:

DECLARE ANYFILE FILE VARIABLE;

ANYFILE = INFILE;
OPEN FILECANYFILE>;

If INFILE is declared as in the preceding example, the OPEN statement
opens the file INFILE.

A file variable can also be given a value by passing a file constant as an
argument or by return of a file constant as the value of a function. For
example:

GETFILE: PROCEDURE CPRINTFILE);
DECLARE PRINTFILE FILE VARIABLE;

This file variable is given a value when the procedure GETFILE is invoked.

FILE Attribute

The FILE attribute declares a file constant or file variable.

The FILE attribute is implied by any of the following file description attrib
utes:

DIRECT
ENVIRONMENT
INPUT
KEYED

OUTPUT
PRINT
RECORD

SEQUENTIAL
STREAM
UPDATE

FILE Attribute 135

If the VARIABLE attribute is not specified, the FILE attribute declares a file
constant. If the INTERNAL attribute is not specified, the file has the
EXTERNAL attribute by default. All external declarations of a file constant
are associated with the same file.

• Restrictions

• The FILE attribute conflicts with all other data type attributes.

• If the VARIABLE attribute is not specified, no storage class attributes are
allowed.

• If the FILE attribute is used to declare a variable or parameter, no file
description attributes may be specified.

File Data

A PL/I file, or file constant, is represented by a file control block. A file control
block is an internal data structure maintained by PL/I.

A file variable is represented internally as a longword that contains a pointer
to a file control block. The value of the file variable, when evaluated, is the
address of the file control block for the file with which the variable is currently
associated.

File Description Attributes and Options

The operations that can be performed on an open file depend on both the
attributes of the file and the physical organization of the file or device that is
associated with the PL/I file constant.

Attributes can be specified for a file constant in its declaration or its opening.
The file description attributes specified in the DECLARE statement for a file
are permanent attributes. The file description attributes used in a particular
opening of a file are obtained by merging the permanent attributes and attrib
utes specified at the opening. For example:

DECLARE TAPEIO FILE RECORD;
OPEN FILE(TAPEIO) OUTPUT;

The DECLARE statement specifies that a permanent attribute of the file is
RECORD, that is, it will be processed using record I/0 statements. The
OPEN statement adds the attribute OUTPUT to the file's description.

The rules governing the merging of attributes during file opening are given
under the heading "Opening a File." Particular implications of using a
specific file description attribute are given under the entry for the attribute.

The file description attributes are summarized in Table F-1. These attributes
can be specified on either DECLARE or OPEN statements.

136 File Data

Table F-1: Summary of File Description Attributes

Attribute Meaning

DIRECT Records in the file will be accessed randomly only.

INPUT The file is an input file and will only be read.

KEYED Records in the file will be accessed by key.

OUTPUT The file is an output file and will only be written.

PRINT The file will be output on a printer or terminal.

RECORD The file will be accessed using record 1/0 statements.

SEQUENTIAL Records in the file will be accessed sequentially.

STREAM The file will be accessed using stream I/O statements.

UPDATE The file will be accessed for both reading and writing and records may be
rewritten and deleted.

• File Access Modes

Most file description attributes relate to the way in which a file will be used,
for example, whether it will be an input or an output file, or whether it will be
used for record 1/0 or stream I/O. Table F-2 shows the valid combinations of
access modes for files and the relationship of each combination to the file
organizations supported by VAX-11 PL/I.

Table F-2: File Access Attributes

Valid Devices
Attributes Attributes and File
Specified Implied Organizations Usage

PRINT STREAM Any output Individual data values are written with PUT statements that
OUTPUT device or file convert the values to character strings and automatically for-

except indexed mat the strings into lines, or records. A PUT statement may fill
part or all of one or more lines. Data conversion and alignment
within lines may use the default processing provided by the
PUT LIST form of the PUT statement or may be explicitly
controlled by format specification.s in the PUT EDIT form of
the PUT statement. The output fields may be aligned to spe-
cific tab positions.

The PAGESIZE and LINESIZE options may be specified to
control the formatting of lines on pages. The ENDPAGE condi-
tion is signaled when the end-of-page is reached.

(Continued on next page)

File Description Attributes and Options 137

Table F-2 (Cont.): File Access Attributes

Valid Devices
Attributes Attributes and File
Specified Implied Organizations Usage

STREAM Any input Individual data items are read by GET statements. A single
INPUT device or file GET statement may process all or part of one or more lines, or

except indexed records. The format of an input field may be determined by the
default processing provided by the GET LIST form of the GET
statement or may be explicitly controlled by format specifica-
tions in the GET EDIT form of the GET statement.

STREAM Any output This form of stream output is similar to that provided when
OUTPUT device or file PRINT is specified, except that tab positioning and page for-

except indexed matting are not provided. Moreover, when string values are
written with the PUT LIST form of the PUT statement, they
are enclosed in apostrophes. Files that are created with these
attributes may be read back in using GET LIST statements
when the file is opened with the STREAM and INPUT attrib-
utes.

SEQUENTIAL RECORD Any output Records may be added to the end of the file using WRITE
OUTPUT device or file statements. Each WRITE statement adds a single record to the

except indexed file.

SEQUENTIAL RECORD Any input Records in the file are read using READ statements. Each state-
INPUT device or file ment reads a single record.

SEQUENTIAL RECORD Relative, READ statements read a file's records in order. PL/I maintains
UPDATE indexed, the current record, which is the record just read. This record

sequential disk 1 may be replaced in a REWRITE statement. In a relative or
indexed sequential file, the current record may also be deleted
with a DELETE statement. Each statement processes a single
record.

DIRECT KEYED Relative, WRITE statements insert records into the file at positions speci-
OUTPUT RECORD indexed, fied by keys. Each statement inserts a single record.

sequential disk 1

DIRECT KEYED Relative, READ statements specify records to be read randomly by key.
INPUT RECORD indexed, Each statement reads a single record.

sequential disk 1

DIRECT KEYED Relative, READ, WRITE, and REWRITE statements specify records ran-
UPDATE RECORD indexed, · domly by key. In a relative or indexed file, records may also be

sequential disk 1 deleted by key.

KEYED RECORD Relative, WRITE statements insert records into the file at positions speci-
SEQUENTIAL indexed, fied by keys. Each statement inserts a single record. This mode
OUTPUT sequential disk 1 is identical to DIRECT OUTPUT.

KEYED RECORD Relative, READ statements access records in the file randomly by key or
SEQUENTIAL indexed, sequentially.
INPUT sequential disk 1

KEYED RECORD Relative, Any record 1/0 operation is allowed except a WRITE statement
SEQUENTIAL indexed, that does not specify a key or a DELETE statement for a se-
UPDATE sequential disk 1 quential disk file with fixed-length records.

1. The file must have fixed-length records.

138 File Description Attributes and Options

• Associating a PL/I File with a VAX/VMS File

The TITLE option of the OPEN statement specifies the name of the
VAX/VMS file or device that is associated with the file. The name given in
the TITLE option can be a VAX/VMS logical name or file specification or a
PL/I variable whose value represents a VAX/VMS logical name or file specifi
cation. For example:

OPEN FILE <TAPEIO) TITLE('MT:');

This TITLE option specifies a magnetic tape device. See "TITLE Option."
Additional information on file naming and logical names can be found in the
VAX-11 PL/I User's Guide.

• ENVIRONMENT Options

The ENVIRONMENT attribute can be used to specify properties of a file
that are unique within the context of the VAX/VMS operating system. For
example, you use the ENVIRONMENT attribute to specify the format of
records in a file, the maximum record number for a relative file, and so on.
You need to specify the ENVIRONMENT attribute only when you wish to
take advantage of some special feature of the VAX/VMS file system, for
example, if you want to define the number of buffers to use on input/output
operations, or if the defaults applied to new files when they are created are not
satisfactory.

For a list of these options, see "ENVIRONMENT Attribute." Complete de
tails on the meanings of the options are given in the VAX-11 PL/I User's
Guide.

FILE Option

The FILE option is specified in a stream or record I/0 statement to designate
the file upon which an operation is to be performed. The FILE option is
required on all I/0 operations except GET and PUT statements that access
the default file constants SYSIN and SYSPRINT. The FILE option has the
format:

FILE (file-reference)

file-reference
A reference to an identifier declared as a file constant, a scalar refer
ence to a variable with the FILE attribute, or a function that returns a
file value.

File Organization

A file organization defines the manner in which the data in a record file is
arranged. The VAX-11 Record Management Services (RMS) support the fol
lowing different file organizations:
• Sequential - a sequential file contains records that are arranged in serial

order.

File Organization 139

• Relative - a relative file contains numbered records that can be accessed
by specifying the number.

• Indexed sequential - an indexed sequential file contains records that have
one or more key fields and indexes that provide access to the records by key
specification.

Operations on these files are normally performed using record I/0 statements.
Stream I/O statements can be used for any of these files in which all of the
data is ASCII. Operations on files of each type are described individually,
below. For a general discussion of the access modes that can be applied to
each file organization, see "File Description Attributes and Options."

For complete details and examples of using various file organizations in
VAX-11 PL/I, see the VAX-11 PL/I User's Guide.

• Sequential Files

In V AX-11 PL/I, the term "sequential file" applies to the physical organiza
tion of the records in the file, and not to the manner in which the records will
be accessed. The records can contain ASCII data or non-ASCII data and may
be accessed using record I/0 or stream I/O statements.

The records in a sequential file may have any of the following record formats:

• Variable length

• Fixed length

• Variable length with a fixed-length control area

In a sequential file with variable-length records, records may or may not be of
the same length. This is the default record format for sequential files.

The properties and uses of sequential files with variable-length records with a
fixed-length control area are described in the VAX-11 PL/I User's Guide.

To create a sequential file with fixed-length records, the ENVIRONMENT
options FIXED_LENGTH_RECORDS and MAXIMUM_RECORD_SIZE
must be specified. A sequential disk file with fixed-length records may be
accessed randomly. In this case, the key is the relative record number of the
record in the file, with the first record in the file being relative record number
one.

• Relative Files

A relative file contains a set of numbered records with numbers in the range of
1 to a maximum record number. A relative file has a fixed-length slot for each
possible record number; not all slots need be filled at any one time. The size of
each slot is set at the length of the maximum record size when the file is
created.

Each record in the file has a unique number. Inserting and deleting records
does not change the numbers of the other records.

Records may be accessed randomly or sequentially. Random access of a given
record is performed by specifying the record number as a key in the KEY or
KEYFROM option of a record I/0 statement.

140 File Organization

When a relative file is created, the maximum number of records that can
be written to the file can be specified with the ENVIRONMENT option
MAXIMUM_RECORD_NUMBER. If no maximum number is specified,
there is no maximum; that is, the file may be of any size and the record
numbers are not checked when new records are added.

• Indexed Sequential Files

An indexed sequential file contains records that have a specifically defined
structure and indexes. The structure of all records in the file is defined in
terms of one or more key fields, each of which has a position in the record and
a data type; no two records may have the same key. The key fields are
determined when the file is created.

The file has an index for each key field. Records in the file can be accessed
randomly by specifying a KEY or KEYFROM option that tells the value of a
key. For example: ·

READ FILE(F) l·<EY('ABC') INTO ()-();

This READ statement reads the record from the file F that has the character
string ABC in the key field of the record.

In an 1/0 operation, PL/I automatically converts a key value specified in an
I/0 statement to the data type of the key value in the record.

When records in a file have more than one key field or index, there are a
primary index and a number of alternate indexes. In the alternate indexes,
duplicate instances of the same key are allowed. For example, in a key of
names and addresses, a zip code field may be defined as an alternate key.
Many records may have same value in the zip code key field.

The keys are numbered; the primary index is always numbered 0. To specify
the index by which the record is to be located, you specify the INDEX_
NUMBER option. For example:

READ FILE(F) KEY(12) INTO(X)
OPTIONS (INDEX_NUMBER(2))

Here, the READ statement uses the index numbered 2; the record with a key
of 12 in this alternate index field is transferred into the variable X.

The INDEX_NUMBER option is necessary only to change indexes during
file processing. By default, each operation uses the same index that was used
for the most recent operation on the file. When a file is initially opened or
when a WRITE statement specifies a KEYFROM option, the index number is
set to the primary index, 0.

To access an indexed sequential file in PL/I, you can specify random or
sequential access, or both. When an indexed sequential file is accessed
sequentially, records are read based on the key values of the current index
number.

If an index with alternate keys contains duplicate key values in the alternate
keys, a random READ or DELETE operation accesses the first such record
with the specified key. (Sequential processing can then be used to access the
records with duplicate keys.) Records are always inserted into an indexed

File Organization 141

sequential file based on the value of the primary key; thus, records that have
duplicate alternate keys are inserted without respect to the values of the
alternate keys.

FINISH Condition Name

The FINISH condition name can be specified in an ON, SIGNAL, or
REVERT statement to designate a FINISH condition or a FINISH ON-unit.

PL/I signals the FINISH condition in the following contexts:

• When any procedure in the program executes the STOP statement

• When a procedure that specifies OPTIONS(MAIN) executes a RETURN
statement, or, if the procedure does not execute a RETURN statement,
when its corresponding END statement is executed

• When a program exits as a result of a call to the system procedures
SYS$EXIT or SYS$FORCEX (Force Exit), or after the program is inter
rupted by an external CTRL key function

• When the SIGNAL FINISH statement signals the condition

The ways in which a PL/I program can be caused or forced to exit in the
VAX/VMS environment are described in the VAX-11 PL/I User's Guide.

ii ON-Unit Compieiion

If a FINISH ON-unit does not execute a nonlocal GOTO, the program is
terminated at the completion of the ON-unit.

For more information, see "ON Conditions and ON-Units" and "ON State
ment."

FIXED Attribute

The FIXED attribute indicates that the variable so declared is an arithmetic
value with a fixed number of fractional digits. Such variables are called fixed
point (as opposed to floating-point) variables because the decimal point is
fixed in relation to the representation of the value.

When you specify the FIXED attribute in a DECLARE statement, you can
specify either the BINARY or DECIMAL attribute to indicate a binary or
decimal fixed-point variable. You can specify the precision, which is the
number of decimal or binary digits used to represent values of the variable.
With fixed-point decimal data, you can also specify a scale factor that indi
cates how much of the precision is used for fractional digits. For example, the
attributes FIXED BINARY(31) define a variable that takes fixed-point bi
nary values of 1 to 31 bits. The attributes FIXED DECIMAL(l0,2) define a
variable that takes fixed-point decimal values of up to 10 decimal digits, two
of which are fractional. PL/I supplies default attributes for attributes that you
do not specify.

142 FINISH Condition Name

You can use binary and decimal fixed- point data as follows:

• Ordinarily, you use fixed-point binary data to represent integers. However,
you can also use fixed-point decimal data, which can represent larger
absolute values. Fixed-point binary data must have a zero scale factor, that
is, must have no fractional digits. The precision of a fixed-point binary
variable must be in the range 1-31. See "Fixed-Point Binary Data."

• You use fixed-point decimal data whenever arithmetic values must be
precise to a specified number of fractional digits. For a fixed-point decimal
value, the precision must be in the range 1-31 (decimal digits). The scale
factor, if specified, must be greater than or equal to zero and less than or
equal to the specified precision. If the scale factor is omitted, zero is used
(that is, a decimal integer variable is declared). See "Fixed-Point Decimal
Data."

The default values given for unspecified related attributes are:

Attributes
Specified

FIXED
FIXED BINARY
FIXED DECIMAL

• Restrictions

Defaults Supplied

BINARY (31)
(31)
(10,0)

The FIXED attribute directly conflicts with all data type attributes except
BINARY and DECIMAL.

FIXED Built-In Function

The FIXED built-in function converts an arithmetic or string expression x to
a fixed-point arithmetic value with a specified precision p and, optionally, a
scale factor q. The scale factor q must be a nonnegative integer and must be
zero if x is binary; if q is omitted, it is assumed to be zero. The precision p
must be greater than zero and less than or equal to 31.

The format of the function is:

FIXED(x,p[,q])

• Returned Value

The result type is fixed-point binary or decimal, depending on whether x is
binary or decimal. (If xis a bit string, the result type is fixed-point binary; if x
is a character string, the result type is fixed-point decimal.)

The expression x is converted to a value v of the result type, following the
usual rules (see "Conversion of Data" for details). The returned value is v
with precision p and scale factor q. If q is omitted, the returned value has the
converted precision of x and the scale factor zero (see "Expression" for de
tails). FIXEDOVERFLOW is signaled if appropriate.

FIXED Built-In Function 143

Fixed-Point Binary Data

The attributes FIXED BINARY are used to declare binary integers in PL/I.
The BINARY attribute is implied by FIXED. The declaration of a single
fixed-point binary variable is of the form:

DECLARE identifier FIXED [BINARY] [(precision)];

identifier
The name used to refer to the variable.

precision
An integer from 1 to 31, giving the number of bits used to represent
values of the variable. If you do not supply the precision, the default is
31. Depending on the precision you specify, either eight bits (a byte),
16 bits (a word), or 32 bits (a longword) are allocated; the high-order
bit is used to represent the sign of a value.

Because fixed binary variables have a maximum precision of 31, fixed binary
integers can have values only in the range of -2,147,483,648 through
2,147,483,647. An attempt to calculate a binary integer outside this range, in a
context that requires an integer value, signals the FIXEDOVERFLOW condi
tion.

There is no form for a fixed-point binary constant, although constants of other
computational types are convertible to fixed-point binary. A fixed-point
binary variable is usually given values by assigning to it an expression of
another computational type or another fixed-point binary variable. See "Con
stant" and "Conversion of Data."

• Restrictions

Some operations that are valid for other arithmetic data are invalid for fixed
point binary data:

• Fixed-point binary data cannot have a nonzero scale factor (that is, cannot
have fractional digits). Consequently, you should not use the division opera
tor (/) with two fixed-point binary operands, because the operation would
normally result in fractional digits. Instead, use the DIVIDE built-in func
tion.

• Operations that combine fixed-point decimal (including pictured) and
fixed-point binary operands are performed in fixed-point binary in standard
PL/I. Because fixed-point binary values cannot have fractional digits, you
should not use a fixed-point binary operand in the same operation with a
fixed-point decimal or pictured operand that has fractional digits. If you
must perform such an operation, use the DECIMAL built-in function to
convert the binary operand to decimal.

For more information, see "Integer Data" and "Fixed-Point Decimal Data."

144 Fixed-Point Binary Data

• Internal Representation of Fixed-Point Binary Data

sign

0

Byte
For a fixed binary value,
PL/I allocates as much

sign space as is required to
contain the value based
on the number of bits 16 0
needed.

Word

sign

3blf
0

I
Longword

Storage for fixed-point binary variables is always allocated in a byte, word, or
longword. For any fixed-point binary value:

• If 1 :::; p :::; 7, a byte is allocated.

• If 8 :::; p :::; 15, a word is allocated.

• If 16 :::; p :::; 31, a longword is allocated.

The binary digits of the stored value go from right to left in order of increasing
significance; for example, bit 6 of a FIXED BINARY(?) value is the most
significant bit and bit 0 is the least significant.

In all cases, the high-order bit (7, 15, or 31) is used to encode the sign.

Fixed-Point Decimal Data

Fixed-point decimal data is used in calculations where exact decimal values
must be maintained, for example, in financial applications. Fixed-point deci
mal data with a scale factor of zero may also be used whenever integer data is
required.

This discussion is divided into the following parts:

• Constants

• Variables

• Use in expressions

• Internal representation

Fixed-Point Decimal Data 145

• Fixed-Point Decimal Constants

A fixed-point decimal constant can contain one or more of the decimal digits 0
through 9 with, optionally, a decimal point and/or a sign. If there is no deci
mal point, PL/I assumes that the decimal point is immediately to the right of
the rightmost digit. Some examples of fixed-point decimal constants are:

12
i.~ t 56
12345t5t~

,, 0004
OL

The precision (p) of a fixed-point decimal value is the total number of digits
in the value. The scale factor (q) is the number of digits to the right of the
decimal point, if any.

• Fixed-Point Decimal Variables

The format of a declaration of a single fixed-point decimal variable is:

DECLARE identifier [FIXED] DECIMAL [(p[,q])];

identifier

p

q

The name to be used for the variable.

An integer constant giving the total number of decimal digits used to
represent values of the variable. The value must be in the range:

1 :::; p ::; 31

An integer constant giving the number of fractional digits in values of
the variable. The value must be in the range:

O:::;q::;p

If you omit p and q, the default values are p=lO, q=O.

Some examples of fixed-point. decimal declarations are:

DECLARE PERCENTAGE FIXED DECIMAL (5,2);
DECLARE TONNAGE FIXED DECIMAL (8);

• Use in Expressions

You cannot use fixed-point decimal data with a nonzero scale factor in calcu
lations with binary integer variables. If you must use the two types of data
together, use the DECIMAL built-in function to convert the binary value to a
scaled decimal value before attempting an arithmetic operation. For example:

DECLARE I FIXED BINARY,
SUM FIXED DECIMAL <10,z>;

SUM= SUM+ DECIMAL (I);

146 Fixed-Point Decimal Data

• Internal Representation of Fixed-Point Decimal Data

Fixed decimal data is stored in packed decimal format. Each digit is stored in
a half-byte, as illustrated below. The last half-byte contains, in bits 0 through
3, a value indicating the sign. Normally, the hexadecimal value 'C' indicates
a positive value and the hexadecimal value 'D' indicates a negative value.

7 4 3 0

digit1 digit2

digit3 digit4

... sign

FIXEDOVERFLOW Condition Name

The FIXEDOVERFLOW condition name can be specified in an ON,
SIGNAL, or REVERT statement to designate a fixed overflow condition or
ON-unit.

PL/I signals the FIXEDOVERFLOW condition in the following circum
stances:

• When the result of an arithmetic operation on a fixed-point decimal or
binary integer value exceeds the maximum precision of the VAX-11 hard
ware. The maximum precision allowed for a fixed-point decimal or binary
value is 31.

• When the source value of a fixed-point expression exceeds the precision of
the target variable. For example, PL/I signals FIXEDOVERFLOW when a
value that is not in the range -128-127 is assigned to a fixed-point binary
variable with a precision of seven bits. Similarly, the condition is signaled if
a value assigned to a picture variable has more integral digits than are
specified by the picture specification.

The value resulting from an operation that causes this condition is, undefined.

• Value of ONCODE

There are two VAX-11 hardware exceptions that result in the FIXEDOVER
FLOW condition. These are SS$_DECOVF (for a fixed-point decimal over
flow) and SS$_INTOVF (for a fixed-point binary integer overflow). An
ON-unit that receives control when FIXEDOVERFLOW is signaled can refer
ence the ONCODE built-in function to determine which condition is actually
signaled.

To define an ON-unit to respond to either of these errors specifically, use the
VAXCONDITION keyword. For details on using the ON CODE built-in func
tion and the VAXCONDITION condition name, see the VAX-11 PL/I User's
Guide.

FIXEDOVERFLOW Condition Name 147

• ON-Unit Completion

If the ON-unit does not transfer control elsewhere in the program, control
returns to the point at which the condition was signaled.

For more information, see "ON Conditions and ON-Units" and "ON State
ment."

FLOAT Attribute

The FLOAT attribute indicates that a variable is a floating-point arithmetic
item.

When you specify the FLOAT attribute in a DECLARE statement, you can
specify either the BINARY or DECIMAL attribute and you can specify the
precision. For a floating-point binary variable, the precision can be in the
range of 1through113; for a floating-point decimal variable, the precision can
be in the range of 1 through 34.

The default values given for unspecified related attributes are:

Attributes
Specified

FLOAT
FLOAT BINARY
FLOAT DECIMAL

• Restrictions

Defaults Supplied

BINARY (24)
(24)
(7)

The FLOAT attribute directly conflicts with all data type attributes except
BINARY and DECIMAL.

FLOAT Built-In Function

The FLOAT built-in function converts a string or arithmetic expression x to
floating point, with a specified precision. P must be an integer constant that is
greater than zero and less than or equal to the maximum precision of the
result type (34 for floating-point decimal, 113 for floating-point binary).

The format of the function is:

FLOAT(x,p)

• Returned Value

The result type is floating-point binary or decimal, depending on whether xis
a binary or decimal expression. (If x is a bit-string expression, the result type
is floating-point binary; if x is a character-string expression, the result type is
floating-point decimal.)

The expression x is converted to a value v of the result type, following the
usual rules (see "Conversion of Data"). The value returned is v to the speci
fied precision; UNDERFLOW or OVERFLOW is signaled if appropriate.

148 FLOAT Attribute

Floating-Point Data

The floating-point data types provide a way to express very large and very
small numbers. For example, floating-point data types are used in scientific
calculations.

All floating-point calculations are performed on values in one of the VAX
binary floating-point formats. In general, the precision of the result is deter
mined by the maximum precision of any operands in the operation. The
numerical result of an operation is rounded to the result precision, so the
results of most operations are approximate.

This discussion of floating-point data is divided into the following parts:

• Constants

• Variables

• Use in expressions

• Floati'ng-point data formats

• Internal representation of floating-point data

•Constants

A floating-point constant can contam one or more of the decimal digits 0
through 9 with an optional decimal point, followed by the letter E and from
one to five decimal digits representing a power of 10. The floating-point value
and the integer exponent can both be signed. The first portion of the value, to
the left of the letter E, is called the mantissa.

Some examples of floating-point constants are:

2[10
····3Ef.3
]2[.... :~3

• d5G32F l t3

The decimal precision of each of these values is the number of digits in the
mantissa.

In VAX-11 PL/I, all floating-point constants are decimal.

•Variables

The keyword FLOAT identifies a floating-point variable in a declaration. To
declare a single floating-point binary variable, specify a DECLARE statement
as follows:

DECLARE identifier FLOAT [BINARY] [(p)J;

identifier

p

The name to be used for the variable.

The precision of the variable, that is, the number of digits to maintain
in the mantissa. The precision must be an integer constant in the
range 1-113. (If the compiler qualifier G_FLOAT is not used, the
range is restricted to 1-53.) If you do not specify a precision, PL/I uses
the default precision of 24.

Floating-Point Data 149

To declare a decimal floating-point variable, specify:

DECLARE identifier FLOAT DECIMAL [(p)l;

identifier

p

The name to be used for the variable.

The decimal precision, which must be an integer constant in the range
1-34. (If the compiler qualifier G_FLOAT is not used, the range is
restricted to 1-15.) If you omit the precision, the default precision is 7.

Some examples of floating-point variables are:

DECLARES FLOAT BINARY C1G>;
DECLARE X FLOAT DECIMAL CJO);

Note that you can use either BINARY or DECIMAL to declare a floating
point value. Since the internal representation of floating-point variables is
binary, it is recommended that you use BINARY FLOAT to declare variables
(this is the default). In any event, you should declare all floating-point varia
bles using the same base.

• Using Floating-Point Data in Expressions

You can use both integer and scaled decimal constants freely in floating-point
expressions. An arithmetic constant is always converted to the appropriate
internal representation for use in a floating-point operation. The target type
for the conversion depends on the context. In the following example:

DECLARE X FLOAT BINARY C53);

the constant 1.3 is converted to floating point when this expression is

evaluated.

Such a conversion is normally done during compilation, although in some
cases the constant is maintained in decimal until run time.

• Floating-Point Data Formats

VAX-11 PL/I supports four types of floating-point values. Table F-3
summarizes the ranges of precision for each type.

150 Floating-Point Data

Table F-3: VAX Floating-Point Types

Flo a ting-Point Sign Exponent Fractional
Type Bits Bits Bits

F (single precision) 1 8 24

D (double precision) 1 8 53

G1 1 11 53

H1 1 15 113

1. Types G and H require a V AX-11 hardware option; types F and D are available on all VAX
processors.

The PL/I compiler selects the appropriate VAX-11 floating-point type based
on, first, the precision you specify and, second, a compile-time qualifier on the
PLI command. The types are selected as shown in Table F-4.

Table F-4: Floating-Point Types Used by PL/I

Range of p Range of p Floating-Point
(DECIMAL) (BINARY) Type

1 s p s 7 lsps 24 F

8sps 15 25 s p s 53 Dor G1

16 s p s 34 54 s p s 113 H

1. D is used if possible, unless G is requested at compile time.

• Internal Representation of Floating-Point Data

In all VAX floating-point formats, the value 0 is indicated by setting the sign
bit and all exponent bits to zero. Effectively, this allows representation of, for
example, a value with a 24-bit fraction and an eight-bit exponent in single
precision, even though only 23 bits in the format are allocated for the fraction.

The double-precision and G-floating formats, as used by PL/I, have the same
fractional precision; G-floating format allows an extra three bits for the
exponent. Notice that the double-precision format has 56 bits available for the
fraction, although only 53 bits are used by PL/I. If you specify a floating-point
binary precision in the range 54-56, and you do not use the G_FLOAT com
piler qualifier, the number is represented in double-precision format. (If the
G_FLOAT qualifier is used, numbers with this range of precision are repre
sented by the H-floating format.)

Floating-Point Data 151

This small reduction in the precision of double-precision numbers is necessary
so that the compiler does not select H-floating format on machines that lack
the necessary hardware. The intent is to preserve the size of a structure
containing double-precision data regardless of whether the G_FLOAT
qualifier is used.

Single Precision Double Precision

sign sign

7 6 0 7 6 0

exponent fraction exponent fraction

fraction fraction

fraction

fraction

G-Floating ff-Floating
sign sign

4 3 0 15 l4 0

exponent fraction l exponent

fraction fraction

fraction fraction

fraction fraction

fraction

fraction

fraction

fraction

FLOOR Built-In Function

The FLOOR built-in function returns the largest integer that is less than or
equal to an arithmetic expression x. Its format is:

FLOOR(x)

152 FLOOR Built-In Function

• Returned Value

If x is a floating-point expression, the returned value is a floating-point value.
If x is a fixed-point expression, the returned value is a fixed-point value with
the same base as x and with the attributes:

precision= min(31,p-q+l)

scale factor = 0

where p and q are the precision and scale factor of x .

• Examples

A ::: 3 ;
\/ FLOOR.(A) ; I:;_. y ::: ""l 00 ·!\· I I . ..) '
r 3 32 1-1 ' ' \/ -- FLOOR (A) ; '*'

\/ -4 00 * ./ I I '

Format Items and Their Uses

This entry describes the formatting of input and output data in PL/I. Format
ted data is transferred with the GET EDIT and PUT EDIT statements, which
include a format specification made up of format items.

PL/I format items are categorized as follows:

• The data format items, A, B, E, F, and P, are used for input or output of
data in various formats. A and B are used for character- and bit-string
formats, respectively. E and F are used for floating- and fixed-point for
mats, respectively. P is used for input or output of data in a specified
picture format. All data format items can be used with either the FILE or
STRING option in edit-directed statements.

• The remote format item, R, is used to specify the label of a FORMAT
statement, which contains a remote list of format items.

• The control format items, SKIP, LINE, PAGE, TAB, COLUMN, and X,
are used to control the position in the input or output stream at which data
is placed or from which it is acquired. Of the control format items, only X
can be used with the STRING option in edit-directed statements.

The PL/I format items are summarized in Table F-5. Their general uses are
discussed in this entry. Each format item also has its own entry in this man
ual; for example, see "A Format Item."

Format Items and Their Uses 153

Table F-5: Summary of Format Items

Format Item

A[(w)J

B[(w)J

Bl[(w)J

B2[(w)J

B3[(w)J

B4[(w)J

COLUMN(position)

E(w[,d])

F(w[,d])

LINE(number)

154 Format Items and Their Uses

Use

With GET EDIT, reads w characters from the input stream;
with PUT EDIT, converts the value to be output to a
w-character string and outputs the resulting string.

With GET EDIT, reads w binary digits (Os and ls) from the
input stream; with PUT EDIT, the corresponding value is
converted to a character string of length w, containing Os and
ls, and written to the output stream. The B format item is
equivalent to Bl.

With GET EDIT, reads a character string of length w com
posed of the characters 0 and 1 from the input stream; with
PUT EDIT, the corresponding value is converted to a charac
ter string of length w, containing Os and ls, and written to
the output stream.

With GET EDIT, reads a character string of length w com
posed of the characters 0, 1, 2, and 3 from the input stream
and converts it to a bit string; with PUT EDIT, converts w
two-bit fields within the corresponding value to one of the
characters 0, 1, 2, or 3, and writes the w-character string to
the output stream.

With GET EDIT, reads a character string of length w com
posed of the characters 0, 1, 2, 3, 4, 5, 6, 7 from the input
stream and converts it to a bit string; with PUT EDIT, con
verts w three-bit fields within the corresponding value to a
string of the characters 0, 1, 2, 3, 4, 5, 6, or 7 and writes the
w~character string to the output stream.

With GET EDIT, reads a character string of length w com
posed of the characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E,
or F from the input stream; with PUT EDIT, converts w
four-bit fields within the corresponding value to a string of
the characters 0 through F and writes thew-character string
to the output stream.

With GET EDIT, specifies the position at which reading of
data is to proceed; with PUT EDIT, outputs spaces until the
specified column position. May be used with files only.

With GET EDIT, converts a field of w characters from the
input stream to a floating-point number; with PUT EDIT,
converts a value to a w-character floating-point representa
tion with d fractional digits in the mantissa and writes the
w-character string to the output stream.

With GET EDIT, converts a field of w characters from the
input stream to a fixed-point value; with PUT EDIT, con
verts a value to aw-character fixed-point representation with
d fractional digits and writes the w-character string to the
output stream.

Valid for print files only. Specifies a line number, relative to
the top of the page, at which output is to continue.

(Continued on next page)

Table F-5 ·(Cont.): Summary of Format Items

Format Item

P 'picture,

PAGE

R(label)

SKIP[(linecount)J

TAB[(n)l

X[(n)l

• Data Format Items

Use

With GET EDIT, acquires a character string from stream
whose length is specified by the picture specification and
signals ERROR if the string is not a pictured value; with
PUT EDIT, converts an expression to a pictured value as
specified by the picture and writes the pictured value to the
output stream.

Valid for print files only. Specifies that output is to be
continued at the top of the next page.

Indicates that format items are to be acquired from the
FORMAT statement at the specified label.

With GET EDIT, continues reading after 'linecount · lines;
with PUT EDIT, outputs 'linecount' blank lines and contin
ues output. May be used with files only.

Valid for print files only. Continues output at the nth tab
stop relative to the current position.

With GET EDIT, ignores n characters in the input stream;
with PUT EDIT, places n spaces in the output stream. May
be used with either files or character strings.

The data format items refer to a field of characters in the stream. Each data
format item specifies the width of the field in characters and either the man
ner in which the field is used to represent a value (output) or the manner in
which the characters in the field are to be interpreted (input). Because the
representation or interpretation is under control of the format items, certain
symbols used in the stream with GET LIST and PUT LIST are not used with
GET EDIT or PUT EDIT:

• Strings input by the GET EDIT statement should not be enclosed in apos
trophes unless the apostrophes are intended to be part of the string. Strings
output by PUT EDIT are not enclosed in apostrophes.

• Bit strings input by the GET EDIT statement should not be enclosed in
apostrophes nor followed by the radix factors B, Bl, B2, B3, or B4. These
factors are not added by the PUT EDIT statement on output.

• The comma and space characters are not interpreted as data separators on
input. On output, values are not automatically separated by spaces.

The following guidelines apply to errors and mismatches that occur between
the actual data values and the fields specified by data format items:

• On input, the ERROR condition is signaled if the field of characters cannot
be interpreted as required by the format item.

• On output, strings are left-justified in the specified field, and numeric data
is right-justified. Truncation occurs if the field is too narrow to contain the
necessary characters. Strings are truncated on the right and numeric data
oh the left.

Format Items and Their Uses 155

• Format Specifications

In the GET EDIT, PUT EDIT, and FORMAT statements, format items are
used singly or in combination to form format specifications. A format specifi
cation can have three forms:

format-item
iteration-factor format-item
iteration-factor(forma t~specification, ...)

The iteration factor is an integer that repeats the following format item or the
following list of format specifications. If the iteration factor precedes a single
format item that is not parenthesized, they must be separated by a space. For
example, the statement:

PUT EDIT (A) (F(5,2));

specifies a five-character field containing decimal digits, two of which are
fractional. Used by itself as a format specification, this item specifies one such
field. To specify two such fields, precede the item with the iteration factor 2:

PUT EDIT CA,B) CZ FC5,2));

As shown above by the third form, an iteration factor can also repeat an entire
list of format specifications, as in:

P U T E D I T ((A (I) D 0 I = 1 T 0 1 0)) / * 1 0 a r- r- a Y e 1 e ii"1 e n t s * /
(2 (F (5 , 2) , 2 (F (7 , 2) , E (8)))) ; / ·~· 1 0 f o r i;i a t i t e ii"1 s ·~ /

Expanded into individual format items, the above specification is:

F(5,2),F(7 ,2) ,E(8) ,F(7 ,2) ,E(8) ,F(5,2) ,F(7 ,2) ,E(8), F(7 ,2) ,E(8)

In general, data listed in the GET EDIT or PUT EDIT statement is matched
to the expanded list of data format items, working from left to right, until the
end of the input-target or output-source list is reached. Matching occurs only
between input/output data and data format items; control format items are
executed if and only if they are encountered while the matching is in progress.
See also "Format-Specification List."

Format-Specification List

Format-specification lists are used in GET EDIT, PUT EDIT, and FORMAT
statements to control the conversion of data between the program and the
input or output stream, and to precisely control positioning within the input
or output stream. This entry describes the syntax of format-specification lists
and the manner in which a format list is processed to acquire or_ transmit
data.

156 Format-Specification List

• Rules for Use

This section briefly describes rules and constraints for format-specification
lists. For a general discussion of format items, see "Format Items and Their
Uses." Each format item is defined in detail, for both input and output, in an
individual entry (for instance, see "F Format Item").

• A GET EDIT or PUT EDIT statement must include one and only one
format-specification list and also one and only one list of input targets or
output sources. The input-target or output-source list must immediately
follow the keyword EDIT and must be immediately followed by the format
specification list.

• The same set of data format items is used for both input and output. The F
and E format items are used for 1/0 in fixed-point and floating-point for
mats, respectively. The A and B format items are used for 1/0 in character
string and bit-string formats, respectively. The P format item is used for
input and output of data, with the format specified by a picture contained
in the format item.

• Of the control format items, only X can be used when the input or output
stream is a character string.

• Unlike the statement options PAGE, LINE, and SKIP, the format items
PAGE, LINE, and SKIP are executed in the order in which they occur.

• How Edit-Directed Operations Are Performed

This section describes the manner in which format items are matched to input
targets or output sources. See also "Examples" at the end of this entry.

All edit-directed input and output statements contain the following syntax:

EDIT (input-target, ...) (format-specification, ...)

or

EDIT (output-source, ...) (format-specification, ...)

Each format specification is one of the following:

• A single control or data format item.

• A construct containing an iteration factor followed by one or more format
items (for an explanation of iteration factors, see "Format Items and Their
Uses").

• A remote (R) format item, which specifies the label of a FORMAT state
ment. Effectively, the entire format-specification list in the FORMAT
statement is acquired and inserted at the position of the R format item.

Each input target is one of the following:

• A variable reference, which can be to a scalar or aggregate variable of any
computational data type

• One of these constructs:

1. (input-target, ... DO reference=expression
[TO expression] [BY expression] [WHILE(expression)]

2. (input-target, ... DO reference=expression
[REPEAT expression] [WHILE (expression)])

Format-Specification List 157

Each output source is one of the following:

• Any expression with a computational value, including references to scalar or
aggregate variables of any computational type

• A construct containing a DO specification, as shown for input targets

When PL/I performs an edit-directed operation, it examines the list of input
targets or output sources, beginning with the first in the list. If the target or
source is an array, the array is expanded in row-major order to form an
ordered list of individual data items. If the target or source is a structure, the
structure is expanqed in the order of its declaration to form a list of individual
items. If the target or source contains a DO specification, the item or items
that precede the DO keyword are expanded in the preceding manner, and an
ordered list of individual items is then created as per the DO specification.

Within a single target or source, items at the deepest level of parentheses are
processed first.

Given a list of one or more data items contained in the first target or source,
PL/I processes the data items from left to right. Beginning with the leftmost
data item, and for each subsequent item, PL/I executes format items until the
data item has been either assigned a value from the input stream or converted
to a character representation and placed in the output stream. Control format
items are therefore executed in the order in which they occur in the format
specification list. With the first target or source, the execution of format items
begins with the leftmost format item in the format-specification list. If the
end of the format-specification list is reached, PL/I returns to the leftmost
format item and continues.

When all items contained in the first target or source have been processed,
PL/I operates on the next target or source. The target or source is evaluated,
and PL/I then examines the format-specification list, beginning where the
previous operation stopped.

This processing continues until all data items in the input-target or output
source list have been processed, at which point the edit-directed statement
terminates. If this occurs while PL/I is in the middle of the list of format
items, the format items to the right are not executed.

•Examples

The following examples show typical edit-directed operations. All cases shown
are for input (GET EDIT), but the operations for PUT EDIT are similar. The
simple cases are with input targets that are scalar variable references. The
next cases shown are with aggregate references. The last cases shown are with
DO specifications.

Simple Cases
These are cases in which the input targets are scalar variables.

GET EDIT <A t5 tC tD) <A< 12) tF<5 t2) tF(G t2) tA(14));

Acquire four values from the input stream: a 12-character string, a
five-digit fixed-point decimal number, a six-digit fixed-point decimal
number, and a 14-character string; assign these values, with any

158 Format-Specification List

necessary conversions, to the target variables A, B, C, and D, respec
tively. (For details of the conversions to the targets' types, see "Con
version of Data.")

GET EDIT (AtBtCtD) (A(12));

Acquire four 12-character strings and assign them (with conversions, if
necessary) to the targets A, B, C, and D.

GET EDIT (A1B1C1D) (A(12), 2 F(5t2l, A(14));

Acquire a 12-character string, two fixed-point decimal numbers, and a
14-character string, in that order, and assign them to A, B, C, and D.
(Embedded spaces can be used in format lists, as elsewhere, for clar
ity; the space is required between "2" and "F(5,2)" .)

GET EDIT (A1BtC1D1E) (2(A(12) 1A(14)) , A<20)) ;

Acquire, in order, a 12-character string, a 14-character string, another
12-character string, another 14-character string, and a 20-character
string; assign the strings, in that order, to A, B, C, D, and E.

GET EDIT (A ,5 ,c 1D tEl (2(A(12) 1A(14)) t SKIP t A<20));

Same operation as previous example, but acquire the 20-character
string from the next line.

Aggregates
These cases use input targets that are references to array and structure
variables.

GET EDIT (A) (2(A<12) 1A(14)) , A<20)) ;

where A is an array of five elements or a structure with five scalar
members.

Expand A to a list of individual data items. Then acquire, in order, a
12-character string, a 14-character string, another 12-character string,
another 14-character string, and a 20-character string; assign the
strings, in that order, to the elements A(l) through A(5) (if an array) or
to the five members of structure A in the order in which the members
are declared.

GET EDIT (A1B) (2(A<12) 1A(14)) , A<20)) ;

where both A and B are aggregates with five elements or members.

For A, perform the same operation as the previous example, and then
repeat the operation for B, using the same format list each time. Since

Format-Specification List 159

there are five format items specified, and the aggregates both have five
elements or members, strings of the same length are acquired for corre
sponding elements of A and B.

GET EDIT <NAME> <SKIPtA<20) tSKIPtA(80));

where NAME is a structure declared as

DECLARE 1 NAME
2 FIRST CHARACTER(20) VARYING,
2 LAST CHARACTER<BO> VARYING;

Skip to the next line and acquire a 20-character string. Assign the
string to NAME.FIRST. Skip to the next line and acquire an
80-character string. Assign that string to NAME.LAST.

GET EDIT (At5) (2(A<12) ,A(14)) , SKIPt A<20)) ;

where both A and B are four-element arrays.

From the current line, execute A(12), A(14), A(12), and A(14), in that
order, and assign the results to A(l)-A(4). Skip to the next line, and
then execute A(20), A(12), A(14), and A(12), in that order, and assign
the results to B(l)-B(4); the list of data items is now exhausted, so do
not execute SKIP a second time.

DO Specifications
These examples use input targets that include DO specifications. The
DO specifications control the assignment of input values to variables
that are arrays and based structures.

GET EDIT ((5(!) DO 1=10 TO 4 BY -2) t 5(1))
(2(A<12) tA(14)) , A(20)) ;

where Bis a 10-element array. (Notice that the parentheses surround
ing the first input target are in addition to the parentheses surround
ing the entire input-target list.)

Execute the format items A(12), A(14), A(12), and A(14) in that order,
and assign the resulting strings to elements B(lO), B(8), B(6), and
B(4), respectively. Execute A(20) and assign the result to B(l).

GET EDIT ((<A<I t.J) DO J=l TO 10) DO I=l TO 20)
(F (5) tF (G));

where A is a two-dimensional array of 20 rows and 10 columns.

Two hundred decimal integers are acquired and assigned to the array
elements in the order A(l,l), A(l,2), ... ,A(20,10). Eiements with odd
numbered columns receive five-digit integers, and those with even
numbered columns, six-digit integers. Since the DO specifications
specify row-major order, the same operation is performed by:

GET EDIT (A) (F(5) tF(G));

Since row-major order is the default, nested DO specifications are
generally used to change the order in which values are assigned.

160 Format-Specification List

The example is also identical with

DO I = 1 TO 20;
DO J = 1 TO 1CH
GET EDIT(A(I tJ)) (F(5) tF(G));

ENO;
ENO;

Compared with a DO construct in the input-target list, however, the
use of nested DO groups is much less efficient in execution speed. In
addition, the identity is not generally true for all stream input/output
statements. For instance, the statement

GET SKIP EDIT(input-target, ...) (format-specification, ...);

has different effects in the two cases. If it occurs in a pair of nested DO
groups, as shown previously, the SKIP option is executed on each
iteration of the innermost DO group. If instead the DO specifications
are in the input-target list, the SKIP option is executed only once, and
before any other input processing is performed.

GET ED IT ((CURRENT-> PERSON+ NAME
DO CURRENT = FIRST
REPEAT CURRENT->PERSON.NEXT
WHILE (CURRENT ~= NULL>

(A (80))

where CURRENT and FIRST are pointers and PERSON is a based
structure declared as:

DECLARE /* Based structure for list eleMents: *I
1 PERSON BASEDt
I* Pointer to next eleMent: *I
2 NE>(T PO INTER t

2 NAME CHARACTER(80) VARYING;

DECLARE /* NULL function and Pointers to first and
current list eleMents: *I
NULL BUILTINt
(FIRSTtCURRENT> POINTER;

The GET EDIT statement acquires SO-character strings from the
input stream and assigns each to a list member PERSON .NAME. On
the first input operation, the SO-character string is assigned to
FIRST->PERSON.NAME. On subsequent iterations of the DO speci
fication, the "next-pointer," PERSON.NEXT, is assigned to CUR
RENT before the input operation. Before each input operation, includ
ing the first, the WHILE clause tests to determine whether the end of
the queued list has been reached (indicated by the null pointer).

The DO REPEAT construct is generally used in this type of applica
tion. It is advisable to provide a WHILE clause in this or any DO
REPEAT construct, to be sure that the operation has a defined termi
nation. However, the WHILE clause is not required.

Format-Specification List 161

FORMAT Statement

The FORMAT statement describes a remote format-specification list to be
used by GET EDIT or PUT EDIT statements. The FORMAT statement and
remote (R) format item are useful when the same format specification is used
by a large number of GET EDIT and/or PUT EDIT statements. In this case, a
change to the format specification can be made in the single FORMAT state
ment, rather than in each GET or PUT statement.

The form of the FORMAT statement is:

label: FORMAT (format-specification, ...);

label
A valid PL/I label, required on a FORMAT statement. This label is
specified in the GET EDIT or PUT EDIT statement that contains a
remote format item, R, in its format-specification list.

format-specification
A list of one or more format items that match corresponding input
targets in a GET EDIT statement, or output sources in a PUT EDIT
statement. For further information, see "Format-Specification List"
and "Format Items and Their Uses."

FREE Statement

The FREE statement releases the storage that was allocated for a based
variable. The format of the FREE statement is:

FREE variable-reference ;

variable-reference
A reference to the based variable whose storage is to be released.

If you do not explicitly free the storage acquired for a based variable, the
storage is not freed until the program terminates.

If you free a variable that is explicitly associated with a pointer, the pointer
variable becomes invalid and must not be used to reference storage.

•Examples

FREE LI ST;
FREE P->INREC;

These statements release the storage acquired for the based variable LIST
and for the allocation of INREC pointed to by the pointer P.

ALLOCATE STATE SET <STATE_PTR);

FREE STATE;

This FREE statement releases the storage for the based variable STATE and
makes the value of ST ATE_PTR undefined.

162 FORMAT Statement

FROM Option

The FROM option is specified on a REWRITE or WRITE statement to desig
nate the variable whose contents are to be written to a record file. This option
is specified in the format:

FROM (variable-reference)

variable-reference
A reference to a variable whose contents are to be written to the record
file.

For example:

WRITE FILE <STATE_FILE) FROM <STATE_BUFFER);

This WRITE statement performs a sequential output operation to the file
STATE_FILE. The contents of the variable STATE._BUFFER are used to
create a new record at the end of the file.

See "REWRITE Statement" and "WRITE Statement."

Function

A function is a procedure that returns a scalar value. A function receives
control when its name is referenced in the context of an expression. There are
two types of function:

• PL/I built-in functions

• User-written functions

The PL/I built-in functions are available in all programs and generally need
not be declared. (See also "Built-In Function" and "BUILTIN Attribute.")

A user-written function must:

• Contain the RETURNS option on the PROCEDURE statement.

• Specify a value on the RETURN statement that terminates the procedure.
The value specified must be of a data type that is valid for conversion to the
data type specified on the RETURNS option.

For example:

ADDER: PROCEDURE (XtY) RETURNS <FLOAT);
DECLARE <XtY) FLOAT;

RETURN (><+Y);
END;

This function has two parameters, X and Y. They are floating-point binary
variables declared within the function. When this function is invoked by a
function reference, it must be passed two arguments to correspond to these
parameters. It returns a floating-point binary value representing the sum of
the arguments it is passed.

Function 163

• Function Reference

The format of a function reference is:

entry-name ([argument, ...])

entry-name
The name of an entry constant or variable used to invoke the function.
(See "Procedure" and "Entry Data.")

argument, ...
One or more arguments to be passed to the function. If specified, the
arguments must correspond to the parameters specified in the
PROCEDURE or ENTRY statement that identifies the entry name of
the function.

Arguments must be enclosed in parentheses. Multiple arguments must
be separated by commas.

For example, the function ADDER may be referenced as follows:

TOTAL= ADDER<5t8);

Arguments for a function must be separated by commas. An argument can be
an expression of any data type.

If a function has no parameters, you must specify a null argument list; other
wise, the compiler treats the reference as a reference to an entry constant.
Specify a null argument list as in this example:

GETDATE = TIME_STAMP();

This assignment statement contains a reference to the function TIME_
STAMP, which has no parameters. This rule applies to PL/I built-in func
tions as well; however, if you declare a PL/I built-in function explicitly with
the BUILTIN attribute, you need not specify the empty argument list.

For more information, see "Built-In Function" and "Procedure."

