dlilgliltlall

VAX-11 PL/I
Guide to Program Debugging
Order No. AA-K221A-TE

August 1980

Describes the operation of the VAX-11 Symbolic Debugger
with VAX-11 PL/I programs.

VAX-11 PL/I
Guide to Program Debugging
Order No. AA-K221A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this

release.
OPERATING SYSTEM AND VERSION: VAX/VMS V2.0
SOFTWARE VERSION: VAX-11 PL/I V1.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

The information in this document is subject to change
be
Digital Equipment Corporation assumes no

and should
Corporation.

not

construed

First Printing, August 1980

without

notice

a commitment by Digital Equipment

for any errors that may appear in this document.

The software described in this document is furnished under a

and may
license.

responsibility

license

only be used or copied in accordance with the terms of such

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (:) 1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last
critical

document requests

the user's

preparing future documentation.

page
evaluation

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC

PDP

DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-11
VAX

DECnet
DATATRIEVE

DECsystem~10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL

INDAC

LAB-8
DECSYSTEM-20
RTS-8

VMS

IAS

TRAX

MASSBUS
OMNIBUS
0s/8

PHA

RSTS

RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10
SBI

PDT

of this
to assist us in

ZKA73-80

CONTENTS

Page

PREFACE v

CHAPTER 1 INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

VAX-11 SYMBOLIC DEBUGGER FACILITIES . ¢« & o« o « &
USING THE VAX-11 DEBUGGER . & &+ 4 & o &« o o o o &
Beginning and Ending a Debugging Session
The DEBUG Command « « o o o o o o o s o o« o o &
Effects of Optimization on Debugging
DEBUGGER COMMAND SYNTAX AND SUMMARY . . ¢« ¢ ¢ o &
SAMPLE TERMINAL SESSION . ¢ &+ ¢ o o o o o o o o &
Executing the Sample Program . « « « & o « o &

. e e o
i

* s o
w N -

. .
[
SV WWWN N

B WN NN N

= e
| R
|

.
—
—
=

CHAPTER RECOGNITION OF NAMES

\V]

DEBUGGER SYMBOL TABLE . . ¢ ¢ ¢ & ¢ o o o s o o o«
Names Included in the Symbol Table by Default
Adding Names to the Symbol Table
Displaying Names in the Symbol Table . . .

SPECIFYING REFERENCES AND LOCATIONS
Specifying Internal and External Variables
References to Global Symbols . . . « + . .
Specifying Program Locations
Defining Addresses Symbolically . . .« + « « . .
The Debugger's Permanent Symbols

SCOPE ¢ v v & ¢ ¢« o« ¢ o ¢ o o o o o o o o o o o o
Specifying Pathnames . . . + ¢« ¢ ¢ ¢« + o o o o &
Changing the SCOPEe « « « o o o o s o s o s o o @
The Scope of Automatic Variables « . .

SPECIAL CHARACTERS AND EXPRESSIONS . v & ¢« ©« + o &
Characters for Arithmetic Expressions
Characters for the Current, Previous, and Next
Locations . . ¢ ¢ ¢ 4 ¢ o v ¢« 4 4 e e e e e e .

. .
w N =
[

o .
TS W N~

[
oo} VOO UNTUTUTE DWWN N -

e * o o o o

L] .
B WWWWNNNNNN -
I

.
.

.
w N -
|

.
ITJI\I)NNNNNNNNMNI\JNMN
|

NRNDNONNNDNNNDDNDNDDNDNDNDNDNDNDNDNDN
.
N

N
|

EXAMINING AND DEPOSITING DATA

w

CHAPTER

USING THE EXAMINE AND DEPOSIT COMMANDS
Specifying the Data Type of Data to Deposit . .
Restrictions on Examining and Depositing Data .

FIXED-POINT BINARY AND FLOATING-POINT VARIABLES .

FIXED—POINT DECIMAL DATA . ¢ &+ o o o o o o o o o o

CHARACTER-STRING VARIABLES . « ¢ « ¢ ¢ o o o o o &«

BIT-STRING VARIABLES . &« & ¢ ¢ o« o o o o o s o o o«

STATIC ARRAYS & ¢ & o« o o o o o o s o o o o o o«

AUTOMATIC ARRAYS AND FIXED-POINT DECIMAIL ARRAYS .

N
WWWwwwwwww
|
AU U N

WWwWwwwwwww
* o . L] .
N U W N
| L]

iii

CONTENTS

Page
CHAPTER 4 CONTROLLING A PROGRAM'S EXECUTION
4.1 STARTING AND STOPPING EXECUTION . . . & o« &« o o » 4-1
4,2 STEPPING THROUGH A PROGRAM . + v &+ @« 4« « o o o o o 4=2
4.3 BREAKPOINTS . &+ &« &+ ¢ o o o o s o o o o o« o o o« » 4-3
4.4 TRACEPOINTS &+ «¢ & & o o o s o o o o o o o o o o o« 4-4
4.5 WATCHPOINTS . . « « « & . o o . e o o o o« o 4-5
4.6 ENTERING AND RETURNING FROM SUBROUTINES e o+ o o o 4-6
4,6.1 Stepping Into and Over Subroutines 4-6
4.6.2 Displaying the Calling Sequence . . « « o« o« o+ o 4-7
4.6.3 Calling Subroutines . . . « ¢« ¢ ¢« ¢« ¢ o« + o o . 4-7
APPENDIX A VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

INDEX

FIGURE

Figure 3-1 The Sample Program, MAINP . . . « ¢ ¢« &« ¢ « & « &« & «» 3=3

TABLES

Table 1-1 Summary of Debug Commands . « « ¢ « o ¢ o o o o o o o 1-3
Table 2-1 Arithmetic Operators « « +« o ¢ o o o o « o o o o o o« o+ 2-8

Table VAX-11l PL/I Run-Time Modules « « ¢« « &+ o o o o o o o« o« A-1

A-1
A-2 Run-Time Entry Points . . . e o o o o o o o o« « A-3
A-3 Run-Time Library Procedures Called by PL/T . « . « . A-12

iv

PREFACE

MANUAL OBJECTIVES

This manual describes the facilities of the VAX-11 Symbolic Debugger
for debugging VAX-1ll PL/I programs.

INTENDED AUDIENCE

This manual is intended for programmers using VAX-11] PL/I., To get the
most out of this manual, you should have a working knowledge of PL/I
program structure and data types, and be familiar with the VAX/VMS
operating system. However, while not a tutorial, the manual can be
used by relatively inexperienced programmers.

STRUCTURE OF THIS DOCUMENT
This manual has four chapters and one appendix:

e Chapter 1, "Introduction to Debugging VAX-11] PL/I Programs,"
provides a functional overview of debugging PL/I programs
using the VAX-1l Symbolic Debugger.

e Chapter 2, "Recognition of Names," describes how the debugger
recognizes program locations, for example, line numbers and
procedure names, that you specify.

e Chapter 3, "Examining and Depositing Data," explains how to
examine variables and program locations and to modify their
contents while you are debugging a program.

e Chapter 4, "Controlling a Program's Execution," describes how
to start, stop, and control a program while you are running
it under the control of the debugger.

e Appendix A, "VAX-11] PL/I Run-Time Modules and Entry Points,"
lists the VAX-11l PL/I run-time modules and entry points.
ASSOCIATED DOCUMENTS

To obtain supplemental information, the following documents are
recommended:

e VAX-11 Symbolic

PREFACE

Debugger Reference Manual, Order Number

AA-D(Q26B-TE

e VAX/VMS Command

Language User's Guide, Order Number

AA-D023B-TE

e VAX-11l PL/I Encyclopedic Reference, Order Number AA-H952A-TE

e VAX-11] PL/I User'

s Guide, Order Number AA-H951A-TE

CONVENTIONS USED IN THIS DOCUMENT

EXAMINE reference

CTRLIX

DBG>EXAMINE X
ALPHA\X: 2

option,...

DBG> EVALUATE X (1):X(10)

quotation mark
apostrophe

[/qualifier...]

Uppercase words and letters, shown in syntax
descriptions, 1indicate that you should type
the word or letter exactly as shown.

Lowercase words and letters indicate that
you are to substitute a word or value of
your choice.

The symbol indicates that you press
the key "x" while holding down the key
labeled CTRL, for example, . In

examples, this control key sequence is shown
as “x, for example, “C, because that is how
the VAX/VMS system prints control key
sequences.

Command examples show all interactive
examples in two colors. Program output and
prompting characters that the system prints
or displays are shown in black letters.
User—-entered commands and data are shown in
red letters.

Horizontal ellipses indicate that additional
parameters, options, or values can be
entered. When a comma precedes the
ellipses, it indicates that successive items
must be separated by commas.

Vertical ellipses indicate that not all of
the text of a program or program output is
illustrated. Only relevant material is
shown in the example.

The term "quotation mark" is used to refer
to the quotation mark (") symbol. The term
"apostrophe" is used to refer to the single
quotation mark (') symbol.

Square brackets indicate that a syntactic
element is optional and you need not specify
it. Square brackets are not optional,
however, when used to delimit a directory
name in a VAX/VMS file specification.

vi

module-name

DBG>DEPOSIT X

PREFACE

Brackets surrounding two or more stacked
items indicate a choice of optional data;
you may choose one of the two syntactic
elements.

Braces surrounding two or more stacked items
indicate a choice; you must choose one of
the two syntactic elements.

All numeric wvalues in the text of this
manual are represented in decimal notation
unless otherwise specified.

Unless otherwise specified, you terminate commands by pressing the
RETURN key, shown in this document as RED

vii

CHAPTER 1

INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

One of the most difficult stages in program development 1is 1locating
and correcting errors. This is "debugging." You need to debug, that
is, to correct a program, when any of the following happen:

e The compiler flags syntactic or lexical errors
e Run-time errors occur

e You determine, based on receiving incorrect output during a
program's execution, that a logic error exists

The VAX-11] PL/I compiler and run-time system display error and
informational messages when errors occur. You can use this
information to determine where the error exists in your program and to
correct it.

You must detect logic and programming errors yourself. To help vyou
find such errors, VAX/VMS provides a special program: the Symbolic
Debugger (or, simply, the debugger). The debugger 1lets you control
the execution of your program so you can monitor specific locations,
change the contents of locations, check the sequence of program
control, and otherwise locate and correct errors as they occur. After
you track down the mistakes, you can edit your source program,
recompile, relink, and execute the corrected version.

1.1 VAX-11 SYMBOLIC DEBUGGER FACILITIES

The VAX-11 Symbolic Debugger includes many features to help you, among
them the following:

e It is interactive. You control your program and interact
with the debugger from your terminal.

e It understands static PL/I variable names and their data
types. Thus, when you want to look at the contents of a
variable, or change the value of a wvariable, the debugger
will convert your ASCII text input to the data type of the
variable.

e It understands other programming languages as well, such as
FORTRAN and COBOL. Thus, 1if your programs consist of
procedures written in different 1languages, you can change
from one language to another during the course of a debugging
session.

Note that for this version of the VAX-11 PL/I compiler, not all
functions of the VAX-11l Symbolic Debugger are completely supported for
PL/I program debugging. This manual describes the extent of support
as it exists for Version 1.0 of VAX-11 PL/I and Version 2.0 of the
VAX-11 Symbolic Debugger.

INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

1.2 USING THE VAX-11 DEBUGGER

This section shows brief examples of invoking and using the debugger
with a PL/I program.

1.2.1 Beginning and Ending a Debugging Session

To execute a PL/I program with the debugger, compile and 1link the
program with the /DEBUG qualifier, as in the following example:

$ PLI/DEBUG METRIC
$ LINK/DEBUG METRIC

The /DEBUG qualifier on the PLI command requests the compiler to write
symbol table records into the object module; these records will
permit you to examine and modify wvariables by name during the
debugging session.

The /DEBUG qualifier on the LINK command requests the 1linker to
include the debugger routines, global symbols, and traceback
information in the executable image. To 1include only traceback
information, specify /DEBUG=TRACEBACK.

To obtain a program listing of the procedures being debugged, and to
have available a storage map listing the variables, you can compile
the procedure(s) with the /LIST and /ENABLE=LIST MAP qualifiers, in
addition to the /DEBUG qualifier. For example:

$ PLI/DEBUG/LIST/ENABLE=LIST MAP METRIC

If your program includes files using %$INCLUDE statements, you may also
want to include these files 1in the listing to have available the
statement line numbers. The /ENABLE qualifier also enables 1listing
INCLUDE files. To list the compiler map and INCLUDE files, specify:

$ PLI/DEBUG/LIST/ENABLE=(LIST MAP, LIST INCLUDE) METRIC

When you execute an image compiled and 1linked with the debugger,
initial control goes to the debugger, which identifies itself as
follows:

$ RUN METRIC
VAX-11 DEBUG Version 2.00

$DEBUG-I-INITIAL, language is BASIC, module set to 'CONVERT'
DBG>

For this version of the PL/I debugging support, the language is set to
BASIC. The module name displayed in the debugger's message is the
name of the outermost procedure in the first object module 1in the
image and 1is not necessarily the same as the name of the image file.
This message indicates that the name of the main procedure in the
image file METRIC is CONVERT.

