
Programming in

VAX-11 PL/I
AA-L057B-TE

November 1983

This manual provides an informal introduction and usage guide
for the VAX-11 PL/I programming language.

digital equipment corporation . maynard, massachusetts

First Printing, July 1981
Revised, November 1983

The information in this document is subject to change without notice and should
not be· construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear in
this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that
is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1981, 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL
EduSystem
IAS

DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM-20
DEC US
DECwriter

MASS BUS
MICRO/PDP-11
Micro/RSX
PDP

RSTS
RSX
TOPS-20
UNIBUS
VAX
VMS
VT

PDT ~omoomo

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire. Alaska. and Hawaii call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6146 (all other Canadian)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of Canada Ltd.
940 Belfast Road
Ottawa. Ontario K1G 4C2
Attn: A&SG Business Manager

ZK2380

DIRECT MAIL ORDERS (USA & PUERTO RICO)*

Digital Equipment Corporation

DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

A&SG Business Manager
clo Digital's local subsidiary or
approved distributor

Internal orders should be placed through the Software Distribution Center (SOC). Digital Equipment
Corporation. Northboro. Massachusetts 01532

Contents

Page

Preface xm

Chapter 1 Introduction to Program Development on VAX/VMS
1.1 VAX/VMS Commands for Program Development . 1

1.1.1 Hints for Entering Commands . 4
1.1.2 HELP 4

1.2 File Specifications and Defaults 5
1.2.1 Directories and Subdirectories . 8
1.2.2 Changing the Default Directory . . 8
1.2.3 Logical Names 8

1.3 File Creation and Maintenance 10
1.4 Command Procedures. 13

1.4.1 Command Procedures for Program Development. 13
1.4.2 The Login Command Procedure File . . 16

Chapter 2 Creating and Correcting Programs
2.1 Introduction to EDT

2.1.1 Line Editing Command Summary.
2.1.2 The Help Facilities. . ..

2.2 Invoking and Terminating EDT.
2.2.1 Invoking EDT
2.2.2 Terminating EDT

2.3 Creating a New File in Line Mode.
2.4 Editing an Existing File in Line Mode.

2.4.1 Range Specifications
2.4.2 Maneuvering in the File . .
2.4.3 Inserting New Text.
2.4.4 Deleting and Replacing Text
2.4.5 Moving Text
2.4.6 Substituting Text
2.4. 7 Input From and Output To Files .
2.4.8 Editing a File From Another Directory

2.5 Character Editing
2.5.1 Entering and Exiting Character Editing Mode.
2.5.2 Maneuvering the Cursor . . .
2.5.3 Inserting Text
2.5.4 Deleting and Undeleting Text.
2.5.5 Moving Text

iii

18
19
21
22
22
23
24
24
25
28
29
30
31
31
33
33
34
35
35
38
38
39

2.6 Protecting and Recovering Text .
2. 7 EDT Aids for the Programmer .

2.7 .1 Structured Tabs
2.7 .2 Special-Purpose Key Definitions
2. 7 .3 Startup Command Files . . .

Chapter 3 Compiling PL/I Programs
3.1 Functions of the Compiler
3.2 The PLI Command

3.2.1 PLI Command Examples . . .
3.2.2 Specifying Input and Output Files

3.3 Using Text Libraries
3.3.1 Specifying Text Libraries in the PLI Command
3.3.2 Default PL/I Libraries

3.4 Compiler Diagnostic Messages and Error Conditions .
3.5 User-Generated Diagnostic Messages

Chapter 4 Linking Programs
4.1 Functions of the Linker . . .
4.2 Using the LINK Command .

4.2.1 Linker Messages . .
4.~.2 Linker Input Files . .
4.2.3 Linker Output Files .

4.3 Using Object Module Libraries
4.3.1 Defining the Search Order for Libraries .
4.3.2 Default User Object Module Libraries. .
4.3.3 Temporary Defaults for INCLUDE Files.
4.3.4 System Libraries
4.~3.5 Creating Shareable Images

Chapter 5 Running PL/I Programs on VAX/VMS
5.1 The RUN Command ..

5.1.1 Image Exit.
5.1.2 Run-Time Errors
5.1.3 Interrupting a Program .

5.2 Returning Status Values to the Command Interpreter

Chapter 6 Creating Libraries
6.1 The LIBRARY Command.
6.2 Creating and Correcting Text Libraries
6.3 Creating and Correcting Object Module Libraries

Chapter 7 Program Structure and Content
7.1 Blocks

7 .1.1 Begin Blocks .
7.1.2 Procedures ..