164 Function

G
GET Statement

The GET statement acquires data from an input stream, which is either a
stream file or a character-string expression. The input file may be a file
declared with the STREAM attribute or the default file SYSIN, commonly
associated with the user's default input device. (See also "Terminal
Input/Output.'')

This entry describes the syntax and options of GET statements. For a detailed
description of the execution of a GET statement, see "Stream Input/Output."

The GET statement has several forms. They are summarized in Figure G-1
and described in this section.

GET EDIT (input-target, ...) (format-specification: ...)

[FILE (file-reference)]
[OPTIONS (option, ...)]
[SKIP [(expression)]] ;

GET LIST (input-target, ...)

[Fl LE (file-reference)]
[OPTIONS (option, ...)]
[SKIP [(expression)]] ;

GET SKIP [(expression)]

[FILE (-file-reference)] ;

GET STRING (expression)

{
EDIT (input-target, ...) (format-specification, ...) }
LIST (input-target, ...)

Options

NO __ ECHO
NO __ FIL TER
PROMPT (expression)
PURGE_ TYPE ___ AHEAD

Figure G-1: Forms of the GET Statement

165

•GET EDIT

The GET EDIT statement acquires fields of character-string data from an
input stream, which can be a stream file or a character-string expression. The
stream file may be a declared file or the default file SYSIN. GET EDIT
converts the character strings under control of a format specification and
assigns the resulting values to a specified list of input targets (variables). It
also allows input of characters from selected positions in the input stream.

The form of the GET EDIT statement is:

GET EDIT (input-target, ...) (format-specification, ...)

FILE(file-reference)
[SKIP[(expression)]]

P"I'IONS(option, ...)]

STRING(expression)
..
'

input-target
The names of one or more variables to be assigned values from the
input stream.

The input targets must be separated by commas.

An input target has the following forms:

1. reference

where the reference is to a scalar or aggregate variable of any
computational type. If the reference is to an array, data is assigned
to array elements in row-major order. If the reference is to a struc
ture, data is assigned to structure members in the order of their
declaration.

2. (input-target, ... DO reference=expression
[TO expression] [BY expression] [WHILE(expression) l)

where the input target may be of any of these forms, and the
references and expressions are as for the DO statement. Notice
that the parentheses surrounding this form of input target are in
addition to the parentheses surrounding the entire input list.

3. (input-target, ... DO reference=expression
[REPEAT expression][WHILE (expression)])

where the input target may be of any of these forms, and the
references and expressions are as for the DO statement. Notice
that the parentheses surrounding this form of input target are in
addition to the parentheses surrounding the entire input list.

For a discussion of the matching of format items to input targets, and
of the· use of DO specifications, see "Format-Specification List."

format-specification
A list of format items to control the conversion of data items in the
input list. Format items can be data format items, control format
items, or remote format items. For each variable name in the input-

166 GET Statement

target list, there is a corresponding data format item in the format
specification list that specifies the width of the field and controls the
data conversion. (See "Format-Specification List" and "Format Items
and Their Uses.")

FILE(file-reference)
An option specifying that the input stream is a file; the reference is to
a declared file variable or constant. If neither the FILE option nor the
STRING option is specified, PL/I assumes the file SYSIN. This file is
associated with the default system input file SYS$INPUT.

If a file is specified and is not currently open, PL/I opens it with the
attributes STREAM and INPUT. The UNDEFINEDFILE condition
is signaled if the file cannot be opened.

STRING(expression)
An option specifying that the input stream is a character-string
expression. The STRING option cannot be used with the FILE option,
nor can it be used with the OPTIONS or SKIP option.

SKIP [(expression)]
An option that advances the input file a specified number of lines

·before processing the input list. May be used only with the implied or
explicit FILE option. The expression, if specified, indicates the
number of lines to advance; if it is omitted, the default is to skip to the
next line. The SKIP option is always executed first, before any other
input or positioning of the input file, and regardless of its position in
the statement.

OPTIONS (option, ...)
An option that specifies one or more of the following options. May be
used only with the default or explicit FILE option. The options must
be separated by commas and enclosed in parentheses.

NO_ECHO
NO_FILTER
PROMPT (string-expression)
PURGE_TYPE_AHEAD

The options are described fully in the VAX-11 PL/I User's Guide.

•Examples

GET EDIT <FIRSTtMID_INITIALtLAST)
<A< 12) tA(1) tA(20));

Reads the next three character strings from the default stream input file
(SYSIN) and assigns the strings to FIRST, MID_INITIAL, and LAST,
respectively.

GET EDIT (SOCIAL_SECURITY) (A (12))
FILE <SOCIAL) SKIP <12) ;

Opens (if closed) the stream file SOCIAL, advances 12 lines, reads the first
12 characters of the line, and assigns the characters to the variable
SOCIAL_SECURITY.

GET Statement 167

GET EDIT (Nt (A(I) DO I=1 TON))
(F(4) tSKIPtlOO F<10t5));

where the dimension of A is less than or equal to 100. The value of N is read
from the input stream using the format item F(4). The process then skips to
the next line (record). N elements are then read into the array A. Each
element is read using the format item F(l0,5).

GET EDIT <NAME+FIRSTtNAME+LAST)
<A< 10) t>((3) 1A(20))
STRING< 'PhiliP A+ Rothbera l);

Assigns 'Philip666t:.' to the structure member NAME.FIRST, skips the mid
dle initial, period,- and space, and assigns 'Rothberg666666666666, to
NAME.LAST.-

For more examples, see "Format-Specification List."

•GET LIST

The GET LIST statement acquires character-string data from an input
stream, which may be a stream file or a character-string expression. The
stream file may be a declared file or the default file SYSIN. The acquired
character strings are assigned to input targets named in the GET LIST state
ment, with the character strings being converted automatically to the targets'
data types.·

Use the GET LIST statement to read "unformatted" data from a stream file
or character string. Because it is not necessary to place the input data in
specific columns, GET LIST is useful for acquiring data from a terminal.

The form of the GET LIST statement is:

GET LIST (input-target, ...)

FILE (file-reference)
[SKIP[(expression)]]
[OPTIONS(option, ...)J

STRING(expression)

input-target
The names of one or more variables to be assigned values from the
input stream.

The input targets m{ist be separated by commas.

An input target has the following forms:

1. reference

where the reference is to a scalar or aggregate variable of any
computational type. If the reference is to an array, data is assigned
to array elements in row-major order. If the reference is to a struc
ture, data is assigned tq structure members in the order of their
declaration.

168 GET Statement

2. (input-target, ... DO reference=expression
[TO expression][BY expression][WHILE(expression)])

where the input target may be of any of these forms, and the
references and expressions are as for the DO statement. Notice
that the parentheses surrounding this form of input target are in
addition to the parentheses surrounding the entire input list.

3. (input-target, ... DO reference=expression
[REPEAT expression][WHILE (expression)])

where the input target may be of any of these forms, and the
references and expressions are as for the DO statement. Notice
that the parentheses surrounding this form of input target are in
addition to the parentheses surrounding the entire input list.

The entry "Format-Specification List" shows how to use DO specifica
tions with GET EDIT, and their use with GET LIST is comparable in
most respects.

FILE(file-reference)
An option specifying that the input stream is a file; the reference is to
a declared file variable or constant. If neither the FILE option nor the
STRING option is specified, PL/I assumes the file SYSIN. This file is
associated with the default system input file SYS$INPUT.

If a file is specified and is not currently open, PL/I opens it with the
attributes STREAM and INPUT. The UNDEFINEDFILE condition
is signaled if the file cannot be opened.

STRING(expression)
An option specifying that the input stream is a character-string ex
pression. The STRING option cannot be used with the FILE option,
nor can it be used with the OPTIONS or SKIP option.

Note that, as with list-directed input from a file, input fields must be
separated by a space or comma. (See "Examples" below.)

SKIP [(expression)]
An option that advances the input file a specified number of lines
before processing the input list. May be used only with the implied or
explicit FILE option. The expression, if specified, indicates the num
ber oflines to advance; if it is omitted, the default is to skip to the next
line. The SKIP option is always executed first, before any other input
or positioning of the input file, and regardless of its position in the
statement.

OPTIONS (option, ...)
An option specifies one or more of the following options. May be used
only with the default or explicit FILE option. The options must be
separated by commas and enclosed in parentheses.

NO_ECHO
NO_FILTER
PROMPT (string-expression)
PURGE_TYPE_AHEAD

The options are described fully in the VAX-11 PL/I User's Guide.

GET Statement 169

• How to Specify Input Data

The items to be read into the input targets are separated by a space or a single
comma. Multiple spaces are treated as a single space, and a comma may be
surrounded by spaces. The following rules apply:

• No items can be split across lines unless the split occurs inside a quoted
string.

• Character strings do not have to be enclosed in apostrophes unless they
contain a space or comma or are written on more than one line. When a
character string is enclosed in apostrophes, n apostrophes within the string
are written as n+l apostrophes; for instance, to input the word isn't, write
isn;'t.

• When a line begins with a comma or when two commas appear in the line
without intervening nonspace characters, the item in the input-target list
corresponding to that item is not updated. The target retains whatever
value it contained before GET LIST was executed.

<ai Every input field, including the last input field in a line, must be termi
nated by a space or comma. On input from a terminal, a space is appended
to the last input field when a carriage return is typed (unless
ENVIRONMENT(IGNORE_LINE_MARKS) is used or the carriage re
turn is inside a quoted string).

• Input fields are also terminated by the end-of-file (FILE option) or end-of
string (STRING option) unless the end is encountered inside a quoted
string.

• If an input request from GET LIST encounters a null record, the corre
sponding input target is nulled. That is, the null character string (") is
assigned, with appropriate conversion, to the input target. A null input
record means a null record in a file or, if the input is from a terminal, a
carriage return with no other input. See "Terminal Input/Output" for ex
amples. If ENVIRONMENT(IGNORK_LINE_MARKS) is used for the
input file, record terminators such as the carriage return are ignored, and
the GET LIST statement waits until the input request is satisfied.

• The ERROR condition is signaled whenever a data item in the stream
cannot be converted to the data type of the corresponding item in the input
target list.

• The ENDFILE condition is signaled if the end of the file is encountered
during file input. The ERROR condition is signaled if the expression in the
STRING option does not contain enough characters to complete processing
of the input-target list.

•Examples

GETS: PROCEDURE OPTIONS<MAIN>;

DECLARE NAME CHARACTER<BO) VARYING;
DECLARE AGE FIXED;
DECLARE CWEIGHTtHEIGHT> FIXED DECIMALC5t2);
DECLARE SALARY PICTURE '$$$$$$V+$$';
DECLARE DOSAGE FLOAT;

170 GET Statement

DECLARE INFILE STREAM INPUT FILE;
DECLARE OUTFILE PRINT FILE;

GET FILE<INFILE>
LIST<NAMEtAGEtWEIGHTtHEIGHT1SALARY1DOSAGE>;

PUT FILE<OUTFILE)
LIST<NAME1AGE1WEIGHT1HEIGHT1SALARY1DOSAGE);

END GETS;

If the file INFILE.DAT contains the following data:

'Tho1y1as R. Doole)'' ,33 t150.GO 15+87 '15000.50 15E-G,

then the program GETS writes the following output to OUTFILE.DAT:

Thomas R. Dooley 33 150.GO 5+87 $15000.50 4+9999999E-OG

In the input file (INFILE.DAT) the string 'Thomas R. Dooley' was sur
rounded by apostrophes so that the spaces between words would not be inter
preted as field separators.

GSTR: PROCEDURE OPTIONS<MAIN);

DECLARE STREXP CHARACTER<BO) VARYING;
DECLARE <A1B1C1D1E) FIXED;
DECLARE OUTFILE STREAM OUTPUT FILE;

OPEN FILE<DUTFILE> TITLE< 'GSTR.OUT');

STRE><P = '112131415';
GET STRING<STREXP) LISTCA1B1C1D1E);
PUT FILECOUTFILE) LIST<A1BtC1D1E);

END GSTR;

The program GSTR writes the following output to GSTR.OUT:

1 2 3 a 5

For other examples, see "Terminal Input/Output."

•GET SKIP

The GET SKIP statement positions the input file at the start of a new line.
This format of the GET statement is:

GET [FILE(file-reference)] SKIP [(expression)] ;

file-reference
The name of the file to be advanced one or more lines.-- If no file is
specified, PL/I assumes the default file SYSIN. This file is associated
with the default system input file SYS$INPUT.

If a file is specified and is not currently opened, PL/I opens it with the
attributes STREAM and INPUT.

expression
An integer expression giving the number of lines to advance; the de
fault is one line.

GET Statement 171

GLOBALDEF Attribute

The GLOBALDEF attribute declares an external variable or an external file
constant. It can optionally control the program section in which the data is
allocated.

The format of the GLOBALDEF attribute is:

GLOBALDEF [(psect-name) l

psect-name
The name of a program section. A program section name can contain
up to 31 alphanumeric characters, including a dollar sign ($) or under
line (_), The first character cannot be a numeric (0 through 9).

If you do not specify a program section name, PL/I places the defini
tion for the name in the default program section associated with the
variable.

The GLOBALDEF attribute implies the EXTERNAL attribute. The
GLOBALDEF attribute also implies STATIC except when used for file
constants.

For complete details on using the GLOBALDEF attribute to declare global
external symbols, see the VAX-11 PL/I User's Guide.

• Restrictions

• The GLOBALDEF attribute conflicts with the GLOBALREF and
INTERNAL attributes.

• It cannot be used with ENTRY constants.

• Only one procedure in a program may declare an external variable with the
GLOBALDEF attribute.

GLOBALREF Attribute

The GLOBALREF attribute indicates that the declared name is a global
symbol defined in an external procedure.

The GLOBALREF attribute implies the EXTERNAL attribute. The corre
sponding name must be declared in another procedure with the GLOBALDEF
attribute or, if the external procedure is written in another programming
language, with its equivalent in that language.

For complete details on using the GLOBALREF attribute to declare global
external symbols, see the VAX-11 PL/I User's Guide.

• Restrictions

• The GLOBALREF attribute conflicts with the INITIAL, GLOBALDEF,
and INTERNAL attributes.

• If GLOBALREF is specified with the FILE attribute, no other file descrip
tion attributes can be specified.

172 GLOBALDEF Attribute

GOTO Statement
The GOTO statement causes control to be transferred to a labeled statement
in the current procedure or any outer procedure. The format of the GOTO
statement is:

{ GOTO } label-reference ·
GOTO '

label-reference
A label constant or an expression that, when evaluated, yields a label
value. A label value denotes a statement in the program and a block
activation. (See "Label.")

The .specified label cannot be the label of an ENTRY, FORMAT, or
PROCEDURE statement. The label reference specified in a GOTO
statement can be any of the following:

• An unsubscripted label constant. For example:
GOTO ALPHA;

ALPHA:

• A subscripted label constant, for which the subscript is specified
with an integer constant or a variable expression. For example:

GOTO PROCESS (1) ;

PROCESS(!):

• A label variable that, when evaluated, yields a label value. For
example:

DECLARE PROCESS LABEL VARIABLE;

PROCESS = BILLING;

GOTO PROCESS;

• A subscripted label variable that, when evaluated, yields a label
value. For example: I

DECLARE XC5) LABEL;
(1) = NEXT;

GOTO >« 1) ;

In the case of a label variable, the resulting label value must designate
an existing block activation. (This will always be true for a label con
stant.) If the designated block activation is the current block activa
tion, the GOTO statement effects a local GOTO. No special processing
occurs.

• Nonlocal GOTO

If the specified label value is not in the current block, the GOTO statement is
considered a nonlocal GOTO. The following can occur:

• The current block, and any blocks intervening between it and the block
containing the label value, are released. This rule applies to procedure
blocks and to begin blocks.

GOTO Statement 173

• If a GOTO statement transfers control out of a procedure that is invoked in
a function reference, the statement containing the function reference is not
evaluated further.

See also "Procedures - Terminating Procedures."

•Examples

ON ERROR GOTO ERROR_MESSAGE;

The GOTO statement provides a transfer address for the current procedure
when the ERROR condition is signaled.

DECLARE PROCESS<5> LABEL VARIABLE;

GOTO PROCESS(2);

The GOTO statement evaluates the label reference and transfers control to
the label constant corresponding to the second element of the array
PROCESS. PROCESS consists of label variables.

For more information, see "Label."

17 4 GOTO Statement

H
HBOUND Built-In Function

The HBOUND built-in function returns a fixed-point binary integer that is
the upper bound of a specified dimension of an array. Its format is:

HBOUND(reference,dimension)

reference
The name of an array variable.

dimension
An integer constant indicating a dimension of the specified array.

See "Array - Array-Handling Functions" for an example.

175

I
IDENT Option

The PROCEDURE statement accepts the option IDENT, which places an
identifying character string in the upper left corner of the listing file and in
the object file as the module's "version" for the linker. The option format is:

OPTIONS(IDENT(string) [,option, ...])

string

option

Identifier

A character-string constant giving the identifying label for the listing.
Only the first 31 characters of the string are placed in the object
module.

Other procedure options.

An identifier is a user-supplied name for a procedure, a statement label, or a
variable that represents a data item. The rules for forming identifiers are:

• An identifier can have from 1 to 31 characters.

• An identifier can consist of any of the following characters:

- The alphabetic letters A through Z and a through z. PL/I converts all
lowercase letters to uppercase when it compiles a source program. Thus,
the identifiers abc, ABC, Abe, and so on all refer to the same identifier.

- The numeric digits 0 through 9.

- The underline character (_).

- A dollar sign character ($).

• An identifier cannot contain any blanks.

• An identifier must begin with an alphabetic letter, a dollar sign ($), or an
underline (_).

Some examples of valid identifiers are:

STATE
total
FICA_PAID_YEAR_TQ_DATE
ROUND1
SS$._.UNW I ND

176

IF Statement

The IF statement tests an expression and performs a specified action if the
result of the test is true. The format of the IF statement is:

IF test-expression THEN action [ELSE action]

test-expression
Any valid expression that yields a scalar bit-string value. If any bit of
the value is 1, then the test expression is true; otherwise, the test
expression is false.

action
Any of the following:

• Any unlabeled statement except a DECLARE, FORMAT, PROCE
DURE, END, or ENTRY statement

• An unlabeled DO-group or begin block

The IF statement evaluates the test expression. If the expression is true, the
action specified following the keyword THEN is executed. Otherwise, the
action, if any, specified following the ELSE keyword is executed.

•Examples

IF A < B THEN BEGIN;

The begin block following this statement is executed if the value of the varia
ble A is less than the value of the variable B.

IF ···SUCCESS THEN
CALL PRINT_ERROR;

ELSE
CALL PRINT_SUCCEss;

The IF statement defines action to be taken if the variable SUCCESS has a
false value (the THEN clause) and the action to be taken otherwise (the
ELSE clause).

For details on the syntax of specifying expressions, see "Expression."

• Nested IF Statements

The action specified in a THEN or an ELSE clause may be another IF
statement.

An ELSE clause is matched with the nearest preceding IF/THEN that is not
itself matched with a preceding ELSE. For example:

IF ABC
THEN IF \I\/ -r

1\ I L.

THEN GOTO GBH;
ELSE GOTO THESTORE;

ELSE GOTO HOME;

In the above example, the first ELSE clause is executed if ABC is true and
XYZ is false. The second ELSE clause is executed if ABC is false.

IF Statement 177

In some cases, proper matching of IF and ELSE may require a null statement
as the target of an ELSE. For example:

IF ABC
THEN IF XYZ THEN GOTO HOME;

ELSE;
ELSE GOTO THESTORE;

In this example, the ELSE GOTO THESTORE statement is executed if ABC
is false.

0/olNCLUDE Statement

The %INCLUDE statement incorporates text from other files into the current
source file during compilation. It can occur anywhere in a PL/I source file; it
need not be within a procedure. The format of the %INCLUDE statement is:

%INCLUDE { , file-spec, } ;
module-name

file-spec
A file specification enclosed in apostrophes. The name is subject to
logical name translation and the application of default values by the
VAX/VMS system.

module-name
The 1- to 31-character name of a text module in a library of INCLUDE
files and/or other text modules. The name of the library containing the
module must be specified in the PLI command when the source pro
gram is compiled.

For details on the specification of files and libraries to be included in a PL/I
compilation, see the VAX-11 PL/I User's Guide.

•Examples

%INCLUDE 'SUM+PLI';

This statement copies the contents of the file SUM.PL! into the current file
during compilation.

%INCLUDE SYSTEM_PROCEDURES;

This statement includes a module from a text module library. The library
containing the module SYSTEM_PROCEDURES must be present on the
command that compiles this program.

• Restrictions

The maximum depth to which %INCLUDE statements can be nested is four.

INDEX Built-In Function

The INDEX built-in function returns a fixed-point binary integer that indi
cates the position of a specified substring within a string. The value returned

178 %INCLUDE Statement

indicates the position of the leftmost occurrence of the substring within the
string. If the substring is not found, or if the length of either argument is zero,
the INDEX function returns zero.

The format of the function is:

INDEX(string,substring)

string
The string to search for the given substring. It can be either a charac
ter-string or bit-string expression.

substring
The substring to locate. It must have the same string data type as the
string argument.

•Examples

DECLARE RESULT F !}{ED BI NARY (31) t

NEW_STRING CHARACTER(80);
RESULT= INDEX('ABCDEF' t'DEF');
I* RESULT e9uals a
<DEF besins at fourth Position) */

RESULT = INDEX('SHARP FORTUNE' t'R'>;
I* RESULT e9uals a
(leftMost occurrence of R at
fourth Position) *I

NEl.LSTRING = '315-54-3159';
IF INDEX<NEW_STRINGt'-') =a THEN

GO TO SOCIAL_SECURITY;
I* Expression is TRUE */

INITIAL Attribute

The INITIAL attribute provides an initial value for a declared variable. The
format of the INITIAL attribute is:

INITIAL (initial-element[,initial-element ...])

initial-element
A construct that supplies a value for the initialized variable. The value
must be valid for assignment to the initialized variable. If the initial
ized variable is an array, a list of initial elements separated by com
mas is used to initialize individual elements. The number of initial
elements must be one for a scalar variable and must not exceed the
number of elements of an array variable. Each initial element must be
one of the following forms:

• string-constant

• (iteration-factor) (string-constant)

• [(iteration-factor)] arithmetic-constant

• [(iteration-factor)] scalar-reference

INITIAL Attribute 179

• [(iteration-factor)] (scalar-expression)
• [(iteration-factor)] *
The iteration factors are nonnegative integer-valued expressions that
specify the number of successive array elements to be initialized with
the following value. (Notice that a string constant must be paren
thesized if it is used with an iteration factor.)

The asterisk form specifies that the corresponding array elements are
to be skipped during the initialization.

Some examples are:

DECLARE RATE FIXED DECIMAL C2t2) STATIC INITIAL (.oa>;

DECLARE SWITCH BINARY STATIC INITIAL < '1'B);

DECLARE BELl __ CHAR BI NARY STAT I c INITIAL < 'o7 'Ba> ;

DECLARE OUTPUT_MESSAGE CHARACTERC20) STATIC
INITIAL ('GOOD t'IORNING I);

DECLARE (A INITIAL ("A"), B INITIAL ('B 1
),

C INITIAL ('C')) STATIC CHARACTER;

DECLARE QUEUE_END POINTER STATIC INITIALCNULL< >>;

• Restrictions
• The INITIAL attribute must not be specified for a structure variable. In

stead, initialize individual members of the structure.

• The INITIAL attribute must not be specified for a variable or member of a
variable that has any of the following attributes:

FILE LABEL parameter
BASED ENTRY DEFINED

• You cannot specify the INITIAL attribute for a member of a structure
unless the entire structure was declared with the STATIC or AUTOMATIC
attribute.

• If the initialized variable is STATIC, only constants and references to the
NULL built-in function are allowed. These may be used with a constant
iteration factor and may be enclosed in parentheses.

• Variables and functions (except for parameters) occurring in an initial ele
ment must not be declared in the same block as the variable being initial
ized.

INPUT Attribute

The INPUT file description attribute indicates that the associated file is to be
an input file, that is, the file represents an external source of data.

Specify the INPUT attribute on a DECLARE statement for a file constant or
on an OPEN statement to access the file for reading.

180 INPUT Attribute

The INPUT attribute may be specified with either the STREAM or RECORD
attribute. For a stream file, INPUT indicates that the file will be accessed
using GET statements. For a record file, INPUT indicates that the file will be
accessed using only READ statements.

For example:

DECLARE INFILE RECORD INPUT;

OPEN FILE(INFILE);
READ FILE(INFILE) INTO(RECORD_BUFFER>;

These statements declare, open, and access the first record in the input file
IN FILE.

For a description of the attributes that may be applied to files and the effects
of combinations o(these attributes, see "File Description Attributes and
Options."

The INPUT attribute may be supplied by default for a file, depending on the
context of its opening. See "Opening a File."

• Restrictions

The INPUT attribute conflicts with the OUTPUT, UPDATE, and PRINT
attributes and with any data type attribute other than FILE.

Input/Output Processing

PL/I provides extensive facilities for the transmission of data between varia
bles in a PL/I program and RMS files or communication devices such as
terminals. There are two basic types of input/output in PL/I:

• In stream I/O, the external data (which can be an RMS file or a device) is
treated as a stream of ASCII characters divided into fields delimited by
spaces, tabs, or commas, or by other field specifications. Stream I/0 is
performed by the GET and PUT statements. These statements also perform
conversion between the internal representation of data and the ASCII repre
sentation of the data.

• In record I/0, an operation transmits an entire record. Record I/O is per
formed by the READ, WRITE, DELETE, and REWRITE statements.
These statements can be used to process files with the sequential, relative,
and indexed sequential file organizations.

Each of these types of input/output is described individually in this manual
(see "Stream I/O" and "Record I/0"). For an overview of how to declare and
reference files in PL/I, see the entry "File."

Integer Data

Integer data is used for values that can be expressed in integers, for example,
counters, array subscripts, record numbers, and so on.

Integer Data 181

•Constants

An integer constant can contain one or more of the decimal digits 0 through 9
and, optionally, a sign. Some examples of integer constants are:

245
--88

All integer constants are decimal.

•Variables

Integer variables can be declared as fixed-point binary or fixed-point decimal
with a zero scale factor.

The format of a declaration of a fixed binary integer variable is:

DECLARE identifier FIXED [BINARY] [(p)J;

identifier

p

The name to be used for the variable.

An integer constant representing the precision, that is, the number of
binary digits used to represent values of the variable. The precision
must be in the range 1-31. If you do not specify a precision, PL/I uses
the default precision of 31.

Because fixed binary variables have a maximum precision of 31, fixed binary
integers can have values only in the range of -2,147,483,648 through
2,147,483,647. An attempt to calculate a binary integer outside this range, in a
context that requires an integer value, signals the FIXEDOVERFLOW
condition.
Specify a fixed-point decimal integer variable as follows:

DECLARE identifier [FIXED] DECIMAL [(p)J;

identifier

p

The name to be used for the variable.

The precision of the variable in decimal digits. The maximum preci
sion you can specify for a fixed-point decimal variable is 31. If you
omit the precision, 10 is the default.

For the internal representation and other details of binary and decimal in
tegers, see "Fixed-Point Binary Data" and "Fixed-Point Decimal Data."

• Restricted Integer Expressions

A restricted integer expression is one that yields only integral results and has
only integral operands. Such an expression must use only the addition (+),
subtraction(-), and multiplication(*) operators. Division in a restricted inte
ger expression must be performed with the DIVIDE built-in function. In

182 Integer Data

VAX-11 PL/I, a restricted integer expression may be used in certain contexts
(such as the specification of array bounds) where an integer constant is ordi
narily used.

INTERNAL Attribute

The INTERNAL attribute limits the scope of an identifier to the block in
which the identifier is declared and its dynamic descendents. The format of
the INTERNAL attribute is:

{ INTERNAL}
INT

You need use the INTERNAL attribute only to explicitly declare the scope of
a file constant as internal. File constants, by default, have the EXTERNAL
attribute. All other variables are internal by default.

• Restrictions

The INTERNAL attribute directly conflicts with the EXTERNAL,
GLOBALDEF, and GLOBALREF attributes.

Internal Procedure

An internal procedure is a procedure whose text is contained within that of
another procedure. The name of the internal procedure is declared by its use
as the label of the PROCEDURE statement.

See "Procedure."

Internal Representation of PL/I Data

This entry describes the internal representations used by VAX-11 PL/I for
PL/I data types. For additional information, refer to the entries on individual
data types; for example, see "Bit-String Data."

• Internal Representation of Bit Data

The way that PL/I allocates storage for a bit-string variable depends on
whether the variable is declared with the ALIGNED attribute.
In this discussion, the term "most significant bit" means the leftmost bit in
an external representation of the string, as, for example, when 'the string is
output by the PUT LIST statement. The "least significant bit" is the right
most bit in the external representation.

Unaligned Bit Strings
An unaligned bit string is stored beginning at an arbitrary bit location
in storage; this location is the location of the most significant bit. The

Internal Representation of PL/I Data 183

subsequent, less significant, bits are stored in progressively higher
locations in memory, as shown here:

most significant bit

least significant bit

The following programming sequence illustrates how a value for an
unaligned bit-string variable is stored:

DECLARE ABlT BIT (10);
ABIT = '1011'B;

After the assignment, the variable appears in storage like this:

most significant bit

0 0 0 0 0

least significant bit

Aligned Bit Strings
PL/I allocates storage for an aligned bit-string variable on a byte
boundary and allocates an integral number of bytes. The number of
bytes to allocate is calculated as follows:

ceil(n/8)

where n is the length specified for the bit string.

Beginning at bit 0 (the lowest memory location) of the lowest allocated
byte, the bit string is stored like unaligned bit-string data; that is, the
beginning bit is used to hold the most significant bit in the string. Less
significant bits are stored in progressively higher memory locations.
Unused bits are set to zeros each time the bit-string variable is
assigned a value.

The representation is as follows:

most significant bit
Byte Byte

least significant bit

184 Internal Representation of PL/I Data

The following programming sequence illustrates how values are stored
for aligned bit strings:

DECLARE ABIT BIT C10) ALIGNED;
ABIT = '10011'B;

In this example, the variable ABIT is aligned. When it is assigned the
value 10011, its storage appears as follows:

most significant bit
Byte 1 Byte O

r--~---_,-.._--~~~-v ______ _,__ __ ~~--,

0 0 0 0 0 0 00 0 0 0 0 0

'-----~----J'

Unused
least significant bit

• Internal Representation of Character Data

PL/I stores fixed-length character-string data from right to left, with each
character occupying a byte of storage, as shown here:

Byte Byte Byte Byte

~~~~ 

c4 c3 c2 c1 

c8 c7 c6 c5 

For example, a character string whose value is 'CHARLIE6ALPHA' appears 
as follows in storage: 

Byte Byte Byte Byte 

~~~~ 

R A H c

6 E I L

H p L A

A

Varying-length strings are stored in a num her of bytes equal to n + 2, where n is
the declared maximum length. The two additional bytes contain, in the first
two byte addresses, the current length of the value in bytes.

Internal Representation of PL/I Data 185

• Internal Representation of Variable Entry Data

31

address of procedure mask for
this entry point

parent frame pointer

• Internal Representation of File Data

0

A PL/I file, or file constant, is represented internally by a file control block. A
file control block is an internal data structure maintained by PL/I.

A file variable is represented internally as a longword that contains a pointer
to a file control block. The value of the file variable, when evaluated, is the
address of the file control block for the file with which the variable is currently
associated.

• Internal Representation of Fixed-Point Binary Data

sign

0

Byte
For a fixed binary value,
PL/I allocates as much

sign space as is required to
contain the value based
on the number of bits 16 0
needed.

Word

sign

301f
0

I Longword

Storage for fixed-point binary variables is always allocated in a byte, word, or
longword. For any fixed-point binary value:

• If 1 ::; p ::; 7, a byte is allocated.

• If 8 ::; p ::; 15, a word is allocated.

• If 16 ::; p ::; 31, a longword is allocated.

186 Internal Representation of PL/I Data

The binary digits of the stored value go from right to left in order of increasing
significance; for example, bit 6 of a FIXED BINARY(?) value is the most
significant bit and bit 0 is the least significant.

In all cases, the high-order bit (7, 15, or 31) is used to encode the sign.

• Internal Representation of Fixed-Point Decimal Data

Fixed decimal data is stored in packed decimal format. Each digit is stored in
a half-byte, as illustrated below. The last half-byte contains, in bits 0 through
3, a value indicating the sign. Normally, the hexadecimal value 'C' indicates
a positive value and the hexadecimal value 'D' indicates a negative value.

7 4 3 0

digit1 digit2

digit3 digit4

... sign

• Internal Representation of Floating-Point Data

In all VAX floating-point formats, the value 0 is indicated by the sign bit and
all exponent bits being zero. Effectively, this allows representation of, for
example, a value with a 24-bit fraction and an eight-bit exponent in single
precision, even though only 23 bits in the format are allocated for the fraction.

The double-precision and G-floating formats, as used by PL/I, have the same
fractional precision; G-floating format allows an extra three bits for the expo
nent. Notice that the double-precision format has 56 bits available for the
fraction, although only 53, bits are used by PL/I. If you specify a floating-point
binary precision in the range 54-56, and you do not use the G_FLOAT com
piler qualifier, the number is represented in double-precision format. (If the
G_FLOAT qualifier is used, numbers with this range of precision are repre
sented by the H-floating format.) This small reduction in the precision of
double-precision numbers is necessary so that the compiler does not select
H-floating format on machines that lack the necessary hardware. The intent

Internal Representation of PL/I Data 187

is that the size of a structure containing double-precision data is preserved
regardless of whether the G_FLOAT qualifier is used.

Single Precision Double Precision

sign

7 6 0 7 6 0

exponent fraction exponent fraction

fraction fraction

fraction

fraction

G-Floating H-Floating

sign sign

4 3 0 15 ~ 0

exponent fraction l exponent

fraction fraction

fraction fraction

fraction fraction

fraction

fraction

fraction

fraction

188 lnternal Representation of PL/I Data

• Internal Representation of Variable Label Data

31 0

address of label

parent frame pointer

• Internal Representation of Pointer Data

A pointer occupies a longword (32 bits) of storage and represents a virtual
memory address.

Internal Variable

An internal variable is a variable that is known only within the block in which
it is defined and within all contained blocks. By default, PL/I gives all varia
bles the internal attribute.

See "Block"' and "Scope of Names."

INTO Option

The INTO option is specified in a READ statement to designate a variable
into which the contents of a record from a record file are to be copied. This
option is specified in the format:

INTO (variable-reference)

variable-reference
A reference to a variable into which the contents of the record are to be
copied.

For example:

READ FILE (INFILE) INTO (RECORD_BUFFER) ;

This READ statement reads the next sequential record in the file INFILE and
copies the contents of the record into the variable RECORD_BUFFER.

See "READ Statement."

INTO Option 189

Iteration Factor
An iteration factor is a syntactical method of requesting a specific operation or
function more , than once. In most cases, an iteration factor is an integer
constant that specifies the number of times to repeat a particular item.

Iteration factors are allowed in the following contexts in a V AX-11 PL/I
program:

• Format-specification lists (see "Format-Specification List")

• Initialization of array elements (see "INITIAL Attribute" and "Array")

();; character specifications (see "Picture")

190 Iteration Factor

Key

K

A key is a value that identifies a specific record in a relative file, in a sequen
tial disk file with fixed-length records, or in an indexed sequential file. The
nature of the key depends on the file's organization, as follows:

• If the file is a relative file or a sequential disk file with fixed-length records,
the key is a fixed binary value indicating the relative record number of the
record.

• If the file is an indexed sequential file, the key specifies a key that is
contained within a record. The data type of the key and its location within
the record are as specified when the file was created.

See individual entries for the READ, WRITE, DELETE, and REWRITE
statements for details on how these statements interpret and use keys. For
details on defining key fields for the creation of an indexed sequential file, see
the VAX-11 PL/I User's Guide.

KEY Condition Name

The KEY condition name can be specified in an ON, SIGNAL, or REVERT
statement to designate a key error condition or ON-unit for a specific file.

The format of the KEY condition name is:

KEY (file-reference)

file-reference
A reference to the file constant or file variable for which the ON-unit is
to be established. If the name of a file variable is specified, the varia
ble must be resolved to the name of a file constant when the condition
is signaled.

PL/I signals the KEY condition during an operation on a keyed file when an
error occurs in processing a key. Some examples of errors for which PL/I
signals the KEY condition are:

• The record indicated by the specified key cannot be found.

• The key specification required conversion from one data type to another and
the conversion is not valid.

• The key is not correctly specified.

• The key of a relative file exceeds the maximum record number specified
when the file was created.

191

An ON-unit established to handle the KEY condition can obtain information
about the condition by invoking the following built-in functions:

• The ONFILE built-in function - returns the name of the file being
processed when the condition was signaled.

• The ONCODE built-in function - returns the specific condition value
associated with the error.

• The ONKEY built-in function - returns the key value that caused the
con di ti on to be signaled.

• ON-Unit Completion

If the ON-unit does not execute a nonlocal GOTO, control returns to the
statement immediately following the statement that caused the KEY
condition.

For more information, see "ON Conditions and ON-Units" and "ON
Statement."

KEY Option

The KEY option may be specified in a READ, REWRITE, or DELETE state
ment to indicate a specific record in a file that is opened with the KEYED
attribute. This option is specified in the format:

KEY (expression)

expression
An expression giving the key value that identifies the record of
interest.

For example:

DELETE FILE (CLJST_ACCT) KEY CNAME) ;

This DELETE statement deletes the record in the file CUST _ACCT that has
the key value represented by the variable NAME.

KEYED Attribute

The KEYED file description attribute indicates that records in the specified
file may be accessed randomly. The KEYED attribute implies the RECORD
attribute.

Specify KEYED in a DECLARE statement to identify a file or in an OPEN
statement to open the file. For a description of the attributes that may be
applied to files and the effects of combinations of these attributes, see "File
Description Attributes and Options."

192 KEY Option

• Restrictions

The KEYED attribute conflicts with the STREAM attribute and with any
data type attributes other than FILE.

KEYFROM Option

The KEYFROM option may be specified in a WRITE statement to write a
record to a file opened with the KEYED attribute. The KEYFROM option
designates the key associated with the record. This option is specified in the
format:

KEYFROM (expression)

expression
An expression giving the key value that indicates the record of interest.
The specified value must have one of the computational data types.

For example:

WRITE FILE <EMPLOYEE_REC) FROM CEMP_DATA>
KEYFROM CEMPLOYEE_NUMBER) ;

This WRITE statement writes a record to the file EMPLOYEE_REC by
specifying the KEYFROM option.

See "WRITE Statement."

KEYTO Option

The KEYTO option may be specified in a READ statement to obtain the key
associated with a record that was read sequentially. This option is specified in
the format:

KEYTO (variable-reference)

variable-reference
A reference to a computational variable to be assigned the value of the
key.

For example:

READ FILE (STATE_FILE> INTO CSTATE_BUFFER>
KEYTO (SAVE_NAME> ;

This READ statement reads the next sequential record in the file STATE_
FILE into the variable STATE_BUFFER. The key associated with the record
that is read is copied into the variable SA VE_NAME.

See "READ Statement."

KEYTO Option 193

Keyword

A keyword is a name that has a special m~aning to PL/I when used in a
specific context. In PL/I, keywords identify:

• Statements - for example, DECLARE, READ, or END

• Attributes - for example, DECIMAL, CHARACTER, or FILE

• Options - for example, KEYFROM, SKIP, or REPEAT

PL/I recognizes keywords when they appear in the correct context. You can
also use keywords as identifiers. For example:

DECLARE DECLARE FIXED BINARY (8);

In the above statement, PL/I interprets the first occurrence of DECLARE as
the keyword DECLARE because of its position in the statement. It interprets
the second occurrence of DECLARE as an identifier because of its position.

• Abbreviating Keywords

You can abbreviate some PL/I keywords. The valid abbreviations for PL/I
keywords are given with the keyword description and in Appendix A.

194 Keyword

L
Label

A label identifies a statement so that it can be referred to elsewhere in the
program, for example, as the target of a GOTO statement. A label precedes a
statement. It consists of any valid identifier terminated by a colon. Some
examples are:

TARGET: A = A + B;
~·E~W .. _LOOP:: READ FILE (TE>(T) ItHO (TEMP);

These statements contain the implicit declarations of the names TARGET
and READ_LOOP as label constants.

No statement can have more than one label. A statement can, however, be
preceded by any number of labeled null statements. For example:

A::;
B: DO I = 1 TO 5;

Other statements in the program can refer to the DO statement in the above
example by specifying either label A or label B.

A name occurring as a statement label is implicitly declared as a label con
stant. It has the attributes LABEL and constant. Label constants may not be
explicitly declared.

• Label Array Constants

Any label constant except the label of a PROCEDURE or FORMAT state
ment can have a single subscript. Subscripts must be specified using integer
constants; the constant must appear in parentheses following the label name.
For example:

PART (1) :

PART(2):

When labels are written as shown here, the unscripted label name represents
the implicit declaration of a label array constant. In this example, the array is
named PART. This array is treated as if it were declared within the block
containing the subscripted labels. Elements of this array may be referenced in
GOTO statements that specify a subscript, for example:

GOTO PART (I) ;

where I is a variable whose value represents the subscript of the element of
PART that is the label to be given control.

195

Within a single block, the same subscript value may not be used in two
different subscripted references with the same name. For example, the label
array constant

PART (1) :

can be used only once in a block. However, the subscript values are not
constrained to be in any particular order or to be consecutive. For example,
you can use the array constants PART(l) and PART(3) without using
PART(2).

If a name is used as a label array constant in two or more different blocks,
each declaration of the name is treated as an internal declaration. For
example:

LIST(2): RETURN;
BEGIN;

GOTO LIST <ELEMENT);
LIST(1):
LI ST (3) :
END;

In the preceding example, the value of ELEMENT cannot result in control
passing to the RETURN statement labeled LIST(2) in the containing block.
The subscripted LIST labels in the begin block restrict the scope of the name
to that block. (See "Scope of Names" for a further illustration of the scope of
internal names.)

• Label Values

Whenever a reference to a label constant is interpreted, the result is a label
value. A label value has two components:

• The first component designates the statement identified by the label
constant.

• The second component designates an activation of the block in which the
label was declared (that is, to which the labeled statement belongs). If the
label belongs to the current block, this block activation is the current block
activation. If the label belongs to a containing block, the activation is found
on the chain of parent block activations ending on the current block. (For
additional details on block activations, see "Block.")

The statement

GOTO label-reference;

transfers control to the designated statement in the designated block activa
tion. If the target block activation is different from the block activation in

196 Label

which the GOTO statement is executed, then this is a nonlocal GOTO. For
example:

DECLARE LV LABEL; /* LABEL variable */

LV = L; /* assisns a bound label value to LV */

BEGIN;

GOTO LV; /* nonlocal GOTO */
END;

L: RETURN;

Operations on label values are restricted to the operators= and A=, for testing
the equality or inequality of two values. Two values are equal if they refer to
the same statement in the same block activation.

Any reference to a label value after its block activation ceases to exist is an
error with unpredictable results.

• Label Variables

When an identifier is explicitly declared with the LABEL attribute, it ac
quires the VARIABLE attribute by default. Such a variable can be used to
denote different label values during the execution of the program. For

example:

DECLARE PROCESS LABEL;

IF CODE THEN
PROCESS

ELSE
PROCESS

GOTO PROCESS;

BILLING;

CHARGE;

When the GOTO statement evaluates the reference to the label PROCESS,
the result is the current value of the variable. The GOTO statement transfers
control to either of the labels BILLING or CHARGE, depending on the cur
rent value of the Boolean variable CODE.

Label 197

Label variables may also be given values by passing label values as arguments
and by returning a label value as the value of a function (although the latter
usage may lead to programming errors that are difficult to diagnose). For
example:

CALL COMPUTER<ERROR_EXITt YVALr XVAL);

ERROR._E>(IT:

In this example, the actual argument that is passed for ERROR_EXIT is a
dummy argument whose value consists of:

• The location in memory of the statement labeled ERROR_EXIT

• A pointer to the stack frame for the block in which the CALL statement is
executed

• Restrictions
• Any statement in a PL/I program can be labeled except:

- A DECLARE statement

- A statement beginning an ON-unit, THEN clause, or ELSE clause.

• Labels on PROCEDURE, ENTRY, and FORMAT statements are not con
sidered statement labels and may not be used as the targets of GOTO
statements.

• An identifier occurring as a label in a block may not be declared in that
block (except as a structure member), and may not occur in a parameter list
of that block.

• Internal Representation of Variable Label Data

31 0

address of label

parent frame pointer

LABEL Attribute

The LABEL attribute declares a label variable; it indicates that values given
to the variable will be statement labels.

• Restrictions

You cannot specify the LABEL attribute with any other data type attribute or
with any file description attributes.

198 LABEL Attribute

LBOUND Built-In Function

The LBOUND built-in function returns a fixed-point binary integer that is
the lower bound of a specified dimension of an array. Its format is:

LBOUND(reference,dimension)

reference
The name of the array variable.

dimension
An integer constant indicating the dimension of the specified array.

See "Array - Array-Handling 'Functions" for an example.

Length Attribute

The length attribute is applied to character-string and bit-string data. The
length of a string is the number of characters or bits in the string, or the
maximum length of the string if the string has the CHARACTER VARYING
attributes.

For the rules for specifying the length of a character- or bit-string variable, see
"Extent."

LENGTH Built-In Function

The LENGTH built-in function returns a fixed-point binary integer that is
the number of characters or the number of bits in a specified character- or bit
string expression. If the string is a varying-length character string, the func
tion returns its current length. The format of the function is:

LENGTH(string)

LINE Format Item

The LINE format item sets a print file to a specific line. It can be used only
with print files and the PUT EDIT statement. If necessary, blank lines are
inserted between the current file position and the specified line, and subse
quent output begins on the specified line.

The LINE format item identifies an absolute line position on the current
output page; to specify a line position relative to the current line, see "SKIP
Format Item."

LINE Format Item 199

The form of the LINE format item is:

w

LINE(w)

An integer that specifies a line on the current page, where line 1 is the
first line.

When the LINE format item is executed, the current line is determined. The
current line is 1 if the file is at the beginning of a new page. Otherwise, the
current line is n+l, where n is the number of complete lines already on the
page. The position in the file is then changed as follows:

• If line w is the current line, and the file is either at the beginning of a new
line or at the beginning of a new page, then no operation is performed.

• If line w is beyond the current line and is less than or equal to the current
page size, then the file is positioned at line w, and the lines between the
current line and line w are filled with blank lines. (See also "PAGESIZE
Option.")

• If line w is at or before the current line, the current line is not beyond the
current page size, and the file is not at the beginning of a line or page, then
the remainder of the page (the portion between the current line and the
current page size) is filled with blank lines, and the ENDPAGE condition is
signaled. The same actions occur when the current line is less than or equal

. to the page size and w is greater than the page size.

• Otherwise (for instance, when w is zero), the file is positioned at the begin
ning of a new page, and the page number is incremented by 1.

LINE Option

The LINE option is used with the PUT statement to output data to a specific
line in a print file. The output file is positioned at the beginning of the
specified line.

The LINE option refers to an absolute line position relative to the beginning
of the current page. To refer to a line position relative to the current line, use
the SKIP option.

For further information on the LINE and SKIP options, see "PUT
Statement."

LINENO Built-In Function

The LINENO built-in function returns a FIXED BINARY(15) integer that is
the current line number of the referenced print file. Its format is:

LINENO(reference)

If the referenced print file is closed, the returned value is the last value from
the previous opening. If the file was never opened, the returned value is zero.

200 LINE Option

LINESIZE Option

The LINESIZE option specifies the maximum number of characters that
can be output in a single line when the PUT statement writes data to a file
with the STREAM and OUTPUT attributes. The format of the LINESIZE
option is:

LINESIZE(expression)

expression
A fixed-point binary expression m the range 1-32767, giving the
number of characters per line.

The value specified in the LINESIZE option is used as the output line length
for all subsequent output operations on the stream file, overriding the system
default line size.

The default line size is as follows:

• If the output is to a physical record-oriented device, such as a line printer or
terminal, the default line size is the width of the device.

• If the output is to a print file, the default line size is 132.

• If the output is to a nonrecord device (magnetic tape), the default line size is
510.

The line size is used by output operations to determine whether output will be
placed on the current line or on the next line.

LIST Option

The LIST option is used with the GET and PUT statements to perform list
directed input or output to a stream file or character-string expression.

When the LIST option is used with the GET statement, strings of ASCII
characters are acquired from the stream file and assigned to a list of input
targets (variables). Conversions to the data types of the input targets, if
necessary, are performed automatically. If the end of the input file is encoun
tered, the ENDFILE condition is signaled. For additional details, see "GET
Statement - GET LIST" and "Stream Input/Output."

When the LIST option is used with the PUT statement, a list of output
sources (expressions) is evaluated and converted automatically to strings of
ASCII characters, which are then written out. If the output file is a print file,
character strings are not enclosed in apostrophes, and all output items are
separated by tabs. All output data is appended at the current end-of-file. For
additional details, see "PUT Statement - PUT LIST" and "Stream
Input/Output."

LIST Option 201

List Processing
Linked lists or queues are processed in PL/I by using based variables and
pointers or offsets. The principal language facilities are:

• The BASED, POINTER, AREA, and OFFSET attributes

• The ADDR, NULL, POINTER, and OFFSET built-in functions

• The ALLOCATE and FREE statements, and the DO REPEAT form of the
DO statement

• The locator qualifier (->)

Each of these elements is described under its own entry in this manual. This
section provides examples of simple procedures that create and process a
linked list.

Figure L-1 illustrates a simple program that reads data from a terminal and
constructs a linked list from the data.

MAKE_LIST: PROCEDURE;

DECLARE !FIRST, CURRENT1 SAVE> POINTER;
DECLARE 1 LIST BASED,

2 NE><T PO INTER 1
2 DATA CHARACTERC120l VARYING;

DECLARE PRINT_LIST ENTRY<POINTER1FIXED BINARY>;
DECLARE NULL BUILTIN;

'* declare a bit variable to test for end of streaM inPut */
'* and set an ON-unit to finish Processins
DECLARE EDF BITlll STATIC INITIAL('O'Bl;
ON ENDFILE!SYSINl EDF:::: 'l'Bi

*I

FIRST = NULL; /* initialize ~ueue head */
DO L.JH I LE (.. EDF I ;

ALLOCATE LIST SETICURRENTl; I* set storase *I
GET LIST ICURRENT->DATA); /*Set data*/

IF FIRST = NULL THEN
FIRST = CURRENT;

EL.SE
SAVE->NEXT = CURRENT;

CURRENT->NEXT = NULL;
SAt,!E = CURRENT; I* s a 1.1 e

END;

CALL PRINT_LISTIFIRST11201;
RETURN;

END MAKE ... LIST;

Figure L-1: Creating a Linked List

202 List Processing

Pointer

/* first tiMe throush *I
/* set ~ueue head */
/* all other tiMes */
I* set forward PointBr */

I* set forward Pointer */
to this allocation */

Figure L-2 illustrates using pointers to step through a linked list and to print
the data in each list element. The example in this figure uses the REPEAT
option of the DO statement to modify the value of the pointer used to access
each element in the list. This example may also be applied to a linked list
within an area. Based variables in an area are referenced by offset values that
indicate the locations of the variables with respect to the beginning of the
area.