The DBG> prompt indicates that the debugger is now ready to process
your commands. You respond to the prompt with one of the commands
recognized by the debugger. To terminate the debugging session, use
the EXIT command:

DBG>EXIT
When your program has been thoroughly debugged, you can recompile and
relink it without the /DEBUG qualifier. Or, you can run it with the
/NODEBUG qualifier. For example:

$ RUN/NODEBUG METRIC

INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

Note, however, that the modules required by the debugger occupy space
within a program image file.

1.2.2 The DEBUG Command

When a program that is 1linked with /DEBUG 1is executing, you can
interrupt it with at any time and invoke the debugger by
entering the DEBUG command. For example, 1if vyou determine that a
program may be looping, or if you see erroneous output, you can
interrupt it as follows:

$ RUN COMPUTE €AY
Y

$ DEBUG
DBG>

When you press , the command interpreter displays 1its dollar
sign ($§) prompt, and you can enter the DEBUG command. The DBG> prompt
indicates that the debugger is under control.

If the program was compiled with the /DEBUG qualifier, you have access
to program variables, line numbers, and entry names.

If the program was not compiled with the /DEBUG qualifier, you can
reference program locations and variables wusing only virtual
addresses.

1.2.3 Effects of Optimization on Debugging

When you compile a PL/I program, the resulting object code is
optimized; that 1is, the compiler has used some techniques that will
make the program run faster. For example, the compiler puts automatic
scalar variables 1in registers, removes invariant expressions within
DO-loops so that they are evaluated only once, and so on.

Under normal circumstances, you do not need to disable any compiler
optimizations in order to debug a VAX-11 PL/I program. By default,
the compiler disables the DISJOINT optimization option when /DEBUG 1is
specified so that automatic variables that are placed in registers
will be guaranteed to stay in the same register during the current
block activation.

No other optimization options have any effect on debugging.

1.3 DEBUGGER COMMAND SYNTAX AND SUMMARY

You enter commands to the debugger in much the same way that you enter
DCL commands. You must remember to end each debugging command with a
@D . The debugger commands have the format:

cmd [keyword] [/qualifier] ([param ...] lcomment

cmd
Is a command verb (for example, SET, CANCEL) that indicates the
general function to be performed.

keyword
Gives the specific function to be performed by the command (for
example, CANCEL MODULE, SET SCOPE, SHOW LANGUAGE).

INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

/qualifier
Modifies the effect of the command.

param
Qualifies the function in some way, such as specifying a range of
locations to be monitored.

comment
Is any text message. The debugger ignores all text after the
exclamation mark.

You can enter more than one command on a command line by separating
the commands with semicolons (;).

You can continue a command on a new line by ending the 1line with a
hyphen (-); the debugger will then prompt for the rest of the command
with an underscore ().

Table 1-1 summarizes the debugger commands. The boldface letters
indicate the minimum abbreviation you must type in order for the
debugger to recognize the command name, qualifier, or parameter.

You can obtain information about a debugging command while you are

debugging by entering the HELP command to the debugger.

Table 1-1
Summary of Debug Commands

Command Syntax Function

@file-spec Reads debugger commands
from the specified command
procedure file

CALL entry-name [(argument,...)] Invokes a specified

‘ procedure and optionally
passes references to
arguments

CANCEL ALL Cancels all breakpoints,
tracepoints, and
watchpoints, and restores
the mode and scope to
their original wvalues

CANCEL BREAK /ALL Cancels a specified
$LINE line-number breakpoint or all
entry-name breakpoints

symbolic-reference
nonsymbolic-address

CANCEL EXCEPTION BREAK Cancels the effect of SET
EXCEPTION BREAK and
restores the debugger's
default method for
handling exceptions, which
is to let the programs
condition handlers, or
ON-~-units, receive control

(Continued on next page)

INTRODUCTION TO DEBUGGING VAX-11] PL/I PROGRAMS

Table 1-1 (Cont.)
Summary of Debug Commands

Command Syntax

Function

CANCEL MODE

CANCEL MODULE

CANCEL SCOPE

CANCEL TRACE

{ /ALL }

module, ...

$LINE line-number
entry—-name
symbolic-reference
nonsymbolic-address
/ALL

/BRANCH

/CALL

CANCEL TYPE/OVERRIDE

CANCEL WATCH

DEFINE symbol

/ALL
variable-reference
symbolic—~reference
nonsymbolic-address

= expression ,...

DEPOSIT location = data [,data,...]

/BYTE
/INSTRUCTI
/LONG
| /WORD

[/ASCII:length

/HEXADECIMAL

/DECIMAL
/OCTAL

ON

EVALUATE [/ADDRESS] expression,...

[/DECIMAL
/HEXADECIM
OCTAL

AL]

Restores the radix and
display modes to their
defaults for PL/I
debugging, which are
decimal and symbolic

Deletes one or more
modules from the
debugger's symbol table,
or deletes all modules
from the symbol table

Resets the scope to that
containing the current
program counter

Cancels a specified
tracepoint or all
tracepoints

Restores the debugger's
default interpretation of
variables, which is to use
the variables' declared
data types and extents

Cancels a watchpoint on
a specified location or
variable or cancels

all watchpoints

Creates one or more
symbols whose values are
equated to program
locations or to numeric
expressions

Changes the contents of a
specified variable or
program location

Evaluates an expression

or an address and displays
the results in decimal or
other specified radix

(Continued on next page)

INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

Table 1-1 (Cont.)
Summary of Debug Commands

Command Syntax

Function

EXAMINE { variable-reference }
location[:location]
/ASCII:length /DECIMAL
/BYTE /HEXADECIMAL
/INSTRUCTION /OCTAL
/LONG
/WORD
/SYMBOLIC
NOSYMBOLIC
EXIT
GO SLINE line-number
entry-name
symbolic-reference
nonsymbolic-address
HELP
SET BREAK $LINE line-number

entry—-name
symbolic-reference
nonsymbolic—-address
[DO (cmd [;emd...])]
[/AFTER:n]

SET EXCEPTION BREAK

SET LANGUAGE language-name

|

Displays the current
contents of a variable
or program location

Ends the debugging session
and returns control to the
command interpreter

Starts or continues
program
execution

Displays a description of
a debugger command,
parameter, or qualifier

Sets a breakpoint at a
specified statement,
procedure, or program
address

Requests that the debugger
treat external exception
conditions as if they were
breakpoints, and interrupt
the program when an
exception occurs rather
than to allow ON-units to
execute

Specifies the source
language of a module or
routine, for
language-specific
debugging

(Continued on next page)

INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

Table 1-1 (Cont.)
Summary of Debug Commands

Command Syntax

Function

SET LOG [file-spec]

SET MODE DECIMAL e
HEXADECIMAL 1
OCTAL
NOSYMBOLIC j
SYMBOLIC

SET MODULE module-name ,... }
/ALL

SET OUTPUT [LOG]
NOLOG

[TERMINAL] y e
NOTERMINAL

[VERIFY]

NOVERIFY
SET SCOPE 0 roees
\
scope-number

SET STEP [OVER]
INTO

[SYSTEM]
NOSYSTEM

[INSTRUCTION]
LINE

SET TRACE $LINE line-number
entry—-name
symbolic-reference
nonsymbolic—address
/BRANCH
/CALL

Specifies the name of a
log file to which the
debugger should write
program output when the
SET OUT LOG command has
been entered

Sets the default mode for
entering and displaying
program locations that are
not declared variables

Adds the symbols from the
indicated module(s) to the
debugger's symbol table.

Controls whether the
debugger writes output to
a log file or to the
terminal, and whether it
echoes commands executed
from command procedures

Specifies the modules to
be searched to find a
symbol and the order in
which they are to be
searched

Specifies how the debugger
is to behave when the STEP
command is issued

Establishes a tracepoint
at a specified statement,
procedure, entry, or
program location

(Continued on next page)

INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

Table 1-1 (Cont.)
Summary of Debug Commands

Command Syntax Function

SET TYPE /ASCII:length Sets the default data
/BYTE types for the DEPOSIT
/INSTRUCTION and EXAMINE commands for
/LONG locations that do not
/WORD have declared data types

[/OVERRIDE]

SET WATCH variable-reference Establishes a watchpoint
on a specified static
variable

SHOW BREAK Displays current
breakpoints

SHOW CALLS [integer] Displays the current

program location and all,
or a specified number of,
preceding calls

SHOW LANGUAGE Displays the current
debugging language

SHOW LOG Displays the current
status of the log file, if
any

SHOW MODE Displays the current
default entry and display
modes

SHOW MODULE Lists the modules in the

image being debugged and
shows which modules have
names in the debugger's
symbol table

SHOW OUTPUT Displays the current
status of the debugger's
output files

SHOW SCOPE Displays the current
default scopes

SHOW STEP Displays the current
default step conditions

SHOW TRACE Displays current
tracepoints

SHOW TYPE [/OVERRIDE] Displays current default

data type or override type

(Continued on next page)

INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

Table 1-1 (Cont.)
Summary of Debug Commands

Command Syntax

Function

SHOW WATCH

/INTO

[/SYST

/LINE

STEP [/OVER

]

EM]

/NOSYSTEM

[/INSTRUCTION [integer]]

[integer]

Displays current
watchpoints and the number
of bytes being watched

Executes one or more
statements, or into or
over

subroutines

1.4 SAMPLE TERMINAL SESSION

The sample program REMEMBER is listed below, with the 1line numbers

assigned by th
names and birthd
and displays a

simple debugging

REME

Lo d WN -

[
w
HO NN NN N e e e e e

END;

e compiler.

ates, compares
message if

obvious bug -- the pointer, P,

input record buffer,

commands.

INREC

This program reads a file consisting of
each birthday with the current date,
any dates match. This program has an
is not 1initialized to ©point to the
~- but it will serve to illustrate some

MBER: PROCEDURE;

DECLARE P POINTER,

1 NAME AGE BASED(P),
2 NAME CHARACTER (40),
2 BIRTHDAY CHARACTER(6),
2 REST CHARACTER (34),
INREC CHARACTER(80) STATIC,
NAMES FILE RECORD INPUT SEQUENTIAL,
EOF BIT(l) STATIC INIT('0'B);

ON ENDFILE (NAMES) EOF = '1'B;
OPEN FILE (NAMES);

READ FILE (NAMES) INTO (INREC);

DO WHILE (“EOF);
IF SUBSTR(DATE(),3,4) = SUBSTR(BIRTHDAY, 3, 4)
THEN PUT SKIP EDIT (NAME,'is’',
BINARY (SUBSTR(DATE(),1,2)) -

'Today!"')

BINARY (SUBSTR (BIRTHDAY, 1,2)),
(2(A,X),F(2),X,A);

READ FILE (NAMES) INTO (INREC);

END;

INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

1.4.1 Executing the Sample Program

Assume, for the purposes of this example, that you know that at least
one record in the file contains a BIRTHDAY field that matches the
current date. You compile, link, and run the program as follows:

$ PLI REMEMBER
$ LINK REMEMBER
$ RUN REMEMBER

$

The program runs to completion without displaying the message you
expected. To debug the program, you must have a listing, and you must
compile and link with the debugger, as follows:

$ PLI/LIST/DEBUG REMEMBER
$ LINK/DEBUG REMEMBER
$ PRINT REMEMBER

The PRINT command prints the listing, which shows the 1line numbers.
You are now ready to begin a debugging session. The notes below are
keyed to the terminal session that follows.

1. When you enter the RUN command, the debugger displays 1its
informational message and prompts you with its DBG> prompt.

2. You decide that the problem may be that P has not been
initialized. You can test this hypothesis by finding out the
address of INREC and putting this value in P. First, you
want to get the program to execute up to the first READ
statement.

To run a program to a certain point, you can set a breakpoint
at a particular 1line. In this example, you set the
breakpoint at line 15.

3. The GO command starts the execution of the program. The
debugger tells you where, in the program, you are beginning
execution.

4, When 1line 15 1is reached, the debugger interrupts its
execution and prompts you to enter a command.

5. At line 15, you examine the contents of the pointer P. The
debugger displays the value of P, which does not look like a
program address,

6. You use the EVALUATE/ADDRESS command to determine the virtual
address of INREC. This would be the equivalent, in PL/I, of
using the ADDR built-in function to set a pointer. The
debugger displays the address of INREC.

7. You use the DEPOSIT command to give the pointer P the wvalue
of the address of INREC.

8. The GO command continues the execution of the program. As
you can see, the program outputs its expected result.

9. When the program exits, the debugger displays a message
indicating the termination status.

10. The EXIT command terminates the debugging session.

You can now correct the program so that it initializes the pointer P.

INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

$ RUN REMEMBER (1]

VAX~-1l1 DEBUG Version 2.00

$DEBUG-I-INITIAL, language is BASIC, module set to 'REMEMBER'
DBG>SET BREAK 3LINE 15 @

pBG>Go ©

routine start at REMEMBER\REMEMBER
break at REMEMBER\REMEMBER $LINE 15 @
DBG>EXAMINE P ©

REMEMBER\REMEMBER\P: 3
DBG>EVALUATE/ADDRESS INREC O

513

DBG>DEPOSIT P = 513 @

DBG>GO ©

start at REMEMBER\REMEMBER S$LINE 15

J. RANDOM PROGRAMMER is 19 today!

©

$DEBUG-I-EXITSTATUS, is '%SYSTEM-S-NORMAL, normal successful completion'

peG>EXIT O

$

CHAPTER 2

RECOGNITION OF NAMES

This chapter describes how to specify names to the debugger.

2.1 DEBUGGER SYMBOL TABLE

The debugger maintains a symbol table that lists the symbols you can
reference during a debugging session. The debugger symbol table
always contains the names of global symbols in the image. The names
of 1local symbols, that is, names of internal variables defined within
your program, are available in the image file only if you included the
/DEBUG qualifier in the PLI and LINK commands.

The symbol table contains the data type attributes and memory location
of each accessible name or variable. The data type attributes
includes dimension bound information for arrays, and length
information for character data.

2.1.1 Names Included in the Symbol Table by Default

Before you can reference a name, you must ensure that the name 1is in
the debugger symbol table. When a debugging session begins, you have
access to global symbols and to automatic variables that are declared
within the indicated module name and static wvariables that are
declared within internal blocks, as 1long as there are no naming
conflicts. For example, a PL/I procedure may contain the lines:

MAINP: PROCEDURE OPTIONS (MAIN);
DECLARE (X,Y,Z) STATIC FIXED,
(A,B,C) AUTOMATIC BIT;

PRINTLIST: PROCEDURE;
DECLARE COUNT STATIC FIXED,
X CHARACTER(10);

When this debugging session begins, you can by default access the
names X, Y, Z and A, B, and C in MAINP as well as COUNT in PRINTLIST.

When you want to access a variable or location that 1is not in the
default symbol table, you must specify the module containing the
variable or location. A module, in PL/I terms, 1is the name of a
level-one procedure, the outermost procedure in the source file
(indicated in the source program listing by the number "1" in the left
margin).

RECOGNITION OF NAMES

2.1.2 Adding Names to the Symbol Table

The debugger symbol table accommodates approximately 2000 symbols. If
you are debugging multiple procedures that define more than 2000
symbols, you can use the SET MODULE command to copy symbols from other
modules to the symbol table. For example, a PL/I procedure may
declare an external entry as follows:

DECLARE PRINT ARGS EXTERNAL ENTRY;
To reference names of static variables declared in PRINT ARGS before
PRINT ARGS is invoked in the debugging session, you can bring these
names into the symbol table by entering the command:

DBG>SET MODULE PRINT_ARGS
This command makes the names of variables in PRINT_ARGS accessible.
Subsequently, you can use the CANCEL MODULE command to remove from the
symbol table symbols you no longer need, and then use the SET MODULE
command to insert the symbols you next require.
Note that you cannot access the names of automatic variables until the

block that declares these variables is executing, since the variables
are not allocated storage until the block is activated.

2.1.3 Displaying Names in the Symbol Table

Use the SHOW MODULE command to display the current contents of the
symbol table. For example:

DBG>SHOW MODULE

module name symbols language size
ARGLIST yes BASIC 148
PRINT ARGS yes BASIC 280
PLISCONDIT no MACRO 716
PLISCONTROL no MACRO 336
PLISPUTFILE no MACRO 176
PLISPUTLISTITEM no MACRO 176
PLISPUTBUFFER no MACRO 176
PLISCONVERT no MACRO 284
PLISCLOSE no MACRO 228
PLISCVTPIC no MACRO 336
PLISOPEN no MACRO 228
PLISRECOPT no MACRO 176
PLISBIT no MACRO 608
PLIS$CHAR no MACRO 284
PLIS$SBYTESIZE no MACRO 228
LIBSLP LINES no BLISS 120
OTSS$$CVTDT no MACRO 120
OTS$SCVTRT no MACRO 176
RMSGBL no MACRO 120

total modules: 19. remaining size: 59304.

The modules with names PLIS, LIBS$, RMS, and OTS$$S prefixes are
run-time modules required for the execution of the PL/I procedures.
For a summary of these modules, see Appendix A.

RECOGNITION OF NAMES

2.2 SPECIFYING REFERENCES AND LOCATIONS

The debugger's symbol table 1lets you reference names and program
locations symbolically. You need concern yourself only with the name,
and not the memory location, of the data. This symbolic form of
reference applies to program data, such as variables and array
elements, and to program addresses, such as program line numbers and
procedure names.

You can reference the following kinds of symbols:
e Internal and external variables
e Global symbols
e Program locations
e Symbols you create with the debugger command DEFINE
e Permanent symbols defined by the debugger

Symbols can specify variable references or can contain data values.
The debugger interprets data items vyou specify according to these
rules:

1. If a data item begins with an alphabetic letter, the debugger
assumes that it is a program variable or a symbolic reference
to an address.

2. If a data item begins with a numeric integer (0 through 9),
the debugger assumes that the item 1is a literal numeric
constant.

3. If a data item is enclosed in apostrophes or quotation marks,
the debugger assumes that the item is a character-string
constant.

2.2.1 Specifying Internal and External Variables

You can reference both internal and external variables while debugging
PL/I procedures. Internal automatic variables can be referenced only
in the block in which they are declared.

There is no up-level addressing, that 1is, an internal automatic
variable in a containing block cannot be examined in a contained
block. For example:

DECLARE X FIXED;

INSIDE: PROCEDURE;

When these PL/I statements are debugged, the variable X cannot be
examined or modified within the procedure INSIDE, even though INSIDE
may reference X.

You can specify data addresses symbolically for scalar variable names

and scalar array elements. For example, a PL/I procedure may contain
the following declarations:

DECLARE X MSG CHARACTER(80) STATIC,
X _LEN(10) FIXED STATIC;

These variables can be referenced in a debugging session as follows:

RECOGNITION OF NAMES

DBG>DEPOSIT X MSG = 'This is new string'
DBG>EXAMINE X LEN(5)
XLOOK\XLOOK\XLEN (5): +14

The DEPOSIT command places a new character-string wvalue in the
variable X MSG. The EXAMINE command displays the current contents of
the array element X LEN(5).

You can reference array elements using constants and variable
expressions. If you reference a variable or array element that is not

defined in the symbol table, or if you attempt to reference out of the
array bounds defined at compile time, the debugger issues a warning.

2.2.2 References to Global Symbols
Global symbols can be referenced from all blocks. In a VAX-11 PL/I

procedure, global symbols are those symbols defined with the GLOBALREF
or GLOBALDEF attributes, as well as the names of level-one procedures.

2.2.3 Specifying Program Locations
You can specify address expressions, that 1is, program locations by
procedure name, line number, or (nonsymbolic) virtual address. To
specify a procedure by name, give the command followed by the name of
the procedure. For example, the command

DBG>SET BREAK LIST BY FLOWER
sets a breakpoint at the entry.to procedure LIST BY FLOWER.
To specify a line number, use the %LINE specifier, as shown here:

DBG>SET BREAK 3LINE 6

This command sets a breakpoint at 1line 6, corresponding to the
compiler-generated line number shown in the listing.

Note that the debugger does not recognize all 1line numbers. In
particular, it does not recognize those line numbers associated with
nonexecutable statements, such as DECLARE and FORMAT statements. I1f
you specify such a line number, the debugger responds with a message
indicating that no such line exists.
You can also set a breakpoint as follows:

DBG>SET BREAK 3%LINE LIST BY FLOWER\1l
This command sets a breakpoint at line 11 in LIST_BY FLOWER.

To specify a virtual address, issue the command without a prefix. For
example:

DBG>SET BREAK 700

You can determine the virtual address of a line number or a variable
by entering an EVALUATE command as follows:

DBG>EVALUATE/ADDRESS SLINE 17
800

The debugger displays the virtual address of the instructions for the
statement on line 17.

RECOGNITION OF NAMES

2.2.4 Defining Addresses Symbolically

At times, you may want to assign a symbolic name to a program

location. To assign a symbolic name to a location, you must first
determine the virtual address of the location and then use the DEFINE
command. To determine the virtual address of a location, use the

EVALUATE/ADDRESS command. For example:
DBG>EVALUATE/ADDRESS 3%LINE 42

1666
DBG>DEFINE CHK = 1666

Subsequent references to line 42 can be made using the defined symbol
CHK. For example, the command

DBG>SET BREAK CHK
sets a breakpoint at line 42. Similarly, the commands
DBG>EVALUATE /ADDRESS CARD_COUNTER
6445
DBGYDEFINE CC = 6445

define a symbolic name by which the variable CARD COUNTER may be
referenced.

2.2.5 The Debugger's Permanent Symbols

The debugger has the following permanent symbols; you can reference
them at any time during the debugging session.

e RO - RI1l General registers 0 through 11

e AP Argument pointer

e FP Frame pointer

e SP Stack pointer

e PC Program counter

e PSL Processor status longword

These names cannot be redefined; that is, .you cannot use the name RO
to create a symbol definition with the DEFINE command.

2.3 SCOPE

If the program you are debugging consists of more than one procedure,
you must be sure that your symbolic references are unambiguous. To
make a reference unambiguous, you can specify the "scope" of the
reference to the debugger: in PL/I terms, the scope of a name is
simply the block in which the name is declared.

Most of the time, you can let the debugger determine the scope of a
name for you. At certain times, however, you must tell the debugger
how to resolve symbolic references. For example, assume that you are
debugging two procedures; both procedures use an internal variable I,
and both modules are included in the debugger's symbol table. Unless
you explicitly specify the scope of I, the debugger may be unable to
determine which variable I you want.

RECOGNITION OF NAMES

You specify scope in one of three ways:
e By using the debugger default scope in effect

e By explicitly specifying the reference's scope with its
symbolic name in the command

e By setting a new default scope with the SET SCOPE command

When you begin a debugging session, the debugger automatically defines
the first procedure 1linked (normally the main procedure) as the
default scope. However, this default scope is dynamic; that 1is, as
you debug your program, the default scope (also called the PC scope)
is always the procedure that 1is currently executing. When the
debugger is resolving a reference, it follows this order in
determining the scope:

1. TIf the specified symbolic name is unique within the debugger
symbol table, then the debugger uses that name.

2, If the specified symbol is ambiguous -- that is, it 1is not
unique within the symbol table, but one of its occurrences is
within the current PC scope -- then the debugger wuses the

occurrence in the current scope.

3. If the specified symbol is not defined in the symbol table,
or if it is ambiguous with no occurrence defined within the
current scope, then the debugger issues an error message
indicating that the name is ambiguous.

2.3.1 Specifying Pathnames

You can specify the scope of a name explicitly by providing both the
name of the symbol and the names of the module and routine in which it
is located, separated by a backslash (\) character. This type of
specification is called a pathname, since in some cases it may consist
of the names of several nested routines. For example, a PL/I
procedure may contain the following:

MAINP: PROCEDURE OPTIONS (MAIN) ;
DECLARE X FIXED STATIC;

INSIDEOUT: PROCEDURE;
DECLARE X BIT;

To examine the contents of X within the procedure INSIDEOUT during a
debugging session when the current scope 1is INSIDEOUT, you must
specify MAINP as both the routine name and the module name in a
pathname. For example:

DBG>EXAMINE MAINP\MAINP\X

Similarly, to specify an address reference in a routine that 1is not
the current scope, you must give it a pathname, as in this example:

DBG>EXAMINE INSIDEOUT\X

Note that when you use a $LINE specifier, the specifier must appear
before the pathname. For example:

DBG>SET BREAK %LINE SUB1\7

This command sets a breakpoint at line 7 in the scope of the module
SuB1l.

RECOGNITION OF NAMES

Note that if you want to make frequent references to a location with a
long pathname, you can define a symbol name for it with the DEFINE
command. For example:

DBG>SET SCOPE INSIDE
DBG>EVALUATE/ADDRESS CARD_COUNTER

9965
DBG>DEFINE CC = 9965
DBG>SET SCOPE MAINP

DBG>EXAMINE CC

In this example, the SET SCOPE command changes the scope to the module
INSIDE, the EVALUATE/ADDRESS command displays the virtual address of
the variable CARD COUNTER, and the DEFINE command uses this wvalue to
define the symbol named CC. Subsequently, the scope is reset to
MAINP. During the debugging session, the value of CARD_COUNTER can be
referenced using the symbolic name CC, regardless of the current
scope.