7 .2 Statements
7.2.1 Statement Labels
7 .2.2 Keywords and Punctuation .

iv

40
41
41
42
43

45
46
52
53
53
54
55

55
57

59
59
60
62
62
63
63
64
65
65
66

67
67
68
69
70

72
77
78

82
82
83
84
84
84

7.2.3 Identifiers
7 .2.3.1 Rules for Identifiers

7.2.4 Alphabetic Summary of Statements.
7 .3 Data and Variables . .
7.4 Program Text

7.4.1 Program Format
7.4.2 Comments . . .
7.4.3 %INCLUDE Statement.

Chapter 8 Data Types
8.1 Summary of Data Types
8.2 Arithmetic Data Types .

8.2.1 Fixed-Point Binary Data
8.2.2 Fixed-Point Decimal Data

8.2.2.1 Fixed-Point Decimal Constants .
8.2.2.2 Fixed-Point Decimal Variables .
8.2.2.3 Using Fixed-Point Data in Expressions

8.2.3 Floating-Point Data
8.2.3.1 Constants
8.2.3.2 Variables.
8.2.3.3 Using Floating-Point Data in Expressions .
8.2.3.4 G_FLOAT and H_FLOAT Support .
8.2.3.5 Floating-Point Data Formats

8.2.4 Pictured Data
8.2.4.1 Pictured Variables
8.2.4.2 Assigning Values to Pictured Variables
8.2.4.3 Extracting Values from Pictured Data.
8.2.4.4 Picture Characters

8.2.5 Precision of Arithmetic Data Types .
8.2.6 Scale of Fixed-Point Data Types

8.3 Character-String Data
8.3.1 Character-String Constants . . .
8.3.2 Character-String Variables ...

8.3.2.1 Fixed-Length Character-String Variables
8.3.2.2 Varying-Length Character-String Variables

8.4 Bit-String Data.
8.4.1 Bit-String Constants
8.4.2 Bit-String Variables
8.4.3 Alignment of Bit-String Data .
8.4.4 Bit Strings and Integers . . .
8.4.5 Replication Factor for String Constants .

Chapter 9 Storage Classes
9.2 Automatic Variables
9.2 Static Variables ,
9.3 Internal Variables
9.4 External Variables
9.5 Based Variables .

9.5.1 Data Types Used With Based Variables.
9.5.1.1 Pointer Data ,
9.5.1.2 Area and Offset Data.

v

86
86
87
88
91
92
92
93

95
96
97
98
98
99
99

. 100

. 100

. 101

. 101

. 102

. 102

. 103

. 103

. 104

. 105

. 106

. 111

. 112

. 113

. 113

. 114

. 114

. 115

. 115

. 117

. 118

. 119

. 119

. 120

. 123

. 123

. 124

. 124

. 126

. 126

. 127

. 127

9.5.2 Declaring Based Variables .
9.5.3 ALLOCATE Statement. . .
9.5.4 FREE Statement.
9.5.5 Referring to Based Variables
9.5.6 Example of Based Variable Use.
9.5. 7 Data Type Matching for Based Variables

9.5.7.1 Matching by Overlay Defining .
9.5.7.2 Matching by Left-to-Right Equivalence .
9.5.7.3 Nonmatching Based Variable References

9.6 Controlled Variables
9.6.1 Using the ALLOCATION Built-In Function .
9.6.2 Using the ADDR Built-In Function

9.7 Defined Variables ...

Chapter 1 O Aggregates

. 129

. 130

. 131

. 131

. 135

. 136

. 137

. 137

. 138

. 138

. 140

. 140

. 141

10.1 Arrays 144
10.1.1 Array Declarations 144
10.1.2 References to Individual Elements . 146
10.1.3 Initializing Arrays 147
10.1.4 Assigning Values to Array Variables. . 148
10.1.5 Order of Assignment and Output for Multidimensional Arrays . 149

10.2 Structures. 149
10.2.1 Structure Declarations 150
10.2.2 Member Attributes. 152

10.2.2.1 Using the LIKE Attribute . . 152
10.2.2.2 Using the REFER Option . . 153
10.2.2.3 Using the UNION Attribute . . 156

10.2.3 Structure-Qualified References
10.2.4 Arrays of Structures

10.2.4.1 Arrays of Structures that Contain Arrays.
10.2.4.2 Connected and Unconnected Arrays

Chapter 11 Declarations
11.1 Declare Statement. . .