PRINT_LIST: PROCEDURE IOUEUE_HEAD1DATA_LENGTHl;

DECLARE OUEUE_HEAD POINTER,
DATA_LENGTH FIXED BINARYl31l;

DECLARE 1 LI ST BASED (Pl 1.

/*start of 9ueue*/
/*lenSth of data*/
I* structure of 9Ueue elements*t

2 NE>(T PO INTER 1

2 DATA CHARACTERIDATA_LENGTHl;
DECLARE P POINTER;
DECLARE NULL BUILTIN;

I* start output at 9ueue head, repeat with
next Pointers */
DO P = OUEUE_HEAD REPEAT P->LIST.NEXT
I* until end of list (null) encountered */

WHILE <P ·"= NULL>;
PUT SKIP LIST<P->LIST,DATAl;

END;

RETURN;
END PRINT _LIST;

Figure L-2: Processing a Linked List

Locator Qualifier

A locator qualifier is an operator that specifies the storage associated with a
based variable. The locator qualifier consists of the two symbols:

->
No blanks are allowed between the minus sign (-) and greater than symbol
(>).

The format for specifying a locator-qualified reference to a variable is:

locator-> based-variable

locator
One of the following:

• The name of a pointer whose current value represents the storage
associated with a variable.

• The name of an offset variable that was declared with an area refer
ence and whose current value represents the storage of a based varia
ble within the area.

• Any other pointer-valued expression, such as a reference to the
POINTER or ADDR built-in function.

Locator Qualifier 203

based-variable
The name of the based variable whose storage is to be referenced.

You must use a locator qualifier when you refer to a based variable for which
more than one allocation of storage may exist. For example:

DECLARE NAMES <10) CHARACTER (20) BASEDt
(CLASS_PTRt GRADE_PTR> POINTER;

ALLOCATE NAMES SET <CLASS_PTR>;
ALLOCATE NAMES SET <GRADE_PTR>;

Any reference to the array NAMES in this example must specify the pointer
associated with the the storage allocated for the variable, as shown below:

CLASS_PTR - > NAMES (1) = I JONES I;

This assignment statement refers to the storage allocated for the array
NAMES that is pointed to by the pointer CLASS_PTR. The assignment sets
the first element of the array to the string JONES.

You must also use a locator qualifier to associated a based variable with the
storage of another variable. For example:

DECLARE DATA CHARACTER<10) BASEDt
DP POINTERt
LINE CHARACTER<10);

LINE= 'strins';
DP = ADDR<LINE>;
PUT LIST< DP->DATA >;

The locator qualifier in this PUT statement associates the based variable
DATA with the storage occupied by the variable LINE, pointed to by the
pointer DP. For more information, see "Based Variable," "Offset," and
"Pointer."

LOG Built-In Function

The LOG built-in function returns a floating-point value that is the base e
(natural) logarithm of an arithmetic expression x. The computation is per
formed in floating point. The expression x must be greater than zero after its
conversion to floating point.

The format of the function is:

LOG(x)

LOG1 O Built-In Function

The LOGlO built-in function returns a floating-point value that is the base 10
logarithm of arithmetic expression x. The computation is performed in float
ing point. The expression x must be greater than zero after its conversion to
floating point. The format of the function is:

LOGlO(x)

204 LOG Built-In Function

LOG2 Built-In Function

The LOG2 built-in function returns a floating-point value that is the base 2
logarithm of an arithmetic expression x. The computation is performed in
floating point. The expression x must be greater than zero after its conversion
to floating point. The format of the function is:

LOG2(x)

I

Logical Operator

The logical operators perform logical operations on one or two operands. The
operands of the AND and OR operators must be bit-string expressions. The
operand of the NOT operator can be a bit-string expression or a single rela
tional operator. rtll relational expressions result in bit-string values of length
one, and they may therefore be used as operands in logical operations.

Except when the NOT operator is used as the prefix of a relational operator,
the result of a logical operation is always a bit string.

Logical operations are performed on their operands bit by bit. If bit-string
operands are not the same length, PL/I extends the smaller of the operands on
the right (that is, in the direction of the least significance) with zeros to match
the length of the larger operand. This length is always the length of the result.

There are two infix operators and one prefix operator.

The prefix operator is:

Operator Operation

Logical NOT. In a logical NOT operation, the value of the
operand is complemented; that is, a 1 bit becomes a 0 and a
0 bit becomes a 1. The value of a relational expression is also
complemented; that is "(A < B) is equivalent to (A >= B).

The infix operators are:

Operator

&

Operation

Logical AND. In a logical AND operation, two operands are
compared. If both corresponding bits are 1, the result is 1;
otherwise, the result is 0.

I or ! Logical OR. In a logical OR operation, two operands are
compared. If either or both of two corresponding bits are 1,
the result is 1; otherwise the result is 0. (The I and the !
characters can be used interchangeably.)

You can define additional operations on bit strings with the BOOL built-in
function.

Logical Operator 205

Logical expressions may not be completely evaluated in some cases. If the
result of the total expression can be determined from the value of one or more
individual operands, the evaluation may be terminated. For example, in the
expression:

A & B & C & D & E

evaluation may stop when any operand or the result of any operation is a bit
string containing all zeros.

•Examples

DECLARE <BITAtBITBtBITC) BIT<a>;
BITA '{>001 'B;
5IT5 '1001'5;
5ITC = ···BnA;

I* BITC ec:iuals '1110'5 *I
BITC = BITA I BIT5; I

I* BITC ec:iuals '1001 '5 *I
5ITC = 5ITA &: 5IT5;

I* BITC ec:iuals '0001 'B *I
BITC = ···<BI TA &: 5 I TB) ;

I* BITC ec:iuals '1110'5 *I
5ITC = ···<BI TA > B ITB) ;

I* BITC ec:iuals '1000'5 (true) *I

In the last assignment statement, the relational expression yields '1 'B; when
this value is assigned to BITC, a BIT(4) variable, the value is padded with
zeros and becomes '1000 'B.

206 Logical Operator

M
MAIN Option

The MAIN option can be specified with the OPTIONS keyword on the
PROCEDURE statement. It indicates that the specified entry name is the
primary invocation point of the program. It is specified as follows:

entry-name: PROCEDURE OPTIONS (MAIN);

One, and only one, procedure in a program can specify the MAIN option. If no
procedure specifies the MAIN option, the invocation point of the program is
the first procedure in the image. (For details on binding procedures into an
executable program image, see the VAX-11 PL/I User's Guide.)

VAX-11 PL/I provides a default ON-unit for the procedure declared with the
MAIN option. See "ON Conditions and ON-Units."

Main Procedure

The main procedure in a program is the procedure declared with the MAIN
option. Execution of a PL/I program begins with the main procedure.

See also "MAIN Option" and "Procedure."

MAX Built-In Function

The MAX built-in function returns the larger of two arithmetic expressions x
and y. The format of the function is:

MAX(x,y)

• Returned Value

The expressions x and y are converted to their derived type before the opera
tion is performed (for a discussion of derived types, see "Expression"). If the
derived type is floating point, the value returned is also floating point, with
the larger precision of the two converted arguments. If the derived type is
fixed point, the returned value is a fixed-point value with the base of the
derived type and with the attributes:

precision = min(31,max(px-qx,py-qy)+max(qx,qy))

scale factor = max(qx,qy)

where px,qx and py,qy are the converted precisions and scale factors of x
and y.

207

MIN Built-In Function

The MIN built-in function returns the smaller of two arithmetic expressions x
and y. Its format is:

MIN(x,y)

• Returned Value

The expressions x and y are converted to their derived type before the opera
tion is performed (for a discussion of derived types, see "Expression"). If the
derived type is floating point, the value returned is also floating point, with
the larger precision of the two converted arguments. If the derived type is
fixed point, the returned value is a fixed-point value with the base of derived
type and with the attributes:

precision = min(31,max(px-qx,py-qy)-tmax(qx,qy))

scale factor= max(qx,qy)

where px,qx and py,qy are the converted precisions and scale factors of x
and y.

MOD Built-In Function

The MOD built-in function returns, for an arithmetic expression x and non
negative arithmetic expression y, the valuer that equals x modulo y. That is, r
is the smallest positive value that must be subtracted from x to make the

remainder exactly divisible by y. (For the result when y is negative, see·
"Returned Value" below.)

The format of the function is:

MOD(x,y)

• Returned Value

The expressions x and y are converted to their derived type before the opera
tion is performed (see "Expression" for a discussion of derived types).

If the derived type is fixed-point binary or unscaled fixed-point decimal, then
the result precision is the precision of the second operand.

If the derived type is floating point, the returned value is an approximation in
floating point, with the larger precision of the two converted arguments.

The value returned is:

u-w*floor(u/w)

where u and w are the arguments x and y, respectively, after conversion to
their derived type. If w is zero, u is converted to the precision described below,
which may signal FIXEDOVERFLOW.

208 MIN Built-In Function

If x and y are fixed-point expressions, the returned value is a fixed-point value
with the attributes:

precision = min(31,pw-qw+max(qu,qw))

scale factor ~ max(qu,qw)

where qu is the scale factor of u, pw is the precision of w, and qw is the scale
factor of w. The FIXEDOVERFLOW condition is signaled if:

pw-qw + max(qu,qw) > 31

•Examples

MODEX: PROCEDURE OPTIONSCMAIN);

DECLARE OUTMOD PRINT FILE;

ON FIXEDOVERFLOW PUT FILECOUTMOD)
SKIP LIST< 'FU<EDOl.JERFLOW sisnaled');

PUT FILECOUTMOD) SKIP LIST<MOD<28t128));
PUT FILECOUTMOD) SKIP LISTCMODC130t128));
PUT FILECOUTMOD) SKIP LISTCMODC-28t128));
PUT FILECOUTMOD) SKIP LISTCMODC4+5t+758));
PUT FILECOUTMOD) SKIP LISTCMODC-4+5t+758));
PUT FILECOUTMOD> SKIP LIST(MOD<1.5E-3t-1.4E-3));
PUT FILECOUTMOD) SKIP LISTCMODC28t0));

END MODE><;

The program MODEX writes the following output to OUTMOD.DAT:

28
2

100
0+710
0+048

-1+3E-03

FIXEDOVERFLOW sisnaled 8

The last PUT statement attempts to take MOD(28,0). The constants 28 and 0
are both fixed-point decimal expressions, with precisions (2,0) and (1,0), re
spectively. Therefore, the attributes of the returned value are determined to
be FIXED DECIMAL, with:

precision = min(31,l-O+max(O,O)) = 1
scale factor = max(O,O) = 0

Although 28 mod 0 is 28, MOD(28,0) signals FIXEDOVERFLOW because 28
cannot be represented in the result precision. (The value of the function is
therefore undefined.)

MOD Built-In Function 209

Multiplication

The asterisk character (*) indicates a multiplication operation in an expres
sion; the result is the product of the operands. Both operands must be arith-
metic or picture data. -

• Conversion of Operands

If both operande have the same base, precision, and scale, so has the result of
the operation. The compiler converts operands of different data types as fol
lows:

• If one operand has the FLOAT attribute and the other has the FIXED
attribute, the fixed-point operand is converted to floating point before the
operation.

• If one operand is FIXED DECIMAL and the other is FIXED BINARY, the
fixed-point binary operand is converted to fixed-point decimal. However,
the compiler issues a warning message to that effect.

The precision of the values resulting from conversion of operands is described
under "Expression."

• Precision of the Result

Floating-Point Operands
The result has the maximum of the converted precisions of the
operands.

Fixed-Point Decimal Operands
If (p,q) and (r,s) represent the converted precisions and scale factors of
the two operands, the resulting precision and scale factor are:

prec1s1on: min(31,p+r+l)
scale factor: q +s

Fixed-Point Binary Operands
If (p) and (r) represent the converted precisions of the two operands,
the resulting precision is:

min(31,p+r+ 1)

210 Multiplication

N
NOT Operator

The A (circumflex) character is the logical NOT operator in PL/I. In a logical
NOT operation, the value of a bit is reversed. If a bit is 1, the result is O; if a
bit is 0, the result is 1.

The NOT operator can be used on expressions that yield bit-string values (bit
string, relational, and logical expressions).

It can also be used to negate the meanings of the relational operators (<, >,
=). For example:

IF A ~> B THEN •••
I* e9uivalent to IF A<= B THEN •• + *I

The result of a logical NOT operation on a bit-string expression is a bit-string
value. For example:

DECLARE <BITAt BITB) BIT (4H
BITA = '0011 'B;
BITB = ·"BITA;

The resulting value of BITB is '1100 'B.
The NOT operator can test the falsity of an expression in an IF statement. For
example:

IF "· (MORE_DATA) THEN •••

See "Logical Operator" and "Operator."

NULL Built-In Function

The NULL built-in function returns a null pointer value. Its format is:

NULL()

•Example

IF NEXT_POINTER =NULL() THEN CALL TERM;

The IF statement checks whether the pointer variable NEXT _POINTER is
null; if so, it executes the CALL statement. For more information, see "Based
Variable," "List Processing," and "Pointer."

211

Null Statement
The null statement performs no action. Its format is:

The most common use for the null statement is as the target statement of a
THEN or ELSE clause in an IF statement, or as an action in an ON-unit. For
example:

ON ENDPAGECSYSPRINT>;

The null statement can also be used to declare two labels for the same execut
able statement, as in:

LABEL1: LABEL2: stateMent· +++

212 Null Statement

0
Offset

An offset is a value indicating the location of a based variable within an area
relative to the beginning of the area. An offset variable must be declared with
the OFFSET attribute.

When an area is transmitted or assigned, the offset values associated with
variables within the area remain valid.

• Offset Assignment

Offset variables are given values by assignment from existing offset values or
from conversion of pointer values. The OFFSET built-in function converts a
pointer value to an offset value. PL/I also automatically converts a pointer
value to an offset value, and vice versa, in an assignment statement. The
following assignments are valid:

1. pointer-variable = pointer-value ;

2. offset-variable =" offset-value ;

3. pointer-variable = offset-variable ;

4. offset-variable = pointer-value ;

In (2), any area references are ignored in the assignment; therefore, the offset
value and variable can refer to different areas. In (3) and (4), the offset
variable must have been declared with an area reference.

• Offset Variables in Expressions

Expressions containing offset variables are restricted to the following opera
tors:

Operator · Meaning

Equal
Not equal

For more information on offset values, see "Area." Specific details on how to
allocate variables within areas and how to determine the offsets of these
variables are contained in the VAX-11 PL/I User's Guide.

OFFSET Attribute

The OFFSET attribute declares a variable that will be used to reference a
based variable within an area. Its format is:

OFFSET [(area-reference)]

213

area-ref ere nee
The name of a variable with the AREA attribute. The value of the
offset variable will be interpreted as an offset within the specified area.

II Example

DECLARE MAP_SPACE AREA (4088),
MAP_START OFFSET (MAP_SPACE)
MAP_LIST(100) CHARACTER(80) BASED (MAP_START);

These declarations define an area named MAP _SPACE, an offset value that
will contain offset values within that area, and a based variable whose storage
is located by the value of the offset variable MAP _START.

ii Restrictions

The area reference must be omitted if the OFFSET attribute is specified
within a returns descriptor, parameter declaration, or a parameter descriptor.
'fhe OFFSET attribute conflicts with all other data type· attributes.

BuUt-ln Function

OFFSET built-in function converts a pointer to an offset relative to a
designated area. If the pointer is null, the result is null. The format of the
function is:

OFFSET(pointer,area)

pointer

area

A reference to a pointer variable whose current value either represents
the location of a based variable within the specified area or is null.

A reference to a variable declared with the AREA attribute. If the
specified pointer is not null, it must designate a storage location within
this area.

Iii Example

DECLARE MAP_SPACE AREA (2048),
STArn OFFSET (MAP .. _SPACE) ,
QUEUE_HEAD POINTER;

START = OFFSET (QLJEUE_HEAO,MAP_SPACE>;

The offset variable START is associated with the area MAP _SPACE. The
OFFSET built-in function converts the value of the pointer to an offset value.

ON Conditions and ON-Units

An ON condition is any one of several named conditions whose occurrences
during the execution of a program interrupt the program. When an ON condi
tion occurs, or is signaled, a statement or sequence of statements, called an
ON-unit, is executed.

214 OFFSET Built-In Function

This discussion of ON conditions has the following subheadings:

• Summary of ON conditions

• Default PL/I ON-unit

• Establishment of ON-units

• Contents of an ON-unit

• Search for ON-units

• Completion of ON-units

• Summary of ON Conditions

Most, but not all, ON condition names are associated with errors. The types
of condition for which you can establish ON-units are grouped in the catego
ries listed below.

• Conditions that occur during input/output operations. The ON-units you
can define for these conditions are:

- ENDFILE, to take action when the end-of-file occurs during reading a file

- ENDPAGE, to take action when the last line on a page is printed

- KEY, to take action when an error occurs accessing a record by key

- UNDEFINEDFILE, to respond to any file-specific errors that can occur
during the opening of a file

• Conditions that indicate arithmetic conditions related to hardware viola
tions. The ON-units you can define for these conditions are:

- FIXEDOVERFLOW, to respond when integer or fixed-point decimal val
ues become too large to be expressed

- OVERFLOW, to respond when floating-point values become too large to
be expressed

- UNDERFLOW, to respond when floating-point values become too small
to be expressed

- ZERODIVIDE, to respond when the divisor in a division operation has a
value of zero

• General classes of exceptional conditions. The ON-units you can define are:

- ANYCONDITION, to respond to all conditions for which no specific ON-
unit is established in the current block

- ERROR, to respond to language- and run-time-specific errors

-- FINISH, to respond when a STOP statement is executed

·- VAXCONDITION, to respond to operating-system-specific condition
values

Each condition is described individually in this manual under its own
heading.

ON Conditions and ON-Units 215

• Default PL/I ON-Unit

PL/I defines a default ON-unit for the procedure that is designated as the
main procedure. This default ON-unit performs the following actions:

• If the signal is the ENDPAGE condition, the default PL/I handler executes
a PUT PAGE for the file, and then continues the program at the point at
which ENDPAGE was signaled.

• If the signal is the ERROR condition and the severity is fatal, the default
handler signals the FINISH condition. Then, one of the following occurs:

- If a FINISH ON-unit is found, it is given a chance to execute. If it
executes a nonlocal GOTO or signals another condition, program execu
tion continues.

- If no FINISH ON-unit is found, or if a FINISH ON-unit completes execu
tion by handling the condition, then PL/I resignals the condition to the
default VAX/VMS condition handler. This handler prints a message, dis
plays a traceback, and terminates the program.

• If the signal is any condition other than ENDPAGE or ERROR with a fatal
severity, the default PL/I handler signals the ERROR condition with the
severity of the original condition. Then, one of the following occurs:

- If an ERROR ON-unit is found, it is executed. If it completes execution
by handling the condition, the program continues.

- If an ERROR ON-unit is not found, the default PL/I handler resignals the
condition. If this resignal results in return of control to the system, the
default VAX/VMS condition handler prints a message and a traceback. If
the error is a fatal error, the default handler terminates the program; if
the error is nonfatal, the program continues.

• Establishment of ON-Units

An ON-unit is established for a specific ON condition following the execution
of an ON statement that specifies that condition name. For example:

ON ENDFILE (ACCOUNTS) GOTO CLOSE_FILES;

This ON statement defines an ON-unit for an ENDFILE (end-of-file) condi
tion in the file specified by the name ACCOUNTS. The ON-unit consists of a
single statement, a GOTO statement.

After an ON-unit is established by an ON statement for a condition, it re
mains in effect for the activation of the current block and all its dynamically
descendent blocks, unless one of the following occurs: -

• Another ON statement is specified for the same condition in a descendent
block. The ON-unit established within the descendent block remains in
effect as long as the descendent block is active.

• A REVERT statement is executed for the specified condition. A REVERT
statement nullifies the most recent ON-unit for the specified condition.

216 ON Conditions and ON-Units

• Another ON statement is specified for the same condition within the current
block. Within the same block, an ON statement for a specific condition
cancels the previous ON-unit.

• The block or procedure within which the ON-unit is established terminates.
When a block exits, any ON-units it has established are canceled.

• Contents of an ON-Unit

An ON-unit can consist of a single simple statement, a group of statements in
a begin block, or a null statement.

Simple Statements in ON- Units
The following ON statement specifies a single statement in the ON
unit:

ON ERROR GOTO WRITE_ERROR_MESSAGE;

This ON statement specifies a GOTO statement that transfers control
to the label WRITE_ERROR_MESSAGE in the event of the ERROR
condition.

A simple statement must not be labeled and must not be any of the
following:

DECLARE
DO
END
ENTRY

FORMAT
IF
ON
PROCEDURE

Begin Blocks in ON- Units

RETURN

An ON-unit can also consist of a sequence of statements in a begin
block, for example:

ON ENDFILE (SYSIN> BEGIN;
CLOSE FILE (TEMP>;
CALL PRINT_STATISTICS(TEMP>;
END;

This ON-unit consists of CLOSE and CALL statements that request
special processing when the end-of-file condition occurs during reading
of the default system input file, SYSIN.

If a BEGIN statement is specified for the ON-unit, the BEGIN state
ment must not be labeled. The begin block can contain any statement
except a RETURN statement.

Null Statements in ON-Units
A null statement specified for an ON-unit indicates that no processing
is to occur when the condition occurs. Program execution continues as
if the condition had been handled. For example:

ON ENDPAGE(SYSPRINT>;

This ON-unit causes PL/I to continue output on a terminal regardless
of the number of lines that have been output.

ON Conditions and ON-Units 217

A

• Search for ON-Units

When a condition is signaled during the execution of a PL/I procedure, PL/I
searches for an ON-unit to respond to the condition. It first searches the
current block, that is, the block in which the condition occurs. If no ON-unit
exists in this block for the specific condition, it searches the block that ac
tivated the current block (its "parent"), and then the block that activated
that block, and so on.

PL/I executes the first ON-unit it finds, if any, that can handle the specified
condition. If no ON-unit for the specific condition is found, the default PL/I
condition handling is performed.

Figure 0-1 illustrates a program with ON-units established at several levels of
block activation and describes the sequence in which the ON-units are lo
cated.

For more information on blocks and block activation, see "Block." For a more
detailed explanation of the search for ON-units and a description of how PL/I
ON-units relate to condition-handling routines that may be written in other
programming languages, see the VAX-11 PL/I User's Gµide.

A: PROCEDURE OPTIONS (MAIN) :

ON FIXEDOVERFLOW BEGIN:

END:
CALL B:

B: PROCEDURE :

ON UNDEFINEDFILE (PRINTFILE) OPEN
FILE(PRINTFILE) TITLE('SYS$0UTPUT'):

B

CALL C:

c

Figure 0-1: Search for ON-Units

C: PROCEDURE : / Fixed overflow signaled

RETURN: /
END:

ON-unit

ON-unit established
in procedure A for
FIXEDOVERFLOW condition

218 ON Conditions and ON-Units

• Completion of ON-Units

PL/I executes an ON-unit as if the unit were a procedure having no parame
ters; that is, it creates a block activation for the ON-unit and links it to the
block in which the condition occurred. The ON-unit can complete its execu
tion in any of the following ways:

• If the ON-unit executes a nonlocal GOTO statement, or if it invokes a
subroutine or function that executes a nonlocal GOTO, program control is
transferred to that statement and continues sequentially at that point in the
program.

o If the ON-unit executes a STOP statement, then the FINISH condition is
signaled. If no FINISH ON-unit exists, the program is terminated.

• An ON-unit can use the RESIGNAL built-in subroutine to request that
PL/I continue to search for an ON-unit to handle a specific condition. For a
description of this built-in subroutine and an explanation of the effects of a
nonlocal GOTO and resignaling in the VMS environment, see the VAX-11
PL/I User's Guide.

• Normal completion of any ON-unit except an ERROR ON-unit or a
FINISH ON-unit executed as a result of image exit results in return of
control either to the statement that caused the condition or to the statement
immediately following the statement that caused the condition.

Descriptions of each ON condition in this manual indicate the action that
PL/I takes on completion of an ON-unit associated with the condition.

ON Statement

The ON statement defines the action to be taken when a specific condition is
signaled during the execution of a program. The format of the ON statement
is:

ON condition-name on-unit ;

condition-name
The name of the specific condition for which an ON-unit is estab
lished. There is a keyword name associated with each condition. The
conditions are summarized in Table 0-1; each condition is described
individually, as an entry in this manual.

on-unit
The action to take when the specified condition is signaled. An ON
unit can be any single, unlabeled statement except DECLARE, DO,
END, ENTRY, FORMAT, IF, ON, PROCEDURE, or RETURN. It
can also be an unlabeled begin block.

If no ON-unit is established for a particular condition, the default PL/I
ON-unit, if any, is executed.

For information on ON-units and the default PL/I ON-unit, see "ON Condi
tions and ON-Units."

ON Statement 219

Table 0-1: Summary of ON Conditions

Condition Name Usage

ANYCONDITION Handles any condition not specifically handled by another ON-
unit

END FILE Handles end-of-file condition for a specified file

ENDPAGE Handles end-of-page for a specified file with PRINT attribute

ERROR Handles miscellaneous error conditions and conditions for which
no specific ON-unit exists

FINISH Handles program exit when the main procedure executes a RE-
TURN statement, when any block executes a STOP statement,
or when the program exits due to an error that is not handled by
an ON-unit

FIXED OVERFLOW Handles fixed-point decimal and integer overflow exception con-
ditions

KEY Handles any error involving the key when using keyed access to a
specified file

OVERFLOW Handles floating-point overflow exception conditions

UNDEFINED FILE Handles any errors opening a specified file

UNDERFLOW Handles floating-point underflow exception conditions

VAXCONDITION Handles a specifically signaled condition value

ZERO DIVIDE Handles divide-by-zero exception conditions

ONARGSLIST Built-In Function

The ONARGSLIST built-in function returns a pointer to the location in
memory of the argument list for an exception condition. If the ONARGSLIST
built-in function is referenced in any context outside of an ON-unit, it returns
a null pointer. Its format is:

ONARGSLIST()

The format of the argument list and the information available to an ON-unit
from the argument list are described in the VAX-11 PL/I User's Guide.

ONCODE Built-In Function

The ONCODE built-in function returns a fixed-point binary integer that is
the status value of the most recent run-time error that signaled the current
ON condition. The function may be used in any ON-unit to determine the
specific error that caused the condition. If the function is used within any
context outside an ON-unit, it returns a zero. Its format is:

ONCODE()

For details on the condition values returned by ONCODE and examples of
usihg the ONCODE built-in function, see the VAX-11 PL/I User's Guide.

220 ONARGLIST Built-In Function

ONFILE Built-In Function
The ONFILE built-in function returns the name of the file constant for which
the current file-related condition was signaled. Its format is:

ONFILE()

This built-in function can be used in an ON-unit established for any of the
following conditions:

• An ON-unit for the KEY, ENDFILE, ENDPAGE, and UNDEFINEDFILE
conditions

~ A V AXCONDITION ON-unit established for input/output errors that can
occur during file processing

• An ERROR ON-unit that receives control as a result of the default PL/I
action for file-related errors, which is to signal the ERROR condition

• Returned Value

The returned value is a varying-length character string. If referenced outside
an ON-unit or within an ON-unit that is executed as a result of a SIGNAL
statement, the ONFILE function returns a null string.

ONKEY Built-In Function

The ONKEY built-in function returns the key value that caused the KEY
condition to be signaled during an I/O operation to a file that is being accessed
by key. Its format is:

ONKEY()

This built-in function can be used in an ON-unit established for these condi
tions:

• The KEY, ENDFILE, or UNDEFINEDFILE conditions

• An ERROR ON-unit that receives control as a result of the default PL/I
action for the KEY condition, which is to signal the ERROR condition

• Returned Value

The returned key value is a varying-length character string. If referenced
outside an ON-unit, or within an ON-unit executed as a result of the SIGNAL
statement, the ONKEY built-in function returns a null string.

OPEN Statement
The OPEN statement explicitly opens a PL/I file with a specified set of
attributes that describe the file and the method for accessing it. The format of
the OPEN statement is:

OPEN FILE(file-reference)
[file-description-attribute ...] ;

OPEN Statement 221

file-reference
A reference to the file to be opened. If the file is already open, the
OPEN statement has no effect.

file-description-attribute ...
The attributes of the file. The attributes specified are merged with the
permanent attributes of the file specified in its declaration, if any.
Then, default rules are applied to the union of these sets of attributes
to complete the set of attributes in effect for this opening.

The attributes and options you can specify on the OPEN statement
are:

DIRECT
ENVIRONMENT(option, ...)
INPUT
KEYED
LINESIZE(expression)
OUTPUT
PAG ESIZE(expression)

PRINT
RECORD
SEQUENTIAL
STREAM
TITLE(expression)
UPDATE

Each of these attributes is described in its own entry. For a summary
of the valid combinations of these attributes and their meanings, see
"File Description Attributes and Options." Merging of attributes and
default attributes supplied are described under "Opening a File."

•Examples

DECLARE INFILE FILE;

OPEN FILE (INF ILE);

Neither the file's declaration nor its open specify any file description attrib
utes. PL/I applies the default attributes STREAM and INPUT. If any state
ment other than a GET is used to process this file, the ERROR condition is
signaled.

DECLARE STATE_FILE FILE KEYED;

OPEN FILE<STATE_FILE) UPDATE;

CLOSE FILE<STATE_FILE>;
OPEN FILE<STATE_FILE) I~PUT SEQUENTIAL;

The file STATE_FILE is declared with the KEYED attribute. On the first
OPEN statement that specifies this file, it is given the UPDATE attribute
and opened for updating; that is, READ, WRITE, REWRITE, and DELETE
statements may be used to operate on records in the file. The KEYED attrib
ute implies the SEQUENTIAL attribute; thus records in the file may be
accessed sequentially or by key.

222 OPEN Statement

The second OPEN statement specifies the INPUT and SEQUENTIAL attrib
utes. During this opening, the file may be accessed by sequential and keyed
READ statements; REWRITE, DELETE, and WRITE statements may not
be used.

DECLARE COPYFILE FILE OUTPUT;
OPEN FILE<COPYFILE) TITLE('COPYFILE+DAT I);

The file constant COPYFILE is opened for output. Each time this program is
run, it creates a new version of the file COPYFILE.DAT.

Opening a File

A file is opened explicitly by an OPEN statement or implicitly by a READ,
WRITE, REWRITE, DELETE, PUT, or GET statement issued for a file that
is not open. In either case, opening a file in PL/I has the following effects:

• The permanent attributes, if any, specified in the DECLARE statement of a
file constant, if any, are merged with the attributes specified in the OPEN
statement, if any, or with the attributes implied by the context of the
opening. (For example, if no attributes are specified for a file in its declara
tion, and the first reference to the file is a GET statement, PL/I opens the
file with the INPUT and STREAM attributes.) The rules that PL/I follows
in applying default attributes are described below, under "Establishing the
File's Attributes."

• The merged attributes apply to the file for the duration of this opening only.
When the file is closed, only its permanent attrl.butes remain in effect.

• The file specification of the file is determined, using the value of the TITLE
option.

• If the file already exists, it is located and its attributes are checked for
compatibility with the attributes specified or implied by the open.

• If the file does not exist, and if the attempted access does not require that
the file exist, PL/I creates a new file using the attributes specified or implied
to determine its organization.

· • If the open is successful, the file is positioned.

Each of these steps is described in more detail.below. If an error occurs during
the opening of a file, the UNDEFINEDFILE condition is signaled. (See
"UNDEFINEDFILE Condition Name.")

• Establishing the File's Attributes

The file description attributes specified· by the opening context are merged
with the file's permanent attributes. Duplicate specification of the same at
tribute is allowed only for an attribute that does not specify a value.

If the set of attributes is not complete, it is augmented with implied attrib
utes. Table 0-2 summarizes the attributes that may be added to an incom
plete set.

Opening a File 223

Table 0-2: File Description Attributes Implied at Open Time

Attribute Implied Attributes

DIRECT RECORD KEYED

KEYED RECORD

PRINT STREAM OUTPUT

SEQUENTIAL RECORD

UPDATE RECORD

If the set of attributes is still not complete, PL/I uses the steps below to
complete the set:

1. If neither STREAM nor RECORD is present, STREAM is supplied.

2. If neither INPUT, nor OUTPUT, nor UPDATE is present, INPUT is
supplied.

3. If RECORD is specified, but neither SEQUENTIAL nor DIRECT is pres
ent, SEQUENTIAL is supplied.

4. If the file is associated with the external file constant SYSPRINT, and the
attributes STREAM and OUTPUT are present but the attribute PRINT
is not, PRINT is supplied.

5. If the set contains the LINESIZE option, it must contain STREAM and
OUTPUT. If it contains these attributes and does not contain LINESIZE,
the default system line size value is supplied.

6. If the set contains the PAGESIZE option, it must contain PRINT. If
PRINT is present but PAGESIZE is not, the default system page size is
supplied.

7. If the set does not contain TITLE, a default option TITLE(name) is
supplied, where name is the name of the file constant associated with the
file.

The completed set of attributes applies only for the current opening of the file.
The file's permanent attributes, specified in the declaration of the file, are not
changed.

• Determining the File Specification

PL/I uses the value of the TITLE option to determine the file specification,
that is, the actual name of the file or device on which the liO is to be per
formed. The determination of the file specification depends on the following
system-specific functions:

1. The value of the TITLE option may be a logical name or a portion of it
may contain a logical name. In either case, the logical name is translated.
If the resulting name is a logical name, that name is also translated, to a
maximum of ten translations.

224 Opening a File

2. After logical name translation, VAX-11 PL/I applies default values, if
any, specified in the DEFAULT_FILE_NAME option of the ENVIRON
MENT attribute list.

3. If the file specification is still not complete, system defaults are applied to
the incomplete portions of the file specification. Defaults are provided for
node, device, directory, file type and version number. If a file name is not
specified, PL/I uses the default name supplied in the TITLE option.

The rules for logical name translation and for the application of system de
faults are described in detail in the VAX-11 PL/I User's Guide.

• Accessing an Existing File

An open accesses an existing file if the file specified by the TITLE option
actually exists and if the following attributes are present:

• The file is opened for INPUT or UPDATE.

• The file is opened with the OUTPUT attribute and with the ENVIRON-
MENT (APPEND) option.

Whenever PL/I accesses an existing file, the file's organization is checked for
compatibility with the PL/I attributes specified. If any incompatibilities exist,
the UNDEFINEDFILE condition is signaled.

• Creating a File

An open creates a new file if the following are all true:

• The OUTPUT attribute is specified.

• The TITLE option, after logical name translation and the application of
system defaults, specifies a mass storage device, for example, a disk or a
tape.

• The ENVIRONMENT(APPEND) option is not specified.

The organization and record format of a new file can be specified by ENVI
RONMENT options. If no ENVIRONMENT options are given, the new file's
organization is determined as follows:

• If the KEYED attribute is present, PL/I creates a relative file with the
maximum record size of 512 bytes and the maximum record number of 0.

• If the PRINT attribute is present, PL/I creates a sequential stream file with
variable-length records, no maximum record length, and a fixed-control
field used by PL/I to store carriage control information.

• If neither KEYED nor PRINT is specified, PL/I creates a sequential file
with variable-length records and no maximum record size.

When a file is opened with the RECORD and OUTPUT attributes, only
WRITE statements may be used to access the file. If the file has the KEYED
attribute as well, the WRITE statements must include the
KEYFROM option.

Opening a File 225

• File Positioning

When PL/I opens a file, the initial positioning of the file depends on the type
of file (record or stream), the access mode, and certain ENVIRONMENT
options.

For a definition of the file positioning information for record files, see "Record
Input/Output." For a definition of file positioning information for stream files,
see "Stream Input/Output."

Operator

An operator is a symbol that requests a unique operation. It may be a prefix
operator or an infix operator.

• Prefix Operator

A prefix operator precedes a single operand. The prefix operators are the
unary plus(+), the unary minus(-), and the logical not(").

• The plus sign can prefix an arithmetic value or variable. However, it does
not change the sign of the operand.

• A minus sign reverses the sign o'f an arithmetic operand.

• The " prefix operator performs a logical NOT operation on a bit-string
operand.

Some examples of expressions containing prefix operators are:

A = +55;
B = -ss;
BITC = ···5rr5;

• Infix Operator

An infix operator appears between two operands. It indicates the operation to
be performed on the operands. PL/I has infix operators for arithmetic opera
tions, logical operations, relational (comparison) operations, and string con
catenations. Some examples of expressions containing infix operators are:

RESULT = A I 5;
IF NAME = FIRST _NAME : : LAST _NAME THEN GOTO NAME_OK ;

An expression can contain both prefix and infix operators, for example:

A = -55 * +ss;

Prefix and infix operators can be applied to expressions by using parentheses
for grouping.

226 ()perator

•Operands

The expressions on which an operation is performed are called operands. All
operators must yield scalar values. Therefore, operands may not be arrays or
structures. The data type that you can use for an operand in a specific opera
tion depends on the operator:

• Arithmetic operators must have arithmetic operands; if the operands are of
different arithmetic types, they are converted to a single type before the
operation (see also "Expression").

• Logical operators must have bit-string operands.

• Relational operators must have two operands of the same type (arithmetic,
bit string, or character string).

• The concatenation operator must have two bit-string operands or two char
acter-string operands.

The categories of operator and the operator characters are listed in Table 0-3.

Table 0-3: Operators

Category Symbol Operation

Arithmetic + Addition or prefix plus
operators - Subtraction or prefix minus

I Division
* Multiplication
** Exponentiation

Relational (or > Greater than
comparison) < Less than
operators = Equal to

A

> Not greater than
A

< Not less than
A

= Not equal to
>= Greater than or equal to
<= Less than or equal to

Bit-string (or A

Logical NOT
logical) & Logical AND
operators I or! Logical OR

Concatenation II or!! String concatenation
operator

• Precedence of Operations

A PL/I expression can consist of many subexpressions and operands. When an
expression contains more than one operator, PL/I uses a defined set of rules to
determine which operation to perform first, second, and so on. If the expres
sion contains parentheses, PL/I evaluates expressions within the parentheses
(according to the rules of priority) first and then uses the resulting value as a
single operand. Unparenthesized operations of equal priority are performed in
any order.

Operator 227

Table 0-4 gives the priority of PL/I operators. In Table 0-4, low numbers
indicate high priority; that is, the exponentiation operator (**) has the high-
est priority. and the OR operator (I), the lowest. ·

Table 0-4: Precedence of Operations

OPTIONS Option

Operator

**
+ (prefix)
- (prefix)

*
I
+ (infix)
- (infix)
II

Priority

1
1
1
1
2
2
3
3
4

Operator

>
<
A

A

>
<

-, -

<=
>=
&
I

Priority

5
5
5
5
5
5
5
6
7

The OPTIONS keyword option is provided in PL/I statements to request
special processing. Normally, this keyword is associated with options that are
not part of the standard PL/I language.

The statements that have the OPTIONS keyword option are:

• The input/output statements GET, PUT, READ, WRITE, DELETE, and
REWRITE

• The PROCEDURE statement
0 The DECLARE statement with the ENTRY attribute

Statement options are specified within parentheses following the OPTION
keyword. The individual options within an option list are separated by spaces.

For a list of the valid options, see the entry for the individual statement or
attribute.

•Example

APPLIC: PROCEDURE OPTIONS <MAINtIDENT('APPLIC'));

The keywords MAIN and IDENT are options specified by the OPTIONS
keyword of the PROCEDURE statement.

OR Operator

The I (vertical bar) or ! (exclamation point) character represents the logical
OR operation in PL/I. In a 'logical OR operation, two bit-string operands are
compared bit by bit. If the two operands are of different lengths, the shorter
operand is converted to the length of the longer operand, and that is the
length of the result. If either of two corresponding bits is 1, the resulting bit is
1; otherwise, the resulting bit is 0.

228 OPTIONS Option

All relational expressions result in bit strings of length 1, and they may there
fore be used as operands in an OR operation.

The result of the OR operation is a bit-string value. For example:

DECLARE <BITAt BITBt BITC) BIT (4) ;
BITA = '0011 '8;
BITB = '1111'8;
BITC = BITA : BITB ;

The resulting value of BlTC is '1111 'B.

The OR operator can test whether one of the expressions in an IF statement is
true, for example:

IF <LINENO<PRINT_FILE) < 60) :
<MORE_DATA =YES) THEN •••

See also "Logical Operator."

OUTPUT Attribute

The OUTPUT file description attribute indicates that data is to be written to,
and not read from, the associated external device or file.

Specify the OUTPUT attribute on a DECLARE statement for a file constant
or on an OPEN statement to access the file for writing. You may specify the
OUTPUT attribute with either the STREAM or RECORD attribute. For a
stream file, OUTPUT indicates that the file will be accessed using PUT
statements. For a record file, OUTPUT indicates that the file will be accessed
using only WRITE statements.

For example:

DECLARE OUTFILE RECORD OUTPUT;

OPEN FILECOUTFILE);
WRITE FILE<OUTFILE) FROM<RECORD_BUFFER);

These statements declare, open, and write a record to the output file OUT
FILE.

For a description of the attributes that may be applied to files and the effects
of combinations of these attributes, see "File Description Attributes and Op
tions."

The OUTPUT attribute may be supplied by default for a file, depending on
the context of its opening. See "Opening a File."

• Restrictions

The OUTPUT attribute conflicts with the INPUT and UPDATE attributes
and with any data type attributes other than FILE. ,

OUTPUT Attribute 229

OVERFLOW Condition Name

The OVERFLOW condition name can be specified in an ON, REVERT, or
SIGNAL statement to designate an ON condition or ON-unit for floating
point overflow conditions.

The exponent of a floating-point value is adjusted, if possible, to represent the
value with the specified precision. The maximum precision allowed for a
binary floating-point value is 113; the maximum precision of a decimal float
ing-point value is 34. PL/I signals the OVERFLOW condition when the result
of an arithmetic operation on a floating-point value exceeds the maximum
allowed exponent size of the VAX-11 hardware.

The value resulting from an operation that causes this condition is undefined.

• ON-Unit Completion

Control returns to the point of the interruption.

For more information, see "ON Conditions and ON-Units" and "ON State
ment."

230 OVERFLOW Condition Name

p

P Format Item

The picture format item-P-describes a field of characters in the input or
output stream. The field can be an input field acquired with GET EDIT or an
output field transmitted by PUT EDIT. With GET EDIT, the P format item
acquires a pictured value from the input stream. With PUT EDIT, the P
format item edits an output source to a specified picture format.

The form of the P format item is:

P 'picture'

'picture'
A picture of the same syntax as for the PICTURE data attribute. The
syntax is summarized in "PICTURE Attribute." The field width is the
total number of characters, exclusive of V, in the picture. For full
details, see "Picture."

The interpretation of the P format item, for input and output, is given below.
For a general discussion of format items, see "Format Items and Their Uses."

• Input with GET EDIT

Used with the GET EDIT statement, the P format item acquires a pictured
value (a field of characters) from the stream file, extracts its fixed-point
decimal value, and assigns the value to an input target of any computational
type. The picture describes a field of w characters, where w is the total num
ber of picture characters in the picture, exclusive of the V character.

A string of w characters is acquired from the input stream and validated
against the picture specified in the format item. The string is valid if it
corresponds to an internal representation that would be created by the speci
fied picture if the picture w~re used to declare a variable of type PICTURE. If
the string is valid, its fixed-point decimal value is extracted and assigned to
the input target. Any necessary conversion to the type of the input target is
done automatically, following the usual rules (see "Conversion of Data"). If
the string is not valid, the ERROR condition is signaled. See "Examples"
below.

When no decimal point appears in the input stream item, the scale factor of
the item is assumed to be the number of digit positions specified to the right
of the V character in the picture. If no V character appears, the scale factor is
zero.

231

• Output with PUT EDIT

Used with the PUT EDIT statement, the P format item outputs a source of
any computational type in the specified format. If necessary, the output
source is first converted to a fixed-point decimal value, following the usual
rules (see "Conversion of Data"). The fixed-point decimal value is then edited
by the picture specified in the format item. The P format item therefore
describes an output field of w characters, where w is the total number of
characters in the picture, exclusive of the V character. If the output source is a
pictured value, then its extracted fixed-point decimal value must be editable
by the picture specified in the P format item. Otherwise, the ERROR condi
tion is signaled.

•Examples

The tables below show the relationship between the internal and external
representations of numbers that are read or written with the P format item.

Input Examples
The "input stream" shown in the table is a field of characters begin
ning at the current position in the stream and continuing to the right.
The target type is the type of the variable to which the input value is
assigned.

Format Item Input Stream Target Type Target Value
p
p
p
p
p
p

'$$$1$$$1$$9V.99DB' $1019871854.00DB ••• DECIMAL< 1012) -10887854+00
'$$$1$$$1$$9V.99DB' !::::.!::::.!::::.!::::.!::::.!::::.!::::.!::::.$10. 99!::::.6 ••• ' DECIMAL< 10 12) 10.99
I SSSSl,J. SSS SS I !::::.!::::.-1.12345 ••• DECIMAL(815) -1.12345
I SSSSl.J. sssss I +100+12345 ••• DECIMAL(815) 100.1231'.!5
I SSSSl.J + sssss I !::::.100.12345 ••• DECIMAL<8 15) [ERROR J
I SSSSl). SSS SS I +1001.2345 ••• DECIMAL<8 15) CERRORJ

The last two cases signal the ERROR condition. In the first case, the
input field has a space instead of a plus symbol or minus symbol in the
first position. In the second case, the input field has four digits to the
left of the period, and the P format item specifies a maximum of three.
The P format item in both cases uses "drifting strings" of S characters,
and, if used to declare a picture variable, the specification could create
several different character representations. However, the specification
could not have created the last two input fields shown, and they are
therefore invalid values, as described under "Input with GET EDIT"
above.

Note also that in the second line in the table, the characters "$10.99"
must be surrounded with the number of spaces shown. The drifting
dollar signs and the comma insertion characters always specify either
digits, the characters themselves, or spaces. Similarly, the characters
"DB" in the picture specification specify either these characters or the
same number of spaces. If the pictured input value did not contain
these spaces, it would be invalid.

232 P Format Item

Output Examples
The output source value shown in the table is either a constant or the
value of a variable that is written out with the associated format item.

Output Source Value Format Item Output Value
-12234 p '$$$$$$06' $1223406
-12234 p 'ssssss1.1. ss, -12234.00
-12.234 p I T9l.J. 999 I J2.234
-1.2345GE3 p I -99891.J t 99 I -123ll.5G

-1.23ll5GE3 p I +ZZZ9l.J. 99 I L::.123ll.5G

PAGE Format Item

The PAGE format item is used with print files to begin a new page.

The form of the PAGE format item is:

PAGE

Subsequent output begins on line 1 of the next page, and the current page
number for the print file is incremented by 1 (see also "PAGENO Built-In
Function" and "Print File").

PAGE Option

The PAGE option is used with the PUT statement to advance a print file to
the top of the next page before beginning output. The output file must be a
print file, that is, declared with the PRINT attribute.

For further information, see "PUT Statement," "PRINT Attribute," and
"Print File."

PAGENO Built-In Function

The PAGENO built-in function returns a FIXED BINARY(15) integer that is
the current page number in the referenced print file. The print file must be
open. The format of the function is:

PAGENO(reference)

PAGENO Pseudovariable

The PAGENO pseudovariable refers to the page number of the referenced
print file. Assignment to the pseudovariable modifies the current page num
ber. See also "Pseudovariable," for general rules. The format (in an assign
ment statement) is:

PAGENO(reference) =expression ;

reference
A reference to a file for which the page number is to be set. The file
must be open and must be a print file.

PAGENO(reference) is a FIXED BINARY(15) variable; however, values as
signed to it must not be negative.

PAGENO Pseudovariable 233

PAGESIZE Option

The PAGESIZE option is used in the OPEN statement to specify the maxi
mum number of lines that can be written to a print file without signaling the
ENDPAGE condition. The format of the PAGESIZE option is:

PAGESIZE(expression)

expression
A fixed-point binary expression in the range 1-32767, giving the num
ber of lines per page.

The value specified in the PAGESIZE option is used as the output page
length for all subsequent output operations on the print file, overriding the
system default page size. The default page size is as follows:

• If the logical name SYS$LP _LINES is defined, the default page size is the
numeric value of SYS$LP _LINES - 6.

• If SYS$LP _LINES is not defined, or if its value is less than 30 or greater
than 99, or if its value is not numeric, the default page size is 60.

During output operations, the ENDPAGE condition is signaled the first time
that the specified page size is exceeded.

• Restrictions

The PAGESIZE option is valid only for print files.

Parameter Attribute

A variable occurring in the parameter list of a PROCEDURE or ENTRY
statement is considered to have the parameter attribute (which has no key
word). For more information, see "Parameters and Arguments."

Parameter Descriptor

See "ENTRY Attribute."

Parameters and Arguments

A PL/I procedure can invoke other procedures and can transmit values to and
receive them from the invoked procedure. Values are transmitted to an in
voked procedure by means of arguments written in the procedure invocation.
Values are returned to the invoking procedure by means of parameters and
also, in the case of functions, by specifying a value in the function;s RETURN
statement.

234 PAGESIZE Option

Arguments may be specified for a subroutine (invoked by a CALL statement)
or for a function (invoked by a function reference). Subroutines and functions
return values by different means:

• A subroutine may return values only via a list of parameters. A subroutine
must not specify a return value in its RETURN statement, and the declara
tion of an external entry point must not include the RETURNS attribute if
the entry point is to be invoked as a subroutine. Instead, you can return
values by assigning them, within the invoked subroutine, to the variables
listed as parameters. (See also "Argument Passing" below.)

• A function may return values via its parameter list and, in addition, must
return a single value that becomes the value of the function reference in the
invoking procedure; this value is specified in the function's RETURN state
ment. The attributes of this returned value are specified within the invoking
procedure, in the function's PROCEDURE or ENTRY statement, or in the
declaration of the external entry constant or entry variable used to invoke
the function. (See also "RETURN Statement.")

Figure P-1 illustrates the relationship between arguments (specified on
a CALL statement or function reference) and parameters (specified on a
PROCEDURE statement).

CALLER: PROCEDURE ;

DECLARE COMPUTER EXTERNAL ENTRY
(FIXED BINARY (7), CHARACTER (80) VARYING) ;

I/
END ::~~E:OMPUTER ('\\
COMPDUETCEL:RE ::~:~:(0

DECLARE Y CHARACTER (80) VARYING ;

END COMPUTER ;

The ENTRY attribute in a DECLARE statement
provides a parameter descriptor for each
parameter of the called procedure. A parameter
descriptor is a set of data type attributes.

In a CALL statement or a function reference,
arguments appear in parentheses following the
name of the procedure. Arguments can be variables,
expressions. aggregates, or (as in this example)
constants.

The data type of each argument is matched with
the corresponding parameter descriptor in the
declaration of the entry.

The PROCEDURE statement tor the called procedure
specifies the parameters of the procedure. These
parameters correspond, in the order specified,
to the arguments specified in the CALL statement.

Each parameter specified in the PROCEDURE
statement must be declared within the procedure.

Figure P-1: Parameters and Arguments

• Parameter List

A parameter is a variable that occurs in the parameter list of a PROCEDURE
or ENTRY statement. When the entry point is invoked, each parameter in the
parameter list is associated with an argument variable. Within the procedure
invocation, any reference to the parameter is equivalent to a reference to the
associated argument variable.

