Programming in

VAX-11 PL/I

AA-LO57B-TE

November 1983

This manual provides an informal intréduction and usage guide
for thg VAX-11 PL/I programming language.

digital equipment corporation - maynard, massachusetts

First Printing, July 1981
Revised, November 1983

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear in
this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that
is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1981, 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER’'S COMMENTS form on the last page of this document
requests the user’s critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSTS
DEC/CMS EduSystem RSX
DEC/MMS IAS TOPS-20
DECnet MASSBUS UNIBUS
DECsystem-10 MICRO/PDP-11 VAX
DECSYSTEM-20 Micro/RSX VMS

DECUS PDP

vT
DECwriter PDT Engnau

ZK2380
HOW TO ORDER ADDITIONAL DOCUMENTATION
In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
in New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road
In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)}

Digital Equipment Corporation Digital Equipment Corporation

P.O. Box CS2008 A&SG Business Manager

Nashua, New Hampshire 03061 c/o Digital's local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

Contents

Page
Preface xiii
Chapter 1 Introduction to Program Development on VAX/VMS
1.1 VAX/VMS Commands for Program Development 1
1.1.1 Hints for Entering Commands 4
1.1.2 HELP e e 4
1.2 File Specifications and Defaults. 5
1.2.1 Directories and Subdirectories 8
1.2.2 Changing the Default Directory 8
1.2.3 Logical Names e 8
1.3 File Creation and Maintenance 10
1.4 Command Procedures. 13
1.4.1 Command Procedures for Program Development. 13
1.4.2 The Login Command Procedure File 16
Chapter 2 Creating and Gorrecting Programs
2.1 Introduction to EDT 18
2.1.1 Line Editing Command Summary. 19
2.1.2 The Help Facilities. 21
2.2 Invoking and Terminating EDT 22
2.2.1 Invoking EDTo 22
2.2.2 Terminating EDT 23
2.3 Creating a New Filein Line Mode. 24
2.4 Editing an Existing File in Line Mode. 24
2.4.1 Range Specifications 25
2.42 Maneuveringinthe File 28
2.4.3 Inserting New Text. 29
2.4.4 Deleting and Replacing Text 30
245 Moving Text. 31
2.4.6 Substituting Text 31
2.4.7 Input From and Output To Files 33
2.4.8 Editing a File From Another Directory 33
2.5 Character Editing 34
2.5.1 Entering and Exiting Character Editing Mode. 35
2.5.2 Maneuvering the Cursor 35
253 Imserting Text, 38
2.5.4 Deleting and Undeleting Text. 38
255 Moving Text. 39

iii

2.6 Protecting and Recovering Text 40

2.7 EDT Aids for the Programmer 41
2.7.1 Structured Tabs 41
2.7.2 Special-Purpose Key Definitions 42
2.7.3 Startup Command Files 43

Chapter 3 Gompiling PL/I Programs

3.1 Functions of the Compiler. 45
3.2 The PLI Command. 46
3.2.1 PLI Command Examples. 52
3.2.2 Specifying Input and Output Files 53
3.3 Using Text Libraries 53
3.3.1 Specifying Text Libraries in the PLI Command 54
3.3.2 Default PL/A Libraries 55
3.4 Compiler Diagnostic Messages and Error Conditions 55
3.5 User-Generated Diagnostic Messages 57

Chapter 4 Linking Programs

4.1 Functions of the Linker. 59
4.2 Using the LINK Command 59
4.2.1 Linker Messages 60
4.2.2 LinkerInput Files 62
4.2.3 Linker Qutput Files 62
4.3 Using Object Module Libraries 63
4.3.1 Defining the Search Order for Libraries 63
4.3.2 Default User Object Module Libraries. 64
4.3.3 Temporary Defaults for INCLUDE Files. 65
434 System Libraries. L. 65
4.3.5 Creating Shareable Images 66

Chapter 5 Running PL/1 Programs on VAX/VMS

5.1 The RUN Command 67
51.1 Image Exit. e 67
5.1.2 Run-Time Errors. 68
5.1.3 Interrupting a Program 69

5.2 Returning Status Values to the Command Interpreter 70

Chapter 6 Creating Libraries

6.1 The LIBRARY Command. 72
6.2 Creating and Correcting Text Libraries 77
6.3 Creating and Correcting Object Module Libraries 78

Chapter 7 Program Structure and Content

7.1 Blocks . . . L e 82
7.1.1 BeginBlocks. L0 82
7.1.2 Procedures. o 83

7.2 Statements. L. e 84
7.2.1 Statement Labels 84
7.2.2 Keywords and Punctuation 84

iv

7.2.3 Identifiers o e e e e e e e e e 86

7.2.3.1 Rules for Identifiers 86
7.2.4 Alphabetic Summary of Statements. 87
Data and Variables.o 88
Program Text 91
7.4.1 Program Format 92
742 Comments.« o v v v i e e e e e e e e e 92
7.4.3 %INCLUDE Statement.« o o o v o o .. 93

Chapter 8 Data Types

8.1
8.2

8.3

8.4

Summary of Data Types 95
Arithmetic Data Types 96
8.2.1 Fixed-Point Binary Data 97
8.2.2 Fixed-Point Decimal Data 98
8.2.2.1 Fixed-Point Decimal Constants 98
8.2.2.2 Fixed-Point Decimal Variables 99
8.2.2.3 Using Fixed-Point Data in Expressions 99
8.2.3 Floating-Point Data 100
823.1 Comstants 100
8232 Variables.o 101
8.2.3.3 Using Floating-Point Data in Expressions 101
8.2.34 G_FLOAT and H_FLOAT Support 102
8.2.3.5 Floating-Point Data Formats 102
824 PicturedData o L. 103
8.2.4.1 Pictured Variables 103
8.2.4.2 Assigning Values to Pictured Variables 104
8.2.4.3 Extracting Values from Pictured Data. 105
8.2.44 Picture Characters 106
8.2.5 Precision of Arithmetic Data Types 111
8.2.6 Scale of Fixed-Point Data Types 112
Character-String Data 113
8.3.1 Character-String Constants 113
8.3.2 Character-String Variables 114
8.3.2.1 Fixed-Length Character-String Variables 114
8.3.2.2 Varying-Length Character-String Variables 115
Bit-String Data. oo 115
8.4.1 Bit-String Constants 117
8.4.2 Bit-String Variables 118
8.4.3 Alignment of Bit-String Data. 119
8.4.4 Bit Strings and Integers 119
8.4.5 Replication Factor for String Constants 120

Chapter 9 Storage Classes

Automatic Variables 123
Static Variables 123
Internal Variables 124
External Variables 124
Based Variables, 126
9.5.1 Data Types Used With Based Variables. 126

9.5.1.1 PointerData. 127

9.5.1.2 Area and Offset Data. 127

9.5.2 Declaring Based Variables 129

9.5.3 ALLOCATE Statement. 130
9.5.4 FREE Statement. 131
9.5.5 Referring to Based Variables 131
9.5.6 Example of Based Variable Use. 135
9.5.7 Data Type Matching for Based Variables 136
9.5.7.1 Matching by Overlay Defining 137
9.5.7.2 Matching by Left-to-Right Equivalence 137
9.5.7.3 Nonmatching Based Variable References 138
9.6 Controlled Variables 138
9.6.1 Using the ALLOCATION Built-In Function. 140
9.6.2 Using the ADDR Built-In Function 140
9.7 Defined Variables. oo 141
Chapter 10 Aggregates

10.1 Arrays L. L e e e e 144
10.1.1 Array Declarations 144
10.1.2 References to Individual Elements 146
10.1.3 Initializing Arrayso 147
10.1.4 Assigning Values to Array Variables. 148
10.1.5 Order of Assignment and Output for Multidimensional Arrays . 149
10.2 Structures.o e e e e e 149
10.2.1 Structure Declarations 150
10.2.2 Member Attributes.o 152
10.2.2.1 Using the LIKE Attribute 152
10.2.2.2 Using the REFER Option 153
10.2.2.3 Using the UNION Attribute. 156
10.2.3 Structure-Qualified References 158
10.2.4 Arrays of Structures 160
10.2.4.1 Arrays of Structures that Contain Arrays. 160
10.2.4.2 Connected and Unconnected Arrays 161

Chapter 11 Declarations
11.1 Declare Statement. 163
11.1.1 Simple Declarations 164
11.1.2 Multiple Declarations 164
11.1.3 Factored Declarations 165
11.1.4 Declarations Qutside of Procedures 166
11.1.5 Initializing Variables in the DECLARE Statement. 166
11.2 Scope of Declarations 168

Chapter 12 Expressions and Assignments

12.1 Assignment Statement. 171
12.2 Operators and Operands 173
12.2.1 Operators v v vt e e 174
12.2.2 Operands 175
12.3 Expression Evaluation and Precedence of Operations 175
12.4 Conversion of Operands and Expressions 177
12.4.1 Derived Data Types for Arithmetic Operations 177
12.4.2 Built-In Conversion Functions 178
12.4.3 Implicit Conversion During Assignment 179
12,5 Pseudovariableso 180

Chapter 13 Procedures

13.1 Using Procedureso
13.1.1 Procedure Usage Concepts
13.1.1.1 Entry Points
13.1.1.2 Passing Arguments to Subroutines and Functions. . .
13.1.1.3 Terminating Procedures

13.1.2 PROCEDURE Statement.
13.1.3 ENTRY Statement.
13.1.4 CALL Statement.
13.1.5 Functions and Function References
13.1.6 RETURN Statement.
13.1.7 RETURNS Attribute and Option
13.1.8 Parameters and Arguments.
13.1.8.1 Rules for Specifying Parameters
13.1.8.2 Argument Passing.

13.2 Calling External Procedures
13.2.1 EntryData
13.2.1.1 Entry Constants.
13.2.1.2 Entry Variables.

13.2.2 Passing Arguments to Non-PL/I Procedures
13.2.2.1 Passing Arguments by Immediate Value
13.2.2.2 Passing Arguments by Reference.
13.2.2.3 Passing Arguments by Descriptor

Chapter 14 Program Control

14.1 DO Statement. :

1411 Simple DO.o
1412 DOWHILE.

14.2 BEGIN Statement.
14.3 END Statement.
144 IF Statement
14.5 SELECT Statement
14.6 GOTO Statement

14.6.1 Label Array Constants

14.6.2 Label Variables

14.7 LEAVE Statement.
14.8 STOP Statement o« . . oo
149 NULL Statement

Chapter 15 Error Handling
1510 ON Statement

15.1.1 Contents of an ON-Unit.
15.1.2 Search for ON-Units

vii

15.2
15.3

15.1.4 ON Condition Descriptions
15.1.5 ON-Unit Examples
REVERT Statement.
SIGNAL Statement

Chapter 16 File Gontrol

16.1

16.2

16.3
16.4

16.5

File Control Statements

16.1.1 Declaringa File
16.1.2 OPEN Statement

16.1.2.1 General-Purpose Attributes and Options

16.1.2.2 Openinga File
16.1.3 CLOSE Statement
PL/I Files and VAX/VMS File Specifications
16.2.1 The TITLE Option.
16.2.2 Using Logical Names.
16.2.3 Process Permanent Logical Names
16.2.4 Expanding File Specifications.
Summary of Environment Options
Summary of File-Handling Built-In Subroutines
16.4.1 DISPLAY Built-In Subroutine
16.4.2 EXTEND Built-In Subroutine o
16.4.3 FLUSH Built-In Subroutine
16.4.4 NEXT_VOLUME Built-In Subroutine
16.4.5 REWIND Built-In Subroutine
16.4.6 SPACEBLOCK Built-In Subroutine.
File Error Handling
16.5.1 Values Returned by PL/I Built-In Functions.

16.5.2 Writing an Error Handler. :

16.5.3 Default Error Handling.

Chapter 17 Stream Input/Output

17.1

17.2

Statements for Stream I/O.
17.1.1 GET Statement

17.1.1.1 Common Syntax Elements. :

17112 GETEDIT
17113 GETLIST

17.1.14 GETSKIP :

17.1.2 PUT Statement

17.1.2.1 Common Syntax Elements.
17.1.2.2 PUTEDIT
17.1.23 PUTLINE
17.1.24 PUTLIST
17.1.256 PUTPAGE.
17.1.26 PUTSKIP

17.1.3 FORMAT Statement.
Stream /O Processing and Positioning

17.2.1 Processing and Positioning of Stream Files :

17.2.2 Processing and Positioning of Print Files
17.2.3 Processing and Positioning of Character Strings

viii

17.3 Format Items and Specifications “ e

173.1 FormatItems
17.3.2 Format Specifications

Chapter 18 Record Input/Output
18.1 Statements for Record /O

18.1.1 READ Statement«
18.1.2 WRITE Statement

18.2 Sequential Files,

18.2.1 Creating a Sequential File
18.2.2 Using Magnetic Tape Files

18.2.2.1 Format of Magnetic Tapes.
18.2.2.2 Multivolume Tape Files.

183 Relative Files oL Lo
18.3.1 The Organization of a Relative File.
18.3.2 Creating a Relative File

18.3.2.1 Maximum Record Number
18.3.2.2 Maximum Record Size
18.3.3 Using Relative Files
18.3.3.1 Updating a Relative File.
18.3.3.2 Reading a Relative File Sequentially.
18.3.3.3 ErrorHandling

18.4 Indexed Sequential Files.
18.4.1 Indexed File Organization
18.4.2 Defining an Indexed Sequential File.
18.4.3 Using Indexed Sequential Files

18.4.3.1 Reading an Indexed Sequential File Sequentially . . .
18.4.3.2 Accessing Records by Alternate Key

18.4.3.3 Updating Records in an Indexed Sequential File . . .’

18434 ErrorHandling

Chapter 19 Built-In Functions

19.1 Summary of Built-In Functions
19.2 Built-In Function Descriptions

Chapter 20 Gompile Time Facilities

20.1 The VAX-11 Common Data Dictionary(CDD)

20.1.1 Creating and Maintaininga CDD.
20.1.2 Usingthe CDD.

20.2 The VAX-11 PL/I Embedded Preprocessor

20.2.1 Preprocessor Compilation Control.
20.2.2 Preprocessor Procedures
20.2.3 Preprocessor Statements

20.2.3.1 %Assignment Statement.
20.2.3.2 %Null Statement

an a9 9 9 07 ATV AMIY Qi ndnans oo d
LV.4.0.0 0A LU 11V AL Olaleligeit

o

ix

372
373
374
376
376
371
380
382
382

aqa

20.2.3.4 %DEACTIVATE Statement
20.2.3.5 %DECLARE Statement
20.2.3.6 %DICTIONARY Statement
20.2.3.7 %DO Statement.
20.2.3.8 %END Statement.
20.2.3.9 %ERROR Statement
20.2.3.10 %FATAL Statement
20.2.3.11 %GOTO Statement
20.2.3.12 %IF Statement.
20.2.3.13 %INCLUDE Statement.
20.2.3.14 %INFORM Statement
20.2.3.15 %LIST Statement
20.2.3.16 %NOLIST Statement
20.2.3.18 %PAGE Statement.
20.2.3.19 %PROCEDURE Statement.
20.2.3.20 %REPLACE Statement
20.2.3.21 %RETURN Statement
20.2.3.22 %SBTTL Statement
20.2.3.23 %TITLE Statement
20.2.3.24 %WARN Statement
20.2.4 Preprocessor Built-In Functions.
20.2.4.1 ERROR Preprocessor Built-In Function
20.2.4.2 INFORM Preprocessor Built-In Function.
20.2.4.3 LINE Preprocessor Built-In Function.
20.2.4.4 VARIANT Preprocessor Built-In Function
20.2.4.5 WARN Preprocessor Built-In Function.

Appendix A Rules for Gonversion of Data
A.1 Assignments to Arithmetic Variables
A.1.1 Arithmetic to Arithmetic Conversions
A.1.2 Pictured to Arithmetic Conversions.
A.1.3 Bit-String to Arithmetic Conversions.
A.14 Character String to Arithmetic Conversions.
A.2 Assignments to Bit-String Variables.
A.2.1 Arithmetic and Pictured to Bit-String Conversions
A.2.2 Character-String to Bit-String Conversions
A.3 Assignments to Character-String Variables
A.3.1 Arithmetic to Character-String Conversions.
A.3.1.1 Conversion from Fixed-Point Binary or Decimal
A3.1.2 Conversion from Floating-Point Binary or Decimal . . .
A.3.2 Pictured to Character-String Conversions.
A.3.3 Bit-String to Character-String Conversions

A.4 Assignments to Pictured Variables
A.5 Conversions between Offsets and Pointers.

Appendix B Galling System Services

B.1 Declaring System Services
B.2 SPECIFYING ARGUMENTS FOR SYSTEM SERVICES
B.2.1 Argument-Passing Mechanisms Used by System Services
B.2.2 Parameter Descriptors for System Services Data Types
B.2.3 Variable-Length Argument Lists
B.2.4 Symbol Definitions for System Service Arguments

B.3 Testing Return Values from System Services 414

B.4 Examples of System Services. 415
B.4.1 Logical Name Translation 415
B.4.2 Timer and Time Conversion Routines 417

B.4.2.1 Obtaining a Time Value in System Format 417
B.4.2.2 Setting the Timer. 418

Appendix G ASCIH Character Set

Index
Figures
1 Commands for PL/I Program Development 2
2-1 VTH2Keypad. i i e e e e e e e e e e e e 36
2-2 VT1I00Keypad i i e e e e 36
6-1 Creating and Using an INCLUDE File Library 78
6-2 Creating and Using an Object Module Library 80
7-1 Using the ZINCLUDE Statement 93
9-1 External Variables. 125
9-2 Using the ADDR Built-In Function 134
9-3 An Overlay Defined Variable. 143
10-1 Connected and Unconnected Arrays 162
11-11 Scope of Internal Names 169
16-1 Seatch for ON-Units 233
17-1 Forms of the GET Statement 278
17-2 Forms of the PUT Statement 286
18-1 ARelativeFile oo 322
18-2 An Indexed Sequential File 328
19-1 Example of the BOOL Built-In Function. 343
Tables
1-1 Summary of File Specification Syntax 6
1-2 Commands for Maintaining Logical Names. 10
1-3 VAX/VMS Commands for File Maintenance 11
2-1 Summary of Line Editing Commands 20
2-2 Single-Line Range Specifications. 25
2-3 Multiple-Line Range Specifications 26
3-1 PL/AICompiler Options v ... 50
3-2 Listing Notation Characters 51
4-1 LINK Command Qualifiers 61
7-1 Punctuation Marks Recognized by VAX-11 PL/T 85
7-2 Summary of VAX-~11 PL/I Statements 87
7-3 Summary of VAX-11 PL/I Attributes 89
8-1 Implied Attributes for Computational Data. 97
8-2 VAX-11 Floating-Point Types 102
8-3 Floating-Point Types Used by PL/I. 103
8-4 Picture Characters., 106
8-5 ASCII Representation of Encoded-Sign Digits 109
12-1 Operators. v e e e e e e e e 174
12-2 Precedence of Operations 176
12-3 Built-In Functions for Conversions Between Arithmetic and Nonarithmetic
TYPes. e e e e e e e 179

15-1
16-1
16-2
16-3
16-4
16-5
16-6
16-7
16-8
17-1
18-1
18-2
19-1
20-1
20-2
B-1

B-2

C-1

Summary of ON Conditions 228

File Description Attributes 245
File Description Attributes Implied at Open Time 248
Default Process Logical Names 254
Summary of ENVIRONMENT Options 256
Summary of File-Handling Built-In Subroutines 263
ENVIRONMENT Option Values Returned by DISPLAY 265
File Attribute Information Returned by DISPLAY 269
Device Information Returned by DISPLAY. 270
Summary of Format Items. 298
Attributes and Access Modes for Record Files 302
Key Data Types., 332
Summary of PL/I Built-In Functions. 335
Summary of PL/I Preprocessor Statements. 380
Summary of PL/I Preprocessor Built-In Functions 399
Input Arguments for System Services. 412
Output Arguments for System Services. 413
ASCII Character Set. 422

xii

Preface

This manual is...

An informal guide for programmers who want to write PL/I programs that
will be executed on a VAX-11 computer running the VMS operating sys-
tem. It provides general information on creating, correcting, and compiling
PL/I programs, as well as reference information on the language and its
syntax rules.

Readers of this manual are assumed to have prior knowledge and under-
standing of the PL/I language. From this manual, they can determine what
statements, data type attributes, and built-in functions are available in
VAX-11 PL/I and can get started writing new programs or modifying exist-
ing programs.

This manual is not...

A complete and detailed reference manual for the VAX-11 PL/I language
nor for the VAX/VMS command language.

Where to Find More Information

Introduction to VAX-11 PL/I contains an overview of the PL/I language
and its implementation for the VAX-11 computer. The Introduction is
recommended for all programmers who are not familiar with PL/I or who
need information on the VAX-11-specific capabilities of VAX-11 PL/I.

The VAX-11 PL/I Encyclopedic Reference contains a complete definition
of the VAX-11 PL/I programming language, including the keywords and
the semantic and syntax rules of PL/I statements, attributes, and built-in
functions. The Encyclopedic Reference contains descriptions of language
elements and topics in alphabetic order.

The companion document to the Encyclopedic Reference is the VAX-11
PL/I User’s Guide. It contains information on developing programs with
the VAX/VMS command language, on using the extensive I/O capabilities
provided in VAX-11 PL/I, and on programming facilities available to PL/I
programs executing under the exclusive control of the VAX/VMS operating
system.

xiii

The manuals that accompany the operating system provide full informa-
tion about VAX/VMS; this manual makes reference to some of them. For a
complete list of all VAX/VMS documents and their order numbers, see the
VAX-11 Information Directory and Index.

Summary of Gontents
Programming in VAX-11 PL/I consists of 20 chapters and 3 appendixes:

o Chapter 1 introduces the procedures you use to create, test, and cor-
rect a PL/I program on the VAX/VMS operating system.

¢ Chapter 2 provides information you need to create and correct a PL/I
source file. It describes EDT, the DEC Standard Editor.

* Chapter 3 describes the VAX-11 PL/I compiler and the command that
invokes it.

e Chapter 4 describes the linker, which converts the output of the com-
piler into an executable image that you can run on the system.

e Chapter 5 describes the RUN command, which starts program
execution.

* Chapter 6 describes the library utility, which you can use to create
text and object module libraries that contain code common to several
programs.

¢ Chapter 7 describes the structure of a PL/I program and summarizes
the various elements of a program. Chapter 7 introduces the rest of
this manual, which covers the PL/I language in greater detail.

® Chapter 8 describes PL/I’s computational data types.

* Chapter 9 describes the various storage classes to which a variable can
belong.

® Chapter 10 describes aggregates, which are collections of variables
that can be referred to by name or individually.

® Chapter 11 describes data declarations.

e Chapter 12 describes expressions and assignments, which are used by
PL/I programs to compute values and assign them to variables.

e Chapter 13 describes how you can use procedures as subroutines or
functions.

¢ Chapter 14 describes statements and a data type that you can use to
control the flow of execution within your program.

® Chapter 15 describes statements and a built-in subroutine that allow
your program to respond to errors that occur during execution.

Xiv

¢ Chapter 16 describes PL/I statements, data types, and built-in
subroutines that allow your program to control files.

e Chapter 17 describes statements and techniques for performing stream
I/0, which consists of a stream of characters passed to or from the
program.

¢ Chapter 18 describes statements and techniques for performing record
I/0, in which the program reads and writes entire records instead of
streams of characters.

¢ Chapter 19 describes the PL/I built-in functions, which provide a
variety of services to the programmer.

e Chapter 20 describes the VAX-11 PL/I compile-time facilities, which
permit conditional compilation.

¢ Appendix A contains the rules that PL/I follows when it converts
values of one data type to another data type.

¢ Appendix B describes how a PL/I program can call a VAX/VMS sys-
tem service to perform system-specific operations not available
through PL/I statements.

e Appendix C contains a table of the set of ASCII characters.

Conventions Used in This Document

BET, A symbol with a 1- to 3-character abbreviation
indicates that you press a key on the terminal, for
example, or Es0.

The symbol indicates that you press the key
“x” while holding down the key labeled CTRL,
for example, CTRUC . In examples, this control key
sequence is shown as “x, for example “C, because
that is how the VAX/VMS system prints control
key sequences.

Enter string*Abcd®) In computer dialogs, the user’s response to a
prompt is printed in red ink.

DECLARE ¥ FIXED A vertical ellipsis indicates that not all of the text
‘ of a program or program output is illustrated.
. Only relevant material is shown.

I
L]

option,... A horizontal ellipsis indicates that additional
parameters, options, or values can be entered. A
comma preceding the ellipsis indicates that suc-
cessive items must be separated by commas.

). 4%

quotation mark
apostrophe

[OPTIONS (option,...)]

LIST
EDIT

{ /ALL }
module,...

FILE (file-reference)

The term quotation mark refers to the quotation
mark symbol ("). The term apostrophe refers to
the single quotation mark symbol ().

Except in VMS file specifications, square brack-
ets indicate that a syntactic element is optional.

Brackets surrounding two or more stacked items
indicate conflicting options, one of which may be
chosen.

Braces surrounding two or more stacked items in-
dicate conflicting options, one of which must be
chosen.

An uppercase word or phrase indicates a keyword
that must be entered as shown; a lowercase word
or phrase indicates an item for which a variable
value must be supplied.

xvi

Chapter 1

Introduction to Program Development
on VAX/VMS

The VAX-11 operating system, VAX/VMS, and its command language,
DCL, provide numerous tools and utilities for program development. This
chapter summarizes the basic things you need to know to use the command
language in developing and testing your PL/I programs, including

e The commands you use to create, compile, link, and execute PL/I
programs.

¢ The rules for specifying input and output files for commands and
programs.

¢ The commands available to you for file creation, modification, and
maintenance.

For a tutorial introduction to these concepts, see the VAX/VMS Primer.
For detailed definitions of commands and file specifications, see the
VAX/VMS Command Language User’s Guide.