11.1.1 Simple Declarations .
11.1.2 Multiple Declarations
11.1.3 Factored Declarations
11.1.4 Declarations Outside of Procedures
11.1.5 Initializing Variables in the DECLARE Statement.

11.2 Scope of Declarations

Chapter 12 Expressions and Assignments
12.1 Assignment Statement ..
12.2 Operators and Operands .

12.2.1 Operators
12.2.2 Operands

12.3 Expression Evaluation and Precedence of Operations
12.4 Conversion of Operands and Expressions

12.4.1 Derived Data Types for Arithmetic Operations
12.4.2 Built-In Conversion Functions
12.4.3 Implicit Conversion During Assignment .

12.5 Pseudovariables

vi

158
. 160
. 160
. 161

. 163

. 164

. 164
165
166
166
168

. 171

. 173

. 174

. 175

. 175

. 177

. 177
178
179
180

Chapter 13 Procedures
13.1 Using Procedures 187

13.1.1 Procedure Usage Concepts . 188
13.1.1.1 Entry Points . . . 188
13.1.1.2 Passing Arguments to Subroutines and Functions. . 189
13.1.1.3 Terminating Procedures . . 189

13.1.2 PROCEDURE Statement. 190
13.1.3 ENTRY Statement. i91
13.1.4 CALL Statement. 193
13.1.5 Functions and Function References . . 194
13.1.6 RETURN Statement. 195
13.1.7 RETURNS Attribute and Option . . . 196
13.1.8 Parameters and Arguments. 198

13.1.8.1 Rules for Specifying Parameters . . 198
13.1.8.2 Argument Passing. . 200

13.2 Calling External Procedures 202
13.2.1 Entry Data 204

13.2.1.1 Entry Constants. . 204
13.2.1.2 Entry Variables . . 206

13.2.2 Passing Arguments to Non-PL/I Procedures . . 206
13.2.2.1 Passing Arguments by Immediate Value . . 206
13.2.2.2 Passing Arguments by Reference. . 207
13.2.2.3 Passing Arguments by Descriptor . 208

Chapter 14 Program Control
14.1 DO Statement.

14.1.1 Simple DO
14.1.2 DO WHILE . .
14.1.3 DO UNTIL ..
14.1.4 Controlled DO
14.1.5 DO REPEAT.

14.2 BEGIN Statement.
14.3 END Statement . . .
14.4 IF Statement
14.5 SELECT Statement .
14.6 GOTO Statement . .

14.6.1 Label Array Constants
14.6.2 Label Variables

14. 7 LEA VE Statement.
14.8 STOP Statement
14.9 NULL Statement .

Chapter 15 Error Handling
15.10 ON Statement

15.1.1 Contents of an ON-Unit.
15.1.2 Search for ON-Units . .
15.1.3 Completion of ON-Units.

vii

.. 210

. . 210

. 211

. 212

. 213

. 215

. 216

. 217

. 218

. 220

. 222

. 223

. 224

. 224

. 226

. 226

. 227

. 230

. 231

. 232

15.1.4 ON Condition Descriptions
15.1.5 ON-Unit Examples

15.2 REVERT Statement.
15.3 SIGNAL Statement
15.4 Resignal Built-In Subroutine.

Chapter 16 File Control
16.1 File Control Statements

16.1.1 Declaring a File
16.1.2 OPEN Statement

16.1.2.1 General-Purpose Attributes and Options .
16.1.2.2 Opening a File

16.1.3 CLOSE Statement
16.2 PL/I Files and V AXNMS File Specifications .

16.2.1 The TITLE Option.
16.2.2 Using Logical Names.
16.2.3 Process Permanent Logical Names
16.2.4 Expanding File Specifications ...

16.3 Summary of Environment Options
16.4 Summary of File-Handling Built-In Subroutines

16.4.1 DISPLAY Built-In Subroutine
16.4.2 EXTEND Built-In Subroutine
16.4.3 FLUSH Built-In Subroutine
16.4.4 NEXT_ VOLUME Built-In Subroutine .
16.4.5 REWIND Built-In Subroutine . . .
16.4.6 SPACEBLOCK Built-In Subroutine. . .

16.5 File Error Handling
16.5.1 Values Returned by PL/I Built-In Functions.
16.5.2 Writing an Error Handler.
16.5.3 Default Error Handling.