2.3.2 Changing the Scope

If you want to make a number of symbolic references within the same
procedure, you can eliminate the need to specify scope with each
symbolic address by using the SET SCOPE command. For example, the
following command sets the scope to SUB3:

DBG>SET SCOPE SUB3

You can also define a scope list to specify the order in which the
debugger should search for symbols. For example, the command

DBG>SET SCOPE MAR,JAN,FEB

instructs the debugger to search for symbols first in procedure MAR.
If it cannot find a specified symbol 1in MAR, then the debugger
searches JAN and, if necessary, FEB.

The scope defined in a SET SCOPE command becomes the default scope for
all symbolic references until you explicitly change or cancel the
scope. You can determine the current scope at any time by entering
the SHOW SCOPE command. For example:

DBG>SHOW SCOPE
scope: SUB2,SUB1

The message shows that the current scope is set first to SUB2, then to
SUBl. The SHOW SCOPE command may also respond as follows:

DBG>SHOW SCOPE
scope: U [= MULT\MULT]

The symbol 0 shows that the current scope is the default PC scope.
Within brackets, the debugger displays the module and routine name of
the default scope: the scope is module MULT, routine MULT.

The CANCEL SCOPE command resets scope to the default PC scope.

Note that when you explicitly SET SCOPE to a procedure (module) name,
the debugger implicitly performs a SET MODULE command. Therefore,
symbols for the procedure specified in your SET SCOPE command are
placed in the symbol table. However, if you use the debugger default
scope (PC scope), you must also use SET MODULE to place symbols for
the procedure in the symbol table.

RECOGNITION OF NAMES

2.3.3 The Scope of Automatic Variables

If you reference an automatic variable when the block that defines the
variable 1is not in the current scope, the debugger displays a warning
message. For example, this occurs when you try to reference an
automatic wvariable declared in a procedure that has executed a RETURN
statement, and control has returned to the debugger:

$DEBUG-I-EXITSTATUS, is '$SYSTEM-S-NORMAL, normal successful completion'
DBG>EXAMINE X

$DEBUG-I-PCNOTINSCP, PC is not within scope of routine declaring symbol
XLOOK\XLOOK\X: 3

This message notifies you that the variable X in the routine XLOOK

does not have an address assigned exclusively to it and that its
address may have another use in the current section of your program.

2.4 SPECIAL CHARACTERS AND EXPRESSIONS
This section summarizes how the debugger interprets special characters
in arithmetic expressions and in address expressions. You can use

these operators in references and expressions; the debugger will
perform the arithmetic on integers.

2.4.1 Characters for Arithmetic Expressions

Table 2-1 lists special characters used in arithmetic expressions.

Table 2-1
Arithmetic Operators

Character Interpretation

+ Arithmetic addition (binary) operator, or unary plus
sign

- Arithmetic subtraction (binary) operator, or unary
minus sign

* Arithmetic multiplication operator

/ Arithmetic division operator

@ Arithmetic shift operator

< > Precedence operators; do <enclosed> first
“D Decimal radix operator

~0 Octal radix operator

~X Hexadecimal radix operator

2.4.2 Characters for the Current, Previous, and Next Locations

The debugger provides a quick method for referencing the relative
data addresses or locations in DEPOSIT and EXAMINE commands:

2-8

RECOGNITION OF NAMES

Symbol Meaning

. The current location (the location most recently
referenced by an EXAMINE or DEPOSIT command). Use this
symbol in PL/I to reference a scalar variable, or an
element of a static array of scalars.

The previous location (the 1location at the next 1lower
address from the current location). Use this symbol in
PL/I to reference the previous element of an array of
32-bit scalar variables.

RET) The next location (the location at the next higher address
from the current 1location). Press RED in PL/I to
reference the next element 1in an array of scalar
variables.

For example, assume the following PL/I variable declaration:
DECLARE X LEN(10) FIXED STATIC;

Elements of this array may be accessed as follows:
DBG>EXAMINE X LEN (5)

XLOOK\XLOOK\X:LEN(S): +14
DBG>DEPOSIT . = 100

This DEPOSIT command puts a wvalue of 100 in the wvariable most
recently referenced, that is, X LEN(5).

To specify the previous location, type an up arrow or a circumflex
("). For example:

DBG>EXAMINE ~
XLOOK\XLOOK\X LEN(4): +19

This EXAMINE command displays the contents of the previous location,
that is, X LEN(4).

To specify the next higher 1location, simply omit the wvariable
reference. For example:

DBG>EXAMINE
XLOOK\XLOOK\X LEN(5): 100

This EXAMINE command displays the contents of the next element in
the array X _LEN.

The EXAMINE and DEPOSIT commands, and restrictions on the data types
that you can examine and deposit, are described in the next chapter.

CHAPTER 3

EXAMINING AND DEPOSITING DATA

This chapter describes considerations for displaying, interpreting,
and modifying the contents of PL/I variables using the VAX-11 Symbolic
Debugger.

3.1 USING THE EXAMINE AND DEPOSIT COMMANDS

The EXAMINE and DEPOSIT commands display and change the contents of
variables, respectively. The EXAMINE command displays the contents of
selected variables. You can use EXAMINE to display any combination of
the following:

e A scalar variable

e Multiple scalar variables

e A range of array elements

e Multiple ranges of array elements

If you specify more than one variable and separate them with commas,
the contents of "~ each variable specified are displayed. However, if
you use a colon to separate a pair of elements of an array, then all
elements within that range are displayed. For example:

DBG>EXAMINE STRING (1) :STRING(5)

CALC\CALC\STRING (1) (1:10): stringa
CALC\CALC\STRING (2) (1:10): stringb
CALC\CALC\STRING(3) (1:10): stringc
CALC\CALC\STRING(4) (1:10): stringd
CALC\CALC\STRING (5) (1:10): stringe

This EXAMINE command displays the elements in the array STRING from
element one through element five. When the debugger displays
variables declared, it precedes the variable name with the pathname
used to locate the wvariable, 1if it knows it, and it displays the
length of the variable.

In the examples above, the pathname CALC\CALC indicates that the
program consists of only one routine: the routine name and the module
name are the same.

3.1.1 Specifying the Data Type of Data to Deposit

When you examine a PL/I variable or deposit data into one, you do not
need to specify the data type of the variable, unless you want to
deposit data of a different type. 1In the following example, XVALUE is
declared with the attributes FLOAT BINARY:

EXAMINING AND DEPOSITING DATA

DBG>EXAMINE XVALUE
MAIN\XVALUE: 14.50000
DBG>EXAMINE/BYTE XVALUE
MAIN\XVALUE: 68

The debugger always uses the declared data type (including extent and
precision) of a wvariable, unless you override it. In this example,
the /BYTE qualifier tells the debugger to display only the contents of
the first byte of the storage occupied by the variable XVALUE.

You can use the SET TYPE/OVERRIDE command to tell the debugger to
display all variables using a certain type, for example:

DBG>SET TYPE/OVERRIDE /BYTE
After this command is issued, the debugger only displays the first

byte of any variable's storage. To restore the normal interpretation
of data types, use the CANCEL MODE command.

3.1.2 Restrictions on Examining and Depositing Data
For this release of VAX-11 PL/I, there are restrictions on both the
data types and storage classes of variables that you can access. You
cannot examine or modify:

e Structures

e Arrays with asterisk (*) or variable extents

e Variables with asterisk (*) or variable extents

e Label variables

e Pictures

e Parameters

e File data

e Formats

e Area or offset data

e Defined or based variables

In general, you can examine, evaluate, and deposit 1into a static,
scalar variable of any data type. You can also examine static arrays.

Static variables that are not assigned or initialized have initial
values of 2zero. If you display them, numeric values and bit strings
are displayed as zeros; character strings are null bytes, which are
nonprinting characters and appear blank when displayed. For example:

DBG>EXAMINE P
MAINP\MAINP\P(1:10): +0000000000
DBG>EXAMINE A
MAINP\MAINP\ALPHA\A(1:10):

Automatic variables may also be examined and deposited into; however,
since automatic variables are allocated from stack storage, their
contents are not valid until after they have been assigned. For
example:

DBG>EXAMINE X
MAINP\MAINP\X: 2147287308

EXAMINING AND DEPOSITING DATA

In this example, the contents of variable X are meaningless until
after the assignment of a value to the variable X.

There are special considerations for examining automatic arrays,
character strings, bit strings, and fixed-point decimal variables.
When you examine automatic variables whose storage is more than a
longword, you must supply a range of addresses or a length to the
debugger. To examine a range, you must change the language to MACRO,

The remainder of this chapter provides notes on examining and
depositing into static and automatic wvariables of different data
types.

The program MAINP, shown in Figure 3-1, contains the statements and
declarations that are referenced in the examples in the remainder of
this chapter.

1| /* Sample Program for Explaining Debugger Rules */
2
3 MAINP: PROCEDURE OPTIONS (MAIN);
4 1
5 1 DECLARE (X, Y, VALUE) FIXED,
6 1 (P, O, R) FIXED DECIMAL (10,5) STATIC;
7 1
8 1 X = 2;
9 1 Y = 3;
10 1 VALUE = X+Y;
11 1 PUT SKIP LIST(VALUE);
12 1
13 1 P = 123.45;
14 1 Q = 66666,3333;
15 1 R = DIVIDE(Q,P,10,5);
16 1 PUT SKIP LIST(R);
17 1 CALL ALPHA;
18 1
19 1 ALPHA: PROCEDURE; /* Internal procedure */
20 2 DECLARE RESULT FLOAT STATIC,
21 2 A CHARACTER (10) STATIC,
22 2 B BIT(32) ALIGNED STATIC,
23 2 C CHARACTER (10},
24 2 D CHARACTER (60) VARYING;
25 2
26 2 A = 'AAAAA';
27 2 B = '11000'B;
28 2 C = 'Ccccer;
29 2 D = AllIB]IC;
30 2 PUT SKIP LIST(D);
31 2
32 2
33 2 BETA: BEGIN; /* Begin block #*/
34 3 DECLARE SQUARE ROOTS (10) FLOAT STATIC,
35 3 X FIXED;
36 3
37 3 DO X = 1 TO 10;
38 4 SQUARE ROOTS (X) = SOQRT (X);
39 4 PUT SKIP LIST(SQUARE ROOTS (X));
40 4 END; -
41 3 END BETA;
42 2
43 2 END ALPHA;
44 1 END MAINP;

Figure 3-1 The Sample Program, MAINP

EXAMINING AND DEPOSITING DATA

3.2 FIXED-POINT BINARY AND FLOATING-POINT VARIABLES

You can use the EXAMINE and DEPOSIT commands with fixed-point binary
and floating-point variables. For example:

DBG>EXAMINE Y
MAINP\MAINP\Y: 3

DBG>DEPOSIT Y = 866

DBG>STEP

start at MAINP\MAINP $LINE 10
stepped to MAINP\MAINP $LINE 11
DBG>EXAMINE VALUE
MAINP\MAINP\VALUE: 868

Here, the EXAMINE command displays the contents of the fixed-point
variable, Y, after 1its assignment on line 9 in Figure 3-1. Then, a
DEPOSIT command changes its contents, a STEP command executes the next
statement, and the EXAMINE command displays the resulting contents of
VALUE.

3.3 FIXED-POINT DECIMAL DATA

You can examine and deposit into static, scalar variables with the
fixed-point decimal data type. However, you must infer the position
of the decimal point in the value. For example:

DBG>EXAMINE R
MAINP\MAINP\R(1:10): 40054002700

The precision and scale factor of R are (10,5); thus, this wvalue
represents 540.027.

3.4 CHARACTER-STRING VARIABLES

The debugger best supports fixed-length static character-string
variables. When vyou examine such a variable, the debugger displays
the entire storage of the variable. When you deposit data in it, the
debugger by default changes the entire storage of the variable. For
example, after the assignment of A on line 26 in Figure 3-1:

DBG>EXAMINE A
MAINP\MAINP\ALPHA\A(1:10): AAAAA

To examine or change only a portion of a wvariable, wuse the /ASCII
qualifier to specify the number of characters you want to change, as
in this example:

DBG>DEPOSIT/ASCII:2 A = 'CC!

This command changes only the first two characters of the variable A.
Note that vyou must enclose strings in apostrophes when you specify
them to the debugger, as is true in PL/I.

When you examine a fixed-length character-string variable that has the
AUTOMATIC attribute, you must specify /ASCII:length on the EXAMINE
command to examine the variable. For example:

DBG>EXAMINE/ASCII:10 C
2147287779: CCCCC

Remember that the value of an automatic variable is not wvalid until
after it has been assigned.

