
VAX-11 PL/I
Guide to Program Debugging

Order No. AA-K221A-TE

August 1980

Describes the operation of the VAX-11 Symbolic Debugger

with VAX-11 PL/I programs.

VAX-11 PL/I
Guide to Program Debugging

Order No. AA-K221 A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this
release.

OPERATING SYSTEM AND VERSION: VAX/VMS V2.0

SOFTWARE VERSION: VAX-11 PL/I V1 .0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation . maynard, massachusetts

First Printing, August 1980

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright @) 1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last
document requests the user's critical evaluation
preparing future documentation.

page of this
to assist us in

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DEC US
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-11
VAX
DECnet
DATATRIEVE

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-$
DECSYSTEM-20
RTS-8
VMS
IAS
TRAX

MAS SB US
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10
SB!
PDT

ZKA73-80

PREFACE

CHAPTER 1

1. 1
1. 2
1. 2. 1
1. 2. 2
1. 2. 3
1. 3
1. 4
1. 4. 1

CHAPTER 2

2.1
2. 1. 1
2. 1. 2
2. 1. 3
2.2
2. 2. l
2.2.2
2.2.3
2.2.4
2.2.5
2.3
2. 3. l
2.3.2
2. 3. 3
2.4
2.4.1
2.4.2

CHAPTER 3

3.1
3. 1. 1
3.1. 2
3.2
3.3
3.4
3.5
3.6
3.7

CONTENTS

Page

v

INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

VAX-11 SYMBOLIC DEBUGGER FACILITIES • • • • • 1-1
USING THE VAX-11 DEBUGGER • • • • • • 1-2

Beginning and Ending a Debugging Session • • 1-2
The DEBUG Command • • • • • • • • • • • • • • • 1-3
Effects of Optimization on Debugging •••••• 1-3

DEBUGGER COMMAND SYNTAX AND SUMMARY • • 1-3
SAMPLE TERMINAL SESSION • • • • • 1-9

Executing the Sample Program • • • • 1-10

RECOGNITION OF NAMES

DEBUGGER SYMBOL TABLE • • • • • • • • • • • • •
Names Included in the Symbol Table by Default
Adding Names to the Symbol Table • • • • •
Displaying Names in the Symbol Table •••

SPECIFYING REFERENCES AND LOCATIONS • • • •
Specifying Internal and External Variables
References to Global Symbols • • •
Specifying Program Locations •••••••••
Defining Addresses Symbolically •••••
The Debugger's Permanent Symbols •.

• 2-1
• 2-1
• 2-2
• 2-2
• 2-3
• 2-3
• 2-4
• 2-4
• 2-5
• 2-5

SCOPE • • • • • • • • • • • • • • • • 2-5
Specifying Pathnames • • • • • •
Changing the Scope • • • • • • • • • • •
The Scope of Automatic Variables • • •••

SPECIAL CHARACTERS AND EXPRESSIONS •
Characters for Arithmetic Expressions
Characters for the Current, Previous, and Next
Locations • • • • • • • • • • • • • • • •

EXAMINING AND DEPOSITING DATA

• 2-6
• 2-7
• 2-8
• 2-8
• 2-8

• 2-8

USING THE EXAMINE AND DEPOSIT COMMANDS • • • • • • 3-1
Specifying the Data Type of Data to Deposit •• 3-1
Restrictions on Examining and Depositing Data • 3-2

FIXED-POINT BINARY AND FLOATING-POINT VARIABLES • 3-4
FIXED-POINT DECIMAL DATA • • • ••• 3-4
CHARACTER-STRING VARIABLES • • • • • • • 3-4
BIT-STRING VARIABLES • • • • • • • • • • • 3-5
STATIC ARRAYS • • • • • • • • • • 3-5
AUTOMATIC ARRAYS AND FIXED-POINT DECIMAL ARRAYS • 3-6

iii

CHAPTER 4

4.1
4.2
4.3
4.4
4.5
4.6
4.6.1
4.6.2
4.6.3

APPENDIX A

INDEX

Figure 3-1

CONTENTS

Page

CONTROLLING A PROGRAM'S EXECUTION

STARTING AND STOPPING EXECUTION • • • • • 4-1
STEPPING THROUGH A PROGRAM . • • • • • 4-2
BREAKPOINTS • • • • • • • • • • • • 4-3
TRACEPOINTS • • • • • . • 4-4
WATCHPOINTS • • • • • • • 4-5
ENTERING AND RETURNING FROM SUBROUTINES 4-6

Stepping Into and Over Subroutines • • • • 4-6
Displaying the Calling Sequence ••••• 4-7
Calling Subroutines ••••••••••••.• 4-7

VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

FIGURE

The Sample Program, MAINP •••••••••••••• 3-3

TABLES

Table 1-1 Summary of Debug Commands • • • • • • • • 1-3

Table 2-1

Table A-1
A-2
A-3

Arithmetic Operators ••• • • • • 2-8

VAX-11 PL/I Run-Time Modules • • • • • • • • A-1
Run-Time Entry Points • • • • •••••• A-3
Run-Time Library Procedures Called by PL/I • • • • • A-12

iv

PREFACE

MANUAL OBJECTIVES

This manual describes the facilities of the VAX-11 Symbolic Debugger
for debugging VAX-11 PL/I programs.

INTENDED AUDIENCE

This manual is intended for programmers using VAX-11 PL/I. To get the
most out of this manual, you should have a working knowledge of PL/I
program structure and data types, and be familiar with the VAX/VMS
operating system. However, while not a tutorial, the manual can be
used by relatively inexperienced programmers.

STRUCTURE OF THIS DOCUMENT

This manual has four chapters and one appendix:

• Chapter 1, "Introduction to Debugging VAX-11 PL/I Programs,"
provides a functional overview of debugging PL/I programs
using the VAX-11 Symbolic Debugger.

• Chapter 2, "Recognition of Names," describes how the debugger
recognizes program locations, for example, line numbers and
procedure names, that you specify.

• Chapter 3, "Examining and Depositing Data," explains how to
examine variables and program locations and to modify their
contents while you are debugging a program.

• Chapter 4, "Controlling a Program's Execution," describes how
to start, stop, and control a program while you are running
it under the control of the debugger.

• Appendix A, "VAX-11 PL/I Run-Time Modules and Entry Points,"
lists the VAX-11 PL/I run-time modules and entry points.

ASSOCIATED DOCUMENTS

To obtain supplemental information, the following documents are
recommended:

v

PREFACE

• VAX-11 Symbolic Debugger Reference Manual, Order Number
AA-D026B-TE

• VAX/VMS Command Language User's Guide, Order Number
AA-D023B-TE

• VAX-11 PL/I Encyclopedic Reference, Order Number AA-H952A-TE

e VAX-11 PL/I User's Guide, Order Number AA-H951A-TE

CONVENTIONS USED IN THIS DOCUMENT

EXAMINE reference

DBG>EXAMINE X
ALPHA\X: 2

option, •••

DBG> EVALUATE X(l):X(lO)

quotation mark
apostrophe

[/qualifier •••]

Uppercase words and letters, shown in syntax
descriptions, indicate that you should type
the word or letter exactly as shown.

Lowercase words and letters indicate that
you are to substitute a word or value of
your choice.

The symbol ~RL/XJ indicates that you press
the key "x" while holding down the key
labeled CTRL, for example, ~RL~J In
examples, this control key sequence is shown
as Ax, for example, Ac, because that is how
the VAX/VMS system prints control key
sequences.

Command examples show all interactive
examples in two colors. Program output and
prompting characters that the system prints
or displays are shown in black letters.
User-entered commands and data are shown in
red letters.

Horizontal ellipses indicate that additional
parameters, options, or values can be
entered. When a comma precedes the
ellipses, it indicates that successive items
must be separated by commas.

Vertical ellipses indicate that not all of
the text of a program or program output is
illustrated. Only relevant material is
shown in the example.

The term "quotation mark" is used to refer
to the quotation mark (") symbol. The term
"apostrophe" is used to refer to the single
quotation mark (') symbol.

Square brackets indicate that a syntactic
element is optional and you need not specify
it. Square brackets are not optional,
however, when used to delimit a directory
name in a VAX/VMS file specification.

vi

[
INTO]
OVER

{ ~~~~le-name }

DBG>DEPOSIT X 2

PREFACE

Brackets surrounding two or more stacked
items indicate a choice of optional data;
you may choose one of the two syntactic
elements.

Braces surrounding two or more stacked items
indicate a choice; you must choose one of
the two syntactic elements.

All numeric values in the text of this
manual are represented in decimal notation
unless otherwise specified.

Unless otherwise specified, you terminate commands by pressing the
RF.TURN key, shown in this document as @'.! •

vii

CHAPTER 1

INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

One of the most difficult stages in program development is locating
and correcting errors. This is "debugging." You need to debug, that
is, to correct a program, when any of the following happen:

• The compiler flags syntactic or lexical errors

• Run-time errors occur

• You determine, based on receiving incorrect output during a
program's execution, that a logic error exists

The VAX-11 PL/I compiler and run-time system display error and
informational messages when errors occur. You can use this
information to determine where the error exists in your program and to
correct it.

You must detect logic and programming errors yourself. To help you
find such errors, VAX/VMS provides a special program: the Symbolic
Debugger (or, simply, the debugger). The debugger lets you control
the execution of your program so you can monitor specific locations,
change the contents of locations, check the sequence of program
control, and otherwise locate and correct errors as they occur. After
you track down the mistakes, you can edit your source program,
recompile, relink, and execute the corrected version.

1.1 VAX-11 SYMBOLIC DEBUGGER FACILITIES

The VAX-11 Symbolic Debugger includes many features to help you, among
them the following:

• It is interactive. You control your program and interact
with the debugger from your terminal.

• It understands static PL/I variable names and their data
types. Thus, when you want to look at the contents of a
variable, or change the value of a variable, the debugger
will convert your ASCII text input to the data type of the
variable.

• It understands other programming languages as well, such as
FORTRAN and COBOL. Thus, if your programs consist of
procedures written in different languages, you can change
from one language to another during the course of a debugging
session.

Note that for this version of the VAX-11 PL/I compiler, not all
functions of the VAX-11 Symbolic Debugger are completely supported for
PL/I program debugging. This manual describes the extent of support
as it exists for Version 1.0 of VAX-11 PL/I and Version 2.0 of the
VAX-11 Symbolic Debugger.

1-1

INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

1.2 USING THE VAX-11 DEBUGGER

This section shows brief examples of invoking and using the debugger
with a PL/I program.

1.2.1 Beginning and Ending a Debugging Session

To execute a PL/I program with the debugger, compile and link the
program with the /DEBUG qualifier, as in the following example:

$ PLI/DEBUG METRIC
$ LINK/DEBUG METRIC

The /DEBUG qualifier on the PLI command requests the compiler to write
symbol table records into the object module; these records will
permit you to examine and modify variables by name during the
debugging session.

The /DEBUG qualifier on the LINK command
include the debugger routines, global
information in the executable image. To
information, specify /DEBUG=TRACEBACK.

requests
symbols,
include

the linker to
and traceback

only traceback

To obtain a program listing of the procedures being debugged, and to
have available a storage map listing the variables, you can compile
the procedure(s) with the /LIST and /ENABLE=LIST MAP qualifiers, in
addition to the /DEBUG qualifier. For example: -

$ PLI/DEBUG/LIST/ENABLE=LIST_MAP METRIC

If your program includes files using %INCLUDE statements, you may also
want to include these files in the listing to have available the
statement line numbers. The /ENABLE qualifier also enables listing
INCLUDE files. To list the compiler map and INCLUDE files, specify:

$ PLI/DEBUG/LIST/ENABLE={LIST_MAP, LIST_INCLUDE) METRIC

When you execute an image
initial control goes to
follows:

$ RUN METRIC

compiled and linked with the debugger,
the debugger, which identifies itself as

VAX-11 DEBUG Version 2.00

%DEBUG-I-INITIAL, language is BASIC, module set to 'CONVERT'
DBG>

For this version of the PL/I debugging support, the language is set to
BASIC. The module name displayed in the debugger's message is the
name of the outermost procedure in the first object module in the
image and is not necessarily the same as the n9me of the image file.
This message indicates that the name of the main procedure in the
image file METRIC is CONVERT.

The DBG> prompt indicates that the debugger is now ready to process
your commands. You respond to the prompt with one of the commands
recognized by the debugger. To terminate the debugging session, use
the EXIT command:

DBG>EXIT

When your program has been thoroughly debugged, you can recompile and
relink it without the /DEBUG qualifier. Or, you can run it with the
/NODEBUG qualifier. For example:

$ RUN/NODEBUG METRIC

1-2

INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

Note, however, that the modules required by the debugger occupy space
within a program image f~le.