Chapter 17 Stream Input/Output
17 .1 Statements for Stream I/0

17.1.1 GET Statement
17.1.1.1 Common Syntax Elements.
17.1.1.2 GET EDIT .
17.1.1.3 GET LIST
17 .1.1.4 GET SKIP .

17.1.2 PUT Statement ...
17.1.2.1 Common Syntax Elements.
17.1.2.2 PUT EDIT
17.1.2.3 PUT LINE .
17.1.2.4 PUT LIST .
17.1.2.5 PUT PAGE.
17.1.2.6 PUT SKIP .

17.1.3 FORMAT Statement.
17 .2 Stream I/0 Processing and Positioning .

17.2.1 Processing and Positioning of Stream Files
17 .2.2 Processing and Positioning of Print Files .
17.2.3 Processing and Positioning of Character Strings .

viii

. 232

. 240

. 241

. 242

. 242

. 243

. 243

. 244

. 246

. 247

. 250

. 251

. 251

. 252

. 253

. 254

. 255

. 263

. 263

. 2fl8

. 271

. 271

. 272

. 272

. 273

. 273

. 274

. 275

. 278

. 278

. 279

. 280

. 282

. 284

. 285

. 285

. 288

. 289

. 290

. 291

. 292

. 292

. 292

. 293

. 294

. 296

17 .3 Format Items and Specifications .
17.3.1 Format Items
17 .3.2 Format Specifications .

Chapter 18 Record Input/Output

. 296

. 296

. 297

18.1 Statements for Record 1/0 . . 301
18.1.1 READ Statement . . . 304
18.1.2 WRITE Statement. . . 308
18.1.3 REWRITE Statement . 311
18.1.4 DELETE Statement . . 314
18.1.5 Options for Record 1/0 Statements . 315

18.2 Sequential Files 318
18.2.1 Creating a Sequential File 318
18.2.2 Using Magnetic Tape Files 319

18.2.2.1 Format of Magnetic Tapes. . 320
18.2.2.2 Multivolume Tape Files . . . 320

18.3 Relative Files 321
18.3.1 The Organization of a Relative File . . 321
18.3.2 Creating a Relative File 321

18.3.2.1 Maximum Record Number . 323
18.3.2.2 Maximum Record Size . . 323

18.3.3 Using Relative Files 323
18.3.3.l Updating a Relative File. . . 325
18.3.3.2 Reading a Relative File Sequentially . . 325
18.3.3.3 Error Handling . . 326

18.4 Indexed Sequential Files 326
18.4.1 Indexed File Organization 327
18.4.2 Defining an Indexed Sequential File. . 329
18.4.3 Using Indexed Sequential Files 330

18.4.3.1 Reading an Indexed Sequential File Sequentially . . 331
18.4.3.2 Accessing Records by Alternate Key 332
18.4.3.3 Updating Records in an Indexed Sequential File . ·333
18.4.3.4 Error Handling 333

Chapter 19 Built-In Functions
19.1 Summary of Built-In Functions
19.2 Built-In Function Descriptions .

Chapter 20 Compile Time Facilities
20.1 The VAX-11 Common Data Dictionary(CDD)

20.1.1 Creating and Maintaining a CDD ..
20.1.2 Using the CDD.

20.2 The VAX-11 PL/I Embedded Preprocessor .
20.2.1 Preprocessor Compiiation Control.
20.2.2 Preprocessor Procedures
20.2.3 Preprocessor Statements

20.2.3.1 %Assignment Statement.
20.2.3.2 %Null Statement
()(\ () ') ')
~v.~.u.u %ACTIVATE Statement

ix

. 334

. 338

. 372

. 373

. 374

. 376

. 376

. 377

. 380

. 382

. 382

. 382

20.2.3.4 %DEACTIVATE Statement .
20.2.3.5 %DECLARE Statement . .
20.2.3.6 %DICTIONARY Statement
20.2.3. 7 %DO Statement. . .
20.2.3.8 %END Statement. . .
20.2.3.9 %ERROR Statement .
20.2.3.10 %FATAL Statement .
20.2.3.11 %GOTO Statement .
20.2.3.12 %IF Statement. . . .
20.2.3.13 %INCLUDE Statement.
20.2.3.14 %INFORM Statement
20.2.3.15 %LIST Statement ..
20.2.3.16 %NOLIST Statement
20.2.3.18 %PAGE Statement. .
20.2.3.19 %PROCEDURE Statement.
20.2.3.20 %REPLACE Statement
20.2.3.21 %RETURN Statement .
20.2.3.22 %SBTTL Statement .
20.2.3.23 %TITLE Statement .
20.2.3.24 %WARN Statement .