If the invoked entry point is external to the invoking procedure, the attributes
of the parameters must be described in parameter descriptors, which are part
of the declaration of the external entry point.

Parameters and Arguments 235

Procedures can have more than one entry point (see "Procedure"). Each entry
point must have a parameter list if that entry point is to be invoked with an
argument list. Multiple entry points in a procedure do not need to have
identical parameters, but a reference to a parameter is valid only if the proce
dure was invoked via an entry point that specified that parameter.

• Argument List

An argument is an expression or variable reference denoting a value to be
passed to the invoked procedure. A procedure must be invoked with the same
number of arguments as it has parameters. The maximum number of argu
ments that can be passed to a procedure is 253. The argument variable associ
ated with a parameter, or "actual argument," may be a variable written in the
argument list or a dummy argument created by the compiler. A dummy
argument is created when the specified argument is a constant or expression
and exists only for the duration of the procedure invocation. The_refore, refer
ences in the invoked procedure to the parameter associated with a dummy
argument do not modify any storage in the invoking procedure. (For addi
tional details, see "Argument Passing.")

An argument list consists of zero or more arguments specified in the invoca
tion of a procedure, built-in function, or built-in subroutine. In the case of
built-in functions, arguments are expressions that supply values to the built
in function, and the argument types must be those required by the specific
function. In the case of user-defined procedures, arguments correspond to
parameters defined on the PROCEDURE or ENTRY statement of the in
voked procedure.

Arguments in an argument list must be separated by commas and enclosed in
parentheses. For example:

CALL ><YZ<STRING t 5 t INDE><<ABC t STRING));

The CALL statement in this example invokes the procedure XYZ with an
argument list consisting of three arguments:

• A variable named STRING.

• An integer constant, 5.

• A function reference. The INDEX built-in function is invoked with the
variable arguments ABC and STRING. The value returned by INDEX is
passed as the third argument to the procedure XYZ.

An empty argument list is required in the invocation of a user-defined func
tion with no parameters. An empty argument list may be used in the invoca
tion of a subroutine or built-in function that has no parameter~. Examples:

X = F<>; I* user-defined Procedure-arSuMent list required •I
S ~DATE<>; I* built-in function-arSuMent list optional •I
CALL P(); I* subroutine-arSuMent list optional•/

236 Parameters and Arguments

• Rules for Specifying Parameters

The general rules listed below for specifying parameters are followed by spe
cific rules that pertain only to certain data types.

• A parameter must be declared explictly in a DECLARE statement (to give
it a data type) within the invoked procedure. This declaration must not be
as part of a structure.

• A parameter must not be declared with any of the following attributes:

AUTOMATIC GLOBALREF VALUE
DEFINED INITIAL
EXTERNAL READONLY
GLOBALDEF STATIC

• A maximum of 253 parameters can be specified for an entry point.

• The parameters of. an external entry must be explicitly specified by parame
ter descriptors in the declaration of the entry constant. The parameters of a
procedure that is invoked via an ENTRY variable must be specified by
parameter descriptors in the ENTRY attribute of the variable's declaration.
The parameters of an internal entry must not be declared. For details on
entries and parameter descriptors, see "Entry."

• Each parameter must have a corresponding argument at the time of the
procedure's invocation. PL/I matches the data type of the parameter with
the data type. of the corresponding argument and creates a dummy argu
ment if they do not match. (See "Argument Passing.")

Array Parameters
If the name of an array variable is passed as an argument, the corre
sponding parameter descriptor or parameter declaration must specify
the same number of dimensions as the argument variable. You can
specify the bounds of a dimension using asterisks (*) or optionally
signed integer constants. If the bounds are specified with integer con
stants, they must match exactly the bounds of the corresponding argu
ment. An asterisk indicates that the bounds of a dimension are not
known. (If one dimension contains an asterisk, all the dimensions must
contain asterisks.) For example:

DECLARE SUMUP ENTRY ((*) FIXED BINARY>;

This declaration indicates that SUMUP's argument is a one-dimen
sional array of fixed-point binary integers that can have any number of
elements. Any one-dimensional array of fixed-point binary integers
may be passed to this procedure.

All the data type attributes of the array argument and parameter must
match.

Parameters and Arguments 237

Structure Parameters
If the name of a structure variable is passed as an argument, the
corresponding parameter descriptor or declaration must be identical in
terms of structure levels, members' sizes, and members' data types.
Array bounds and string lengths can be specified with asterisks or with
optionally signed integer constants. The level numbers do not have to
be identical. The following example shows the parameter descriptor for
a structure variable:

DECLARE SEND_REC ENTRY <1 t

2 FI>CED BINARY(31) t

2 CHARACTER<40) VARYINGt
2 PICTURE '888V88');

The written argument in the invocation of the external procedure
SEND_REC must have the same structure and its members must
have the same data types.

Structures are always passed by reference. They cannot be passed by
dummy argument.

Character-String Parameters
If a character-string variable is passed as an argument, the corre
sponding parameter descriptor or parameter declaration can specify
the length using an asterisk (*) or an optionally signed nonnegative
integer constant. For example:

COPYSTRING: PROCEDURE <INSTRINGtCOUNT>;
DECLARE INSTR ING CHARACTER(*);

The asterisk in the declaration of this parameter indicates that the
string may have any length.

Entry, File, and Label Constant Parameters
Entry, file, and label constants may be passed as arguments. The
actual argument is a variable.

• Argument Passing

The following paragraphs describe the precise rules that PL/I uses to deter
mine how to pass an argument.

There are different rules for passing arguments to procedures written in PL/I
and passing arguments to procedures written in other languages. This manual
describes only the conventions for passing arguments to procedures that are
written in PL/I. For complete rules and details on passing arguments to proce
dures written in other languages, see the VAX-11 PL/I User's Guide.

Number of Arguments
The number of arguments in the argument list must equal the number
of parameters of the invoked entry point. The compiler checks that the
count matches as follows:

238 Parameters and Arguments

• For an internal procedure, the compiler checks the number of argu
ments specified in the argument list against the number of parame
ters specified on the PROCEDURE or ENTRY statement for the
internal procedure.

• For an external procedure, the compiler checks that the number of
parameter descriptors in the parameter descriptor list of the ENTRY
declaration matches the number of arguments specified in the proce
dure invocation. This argument checking can· be overridden for an
external procedure declared with the OPTIONS(V ARIABLE) op
tion; however, this option applies only to procedures that are not
written in PL/I. See the VAX-11 PL/I User's Guide for information
on how to use this option.

Actual Arguments
When a PL/I procedure is invoked, each of its parameters is associated
with a variable determined by the corresponding written argument of
the procedure call. This is the actual argument for this procedure
invocation. This actual argument may be either:

• A reference to the written argument

• A dummy argument

The data type of the actual argument is the same as the data type of
the corresponding parameter. When a written argument is a variable
reference, PL/I matches the variable against the corresponding param
eter's data type according to the rules given under the heading "Argu
ment Matching," below. If it matches, the actual argument is the
variable denoted by the written argument. That is, the parameter
denotes the same storage as the written variable reference. If it does
not match, the compiler creates a dummy argument and assigns the
value of the written argument to the dummy argument.

Dummy Arguments
A dummy argument is a unique variable allocated by the compiler,
and it exists only for the duration of the procedure invocation.

When the written argument is a constant or an expression, the actual
argument is always a dummy argument. The value of the written
argument is assigned to this dummy argument before the call. The
data type of the written argument must be valid for assignment to the
data type of the dummy argument.

Aggregate Arguments
An array, structure, or area argument must be a variable reference
that matches the corresponding parameter. It may not be a reference

1

to an unconnected array. A dummy argument is never created for an
array or structure.

Parameters and Arguments 239

Argument Matching
A written argument that is a variable reference is passed by reference
only if the argument and the corresponding parameter have identical
data types. (For the definition of identical data types, see "Data and
Data Types.")

• For an internal procedure, the attributes of the argument must
match the attributes specified in the declaration of the parameter.

• For an external procedure or a procedure invoked via an ENTRY
variable, the attributes specified in the ENTRY attribute parameter
descriptor must match the attributes of the arguments.

When the compiler detects that a scalar variable argument does not
match the data type of the corresponding parameter, it issues a warn
ing message, creates a dummy argument, and associates the address of
the dummy argument with the corresponding parameter. You can sup
press the warning message and force the creation of a dummy argu
ment if you enclose the argument in parentheses. For example, if a
parameter requires a CHARACTER VARYING string and an argu
ment is a CHARACTER nonvarying variable, you would enclose the
variable in parentheses.

For string lengths and array bounds, an asteri.sk (*) in the parameter
matches any expression. An integer constant matches only an integer
constant with the same value.

Conversion of Arguments

Picture

When the data type of a written argument is suitable for conversion to
the data type of the corresponding parameter descriptor, PL/I per
forms the conversion of the argument to a dummy argument using the
rules described under "Conversion of Data."

Pictured data is used when you want to manipulate a quantity arithmetically
and print or display its value using a special output format. This entry de
scribes:

• Pictured variables - variables declared with the PICTURE data attribute

• Editing by picture - the process by which a value is assigned to a pictured
· variable or written out with the P format item

• Extracting values from pictured data - the process by which a pictured
value is assigned to other variables or acquired with the P format item

• Picture characters - the special characters that make up a picture specifi
cation in the PICTURE attribute and in the P format item. "Picture Char
acters" gives a detailed description of each picture character. For a brief
description of the characters and for the required picture syntax, see "PIC
TURE Attribute."

For a description of the P format item, see "P Format Item."

240 Picture

• Pictured Variables

A pictured variable has the attributes of a fixed-point decimal variable, but
values assigned to it are stored internally as character strings. Such a charac
ter string contains digits representing the variable's numeric value as well as
such special symbols as the dollar sign. When the value of a pictured variable
is written out by, for example, the PUT LIST statement, the internally stored
character string is placed in the output stream. The value that appears on a
line printer or terminal thus contains a fixed-point decimal number that has
been "edited" with the requested special symbols.

The formatting possible with pictured data is useful in many applications,
but pictured data is much less efficient than fixed-point decimal data for
strictly computational use.

The numeric attributes of a pictured variable and its output format are both
described in a picture specification, or simply, a picture. A simple picture
looks like this in a DECLARE statement:

DECLARE CREDIT PICTURE '$99999V.99DB';

The variable CREDIT is declared as a pictured variable; its picture comprises
the characters within the apostrophes.

The assignment

CREDIT = 12443.oo;

stores the following data internally, as a character string:

First character

~
$ 2 4 4 3 I . 0 0 I /::,. I /::,.

where 6 represents a space.

The assignment

CREDIT = -12443.oo;

stores the following data internally:

First character

i
$ 2 I 4 4 3 • I 0 0 D B

Picture 241

In situations that call for a character representation of a pictured data item
(such as output with PUT LIST), this internal representation is used, includ
ing the nonnumeric characters. On output, the values assigned to CREDIT
would look like this:

$12443.00 I* a Positive value (credit) */

$12443.00DB I* a nesative value (debit) *I

• Editing by Picture

Any computational value or expression may be assigned to a pictured varia
ble, as long as it meets these two qualifications:

• The value either is a fixed-point decimal value or can be converted to a
fixed-point decimal value (see also "Conversion of Data").

• The fixed-point decimal value can be represented with the precision and
scale factor of the picture specified for the target pictured variable.

When a value is assigned to a pict'ured variable, the value is edited to con
struct a character string that meets the picture specification. Editing also
occurs when a value is output with the PUT EDIT statement and the P
format item. Editing was performed in the previous examples in which fixed
point decimal values were assigned to the pictured variable CREDIT.

Because a picture specifies a fixed-point decimal value, the FIXEDOVER
FLOW condition is signaled in the same circumstances as for assignment of
an expression to a FIXED DECIMAL variable.

In addition, two programming errors are common in assignments to pictured
variables:

CREDIT = '$12443. Oc)'' ;

This example signals the ERROR condition, because the character string
contains a dollar sign and is therefore not convertible to fixed-point decimal.
The value assigned to CREDIT should be either '12443.00' or simply
12443.00, both of which result in the same value assigned to CREDIT.

If a negative value is assigned to a pictured variable, the picture must include
one of the sign picture characters (such as DB). If, for example, the picture of
CREDIT did not contain the DB characters, then the assignment

CREDIT = -12443.oo;

would signal the FIXEDOVERFLOW condition, because the sign would be
lost.

In some circumstances (for example, with the READ statement), it is possible
to assign a value to a pictured variable that is not valid with respect to the
variable's picture specification.· In such cases, the VALID built-in function
can be used to validate the contents of the variable. See "VALID Built-In
Function."

242 Picture

• Extracting Values from Pictured Data

When a pictured value is used in an arithmetic context (for example, when it
is assigned to an arithmetic variable), the picture is used to extract the fixed
point decimal number from the character string that is the internal represen
tation of the pictured value. Extraction also occurs when a pictured value is
input with the GET EDIT statement and the P format item.

In the picture for CREDIT:

DECLARE CREDIT PICTURE '$99998V.99DB';

the 9 character specifies the position of a decimal digit; since the picture
contains seven of these, the fixed-point decimal precision of CREDIT is 7.
The V character separates the integral and fractional digits; since there are
two 9 characters to the right of the V, the scale factor of CREDIT is 2. The V
character is unique among picture characters in that it specifies only a nu
meric property; it does not cause a decimal point (or any other character) to
appear in the internal representation of CREDIT. Therefore, a period picture
character(.) can be included after the V to ensure that the output value has a
decimal point in the correct place.

The period and dollar sign are always inserted in the internal representation
and the output value regardless of CREDIT's numeric value.

The picture character DB appears only when the value of CREDIT is less than
zero; otherwise, two spaces appear in the indicated positions. The DB charac
ter also indicates that a value of CREDIT is numerically negative, so that if
CREDIT is later assigned to an arithmetic variable, the variable will be given
a negative value.

• Picture Characters

The picture is a string made up of special characters. (For a full list of PL/I
picture characters, see Table P-2 in "PICTURE Attribute.") An individual
picture character, and its position in the picture, indicate the interpretation of
an associated position in the pictured value. All picture characters are shown
here in uppercase form, although the lowercase equivalents can be used iden
tically.

The picture characters fall into three categories and are described below in
this order:

• Characters that affect only the numeric interpretation of the value. The
decimal place character (V) is the only one in this category.

• Characters that affect both the numeric interpretation and character repre
sentation of the value. These characters are:

- The digit characters (9, Z, *, Y)

- The encoded-sign characters (T, I, R)

- The drifting characters ($, +, - , S)

Picture 243

• Characters that affect only the character representation of the value. These
characters are:

- The insertion characters (comma, period, slash, space)

- The credit (CR) and debit (DB) characters

Any picture character that can appear more than once in a picture may be
preceded by an iteration factor. The iteration factor must be a positive integer
constant enclosed in parentheses. For example, the picture

'(l'.!)9'

is the same as

'9998'

Decimal Place Character (V)

244 Picture

The V character shows the position of the "assumed" decimal point,
or, in other words, the scale factor for the fixed-point decimal value.
The V character has no effect on the internal representation of the
pictured value and does not, therefore, cause a decimal point to appear
in the internal representation. (The period insertion character is used
for this purpose - see "Insertion characters" below.) The following
additional rules apply to the V character:

• Only one V character may appear in a picture.

• If a picture does not contain the V character, a V character is as
sumed to be at the right end of the picture. That is, the pictured
value has a scale factor of zero.

• When a fixed-point value is assigned to a pictured variable, the
integral portion of the assigned value is described by the picture
characters to the left of the V; the fractional portion of the assigned
value is described by the picture characters to the right of the V.
Note therefore:

- If the assigned value has fewer integral digits than are indicated
by the picture characters to the left, then the integral value of the
pictured variable is extended on the left with zeros. If the assigned
value has too many integral digits, the value of the pictured varia
ble is undefined and the FIXEDOVERFLOW condition is sig
naled.

- If the assigned value has fewer fractional digits than are indicated
_ in the picture, then the fractional value of the pictured variable is
extended on the right with zeros. If the assigned value has too
many fractional digits, then the excess fractional digits are trun
cated on the right; no condition is signaled. Thus, if the V charac
ter is the last character in the picture or is omitted, assigned fixed
point values are truncated to integers.

Digit Characters (9, Z, *, Y)
All of these characters mark the positions occupied by decimal digits.
The number of these characters present in a picture specifies the num
ber of digits, or precision, of the fixed-point decimal value of the pic
tured variable. These characters also describe the internal, character
representation of the digits; they allow zeros in a number to be repre
sented either by the character 0 or by an alternate character. Specifi
cally:

• The position occupied by 9 always contains a decimal digit, whether
or not the digit is significant in the numeric interpretation of the
pictured value.

• The position occupied by Z contains a decimal digit only if the digit
is significant in the integral portion of the numeric interpretation; if
the digit is an insignificant, or "leading," zero, it is replaced by a
space in the internal representation.

- The Z character must not appear in the same picture with the
character *. It must not appear to the right of the characters 9, T,
I, or R nor to the right of a drifting string (see "Drifting charac
ters" below).

- If the Z character appears to the right of the V character, then all
digits to the right of the V must be indicated by Z characters.
Fractional zeros are then suppressed only if all fractional digits are
zero and all of the integral digits are suppressed; in that case, the
internal representation contains only spaces in the digit positions.

• The position occupied by the * character functions identically with
the Z character except that leading zeros are replaced in the internal
representation by asterisks instead of spaces. The * character must
not appear in the same picture as Z nor to the right of the characters
9, T, I, or R nor to the right of a drifting string (see "Drifting
characters" below).

• The position occupied by the Y character contains a decimal digit
only if the digit is not zero. All zeros in the indicated positions,
whether significant or not, are replaced by spaces in the internal
representation.

Encoded-Sign Characters (T, I, R)
The characters T, I, and R are digit characters that may be used
wherever 9 is valid. One of these characters represents a digit that has
the sign of the pictured value encoded in the same position.

Only one of these characters can be used in a picture.

An encoded-sign character cannot be used in a picture that contains
an S, +, -, CR, or DB (described below).

Picture 245

The meanings of the characters are as follows:

• The T character indicates that the position contains an encoded
minus sign if the numeric value is less than zero and an encoded plus
sign if the numeric value is greater than or equal to zero. These
encoded-sign digits are represented internally and in output by the
ASCII characters shown in Table P-1.

• The I character indicates an encoded plus sign if the numeric value
is greater than or equal to zero. Otherwise, the position contains an
ordinary digit.

• The R character indicates an encoded minus sign if the numeric
value is less than zero. Otherwise, the position contains an ordinary
digit.

Table P---1 shows the ASCII characters used to indicate digits with
encoded signs. In the table, the notation +digit means the digit with
an encoded plus sign, and --digit means the digit with an encoded
minus sign. The characters in Table P-1 are used in the internal repre
sentation of a pictured value and must be used for input of an en
coded-sign digit from a stream file.

T1able P--1: ASCII Representation of Encoded-Sign Digits

I Digit I ASCII Character I Digit I ASCII Character l
1---

+O I --0 I
+l A -1 J

+2 B -2 K

+<~ c --3 L

+4 D -4 M

+5 E -5 N

+6 F -6 0

+7 G -7 p

+8 H -8 Q

+9 I -9 R

Drifting Characters ($, +, -, S)

246 Picture

The drifting characters can be used to indicate digits, and they also
indicate a symbol to be inserted in the internal representation. The
inserted symbol then appears when, for example, a pictured value is
written out by PUT LIST.

• The dollar sign ($) causes a dollar sign to be inserted.

• The plus sign (+) causes a plus sign to be inserted if the numeric
value is greater than or equal to zero.

• The minus sign(-) causes a minus sign to be inserted if the numeric
value is less than zero.

• The S character causes a plus sign to be inserted if the numeric
value is greater than or equal to zero and a minus sign if the value is
less than zero.

If one of these characters is used alone in the picture, it marks the
position at which a special symbol or space is always inserted, and it
has no effect on the value's numeric interpretation. In this case, the
character must appear either before or after all characters that specify
digit positions.

However, if a series of n of these characters appears, then the right
most n-1 of the characters in the series also specify digit positions. If
the digit is a leading zero, the leading zero is suppressed, and the
leftmost character "drifts" to the right; in the internal representation,
the character appears either in the position of the last drifting charac
ter in the series or immediately to the left of the first significant digit,
whichever comes first. Used this way, the n-1 drifting characters also
define part of the numeric precision of the pictured variable, since they
describe at least some of the positions occupied by decimal digits. The
following additional rules apply to drifting characters:

• A drifting string is a series of more than one of the same drifting
character. If a drifting string appears in the picture, it must be the
only drifting string; the other drifting characters can be used only
singly and therefore designate insertion characters and not digits.

• The characters Z and * cannot appear to the right of a drifting
string.

• A digit position cannot be specified (for instance, with a 9) to the left
of a drifting string.

• A drifting string can contain the V character and one of the insertion
characters (defined below). The following additional rules apply to
insertion characters that are embedded in a drifting string:

- If the drifting string contains an insertion character, the insertion
character is inserted in the internal representation only if a signifi
cant digit appears to its left. In the position of the insertion char
acter, a space appears if the the leftmost significant digit is more
than one position to the right; the drifting symbol appears if the
next position to the right contains the leftmost significant digit.

- If the drifting string contains a V character, all digit positions to
the right of the V (the fractional digits) must also be part of the
drifting string. In this case, insignificant fractional digits are sup
pressed if and only if all integral and fractional digits are zeros; if
so, they are replaced by spaces in the internal representation. If
any digit is not zero, all fractional digits appear as actual digits.

- Any insertion characters that are immediately to the right of a
drifting string are considered part of the drifting string.

Picture 247

Insertion Characters

248 Picture

The insertion characters indicate that characters are inserted in the
internal representation of the pictured value. They are inserted be
tween digits. The insertion characters are the comma (,), period (.),
slash (/), and the space (B). The B character indicates that a space is
always inserted at the indicated position.

The drifting characters also function as insertion characters when used
singly (that is, not as part of a drifting string).

The following rules describe the actual characters inserted by the
comma, period, and slash insertion characters.

• In general, the insertion character itself is inserted in the internal
representation of the pictured value. In particular, this is true if the
insertion character is the first character in the picture, or if all the
picture characters to its left are characters that do not specify deci
mal digits.

• If zero suppression occurs, the insertion character is inserted only in
these cases:

- A significant digit appears immediately to the left of the insertion
character.

- The V character appears immediately to the left, and the frac
tional part of the numeric value contains significant digits.

• If the position preceding the insertion character is occupied by an
asterisk or drifting string and the preceding position is taken by a
leading zero, then the preceding character also indicates the charac
ter to be inserted in the position of the insertion character. If, how
ever, the preceding position is taken by a leading zero and does not
have an asterisk or drifting string, then the insertion character's
position is a space in the internal representation of the pictured
value.

• To guarantee that the decimal point is in the same position in both
the numeric and character interpretations, the V and period charac
ters must be immediately adjacent. Note, however, that if the period
precedes the V, then it is suppressed if there are no significant inte
gral digits, even though all the fractional digits are significant. This
property can make fractions appear to be integers when the internal
(character) value is displayed. Consequently, the period should im
mediately follow the V character; the period will then be in the
correct location and will appear whenever any fractional digit is
significant.

• Other insertion characters, such as the comma, can be used to sepa
rate the integral and fractional portions of a number. However, the
comma should not be used with GET LIST input, because a comma
is used in that context to separate different data items in the input
stream.

Credit (CR) and Debit (DB) Characters
These picture characters are always specified in the pairs CR and DB.
If either of these character pairs is included, the character pair appears
in the internal representation if the numeric value is less than zero. In
each case, the associated positions in the internal representation con
tain two spaces if the numeric value is greater than or equal to zero.

The characters are al ways inserted with the same case used in the
picture; if the lowercase form er is used in the picture, lowercase letters
are inserted in the pictured value; if the combination Cr is used, then
Cr is inserted.

The credit and debit characters cannot be used in the same picture,
nor can they be used in the same picture with any other character that
specifies the sign of the value (that is, S, +, -, and the encoded-sign
characters). In addition, they must appear to the right of all picture
characters that specify digits.

PICTURE Attribute

The PICTURE attribute is used to declare a pictured variable. Pictured varia
bles have fixed-point decimal attributes, but values of the variable are stored
internally as character strings. The character string contains decimal digits
representing the numeric value of the variable, plus special editing symbols
described in the picture.

The PICTURE attribute conflicts with the FIXED, FLOAT, DECIMAL, and
BINARY attributes.

The format of the PICTURE attribute is:

{ PICTURE} 'picture,
PIC

picture
The picture is a string of picture characters that define the representa
tion of the variable.

These characters are described in Table P-2. A brief description of
picture syntax, and examples, follow Table P-2. For precise definitions
of picture characters, see "Picture."

Table P-2 shows the uppercase form of picture characters; lowercase
letters can also be used.

PICTURE Attribute 249

Table P-2: Picture Characters

Character Meaning

9 Decimal digit, including leading zeros
z Decimal digit with leading-zero suppression
* Decimal digit with asterisk for leading zero
y Decimal digit with space for any zero
v Position of assumed decimal point
(n) Iteration factor for subsequent character
T Position of digit and encoded plus sign or minus sign
I Position of digit and encoded plus sign if number 2" 0
R Position of digit and encoded minus sign if number < 0

Position at which decimal point is inserted

'
Position at which comma is inserted

I Position at which slash is inserted
B Position at which space is inserted
$ Position[s] of [drifting] dollar sign
+ Position[s] of [drifting] plus sign if number ;::: 0
- Position[s] of [drifting] minus sign if number < 0
s Position[s] of [drifting] plus sign or minus sign
CR Positions at which 'CR' is inserted if number < 0
DB Positions at which 'DB' is inserted if number < 0

• Picture Syntax

After all its iterations are expanded and all its insertion characters are re
moved, a picture must satisfy the following syntax rules (the notation charac
ter ... indicates a series of the same character, with no embedded characters).

picture:

'[left-part] center-part[right-part] '

left-part:

!U
right-part:

$
+

s
CR
DB

250 PICTURE Attribute

center-part:

9 ... [V[9 ... ll
V9 .. .
Z ... [9 ... [V[9 ...])]
Z ... [V[9 ... ll
[Z ... JVZ .. .
* ... [9 ... [V[9 ...]]]
* ... [V[9 ...]]
[* ... JV* ...

+ + ... [9 ... [V[9 ... JJJ
++ ... [V[9 ... JJ
-- ... [9 ... [V[9 ... JJ]
-- ... [V[9 ... ll
SS ... [9 ... [V[9 ...]]]
SS ... [V[9 ... JJ
$$... [9 ... [V[9 ...]]]
$$... [V[9 ...]]

" +[+ ... JV+ .. .
-[- ... JV- ...
S[S ... JVS ...
$[$... JV$...

NOTE

The character Y, T, I, or R may appear wherever 9 is valid,
with the following restrictions. Only one character T, I, or R
may appear in a picture. A picture may not contain T, I, or R if
it also contains S, +, -, CR, or DB.

•Examples

Valid Pictures

I S99l.J + 99 I

The picture specifies a signed fixed-point number with p=4, q=2. The
sign of the number is always included in its representation, in the first
position. A period is inserted at the position of the assumed decimal
point.

'****88'

The picture specifies a six-digit integer, with the first four leading
zeros replaced by asterisks.

I ****l.I +**I
The picture specifies a fixed-point number with p=6,q=2. The first
four leading zeros are replaced by asterisks in the integral portion.
Both fractional digits always appear unless all six digits are 0. A period
is inserted at the position of the assumed decimal point.

PICTURE Attribute 251

I ZZ99l.J + 99 I

The picture specifies a fixed-point number with p=6,q=2. The first two
digits in the integral portion are replaced with spaces if they are zeros.
Two digits always appear on either side of the decimal point.

The picture specifies a fixed-point number with p=5,q=2. (The itera
tion factor 4 specifies a string of four S characters, one of which speci
fies a sign and three of which specify digits.) A plus(+) or minus(-)
symbol is inserted to the immediate left of the first significant integral
digit, or to the left of the decimal point if no integral digit is signifi
cant. Any insignificant integral digits are replaced with spaces or with
the sign symbol.

I zzz tZZZl.J + 99 I

The picture specifies a fixed-point number with p=8,q=2. If the inte
gral portion has four or more significant digits, a comma is inserted
between the third and fourth; otherwise, both the leading zeros and
the comma are suppressed. The decimal point always appears followed
by two fractional digits.

I z z z + z z z l.J t 9 9 I

The picture specifies a fixed-point number with p=8,q=2. If the inte
gral portion has four or more significant digits, a period is inserted
between the third and fourth; otherwise, both the leading zeros and
the period are suppressed. The decimal point (indicated by a comma)
always appears followed by two fractional digits.

'ZZZIZZZ/ZZZ'

The picture specifies a fixed-point number with p=9,q=0. A slash is
inserted between the three-digit groups unless the digit preceding the
slash is a suppressed zero.

Invalid Pictures

I 999ZZZZl.J + 99 I

The picture is invalid because a 9 occurs to the left of Z.

I$$$- - -99t.J + 99 I

rrhe picture is invalid because it contains two drifting strings ('$$$'
and '---').

The picture is invalid because fractional digits in this case must be
pictured either with a drifting minus sign or with 9s.

252 PICTURE Attribute

Pointer

A pointer is a variable whose value represents the location in memory of
another variable or data item.

All pointers must be declared with the POINTER attribute before they can be
referenced in a BASED attribute or an ALLOCATE statement with the SET
option. For example:

DECLARE X POINTER,
BUFFER CHARACTER(80) BASED (X);

The variable Xis given the POINTER attribute. Then, it is used as the target
pointer in another declaration, which defines a buffer to be based on X.
Pointers are used to qualify references to based variables, that is, variables for
which storage is explicitly allocated at run time by the ALLOCATE state
ment. For example:

DECLARE LIST_POINTER POINTER;
DECLARE 1 LIST_STRUCTURE BASED,

2 FORWARD_PTR POINTER,
2 MEMBER_NAME CHAR(20) VAR;

ALLOCATE LI£T_STRUCTURE SET (LIST_POINTER>;
LIST_POINTER -> LIST_STRUCTURE+MEMBER_NAME = 'newnaMe';

When these statements are executed, the ALLOCATE statement allocates
storage for a variable LIST_STRUCTURE and sets the pointer LIST_
POINTER to the address in memory of the allocated storage. This dynami
cally created variable is called an allocation of the variable LIST_STRUC
TURE.

In the assignment statement, the locator qualifier (->) and the identifier
LIST_POINTER distinguish this allocation of LIST_STRUCTURE from
allocations created by other ALLOCATE statements, if any.

• Pointer Variables in Expressions

Expressions containing pointer variables are restricted to the following rela
tional operators:

Operator Meaning

Equal
Not equal

For example, to test whether a pointer is null, that is, to to determine whether
it is currently pointing to valid storage, you can write the following statement:

IF LIST_POINTER =NULL() THEN
oo;

The NULL built-in function, referenced in this example, always returns a null
pointer value.

Pointer 253

Pointer variables can be used in simple assignment statements that assign a
pointer value to a pointer variable. For example:

LIST_POINTER_1 = LIST_POINTER_2;

LIST_END =NULL();

A pointer variable can also be used as the source or target in an assignment
statement involving an offset variable or offset value. See "Offset."

• Internal Representation of Pointer Data

A pointer occupies a longword (32 bits) of storage and represents a virtual
memory address.

For more information, see "ALLOCATE Statement," "Based Variable,"
"FREE Statement," "List Processing," "Locator Qualifier," "Offset," and
"Storage Classes."

POINTER Attribute

The POINTER attribute indicates that the associated variable will be used to
identify locations of data. The format of the POINTER attribute is:

{ POINTER}
PTR

• Restrictions

The POINTER attribute conflicts with all other data type attributes.

POINTER Built-In Function

The POINTER built-in function returns a pointer to the location identified by
the referenced offset and area. Its format is:

POINTER (offset,area)

offset

area

A reference to an offset variable whose current value either represents
the offset of a based variable within the specified area or is null.

A reference to a variable that is declared with the AREA attribute and
with which the specified offset value is associated.

• Returned Value

The returned value is of type POINTER. If the offset value is null, the result
is null.

254 POINTER Attribute

•Example

DECLARE MAP_SPACE AREA (2048)'
START OFFSET (MAP_SPACE) t

P POINTER;

P = POINTER CSTART1MAP_SPACE);

The POINTER built-in function converts the value of the offset variable
START in the area MAP __ SPACE to a pointer value.

POSITION Attribute

The POSITION attribute specifies the character or bit position in a defined
variable's base at which the defined variable begins. Its format is:

POSITION (expression)

expression
An integer expression that specifies a position in the base. A value of
one indicates the first character or bit.

• Restrictions

The POSITION attribute may be specified only in connection with DEFINED
and only when the defined variable satisfies the rules for string overlay defin
ing (see also "Defined Variable").

Precedence

The precedence, or priority, of operators defines the order in which expres
sions are evaluated when they contain more than one operator.

PL/I defines the precedence of arithmetic operators with respect to each other
and with respect to other types of operators. In general, the rules for preced
ence produce "expected" results without the need for parenthesized expres
sions. However, for details see "Expression" and "Operator."

Precision Attribute

The precision attribute applies to binary and decimal data; the precision of an
item is the number of decimal or binary digits used to represent a value. The
precision of an arithmetic variable can be specified in any of the following
formats, depending on the numeric base of the data item:

BINARY [FIXED l [(precision) l
[BINARYJ FLOAT [(precision) J

DECIMAL [FIXED] [(precision[,scale-factor]) J
DECIMAL FLOAT [(precision)]

In each case, the precision is the number of bits or decimal digits used to
represent values of the variable. Only fixed-point decimal data has a scale

Precision Attribute 255

factor. The scale factor specifies that all values of the fixed-point decimal
variable are "scaled" by the factor 10-q, where q is the specified scale factor; in
other words, all values have q fractional digits. The scale factor must be less
than or equal to the precision specified for the fixed.,. point decimal variable,
and it must be greater than or equal to zero. Fixed-point binary data must
always have a zero scale factor; only integers can be represented in that data
type.

The precision of a floating-point data item is the number of decimal or binary
digits in the mantissa of the floating-point representation.

• Restrictions

The ranges of values you can specify for the precision for each arithmetic data
type, and the defaults applied if you do not specify a precision, are summa
rized as follows:

Data Type
Attributes Precision

Scale Default
Factor Precision

BINARY FIXED 1 s p s 31 31
BINARY FLOAT 1 s p s 113 24
DECIMAL FIXED 1 s p s 31 s p 10
DECIMAL FLOAT 1 s p s 34 7

If no scale factor is specified with DECIMAL FIXED, the default is zero.

• Precision of Expressions

The precision of the result of an expression is determined by the precisions
and data types of the variables and constants used in the ~xpression, and by
the rules governing the specific operation being performed by the expression.

For the rules governing the conversion of operands in an expression, see "Ex
pression - Conversion of Operands." The conversion of operands in an ex
pression produces converted operands of the same data type but with individ
ual precisions. These individual precisions are then used to determine the
precision of the result, which depends on the operation being performed. For
example, see "Subtraction."

PRINT Attribute
The PRINT attribute is used to declare a print file. The file SYSPRINT, used
as the default output by PUT statements, is also a print file. '

Print files are stream output files with special formatting characteristics (see
"Print File"). The PRINT attribute implies the OUTPUT and STREAM
attributes.

• Restrictions

The PRINT attribute conflicts with the INPUT, RECORD, UPDATE,
KEYED, SEQUENTIAL, and DIRECT attributes.

256 PRINT Attribute

Print File

A print file is a stream output file that is intended for output on a terminal,
line printer, or other output device. Any stream output file can be declared a
print file by use of the PRINT attribute. The default stream output file,
SYSPRINT, is also a print file.

The following list describes the special features of print files as opposed to
ordinary stream output files (see also "Stream Input/Output"):

• Character strings are not enclosed in apostrophes on list-directed output.

• List-directed output data items are separated by tabs instead of spaces. Tab
stops occur at eight-column increments beginning with column 1. With the
PUT EDIT statement and the TAB format item, you can begin output at a
specified tab stop.

• A record is kept internally of the current line in a print file. The LINENO
built-in function returns the current line number for a specified file. This
function allows you to keep track of the number of lines being written to a
file and to decide where page advances should occur.

• Print files are divided into both lines and pages. A record is kept internally
of the number of lines per page. You can specify a page size when the print
file is created (see "PAGESIZE Option").

• During output of data to a print file, the ENDPAGE condition is signaled
when the output exceeds the page size.

• New pages are started by the PUT PAGE statement, the PAGE format
item, and certain other format items. Each of these operations increments
the current page number by one. The PAGENO built-in function returns
the current page number from a print file. This function allows you to keep
track of the number of pages being written to a file. You can set the current
page number to a specific value by assigning the value to the PAGENO
pseudovariable.

• If the print file is a terminal, the output is written to the terminal at the
conclusion of each PUT statement.

• A print file is created with PRN-format carriage control. PRN format is
efficient for both terminals and line printers because blank lines do not
require individual records. (PRN format is discussed in the VAX-11 Record
Management Services Reference Manual.)

• Print files usually cannot be read properly with GET LIST or GET EDIT.

Procedure

A procedure is the basic executable program unit in PL/I. It consists of a
sequence of statements, headed by a PROCEDURE statement and termi
nated by an END statement, that define an executable set of program instruc
tions. The two types of procedure that can be invoked by another procedure
during its execution are:

• Subroutines, which must be invoked with a CALL statement. Subroutines
return values to the invoking procedure only by means of their parameter

Procedure 257

lists; they must not include an expression in their RETURN statements and
must not include a RETURNS option on their PROCEDURE or ENTRY
statements.

• Functions, which must be invoked by a function reference. A function refer
ence can appear in place of a scalar value in any appropriate context in a
PL/I statement. A function returns to the invoking procedure a single value
that becomes the value of the function reference in the invoking procedure.
Functions may also return values via their parameter lists. Functions must
include a RETURNS option to describe the attributes of the returned value
and must specify an expression in their RETURN statements.

Each type of procedure can be passed data or information from the invoking
procedure by means of an argument list.

A procedure may have multiple entry points, and it is permissible for some
entry points to be subroutine entry points and some to be function entry
points. In this case, the procedure is treated as a subroutine or function in
accordance with the entry point through which it is invoked. Remember,
.. ~ .. .,~ ~~· that when a procedure is invoked as a function, any RETURN state
ment executed in the procedure must specify a return value.

• External and Internal Procedures

An internal procedure is one whose text is contained within another block. An
external procedure is one whose text is not contained in any other block.

The source text of an external procedure can be separately compiled.

The primary coding differences between internal and external procedures are:

• Before an external procedure can be invoked (except via an entry variable),
its name must be declared within the procedure that invokes it. The DE
CLARE statement for the external entry name must also provide a list of
parameter descriptors that give the data type(s) of the procedure's parame
ters, if any, and the DECLARE statement must provide a RETURNS at
tribute if the procedure is a function.

Internal procedures must not be explicitly declared. The procedure name is
implicitly declared by its occurrence in the PROCEDURE or ENTRY state
ment of the internal procedure.

• External procedures can reference the same variable only if the variable is
declared with the EXTERNAL attribute in all procedures that reference it.

An internal procedure, on the other hand, can reference internal variables
declared in any procedure in which it is contained.

• Any procedure can call an external procedure.

An internal procedure can be called only by the procedure that contains it
or by other procedures at the same level of nesting within the containing
procedure. The only exception is invocation via an entry variable.

Figures P-2 and P-3 illustrate invoking internal and external procedures.

258 Procedure

MAI NP: PROCEDURE OPTIONS (MAIN);

COMPUTE: PROCEDURE;

ADD_NUMBERS: PROCEDURE;

END;

END;

PRINT_REPORT: PROCEDURE;

END;

Figure P-2: Invoking Internal Procedures

In Figure P-2, the procedures COMPUTE and PRINT_REPORT are internal
to the procedure MAINP, and the procedure ADD_NUMBERS is internal to
the procedure COMPUTE. MAINP can invoke the procedures COMPUTE
and PRINT_REPORT, but not ADD_NUMBERS. COMPUTE and
PRINT_REPORT can invoke one another. ADD_NUMBERS can call COM
PUTE and PRINT_REPORT. (See also "Scope of Names.")

WINDUP: PROCEDURE;

DECLARE PITCH EXTERNAL ENTRY <CHARACTER<15> VARYINGt
FIXED BINARYC7)) ;

CALL PITCH (PLAYER_NAMEtNUMBER_OF_OUTS);

Figure P-3: Invoking an External Procedure

In Figure P-3, the procedure WINDUP declares the procedure PITCH with
the EXTERNAL and ENTRY attributes. The text of the procedure PITCH is
in another source program that is separately compiled.

For information on compiling and linking together separately compiled proce
dures, see the VAX-11 PL/I User's Guide.

Procedure 259

• Terminating Procedures

Subroutines and functions can be terminated in the following ways:

• A RETURN statement

A RETURN statement provides a normal termination for a subroutine or
function. For a function, a RETURN statement must specify a return value.

• A STOP statement

A STOP statement ends the entire program execution. It does not pass a
return value.

• An END statement

If an END statement closes the procedure block of a subroutine before a
RETURN or STOP statement is executed, the END statement has the
same effect as RETURN. A function cannot be terminated without a
RETURN statement.

• A nonlocal GOTO statement

A GOTO statement that transfers control to a label that is outside the
current block terminates a subroutine or a function. The label specified on
the GOTO statement must be known within the block that contains the
GOTO statement, and the block containing the specified label must be
active when the GOTO is executed.

• Passing Arguments to Subroutines and Functions

You specify arguments for a subroutine or function by enclosing the argu
ments in parentheses following the procedure or entry point name. Arguments
correspond to parameters specified on the PROCEDURE or ENTRY state
ment of the invoked procedure. For example, a procedure call can be coded as
follows:

CALL COMPUTER (AtBtC);

The variables A, B, and C in this example are arguments to be passed to the
procedure COMPUTER. The procedure COMPUTER might have a parame
ter list like this:

COMPUTER: PROCEDURE ()-(t Y t Z) ;
DECLARE (XtYtZ) FLOAT;

The parameters X, Y, and Z, specified in the PROCEDURE statement for the
subroutine COMPUTER, are the parameters of the subroutine. PL/I estab
lishes the equivalence of the arguments A, B, and C with the parameters X, Y,
and Z.

For more information, see "Parameters and and Arguments."

• Entry Points

The entry points of a procedure are the points at which it can be invoked. One
entry point is specified by the PROCEDURE statement that begins the proce
dure block. Additional entry points may be specified with ENTRY statements

260 Procedure

in the procedure block. ENTRY statements are allowed anywhere except
within a begin block, an ON-unit, or a DO group (except a simple, nonitera
tive DO group).

The labels used on PROCEDURE and ENTRY statements implicitly declare
entry constants. (See also "Entry Data" and "ENTRY Statement.") The
scope of these declarations is internal if the PROCEDURE and ENTRY state
ments appear in internal procedures and external if they appear in external
procedures.

Note that the declaration of an entry name is made in the block containing
the procedure to which the entry point belongs. For example:

P: PROCEDURE;

Q: PROCEDURE
DECLARE E FIXED BINARY;
E: ENTRY;
END Q;

The entry names E and Qare declared in the procedure P. Within the proce
dure Q, E' is declared as a fixed-point binary variable.

An entry point can be invoked by using the appropriate entry constant as the
reference in a CALL statement or function reference. Invoking an entry point
enters a procedure at the specified point and activates the procedure block
that contains the entry point. ·

If the CALL statement or function reference invokes an entry point in an
external procedure, the entry constant must be declared with the ENTRY
attribute, as in Figure P-3 above. The declaration of an external constant
must also describe the parameters for that entry point, if any. For example:

DECLARE PITCH ENTRY (CHARACTER (*) t F U<ED BI NARY (15)) ;

The identifier PITCH is declared as an entry constant. When the procedure
containing this declaration is linked to other procedures, one of the external
procedures must define an entry point named PITCH, either as the label of a
PROCEDURE statement or as the label of an ENTRY statement.

The data type attributes in the parentheses (known as "parameter descrip
tors") are the data types of the parameters that are defined elsewhere for the
entry point PITCH. Arguments of these types must be supplied when PITCH
is invoked. See also "Parameters and Arguments" and "ENTRY Attribute."

If PITCH is to be used to invoke a function, the DECLARE statement must
also include a RETURNS attribute to describe the attributes of the returned
value, as in:

DECLARE PITCH ENTRY (CHARACTER (*) t FI ><ED BI NARY (15))
RETURNS (FI ><ED) ;

Within the scope of this DECLARE statement, the entry constant PITCH
must be used in a function reference. The function reference will invoke the
external entry point, and a returned fixed-point binary value will become the
value of the function reference.

Procedure 261

• Multiple Entry Points

A procedure can be entered at more than one point. Only one entry point can
be specified by a PROCEDURE statement; additional entry points are de
clared with ENTRY statements.

The rules governing the declaration of multiple entry points are:

• A particular parameter need not be specified in all of a procedure's entry
points (including the point defined by the PROCEDURE statement). How
ever, a reference to the parameter is valid only if the procedure was invoked
via one of the entries specifying the parameter.

• In a procedure that has multiple entry points, a RETURN statement must
be compatible with the entry point by which the procedure was invoked. If
the entry point does not have a RETURNS option, the RETURN statement
must not specify a return value. If the entry point has a RETURNS option,
the RETURN statement must specify a return value that is valid for conver
sion to the data type specified in the RETURNS option. (In addition, if the
entry point does not have the RETURNS option, it must be invoked as a
"subroutine"-that is, with the CALL statement.)

0 An ENTRY statement is not executable. If control reaches it sequentially,
control simply continues on to the next statement.

The following example shows a procedure with two alternate entry points:

ADD_ELEMENT: ENTRY<ELEMENTl;

REMOVE_ELEMENT: ENTRYCELEMENTl;

This procedure can be entered by CALL statements that reference QUEUES,
ADD_ELEMENT, or REMOVE_ELEMENT. If it is invoked at QUEUES,
it must be passed two parameters. At either of the entries ADD_ELEMENT
or REMOVE_ELEMENT, it must be passed only one parameter.

When it is entered at either alternate entry point, the entire block beginning
at QUEUES is activated, but execution begins with the first executable state
ment following the entry point.

• Recursive Procedures

In VAX-11 PL/I, any procedure may be invoked recursively - that is, by a
statement within itself or within a dynamically descendent block (see also
"Block"). A recursive invocation of a procedure is similar to any invocation; a
recursive invocation creates a new block activation, allocates new storage for
automatic variables, and so forth.

In standard PL/I, the RECURSIVE option must be used on a PROCEDURE
statement if the procedure is to be invoked recursively. In VAX-11 PL/I, the

262 Procedure

HEC URS IVE option is needed only for program documentation, since all
procedures can be recursive.

Procedure Block

A procedure block defines a unit of a PL/I program. The block begins with a
PROCEDURE statement and ends with an END statement. The OP
TIONS(MAIN) option identifies the main procedure that is activated when
the program begins. A procedure block can be activated only by a CALL
statement or a function reference unless it is the main procedure. The CALL
statement or function reference can activate the procedure block by invoking
either the label of its PROCEDURE statement or the label of an ENTRY
statement within the procedure.

For information on procedure block activation, see "Block." For a definition
and examples of procedures, see "Procedure" and "PROCEDURE State
ment."

PROCEDURE Statement

The PROCEDURE statement defines the beginning of a procedure block and
specifies the parameters, if any, of the procedure. If the procedure is invoked
as a function, the PROCEDURE statement also specifies the data type attrib- '
utes of the value that the function returns to its point of invocation.

The PROCEDURE statement may denote the ~eginning of an internal or
external subroutine or function. The format of the PROCEDURE statement
is:

entry-name: { PROp~cfcURE} [(parameter, ...)]

[OPTIONS (option, ...) J

[RECURSIVE J ;

[RETURNS (returns-descriptor)]

entry-name
A 1- to 31-character identifier denoting the entry label of the proce
dure. The label cannot be subscripted. The PROCEDURE statement
declares the entry name as an entry constant. The scope of the name is
INTERNAL if the procedure is internal, and EXTERNAL if the pro
cedure is external.

parameter, ...
One or more parameters that the procedure expects when it is ac
tivated, separated by commas. Each parameter specifies the name of a
variable declared in the procedure headed by this PROCEDURE
statement. The parameters must correspond, one to one, with argu
ments specified for the procedure when it is invoked with a CALL
statement or in a function reference. See also "Parameters and Argu
ments" for details.

PROCEDURE Statement 263

OPTIONS (option, ...)
An option that specifies one or more options, separated by commas.
The valid options are:

IDENT (string)
An option specifying a character-string constant giving the identi
fying label for the listing and the module's version for the linker.
Only the first 31 characters of the string are placed in the object
module.

MAIN
An option specifying that the named procedure is the initial
procedure in a program. The identifier of the procedure is the
primary entry point for the program. The MAIN option is not
allowed on internal procedures, and only one procedure in a pro
gram can have the MAIN option.

UNDERFLOW
An option that requests that the run-time system signal under
flow conditions when they occur. By default, the run-time system
does not signal these conditions. See also "UNDERFLOW Con
dition Name."

RECURSIVE
An option that indicates (for program documentation) that the proce
dure will be invoked recursively, that is, that it will be activated while
it is currently active. In standard PL/I, the RECURSIVE option must
be specified for a procedure to be invoked recursively. However, in
VAX-11 PL/I, all procedures may be invoked recursively, and the
RECURSIVE option is ignored by the compiler.

RETURNS (returns-descriptor)
An option that specifies that the procedure can be invoked only by a
function reference and specifies the attributes of the function value
returned. See "RETURNS Attribute and Option" for syntax and de
tails.

RETURNS must be specified for functions. It is invalid for procedures
that are invoked by CALL statements.

For general information on procedures, see "Procedure."

Program Structure

A PL/I program consists of a series of statements, which perform the follow
mg:

• Define the data to be used for program input and output

• Define the operations to be performed on the data during the execution of
the program

• Control the environment within which the program executes

• Define the order of execution or control flow for a program

264 Program Structure

A statement comprises user-specified identifiers, constants, and PL/I key
words, separated by blanks, comments, and punctuation marks. Statements
themselves can be organized into structural sequences of groups or blocks.
Figure P-4 illustrates the structure of a PL/I program.

SAMPLE: PROCEDURE OPTIONSIMAINl;

DECL .. {~r~·E (,y,z) FI)<ED,
ME~:JSAGE CHARACTER! !30 l ,
C A L C E N T R '/ (F L 0 A T l ~· E T U R t·1 S (F L 0 f:i T l ,
TOTAL .. FLOAT;

n;
PUT SKIP LIST!MESSAGEl;

FINISH: PROCEDURE;
DECLARE TEXT !5l CHARACTERC20l;

[N D F I t.1 I '.3 H ;
Ft•1[) Sf.~MPLf'.;

A PROCEDURE is the basic executable program unit.

The declarations of variables in a procedure are usu
ally, but not necessarily, placed at the beginning of the
procedure.

Executable statements are placed following variable
declarations.

Internal procedures may be placed anywhere.

All procedures must terminate with END statements.

Figure P-4: Structure of a PL/I Program

• Source Program Format

The source text of a PL/I program is freeform. As long as you terminate every
statement with a semicolon (;), individual statements can begin in any col
umn, spill over onto additional lines, or be written with more than one state
ment to a line.