1.2.2 The DEBUG Command

with /DEBUG is executing, you can
at any time and invoke the debugger by

For example, if you determine that a
or if you see erroneous output, you can

When a program that is linked
interrupt it with ~TRLNJ
entering the DEBUG command.
program may be looping,
interrupt it as follows:

$ RUN COMPUTE (CTRL!Yl
"Y

$ DEBUG
DBG>

When you press mRLNl , the command interpreter displays its dollar
sign ($) prompt, and you can enter the DEBUG command. The DBG> prompt
indicates that the debugger is under control.

If the program was compiled with the /DEBUG qualifier, you have access
to program variables, line numbers, and entry names.

If the program was not compiled with the /DEBUG
reference program locations and variables
addresses.

1.2.3 Effects of Optimization on Debugging

qualifier, you can
using only virtual

When you compile a PL/I program, the resulting object code is
optimized; that is, the compiler has used some techniques that will
make the program run faster. For example, the compiler puts automatic
scalar variables in registers, removes invariant expressions within
DO-loops so that they are evaluated only once, and so on.

Under normal circumstances, you do not need to disable any compiler
optimizations in order to debug a VAX-11 PL/I program. By default,
the compiler disables the DISJOINT optimization option when /DEBUG is
specified so that automatic variables that are placed in registers
will be guaranteed to stay in the same register during the current
block activation.

No other optimization options have any effect on debugging.

1.3 DEBUGGER COMMAND SYNTAX AND SUMMARY

You enter commands to the debugger in much the same way that you enter
DCL commands. You must remember to end each debugging command with a
~ . The debugger commands have the format:

cmd

cmd [keyword] [/qualifier] [pa ram •••] !comment

Is a command verb (for example, SET, CANCEL) that indicates the
general function to be performed.

keyword
Gives the specific function to be performed by the command (for
example, CANCEL MODULE, SET SCOPE, SHOW LANGUAGE).

1-3

INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

/qualifier
Modifies the effect of the command.

pa ram
Qualifies the function in some way, such as specifying a range of
locations to be monitored.

comment
Is any text message. The debugger ignores all text after the
exclamation mark.

You can enter more than one command on a command line by separating
the commands with semicolons (;).

You can continue a command on a new line by ending the line with a
hyphen (-); the debugger will then prompt for the rest of the command
with an underscore ().

Table 1-1 summarizes the debugger commands. The boldface letters
indicate the minimum abbreviation you must type in order for the
debugger to recognize the command name, qualifier, or parameter.

You can obtain information about a debugging command while you are
debugging by entering the HELP command to the debugger.

Table 1-1
Summary of Debug Commands

Command Syntax

@file-spec

CALL entry-name [(argument, •••)]

CANCEL ALL

CANCEL
BREAK ! /ALL l %LINE line-number

entry-name
symbolic-reference
nonsymbolic-address

CANCEL EXCEPTION BREAK

1-4

Function

Reads debugger commands
from the specified command
procedure file

Invokes a specified
procedure and optionally
passes references to
arguments

Cancels all breakpoints,
tracepoints, and
watchpoints, and restores
the mode and scope to
their original values

Cancels a specified
breakpoint or all
breakpoints

Cancels the effect of SET
EXCEPTION BREAK and
restores the debugger's
default method for
handling exceptions, which
is to let the programs
condition handlers, or
ON-units, receive control

(Continued on next page)

INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

Table 1-1 (Cont.)
Summary of Debug Commands

Command Syntax

CANCEL MODE

CANCEL MODULE { /ALL }
module, •••

CANCEL SCOPE

CANCEL TRACE\

(

%LINE line-number
entry-name
symbolic-reference
nonsymbolic-address
/ALL
/BRANCH
/CALL

CANCEL TYPE/OVERRIDE

CANCEL WATCH { /ALL }
variable-reference
symbolic-reference
nonsymbolic-address

DEFINE symbol = expression ' ...

DEPOSIT location= data [,data, •••]

)

)

[

/ASCII:length ·i [/DECIMAL]
/BYTE /HEXADECIMAL
/INSTRUCTION /OCTAL
/LONG
/WORD

EVALUATE [/ADDRESS] expression, •••

[

/DECIMAL]
/HEXADECIMAL

OCTAL

1-5

Function

Restores the radix and
display modes to their
defaults for PL/I
debugging, which are
decimal and symbolic

Deletes one or more
modules from the
debugger's symbol table,
or deletes all modules
from the symbol table

Resets the scope to that
containing the current
program counter

Cancels a specified
tracepoint or all
tracepoints

Restores the debugger's
default interpretation of
variables, which is to use
the variables' declared
data types and extents

Cancels a watchpoint on
a specified location or
variable or cancels
all wa tchpo in ts

Creates one or more
symbols whose values are
equated to program
locations or to numeric
expressions

Changes the contents of a
specified variable or
program location

Evaluates an expression
or an address and displays
the results in decimal or
other specified radix

(Continued on next page)

INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

Table 1-1 (Cont.)
Summary of Debug Commands

Command Syntax

EXAMINE { variable-reference }
location[:location]

/ASCII:length
/BYTE
/INSTRUCT ION
/LONG
/WORD

[
/SYMBOLIC J

NOSYMBOLIC

EXIT

HELP

%LINE line-number l
entry-name
symbolic-reference
nonsymbolic-address

SET
BREAK l %LINE line-number l

entry-name
symbolic-reference
nonsymbolic-address

[DO (cmd [; cmd •••])]

[/AFTER:n]

SET EXCEPTION BREAK

SET LANGUAGE language-name

1-6

Function

Displays the current
contents of a variable
or program location

Ends the debugging session
and returns control to the
command interpreter

Starts or continues
program
execution

Displays a description of
a debugger command,
parameter, or qualifier

Sets a breakpoint at a
specified statement,
procedure, or program
address

Requests that the debugger
treat external exception
conditions as if they were
breakpoints, and interrupt
the program when an
exception occurs rather
than to allow ON-units to
execute

Specifies the source
language of a module or
routine, for
language-specific
debugging

(Continued on next page)

INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

Table 1-1 {Cont.)
Summary of Debug Commands

Command Syntax

SET LOG [file-spec]

SET MODE ! DECIMAL)
HEXADEC !MAL (

OCTAL f
NOSYMBOLIC
SYMBOLIC

, ...

SET MODULE {module-name , ••. }
/ALL

SET OUTPUT LOG]
NO LOG

TERMINAL
NOTERMINAL

VERIFY J
NOVERIFY

' ...

SET SCOPE { 0 }

~cope-number
' ...

SET STEP

SET TRACE

([~~~])
< [SYSTEM] (
) NOSYSTEM (

I [~~~~RUCTION] J

(
%LINE line-number 1

)

entry-name
1 symbolic-reference (
\ nonsymbol ic-address (

(
/BRANCH)
/CALL

1-7

Function

Specifies the name of a
log file to which the
debugger should write
program output when the
SET OUT LOG command has
been entered

Sets the default mode for
entering and displaying
program locations that are
not declared variables

Adds the symbols from the
indicated module{s) to the
debugger's symbol table.

Controls whether the
debugger writes output to
a log file or to the
terminal, and whether it
echoes commands executed
from command procedures

Specifies the modules to
be searched to find a
symbol and the order in
which they are to be
searched

Specifies how the debugger
is to behave when the STEP
command is issued

Establishes a tracepoint
at a specified statement,
procedure, entry, or
program location

{Continued on next page)

INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

Table 1-1 (Cont.)
Summary of Debug Commands

Command Syntax

SET TYPE

I /A. SCII: length l
/BYTE
/INSTRUCTION
/LONG
/WORD

[/OVERRIDE]

SET WATCH variable-reference

SHOW BREAK

SHOW CALLS [integer]

SHOW LANGUAGE

SHOW LOG

SHOW MODE

SHOW MODULE

SHOW OUTPUT

SHOW SCOPE

SHOW STEP

SHOW TRACE

SHOW TYPE [/OVERRIDE]

1-8

Function

Sets the default data
types for the DEPOSIT
and EXAMINE commands for
locations that do not
have declared data types

Establishes a watchpoint
on a specified static
variable

Displays current
breakpoints

Displays the current
program location and all,
or a specified number of,
preceding calls

Displays the current
debugging language

Displays the current
status of the log file, if
any

Displays the current
default entry and display
modes

Lists the modules in the
image being debugged and
shows which modules have
names in the debugger's
symbol table

Displays the current
status of the debugger's
output files

Displays the current
default scopes

Displays the current
default step conditions

Displays current
tracepoints

Displays current default
data type or override type

(Continued on next page)

INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

Command Syntax

Table 1-1 (Cont.)
Summary of Debug Commands

Function

SHOW WATCH Displays current
watchpoints and the number
of bytes being watched

STEP ([/OVER] \ Executes one or more
/INTO) statements, or into or

over
I (subroutines
< [/SYS'l'EM] I /NOSYSTEM (

([/INSTRUCTION [integer]] } /LINE [integer]

1.4 SAMPLE TERMINAL SESSION

The sample program REMEMBER is
assigned by the compiler.
names and birthdates, compares
and displays a message if
obvious bug -- the pointer, P,
input record buffer, INREC
simple debugging commands.

listed below, with the line numbers
This program reads a file consisting of
each birthday with the current date,
any dates match. This program has an
is not initialized to point to the
-- but it will serve to illustrate some

1 REMEMBER: PROCEDURE;
2 1
3 1 DECLARE P POINTER,
4 1 1 NAME AGE BASED(P),
5 1 2 NAME CHARACTER(40),
6 1 2 BIRTHDAY CHARACTER(6),
7 I 1 2 REST CHARACTER (34) '
8 1 INREC CHARACTER(80) STATIC,
9 1 NAMES FILE RECORD INPUT SEQUENTIAL,

10 1 EOF BIT(l) STATIC INIT('O'B);
11 1
12 1 ON ENDFILE (NAMES) EOF = 'l'B;
13 1 OPEN FILE(NAMES);
14 1
15 1 READ FILE (NAMES) INTO(INREC);
16 1 DO WHILE (~EOF);
17 2 IF SUBSTR(DATE(),3,4) = SUBSTR(BIRTHDAY,3,4)
18 2 THEN PUT SKIP EDIT(NAME,'is',
19 2 BINARY(SUBSTR(DATE(),1,2)) -
20 2 BINARY(SUBSTR(BIRTHDAY,1,2)),
21 2 'Today!') (2 (A,X) ,F (2) ,X,A);
22 2 READ FILE(NAMES) INTO(INREC);
23 2 END;
24 1 END;

1-9

INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

1.4.1 Executing the Sample Program

Assume, for the purposes of this example, that you know that at least
one record in the file contains a BIRTHDAY field that matches the
current date. You compile, link, and run the program as follows:

$ PLI REMEMBER
$ LINK REMEMBER
$ RUN REMEMBER
$

The program runs to completion without displaying the message you
expected. To debug the program, you must have a listing, and you must
compile and link with the debugger, as follows:

$ PLI/LIST/DEBUG REMEMBER
$ LINK/DEBUG REMEMBER
$ PRINT REMEMBER

The PRINT command prints the listing, which shows
You are now ready to begin a debugging session.
keyed to the terminal session that follows.

the line numbers.
The notes below are

1. When you enter the RUN command, the debugger displays its
informational message and prompts you with its DBG> prompt.

2. You decide that the problem may be that P has not been
initialized. You can te~t this hypothesis by finding out the
address of INREC and putting this value in P. First, you
want to get the program to execute up to the first READ
statement.

To run a program to a certain point, you can set a breakpoint
at a particular line. In this example, you set the
breakpoint at line 15.

3. The GO command starts the execution of the program. The
debugger tells you where, in the program, you are beginning
execution.

4. When line 15 is reached, the debugger interrupts its
execution and prompts you to enter a command.

5. At line 15, you examine the contents of the pointer P. The
debugger displays the value of P, which does not look like a
program address.

6. You use the EVALUATE/ADDRESS command to determine the virtual
address of INREC. This would be the equivalent, in PL/I, of
using the ADDR built-in function to set a pointer. The
debugger displays the address of INREC.

7. You use the DEPOSIT command to give the pointer P the value
of the address of INREC.

8. The GO command continues the execution of the program. As
you can see, the program outputs its expected result.

9. When the program exits, the debugger displays a message
indicating the termination status.

10. The EXIT command terminates the debugging session.

You can now correct the program so that it initializes the pointer P.