20.2.4 Preprocessor Built-In Functions.
20.2.4.1 ERROR Preprocessor Built-In Function
20.2.4.2 INFORM Preprocessor Built-In Function.
20.2.4.3 LINE Preprocessor Built-In Function. . .
20.2.4.4 VARIANT Preprocessor Built-In Function
20.2.4.5 WARN Preprocessor Built-In Function .

Appendix A Rules for Conversion of Data

. 384

. 385

. 386

. 387

. 387

. 388

. 388

. 388

. 389

. 390

. 391

. 391

. 392

. 392

. 392

. 396

. 396

. 397

. 397

. 398

. 398

. 400

. 400

. 400

. 400

. 401

A.l Assignments to Arithmetic Variables 402
A.1.1 Arithmetic to Arithmetic Conversions . 402
A.1.2 Pictured to Arithmetic Conversions. . . 402
A.1.3 Bit-String to Arithmetic Conversions . . 403
A.1.4 Character String to Arithmetic Conversions. . 403

A.2 Assignments to Bit-String Variables. 404
A.2.1 Arithmetic and Pictured to Bit-String Conversions . 404
A.2.2 Character-String to Bit-String Conversions . . 404

A.3 Assignments to Character-String Variables 405
A.3.1 Arithmetic to Character-String Conversions. 405

A.3.1.1 Conversion from Fixed-Point Binary or Decimal . 405
A.3.1.2 Conversion from Floating-Point Binary or Decimal . . 406

A.3.2 Pictured to Character-String Conversions. .
A.3.3 Bit-String to Character-String Conversions .

A.4 Assignments to Pictured Variables
A.5 Conversions between Offsets and Pointers .

Appendix B Calling System Services

. 407

. 408

. 408

. 408

B.1 Declaring System Services . 410
B.2 SPECIFYING ARGUMENTS FOR SYSTEM SERVICES 411

B.2.1 Argument-Passing Mechanisms Used by System Services . . 411
B.2.2 Parameter Descriptors for System Services Data Types . . 412
B.2.3 Variable-Length Argument Lists 413
B.2.4 Symbol Definitions for System Service Arguments . 413

x

B.3 Testing Return Values from System Services
B.4 Examples of System Services

B.4.1 Logical Name Translation
B.4.2 Timer and Time Conversion Routines

B.4.2.1 Obtaining a Time Value in System Format
B.4.2.2 Setting the Timer. :

Appendix C ASCII Character Set

Index

Figures
1 Commands for PL/I Program Development
2-1 VT52 Keypad
2-2 VTlOO Keypad
6-1 Creating and Using an INCLUDE File Library .
6-2 Creating and Using an Object Module Library
7-1 Using the %INCLUDE Statement .
9-1 External Variables.
9-2 Using the ADDR Built-In Function
9-3 An Overlay Defined Variable. . . .
10-1 Connected and Unconnected Arrays
11-11 Scope of Internal Names ..
15-1 Search for ON-Units
17-1 Forms of the GET Statement
17-2 Forms of the PUT Statement
18-1 A Relative File
18-2 An Indexed Sequential File .
19-1 Example of the BOOL Built-In Function .

Tables

. 414

. 415

. 415

. 417

. 417

. 418

. 2
36
36
78
80
93

. 125

. 134

. 143

. 162

. 169

. 233

. 278

. 286

. 322

. 328

. 343

1-1 Summary of File Specification Syntax . . 6
1-2 Commands for Maintaining Logical Names. . 10
1-3 VAX/VMS Commands for File Maintenance . 11
2-1 Summary of Line Editing Commands 20
2-2 Single-Line Range Specifications. . 25
2-3 Multiple-Line Range Specifications 26
3-1 PL/I Compiler Options 50
3-2 Listing Notation Characters 51
4-1 LINK Command Qualifiers 61
7-1 Punctuation Marks Recognized by V AX-11 PL/I . 85
7-2 Summary of VAX-11 PL/I Statements. . . 87
7-3 Summary of VAX-11 PL/I Attributes . . . 89
8-1 Implied Attributes for Computational Data. 97
8-2 VAX-11 Floating-Point Types 102
8-3 Floating-Point Types Used by PL/L , , , . . 103
8-4 Picture Characters. 106
8-5 ASCII Representation of Encoded-Sign Digits . 109
12-1 Operators 17 4
12-2 Precedence of Operations 176
12-3 Built-In Functions .for Conversions Between Arithmetic and Nonarithmetic