1.1 VAX/VMS Commands for Program Development

Figure 1-1 illustrates the DCL commands you use to create and run PL/I
programs. (Section 1.2 explains how each command finds and creates
appropriate files.) The commands are shown in their simplest forms. You
can also specify qualifiers on the commands to request special processing or
to indicate a special type of input file, as in these examples:

¢ PLIJLIST=LP: METRIC
$ LINK METRIC MYLIB/LIBRARY

In the PLI command example, the /LIST qualifier requests the compiler to
create a listing file for the source program METRIC.PLI and to output the
file on a line printer (LP: is the device name for line printers). In the LINK
command example, the /[LIBRARY qualifier indicates that the input file
MYLIB is a program library consisting of object modules. When this com-
mand is executed, the linker will automatically search this library to locate
external procedures and external variables that are referenced in the source
file METRIC.PLI.

Key:

input or output file interactive
~ optional input or output file input

$ EDIT METRICPLI | ©

METRIC.PLI

CDD
DICTIONARY

text
libraries

$ PLI METRIC (2]

METRIC.OBJ

object
module
libraries

$ LINK METRIC (3]

METRIC.EXE

$ RUN METRIC (4]

ZK-018-81

Figure 1-1: Commands for PL/I Program Development

2 Chapter 1

o The EDIT command invokes a system editor to create a
disk file containing PL/l source statements.

e The PLI command invokes the PL/I compiler to process
the source statements and verify that there are no syntax
errors or violations of the language rules. It searches
user-specified libraries and CDD dictionaries, if any, and
default libraries to locate INCLUDE files referenced in the
source program. If there are no errors, the compiler cre-
ates an object module and optionally a listing.

e The LINK command binds object modules into an execut-
able program image. The linker searches system libraries
and user-specified libraries, if any, to locate all run-time
modules, external procedures, external variables, and
global symbols required for the image.

iIf an error occurs, you may need to reissue the LINK com-
mand, specifying other object modules or libraries that
contain needed definitions.

o The RUN command executes a program image.

it your program fails or produces unexpected output, it
probably has an error. After you determine the cause of
the error, you can correct the source program, recompile,
and relink the program.

Introduction to Program Development on VAX/VMS

The commands shown in Figure 1-1, and others of specific interest to PL/I
programmers, are described in detail in Chapters 2 through 6.

1.1.1 Hints for Entering Commands
Note the following hints for entering commands:

¢ You can truncate (shorten) any command name or qualifier name to
four characters. In some cases, fewer than four characters are ac-
cepted, so long as there is no ambiguity about the name.

¢ You must precede each qualifier name with a single slash character

).

¢ If you omit a required parameter, for example, a file specification, the
DCL command interpreter will prompt you to enter it.

* You can enter a command on as many lines as you wish, as long as you
end each continued line with a hyphen (-). The command interpreter
prompts for the rest of the command with the characters $_.

¢ After you have entered a complete command, you must press to
pass the command to the system for processing.

* You can cancel a command before the final by using €RIY) .

¢ You can interrupt command execution by using €LY . To resume the
interrupted command, enter the CONTINUE command. To stop pro-
cessing completely after pressing CTBLY), you can begin entering other
DCL commands.

If you make an error entering a command, for example if you misspell a
command or qualifier name, the command interpreter issues an error mes-
sage and you must reenter the entire command string.

1.1.2 HELP

You can obtain online information about a command, its parameters, and
its qualifiers by entering the HELP command. When you request help on a
command name, HELP displays a brief description of the command and
lists the additional information available. For example, you can enter

$ HELF PRINT
The HELP command then displays a description of the PRINT command
and a list of its qualifiers. To get further information, you must reenter the

HELP PRINT command with the name of the qualifier you want informa-
tion about. For example:

$ HELF FRINT AJ0B_COUNT

4 Chapter 1

The HELP command also provides detailed information about the PLI
command and the VAX-11 PL/I language. You can obtain information
about PL/I topics by specifying a PL/I keyword. For example:

$ HELP PLI STATEMENTS

Information is also available at nested levels, for example:

$ HELP PLT QUALIFIERS /SHOW

This command causes the valid options of the VAX-11 PL/I /SHOW quali-
fier to be displayed.

1.2 File Specifications and Defaults

A file specification provides VAX/VMS with all the information it needs to
locate a unique file. To define a unique PL/I source file, you need only give
the file a unique name and a file type of PLI. All other portions of a file
specification can default to system- and command-supplied names.

In Figure 1-1, the following DCL commands appear:

$ EDIT METRIC.PLI
$ PLI METRIC

$ LINK METRIC

$ RUN METRIC

For these commands, defaults are in effect as follows:

e For all the commands shown, the system uses the current default
device and directory to locate a file specified.

e The EDIT command does not assume a default file type. Here, and in
Figure 1-1, the file type PLI is specified because it is the default file
type for the PLI command.

¢ The PLI command assumes a default input file type of PLI. Unless
you use qualifiers on the PLI command to change the output file
types, the compiler uses LIS and OBJ for the listing and object files,
respectively.

e The LINK command assumes a default input file type of OBJ. Unless
overridden by qualifiers, the default file types EXE and MAP are used
by the linker for the image and map files, respectively.

* The RUN command assumes a default input file type of EXE. file
type i1s EXE.

Table 1-1 summarizes the syntax of VAX/VMS file specifications, giving a
description of each field in a file specification and a summary of the de-

faults applied. The following subsections provide additional examples of
file specifications and explanations of some useful applications of defaults.

LI IN ey 0 UL SLILIT WS PP

Introduction to Program Development on VAX/VMS 5

1 1:dey)

Table 1-1:

Summary of File Specification Syntax

Field Syntax Rules Defaults
node 1 - 6 characters local node
terminated by ::
device valid mnemonic or SYS$DISK
dev logical name
c A-7Z A
u 0 - 65535 0
directory 1 - 9 characters current default
[name] up to 8 names,

[name.name...]

separated by
periods (.)

Notes

node::node:: defines a path
node"access-control":: in
VAX/VMS, username password
node::"non-VMS-file-specification"

CR -card reader NET -network device
DB -disk device MB -mailbox
DM -RKO06/7 disk MT -magnetic tape
DX -floppy disk TT -terminal
LP -line printer TU -cartridge tape

(] all directories

[name...] all directories in path

[*...] all subdirectories in all directories
[-.name] back up a directory

SINA/XVA uo juswdofess(] welfolJ 0} Uo1doNpoIjuf

Table 1-1 (Cont.): Summary of File Specification Syntax

Field Syntax Rules Defaults Notes
filename 0 - 9 characters Input: temporary » — all file names
defaults apply *string* — match all names containing ’string’
Output: same as str%ng — match any character in % position
input file
filetype 0 - 3 characters Applied by Wildcard rules same as for filename

preceded by .

version 0 - 32767

preceded by ; or .

command; temporary
defaults apply

Input: highest
Output: highest + 1

Command Input Output
PLI PLL,TLB OBJ,LIS
LINK OBJ, OLB EXE, MAP
LIBRARY OBJ OLB
LIBRARY/TEXT TXT TLB
RUN EXE

PRINT, TYPE LIS

* -— all versions
; — use most recent version

1.2.1 Directories and Subdirectories

A directory file lists files on a device that belong to a particular user or
account. VAX/VMS uses the information in the directory file to locate the
desired file in the directory.

To specify a directory, enclose its name in square brackets:
[PROJECT]

If you do not include a directory in a file specification, VAX/VMS uses
your current default directory. Section 1.2.2 shows how to change this
default.

Within a directory, you can create subdirectories to contain related files.
You then refer to the subdirectory by concatenating the directory and
subdirectory names, separated by a period. For example:

[PROJECT.SOURCE]

Use the CREATE/DIRECTORY command to create a subdirectory. For
example, the commands
$ CREATE/DIRECTORY [PROJECT.SOURCE]

¢ CREATE/DIRECTORY [PROJECT.OBJECT]
% CREATE/DIRECTORY [PROJECT.LISTI

create the three subdirectories shown, which can then be used to contain
source files, object files, and listing files, respectively. Once you have cre-
ated a subdirectory, you can copy or rename files into it, list the files it
contains, make it your default directory, and use it in any other way as you
would a main directory.

1.2.2 Changing the Default Directory

To change the default device or directory that VAX/VMS applies to all file
specifications, use the SET DEFAULT command. Unless overridden in the
explicit specification of an individual file, defaults set by this command
remain in effect for all subsequent commands until you either issue a new
SET DEFAULT command or log off the system. For example:

SET mECAtt T roma .]
$ SET DEFAULYT [(PROJECT.OOURCEZD

$ PLI METRIC

The PLI command compiles the source program METRIC.PLI from the
current default directory [PROJECT.SOURCE]. The output file,
METRIC.OBJ, is also placed in this directory.

1.2.3 Logical Names

An alternative way of referring to a specific device, directory, or file is to
use a logical name. A logical name can represent an entire file specification

8 Chapter 1

or the leftmost portion of one. You can create logical names with the
DEFINE command. For example:

$ DEFINE SRC [PROJECT.SOURCED
% TYPE SRC:ALPHA.PLI

The DEFINE command creates the logical name SRC to represent the
directory specification [PROJECT.SOURCE]. When SRC is used in the
TYPE command, the system translates it: that is, the logical name in the
file specification is replaced by its current equivalence name. The TYPE
command displays the file [PROJECT.SOURCEJALPHA.PLI.

Only one logical name is permitted in a file specification. The name must
be the first or only element of the file specification, and it must be followed
by a colon if any other elements are present.

The VAX/VMS system maintains tables of all logical names that are cre-
ated by users. There are three kinds of logical name table:

® Process logical name tables. A separate logical name table exists for
every user, or process, on the system. Names in a process logical name
table are available only to the user who defines them. A DEFINE
command places a logical name in your process logical name table by
default.

¢ Group logical name tables. A separate logical name table exists for
every group in the system. The names in any of these tables can be
accessed only by users who have the same group number in their user
identification code.

* System logical name table. There is only one system logical name
table. The logical names in this table can be accessed by all users.

When the system translates a logical name, it first searches the process,
then group, then system logical name tables, in that order, for a logical
name. Each time the system translates a logical name, it checks to see if
the result is itself a logical name. If so, the system translates the result.
Therefore, you can define a logical name in terms of another logical name.

You can determine the current equivalence for a logical name by entering
the SHOW TRANSLATION command. For example:

% SHOW TRANSLATION SRC
SkRC = [PROJECT.SRC] (Process)

VAX/VMS system programs use logical names in many ways. For example,
the PL/I compiler and the linker use them to provide default libraries for

INCLUDE modules and object module libraries, respectively. (See Sec-
tions 3.3 and 4.3 for a full description.)

A principal use for programmers is to provide device and file independence
for executable program images or command procedures. For example, the

S 181y xdlilppie, e

Introduction to Program Development on VAX/VMS 9

name you give a file constant in a PL/I source program can be a logical
name: each time you execute the program, you can issue a DEFINE com-
mand to provide a new equivalence name for the PL/I file. The relationship
between PL/I file constants and VAX/VMS file specifications is described
in Section 16.2.

Table 1-2 lists the DCL commands for creating, deleting, and examining
logical names.

Table 1-2: Commands for Maintaining Logical Names

Command Function

DEFINE Creates a logical name and places it in the specified logical
name table. The /PROCESS, /GROUP, and /SYSTEM
qualifiers specify which table.

DEFINE/USER Creates a logical name for the execution of the next image
only. The name is automatically deleted after the next com-
mand or program is executed.

ASSIGN Performs the same function as DEFINE. However, the order
of the command parameters is reversed.

DEASSIGN Deletes a logical name from the process, group, or system
logical name table.

SHOW TRANSLATION Displays the result of translating a logical name once, and

displays the name of the table in which the result was found.
This command can be issued when a program is interrupted
with €RY without terminating the program (see Section
5.1.3.).

SHOW LOGICAL Displays the resuit of translating a logical name recursively.
The SHOW LOGICAL command causes the current image
that is executing, if any, to be terminated (see Section
5.1.3).

Sections 16.2.2 and 16.2.3 describe uses of logical names that are of special
interest to the PL/I programmer.

1.3 File Greation and Maintenance

Table 1-3 describes some of the basic file-handling commands available to
programmers in DCL. For online assistance in entering a command or
determining its parameters, qualifiers, or options, use the HELP command
at a terminal.

10 Chapter 1

SINA/XVA Uuo j1uswdopaas(] weidold 01 uorjonpoIju]

IT

Table 1-3: VAX/VMS Commands for File Maintenance

Command Function

Category Command
File creation CREATE
EDIT(/editor]
Correcting and EDIT/editor]
modifying files
Cataloging and CREATE/DIRECTORY

organizing files

DIRECTORY

Creates a file from records or data that follows in the input stream;
for example, lines entered from a terminal or placed in a batch input
file.

Invokes one of the VAX/VMS interactive editing programs, for ex-
ample, SOS or EDT.

Invokes one of the interactive editors to make changes or additions to
a disk file.

Establishes a new directory or a hierarchy of directories to catalog
files.

Lists files and information about them. Can list files with common
file names or file types, files in one or more directories, files created
since a certain date, and so on.

¢l

1 1dey)

Table 1-3 (Cont.):

VAX/VMS Commands for File Maintenance

Category Command
Cataloging and LIBRARY
organizing files
(Cont.)
RENAME

Copying and
backing up files

Deleting files

SET DEFAULT

ALLOCATE
BACKUP
INITIALIZE
MOUNT

COPY
DELETE

PURGE

Command Function

Creates and maintains libraries of INCLUDE text modules and li-
braries of object modules.

Changes the directory in which a file is cataloged; or changes the file
name, file type, or version number of a file or files.

Changes the current default device or directory.

Provide device-handling and control commands that let you access
data written on nonsystem disks, on magnetic tapes, or on punched
cards; or that output data to a disk or tape.

Copies the contents of a file or files to another file or files.

Makes the contents of a file inaccessible by removing its directory
entry.

Deletes a specitfied number of earlier versions of a file or a group of
files.

1.4 Command Procedures

ins a sequence of VAX/VMS

™M m 1 ~n
A co and procedure uence of VAX/V]

1Q a
3 LUMMLILANIG P “w 13 @ 11T ia

commands and, optionally, data. You can cause the commands in the
procedure to be executed in either of two ways:

e Interactively: you specify the name of the file following the @ (Execute
Procedure) command. For example:

£ BTESTAM

The @ command assumes that the file type of the specified command
procedure is COM. This command executes the procedure
TESTAM.COM.

* You can submit the command procedure to a system batch job queue
for execution. After the job completes, the system prints a log file that
indicates how the job ran. The SUBMIT command submits a job. For
example:

% SUBMIT TESTAM

This command places the file TESTAM.COM in the system batch job
queue.

The following subsections contain two examples of command procedures.

1.4.1 Command Procedures for Program Development

You can devise command procedures to simplify and enhance your pro-
gram development. For example, you can write a command procedure that
will invoke an editor with which you can create a PL/I source file, and,
when you exit from the editor, will automatically compile, link, and run
your program. The command procedure can specify all the needed libraries
for the PLI and LINK commands, and can even contain all the input data
required to test the program.

Command procedures can also be generalized. By taking advantage of such
DCL commands as the assignment statement and the IF, GOTO, and ON
commands, you can write a command procedure that looks like a PL/I
program: it can process variables, make decisions based on their values,
and handle errors.

The following example will give you an idea of how to construct command
procedures to help you with your PL/I program development and testing.
The procedure issues all the DCL commands necessary to create and test a
single-module, interactive program. The notes following the example are
keyed to the numbered lines of the example.

Introduction to Program Development on VAX/VMS 13

%
%
$
$
k2
$
$
2
$
$
%
%
%
$
$
$

o

14

ON WARNING THEN EXIT (1)

IF P1 .NES. "" THEN GOTO EDIT

IMQUIRE P! "File name: " }

EDIT:

. DEFINE/USER SYS$INPUT SYS$COMMAND (3]

EDIT ‘P17.PLI

WRITE SYS$DUTPUT “Begdinning compile...," (5]
PLI ‘P11’

WRITE SYS$0UTPUT "Bedinning link..."

LINK ‘P17

DEL ‘P1’.0BJi* (8]

WRITE SYS$0UTPUT "Bedinning run...,"
DEFINE/USER SYS$INPUT SYSsCOMMAND 9]

RUN ‘P1°

INQUIRE CLEANUP "Purde previous uversions?" (1]

IF CLEANUP THEN PURGE 'P17.=*

This command establishes the way the command procedure deals with
errors that occur during its execution. Should any command return a
severity of WARNING or worse, execution of the command procedure
will cease.

Each command that is intended for the command interpreter (all com-
mands, in this example) must begin with a dollar sign ($).

These three commands establish the name of the PL/I source file. You
can supply parameters when you invoke a command procedure. These
parameters are assigned to symbols named P1, P2, and so on up to P8.
For example, if the command procedure above were named P.COM and
you wanted to work on a source file named METRIC.PLI, you could
issue the command

$ @P METRIC

This command would invoke P.COM and assign the value METRIC to
P1.

If you do not supply a parameter with the command, the symbol P1 is
null. The first command of the three tests whether P1 is null. If not, the
command procedure skips to the line labeled “EDIT:”. If P1 is null, the
procedure requests that you supply a file name, assigns the file name to
P1, and only then proceeds to EDIT:. This dialog appearsasfollowson your
terminal:

$ 2P

File name: METRIC

Chapter 1

© This command gives the logical name SYS$INPUT the equivalence
name of SYSSCOMMAND (that is, your terminal) for the duration of
the next image, which is the invocation of the editor that follows. The
editor, while active, will receive its input from the terminal. If you omit
this command, the editor seeks its input from the command procedure
and therefore is not usable interactively.

® This command invokes a system editor to edit the file having the name
you specified (now assigned to P1) and the type PLI. The apostrophes
around P1 request substitution; they are required syntax.

© This command types the message "Beginning compile..." on your termi-
nal. It does not execute until you have finished using the editor. Since
the commands in a command procedure are normally not echoed on
your terminal, such messages are helpful for keeping track of the proce-
dure’s progress.

O This command compiles the source file having the name you specified
and (by default) the type PLI. If you customarily use extra qualifiers,
libraries, and so on, you can include them here.

® This command links the object file having the name you specified and
(by default) the type OBJ.

© This command deletes the object file, which is no longer necessary after
the link operation.

© This command serves the same purpose as the one preceding the EDIT
command. It equates the default PL/I device SYSIN to your terminal
instead of the command file, thus allowing you to enter data for your
program from your terminal.

Alternatively, you can include test data for your program in the com-
mand procedure. Such data would consist of lines with no preceding
dollar signs following the RUN command in the procedure. However, in
this case you must omit the DEFINE/USER command.

® The RUN command executes the file having the name you specified
and (by default) the type EXE.

@ These two lines ask you if you wish to purge previous versions of the
source and image file. If you answer YES or Y, the PURGE command
purges them.

Introduction to Program Development on VAX/VMS 15

1.4.2 The Login Command Procedure File

When you log in, the system searches for a file in your directory named
LOGIN.COM. If such a file exists, the system executes the commands
contained in it before giving you control. The login command file is there-
fore useful for establishing logical names and symbols that you use often.

The login command procedure shown in the following example contains
commands that might be of special interest to a programmer. The notes
following the example are keyed to the numbered lines.

W W W R B g B R R W

o

16

0 :== "SHOW QUEUE/BATCH/DEVICES/ALL/FULL" (1]
P == "EP"

EDT :== "EDIT/EDT"

PED :== "EDIT/EDT/COMMAND=PROG.ECT" 3

LIST :== "PLI/NOOBJ/LIST=LP:"

DEFINE CODE DB1:[PROJECT.S0URCE.PLI]
DEFIME LISTS DB1:[PROJECT.LISTINGS] (4]
DEFINE PROG DB1:[PROJECT.IMAGES]

DEFINE LIB DBL1:[PROJECT.LIBRARY]

DEFINE PLI%LIBRARY LIB:INCFILES.TLB (5
DEFINE LMNK%LIBRARY LIB:MATHMODS.OLB

This command and the four that foliow it define symbols. Once defined,
symbols can replace their equivalent DCL command lines. They pro-
vide a convenient shorthand for lengthy, frequently used command
lines. The command shown equates the symbol Q to the qualified
SHOW QUEUE command, which displays the status of print and batch
queues.

This command equates the symbol P to the command @P. When you
type P in response to the DCL prompt, DCL executes the command file
P.COM from your current directory. (This could be the program devel-
opment command file shown in Section 1.4.1.) Defining this symbol
saves you the trouble of typing the at-sign (@).

These three commands equate symbols to commonly used command
lines. The first symbol invokes EDT, a system editor. The second sym-
bol invokes EDT with a special startup command file. The third symbol
invokes the PL/I compiler to compile a source file and produce a listing
on the line printer without creating an object or listing file. When you
use these symbols, you type a file specification following the symbol. To
use LIST, you would type

% LIST METRIC

Chapter 1

® These four commands define four logical names. Once they are defined,
you can use them at the beginning of file specifications to save yourself
the trouble of typing all the device and directory information. The

command
¢ PLI CODE:METRIC

would be equivalent to
$ PL1 DB1:[PROJECT,SOURCE.PLIIMETRIC

O These two commands define the logical names PLISLIBRARY and
LNKSLIBRARY. Note that they use the logical name LIB, defined in
the previous line. These two logical names are default library specifica-
tions for the PL/I compiler and the linker, respectively. The PL/I com-
piler searches PLISLIBRARY to locate INCLUDE modules that it can-
not find by searching text libraries specified in the PLI command. The
linker searches LNKSLIBRARY to resolve references that it cannot
resolve by searching libraries and modules specified in the LINK
command.

Introduction to Program Development on VAX/VMS 17

Chapter 2
Creating and Correcting Programs

The first step in developing a VAX-11 PL/I program consists of creating
the program’s source file. VAX/VMS offers two supported text editors that
allow you to do this: SOS and EDT. This chapter provides an introduction
to the use of EDT. For information on SOS, refer to the VAX-11 SOS Text
Editing Reference Manual.

There are three other sources of information on EDT available to you. The
first is the VAX-11 EDT Editor Reference Manual.! The second is the
computer-assisted course titled “Introduction to the EDT Editor” supplied
with the VAX/VMS operating system. The third is EDT’s help facility,
described in Section 2.1.2.

2.1 Introduction to EDT

EDT, the DEC Standard Editor, is an interactive general-purpose text
editor. It offers two modes of operation: line editing, in which operations
are performed on entire lines of text; and character editing, in which opera-
tions are performed on characters and words as well as on lines. Line
editing is possible on either hardcopy or video terminals. Character editing,
while usable on hardcopy terminals, is most effective on video terminals.

Line editing mode, with its English-like commands, is simple for the inex-
perienced user to learn. Character editing mode, while requiring practice,
is also very simple. Therefore, EDT is a good editor for someone who must
learn a text editor quickly.

1. Some installations may have the EDT Editor Manual instead of the VAX-11 EDT Editor
Reference Manual. The two manuals contain the same information about EDT.

18

EDT also offers many advanced features for more experienced users:

¢ Multiple text buffers. By default, editing operations take place within
a single text buffer called MAIN. However, you can maintain an un-
limited number of alternate text buffers as “holding areas” for text
that you do not necessarily wish to incorporate in the output file.

¢ Flexible input and output commands. You can copy files into an EDT
text buffer after beginning the editing session, and you can output text
buffers (or portions of text buffers) to files before ending the session.

¢ Macro capability. You can create sequences of line editing commands
that you invoke with a single command.

® The ability to define keys for custom character editing applications.
For example, a keypad key can be defined so that it inserts a specified
line of text each time it is pressed. This function is especially useful in
programming applications where certain statements may be repeated
frequently.

Finally, EDT protects your text. Should your editing session end in an
unexpected manner, you can recover all your editing operations by reenter-
ing the EDT command line with the /RECOVER qualifier. EDT then
“replays” your editing session up to the point of interruption, using the
contents of the journal file that it maintained during the lost session.

The following subsections introduce EDT’s line editing commands and
help facilities.

2.1.1 Line Editing Command Summary

When you invoke EDT, and throughout your editing session, EDT prompts
you to enter line editing commands by displaying an asterisk. For example:

% EDIT/EDT METRIC.PLI

i METRIC: PROCEDURE OPTIONS(MAIN)
*

Table 2-1 describes briefly (in alphabetical order) the most useful com-
mands that you can enter in response to the line editing prompt (*). Exam-
ples of these commands occur throughout Sections 2.2, 2.3 and 2.4. Each
command has a smallest acceptable abbreviation, shown in bold type in
the table.

All line editing commands are terminated with a ®D. Most of the com-
mands allow or require you to specify a range or ranges; the range specifica-
tion tells EDT where the action of the command should take place. Section
2.4.1 summarizes range specifications, and the command examples show

various ways of specifying a range.

Creating and Correcting Programs 19

Table 2-1:

Summary of Line Editing Commands

Command

Function

CHANGE [range]

CLEAR
COPY Irangel] TO [range2] /QUERY]

DEFINE{ KEY }

MACRO
DELETE [range] /QUERY}
EXIT (file-spec]

FILL [range)

FIND range

HELP [topic ...]