1-10

INTRODUCTION TO DEBUGGING VAX-11 PL/I PROGRAMS

$ RUN REMEMBER 0
VAX-11 DEBUG Version 2.00

%DEBUG-I-INITIAL, language is BASIC, module set to 'REMEMBER'

DBG>SET BREAK %LINE 15 fj

DBG>GO 8

routine start at REMEMBER\REMEMBER

break at REMEMBER\REMEMBER %LINE 15~

DBG>EXAMINE P 0
REMEMBER\REMEMBER\P: 3

DBG>EVAf.,UATE/ADDRESS INREC 0

51~

DBG>DEPOSIT P

DBG>GO@)

513 8

start at REMEMBER\REMEMBER %LINE 15

J. RANDOM PROGRAMMER is 19 today!

%DEBUG-I-EXITSTATUS, is '%SYSTEM-S-NORMAL, normal successful completion'

DBG>EXIT ~

$

1-11

CHAPTER 2

RECOGNITION OF NAMES

This chapter describes how to specify names to the debugger.

2.1 DEBUGGER SYMBOL TABLE

The debugger maintains a symbol table that lists the symbols you can
reference during a debugging session. The debugger symbol table
always contains the names of global symbols in the image. The names
of local symbols, that is, names of internal variables defined within
your program, are available in the image file only if you included the
/DEBUG qualifier in the PL! and LINK commands.

The symbol table contains the data type attributes and memory location
of each accessible name or variable. The data type attributes
includes dimension bound information for arrays, and length
information for character data.

2.1.1 Names Included in the Symbol Table by Default

Before you can reference a name, you must ensure that the name is in
the debugger symbol table. When a debugging session begins, you have
access to global symbols and to automatic variables that are declared
within the indicated module name and static variables that are
declared within internal blocks, as long as there are no naming
conflicts. For example, a PL/I procedure may contain the lines:

MAINP: PROCEDURE OPTIONS(MAIN);
DECLARE (X,Y,Z} STATIC FIXED,

(A,B,C} AUTOMATIC BIT;

PRINTLIST: PROCEDURE;
DECLARE COUNT STATIC FIXED,

X CHARACTER(lO);

When this debugging session begins, you can by default access the
names X, Y, Z and A, B, and C in MAINP as well as COUNT in PRINTLIST.

When you want to access a variable or location that is not in the
default symbol table, you must specify the module containing the
variable or location. A module, in PL/I terms, is the name of a
level-one procedure, the outermost procedure in the source file
(indicated in the source program listing by the number "l" in the left
margin).

2-1

RECOGNITION OF NAMES

2.1.2 Adding Names to the Symbol rable

The debugger symbol table accommodates approximately 2000 symbols. If
you are debugging multiple procedures that define more than 2000
symbols, you can use the SET MODULE command to copy symbols from other
modules to the symbol table. For example, a PL/I procedure may
declare an external entry as follows:

DECLARE PRINT_ARGS EXTERNAL ENTRY;

To reference names of static variables declared in PRINT ARGS before
PRINT ARGS is invoked in the debugging session, you can bring these
names into the symbol table by entering the command:

DBG>SET MODULE PRINT ARGS

This command makes the names of variables in PRINT ARGS accessible.

Subsequently, you can use the CANCEL MODULE command to remove from the
symbol table symbols you no longer need, and then use the SET MODULE
command to insert the symbols you next require.

Note that you cannot access the names of automatic variables until the
block that declares these variables is executing, since the variables
are not allocated storage until the block is activated.

2. 1. 3 Displaying Names in the Symbol Table

Use the SHOW MODULE command to display the current contents of the
symbol table. For example:

DBG>SHOW MODULE
module name symbols language size

ARGLIST yes BASIC 148
PRINT ARGS yes BASIC 280
PLI$CONDIT no MACRO 716
PLI$CONTROL no MACRO 336
PLI$PUTFILE no MACRO 176
PLI$PUTLISTITEM no MACRO 176
PLI$PUTBUFFER no MACRO 176
PLI$CONVERT no MACRO 284
PLI$CLOSE no MACRO 228
PLI$CVTPIC no MACRO 336
PLI$0PEN no MACRO 228
PLI$RECOPT no MACRO 176
PLI$BIT no MACRO 608
PLI$CHAR no MACRO 284
PLI$$BYTESIZE no MACRO 228
LIB$LP LINES no BLISS 120
OTS$$CVTDT no MACRO 120
OTS$$CVTRT no MACRO 176
RMSGBL no MACRO 120
total modules: 19. remaining size: 59304.

The modules with names PLI$, LIB$, RMS, and OTS$$ prefixes are
run-time modules required for the execution of the PL/I procedures.
For a summary of these modules, see Appendix A.

2-2

RECOGNITION OF NAMES

2.2 SPECIFYING REFERENCES AND LOCATIONS

The debugger's symbol table lets you reference names and program
locations symbolically. You need concern yourself only with the name,
and not the memory location, of the data. This symbolic form of
reference applies to program data, such as variables and array
elements, and to program addresses, such as program line numbers and
procedure names.

You can reference the following kinds of symbols:

• Internal and external variables

• Global symbols

• Program locations

• Symbols you create with the debugger command DEFINE

• Permanent symbols defined by the debugger

Symbols can specify variable references or can contain data values.
The debugger interprets data items you specify according to these
rules:

1. If a data item begins with an alphabetic letter, the debugger
assumes that it is a program variable or a symbolic reference
to an address.

2. If a data item begins with a numeric integer (0 through 9),
the debugger assumes that the item is a literal numeric
constant.

3. If a data item is enclosed in apostrophes or quotation marks,
the debugger assumes that the item is a character-string
constant.

2.2.1 Specifying Internal and External Variables

You can reference both internal and external variables while debugging
PL/I procedures. Internal automatic variables can be referenced only
in the block in which they are declared.

There is no up-level addressing,
variable in a containing block
block. For example:

DECLARE X FIXED;

INSIDE: PROCEDURE;

that is, an internal automatic
cannot be examined in a contained

When these PL/I statements are debugged, the variable X cannot be
examined or modified within the procedure INSIDE, even though INSIDE
may reference X.

You can specify data addresses symbolically for scalar variable names
and scalar array elements. For example, a PL/I procedure may contain
the following declarations:

DECLARE X MSG CHARACTER(80) STATIC,
X=LEN(lO) FIXED STATIC;

These variables can be referenced in a debugging session as follows:

2-3

RECOGNITION OF NAMES

DBG>DEPOSIT X MSG = 'This is new string'
DBG>EXAMINE X-LEN(S)
XLOOK\XLOOK\XLEN(5): +14

The DEPOSIT command places a new character-string value in the
variable X MSG. The EXAMINE command displays the current contents of
the array element X_LEN(S).

You can reference array elements using constants and variable
expressions. If you reference a variable or array element that is not
defined in the symbol table, or if you attempt to reference out of the
array bounds defined at compile time, the debugger issues a warning.

2.2.2 References to Global Symbols

Global symbols can be referenced from all blocks. In a VAX-11 PL/I
procedure, global symbols are those symbols defined with the GLOBALREF
or GLOBALDEF attributes, as well as the names of level-one procedures.

2.2.3 Specifying Program Locations

You can specify address expressions, that is, program locations by
procedure name, line number, or (nonsymbolic) virtual address. To
specify a procedure by name, give the command followed by the name of
the procedure. For example, the command

DBG>SET BREAK LIST BY FLOWER

sets a breakpoint at the entry-to procedure LIST_BY_FLOWER.

To specify a line number, use the %LINE specifier, as shown here:

DBG>SET BREAK %LINE 6

This command sets a breakpoint at line 6, corresponding to the
compiler-generated line number shown in the listing.

Note that the debugger does not recognize all line numbers. In
particular, it does not recognize those line numbers associated with
nonexecutable statements, such as DECLARE and FORMAT statements. If
you specify such a line number, the debugger responds with a message
indicating that no such line exists.

You can also set a breakpoint as follows:

DBG>SET BREAK %LINE LIST_BY_FLOWER\11

This command sets a breakpoint at line 11 in LIST BY FLOWER.

To specify a virtual address, issue the command without a prefix. For
example:

DBG>SET BREAK 700

You can determine the virtual address of a line number or a variable
by entering an EVALUATE command as follows:

DBG>EVALUATE/ADDRESS %LINE 17
800

The debugger displays the virtual address of the instructions for the
statement on line 17.

2-4

RECOGNITION OF NAMES

2.2.4 Defining Addresses Symbolically

At times, you may want to assign a symbolic name to a program
location. To assign a symbolic name to a location, you must first
determine the virtual address of the location and then use the DEFINE
command. To determine the virtual address of a location, use the
EVALUATE/ADDRESS command. For example:

DBG>EVALUATE/ADDRESS %LINE 42
1666
DBG>DEFINE CHK = 1666

Subsequent references to line 42 can be made using the defined symbol
CHK. For example, the command

DBG>SET BREAK CHK

sets a breakpoint at line 42. Similarly, the commands

DBG>EVALUATE/ADDRESS CARD COUNTER
6445
DBG>DEFINE CC = 6445

define a symbolic name by which the variable CARD COUNTER may be
referenced.

2.2.5 The Debugger's Permanent Symbols

The debugger has the following permanent symbols; you can reference
them at any time during the debugging session.

• RO - Rll General registers 0 through 11

• AP Argument pointer

• FP Frame pointer

• SP Stack pointer

• PC Program counter

• PSL Processor status longword

These names cannot be redefined; that is, you cannot use the name RO
to create a symbol definition with the DEFINE command.

2.3 SCOPE

If the program you are debugging consists of more than one procedure,
you must be sure that your symbolic references are unambiguous. To
make a reference unambiguous, you can specify the "scope" of the
reference to the debugger: in PL/I terms, the scope of a name is
simply the block in which the name is declared.

Most of the time, you can let the debugger determine the scope of a
name for you. At certain times, however, you must tell the debugger
how to resolve symbolic references. For example, assume that you are
debugging two procedures; both procedures use an internal variable I,
and both modules are included in the debugger's symbol table. Unless
you explicitly specify the scope of I, the debugger may be unable to
determine which variable I you want.

2-5

RECOGNITION OF NAMES

You specify scope in one of three ways:

• By using the debugger default scope in effect

• By explicitly specifying the reference's scope with its
symbolic name in the command

• By setting a new default scope with the SET SCOPE command

When you begin a debugging session, the debugger automatically defines
the first procedure linked (normally the main procedure) as the
default scope. However, this default scope is dynamic; that is, as
you debug your program, the default scope (also called the PC scope)
is always the procedure that is currently executing. When the
debugger is resolving a reference, it follows this order in
determining the scope:

1. If the specified symbolic name is unique within the debugger
symbol table, then the debugger uses that name.

2. If the specified symbol is ambiguous -- that is, it is not
unique within the symbol table, but one of its occurrences is
within the current PC scope -- then the debugger uses the
occurrence in the current scope.

3. If the specified symbol is not defined in the symbol table,
or if it is ambiguous with no occurrence defined within the
current scope, then the debugger issues an error message
indicating that the name is ambiguous.

2.3.1 Specifying Pathnames

You can specify the scope of a name explicitly by providing both the
name of the symbol and the names of the module and routine in which it
is located, separated by a backslash (\) character. This type of
specification is called a pathname, since in some cases it may consist
of the names of several nested routines. For example, a PL/I
procedure may contain the following:

MAINP: PROCEDURE OPTIONS(MAIN);
DECLARE X FIXED STATIC;

INSIDEOUT: PROCEDURE;
DECLARE X BIT;

To examine the contents of X within the procedure INSIDEOUT during a
debugging session when the current scope is INSIDEOUT, you must
specify MAINP as both the routine name and the module name in a
pathname. For example:

DBG>EXAMINE MAINP\MAINP\X

Similarly, to specify an address reference in a routine that is not
the current scope, you must give it a pathname, as in this example:

DBG>EXAMINE INSIDEOUT\X

Note that when you use a %LINE specifier, the specifier must appear
before the pathname. For example:

DBG>SET BREAK %LINE SUBl\7

This command sets a breakpoint at line 7 in the scope of the module
SUBl.

2-6

RECOGNITION OF NAMES

Note that if you want to make frequent references to a location with a
long pathname, you can define a symbol name for it with the DEFINE
command. For example:

DBG>SET SCOPE INSIDE
DBG>EVALUATE/ADDRESS CARD COUNTER
9965
DBG>DEFINE CC = 9965
DBG>SET SCOPE MAINP

DBG>EXAMINE CC

In this example, the SET SCOPE command changes the scope to the module
INSIDE, the EVALUATE/ADDRESS command displays the virtual address of
the variable CARD COUNTER, and the DEFINE command uses this value to
define the symbol named cc. Subsequently, the scope is reset to
MAINP. During the debugging session, the value of CARD COUNTER can be
referenced using the symbolic name CC, regardless-of the current
scope.

2.3.2 Changing the Scope

If you want to make a number of symbolic references within the same
procedure, you can eliminate the need to specify scope with each
symbolic address by using the SET SCOPE command. For example, the
following command sets the scope to SUB3:

DBG>SET SCOPE SUB3

You can also define a scope list to specify the order in which the
debugger should search for symbols. For example, the command

DBG>SET SCOPE MAR,JAN,FEB

instructs the debugger to search for symbols first in procedure MAR.
If it cannot find a specified symbol in MAR, then the debugger
searches JAN and, if necessary, FEB.