Types 179

xi

15-1 Summary of ON Conditions
16-1 File Description Attributes _ _ _ .
16-2 File Description Attributes Implied at Open Time
16-3 Default Process Logical Names
16-4 Summary of ENVIRONMENT Options
16-5 Summary of File-Handling Built-In Subroutines .
16-6 ENVIRONMENT Option Values Returned by DISPLAY .
16-7 File Attribute Information Returned by DISPLAY
16-8 Device Information Returned by DISPLAY ..
17-1 Summary of Format Items
18-1 Attributes and Access Modes for Record Files
18-2 Key Data Types.
19-1 Summary of PL/I Built-In Functions
20-1 Summary of PL/I Preprocessor Statements . .
20-2 Summary of PL/I Preprocessor Built-In Functions
B-1 Input Arguments for System Services. .
B-2 Output Arguments for System Services .
C-1 ASCII Character Set.

xii

. 228

. 245

. 248

. 254

. 256

. 263

. 265

. 269

. 270

. 298

. 302

. 332

. 335

. 380

. 399

. 412

. 413

. 422

Preface

This manual is ...
An informal guide for programmers who want to write PL/I programs that
will be executed on a VAX-11 computer running the VMS operating sys
tem. It provides general information on creating, correcting, and compiling
PL/I programs, as well as reference information on the language and its
syntax rules.

Readers of this manual are assumed to have prior knowledge and under
standing of the PL/I language. From this manual, they can determine what
statements, data type attributes, and built-in functions are available in
VAX-11 PL/I and can get started writing new programs or modifying exist
ing programs.

This manual is not ...
A complete and detailed reference manual for the VAX-11 PL/I language
nor for the V AXNMS command language.

Where to Find More Information
Introduction to VAX-11 PL/I contains an overview of the PL/I language
and its implementation for the VAX-11 computer. The Introduction is
recommended for all programmers who are not familiar with PL/I or who
need information on the VAX-11-specific capabilities of VAX-11 PL/I.

The VAX-11 PL/I Encyclopedic Reference contains a complete definition
of the VAX-11 PL/I programming language, including the keywords and
the semantic and syntax rules of PL/I statements, attributes, and built-in
functions. The Encyclopedic Reference contains descriptions of language
elements and topics in alphabetic order.

The companion document to the Encyclopedic Reference is the VAX-11
PL/I User's Guide. It contains information on developing programs with
the VAXNMS command language, on using the extensive I/0 capabilities
provided in VAX-11 PL/I, and on programming facilities available to PL/I
programs executing under the exclusive control of the V AXNMS operating
system.

xiii

The manuals that accompany the operating system provide full informa
tion about VAX/VMS; this manual makes reference to some of them. For a
complete list of all VAX/VMS documents and their order numbers, see the
VAX -11 Information Directory and Index.

Summary of Contents
Programming in VAX-11 PL/I consists of 20 chapters and 3 appendixes:

• Chapter 1 introduces the procedures you use to create, test, and cor
rect a PL/I program on the VAX/VMS operating system.

• Chapter 2 provides information you need to create and correct a PL/I
source file. It describes EDT, the DEC Standard Editor.

• Chapter 3 describes the VAX-11 PL/I compiler and the command that
invokes it.

• Chapter 4 describes the linker, which converts the output of the com
piler into an executable image that you can run on the system.

• Chapter 5 describes the RUN command, which starts program
execution.

• Chapter 6 describes the library utility, which you can use to create
text and object module libraries that contain code common to several
programs.

• Chapter 7 describes the structure of a PL/I program and summarizes
the various elements of a program. Chapter 7 introduces the rest of
this manual, which covers the PL/I language in greater detail.

• Chapter 8 describes PL/I's computational data types.

• Chapter 9 describes the various storage classes to which a variable can
belong.

• Chapter 10 describes aggregates, which are collections of variables
that can be referred to by name or individually.

• Chapter 11 describes data declarations.

• Chapter 12 describes expressions and assignments, which are used by
PL/I programs to compute values and assign them to variables.

• Chapter 13 describes how you can use procedures as subroutines or
functions.

• Chapter 14 describes statements and a data type that you can use to
control the flow of execution within your program.

• Chapter 15 describes statements and a built-in subroutine that allow
your program to respond to errors that occur during execution.

xiv

• Chapter 16 describes PL/I statements, data types, and built-in
subroutines that allow your program to control files.

• Chapter 17 describes statements and techniques for performing stream
I/0, which consists of a stream of characters passed to or from the
program.

• Chapter 18 describes statements and techniques for performing record
I/0, in which the program reads and writes entire records instead of
streams of characters.