INCLUDE file-spec [range]

INSERT (range)

MOVE [rangel] TO [range2) /QUERY]
PRINT file-spec [range]

QUIT [/SAVE]

REPLACE [range)

RESEQUENCE I[range]
SET (parameter]

SET INOINUMBERI
SHOW [parameter]

SUBSTITUTE /stringl/string2/[rangel
/QUERY]

[SUBSTITUTE] NEXT [/stringl/string2]

20

Invokes character editing mode for specified
buffer

Deletes the contents of a text buffer

Copies lines specified by rangel to a location in
an EDT buffer specified by range2; does not de-
lete lines from original location

Defines a new or revised key function for charac-
ter editing mode, or defines a macro name

Deletes a specified line or lines

Terminates EDT, saving the contents of the text
buffer MAIN as the output file

Reformats a block of text so a maximum number
of full words fill a line as without exceeding the
right margin

Moves the current line to a specified line

Displays information on the specified EDT com-
mand or function

Copies an external file to a location in a text
buffer specified by range

Opens a text buffer for the insertion of text at
the location specified by range

Moves lines specified by rangel to the location
specified by range2, deleting the lines from the
source location

Creates a listing file with the specified file name

Terminates EDT without creating an output
file, optionally saving the journal file

Deletes specified lines from a text buffer and
leaves the buffer open for insertion of text

Assigns new line numbers to a range of lines
Sets a variety of editor operating parameters
Enables/disables the display of line numbers
Displays specified editor operating parameters

Replaces stringl with string2, either in the cur-
rent line or in the specified range

Replaces stringl with string2, based either
on the strings specified or on the previous

SUBSTITUTE command

Chapter 2

Table 2-1 (Cont.): Summary of Line Editing Commands

Command Function
TAB-ADJUST [-]n [range] Shifts each of a range of lines a specified number
of logical tab stops
[TYPE] [range] Displays specified lines and makes the first line
in range the current line; the default command
WRITE file-spec [range] Moves a copy of specified text from a buffer to a
file

2.1.2 The Help Facilities

EDT offers online help in both line and character editing modes. In line
editing mode, you invoke the help facility by entering the HELP com-
mand. Issued without parameters, this command displays information on
how to get further help, plus a list of subjects for which help is available. If
you enter one of the subjects as a parameter to the HELP command, EDT
displays information on that subject, and possibly another list. For
example:

*HELP DELETE
DELETE

The DELETE (abbreviation: D) command deletes the line srpecified

fAdditional ivnformation available:

JOQUERY
*HELP DELETE /QUERY

DELETE

FOUERY
Q Quits do not delete anvy of the rest of the
lines
A A1l delete all the rest of the lines
*

In character editing mode, you obtain help by pressing the HELP key on
your keypad; EDT will display a diagram of the keypad with all the key
functions identified. You can then obtain help on an individual function by

pressing the key that invokes that function. (Section 2.5 shows you how to
find the HET P ka

v)
iaiifa diikril BTy

Creating and Correcting Programs 21

2.2 Invoking and Terminating EDT

An editing session begins when you invoke EDT with the EDIT/EDT com-
mand, and ends when you terminate EDT with the EXIT or QUIT com-
mand. You may start an editing session with no file and create the text for
the file during the course of the session. Or you may specify an existing file
when you start the session, in which case EDT loads the file into its MAIN
text buffer. EDT does not destroy the contents of any existing file that you
edit; it simply produces a new version, leaving the old version intact.

2.2.1 Invoking EDT
To invoke EDT, issue an EDIT/EDT command in the format
EDIT/EDT[/qualifier...] file-spec

Qualifiers Defaults

/[NOJCOMMANDI[=file-spec] /COMMAND=EDTINIL.EDT
/[INOJJOURNAL[=file-spec] /JOURNAL=infile-name.JOU
/[NOJOUTPUT[=file-spec] /OUTPUT=infile-spec

/INOJREAD_ONLY /NOREAD_ONLY
/[INOJRECOVER /NORECOVER
file-spec

Specifies the file to be created or edited. If the file does not exist,
EDT creates it.

EDT does not provide a default file type. If you do not specify one,
the file type is null.

JOUTPUT[=file-spec]

/NOOUTPUT
Supplies an alternate file specification for the output file. By default,
EDT creates an output file upon exit that has the same name and
type as the input file and a version number of 1 (if the input file does
not exist) or one higher than the highest existing version (if the input
file does exist).

If you specify /NOOUTPUT, EDT does not automatically create an
output file when you issue the EXIT command.

The remaining qualifiers, which describe specialized editor functions, are
described elsewhere: the /COMMAND qualifier, in Section 2.7.3; the
/JOURNAL, /READ_ONLY, and /RECOVER qualifiers, in Section 2.6.

For convenience, you can issue the following command to equate a short
command symbol (EDT, in this example) to EDIT/EDT:

$ ERT :== "EDIT/EDT"

22 Chapter 2

After you issue this command, the command interpreter will recognize the
symbol EDT (or any other symbol you specify) as equivalent to

™ nm
EDl 1 //F‘AU 1.

When you invoke EDT, the response varies depending on whether or not
the file that you specify exists. (Other factors, such as commands con-
tained in a startup command file named EDTINI.LEDT, may further alter
. the response.) If the file does not exist, EDT so informs you, and prompts
you to issue editing commands:

$ EDIT/EDT METRIC,PLI

Input file does not exist

[EDB]
*

The asterisk (*) is EDT’s line editing prompt. When EDT is displaying the
asterisk prompt, you can enter any of the commands listed in Table 2-1.

If the file exists, its first line is displayed instead of [EOBI:

$ EDIT/EDT METRIC.PFLI
1 METRIC: PROCEDURE OPTIONS(MAIN) 3
*

NOTE

If you invoke EDT and it does not display an asterisk prompt,
you cannot enter line editing commands. This condition can
result when the current default directory contains a startup
command file named EDTINI.EDT that causes EDT-to enter
character editing mode directly. If this happens, you can enter
line editing mode by typing a CBLUZ). You can override the
unwanted effects of a startup command file by including the
/NOCOMMAND qualifier on the command line.

2.2.2 Terminating EDT

Use the EXIT command to terminate EDT and create an output file from
the contents of the MAIN text buffer. To override the default output file,
you can specify an output file with the EXIT command, as shown in the
following example:

*EHIT ALTNAME, PLZ
_DB1:[PROJECTIALTNAME.PLI i1 35 lines

£
The QUIT command terminates EDT without creating an output file. You

can use QUIT if you are simply reading a file without modifying it or if you
do not want to save your edits.

Creating and Correcting Programs 23

2.3 Creating a New File in Line Mode

To create a new file, you issue an EDIT/EDT command that specifies a file
that does not currently exist in your directory. After EDT responds with
the asterisk prompt, issue the INSERT command (abbreviation I) followed
by @®ED. The cursor or print head then moves to the right 16 spaces; this
space is left by EDT to accommodate line numbers, although none appear
at this stage. You can now enter as many lines of text as you wish. When
you are finished entering text, terminate the insert with €Wz . The follow-
ing example illustrates this process:

$ EDIT/EDT EMAMPLE.THT

Input file does not exist

[EOB1I

*1
This is the first line of EXAMPLE.TXT
This 15 the second line of EXAMPLE.TXT
This is the third line of EXAMPLE.,TXHT
This is the fourth line of EXAMPLE,TXT
This is the fifth line of EXAMPLE.,TXT
This is the sixth line of EXAMPLE.THT
This 18 the sevenpth linme of EMAMPLE.THT

*

The [EOB] designation indicates that you are currently at end-of-buffer,
and that any text you insert will be the only text in the buffer.

If you do not want EDT to leave space in front of each line for line num-
bers, you can issue the SET NONUMBERS command; EDT will then
begin each line at the left margin of the terminal. EDT continues to num-
ber lines, but does not display the numbers. You can restore the line
number display later by issuing a SET NUMBERS command.

2.4 Editing an Existing File in Line Mode

To edit an existing file in your directory, issue an EDIT/EDT command
that specifies its name. (To edit a file from a directory other than your own,
see Section 2.4.8.) EDT displays the first line in the file, as shown in the
following example:

$ ECIT/EDT EXAMPLE, THT

1 This is the first line of EXAMPLE.TXT
*

The number 1 to the left of the line is the line number. It is not part of the
file. The file starts with the word This.

24 Chapter 2

The line displayed is the current line. EDT uses the current line as the
default in many of its operations. For example, an INSERT command that
does not specify a range causes EDT to insert text in front of the current
line.

The concept of “range” is central to all EDT line editing operations. The
next section describes ways of specifying range. The sections that follow
describe the most common and useful line editing operations.

2.4.1 Range Specifications

A range is the line or lines on which EDT performs an operation. A range
specification is a description of a range in terms that EDT can understand.
All the line editing commands (except SUBSTITUTE NEXT) described in
the sections that follow accept one or more range specifications, although
many do not require one.

The simplest range specification identifies a single line of text. A line can
be located by its position in the file relative to the current line, by a text
string that it must contain, and by its line number. Since line numbers are
primarily useful in range specifications, they are described here.

When you insert lines of text in a new file, or when EDT loads an existing
file into its MAIN buffer, each line of the file receives a number. The
numbering starts with 1 and is incremented by ones. If you insert lines of
text between existing lines, EDT numbers the new lines using appropriate
decimal increments. This technique ensures that there will be enough
unique line numbers to cover any reasonable editing operation. EDT dis-
plays the line numbers whenever it displays text, unless you have issued
the SET NONUMBERS command. In that case, EDT does not display
line numbers, but it does continue to assign them.

Single-line range specifications are listed in Table 2-2; examples appear
below.

Table 2-2: Single-Line Range Specifications

Specification Meaning

The current line

number The line specified by the number

‘string * or The next line containing the string you specify
"string"

- ‘string " or The preceding line containing the string you specify
-"string"

Creating and Correcting Programs 25

Table 2-2 (Cont.):

Single-Line Range Specifications

Specification

Meaning

[range] { j} {number]

The line that is the specified number of lines after (or before, if
minus) the single line specified by range (range defaults to the
current line; number defaults to 1)

BEGIN The first line in the text buffer

END An empty line (designated by (EOB]) following the last line of
text in the text buffer

Specification Meaning

20.6 The line numbered 20.6

"INSERT:"’ The next line that contains the string INSERT:

"-GET LIST (A);"

-6
"PUSH: " +4

The first preceding line that contains the string GET
LIST (A);

The line six lines before the current line

The line four lines after the line that contains the
string PUSH:

When EDT searches for a string, the case of the search string need not
match the case of the target. For example, get list is a match for GET LIST
or (et List. This condition is the default; you can change it with the SET

SEARCH command.

There are several methods available for specifying a range of more than one
line. They are listed in Table 2-3; examples appear below.

Table 2-3: Multiple-Line Range Specifications

Specification

Meaning

[rangel] { }
THRU

[range] { FéR } number

BEFORE
REST

26

[range2]

The set of lines from rangel through range2, which are
single line range specifications (both rangel and range2
default to the current line, if omitted)

The specified number of lines beginning with the single
line specified by range (range defaults to the current line,
if omitted)

All lines in the buffer that precede the current line

The current line and all lines in the buffer that follow it

Chapter 2

Table 2-3 (Cont.): Multiple-Line Range Specifications

Specification Meaning

WHOLE The entire buffer

range, range... All lines specified by each single line range
or
range AND'range AND ...

[range] ALL ‘string’] All lines in the range containing the specified string (the
default for range is the entire buffer)

Specification Meaning
2:6.5 Lines 2 through 6.5, inclusive
‘INSERT: ‘#5 The line containing the string INSERT: and the four

lines following it, for a total of five lines

.-10:. The line 10 lines before the current line through the
current line, inclusive

10:50 ALL "GET" All lines from line 10 through line 50 that contain the
string GET

Most range specifications can be combined with a text buffer specification.
During your editing session, you may wish to hold and edit text in buffers
other than MAIN. To create and gain access to alternate buffers, include
the name of the buffer in a range specification, using the following syntax:

=buffer [range]
or
BUFFER buffer [range]

In this syntax, “buffer” stands for the name of the buffer. It can be from 1
to 30 alphanumeric characters, but it must start with an alphabetic char-
acter. If you include a range of lines following the buffer name, you specify
the range within the named buffer. If you omit the range specification, you
specify either the entire named buffer or its first line, depending on
context.

Creating and Correcting Programs 27

The following examples show buffer specifications in use.

Specification Meaning

=PROGI1 The entire contents of the text buffer named
PROG]I, or (for commands requiring a sin-
gle-line range specification) its first line

=INC'SUB1: :'RETURN " The lines that contain the strings SUBI and
RETURN in the text buffer named INC,
and all lines between

=COM ALL 'COPY" All lines that contain the string COPY in
the buffer named COM

2.4.2 Maneuvering in the File

This section describes commands for maneuvering in a buffer containing
text, in other words, for changing the location of the current line.

The TYPE command, followed by a range, causes EDT to display the line
or lines in the range and resets the current line to the first (or only) line
displayed. The word TYPE (abbreviation T) is optional: it need not be
entered. For example:

*T 1:3
! This is the first line of EXAMPLE.THT
2 This is the second line of EXAMPLE.TXT
3 This is the third line of EXAMPLE.THT
AR 20
4 This is the fourth line of EMAMPLE.THT
5 This is the fifth line of EXAMPLE.TXT

*

If you do not include the word TYPE, and if the range specification begins
with an alphabetic character (such as WHOLE or REST), you must
precede it with a percent sign (%). Otherwise, EDT tries to interpret the
range specification as a command. For example:

*E

m

T

Unrecodnized command

*EREET
4 This is the fourth lins of EXAMPLE.THT
S This is the fifth line of EXAMPLE.THT
5] This is the sixth line of E{ZAMPLE.THT

This is5 the sewventh line of EHAMPLE.THT

28 Chapter 2

A carriage return in response to the asterisk prompt displays the line fol-
lowing the current line and sets the current line to the displayed line. A
series of carriage returns, therefore, displays successive lines and sets the
current line to the displayed line each time. This is an easy way to work
through a file line by line. For example:

* BT
3 This is the fifth line of EXAMPLE.THT
* RED
5] This is the sixth line of EXAMPLE.THT

*

The FIND command (abbreviation F) locates a specified line without dis-
playing it. It is useful for setting the current line to the top of a large block
of text that would be cumbersome to display on the terminal. For example,
each of the following commands resets the current line to the top of the
MAIN text buffer:

#=MAIN
*F =MAIN

However, the first command (an implied TYPE command) displays the
entire contents of the MAIN text buffer. The second command just sets the
current line and displays an asterisk prompt.

If you specify a range that EDT cannot locate, EDT issues a message and
does not change the current line setting.

2.4.3 Inserting New Text

The procedure for inserting new text in a buffer already containing text is
exactly the same as that for inserting text in an empty buffer (see Section
2.3), except that you can control where the text goes by including a range
specification with the INSERT command. The lines you insert are placed
in front of the line you specify. If you specify multiple lines, the insert goes
in front of the first line in the range. If you omit the range specification, the
insert goes in front of the current line.

In the following example, the INSERT command causes EDT to insert text
in front of line 5 in the current buffer. Then the range specification (an
implied TYPE command) causes EDT to display lines 4 through 6, show-
ing the result of the insertion.

Creating and Correcting Programs 29

*1 5
insert line

ingert line

- m

1Tr5¢
senand
i

R~

4 Insert line

*
J=
ax]

This is the fourth line of EXAMPLE.,TXT
First insert line

Second insert line

Third insert line

This is the fifth line of EMAMPLE.THT
This is the sixth lime of EMAMPLE.THT

s o
[PR SR

o]

NOTE

EDT, which inserts text in front of the current line, is different
from many other text editors that insert text following the cur-
rent line.

2.4.4 Deleting and Replacing Text

Use the DELETE command (abbreviation D) to delete a specified range. If
you omit the range, the DELETE command deletes the current line. After
a delete operation, EDT displays the line following the last line deleted;
this is the new current line. For example:

*¥0L, 1wl
-

2 lines deleted
4.3 Third insert line
* [
1 line deleted
5 This is the fifth line of EXAMPLE.THT
*

The /QUERY qualifier to the DELETE command causes EDT to prompt
you before deleting each line of the range. The prompt is a question mark
(7). You can respond to the prompt in one of four ways:

Y (yes) Delete this line

N (no) Do not delete this line

A (all) Delete all remaining lines in the specified range
Q (quit) Quit the delete operation

The REPLACE command (abbreviation R) deletes a specified range and
allows you to insert lines to replace those deleted. You terminate the inser-
tion with a €2, just as with the INSERT command.

30 Chapter 2

2.4.5 Moving Text

The COPY and MOVE commands (abbreviations CO and M, respectively)
ailow you to move one or more Iines of text from one place in the buffer to
another, or from one buffer to another. The effect of these commands is
similar; the only difference is that the COPY command does not delete the
text from its original location, whereas the MOVE command does.

The following example illustrates both commands, as well as alternative
ways of specifying a range:

* LWHOLE
1 This 15 the first line of EHAMFLE.THT
Z This is the zecond line of E{AMPLE.THT
3 This is the third line of EXAMPLE.THT
4 Thiz is the fourth line of EHAMPLE.THT
= This 1z the fifth line of E¥AMPLE.THT
G This 15 the sixth line of E{AMPLE.THET
7 is the szeventh line of EXAMPLE.TXT

*DORFY 1:3

3 lines

#5016
=5 This 12 the fifth line of EXYAMPLE.THT
5.1 This is the first line of EXAMPLE.THT
5.2 This is the second line of EXAMPLE.THT
5.2 This is the third ITine of EXAMPLE.THT
G This 1s the sixth line of EHAMPLE.THT

#M S.1a83 TO BEGIH

3 lines mowved

* L ldH
0.1 This is the firszst line of EXAMPLE.THT
0.2 This is the second line of EHAMPLE.THT
0.3 This 15 the third line of EHAMPLE.THT
1 This 1s the first line of EHAMPLE.THT
2 This is the second line of EXAMPLE.THT
3 This 1is the third line of EHAMPLE.THT
4 This 15 the fourth line of EXAMPLE.THT
5 This is the fifth line of EXHAMPLE.THT
5 This 15 the sixth line of EXAMPLE.THT
7 This 15 the seuventh line of EXAMPLE.THT

*

The /QUERY qualifier to either COPY or MOVE causes EDT to prompt
you before copying or moving each line of the range. It operates the same
way as the /QUERY qualifier to DELETE (see Section 2.4.4).

2.4.6 Substituting Text

Two commands, SUBSTITUTE and SUBSTITUTE NEXT, substitute
one string for another within a line or lines. These are the only line editing
commands that can alter text within a line, as opposed to changing the

Creating and Correcting Programs 31

entire line. The SUBSTITUTE command (abbreviation S) operates on the
current line or on a specified range; the SUBSTITUTE NEXT command
(abbreviation N) makes a substitution at the next opportunity within the
buffer.

The format of the SUBSTITUTE command is
SUBSTITUTE /string1/string2/[range] [/QUERY]

The command finds stringl and substitutes string2 for it. If you do not
specify a range, the substitution takes place in the current line. If you do,
the command makes every substitution within the range. The following
example illustrates the command first without and then with a range
specified:

*1

1 This is the first lime of EXAMPLE.THT
#5 /first/1lst/

1 This is the 1st line of EXAMPLE.TXT

1 substitution
*S /of/in/d:8

4 This 1s the fourth line in EXAMPLE.THT
= This 1s the fifth line in EXAMPLE.THT
£ This iz the sixth line in EMAMPLE,THT

3 substitutions
*

Slashes (/) are not the only characters you can use to delimit stringl and
string2. Any nonalphanumeric character will work, as long as the delim-
iters are matched and do not occur in either string. For example, the
following command substitutes the string A/3 for A/2 in the current line,
using dollar signs ($) as delimiters:
*S $A/2$A/3%

25 SIZE = A/33

1 substitution
*

The /QUERY qualifier to SUBSTITUTE causes EDT to prompt you before
making each substitution. It operates the same way as the /QUERY quali-
fier to DELETE (see Section 2.4.4).

The SUBSTITUTE NEXT command (abbreviation N) substitutes for the
next occurrence of stringl that it finds in the buffer. If you specify neither
stringl nor string2, the command takes the values of both strings from the
last SUBSTITUTE command you issued. For example:

#N S odins oof/
4 This is the fourth line of EMXAMPLE.,TXT
*N

3 This is the fifth line of EMAMPLE.TXT
*

32 Chapter 2

2.4.7 Input from and Output to Files

Two EDT commands, INCLUDE and WRITE, allow you to incorporate
text from files and output text to files during your editing session. The
INCLUDE command (abbreviation INC) incorporates the contents of a file
at a specified location in a text buffer. If you do not want the entire file
incorporated in the MAIN text buffer, you can specify an alternate buffer
as the range, and then copy the desired portions of the file to their proper
places in MAIN. For example:

*INC SBRTNES.PLI =5UBS
*

This command creates a buffer called SUBS and fills it with the contents
of the file SBRTNES.PLI from the EDT default directory (that is, the
directory of the input file given with the EDIT/EDT command).

The WRITE command (abbreviation WR) creates a file by copying the
contents of a specified range in a text buffer. The text is not deleted from
the text buffer and EDT does not terminate following the operation. If you
do not specify a range with the command, EDT outputs the entire contents
of the current text buffer. The following example shows the command used
with a range:

*Wk ROUTINEL.FLI =SUBS ‘ADD: ’: 'RETURN

_DB1:[PROJECTIROUTINEL.PLI1 45 lines
#

This command creates the file ROUTINE1.PLI from the lines that contain
the strings ADD: and RETURN in the buffer named SUBS, and all lines in
between.

Unless you include a directory in the file specification, WRITE always
creates the file in your current default directory. This is true even if the
input and output files are in another directory.

2.4.8 Editing a File from Another Directory

You can edit a file that exists in another directory and use the /OUTPUT
qualifier to EDIT/EDT to direct the output file to your directory. However,
EDT uses the directory of the input file that you specify in the EDIT/EDT
command line as its default directory. This default has the following ef-
fects:

e EDT attempts to create its journal file in its default directory, that is,
the other directory. if you do not have the priviiege to do this, EDT
issues an error message and terminates. You should instead use the
/JOURNAL qualifier to place the journal file in your directory. (See
Section 2.6 for a description of the journal file and /JJOURNAL.)

Creating and Correcting Programs 33

¢ If you issue an INCLUDE command and do not specify a directory,
EDT attempts to locate the file in its default directory, that is, the
other directory. To specify a file in your own directory, use a directory
specification with INCLUDE.

In the following example, a user with the account [WILBUR] edits a file
from the account [PROJECTT:

¥ EDIT/EDT [PROJECTICATADEF.PLI
£ /O0UTPUT=CWILBURT 7 JOURNAL=LWILEUR]

*IMCLUUE (WILBURIEMTRIES.PLI

The input file for this editing session is [PROJECTIDATADEF.PLI; the
output file is [WILBURIDATADEF .PLI. The INCLUDE command incor-
porates a file from directory [WILBUR]. If the INCLUDE command had
not specified a directory, EDT would have looked for the file
[PROJECTIENTRIES.PLIL

2.5 Character Editing

EDT’s character editing mode allows you to perform editing operations at
any position in your text instead of line by line. For most applications,
especially those requiring extensive detail modification of existing text,
character editing is faster and more straightforward than line editing.
When you use character editing mode on a video terminal, your screen
always contains an accurate picture of the area of the file in which you are
working. The terminal’s cursor shows exactly where you are at all times.

There are two types of character editing: nokeypad and keypad. Nokeypad
character editing works on all terminals, including hardcopy terminals. It
requires you to enter short commands through the keyboard and terminate
each command with a ®70. Keypad character editing works on the VT52
and VT100 video terminals and on terminals that are compatible with
them. In keypad editing, you request editor functions by pressing keys on
the auxiliary keypad; no is required to terminate the command. Any-
thing you type on the keyboard, including carriage returns, is inserted into
the file as text.

This section describes only keypad character editing. To learn about
nokeypad character editing, read the VAX-11 EDT Editor Reference Man-
ual.

The keypads for the VT52 and VT100 (and compatible) terminals are
different. Therefore, the following description refers to functions rather
than to specific keys. It is a good idea to keep a copy of the appropriate

34 Chapter 2

keypad diagram handy while you are learning character editing. Figures
2-1 and 2-2 contain the keypad diagrams for the VT52 and VT100, respec-

tivnle MTh L | e

tively. The numbers or characters shown in the upper right of each key
correspond to what you see on the key.

Note that most keys perform two functions. To use the upper of the two
functions listed, press the key. To use the lower function, first press and
release the GOLD key.

2.5.1 Entering and Exiting Character Editing Mode

To enter character editing mode from line editing mode, use the CHANGE
command (abbreviation C). When you issue the CHANGE command, the
screen first goes blank and then fills with text. You will find the cursor
somewhere on the screen, positioned at the current line or the line you
specified with the CHANGE command. (If the buffer is empty, the cursor
and [EOB] appear at the top of the screen.)

EDT does not display line numbers while in character editing mode, al-
though it does continue to assign them as you insert text.

When you have finished your character editing operations and wish to
return to line mode, enter a €/Z). It terminates character editing and
causes EDT to display the asterisk prompt. You can then perform line
editing operations or end the editing session, as appropriate.

The sections that follow describe some of the character editing operations
available to you.

2.5.2 Maneuvering the Cursor

Before performing most character editing operations, you must move the
cursor to the location in the file where you wish the operation to take place.
There are many ways to move the cursor; experience eventually teaches
which is best in a given situation.

The LEFT and RIGHT functions move the cursor one character to the left
or right. If the cursor is at the end of a line, the RIGHT function moves it to
the beginning of the next line. Conversely, if the cursor is at the beginning
of a line, the LEFT function moves it to the end of the previous line.

The UP and DOWN functions move the cursor one line up or down. The
column position of the cursor does not change, unless there is no text in the
corresponding column above or beiow. In that case, the cursor moves to the
end of the preceding or following line.