EXAMINING AND DEPOSITING DATA

For character-string variables with the VARYING attribute, you must
change the 1language to MACRO to determine the current length and
display the contents of the wvariable. The first word of the
variable's storage contains its length. For example:

DBG>SET LANGUAGE MACRO

DBG>EXAMINE/WORD D

7FFDO2DE: 0034

DBG>EXAMINE/ASCII:34 D+2

7FFDO02EO: AAAAA 11000000000000000000000000000000CCCCC

In this example, the length of the variable (after its assignment in
statement 29) is 34 hexadecimal. This value is then used as a range
in the examination of the contents of the variable, which begins two
bytes beyond the beginning of the variable's storage.

Note that when you specify /ASCII, the debugger displays the wvirtual
address of the variable, rather than its identifier.

3.5 BIT-STRING VARIABLES

The debugger treats and displays bit strings as if they were
longwords. For example:

DBG>EXAMINE B
MAINP\MAINP\ALPHA\B: 3

Note that bit-string values are stored in reverse order, as 1in the
preceding example. The bit-string constant '11000' 1is stored as
'00011', or 3 (decimal).

The most efficient way to modify a bit-string variable is to use the
DEPOSIT command with the /HEXADECIMAL qualifier. For example:

DBG>DEPOSIT/HEX B = 0COCC
DBG>EXAMINE B
MAINP\MAINP\ALPHA\B: 49356

Bit strings may be more meaningful if you examine the contents of the
variable in hexadecimal. For example:

DBG>EXAMINE/HEX B
MAINP\MAINP\ALPHA\B: 0000COCC

3.6 STATIC ARRAYS
The debugger can interpret static array references of up to seven
dimensions only. You can refer to static arrays of the data types
listed below using subscripted references. The valid data types are
as follows:

e Fixed-point binary (FIXED BINARY)

e Floating point (FLOAT DECIMAL or FLOAT BINARY)

e Character nonvarying (CHARACTER)

e Aligned bit strings (BIT ALIGNED)

For example, the floating-point array SQUARE ROOTS may be examined as
follows:

EXAMINING AND DEPOSITING DATA

DBG>EXAMINE SQUARE ROOTS (2)
MAINP\MAINP\ALPHA\EEGIN%Bl\SQUARE_ROOTS(2): 2.000000
DBG>EXAMINE SQUARE ROOTS (7)
MAINP\MAINP\ALPHA\gEGIN%31\SQUARE_ROOTS(7): 2.645751

Arrays with bit-string elements are valid only if the array has the
ALIGNED attribute, and if the length of the bit-string elements, when
rounded to the nearest byte, is 1, 2, or 4.

Under these circumstances, the debugger will recognize the array but
treat it as a byte, word, or longword array (that is, an array of
fixed binary variables with a precision of 7, 15, or 31). To examine
the elements of a . such an array, it 1is convenient to use the
/HEXADECIMAL qualifier of the debugger command EXAMINE. For example,
a bit-string array may be declared and assigned values as follows:

DECLARE BITS(5) BIT (31) ALIGNED STATIC;
DECLARE X FIXED;

DO X = 1 TO 5;
BITS (X) = BIT(X);
END;

During a debugging session, these elements may be examined as follows:

DBG>EXAMINE/HEX BITS (1):BITS(5)

ARRAYS\ARRAYS\BITS(1l): 40000000
ARRAYS\ARRAYS\BITS (2): 20000000
ARRAYS\ARRAYS\BITS (3): 60000000
ARRAYS\ARRAYS\BITS(4): 10000000
ARRAYS\ARRAYS\BITS (5): 50000000

Note again that the values of the bit strings are reversed when they
are stored internally. These same values, when output with PUT LIST
statements, would appear as follows:

'0000000000000000000000000000001°'B
'0000000000000000000000000000010"'B
'0000000000000000000000000000011'B
'0000000000000000000000000000100'B
'0000000000000000000000000000101'B

3.7 AUTOMATIC ARRAYS AND FIXED-POINT DECIMAL ARRAYS

To examine and modify elements of automatic arrays and of static
arrays of fixed-point decimal wvariables, you must calculate the
address of an element or elements and specify the address range in an
expression. To specify an address expression, the language must be
set to MACRO.

For example, if the bit-string array in the example in the preceding
section were declared without the STATIC attribute, you would have to
enter the following commands in order to display the elements:

DBG>SET LANGUAGE MACRO
DBG>EXAMINE/HEX BITS:BITS+10
ARRAYS\ARRAYS\BITS: 40000000
ARRAYS\ARRAYS\BITS+04: 20000000
ARRAYS\ARRAYS\BITS+08: 60000000
ARRAYS\ARRAYS\BITS+0C: 10000000
ARRAYS\ARRAYS\BITS+10: 50000000

where the hexadecimal value 10 represents the address of the last
element of the array. Note that when the language is MACRO, the
default radix is set to hexadecimal. In this example, each element

3-6

EXAMINING AND DEPOSITING DATA

occupies a longword, or four Dbytes. The expression BITS:BITS+10
displays 20 bytes, the total amount of storage occupied by the array.

Fixed-point decimal arrays (both automatic and static) can also be
accessed this way. In a fixed-point decimal value, each digit is
stored in a four-bit field; the final field contains a sign digit.
For example, the array declared as follows:

DECIMALS (5) FIXED DECIMAL (10,5)

is stored in consecutive six-byte locations. To examine the third
element of this array, you can set the language to MACRO and specify
the location of the element as follows:

DBG>SET LANGUAGE MACRO

DBG>EXAMINE/BYTE DECIMALS+<2*6>:DECIMALS+<3*6>-1
7FFD035C: 02

7FFD035D: 71

7FFDO35E: 68

7FFDO35F: 79

JFFD0360: 00

7FFD0361: 0C

The expression <2*6> represents the offset of two six-byte elements
from the beginning of the array's storage. The second expression
represents the end of the second element. In the output shown above,
each byte contains two digits. The current value of DECIMALS(3) is
21786.97000. The C indicates that the wvalue 1is positive. (A 'D’
would indicate a negative value.)

You can similarly calculate the addresses of elements of connected
automatic arrays of the following data types:

e Fixed-point binary

e Floating point

e Character nonvarying

e Character varying
All arrays are stored in contiguous storage locations. Note that in
character-string arrays with the VARYING attribute, each element is

preceded by a two-byte length field. You must consider this 1length
when you perform the calculations.

CHAPTER 4

CONTROLLING A PROGRAM'S EXECUTION

To see what happens during execution of your program, you must be able
to suspend and resume the program at specific points. This chapter
describes the following debugging concepts:

e Starting and stopping program execution

e Stepping through a program

e Breakpoints

e Tracepoints

e Watchpoints

This chapter also describes how to invoke subroutines during a
debugging session.

4.1 STARTING AND STOPPING EXECUTION

Use the GO command to start program execution. You must wuse this
command when you begin the debugging session, and when you want to
continue the program's execution after it has been suspended. For
example:

$ RUN FLOWERS
VAX-11 DEBUG Version 2.00

$DEBUG-I-INITIAL, language is 'BASIC', scope and module set to 'FLOWERS'
DBG>GO

$DEBUG-I-EXITSTATUS, is '$SYSTEM-S-NORMAL, normal successful completion'
DBG>

The EXITSTATUS message indicates that the program has run to
completion.

When you are finished with the debugging session, use the EXIT command
to 1leave the debugger. You must not restart a program from the
beginning wunless you first exit from the debugger. Otherwise,
unspecified results occur.

NOTE

For this release of the debugger, the
debugger sometimes displays erroneous
error messages when a procedure with the
MAIN option completes. You can ignore
these messages.

CONTROLLING A PROGRAM'S EXECUTION

If your program loops or fails to complete executing, or if you need
to interrupt it for any other reason, you can press to return
to the DCL command level. For example:

DBG>GO (M)

4
$

The $ prompt on the terminal indicates that you have returned to the
DCL command level. To return to the debugger, type DEBUG or CONTINUE.
If you type DEBUG, control returns to the debugger and the debugger
prompts you for a commmand. If you type CONTINUE, the debugging
session continues from where it was interrupted.

If you do not want to continue the debugging session, you can enter a
STOP command or another DCL command to stop the debugging session.
You can also reissue the RUN command for the program you are
executing, if you want to rerun it beginning with its starting
conditions.

4.2 STEPPING THROUGH A PROGRAM

When you want to maintain control of your program, to be able to
display and/or modify variables following the execution of single
statements, you can use the STEP command.

You can use the STEP command to execute a program one line at a time
or you can specify a number of lines to execute. For example:

DBG>STEP 5

When this command is executed, the debugger executes the next five
statements and then suspends the program.

When you are stepping through a program, the debugger displays only
the 1line numbers of the 1lines as they are executed; it does not
display the statements.

The debugger maintains default modes for stepping commands. You can
override the default modes by entering qualifiers on a STEP command,
or by entering a SET STEP command to change the default. For example,
the default step for higher-level languages is STEP/LINE where step is
a line or statement number increment. In assembly language, the
default is STEP/INSTRUCTION. Thus, if you want to look at the machine
instructions that are executed for each PL/I statement line, enter the
debugger command SET STEP INSTRUCTION, as follows:

DBG>SET STEP INSTRUCTION
DBG>STEP
start at MAINP\MAINP\ALPHA SLINE 25
stepped to MAINP\MAINP\ALPHA 3LINE 26 :
MOVC5 #5,W~1536,#32,#10,B"-72(FP)
DBG>STEP
start at MAINP\MAINP\ALPHA SLINE 26
stepped to MAINP\MAINP\ALPHA 3LINE 27 : MOVZWL #32,R1
DBG>STEP
start at MAINP\MAINP\ALPHA 3LINE 27
stepped to MAINP\MAINP\ALPHA $LINE 27 +3: MOVZWL #32,R3
DBG>STEP

For each PL/I statement, there are one or more machine-language
instructions, and you must enter the STEP command for each
instruction. The debugger displays the machine language instruction.

CONTROLLING A PROGRAM'S EXECUTION

When vyou subsequently issue a STEP command without qualifiers,
instruction mode remains in effect. You can supersede this default by
including the /LINE qualifier in a STEP command. For example:

DBG>STEP/LINE 10

This command tells the debugger to execute 10 lines, regardless of the
current step default.

It is advisable to use STEP to execute only a few instructions at a
time. To execute many instructions, and then stop, use a SET BREAK
command to set a breakpoint, and then issue a GO command.

4.3 BREAKPOINTS

The BREAK commands let you select specified 1locations for program
suspension. Thus, you can Jlet a program run until it reaches a
specified statement, and then you can examine and/or modify variables
or arrays in the program. The BREAK commands perform the following
functions:

e SET BREAK defines a line number, procedure or entry-point
name, or an address at which to suspend execution

e SHOW BREAK displays all breakpoints currently set in the
program

e CANCEL BREAK removes selected breakpoints or all breakpoints
For example, the command
DBG>SET BREAK %LINE 7

sets a breakpoint at the statement corresponding to the line numbered
7 in the source program. When the breakpoint at line 7 is reached
during the execution of the program, the debugger interrupts the
program, as in this example:

DBG>SET BREAK SLINE 7

DBG>GO

routine start at MAINP\MAINP
break at MAINP\MAINP SLINE 7

After the breakpoint is set, the GO command continues the program
execution. When statement 7 is reached, the debugger interrupts the
program and displays a message indicating that the breakpoint |is
reached. At this breakpoint, you can examine or change static
variables, begin stepping through the program, and so on.

To set a breakpoint at a procedure entry point, specify it by name.
For example:

DBG>SET BREAK PRINT ROUTINE

This command sets a breakpoint at the entry to the procedure
PRINT ROUTINE.

You can use the /AFTER qualifier to control when a breakpoint takes
effect. For 1instance, 1if you set a breakpoint on a line that is in
the range of a DO loop, and you want the breakpoint to be effective
the third time through the loop, then specify /AFTER, as shown in the
following example:

DBG>SET BREAK/AFTER:3 3LINE 20

CONTROLLING A PROGRAM'S EXECUTION

Note that if you use the /AFTER qualifier, the breakpoint is reported
not only the nth time it is encountered, but also every time it is
encountered thereafter.

The SET BREAK command also lets you specify some action to be taken
each time a breakpoint 1is encountered. For example, to set a
breakpoint at a location, examine one or more variables, and continue,
you could enter a SET BREAK command as follows:

DBG>SET BREAK %LINE 29 DO (EXAMINE TOTAL; EXAMINE AREA; GO)
DBG>GO

After this command, the debugger sets a breakpoint at line 29. Each
time the statement on this line is executed, the debugger interrupts
the program, displays the contents of the variables TOTAL and AREA,
and executes the GO command to continue execution.

You can cancel a breakpoint with the CANCEL BREAK command. For
example:

DBG>CANCEL BREAK S$LINE 9

This command cancels the breakpoint at 1line 9. To cancel all
breakpoints, enter:

DBG>CANCEL BREAK/ALL

You can display the current breakpoints in effect with the SHOW BREAK
command.