The scope defined in a SET SCOPE command becomes the default scope for
all symbolic references until you explicitly change or cancel the
scope. You can determine the current scope at any time by entering
the SHOW SCOPE command. For example:

DBG>SHOW SCOPE
scope: SUB2,SUB1

The message shows that the current scope is set first to SUB2, then to
SUBl. The SHOW SCOPE command may also respond as follows:

DBG>SHOW SCOPE
scope: U [= MULT\MULT]

The symbol 0 shows that the current scope is the default PC scope.
Within brackets, the debugger displays the module and routine name of
the default scope: the scope is module MULT, routine MULT.

The CANCEL SCOPE command resets scope to the default PC scope.

Note that when you explicitly SET SCOPE to a procedure (module) name,
the debugger implicitly performs a SET MODULE command. Therefore,
symbols for the procedure specified in your SET SCOPE command are
placed in the symbol table. However, if you use the debugger default
scope (PC scope), you must also use SET MODULE to place symbols for
the procedure in the symbol table.

2-7

RECOGNITION OF NAMES

2.3.3 The Scope of Automatic Variables

If you reference an automatic variable when the block that defines the
variable is not in the current scope, the debugger displays a warning
message. For example, this occurs when you try to reference an
automatic variable declared in a procedure that has executed a RETURN
statement, and control has returned to the debugger:

%DEBUG-I-EXITSTATUS, is '%SYSTEM-8-NORMAL, normal successful completion'
DBG>EXAMINE X
%DEBUG-I-PCNOTINSCP, PC is not within scope of routine declaring symbol
XLOOK\XLOOK\X: 3

This message notifies you that the variable X in the routine XLOOK
does not have an address assigned exclusively to it and that its
address may have another use in the current section of your program.

2.4 SPECIAL CHARACTERS AND EXPRESSIONS

This section summarizes how the debugger interprets special characters
in arithmetic expressions and in address expressions. You can use
these operators in references and expressions; the debugger will
perform the arithmetic on integers.

2.4.1 Characters for Arithmetic Expressions

Table 2-1 lists special characters used in arithmetic expressions.

Character

+

*
I

@

< >

Table 2-1
Arithmetic Operators

Interpretation

Arithmetic addition (binary) operator, or unary plus
sign

Arithmetic subtraction (binary) operator, or unary
minus sign

Arithmetic multiplication operator

Arithmetic division operator

Arithmetic shift operator

Precedence operators; do <enclosed> first

AD Decimal radix operator

AO Octal radix operator

AX Hexadecimal radix operator

2.4.2 Characters for the Current, Previous, and Next Locations

The debugger provides a quick method for referencing the relative
data addresses or locations in DEPOSIT and EXAMINE commands:

2-8

Symbol

RECOGNITION OF NAMES

Meaning

The current location (the location most recently
referenced by an EXAMINE or DEPOSIT command). Use this
symbol in PL/I to reference a scalar variable, or an
element of a static array of scalars.

The previous location (the location at the next lower
address from the current location). Use this symbol in
PL/I to reference the previous element of an array of
32-bit scalar variables.

(@J) The next location (the location at the next higher address
from the current location). Press (@J) in PL/I to
reference the next element in an array of scalar
variables.

For example, assume the following PL/I variable declaration:

DECLARE X_LEN(lO) FIXED STATIC;

Elements of this array may be accessed as follows:

DBG>EXAMINE X LEN(S)
XLOOK\XLOOK\X-LEN(S): +14
DBG>DEPOSIT .-= 100

This DEPOSIT command puts a value of 100 in the variable most
recently referenced, that is, X_LEN(S).

To specify the previous location, type an up arrow or a circumflex
(A). For example:

DBG>EXAMINE A

XLOOK\XLOOK\X_LEN(4): +19

This EXAMINE command displays the contents of the previous location,
that is, X_LEN(4).

To specify the next higher location, simply omit the variable
reference. For example:

DBG>EXAMINE (@J)
XLOOK\XLOOK\X_LEN(5): 100

This EXAMINE command displays the contents of the next element in
the array X_LEN.

The EXAMINE and DEPOSIT commands, and restrictions on the data types
that you can examine and deposit, are described in the next chapter.

2-9

CHAPTER 3

EXAMINING AND DEPOSITING DATA

This chapter describes considerations for displaying, interpreting,
and modifying the contents of PL/I variables using the VAX-11 Symbolic
Debugger.

3.1 USING THE EXAMINE AND DEPOSIT COMMANDS

The EXAMINE and DEPOSIT commands display and change the contents of
variables, respectively. The EXAMINE command displays the contents of
selected variables. You can use EXAMINE to display any combination of
the following:

• A scalar variable

• Multiple scalar variables

• A range of array elements

• Multiple ranges of array elements

If you specify more than one variable and separate them with commas,
the contents of each variable specified are displayed. However, if
you use a colon to separate a pair of elements of an array, then all
elements within that range are displayed. For example:

DBG>EXAMINE STRING(l):STRING(S)
CALC\CALC\STRING(l) (1:10): stringa
CALC\CALC\STRING(2) (1:10): stringb
CALC\CALC\STRING(3) (1:10): stringc
CALC\CALC\STRING(4) (1:10): stringd
CALC\CALC\STRING(S) (1:10): stringe

This EXAMINE command displays the elements in the
element one through element five. When the
variables declared, it precedes the variable name
used to locate the variable, if it knows it,
length of the variable.

array STRING from
debugger displays

with the pathname
and it displays the

In the examples above, the pathname
program consists of only one routine:
name are the same.

CALC\CALC indicates that the
the routine name and the module

3.1.l Specifying the Data Type of Data to Deposit

When you examine a PL/I variable or deposit data into one, you do not
need to specify the data type of the variable, unless you want to
deposit data of a different type. In the following example, XVALUE is
declared with the attributes FLOAT BINARY:

3-1

EXAMINING AND DEPOSITING DATA

DBG>EXAMINE XVALUE
MAIN\XVALUE: 14.50000
DBG>EXAMINE/BYTE XVALUE
MAIN\XVALUE: 68

The debugger always uses the declared data type (including extent and
precision) of a variable, unless you override it. In this example,
the /BYTE qualifier tells the debugger to display only the contents of
the first byte of the storage occupied by the variable XVALUE.

You can use the SET TYPE/OVERRIDE command to tell the debugger to
display all variables using a certain type, for example:

DBG>SET TYPE/OVERRIDE /BYTE

After this command is issued, the debugger only displays the first
byte of any variable's storage. To restore the normal interpretation
of data types, use the CANCEL MODE command.

3.1.2 Restrictions on Examining and Depositing Data

For this release of VAX-11 PL/I, there are restrictions on both the
data types and storage classes of variables that you can access. You
cannot examine or modify:

• Structures

• Arrays with asterisk (*) or variable extents

• Variables with asterisk (*) or variable extents

• Label variables

• Pictures

• Parameters

• File data

• Formats

• Area or off set data

• Defined or based variables

In general, you can examine, evaluate, and deposit into a static,
scalar variable of any data type. You can also examine static arrays.

Static variables that are not assigned or initialized have initial
values of zero. If you display them, numeric values and bit strings
are displayed as zeros; character strings are null bytes, which are
nonprinting characters and appear blank when displayed. For example:

DBG>EXAMINE P
MAINP\MAINP\P(l:lO): +0000000000
DBG>EXAMINE A
MAINP\MAINP\ALPHA\A(l:lO):

Automatic variables may also be examined and deposited into; however,
since automatic variables are allocated from stack storage, their
contents are not valid until after they have been assigned. For
example:

DBG>EXAMINE X
MAINP\MAINP\X: 2147287308

3-2

EXAMINING AND DEPOSITING DATA

In this example, the contents of variable X are meaningless until
after the assignment of a value to the variable X.

There are special considerations for examining automatic arrays,
character strings, bit strings, and fixed-point decimal variables.
When you examine automatic variables whose storage is more than a
longword, you must supply a range of addresses or a length to the
debugger. To examine a range, you must change the language to MACRO.

The remainder
depositing into
types.

of this
static

chapter provides notes
and automatic variables

on examining and
of different data

The program MAINP, shown in Figure 3-1, contains the statements and
declarations that are referenced in the examples in the remainder of
this chapter.

1 /* Sample Program for Explaining Debugger Rules */
2
3 MAINP: PROCEDURE OPTIONS (MAIN);
4 1
5 1 DECLARE (X, Y, VALUE) FIXED,
6 1 (P, Q, R) FIXED DECIMAL (10,5) STATIC;
7 1
8 1 x = 2;
9 1 y = 3;

10 1 VALUE = X+Y;
11 1 PUT SKIP LIST(VALUE);
12 1
13 1 p 123.45;
14 1 Q 66666.3333;
15 1 R DIVIDE(Q,P,10,5);
16 1 PUT SKIP LIST(R);
17 1 CALL ALPHA;
18 1
19 1 ALPHA: PROCEDURE; /* Internal procedure */
20 2 DECLARE RESULT FLOAT STATIC,
21 2 A CHARACTER(lO) STATIC,
22 2 B BIT{32) ALIGNED STATIC,
23 2 C CHARACTER(lO),
24 2 D CHARACTER(60) VARYING;
25 2
26 2 A 'AAAAA';
27 2 B 'llOOO'B;
28 2 c 'ccccc' ;
29 2 D AllBI IC;
30 2 PUT SKIP LIST(D);
31 2
32 2
33 2 BETA: BEGIN; /* Begin block */
34 3 DECLARE SQUARE ROOTS(lO) FLOAT STATIC,
35 3 X FIXED;
36 3
37 3 DO X = 1 TO 10;
38 4 SQUARE ROOTS(X) = SQRT(X);
39 4 PUT SKIP-LIST(SQUARE ROOTS(X));
40 4 END; -
41 3 END BETA;
42 2
43 2 END ALPHA;
44 1 END MAINP;

Figure 3-1 The Sample Program, MAINP

3-3

EXAMINING AND DEPOSITING DATA

3.2 FIXED-POINT BINARY AND FLOATING-POINT VARIABLES

You can use the EXAMINE and DEPOSIT commands with fixed-point binary
and floating-point variables. For example:

DBG>EXAMINE Y
MAINP\MAINP\Y: 3
DBG>DEPOSIT Y = 866
DBG>STEP
start at MAINP\MAINP %LINE 10
stepped to MAINP\MAINP %LINE 11
DBG>EXAMINE VALUE
MAINP\MAINP\VALUE: 868

Here, the EXAMINE command displays the contents of the fixed-point
variable, Y, after its assignment on line 9 in Figure 3-1. Then, a
DEPOSIT command changes its contents, a STEP command executes the next
statement, and the EXAMINE command displays the resulting contents of
VALUE.

3.3 FIXED-POINT DECIMAL DATA

You can examine and deposit into static, scalar variables with the
fixed-point decimal data type. However, you must infer the position
of the decimal point in the value. For example:

DBG>EXAMINE R
MAINP\MAINP\R(l:lO): +0054002700

The precision and scale factor of R are (10,5);
represents 540.027.

3.4 CHARACTER-STRING VARIABLES

thus, this value

The debugger best supports fixed-length static character-string
variables. When you examine such a variable, the debugger displays
the entire storage of the variable. When you deposit data in it, the
debugger by default changes the entire storage of the variable. For
example, after the assignment of A on line 26 in Figure 3-1:

DBG>EXAMINE A
MAINP\MAINP\ALPHA\A(l:lO): AAAAA

To examine or change only a portion of a variable, use the /ASCII
qualifier to specify the number of characters you want to change, as
in this example:

DBG>DEPOSIT/ASCII:2 A= 'CC'

This command changes only the first two characters of the variable A.
Note that you must enclose strings in apostrophes when you specify
them to the debugger, as is true in PL/I.

When you examine a fixed-length character-string variable that has the
AUTOMATIC attribute, you must specify /ASCII:length on the EXAMINE
command to examine the variable. For example:

DBG>EXAMINE/ASCII:lO C
2147287779: ccccc

Remember that the value of an automatic variable is not valid until
after it has been assigned.

3-4

EXAMINING AND DEPOSITING DATA

For character-string variables with the VARYING attribute, you must
change the language to MACRO to determine the current length and
display the contents of the variable. The first word of the
variable's storage contains its length. For example:

DBG>SET LANGUAGE MACRO
DBG>EXAMINE/WORD D
7FFD02DE: 0034
DBG>EXAMINE/ASCII:34 D+2
7FFD02EO: AAAAA llOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCCCCC

In this example, the length of the variable (after its assignment in
statement 29) is 34 hexadecimal. This value is then used as a range
in the examination of the contents of the variable, which begins two
bytes beyond the beginning of the variable's storage.