Creating and Correcting Programs 35

9¢

g 191deyn

e —— e e e e e
I i r N
| | | I |
| eoo | mWeee | oett | we
| | | UNDL | RePLACE |
Ly ———-——l——-———l
: 7 | BT l ‘ i
|
| PaGE : FNONXT DELW | DOWN |
| COMMAND FIND : oW | secT
F———r———=t————=t———-
4 5 6 -
: I | | |
| ADVANGE | gackoe | oec | mewr |
| BoTToM | top | uwoc | specins |
L1 —d____1
r : 2 | 3 : |
|
| womp | EoL | cur | LEFT :
| CHNGCASE | DELEOL | PASTE | APPEND '
b b
| 01 o ENTER
|
| LINE | SELECT | ENTER |
| OPEN LINE | RESET | suss |
A)

2K-020-81

Figure 2-1: VT52 Keypad

Y Y R P B,
[’l ':. !

i up | oown | LEFT | RIGHT |
| |] | |
| R RN S P

e T eV el pral

I PF1 | PF2 | PF4
GOLD HELP FNDNXT DEL L
| 1 { |
| 1 | eno | unor |
] | } 1 |
S
PAGE SECT APPEND DEL W
| | }]
| coMmanD | FILL | REPLACE UNDW |
| |] |
{.-..__ZT____ P Ittty '_}
1 |

| Apvance | Backup | cur | DELC |
| BOTTOM | TOP | PASTE I UNDC |
P L____.L.__——L-—-——- |
[1 2) 3| ENTEFT}
| woro | Eo. | cHam { |
| CHNGCASE | DEL EOL | SPECINS | |
bbb 1 eNTER
| ol | SUBS |
| | | |
I LINE | SELECT | |
I OPEN LINE | RESET | I
R IR E———

ZK-021-81

Figure 2-2: VT100 Keypad

The beginning-of-line function, obtained by pressing the BACK SPACE
key, moves the cursor to the beginning of the line in which it is positioned.
If the cursor is already at the beginning of a line, the function moves it to
the beginning of the previous line.

The TOP and BOTTOM functions move the cursor to the beginning and
end of the buffer, respectively.

All the remaining cursor movement functions depend in part on the
ADVANCE and BACKUP functions. The ADVANCE function causes sub-
sequent cursor movement to occur in the forward direction, that is, toward
the end of the buffer. The BACKUP function causes subsequent cursor
movement to occur in the backward direction, toward the beginning of the
buffer. When character editing begins, cursor movement is forward, until
reversed by the BACKUP function.

The following functions depend on the current direction established by
ADVANCE and BACKUP:

e The CHAR function moves the cursor one character.

® The WORD function moves the cursor to the beginning of the next or
previous word (the end-of-line character is considered a word).

e The LINE function moves the cursor to the beginning of the next line,
if the current direction is forward. If backward, the LINE function
moves the cursor to the beginning of the line in which the cursor is
positioned, or, if the cursor is at the beginning of a line, to the begin-
ning of the previous line.

e The EOL (for end-of-line) function moves the cursor to the next or
previous end-of-line character.

e The SECT (for section) function moves the cursor one 16-line section.

e The PAGE function moves the cursor to the next or previous page
mark (by default, a form feed).

All of these cursor movement functions can be combined with a repeat
count, which causes the function to be repeated a specified number of
times. To enter a repeat count, press the GOLD key, then type in the count
on the keyboard (not keypad) number keys, then type in the function to be
repeated. As you enter the repeat count, the numbers appear on the screen
below the area reserved for text. The numbers disappear as soon as you
enter the function.

You can also use FIND and FNDNXT (for find next) to move the cursor to
a certain string. To find a string, enter the FIND function. EDT prompts
vou for a search string. Type the search string without delimiters, and
terminate it with either the ADVANCE or BACKUP function to determine

the direction of search. EDT moves the cursor to the beginning of the

Creating and Correcting Programs 37

search string. If the search string is not found, EDT issues a message and
does not move the cursor.

The FNDNXT function finds the next occurrence of the current search
string in the current direction. The current search string is the last string
you entered with the FIND function.

Note that you can locate strings that include carriage returns with the
FIND function. Simply enter the carriage return as part of the search
string. The carriage return does not terminate the search string; you do
that with the ADVANCE or BACKUP function. EDT echoes a carriage
return in a search string as "M.

2.5.3 Inserting Text

Once the cursor is positioned, you can insert text in front of it simply by
typing the text on the keyboard. No command is required and whatever
you type becomes part of the file. Your insertion appears on the screen as
you type it, and the surrounding text moves as necessary to accommodate
it.

When you insert text at the beginning or in the middie of a line, the end of
the line may disappear off the edge of the screen. The text is not lost,
however: if you enter a carriage return in the text you are typing, the text
appears on the next line. To avoid this problem, you can use the OPEN
LINE function. When the cursor is at the beginning of a line, OPEN LINE
provides a blank line above that line, and positions the cursor at the begin-
ning of the blank line.

As you type new text, you may notice errors in surrounding text. You can
move the cursor to these errors and correct them at any time, and then
move the cursor back and continue to insert text.

2.5.4 Deleting and Undeleting Text

EDT character editing provides several methods of deleting text in units of
varying sizes. EDT also maintains three buffers to contain text that has
been deleted. The character buffer contains the last character deleted; the
word buffer contains the last word deleted; and the line buffer contains the
last line deleted. You can insert the contents of each of these three buffers
at the cursor position by using the UND C, UND W, and UND L functions,
respectively. There is no limit to the time or number of operations between
a delete operation and the undelete operation that reinserts the deleted
text. Furthermore, you can undelete one unit of text as many times as you
wish, and at any locations you wish.

The DEL C (for character) function deletes the character at which the
cursor is positioned, and moves the cursor to the next character. The

38 Chapter 2

DELETE key on the keyboard deletes the character before the cursor posi-
tion (the last character typed, if you are inserting text) and does not
change the cursor position. Both of these functions move the deleted char-
acter into the character buffer, from which it can be retrieved by using the
UND C function.

The DEL W (for word) function deletes from the current cursor position to
(but not including) the first character of the next word. The LINE FEED
key on the keyboard deletes from (but not including) the cursor position
back to the first character of the current word. Both of these functions
move the deleted text into the word buffer, from which it can be retrieved
by using the UND W function.

The DEL L (for line) function deletes from the cursor position through the
next end-of-line character. The DEL EOL (for end-of-line) function is simi-
lar, except that it does not delete the end-of-line character. Typing
deletes from (but not including) the cursor position to the beginning of the
current line. All of these functions move the deleted text into the line
buffer, from which it can be retrieved by using the UND L function.

2.5.5 Moving Text

Character editing provides two basic methods of moving text. The first is
available through the three undelete functions. You can delete a unit of
text from one location, move the cursor to another location, and undelete
the text there. However, this method is only effective for units that can be
deleted by the various functions described in Section 2.5.4. To move larger
or more precise blocks of text, use CUT and PASTE. These two functions
allow you to “cut” any amount of contiguous text from one location and
“paste” it elsewhere.

The first step is defining the text to be moved. To do this, move the cursor
to either the beginning or end of the text and enter the SELECT function.
Then move the cursor to the other extremity of the text. In so doing, you
create a select range: that is, all the text between the cursor position and
the position at which you entered the SELECT function. On VT'100 termi-
nals, EDT highlights the select range with reverse video. If you make a
mistake while you are defining the select range, enter the RESET function
to cancel the select range currently in effect.

Once you have defined the select range, enter the CUT function. The text
within the select range disappears. (EDT moves it into a text buffer named
PASTE.) Move the cursor to the position at which the text is desired, and
enter the PASTE function. The text appears at the cursor position.

You can paste the cut text in as many locations as required. Specifically,
you can paste the text as soon as you cut it, then move the cursor and paste

ot again Thic e in affact 5 conv onerstion
the text again. This is in effect a copy operation.

Creating and Correcting Programs 39

Each CUT operation destroys the previous contents of the PASTE buffer
and replaces them with the select range. To add the select range to the
contents of the PASTE buffer, use the APPEND function.

The PASTE buffer is an ordinary EDT text buffer. You can edit within it,
load it from a file with the INCLUDE command, and create a file from its
contents with the WRITE command.

2.6 Protecting and Recovering Text

Three qualifiers to the EDIT/EDT command allow you to protect files
against inadvertent modification and to recover editing operations that
have been lost. This section discusses them.

The /READ_ONLY qualifier controls whether journaling and the creation
of an output file are enabled. (Specifying /READ_ONLY is equivalent to
specifying /NOOUTPUT and /NOJOURNAL.) /NOREAD_ONLY, the
default, allows EDT to create an output file and a journal file. Use
/READ_ONLY in situations where you want to be sure you do not create a
modified file, or for reading a file in a directory where you do not have write
privileges.

The /JOURNAL qualifier allows you to disable (using /NOJOURNAL) or
to specify the name of the journal file that EDT creates to record your
editing activity. By default, EDT creates a journal file with the file name of
the input file and a file type of JOU. If the editing session ends abnormally,
EDT can use the contents of the journal file to re-create the session. If the
editing session ends normally (that is, as the result of an EXIT or QUIT
command without a /SAVE qualifier), EDT deletes the journal file.

The /RECOVER qualifier causes EDT to use the contents of a journal file
to re-create a previous editing session, perhaps one that was lost as the
result of an accidental or system problem. If you specify /RECOVER,
EDT locates a file with the same name as the input file and a file type of
JOU, then applies all the editing operations recorded in the journal file to
the input file. These operations appear on your terminal as EDT performs
them. When EDT has exhausted the contents of the journal file, the activ-
ity on the terminal ceases. You can now continue to edit.

Two notes of caution are necessary. First, it is important for the
EDIT/EDT command that starts a recovery operation to match exactly the
command that started the lost session, including any special startup com-
mand files. The only difference between the two commands should be the
/RECOVER qualifier. In particular, the input file must be the same version
that you started with at the beginning of the lost session. Second, note that
EDT does not necessarily recover your session to the exact point where it
was lost. A few keystrokes may be missing.

40 Chapter 2

2.7 EDT Aids for the Programmer

in addition to the generai-purpose editing operations discussed in Sections
2.1 through 2.6, EDT provides some advanced functions that are especially
useful for programming. The following sections introduce some of these.

2.7.1 Structured Tabs

Although PL/I is a free-form language, in which excess spaces and tabs
have no significance, it is common practice to indent lines to indicate the
relationship of statements. It is laborious to enter repeatedly the correct
combination of tabs and spaces to achieve the desired indention. EDT
solves this problem by providing a system of structured tabs in character
editing mode. While you are inserting text, a depression of the tab key
inserts the correct combination of tabs and spaces to bring the cursor to the
desired column. When you need to begin lines at a different column, you
can increase or decrease the indention level to move the starting column to
the left or right by a preset increment.

To use the structured tab feature, follow these steps:

1. While in line editing mode, set the increment between tabs by issu-
ing the SET TAB command with a suitable value. For example:

*SET TAB 4

*

At this point, the first on a line (while in character editing mode)
positions the cursor at column 5. Subsequent tab stops are at the
normal locations.

2. When you want to change the indention level, use or CTRLD .
Each depression of increases the indention by one increment;
the first tab stop is n spaces further to the right, where n is the
number you gave with the SET TAB command. Pressing de-
creases the indention level.

3. If you want to set the indention level to correspond to a given col-
umn, position the cursor at that column and press €A . The col-
umn must be at an even multiple of n spaces from the left edge of the
screen.

4. If you want to change the indention of a block of lines, first define a
select range that includes the lines to be shifted. (To define a select
range, position the cursor at one end of the block of lines, enter the
SELECT function, and then position the cursor at the other end.)
Then enter a repeat count (the GOLD key followed by a number
typed on the keyboard) to indicate how many units of n spaces the

Creating and Correcting Programs 41

lines should be shifted. A positive repeat count shifts the lines to the
right; a negative repeat count shifts the lines to the left. Finally,
press CRUT) .

2.7.2 Special-Purpose Key Definitions

EDT allows you to redefine the functions invoked by all the keys on the
auxiliary keypad and many control characters as well. There are two ways
to redefine a key’s function:

¢ While in character editing mode, press €K . EDT prompts you to
press the key you wish to define. Once you have pressed the key, EDT
prompts you to enter the new function. You can do this either by
typing the nokeypad commands that make up the function, or by
pressing the keypad keys that correspond to the functions you require.
You must follow the function specification with a period. The ENTER
function terminates a definition of this type.

® While in line editing mode, issue the DEFINE KEY command. You
define the new function to perform as a string of nokeypad character
editing commands, followed by a period. The string and period must
be enclosed in quotes.

Key redefinition requires a good grasp of nokeypad character editing syn-
tax, as well as a good deal of practice. The EDT help facility (particularly
HELP DEFINE KEY and HELP CHANGE SUBCOMMANDS) and the
VAX-11 EDT Editor Reference Manual are good sources of information.
However, this section describes one common application: the redefinition
of a key to insert a string of text.

While writing a program, you may find that you are typing the same group
of words over and over. For example, you might get tired of typing PUT
SKIP LIST. In character editing mode, follow this procedure to define a
key to insert the string PUT SKIP LIST:

1. Press €WK . EDT prompts you with

Press the kev »ou wish to define

2. Select a function that you do not use often, for example, SPECINS.
You might also select a control character. Enter the function or
control character. EDT then prompts you with

Now enter the defiwmition termivated by ENTER
3. Type the following:

IPUT SKIF LISTERZ.

(The period is required syntax.)

4. Press ENTER to terminate the definition procedure.

42 ' Chapter 2

For the remainder of the editing session, the key that used to invoke the
SPECINS function will instead insert the string PUT SKIP LIST at the

In line editing mode, you can redefine a key by using the DEFINE KEY
command. To identify a keypad key in the command, you use a number.
You can find out which numbers are assigned to which keys by issuing the
command HELP DEFINE KEY VT52 or HELP DEFINE KEY VT100.
These commands display the numbers assigned to keypad keys on the
respective terminals.

Next, you issue a DEFINE KEY command, specifying the key and the
function you wish the key to perform. The following example redefines the
SPECINS function (GOLD/3 on a VT100) to insert the string PUT SKIP
LIST:

DEFINE KEY GOLD 3 A5 "iPUT SKIR LISTZ.®

The quotes and period are required syntax. The "Z is not a €RUZ), but a

circumflex followed by a Z. For the remainder of the editing session,
GOLD/3 will insert the string PUT SKIP LIST at the cursor position.

The preceding examples represent only a small fraction of the capabilities
of key redefinition. With practice, you can create powerful custom func-
tions that can save you a great deal of time. You may want to store these
functions in a startup command file so that you will not have to define
them each time you begin an editing session. The next section describes
startup command files.

2.7.3 Startup Command Files

When you invoke EDT, it searches your current default directory for a file
named EDTINLEDT. If EDT finds such a file, it executes the line editing
commands contained in the file before turning control over to you. This
function allows you to customize EDT to suit your needs. Some of the
commands that a startup command file might contain are

e DEFINE KEY. These commands redefine the function invoked by a
keypad key or control character while in character editing mode. (See
Section 2.7.2.)

e DEFINE MACRO. These commands associate a name with a se-
quence of line editing commands stored in a text buffer. You can then
invoke the sequence by entering the macro name in response to the
line editing asterisk prompt.

Creating and Correcting Programs 43

o INCLUDE. These commands bring text from a file into a text buffer.
You might use them to load macros into a buffer, or to fill a buffer
with text that you often use. (See Section 2.4.7.)

¢ SET. These commands establish EDT operating parameters. Particu-
larly useful are SET TAB, which establishes the increment for struc-
tured tabs, and SET MODE CHANGE, which causes EDT to enter
directly into character editing mode. (Section 2.7.1 describes the use
of structured tabs.)

You can use the /COMMAND qualifier to the EDIT/EDT command to
cause EDT to search for a file other than EDTINL.EDT. This means that
you can have several startup command files, each designed for a particular
application. You may want to include a command in your login command
procedure file (see Section 1.4.2) to equate a short mnemonic to an
EDIT/EDT command that invokes a special startup command file. For
example, if you have the following line in your login command file:

$ EDP == "ECIT/ECT/COMMAHND=PLI.EQT"

then the command

® [CrDoeDTDYCO oD T

invokes EDT with the startup command file PLILEDT to edit the file
METRIC.PLIL

44 Chapter 2

Chapter 3
Compiling PL/1 Programs

This chapter describes how to use the PLI command to compile your source
programs into object modules. It discusses

e The functions of the compiler.
e PLI command syntax and qualifiers.
¢ The use of text libraries.

¢ Compiler diagnostic messages and error conditions.

3.1 Functions of the Gompiler

The primary functions of the VAX-11 PL/I compiler are to verify the PL/I
source statements and to issue messages if there are any errors; to generate
machine language instructions from the source statements of the PL/I pro-
gram; and to group these instructions into an object module for the linker.

When the compiler creates an object module, it provides the linker with the
following information:

¢ The module name. This is taken from the name of the main procedure
in the source program, that is, the procedure that specifies OPTIONS
(MAIN). If no procedure specifies OPTIONS (MAIN), the module
name is the name on the first procedure statement in the source file.

¢ A list of all entry points and external variables that are declared in the
module. The linker uses this information when it binds two or more
modules together and must resolve references to the same names in
the modules.

¢ Traceback information. This is used by the system default condition
handler when an error occurs that is not handled by the program itself.
The traceback information permits the default handler to display a
list of the active blocks in the order of activation, which aids program
debugging.

45

e [f specifically requested (with the /DEBUG qualifier), a symbol table.
A symbol table lists the names of all external and internal variables
within a module, with definitions of their locations. The table is of
primary use in program debugging.

The linker is described in Chapter 4.

3.2 The PLI Command

The syntax of the PLI command and its qualifiers follows, as well as de-
scriptions of the parameters and qualifiers. Subsequent sections give de-
tailed examples and rules for specifying input and output files for the PLI
command. The format is

PLI[/qualifier...] file-spec[/qualifier...],...

Command Qualifiers

/[NO]JCHECK
/CHECK]{[=o0ption]
/[NOJCROSS_REFERENCE
/[NO]DEBUG
/DEBUG[=0ption]
/INOJERROR__LIMIT
/ERROR_LIMIT[=n]
/[NO]JG_FLOAT
/[NO]JLIST[=file-spec]

/[NO]JMACHINE_CODE
/MACHINE__CODE[-option]
/[NOJOBJECT[=file-spec]
/[NOJOPTIMIZE[=(option....)]
/SHOW][(option,...})]

/VARIANT{=["]alphanumeric__string["]
/[NOJWARNINGS

File Qualifier
/LIBRARY

file-spec,...

Defaults

/NOCHECK
/CHECK=ALL
/NOCROSS_REFERENCE
/NODEBUG
/DEBUG=ALL
/NOERROR__LIMIT
/ERROR_LIMIT=100
/NOG__FLOAT

/NOLIST (interactive default)
/LIST (batch default)
/NOMACHINE_CODE
/MACHINE_CODE=INTERSPERSED
/OBJECT
/OPTIMIZE=ALL
/SHOW=(NOINCLUDE.
NODICTIONARY,

NOMAP,

SOURCE,

NOTRACE,

TERMINAL,
NOEXPANSION,
NOSTATISTICS)
/VARIANT=""
/WARNINGS

Specifies one or more P1L/I source files to be compiled and, optionally,
libraries to be searched for INCLUDE files that are referenced in the

source file(s).

Chapter 3

You must separate multiple input file specifications with either com-
mas (,) or plus signs (+). They have different meanings:

O delimmit PI :
Commas delimit PL/I source files to be compiled separately. PL/I

@
S
=
[
o8]
<)
=

compiles each file and creates an object modul

¢ Plus signs delimit files to be concatenated or libraries containing
INCLUDE files. PL/I compiles the source files as a single file and
creates one object module. Library file specifications must be qualified
with the /[LIBRARY qualifier.

If a file specification does not contain a file type, PL/I assumes a default
file type of PLI for a source file. If a file specification is qualified with
/LIBRARY, PL/I assumes a default file type of TLB. INCLUDE files and
INCLUDE file libraries are described in Section 3.3 and Chapter 20.

A single file may contain multiple PL/I procedures; PL/l concatenates
them into a single object module.

Command qualifiers request processing options of the compiler. You can
specify qualifiers to the PLI command after the command name or an
individual file specification. When a qualifier is specified after the PLI
command name, its action applies to each file in the list, unless overridden
by a qualifier specified for an individual file.

When a qualifier is specified after a file specification in a list of files
separated by commas, its action is applied only to the compilation of that
file.

J/CHECK

/NOCHECK (default)

Controls the checking of array subscripts and of positional references
in arguments to the SUBSTR built-in function. /CHECK is primarily
of use during initial program debugging; it results in the generation of
additional code and, consequently, a slower program.

Specifying /CHECK is equivalent to specifying /CHECK=ALL and
/CHECK=BOUNDS. Likewise, /NOCHECK is the equivalent of
specifying /CHECK=NONE and /CHECK=NOBOUNDS.

/CROSS_REFERENCE
/NOCROSS_REFERENCE (default)

Specifies whether the compiler is to generate, in the listing file, cross-
references for variable names. If you specify /CROSS_REFERENCE,
the compiler lists all variable names, including all members of struc-
tures as separate entities in an alphabetical cross-reference listing.
The cross-reference entry for each structure member also lists the
name of the structure that contains the member. The listing contains
the line numbers of the lines on which all variables are referenced.

Compiling PL/I Programs 47

Note that /SHOW=MAP is required with /CROSS_REFERENCE.
By default, the compiler does not include cross-references in the list-
ing.

/DEBUG[=option]

/NODEBUG

Requests that information be included in the object module for use
with the VAX-11 Symbolic Debugger. You can select the following

options:

ALL Include symbol table records and traceback re-
cords. This is equivalent to /DEBUG.

SYMBOLS Include symbol definitions for all identifiers.

This is the default for symbols if the /DEBUG
qualifier is used.

NOSYMBOLS Do not include symbol definitions. Without
symbol definitions, traceback is done according
to virtual address.

TRACEBACK Include only traceback records. This is the de-
fault if the /DEBUG qualifier is not present in
the command.

NOTRACEBACK Do not include traceback records.

NONE Do not include any debugging information. This
is equivalent to /NODEBUG. Use this option to
exclude all debug information from thoroughly
debugged program modules.

For an example of a traceback, see Section 5.1.2.

/ERROR_LIMIT[=n]
/NOERROR_LIMIT

VAX-11 PL/I permits you to specify the number of errors acceptable
during program compilation. Normally, compilation terminates when
the number of errors reaches 100, but /NOERROR__LIMIT raises this
default number to 1000. However, you may specify a different error
limit with the /ERROR_LIMIT=n qualifier. The maximum number
of error messages permitted by the system is 32767.

All error and warning messages are counted toward the error limit.
Fatal messages immediately terminate the compilation.

/G_FLOAT

/NOG _FLOAT (default)
For VAX-11 computers that are equipped with the appropriate hard-
ware option, specifies the representation of floating-point variables
with a binary precision in the range 25 through 53 and increases the

48 Chapter 3

maximum precision available. By default, the compiler uses D (dou-
ble-precision) floating point. Specify /G_FLOAT to override this de-
fault and to request the compiler to use the G floating-point type for
these variables.

The default and maximum precisions for all floating-point formats
are summarized in Section 8.2.3.

/LIST[=file-spec] (batch defauit)

/NOLIST (interactive default)
Controls whether a listing file is produced. When /LIST is in effect,
the compiler gives a listing file the same file name as the source file
and a file type of LIS. If you supply a file specification with /LIST,
the compiler uses that file specification to override the default values
applied.

You can control the contents of the listing file by specifying the
/CROSS_REFERENCE and /MACHINE_CODE qualifiers, and by
specifying options on the /SHOW qualifier.

/MACHINE _ CODE|=option]
/NOMACHINE_CODE (default)

Controls whether the listing file produced by the compiler includes a
listing of the machine code generated during the compitation.

You can select the following options:

AFTER Put machine code after the source code.
BEFORE Put machine code before the source code.
INTERSPERSED Intersperse source and machine code.

/OBJECT|=file-spec] (default)
/NOOBJECT

Controls whether the compiler produces object modules. By default,
the compiler produces an object module with the same file name as
the source file and a file type of OBJ.

Specity /NOOBJECT when you want to compile a program to obtain
only a listing or when you want the compiler to check the source
program only for errors and display diagnostic messages. The com-
piler can execute more rapidly if it does not need to create an object
module.

/OPTIMIZE|=(option,...)]

/NOOPTIMIZE
Controls the optimization performed by the compiler. By default, all
possible optimizations are performed. The optimizations and the op-
tions that control them are described in the VAX-11 PL/I User’s

(Guide.

Compiling PL/I Programs 49

If you specify /OPTIMIZE with any options, the settings of other
options are not affected. For example, /OPTIMIZE=NOPEEPHOLE
disables the PEEPHOLE option but leaves all other options enabled.

/SHOW[=(option,...}]

Sets or cancels specific compilation listing options. You can select or
cancel any of the options listed in Table 3-1. The following options
are enabled by default:

NOINCLUDE
NOMAP
NODICTIONARY
SOURCE
TERMINAL
NOSTATISTICS
NOTRACE
NOEXPANSION

The /SHOW qualifier must be used in combination with the /LIST
qualifier before it can be effective. The /LIST qualifier specifies that a
source listing is to be made, and the /SHOW qualifier gives you
control over which portions of the source listing you want to see.

When you specify any option with the /SHOW qualifier, the settings
for other options are not changed.

Table 3-1: PL/I Compiler Options

Option Function
ALL Include the contents of all files and modules in the program listing.
NONE Do not include the contents of any of the files and modules in the
program listing.
[INOIINCLUDE Include/do not include the contents of INCLUDE files and modules in

the program listing.

[INOIDICTIONARY Include/do not include the contents of Common Data Dictionary rec-

ord modules in the program listing.

INOIMAP Include/do not include the storage map of the compiled program in the

program listing. The storage map includes a list of all external entry
points, the size and attributes of all variables that are referenced in
the program, and a program section summary and procedure defini-
tion map.

INOISOURCE Include/do not include the source program statements in the program

listing.

[INOISTATISTICS Include/do not include performance statistics in the program listing.
INOITERMINAL Display/do not display compilation messages to SYS$OUTPUT at

50

compile time.

Chapter 3

Table 3-1 (Cont.): PL/I Compiler Options

Option Function

INOJITRACE Include/do not include each step of preprocessor replacement and

rescanning.

INOIEXPANSION Include/do not include the final replacement values for preprocessor

variables.

You can also control the content of the source listing by using prepro-
cessor statements to suppress preprocessor portions in the program
text. For example, if you previously specified /SSHOW=INCLUDE,
you may suppress included files from the listing with the %NOLIST_.
INCLUDE statement in your program.