Individual keywords or identifiers of a statement cannot be split onto more
than one line, however. Only a character string constant (which must be
enclosed in apostrophes) can spill over onto more than one line.

PL/I programs are easier to read and to comprehend if you follow a standard
pattern in formatting. For example:

• Write source statements with no more than one statement per line.

• Use indention to show the nesting level of blocks and DO-groups.

For information on the punctuation marks used in PL/I statements, see
"Punctuation Marks." For information on blocks, see "Block."

Pseudovariable

VAX-11 PL/I has the pseudovariables PAGENO, STRING, SUBSTR, and
UNSPEC.

A pseudovariable can be used, in certain assignment contexts, in place of an
ordinary variable reference. For example:

SUBSTRCSt2t1) = 'A'

assigns the character 'A' to a one-character substring of S, beginning at the
second character of S.

Pseudovariable 265

A pseudovariable can be used wherever the following three conditions are
true:

1. The syntax specifies a variable reference.

2. The context is one that explicitly assigns a value to the variable.

3. The context does not require the variable to be addressable.

The principal contexts in which pseudovariables are used are:

• The left side of an assignment statement

• The input target of a GET statement

Note that a pseudovariable cannot be used in an argument list. For example:

CALL P<SUBSTR<S t2 t1));

Here, SUBSTR is interpreted as a built-in function reference, not as a pseudo
variable. The actual argument passed to procedure P is a dummy argument
containing the second character of string S.

Punctuation Marks

PL/I recognizes punctuation marks in statements. The punctuation marks
serve to:

• Specify arithmetic or relational operations to be performed on expressions
in a statement

• Delimit and separate identifiers, keywords, and constants in PL/I state-
ments

For example, in the statement shown below, the equals sign (=), representing
the assignment statement, the addition operator (+), and the semicolon (;)
are valid punctuation:

A = B + C;

These punctuation marks separate the identifiers A, B, and C and define the
operation to be performed.

Whenever you use a punctuation mark in a PL/I statement, you can precede
or follow the character with any number of spaces. For example, the following
two statements are equivalent:

DECLARE (AtB) FIXED DECIMAL (7,0>;
DECLARECAtB>FIXED DECIMAL(7,Q);

In the second statement, the spaces preceding and following parenthetical
expressions are omitted; the parentheses themselves are sufficient to distin
guish elements in the statement. The only space required in this statement is
the space that separates the two keywords FIXED and DECIMAL.

Table P-3 summarizes the punctuation marks that PL/I recognizes. Note that
operators consisting of two characters (for example, ** and >=) must be
entered without intervening spaces in a PL/I program.

266 Punctuation Marks

Table P-3: Punctuation Marks Recognized by PL/I

Category Symbol Meaning to PL/I

Arithmetic + Addition or prefix plus
operators - Subtraction or prefix minus

I Division
* Multiplication
** Exponentiation

Relational (or > Greater than
comparison) < Less than
operators = Equal to

A

> Not greater than
A

< Not less than
A

= Not equal to
>= Greater than or equal to
<= Less than or equal to

Logical A Logical NOT
operators & Logical AND

I or! Logical OR

Concatenation II or!! String concatenation
operator

Separators
'

Delimits elements in a list

; Terminates a PL/I statement

Separates identifiers in a structure name; specifies a deci-
mal point

: Terminates a procedure name or a statement label

() Enclose lists and extents; define the order of evaluation of
expressions; separate statement and option names from
specific keywords

' Delimit character strings and bit strings

Locafor -> Pointer resolution
qualifier

• Spaces, Tabs, and Line-End Characters

In addition to punctuation marks, PL/I accepts spaces, tabs, and line-end
characters between identifiers, constants, and keywords.

The· line-end character is a valid punctuation mark between items in a PL/I
statement except when it is embedded in a string constant. In a string con
stant, the line-end character is ignored. For example:

A = 'THIS IS A VERY LONG STRING THAT MUST BE CONTI
NUED ON MORE THAN ONE LINE IN THE SOURCE FILE'

This assignment statement gives the variable A the value of the specified
character-string constant. (The line-end character in the constant is ignored.)

Punctuation Marks 267

PUT Statement

The PUT statement transfers data from the program to the output stream.
The output stream may be either a stream file or a character-string variable.
The output file may be a declared file or the default file SYSPRINT.

This entry describes the syntax and options of PUT statements. For a detailed
description of the execution of a PUT statement, see "Stream Input/Output."

The PUT statement has several forms. These forms are summarized in Figure
P-5 and described individually below.

PUT EDIT (output-source, ...) (format-specification, ...)

[FILE (file-reference)]
[LINE (expression)]
[OPTIONS (option)]
[PAGE]
[SKIP [(expression)]] ;

PUT LINE (expression)

[FILE (file-reference)] ;

PUT LIST (output-source, ...)

[FILE (file-reference)]
l Of-' I IUN::S (option) j

[PAGE]
[SKIP [(expression)]] ;

PUT PAGE

[FILE (file-reference)] ;

PUT SKIP [(expression)]

[FILE (file-reference)] ;

PUT STRING (reference)

{
EDIT (output-source, ...) (format-specification, ...) } ;
LIST (output-source, ...)

Option

CANCEL CONTROL 0

Figure P-5: Forms of the PUT Statement

268 PUT Statement

•PUT EDIT

The PUT EDIT statement takes output sources (variables and expressions)
from the program, converts the results to characters under control of a format
specification, and places the resulting character strings in the output stream.
The output stream is either a stream file or a character-string variable.

With PUT EDIT, the format of the output data is controlled by the program.

The form of the PUT EDIT statement is:

PUT EDIT (output-source, ...) (format-specification, ...)

FILE(file- reference)
[PAGE] [LINE(expression)]
[SKIP[(expression)]]
[OPTIONS(option)l

STRING(reference)

output-source
A construct that specifies one or more expressions to be placed in the
output stream.

The output sources must be separated by commas.

An output source has the following forms:

1. expression

where the expression is of any computational type, including a ref
erence to a scalar or aggregate variable. If the reference is to an
array, data is output from array elements in row-major order. If the
reference is to a structure, data is output from structure members in
the order of their declaration.

2. (output-source, ... DO reference=expression
[TO expression] [BY expression] [WHILE(expression)])

where the output source may be of any of these forms, and the
references and expressions are as for the DO statement. Notice that
the parentheses surrounding this form of output source are in addi
tion to the parentheses surrounding the entire output-source list.

3. (output-source, ... DO reference=expression
[REPEAT expression][WHILE (expression)])

where the output source may be of any of these forms, and the
references and expressions are as for the DO statement: Notice that
the parentheses surrounding this form of output source are in addi
tion to the parentheses surrounding the entire output-source list.

For a discussion of the matching of format items to output sources,
and of the use of DO specifications, see "Format-Specification
List."

PUT Statement 269

format-specification
A list of format items to control the conversion of data items in the
output list. Format items can be data format items, control format
items, or remote format items. For each variable name in the output
source list, there is a corresponding data format item in the format
specification list that specifies the width of the output field and con
trols the data conversion. (See "Format-Specification List" and "For
mat Items and Their Uses.")

FILE(file-reference)

PAGE

An .option that specifies that the output stream is a stream file; the
reference is to a declared file variable or constant. If neither the FILE
option nor the STRING option is specified, PL/I uses the default file
SYSPRINT; this print file is associated with the default system output
file SYS$0UTPUT, which in turn is generally associated with the
user's terminal.

If a file is specified, and it is not currently open, PL/I opens the file
with the attributes STREAM and OUTPUT.

An option that advances the output file to a new page before any data
is transmitted. The PAGE option may be used only with implied or
explicit print files. The file is positioned at the beginning of the next
page, and the current page number is incremented by 1. The PAGE,
LINE, and SKIP options are always executed, in that order, before any
other output or file-positioning operations. The page size is either the
default value or the specific value that you have established for the file
(see "PAGESIZE Option"). The PAGESIZE option may be used only
with print files.

LINE (expression)
An option that advances the output file to a specified line. The LINE
option may be used only with implied or explict print files. The expres
sion must yield an integer i. Blank lines are inserted in the output file
such that the next output data appears on the ith line of a page.

If the file is currently positioned at the beginning of line i, no operation
is performed by the LINE option.

If the file is currently positioned before line i, and i is less than or equal
to the page size, then blank lines are inserted following the current line
until line i is reached.

If the file is currently positioned at or beyond line i, and the file is not
at the beginning of line i, then the remainder of the page (the portion
between the current line and the current page size) is filled with blank
lines. The ENDPAGE condition is signaled.

When the LINE option is used within an ENDPAGE ON-unit, it
causes a skip to the next page.

SKIP [(expression)]
An option that advances a specified number of lines from the current
line. The SKIP option may be used only with the implied or explicit
FILE option. The expression must yield an integer i, which must not

270 PUT Statement

be negative and must be greater than zero except for print files. If the
expression is omitted, i equals one.

If the file is not a print file, i-1 blank lines are inserted following the
current line, and subsequent output of data begins at the beginning of
(current line)+i.

If the file is a print file, i=O causes a return to the beginning of the
current line. If i is greater than zero, and either the current line ex
ceeds the page size or the page size is greater than or equal to the
current line plus i, then i-1 blank lines are inserted. Otherwise, the
remainder of the current page is filled with blank lines, and the END
PAGE condition is signaled.

On output devices with the space-suppression feature, SKIP(O) can be
used to cause overprinting, underlining, and so forth. For further infor
mation on lines and pages in stream files, see "Stream Input/Output"
and "Print File."

OPTIONS (CANCEL_CONTROL__O)
A statement option that may be included only with the implied or
explicit FILE option. The option is described fully in the VAX-JI PL/I
User's Guide.

STRING(reference)
An option that specifies that the output stream is the referenced char
acter-string variable. The STRING option cannot be used in the same
statement with FILE, OPTIONS, PAGE, LINE, or SKIP.

•Examples

PUTE: PROCEDURE OPTIONS<MAIN);

DECLARE SOURCE FIXED DECIMAL<7t2);

DECLARE OUTFILE PRINT FILE;

OPEN FILE<OUTFILE) TITLE< 'PUTE.OUT');

SOURCE = 12345+67;

PUT SKIP FILE(OUTFILE) EDIT<SDURCE) <F<Bt2));
PUT SKIP FILE<OUTFILE) EDIT<SDURCE) (E(13));
PUT SKIP FILE(OUTFILE) EDIT<SOIJRCE) (A);
PUT SKIP FILE<OUTFILE) EDIT< 'Arrierican: 'tSOURCE)

(A t p I z z t z z z l.J + z z I) ;

PUT SKIP FILE<DUTFILE) EDIT('European: 'tSOIJRCE)
(A t p I z z + z z z l.J t z z I) ;

END PUTE;

The program PUTE writes the following output to PUTE.OUT:

12345+67
1+234567E+04

12345+67
American: 12t345+67
European: 12.345t67

PUT Statement 271

•PUT LINE

The PUT LINE statement advances a print file to a specified line. Its format
is:

PUT [FILE (file-reference)] LINE (expression) ;

file-reference
A reference to the file to which the statement applies. The file must be
a print file.

If the FILE option is not specified, PL/I uses the default file
SYSPRINT. This print file is associated with the default system out
put file SYS$0UTPUT, which in turn is generally associated with the
user's terminal.

expression
An expression giving a line in the print file, relative to the top of the
current page. The expression must yield an integer i.

If the file is currently positioned at the beginning of line i, no operation
is performed by the LINE option. If the file is currently positioned
before line i, and i is less than or equal to the' page size, then blank
lines are inserted following the current line until line i is reached.

If the file is currently positioned at or beyond line i, and the file is not
at the beginning of line i, then the remainder of the page (the portion
between the current line and the current page size) is filled with blank
lines. The ENDPAGE condition is signaled.

When the PUT LINE statement is used within an ENDPAGE
ON-unit, it causes a skip to the next page.

•PUT LIST

The PUT LIST statement specifies a list of output sources (variables and
expressions) whose results are converted to character strings and transmitted
to the output stream. If the output file is a print file, the output character
strings are separated by tabs. Otherwise, the strings are separated by spaces.

With PUT LIST, the conversion of the output sources and formatting of the
output data are automatic.

The form of the PUT LIST statement is:

PUT LIST (output-source, ...)

FILE(file- reference)
[PAGE] [LINE(expression)l
[SKIP[(expression)]]
[OPTIONS(option)]

STRING(reference)

272 PUT Statement

output-source
A construct that specifies one or more expressions to be placed in the
output stream.

The output sources must be separated by commas.

An output source has the following forms:

1. expression

where the expression is of any computational type, including a
reference to a scalar or aggregate variable. If the reference is to an
array, data is output from array elements in row-major order. If the
reference is to a structure, data is output from structure members
in the order of their declaration.

2. (output-source, ... DO reference=expression
[TO expression] [BY expression] [WHILE(expression)])

where the output source m~y be of any of these forms, and the
references and expressions are as for the DO statement. Notice
that the parentheses surrounding this form of output source are in
addition to the parentheses surrounding the entire output-source
list.

3. (output-source, ... DO reference=expression
[REPEAT expression] [WHILE (expression)]

where the output source may be of any of these forms, and the
references and expressions are as for the DO statement. Notice
that the parentheses surrounding this form of output source are in
addition to the parentheses surrounding the entire output-source
list.

FILE(file-reference)

PAGE

An option that specifies that the output stream is a file; the reference
is to a declared file variable or constant. If neither the FILE option nor
the STRING option is specified, PL/I uses the default file SYSPRINT;
this print file is associated by default with the system output file
SYS$0UTPUT.

If a file is specified, and it is not currently open, PL/I opens the file
with the attributes STREAM and OUTPUT.

An option that advances the output file to a new page before any data
is transmitted. The PAGE option may be used only with implied or
explicit print files. The file is positioned at the beginning of the next
page, and the current page number is incremented by one. The PAGE,
LINE, and SKIP options are always executed, in that order, before any
other output or file-positioning operations. The page size is either the
default value or the specific value that you have established for the file
(see "PAGESIZE Option"). The PAGESIZE option may be used only
with print files.

PL/I does not skip automatically to a new page; the PAGE option
must be used to perform this function.

PUT Statement 273

LINE (expression)
An option that advances to a specified line in the output file. The
LINE option may be used only with implied or explicit print files. The
expression must yield an integer i.

If the file is currently positioned at the beginning of line i, no operation
is performed by the LINE option.

If the file is currently positioned before line i, and i is less than or equal
to the page size, then blank lines are inserted following the current line
until line i is reached.

If the file is currently positioned at or beyond line i, and the file is not
at the beginning of line i, then the remainder of the page (the portion
between the current line and the current page size) is filled with blank
lines. The ENDPAGE condition is signaled.

When the LINE option is used within an ENDPAGE ON-unit, it
causes a skip to the next page.

SKIP [(expression)]
An option that advances a specified number of lines from the current
line. The SKIP option may be used only with the implied or explicit
FILE option. The expression must yield an integer i, which must not
be negative and must be greater than zero except for print files. If the
expression is omitted, i equals one.

If the file is not a print file, i-1 blank lines are inserted following the
current line, and subsequent output of data begins at the beginning of
(current line)+i.

If the file is a print file, i=O causes a return to the beginning of
the current line. If i is greater than zero, and either the current line
exceeds the page size or the page size is greater than or equal to the
current line plus i, then i-1 blank lines are inserted. Otherwise, the
remainder of the current page is filled with blank lines, and the
ENDPAGE condition is signaled.

On output devices with the space-suppression feature, SKIP(O) can be
used to cause overprinting, underlining, and so forth. For further infor
mation on lines and pages in stream files, see "Stream Input/Output"
and "Print File."

OPTIONS (CANCEL_CONTROL_O)
The only valid statement option for PUT statements is CANCEL
CONTROLO. The option is described fully in the VAX-11 PL/I
User's Guide.

STRING(reference)
An option that specifies that the output stream is the referenced char
acter-string variable. The STRING option cannot be used in the same
statement with FILE, OPTIONS, PAGE, LINE, or SKIP.

27 4 PUT Statement

•Examples

PUTL: PROCEDURE OPTIONS<MAIN>;

DECLARE I FIXED BINARYt
F FLOATt
P PICTURE '981.l.99' t

S CHAR< 10) ;

DECLARE INFILE STREAM INPUT FILE;
DECLARE OUTFILE PRINT FILE;

OPEN FILE<INFILE> TITLE<'PUTL.IN');
OPEN FILE<OUTFILE> TITLE< 'PUTL.OUT');

GET FILE<INFILE> LIST <ItFtPtS>;
PUT FILE<OUTFILE> SKIP LIST <ItFtPtS);

END PUTL;

If the file PUTL.IN contains the following data:

2t3+54t22.33t'A strins'

then the program PUTL writes the following output to PUTL.OUT:

2 3+5400000E+OO 22.33 A strins

For print files, each output item is written at the next tab position. Floating
point values are represented in floating-point notation. Character values are
not enclosed in apostrophes.

•PUT PAGE

The PUT PAGE statement positions the output file at the start of a new page.
This statement is valid only for print files, that is, files that have been opened
with the PRINT attribute.

The form of the PUT PAGE statement is:

PUT [FILE(file-reference) l PAGE;

file-ref ere nee
A reference to a print file that is to be advanced to the next output
page. If no file is specified, PL/I assumes the default file SYSPRINT.
This file is associated with the default system output file
SYS$0UTPUT.

•Example

PUT FILE<REPORT> PAGE SKIP LINE<2>;

The PUT statement advances the file REPORT to the beginning of the next
page, advances to line 2, and skips to the beginning of the next line (3).

PUT Statement 275

•PUT SKIP

The PUT SKIP statement positions the output file at the start of a new line.

The form of the PUT SKIP statement is:

PUT [FILE(file-reference)] SKIP [(expression)] ;

file-ref ere nee
A reference to the file to which the SKIP option applies. If no file is
specified, PL/I assumes the file SYSPRINT. This file is associated
with the default system output file SYS$0UTPUT.

If a fife is specified, and it is not currently open, PL/I opens the file
with the attributes STREAM and OUTPUT.

expression
An expression giving the number of lines to advance. The expression
must yield an integer i, which must not be negative and must be
greater than zero except for print files. If the expression is omitted, i
equals one.

If the file is not a print file, i-1 blank lines are i'nserted following the
current line, and subsequent output of data begins at the beginning of
(current line)+ i.

If the file is a print file, i=O causes a return to the beginning of the
current line. If i is greater than zero, and either the current line ex
ceeds the page size or the page size is greater than or equal to the
current line plus i, then i-1 blank lines are inserted. Otherwise, the
remainder of the current page is filled with blank lines, and the END
PAGE condition is signaled.

On output devices with the space-suppression feature, SKIP(O) can be
used to cause overprinting, underlining, and so forth. For further infor-

-mation on lines and pages in stream files, see "Stream Input/Output"
and "Print File."

276 PUT Statement

R
R Format Item

The R format item specifies the label of a FORMAT statement from which
some or all of a format specification is obtained by a GET EDIT or PUT EDIT
statement.

The form of the R format item is:

R (label)

label
The label of a FORMAT statement within the same block as the GET
EDIT or PUT EDIT statement. If the item occurs in a recursive proce
dure, the R item and FORMAT statement must occur in the same
recursion.

Although the FORMAT statement can contain another R format item, these
restrictions must be observed:

• The FORMAT statement cannot designate its own label with an R format
item.

• The FORMAT statement cannot begin a chain of remote format items that
leads back to the original FORMAT statement.

•Examples

rff r~M: PROCEDURE 0 PT I ems (MA It··~) ;

DECLARE SYSIN STREAM INPUT FILE;
DECLARE SYSPRINT PRINT FILE;
DECLARE SALARY PICTURE '$$$$$$$$8V.88'
DECLARE (FIRST1MID1LASTl CHARACTER\80l VARYING;
DECLARE 1 HIRING,

2 DATE CHARACTER\20l VARYING,
2 EXPERIENCE FIXED,
2 SALARY PICTURE '$$$$$$$$8V.88'

DPEN FIL..E(SYSIN) TITLE\ 'RFRM, IN');
OPEN FILE(SYSPRINTl TITLE('RFRM,OUT' l;

GET EDIT(SAL.ARY1FIRST1MID1LAST1DATE1EXPERIENCE1HIRING.SAL.ARYi
(F (8 12 l ,p (PERSONNEL..-FORMAT l);

PUT SUP LIST(L.AST:: I' I: :FIRST:: I I: :MID:: I: I

'Hired 1
: :DATE::' at '::HIRING.SAL.ARY);

PUT SKIP L.IST(EXPERIENCE::' Years Prior experience');
PUT SKIP LIST('Present salary: '::SAL.ARY);

PERSONNEL_FORMAT: FORMAT (R (NAME) 1A (20 l 1Sf< IP 1F (2 l 1/ 1F (8 12 l l;
NAME: FORMAT(3(SKIP1A(80l));

END RFRM;

277

If the file RFRM.IN contains the following data:

625005+50
Tho1r1asina
A•
Delacroix
G6JulY61976
62615003.85

then the following output is written to the print file RFRM.OUT:

D e 1 a c r o i x t 6 T h o Ill a s i n all.A • : 66666666 H i r e d li.Gli.J u 1 }' 61 9 7 86 a t 6666 $ 1 5 0 0 3 • G 0 6
666666666666626Yearsli.Priorli.exPerienceli.
Pres en tli.s a 1 a r }': 6666$25005. 506

RANK Built-In Function

The RANK built-in function returns a fixed-point binary integer that is the
ASCII code for the designated character. The precision of the returned value
is 7. The format of the function is:

RANK(character)

character
Any expression yielding a one-character value.

ii Examples

CODE= RANK<'A'); I* CODE=
CODE = RANK ('a') ; I* CODE =
CODE = RANK('$'); I* CODE

65 */
97 *I
36 */

See "ASCII Character Set" for a list of the ASCII characters and their corre
sponding numeric codes.

READ Statement

The READ statement reads a record from a file, either the next record or a
record specified by the KEY option. The file must have either the INPUT or
the UPDATE attribute.

•Format

The format of the READ statement is:

READ FILE (file-reference)

{
INTO (variable-reference)}
SET (pointer-variable)

[
KEY (expression)]
KEYTO (variable-reference)

[OPTIONS (option, ...) l ;

278 RANK Built-In Function

file-reference
A reference to the file from which the record is to be read. If the file is
not currently open, PL/I opens the file with the implied attributes
RECORD and, if the file does not have the UPDATE attribute,
INPUT. The implied attributes are merged with the attributes speci
fied in the file's declaration. (See also "Opening a File.")

INTO (variable-reference)
An option that specifies that the contents of the record are to be
assigned to the specified variable name. The variable must be an
addressable variable.

If the variable has the VARYING attribute and the file does not have
the attribute ENVIRONMENT(SCALARVARYING), the entire rec
ord is treated as a string value and assigned to the variable; if the
record is longer than the variable, it is truncated and the ERROR
condition is signaled. For any other type of variable, the record is
simply copied into the variable's storage. If the record is not exactly
the same size as the target variable, as much of the record as will fit is
copied into the variable and the ERROR condition is signaled.

SET (pointer-variable)
An option that specifies that the record should be read into a buffer
allocated by PL/I and the specified pointer variable be assigned the
value of the location of the buffer in storage.

This buffer remains allocated until the next operation on the file but
no longer. Therefore, neither the pointer value nor the buffer should be
used after the next operation on the file. The only valid use of the
buffer during a subsequent I/0 operation is in a REWRITE statement.
In this case, the record can be rewritten from the buffer before the
buffer is deallocated.

KEY (expression)
An option that specifies that the record to be read is to be located
using the key specified by the expression. The file must have the
KEYED attribute. The key value must have a computational data
type.

The nature of the key depends on the file's organization, as follows:

• If the file is a relative file or a sequential disk file with fixed-length
records, the key is a fixed binary value indicating the relative record
number of the record to be read.

• If the file is an indexed sequential file, the key specifies a key that is
contained within a record. The data type of the key and its location
within the record are as specified when the file was created.

The value of the specified expression is converted to the data type of
the key. If no record with the specified key exists in the file, or if the
value specified is not valid for conversion to the data type of the key,
the KEY condition is signaled.

KEYTO (variable-reference)
An option that specifies that the key of the record being read is to be
assigned to the designated variable. The value of the key is converted

READ Statement 279

from the data type implied by the file's organization to the data type
of the variable. The variable must have a computational data type but
cannot be an unaligned bit string or an aggregate consisting entirely of
unaligned bit strings.

KEYTO can be specified only for a file that has both the KEYED and
SEQUENTIAL attributes. It conflicts with the KEY option.

OPTIONS (option, ...)
An option that specifies one or more of the READ statement options
listed below, separated by commas.

FIXED_CONTROL_ TO (variable-reference)
IND Ex___NUMBER (expression)
MATCH_GREATER
MATCH_GREATER.___EQUAL
RECORD_ID (expression)
RECORD_ID_ TO (variable-reference)

These options are described fully in the VAX-11 PL/I User's Guide.

• File Positioning Following a READ Statement

If the file is accessed sequentially, the READ statement reads the file's next
record. If the next record position is at the end-of-file, the ENDFILE condi
tion is signaled.

After a successful read, the file's current record position denotes the record
that was just read. The next record position denotes the following record or, if
there is no following record, end-of-file.

If any error occurs other than an incorrect record size, the current record
becomes undefined and the next record is the same as it was before the read
was attempted.

•Examples

The program COPY, below, illustrates reading a sequential file with variable
length records into a character-string with the VARYING attribute and writ
ing the records to a new sequential output file.

COPY: PROCEDURE;
DECLARE INREC CHARACTERCBO> VARYINGt

ENDED BIT (1) STAT I c IN IT (I 0 I B) t

CINFILEtOUTFILE) FILE;

OPEN FILE CINFILE> RECORD INPUT
TITLE('RECFILE+DAT');

OPEN FILE COUTFILE> RECORD OUTPUT
TITLE('COPYFILE+DAT I);

ON ENDFILECINFILE) ENDED= '1'5;

280 READ Statement

READ FILE<INFILE> INTO <INREC>;
DO WHILE (~ENDED>;

WRITE FI LE <OUTF I LE) FROM (I NREC > ;
READ FI LE (I NF I LE> INTO <I NREC) ;
END;

CLOSE FILE<INFILE>;
CLOSE FILE<OUTFILE);
RETURN;
END;

The procedure COPY uses a DO-group to read the records in the file sequen
tially until the end-of-file is reached. It uses the ON statement to establish
the action to take when the end-of-file occurs: it sets the bit ENDED to '1 'B
so that the DO-group will not be executed again.

The VARYING character-string variable INREC has a maximum length of 80
characters. If any record in the file is more than 80 characters, the ERROR
condition is signaled. If no ERROR ON-unit exists, the program exits.

The next example shows a keyed READ statement to access a record in an
indexed sequential file:

DECLARE STATEt
2 NAME CHARACTER<30) t

2 CAP ITAL t

3 NAME CHARACTER (20) t

2 SYMBOLSt
3 FLOWER CHARACTER (30) t

3 BI RD CHARACTER (30) t

STATE_FILE FILEt
INPUT_NAME CHARACTER<30) VARYING;

OPEN FILE<STATE_FILE> KEYED;
PUT SKIP LIST('State?');
GET LIST<INPLJT_NAME>;
READ FILE<STATE_FILE> INTO<STATE) KEY<INPUT_NAME>;
PUT SKIP
LIST('The f 101 ... 1er of' tSTATE.NAME t 'is the' tFLOWER);

In this example, the file STATE_FILE is opened for keyed access and the
READ statement specifies the key of interest in the KEY option. The value
for this option is determined at run time by a GET statement. In the READ
statement, the contents of a record from the file ST A TE_FILE are read into
the structure STATE.

READ Statement 281

The next example illustrates accessing a relative file sequentially with READ
statements and obtaining the key value of each record, that is, the relative
record n um her.

PRINT_DATA: PROCEDURE OPTIONS<MAIN);

DECLARE 1 EMPLOYEE BASED < EP) t

2 NAMEt
3 LAST CHAR< 30) t

3 FIRST CHAR<20),
3 MIDDLE_ IN IT CHAR (1) t

2 DEPARTMENT CHAR (4) t

2 SALARY FIXED DECIMAL (6,2) t

EP POINTER,
EMP_FILE FILE;

DECLARE EDF BIT(l) STATIC INIT< 'O'B) t

NUMBER FI><ED BIN<31);

END;

ON ENDFILE<EMP_FILE) EDF= 'l'B;
OPEN FILE<EMP_FILE) INPUT SEQUENTIAL KEYED;

READ FILE<EMP_FILE) SET<EP) KEYTO<NUMBER>;
DO WHILE (... EDF) ;

PUT SK Ip LI ST (I EMPLOYEE I .NUMBER t

NAME.FIRSTtNAME+LASTtMIDDLE_INIT>;
READ FILE<EMP_FILE> SET<EP> KEYTO<NUMBER>;
END;

CLOSE FILE<EMP_FILE>;

In this example, the records in the file EMP _FILEare arranged according to
employee numbers. Each employee number corresponds to a relative record
number in the file. READ statements read records into the based structure
EMPLOYEE and set the pointer EP to the location of the allocated buffer.
The READ statements specify the KEYTO option to obtain the record num
ber of each record. The procedure prints the employee numbers and names.
When the last record has been read, the program closes the input file and
exits.

READONLY Attribute
The READONL Y attribute can be applied to any static computational varia
ble whose value does not change during the execution of the program.

When you specify READONLY in conjunction with the declaration of a static
variable, the PL/I compiler allocates storage for the variable based on the fact

282 READO NL Y ·Attribute

that its value does not change. A static variable with the READONLY attrib
ute can be given an initial value with the INITIAL attribute.

The READO NL Y attribute is described in detail in the VAX-11 PL/I User's
Guide.

• Restrictions
• The READO NL Y attribute can only be applied to static computational

variables. The variables must be declared with the EXTERNAL, STATIC,
GLOBALREF, or GLOBALDEF attributes.

• The value of a variable with the READONLY attribute must not be modi
fied. An attempt to modify a variable declared with the READONLY at
tribute will result in a run-time error.

• The READONLY attribute conflicts with the ENTRY, FILE, LABEL,
POINTER, and VALUE attributes.

RECORD Attribute

The RECORD file description attribute indicates that data in an input or
output file consists of separate records and that the file will be processed by
record I/O statements.

The RECORD attribute is implied by the DIRECT, SEQUENTIAL, KEYED,
and UPDATE attributes.

You can specify this attribute in a DECLARE statement for a file constant or
in the OPEN statement that accesses the file. For a description of the attrib
utes that may be applied to files and the effects of combinations of these
attributes, see "File Description Attributes and Options."

• Restrictions

The RECORD attribute conflicts with the STREAM and PRINT attributes.

Record Input/Output

Record input/output is performed by the READ, WRITE, DELETE, and
REWRITE statements. In record I/0, each I/O statement processes an entire
record. (In stream I/O, more than one line or record can be processed by a
single statement; see "Stream Input/Output" for details.) Table R-1 summa
rizes the PL/I file description attributes that apply to record I/O. For an
overview of how to declare and reference files in PL/I, see the entry "File."

Record Input/Output 283

Table R-1: Access Modes for Record Files

Valid Devices
Attributes Attributes and File
Specified Implied Organizations Usage

SEQUENTIAL RECORD Any output Records may be added to the end of the file using WRITE
OUTPUT device or file statements. Each WRITE statement adds a single record to the

except indexed file.

SEQUENTIAL RECORD Any input Records in the file are read using READ statements. Each state-
INPUT device or file ment reads a single record.

SEQUENTIAL RECORD Relative, READ statements read a file's records in order. PL/I maintains
UPDATE indexed, the current record, which is the record just read. This record

sequential disk 1 may be replaced in a REWRITE statement. In a relative or
indexed sequential file, the current record may also be deleted
with a DELETE statement. Each statement processes a single
record.

DIRECT KEYED Relative, WRITE statements insert records into the file at positions speci-
OUTPUT RECORD indexed, fied by keys. Each statement inserts a single record.

sequential disk 1

DIRECT KEYED Relative, READ statements specify records to be read randomly by key.
INPUT RECORD indexed, Each statement reads a single record.

sequential disk 1

DIRECT KEYED Relative, READ, WRITE, and REWRITE statements specify records ran-
UPDATE RECORD ndexed, domly by key. In a relative or indexed file, records may also be

sequential disk 1 deleted by key.

KEYED RECORD Relative, WRITE statements insert records into the file at positions speci-
SEQUENTIAL indexed, fied by keys. Each statement inserts a single record. This mode
OUTPUT sequential disk 1 is identical to DIRECT OUTPUT.

KEYED RECORD Relative, READ statements access records in the file randomly by key or
SEQUENTIAL indexed, sequentially.
INPUT sequential disk 1

KEYED RECORD Relative, Any record I/O operation is allowed except a WRITE statement
SEQUENTIAL indexed, that does not specify a key or a DELETE statement for a se-
UPDATE sequential disk 1 quential disk file with fixed-length records.

1. The file must have fixed-length records.

284 Record Input/Output

• Position Information for a Record File

When a record file is open, PL/I maintains the following position information:

• The next record, for files with the SEQUENTIAL INPUT or SEQUENTIAL
UPDATE attributes. The next record designates the record that will be
accessed by a READ statement that does not specify the KEY option. The
next record may contain end-of-file.

• The current record, for a file with the UPDATE attribute. The current
record designates either of the following:

- the record that will be modified by a REWRITE statement that does not
specify the KEY option

- the record that will be deleted by a DELETE statement that does not
specify the KEY option

The value of the current record may be undefined.

When a file is opened the current record is undefined and the next record
designates the first record in the file or, if the file is empty, end-of-file.

After a sequential read, the current record designates the record just read.
The next record indicates the following record or, if there are no more records,
the end-of-file.

After a keyed 1/0 statement, that is, an I/O statement that specifies the KEY
or KEYFROM option, the current record and next record are set as follows:

Current Next
Statement Record Record

READ
WRITE
REWRITE
DELETE

X X+l
X X+l
X X+l
undefined X

where X is the record specified by key and X+l is the next record or, if there
are no more records, the end-of-file.

RECURSIVE Option

The RECURSIVE option may be specified on a PROCEDURE or ENTRY
statement to indicate (for program documentation) that the procedure will
invoke itself. For example:

HANO I: PROCEDURE (T 1 t T2 t T3 t RINGS)
RECURS I l.JE;

In standard PL/I, the RECURSIVE option is required for a recursive proce
dure. However, in VAX-11 PL/I all procedures may be invoked recursively,
and the RECURSIVE option is ignored by the compiler. For more informa
tion, see "Procedure."

RECURSIVE Option 285

Reference

In this manual, the term reference means a reference to a named constant or
variable. This entry gives the complete syntax for references and explains in
detail how a reference is interpreted. Because of the flexibility of PL/I, this
explanation is complex and is probably of interest to only a few programmers.
For general information on how to write references to accomplish a speci
fic operation, see, for example, "Built-In Function," "Expression," and
"Procedure."

• Syntax of References

The complete syntax of a reference is:

[locator-qualifier] [structure-qualifier] ... identifier
[(subscript-list)] [(argument-list)]

The referenced identifier is the declared name of the constant or variable.

The locator qualifier has the form:

reference->

where reference is a reference to a pointer variable, a pointer-valued function,
or an offset variable that was declared wtih a base area. (See "Based Varia
ble" and "Offset.")

The structure qualifier has the form:

identifier [(subscript-list)] .

where identifier is the name of a structure declaration containing (at some
level) a declaration of the referenced identifier.

The subscript list is a list of integer-valued expressions separated by commas.
The argument list is either empty or is a list of expressions, separated by
commas, that determine the arguments of a procedure or built-in function. If,
ignoring structure qualifiers, only one of the subscript list or argument list is
included, the listed items are interpreted as subscripts or arguments depend
ing on the declaration of the referenced identifier.

• Complete Interpretation of a Reference

Complete interpretation of a reference follows the sequence of steps given
below.

1. Determine the initial block, B, of interpretation. This is the block in
which the search for the referenced declaration starts. The initial block, B,
is always the block in which the reference textually occurs. This is usually

286 Reference

the current block, but it may be a parent block when references from
declarations are to be interpreted. For example:

P: PROC;
DCL X<N> FIXED BASED<R>;

o: PRoc;
)-((1)=0;

When the assignment statement X(l)=O is executed, the reference X(l) is
interpreted in the block Q. However, interpreting X(l) requires interpret
ing the references N and R in X's declaration, and this is done in block P,
the block of X's decla~ation.

2. Find the referenced declaration, D, and the block to which it belongs. This
block becomes the block, B, for further interpretation. To find the declara
tion, make a qualifying list containing the identifiers in the structure
qualifiers (if any) and the identifiers in the referenc~, taken in left-to-right
order. Search the declarations in block B for any declaration whose com
plete list of qualifying names matches the reference's qualifying list, as
follows:

(a) If the reference's qualifying list of names is the same as the declara
tion's list, the reference completely matches the declaration. In this
case, the declaration is the reference's governing declaration; no fur
ther searching of declarations is done.

(b) If the reference's qualifying list is a sublist (in order) of the declara
tion's, and the last occurring identifiers are the same, then the refer
ence is partially qualified. If the reference does not completely match
any declaration as in 2(a), and it does partially match exactly one
declaration in B, then that declaration is the governing declaration. If
the reference does not completely match as in 2(a), and it partially
matches two or more declarations in B, then the reference is ambigu
ous, and the compiler issues an error message.

(c) If the reference does not match any declaration in B, B is replaced by
its immediate parent block, and the search for matching declarations
is performed again. This process continues until a match is found or
there is no parent block (the outermost block has been searched). In
the latter case, if the identifier in the reference is SYSIN or
SYSPRINT, or the name of a built-in function, the compiler creates
an appropriate declaration in the external procedure. Otherwise, it
issues an error message.

Reference 287

For example, suppose the block being searched contains only the following
structure declaration:

DECLARE 1 STATEt
2 NAME CHAR<20) VARt
2 POPULATION FIXEDt
2 CAPITALt

3 NAME CHAR<30) VARt
3 POPULATION FIXEDt

2 SYMBOLSt
3 FLOWER CHAR (20) t

3 BIRD CHAR (20) ;

The references STATE, STATE.NAME, and STATE.CAPITAL.NAME
match completely. The references NAME and POPULATION are ambig
uous. The reference CAPITAL.NAME partially matches exactly one
declaration.

3. Find the block activation, BA, associated with the block B. If B is the
current block, BA is the current block activation. Otherwise, BA is found
by searching the chain of parent block activations that ends at the current
block. BA is used to determine the value of a ref~rence to an automatic
variable, the actual argument associated with a parameter, the extents of
automatic or defined variables, and the block-activation component of a
label or entry value when a label or entry constant is interpreted.

4. Evaluate the locator qualifier. If the reference contains a locator qualifier,
evaluate it to obtain a pointer value. In this case, the reference must be to
a based variable or to a member of a based structure. If the reference is to
a based variable or to a member of a based structure, and if the reference
does not contain a locator qualifier, the level-1 variable must have been
declared:

BASED(reference)

and that reference is evaluated as a locator qualifier. Note that the pointer
value obtained must satisfy the rules given in "Based Variable - Pointer
Values."

5. Evaluate the base reference and position. If the reference is to a defined
variable, its base reference and POSITION attribute (if any) are
evaluated.

6. Determine all extents of the referenced variable. The extents (if any) are
given in the declaration. Those which are not constant are determined as
follows:

(a) If the variable is automatic or defined, the extents were evaluated at
the time of block activation and the resulting values saved at that
time. These saved values are used.

(b) If the variable is a parameter, the extents were passed along with the
argument to which the parameter corresponds.

(c) If the variable is a based variable, the extents are evaluated now. This
includes all extent expressions in the referenced declaration and all
array bounds of containing structures.

288 Reference

7. Interpret subscripts. This step depends on the total dimensionality of the
referenced declaration, D; that is, the number of dimensions in D itself
plus the number in each containing structure declaration. The subscripts
are evaluated as follows:

(a) All subscripts in the structure qualifiers (if any) are gathered together
in one list (in order). If the reference itself contains both a subscript
list and an argument list [for example, S.Y(l,1,1,)(7)], those subscripts
are added to the list. If the reference contains a single list, which could
be either subscripts or arguments, its elements are treated as sub
scripts and added to the list unless the number of subscripts already
collected equals D's dimensionality. If the single list is not interpreted
as a subscript list, it is an argument list. Note that an empty argu
ment list is never interpreted as a subscript list.

(b) The complete list of subscripts is now compared with the dimensional
ity of D and with each declaration of an array of structures containing
D. The number of subscripts must be zero or equal to the total dimen
sionality of one of these declarations. If it is not, the compiler issues an
error message. The array properties of the reference are then deter
mined as follows:

(i) If the number of subscripts equals the total dimensionality of D,
this is not an array reference.

(ii) If D is an array declaration and the number of subscripts equals
the inherited dimensionality of D (that is, D's total dimensional
ity minus the dimensionality of D itself), then this is a connected
array reference.

(iii) If the number of subscripts is less than the inherited dimensional
ity of D, then the reference is an unconnected array reference.

For example, consider this declaration and the following series of
references:

DECLARE

S.A(l,1)

s (5) t

2 A<10t20) t

3){(50) FLOATt
3 Y ENTRY<FI}<ED> t

3 Z FLOATt
2 B ENTRY<FLOATtFLOAT);

This reference is invalid, because the number of subscripts is
too large for S and too small for S .A.

S(l).A(l,l). ¥(3)
S.A. Y(l,1,1)(3)

These are equivalent. The value of S.A.Y(l,1,1) is an entry
value. The entry is invoked with the argument list (3).

S(l).A(l,l).X
This is a reference to a connected one-dimensional floating
point array whose bounds are (1:50).

Reference 289

S.A.X(3,10,20,2)
This is a reference to a floating-point variable that is an ele
ment of the array S.A.X.

8(1).A.X
This is a reference to an unconnected array. It is three dimen
sional, with bounds (1:10,1:20,1:50).

(c) All subscript values must lie within the corresponding bounds. If the
compiler option CHECK is used, all subscript values are checked
either at compile time or at run time. If CHECK is not in effect, some
constant subscripts may still be checked at compile time.

8. Invoke the procedure. If the reference contains an argument list or was the
reference in a CALL statement, the referenced procedure is invoked with
the specified arguments. (See also "Procedure.") In this case, the refer
ence must not be an array reference and must have data type ENTRY. If
the reference is to an entry variable, the procedure is invoked using the
current value of the variable. Note that the ENTRY attribute and RE
TURNS attribute (if any) in the declaration D are used to interpret the
argument list and to determine if this is a function or a procedure
invocation.

Relational Operator

The relational, or comparison, operators test the relationship of two operands;
the result is always a Boolean value (that is, a bit string of length one). If the
comparison is true, the resulting value is '1 'B; if the comparison is false, the
resulting value is 'O 'B. The relational operators are all infix operators. They
are:

Operator Operation

< Less than
< Not less than

<= Less than or equal to
Equal to
Not equal to

>= Greater than or equal to
> Greater than
> Not greater than

Relational operators compare any of the following data types: arithmetic (dec
imal or binary); bit-string; character-string; and entry, pointer, label, or file
data. Specific results of operations on each type of data are elaborated below.
The following general rules apply:

• All operands must be scalars.

• Both operands must be arithmetic, or they must have the same data type.

• Arithmetic Comparisons

Arithmetic and picture operands are compared algebraically. If the operands
have a different base, scale, or precision, PL/I converts them according to the
rules for arithmetic operand conversion (see "Expression").

290 Relational Operator

-

• Bit-String Comparisons

When two bit strings are compared, they are compared bit by bit from the
most significant bit to the least significant bit (as represented by PUT LIST).
If the operands have different lengths, PL/I extends the smaller operand with
zeros in the direction of the least significance. Null bit strings are always
equal.

• Character-String Comparisons

When two character strings are com pared, they are com pared character by
character in a left to right order. The comparison is based on the ASCII
collating sequence. The ASCII value for each character is given in Table A-1
in the entry "ASCII Character Set."

Note that in the collating sequence:

• Uppercase letters are less than any lowercase letters.

• Numeric characters are less than any letters.

If the operands are not the same length, PL/I extends the smaller operand on
the right with blanks for the comparison. Either or both of the strings can
have the attribute VARYING; PL/I uses the current length of a varying char
acter string when it makes the comparison.

• Comparing Noncomputational Data

Only the following operators are valid, or meaningful, for comparisons of any
of the noncomputational data types entry, file, label, offset, and pointer:

Operator Operation

Equal
Not equal

The results of the comparisons provide the information indicated below for
each data type.

Entry Data
Two entry values are equal if they identify the same entry point in the
same block activation of a procedure.

File Data
Two values defined with the FILE attribute are equal if they identify
the same file constant.

Label Data
Two label values are equal if they identify the same statement in the
same block activation.

A label that identifies a null statement is not equal to the label of any
other statement.

Pointer Data
Two pointer values are equal if they identify the same storage location
or if they are both null.

Offset Data
Two offset values are equal if they identify the same storage location or
if they are both null.

Relational Operator 291

REPEAT Option

The REPEAT option may be specified in a DO statement to specify values to
be assigned to the control variable. The input-target and output-source lists of
GET and PUT statements can also have a DO construct with the REPEAT
option. The REPEAT option is most often used to step though a list that is
linked by pointer or offset values. For example:

DO P = LIST_HEAD REPEAT P->LIST_ELEMENT.NEXT
WHILE (p ~=NULL()) ;

For more information, see "DO Statement," "GET Statement," "List Pro
cessing," and "PUT Statement."

0/oREPLACE Statement

The %REPLACE statement specifies that an identifier is a constant of a given
value. It may be used anywhere within a procedure or anywhere in a PL/I
source file.

Beginning at the point at which a %REPLACE statement is encountered,
PL/I replaces all occurrences of the specified identifier with the specified
constant value, until the end of compilation.

The format of the %REPLACE statement is:

%REPLACE identifier BY constant-value ;

identifier
Any valid PL/I identifier. The identifier must not be the name of a
declared variable and can appear in only one %REPLACE statement
in a source program.

constant-value
Any valid character-string, bit-string, or arithmetic constant.

Integer constants that are given values by %REPLACE statements are valid
in constant expressions. For example:

%REPLACE PREFIX BY s;

DECLARE BUFFER CHARACTER(80 + PREFIX>;

When the program containing these lines is compiled, the variable BUFFER
is declared with a length of 88 characters.

RESIGNAL Built-In Subroutine

The RESIGNAL built-in subroutine is used in an ON-unit to "pass" a sig
naled condition, so that the run-time system will attempt to locate another
ON-unit to handle the condition. The format of the RESIGNAL built-in
subroutine is:

CALL RESIGNAL();

292 REPEAT Option

• Bit-String Comparisons

When two bit strings are compared, they are compared bit by bit from the
most significant bit to the least significant bit (as represented by PUT LIST).
If the operands have different lengths, PL/I extends the smaller operand with
zeros in the direction of the least significance. Null bit strings are always
equal.

• Character-String Comparisons

When two character strings are compared, they are compared character by
character in a left to right order. The comparison is based on the ASCII
collating sequence. The ASCII value for each character is given in Table A-1
in the entry "ASCII Character Set."

Note that in the collating sequence:

• Uppercase letters are less than any lowercase letters.

• Numeric characters are less than any letters.

If the operands are not the same length, PL/I extends the smaller operand on
the right with blanks for the comparison. Either or both of the strings can
have the attribute VARYING; PL/I uses the current length of a varying char
acter string when it makes the comparison.

• Comparing Noncomputational Data

Only the following operators are valid, or meaningful, for comparisons of any
of the noncomputational data types entry, file, label, offset, and pointer:

Operator Operation

Equal
Not equal

The results of the comparisons provide the information indicated below for
each data type.

Entry Data
Two entry values are equal if they identify the same entry point in the
same block activation of a procedure.

File Data
Two values defined with the FILE attribute are equal if they identify
the same file constant.

Label Data
Two label values are equal if they identify the same statement in the
same block activation.

A label that identifies a null statement is not equal to the label of any
other statement.

Pointer Data
Two pointer values are equal if they identify the same storage location
or if they are both null.

Offset Data
Two offset values are equal if they identify the same storage location or
if they are both null.

Relational Operator 291

REPEAT Option

The REPEAT option may be specified in a DO statement to specify values to
be assigned to the control variable. The input-target and output-source lists of
GET and PUT statements can also have a DO construct with the REPEAT
option. The REPEAT option is most often used to step though a list that is
linked by pointer or offset values. For example:

DO P = LIST_HEAD REPEAT P->LI6T_ELEMENT+NEXT
WHILE (p ~=NULL()) ;

For more information, see "DO Statement," "GET Statement," "List Pro
cessing," and "PUT Statement."

0/oREPLACE Statement

The %REPLACE statement specifies that an identifier is a constant of a given
value. It may be used anywhere within a procedure or anywhere in a PL/I
source file.

Beginning at the point at which a %REPLACE statement is encountered,
PL/I replaces all occurrences of the specified identifier with the specified
constant value, until the end of compilation.

The format of the %REPLACE statement is:

%REPLACE identifier BY constant-value ;

identifier
Any valid PL/I identifier. The identifier must not be the name of a
declared variable and can appear in only one %REPLACE statement
ma source program.

constant-value
Any valid character-string, bit-string, or arithmetic constant.

Integer constants that are given values by %REPLACE statements are valid
in constant expressions. For example:

%REPLACE PREFIX BY g;

DECLARE BUFFER CHARACTER(80 + PREFIX>;

When the program containing these lines is compiled, the variable BUFFER
is declared with a length of 88 characters.

RESIGNAL Built-In Subroutine

The RESIGNAL built-in subroutine is used in an ON-unit to "pass" a sig
naled condition, so that the run-time system will attempt to locate another
ON-unit to handle the condition. The format of the RESIGNAL built-in
subroutine is:

CALL RESIGNAL();

292 REPEAT Option

When an ON-unit has determined that it cannot or should not respond to a
condition, RESIGNAL permits the ON-unit to pass the signal along.

This subroutine is not provided in the standard PL/I language. It is provided
specifically for use in the VAX/VMS operating system environment. For com
plete details on condition handling in VAX/VMS, see the VAX-11 PL/I User's
Guide.

RETURN Statement

The RETURN statement terminates execution of the current procedure. The
format of the RETURN statement is:

RETURN [(return-value)] ;

return-value
The value to be returned to the invoking procedure. If the current
procedure was invoked by a function reference, a return value must be
specified. If the current procedure was invoked by a CALL statement,
a return value is invalid.

A return value can be any scalar arithmetic, bit-string, or character
string expression; it can also be an entry, pointer, or label expression or
other noncomputational expression. The return value must be valid for
conversion to the data type specified in the RETURNS option of the
function.

The actual action taken by the RETURN statement depends on the context of
the procedure activation, as follows:

• If the current procedure is the main, or only, active procedure, the
RETURN statement terminates the program.

• If the current procedure was activated by a CALL statement, the next
executable statement in the calling procedure is executed.

• If the current procedure was activated by a function reference, control
returns to continue the evaluation of the statement that contained the func
tion reference.

• If the RETURN statement is executed in a begin block, the effect is to
return from the containing procedure.

• Restrictions

The RETURN statement must not be immediately contained in an ON-unit
or in a begin block that is immediately contained in an ON-unit.