4.4 TRACEPOINTS

A tracepoint is similar to a breakpoint in that it suspends program
execution and displays the address at the ©point of suspension.
However, in the case of a tracepoint, program execution resumes
immediately. Thus, tracepoints let you follow the sequence of program
execution to ensure that execution is carried out in the proper order.

Note that if you set a tracepoint at the same location as a current
breakpoint, the breakpoint is canceled, and vice versa.

The TRACE commands perform the following functions:

e SET TRACE establishes 1lines or entry points within the
program at which execution is momentarily suspended.

e SHOW TRACE displays the locations in the program at which
tracepoints are currently set.

e CANCEL TRACE removes one or more tracepoints currently set in
the program.

For example, you can use the SET TRACE if you want to keep track of
the number of times a given subroutine is called, as follows:

DBG>SET TRACE INSIDEOUT

Each time a call is made to INSIDEOUT, the debugger displays a message
like the following:

routine trace at MAINP\MAINP\INSIDEOUT

The message gives the pathname of the symbol.

CONTROLLING A PROGRAM'S EXECUTION

To set a tracepoint on a given statement, use the %LINE specifier, as
in the example below:

DBG>SET TRACE SLINE 30

While this tracepoint is set, the debugger displays a message each
time the statement on line 30 is executed.

4.5 WATCHPOINTS

A watchpoint is a location that the debugger monitors so that it can
inform you when vyour program has made an attempt to modify its
contents. When you debug a PL/I program, you can set a watchpoint on
a variable. When the watched wvariable 1is modified, the debugger
suspends program execution, displays the address of the instruction,
and prompts for a command.

Watchpoints are monitored continuously. You can determine, therefore,
whether 1locations are being modified inadvertently during program
execution.

You can use the following commands to control watchpoints:
e SET WATCH defines the location(s) to be monitored.

e SHOW WATCH displays the location (s) currently being
monitored.

e CANCEL WATCH disables monitoring of the specified locations.

You can monitor only static scalar variables and array elements.
Because automatic wvariables are allocated storage on the stack, they
are .protected from access. For example:

DBG>SET WATCH AREA

Note that you cannot set watchpoints, tracepoints, and breakpoints at
the same 1location; the most recently issued command overrides the
other(s).

Note that run-time errors occur if a watchpoint is in effect while I/O
is being performed. Thus, to watch a variable, you must be careful
not to set the watchpoint until all previous I/0 1is completed. You
can do this by setting a breakpoint following an I/0 statement and
then setting a watchpoint. For example, 1if you want to watch a
variable R in a procedure that contains a PUT statement on line 12,
you could set the watchpoint as follows:

DBG>SET BREAK %LINE 13.1 DO (SET WATCH R;GO)
DBG>SET BREAK %LINE 12.1 DO (CANCEL WATCH R;GO)

NOTE

A bug in the BASIC support for the
Release 2 Debugger requires you to use
the syntax %line.l when you specify a DO
in a SET BREAK command, as 1in this
example.

The SET BREAK commands in the above example ensure that each time the
PUT statement 1is about to execute, the watchpoint at R is canceled.
Following the PUT statement, the watchpoint is reestablished.

CONTROLLING A PROGRAM'S EXECUTION

When a watchpoint is reached, the debugger suspends execution and
displays a message similar to the following:

write to MAINP\MAINP\R(l:6) at PC MAINP\MAINP SLINE 13 +25
old value +0000000000
new value +0054002700

DBG>

When a watched variable is modified, the debugger displays its former
contents, 1if any, and the modified contents. It then prompts you to
enter a command. You must enter GO or STEP to continue the program's
execution.

4.6 ENTERING AND RETURNING FROM SUBROUTINES

As you debug a program that consists of more than one procedure, you
can use the following to control the debugging:

e The STEP command lets you specify whether you want to debug a
called subroutine or step over it.

e The SHOW CALLS command displays a traceback showing the
calling sequence.

e The CALL command lets you invoke a subroutine and pass it
arguments.

4.6.1 Stepping Into and Over Subroutines

When you are stepping through a program, or when you have set a
breakpoint at a statement that is a CALL statement, you can decide
whether or not to enter the subroutine. To enter the subroutine,
enter:

DBG>STEP/INTO

If the names declared in this module are not already in the
debuggers's symbol table, you must also enter a SET MODULE command to
include the symbols (including 1line numbers) that you want to
reference.

If you do not want to debug the subroutine, enter:
DBG>STEP/OVER

Then, the debugger continues the program's execution at the
subroutine's entry point and returns control to you when the
subroutine returns.

The STEP command also lets you decide whether you want to step through
system routines, for example, PL/I run-time procedures or system
services. If you specify STEP/SYSTEM, then the debugger will step
through system routines for you. You cannot, however, set breakpoints
or examine data that is being used by system procedures.

You can use the SET STEP command to set a default mode for stepping.
For example:

DBG>SET STEP INTO
After this command, the debugger steps into all subroutines. Note,

however, that the debugger steps into the PL/I run-time routines as
well as into your subroutines.

CONTROLLING A PROGRAM'S EXECUTION

4.6.2 Displaying the Calling Sequence

The SHOW CALLS command produces a traceback of <calls, and is
particularly useful when you have returned to the debugger following a
interrupt.

The debugger displays a traceback list that shows you the sequence of
calls 1leading to the current module. If you specify a value, for
example

DBG>SHOW CALLS 6

the six most recent calls are displayed.

4.6.3 Calling Subroutines

You can use the debugger command CALL to invoke an internal or
external subroutine or function during the debugging session. You can
also specify arguments using variables. For example, assume a program
contains the following subroutine:

CALC: PROCEDURE (P,Q);
DECLARE (P,Q) FIXED;

Q = P**P;
END;

If you have variables X and Y declared as FIXED, vyou can test this
subroutine as in the following examples:

DBG>DEPOSIT X = 5

DBG>CALL CALC (X,Y)

routine start at MAINP\MAINP\CALC
value returned is 1342195267
DBG>EXAMINE Y

MAINP\MAINP\Y: 3125

DBG>DEPOSIT X = 7

DBG>CALL CALC (X,Y)

routine start at MAINP\MAINP\CALC
value returned is 259017289
DBG>EXAMINE Y

MAINP\MAINP\Y: 823543

Note that when you specify arguments with the CALL command, you must
use only variable names; the debugger cannot pass constants to PL/I
procedures,

The debugger always displays a return value from the procedure that
was 1invoked. Thus, if the procedure is a function, the actual return
value will be displayed. However, if the procedure is a subroutine,
as in this example, the returned value is meaningless.

APPENDIX A

VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

This appendix summarizes the modules and entry points in the VAX-11
PL/I run-time system. Table A-1 lists the modules in the library and
summarizes the function(s) performed by each. Table A-2 1lists the
entry points, gives the name of the module in which the entry point is
defined and summarizes the function performed by that entry. Table
A-3 1lists the modules from the VAX-11l Run-Time Procedure Library that
are called by PL/I run-time modules.

Table A-1
VAX-11 PL/I Run-Time Modules

Module Function(s)

LIBSEMULATE Emulates G and H floating point

PLISSBYTESIZE Calculates the size of an item for an I/0
operation

PLISSENVIR Processes ENVIRONMENT options

PLIS$$PROTVCHA Converts system protection bits to
character varying strings

PLISBIT Performs bit manipulations

PLISCHAR Performs character manipulations

PLISCLOSE Closes files

PLISCONDIT Performs default condition handling for

MAIN procedures

PLISCONTROL Processes main procedure startup and
stopping, and performs exit handling

PLISCONVERT Performs data conversions

PLISCVTPIC Performs picture conversions and
validation

PLISDATA Contains run-time constants, the

collating sequence, and tables
PLISDELETE Performs the DELETE statement

PLISDIVIDE PACKED LONG Performs extended precision division for
precisions greater than or equal to 30

(Continued on next page)

VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

Table A-1 (Cont)

VAX-11 PL/I Run-Time Modules

Module

Function(s)

PLI$DIVIDE PACKED SHORT

PLISERRORMSG
PLISFORMAT

PLISGETBUFFER

PLISGETEITEM

PLISGETFILE

PLISGETLISTITEM
PLISHEEP
PLI$MATH
PLISOPEN

PLISPUTBUFFER

PLISPUTEDITITEM

PLISPUTFILE

PLISPUTLISTITEM
PLISREAD
PLI$RECOPT
PLISREWRITE
PLISRMSBIS

PLI$STRINGIO
PLISTIME DATE

PLISWRITE

Performs extended precision division for
precisions less than 30

Constructs and displays error messages
Processes format items

Provides the file system interface for
GET FILE statement

Performs GET EDIT operations

Provides the program interface for GET
FILE operations

Performs GET LIST operations
Obtains dynamic storage
Performs mathematical functions
Opens files

Provides the file system interface for
PUT FILE operations

Performs the PUT EDIT statement

Provides the program interface for PUT
FILE operations

Performs the PUT LIST statement

Performs the READ statement

Processes I/0 options and keys

Performs the REWRITE statement

Performs file-handling built-in functions

Provides the program interface for GET
STRING

Performs the DATE and TIME built-in
functions

Performs the WRITE statement

VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

Table A-2
Run-Time Entry Points

Performs the PL/I Function

Entry Point Module

PLISSBYTESIZE PLISSBYTESIZE Sizing of I/0 item

PLI$$CHK_KEYCND PLISRECOPT Validation of key data type

PLI$SCHARBITN R6 | PLISGETBUFFER Conversion of character to bit

PLISSENVIR PLISSENVIR ENVIRONMENT options

PLI$$FXCTLTO_R6 PLISRECOPT FIXED CONTROL_TO option

PLIS$SSFXDCTLFROM PLISRECOPT FIXED CONTROL FROM option

PLI$$GETFMT_R6 PLISFORMAT GET EDIT format

PLI$$GETNEDI_B6 PLISGETBUFFER GET EDIT format item

PLI$$GETNLIS_R6 PLISGETBUFFER Next list item

PLI$$GETSKIP_R2 PLISGETBUFFER SKIP option

PLI$$GETSKP1_R2 PLISGETBUFFER SKIP option

PLI$$GET_REC PLISGETBUFFER Stream input

PLISSKEYNUM PLISRECOPT INDEX NUMBER option

PLI$$KEYTO_R8 PLISRECOPT KEYTO option

PLI$SKEY HND PLISRECOPT Key conversion errors

PLI$SMATCHGEQ PLISRECOPT MATCH GREATER_EQUAL option

PLISSMATCHGTR PLISRECOPT MATCH__ GREATER option

PLI$SPROTVCHA PLIS$SPROTVCHA Converts system protection
bits to character varying
strings

PLI$$PUTFMT_R6 PLISFORMAT PUT EDIT format items

PLI$$PUTNEDI_R6 PLISPUTBUFFER Next output edit item

PLI$$PUTNLIS_R6 PLISPUTBUFFER Next output list item

PLI$$PUTPAGE_R6 PLISPUTBUFFER PUT PAGE

PLI$$PUTSKP1_R2 PLISPUTBUFFER PUT SKIP

PLI$$PUT_REC PLISPUTBUFFER PUT buffer

PLI$$READKEY_R6 PLISRECOPT KEY option

PLI$$STREAM_HND PLISCONDIT gsgdition handling for stream

PLISSTERM PROG PLISCONTROL Program termination

(Continued on next page)

VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

Table A-2 (Cont)
Run-Time Entry Points

Entry Point Module Performs the PL/I Function

PLISSVALRECIDTO PLISRECOPT RECORD_ID TO

PLI$$WRITEKEY_RS PLISRECOPT KEYFROM option

PLISABITABIT_R6 PLISCONVERT Conversion of aligned bit to
aligned bit

PLISABITBIT_R6 PLISCONVERT Conversion of aligned bit to
unaligned bit

PLISABITCHAR R6 | PLI$CONVERT Conversion of aligned bit to
character

PLI$ABITFIXB_R6 PLISCONVERT Conversion of aligned bit to
fixed binary

PLISABITFIXD R6 PLISCONVERT Conversion of aligned bit to
fixed decimal

PLISABITFLTB_R6 PLISCONVERT Conversion of aligned bit to
floating binary

PLISABITFLTD R6 PLISCONVERT Conversion of aligned bit to
floating decimal

PLISABITPIC R6 PLISCONVERT Conversion of aligned bit to
picture

PLISABITVCHA R6 PLISCONVERT Conversion of aligned bit to
varying character

PLI$AB~COLAT PLISDATA Collating table

PLISALOCHEEP PLISHEEP Memory allocation

PLISANDBIT PLISBIT AND bit strings

PLI$SBITABIT R6 PLISCONVERT Conversion of unaligned bit to
aligned bit

PLISBITBIT_ R6 PLISCONVERT Conversion of unaligned bit to
unaligned bit

PLI$BITCHAR R6 PLISCONVERT Conversion of unaligned bit to
character

PLISBITFIXB R6 PLISCONVERT Conversion of unaligned bit to

- fixed binary
PLISBITFIXD R6 PLISCONVERT Conversion of unaligned bit to
- fixed decimal