By default, the /SHOW qualifier includes two listing notations specif-
ically for preprocessor statements. An asterisk * in the column to the
right of the line numbers indicates which portions of the program text
were not used at compile time. A ‘P’ in the column to the right of the
line numbers indicates that the preprocessor statement on that line is
contained within a preprocessor procedure.

By default, the /SSHOW qualifier yields a listing with two items (P
and *) noted in the column to the right of the line numbers. However,
additional items are noted depending on the value given to the quali-
fier. Table 3-2 summarizes the characters that can appear in the
listing.

Table 3-2: Listing Notation Characters

Character Qualifiers Meaning
| /LIST Indicates a line that contains a comment
only.
* /LIST Indicates program text that was not used

at compile time.

/LIST/SHOW=DICTIONARY Indicates CDD text included by a
%DICTIONARY statement.

/LIST/SHOW=EXPANSION Indicates the final replacement value of a
preprocessor variable or procedure.

/LIST/SHOW=INCLUDE Indicates text included by a %ZINCLUDE
statement.

/LIST Indicates lines contained within a prepro-
cessor procedure.

/LIST/SHOW=TRACE Indicates each step of preprocessor re-

placement and rescanning.

Compiling PL/I Programs 51

If you specify /LIST/SHOW=ALL, the compiler includes the full
complement of character notations in the column to the right of the
line numbers.

The effect of the /SHOW and /LIST qualifiers on the program listing
is illustrated in the sample listings in Appendix A.

/VARIANT
[VARIANT"

Permits specification of compilation variants. The value specified for
/VARIANT is available at compile time via the VARIANT() prepro-
cessor built-in function.

If /VARIANT is not specified, or if /VARIANT is specified without a
value, /VARIANT="" is assumed.

/WARNINGS (default)
/NOWARNINGS

Controls whether the compiler prints messages for diagnostic warn-
ings. If you specify /NOWARNINGS, the compiler does not print
warning messages. It does, however, continue to display messages for
informational, error, and fatal diagnostics. (Section 3.4 contains more
information about the significance of warning messages.)

File Qualifier

/LIBRARY

Indicates that the associated input file is a library containing text
modules that may be included in the compilation of one or more of
the specified input files. The specification of a library file must be
preceded by a plus sign. If the file specification does not contain a file
type, PL/I assumes the default file type of TLB.

For information on how the PL/I compiler locates text libraries, see
Section 3.3. For information on creating INCLUDE file libraries, see
Chapter 6.

3.2.1 PLI Command Examples

The following examples illustrate the use of the PLI command.
% PLI METRIC

The PLI command compiles METRIC.PLI and creates the file
METRIC.OBJ.

& PLIZALIST/SHOWsINCLUDE / MACHINE CODE AFFLIC
% PRINT AFPLIC

The PLI command compiles the file APPLIC.PLI and creates the files
APPLIC.OBJ and APPLIC.LIS. The listing shows the contents of all files

52 Chapter 3

and text modules included in the compilation by %INCLUDE statements,
as well as a machine code listing of the program The /LIST qualifier is not
necessary because ﬂ.‘uA\uunu_uuum uupueb /u101 The PRINT com-
mand queues a copy of the listing file for printing. The default file type
given to a listing file by the compiler is LIS; this is also the default file type
assumed by the PRINT command.

$ PLI SWITCH.THT/CHECK
The PLI command compiles the statements in the file SWITCH.TXT. The

/CHECK qualifier causes the compiler to verify all array references and
substring extents. The compiler produces the file SWITCH.OBJ.

The VAX-11 PL/I compiler lists the PLI command and its specified com-
mand qualifiers in the program listing.

3.2.2 Specifying Input and Output Files

To specify an alternative name for a listing or object file or an alternative
target directory or device, you can include a file specification on the /LIST
or /OBJECT qualifier. Some examples follow:

Command Output File(s)

$ PLI METRIC/LIST=TEST METRIC.OBJ (by default)
TEST.LIS

$ PLI METRIC-

$_/LIST=[PROJECT. LISTINGS] [PROJECT.LISTINGS] METRIC.LIS

$_/OBJECT=[PROJECT.OBJECTI] {PROJECT.OBJECT] METRIC.OBJ

$ PLI METRIC/LIST=LPAO: METRIC.OBJ (by default)
line printer listing

$ PLI/LIST=SYS$OUTPUT METRIC METRIC.OBJ (by default)

listing on the current

output device
In the third and fourth examples, the listing files are not saved on disk;
they are deleted after output.

3.3 Using Text Libraries

You can use text libraries to provide application-specific text modules
within your particular environment. Chapter 6 contains information on
creating text libraries. You gain access to modules in text libraries with the
%INCLUDE statement.

The %INCLUDE statement (described in Section 7.4.3) provides a way for
many separate programs to share common source text. For example, an
application may consist of many separately compiled external procedures
that share the same structure declaration or external variable declarations.

Compiling PL/I Programs 53

In such cases, it is convenient to maintain only one copy of the declaration
of the variables and to include this declaration in each source program.

An %INCLUDE statement in a PL/I source file requests inclusion of an
entire file, or of a module from a library of text files. When the compiler
reads the ZINCLUDE statement during compilation of a source program,
it begins reading from the file or module specified by %INCLUDE. When it
reaches the end of the included text, it resumes reading from the previous
input file.

When an %INCLUDE statement in your program requests inclusion of a
module from a library, you must be sure that the PL/I compiler can find
the library. Either specify it explicitly in the PLI command, or request a
module from one of the libraries that the compiler searches by default.

3.3.1 Specifying Text Libraries in the PLI Gommand

When you specify a library file in a PLI command, you must precede the
specification with a plus sign and use the /LIBRARY qualifier. For
example:

$ FLT AFFLICHCATARLIBRARY

This PLI command compiles the source program APPLIC.PLI and uses the
library DATAB.TLB to locate any INCLUDE files that are referenced in
the format

%INCLUDE text-module-name;
The module name must not be enclosed in apostrophes.

When you specify more than one library, PL/I searches the libraries in the
order specified each time it processes an %INCLUDE statement that speci-
fies a text module name. For example:

$ Pl APPLIN-DATAE LITRAR

; .
$_FMAMES L TERARY LI NESLSYMS L IBRGRY

When PL/I processes an %INCLUDE statement in the source file
APPLIC.PLI, it searches for modules referenced in the libraries
DATAB.TLB, NAMES.TLB, and GLOBALSYMS.TLB, in that order.

On a command that requests multiple compilations, a library must be
specified for each compilation in which it is needed. For example:

$ LT METRIC+DATAE/LIERARY ARPLIC+DATARE/LIERARY

In this example, PL/I compiles METRIC.PLI and APPLIC.PLI separately
and uses the library DATAB.TLB for each compilation.

54 Chapter 3

The order of appearance of the library file specification within a conca-
tenated list of files is irrelevant. For example, the following are equivalent:

£ PLI ALPHA+MYLIB/LIBR +BEETA
$ PLI ALFHA+BETA+MYLIB/LIBRARY

3.3.2 Default PL/I Libraries

You can define one of your private INCLUDE file libraries as a default
library for the PL/I compiler to search. The compiler searches the default
library after it searches libraries specified on the PL/I command.

To define a default library, define an equivalence for the logical name
PLISLIBRARY, as in the following example:

£ DEFIME PLIf(LIBRARY DATAE

While this assignment is in effect, the compiler automatically searches the
library DATAB.TLB for any INCLUDE modules that it cannot locate in
libraries explicitly specified on the PLI command.

You can define the logical name PLISLIBRARY in the process, group, or
system logical name table. If the name is defined in more than one table,
the PL/I compiler uses the equivalence for the first match it finds in the
normal order of search (that is, the process, then group, then system table).
Thus, if PLISLIBRARY is defined in both the process and group logical
name tables, the process logical name table assignment overrides the group
logical name table assignment.

When it cannot find INCLUDE modules in libraries specified on the PLI
command or in the default library defined by PLISLIBRARY, PL/
searches the library identified by the name

SYSSLIBRARY:PLISYSDEF.TLB
where SYSSLIBRARY is normally defined by the system manager to iden-
tify the device and directory containing system libraries.
PLISYSDEF.TLB is a library of INCLUDE modules supplied by VAX-11
PL/I. It contains declarations for the entry points for VAX/VMS system

services, local symbol definitions required for use with them, and variables
to test their return status values.

3.4 Gompiler Diagnostic Messages and Error
Conditions

One of the functions of the PL/I compiler is to identify syntax errors and
violations of language rules in the source program. If the compiler locates

Compiling PL/I Programs 55

any errors, it writes messages to your default output device; thus, if you
enter the PLI command interactively, the messages are displayed on your
terminal. If the PLI command is executed in a batch job, the messages
appear in the batch job log file.

Each compilation with diagnostic messages terminates with a diagnostic
summary that indicates the number of error, warning, and informational
messages generated by the compiler. The diagnostic summary has the
format

LPLIG-T-SUMMARY

Completed with n error{(s): n warnindis) .
w informational messades.

If the compiler creates a listing file, it also writes the messages to the
listing. Messages typically follow the statement that caused the error.

When it appears on the terminal, a message from the compiler has the
format

%PLIG-s-ident, message-text
At line number n device:[directorylfile.nme;x.
%PLIG
Is the facility, or program, name of the the VAX-11 PL/I Subset G

compiler. This portion indicates that the message is being issued by
PL/I.

Specifies the severity of the error. The letters that represent the possi-
ble severities are

F Fatal. The compiler stops executing, does not continue the com-
pilation, and does not produce an object module. You must cor-
rect the error before you can compile the program.

E Error. The compiler continues, but does not produce an object
module. You must correct the error before you can successfully
compile the program.

W Warning. The compiler produces an object module. It attempts
to correct the error in the statement, but you should verify that
the compiler’s action is acceptable. Otherwise, vour program may
produce unexpected results.

I Information. This message usually appears with other messages
to inform you of specific actions taken by the compiler. Informa-
tional messages also indicate nonstandard constructs and items
that are syntactically correct, but that may contain programming
errors. No action is necessary on your part.

56 Chapter 3

ident

Is the message identification. This gives a descriptive abbreviation of
the message text.

message-text
Is the compiler’s message. In many cases, the message text consists of

more than one line of output. The messages generally provide enough
information for you to determine the cause of an error and correct it.

At line number n
Specifies the source file line number of the statement that caused the
error. This is the line number assigned to a statement by the com-
piler. It is not necessarily the same as the line number, if any, as-
signed by a text editing program.

device:[directory[file.nme;x.
Indicates its location, the filename, and version number.
The compiler produces messages with warning severity if it encounters
e Syntax errors (such as a missing END statement) that the compiler
attempts to fix.

¢ Language elements {such as undeclared variables) that are not part of
the PL/I G subset but do belong to full PL/I.

¢ Legal PL/I G subset usage (such as assignment of a bit-string value to
a fixed-point binary variable) that nonetheless may represent a pro-
gramming error or produce unexpected results.

3.5 User-Generated Diagnostic Messages

VAX-11 PL/I permits you to create and insert special-purpose preprocessor
diagnostic messages to do the following:

e Write the message text.
e Specify the severity level.
¢ Define the condition which issues the message.

User-generated diagnostic messages are appropriate in the source program
wherever a potential compile-time problem may develop or when specific
compile-time information is required.

The following preprocessor statements, when used in conjuction with a
%IF-group, specifv the conditions that cause the diagnosti e
issued during program compilation:

%INFORM

THARN

LERROR
EFATAL

Compiling PL/I Programs 57

You determine the severity of the diagnostic message by your choice of
statement. For example, if you wanted compilation information only, then
you would use INFORM. If you wanted to stop compilation where spe-
cific conditions developed, then you would use %FATAL.

The message text is specified by a preprocessor expression. The resulting
message is returned in the same format as other compiler diagnostic mes-
sages.

When you determine the severity, you may also define the conditions
which control the production of an object module. As with non-user-gener-
ated compiler messages, informational and warning messages do not in-
hibit the production of an object module. Error and fatal messages do. For
example:

%IF SUBSTR(TIME()»1,2) * 7 & SUBSTR(TIME(),1,2) ¢ 18

%THEN
AFATAL 'Please compile this outside of prime time’}:

Here, the compiler aborts compilation if someone attempts to compile the
program between the hours of 7 a.m. and 6 p.m., and it issues the following
fatal diagnostic message:

%PLIG-F-USERDIAG, Please compile this outside of prime time

You can use preprocessor built-in functions to return—at specific points in
the program—the number of diagnostic messages generated at compile
time. For example, if you wanted to know how many warnings had been
issued when compilation was half complete, you could insert the WARN
preprocessor built-in function in the source program. Then, you could elect
to terminate compilation if errors threaten successful compilation. For ex-
ample:

%IF WARN() = 5

%THEN

WFATAL ‘Comepilation aborted with 5 warnings’;i

LELSE
4

See Chapter 20 for more information on the Embedded Preprocessor.

58 Chapter 3

Chapter 4
Linking Programs

This chapter describes how to use the linker and object module libraries to
combine object modules into executable programs. It discusses

e The functions performed by the linker.
¢ The LINK command and its input and output files.
® Object module libraries.

The topics in this chapter are confined to areas of particular interest to
PL/I programmers. For additional information on linker capabilities and
detailed descriptions of LINK command qualifiers and options, see the
VAX-11 Linker Reference Manual.

4.1 Functions of the Linker

The primary functions of the linker are to allocate virtual memory within
the executable image, to resolve symbolic references among modules being
linked, to assign values to relocatable global symbols, and to perform relo-
cation. The linker’s end product is an executable image that you can run.

For any PL/I procedure, the object module generated by the compiler con-
tains calls and references to VAX-11 PL/I run-time procedures, which the
linker locates automatically in the default system object module libraries.
The libraries are described in Section 4.3.

4.2 Using the LINK Gommand

The format of the LINK command is

LINK[/qualifier...] file-spec[/qualifier...],...

file-spec,...
Specifies one or more files containing object modules to be linked
and, optionally, libraries containing modules that can be included.
You can separate the file specifications with commas or plus signs. In
either case, all files specified are used as linker input for the creation
of a single executable image.

59

If the file specification does not contain a file type and is not qualified
by /LIBRARY, /INCLUDE, or /OPTIONS, the linker assumes a de-
fault file type of OBJ.

/qualifier...
Specifies one or more LINK command qualifiers.

The /LIBRARY, /INCLUDE, and /OPTIONS qualifiers can be speci-
fied only after the specification of an input file. All other qualifiers
can be specified either after the LINK command or after any input
file specification. Table 4-1 summarizes the LINK command quali-
fiers in categories.

4.2.1 Linker Messages

If the linker detects any errors while linking object modules, it displays
messages about their cause and severity. If any error or fatal conditions
occur (severities E or F), the linker does not produce an image file.

Linker messages are descriptive, and you do not normally need additional
information to determine the specific error. Some of the more common
errors that occur during linking follow:

* An object module has compilation errors. This error occurs when you
attempt to link a module that had warnings or errors during compila-
tion. Although you can usually link compiled modules for which the
compiler generated messages, you should verify that the modules will
actually produce the output you expect.

® The modules that are being linked define more than one transfer ad-
dress. The linker generates a warning if more than one module has an
entry point designated with the OPTIONS (MAIN) keywords. The
image file created by the linker in this case can be run; the entry point
to which control is transferred is the first one that the linker found.

¢ A reference to a symbol name remains unresolved. This error occurs
when you omit required module or library names from the LINK com-
mand and the linker cannot locate the definition for a specified global
symbol reference.

If an error occurs when you link modules, you can often correct it simply by
reentering the command string and specifying the correct modules or li-
braries.

Should an error indicate that a module with a name in the format
PLI$_name cannot be located, you may not be linking the program with
the correct PL/I run-time library. If you cannot locate or define the PL/I
run-time library for any reason, check with your system manager or opera-
tor for information.

60 Chapter 4

sweidord Suryuly

19

Table 4-1: LINK Command Qualifiers

Function

Qualifiers

Defaults

Request output files and de-
fine a file specification.

Request and specify the con-
tents of a memory allocation
listing.

Specify the amount of
debugging information.

Indicate that input files are
libraries and to specifically
include certain modules.

Request or disable the search-
ing of default user libraries
and system libraries.

Indicate that an input file is a
linker options file.

JEXECUTABLE(=file-spec]

/HEADER

/PROTECT
/SHAREABLE[=file-spec]
/SYMBOL__TABLE[=file-spec]

/BRIEF

INOJICONTIGUOUS
/INOJCROSS_REFERENCE
/FULL

/POIMAGE

/INOIMAP

/INOISYSTEM (=base address]

/INOIDEBUG
/INOITRACEBACK

/INCLUDE=(module-name....)
/LIBRARY
/SELECTIVE_SEARCH

/INOISYSLIB
/INOISYSSHR
/INOJUSERLIBRARY[=table]

/OPTIONS

/EXECUTABLE=name.EXE, where name

is the name of the first input file.

/NOSHAREABLE
/NOSYMBOL_TABLE

/NOCROSS_REFERENCE

/NOMAP (interactive)
/MAP=name.MAP (batch) where name
is the name of the first input file.

/NODEBUG
/TRACEBACK

/SYSLIB
/SYSSHR
/USERLIBRARY=ALL

4.2.2 Linker input Files

You can specify the object modules to be included in an executable image
in any of the following ways:

e Specify files containing individual object modules created by a com-
piler. The linker assumes that any unqualified file specification is an
object module.

* Specify one or more object module libraries to be searched to resolve
references to external procedures and variables. These libraries are
searched for all references that are not resolved among the modules
specifically included in the compilation. You must qualify the file
specification of the library with the /LIBRARY qualifier. Object mod-
ule libraries are described in Section 4.3.

¢ Specify explicit modules in an object module library that are to be
included in the image. You must qualify the file specification of the
library with the /INCLUDE qualifier and specify the names of the
desired object modules.

¢ Specify in a shareable image library explicit shareable images that are
to be included in the image. You must qualify the file specification of
the library with the /INCLUDE qualifier and specify the names of the
desired shareable images.

e Specify an options file containing additional file specifications and
special linker options. You must qualify the file specification of an
options file with the /OPTIONS qualifier.

The linker uses the following default file types for input files:

File File Type
Object module OBJ
Library OLB
Options file OPT

The format and content of a linker options file are described in detail in the
VAX-11 Linker Reference Manual. You may wish to use an options file if
you have a very long list of input files to specify, if you want to link a
module with a shareable image file, or if you want to request special linker
options regularly.

4.2.3 Linker Output Files

When you enter the LINK command interactively and do not specify any
qualifiers, the linker creates only an executable image file. By default, the
image file has the same file name as the first or only object module speci-
fied and a file type of EXE. For example:

g LIME A0E .7

62 Chapter 4

This LINK command links the object modules in the files A.OBJ, B.OBJ,
and C.OBJ and creates the image file A.EXE.

In a batch job, the linker creates both an executable image file and a
storage map file by default. The default file type for map files is MAP.

To specify an alternative name for a map file or image file, or to specify an
alternative output directory or device, you can include a file specification
on the /MAP or /EXECUTABLE qualifier. Some examples follow.

Command Output File(s)

$ LINK METRIC/MAP=TEST METRIC.EXE (by default)
TEST.MAP

$ LINK METRIC/EXE=[PROJECT.EXE]- [PROJECT.EXE] METRIC.EXE

$_/MAP=[PROJECT.MAP] [PROJECT.MAP] METRIC.MAP

$ LINK METRIC/MAP=LP: METRIC.EXE (by default)

line printer listing of
the map file

In the third example, the map file is not saved on disk after it is printed.

4.3 Using Object Module Libraries

When they are linked, all PL/I programs use a system-supplied object
module library containing routines that provide I/O and other system func-
tions. However, you can use additional libraries to provide application-
specific object modules within your particular environment. Chapter 6 con-
tains information on creating such libraries.

To use the contents of an object module library, you must

1. Refer to the object module by name in your program in a CALL
statement or function reference.

2. Make sure that the linker can locate the library containing the ob-
Ject module.

You specify that a linker input file is a library file by following it with the
/LIBRARY qualifier. This qualifier causes the linker to search for a file
with the name you specify and a default file type of OLB. If you specify a
file that the linker cannot locate, a fatal error occurs and the link
terminates.

The next sections describe the order in which the linker searches libraries
that you specify explicitly, default user libraries, and system libraries.

cLily capliCiul

4.3.1 Defining the Search Order for Libraries

You can specify as many libraries as you wish as input for the linker; there
is no practical limit. More than one library can contain a definition for the

Linking Programs 63

same module name. The linker uses the following conventions to search
libraries specified in the command string:

e A library is searched only for definitions that are unresolved in the
previous input files specified.

e If more than one object module library is specified, the libraries are
searched in the order in which they appear.

For example:

F OLIMK METRID.QDEFLIB/LIBRARY (AFPLIC

The library DEFLIB will be searched only for unresolved references in the
object module METRIC. It is not searched to resolve references in the
object module APPLIC. However, this command can also be entered as
follows:

2 LIMK METRIC:AFPLIC.DEFLIB/LIBRARY

In this case, DEFLIB.OLB is searched for all references that are not re-
solved between METRIC and APPLIC.

4.3.2 Defauit User Object Module Libraries

You can define one or more of your private object module libraries as
default user libraries. The linker searches default user libraries for unre-
solved references after it searches modules and libraries specified in the
LINK command.

To indicate that a private library is a default user library, enter a DEFINE
command as in the following example:

$ DEFINE LMRELIBRARY DEFLIBE

LNKS$LIBRARY is a logical name; DEFLIB is the name of an object mod-
ule library, having the file type OLB, that you want the linker to search
automatically in all subsequent link operations.

You can establish any object module library as a default user library by
creating a logical name for it. The logical names you must use are
LNKSLIBRARY (as above), LNK$LIBRARY_1, LNK$LIBRARY_2, and
so on, to LNKSLIBRARY_999. When more than one of these logical names
exists during a link, the linker searches them in numeric order beginning
with LNKSLIBRARY. The search order is as follows:

1. The process, group, and then system logical name tables are
searched for the name LNKSLIBRARY. If the logical name exists in
any of these tables and if it contains the desired reference, the search
is ended.

64 Chapter 4

2. The process, then group, and then system logical name tables are
searched for the name LNKSLIBRARY__1. If the logical name exists

in any of these tables, and if it contains the desired reference, the
search is ended.

This search sequence is taken for each reference that remains unresolved.

4.3.3 Temporary Defaults for INCLUDE Files

The VAX-11 PL/I compiler uses the DCL rule for the application of tempo-
rary defaults in lists of input files, that is, for lists that are delimited with
either commas or plus signs. For example:

$ PLI [INTRD.SRCIA B
The directory specification above is applied to both B and A.

Temporary defaults also apply to file specifications in INCLUDE files; that
is, if a file in an %INCLUDE statement does not specify a device and/or
directory, the compiler uses the device and directory of the file in which the
%INCLUDE statement was read. For example, if the file INTRO.SRC]A
contains the statement

#INCLUDE ‘STATE’}

the compiler attempts to locate [INTRO.SRC]STATEtPLI.

4.3.4 System Libraries

The directory identified by the system-defined logical name
SYSSLIBRARY contains the library files

¢ IMAGELIB.OLB
e STARLET.OLB
¢ PLIRTL.EXE

¢ VMSRTL.EXE

The library IMAGELIB.OLB contains references to entry points in
VMSRTL.EXE, which contains the VAX-11 Run-Time Library, and to
entry points in PLIRTL.EXE, which contains the PL/I run-time library.
The procedures in these libraries provide

e Commonly used mathematical and string-handling functions.
» Procedures that support code produced by VAX/VMS compilers.

IMAGELIB.OLB is a shareable image library; that is, it is prelinked and
can be accessed by many images concurrently. The procedures in a share-
able image library can be used by a program even though the procedures

Linking Programs 65

are not physically included in the program image; the references to the
procedure in the shareable image library are not resolved until the program
is run.

STARLET.OLB contains, in object module form, all the procedures in
VMSRTL.EXE, as well as additional run-time modules required by vari-
ous compilers and system programs.

By default, the linker searches these two libraries to resolve references to
external names that are still unresolved after it searches libraries specified
in the LINK command and default user libraries.

4.3.5 Creating Shareabhle Images

You can create a shareable image that resides in your directory and that
you can include in your applications by using the /SHAREABLE qualifier
on the LINK command. The resulting image is stored as an executable
image, but must be included in another program before it can be executed.
The format is

$LIMHK A SHAREABLE file-seec

This command creates an individual shareable image that can be copied
from your directory to that of another user.

Note that the concept of a shareable image includes the idea that a single
copy of an image is created and stored in system memory so that many
applications may use the same shareable image and save space by doing so.
If you create a shareable image that resides in your directory and copy it to
the directory of another user, you have in fact created two copies of the
image and have defeated the purpose of shareable images.

The INSTALL utility allows you to create a single shareable image that
can be shared across the system. Use of this utility conserves disk storage
space and main physical memory, reduces paging 1/0, and preserves the
integrity of memory-resident data bases. For details on the use of the
INSTALL utility, see the VAX-1! Guide to Creating Modular Library
Procedures, Chapter 7, Building Modular Procedure Libraries.

66 Chapter 4

Chapter 5
Running PL/I Programs on VAX/VMS

This chapter describes the following considerations for executing your PL/I
programs on the VAX/VMS operating system:

e Using the RUN command to execute programs interactively

¢ Passing status values to the command interpreter

5.1 The RUN Command

You execute a PL/I program with the RUN command. The default file type
for RUN is EXE, so you need not specify it. For example:

& FUN METRIC

This RUN command locates the file METRIC.EXE in the current default
directory. It then gives control to the main entry point, that is, the entry
point designated with the OPTIONS (MAIN) keywords on its
PROCEDURE or ENTRY statement. If no procedure specifies OPTIONS
(MAIN), then control is given to the first or only module in the image.

5.1.1 Image Exit

When the main procedure executes a RETURN or END statement, or
when any procedure in the program executes a STOP statement, the image
is terminated. In the VAX/VMS operating system, the termination of an
image, or image exit, causes the system to perform a variety of cleanup
operations during which open files are closed, system resources are freed,
and so on.