Note that when you specify /ASCII, the debugger displays the virtual
address of the variable, rather than its identifier.

3.5 BIT-STRING VARIABLES

The debugger treats and displays bit strings as if they were
longwords. For example:

DBG>EXAMINE B
MAINP\MAINP\ALPHA\B: 3

Note that bit-string values are stored in reverse order,
preceding example. The bit-string constant '11000'
'00011', or 3 (decimal).

as in the
is stored as

The most efficient way to modify a bit-string variable is to use the
DEPOSIT command with the /HEXADECIMAL qualifier. For example:

DBG>DEPOSIT/HEX B = OCOCC
DBG>EXAMINE B
MAINP\MAINP\ALPHA\B: 49356

Bit strings may be more meaningful if you examine the contents of the
variable in hexadecimal. For example:

DBG>EXAMINE/HEX B
MAINP\MAINP\ALPHA\B: OOOOCOCC

3.6 STATIC ARRAYS

The debugger can interpret static array references of up to seven
dimensions only. You can refer to static arrays of the data types
listed below using subscripted references. The valid data types are
as follows:

e Fixed-point binary (FIXED BINARY)

e Floating point (FLOAT DECIMAL or FLOAT BINARY)

• Character nonvarying (CHARACTER)

e Aligned bit strings (BIT ALIGNED)

For example, the floating-point array SQUARE_ROOTS may be examined as
follows:

3-5

EXAMINING AND DEPOSITING DATA

DBG>EXAMINE SQUARE ROOTS(2)
MAINP\MAINP\ALPHA\BEGIN%31\SQUARE ROOTS{2): 2.000000
DBG>EXAMINE SQUARE ROOTS(7) -
MAINP\MAINP\ALPHA\BEGIN%31\SQUARE_ROOTS{7): 2.645751

Arrays with bit-string elements are valid only if the array has the
ALIGNED attribute, and if the length of the bit-string elements, when
rounded to the nearest byte, is 1, 2, or 4.

Under these circumstances, the debugger will recognize the array but
treat it as a byte, word, or longword array {that is, an array of
fixed binary variables with a precision of 7, 15, or 31). To examine
the elements of a such an array, it is convenient to use the
/HEXADECIMAL qualifier of the debugger command EXAMINE. For example,
a bit-string array may be declared and assigned values as follows:

DECLARE BITS{5) BIT {31) ALIGNED STATIC;
DECLARE X FIXED;

DO X = 1 TO 5;
BITS{X) BIT{X);
END;

During a debugging session, these elements may be examined as follows:

DBG>EXAMINE/HEX BITS(l):BITS(S)
ARRAYS\ARRAYS\BITS{l): 40000000
ARRAYS\ARRAYS\BITS{2): 20000000
ARRAYS\ARRAYS\BITS{3): 60000000
ARRAYS\ARRAYS\BITS{4): 10000000
ARRAYS\ARRAYS\BITS{5): 50000000

Note again that the values of the bit strings are reversed when they
are stored internally. These same values, when output with PUT LIST
statements, would appear as follows:

'0000000000000000000000000000001'8
'0000000000000000000000000000010'8
'0000000000000000000000000000011'8
'0000000000000000000000000000100'8
'0000000000000000000000000000101'8

3.7 AUTOMATIC ARRAYS AND FIXED-POINT DECIMAL ARRAYS

To examine and modify elements of automatic arrays and of static
arrays of fixed-point decimal variables, you must calculate the
address of an element or elements and specify the address range in an
expression. To specify an address expression, the language must be
set to MACRO.

For example, if the bit-string array in the example in the preceding
section were declared without the STATIC attribute, you would have to
enter the following commands in order to display the elements:

DBG>SET LANGUAGE MACRO
DBG>EXAMINE/HEX BITS:BITS+lO
ARRAYS\ARRAYS\BITS: 40000000
ARRAYS\ARRAYS\BITS+04: 20000000
ARRAYS\ARRAYS\BITS+08: 60000000
ARRAYS\ARRAYS\BITS+OC: 10000000
ARRAYS\ARRAYS\BITS+lO: 50000000

where the hexadecimal value 10 represents the address of the last
element of the array. Note that when the language is MACRO, the
default radix is set to hexadecimal. In this example, each element

3-6

EXAMINING AND DEPOSITING DATA

occupies a longword, or four bytes. The expression BITS:BITS+lO
displays 20 bytes, the total amount of storage occupied by the array.

Fixed-point decimal arrays (both automatic and static) can also be
accessed this way. In a fixed-point decimal value, each digit is
stored in a four-bit field; the final field contains a sign digit.
For example, the array declared as follows:

DECIMALS (5) FIXED DECIMAL (10,5)

is stored in consecutive six-byte locations. To examine the third
element of this array, you can set the language to MACRO and specify
the location of the element as follows:

DBG>SET LANGUAGE MACRO
DBG>EXAMINE/BYTE DECIMALS+<2*6>:DECIMALS+<3*o>-l
7FFD035C: 02
7FFD035D: 71
7FFD035E: 68
7FFD035F: 79
7FFD0360: 00
7FFD0361: OC

The expression <2*6> represents the off set of two six-byte elements
from the beginning of the array's storage. The second expression
represents the end of the second element. In the output shown above,
each byte contains two digits. The current value of DECIMALS(3) is
21786.97000. The C indicates that the value is positive. (A 'D'
would indicate a negative value.)

You can similarly calculate the addresses of elements of connected
automatic arrays of the following data types:

• Fixed-point binary

• Floating point

• Character nonvarying

• Character varying

All arrays are stored in contiguous storage locations. Note that in
character-string arrays with the VARYING attribute, each element is
preceded by a two-byte length field. You must consider this length
when you perform the calculations.

3-7

CHAPTER 4

CONTROLLING A PROGRAM'S EXECUTION

To see what happens during execution of your program, you must be able
to suspend and resume the program at specific points. This chapter
describes the following debugging concepts:

• Starting and stopping program execution

• Stepping through a program

• Breakpoints

• Tracepoints

• Watchpoints

This chapter also describes how to invoke subroutines during a
debugging session.

4.1 STARTING AND STOPPING EXECUTION

Use the GO command to start program execution. You must use this
command when you begin the debugging session, and when you want to
continue the program's execution after it has been suspended. For
example:

$ RUN FLOWERS

VAX-11 DEBUG Version 2.00

%DEBUG-I-INITIAL, language is 'BASIC', scope and module set to 'FLOWERS'
DBG>GO

%DEBUG-I-EXITSTATUS, is '%SYSTEM-S-NORMAL, normal successful completion'
DBG>

The EXITSTATUS message indicates that the program has run to
completion.

When you are finished with the debugging session, use the EXIT command
to leave the debugger. You must not restart a program from the
beginning unless you first exit from the debugger. Otherwise,
unspecified results occur.

NOTE

For this release of the debugger, the
debugger sometimes displays erroneous
error messages when a procedure with the
MAIN option completes. You can ignore
these messages.

4-1

CONTROLLING A PROGRAM'S EXECUTION

If your program loops or fails to complete executing, or if
to interrupt it for any other reason, you can press CTRLNJ
to the DCL command level. For example:

DBG >GO ICTRL/Yl

"y

$

you need
to return

The $ prompt on the terminal indicates that you have returned to the
DCL command level. To return to the debugger, type DEBUG or CONTINUE.
If you type DEBUG, control returns to the debugger and the debugger
prompts you for a commmand. If you type CONTINUE, the debugging
session continues from where it was interrupted.

If you do not
STOP command
You can also
executing, if
conditions.

want to continue the debugging session, you can enter a
or another DCL command to stop the debugging session.
reissue the RUN command for the program you are
you want to rerun it beginning with its starting

4.2 STEPPING THROUGH A PROGRAM

When you want to maintain control of your program, to be able to
display and/or modify variables following the execution of single
statements, you can use the STEP command.

You can use the STEP command to execute a program one line at a time
or you can specify a number of lines to execute. For example:

DBG>STEP 5

When this command is executed, the debugger executes the next five
statements and then suspends the program.

When you are stepping through a program, the debugger displays only
the line numbers of the lines as they are executed; it does not
display the statements.

The debugger maintains default modes for stepping commands. You can
override the default modes by entering qualifiers on a STEP command,
or by entering a SET STEP command to change the default. For example,
the default step for higher-level languages is STEP/LINE where step is
a line or statement number increment. In assembly language, the
default is STEP/INSTRUCTION. Thus, if you want to look at the machine
instructions that are executed for each PL/I statement line, enter the
debugger command SET STEP INSTRUCTION, as follows:

DBG>SET STEP INSTRUCTION
DBG>STEP
start at MAINP\MAINP\ALPHA %LINE 25
stepped to MAINP\MAINP\ALPHA %LINE 26

MOVC5 #5,W"l536,#32,#10,B"-72(FP)
DBG>STEP
start at MAINP\MAINP\ALPHA %LINE 26
stepped to MAINP\MAINP\ALPHA %LINE 27 MOVZWL #32,Rl
DBG>STEP
start at MAINP\MAINP\ALPHA %LINE 27
stepped to MAINP\MAINP\ALPHA %LINE 27 +3: MOVZWL #32,R3
DBG>STEP

For each PL/I
instructions,
instruction.

statement, there are one or more machine-language
and you must enter the STEP command for each

The debugger displays the machine language instruction.

4-2

CONTROLLING A PROGRAM'S EXECUTION

When you subsequently issue a STEP command without qualifiers,
instruction mode remains in effect. You can supersede this default by
including the /LINE qualifier in a STEP command. For example:

DBG>STEP/LINE 10

This command tells the debugger to execute 10 lines, regardless of the
current step default.

It is advisable to use STEP to execute only a few instructions at a
time. To execute many instructions, and then stop, use a SET BREAK
command to set a breakpoint, and then issue a GO command.

4.3 BREAKPOINTS

The BREAK commands let you select specified locations for program
suspension. Thus, you can let a program run until it reaches a
specified statement, and then you can examine and/or modify variables
or arrays in the program. The BREAK commands perform the following
functions:

• SET BREAK defines a line number, procedure or entry-point
name, or an address at which to suspend execution

• SHOW BREAK displays all breakpoints currently set in the
program

• CANCEL BREAK removes selected breakpoints or all breakpoints

For example, the command

DBG>SET BREAK %LINE 7

sets a breakpoint at the statement corresponding to the line numbered
7 in the source program. When the breakpoint at line 7 is reached
during the execution of the program, the debugger interrupts the
program, as in this example:

DBG>SET BREAK %LINE 7
DBG>GO
routine start at MAINP\MAINP
break at MAINP\MAINP %LINE 7

After the breakpoint is set, the GO command continues the program
execution. When statement 7 is reached, the debugger interrupts the
program and displays a message indicating that the breakpoint is
reached. At this breakpoint, you can examine or change static
variables, begin stepping through the program, and so on.

To set a breakpoint at a procedure entry point, specify it by name.
For example:

DBG>SET BREAK PRINT ROUTINE

This command sets a breakpoint at the entry to the procedure
PRINT ROUTINE.

You can use the /AFTER qualifier to control when a breakpoint takes
effect. For instance, if you set a breakpoint on a line that is in
the range of a DO loop, and you want the breakpoint to be effective
the third time through the loop, then specify /AFTER, as shown in the
following example:

DBG>SET BREAK/AFTER:3 %LINE 20

4-3

CONTROLLING A PROGRAM'S EXECUTION

Note that if you use tJ1e /AFTER qualifier, the breakpoint is reported
not only the nth time it is encountered, but also every time it is
encountered thereafter.

The SET BREAK command also lets you specify some action to be taken
each time a breakpoint is encountered. For example, to set a
breakpoint at a location, examine one or more variables, and continue,
you could enter a SET BREAK command as follows:

DBG>SET BREAK %LINE 29 DO(EXAMINE TOTAL; EXAMINE AREA; GO)
DBG>GO

After this command, the debugger sets a breakpoint at line 29. Each
time the statement on this line is executed, the debugger interrupts
the program, displays the contents of the variables TOTAL and AREA,
and executes the GO command to continue execution.

You can cancel a breakpoint with the CANCEL BREAK command. For
example:

DBG>CANCEL BREAK %LINE 9

This command cancels the breakpoint at line 9. To cancel all
breakpoints, enter:

DBG>CANCEL BREAK/ALL

You can display the current breakpoints in effect with the SHOW BREAK
command.

4.4 TRACEPOINTS

A tracepoint is similar to a breakpoint in that it suspends program
execution and displays the address at the point of suspension.
However, in the case of a tracepoint, program execution resumes
immediately. Thus, tracepoints let you follow the sequence of program
execution to ensure that execution is carried out in the proper order.

Note that if you set a tracepoint at the same location as a current
breakpoint, the breakpoint is canceled, and vice versa.