• Chapter 19 describes the PL/I built-in functions, which provide a
variety of services to the programmer.

• Chapter 20 describes the VAX-11 PL/I compile-time facilities, which
permit conditional compilation.

• Appendix A contains the rules that PL/I follows when it converts
values of one data type to another data type.

• Appendix B describes how a PL/I program can call a V AXNMS sys
tem service to perform system-specific operations not available
through PL/I statements.

• Appendix C contains a table of the set of ASCII characters.

Conventions Used in This Document

IBrn A symbol with a 1- to 3-character abbreviation
indicates that you press a key on the terminal, for
example, IBrn or @9.

(CTRL/x) The symbol (CTRL/x) indicates that you press the key
"x" while holding down the key labeled CTRL,
for example, (CTRL/Cl. In examples, this control key
sequence is shown as Ax, for example AC, because
that is how the VAXNMS system prints control
key sequences.

Ent e r st r in a> Ab c d (BIT) In computer dialogs, the user's response to a
prompt is printed in red ink.

DECLARE;.; FI;<Eo; A vertical ellipsis indicates that not all of the text
of a program or program output is illustrated.
Only relevant material is shown.

>< = 5

option, ... A horizontal ellipsis indicates that additional
parameters, options, or values can be entered. A
comma preceding the ellipsis indicates that suc
cessive items must be separated by commas,

xv

quotation mark
apostrophe

The term quotation mark refers to the quotation
mark symbol ("). The term apostrophe refers to
the single quotation mark symbol (').

[OPTIONS (option, ...)] Except in VMS file specifications, square brack-

[LIST]
EDIT

{
/ALL }
module, ...

FILE (file-reference)

ets indicate that a syntactic element is optional.

Brackets surrounding two or more stacked items
indicate conflicting options, one of which may be
chosen.

Braces surrounding two or more stacked items in
dicate conflicting options, one of which must be
chosen.

An uppercase word or phrase indicates a keyword
that must be entered as shown; a lowercase word
or phrase indicates an item for which a variable
value must be supplied.

xvi

Chapter 1

Introduction to Program Development
on VAX/VMS
The V AX-11 operating system, VAX/VMS, and its command language,
DCL, provide numerous tools and utilities for program development. This
chapter summarizes the basic things you need to know to use the command
language in developing and testing your PL/I programs, including

• The commands you use to create, compile, link, and execute PL/I
programs.

• The rules for specifying input and output files for commands and
programs.

• The commands available to you for file creation, modification, and
maintenance.

For a tutorial introduction to these concepts, see the VAX/VMS Primer.
For detailed definitions of commands and file specifications, see the
VAX/VMS Command Language User's Guide.

1.1 VAX/VMS Commands for Program Development
Figure 1-1 illustrates the DCL commands you use to create and run PL/I
programs. (Section 1.2 explains how each command finds and creates
appropriate files.) The commands are shown in their simplest forms. You
can also specify qualifiers on the commands to request special processing or
to indicate a special type of input file, as in these examples:

$ PLIILIST=LP: METRIC

$LINK METRIC1MYLIB/LIBRARY

In the PLI command example, the /LIST qualifier requests the compiler to
create a listing file for the source program METRIC.PL! and to output the
file on a line printer (LP: is the device name for line printers). In the LINK
command example, the /LIBRARY qualifier indicates that the input file
MYLIB is a program library consisting of object modules. When this com
mand is executed, the linker will automatically search this library to locate
external procedures and external variables that are referenced in the source
file METHIC.PLI.

Key:

~ input or output file

/ optional input or output file

$ EDIT METRIC.PU 0

$ PU METRIC

object

libraries

$ LINK METRIC

$ RUN METRIC Q

ZK-019-81

Figure 1-1: Commands for PL/I Program Development

2 Chapter 1

0 The EDIT command invokes a system editor to create a
disk file containing PL/I source statements.

The PL/ command invokes the PL/I compiler to process
the source statements and verify that there are no syntax
errors or violations of the language rules. It searches
user-specified libraries and CDD dictionaries, if any, and
default libraries to locate INCLUDE files referenced in the
source program. If there are no errors, the compiler cre
ates an object module and optionally a listing.

The LINK command binds object modules into an execut
able program image. The linker searches system libraries
and user-specified libraries, if any, to locate all run-time
modules, external procedures, external variables, and
global symbols required for the image.

If an error occurs, you may need to reissue the LINK com
mand, specifying other object modules or libraries that
contain needed definitions.

e The RUN command executes a program image.