In a PL/I program, you can define an ON-unit to receive control when
image exit occurs by executing an ON statement for the FINISH condition.
For an example, see Section 15.1.5.

67

5.1.2 Run-Time Errors

When an error occurs during the execution of a program, and no ON-unit
exists to handle the error, the program is terminated and one or more
messages are displayed on the current SYS$ERROR device. The mes-
sage(s) may actually be generated by one of the following:

¢ The default PL/I ON-unit, or, in VAX/VMS terms, condition handler.
This condition handler exists if one of the procedures in the program
was compiled with OPTIONS (MAIN).

¢ A default error condition handler established by the command
interpreter.

In either case, the message is followed by a traceback. For each module
having traceback information, the default handler lists the procedures that
were active when the error occurred and the sequence in which the proce-
dures were called, that is, the order of block activation.

For example, if an integer divide-by-zero condition occurs, and no
ZERODIVIDE ON-unit exists in any active procedure block, the following
run-time messages appear:

WPLI-F-ERROR: PL/I ERROR condition sidnaled
“SYSTEM-F-FLTDIV-F: arithmetic fault: floating divide
by zero at PC=000007C4, PSL=03C0Q0O0OAS

These messages are followed by a traceback message like the following:

ZTRACE-F-TRACEBACK + svmbolic stack dumer follows

module routine

name rame line relative PC absolute PC
SETUP DIVIDE 9 Q0000074 QO0007C4
SETUP BEGINZA q 00000035 0OO00707
SETUP SETUP 4 Q000000C 000006DO
LIBS NEXT 14 ooQoundd OO000BAZR
LIBS LIBS 15 0000004C 00000BSE

These columns provide information as described below.

module name
Indicates the name of a level-1 procedure that was active when the
error occurred. The first module is that in which the error occurred.
Each subsequent line names the caller of the procedure on the previ-

ous line. In this example, the level-1 procedures are LIBS and
SETUP; a call to SETUP occurred during the execution of LIBS.

routine name

Indicates the entry name of the internal procedure or block in the
calling sequence. When BEGIN %n appears in this column, it indi-
cates that an unlabeled begin block, a PUT statement, or a GET
statement was active when the error occurred.

68 Chapter 5

PL/I assigns labels to these blocks, giving them names in this form,
where n is the source program line number on which the block is
entered.

line
Indicates the compiler-generated source program line number of the
statement at which the error occurred, or at which the call or refer-
ence to the next procedure was made. This line number matches
those on the listing file created if /LIST was specified to the compiler.

relative PC
Gives the value of the PC (program counter).

absolute PC
Gives the value of the PC in absolute terms.

5.1.3 Interrupting a Program

When you execute the RUN command interactively, you cannot execute
any other program images or DCL commands until the current image
completes. However, if your PL/I program is not performing as ex-
pected—if, for instance, you have reason to believe it is in an endless
loop—you can interrupt it. To do so, use €RLY). (You may also use CTRLC ,
unless your program takes specific action in response to CWRLC.) For
example:

% RUN APPLIC

%

This command interrupts the program APPLIC. After you have inter-
rupted a program, you can terminate it by entering a DCL command that
causes another image to be executed or by entering the DCL command
EXIT. PL/I signals the FINISH condition to allow a FINISH ON-unit to
execute before the given DCL command is executed. You can also issue the
DCL STOP command, which terminates the program and does not give
control to the FINISH ON-unit.

Following a interruption, you can also force an entry to the debugger
by entering the DEBUG command.

There are some other DCL commands you can enter that have no direct
effect on the image. After using them, you can resume the execution of the
image with the DCL command CONTINUE. For example:

F FUNM SFPRLIC

£ SHOW TREMSLATION INFILE

INFILE = fundefined?
% DEFINE INFILE DESL:[TESTFILEZIJANUARY (DAT
F COMTIRUE

Running PL/I Programs on VAX/VMS 69

For a complete list of the commands you can enter following a inter-
ruption without affecting the current image, see the VAX/VMS Command
Language User’s Guide.

As noted above, you may use to interrupt your program; in most
cases, the effect of and is the same. However, some programs
(including programs you may write) establish particular actions to take to
respond to . If a program has no handling routine, then is
the same as and in fact is echoed as "Y on the terminal.

5.2 Returning Status Values to the Command
Interpreter

You can define a main procedure to be executed under the control of the
DCL command interpreter as a PL/I function. Then the RETURN state-
ment that terminates the main procedure can specify a status value to be
used as a success, failure, or informational indicator to the command inter-
preter. For example:

TESTP: PROCEDURE OPTIONS (MAIN)
RETURNE (FIXED BINARYI31:):

FETURMN (valueis

where the value specified on the RETURN statement can be any constant,
variable, or expression convertible to a fixed-point binary value. For mean-
ingful results, you must specify the returns descriptor on the RETURNS
option for the PROCEDURE statement as FIXED BINARY (31).

When the command interpreter receives a status value from a terminating
program, it attempts to locate a corresponding message in a central system
message file or a user-defined message file. Every possible message that
can be issued by a system program, command, or component, has a unique
32-bit numeric value associated with it.

If you write a main procedure that returns arbitrary values, the command
interpreter may use them to display messages that you would not expect.
On the other hand, you may take advantage of this convention and use the
RETURN statement to exit from a program’s error-handling routine by
specifying the status value associated with the error. For an example of this
technique, see Section 15.1.5.

70 Chapter 5

The command interpreter does not display messages on completion of a
program under the following circumstances:

TIINT

¢ A RETURN statement specifies the value 1, corresponding to
SUCCESS.

® The procedure does not return a value. If the main procedure is not
declared with the RETURNS option, a value of 1 is always returned
and no message is displayed.

® The procedure executes a STOP statement.

Running PL/1 Programs on VAX/VMS 71

Chapter 6
Creating Libraries

VAX/VMS and VAX-11 PL/I allow you to build, maintain, and use the
contents of two kinds of library: text and object module. Text libraries
contain modules of source text that you can include in a program by using
an %INCLUDE statement. Object module libraries—both user-written
and system-supplied—contain compiled code that the linker incorporates
into an image to satisfy unresolved references.

This chapter covers the use of the LIBRARY command to create and
maintain text and object module libraries.

6.1 The LIBRARY Command

The following description of the LIBRARY command does not include all
the available qualifiers, only those that are useful to the PL/I programmer.
For a complete description of the command, see the VAX/VMS Command
Language User’s Guide. The DCL HELP command also provides informa-
tion about LIBRARY command qualifiers and functions not covered here.

The format of the LIBRARY command is
LIBRARY library-file-spec [input-file-spec],...]]

Qualifiers with No Default

/COMPRESS [=option],...]
/CREATE[=(option],...])
/CROSS__REFERENCE[=(option(,...]}
/DELETE=(modulel,...])
/EXTRACT=(modulel[,...])
/FULL

/HELP

/INSERT

/MACRO

/OBJECT
/ONLY=(modulel[,...])
/OUTPUT=file-spec

72

Qualifiers with No Default
/REMOVE=(symbol[,...])

/REDI ACE

PR = g S L V)

/SELECTIVE_SEARCH

/TEXT

/WIDTH=n

Qualifiers Default
/[NO]JGLOBALS /GLOBALS
/[NO]LIST[=file-spec] /NOLIST
/[NOJLOG /NOLOG
/[NOJNAMES /NONAMES
/[INOJSQUEEZE /SQUEEZE

library-file-spec
Gives the name of the library you want to create or modify. If the file
specification does not include a file type, the LIBRARY command
assumes a default type of OLB, indicating an object library.

input-file-spec],...]
Gives the names of one or more files that contain modules you want to
insert into the specified library.

Whenever you include an input file specification, the LIBRARY com-
mand either replaces or inserts the modules contained in the input
file(s) in the specified library. The input-file-spec parameter is re-
quired when you specify either /REPLACE (the LIBRARY com-
mand’s default operation) or /INSERT (an optional qualifier).

When you use the /CREATE qualifier to create a new library, the
input-file-spec parameter is optional. If you include it with
/CREATE, the library command first creates a new library and then
inserts the contents of the input file(s).

Note that the /EXTRACT qualifier does not accept an input file
specification.

If any file specification does not include a file type, the LIBRARY
command assumes a default file type of OBJ, designating an object
library. You can control the default file type by specifying the appro-
priate qualifier as indicated below:

Qualifier Default File Type
/HELP HLP

/MACRO MAR

/OBJECT oBJ

/TEXT TXT

/SHARE EXE

Creating Libraries 73

/COMPRESS|=(option],...])|

Requests the LIBRARY command to recover unused space in the
library resulting from module deletion or to reformat a library.

Options override values specified on creation:

BLOCKS:n
GLOBALS:n
HISTORY:n
KEEP
KEYSIZE:n
MODULES:n
VERSION:n

/[CREATE

Requests the LIBRARY command to create a new library. You may
optionally specify a file or a list of files that contains modules to be
placed in the library. By default, the LIBRARY command creates an
object module library; specify /TEXT to change the library type to a
text library.

/CROSS_REFERENCE[=(option[,...])]
Requests a cross reference listing of an object library.

Options:

ALL

MODULE Global symbol definitions and references
NONE

SYMBOL Symbols by name

VALUE Symbols by value

/DELETE=(module],...])
Requests the LIBRARY command to remove the specified module(s)
from the library.

[EXTRACT=(module],...})

Copies one or more modules from an existing library into a new file.
By default, the /EXTRACT qualifier copies the modules into a file
that has the same file name as the library and a type of OBJ, MAR,
or HLP. TXT. Use the /OUTPUT qualifier to override this default.

/FULL

Requests a full description of each module in the module name table.
Use this qualifier in conjunction with /LIST.

/GLOBALS
/NOGLOBALS

Controls for object module libraries, whether the names of global
symbols in modules being inserted in the library are included in the
global symbol table.

74 Chapter 6

/HELP

Indicates that the library is a help library. When you specify the
/HELP qualifier, the library file type defaults to HLB and the input

file type defaults to HLP.

/INSERT
Requests the LIBRARY command to add the contents of one or more
files to an existing library. If a module name or global symbol name is
already in the library, the command issues an error message and does
not add the module.

/LIST[=file-spec]

/NOLIST (default)
Controls whether or not the LIBRARY command creates a listing of
the contents of the library. If you specify /LIST without a file specifi-
cation, the listing appears on the current SYS$OUTPUT device. If
you include a file specification that has no file type, the LIBRARY
command uses the default file type of LIS.

/LOG

/NOLOG
Controls whether the LIBRARY command verifies each library opera-
tion. If you specify /LOG, the LIBRARY command displays the mod-
ule name, followed by the library operation performed, followed by
the library file specification.

/MACRO

Indicates that the library is a macro library. When you specify
/MACRQO, the library file type defaults to MLB and the input file
type defaults to MAR.

/NAMES
/NONAMES

Controls when /LIST is specified for an object module library,
whether the LIBRARY command lists the names of all global symbols
in the global symbol table as well as the module names in the module
name table.

The default is /NONAMES, which does not list the global symbols
names.
J/OBJECT

Indicates that the library is an object module library. This is the
default condition. The LIBRARY command assumes a library file
type of OLB and an input file type of OBJ.

Creating Libraries 75

/ONLY=(moduie][,...])

Specifies the individual modules on which the LIBRARY command
may operate. When you use the /ONLY qualifier, the LIBRARY com-
mand lists or cross references only those modules specified.

/OUTPUT=file-spec

With the /EXTRACT qualifier, specifies an output file to contain the
modules extracted from a library. If you do not include a file type, the
default is OBJ for modules extracted from object libraries and TXT
for modules extracted from text libraries.

/REMOVE=(symboll,...])
Requests the LIBRARY command to delete global symbol entries
from the global symbol table in an object library.

/REPLACE

Requests the LIBRARY command to replace one or more existing
library modules with those specified in the input file. If any module
contained in the input file does not have a corresponding module in
the library, the LIBRARY command inserts it. /REPLACE is the
LIBRARY command’s default operation.

/SELECTIVE_SEARCH

Defines the input files being inserted into a library as candidates for
selective searches by the linker. If you specify /SELECTIVE_
SEARCH, the linker selectively searches the modules when the li-
brary is specified as a linker input file; the linker only indicates the
global symbol(s) in the module(s) referenced by other modules in the
symbol table of the output image file.

/SQUEEZE
INOSQUEEZE

Controls whether the LIBRARY command compresses individual ma-
cros before adding them to a macro library.

[TEXT

Indicates a text library. When you use the /TEXT qualifier, the li-
brary file type defaults to TLB and the input file type to TXT.

/WIDTH=n
Controls the screen width (in characters) when /NAMES is specified.
File Qualifier

/MODULE=module-name

Specifies the module name of a text module. By default, text libraries
use the file name from the input-file-spec parameter as the module
name. Use the /MODULE qualifier if you want to override this de-
fault.

76 Chapter 6

6.2 Creating and Correcting Text Libraries

A text library is a file that contains individual files and a table indexing
them. The LIBRARY command creates and modifies text libraries, which
have a default file type of TLB. To use libraries for PL/I INCLUDE files,
you must

1. Create one or more libraries consisting of INCLUDE files.

2. Specify the name of the INCLUDE module in an %INCLUDE state-
ment in the PL/I source program.

3. Specify the name of the library on the PLI command to compile the
source program or define a default user library.

Figure 6-1 illustrates the creation of an INCLUDE file library and its use
in compiling PL/I programs. When the LIBRARY command adds a module
to a library, it uses by default the file name of the input file as the name of
the module. In the example in Figure 6-1, the LIBRARY command adds
the contents of the files APPLIC.SYM and DECLARE.PLI to the library
and names the modules APPLIC and DECLARE.

Alternatively, you can specify a name to be given a module in a library
with the /MODULE qualifier. For example:

$ LIBRARY/TEXT/INSERT PLIFILES -
$_DECLARE.PLI/MODULE=EXTERMNAL _CECLARATIONS

This command inserts the contents of the file DECLARE.PLI in the library
PLIFILES under the name EXTERNAL_DECLARATIONS. This module
can be included in a PL/I source file during compilation with the statement

%“INCLUDE EXTERNAL_DECLARATIONS:

You can correct a module in a text library by following these steps:

1. Extract the module from the library by using the /EXTRACT quali-
fier to the LIBRARY command. Use the /OUTPUT qualifier to place
the module in a file.

2. Make the necessary corrections by editing the file.
3. Replace the module in the library.

For example:

$ LIBRARY S TESNT/EATRACT = {E¥TERNAL LOECLARATIONS Y -
$_FLIFILES /JOUTPUT=TEMF.FLI
& EOIT TEMP,PLI

$ LIDRARY/TEXT PLIFILES TEMP.FLI-
$_MODL E=EuTERMAL DECLARATIONS

Creating Libraries 77

APPLIC.SYM DECLARE.PLI

Y

$ LIBRARY/TEXT/CREATE (1)
$_LIBRARY: PLIFILES
$_FILE: APPLIC.SYM,DECLARE.PLI

PLIFILES.TLB

$ PLI METRIC+PLIFILES/LIBRARY

METRIC.OBJ

a The LIBRARY/TEXT command creates a library containing
text modules. This command creates the library PLIFILES.TLB
that contains the modules APPLIC and DECLARE.

9 The PLI command processes the input files METRIC.PL!
and uses the library PLIFILES.TLB to locate all INCLUDE
file references in the format %INCLUDE module-name.

ZK-022-81

Figure 6-1: Creating and Using an INCLUDE File Library

6.3 Creating and Correcting Object Module
Libraries

An object module library is a single file containing individual object mod-
ules and two tables that index the modules:

1. A module name table lists the names of the modules in the library.
The names are those given at compilation.

2. A global symbol table lists all global symbols defined in each
module, :

78 Chapter 6

These are the tables that are searched by the linker.
You can use object module libraries to

e Catalog and group together commonly used subroutines and
functions.

* Provide a default set of modules for the linker to use in resolving
global references in object modules it is linking.

¢ Enhance the performance of linking operations by putting all needed
modules in a single library, thus reducing the number of files that
need to be opened during the linking.

Figure 6-2 illustrates the sequence of creating object modules, creating a
library, and using the library in linking programs.

The LIBRARY command uses the following default file types:
e OLB for an object module library file
¢ OBJ for an object module file

When the LIBRARY command inserts an object module in a library, it
* Enters the name of the module in the library’s module name table.

¢ Enters all global symbols from the object module, including the names
of all entry points and all variables designated as global symbols, in
the library’s global symbol table.

For example, a PL/I program named QUEUES.PLI might contain the
following designations:

READY: PROCEDURES
AGDOEL: ENTRY (QUEUE POINTERDY

REMUEL: ENTRY (QUEUEPDINTER):

This module can be compiled and placed in a library as follows:

% FLI QUELES
$ LIBRORYSTMNZERT

DEFLIE QUEUEER

After this LIBRARY command, the module name table for the library
DEFLIB.OLB contains an entry for the module named READY, and the
library’s global symbol table contains entries for the names ADDEL,
REMVEL, and READY. Object modules that refer to any of those names
can be linked with this library. When the library is specified as input to the
linker, it searches both tables for unresolved references.

Creating Libraries 79

METRIC.PLI APPLIC.PLI

! \
$ PLI METRIC, APPLIC

The PLI command compiles the programs
METRIC.PLI and APPLIC.PLI separately
and creates the object modules
METRIC.OBJ and APPLIC.OBJ.

METRIC.0BJ APPLIC.OBJ TESTALL.PLI

Y \ |

$ LIBRARY/CREATE DEFLIB
$_FILE: METRIC, APPLIC $ PLI TESTALL

The LIBRARY command creates the 12;::LE%TP ::ios ZZTngLleI:er::
object module library DEFLIB.OLB e 9

that contains the modules in the contains references to the
files METRIC and APPLIC. global symbols APPLIC and METRIC.

DEFLIB.OLB TESTALL.OBJ

$ LINK TESTALL. DEFLIB/LIBRARY

The LINK command specifies DEFLIB
as the default library to search

for unresolved references in the
module TESTALL. The linker iocates
METRIC and APPLIC in this library
and includes them in the image file.

1

TESTALL.EXE

ZK-023-81

Figure 6-2: Creating and Using an Object Module Library

80 Chapter 6

You can correct a module in an object module library by correcting the
source file, compiling it, and then using the LIBRARY command to replace
the module in the library. The following example shows commands you
could use to correct a module in DEFLIB.OLB:

$ ELIT QUEUES.FLI

$ PLI QUEUES
% LIBRARY DEFLIE QUEUES

Creating Libraries 81

Chapter 7
Program Structure and Gontent

This chapter introduces and summarizes the elements of a PL/I program:

e Section 7.1 describes the blocks that make up a program and their
effect during program execution.

¢ Section 7.2 describes the elements that make up a PL/I statement and
lists the statements available in VAX-11 PL/I.

e Section 7.3 describes PL/I data types and lists the VAX-11 PL/I data
type attributes.

¢ Section 7.4 discusses the text of a PL/I program.

Subsequent chapters treat these subjects in more detail.

7.1 Blocks

PL/I is a block-structured language: statements are grouped into blocks.
There are two types of blocks: procedure blocks and begin blocks. A proce-
dure executes only as the result of a specific request from another proce-
dure or, in the case of the main procedure, as the result of a RUN com-
mand. A begin block is always contained within a procedure, and executes
when control flows into it.

When control passes to either type of block, a block activation is created
for it. A block activation consists of the allocation of storage for some of the
variables declared within the current block and information that connects
the current block to the previous one.

7.1.1 Begin Blocks

A begin block is a sequence of statements headed by a BEGIN statement
and terminated by an END statement. Generally speaking, you can use a
begin block wherever a single PL/I statement would be valid. In some

82

contexts, such as an ON-unit, a begin block is the only way to perform
several statements instead of one. Another primary use of begin blocks is to
localize variables. Since execution of a begin block causes a block activa-
tion, automatic variables declared within the begin block are iocal to it,
and their storage disappears when the block completes execution.
Another way to allow your program to perform several statements in place
of one is to use a DO-group (see Section 14.1.1). You should choose it when
possible because it does not incur the overhead associated with block ac-
tivation. Use a a begin block when there are declarations present or you
require multiple statements in an ON-unit.

Section 14.2 contains the syntax for the BEGIN statement and examples of
begin blocks.

7.1.2 Procedures

A procedure is a sequence of statements (perhaps including begin blocks
and other procedures) headed by a PROCEDURE statement and termi-
nated by an END statement. Unlike a begin block, which executes when
control reaches it, a procedure executes only when it is specifically invoked.
Invocation occurs in two ways:

e The DCL RUN command invokes the main procedure of a PL/I pro-
gram. This is either the procedure that has OPTIONS (MAIN) on its
PROCEDURE statement or the first procedure encountered by the
linker.

e Statements within a procedure can invoke other procedures. The
CALL statement invokes a procedure as a subroutine. A function ref-
erence invokes a procedure to return a value for use in the evaluation
of an expression.

A PL/I program must have at least one procedure, the main procedure. Any
procedure, including the main procedure, can contain others; these are
called internal procedures. A procedure that is not contained within any
other is called an external procedure. Note that the main procedure is
therefore an external procedure.

Except for the main procedure, no procedure executes unless it is invoked
by a CALL statement or function reference.

See Chapter 13 for more detailed information.

Program Structure and Content 83

7.2 Statements

A statement is the basic element of a PL/I procedure. Statements are used
to

* Define and identify the structure of the program and the data that it
acts upon.

¢ Request specific actions to be performed on data.
® Control the flow of execution in a program.

In this manual, each PL/I statement is described in the chapter that covers
the function associated with it. The description of each statement gives its
syntax, abbreviation, if any, and options.

The general format of a PL/I statement consists of an optional statement
label, the body of the statement, and a required terminator, the semicolon

;).

7.2.1 Statement Labels

A label identifies a statement so that the statement can be referred to
elsewhere in the program, for example, as the target of a GOTO statement.
A label precedes its statement; it consists of any valid identifier (see Sec-
tion 7.2.3) terminated by a colon. For example:

TARGET: A=A+Bj
READ_LOOP: READ FILE (TEXT) INTO (TEMP)3

No statement can have more than one label.

7.2.2 Keywords and Punctuation

A keyword is a name that has a special meaning to PL/I when used in a
specific context. In context, keywords identify statements, attributes, and
options.

You can abbreviate some PL/I keywords. The valid abbreviations for PL/I
keywords are given with the keyword description in this manual.

PL/I also recognizes punctuation marks in statements. The punctuation
marks serve to

e Specity arithmetic or relational operations to be performed on expres-
sions (see Section 12.2 for details).

e Delimit and separate identifiers, keywords, and constants.

84 Chapter 7

For example, in the statement

g = B + L4

the equal sign (=), representing the assignment statement, the addition
operator (+), and the semicolon (;) delimit the identifiers A, B, and C, as
well as defining the operation to be performed. (Section 12.2 describes the
effect of the various operators in expressions.)

Whenever you use a punctuation mark in a PL/I statement, you can
precede or follow the character with any number of spaces. For example,
the following two statements are equivalent:

DECLARE tA:B) FIXKED DECIMAL (7003
DECLARE (A BIFIXED DECIMAL{7 00

In the second statement, the spaces preceding and following parenthetical
expressions are omitted; the parentheses themselves are sufficient to dis-
tinguish elements in the statement. The only space required in this state-
ment is the space that separates the two keywords FIXED and DECIMAL.

Table 7-1 summarizes the punctuation marks that PL/I recognizes. Note
that operators consisting of two characters (for example, ** and >=) must
be entered without intervening spaces in a PL/I program.

Table 7-1: Punctuation Marks Recognized by VAX-11 PL/I

Category Symbot Meaning to PL/I
Arithmetic + Addition or prefix plus
operators - Subtraction or prefix minus
/ Division
* Multiplication
*x Exponentiation
Relational (or > Greater than
comparison) < Less than
operators = Equal to
"> Not greater than
"< Not less than
= Not equal to
> Greater than or equal to
< Less than or equal to
Logical) Logical NOT
operators & Logical AND
‘or! Logical OR
Concatenation it or!! String concatenation
operator

Program Structure and Content 85

Table 7-1 (Cont.): Punctuation Marks Recognized by VAX-11 PL/1

Category Symbol Meaning to PL/I

Separators , Delimits elements in a list
; Terminates a PL/I statement

Separates identifiers in a structure name; specifies a decimal
point

Terminates a procedure name or a statement label; separates
elements of a bound pair in an array declaration

() Enclose lists and extents; define the order of evaluation of ex-
pressions; separate statement and option names from specific
keywords

Delimit character strings and bit strings

Locator -> Pointer resolution
qualifier

In addition to punctuation marks, PL/I accepts spaces, tabs, and line-end
characters between identifiers, constants, and keywords.

The line-end character is a valid punctuation mark between items in a
PL/I statement except when it is embedded in a string constant, where it is
ignored. For example:

A = 'THIS 15 A VERY LONG STRING THAT MUST BE CONTI
NUED ON MORE THAN ONE LINE IN THE SOURCE FILE’ 3

This assignment statement gives the variable A the value of the specified
character-string constant, ignoring the line-end character. Note, however,
that any tabs or spaces preceding NUED in the example above will be
included in the string.

7.2.3 ldentifiers

An identifier is a user-supplied name for a procedure, a statement label, or
a variable that represents a data item.

7.2.3.1 Rules for Identifiers
The rules for forming identifiers are
¢ An identifier can have from 1 to 31 characters.
® An identifier can consist of any of the following characters:

- The alphabetic letters A through Z and a through z. PL/I converts
all lowercase letters to uppercase when it compiles a source pro-
gram. Thus, the identifiers abc, ABC, Abc, and so on all refer to
the same object.

86 Chapter 7

- The numeric digits 0 through 9.

-~ The underscore character ().

- A dollar sign character ($).

¢ An identifier cannot contain any blanks.

¢ An identifier must begin with an alphabetic letter, a dollar sign

an underscore ().