PLISBITFLTB R6 PLISCONVERT Conversion of unaligned bit to
floating binary

PLISBITFLTD R6 PLISCONVERT Conversion of unaligned bit to
floating decimal

PLISBITPIC R6 PLISCONVERT Conversion of unaligned bit to

picture

(Continued on next page)

VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

Table A-2 (Cont)
Run-Time Entry Points

Entry Point Module Performs the PL/I Function

PLISBITVCHA R6 PLISCONVERT Conversion of unaligned bit to
varying character

PLISBOOLBIT PLISBITVERT BOOL built-in function

PLISBOUND CHECK PLISCONDIT Array bound checking

PLISB_PACO PLISDATA Holds packed decimal constant

PLISB_PAC1 PLISDATA Holds packed decimal constant

PLISB_PACS PLISDATA Holds packed decimal constant

PLIS$B PACN1 PLISDATA Holds packed decimal constant

PLISB_SCAN PLISDATA Holds scan/span table

PLISCATBIT PLISBIT Bit concatenation

PLISCHARABIT R6 PLISCONVERT Conversion of character to
aligned bit

PLISCHARBIT R6 PLISCONVERT Conversion of character to
unaligned bit

PLISCHARCHAR_R6 PLISCONVERT Conversion of character to
character

PLISCHARFIXB R6 PLISCONVERT Conversion of character to
fixed binary

PLISCHARFIXD R6 PLISCONVERT Conversion of character to
fixed decimal

PLISCHARFLTB_R6 PLISCONVERT Conversion of character to
floating binary

PLISCHARFLTD R6 PLISCONVERT Conversion of character to
floating decimal

PLISCHARPIC_R6 PLISCONVERT Conversion of character to
picture

PLISCHARVCHA R6 PLISCONVERT Conversion of character to
varying character

PLISCLOSE PLISCLOSE CLOSE statement

PLISCMPBIT PLISBIT Bit comparisons

PLI$CND_ HND PLISCONDIT Condition handling for

procedures without MAIN option

(Continued on next page)

VAX—-11 PL/L RUN-TIME MODULES AND ENTRY POINTS

Table A-2 (Cont)
Run-Time Entry Points

Entry Point Module Performs the PL/I Function

PLISCNVRT_ HND PLISCONDIT Condition handling for
conversion errors

PLI$CVRT_ANY PLISCONVERT All conversions

PLISCVRT_CG_R3 PLISCONVERT All conversions

FLISCVT_FR PIC PLISCVTPIC Conversions from pictures

PLISCVT TO PIC PLISCVTPIC Conversions to pictures

PLISDATE

PLISDEF_HND

PLISDELETE
PLISDISPLAY

PLISDIV_PKSHORT
PLISDIV_PK_LONG

PLISEXIT HND
PLI$EXTEND
PLISFCB_HEAD

PLISFIXBABIT R6
PLISFIXBBIT R6

PLISFIXBCHAR R6
PLISFIXBFIXB_R6
PLISFIXBFIXD R6
PLISFIXBFLTB_R6
PLISFIXBFLTD R6
PLISFIXBPIC_R6

PLISFIXBVCHA R6

PLISFIXDABIT R6

PLI$TIME_DATE

PLISCONDIT

PLISDELETE
PLISRMSBIS

PLISDIVIDE-
_PACKED_SHORT

PLISDIVIDE-
_PACKED_LONG

PLISCONTROL
PLISRMSBIS
PLISCONTROL

PLI$CONVERT
PLISCONVERT
PLISCONVERT
PLISCONVERT
PLISCONVERT
PLISCONVERT
PLISCONVERT
PLISCONVERT
PLISCONVERT

PLISCONVERT

DATE built-in function

Condition handling for MAIN
procedures

DELETE statement
DISPLAY built-in subroutine

Extended precision division

Extended precision division

Exit handling
EXTEND built-in subroutine
List of file headers

Conversion of fixed binary to
aligned bit
Conversion of fixed
unaligned bit

binary to

Conversion of fixed

character

binary to

Conversion of fixed

fixed binary

binary to

Conversion of fixed

fixed decimal

binary to

Conversion of fixed
floating binary

binary to

Conversion of fixed
floating decimal

binary to
Conversion of fixed binary to
picture

Conversion of fixed
varying character

binary to

Conversion of fixed decimal to
aligned bit

(Continued on next page)

VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

Table A-2 (Cont)
Run-Time Entry Points

Entry Point Module Performs the PL/I Function

PLISFIXDBIT R6 PLISCONVERT Conversion of fixed decimal to
unaligned bit

PLISFIXDCHAR R6 PLISCONVERT Conversion of fixed decimal to
character

PLISFIXDFIXB_RG PLISCONVERT Conversion of fixed decimal to
fixed binary

PLISFIXDFIXD R6 PLISCONVERT Conversion of fixed decimal to
fixed decimal

PLISFIXDFLTB R6 PLISCONVERT Conversion of fixed decimal to
floating binary

PLISFIXDFLTD R6 PLISCONVERT Conversion of fixed decimal to
floating decimal

PLISFIXDPIC R6 PLISCONVERT Conversion of fixed decimal to
picture

PLISFIXDVCHA R6 PLISCONVERT Conversion of fixed decimal to
varying character

PLISFLTBABIT_R6 PLISCONVERT Conversion of floating binary
to aligned bit

PLISFLTBBIT R6 PLISCONVERT Conversion of floating binary
to unaligned bit

PLISFLTBCHAR_R6 PLISCONVERT Conversion of floating binary
to character

PLISFLTBFIXB_R6 PLISCONVERT Conversion of floating binary
to fixed binary

PLISFLTBFIXD R6 | PLISCONVERT Conversion of floating binary
to fixed decimal

PLISFLTBFLTB_R6 | PLISCONVERT Conversion of floating binary
to floating binary

PLISFLTBFLTD R6 PLISCONVERT Conversion of floating binary
to floating decimal

PLISFLTBPIC_R6 PLISCONVERT Conversion of floating binary
to picture

PLISFLTBVCHA R6 PLISCONVERT Conversion of floating binary
to varying character

PLISFLTDABIT R6 | PLISCONVERT Conversion of floating decimal
to aligned bit

PLISFLTDBIT R6 PLI$CONVERT Conversion of floating decimal
to bit

PLISFLTDCHAR_R6 PLISCONVERT Conversion of floating decimal
to character

(Continued on next page)

VAX-11

PL/I RUN-TIME MODULES AND ENTRY POINTS

Table A-2 (Cont)
Run-Time Entry Points

Entry Point Module Performs the PL/I Function

PLISFLTDFIXB_ R6 PLISCONVERT Conversion of floating decimal
to fixed binary

PLISFLTDFIXD R6 PLISCONVERT Conversion of floating decimal
to fixed decimal

PLISFLTDFLTB R6 PLISCONVERT Conversion of floating decimal
to floating binary

PLISFLTDFLTD R6 PLISCONVERT Conversion of floating decimal
to floating decimal

PLISFLTDPIC_R6 PLISCONVERT Conversion of floating decimal
to picture

PLISFLTDVCHA R6 PLISCONVERT Conversion of floating decimal
to varying character

PLISFLUSH PLISRMSBIS FLUSH built-in subroutine

PLISFREEHEEP PLISHEEP Virtual memory deallocation

PLISGETEABIT R6 PLISGETEITEM GET aligned bit item to edit

PLI$GETEBIT_R6 PLISGETEITEM GET EDIT of bit item

PLISGETECHAR_R6 PLISGETEITEM GET EDIT of character item

PLI$GETEFIXB_R6 PLISGETEITEM GET EDIT of fixed binary item

PLI$GETEFIXD_R6 PLISGETEITEM GET EDIT of fixed decimal item

PLI$GETEFLTB_R6 PLISGETEITEM GET EDIT of floating binary
item

PLI$GETEFLTD_RG PLISGETEITEM GET EDIT of floating decimal
item

PLI$GETEPIC_R6 PLISGETEITEM GET EDIT of pictured item

PLI$GETEVCHA_R6 PLISGETEITEM GET EDIT of varying character
item

PLISGETFILE PLISGETFILE GET statement

PLI$GETLABIT_RG PLISGETLITEM GET LIST of aligned bit item

PLI$GETLBIT_R6 PLISGETLITEM GET LIST of bit item

PLISGETLCHAR R6 PLISGETLITEM GET LIST of character item

PLI$GETLFIXB_R6 PLISGETLITEM GET LIST of fixed binary item

PLISGETLFIXD_RG PLISGETLITEM GET LIST of fixed decimal item

PLI$GETLFLTB_R6 PLISGETLITEM GET LIST of floating binary
item

(Continued on next page)

VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

Table A-2 (Cont)
Run-Time Entry Points

Entry Point Module Performs the PL/I Function

PLI$GETLFLTD_R6 PLISGETLITEM gET LIST of floating decimal
item

PLI$GETLPIC_R6 PLISGETLITEM GET LIST of pictured item

PLISGETLVCHA PLISGETLISTITEM GET LIST of varying character
item

PLI$GETSTRNG_RG PLISSTRINGIO GET STRING

PLISGOTO PLISCONDIT GOTO

PLISINDEXBIT PLISBITDIT INDEX built-in function for
bits

PLISIO_ERROR PLISCONDIT I/0 error messages

PLI$LINK_FCB PLISCONTROL PLISOPEN Linkage of open file

~ headers

PLISMOVBIT PLISBIT Bit copies

PLISMOVTRANCHAR PLISCHAR TRANSLATE built-in function

PLISNEXT_VOLUME PLISRMSBIS NXTVOL built-in subroutine

PLI$NOLOC_GOTO PLISCONDIT Nonlocal GOTO

PLI$NONLOC_RET PLISCONDIT Nonlocal RETURN

PLISNOTBIT PLISBIT NOT bits

PLIéONCNDARG PLISCONDIT ONARGSLIST built-in function

PLISONCODE PLISCONDIT ONCODE built-in function

PLISONFILE PLISCONDIT ONFILE built-in function

PLISONKEY PLISCONDIT ONKEY built-in function

PLISOPEN PLISOPEN OPEN statement

PLISOPTIONSMAIN PLI$CONTROL MAIN procedure initialization

PLI$OPTMAIN_HND PLISCONDIT Condition handling for MAIN
procedure

PLI$OPTMAIN_RET PLISCONDIT RETURN from MAIN procedure

PLISORBIT PLISBIT OR bits

PLISPICABIT_R6 PLISCONVERT Conversion of picture to
aligned bit

PLISPICBIT R6 PLIS$CONVERT Conversion of picture to
unaligned bit

PLISPICCHAR R6 PLISCONVERT Conversion of picture to

character

(Continued on next page)

VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

Table A-2 (Cont)
Run-Time Entry Points

Entry Point Module Performs the PL/I Function

PLISPICFIXB_R6 PLISCONVERT Conversion of picture to fixed
binary

PLISPICFIXD R6 PLISCONVERT Conversion of picture to fixed
decimal

PLISPICFLTB_R6 PLISCONVERT Conversion of picture to
floating binary

PLISPICFLTD R6 PLISCONVERT Conversion of picture to
floating decimal

PLISPICPIC_RG PLISCONVERT Conversion of picture to
picture

PLISPICVCHA R6 PLISCONVERT Conversion of picture to
varying character

PLISPUTEABIT_RG PLISPUTEDITITEM PUT EDIT of aligned bit item

PLI$PUTEBIT_R6 PLISPUTEDITITEM PUT EDIT of unaligned bit item

PLISPUTECHAR_RG PLISPUTEDITITEM PUT EDIT of character item

PLI$PUTEFIXB_R6 PLISPUTEDITITEM PUT EDIT of fixed binary item

PLI$PUTEFIXD_R6 PLISPUTEDITITEM PUT EDIT of fixed decimal item

PLI$PUTEFLTB_RG PLISPUTEDITITEM PUT EDIT of floating binary
item

PLI$PUTEFLTD_R6 PLISPUTEDITITEM PUT EDIT of floating decimal
item

PLI$PUTEPIC_R6 PLISPUTEDITITEM PUT EDIT of picture item

PLISPUTEVCHA_R6 PLISPUTEDITITEM PUT EDIT of varying character
item

PLISPUTFILE PLISPUTFILE PUT FILE statement

PLI$PUTLABIT_R6 PLISPUTLISTITEM PUT LIST of aligned bit item

PLI$PUTLBIT_RG PLISPUTLISTITEM PUT LIST of unaligned bit item

PLI$PUTLCHAR_B6 PLISPUTLISTITEM PUT LIST of character item

PLI$PUTLFIXB_R6 PLISPUTLISTITEM PUT LIST of fixed binary item

PLI$PUTLFIXD_RG PLISPUTLISTITEM PUT LIST of fixed decimal item

PLI$PUTLFLTB_R§ PLISPUTLISTITEM PUT LIST of floating binary
item

PLI$PUTLFLTD_R6 PLISPUTLISTITEM PUT LIST of floating decimal
item

PLI$PUTLPIC_RG PLISPUTLISTITEM PUT LIST of pictured item

PLI$PUTLVCHA_R6 PLISPUTLISTITEM PUT LIST of varying character
item

(Continued on next page)

VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

Table A-2 (Cont)
Run-Time Entry Points

Entry Point Module Performs the PL/I Function

PLI$PUTSTRNG_R6 PLISSTRINGIO PUT STRING statement

PLI$PUT_END_R6 PLISPUTBUFFER Flushing of PUT buffers

PLISREAD PLISREADUFFER READ statement

PLISRESIGNAL PLISCONDIT RESIGNAL built-in Subroutine

PLISRETURN PLISCONDIT RETURN statement

PLISREWIND PLISRMSBIS REWIND built-in subroutine

PLISREWRITE PLISREWRITE REWRITE statement

PLISRT_SUBSCRIP PLISCONDIT Signaling of subscript range
errors for uninitialized label
arrays

PLISRVRT_CND PLISCONDIT REVERT statement

PLISSPACEBLOCK PLISRMSBIS SPACEBLOCK built—in subroutine

PLISSTOP_PROG PLISCONTROL STOP statement

PLISTIME

PLISVALID PIC

PLISVCHAABIT R6

PLISVCHABIT R6

PLI$VCHACHAR R6

PLISVCHAFIXB_ R6

PLISVCHAFIXD R6

PLI$VCHAFLTB R6

PLISVCHAFLTD R6

PLISVCHAPIC R6

PLI$VCHAVCHA R6

PLISVERIFY

PLISWRITE

PLISTIME DATE

PLISCVTPIC

PLISCONVERT

PLISCONVERT

PLISCONVERT

PLISCONVERT

PLISCONVERT

PLISCONVERT

PLIS$CONVERT

PLISCONVERT

PLISCONVERT

PLISCHAR

PLISWRITE

TIME built-in function

VALID built-in function and
picture validation

Conversion of varying
character to aligned bit

Conversion of varying
character to unaligned bit

Conversion of varying
character to character

Conversion of varying
character to fixed binary

Conversion of varying
character to fixed decimal

Conversion of varying
character to floating binary

Conversion of varying
character to floating decimal

Conversion of varying
character to picture

Conversion of varying
character to varying character

VERIFY built-in function

WRITE statement

VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

Table A-3
Run-Time Library Procedures Called by PL/I

Procedure Function

LIBSEMULATE G and H floating-point emulation
LIBSFREE_VM Virtual memory deallocation
LIBSGET_VM Virtual memory allocation

LIBSLP_LINES Determine system default lines/page

LIBSSIGNAL Condition signaling

The VAX-11 PL/I mathmetical built-in functions are performed by the
VAX-11 run-time procedures 1listed below. These routines are all
called by PLISMATH:

MTH$$SJACKETHND MTH$DLOGRS8 MTHSHATAN?2
MTHS$SIGNAL MTH$DSIND MTHS$HATAND
MTH$ALOG2 MTHSDSINR7 MTHSHATAND2
MTHSALOGRS MTHSDTAND MTHSHATANH
MTHSATAN2 MTHSDTANR?7 MTHSHATANRS
MTHSATAND MTHSGATAN?2 MTHSHCOSD
MTHSATAND?2 MTHSGATAND MTHSHCOSRS
MTHSATANH MTHSGATAND2 MTHSHLOG?2
MTHSATANR4 MTHSGATANH MTHSHLOGRS
MTHS$COSD MTHSGATANR7 MTH$HSIND
MTHS$COSR4 MTHS$GCOSD MTHSHSINRS
MTHSDATAN2 MTHSGCOSR7 MTHSHTAND
MTHSDATAND MTH$GLOG2 MTHSHTANRS
MTHSDATAND?2 MTHS$GLOGRS MTHSKINVARGMAT
MTHSDATANH MTHS$GSIND MTHS$SIND
MTHSDATANR?7 MTHSGSINR7 MTHS$SINR4
MTHS$SDCOSD MTHSGTAND MTHSTAND
MTH$DCOSR7 MTHSGTANR?7 MTHSTANR4
MTHSDLOG?2

VAX-11] PL/I also calls run-time library modules that perform data
conversion. The following modules are called by PLI$CONVERT:

OTS$$CVT D T R8 OTSSCVT_T D

OTS$SCVT_G_T_R8 OTSSCVT T G

OTSSCVT_H_T_R8 OTSSCVT_T H

OTSSCHARSTAR_RG

The following routines are called by PLISFORMAT:
FORSCVT D TE

FORS$CVT_G_TE
FOR$CVT_H_TE

$INCLUDE statement, 1-2
$LINE
set tracepoint, 4-5
specify breakpoint, 4-3
specify pathname, 2-6
/ASCII qualifier, 3-4
/DEBUG qualifier, 1-2
/NODEBUG qualifier, 1-2
@ command, 1-4

A

Address expressions

how to specify, 2-4
Addresses

determine virtual, 2-4
Areas, 3-2
Arguments

specify on CALL command, 4-7
Arrays

automatic, 3-6

bit strings, 3-6

examine range of elements, 3-1

fixed-point decimal, 3-6

static, 3-5

variable extents, 3-2
Automatic variables

examine and deposit, 3-3

in registers, 1-3

scope, 2-8

B
Based variables, 3-2
BASIC message, 1-2
Bit-string variables, 3-5
arrays, 3-6
Breakpoints, 4-3
at procedure entry points, 4-3
at statements, 4-3
continue execution, 4-3
restriction on setting, 4-5
set, 2-5
specify pathname, 2-6

C

CALL command, 1-4, 4-6 to 4-7

CANCEL ALL command, 1-4

CANCEL BREAK command, 1-4, 4-3
example, 4-4

CANCEL EXCEPTION BREAK command,
1-4

CANCEL MODE command, 1-5

INDEX

CANCEL MODULE command, 1-5, 2-2
CANCEL SCOPE command, 1-5, 2-7
CANCEL TRACE command, 1-5
CANCEL TYPE/OVERRIDE command,

1-5
CANCEL WATCH command, 1-5, 4-5
Character strings

specify, 3-4

specify to the debugger, 2-3
Character-string variables, 3-4
Characters

recognized by debugger, 2-8
Commands, debugger

summary, 1-4 to 1-9

syntax, 1-3
CONTINUE command, 4-2
CTRL/Y

interrupt program, 1-3

return to command level, 4-2
Current location symbol, 2-9

D

Data types
override declared, 3-1
restrictions, 3-2
DEBUG command, 1-3, 4-2
Debugger
compile and link with, 1-
restart restriction, 4-1
stop, 4-2
summary of features, 1-1
symbol table, 2-1
Debugger command summary, 1-4
Default scope, 2-6 to 2-7
DEFINE command, 1-5, 2-5, 2-7
Defined variables, 3-2
DEPOSIT command, 1-5, 3-1
specify current location, 2-9
Disjoint registers, 1-3

2

E

Entry names
specify to the debugger, 2-4
Entry points
PL/I run—-time, Appendix A
set breakpoints, 4-3
set tracepoints, 4-4
EVALUATE command, 1-5
determine virtual address, 2-4
EXAMINE command, 1-6, 3-1
examine previous location, 2-9
specify data type, 3-1
specify pathname, 2-6

Index-1

INDEX

EXIT command, 1-6, 4-1 Modules
External variables in debugger symbol table, 2-1
references, 2-3 ‘ in image file, 2-1
in symbol table
list, 2-2
F PL/I run-time, Appendix A
File data, 3-2
Fixed-point binary variables, N
3-4
Fixed-point decimal arrays, 3-6 Names
Fixed-point decimal variables, add to symbol table, 2-2
3-4 how to specify, 2-1
Floating-point variables, 3-4 scope, 2-5
Formats, 3-2 Numeric constants
Functions specify to debugger, 2-3

invoke, 4-7

(o)
G

Optimization

Global symbols, 2-4 effect on debugging, 1-3
GO command, 1-6, 4-1 Override
after breakpoint, 4-3 declared data types, 3-1

H P
1-6 Parameters, 3-2

Pathnames, 2-6
specify SLINE, 2-6

HELP command,

I PC scope, 2~6 to 2-7
Permanent symbols, 2-5
INCLUDE files Pictures, 3-2
print in listing, 1-2 PLI command
Internal variables compile with debugger, 1-2
references, 2-3 Previous location symbol, 2-9
Procedures
invoke, 4-7
L specify arguments, 4-7
specify to the debugger, 2-4
Labels, 3-2 Program locations
Level-one procedure, 2-1 how to specify, 2-4

Line numbers
specify breakpoints, 4-3

specify to the debugger, 2-4 F‘
stepping, 4-2
LINK command Refergnces
. . . _ ex n v ’ -
Listing (compiler), 1-2 internal variables, 2-3
Registers .
“n automatic variables in, 1-3
reference, 2-5
Modes Resolution of references, 2-5
stepping, 4-2 Restart a program, 4-1
Module name Restrictions
displayed by debugger, 1-2 data that cannot be examined, 3-2

Index-2

RUN command, 1-2, 4-2
Run—-time modules, Appendix A

S

Sample terminal session, 1-9
Scope, 2-5, 2-8
automatic variables, 2-8
changing, 2-7
SET BREAK command, 1-6, 4-3
/AFTER, 4-3
examples, 2-4 to 2-5, 4-5
with DO specification, 4-4
SET EXCEPTION BREAK command, 1l-6
SET LANGUAGE command, 1-6
SET LOG command, 1-7
SET MODE command, 1-7
SET MODULE command, 1-7, 2-2
performed by SET SCOPE, 2-7
SET OUTPUT command, 1-7
SET SCOPE command, 1-7, 2-7
effect on symbol table, 2-7
SET STEP command, 1-7, 4-2
SET TRACE command, 1-7, 4-4
SET TYPE command, 1-8
SET TYPE/OVERRIDE command, 3-1
SET WATCH command, 1-8, 4-5
SHOW BREAK command, 1-8, 4-3
SHOW CALLS command, 1-8, 4-7
display calls, 4-6
SHOW LANGUAGE command, 1-8
SHOW LOG command, 1-8
SHOW MODE command, 1-8
SHOW MODULE command, 1-8, 2-2
SHOW OUTPUT command, 1-8
SHOW SCOPE command, 1-8, 2-7
SHOW STEP command, 1-8
SHOW TRACE command, 1-8, 4-4
SHOW TYPE command, 1-8
SHOW WATCH command, 1-9, 4-5
Statements
execute singly, 4-2
set tracepoints, 4-4
suspend program execution at,
STEP command, 1-9, 4-2
SET STEP INSTRUCTION, 4-2
step into a subroutine, 4-6

STEP/INTO, 4-6
STEP/LINE, 4-3
STEP/OVER, 4-6

Stepping, 4-2
modes, 4-2

Storage classes
restrictions, 3-2

INDEX

Storage map, 1-2
Structures, 3-2
Subroutines
invoking, 4-6
Symbol table
add names, 2-2
debugger, 2-1
display modules in, 2-2
effect of SET SCOPE command,
2-7
names included in, 2-1
Symbolic references
define names for addresses,
2-5
Symbols
accessible, 2-1
debugger permanent, 2-5

T

Traceback

of active calls, 4-7
Tracepoints, 4-4

at procedure entry points, 4-4

restriction on setting, 4-5

8

Variables
arrays
automatic, 3-6
static, 3-5 to 3-6
bit-string, 3-5
character strings, 3-4
display
at breakpoint, 4-4
display contents, 3-1
examine and deposit, 3-1
fixed-point binary, 3-4
fixed-point decimal, 3-4
floating-point, 3-4
in storage map, 1-2
modify contents, 3-1
variable extents, 3-2
Virtual address
determine, 2-4
Virtual addresses
specify to the debugger, 2-4

w

Watchpoints, 4-5
restriction on setting, 4-5

Index-3

VAX-11] PL/I
Guide to Program Debugging
AA-K221A-TE

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience

Student programmer

Dooogo

Other (please specify)

Name Date

Organization

Street

City State Zip Code
or
Country

— — — — DoNotTear-Fold HereandTape — — — — — — — — — — — — — — — —

- =— — -— Do Not Tear - Fold Here

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J3-5
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD

NASHUA, NEW HAMPSHIRE 03062

No Postage
Necessary
if Mailed in the
United States