The TRACE commands perform the following functions:

• SET TRACE establishes lines or entry points within the
program at which execution is momentarily suspended.

• SHOW TRACE displays the locations in the program at which
tracepoints are currently set.

• CANCEL TRACE removes one or more tracepoints currently set in
the program.

For example, you can use the SET TRACE if you want to keep track of
the number of times a given subroutine is called, as follows:

DBG>SET TRACE INSIDEOUT

Each time a call is made to INSIDEOUT, the debugger displays a message
like the following:

routine trace at MAINP\MAINP\INSIDEOUT

The message gives the pathname of the symbol.

4-4

CONTROLLING A PROGRAM'S EXECUTION

To set a tracepoint on a given statement, use the %LINE specifier, as
in the example below:

DBG>SET TRACE %LINE 30

While this tracepoint is set, the debugger displays a message each
time the statement on line 30 is executed.

4.5 WATCHPOINTS

A watchpoint is a location that the debugger monitors so that it can
inform you when your program has made an attempt to modify its
contents. When you debug a PL/I program, you can set a watchpoint on
a variable. When the watched variable is modified, the debugger
suspends program execution, displays the address of the instruction,
and prompts for a command.

Watchpoints are monitored continuously.
whether locations are being modified
execution.

You can determine, therefore,
inadvertently during program

You can use the following commands to control watchpoints:

• SET WATCH defines the location(s) to be monitored.

• SHOW WATCH displays
monitored.

the location(s) currently being

• CANCEL WATCH disables monitoring of the specified locations.

You can monitor only static scalar variables and array elements.
Because automatic variables are allocated storage on the stack, they
are protected from access. For example:

DBG>SET WATCH AREA

Note that you cannot set watchpoints, tracepoints, and breakpoints at
the same location; the most recently issued command overrides the
other(s).

Note that run-time errors occur if a watchpoint is in effect while I/O
is being performed. Thus, to watch a variable, you must be careful
not to set the watchpoint until all previous I/O is completed. You
can do this by setting a breakpoint following an I/O statement and
then setting a watchpoint. For example, if you want to watch a
variable R in a procedure that contains a PUT statement on line 12,
you could set the watchpoint as follows:

DBG>SET BREAK %LINE 13.1 DO (SET WATCH R;GO)
DBG>SET BREAK %LINE 12.1 DO {CANCEL WATCH R;GO)

A bug in
Release 2
the syntax
in a SET
example.

NOTE

the BASIC support for the
Debugger requires you to use

%line.l when you specify a DO
BREAK command, as in this

The SET BREAK commands in the above example ensure that each time the
PUT statement is about to execute, the watchpoint at R is canceled.
Following the PUT statement, the watchpoint is reestablished.

4-5

CONTROLLING A PROGRAM'S EXECUTION

When a watchpoint is reached, the debugger suspends execution and
displays a message similar to the following:

write to MAINP\MAINP\R{l:6) at PC MAINP\MAINP %LINE 13 +25
old value +0000000000
new value = +0054002700

DBG>

When a watched variable is modified, the debugger displays its former
contents, if any, and the modified contents. It then prompts you to
enter a command. You must enter GO or STEP to continue the program's
execution.

4.6 ENTERING AND RETURNING FROM SUBROUTINES

As you debug a program that consists of more than one procedure, you
can use the following to control the debugging:

• The STEP command lets you specify whether you want to debug a
called subroutine or step over it.

• The SHOW CALLS command displays a traceback showing the
calling sequence.

• The CALL command lets you invoke a subroutine and pass it
arguments.

4.6.1 Stepping Into and Over Subroutines

When you are stepping through a program, or when you have set a
breakpoint at a statement that is a CALL statement, you can decide
whether or not to enter the subroutine. To enter the subroutine,
enter:

DBG>STEP/INTO

If the names declared in this module are not already in the
debuggers's symbol table, you must also enter a SET MODULE command to
include the symbols {including line numbers) that you want to
reference.

If you do not want to debug the subroutine, enter:

DBG>STEP/OVER

Then, the debugger
subroutine's entry
subroutine returns.

continues
point and

the program's execution
returns control to you

at
when

the
the

The STEP command also lets you decide whether you want to step through
system routines, for example, PL/I run-time procedures or system
services. If you specify STEP/SYSTEM, then the debugger will step
through system routines for you. You cannot, however, set breakpoints
or examine data that is being used by system procedures.

You can use the SET STEP command to set a default mode for stepping.
For example:

DBG>SET STEP INTO

After this command, the debugger steps into all subroutines. Note,
however, that the debugger steps into the PL/I run-time routines as
well as into your subroutines.

4-6

CONTROLLING A PROGRAM'S EXECUTION

4.6.2 Displaying the Calling Sequence

The SHOW CALLS command produces a traceback of calls, and is
particularly useful when you have returned to the debugger following a
~RLNJ interrupt.

The debugger displays a traceback list that shows you the sequence of
calls leading to the current module. If you specify a value, for
example

DBG>SHOW CALLS 6

the six most recent calls are displayed.

4.6.3 Calling Subroutines

You can use the debugger command CALL to invoke an internal or
external subroutine or function during the debugging session. You can
also specify arguments using variables. For example, assume a program
contains the following subroutine:

CALC: PROCEDURE (P,Q);
DECLARE (P,Q) FIXED;

Q = P**P;
END;

If you have variables X and Y declared as FIXED, you can test this
subroutine as in the following examples:

DBG>DEPOSIT X 5
DBG>CALL CALC (X,Y)
routine start at MAINP\MAINP\CALC
value returned is 1342195267
DBG>EXAMINE Y
MAINP\MAINP\Y: 3125
DBG>DEPOSIT X 7
DBG>CALL CALC (X,Y)
routine start at MAINP\MAINP\CALC
value returned is 259017289
DBG>EXAMINE Y
MAINP\MAINP\Y: 823543

Note that when you specify arguments with the CALL command, you must
use only variable names; the debugger cannot pass constants to PL/I
procedures.

The debugger always displays a return value from the procedure that
was invoked. Thus, if the procedure is a function, the actual return
value will be displayed. However, if the procedure is a subroutine,
as in this example, the returned value is meaningless.

4-7

APPENDIX A

VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

This appendix summarizes the modules and entry points in the VAX-11
PL/I run-time system. Table A-1 lists the modules in the library and
summarizes the function(s) performed by each. Table A-2 lists the
entry points, gives the name of the module in which the entry point is
defined and summarizes the function performed by that entry. Table
A-3 lists the modules from the VAX-11 Run-Time Procedure Library that
are called by PL/I run-time modules.

Table A-1
VAX-11 PL/I Run-Time Modules

Module

LIB$EMULATE

PLI$$BYTESIZE

PL! $$ENVIR

PLI$$PROTVCHA

PLI$BIT

PLI$CHAR

PLI$CLOSE

PLI$CONDIT

PLI$CONTROL

PLI$CONVERT

PLI$CVTPIC

PLI$DATA

PLI$DELETE

PLI$DIVIDE PACKED LONG

Function(s)

Emulates G and H floating point

Calculates the size of an item for an I/O
operation

Processes ENVIRONMENT options

Converts system protection
character varying strings

Performs bit manipulations

Performs character manipulations

Closes files

bits to

Performs default condition handling for
MAIN procedures

Processes main procedure startup and
stopping, and performs exit handling

Performs data conversions

Performs picture conversions and
validation

Contains run-time constants, the
collating sequence, and tables

Performs the DELETE statement

Performs extended precision division for
precisions greater than or equal to 30

(Continued on next page)

A-1

VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

Module

Table A-1 {Cont)
VAX-11 PL/I Run-Time Modules

Function(s)

PLI$DIVIDE PACKED SHORT Performs extended precision division
precisions less than 30

for

PLI$ERRORMSG

PLI$FORMAT

PLI$GETBUFFER

PLI$GETEITEM

PLI$GETFILE

PLI $GETLISTITEM

PLI$HEEP

PLI$MATH

PLI$0PEN

PLI$PUTBUFFER

PLI$PUTEDITITEM

PLI$PUTFILE

PLI $PUTLISTITEM

PLI$READ

PLI$RECOPT

PLI$REWRITE

PLI$RMSBIS

PLI $STRING IO

PLI$TIME DATE

PLI$WRITE

Constructs and displays error messages

Processes format items

Provides the file system interface for
GET FILE statement

Performs GET EDIT operations

Provides the program interface for GET
FILE operations

Performs GET LIST operations

Obtains dynamic storage

Performs mathematical functions

Opens files

Provides the file system interface for
PUT FILE operations

Performs the PUT EDIT statement

Provides the program interface for PUT
FILE operations

Performs the PUT LIST statement

Performs the READ statement

Processes I/O options and keys

Performs the REWRITE statement

Performs file-handling built-in functions

Provides the program interface for GET
STRING

Performs the DATE and TIME
functions

Performs the WRITE statement

A-2

built-in

VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

Table A-2
Run-Time Entry Points

Entry Point Module

PLI$$BYTESIZE PLI$$BYTESIZE

PLI$$CHK KEYCND PLI$RECOPT

PLI$$CHARBITN R6 PLI$GETBUFFER

PLI$$ENVIR PLI$$ENVIR

PLI$$FXCTLTO R6 PLI$RECOPT

PLI$$FXDCTLFROM PLI$RECOPT

PLI$$GETFMT R6

PLI$$GETNEDI R6

PLI $$GETNLIS R6

PLI$$GETSKIP R2

PLI$$GETSKP1 R2

PLI$$GET REC

PLI$$KEYNUM

PLI$$KEYTO R8

PLI$$KEY HND

PLI$$MATCHGEQ

PLI$$MATCHGTR

PLI$$PROTVCHA

PLI$$PUTFMT R6

PLI$$PUTNEDI R6

PLI$$PUTNLIS R6

PLI$$PUTPAGE R6

PLI$$PUTSKP1 R2

PLI$$PUT REC

PLI$$READKEY R6 -

PLI$$STREAM HND

PLI$$TERM PROG

PLI$FORMAT

PLI$GETBUFFER

PLI$GETBUFFER

PLI$GETBUFFER

PLI$GETBUFFER

PLI$GETBUFFER

PLI$RECOPT

PLI$RECOPT

PLI$RECOPT

PLI$RECOPT

PLI$RECOPT

PL I$ $PROTVC HA

PLI$FORMAT

PLI$PUTBUFFER

PLI$PUTBUFFER

PLI$PUTBUFFER

PLI$PUTBUFFER

PLI$PUTBUFFER

PLI$RECOPT

PLI$CONDIT

PLI$CONTROL

A-3

Performs the PL/I Function

Sizing of I/O item

Validation of key data type

Conversion of character to bit

ENVIRONMENT options

FIXED_CONTROL_TO option

FIXED CONTROL FROM option

GET EDIT format

GET EDIT format item

Next list item

SKIP option

SKIP option

Stream input

INDEX NUMBER option

KEYTO option

Key conversion errors

MATCH_GREATER_EQUAL option

MATCH~GREATER option

Converts system protection
bits to character varying
strings

PUT EDIT format items

Next output edit item

Next output list item

PUT PAGE

PUT SKIP

PUT buffer

KEY option

Condition handling for stream
I/O

Program termination

(Continued on next page)

VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

Table A-2 (Cont)
Run-Time Entry Points

Entry Point Module

PLI$$VALRECIDTO PLI$RECOPT

PLI$$WRITEKEY R8 PLI$RECOPT

PLI$ABITABIT_R6 PLI$CONVERT

PLI$ABITBIT R6 PLI$CONVERT

PLI$ABITCHAR R6 PLI$CONVERT

PLI$ABITFIXB R6 PLI$CONVERT

PLI$ABITFIXD_R6 PLI$CONVERT

PLI$ABITFLTB R6 PLI$CONVERT

PLI$ABITFLTD R6 PLI$CONVERT

PLI$ABITPIC R6 PLI$CONVERT

PLI$ABITVCHA R6 PLI$CONVERT

PLI$AB COLAT PLI$DATA

PLI$ALOCHEEP PLI$HEEP

PLI$ANDBIT PLI$BIT

PLI$BITABIT R6 PLI$CONVERT

PLI$BITBIT R6 PLI$CONVERT

PLI$BITCHAR R6 PLI$CONVERT

PLI$BITFIXB R6 PLI$CONVERT

PLI$BITFIXD R6 PLI$CONVERT

PLI$BITFLTB R6 PLI$CONVERT

PLI$BITFLTD R6 PLI$CONVERT

PLI$BITPIC R6 PLI$CONVERT

A-4

Performs the PL/I Function

RECORD ID TO

KEYFROM option

Conversion of aligned bit to
aligned bit

Conversion of aligned bit to
unaligned bit

Conversion of aligned bit to
character

Conversion of aligned bit to
fixed binary

Conversion of aligned bit to
fixed decimal

Conversion of aligned bit to
floating binary

Conversion of aligned bit to
floating decimal

Conversion of aligned bit to
picture

Conversion of aligned bit to
varying character

Collating table

Memory allocation

AND bit strings

Conversion of unaligned bit to
aligned bit

Conversion of unaligned bit to
unaligned bit

Conversion of unaligned bit to
character

Conversion of unaligned bit to
fixed binary

Conversion of unaligned bit to
fixed decimal

Conversion of unaligned bit to
floating binary

Conversion of unaligned bit to
floating decimal

Conversion of unaligned bit to
picture

(Continued on next page)

VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

Entry Point

PLI$BITVCHA_R6

PLI$BOOLBIT

PLI$BOUND CHECK

PLI$B PACO

PLI$B_PAC1

PLI$B PAC5

PLI$B -PACNl

PLI$B SCAN

PLI$CATBIT

PLI$CHARABIT R6
-

PLI$CHARBIT R6

PLI$CHARCHAR R6

PLI $CHARFIXB _ R6

PLI$CHARFIXD R6

PLI$CHARFLTB R6

PLI$CHARFLTD R6

PLI$CHARPIC R6

PLI$CHARVCHA R6

PLI$CLOSE

PLI$CMPBIT

PLI$CND HND

Table A-2 (Cont)
Run-Time Entry Points

Module

PLI $CONVERT

PLI$BITVERT

PLI$CONDIT

PLI$DATA

PLI$DATA

PLI$DATA

PLI$DATA

PLI$DATA

PLI$BIT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CLOSE

PLI$BIT

PLI$CONDIT

A-5

Performs the PL/I Function

Conversion of unaligned bit to
varying character

BOOL built-in function

Array bound checking

Holds packed decimal constant

Holds packed decimal constant

Holds packed decimal constant

Holds packed decimal constant

Holds scan/span table

Bit concatenation

Conversion of character to
aligned bit

Conversion of character to
unaligned bit

Conversion of character to
character

Conversion of character to
fixed binary

Conversion of character to
fixed decimal

Conversion of character to
floating binary

Conversion of character to
floating decimal

Conversion of character to
picture

Conversion of character to
varying character

CLOSE statement

Bit comparisons

Condition handling for
procedures without MAIN option

(Continued on next page)

VAA-LL ~L/1 HUN-TIME MODULES AND ENTRY POINTS

Entry Point

PLI$CNVRT HND

PLI$CVRT ANY

PLI $CVRT CG R3

PLI$CVT FR PIC

PLI$CVT TO PIC

PLI$DATE

PLI$DEF HND

PLI$DELETE

PLI$DISPLAY

PLI$DIV PKSHORT

PLI$DIV PK LONG

PLI$EXIT HND -

PLI$EXTEND

PLI$FCB HEAD -

PLI$FIXBABIT R6 -

PLI$FIXBBIT R6 -

PLI$FIXBCHAR_R6

PLI$FIXBFIXB R6

PLI$FIXBFIXD R6

PLI$FIXBFLTB R6

PLI$FIXBFLTD R6

PLI$FIXBPIC R6

PLI$FIXBVCHA R6

PLI$FIXDABIT R6

Table A-2 {Cont)
Run-Time Entry Points

Module

PLI$CONDIT

PLI$CONVERT

PLI$CONVERT

PLI$CVTPIC

PLI$CVTPIC

PLI$TIME DATE

PLI$CONDIT

PLI$DELETE

PLI$RMSBIS

PLI$DIVIDE
PACKED SHORT

PLI$DIVIDE
PACKED LONG

PLI$CONTROL

PLI $RMSBIS

PLI$CONTROL

PLI$CONVERT

PLI $CONVERT

PLI $CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI $CONVERT

PLI$CONVERT

PL I $CONVERT

A-6

Performs the PL/I Function

Condition handling for
conversion errors

All conversions

All conversions

Conversions from pictures

Conversions to pictures

DATE built-in function

Condition handling for MAIN
procedures

DELETE statement

DISPLAY built-in subroutine

Extended precision division

Extended precision division

Exit handling

EXTEND built-in subroutine

List of file headers

Conversion of fixed binary
aligned bit

Conversion of fixed binary
unaligned bit

Conversion of fixed binary
character

Conversion of fixed binary
fixed binary

Conversion of fixed binary
fixed decimal

Conversion of fixed binary
floating binary

Conversion of fixed binary
floating decimal

Conversion of fixed binary
picture

Conversion of fixed binary
varying character

Conversion of fixed decimal
aligned bit

{Continued on next

to

to

to

to

to

to

to

to

to

to

page)

VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

Entry Point

PLI$FIXDBIT R6 -

PLI$FIXDCHAR R6 -

PLI$FIXDFIXB R6

PLI$FIXDFIXD R6

PLI$FIXDFLTB R6

PLI$FIXDFLTD R6

PLI$FIXDPIC R6
-

PLI$FIXDVCHA R6

PLI$FLTBABIT R6

PLI$FLTBBIT R6

PLI$FLTBCHAR R6

PLI$FLTBFIXB R6

PLI$FLTBFIXD R6

PLI$FLTBFLTB_R6

PLI$FLTBFLTD R6

PLI$FLTBPIC R6

PLI$FLTBVCHA_R6

PLI$FLTDABIT_R6

PLI$FLTDBIT R6

PLI$FLTDCHAR_R6

Table A-2 (Cont)
Run-Time Entry Points

Module

PLI$CONVERT

PL I $CONVERT

PLI$CONVERT

PL I $CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PL I $CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PL I $CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

A-7

Performs the PL/I Function

Conversion of fixed decimal to
unaligned bit

Conversion of fixed decimal to
character

Conversion of fixed decimal to
fixed binary

Conversion of fixed decimal to
fixed decimal

Conversion of fixed decimal to
floating binary

Conversion of fixed decimal to
floating decimal

Conversion of fixed decimal to
picture

Conversion of fixed decimal to
varying character

Conversion of floating binary
to aligned bit

Conversion of floating binary
to unaligned bit

Conversion of floating binary
to character

Conversion of floating binary
to fixed binary

Conversion of floating binary
to fixed decimal

Conversion of floating binary
to floating binary

Conversion of floating binary
to floating decimal

Conversion of floating binary
to picture

Conversion of floating binary
to varying character

Conversion of floating decimal
to aligned bit

Conversion of floating decimal
to bit

Conversion of floating decimal
to character

(Continued on next page)

VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

Entry Point

PLI$FLTDFIXB R6

PLI$FLTDFIXD R6

PLI$FLTDFLTB R6

PLI$FLTDFLTD R6

PLI$FLTDPIC R6

PLI$FLTDVCHA R6

PLI$FLUSH

PLI$FREEHEEP

PLI$GETEABIT R6

PLI$GETEBIT R6

PLI$GETECHAR R6

PLI$GETEFIXB R6

PLI$GETEFIXD R6

PLI$GETEFLTB R6

PLI$GETEFLTD R6

PLI$GETEPIC R6

PLI$GETEVCHA R6

PLI$GETFILE

PLI$GETLABIT R6

PLI$GETLBIT R6

PLI$GETLCHAR R6

PLI$GETLFIXB R6

PLI$GETLFIXD R6

PLI$GETLFLTB R6

Table A-2 {Cont)
Run-Time Entry Points

Module

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$RMSBIS

PLI$HEEP

PLI$GETEITEM

PLI$GETEITEM

PLI$GETEITEM

PLI$GETEITEM

PLI$GETEITEM

PLI$GETEITEM

PLI$GETEITEM

PLI$GETEITEM

PLI$GETEITEM

PLI$GETFILE

PLI $GET LIT.EM

PLI$GETLITEM

PLI$GETLITEM

PLI$GETLITEM

PLI$GETLITEM

PLI$GETLITEM

A-8

Performs the PL/I Function

Conversion of floating decimal
to fixed binary

Conversion of floating decimal
to fixed decimal

Conversion of floating decimal
to floating binary

Conversion of floating decimal
to floating decimal

Conversion of floating decimal
to picture

Conversion of floating decimal
to varying character

FLUSH built-in subroutine

Virtual memory deallocation

GET aligned bit item to edit

GET EDIT of bit item

GET EDIT of character item

GET EDIT of fixed binary item

GET EDIT of fixed decimal item

GET EDIT of floating binary
item

GET EDIT of floating decimal
item

GET EDIT of pictured item

GET EDIT of varying character
item

GET statement

GET LIST of aligned bit item

GET LIST of bit item

GET LIST of character item

GET LIST of fixed binary item

GET LIST of fixed decimal item

GET LIST of floating binary
item

{Continued on next page)

VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

Entry Point

PLI$GETLFLTD R6

PLI$GETLPIC R6

PLI$GETLVCHA

PLI$GETSTRNG R6

PLI$GOTO

PLI$INDEXBIT

PLI$IO ERROR

PLI$LINK FCB

PLI$MOVBIT

PLI$MOVTRANCHAR

PLI$NEXT VOLUME

PLI$NOLOC GOTO

PLI$NONLOC RET

PLI$NOTBIT

PLI$0NCNDARG

PLI$0NCODE

PLI$0NFILE

PLI$0NKEY

PLI$0PEN

PLI $0PTIONSMAIN

PLI $0PTMAIN HND

PLI$0PTMAIN RET

PLI$0RBIT

PLI$PICABIT R6 -

PLI$PICBIT R6

PLI$PICCHAR R6

Table A-2 (Cont)
Run-Time Entry Points

Module

PLI$GETLITEM

PLI$GETLITEM

PLI $GETLISTITEM

PLI$STRINGIO

PLI$CONDIT

PLI$BITDIT

PLI$CONDIT

PLI$CONTROL

PLI$BIT

PLI$CHAR

PLI$RMSBIS

PLI$CONDIT

PLI$CONDIT

PLI$BIT

PLI$CONDIT

PLI$CONDIT

PLI$CONDIT

PLI$CONDIT

PLI$0PEN

PLI$CONTROL

PLI$CONDIT

PLI$CONDIT

PLI$BIT

PL I $CONVERT

PLI$CONVERT

PLI$CONVERT

A-9

Performs the PL/I Function

GET LIST of floating decimal
item

GET LIST of pictured item

GET LIST of varying character
item

GET STRING

GOTO

INDEX built-in function for
bits

I/O error messages

PLI$0PEN Linkage of open file
headers

Bit copies

TRANSLATE built-in function

NXTVOL built-in subroutine

Nonlocal GOTO

Nonlocal RETURN

NOT bits

ONARGSLIST built-in function

ONCODE built-in function

ONFILE built-in function

ONKEY built-in function

OPEN statement

MAIN procedure initialization

Condition handling for MAIN
procedure

RETURN from MAIN procedure

OR bits

Conversion of picture to
aligned bit

Conversion of picture to
unaligned bit

Conversion of picture to
character

(Continued on next page)

VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

Entry Point

PLI$PICFIXB R6

PLI$PICFIXD R6

PLI$PICFLTB R6

PLI$PICFLTD R6

PLI$PICPIC R6

PLI $PICVCHA R6

PLI$PUTEABIT R6

PLI$PUTEBIT R6

PLI$PUTECHAR R6

PLI$PUTEFIXB R6

PLI$PUTEFIXD R6

PLI$PUTEFLTB R6

PLI$PUTEFLTD R6

PLI$PUTEPIC R6

PLI$PUTEVCHA_R6

PLI$PUTFILE

PLI$PUTLABIT R6

PLI$PUTLBIT R6

PLI$PUTLCHAR R6

PLI$PUTLFIXB R6

PLI$PUTLFIXD R6

PLI$PUTLFLTB R6

PLI$PUTLFLTD R6

PLI$PUTLPIC_R6

PLI$PUTLVCHA R6

Table A-2 (Cont)
Run-Time Entry Points

Module

PLI $CONVERT

PLI$CONVERT

PLI $CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$PUTEDITITEM

PLI$PUTEDITITEM

PLI$PUTEDITITEM

PLI$PUTEDITITEM

PLI$PUTEDITITEM

PLI$PUTEDITITEM

PLI$PUTEDITITEM

PLI$PUTEDITITEM

PLI$PUTEDITITEM

PLI$PUTFILE

PLI$PUTLISTITEM

PLI $PUTLISTITEM

PL I $PUTLIST ITEM

PLI$PUTLISTITEM

PLI $PUTLISTITEM

PLI$PUTLISTITEM

PLI $PUTLISTITEM

PLI $PUTLISTITEM

PLI $PUTLISTITEM

A-10

Performs the PL/I Function

Conversion of picture to fixed
binary

Conversion of picture to fixed
decimal

Conversion of picture to
floating binary

Conversion of picture to
floating decimal

Conversion of picture to
picture

Conversion of picture to
varying character

PUT EDIT of aligned bit item

PUT EDIT of unaligned bit item

PUT EDIT of character item

PUT EDIT of fixed binary item

PUT EDIT of fixed decimal item

PUT EDIT of floating binary
item

PUT EDIT of floating decimal
item

PUT EDIT of picture item

PUT EDIT of varying character
item

PUT FILE statement

PUT LIST of aligned bit item

PUT LIST of unaligned bit item

PUT LIST of character item

PUT LIST of fixed binary item

PUT LIST of fixed decimal item

PUT LIST of floating binary
item

PUT LIST of floating decimal
item

PUT LIST of pictured item

PUT LIST of varying character
item

(Continued on next page)

VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

Entry Point

PLI$PUTSTRNG R6

PLI$PUT END R6

PLI$READ

PLI$RESIGNAL

PLI$RETURN

PLI$REWIND

PLI$REWRITE

PLI$RT SUBSCRIP

PLI$RVRT CND

PLI$SPACEBLOCK

PLI$STOP PROG

PLI$TIME

PLI $VALID PIC

PLI$VCHAABIT R6

PLI$VCHABIT R6 -

PLI$VCHACHAR R6

PLI$VCHAFIXB R6

PLI$VCHAFIXD R6

PLI$VCHAFLTB R6

PLI$VCHAFLTD R6

PLI$VCHAPIC R6

PLI$VCHAVCHA R6

PLI$VERIFY

PLI$WRITE

Table A-2 (Cont)
Run-Time Entry Points

Module

PLI $STRING IO

PLI$PUTBUFFER

PLI$READUFFER

PLI$CONDIT

PLI$CONDIT

PLI$RMSBIS

PLI$REWRITE

PLI$CONDIT

PLI$CONDIT

PLI$RMSBIS

PLI$CONTROL

PLI$TIME DATE

PLI$CVTPIC

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PLI$CONVERT

PL I $CONVERT

PLI$CHAR

PLI$WRITE

Performs the PL/I Function

PUT STRING statement

Flushing of PUT buffers

READ statement

RESIGNAL built-in subroutine

RETURN statement

REWIND built-in subroutine

REWRITE statement

Signaling of subscript range
errors for uninitialized label
arrays

REVERT statement

SPACEBLOCK built-in subroutine

STOP statement

TIME built-in function

VALID built-in function and
picture validation

Conversion of varying
character to aligned bit

Conversion of varying
character to unaligned bit

Conversion of varying
character to character

Conversion of varying
character to fixed binary

Conversion of varying
character to fixed decimal

Conversion of varying
character to floating binary

Conversion of varying
character to floating decimal

Conversion of varying
character to picture

Conversion of varying
character to varying character

VERIFY built-in function

WRITE statement

VAX-11 PL/I RUN-TIME MODULES AND ENTRY POINTS

Table A-3
Run-Time Library Procedures Called by PL/I

Procedure Function

LIB $EMULATE G and H floating-point emulation

LIB$FREE VM Virtual memory deallocation

LIB$GET VM Virtual memory allocation

LIB$LP LINES Determine system default lines/page

LIB$SIGNAL Condition signaling

The VAX-11 PL/I mathmetical built-in functions are performed by the
VAX-11 run-time procedures listed below. These routines are all
called by PLI$MATH:

MTH$$JACKETHND
MTH$$SIGNAL
MTH$ALOG2
MTH$ALOGR5
MTH$ATAN2
MTH$ATAND
MTH$ATAND2
MTH$ATANH
MTH$ATANR4
MTH$COSD
MTH$COSR4
MTH$DATAN2
MTH$DATAND
MTH$DATAND2
MTH$DATANH
MTH$DATANR7
MTH$DCOSD
MTH$DCOSR7
MTH$DLOG2

MTH$DLOGR8
MTH$DSIND
MTH$DSINR7
MTH$DTAND
MTH$DTANR7
MTH$GATAN2
MTH$GATAND
MTH$GATAND2
MTH$GATANH
MTH$GATANR7
MTH$GCOSD
MTH$GCOSR7
MTH$GLOG2
MTH$GLOGR8
MTH$GSIND
MTH$GSINR7
MTH$GTAND
MTH$GTANR7

MTH$HATAN2
MTH$HATAND
MTH$HATAND2
MTH$HATANH
MTH$HATANR8
MTH$HCOSD
MTH$HCOSR5
MTH$HLOG2
MTH$HLOGR8
MTH$HSIND
MTH$HSINR5
MTH$HTAND
MTH$HTANR5
MTH$KINVARGMAT
MTH$SIND
MTH$SINR4
MTH$TAND
MTH$TANR4

VAX-11 PL/I also calls run-time library modules that perform data
conversion. The following modules are called by PLI$CONVERT:

OTS$$CVT D T R8 OTS$CVT T D
OTS$$CVT_G_T-R8 OTS$CVT_T_G
OTS$$CVT_H_T-R8 OTS$CVT_T_H

- - -

OTS$CHARSTAR R6

The following routines are called by PLI$FORMAT:

FOR$CVT D TE
FOR$CVT-G-TE
FOR$CVT=H=TE

A-12

%INCLUDE statement, 1-2
%LINE

set tracepoint, 4-5
specify breakpoint, 4-3
specify pathname, 2-6

/ASCII qualifier, 3-4
/DEBUG qualifier, 1-2
/NODEBUG qualifier, 1-2
@ command, 1-4

A
Address expressions

how to specify, 2-4
Addresses

determine virtual, 2-4
Areas, 3-2
Arguments

specify on CALL command, 4-7
Arrays

automatic, 3-6
bit strings, 3-6
examine range of elements, 3-1
fixed-point decimal, 3-6
static, 3-5
variable extents, 3-2

Automatic variables
examine and deposit, 3-3
in registers, 1-3
scope, 2-8

B
Based variables, 3-2
BASIC message, 1-2
Bit-string variables, 3-5

arrays, 3-6
Breakpoints, 4-3

at procedure entry points, 4-3
at statements, 4-3
continue execution, 4-3
restriction on setting, 4-5
set, 2-5
specify pathname, 2-6

c
CALL command, 1-4, 4-6 to 4-7
CANCEL ALL command, 1-4
CANCEL BREAK command, 1-4, 4-3

example, 4-4
CANCEL EXCEPTION BREAK command,

1-4
CANCEL MODE command, 1-5

INDEX

CANCEL MODULE command, 1-5, 2-2
CANCEL SCOPE command, 1-5, 2-7
CANCEL TRACE command, 1-5
CANCEL TYPE/OVERRIDE command,

1-5
CANCEL WATCH command, 1-5, 4-5
Character strings

specify, 3-4
specify to the debugger, 2-3

Character-string variables, 3-4
Characters

recognized by debugger, 2-8
Commands, debugger

summary, 1-4 to 1-9
syntax, 1-3

CONTINUE command, 4-2
CTRL/Y

interrupt program, 1-3
return to command level, 4-2

Current location symbol, 2-9

D
Data types

override declared, 3-1
restrictions, J-2

DEBUG command, 1-3, 4-2
Debugger

compile and link with, 1-2
restart restriction, 4-1
stop, 4-2
summary of features, 1-1
symbol table, 2-1

Debugger command summary, 1-4
Default scope, 2-6 to 2-7
DEFINE command, 1-5, 2-5, 2-7
Defined variables, 3-2
DEPOSIT command, 1-5, 3-1

specify current location, 2-9
Disjoint registers, 1-3

E
Entry names

specify to the debugger, 2-4
Entry points

PL/I run-time, Appendix A
set breakpoints, 4-3
set tracepoints, 4-4

EVALUATE command, 1-5
determine virtual address, 2-4

EXAMINE command, 1-6, 3-1
examine previous location, 2-9
specify data type, 3-1
specify pathname, 2-6

Index-1

EXIT command, 1-6, 4-1
External variables

references, 2-3

F
File data, 3-2
Fixed-point binary variables,

3-4
Fixed-point decimal arrays, 3-6
Fixed-point decimal variables,

3-4
Floating-point variables, 3-4
Formats, 3-2
Functions

invoke, 4-7

G
Global symbols, 2-4
GO command, 1-6, 4-1

after breakpoint, 4-3

H
HELP command, 1-6

INCLUDE files
print in listing, 1-2

Internal variables
references, 2-3

L
Labels, 3-2
Level-one procedure, 2-1
Line numbers

specify breakpoints, 4-3
specify to the debugger, 2-4
stepping, 4-2

LINK command
link with debugger, 1-2

Listing (compiler), 1-2

Modes
stepping, 4-2

Module name

M

displayed by debugger, 1-2

INDEX

Modules
in debugger symbol table, 2-1
in image file, 2-1
in symbol table

list, 2-2
PL/I run-time, Appendix A

N
Names

add to symbol table, 2-2
how to specify, 2-1
scope, 2-5

Numeric constants
specify to debugger, 2-3

0
Optimization

effect on debugging, 1-3
Override

declared data types, 3-1

p
Parameters, 3-2
Pathnames, 2-6

specify %LINE, 2-6
PC scope, 2-6 to 2-7
Permanent symbols, 2-5
Pictures, 3-2
PLI command

compile with debugger, 1-2
Previous location symbol, 2-9
Procedures

invoke, 4-7
specify arguments, 4-7

specify to the debugger, 2-4
Program locations

how to specify, 2-4

R
References

ambiguous, 2-5
external variables, 2-3
internal variables, 2-3

Registers
automatic variables in, 1-3
reference, 2-5

Resolution of references, 2-5
Restart a program, 4-1
Restrictions

data that cannot be examined, 3-2

Index-2

RUN command, 1-2, 4-2
Run-time modules, Appendix A

s
Sample terminal session, 1-9
Scope, 2-5, 2-8

automatic variables, 2-8
changing, 2-7

SET BREAK command, 1-6, 4-3
/AFTER, 4-3
examples, 2-4 to 2-5, 4-5
with DO specification, 4-4

SET EXCEPTION BREAK command, 1-6
SET LANGUAGE command, 1-6
SET LOG command, 1-7
SET MODE command, 1-7
SET MODULE command, 1-7, 2-2

performed by SET SCOPE, 2-7
SET OUTPUT command, 1-7
SET SCOPE command, 1-7, 2-7

effect on symbol table, 2-7
SET STEP command, 1-7, 4-2
SET TRACE command, 1-7, 4-4
SET TYPE command, 1-8
SET TYPE/OVERRIDE command, 3-1
SET WATCH command, 1-8, 4-5
SHOW BREAK command, 1-8, 4-3
SHOW CALLS command, 1-8, 4-7

display calls, 4-6
SHOW LANGUAGE command, 1-8
SHOW LOG command, 1-8
SHOW MODE command, 1-8
SHOW MODULE command, 1-8, 2-2
SHOW OUTPUT command, 1-8
SHOW SCOPE command, 1-8, 2-7
SHOW STEP command, 1-8
SHOW TRACE command, 1-8, 4-4
SHOW TYPE command, 1-8
SHOW WATCH command, 1-9, 4-5
Statements

execute singly, 4-2
set tracepoints, 4-4
suspend program execution at,

4-3
STEP command, 1-9, 4-2

SET STEP INSTRUCTION, 4-2
step into a subroutine, 4-6
STEP/INTO, 4-6
STEP /LINE, 4-3
STEP/OVER, 4-6

Stepping, 4-2
modes, 4-2

Storage classes
restrictions, 3-2

INDEX

Storage map, 1-2
Structures, 3-2
Subroutines

invoking, 4-6
Symbol table

add names, 2-2
debugger, 2-1
display modules in, 2-2
effect of SET SCOPE command,

2-7
names included in, 2-1

Symbolic references
define names for addresses,

2-5
Symbols

accessible, 2-1
debugger permanent, 2-5

T
Traceback

of active calls, 4-7
Tracepoints, 4-4

at procedure entry points, 4-4
restriction on setting, 4-5

v
Variables

arrays
automatic, 3-6
static, 3-5 to 3-6

bit-string, 3-5
character strings, 3-4
display

at breakpoint, 4-4
display contents, 3-1
examine and deposit, 3-1
fixed-point binary, 3-4
fixed-point decimal, 3-4
floating-point, 3-4
in storage map, 1-2
modify contents, 3-1
variable extents, 3-2

Virtual address
determine, 2-4

Virtual addresses
specify to the debugger, 2-4

w
Watchpoints, 4-5

restriction on setting, 4-5

Index-3

VAX-11 PL/I
Guide to Program Debugging

AA-K221A-TE

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Other (please specify) __ ~~~~~~~~~~~~~~~~~--

CitY----~----------------------State __ ~--~--~-Zip Code ____________ __
or

Country

- - Do Not Tear- Fold Here and Tape

I Ill

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J3-5
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062

No Postage
Necessary

if Mailed in th<
United States

- - - - Do Not Tear - Fold Here -