Some examples of valid identifiers are

STATE
total

FICA_PAID_YEAR_TO_DATE

ROUND1

SS%_UNWIND

7.2.4 Alphabetic Summary of Statements

Table 7-2 provides an alphabetic summary of PL/I statements, and identi-
fies the section that contains their descriptions.

Table 7-2: Summary of VAX-11 PL/I Statements

Statement Use Section
assignment Evaluates an expression and gives its value to an identifier 12.1
null Specifies no operation 14.9
ALLOCATE Allocates storage for a based or controlled variable 9.5.3
BEGIN Denotes the beginning of a block of statements to be executed 14.2
as a unit

CALL Transfers control to a subroutine or external procedure 13.1.4

CLOSE Terminates association of a file control block with an input or 16.1.3
output file

DECLARE Defines the variable names and identifiers to be used in a PL/I 11.1
program and specifies the data attributes associated with them

DELETE Removes an existing record from a file 18.1.4

DO Denotes the beginning of a group of statements to be executed 14.1
as a unit

END Denotes the end of a block or group of statements begun with a 14.3
BEGIN, DO, SELECT, or PROCEDURE statement

ENTRY Specifies an alternate point at which a procedure can be 13.1.3
invoked

Program Structure and Content 87

Table 7-2 (Cont.): Summary of VAX-11 PL/I Statements

Statement Use Section

FORMAT Specifies the format of data that is being read or written with 17.1.3
GET EDIT and PUT EDIT statements and defines the conver-
sion, if any, to be performed

FREE Releases storage of a based or controlled variable 9.5.4

GET Obtains data from an external stream file or from a character- 17.1.1
string expression

GOTO Transfers control to a labeled statement 14.6

IF Tests an expression and establishes actions to be performed 14.4
based on the result of the test

LEAVE Transfers control out of a DO-group 14.7

ON Establishes the action to be performed when a specified condi- 15.1
tion is signaled

OPEN Establishes the association between a file control block and an 16.1.2
external file

PROCEDURE Specifies the point of invocation for a program, subroutine, or 13.1.2
user-defined function

PUT Transfers data to an external stream file or to a character-string 17.1.2
variable

READ Obtains a record from a file 18.1.1

RETURN Gives control back to the procedure from which the current 13.1.6
procedure was invoked

REVERT Cancels the effect of the most recently established ON-unit 15.2

REWRITE Replaces a record in an existing file 18.1.3

SELECT Tests a series of expressions and establishes action to be per- 14.5
formed based on the result of the test

SIGNAL Causes a specific condition to be signaled 15.3

STOP Halts the execution of the current program 14.8

WRITE Copies data from the program to an external record file 18.1.2

7.3 Data and Variables

The statements in a PL/I program process data, generally in the form of
variables that take on different values as the result of program execution.
In VAX-11 PL/I, you usually must declare variables in a DECLARE state-
ment before you can use them in other statements. Declaring a variable
associates an identifier and a set of attributes with a region of storage.

88 Chapter 7

Thus, when you declare a variable you must usually specify one or more
data type attributes to be associated with it. Furthermore, you can specify
how the variable is to be allocated by supplying a storage class attribute in
the declaration. Table 7-3 is an alphabetic list of all the attributes avail-

able in VAX-11 PL/I.

Table 7-3: Summary of VAX-11 PL/T Attributes

Attribute

Use

ALIGNED
ANY
AREA

{ AUTOMATIC }
AUTO

[BASED [(pointer-reference)]]

{ BINARY }
BIN

BIT
BUILTIN

{ CHARACTER

CHAR } [(length)]

{ CONTROLLED
CTL

{ DECIMAL }
DEC

{ DEFINED
DEF

} (variable-reference)

dimension

DIRECT
ENTRY (descriptor,...)

{ ENVIRONMENT

ENV } (option,...)

extent

{ EXTERNAL
EXT

FILE

Requests alignment of bit-string variables in storage
Indicates that a parameter may have any data type

Defines a unit of storage for the allocation of based
variables

Requests dynamic allocation of storage for a variable

Indicates that a variable’s storage is located by a
pointer

Defines a binary base for arithmetic data

Defines bit-string data
Defines a built-in function name

Defines character-string data

Defines a variable whose storage is allocated and
freed in successive and fixed-sequence generations

Defines a decimal base for arithmetic data
Indicates that a variable will share the storage allo-
cated for another variable

Indicates that a variable is an array and defines the
number and extent of its dimensions

Specifies that a file will be accessed only randomly
Describes an external procedure and its parameters

Specifies system-dependent information about a file

Gives the length or dimension of a variable

Identifies the name of a variable whose storage is
referenced or defined in other procedures

Identifies a PL/I file constant or file variable

Program Structure and Content 89

Table 7-3 (Cont.):

Summary of VAX-11 PL/I Attributes

Attribute

Use

FIXED
FLOAT

GLOBALDEF [(psect-name)]

GLOBALREF

{ INITIAL
INIT

INPUT

} (value,...)

INT
KEYED

LABEL

{ INTERNAL }

length
LIKE

OFFSET
OPTIONS
OUTPUT

parameter

{ PICTURE

PIC } "picture ’

{ POINTER }
PTR

{ POSITION }
POS

precision, (scale-factor]

PRINT
READONLY

RECORD

REFER

90

Defines a fixed-point arithmetic variable
Defines a floating-point arithmetic variable

Defines an external variable and specifies the pro-
gram section in which the variable will reside

Defines an external variable whose value is defined in
an external procedure

Provides initial values for variables

Specifies that a file will be used for input

Limits the scope of a variable to the block in which it
is defined

Specifies that a file may be accessed randomly by key
Defines a label variable
Specifies a length for a string variable

Copies the declaration of a structure to another struc-
ture variable

Defines an offset variable
Specifies attribute options
Specifies that a file will be used for output

Indicates that a variable will be assigned a value
when the procedure is invoked

Specifies the format of numeric data stored in
character form

Defines a pointer variable
Specifies the position within a variable at which a
defined variable begins

Specifies the number of digits in an arithmetic varia-
ble and, with fixed-point data, the number of frac-
tional digits

Specifies that a file is to be formatted for printing

Specifies that a static variable’s value does not
change during program execution

Specifies that a file will be accessed by record I/O
statements

Defines dynamically self-defining structures

Chapter 7

Table 7-3 (Cont.): Summary of VAX-11 PL/I Attributes

Attribute Use

RETURNS(returns-descriptor) Specifies that an external entry is a function and de-
scribes the value returned by it

{ SEQUENTIAL Specifies that a file may be accessed sequentially

{SEQ)

STATIC Requests static allocation of storage

STREAM Specifies that a file will be accessed by stream I/O
statements

UNION Indicates that a variable will share the storage allo-
cated for another variable

UPDATE Specifies that records in a file may be rewritten or
deleted

VALUE Requests (1) that a global symbol be accessed by

value rather than by reference, or (2) that an argu-
ment be passed to a non-PL/I procedure by immedi-

ate value
VARIABLE Defines variable entry and file data
{ VARYING Defines a varying-length character string
VAR

An identifier can refer to a single variable (called a scalar variable) or to a
collection of related variables. Such a collection is called an aggregate.
There are two kinds of aggregate: the array, in which all members have the
same data type and are referenced by relative position; and the structure,
in which the members may have different data types and are referenced in
a hierarchical fashion.

The following chapters provide information on these topics:
¢ Chapter 8 describes the data types that you can specify for variables.
¢ Chapter 9 describes the storage classes.
¢ Chapter 10 describes aggregates.

¢ Chapter 11 describes the DECLARE statement and the scope of a
declaration.

7.4 Program Text

The text of a PL/I program consists of PL/I statements and comments.
This section discusses program format, gives rules for comments, and de-
scribes the ZINCLUDE siatement, which allows you to include text from
files or text libraries in a compilation.

Program Structure and Content 91

7.4.1 Program Format

The source text of a PL/I program is freeform. As long as you terminate
every statement with a semicolon (;), individual statements can begin in
any column, spill over onto additional lines, or be written with more than
one statement to a line.

Individual keywords or identifiers of a statement, however, must be con-
fined to one line. Only a character-string constant (which must be enclosed
in apostrophes) can spill over onto more than one line.

PL/I programs are easier to read and to comprehend if you follow a stand-
ard pattern in formatting. For example:

e Write source statements with no more than one statement per line.

e Use indention to show the nesting level of blocks and DO-groups.

7.4.2 Comments

A comment is an informational tool for documenting a PL/I program. To
insert a comment in a program, enclose it within the character pairs /* and
*/. For example:

/% This 15 a comment.... %/

Wherever the characters /+ appear in a program, the compiler ignores all
text until it encounters the characters */. Thus, a comment can span sev-
eral lines.

The rules for entering comments are

¢ A comment can appear anywhere that a space can appear, that is:

- Between any identifiers, keywords, or constants; in this context, a
comment separates tokens, or discrete text items, in a statement.

- Preceding or following punctuation marks that normally serve as
delimiters, for example, spaces, tabs, or commas.

e A comment can contain any character except the pair */; comments
cannot be nested.

Some examples of comments are
A =B+ C 3 /% Add B and C %/
/% *¥xkx%kx%% START OF SECOND PHASE *%x%%xxxkx */
DECLARE/#COUNTER*/A FIXED BINARY (713
/% This module performs the following sters:
1+ Initializes all arravs and data structures.

2y Establishes default condition handlers.
*/

92 Chapter 7

Although complete comments cannot be nested, you can “comment out” a
statement such as

This statement can be commented out by preceding the DECLARE with
another /* pair. The compiler will then ignore all text, including the
DECLARE statement, until it reaches the */ pair.

7.4.3 %INCLUDE Statement

An %INCLUDE statement in a PL/I source file requests inclusion of an
entire file, or of a module from a library of text files. When the compiler
reads the %INCLUDE statement during compilation of a source program,
it begins reading from the file or module specified by 2INCLUDE. When it
reaches the end of the included text, it resumes reading from the previous
input file.

When an %INCLUDE statement in your program requests inclusion of a
module from a library, you must be sure that the PL/I compiler can find
the library. Either you must specify the library explicitly in the PLI com-
mand, or request a module from one of the libraries that the compiler
searches by default.

Result as

Source Compiled
DECLARE X FIXED, } ~___ § DECLARE X FIXED,
NAME CHAR(x); NAME CHAR(*);
%INCLUDE ’"APPLIC.SYM; DECLARE FOUND EXT STATIC
DECLARE P POINTER; —— FIXED BIN(7) INIT(1),

DONE EXT STATIC
FIXED BIN(7) INIT(2),

APPLIC.SYM LOST EXT STATIC
FIXED BIN(7) INIT(3);

r DECLARE P POINTER;

ZK-024-81

Figure 7-1: Using the %INCLUDE Statement

Included text can contain an %#INCLUDE statement. The maximum depth
to which included text can be nested is four.

The %INCLUDE statement format is

%INCLUDE { file-spec’ ;
text-module-name § '’

Program Structure and Content 93

file-spec

A file specification enclosed in apostrophes. The default file type is
PLI. The entire file is included in the compilation.

text-module-name

The 1- to 31-character name of a text module in a library of
INCLUDKE files or other text modules. Only the contents of the mod-
ule are included in the compilation.

For example, the following specifications are different:

%ZINCLUDE 'STATE";

%INCLUDE STATE:

In the first example, PL/I assumes that STATE is a file specification and
looks for the file STATE.PLI in the directory that contains the file being
compiled. In the second example, PL/I searches any library files specified
in the PLI command for a module named STATE.

When you use the %INCLUDE statement to request inclusion of a text
module from a library file, you must ensure that the compiler can locate
the appropriate library. If PL/I cannot locate a specified file or module, it
issues a fatal error message and terminates the compilation.

94 Chapter 7

Chapter 8
Data Types

This chapter includes the following topics:
¢ A brief summary of the data types
* Arithmetic data types, which are used to represent numeric values
o Character-string data, which consists of sequences of ASCII characters

¢ Bit-string data, which consists of sequences of binary digits (bits)
8.1 Summary of Data Types
VAX-11 PL/I supports the following computational data types:

¢ The arithmetic data types define values that can be used in arithmetic
computation. They are

- fixed-point (binary and decimal integers and fractions).
- floating-point (binary and decimal).

- pictured (fixed-point data stored in character form).
Sections 8.2.1 through 8.2.4 describe them.

¢ Character-string data consists of a sequence of ASCII characters. (See
Section 8.3.)

¢ Bit-string data consists of sequences of binary digits. (See Section
8.4.)

The data types listed below represent noncomputational program values
that are used within a PL/I program for control. Each of them is described
along with its associated function in the indicated section.

95

¢ Entry constants and variables are used to invoke procedures through
specified entry points. (See Section 13.2.1.)

e Label variables and constants provide you with a flexible means of
control within a program. (Section 14.6 contains a description of label
data.)

e File variables and constants provide access to files. (See Section
16.1.1.)

¢ Pointers represent the location in memory of data, and are used to
access based variables in areas and data in system-allocated buffers.
(See Section 9.5.1.1.)

* Areas are regions of storage in which based variables may be allocated
and freed. Offsets represent the location of a based variable in an area.
(See Section 9.5.1.2.)

8.2 Arithmetic Data Types

Arithmetic data types are used for variables on which arithmetic calcula-
tions are to be performed. The arithmetic data types supported by VAX-11
PL/I are

® Fixed-point—for binary and decimal data with a fixed number of frac-
tional digits.

* Floating-point—for calculations on very large or very small numbers,
with the decimal point (number of fractional digits) allowed to
“float.”

¢ Pictured—for fixed-point decimal data that is stored internally in
character form, with special formatting characters.

Sections 8.2.1 through 8.2.4 describe these four data types. Section 8.2.5
describes the precision of all arithmetic data types.

When you declare an arithmetic variable, you do not always have to define
all its characteristics, or attributes; the PL/I compiler makes assumptions
about attributes that are not explicitly defined. For example:

DECLARE NUMBER FIXEDS

The FIXED attribute implies the attributes BINARY(31,0). Thus, the var-
iable NUMBER has the attributes FIXED BINARY(31,0).

96 Chapter 8

Table 8-1 shows the default attributes implied by each arithmetic data
attribute.

Table 8-1: Implied Attributes for Computational Data

Specified Implied
FIXED BINARY(31,0)
FLOAT BINARY(24)
BINARY FIXED(31,0)
DECIMAL FIXED(10,0)
FIXED BINARY (31,0)

FLOAT BINARY (24)
FIXED DECIMAL (10,0)
FIXED DECIMAL(p) (p,0)
FLOAT DECIMAL (7)

8.2.1 Fixed-Point Binary Data

The attributes FIXED BINARY are used to declare integer variables in
PL/I. The BINARY attribute is implied by FIXED. The declaration of a
single fixed-point binary variable is of the form

BINARY

DECLARE identifier FIXED [
BIN

] wetans

identifier
The name used to refer to the variable.

p
An integer constant giving the total number of binary digits used to
represent values of the variable. The value must be in the range
l1<p<3l

q

An integer constant giving the number of fractional binary digits in
values of the variable. The value must be in the range

3l<g<p

If you omit p and q, the default values are p=31, q=0.

Data Types 97

Precision is an integer from 1 to 31. If you do not specify the precision, the
default is 31. The precision that you specify establishes the storage allo-
cated for the variable and the range of values that the variable can take on,
as follows:

Precision Storage Maximum Range
1<p<7 byte -128 through 127
(8 bits)
8<p<15 word -32,768 through
(16 bits) 32,767
16<p<31 longword -2,147,483,648 through
(32 bits) 2,147,483,647

There is no representation in VAX-11 PL/I for a fixed-point binary con-
stant. Instead, integer constants are represented as fixed decimal. How-
ever, fixed decimal integer constants (and variables) are converted to fixed
binary when combined with fixed binary variables in expressions. For ex-
ample, assume that I is a fixed binary variable:

I = I+33

In this example, the integer 3 is represented as fixed decimal, but PL/I
converts it to fixed binary when evaluating the expression.

Because fixed binary variables have a maximum precision of 31, fixed
binary integers can have values only in the range of -2,147,483,648 through
2,147,483,647. An attempt to calculate a binary integer outside this range,
in a context that requires an integer value, signals the FIXEDOVERFLOW
condition.

8.2.2 Fixed-Point Decimal Data

Fixed-point decimal data is used in calculations where exact decimal val-
ues must be maintained, for example, in financial applications. Fixed-
point decimal data with a scale factor of zero may also be used whenever
integer data is required.

This section is divided into the following parts:
¢ Constants
¢ Variables
¢ Use in expressions

8.2.2.1 Fixed-Point Decimal Constants

A fixed-point decimal constant can have between 1 and 31 decimal digits
(0 through 9) with, optionally, a decimal point and/or a sign. If there is no

98 Chapter 8

decimal point, PL/I assumes it to be immediately to the right of the right-
most digit. Some examples of fixed-point decimal constants are

56
2345.54

1 e [s

‘ ;;O od

o1,

The precision (p) of a fixed-point decimal value is the total number of
digits in the value. The scale factor (q) is the number of digits to the right

of the decimal point, if any. The scale factor cannot be greater than the
precision.

8.2.2.2 Fixed-Point Decimal Variables

The attributes FIXED DECIMAL are used to declare fixed-point decimal
variables. The FIXED attribute is implied by DECIMAL. The form of a
declaration of a single fixed-point decimal variable is

DECIMAL

DECLARE identifier [FIXED]
DEC

} [(rL.aDI;

identifier
The mame to-be-used for the variable.

p
An integer constant giving the total number of decimal digits used to
represent values of the variable. The value must be in the range
l1<p=<idl

q

An integer constant giving the number of fractional digits in values of
the variable. The value must be in the range

0<qgx<p
If you omit p and q, the default values are p=10, q=0.

Some examples of fixed-point decimal declarations are

DECLARE PERCENTAGE FIXED DECIMAL (5+2)3
DECLARE TONNAGE FIXED DECIMAL (9)1

8.2.2.3 Using Fixed-Point Data in Expressions

You cannot use fixed-point decimal data with a nonzero scale factor in
calculations with binary integer variables. If you must combine the two
types of data, use the DECIMAL built-in function (described in Section

Data Types 99

19.2) to convert the binary value to a scaled decimal value before attempt-
ing an arithmetic operation. For example:

DECLARE I FIXED BINARY
SUM FIXED DECIMAL (10,2)3

SUM = SUM + DECIMAL (I)3

8.2.3 Floating-Point Data

The floating-point data types provide a way to express very large and very
small numbers, for example, in scientific calculations. All floating-point
calculations are performed on values in one of the VAX-11 binary floating-
point formats. In general, the precision of the result is determined by the
maximum precision of any operands in the operation. The numerical result
of an operation is rounded to the result precision; therefore, the results of
most operations are approximate.

This section is divided into the following parts:
e Constants
s Variables
® Use in expressions

e Floating-point data formats

8.2.3.1 Gonstants

A floating-point constant can have one or more of the decimal digits 0
through 9 (with an optional decimal point), followed by the letter E and
from one to five decimal digits representing a power of 10. The floating-
point value and the integer exponent can both be signed. The first portion
of the value, to the left of the letter E, is called the mantissa. The value to
the right of the letter E is called the exponent.

Some examples of floating-point constants are

2EL10

-3E8
3ZE-8B
+A5B3ZE1G

The decimal precision of each of these values is the number of digits in the
mantissa.

If you write a constant without the E and the exponent, it is considered to
be fixed-point decimal. However, you can use such constants freely in
expressions involving floating-point data.

100 Chapter 8

8.2.3.2 Variables

The keyword FLOAT identifies a floating-point varlable in a declaration.
The form of the declaration of a sin

ing 3 iq
VUil ULl a oiig 1LLE ™ yul vaLluuLc 1D

BINARY

DECLARE identifier FLOAT [
DECIMAL

] o

identifier
The name to be used for the variable.

[BINARY
DECIMAL

An attribute that determines whether the variable is to be floating-
point binary or decimal. The primary effect of this attribute is to
determine how the compiler interprets the precision attribute.
BINARY is the default.

An integer constant that specifies the precision of the variable. For a
floating-point binary variable, p is the number of bits to be main-
tained in the mantissa; the range of p is 1 to 113, and the default
value is 24. For a floating-point decimal variable, p is the number of
decimal digits to.be maintained in the mantissa; the range of p-is 1 to
34, and the default value is 7. Section 8.2.3.4 describes the effect of
different values of p on floating-point variable representation.

Note that you can use either BINARY or DECIMAL to declare a floating-
point value. Since the internal representation of floating-point variables is
binary, it is recommended that you use BINARY FLOAT to declare varia-
bles (this is the default). In any event, you should declare all floating-point
variables using the same base.

8.2.3.3 Using Floating-Point Data in Expressions

You can use both integer and scaled decimal constants freely in floating-
point expressions. An arithmetic constant is always converted to the appro-
priate internal representation for use in a floating-point operation. The
target type for the conversion depends on the context. In the following
example

DECLARE X FLOAT BINARY (53);
Xo= X o+ 1.3

the constant 1.3 is converted to floating point when the expression is evalu-
ated.

Data Types 101

8.2.3.4 G_FLOAT and H_FLOAT Support

If your main program or a procedure that it invokes uses floating-point
variables with a binary precision greater than 53 (decimal precision greater
than 15), and your computer does not include hardware support for G- and
H-floating data, you must provide your program with access to a software
emulation routine for these types. Include the following lines in your MAIN
procedure:

DECLARE SS5$_0PCDEC FIXED BIN GLOBALREF VALUES
ON YAXCONDITIONM(SS$_OPCDEC) CALL RESIGNAL()

Compile the program with the /G_FLOAT qualifier, and link it as follows:
$ LINK vour_prod.SYS$LIBRARY:STARLET/ INCLUDE=LIB$ESTEMY

None of this is necessary for external procedures not having
OPTIONS(MAIN).

8.2.3.5 Floating-Point Data Formats

VAX-11 PL/I supports four types of floating-point values. Table 8-2 sum-
marizes the ranges of precision for each type.

Table 8-2: VAX-11 Floating-Point Types

Floating-Point Sign Exponent Fractional
Type! Bits Bits Bits
F (single precision) 1 8 24
D (double precision) 1 8 53
G 1 11 53
H 1 15 113

1. Types G and H require a VAX-11 hardware option; types F
and D are available on all VAX processors.

The approximate ranges of the VAX-11 floating-point formats are as fol-
lows:

e F format: 0.29+10738 to 1.7+10%8

¢ D format: same as F, but with more precise mantissa (see Table 8-2)
* G format: 0.56%107308 to 0.9¥10308

* H format: 0.84x104932 to 0.59+10%932

The PL/I compiler selects the appropriate VAX-11 floating-point type
based on, first, the precision you specify and, second, a compile-time quali-
fier on the PLI command. The types are selected as shown in Table 8-3.
The default is F (single precision).

102 Chapter 8

Table 8-3: Floating-Point Types Used by PL/I

Range of p Range of p Floating-point
(DECIMAL) (BINARY) Type
1<p<7 l<sp< 24 F
8<p<15 % <p< 53 D or G
16<p<34 54 < p < 113 H?

1. D is used unless /G__FLOAT is requested at compile
time.
2. H is possible only if /G_FLOAT is requested at compile
time.

8.2.4 Pictured Data

Use pictured data when you want to manipulate a quantity arithmetically
and accept or display its value using a special format. Pictured variables
are especially useful in applications that require values to be shown with
special symbols, such as commas, dollar signs, or debit indicators (DB).

This section describes

¢ Pictured variables—variables declared with the PICTURE data at-
tribute.

o Assigning values to pictured data—the process by which a value is
assigned to a pictured variable or written out with the P format item.

¢ Extracting values from pictured data—the process by which a pic-
tured value is assigned to other variables or acquired with the P for-
mat item.

¢ Picture characters—the special characters that make up a specifica-
tion in the PICTURE attribute and in the P format item.

Although the formatting possible with pictured data is useful in many
applications, pictured data is much less efficient than fixed-point decimal
data in computations. Therefore, do not use pictured data unless you need
the formatting.

8.2.4.1 Pictured Variables

A pictured variable has the attributes of a fixed-point decimal variable,
but values assigned to it are stored internally as character strings. Such a
character string contains digits representing the variable’s numeric value
as well as such special symbols as the dollar sign. When the value of a
pictured variable is written out by, for example, the PUT LIST statement,
the internally stored character string is placed in the output stream. The
value that appears on a line printer or terminal thus contains a fixed-point
decimal number that has been “edited” with the requested special sym-
bols.

Data Types 103

The declaration of a single pictured variable has the form

DECLARE identifier { PICTURE } ‘picture” ;

identifier
The name to be used for the variable.

“picture’
A string of picture characters that define the representation of the
variable. (These characters and their uses are described in Section
8.2.4.4.) The apostrophes surrounding the picture are required syn-
tax.

A picture specification (or picture) describes both the numeric attributes of
a pictured variable and its output format. A simple picture looks like this
in a DECLARE statement:

DECLARE CREDIT PICTURE ‘$99999V,939DB "5

This statement declares the variable CREDIT as a pictured variable; its
picture comprises the characters within the apostrophes.

The two assignments

CREDIT = 12443,00%

and

CREDIT = -~12443,003

would look like this on output:

$12443,00 /% a positive value {(credit) */

$12443,00DB /% a nedative value (debit) */

8.2.4.2 Assigning Values to Pictured Variables
Assignment of a computational value to a pictured variable is performed in
the following two steps:

1. The value is converted to fixed decimal, with precision and scale as
specified by the picture.

2. The resulting fixed decimal value is edited into the pictured varia-
ble.

If PL/I cannot perform one of these steps in a meaningful fashion, an error
occurs. The following examples show two programming errors that are
common in assignments to pictured variables.

CREDIT = '412443.0073%

104 Chapter 8

This example signals the ERROR condition, because the character string
contains a dollar sign and is therefore not convertible to fixed-point deci-
mal. The value assigned to CREDIT should be either "12443.00 or simply
12443.00, both of which result in the same value assigned to CREDIT.

If a negative value is assigned to a pictured variable, the picture must
include one of the sign picture characters (such as DB). If, for example, the
picture of CREDIT did not contain the DB characters, then the assignment

CREDIT = -12443.003

would signal the FIXEDOVERFLOW condition, because the sign would be
lost.