RETURNS Attribute and Option

The RETURNS option must be specified on the PROCEDURE or ENTRY
statement if the corresponding entry point is invoked as a function. (See also
"Procedure.") The RETURNS attribute is specified with the ENTRY attrib
ute, to give the data type of a value returned by an external function. The
format of the option or attribute is:

RETURNS (returns-descriptor)

RETURNS Attribute and Option 293

returns-descriptor
One or more attributes that describe the value returned by the func
tion to its point of invocation. The returned value becomes the value of
the function reference in the invoking procedure. The attributes must
be separated by spaces except for attributes (precision, for example)
that are enclosed in parentheses.

• Restrictions

The data types you can specify for a returns descriptor are restricted to scalar
elements of either computational or noncomputational typ~s. Areas are not
allowed.

The extent of a character-string value may be specified as an asterisk (*), to
indicate that the string may have any length; in this case, VARYING must
not be specified. Otherwise, extents must be specified using unsigned decimal
integer constants.

The RETURNS option and RETURNS attribute must not be used for proce
dures that are invoked by the CALL statement.

The attributes specified in a returns descriptor in a RETURNS attri
bute must correspond to those specified in the RETURNS option of the
PROCEDURE statement or ENTRY statements in the corresponding proce
dure. For example:

CALLER: PROCEDURE OPTIONS <MAIN);
DECLARE COMPUTER ENTRY <FIXED BINARY)
RETURNS <FIXED BINARY); I* RETURNS attribute */
DECLARE <TOTALtAtB) FIXED BINARY;

TOTAL = COMPUTER <A+B);

The first DECLARE statement declares an entry constant named
COMPUTER. COMPUTER will be used in a function reference to invoke an
external procedure, and the function reference must supply a fixed-point bi
nary argument. The invoked function returns a fixed-point binary value,
which then becomes the value of the function reference.

The function COMPUTER contains:

COMPUTER: PROCEDURE <X>
RETURNS <FIXED BINARY); I* RETURNS oPtion */

DECLARE <Xt VALUE) FIXED BINARY;

RETURN (t.JALUE>; I* RETURN state1r1ent */

In the PROCEDURE statement, COMPUTER is declared as an external
entry constant, and the RETURNS option specifies that the procedure re
turns a fixed-point binary value to the point of invocation. The RETURN
statement specifies that the value of the variable VALUE is returned by
COMPUTER. If the data type of the returned value does not match the data
type specified in the RETURNS option, PL/I converts the value to the correct
data type according to the rules given under "Conversion of Data."

294 RETURNS Attribute and Option

REVERT Statement

The REVERT statement cancels an ON-unit established for a specified condi
tion in the current block. The format of the REVERT statement is:

REVERT condition-name ;

condition-name
Specifies the keyword name associated with the condition for which
the ON-unit is to be reverted. It must be one of the keyword names
listed below. Each of these conditions is described under its own entry
in this manual.

Condition Names

ANYCONDITION
ENDFILE (file-reference)
ENDPAGE (file-reference)
ERROR
FINISH
FIXED OVERFLOW
KEY (file-reference)
OVERFLOW
UNDEFINEDFILE (file-reference)
UNDERFLOW
VAXCONDITION (expression)
ZERO DIVIDE

If no ON-unit is established for the specified condition for the current block,
the REVERT statement has no effect. When the REVERT statement is exe:
cuted for a specific condition for which an ON-unit exists, then:

• If a previous block activation specified an ON-unit for the indicated condi
tion, that ON-unit will be executed if the condition is signaled.

• If no previous block activation specified on ON-unit for the specified condi
tion, the default PL/I condition handling is reestablished.

For more information, see "ON Conditions and ON-Units" and "ON
Statement."

REWRITE Statement

The REWRITE statement replaces a record in a file, either the current record
or the record specified by the KEY option. The file must have the UPDATE
attribute. The format of the REWRITE statement is:

REWRITE FILE (file-reference)

[FROM (variable-reference) [KEY (expression) J]

[OPTIONS (option, ...) 1 ;

file-reference
A reference to the file which contains the record to be replaced. If the
file is not open, it is opened with the implied attributes RECORD and
UPDATE; these attributes are merged with the attributes specified in
the file's declaration. (See also "Opening a File.")

REWRITE Statement 295

FROM (variable-reference)
An option giving the variable whose. value is to be used to rewrite the
specified record. The variable must be an addressable variable. (See
"Variable - Addressable Variable.")

If the FROM option is not specified, there must be a currently allo
cated buffer from an immediately preceding READ statement that
specified the SET option, and this file must have the SEQUENTIAL
attribute. In this case, the record is rewritten from the buffer contain
ing the record that was read.

If the variable has the VARYING attribute and the file does not have
the attribute ENVIRONMENT(SCALARVARYING), the REWRITE
statement writes only the current value of the varying string into the
specified record. In all other cases, the REWRITE statement writes
the variable's entire storage.

KEY (expression)
An option specifying that the record to be rewritten is to be located
using the key specified by expression. The file must have the KEYED
attribute. The expression must have a computational data type. The
FROM option must be specified.

The nature of the key depends on the file's organization, as follows:

• If the file is a relative file or a sequential disk file with fixed-length
records, the key is a fixed binary value indicating the relative record
number of the record to be rewritten.

• If the file is an indexed sequential file, the key specifies a key that is
contained within a record. The data type of the key and its location
within the record are as specified when the file was created. The
primary key field in the record cannot be modified.

The value of the specified expression is converted to the data type of
the key. If no record with the specified key exists, if the value specified
is not valid for conversion to the data type of the key, or if the primary
key in a record in an indexed sequential file has been modified, the
KEY condition is signaled.

OPTIONS (option, ...)
An option giving one or more of the REWRITE statement options
listed below, separated by commas:

FIXED_CONTROLFROM(variable-reference)
IND Ex_NUMBER (expression)
MATCH_GREATER
MATCH_GREATER_EQUAL
RECORD_ID (expression)
RECORD_ID_ TO (variable-reference)

These options are described fully in the VAX-11 PL/I User's Guide.

• File Positioning

The next record position is set to denote the record immediately following the
record that was rewritten or, if there is no following record, end-of-file.

The current record is set to designate the record just rewritten.

296 REWRITE Statement

•Examples

The procedure NEW _SALARY, below, updates the salary field in a relative
file containing employee records. The procedure receives two input parame
ters: the employee number and the new salary. The employee number is the
key value for the records in the relative file.

NEW-SALARY: PROCEDURE <EMPLOYEE_NUMBERtPAY>;

DECLARE EMPLOYEE_NUMBER FIXED DECIMALC5t0) t

PAY FIXED DECIMAL <Gt2);

DECLARE 1 EMPLOYEEt
2 NAMEt

3 LAST CHARC30) t

3 FIRST CHAR (20) t

3 MIDDLE_ IN IT CHAR< 1) t

2 DEPARTMENT CHAR (4) t

2 SALARY FIXED DECIMAL <Gt2> t

EMP_FILE FILE;

OPEN FILE<EMP_FILE) DIRECT UPDATE;
READ FILE<EMP_FILE) INTO<EMPLOYEE>

KEY <EMPLOYEE_NUMBER>;
EMPLOYEE.SALARY = PAY;
REWRITE FILE<EMP_FILE) FROM<EMPLOYEE>

KEY<EMPLOYEE_NUMBER>;
CLOSE FILE<EMP_FILE);
RETURN;
END;

In this example, the KEY option is specified in the READ statement that
obtains the record of interest and in the REWRITE statement that replaces
the record, with its new information, in the file. The FROM and KEY options
must both be specified on the REWRITE statement.

The sample program CHANGE_HEADER, below, changes the contents of
the first record in the sequentially organized file TITLE_PAGE. The file
consists of 80-byte, fixed-length records.

CHANGE_HEADER: PROCEDURE OPTIONSCMAIN>;

DECLARE TITLE_PAGE FILE SEQUENTIAL UPDATEt
INREC CHARACTER<BO> BASED<P> t

END;

P POINTER;

OPEN FILE<TITLE_PAGE>;
READ FILE<TITLE_PAGE> SET<P>;

INREC = 'SuMMarY of Courses for Fall 1980';
REWRITE FILE<TITLE_PAGE>;
CLOSE FILE<TITLE_PAGE>;
RETURN;

In this example, the READ statement specifies the SET option. The input
record is read into a buffer, INREC, that is a based character-string variable.
The assignment statement modifies the buffer and the REWRITE statement

REWRITE Statement 297

rewrites the record. Because the REWRITE statement does not specify a
FROM option, PL/I uses the contents of the buffer to rewrite the current
record in the file (that is, the record that was just read).

ROUND Built-In Function

The ROUND built-in function rounds a fixed-point decimal expression to a
specifieq number of decimal places. Its format is:

ROUND(expression, position)

expression
An arithmetic expression that yields a fixed-point decimal value with
a nonzero scale factor or a pictured value with fractional digits.

position
A nonnegative integer constant specifying the number of decimal
places in the rounded result.

• Returned Value

Where the arguments are an expression of type FIXED DECIMAL(p,q) and a
position k, the returned value is the rounded value with the attributes:

precision: max(l,min(p-q+k+l,31))

scale factor: k

The rounded value is

ROUND(x,k) = sign(x) * (10-k) * floor(abs(x) * (Hf) + .5)

•Examples

A = 1234.567;
y ROUND< A t1 > ; I* y = 1234+6 *I

y = ROUND<A,O>; I* y = 1235 *I

A = -1234.567;
y = ROUND<At2); I* y = -1234.57 *I

298 ROUND Built-In Function

s
Scope of Names

The scope of a declaration of a name is that region of the program in which the
name is known. A declaration of a name is known in:

• The block in which it is declared

• Any blocks contained within the declaring block, so long as the name is not
redeclared in the contained block

Two declarations of the same name denote distinct objects unless both specify
the EXTERNAL attribute. All EXTERNAL declarations of a particular
name denote the same variable or constant, and all must agree as to the
properties of the variable or constant. Note that EXTERNAL is supplied by
default for declarations of ENTRY and FILE constants. It must be specified
explicitly for variables.

Figure S-1 illustrates the scope of internal names.

MAINP: PROCEDURE OPTIONS (MAIN);

DECLARE (X, y, VALUE! FIXED;

ALPHA: PROCEDUREi

BETA: BEGIN;
DECLARE VALUE FLOAT;

I GOTO ERROR;

END BETA;

ERROR:
END ALPHA;

CALC: PROCEDURE;
DECLARE !SUM1TOTAL> FLOAT;
I
END CALC;

END MAINP;

Name

MAINP

X, y

VALUE (MAINP)

VALUE (BETA)
ALPHA

BETA
ERROR
CALC
SUM, TOTAL

Figure S-1: Scope of Internal Names

299

Scope

MAINP, ALPHA, BETA,
and CALC

MAINP, ALPHA, BETA,
and CALC

MAINP, ALPHA, and
CALC

BETA
MAINP, BETA, and
CALC

ALPHA
ALPHA, BETA
MAINP, ALPHA
CALC

SEQUENTIAL Attribute

The SEQUENTIAL file description attribute indicates that records in the file
will be accessed in a sequential manner. The format of the SEQUENTIAL
attribute is:

{
SEQUENTIAL}
SEQL

If you specify SEQUENTIAL, the RECORD attribute is implied.

Specify the SEQUENTIAL attribute in a DECLARE statement for a file
constant or in the OPEN statement that accesses the file.

The SEQUENTIAL attribute can be applied to files with sequential, relative,
or indexed sequential file organizations.

• Restrictions

The SEQUENTIAL attribute conflicts with the DIRECT, STREAM, and
PRINT attributes.

SET Option

The SET option may be specified in an ALLOCATE or READ statement. In
an ALLOCATE statement, it sets a pointer variable to the memory location of
storage acquired for a based variable. In a READ statement, it sets a pointer
variable to the location of the input buffer.

• Exa~ples

ALLOCATE X SET (p);
READ FILE <STATE> SET <READBUF>;

See also "ALLOCATE Statement" and "READ Statement."

SIGN Built-In Function

The SIGN built-in function returns 1, -1, or 0, indicating whether an arith
metic expression is positive, negative, or zero, respectively. The returned
value is a fixed-point binary integer. The format of the function is:

SIGN(expression)

SIGNAL Statement

The SIGNAL statement causes a specified condition to be signaled. The
format of the SIGNAL statement is:

SIGNAL condition-name ;

300 SEQUENTIAL Attribute

condition-name
The name of the condition to be signaled. It must be one of the key
words listed below. Each of these conditions is described under its own
entry.

Condition Names
ANYCONDITION
ENDFILE (file-reference)
ENDPAGE (file-reference)
ERROR
FINISH
FIXED OVERFLOW
KEY (file-reference)
OVERFLOW
UNDEFINEDFILE (file-reference)
UNDERFLOW
VAXCONDITION (expression)
ZERO DIVIDE

Most conditions occur as a result of a hardware trap or fault, or as a result of
signaling by PL/I run-time procedures. The SIGNAL statement may be used
within a program as a general-purpose communication technique.
In particular, the VAXCONDITION keyword lets you specify unique pro·
grammer-defined values as well as operating-system-specific values. The
V AXCONDITION keyword is described briefly in its own entry and in more
detail in the VAX-11 PL/I User's Guide.

For details on condition handling, see "ON Conditions and ON-Units."

SIN Built-In Function

The SIN built-in function returns a floating-point value that is the sine of an
arithmetic expression x, where xis an angle in radians. The sine is computed
in floating point. The format of the function is:

SIN(x)

SINO Built-In Function

The SIND built-in function returns a floating-point value that is the sine of
an arithmetic expression x, where x represents an angle in degrees. The sine is
computed in floating point. The format of the function is:

SIND(x)

SINH Built-In Function

The SINH built-in function returns a floating-point value that is the hyper
bolic sine of an arithmetic expression x. The hyperbolic sine is computed in
floating point. The format of the function is:

SINH(x)

SINH Built-In Function 301

SKIP Format Item

The SKIP format item sets a stream file to a new position relative to the
current line. It may be used with input and output files.

The form of the SKIP format item is:

w

SKIP [(w)J

An integer giving the number of lines to be skipped; w must not be
negative and must be greater than zero except for print files. If it is
omitted, a value of one is assumed.

If w is one or is omitted, the file is positioned at the beginning of the next line.
If w is greater than one, w-1 lines are skipped on input, but the ENDFILE
condition is signaled if the end of the file is encountered first. On output, w-1
blank lines are inserted. In both cases, the new position is the beginning of
(current line)+w.

• Use with Print Files

If w is zero, the file is repositioned at the beginning of the current line,
allowing overprinting of the line. If w is greater than zero, and either the
current line exceeds the page size or the page size is greater than or equal to
the current line plus w, then w-1 blank lines are inserted. Otherwise, the
remainder of the page (the portion between the current line and the page size)
is filled with blank lines, and the ENDPAGE condition is signaled.

SKIP Option

The SKIP option is used with the GET and PUT statements to advance the
stream file to a new line before beginning a data transfer.

The SKIP option specifies a line number relative to the current line. In some
cases, this line number can be 0, which causes a return to the beginning of the
current line. With the PUT statement, the option SKIP(O) allows overprinting
of a line in a PRINT file.

For further information, see "GET Statement," "PUT Statement," and
"Stream Input/Output."

Space

A space (or blank) character can be used to separate elements in a PL/I
statement. You must use spaces to separate keywords and identifiers that are
not separated by other delimiters. For example:

DECLARE A FIXED BINARY;

Spaces are required between the keyword DECLARE and the identifier A,
between the identifier A and the keyword FIXED, and between the keywords
FIXED and BINARY.

302 SKIP Format Item

You can insert spaces preceding or following any other type of delimiter to
improve the readability of the source text. For example:

A = B + c;

None of the spaces in the above statement is required.

You cannot, however, insert spaces within identifiers, between two characters
that function as one operator (for example >=), or in constants other than
character:.string constants.

SQRT Built-In Function

The SQRT built-in function returns a floating-point value that is the square
root of an arithmetic expression x. The square root is computed in floating
point. After its conversion to floating point, x must be greater than or equal to
zero.

The format of the function is:

SQRT(x)

Statement

A statement is the basic element of a PL/I procedure. Statements are used to:

• Define and identify the structure of the program and the data that it acts
upon

• Request specific action to be performed on data

• Control the flow of execution in a program

All PL/I statements are included in this manual under individual entries. The
· description of each statement gives its syntax, abbreviation, if any, and

options.

Table S-1, at the end of this entry, provides a summary of PL/I statements.

• Statement Formats

The general format of a PL/I statement consists of an optional statement
label, the body of the statement, and a required terminator, the semicolon(;).

The body of the statement consists of user-specified identifiers, literal con
stants, or PL/I keywords. Each element must be properly separated, either by
special characters that punctuate the statement or by spaces or comments.

, • Statement Labels

A label identifies a statement so that it can be referred to elsewhere in the
program, for example, as the target of a GOTO statement. A label precedes a
statement; it consists of any valid identifier terminated by a colon. Some
exam pl es are:

TARGET: A= A+ B; READ_LOOP: READ FILE <TE)<T) INTO <TEMP);

Statement 303

No statement .can have more than one label.

For more information on labels and rules for specifying them, see "Label."

• Simple Statements

A simple statement contains only one action to be performed. There are three
types of simple statements:

• Keyword statements

• Assignment statements

• Null statements

Keyword Statements
Keyword statements are identified by the PL/I keyword that requests
a specific action. Some examples of keyword statements are:

READ FILE <A> INTO ;
GOTO LOOP;
DECLARE PRICE PICTURE'S$$99V.99';

In the above examples, READ, GOTO, and DECLARE are keywords
that identify these statements to PL/I.

Assignment Statements
PL/I identifies an assignment statement by syntax: an assignment
statement consists of two identifiers separated by an equals sign (=).
Some examples are:

TOTAL = TOTAL + PRICE;
COUNTER = o;

Null Statements
A null statement consists of only a semicolon; it indicates that PL/I is
to perform no operation. Some examples are:

IF A < 5 THEN GOTO COMPUTE;
ELSE ;

The IF statement above illustrates a common use of the null state
ment, that is, as the target of an ELSE clause.

• Compound Statements

A compound statement contains more than one PL/I statement within the
statement body; it is terminated by the semicolon that terminates the final
statement. The PL/I compound statements are:

• IF statement

• ON statement

Some examples are:

ON ENDFILE <SYSSINPUT> GOTO FINISH;
IF (A + 5) < <D + E) THEN C = A*D;

304 Statement

• Begin Blocks and DO-Groups

A begin block is a group of statements begun by a BEGIN statement and
ended by an END statement:

BEGIN; statement [++ .J END;

A begin block can generally be used wherever a single statement is valid - for
example, as an ON-unit. Begin blocks can also define variables that are local,
or internal, to the begin block. See also "Begin Block."

A DO-group is a group of statements begun by a DO statement and ended by
an END statement. For example:

DO WHILE<A state111ent [+ + + J END;

DO-groups provide control over, or "conditionalize," the execution of state
ments in the group (whereas statements in a begin block are always executed
when the BEGIN statement is executed).

If the DO statement has a WHILE option (a "DO WHILE" statement), the
statements in the group are executed if and only if a specified expression is
true. When the closing END statement is reached, the entire group of state
ments is reiterated if the WHILE expression is still true.

The DO statement can also have TO, BY, and REPEAT options that assign
new values to a control variable on successive iterations. These options are
used to reiterate the group a given number of times and to assign new values
to variables used in the group's statements. For details, see "DO Statement"
and "DO-Group."

• Summary of Statements by Function

The PL/I statements can be grouped in the categories listed below.

Data Definition and Assignment Statements
The DECLARE statement defines variable names:

DECLARE identifier [attribute ...] ;

The assignment statement gives a value to a variable:

reference = expression;

Input/Output Statements
These statements identify files and data formats and perform input
and output operations:

CLOSE GET
DELETE OPEN
FORMAT PUT

Program Structure Statements

READ
REWRITE
WRITE

These statements define the organization of the program into proce
dures, blocks, and groups:

BEGIN ENTRY
DO PROCEDURE
END null

Statenient 305

Flow Control Statements
These statements change or interrupt the normal sequential flow of
execution in a PL/I program:

CALL ON SIGNAL
GOTO RETURN STOP
IF REVERT

Storage Allocation Statements
These statements acquire and control the use of storage m a PL/I
program:

ALLOCATE
FREE

Source File Modification Statements
These statements cause the PL/I compiler to include additional text in
the source program at compile time or to change the values of constant
identifiers at compile time:

%INCLUDE
%REPLACE

Table S-1: Summary of PL/I Statements

Statement Use

Assignment Evaluates an expression and gives its value to an identifier

null Specifies no operation

ALLOCATE Allocates storage for a based variable

BEGIN Denotes the beginning of a block of statements to be executed as a unit

CALL Transfers control to a subroutine or external procedure

CLOSE Terminates association of a file control block with an input or output file

DECLARE Defines the variable names and identifiers to be used in a PL/I program
and specifies the data attributes associated with them

DELETE Removes an existing record from a file

DO Denotes the beginning of a group of statements to be executed as a unit

END Denotes the end of a block or group of statements begun with a BEGIN,
DO, or PROCEDURE statement

ENTRY Specifies an alternate point at which a procedure can be invoked

FORMAT Specifies the format of data that is being read or written with GET EDIT
and PUT EDIT statements and defines the conversion, if any, to be
performed

FREE Releases storage of a based variable

GET Obtains data from an external stream file or from a character-string
expression

GOTO Transfers control to a labeled statement

306 Statement

Table S-1 (Cont.): Summary of PL/I Statements

Statement Use

IF Tests an expression and establishes actions to be performed based on the
result of the test

%INCLUDE Copies the text of an external file into the source file at compilation time

ON Establishes the action to be performed when a specified condition is
signaled

OPEN Establishes the association between a file control block and an external
file

PROCEDURE Specifies the point of invocation for a program, subroutine, or user-
defined function

PUT Transfers data to an external stream file or to a character-string variable

READ Obtains a record from a file

%REPLACE Assigns a constant value to an identifier at compile time

RETURN Gives back control to the procedure from which the current procedure
was invoked

REVERT Cancels the effect of the most recently established ON-unit

REWRITE Replaces a record in an existing file

SIGNAL Causes a specific condition to be signaled

STOP Halts the execution of the current program

WRITE Copies data from the program to an external record file

STATIC Attribute

The STATIC attribute specifies the way that PL/I is to allocate storage for a
variable. Static storage is allocated when an external procedure is loaded into
memory and is not released until the procedure terminates.

The STATIC attribute is implied by the EXTERNAL attribute.

• Restrictions

• The STATIC attribute directly conflicts with the BASED, parameter, and
DEFINED attributes.

• The STATIC attribute cannot be applied to members of structures, param
eters, or descriptions in an ENTRY or RETURNS attribute.

For more information on STATIC and on other storage-class attributes, see
"Storage Classes."

STATIC Attribute 307

STOP Statement

The STOP statement terminates execution of the program. The format of the
STOP statement is:

STOP;

The STOP statement terminates the program regardless of the current block
activation. The STOP statement signals the FINISH condition and closes all
open files. If the main procedure has the RETURNS attribute, no return
value is obtainable.

Storage Classes

The storage class to which a variable belongs determines whether PL/I allo
cates storage for it at compile time or dynamically during the execution of the
program. This entry summarizes the storage classes of variables in PL/I pro
grams. For more information on the attributes that define the class to which a
variable belongs, see the individual entries for the attributes. For more infor
mation on how the linker arranges variables in an executable image, see the
VAX-11 PL/I User's Guide.

• Automatic Storage

The default storage class attribute for PL/I variables is AUTOMATIC. PL/I
does not allocate storage for an automatic variable until the block that de
clares the variable is activated. When the block is deactivated, the storage is
released. For example:

CALC: BEGIN;
DECLARE TEMP FIXED BINARY C31);

END;

Each time the block labeled CALC is activated, storage is allocated for the
variable TEMP. When the END statement is executed, the block is deac
tivated, and all storage for TEMP and all other automatic variables is re
leased. The value of TEMP becomes undefined.

The storage requirements of an automatic variable are evaluated each time
the block is activated. Thus, an extent may be specified as follows:

DECLARE STRING_LENGTH FIXED;

COPY: BEGIN;
DECLARE TEXT CHARACTERCSTRING_LENGTH);

When this begin block is activated, the extent of TEXT is evaluated. The
variable is allocated storage depending on the value of STRING_LENGTH,
which must have a valid value.

308 STOP Statement

•Static Storage

A static variable is allocated storage when the program is activated, and it
exists for the duration of the program. A variable has the static attribute if it
is declared with any of the attributes STATIC, EXTERNAL, GLOBALDEF,
or GLOBALREF.

Static arrays and strings must be declared with constant extents.

If a block that declares a static variable is entered more than once during the
execution of the program, the value of the static variable remains valid. For
example:

UNIQUE_ID: PROCEDURE· RETURNS <FIXED BINARYC31));
DECLARE ID STATIC INTERNAL FIXED INITIAL (0);

ID= ID+ 1; I* IncreMent ID*/
RETURN (ID) ;
END;

The function UNIQUE_ID declares the variable ID with the STATIC attrib
ute and specifies an initial value of zero for it. The variable is initialized to
this value when the program is activated. The storage for the variable is
preserved, and the function returns a different integer value each time it is
referenced.

A variable that has the STATIC attribute can also have external scope: that
is, its definition and value can be accessed by any other procedure that de
clares it with the STATIC and EXTERNAL attributes. For more information,
see "External Variable."

• Based Variables

The BASED attribute defines a variable whose storage is accessed by means
of a pointer. When you declare a based variable, you provide PL/I with a
description of the data that will be accessed by the variable. The actual data
must be referenced by a pointer that contains the address of the storage
location of the data. For example:

DECLARE BUFFER CHARACTERCBO> BASED <BUF_PTR> t

LI NE CHARACTER (80) t

BUF_PTR POINTER;

BUF_PTR = ADDRCLINE>;

The declaration of the variable BUFFER does not result in the allocation of
any storage for the variable. Rather, PL/I associates the declaration of the
variable with the pointer variable BUF _PTR. During the execution of the
program, the value of the pointer variable is set to the location (address) in
storage of the variable LINE. This effectively associates the description of the
variable BUFFER with the actual data value of the variable LINE.

A based variable can be associated with a storage location using the ADDR
built-in function, as in the preceding example; with the ALLOCATE state
ment; with a locator-qualified reference to the based variable; with the SET
option of the READ statement; or by explicit allocation within an area. For
more information on processing based variables, see the entries for those
items or the entry "Based Variable."

Storage Classes 309

• Defined Variables

When you use the DEFINED attribute in the declaration of a variable, PL/I
associates the description of the variable in the declaration with the storage
allocated for the variable on which the declaration is defined. For example:

DECLARE NAMESC10) CHARACTERC5) DEFINED <LIST>,
LI ST (10) CHARACTER< 5) ;

In this example, the variable NAMES is a defined variable; its data descrip
tion is mapped to the storage occupied by the variable LIST. Any reference to
NAMES or to LIST is resolved to the same location in memory.

With certain defined variables, the POSITION attribute can be used to spec
ify the position in the base variable at which the definition begins. For more
information, see "Defined Variable."

• Parameter Storage Class

A parameter variable is a variable that is declared in a procedure and that
receives a value when the procedure is invoked. For example:

FUNC: PROCEDURE CX>;
DECLARE X FIXED BINARY;

In this example, X is implicitly declared a parameter variable because its
name appears in the parameter list of the PROCEDURE statement, PL/I does
not allocate storage for X, but rather uses storage associated with the actual
argument specified when the procedure is invoked.

For more information on parameters, see "Parameters and Arguments."

Storage Sharing

Variables that have any of the attributes BASED, DEFINED, or parameter
may share physical storage locations with one or more other variables.

A based variable is not allocated any storage when it is declared. Instead,
storage is either located by a locator-qualified reference to the variable or
allocated by the ALLOCATE statement. The BASED attribute thus allows
you to describe the characteristics of a variable, which can then be located by
a reference that qualifies the variable's name with any valid pointer value.
Based variables are useful when the program must control the allocation of
storage for several variables with identical attributes. The creation and pro
cessing of a queued, or linked, list is a common case. For full details on based
variables and valid pointer values, see "Based Variable."
A defined variable uses the storage of a previously declared variable, which is
referenced in the DEFINED attribute. The referenced variable is known as
the base of the defined variable. The base can be a character- or bit-string
variable, in which case the technique is called string overlay defining. When
the base is a string variable, the POSITION attribute can also be specified for
the defined variable, giving the position within the base variable's storage at
which the overlay defining begins. Defined variables are useful when the
program must refer to the same storage by different names. For full details,
see "Defined Variable."

310 Storage Sharing

Parameters of a procedure share storage with their associated arguments. The
associated argument is either a variable written in the argument list or a
dummy variable allocated by the compiler. When the written argument is a
variable, the sharing of storage by the parameter and argument allows a
procedure to "return" values to the invoking procedure by changing the value
of the parameter. For instance, a function can return values in this manner, in
addition to the value specified in its RETURN statement. For details, see
"Parameters and Arguments" and "Procedure."

STREAM Attribute

The STREAM file description attribute indicates that the file consists of
ASCII characters and that it will be processed using GET and PUT
statements.

The STREAM attribute is implied by the PRINT attribute. It is also supplied
by default for a file that is implicitly opened with a GET or PUT statement.

Specify the STREAM attribute in a DECLARE statement for a file identifier
or in the OPEN statement that opens the file.

• Restrictions

The STREAM attribute directly conflicts with the RECORD, KEYED,
DIRECT, SEQUENTIAL, and UPDATE attributes.

Stream Input/Output

Stream input/output, or stream 1/0, is one of the two general kinds of 1/0
performed by PL/I (see also "Record Input/Output"). Stream input and out
put are performed by the statements GET and PUT, respectively. Both state
ments can perform either list-directed or edit-directed operations.

In record 1/0, only one record of a file is processed by each READ or WRITE
statement. In stream 1/0, more than one record or line can be processed by a
single statement, and, conversely, multiple statements can process a single
line or record.

Successive GET statements acquire their input from the same line or record
until all the characters in the line have been read, unless the program expli
citly skips to the next line. When necessary, a single GET statement will read
multiple lines to satisfy its input-target list. A single input data item may not
cross a line unless it is a character string enclosed in apostrophes or unless the
ENVIRONMENT option IGNORE_LINE_MARKS is in effect for the input
file. This option produces stream input operations that concur exactly with
standard PL/I. However, the option is usually not necessary; most programs
produce the expected results without it. (For more information on ENVIRON
MENT options, see the VAX-11 PL/I User's Guide.)

Successive PUT statements write their output to the same line or record until
the line size is reached, or unless the program explicitly skips to a new line. A
single PUT statement will write as many records as necessary to satisfy its
output-source list. Any single data item that will not fit on the current line is
split across lines.

Stream Input/Output 311

This entry describes the following aspects of stream VO:

• "Input by the GET Statement" gives a detailed description of the execution
of GET statements. See also the entries "GET Statement" and "Terminal
Input/Output."

• "Output by the PUT Statement" gives a detailed description of the execu
tion of PUT statements. See also the entries "PUT Statement," "Print
File," and "Terminal Input/Output."

• "Processing and Positioning of Stream Files" describes the characteristics
and use of stream files with the GET and PUT statements.

• "Processing and Positioning of Character Strings" describes the characteris
tics and use of character-string expressions with GET STRING and PUT
STRING statements.

• "Examples" gives general examples that use stream 1/0 statements. Exam
ples are also given in the entries "GET Statement," "PUT Statement,"
"Terminal Input/Output," and in the entries for most format items.

• Input by the GET Statement

When a GET statement is executed, the first action is to evaluate the FILE
option, if there is one. For example, if the statement is:

GET FILE<INFILE) LIST CA);

then PL/I looks for an existing file referenced by INFILE. The following
actions are taken:

• If INFILE is a reference to an existing file, and the file is not open, it is
opened implicitly with the attributes STREAM and INPUT. Note that if
INFILE is declared as a STREAM INPUT file but was not opened explicitly
with the TITLE option, then INFILE is assumed to be a logical name
defined by the user or, if no logical name was defined, an existing file named
'INFILE.DAT,.

• If INFILE is not associated with a file, or if the associated file does not exist,
or if for any reason the associated file cannot be opened, the UNDEFINED
FILE condition is signaled.

If the statement has a STRING option instead of a FILE option, the reference
in the STRING option is evaluated.

If the statement has neither a FILE option nor a STRING option, it is taken
to refer to the default file constant SYSIN. SYSIN is declared by default with
the STREAM INPUT attributes, and it is normally used for input from a
terminal. See also "Terminal Input/Output."

If the input stream is a file, the next action is to execute the SKIP option, if
there is one. For details, see "Processing and Positioning of Stream Files"
below, or the entry "GET Statement." The SKIP option cannot be used with
the STRING option. Note that a GET statement can perform a SKIP opera
tion even if it performs no data input. For example, the statement:

GET FILE<INFILE) SKIPC2);

repositions the file referenced by INFILE to the ,second line following the
current line in the file.

312 Stream Input/Output

A GET statement that has the EDIT or LIST option performs input from the
stream to a list of input targets, which must be variables of computational
data types. If the input target is an aggregate variable, then input is assigned
to each element of the aggregate; input values are assigned to array elements
in row-major order and to structure members in the order of their declaration.
An input target can also contain a DO construct that further controls the
assignment; for details, see "GET Statement." Since a stream consists only of ,
ASCII characters, and the input targets are not necessarily character-string
variables, an input field must be selected from the input stream for each
target and must be converted, if necessary, to the type of the target.

In edit-directed (GET EDIT) statements, the selection and assignment of the
input field are controlled by a format item that corresponds to the input
target. In the default case, which appl,ies to terminal input and to input from
most stream files, a data format item assumes that the end of the input field
has occurred if it encounters the end of a record in an input file or the end of a
line when the input is from a terminal.

For example, a common technique for reading lines of varying length from a
terminal is to deliberately use a format item that specifies a field wider than
the column width of the terminal. An example is shown in the entry "X
Format Item." If a carriage return is typed in response to an input request for
GET EDIT, or if the end of a record is immediately encountered, the re
quested field width is filled with spaces and assigned to the input target under
the control of the corresponding format item. (Note that all spaces will cause
an error for B format items.) However, if the input stream is a character-string
expression (GET STRING), the ERROR condition is signaled if the format
item causes the end of the input string to be reached in the middle of an input
field. If the input stream is a file declared or opened with ENVIRONMENT
(IGNORE_LINE_MARKS), the search for characters to complete the input
field simply continues at the next record. ·

Details on the matching of format items to input targets are given in the entry
"Format-Specfication List - How Edit-Directed Operations Are Performed."
The execution of individual format items is described in individual entries -
see, for example, "F Format Item." IGNORE_LINE_MARKS, and other
ENVIRONMENT options, are described in the VAX-11 PL/I User's Guide.

In list-directed (GET LIST) statements, ari input field is acquired by examin
ing the input stream to find the next character that is not a space character.
The following actions are taken depending on the next character that is found:

• If the next nonspace character is an apostrophe, the input field is assumed
to contain a bit-string or character-string constant, in the same format as
used to write a string constant in a program. The constant is acquired and
may span the end of a record or line. However, the ERROR condition is
signaled if the end of the file is reached before the terminating apostrophe is
found; if the input stream is a character-string expression rather than a file,
the ERROR condition is signaled if the end of the string is reached. The
apostrophes and B suffix are removed from the constant, and any double
apostrophe within a character-string constant is changed to a single apos
trophe. (If the field contains a bit-string constant in base 4, octal, or hexade
cimal radix, its binary equivalent is found.) The resulting character- or bit
string value is then assigned to the corresponding input target. If the input

Stream Input/Output 313

target is not of the same data type, the input value is converted according to
the usual rules (see "Conversion of Data").

• If the next nonspace character is a comma, and the previous operation on
the input file was by GET LIST, and the previous input field was termi
nated by a space, carriage return, or end-of-record, the scan continues. If
the next nonspace character is a comma, and the previous nonspace charac
ter was also a comma, the corresponding input target is skipped; the input
target retains whatever value it had before the GET LIST statement.

• If the input line or record is empty (that is, a carriage return or end-of
record is encountered immediately after the beginning of a line), the corre
sponding input target is nulled. That is, the null character string ' ' is
assigned to the input target with appropriate type conversion. However, if
the input file was opened with ENVIRONMENT(IGNORE_LINE_
MARKS), the .carriage return or end-of-record is ignored.

• Otherwise, the next nonspace character is neither a comma nor an apos
trophe. The input field is then assumed to begin with this character and to
be terminated by the next space, comma, carriage return or end-of-record [if
ENVIRONMENT(IGNORE __ LINE_MARKS) was not used], end-of-file
(if the input stream is a file), or end-of-string (if the input stream is a
character string). All the characters in the field are acquired and assigned,
with appropriate type conversion, to the input target.

If the GET LIST statement attempts to read a file after its last input field has
been read, or if it attempts to read an empty file, the ENDFILE condition is
signaled. If the GET LIST statement attempts to read a character string after
its last field has been read, or if it attempts to read a null string, the ERROR
condition is signaled. ·

• Output by the PUT Statement

When a PUT statement is executed, the first action is to evaluate the FILE or
STRING option, if there is one. If the statement has a file option, the refer
enced file is either opened or created with the attributes STREAM and
OUTPUT, if it is not already open. If the file referenced in a statement such
as:

PUT FILE<OUTFILE) LIST(A);

was not previously declared or opened with the TITLE option, the reference
(here, OUTFILE) is assumed to be a logical name defined by the user or, if no
logical name is defined, an existing file named 'OUTFILE.DAT '. If a
STRING option is present instead, the referenced character-string variable is
assigned the null character string.

If neither the FILE option nor STRING option is present, the output stream is
assumed to be the default file SYSPRINT.

If the output stream is a file, the next action is to execute any of the options
PAGE, LINE, and SKIP that occur in the statement, in that order. The
output stream must be a file if any of these options are included, and it must
be a print file if LINE or PAGE is included. Note that a PUT statement can

314 Stream Input/Output

contain one or more of these options even if it performs no data output. For
example, the statement:

PUT FILE<OUT> PAGE LINE<ZO>;

skips to a new page in the file referenced by OUT (which must be a print file),
moves to line 20 of the file, and then terminates.

If, however, the statement also has a LIST or EDIT option, it then writes out
a list of output sources, which must be variables, constants, or other expres
sions of computational data types. If the output source is a reference to an
aggregate variable, all the variable's elements are written out; array elements
are written out in row-major order, and structure members are written out in
the order of their declaration. (For more information on output sources, see
"PUT Statement.") Since a stream consists only of ASCII characters, each
output source is converted to a character string before being written out, as
follows:

• If the PUT statement is list directed, the output source is converted accord
ing to the usual rules for converting a computational value to a character
string (see "Conversion of Data").

• If the PUT statement is edit directed, the output source is converted as
specified by a corresponding format item. For details, see the entries for
individual format items or "Format Items and Their Uses."

• If the output stream is a character-string variable or file with the attributes
STREAM OUTPUT (but not PRINT), the statement is list directed, and
the output source is of type CHARACTER, the output source value is sur
rounded by apostrophes, and any apostrophe within the value is replaced by
a double apostrophe.

• If the output source is of type BIT, and the statement is list directed, the
converted output source is surrounded by apostrophes, and the letter 'B' is
appended.

The converted output source is then written to the output stream, as follows:

• If the statement is list directed and the output stream is a file with the
attributes STREAM OUTPUT (but not PRINT), then the converted output
source is written beginning at the end of the file and followed by a single
space. If the output stream is a print file, the converted output source is
written out beginning at the end of the file, after enough spaces have been
written out to move to the next tab stop. In either case, if the converted
output source does not fit on the remainder of the current line, as much as
possible is written on the current line, and the rest is written on the next
line. The ENDPAGE condition may be signaled if the output stream is a
print file. For more information on print files, see "Print File."

• If the statement is edit directed, the exact number of characters specified by
the format item is written out, and no space follows. As much output as
possible is written on the remainder of the current line, and it is continued,
if necessary, on the next line. Any additional positioning, such as on tab
stops in a print file, is performed by control format items (see "Format
Items and Their Uses").

Stream Input/Output 315

• If the output stream is a character-string variable, the output process is
identical to that with a STREAM OUTPUT file except that the first output
source written out by a PUT statement is placed at the beginning of the
variable's storage, and any previous value in the variable is erased. Note
that the X format item, which ~an be used with PUT STRING, performs
positioning by writing out spaces, not by "skipping" characters in the previ
ous value of the variable. Note also that list-directed output to a character
variable, followed by list-directed output of the variable itself, can result in
a proliferation of apostrophes in the value finally written to a file (see
"Examples," below).

• Processing and Positioning of Stream Files

This section discusses the processing and positioning of the stream when the
stream is a file. A stream file is a file of ASCII text, divided into lines. For
every stream file used in a program, PL/I maintains the following information:

• The locations of the beginning and end of the file. On input operations, the
ENDFILE condition is signaled on the first attempt to read past the end of
the file.

• For output files, the maximum number of ASCII characters in a line, or the
line size. The line size is either a default value or the specific value you have
established for the file (see "LINESIZE Option"). The line size is used to
determine when to skip to the next line (for example, see "X Format Item
- Output with PUT EDIT"). On input, a single data item cannot cross a
line unless it is a character string enclosed in apostrophes or unless the file
was opened with ENVIRONMENT(IGNORE_LINE_MARKS). On out
put, data items are continued on the next line.

• The current position in the file. Essentially, this is the point in the file at
which the last input or output operation stopped. It is the exact character
position (sometimes in the middle of a line) at which the next output item is
written or from which the next input item is read.

Input operations can begin at any position from the current position onward.
The default is the current position. To acquire data from a different position,
you can:

• Use the SKIP option of the GET statement to advance by a specified num
ber of lines before reading data.

• Use control format items to move to a specified position before reading data.
With the GET statement, control format items are restricted to SKIP (same
operation as the SKIP option), COLUMN (advance to a specified character
position), and X (advance by a specified number of character positions from
the current position). Note that the control format items, unlike the SKIP
option, are executed during, not before, the input of data. See also "Format
Items and Their Uses." The control format items can signal the ENDFILE
and ERROR conditions if the end-of-file is encountered.

• Close and then reopen the file, which sets the current position to the first
character in the file.

316 Stream Input/Output

Because stream files are sequential files, output operations always place data
at the end of the file. You can do the following additional formatting of output
with any stream output file:

• Use the SKIP option of the PUT statement to skip lines following the
current position. If the current position is the beginning of a line, the SKIP
option inserts null lines in the file between the current position and the
position of the next output. The SKIP option can reposition the file even
though no data is output.

• Use the control format items to advance to a specified line or character
position, or to a new page. The control format items are COLUMN -(move to
a specified character position), SKIP (same effect as the SKIP option), and
X (skip a specified number of characters following the current position). As
with the input case, control format items are executed only during the
output of data; if only part of the format list is used, the excess control
format items are ignored.

If the output file is a print file (that is, has the attributes STREAM,
OUTPUT, and PRINT or is the default file SYSPRINT), the following addi
tional information is maintained for the file:

• The current page number. The first output to a print file is written to
page 1. The current page number is incremented by the PAGE option, the
PAGE format item, and, in some circumstances, by the LINE option and
LINE format item. The current page number can be evaluated for a speci
fied print file with the PAGENO built-in function. It can also be set to a
new value by assigning a value to the PAGENO pseudovariable.

• The page size. This is an integer that specifies the number of lines on a
page. The page size is either the default value or the specific number that
you have established for the print file (see "PAGESIZE Option"). When
the last line on a page is filled, the first attempt to write (or position the file)
beyond that position signals the ENDPAGE condition. The ENDPAGE
condition is signaled only on the first such attempt; if no ON-unit is estab
lished for the condition, a PUT PAGE is executed. For example, the
ON-unit for the ENDPAGE condition can write a trailer at the bottom of
the current page, or a header at the top of the next page, before printing a
new page of data.

• The current line number. This is an integer specifying the line currently
being used for output, relative to the top of the page. The first line on the
page is line 1. The LINENO built-in function can evaluate the current line
of a specified print file. The LINE option of the PUT statement, and the
LINE format item, can reposition the file to a specified line.

• Position of tab stops. Tab stops always occur at eight-column increments on
every line of a print file, beginning with column 1. The TAB format item
can reposition a print file to a specified tab stop relative to the current
position.

Terminals should always be declared as print files when used for output. See
"Terminal Input/Output."

Stream Input/Output · 3l7

• Processing and Positioning of Character Strings

If the input or output stream is a character string, the processing is similar to
the processing of files, but the positioning options are more limited:

• Input can begin at either the beginning of the string or at a specified charac
ter position. The ERROR condition is signaled if the end of the string is
encountered. Only the X format item can be used for positioning.

• The first output by a PUT statement always occurs at the beginning of the
string, and subsequent output by the same statement follows the previous

. output. The ERROR condition is signaled if the maximum length of the
string is exceeded. Only· the X format item can be used for positioning.

On input, the value of the character-string expression specified in the
STRING option must include commas or spaces to separate input-fields, as
with any stream input. For an example, see "GET Statement - GET LIST."

•Examples

LO I: PROCEDURE OPTIONS (MA IN) ;

DECLARE (I tJ) FI><ED BINARY;

GET LIST< I);
GET LIST<J>;

PUT SKIP LIST('I=' tI);
PUT LIST('J=',J);

END LOI;

The input data for the two GET statements may appear on the same line:

3 t4(ffi)

Because the first PUT statement contains a SKIP option, the output begins
on a new line. The second PUT statement does not contain a SKIP option, so
the output appears on the same line as that of the first statement:

I= 3 J=

For another example showing terminal input and output, see "Terminal
Input/Output."

PUTSTR: PROCEDURE OPTIONS<MAIN>;

DECLARE SOURCE CHARACTER(80) VARYING;

DECLARE OUTFILP PRINT FILE;

SOURCE= 'Old strins';

PUT FILE<OUTFILP) LIST< SOURCE>;

PUT FILE<OUTFILP) EDIT<SOURCE) (A);

PUT STRING<SOURCE> LIST< 'Ne1,..1 strina');

318 Stream Input/Output

PUT FILE<OUTFILP> LIST<SOURCE>;

PUT FILE<OUTFILP> EDIT<SOURCE> <A>;

END PUTSTR;

The program PUTSTR writes the following output to the print file
OUTFILP .DAT:

Old strins Old strins 'Ne1,..1 strins' 'Ne1,..1 strins'

The last two strings are surrounded by apostrophes because the apostrophes
were added by the PUT STRING statement.

PUTSTR: PROCEDURE OPTIONS<MAIN>;

DECLARE SOURCE CHARACTER<80) VARYING;

DECLARE OUTFILS STREAM OUTPUT FILE;

SOURCE = 'Old strinS';

PUT FILE<OUTFILS) LISTCSOURCE>;

PUT FILE<OUTFILS> EDIT<SOURCE> 0{ tA);

PUT STRINC<SOURCE> LIST< 'Nei...1 strins');

PUT FILE<OUTFILS> LIST<SOURCE>;

PUT FILE<OUTFILS) EDIT<SOURCE> 0{ tA);

END PUTSTR;

This version of PUTSTR writes the following output to the stream file
OUTFILS.DAT:

'Old6strinS'660ld6strinS'''New6strinS''6'66'New6strins'6

Here, every PUT LIST has added a new pair of apostrophes to the output
value. First, the characters "Old string" are assigned to SOURCE. When
SOURCE is written out with PUT LIST, the characters are surrounded by
apostrophes (because OUTFILS is not a print file) and written out followed by
a space:

'Old strinS'6

The following PUT EDIT statement writes out a space (because of the X
format item) followed by the exact characters in SOURCE:

60ld strins

Then, the PUT STRING statement writes the characters "New string" to
SOURCE; here, SOURCE behaves like a stream output file, and the resulting
value in SOURCE is:

Stream Input/Output 319

Now, when SOURCE is written out by another PUT LIST statement, every
apostrophe in SOURCE's value is replaced by two apostrophes and the result
ing value is again surrounded by apostrophes and written out followed by a
space:

'' 'Ne1,.1 strins' '6'6

When, instead, SOURCE is written out by PUT EDIT, no additional apos
trophes are added, and the output is:

6.'Ne1,.1 strins'6

where the initial space was created by the X format item, and the terminating
space was already in the value of SOURCE.

STRING Built-In Function

The STRING built-in function concatenates the elements of an array or struc
ture and returns the result. Elements of a string array are concatenated in
row-major order. Members of a structure are concatenated in the order in
which they were declared.

The format of the STRING built-in function is:

STRIN G(reference)

reference
A reference to a variable that is suitable for bit-string or character
string overlay defining. Briefly, a variable is suitable if it consists
entirely of characters or bits, and these characters or bits are packed
into adjacent storage locations, without gaps. (For a precise definition,
see "Defined Variable.")

• Returned Value

The string returned is of type CHARACTER or BIT, depending on whether
the reference is suitable for character- or bit-string overlay defining. The
length of the string is the total number of characters or bits in the base
reference.

•Examples

STRING_BIF_EXAMPLE: PROCEDURE;
DECLARE NEW_NAME CHARACTER<40);
DECLARE 1 FULL_NAMEt

2 FIRST _NAME CHARACTER (10) t

2 MIDDLE_INITIAL CHARACTER<3> t

Z LAST_NAME CHARACTERC27)
FIRST _NAME = I MABEL I ;

MIDDLE_INITIAL = 'S+ I;
LAST_NAME = 'MERCER';
NEW_NAME = STRINGCFULL_NAME>;

I* NEW_NAME =

where 6 is a space */
END STRING_BIF_EXAMPLE;

320 STRING Built-In Function

String Handling

VAX-11 PL/I provides the following facilities for handling strings. Each is
described in its own entry in this manual.

• The concatenation operator (: : or ! !), which concatenates two strings

• The bit-string operators AND (&) and OR (: or !), which perform logical
operations on two bit-string operands

• The bit-string operator NOT (A), which complements the bits in the string

• The built-in functions

- BIT, which converts an expression to a bit string

- BOOL, which specifies a "truth table" to be used in comparing t~o bit
strings and returns the resulting bit string

- BYTE, which returns the ASCII character corresponding to a given
integer code

- CHARACTER, which converts an expression to a character string

- COLLATE, which returns a string of the ASCII characters in collating
sequence

- COPY, which replicates a bit or character string and concatenates the
replications into a single string

- DATE, which returns a character string giving the date

- INDEX, which returns the position at which a specified substring is found
in a specified bit or character string

- LENGTH, whfoh returns the current length of a bit or character sfring
- RANK, which returns the ASCII code for a given character

- STRING, which concatenates an array or structure of strings into a single
string

- SUBSTR, which returns a specified portion of a bit or character string

- TIME, which returns a character string giving the current time of day

- TRANSLATE, which replaces occurrences of a specified character with a
new character

- UNSPEC, which returns, as a bit string, the internally coded form of a
scalar expression

- VERIFY, which compares two character strings and returns the position
of a mismatched character

• Character and bit-string assignments, such as NAME = 'HAROLD',
STATUS= '0001011 'B

• Character- and bit-string relational expressions, such as
IF I ARTHUR I < 'HAROLD I THEN ...

• The GET STRING and PUT STRING statements, for transferring data
between character strings and program variables

String Handling 321

• The STRING pseudovariable, which assigns parts of a string to an array or
structure

• The SUBSTR pseudovariable, which replaces a specified substring with a
specified character-string expression

STRING Option

The STRING option is used with the GET and PUT statements to perform
data transfers from or to a character-string variable in the program instead of
an external file.

The STRING option can be used with either the LIST option or the EDIT
option, depending on whether type conversions are to be automatic or under
program control.

In most respects, stream I/0 to a character-string expression is performed as if
the string were a file with the attributes STREAM and, as appropriate,
INPUT or OUTPUT.

The GET STRING statement acquires a string from a character-string varia
ble and assigns it to one or more input targets. If more than one input target is
listed, the characters in the string should include any punctuation (comma or
space separators, apostrophes) that would be required if the character string
were in an external file.

The PUT STRING statement evaluates a list of output sources (expressions),
converts the results to characters if necessary, and assigns the concatenated
results to a character-string variable declared in the program. The conca
tenated results include any punctuation (space separators, apostrophes) that
would result if the character string were being sent to a STREAM OUTPUT
file. For example, apostrophes are added to character-string output, and every
output value is followed by a space.

For further details, see "GET Statement" and "PUT Statement."

STRING Pseudovariable

The STRING pseudovariable interprets a suitable reference as a reference to a
fixed-length string. By using it, you can modify an entire aggregate with a
single string assignment or assign it to a pictured variable as if it were a
character-string variable. The format of the pseudovariable (in an assignment
statement) is:

STRING(reference) = expression;

reference
A reference to a variable that is suitable for character-string (or bit
string) overlay defining. The length of the pseudovariable is equal to
the total number of characters (or bits) in the scalar or aggregate
denoted by the reference. This length must be less than or equal to the
maximum length for character-string (or bit-string) data.

Assignment to the STRING pseudovariable modifies the entire storage
denoted by the reference.

322 STRING Option

•Examples

STRING_PSD_EXAMPLE: PROCEDURE;
DECLARE 1 NAME,

2 FIRST CHARACTER<10),
2 MIDDLE_ INITIAL CHARACTER<3>,
2 LAST CHARACTERC10);

STRING<NAME>='FRANKLIN D. ROOSEVELT';
I* NAME.FIRST= 'FRANKLIN D';

NAME.MIDDLE_INITIAL = I R';
NAME.LAST= 'OOSEVELT ';*I

END STRING_PSD_EXAMPLE;

DECLARE 1 FLAGS,
2 CAtBtC> BITC1);

STRINGCFLAGS> = 'O'B; I* sets all three fla~s false *I

DECLARE P PICTURE 'Z.ZZZVtZZDB';
GET EDIT <STRING<P>> <A<10));

I* assi~ns 10 characters from SYSIN to p,
without conversion */

Structure

A structure is a data aggregate consisting of one or more members. The mem
bers may be scalar data items, arrays of scalar data items, structures, or
arrays of structures, and different members may have different data types.

A structure declaration defines a structure variable by means of level
numbers. For example:

DECLARE 1 TRANSACTIONt
2 PART_NLJMBERt

3 FACTORY CHARACTER (3) t

3 ITEM CHARACTER (5);

The level number 1 indicates that TRANSACTION is a structure variable.
TRANSACTION is the name of the entire, or "major," structure. The higher
numbers 2 and 3 indicate that the associated identifiers are the names
of members of the structure TRANSACTION or its "minor" structure,
PART _NUMBER.

The following sections define the rules for specifying level numbers and attrib
utes for members in a structure.

• Level Numbers for Structures

You must precede each variable in the structure declaration with a level
number, indicating the position of the variable in the structure. The following
rules apply:

• The level number of the major structure must be 1.

• Level numbers must be specified using decimal integer constants.

Structure 323

• A level number must be separated from its associated variable name by at
least one space or tab character.

• Level numbers after level 1 can be any integer values, as long as each level
number is equal to or greater than the level number of the preceding level.
(There can be only one level L)

• Each identifier in the structure must be separated from the declaration of
the previous identifier by a comma.

• Substructures at the same logical level of nesting do not have to have the
same level number.

• The deepest possible logical level is 15.

• The largest possible level number constant is 32767.

• A substructure at level n contains all following items declared with level
numbers greater than n, up to but not including the next item declared with
a level number less than or equal ton.

• Attributes for Structure Variables

Within a structure, only members at the lowest level of each substructure can
be declared with data type attributes. Additional rules for specifying attrib
utes for the various components of a structure are listed below.

• Only the following attributes are valid for the major structure name:

AUTOMATIC EXTERNAL
BASED INTERNAL
DEFINED STATIC

• The major structure, or a minor structure, or any member of the structure
can be dimensioned: that is, there can be arrays of structures and structures
whose members are arrays. See "Arrays of Structures."

• Member names cannot have any of the following attributes:

AUTOMATIC GLOBALREF
BASED READONLY
DEFINED STATIC
EXTERNAL VALUE
GLOBALDEF

• If a structure has the STATIC attribute, the extents of all members (that is,
lengths for character- and bit-string variables, dimensions for array varia
bles, and area extents) must be specified using optionally signed decimal
integer constants.

• Structure-Qualified References

To refer to a structure in a program, you use the major structure name, minor
structure names, and individual member names. Member names need not be
unique even within the same structure. To refer to names of members or
minor structures, you must ensure only that the reference uniquely identifies
the minor structure name or member. You can qualify the variable name by
preceding it with the name(s) of higher-level variable(s) in the structure;
names in this format, called a qualified reference, must be separated by
periods (.).

324 Structure

The following sample structure definition illustrates the rules for identifying
names of variables within structures:

DECLARE 1 STATEt
2 NAME CHARACTER .(20) t

2 POPULAT-ION FrnED (10) t

2 CAPITAL t

3 NAME CHARACTER (30) t

3 POPULATION FIXED C10t0) t

2 SYMBOLSt
3 FLOWER CHARACTER (20) t

3 BIRD CHARACTER <20);

The rules for selecting and specifying variable names ·for structures are as
follows:

• The name of the major structure is subject to the rules for the scope of
variables in a program. ·

• The name of any minor structure or member in a structure can be qualified
by the names of higher-level members in the structure. The variable names
must be specified from left to right in order of increasing level numbers,
separated by periods. The members of the sample structure, completely
qualified, are:

STATE.NAME
ST ATE.POPULATION

· ST ATE. CAPITAL.POPULATION
STATE.CAPITAL.NAME
STATE.SYMBOLS.FLOWER
STATE.SYMBOLS.BIRD

• Names of minor structures or members within structures do not have to be
qualified if they are unique within the scope of the name. The following
names in the sample structure can be referred to without qualification (as
long as there are no other variables with these names):

CAPITAL
SYMBOLS
FLOWER
BIRD

• Intermediate qualification names can be omitted if the reference remains
unambiguous. The following references to members in the sample structure
are valid:

STATE.FLOWER
STATE.BIRD

If a name is ambiguous, the compiler cannot resolve the reference and issues a
message. In the example, the names POPULATION and NAME are am
biguous.

Structure 325

• Initializing Structures

A structure can be initialized by giving the INITIAL attribute to its members.
Not all members need be initialized. For example:

DECLARE 1 COUNTSt
2 FIRST FU<ED BIN(15) INITIAL(O) t

2 SECOND FU<ED BIN<15) t

2 THIRD (5) FIXED BIN(15) INITIAL (5(1));

The first and third members of the structure COUNTS are initialized.

The INITIAL attribute cannot be applied, however, to a major or a minor
structure name.

• Using Structure Variables in Expressions

You can specify the name of a major or minor structure in an assignment
statement only if the source expression and the target variable are identical in
size and structure and all corresponding members have the same data types.

• Passing Structure Variables as Arguments

A structure variable can be passed as an argument to another procedure. The
relative structuring of the structure variable specified as the argument and
the corresponding parameter must be the same. The level numbers do not
have to be identical. The following example shows the parameter descriptor
for a structure variable:

DECLARE SEND_REC ENTRY (1 t

2 F I)ffD 5 I NARY (3 1) t

2 CHARACTER< 40) t

2 p I CTURE I 999l.l99 I) ;

The written argument in the invocation of the external procedure SEND_
REC must have the same structure and its corresponding members must have
the same data types.

When structures are passed as arguments, they must match the corresponding
parameters. They cannot be passed by dummy argument. For information on
arguments and argument passing, see "Parameters and Arguments."

Subroutine

A subroutine is a procedure that is invoked by another procedure by means of
a CALL statement. The subroutine may be internal or external to the proce
dure that calls it. See "Procedure."

SUBSTR Built-In Function

The SUBSTR built-in function returns a specified substring from a string. Its
format is:

SUBSTR(string,position[,length])

326 Subroutine

string
A bit- or character-string expression.

position

length

An integer expression that indicates the position of the first bit or
character in the substring. The position must be greater than or equal
to one and less than or equal to LENGTH(string) + 1.

An integer expression that indicates the length of the substring to be
extracted. If not specified, length is:

LENGTH(string)-position+l

which extracts the substring beginning at the indicated position and
ending at the end of the string.

The length must satisfy the condition:

0 s length s LENGTH(string) - position + 1

• Returned Value

The returned substring is of type BIT (length) or CHARACTER(length, de
pending on the type of the string argument. If the length argument is zero, the
result is a null string.

•Examples

DECLARE <NAMEtLAST_NAME> CHARACTERC20) t

START FIXED 5INARYC31);

NAME :: I I SAK DI NESEN I ;

I* NAME =
I I s AK 6.0 I NE s E N6.6.6.6.6.6.6.6. I *I

START= INDEX<NAMEt' ')+1;
I* START = G *I

LAST_NAME = SUBSTR<NAMEtSTART);
I* default lensth = LENGTH<NAME>-START+1 =15 */
I* LAST_NAME = 'DINESENL".6.6.6.6.6.6.6.6.6.6.6.6.' *I

SUBSTR Pseudovariable

The SUBSTR pseudovariable refers to a substring of a specified string varia
ble reference. (See also "Pseudovariable" for general rules.) Assignment to
the pseudovariable modifies only the substring. The format of the pseudovari
able (in an assignment statement) is:

SUBSTR(reference,position[,length]) = expression;

reference
A reference to a bit- or character-string variable. If the reference is to a
varying-length character string, the substring defined by the position
and length arguments must be within the current value of the string.
Assignment to the SUBSTR pseudovariable does not change the
length of a varying string.

SUBSTR Pseudovariable 327

position

length

An integer expression indicating the position of the first bit or charac
ter in the substring. The position must be greater than or equal to
LENGTH(reference)+l.

An integer expression that indicates the length of the substring. If not
specified, length has the value:

length = LENGTH(reference)-position+l

which specifies the substring beginning at the indicated position and
ending at the end of the string. The length must satisfy the condition:

0 ~ length ~ LENGTH(reference) - position + 1

Note that

SUBSTR (r t Pt 1) = v;

is equivalent to

r = SUBSTR(r t1 tP-1):: v: lSUBSTR< r tP+l);

•Examples

DECLARE <NAMEtNEW_NAME) CHARACTERC20) VARYING;

NAME = I I SAK DI NESEN I ;

NEW_NAME = NAME;
SUBSTR (NEl.-.LNAME t 4) = I AC NEWTON I

I* NEW_NAME = 'ISAAC6NEWTON' */

Subtraction

The minus sign character (-) indicates a subtraction operation in an expres
sion; the result is the difference between the operands. Both operands must be
arithmetic or picture data.

• Conversion of Operands

If both operands have the same base, precision, and scale, so has the result of
the operation. The PL/I compiler converts operands of different data types as
follows:

• If one operand has the FLOAT attribute and the other has the FIXED
attribute, the fixed-point operand is converted to floating point before the
operation.

• If one operand is FIXED DECIMAL and the other is FIXED BINARY, the
fixed-point binary operand is converted to fixed-point decimal. However,
the compiler issues a warning message to that effect.

The precision of the values resulting from conversion of operands is described
under ''Expression.''

328 Subtraction

• Precision of the Result

Floating-Point Operands
The result has the maximum of the converted precisions of the
operands.

Fixed-Point Decimal Operands
If (p,q) and (r,s) represent the converted precisions and scale factors of
the two operands, the resulting precision and scale factor are:

precision: min(31,max(p-q,r-s) +max(q,s) + 1)

scale factor: max(q,s)

Fixed-Point Binary
If (p) and (r) represent the converted precisions of the two operands,
the resulting precision is:

min(31,max(p,r) + 1))

SYSIN Default File

SYSIN is the default input file for GET statements. SYSIN is normally asso
ciated with a user's default input device (SYS$INPUT). For example:

GET LIST (AtBtC);

This GET statement does not include the FILE option. Thus, when the pro
gram containing this line is executed, this statement reads data from the file
SYSIN.

For more information, see "GET Statement" and "Terminal Input/Output."
For information on the relationship between the PL/I file SYSIN and the
default input device, see the VAX-11 PL/I User's Guide.

SYSPRINT Default File

SYSPRINT is the default output file for PUT statements. Unless it is expli
citly declared with other attributes, SYSPRINT has the attributes STREAM
OUTPUT PRINT. (If you declare an external file constant named SYSPRINT
with the STREAM and OUTPUT attributes, PRINT is added by the com
piler.) SYSPRINT is normally associated with a user's default output device
(SYS$0UTPUT). For example:

PUT LIST <A tB tC);

This PUT statement does not include the FILE option. Thus, when the pro
gram containing this line is executed, this statement writes data to the file
SYSPRINT.

For more information, see "PUT Statement" and "Terminal Input/Output."
For information on the relationship between the PL/I file SYSPRINT and the
default output device, see the VAX-11 PL/I User's Guide.

SYSPRINT Default File 329

T
TAB Format Item

The TAB format item sets a print file to a specified tab stop. It can be used
only for output to print files. Within a line, tab stops always occur at columns
(n*8)+1, where n equals 0, 1, 2, (That is, at columns 1, 9, 17,) The form
of the TAB format item is:

w

TAB [(w)]

An integer that identifies the wth tab stop from the current position; w
must not be negative. If w is zero, no operation is performed. If w is
omitted, a value of one is assumed.

When the TAB format item is executed,' the current column, cc, is deter
mined. If the current position is the beginning of a line, page, or file, then
cc = 0. Otherwise, cc is the column in the current line at which the next
output character would appear. If, for example, seven symbols have already
been written on a line, then the next output would appear at column 8, which
is the current column. The file is then repositioned in one of the following
ways:

• If there are at least w tab stops between cc+l and the end of the line, then
the file is moved to the wth tab stop from the current column, and the
intervening positions are filled with spaces. The end of the line is at one
column after the current line size, which is either the default value or the
specific value that you have established for the file (see "LINESIZE
Option").

• Otherwise (if there are fewer than w tab stops on the remainder of the
current line), the file is skipped to the beginning of the next line and posi
tioned at the first tab stop (column 1). If, before the ·skip operation, the
current line was the last line on the page, the ENDPAGE condition is
signaled, and the current line becomes (page size)+l. The page size is either
the default value or the specific value that you have established for the file
(see "PAGESIZE Option").

•Examples

TAB: PROCEDURE OPTIONS<MAIN>;

DECLARE OUT STREAM OUTPUT PRINT FILE;

OPEN FILE<OUT> LINESIZE<GO);

330

PUT FILE<OUT) SKIP
ED IT (I 123ll5G78901234587890123ll5G7890 I) (A) ;

p u T F I LE (0 u T) s K I p ED I T (I c 0 L 1 I t ',? I) (A t T AB (2) t A) ;
PUT FILE<OUT) EDIT< I! I) <TAB(20) tA);
PUT FILE<OUT> SKIP EDIT<'*') <TAB(1) tA);
PUT FILE(OUT) EDIT('abcdefs') (A);/* cc l"IOIAI = 17 */
PUT FILE<OUT) EDIT<'&: I) <TAB(G) tA);

END TAB;

The program TAB writes the following output to the print file OUT.DAT:

123ll5G7890123ll5G7890123ll5G7890
COL1 ?

*abcdef s

The question mark appears in column 17, which is the second tab stop follow
ing the string 'COLl '. The exclamation point appears in column 1 of the next
line because there were fewer than 20 tab stops on the remainder of the line.
In the third PUT EDIT statement, the SKIP option first resets the current
column to zero. When the TAB format item is executed, it must position the
file to the first tab stop that is between column 1 (cc+l) and the end of the
line; therefore, the file is positioned, and the asterisk appears, in column 9.
Similarly, the fourth statement writes out the string 'abcdefg ', after which
the current column is 17, a tab stop. Since the line size has been established
as 60, there are only five tab stops between cc+l and the end of the line: 25,
33, 41, 49, and 57. Therefore, the format item TAB(6) in the last PUT EDIT
statement causes a skip to the next line, and the ampersand appears in
column 1.

TAN Built-In Function

The TAN built-in function returns a floating-point value that is the tangent of
an arithmetic expression x, where x represents an angle in radians. The tan
gent is computed in floating point. After its conversion to floating point, x

·must not be an odd multiple of 7r/2.

The format of the function is:

TAN(x)

TAND Built-In Function

The TAND built-in function returns a floating-point value that is the tangent
of an arithmetic expression x, where x represents an angle in degrees. The
tangent is computed in floating point. After its conversion to floating point, x
must not be an odd multiple of 90.

The format of the function is:

TAND(x)

TAND Built-In Function 331

TANH Built-In Function

The TANH built-in function returns a floating-point value that is the hyper
bolic tangent of an arithmetic expression X; The hyperbolic tangent is com
puted in floating point. The format of the function is:

TANH(x)

Terminal Input/Output

This entry describes the PL/I features that perform input and output to a
user's terminal.

In this discussion, .and in most applications, the terminal is treated as a
stream file. You can explicitly declare a stream file to be associated with a
user's terminal. In addition, the stream input and output statements, GET
and PUT, use the default PL/I files SYSIN and SYSPRINT, respectively,
when no file reference is included in the statement. For general information on
stream input and output, see "Stream Input/Output," "GET Statement,"
and "PUT Statement."

In VAX-11 PL/I, SYSIN is associated with the default system input file
SYS$INPUT, which in turn is usually assigned to the user's terminal. The
PL/I print file SYSPRINT is associated with the default system file SYS
$0UTPUT, which, in interactive mode, is also assigned to the user's terminal.
(For further information, see the VAX-11 PL/I User's Guide.)

The discussions and examples in this section use the GET and PUT state
ments for terminal input and output. The statements use the default files
SYSIN and SYSPRINT instead of specific file references.

VAX-11 PL/I also provides statement options that may be useful in terminal
input and output. For full details on the GET and PUT options, see the
VAX-11 PL/I User's Guide.

• Simple Input from a Terminal

This case covers the acquisition of one or more values from the terminal. A
simple application of the GET LIST statement is the most expedient solution.
Such a statement has the form:

GET LIST (input-target, ...) ;

Because this statement has no reference to a specific file, the default file
SYSIN (the terminal) is assumed. When this GET LIST statement is exe
cuted in a program, the program will pause until enough values are typed by
the user to satisfy the input-target list.

The values typed by the user must be separated by carriage returns, spaces, or
commas. The user must type at least one carriage return to send the typed
line to the program. VAX-11 PL/I always appends a space to the end of any
input line terminated by a carriage return unless the carriage return is inside

332 TANH Built-In Function

a quoted string. The appending of spaces can be disabled by the IGNORE_
LINE_MARKS ENVIRONMENT option; see the VAX-11 PL/I User's
Guide.
The input-target list must be enclosed in parentheses and input targets must
be separated by commas. In the context of simple terminal input, the input
targets are usually simple variable references. For example, the statement:

GET LI ST (SALARY t CONTRIBUTION (42) t PAYROLL. DEDUCT ION) ;

acquires three character strings from the terminal. The strings are converted
automatically to the target data types and assigned to the scalar variable
SALARY, element 42 of the array CONTRIBUTION, and member DEDUC
TION of the structure PAYROLL. There are several sequences with which the
user can type the needed values, including:

15500t500t1200(Bill

15500(Bill500(Bill 1200(Bill

15500 t500(Bill1200(Bill

If a carriage return is typed in response to an input request from GET LIST~
the null character string ' ' is assigned to the input target. If a carriage return
is typed in response to an input request from GET EDIT, the requested field
width is filled with spaces and assigned to the input target under control of
the corresponding format item. (Note that an all-space field will cause an
error for B formats.)

For full details on input targets, see "GET LIST Statement."

• Simple Output to a Terminal

You can send data to a terminal with the PUT LIST statement. A simple form
of PUT LIST is:

PUT LIST (output-source, ...);
The output sources in simple cases are expressions, including variable refer
ences. The PUT LIST statement converts the results of the expressions to the
appropriate character representations and sends the character strings to the
terminal. For instance, the statement:

PUT LIST CAtBtC);

converts the values of the variables A, B, and C to character strings and sends
the results to the terminal. In this simple case, the displayed strings are
separated by tabs.

The file SYSPRINT, used as the default output stream by PUT LIST, is a
print file, and the terminal has the characteristics of print files (see "Print
File"). For example, the ENDPAGE condition is signaled when the terminal's
page size is exceeded.

Terminal Input/Output 333

•Examples

SIMPLE_INPUT: PROCEDURE OPTIONS <MAIN);
I* SimPle inPut from user's terminal */

DECLARE
BADGE_NUMBER FIXED DECIMAL (5) t

SOCIAL_SECURITY_NUMBER CHARACTER<11)

GET LIST <BADGE_NUMBERtSOCIAL_SECURITY_NUMBER);

PUT LIST <BADGE_NUMBERtSOCIAL_SECURITY_NUMBER);

END SIMPLE_INPUT;

V AX-11 PL/I does not print a prompt character on the terminal when a
program executes a GET or READ statement. Consequently, it is difficult to
tell that a program is trying to read data unless the program executes an
output statement containing a prompting message. The program SIMPLE_
INPUT would be easier to use if the following statement appeared immedi
ately before GET LIST:

PUT SKIP
LIST< 'Enter badae nu1r1ber tsocial securit)' nu1r1ber: ');

A carriage return does not occur automatically after the prompt, so the input
can be entered on the same line. The completed line might be:

Enter badae nu1r1ber tsocial securit)' nurriber :7t11G-Ll0--0L!82IB:rn

The GET statement also has a PROMPT statement option that displays a
prompt on the user's terminal. See the VAX-11 PL/I User's Guide for details.

TIN: PROCEDURE OPTIONS< MAIN);

DECLARE STRING CHAR(10) VARYINGt
I FIXED BINARY STATIC INITIAL(Q) t

A FLOAT BINARY;
DECLARE EDF BIT STATIC INITIAL< 'O'B);

ON ENDFILE<SYSIN> EDF= 'l'B;

DO WHILE<hEOF); I* stop when CTRL/Z is tYPed *I

END;

PUT SKIP LIST< 'Enter strina tinteaer tfloat>');
GET LIST<STRING tI tA);

PUT SKIP LIST<STRING tl tA);

END TIN;

Here, the user is prompted to enter three values from the default file SYSIN.
The three values are immediately written out to the default file SYSPRINT.
This sequence continues until the prompt is answered with a CTRL/Z, which

334 Terminal Input/Output

signals the END FILE condition for SYSIN; the current values of the three
variables are then written out, and the program terminates. A sample dialog
with the program is as follows:

$ R TIN(BTI)

E n t e r s t r i n s' ti n t e s' er t f 1 o a t > .J 0 N E S t 2 7 t 3 + 7 5 (8TI)
JONES 27 3.7500000E+OO
Enter strins' tintes'er tfloat> JONES 27 3+75(8TI)
JONES 27 3.7500000E+OO
Enter strins' tintes'er tfloat> .JONES(BTI)
2 7 (8TI)
3+75(8TI)
JONES 27 3+7500000E+OO
Enter strins' tintes'er tfloat> DOOLEY(BTI)
(BIT)
]E-G(BTI)
DOOLEY 0 3.0000001E-OG
E n t e r s t r i n s' t i n t e s' e r t f 1 o a t > ·" Z
DOOLEY 0 3+0000001E-OG
$.

Notice that input fields can be separated by commas, spaces, or carriage
returns. Notice also that entering a blank line after 'DOOLEY' causes the
program to "null" the value of I, setting it to zero.

• Other Topics

The following list of topics may be of interest in terminal input and output
applications:

• Use of GET STRING and certain built-in functions for string handling. See
"GET Statement" and "String Handling."

• Use of GET EDIT and PUT EDIT to control the format of input or output
data. See "GET Statement" and "PUT Statement."

• Use of PUT SKIP, PUT LINE, and PUT PAGE to create formatted dis
plays. See "PUT Statement."

• Use of the OPTIONS keyword with GET and PUT to override default
operations. See the VAX-11 PL/I User's Guide.

THEN Keyword

The THEN keyword is specified in an IF statement to define the action to be
taken if a given expression is true. For example:

IF <A < B> THEN BEGIN ;

The action following the THEN keyword may be null. For more information,
see the entry for the IF statement.

THEN Keyword 335

TIME Built-In Function

The TIME built-in function returns an eight-character string representing the
current time of day in the form hhmmssxx, where:

hh is the current hour (00-23)
rum is the minutes (00--:59)
ss is the seconds (00-59)
xx is hundredths of seconds (00-99)

The format of the TIME built-in function is:

TIME()

• Returned Value

The time is returned as a string of type CHARACTER (8).

TITLE Option

The TITLE option is specified in an OPEN statement to designate the exter
nal file specification of the file to be associated with the PL/I file. The TITLE
option can be specified only on the OPEN statement for a file. Its format is:

TITLE(expression)

expression
A character-string expression of up to 128 characters, representing an
external file specification for the file.

The file specification can be any valid VAX/VMS file specification, device
name, or logical name.

When the name given in the TITLE does not fully specify a VAX/VMS file or
device, V AX-11 PL/I:

1. Performs logical name translation.

2. Applies default values given in the DEFAULT_FILE_NAME option of
the ENVIRONMENT attribute.

3. Applies system defaults.

For complete details on how the file specification is interpreted, see the
VAX-11 PL/I User's Guide.

TO Option

The TO option defines an end-value for a controlled DO statement specifica
tion. For example:

DO I = 1 TO 10;

The DO-group following this statement executes until the value of I exceeds
10. See "DO Statement."

336 TIME Built-In Function

TRANSLATE Built-In Function

Given a character-string argument, the TRANSLATE built-in function re
places occurrences of an old character with a corresponding translation char
acter and returns the resulting string. Its format is:

TRANSLATE(original, translation[, oldchars])

original
A character-string expression in which specific characters are to be
translated.

translation
A character-string expression giving replacement characters for corre
sponding characters in oldchars.

If the translation is shorter than oldchars, the translation is padded on
the right with spaces to the length of oldchars before any translation
occurs. If the translation is longer than oldchars, its excess characters
(on the right) are ignored.

oldchars
A character-string expression indicating which characters in the origi
nal are to be replaced. If oldchars is not specified, it defaults to
COLLATE().

The following steps are performed for each character (beginning at the left
most) in the original:

1. Let original(i) be the current character in the original string, and let
result(i) be the corresponding character in the resulting string.

2. Search oldchars for the leftmost occurrence of original(i).

3. If oldchars does not contain original(i), then let result(i) equal original(i).
Otherwise, let j equal the position of the leftmost occurrence of original(i)
in oldchars, and let result(i) equal translation(j).

4. Return to step 1.

• Returned Value

The string returned is of type CHARACTER(length), where length is the
length of the original string. If the original string is a null string, the returned
value is a null string.

•Examples

TRANSLATE_XM: PROCEDURE OPTIONSCMAIN>;

DECLARE NEWSTRING CHARACTERC80) VARYING;
DECLARE TRANSLATION CHARACTERC128);
DECLARE I FI ><ED;
DECLARE COLLATE BUILTIN;

I* translate sPace to 'O,.: */
NEWSTR I NG i::: TRANSLATE (I 1 2 I t I 0 I t I I) ;

PUT SKIP LIST<NEWSTRING);

TRANSLATE Built-In Function 337

I* translate letter 'F' to 'E': *I
NEWSTRING =TRANSLATE< 'BFFLZFBUB' t'E' t'F');
PUT SKIP LIST<NEWSTRING);

I* chanse case of letters in sentence */
TRANSLATION = COLLATE;

DO I=GG TO 91; I* replace UPPer with lower */
SUBSTR (TRANSLATION t I t 1) = SUBSTR (COLLATE t I +32 t 1) ;
END;
DO I=98 TO 123; I* replace lower with UPPer */
SUBSTR (TRANSLATION t It 1) = SUBSTR (COLLATE t I -32t1);
END;
NEWSTRING =
TRANSLATE (I THE QUI CK BROWN f 0 x JUMPS Ol.JER THE LAZY d 0 s I t

TRANSLATION);
PUT SKIP LIST<NEWSTRING);

END TRANSLATE_XM;

The first reference translates the string '1 2 ' to '102 '. The second reference
translates 'BFFLZFBUB' to 'BEELZEBUB'. The third reference produces
the new sentence:

'the 9uicK brown FOX JUMPS ouer the lazy DOG'

TRUNC Built-In Function

The TRUNC built-in function changes all fractional digits in an arithmetic
expression x to zeros and returns the resulting integer value. Its format is:

TRUNC(x)

• Returned Value

If xis a floating-point expression, the returned value is a floating-point value.
If x is a fixed-point expression, the returned value is a fixed-point value with
the same base as x and with the attributes:

precision: min(31,p-q+l)

scale factor: 0

where p and q are ,the precision and scale factor of x.

338 TRUNC Built-In Function

u
UNDEFINEDFILE Condition Name

The UNDEFINEDFILE condition name can be specified in an ON, SIGNAL,
or REVERT statement to designate an undefined file condition or ON-unit for
a specific file. The format of the UNDEFINEDFILE condition name is:

UNDEFINEDFILE (file-reference)

file-reference
A reference to a file constant or file variable for which the ON-unit is
established.

If the name of a file variable is specified, the variable must be resolved
to the name of a file constant when the condition is signaled.

PL/I signals the UNDEFINEDFILE condition when a file cannot be opened.
Some examples of errors that cause the UNDEFINEDFILE condition are:

• The value specified by the TITLE option is an invalid file specification.

• The file is opened for input or update and the specified file does not exist.

• An existing file is accessed with PL/I file description attributes that are
inconsistent with the file's actual organization.

• Any file system-detected error prevents the file from being accessed.

The UNDEFINEDFILE condition lets you establish an ON-unit to provide
processing when a file cannot be opened, for example, to provide a default file
if no file is specified at run time.

X: PROCEDURE <FILENAME>;
DECLARE FILENAME CHARACTER (128) VARYING;
DECLARE INPUT_FILE FILE INPUT;

ON UNDEFINEDFILE <INPUT_FILE>
OPEN FILE <INPUT_FILE>
TITLE. ('SYS$INPUT I);

OPEN FILE <INPUT_FILE> TITLE <FILENAME>;

In this example, the procedure X expects a file specification string to be
passed as an argument. If no argument is passed, or if the argument is not a
valid file specification, the OPEN statement fails. The UNDEFINEDFILE
ON-unit provides a default OPEN statement with the file specification
SYS$INPUT.

An ON-unit established to handle the UNDEFINEDFILE condition can ob
tain information about the condition by invoking the following built-in func
tions:

• The ONFILE built-in function returns the name of the file being processed
when the condition was signaled.

• The ONCODE built-in function returns the specific status value associated
with the error.

339

. • ON-Unit Completion

The action taken on a normal return from the UNDEFINEDFILE condition
··depends on whether the file was opened explicitly or implicitly.

If the UNDEFINEDFILE condition was signaled following an explicit OPEN
statement for a file, then the normal action following the ON-unit execution is
for the program to continue. If the ON-unit does not transfer control elsewhere
in the program, control returns to the statement following the OPEN state
ment that caused the condition to be signaled.

If the UNDEFINEDFILE condition was signaled during an implicit open
attempt, the run-time system.tests the state of the file. If the file is not open,
the ERROR condition is signaled. If the file was opened by the ON-unit,

. execution of the input/output statement continues.

If an ON-unit receives control when an explicit OPEN results in the
UNDEFINEDFILE condition, and the ON-unit does not handle the condition
by opening the file or by transferring control elsewhere in the program, control
returns to the statement following the OPEN. Then, if an attempt is made to
access the file with an I/0 statement, the UNDEFINEDFILE condition is
signaled again when PL/I attempts the implicit open of the file. This time,
PL/I signals the ERROR condition on completion of the ON-unit.

For more information, see "ON Conditions and ON-Units" and "ON
·Statement."

UNDERFLOW Condition Name
The UNDERFLOW condition name can be specified in an ON, REVERT, or
SIGNAL statement to designate a floating-point underflow condition or
ON-unit.

PL/I signals the UNDERFLOW condition when the absolute value of the
result of an arithmetic operation on a floating-point value is smaller than the
minimum value that can be represented by the V AX-11 hardware.

The value resulting from an operation that causes this condition is set to zero.

This condition is signaled by PL/I only in procedures in which the UNDER-
., FLOW option is enabled. (See "UNDERFLOW Option.")

• ON-Unit Completion

Control is returned to the point of the interrupt, and execution continues with
zero as the result of the operation.
For more information, see "ON Conditions and ON-Units" and "ON
Statement."

340 UNDERFLOW Condition Name

UNDERFLOW Option

The UNDERFLOW option may be specified using the OPTIONS keyword on
a PROCEDURE statement. It specifies that the run-time system is to signal
floating-point underflow conditions that occur during the execution of the
procedure. (See "UNDERFLOW Condition.") The UNDERFLOW option af
fects the procedure on which it is specified and all defined descendents of that
procedure. For example:

COMPUTE: PROCEDURE OPTIONS <UNDERFLOW);

In standard PL/I, the UNDERFLOW condition is signaled whenever an un
derflow occurs, and the UNDERFLOW option need not be specified. In
VAX-11 PL/I, the UNDERFLOW option must be specified in each procedure
for which underflow conditions are to be signaled.

UNSPEC Built-In Function
The UNSPEC built-in function returns a bit string representing the internal
coded value of the referenced scalar variable. The variable can be a scalar
variable of any type. The format of the function is:

UNSPEC(reference)

• Returned Value

The returned value is a bit string whose length is the number of bits occupied
by the referenced variable. This length must be less than or equal to the
maximum length for bit-string data. The returned bit string contains the
contents of the referenced variable's storage, the first bit in storage being the
first bit in the returned value. The actual value is specific to VAX-11 PL/I
and may differ from other PL/I implementations. Note that if the referenced
variable is a binary integer (FIXED BINARY), the first bit in the returned
value is the lowest binary digit.

•Example

DECLARE >< CHARACTER<2> t Y BIT< 18);

><='AB';
Y = UNSPEC<><>;

DECLARE I FIXED BINARY<15);
I = 2;
PUT LIST<UNSPEC<I>>;

As a result of the first UNSPEC reference, Y contains the ASCII codes of 'A'
and 'B '. The PUT LIST statement containing UNSPEC(I) prints the string

'0100000000000000'B

UNSPEC Built-In Function 341

,UNSPEC Pseudovariable

The UNSPEC pseudovariable interprets any reference to a scalar variable as
a reference to a bit string. See also "Pseudovariable" for general rules. The
format of the pseudovariable (in an assignment statement) is:

UNSPEC(reference) = expression;

reference
A reference to a scalar variable. The length of its storage in bits must
be less than or equal to the maximum length for. bit-string data.

In an assignment of the form:

UNSPEC(reference) =value;

the value is converted to a bit string if necessary and copied into the storage of
the reference. The value is truncated or zero-extended as necessary to match
the length of the storage.

•Example

DECLARE X FIXED BINARY (15>;
UNSPEC(X) = '110'5;

The use of the constant '110 'b, which appears to be 6 in binary, actually
assigns 3 to X. The two low-order bits of X (that is, X's first two bits of
storage) are set; all other bits of X are cleared.

UPDATE Attribute

The UPDATE attribute is a file description attribute that indicates that the
associated file is to be used for both input and output. The UPDATE attrib
ute can be applied to relative files, indexed sequential files, and sequential
disk files with fixed-length records.

Specify the UPDATE attribute on a DECLARE statement for a file constant
or on an OPEN statement to access the file for update. The UPDATE attrib
ute implies the RECORD attribute.

For a description of the attributes that may be applied to files and the effects
of combinations of these attributes, see "File Description Attributes and
Options."

The UPDATE attribute may be supplied by default for a file, depending on
the context of its opening. See "Opening a File."

• Restrictions

The UPDATE attribute directly conflicts with the INPUT, OUTPUT,
STREAM, and PRINT attributes, and with any data type attribute other
than FILE.

342 UNSPEC Pseudovariable

v
VALID Built-In Function

The VALID built-in function determines whether the argument x, a pictured
variable, has a value that is valid with respect to its picture specification. A
value is valid if it is any of the character strings that can be created by the
picture specification. The function returns 'O 'B if x has an invalid value and
'1 'B if it has a valid value. The function can be used whenever a data item is
read in with a record input (READ) statement, to ensure that the input data
is valid. The format of the function is:

VALID(x)

x
A reference to a variable declared with the PICTURE attribute.

Note that pictured data is always validated (and thus, the VALID function is
unnecessary) when it is read in with the GET EDIT statement and the P
format item; the ERROR condition is signaled if the data does not conform to
the picture given in the P format item. If GET LIST is used (or GET EDIT
with a format item other than P), the input value is converted to conform to
the pictured input target. (See "Conversion of Data" for details.)

•Example

VALP: PROCEDURE OPTIONS<MAIN>;

DECLARE INCOME PICTURE '$$$$$$V.$$';
DECLARE MASTER RECORD FILE;
DECLARE I FI ><ED;

DO I = 1 TO 2;
READ FILE<MASTER> INTO<INCOME>;
IF VALID<INCOME> THEN;

ELSE PUT SKIP LIST< 'In1.ialid inPut:' tINCOME>;
END;

END l.JALP;

If the file MASTER.DAT contains:

$15000.50
.650000.50

then the program VALP writes out:

Invalid inPut: .650000+50

The picture '$$$$$$V.$$' specifies a fixed-point decimal number of up to
seven digits, two of which are fractional. To be valid, a pictured value must
consist of nine characters; the first digit must be immediately preceded by a
dollar sign, the number must contain a period before the fractional digits, and

343

each position specified by a dollar sign must contain either that sign, a digit,
or a space. The second record in MASTER.DAT can be assigned by the
READ statement because it has the correct size; however, the pictured value
is invalid because it does not contain a dollar sign.

VALUE Attribute

The VALUE attribute is provided for calling non-PL/I procedures. For com
plete details on using the VALUE attribute, see the VAX-11 PL/I User's
Guide.

'I1he VALUE attribute serves two purposes:

1. It specifies, for global external variables, that the variable has a constant
value that the compiler can use as an immediate value in generating
instructions for the VAX-11 hardware·. No storage is allocated for the
variable. For this usage, VALUE must be specified in conjunction with the
GLOBALREF or GLOBALDEF attribute.

2. It specifies, in a parameter descriptor in an ENTRY declaration, that the
corresponding argument is to be passed using the V AX--specific conven
tion for passing arguments by value. For this usage, VALUE must be
specified in conjunction with one of the attributes AN,Y, FIXED BINARY,
ENTRY, POINTER, or BIT(n) where n < 33.

Its format is:

VALUE { GLOBALDEF [(psect-name) J [INITIAL (value)]}
· GLOBALREF

Variable

A variable is a named data item that can be assigned various values in the
program. The converse of a variable is a constant, that is, a data item whose
value cannot be changed.

Normally, a variable's value will change during the execution of the program.
However, it is sometimes convenient to declare a static variable whose value
will never change. For example:

DECLARE MONTHS <12) CHARACTER <12) VARYING
STATIC INITIAL ('JANUARY' t 'FEBRUARY' t •••

I DECEMBER I) ;

The term variable is used in this manual to mean any of the following:

• A name declared as a variable

• The storage associated with such a name

• A reference to all or part of the storage, as in MONTHS(2)

344 VALUE Attribute

• Addressable Variable

It is required in some contexts, such as in argument lists of certain built-in
functions, that a variable be addressable. A variable is addressable if it has
the following properties:

1. It is not suitable for bit-string overlay defining; that is, it does not consist
entirely of unaligned bit data. (See "Defined Variable" for a definition of
string overlay defining.)

2. It is not an unconnected array. (See "Arrays of Structures.")

3. It is not declared with the VALUE attribute. (See "VALUE Attribute.")

These rules ensure that the variable can occupy contiguous storage beginning
on a byte boundary. (Note that constants are never addressable in PL/I.)

VARIABLE Attribute

The VARIABLE attribute indicates that the associated identifier is a varia
ble. VARIABLE is implied by all computational data type attributes and by
all noncomputational attributes except FILE and ENTRY.

If you specify the FILE or ENTRY attribute in a DECLARE statement with
out the VARIABLE attribute, the defined object is assumed to be a file or
entry constant.

The VARIABLE attribute is implied by the LABEL attribute. Label con
stants are declared only by use of the label identifier in the program; a label
constant cannot be defined in a DECLARE statement.

See "Entry Data," "File," and "Label," for descriptions of variables of these
data types.

• Restrictions

The VARIABLE attribute is not valid in a returns descriptor or in a parame
ter descriptor.

VARIABLE Option

The VARIABLE option specifies that an external procedure can be invoked
with argument lists of different lengths or that default arguments will not be
specified in the invocation of an external procedure. It is specified in the
declaration of an external entry as in the following example:

DECLARE SYS$FAO ENTRY (ANY> OPTIONS (VARIABLE) ;

This attribute is applicable only in the declaration of external procedures that
are not written in PL/I. For complete details on using OPTIONS (VARIA
BLE), see the VAX-11 PL/I User's Guide.

• Restrictions

The VARIABLE option is valid only in conjunction with the ENTRY attrib
ute.

VARIABLE Option 345

VARYING Attribute

The VARYING attribute indicates that a character-string variable does not
have a fixed length, but that its length changes according to its current value.
The format of the VARYING attribute is:

{
VARYING}
VAR

A length attribute must be specified in conjunction with VARYING, giving
the maximum length allowed for the variable. The current length of a value of
the variable is stored with the value, and the current length can be deter
mined at any time with the LENGTH built-in function.

For example:

DECLARE STRING CHARACTER<BO> VARYING;

This declaration indicates that the longest length the string can have is 80.
The storage allocated for varying-length strings is two bytes longer than the
maximum length declared. These first two bytes contain the current length of
the string.

Note that special rules apply to reading and writing record files into and from
variables that have the VARYING attribute. See the VAX-11 PL/I User's
Guide.

• Restrictions

The VARYING attribute directly conflicts with any data type attribute other
than CHARACTER.

VAXCONDITION Condition Name

The VAXCONDI'TION condition name can be specified in an ON, SIGNAL,
or REVERT statement. The V AXCONDITION condition name provides a
way to signal and handle operating-system or programmer-specific condition
values. The format of the VAX CONDITION condition name is:

VAXCONDITION (expression)

expression
An expression yielding a fixed binary value. The expression is evalu
ated when the ON statement is executed, not when the condition is
signaled.

The VAXCONDITION condition name is provided specifically for PL/I proce
dures that interact with VAX/VMS operating-system routines. For details on
using the V AXCONDITION condition name and the meanings of system- and
user-defined values you can specify, see the VAX-11 PL/I User's Guide.

VERIFY Built-In Function

The VERIFY built-in function compares a string with a test string and verifies
that all characters that appear in the string also appear in the test string. If
not, the VERIFY built-in function returns a fixed-point binary integer that

346 VARYING Attribute

indicates the position of the first character in the string that is not present in
the test string. If each character in the string is also in the test string, the
function returns the value zero.

The format of the function is:

VERIFY(string, test-string)

string
A character-string expression representing the string to verify.

test-string
A character-string expression containing the set of characters against
which the string is verified.

•Examples

STRING = I HOW MUCH Is 1 PLUS 2 I ;

ALPHABET= 'ABCDEFGHIJKLMNOPQRSTUVWXYZ ';
A = VERIFY<STRINGtALPHABET>;

In this example, the variable ALPHABET contains the 26 uppercase letters
plus the space character. The function returns a value of 13, indicating the
position of the first nonalphabetic and nonspace character in STRING. Since
the test string can also be a constant, you can find the first nonspace charac
ter in any string by writing:

A = VERIFY<STRINGt' ');

NEWS TR I NG = I ALL LETTERS I ;

A= VERIFYCNEWSTRINGtALPHABET>;

In this example, VERIFY returns a value of zero. All characters in the string
NEWSTRING are present in the string ALPHABET.

VERIFY Built-In Function 347

w
WHILE Option

The WHILE option may be specified in a DO statement to define a condition
that must be met for the following DO-group to execute. It has the format:

WHILE (expression)

expression
A bit-string expression of any length. If any bit in the expression is 1,
the expression is considered "true."

For example:

DO WHILE (A < B) ;

The subsequent DO-group is executed while the value of the expression A<B
is true.

For more information, see "DO Statement."

WRITE Statement

The WRITE statement adds a record to a file, either at the end of a file that
has the SEQUENTIAL and OUTPUT attributes, or in a specified key posi
tion in a file that has the KEYED and OUTPUT attributes or the KEYED
and UPDATE attributes. The format of the WRITE statement is:

WRITE FILE(file-reference) FROM (variable-reference)

[KEYFROM (expression)]

[OPTIONS (option, ...) J ;

file-reference
A reference to the file to which the record is to be written. If the file is
not currently open, the WRITE statement opens the file with the
implied attributes RECORD, OUTPUT, and SEQUENTIAL; these
attributes are merged with the attributes specified in the file's declara
tion. See also "Opening a File."

variable-reference
A reference to the variable containing data for the output record. The
variable must be addressable.

If the variable has the VARYING attribute and the file does not have
the attribute ENVIRONMENT(SCALARVARYING), the WRITE
statement writes only the current value of the varying string into the
specified record. In all other cases, the WRITE statement writes the
entire storage of the variable. If the contents of the variable do not fit
the specified record size, the WRITE statement outputs as much of the
variable as will fit and the ERROR condition is signaled.

348

KEYFROM (expression)
An option specifying th'at the record to be written is to be positioned in
the file according to the key specified by expression. The file must
have the KEYED attribute.

The nature of the key depends on the file's organization, as follows:

• If the file is a relative file or a sequential disk file with fixed-length
records, the key value is a fixed binary value indicating the relative
record n um her of the record to be written.

• If the file is an indexed sequential file, the key specifies the record's
primary key. PL/I inserts the key value specified into the correct key
field in the record and sets the key number to the primary index.

The value of the specified expression is converted to the data type of
the key. If no record with the specified key exists, or if the specified
key value cannot be converted to the data type of the key, the KEY
con di ti on is signaled.

OPTIONS (option, ...)
An option specifying one or more of the WRITE statement options
listed below, separated by commas.

FIXED_CONTROI.L_FROM (variable-reference)
RECORD_ID_ TO (variable-reference)

These options are described fully in the VAX-11 PL/I User's Guide.

• File Positioning

If the file has the UPDATE attribute, the current record is set to designate the
record just written, and the next record is set to designate the record following
the record just written. If there is no such record following the record just
written, the next record is set to end-of-file.

•Examples

The program TRUNC, below, reads a file with variable-length records into a
character-string with the VARYING attribute and creates a sequential output
file in which each record has a fixed length of 80 characters.

TRUNC: PROCEDURE;
DECLARE INREC CHARACTER<BO> VARYINGt

OUTREC CHARACTER< 80) ,
ENDED BIT< 1> STATIC INIT< '0'5) t

<INFILEtOUTFILE> FILE;

OPEN FILE <INFILE> RECORD INPUT
TITLE< 'RECFILE+DAT'>;

OPEN FILE <OUTFILE> RECORD OUTPUT
TITLE< 'TRUNCFILE+DAT'>
ENVIRONMENT<FIXED_LENGTH_RECORDSt

MAXIMLJM_RECORD_SIZE<BO>>;
(Continued on next page)

~ Statetnent 349

ON ENDFILE<INFILE> ENDED= '1'B;

READ FILE<INFILE> INTO <INREC);
DO WHILE <~ENDED>;

OUTREC = INREC;
WRITE FILE <OUTFILE> FROM <OUTREC>;
READ FILE (INFILE> INTO (INREC>;
END;

CLOSE FILE<INFILE>;
CLOSE FILE<OUTFILE>;
RETURN;
END;

The ENVIRONMENT attribute for the file OUTFILE specifies the record
format and length of each fixed-length record.

When records are written to a file with fixed-length records, the variable
specified in the FROM option must have the same length as the records in the
target output file. Otherwise, the ERROR condition is signaled. Thus, in this
example, each record read from the input file is copied into a fixed-length
character-string variable for output.

Each time this program is executed, it creates a new version of the file
TRUNCFILE.DAT.

The next example adds records to the existing relative file EMP _FILE. The
file is organized by employee numbers, and each record occupies the relative
record number in the file that corresponds to the employee number.

ADD_EMPLOYEE: PROCEDURE;

DECLARE 1 EMPLOYEEt
2 NAME t

3 LAST CHARC30) t

3 FIRST CHAR (20) t

3 MIDDLE_INIT CHAR< 1) t

2 DEPARTMENT CHAR (4) t

2 SALARY FIXED DECIMAL CGt2) t

EMP_FILE FILE;
DECLARE MORE_ INPUT BIT< 1) STATIC INIT< '1 'B) t

NUMBER FIXED DECIMAL (5t0);

OPEN FILE<EMP_FILE) DIRECT UPDATE;

DO WHILE <MORE_INPUT);
P U T S K I P L I S T (' E rtl P l o >' e e N u rt1 b e r ') ;
GET LIST <NUMBER>;

PUT SKIP LIST
('Nartie (Last t First t Middle Initial)');

GET LI ST
<EMPLOYEE+NAME+LASTtEMPLOYEE+NAME+FIRSTt

EMPLOYEE+NAME+MIDDLE_INIT>;

PUT SKIP LIST< 'DePartrtient ');
GET LIST <DEPARTMENT>;

PUT SKIP LIST('Startina salan ');
GET LIST<EMPLOYEE+SALARY);

350 WRITE Statement

WRITE FILE <EMP_FILE>
FROM <EMPLOYEE> KEYFROM<NUMBER>;

PUT SKIP LIST('More?');
GET LIST<MORE_INPUT>;
END;

CLOSE FILE<EMP_FILE>;
RETURN;
END;

In this example, the file is opened with the DIRECT and UPDATE attributes,
since records will be written only by referring to a key number. Within the
DO-group, the program prompts for data for each new record that will be
written to the file. After the data is input, the WRITE statement specifies the
KEYFROM option to specify the relative record number. The number itself is
not a part of the record, but will be used to retrieve the record when the file is
accessed for keyed input.

WRITE Statement 351

x
X Format Item

The X format item sets a stream file or character-string expression to a col
umn relative to the current position. It is the only control format item that
can be used with either the FILE or STRING option of GET EDIT and PUT
EDIT. The form of the X format item is:

w

X [{w)J

An integer that specifies a number of consecutive character positions
in the stream; w must not be negative. If w is zero, no operation is
performed. If w is omitted (permissible only on output), its value is
assumed to be one.

• Input with GET EDIT

On input, the next w columns after the current column are skipped.

• Output with PUT EDIT

On output, w spaces are inserted following the current column.

When the output stream is a file, and the end of the current line is reached,
the output of spaces continues on the next line until w spaces have been
output. The size of the current line is either the default value or the specific
value you have established for the file (see "LINESIZE Option"). If the file is
a print file, the ENDPAGE condition is signaled if the page size is reached; on
normal return from the ENDPAGE on-unit, output of spaces continues at the
top of the next page, until w spaces have been output.

If the output stream is a character-string variable, w spaces are written to the
variable. The ERROR condition is signaled if the maximum length of the
string is exceeded.