In some circumstances (for example, with the READ statement), it is
possible to assign a value to a pictured variable that is not valid with
respect to the variable’s picture specification. In such cases, the VALID
built-in function (described in Section 19.2) can be used to validate the
contents of the variable.

8.2.4.3 Extracting Values from Pictured Data

When you use a pictured value in an arithmetic context (such as assign-
ment to an arithmetic variable), the picture is used to extract the fixed-
point decimal number from the character string that internally represents
the pictured value. Extraction also occurs when you input a pictured value
with the GET EDIT statement and the P format item. If the contents of
the pictured variable or input item do not conform to the picture, an error
occurs.

For example, in the picture for CREDIT
DECLARE CREDIT PICTURE ‘$99999Y,99DB;

the 9 character specifies the position of a decimal digit; since the picture
contains seven of these, the fixed-point decimal precision of CREDIT is 7.
The V character separates the integral and fractional digits; since there are
two 9 characters to the right of the V, the scale factor of CREDIT is 2. The
V character is unique among picture characters in that it specifies only a
numeric property; it does not cause a decimal point (or any other charac-
ter) to appear in the internal representation of CREDIT. Therefore, a pe-
riod picture character (.) can be included after the V to ensure that the
output value has a decimal point in the correct place.

The period and dollar sign are always inserted in the internal representa-
tion and the output value regardless of CREDIT’s numeric value.

The picture character DB appears only when the value of CREDIT is less
than zero; otherwise, two spaces appear in the indicated positions. The DB
character also indicates that a value of CREDIT is numerically negative, so
that if CREDIT is later assigned to an arithmetic variable, the variable will
be given a negative value.

Data Types 105

8.2.4.4 Picture Characters

An individual picture character, and its position in the picture, indicate
the interpretation of an associated position in the pictured value. Table 8-4
lists the characters that can appear in a picture.

Table 8-4: Picture Characters

Character Meaning
9 Decimal digit, including leading zeros
Z Decimal digit with leading-zero suppression
* Decimal digit with asterisk for leading zero

Decimal digit with space for any zero

Position of assumed decimal point

(n) Iteration factor for subsequent character

T Position of digit and encoded plus sign or minus sign

I Position of digit and encoded plus sign if number > 0
R Position of digit and encoded minus sign if number < 0
. Position at which decimal point is inserted

, Position at which comma is inserted

/ Position at which slash is inserted

B Position at which space is inserted

$ Position[s) of [drifting] dollar sign

+ Position(s) of [drifting] plus sign if number > 0

- Position[s] of [drifting] minus sign if number < 0

S Position[s] of [drifting] plus sign or minus sign
CR Positions at which "CR’ is inserted if number < 0
DB Positions at which ‘DB’ is inserted if number < 0

Although all picture characters are shown here in uppercase form, the
lowercase equivalents function identically.

Any picture character that can appear more than once in a picture may be
preceded by an iteration factor, which must be a positive integer constant
enclosed in parentheses. For example, the picture

TR 2=

is the same as
19999 ¢

The following paragraphs describe the picture characters in more detail.

106 Chapter 8

Decimal Place Character (V)
The V character shows the position of the “assumed” decimal point, or, in

other words, the scale factor for the fixed-point decimal value. It does not
cause a decimal point to appear. (Use the period insertion character for
this purpose.) The following rules apply to the V character:

¢ Only one V character may appear in a picture.

e If a picture does not contain the V character, it is assumed to be at the
right end of the picture.

¢ If a fixed-point value assigned to a pictured variable has fewer integral
digits than are indicated by the picture characters to the left of the V,
then the integral value of the pictured variable is extended on the left
with zeros. If the assigned value has too many integral digits, the value
of the pictured variable is undefined and the FIXEDOVERFLOW
condition is signaled.

e If a fixed-point value assigned to a pictured variable has fewer frac-
tional digits than are indicated in the picture, then the fractional
value of the pictured variable is extended on the right with zeros. If
the assigned value has too many fractional digits, then the excess
fractional digits are truncated on the right; no condition is signaled.
Thus, if the V character is the last character in the picture or is
omitted, assigned fixed-point values are truncated to integers.

The following example illustrates the effect of the V character:

DECLARE PRICE PICTURE ’'$%$9v.987,
BAD_PRICE PICTURE ‘%$%9.99'3

PRICE = ,981% /% Output as 0,98 */
BAD_PRICE = ,88% /% Qutrput as $0,00 %/
PRICE = 9Bj /% Outeput as 98,00 */

BaAD_PRICE = 985 /#% Outrput as $0.898 #/

In this example, note that the variable PRICE, which contains the V char-
acter, represents the value properly. The variable BAD_PRICE, which
contains only the period insertion character, has an assumed V character at
the end of the picture, which causes the variable to misrepresent the value.

Digit Characters (9, Z, +, Y)
All of these characters mark the positions occupied by decimal digits. The
number of these characters present in a picture specifies the number of

digits, or precision, of the fixed-point decimal value of the pictured varia-
ble.

® The position occupied by 9 always contains a decimal digit, whether or
not the digit is significant in the numeric interpretation of the pic-
tured value. Thus, leading zeros at positions occupied by a 9 are out-
put.

Data Types 107

¢ The position occupied by Z contains a decimal digit only if the digit is
significant in the integral portion of the numeric interpretation; if the
digit is an insignificant, or leading, zero, it is replaced by a space.

- The Z character must not appear in the same picture with the
character *. It must not appear to the right of the characters 9, T, I,
or R nor to the right of a drifting string (see “Drifting Characters”
below).

- If the Z character appears to the right of the V character, then all
digits to the right of the V must be indicated by Z characters.
Fractional zeros are then suppressed only if all fractional digits are
zero and all of the integral digits are suppressed; in that case, the
internal representation contains only spaces in the digit positions.

* The position occupied by the * character functions identically with the
Z character, except that leading zeros are replaced by asterisks instead
of spaces.

¢ The position occupied by the Y character contains a decimal digit only
if the digit is not zero. All zeros in the indicated positions, whether
significant or not, are replaced by spaces.

Encoded-Sign Characters (T, I, R)

The characters T, I, and R are digit characters that may be used wherever
9 is valid. Each represents a digit that has the sign of the pictured value
encoded in the same position. Only one can be used in a picture.

An encoded-sign character cannot be used in a picture that contains an S,
+, -, CR, or DB (described below).

The meanings of the characters are as follows:

¢ The T character indicates that the position contains an encoded
minus sign if the numeric value is less than zero and an encoded plus
sign if the numeric value is greater than or equal to zero. These en-
coded-sign digits are represented internally and in output by the
ASCII characters shown in Table 8-5.

¢ The I character indicates an encoded plus sign if the numeric value is
greater than or equal to zero. Otherwise, the position contains an
ordinary digit.

¢ The R character indicates an encoded minus sign if the numeric value
is less than zero. Otherwise, the position contains an ordinary digit.

Table 8-5 shows the ASCII characters that indicate digits with encoded
signs: +digit means the digit with an encoded plus sign; -digit, an encoded
minus sign. The characters in Table 8-5 are used in the internal represen-
tation of a pictured value and must be used for input of an encoded-sign
digit from a stream file.

108 Chapter 8

Table 8-5: ASCII Representation of Encoded-Sign Digits

Digit ASCII Character Digit ASCII Character
+0 { -0 }
+1 A -1 J
+2 B -2 K
+3 C -3 L
+4 D -4 M
+5 E -5 N
+6 F -6 0]
+7 G -7 P
+8 H -8 Q
+9 I -9 R

Drifting Characters (8, +, , S)
The drifting characters can be used to indicate digits, and they also indi-

cate a symbol to be inserted when, for example, a pictured value is written
out by PUT LIST.

e The dollar sign ($) causes a dollar sign to be inserted.

¢ The plus sign (+) causes a plus sign to be inserted if the numeric value
is greater than or equal to zero.

¢ The minus sign (-) causes a minus sign to be inserted if the numeric
value is less than zero.

¢ The S character causes a plus sign to be inserted if the numeric value
is greater than or equal to zero, and a minus sign if the value is less
than zero.

If one of these characters is used alone in the picture, it marks the position
at which a special symbol or space is always inserted, and it has no effect
on the value’s numeric interpretation. In this case, the character must
appear either before or after all characters that specify digit positions.

However, if a series of n of these characters appears, then the rightmost n-1
of the characters in the series also specify digit positions. If the digit is a
leading zero, the leading zero is suppressed, and the leftmost character
“drifts” to the right; the character appears either in the position of the last
drifting character in the series or immediately to the left of the first signifi-
cant digit, whichever comes first. Used this way, the n-1 drifting charac-
ters also define part of the numeric precision of the pictured variable, since
they describe at least some of the positions occupied by decimal digits. For

Data Types 109

an example of this behavior by a drifting character (the dollar sign), see the
decimal place character (V) above.

The following additional rules apply to drifting characters:

e A drifting string is a series of more than one of the same drifting
character. Only one drifting string can appear in the picture; any other
drifting characters can be used only singly and therefore designate
insertion characters, not digits.

e The characters Z and * cannot appear to the right of a drifting string.

¢ A digit position cannot be specified (for instance, with a 9) to the left
of a drifting string.

® A drifting string can contain the V character and one of the insertion
characters (defined below). The following additional rules apply:

~ If the drifting string contains an insertion character, it is inserted
in the internal representation only if a significant digit appears to
its left. In the position of the insertion character, a space appears if
the the leftmost significant digit is more than one position to the
right; the drifting symbol appears if the next position to the right
contains the leftmost significant digit.

- If the drifting string contains a V character, all digit positions to
the right of the V (the fractional digits) must also be part of the
drifting string. In this case, insignificant fractional digits are sup-
pressed only when all integral and fractional digits are zeros: they
are replaced by spaces in the internal representation. If any digit is
not zero, all fractional digits appear as actual digits.

- Any insertion characters immediately to the right of a drifting
string are considered part of it.

Insertion Characters

The insertion characters indicate that characters are inserted between di-
gits in the pictured value. The insertion characters are the comma (,),
period (.), slash (/), and the space (B). The B character indicates that a
space is always inserted at the indicated position.

The drifting characters also function as insertion characters when used
singly (that is, not as part of a drifting string).

Note that the period (.) does not imply a decimal place character (V). This
is illustrated by the example of the decimal place character, above.

The following rules describe insertion by the comma, period, and slash
insertion characters.

110 Chapter 8

e If zero suppression occurs, the insertion character is inserted only in
these cases:

- A significant digit appears immediately to its left.
- The V character appears immediately to its left, and the fractional
part of the numeric value contains significant digits.

¢ To guarantee that the decimal point is in the same position in both the
numeric and character interpretations, the V and period characters
must be immediately adjacent. Note, however, that if the period
precedes the V, then it is suppressed if there are no significant integral
digits, even though all the fractional digits are significant. This prop-
erty can make fractions appear to be integers when the internal (char-
acter) value is displayed. Consequently, the period should immedi-
ately follow the V character; it will then be in the correct location and
will appear whenever any fractional digit is significant. The following
example illustrates correct and incorrect placement of the period:
DECLARE NUM PICTURE ‘ZZZV,ZZ
BAD_NUM PICTURE ‘ZZZ.VZZ

MUM=0,023 /% Output as 02 */
BAD _NUM=0.023 /% Output as 02 */

Ty
73

e Other insertion characters, such as the comma, can be used to sepa-
rate the integral and fractional portions of a number. However, the
comma should not be used with GET LIST input, because in that
context it separates different data items in the input stream.

Credit (CR) and Debit (DB) Characters

These picture characters are always specified as the character pairs CR and
DB. If either pair is included, it appears if the numeric value is less than
zero. In each case, the associated positions contain two spaces if the nu-
meric value is greater than or equal to zero.

The characters are always inserted with the same case as used in the
picture. If the lowercase form cr is used in the picture, lowercase letters are
inserted in the pictured value; if the combination Cr is used, then Cr is
inserted.

The credit and debit characters cannot be combined in one picture, nor can
they be used in the same picture as any other character that specifies the
sign of the value (S, +, and -). In addition, they must appear to the right of
all picture characters specifying digits.

8.2.5 Precision of Arithmetic Daia Types

The precision attribute applies to binary and decimal data; the precision of
an item is the total number of decimal or binary digits used to represent a

Data Types 111

value. You can specify the precision and scale of an arithmetic variable in a
DECLARE statement in any of the following formats, depending on the
numeric base of the data item:

BINARY [FIXED] [(precision[,scale-factor])]

[BINARY] FLOAT [(precision)]

DECIMAL [FIXED] [(precision[,scale-factor])]
DECIMAL FLOAT [(precision)]

The precision of a floating-point data item is the number of decimal or
binary digits in the mantissa of the floating-point representation.

The ranges of values you can specify for the precision for each arithmetic
data type, and the defaults applied if you do not specify a precision, are
summarized as follows:

Data Type Scale Default
Attributes Precision Factor Precision
BINARY FIXED l<ps< 31 <p 31
BINARY FLOAT l<p<l13 - 24
DECIMAL FIXED 1<p< 31 p 10

1A

DECIMAL FLOAT 1<p< 34 7

If no scale factor is specified for fixed-point data, the default is zero.

8.2.6 Scale of Fixed-Point Data Types

In addition to the precision attribute, fixed-point data may also have the
scale attribute, which is the number of fractional bits or digits contained
within the specified precision. The scale factor q specifies that all values of
the fixed-point variable are “scaled” by the factor 29 for binary data or
1079 for decimal data.

Data Type Scale Default
Attributes Factor Scale

BINARY FIXED -31<p=<3l 0
DECIMALFIXED 0<p<3l 0

For example:
DECLARE x FIXED DECIMAL(10,3)]

indicates that the value of x has 10 decimal digits, but 3 of those are
fractional. In effect, this is similar to multiplying or dividing the decimal
number by a factor of 10.

Positive scale factors for fixed binary numbers function the same as scale
factors for fixed decimal numbers. A negative scale factor indicates the
number of fractional bits that are shifted from the left to the right. For a
fixed-point binary number, the scale factor has the effect of multiplying or
dividing the number by a factor of 2.

112 Chapter 8

Even though arithmetic operands can be of different arithmetic types, all
operations must actually be performed on objects of the same type. Conse-
quently, the compiler may convert operands to a derived type. Therefore,
when you declare a fixed binary number with a scale factor, and assign it a
decimal value, the results may not be what you expect. This is because the
binary scale factor left-shifts the specified number of bits to the right of the
decimal point. During conversion to a decimal representation, the differ-
ence between the resulting binary number and its decimal representation is
not the equivalent of dividing or multiplying the decimal number by 10.
Instead, the binary number is divided or multiplied by 2 and then con-
verted to its decimal representation.

In addition, excess fractional digits may be truncated, and no condition is
signaled. Any resulting loss of precision may be difficult to detect because
truncated fractional digits do not signal a condition.

8.3 Character-String Data

A character string is a sequence of zero or more ASCII characters (see
Appendix C for a table of the ASCII characters). A character-string value
can consist of any ASCII characters, to a maximum length of 32767
characters. T o

This section is divided into the following parts:
¢ Constants

e Variables

8.3.1 Character-String Gonstants

When you use character-string constants in a program, you must enclose
the strings in apostrophes, as shown in the following examples:

‘Total is:”’
‘Enter vour name and ade’
‘Error - wvalue is out of rande’

To specify a string containing a literal apostrophe, use two apostrophes
within the string, for example:

‘Life isn’’t fair’

When a character string that has embedded apostrophes is specified as
shown above, the final result contains only a single apostrophe.

a Silgit &

Note that the quotation mark (") is not a legal delimiter for PL/I character
constants.

Data Types 113

8.3.2 Character-String Variables

The CHARACTER keyword identifies a character-string variable in a dec-
laration. The addition of the VARYING keyword indicates a varying char-
acter-string variable. The format for specifying a character-string variable
is

DECLARE identifier § CHARACTER 1 () [VARVING] ;
CHAR VAR

identifier
The name to be used for the variable.

Specifies the length of the variable, that is, the number of bytes
needed to contain its value. The maximum value for n is 32767. The
length attribute specifies either the length of all values of the variable
(fixed-length strings) or the maximum length of a value of the varia-
ble (varying-length strings). If n is not specified, PL/I uses the default
length of one character, or byte. The rules for specifying n are as
follows:

¢ For a static variable declaration, n must be an integer constant.

¢ In the declaration of a parameter or in a parameter or returns de-
scriptor, n may be specified as an integer constant or as an asterisk
(*). The resulting string is fixed length unless VARYING is also
specified.

¢ For an automatic, based, or defined variable, n may be specified as
an integer constant or as an expression. In the case of automatic or
defined variables, the expression must not contain any variables or
functions that are declared in the same block, except for parame-
ters.

If specified, n must immediately follow the keyword CHARACTER
and must be enclosed in parentheses.

[VARYING
VAR

Indicates a varying-length character-string variable. The effect of this
attribute is described below.

8.3.2.1 Fixed-Length Character-String Variables

For a particular allocation of a fixed-length character-string variable, all its
values have the same length. When a program assigns a value to a fixed-
length character-string variable, however, the value is not always exactly

114 Chapter 8

the same as the length defined for the variable. Depending on the size of
the value, PL/I does the following:

¢ If the value is smaller than the length of the character string, PL/
pads the value with spaces on the right. For example:

DECLARE STRING CHARACTER (1013
STRING = ‘ABCDEF '3

The final value of the variable STRING is "ABCDEF ’, that is, the
characters ABCDEF followed by four space characters.

e If the value is larger than the length of the variable, PL/I truncates the
value on the right. For example:

DECLARE STRING CHARACTER (4)3
STRING = ‘ABCDEF ‘3

Here, the final value of STRING is "ABCD’, that is, the first four
characters of the value "ABCDEF .

8.3.2.2 Varying-Length Character-String Variables

In a varying character-string variable, the length is not fixed. The length
specified in the declaration of the variable defines the maximum length of
any value that can be assigned to the variable. Each time a value is as-
signed, the current length chatiges. For example: ~ R
DECLARE NAME CHARACTER (20) VARYINGS

NAME = ‘CODOPER’S
MAME = ‘RANDOM FACTOR':

The declaration of the variable NAME indicates that the maximum length
of any character-string value it can have is 20. The current length becomes

6 when NAME is assigned the value "COOPER’; the length becomes 13
when NAME is assigned the value "'RANDOM FACTOR’; and so on.

When a varying character string is assigned a value with a length greater
than the maximum defined, the value is truncated on the right.

The initial length of an automatic varying-length character-string variable
is undefined unless the variable is initialized.

You can use the LENGTH built-in function (described in Section 19.2) to
determine the current length of any string.

8.4 Bit-String Data

A bit string consists of a sequence of binary digits, or bits. It may be used
as a Boolean value, which has one of two states: true (if any bit is 1) or false

(if all bits are 0).

Data Types 115

Like a fixed-length character string, a bit string has a fixed length defined
in the declaration or specified by the number of bits in a bit-string con-
stant. The maximum length of any bit string is 32767 bits. Bit-string varia-
bles cannot be declared with the VARYING attribute.

Sophisticated applications that depend on the internal representation of
bit strings and other types of data may not be directly transportable from
other PL/I implementations to VAX-11 PL/L. In VAX-11, bit strings are
stored in memory with the leftmost bit (as represented by PUT LIST) in
the lowest memory location, and bits following the leftmost in successively
higher memory locations. This representation of a bit string by PUT LIST
is reversed with respect to a conventional picture of memory locations, in
which higher locations appear on the left, not on the right. For example:

DECLARE ABIT BIT (10)3
ABIT = ‘101183

A memory diagram of the storage resulting from this assignment would
look like this:

0000001101
HIGH MEMORY LOW MEMORY
<- LOCATIONS LOCATIONS ->

All this is of no concern until you try to interpret non-bit-string data as a
bit string. For example, a fixed binary value is stored with the sign bit in
the highest memory location, the most significant bit in the next highest
location, and so on to the least significant bit in the lowest memory loca-
tion. Thus, a FIXED BINARY (7) variable with a value of 2 would appear
in memory as follows:

0000O0COT1TO
HIGH MEMORY LOW MEMORY
<- LOCATIONS LOCATIONS ->

Should you treat this storage as a bit string (for example, by using it as the
argument of the UNSPEC built-in function in a PUT LIST statement), the
result would be

If you are accustomed to using PL/I on computers other than VAX-11, this
result may not be what you expect.

Consult the VAX Architecture Handbook for detailed information about
the VAX-11 representation of data. The VAX-11 PL/I Encyclopedic Refer-
ence provides extensive information about the internal representation of
PL/I data types.

116 Chapter 8

The remainder of this section is divided into the following parts:
* Constants
® Variables
® Alignment

¢ The use of bit strings to represent integers

8.4.1 Bit-String Gonstants

To specify a bit-string constant, enclose the string in apostrophes and
follow the closing apostrophe with the letter B. Some examples are
‘D101'B

7101010108

18

The length of a bit-string constant is always the number of binary digits
specified; the B does not count in the length of the string. A bit-string
constant can be specified with a maximum of 1000 characters between the
apostrophes.

You can also specify a bit-string constant using the syntax

’Vcharacrtér-str'ing ! Bni)

where n is the number of bits to be represented by each character in the
string. This format allows you to specify bit-string constants with bases
other than 2. For example:

‘EF8 B4
‘117°B3

1223 /B2

These constants specify the hexadecimal value EF8, the octal value 117,
and the base 4 value 223. All such constants are stored internally as bit
strings, not as integer representations of the value.

The valid characters for each type of bit-string constant are listed below:
¢ For B or B, only the characters 0 and 1 are valid.
¢ For B2, only the characters 0, 1, 2, and 3 are valid.
e For B3, only the characters 0, 1, 2, 3, 4, 5, 6, and 7 are valid.
¢ For B4, the characters 0, 1, 2, 3,4,5,6,7,8,9, A, B, C,D, E, and F are

valid. (The letters A through F can be either upper- or lowercase.)

18340, 03 Tivil

Using the B format items, you can also acquire or output (with the GET
EDIT and PUT EDIT statements) bit-string data in binary, base 4, octal,
or hexadecimal format. These format items are described in Section 17.3.1.

Data Types 117

8.4.2 Bit-String Variables

Use the BIT attribute to declare a bit-string variable. The form of the
declaration of a single bit-string variable is

DECLARE identifier BIT [(n)] [ALIGNED];
identifier
The name to be used for the variable.

Specifies the length of the variable. The range is 0 to 32767; the
default length is one bit. The rules for specifying n are as follows:

e If BIT is specified for a static variable declaration or in a returns
descriptor, length must be an integer constant.

o If BIT is specified in the declaration of a parameter or in a parame-
ter descriptor, length may be specified as an integer constant or as
an asterisk (#).

e If BIT is specified for an automatic, based, or defined variable,
length may be specified as an integer constant or as an expression.
In the case of automatic or defined variables, the expression must
not contain any variables or functions that are declared in the same
block, except for parameters.

If specified, the length must immediately follow the keyword BIT.

ALIGNED

Specifies that the bit-string variable must be aligned on a byte
boundary. Section 8.4.3 describes the uses and implications of this
attribute.

A program can assign to a bit-string variable a value larger or smaller than
the variable’s defined length. In such cases, PL/I does the following:

e If the assigned string is shorter than the defined length, PL/I pads the
bit-string value with zeros in the direction of least significance. The

“less significant’ bits are on the right, as the string is represented by
PUT LIST.

* If the assigned string is longer, PL/I truncates the least significant bits
from the bit-string value.

You can convert bit-string variables to other data types; however, there are
some precautions you must observe if you do so. Section 8.4.4 provides
details.

118 Chapter 8

8.4.3 Alignment of Bit-String Data

PL/I distinguishes between aligned and unaligned bit-string variables.
(Bit-string constants are always unaligned.) A bit-string variable is aligned
only if it is declared with the ALIGNED attribute, as shown in this exam-
ple:

DECLARE FLAGS BIT (8) ALIGNED:

PL/I allocates storage for an aligned bit-string variable on a byte boundary
and reserves an integral number of bytes to contain the variable. Unaligned
bit-string variables always occupy only as many bits as are needed to
contain them. They need not be on byte boundaries.

In general, operations involving unaligned bit-string variables are less effi-
cient than those involving aligned bit-string variables. Unaligned bit-string
variables are also invalid as the targets of the FROM and INTO options of
record I/O statements, and as the argument of the ADDR built-in function.
Moreover, most non-PL/I programs that accept bit-string arguments re-
quire the strings to be aligned.

It is recommended, therefore, that you declare bit-string variables with the
ALIGNED attribute in most cases. Use unaligned bit-string variables when
bit strings must be packed as tightly as possible, for example, in arrays and
in structures.

8.4.4 Bit Strings and Integers

PL/I defines conversions between bit-string data and other data types, and
the VAX-11 PL/I compiler carries out these conversions. (Appendix A
contains details of the rules governing them.) However, the conversions
defined by PL/I are not always straightforward or intuitive. Consider the
following example:

DECLARE BITSTR BIT (10)3

BITSTR = 13
PUT LIST (BITSTR}:

Its output is

While the result may seem strange, it conforms to PL/I’s rules for conver-
sion to bit strings. In this case, the fixed-decimal constant 1 is converted to
a FIXED BINARY(4) value, which is in turn converted to an intermediate
bit string of length 4:

‘D001 B

Data Types 119

Next, this intermediate bit string is assigned to the variable BITSTR.
Since BITSTR is of length 10, the intermediate bit string is padded on the
right with zeros, producing the result as output by PUT LIST. If you now
attempt to interpret the value of BITSTR as an integer (for example, by
using BITSTR as the argument of the BINARY built-in function), the
result would be 64, not 1.

This example illustrates a general consideration to be kept in mind when
using bit-string variables as integers: the padding and truncation that take
place during assignment of bit strings of different lengths result in implicit
multiplication or division of the bit string’s integer value.

One more factor to remember when using bit strings to represent integers is
that extra execution time is required to reverse the order of bits when
computing th