352

•Examples

XFOR: PROCEDURE OPTIONS<MAIN);

DECLARE INLINE CHARACTER<BO) VARYING;
DECLARE FIRSTWORD CHARACTER(80) VARYING;
DECLARE OUTFILE PRINT FILE;
DECLARE SPACE1 FIXED;

GET EDIT< INLINE> <A< 1000)) OPTIONS<PROMPT< 'Line>')>;

SPACE1 = INDE}-{(INLINE t' ');I* Position of first 1,.,1ordbrea~{ *I

FIRSTWORD = SUBSTR< INLINE t1 tSPACEl-1);

PUT STRING<FIRSTWORD> EDIT <FIRSTWORDt'-FIRST WORD TYPED')
<A t>(<2> tA);

PUT SKIP FILE<OUTFILE> LIST<FIRSTWORD>;

END)ff OR;

The GET EDIT statement in the-program XFOR inputs a complete line from
a user's terminal, after issuing the prompt 'Line>'. If the user responds as
follows:

Line>beautiful losers~

then the following output is written to OUTFILE.DAT:

beautiful -FIRST WORD TYPED

The X format item has correctly inserted two spaces between 'beautiful' and
'-FIRST WORD TYPED'.

XFOR2: PROCEDURE OPTIONS< MAIN>;

DECLARE INLINE CHARACTER<BO> VARYING;
DECLARE OUTFILE2 PRINT FILE;

GET EDIT< INLINE> ()-{(10) tA< 1000) >
OPTIONS<PROMPT< 'Line>'>);

PUT SKIP FILE<OUTFILE2> LIST<INLINE>;
END)ff0R2;

In the program XFOR2, the GET EDIT statement skips the first 10 charac
ters typed after the prompt and then inputs the remainder of the line. If the
user responds to the prompt as follows:

L i n e > A 5 C DE F G H I J K L MN 0 P Q RS T IJ l) lrJ / Y Z ~

then the following output is written to OUTFILE2.DAT:

K LMNO PQRSTIJl,lW}-(YZ

The first 10 letters (A-J) have been ignored on input.

X Format Item 353

z
ZERODIVIDE Condition Name

The ZERODIVIDE condition name can be specified in an ON, REVERT, or
SIGNAL statement to designate a divide-by-zero condition or ON-unit.

PL/I signals the ZERODIVIDE condition when the divisor in a division opera
tion has a value of zero. The value resulting from such an operation is
undefined.

• ON-Unit Completion

Control returns to the point of the interruption.

For more information, see "ON Conditions and ON-Units" and "ON
Statement."

354

Appendix A
Alphabetic Summary of Keywords

A summary of the PL/I keywords follows. This alphabetic summary does not include
the options for the ENVIRONMENT attribute nor the options for 1/0 statements,
since these keywords are not standard PL/I. The ENVIRONMENT options are listed
under the entry "ENVIRONMENT Attribute." Options for each I/O statement are
listed under the entry for the statement.

Keyword

A
ABS
ACOS
ADDR
ALIGNED
ALLOCATE
ANY
ANYCONDITION
AREA
ASIN
ATAN
ATAND
AT ANH
AUTOMATIC

B
Bl
B2
B3
B4
BASED
BEGIN
BINARY
BIT
BOOL
BUILTIN
BY
BYTE

Abbreviation Use

Format item
Built-in function
Built-in function
Built-in function
Data attribute

ALLOC Statement
Attribute
ON condition name
Data attribute
Built-in function
Built-in function
Built-in function
Built-in function

AUTO Attribute

Format item
Format item
Format item
Format item
Format item
Attribute
Statement

BIN Data attribute, built-in function
Data attribute, built-in function
Built-in function
Attribute
Option of DO statement
Built-in function

355

Keyword

CALL
CEIL
CHARACTER
CLOSE
COLLATE
COLUMN
COPY
cos
COSD
COSH

DATE
DECIMAL
DECLARE
DEFINED
DELETE
DESCRIPTOR
DIMENSION
DIRECT
DISPLAY
DIVIDE
DO

E
EDIT
ELSE
END
ENDFILE
ENDPAGE
ENTRY
ENVIRONMENT

ERROR
EXP
EXTEND
EXTERNAL

F
FILE

FINISH
FIXED
FIXED OVERFLOW
FLOAT
FLOOR
FLUSH
FORMAT
FREE
FROM

356 Appendix A

Abbreviation

CHAR

COL

DEC
DCL
DEF

DIM

EXT

Use

Statement
Built-in function
Data attribute, built-in functior~
Statement
Built-in function
Format item
Built-in function
Built-in function
Built-in function
Built-in function

Built-in function
Data attribute, built-in function
Statement
Attribute
Statement
Built-in function
Built-in function
File attribute
Built-in subroutine
Built-in function
Statement, option of GET and PUT

statements

Format item
Option of GET and PUT statements
Optional clause of IF statement
Statement
Condition name
Condition name
Statement, data attribute
Option of FILE attribute, OPEN and

CLOSE statements
Condition name
Built-in function
Built-in subroutine
Attribute

Format item
Data attribute, option of I/0

statements
Condition name
Data attribute, built-in function
Condition name
Data attribute, built-in function
Built-in function
Built-in subroutine
Statement
Statement
Option of WRITE and REWRITE

statements

Keyword

GET
GLOBALDEF
GLOBALREF
GOTO

HBOUND

IF
%INCLUDE
INDEX
INITIAL
INPUT
INTERNAL
INTO

KEY

KEYED
KEYFROM
KEYTO

LABEL
LBOUND
LENGTH
LINE

LINENO
LINE SIZE
LIST
LOG
LOGlO
LOG2

MAIN
MAX
MIN
MOD

NULL
NXTVOL

OFFSET
ON
ONARGSLIST
ONCODE
ONFILE
ONKEY
OPEN
OPTIONS

Abbreviation Use

Statement
Attribute
Attribute

GO TO Statement

Built-in function

Statement
Statement
Built-in function

INIT Attribute
File attribute

INT Attribute
Option of READ statement

Option of READ, WRITE, REWRITE, and
DELETE statements, Condition name

File attribute
Option of WRITE statement
Option of DELETE, READ, REWRITE,

and WRITE statements

Data attribute
Built-in function
Built-in function
Format item, Option of PUT

statement
Built-in function
Option of OPEN statement
Option of GET and PUT statements
Built-in function
Built-in function
Built-in function

Option of PROCEDURE and ENTRY
Built-in function
Built-in function
Built-in function

Built-in function
Built-in subroutine

Data attribute, built-in function
Statement
Built-in function
Built-in function
Built-in function
Built-in function
Statement
Option of DELETE, GET,

PROCEDURE, PUT, READ, REWRITE,
WRITE statements, ENTRY attribute

Appendix A 357

Keyword
OUTPUT
OVERFLOW
p
PAGE

PAGENO
PAGESIZE
PICTURE
POINTER
POSITION
PRINT
PROCEDURE
PUT

R
HANK
READ
HEADONLY
RECORD
RECURSIVE
REPEAT
%REPLACE

RETURN
RETURNS

REVERT

REWRITE
ROUND

SEQUENTIAL
SET
SIGN
SIGNAL
SIN
SIND
SINH
SKIP

SPACEBLOCK
SQRT
STATIC
STOP
STREAM
STRING

SUBS TR
SY SIN
SY SPRINT

358 Appendix A

Abbreviation Use

PIC
PTR

PROC

SEQ

File attribute
Condition name

Format item
Format item, option· of PUT

statement
Built-in function, pseudovariable
Option of OPEN statement
Data attribute
Data attribute, built-in function
Attribute
File attribute
Statement
Statement

Format item
Built-in function
Statement
Attribute
File attribute
Option of PROCEDURE and ENTRY
Option of DO statement
Source modification statement
Built-in subroutine
Statement
Attribute, Option of PROCEDURE

and ENTRY statements
Statement
Built-in subroutine
Statement
Built-in function

File attribute
Option of ALLOCATE and READ
Built-in function
Statement
Built-in function
Built-in function
Built-in function
Format item, Option of GET and PUT

statements
Built-in subroutine
Built-in function
Attribute
Statement
File attribute
Built-in function, pseudovariable,

option of GET and PUT statements
Built-in function, pseudovariable
Default input file
Default output file

Keyword

TAB
TAN
TAND
TANH
THEN
TIME
TITLE
TO
TRANSLATE
TRUNC

UNDEFINED FILE
UNDERFLOW

UN SPEC
UPDATE

VALID

VARIABLE

VARYING

VERIFY

WHILE
WRITE

x
ZERO DIVIDE

Abbreviation Use

VAR

Format item
Built-in function
Built-in function
Built-in function
Keyword of IF statement
Built-in function
Option of OPEN statement
Option of DO statement
Built-in function
Built-in function

Condition name
Condition name, option of

PROCEDURE and ENTRY
Built-in function, pseudovariable
File attribute

Built-in function
Attribute
Attribute, option of ENTHY

attribute
Data attribute
Condition name
Built-in function

Option of DO statement
Statement

Format item

Condition name

Appendix A 359

Appendix B
Compatibility with Standard PL/I, Subset G

This appendix describes the differences between the VAX-11 implementation
of PL/I and the definitiori of the PL/I General-Purpose Subset. The subset
(X3.74) is a subset of ANSI X3.53-1976.

This appendix has the following sections:

• Section B.1 provides an overview of the G Subset.

• Section B.2 lists the extensions made to the language to provide enhance
ments for PL/I programs executing in the V AX-11 VMS operating system
environment.

• Section B.3 lists features of full PL/I that were excluded from the G Subset
but that have been incorporated in the implementation of VAX-11 PL/I.

• Section B.4 lists the implementation-defined values that are used in
VAX-11 PL/I.

B.1 The G (General-Purpose) Subset
The G subset of PL/I was designed to be useful in scientific, commercial, and
systems programming, especially on small and medium-size computer sys
tems. Among the primary goals of the design of the subset were:

• To include features that were easy to learn and to use and to exclude
features that were difficult to learn or prone to error

• To provide a subset that would be easily portable from one computer system
to another

• To exclude features that were not often used and whose implementation
greatly increased the complexity of the run-time support required by the
compiler

The essential elements of the subset are described below. These descriptions
are extracted from the definition of the subset standard in the report prepared
by the ANSI Technical Committee X3Jl-PL/I.

B.1.1 Program Structure

The G Subset includes a complete character set, with comments, identifiers,
decimal arithmetic constants, and simple string constants.

Begin blocks and DO-groups are included in the subset. Each block or group
in the program must be terminated with an END statement.

360

B.1.2 Program Control

The following program control statements are included in the subset: CALL,
RETURN, IF, DO, GOTO, null, STOP, ON, REVERT, and SIGNAL.

The DO statement options supported are TO, BY, WHILE, and REPEAT.

An IF statement may contain unlabeled THEN and ELSE clauses.

An ON statement may specify a single condition. The condition names sup
ported are ERROR, ENDFILE, ENDPAGE, FIXEDOVERFLOW, KEY,
OVERFLOW, UNDEFINEDFILE, UNDERFLOW, and ZERODIVIDE.

B.1.3 Storage Control

The subset includes the assignment statement and the assignment of array
and structure variables whose dimensions and data types match. The subset
also permits aggregate promotion, that is, the assignment of a scalar expres
sion to every element or member of an aggregate variable.

In the subset, only static variables may be initialized.

The ALLOCATE statement with the SET option and the FREE statement
are included in the subset. -

B.1.4 Input/Output

The 1/0 statements are:

• OPEN and CLOSE

• READ, WRITE, DELETE, and REWRITE for record 1/0

• GET and PUT, with FILE, STRING, EDIT, LIST, PAGE, SKIP, and
LINE options for stream 1/0

The file attributes, specified in DECLARE or OPEN, are DIRECT,
ENVIRONMENT, INPUT, KEYED, OUTPUT, PRINT, RECORD,
SEQUENTIAL, STREAM, and UPDATE.

The FORMAT statement is included. The format items are E, F, P, A, B, X,
R, PAGE, SKIP, COLUMN, TAB, and LINE

B.1.5 Attributes and Pictures

The DECLARE statement is included in the subset. All names must be de
clared, either by means of a DECLARE statement or by means of a label
prefix.

The attributes supported are: ALIGNED, AUTOMATIC, BASED, BINARY,
BIT, BUILTIN, CHARACTER, DECIMAL, DEFINED, DIRECT, ENTRY,
ENVIRONMENT, EXTERNAL, FILE, FIXED, FLOAT, INITIAL, INPUT,
INTERNAL, KEYED, LABEL, OPTIONS, OUTPUT, PICTURE,
POINTER, PRINT, RECORD, RETURNS, SEQUENTIAL, STATIC,
STREAM, UPDATE, VARIABLE, and VARYING.

The picture characters included are CR, DB, S, V, Z, 9, -, +, $, and *. The
picture insertion characters (. , I B) are also included.

Appendix B 361

B.1.6 Built-In Functions and Pseudovariables

The built-in functions in the subset are: ABS, ACOS, ADDR, ASIN, ATAN,
ATAND, ATANH, BINARY, BIT, BOOL, CEIL, CHARACTER, COLLATE,
COPY, COS, COSD, COSH, DATE, DECIMAL, DIMENSION, DIVIDE,
EXP, FIXED, FLOAT, FLOOR, HBOUND, INDEX, LBOUND, LENGTH,
LINENO, LOG, LOG2, LOGlO, MAX, MIN, MOD, NULL, ONCODE,
ONFILE, ONKEY, PAGENO, ROUND, SIGN, SIN, SIND, SINH, SQRT,
STRING, SUBSTR, TAN, TAND, TANH, TIME, TRANSLATE, TRUNC,
UNSPEC, VALID, and VERIFY.

The pseudovariables are PAGENO, STRING, SUBSTR, and UNSPEC.

B.1. 7 Expressions

The subset supports all infix and prefix operators, the locator qualifier, paren
thesized expressions, subscripts, and function references. Implicit conversion
from one data type to another is restricted to those contexts in which the
conversion is likely to produce the desired results.

B.2 VAX-11 Extensions to the G Subset Standard

B.2.1 Procedure-Calling and Condition-Handling Extensions

The following extensions to PL/I were made to allow VAX-11 PL/I procedures
to call procedures written in any other programming language that also sup
ports the VAX-11 calling standard.

1. The attributes ANY and VALUE describe how data is to be passed to a
called procedure.

2. The VARIABLE option for the ENTRY attribute permits a PL/I proce
dure to call a non-PL/I procedure with an argument list of variable length.
It also permits a procedure to omit arguments in an argument list.

3. The DESCRIPTOR built-in function may be used to pass an argument by
descriptor to a non-PL/I procedure.

The following new attributes provide storage classes for PL/I variables. These
attributes permit PL/I programs to take advantage of features of the VAX-11
linker and to combine PL/I procedures with other procedures that use these
storage classes.

1. The GLOBALDEF and GLOBALREF attributes let you define and access
external global variables and optionally place all external global defini
tions in the same program section.

2. The READONLY attribute can be applied to a static computational vari
able whose value does not change.

3. The VALUE attribute defines a variable that is, in effect, a constant
whose value is supplied by the linker.

The following extensions to ON condition handling provide support for condi
tion handling in the V AXNMS environment:

362 Appendix B

1. The ON statement supports the ANYCONDITION keyword. The
ON-unit established by this keyword is executed when any condition oc
curs for which no explicit ON-unit exists.

2. The ON statement supports ,programmer-named conditions with the
V AXCONDITION keyword.

3. The RESIGNAL built-in subroutine permits an ON-unit to keep a signal
active.

4. The ONARGSLIST built-in function provides an ON-unit with access to
the mechanism and signal arguments of an exception condition.

B.2.2 Support of VAX-11 Record Management Services

The options of the ENVIRONMENT attribute provide support for many of
the features and control values of the VAX-11 Record Management Services
(RMS). Additional extensions have been made to the PL/I language to aug
ment this support, as described below.

1. The OPTIONS option is supported on the GET, PUT, READ, WRITE,
REWRITE, and DELETE statements.

2. The following built-in subroutines provide file handling and control
functions: DISPLAY, EXTEND, FLUSH, NXTVOL, REWIND, and
SPACEBLOCK.

B.2.3 Miscellaneous Extensions

The RANK and BYTE built-in functions are supported.

B.3 Full PL/I Features Supported
The items listed below are features that are explicitly excluded from the
subset standard but that have been implemented in VAX-11 PL/I. These
features all exist in full PL/I.

1. The ENTRY statement is supported.

2. The ENVIRONMENT option is supported on the CLOSE statement.

3. The picture characters Y, T, I, and R are supported, and pictures may
include iteration factors.

4. RETURNS (CHARACTER(*)) is valid.

5. The FINISH condition is supported.

6. A REWRITE statement need not specify the FROM option if the most
recent I/O operation on the file was a READ statement with the SET
option.

7. The AREA and OFFSET attributes are supported. Allocation within an
area must be controlled by a user-written procedure.

8. The OFFSET and POINTER built-in functions are supported.

9. The POSITION attribute is supported.

Appendix B 363

10. Automatic variables may be initialized. The INITIAL attribute may con
tain scalar expressions and asterisks with automatic variables.

11. The SET option is optional on the ALLOCATE statement if the allocated
variable was declared with BASED(pointer-reference).

12. The character pair/* may be embedded in a comment.

13. It is permissible to use, as the source or target of a file I/O statement, a
function reference that performs VO on the same file and then returns to
the original statement.

14. The expression in a WHILE clause or in an IF statement may be a bit
string of any length. When evaluated, the expression results in a true
value if any bit of the string expression is a one and in a false value if all
bits in the string expression are zeros.

15. The control variable and the expressions in the TO, BY, and REPEAT
options of the DO statement are not restricted to integers and pointers.

B.4 Implementation-Defined Values and Features

1. V AX-11 PL/I supports the full 256-character ASCII character set.

2. The default precisions for arithmetic data are:

FIXED BINARY (31)
FIXED DECIMAL (10)
FLOAT BINARY (24)
FLOAT DECIMAL (7)

3. The maximum record size for SEQUENTIAL files is 32767 bytes minus
the length of any fixed-length control area.

4. The maximum key size is 255 bytes for character keys.

5. The default value for the LINESIZE option is as follows:

• If the output is to a physical record-oriented device, such as a line
printer or terminal, the default line size is the width of the device.

• If the output is to a print file, the default line size is 132.

• If the output is to a nonrecord device (magnetic tape), the default line
size is 510.

6. The default value for the PAGESIZE option is as follows:

• If the logical name SYS$LP _LINES is defined, the default page size is
the numeric value of SYS$LP _LINES - 6.

• If SYS$LP _LINES is not defined, or if its value is less than 30 or
greater than 90, or if its value is not numeric, the default page size is 60.

7. The values for TAB positions are columns beginning with column 1 and
every eight columns thereafter: 1, 9, 17, 25, ... 8*i+l, where i is
(line size)/8 .

. 8. The maximum length allowed for a file title is 128 characters.

9. The maximum number of digits in editing fixed-point data is 34.

364 Appendix B

10. The maximum numbers of digits for each combination of base and scale
are:

FIXED BINARY - 31
FIXED DECIMAL - 31
FLOAT BINARY - 113
FLOAT DECIMAL - 34

If the compiler option /G_FLOAT· is not used, the maximum precisions
are 15 and 53 for floating-point decimal and binary, respectively.

11. The default precision for integer values is 31.

12. The maximum number of arguments that can be passed to an entry point
is 253.

Appendix B 365

Index

A
A format item, 154

definition, 1
ABS built-in function, 2
Absolute value, compute, 2
Access mode, 137
ACOS built-in function, 3
Activation of block, 51
Addition, 3
ADDR built-in function, 4

using, 41
Addressable variable, 345
Aggregate

array, 10
structure, 323

ALIGNED attribute, 4
Alignment

of bit string, 4, 47
of character string, 4, 65

ALLOCATE statement, 4
using, 37

Alternate key, 141
AND operator, 5
ANY attribute, 6
ANYCONDITION condition, 6
APPEND ENVIRONMENT option, 123
Area, 7
AREA attribute, 8
Argument, 236

of built-in function, 55
conversion, 240
dummy argument, 239
for exception condition, 220

maximum number of arguments, 236
null, 54, 164
relationship to parameter list, 235
variable length, 345

list, 236
matching with parameter, 240
passing, 238

array, 17
by descriptor, 100
structure, 326
to subroutine or function, 260
by value, 344

relationship to parameter, 234

367

Arithmetic data
convert to bit string, 77
convert to character string, 79
convert from other types, 73
relational expression, 290
specify precision, 255

Arithmetic function, summary, 56
Arithmetic operation

addition, 3
determine sign of a number, 300
division, 102-103
exponentiation, 125
multiplication, 210
round to nearest digit, 298
subtraction, 328
ZERODIVIDE signaled, 354

Arithmetic operator, 9, 227
Array, 10

assignment statement, 15
concatenate with STRING, 320
connected, 19
declaration, 10, 95
dimension

determine extent, 101
determine lower bound, 199
determine upper bound, 175
rules for specifying, 12

handling, summary of functions, 59
order of assignment, 16
passing as argument, 17
specify_ dimension, 101
of structures, 18
subscript, 12
unconnected, 19

ASCII character, obtain integer value,
278

ASCII character set, 20
obtain string, 67

ASIN built-in function, 22
Assignment statement, 22

specify area variable, 7
specify array variable, 15
structure, 326

Asterisk (*) picture character, 245
ATAN built-in function, 24
ATAND built-in function, 24
ATANH built-in function, 25

Attribute, 25
array variable, 11
for entry points, 27
factor in declaration, 94
file description, 27, 136-137

specify on OPEN, 221
length, 199
match parameter and argument, 240
specify in DECLARE statement, 92
structure variable, 324

AUTOMATIC attribute, 30
Automatic storage, 308

B
B format item, 154

definition, 31
B picture character, 248
BASED attribute, 33
Based variable, 33-34, 309

data type matching, 35
free storage, 162
locator qualifier, 203
matching

left-to-right equivalence, 36
overlay defining, 36

nonmatching reference, 37
obtain storage, 4
offset within area, 213
use READ statement, 39

BATCH ENVIRONMENT option, 67, 123
Begin block, 42-43, 50

effect of RETURN statement, 293
in ON-unit, 217

BEGIN statement, 43
BINARY attribute, 43
BINARY built-in function, 44
Binary data

division of fixed-point, 103
fixed-point, 144
floating-point, 149

BIT attribute, 44
BIT built-in function, 45
Bit string, 45

alignment, 47
concatenation, 70
constant, 46
convert to arithmetic, 7 4
convert to character string, 82
convert from other types, 76
as integer, 48
internal representation, 48
locate substring, 178

368 Index

Bit .string, (Cont.),
operator, 205, 227
overlay defining, 99
in relational expressions, 291
specify length, 129
variables, 46

Blank, 302
Block, 50

activation, 51
parent, 52
relationships among, 51

begin block, 42-43, 50
containment, 50
dynamic descendent, 52
nesting, 50
procedure block, 50, 263
termination, 52, 115

BLOCK_BOUNDARY_FORMAT
ENVIRONMENT option, 123

BLOCK_IO ENVIRONMENT option, 123
BLOCK_SIZE ENVIRONMENT option, 123
BOOL built-in function, 53
Boolean operation, define with BOOL, 53
Boolean. test, 177
Boolean value, 45
Bound of array dimension

determine lower, 199
determine upper, 175
rules, 12
specify, 10

BUCKET_SIZE ENVIRONMENT option,
123

Built-in function, 54
condition in, 55
conversion, 129
define with BUILTIN attribute, 54
result type, 55

Built-in subroutine, RESIGNAL, 219
BUIL TIN attribute, 54
BYTE built-in function, 60

c
CALL statement, 61
Callin.g non-PL/I procedure, 6, 344-345, 362
CARRIAGE__RETURN_FORMAT

ENVIRONMENT option, 123
CEIL built-in function, 62
Character

picture, 243, 250
substitute with TRANSLATE, 337
used for punctuation in PL/I, 266

CHARACTER attribute, 62

CHARACTER built-in function, 63
Character set, ASCII, 20

obtain string, 67
Character string

alignment, 65
compare with VERIFY, 346
concatenation, 70
·constant, 64
continue on more than one line, 267
convert to arithmetic, 75
convert to bit string, 78
convert from other types, 79
data, 63
declare, 62
determine length, 199
initializing, 65
internal representation, 66
locate substring, 178
overlay defining, 99
in relational expression, 291
specify length, 129
variable, 64
variable-length, 346

CLOSE statement, 66
COLLATE built-in function, 67
COLUMN format item, 154

definition, 67
Comma (,) picture character, 248
Comment, 69
Comparison operator, 227, 267
Compatibility with standard PL/I, 360
Compiler message, 101
Completion, ON-unit, 219
Computational data, summary of

attributes, 26
see also Bit string; Character

string; Fixed-point data;
Floating-point data;
Picture

Concatenation
COPY built-in function, 83
operator, 70, 227, 267

Condition
in built-in function, 55
decimal overflow, 14 7
ENDFILE, 116
ENDPAGE,117
FIXEDOVERFLOW, 147
handle, 124
integer overflow, 147
KEY, 191
OVERFLOW, 230
resignal, 292
signal, 300

Condition, (Cont.),
UNDEFINEDFILE, 339
UNDERFLOW, 340
VAXCONDITION, 346
ZEROJ?IVIDE, 354

Condition handling
function, summary, 58
ON statement, 219
See also ON condition; ON-unit

Connected array, 19
specify in assignment statement, 15

Constant, 70
in arflument list, 239
bit string, 46
character string, 64
entry, 119
file, 135
floating-point, 149
integer, 182
label, 195
label array, 195

Containment, 50, 299
CONTIGUOUS ENVIRONMENT option, 123
CONTIGUOUS_BEST_TRY

ENVIRONMENT option, 123
Controlled DO statement, 107
Conversion, 71

of argument, 240
arithmetic to arithmetic, 73
arithmetic to bit string, 77
arithmetic to character string, 79
ASCII to integer, 278
to binary, 44
to bit string, 45, 76
bit string to arithmetic, 74
bit string to character string, 82
to character string, 63, 79
character string to arithmetic, 75
character string to bit string, 78
to decimal, 91
to fixed point, 143
to floating point, 148
integer to ASCII, 60
offset to pointer, 82
of operands, 127
to picture, 82
pictured to arithmetic, 7 4
pictured to bit string, 78
pictured to character string, 79
pointer to offset, 82
summary of functions, 58

COPY built-in function, 83
COS built-in function, 83
COSD built-in function, 84

Index 369

COSH built-in function, 84
CREATION_DATE ENVIRONMENT

option, 123
CURRENT_pOSITION ENVIRONMENT

option, 123
Current record, 285

D

Data
conversion, 71
internal representation, 183

Data type, 85
bit string, 45
character string, 63
computational, 85
entry, 119
file, 134
fixed-point binary, 144
fixed-point decimal, 145
identical, 89
noncomputational, 86

in relational expression, 291
picture, 240
pointer, 253

DATE built-in function, 90
Day of month, obtain current, 90
DECIMAL attribute, 90
DECIMAL built-in function, 91
Decimal data

declare; 90
fixed-point, 145
floating overflow, 230
floating underflow, 340
floating-point, 149

Decimal place, in picture, 244
Declaration, 86, 92

array, 10, 95
of more than one name, 94
simple, 93
structure, 96, 323
of variables with same attributes, 94

DECLARE statement, 92
array declaration, 10

DEFAULT_FILE_NAME ENVIRONMENT
option, 123, 225

D~fault PL/I ON-unit, 216
DEFERRED_ WRITE ENVIRONMENT

option, 123
DEFINED attribute, 96
Defined variable, 97, 310

specify position in base, 255

370 Index

Defining, string overlay, 99
DELETE ENVIRONMENT

option, 67, 123
Delete record, 99
DELETE statement, 99, 134
Delimiters, 266
Derived type, 127
Descendent, dynamic, 52, 216
DESCRIPTOR built-in function, 100
Diagnostic message, 101
Dimension

array of structures, rules, 19
attribute, 101
rules for specifying, 12

DIMENSION built-in function, 101
DIRECT attribute, 102, 137, 222
DIVIDE built-in function, 102
Division, 103

control precision, 102
of fixed-point binary, 103
ZERODIVIDE condition, 354

DO-group, 104
nesting, 104
termination, 115

DO statement, 104
control~ed DO, 107
DO REPEAT, 109

example, 203
DO WHILE, 106
simple, 105

Documentation, program, 69
Dollar ($) picture character, 246
Double-precision floating point, range of

precision, 151
Drifting picture character, 246
Dummy argument, 239
Dynamic descendent of block, 52, 216

E format item, 154
definition, 112

EDIT option

E

GET statement, 166
PUT statement, 269

Element, array, 95
Empty argument list, 164
END statement, 115

terminate subroutine or function,
260

ENDF~E condition, 116
signaled, 280

ENDPAGE condition, 117
signaled, 234

Entry
constant, 119
data, 119

attributes, 27
internal representation, 121
in relational expressions, 291
VARIABLE attribute, 345

point
alternate, 121
ENTRY attribute, 118
multiple, 262
specify attributes of return value, 293

value, 120
variable, 120

ENTRY attribute, 118
ENTRY statement, 121
ENVIRONMENT attribute, 122, 139, 222

CLOSE options, 67
Error

arithmetic operation, divide by zero, 354
file, handle opening error, 339
handle, 124
handle VAX-specific conditions, 346

ERROR condition, 125
determine error status value, 220
signaled, 279, 348
signaled by default ON-unit, 216

Error handling
of file-related error, 221
ON condition, 214
ONCODE built-in function, 220

Error message, 101
Evaluation

of built-in function, 55
of expression, 127

Exclusive OR, 53
EXP built-in function, 125
EXPIRATION-1)ATE ENVIRONMENT

option, 123
Exponentiation, 125
Expression, 126

area, 7
in argument list, 239
bit-string data, 291
character-string data, 291
conversion of operands, 127
converted precision, 127 -128
derived type, 127
entry data, 291
evaluation, 127
file data, 291
label data, 291

Expression, (Cont.),
logical, 205
noncomputational data, 291
offset variable in, 213, 291
pointer variable in, 253, 291
precedence of operations, 227
relational, 290
restricted integer, 182

EXTENSION_SIZE ENVIRONMENT
option, 123

Extensions to standard PL/I, 362
Extent, 129

array, 12, 95
determine, 101

EXTERNAL attribute, 130
External procedure, 130, 258
External variable, 131

F format item, 154
definition, 132

F

FAST-1)ELETE option, DELETE
statement, 100

Field, 134
File, 134

access mode, ~37
attribute, 136-137, 222

DIRECT, 102
INPUT, 180
KEYED, 192
merged at open, 223
OUTPUT, 229
PRINT, 256
RECORD, 283
SEQUENTIAL, 300
STREAM, 311
UPDATE, 342

closing, 66
constant, 135
data

in relational expression, 291
VARIABLE attribute, 345

delete record, 99
description attributes, 27
determine current page number, 233
indexed sequential, 141
internal representation, 136
key error, 191
OPEN statement, 221
opening, 223

error condition, 339
organization, 139

Index 371

File, (Cont.),
print file, 257
read, 278
record, 283
reference, 139
relative, 140
sequential, 140, 300
source, %INCLUDE text, 178
specify line size, 201
specify page size, 234
stream, 311
update, 342
update record, 295
variable, 135
write, 348

FILE attribute, 135
FILE_ID ENVIRONMENT

option, 123
FILE_ID_TO ENVIRONMENT

option, 123
FILE_SIZE ENVIRONMENT

option, 123
File specification

define, 139
for error, 221
specify in OPEN, 336

FINISH condition, 142
FIXED attribute, 142
FIXED built-in function, 143
FIXED_CONTROL option, READ

statement, 280
FIXED_CONTROL_FROM option

REWRITE statement, 296
WRITE statement, 349

FIXED_CONTROL_SIZE ENVIRONMENT
option, 123

FIXED_CONTROL_SIZE_ TO
ENVIRONMENT option, 123

Fixed-length character string, 64
FIXED_LENGTH_RECORDS

ENVIRONMENT option, 123
Fixed-point data

binary, 144
division, ~03
internal representation, 145

decimal, 145
constant, 146
internal representation, 147
range of precision, 146

declaring, 142
overflow con di ti on, 14 7

FIXEDOVERFLOW condition, 147
signaled, 144, 182

FLOAT attribute, 148

372 Index

FLOAT built-in function, 148
Floating-point data, 149

constant, 149
declare, 148
default precision, 151
internal representation, 151
OVERFLOW condition, 230
UNDERFLOW condition, 340

FLOOR built-in function, 152
Format item, 153

data, 155
iteration factor, 156
list, 156, 162
repetition of, 156
summary, 154

Format of source program, 265
Format-specification list, 156
FORMAT statement, 162

label restriction, 195
FREE statement, 162
FROM option

REWRITE statement, 296
WRITE statement, 348

Function, 163, 257
built-in, 54
internal and external, 258
invoke with no arguments, 164
reference, 164
RETURN statement, 293
specify attributes of return value, 293
terminate, 260
options, 271, 274

G
G-floating format, range of precision,

151
GET statement, 134, 165

execution of, 312
forms, 165
GET EDIT, 166
GET LIST, 168
GET SKIP, 171
options, 167, 169

Global symbol, 172
GLOBALDEF attribute, 131, 172
GLOBALREF attribute, 131, 172
GOTO statement, 173

nonlocal GOTO, 173
terminate subroutine or function, 260

Group, termination, 115
GROUP _PROTECTION ENVIRONMENT

option, 123

H
H-floating format, range of precision, 151
HBOUND built-in function, 175

I
IDENT option, 176

PROCEDURE statement, 264
Identical data types, 89
Identifier, 176
IF statement, 177
IGNORE_LINE_MARKS ENVIRONMENT

option, 123
Immediate containment, 50
Implementation-defined values, 364
%INCLUDE statement, 178
INDEX built-in function, 178
Index numbe.r, 141
INDEx__NUMBER ENVIRONMENT

option, 123
INDEx__NUMBER option, 141

DELETE statement, 100
READ statement, 280
REWRITE statement, 296

INDEXED ENVIRONMENT option, 123
Indexed sequential file, 140-141

key, error handling, 191
KEYED attribute, 192
ONKEY built-in function, 221

Infix operator, 226
INITIAL attribute, 179

apply to array, 14
INITIAL_FILL ENVIRONMENT option, 123
Initialize

array, 14
structure, 326

Input
default, 329
READ statement, 278
record, 283
stream, 312

GET statement, 165
INPUT attribute, 137, 180, 222
Input/output

area, 7
format list, 162
general discussion, 181
record file, 283
statement

DELETE, 99
GET, 165
PUT, 268

Input/output, (Cont.),
READ, 278
REWRITE, 295
WRITE, 348

stream file, 311
terminal, 332

Insertion picture character, 248
Integer, 181

overflow condition, 147
restricted expression, 182

INTERNAL attribute, 183
Internal procedure, 183, 258
Internal representation

change with UNSPEC, 342
obtain with UNSPEC, 341

Internal variable, 189
Interrupt, handle with ON statement, 219
Iteration factor, 190

INITIAL attribute, 180
initialize array, 14
picture, 244
with format item, 156

Key, 191
alternate, 141

K

indexed sequential file, 141
primary, 141
relative file, 140

KEY condition, 191
determine key that caused, 221
signaled, 99, 279, 296, 349

KEY option, 140
DELETE statement, 99
READ statement, 279
REWRITE statement, 296

KEYED attribute, 137, 192, 222
KEYFROM option, 140

WRITE statement, 349
KEYTO option, READ statement, 279
Keyword, 194

alphabetic summary, 355

Label, 195
array constant, 195
constant, 195
data

L

in relational expression, 291
VARIABLE attribute, 345

Index 373

Label, (Cont.),
restrictions, 198
subscripted, 195
value, 196

operations, 197
variable, 197

declare, 198
internal representation, 198

LABEL attribute, 198
LBOUND built-in function, 199
Left-to-right equivalence, match based

variables by, 36
Length attribute, 199
LENGTH built-in function, 199
Length of string, determine, 199
Level number, 323
Line-end character, 267
LINE format item, 154

definition, 199
Line number of file, determine, 200
LINE option, PUT statement, 272
Line size, 201
LINENO built-in function, 200
LINESIZE option, 201, 222
List of declarations, 94
LIST option

GET statement, 168
PUT statement, 272

List processing, 202
Locate variable in memory, 4
Locator qualifier, 34, 38, 203
LOG built-in function, 204
LOGlO built-in function, 204
LOG2 built-in function, 205
Logarithm

compute base 10, 204
compute base 2, 205
compute natural, 204

Logical expression, 205
evaluation, 206

Logical operator, 205, 227, 267
Lowercase and uppercase letters in

identifier, 176

M
MAIN option, 207

PROCEDURE statement, 264
Major structure, 323

restriction on INITIAL, 326
MATCH_GREATER option

READ statement, 280
REWRITE statement, 296

374 Index

MATCH_GREATER_EQUAL option
READ statement, 280
REWRITE statement, 296

Matching based variable references, 35
Matching parameter and argument, 240
Mathematical function

evaluation of, 55
summary, 57

MAX built-in function, 207
MAXIMUM_RECORD_NUMBER

ENVIRONMENT option, 123, 141
MAXIMUM_RECORD_SIZE

ENVIRONMENT option, 123
Memory, see Storage
Merging file attributes, 136
Message, diagnostic, 101
MIN built-in function, 208
Minor structure, 323
Minus (-) picture character, 246
MOD built-in function, 208
Month, obtain current, 90
MULTIBLOCK_COUNT ENVIRONMENT

option, 123
MULTIBUFFER-COUNT ENVIRONMENT

option, 123
Multiple entry point, 262
Multiplication, 210

Name
declaration, 92

N

rules for identifiers, 176
scope, 299

Nesting
blocks, 50
DO-group, 104
IF statement, 177
%INCLUDE statement, 178

Next record, 285
Nine (9) picture character, 245
Noncomputational data, see

Entry data; File data; Label data;
Offset data; Pointer data

Nonlocal GOTO, 173, 260
Nonmatching based variable reference, 37
NO_SHARE ENVIRONMENT option, 124
NOT operator, 211
Null argument list, 164
NULL built-in function, 211
Null statement, 212

in ON-unit, 217

0
OFFSET

attribute, 213
built-in function, 214

Offset, 213
convert to pointer, 82, 254
data, in relational expressions, 291
process linked list, 203
specify in locator qualifier, 203

ON condition, 214
ANYCONDITION, 6
ENDFILE, 116
ENDPAGE,117
ERROR, 125
FINISH, 142
FIXEDOVERFLOW, 147
KEY, 191
OVERFLOW, 230
UNDEFINEDFILE, 339
UNDERFLOW, 340
VAXCONDITION, 346
ZERODIVIDE, 354

ON statement, 219
ON-unit

argument list for exception, 220
completion, 219
default PL/I, 216
handle any condition, 6
invalid statements in, 217
restore default handling, 295
scope, 216

ONARGSLIST built-in function, 220
ONCODE built-in function, 192, 220, 339
ONFILE built-in function, 116-117, 192, 221,

339
ONKEY built-in function, 192, 221
OPEN statement, 136, 221
Opening a file, 223

file positioning, 226
Operand conversion, 127
Operation

addition, 3
arithmetic, 9
bit-string, 205
Boolean, define, 53
division, 103
exponentiation, 125
logical

AND, 5
NOT, 211
OR, 228

multiplication, 210
subtraction, 328

Operator, 226
arithmetic, 9
comparison, see Relational
concatenation, 70
locator qualifier, 203
logical, 205
precedence, 227
relational, 290

OPTIONS option
DELETE statement, 100
ENTRY attribute, 345
GET statement, 167, 169
PROCEDURE statement, 264
PUT statement, 271
READ statement, 280
REWRITE statement, 296
WRITE statement, 349

OPTIONS(V ARIABLE) option, 239
OR, exclusive, 53
OR operator, 228
Order of array assignment, 16
Organization (file), see File
Organization (program), 264
Output

default, 329
to line printer, 257
PUT statement, 268
record, 283
REWRITE statement, 295
stream, 314
to terminal, 257
WRITE statement, 348

OUTPUT attribute, 137, 222, 229
Overflow

fixed-point data, 147
floating-point data, 230

OVERFLOW condition, 230
Overlay defining

match based variables by, 36
POSITION attribute, 255
rules for, 99

OWNER_GROUP ENVIRONMENT
option, 124

OWNER_MEMBERENVIRONMENT
option, 124

OWNER_PROTECTION ENVIRONMENT
option, 124

P format item, 155
definition, 231
example, 271

p

Index 375

Padding
bit string, 77
character string, 79

Page, handle end-of-page condition, 117
PAGE format item, 155

definition, 233
Page number, current, 233

see also Print file
PAGE option, PUT statement, 275
Page size, 234
PAGENO built-in function, 233
PAGENO pseudovariable, 233
P AGESIZE option, 222, 234
Parameter, 234

attribute, 234
list

relationship to argument list, 235
specify in PROCEDURE statement, 263

matching with argument, 240
maximum number allowed, 237
relationship to argument, 234
storage for, 310
structure, 238, 326

Parent activation, 52
Parentheses, enclose procedure argument, 240
Passing arguments to PL/I procedure, 239
Period (.) picture character, 248
Picture, 240

asterisk (*) character, 245
B character, 248
character, 243
comma (,)character, 248
convert to arithmetic,·· 7 4
convert to bit string, 78
convert from other types, 82
credit (CR) character, 249
debit (DB) character, 249
dollar ($) character, 246
drifting character, 246
editing by, 242
encoded-sign character, 245
example, 271
extracting value from, 243
format item, 231
I character, 245
input with READ, 343
insertion character, 248
iteration factor in, 244
minus (-) character, 246
nine (9) character, 245
period (.) character, 248
plus (+) character, 246
R character, 245
S character, 246

376 Index

Picture, (Cont.),
slash (/) chB:racter, 248
specification, summary of characters, 250
T character, 245
V character, 244
validate, 343
Y character, 245
Z character, 245

PICTURE attribute, 249
PL/I standard

compatibility with, 360
extensions to, 362

Plus (+) picture character, 246
Pointer

convert to offset, 82, 214
data, 253

internal representation, 254
in relational expression, 291

set value
ADDR built-in function, 4
ALLOCATE statement, 4
SET option of READ, 279

valid value, 34
variable, 254

set to null value, 211
POINTER attribute, 254
POINTER built-in function, 254
POSITION· attribute, 255
Position (file)

following DELETE, 100
following READ, 280
following REWRITE, 296
following WRITE, 349
record file, 285
stream input/output, 316

Position (string), stream input/output, 318
Powers, 125
Precedence of operations, 227
Precision

attribute, 255
fixed-point decimal, 146
for floating-point data, 151

Prefix operator, 226
Primary key, 141
PRINT attribute, 137, 222, 256
Print file, 257

declare, 256
handle end-of-page condition, 117
output, 257

PRINTER-FORMAT ENVIRONMENT
option, 124

Priority of operations, 227
Procedure, 257

block, 50, 263

Procedure, (Cont.),
declaration, 263
designate main, 207
external, 130, 258
IDENT option, 176, 264
internal, 183, 258
invoke by CALL statement, 61
parameter, 234
recursion, 262
return from, 293
terminate, 260

END statement, 115
termination of execution, STOP statement,

308
PROCEDURE statement, 263

label restriction, 195
Program structure, 264
Pseudovariable, 265

PAGENO, 233
STRING, 322
SUBSTR, 327
UNSPEC, 342

Punctuation marks, 266
PUT statement, 134, 268

execution of, 314
forms, 268
options, 271, 27 4
PUT EDIT, 269
PUT LINE, 272
PUT LIST, 272
PUT PAGE, 275
PUT SKIP, 276
PUT STRING example, 353

Q
Qualifier, locator, 203
Qualifying reference for based variable, 34
Queue processing, 202

R format item, 155
definition, 277

R

RANK built-in function, 278
READ_AHEAD ENVIRONMENT option,

124
READ_CHECK ENVIRONMENT option,

124
READ statement, 134, 278

with pictured data, 343
SET option, using, 39

READO NL Y attribute, 282
Recognition of names, see Scope
Record

delete, 99
file, 139, 283

delete record, 99
read, 278
READ with SET option, 39
update, 295
write record, 348

input/output, 283
read, 278
rewrite, 295
write, 348

RECORD attribute, 137, 222, 283
RECORD__ID option, DELETE statement,

100
RECORD__ID_ACCESS ENVIRONMENT

option, 124
RECORD__ID_FROM option

READ statement, 280
REWRITE statement, 296

RECORD__ID_ TO option
READ statement, 280
REWRITE statement, 296
WRITE statement, 349

Record Management Services (RMS),
extensions to standard, 363

RECURSIVE option, PROCEDURE
statement, 264

Recursive procedure, 262
Reference

to based variable, 34, 203
interpretation of, 286

Relational operator, 227, 267, 290
Relative file, 140

ONKEY built-in function, 221
Repetition of format item, 156
%REPLACE statement, 292
RESIGNAL built-in subroutine, 219, 292
Restricted integer expression, 182
RETRIEVAL_POINTERS ENVIRONMENT

option, 124
RETURN statement, 293

terminate procedure, 260
Return value, 293
RETURNS

attribute, 293
with ENTRY attribute, 119

option, 293
ENTRY statement, 122
PROCEDURE statement, 264

Returns descriptor, 294
REVERT statement, 295

Index 377

REWIND_ON_CLOSE ENVIRONMENT
option, 67, 124

REWIND_ON_OPEN ENVIRONMENT
option, 124

REWRITE statement, 39, 134, 295
RMS, extensions to the standard, 363
ROUND built-in function, 298
Row-major order, 16

s
S picture character, 246
SCALARV ARYING ENVIRONMENT option,

124, 279, 296, 348
Scale factor, 255
Scope

attributes, 26
internal attribute, 183
of name, 299
of ON-unit, 218

Semicolon, use as null statement, 212
SEQUENTIAL attribute, 137, 222, 300
Sequential file, 139-140, 300

fixed-length records, 140
SET option

ALLOCATE statement, 4
example, 37

READ statement, 279
example, 39

SHARED__READ ENVIRONMENT option,
• 124
SHARED_WRITE ENVIRONMENT option,

124
Sharing, storage, 310
SIGN built-in function, 300
SIGNAL statement, 300
SIN built-in function, 301
SIND built-in function, 301
Single-precision floating point, range of

precision, 151
SINH built-in function, 301
SKIP format item, 155

definition, 302
SKIP option

GET statement, 171
PUT statement, 276

Slash (/) picture character, 248
Source program format, 265
Space, 302
SPOOL ENVIRONMENT option, 67, 124
SQRT built-in function, 303
Square root, obtain, 303

378 Index

Statement, 303
alphabetic summary, 306
functional summary, 305
label, 195

STATIC attribute, 307
implied, 130

Static storage, 309
Static variable, entry value, 121
STOP statement, 308

terminate subroutine or function, 260
Storage

allocation
for automatic variables, 30
for a based variable, 4
example, 37
for a static variable, 307

attributes, 26
automatic, 308
based, 33, 309
built-in functions, 59
class, 308

extensions to the standard, 362
defined, 96, 310
free, 162
internal variable, 183
locate with ADDR, 41
for parameter, 310
set null pointer, 211
sharing, 310
specify READO NL Y variable, 282
static, 309
static allocation, 307

STREAM attribute, 137, 222, 311
Stream file, 311

GET statement, 165
PUT statement, 268

Stream input/output processing, 311
String, in conversion functions, 129
STRING built-in function, 320
String data types,

see Bit string; Character string
String handling

compare with VERIFY, 346
concatenation operator, 70
COPY built-in function, 83
function, summary, 58
LENGTH built-in function, 199
locate substring, 178
STRING built-in function, 320
STRING pseudovariable, 322
SUBSTR built-in function, 326
SUBSTR pseudovariable, 327
summary of features, 321
TRANSLATE built-in function, 337

String overlay defining, rules for, 99
STRING pseudovariable, 322
Structure, 323

in an array, 18
concatenate with STRING, 320
declaration, 96, 323
initializing, 326
level number, 323
major, 323
minor, 323
pass as argument, 326
program, 264
structure-qualified reference, 324

Subroutine, 257
CALL statement, 61
internal and external, 258
terminate, 260

Subscript
array variable, 12, 14
label, 195
refer to array of structures, 19

SUBSTR built-in function, 326
SUBSTR pseudovariable, 327
Substring

locate in string, 178
obtain, 326
overlay, 327

Subtraction, 328
SUPERSEDE ENVIRONMENT option, 124
Symbol, global, 172
SYSIN default file, 329, 332
SYSPRINT default file, 329, 332
SYSTEM_pROTECTION ENVIRONMENT

option, 124

T
TAB format item, 155

definition, 330
TAN built-in function, 331
TAND built-in function, 331
TANH built-in function, 332
TEMPORARY ENVIRONMENT option, 124
Terminal

input/output, 332
output, 257

Termination
END statement, 115
of procedure, 260
of program execution, STOP statement, 308

Text, include from other files, 178
TIME built-in function, 336
Time of day, obtain, 336

TITLE option, 139, 222, 336
Transfer control, GOTO statement, 173
TRANSLATE built-in function, 337
TRUNC built-in function, 338
TRUNCATE ENVIRONMENT option, 67,

124
Truncation

of bit string, 77
of character string, 79
of decimal value, 338

Type
derived, 127
see also Data type

u
Unconnected array, 19
UNDEFINEDFILE condition, 339

signaled, 225
UNDERFLOW

condition, 340
option, 341

PROCEDURE statement, 264
UNSPEC built-in function, 341
UNSPEC pseudovariable, 342
UPDATE attribute, 137, 222, 342
Update file

delete record, 99
rewrite record, 295

Uppercase and lowercase letters in identifier,
176

User-specified name, 176

v
V picture character, 244
VALID built-in function, 343
Value

argument passing by, 344
implementation-defined standard, 364

VALUE attribute, 131, 344
Variable, 344

addressable, 345
assign value to, 22
automatic, 30
based, 33-34, 309
bit string, 46
character string, 64
declaration, 92
defined, 97, 310
entry, 120

Index 379

Variable, (Cont.),
external, 131
file, 135
initialize, 179
internal, 189
label, 197
static, 309

VARIABLE attribute, 345
VARIABLE option of ENTRY attribute, 118,

345
VARYING attribute, 346
VAXCONDITION condition, 346
V AX-11 calling standard, extensions to PL/I,

362
V AX-11 Record Management Services, 363
VERIFY built-in function, 346

w
WORLD_PROTECTION ENVIRONMENT

option, 124
WRITE statement, 134, 348

380 Index

WRITE_BEHIND ENVIRONMENT option,
124

WRITE-CHECK ENVIRONMENT option,
124

X format item, 155
definition, 352

x

XOR operation, define with BOOL, 53

y
Y picture character, 245
Year, obtain current, 90

z
Z picture character, 245
ZERODIVIDE condition, 354

READER'S COMMENTS

VAX-11 PL/I
Encyclopedic Reference

AA-H952A-TE

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion; If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.)

Please indicate the type of user/reader that you most nearly represent.

D Assembly language programmer
D Higher-level language programmer·
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)

Organization

Street

State------ Zip Code -----
or Country

- - DoNotTear-FoldHereandTape - - - - - - - - - -

~nmnomo 111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J3-5
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062

No Postage
Necessary

if Mailed in the
United States

- - - Do Not Tear - Fold Here -