If your program fails or produces unexpected output, it
probably has an error. After you determine the cause of
the error, you can correct the source program, recompile,
and relink the program.

Introduction to Program Development on VAXNMS 3

The commands shown in Figure 1-1, and others of specific interest to PL/I
programmers, are described in detail in Chapters 2 through 6.

1.1.1 Hints for Entering Commands
Note the following hints for entering commands:

• You can truncate (shorten) any command name or qualifier name to
four characters. In some cases, fewer than four characters are ac
cepted, so long as there is no ambiguity about the name.

• You must precede each qualifier name with a single slash character
(/).

• If you omit a required parameter, for example, a file specification, the
DCL command interpreter will prompt you to enter it.

• You can enter a command on as many lines as you wish, as long as you
end each continued line with a hyphen (-). The command interpreter
prompts for the rest of the command with the characters $-.

• After you have entered a complete command, you must press ID to
pass the command to the system for processing.

• You can cancel a command before the final ID by using ©TRL/Y) .

• You can interrupt command execution by using tTRL/Yl. To resume the
interrupted command, enter the CONTINUE command. To stop pro
cessing completely after pressing PRL/Y), you can begin entering other
DCL commands.

If you make an error entering a command, for example if you misspell a
command or qualifier name, the command interpreter issues an error mes
sage and you must reenter the entire command string.

1.1.2 HELP
You can obtain online information about a command, its parameters, and
its qualifiers by entering the HELP command. When you request help on a
command name, HELP displays a brief description of the command and
lists the additional information available. For example, you can enter

$HELP PRINT

The HELP command then displays a description of the PRINT command
and a list of its qualifiers. To get further information, you must reenter the
HELP PRINT command with the name of the qualifier you want informa
tion about. For example:

$ HELF PRINT /JOB_COUNT

4 Chapter 1

The HELP command also provides detailed information about the PLI
command and the VAX-11 PL/I language. You can obtain information
about PL/I topics hy specifying a PL/I keyword, For example:

$ HELP PLI STATEMENTS

Information is also available at nested levels, for example:

$ HELP PLI QUALIFIERS /SHOW

This command causes the valid options of the VAX-11 PL/I /SHOW quali
fier to be displayed.

1.2 File Specifications and Defaults

A file specification provides VAXNMS with all the information it needs to
locate a unique file. To define a unique PL/I source file, you need only give
the file a unique name and a file type of PLI. All other portions of a file
specification can default to system- and command-supplied names.

In Figure 1-1, the following DCL commands appear:

$ EDIT METRIC.PL!
$ PLI METRIC
$ LINK METRIC
$RUN METRIC

For these commands, defaults are in effect as follows:

• For all the commands shown, the system uses the current default
device and directory to locate a file specified.

• The EDIT command does not assume a default file type. Here, and in
Figure 1-1, the file type PLI is specified because it is the default file
type for the PLI command.

• The PLI command assumes a default input file type of PLI. Unless
you use qualifiers on the PLI command to change the output file
types, the compiler uses LIS and OBJ for the listing and object files,
respectively.

• The LINK command assumes a default input file type of OBJ. Unless
overridden by qualifiers, the default file types EXE and MAP are used
by the linker for the image and map files, respectively.

• The RUN command assumes a default input file type of EXE. file
type is EXE.

Table 1-1 summarizes the syntax of V AXNMS file specifications, giving a
description of each field in a file specification and a summary of the de
faults applied. The following subsections provide additional examples of
file specifications and explanations of some useful applications of defaults.

Introduction to Program Development on VAXNMS 5

~ Table 1-1: Summary of File Specification Syntax

0
::::r"
p)

"O
........
ro,

I-'

Field

node

device
dev
c
u

directory
[name]
[name.name ...]

Syntax Rules

1 - 6 characters
terminated by : :

valid mnemonic or
logical name
A-- Z
0 - 65535

1 - 9 characters
up to 8 names,
separated by
periods (.)

Defaults

local node

SYS$DISK

A
0

current default

Notes

node::node:: defines a path
node"access-control":: in
VAX/VMS, username password
node:: "non-VMS-file-specification"

CR -card reader NET -network device
DB -disk device MB -mailbox
DM -RK06/7 disk MT -magnetic tape
DX -floppy disk TT -terminal
LP -line printer TU -cartridge tape

[* 1 all directories
[name ...] all directories in path
[* ...] all subdirectories in all directories
[-.name] back up a directory

~

::J
~ ..,
0
Q..
i::::
n
~ s·
::J
~
0

'""Cl ..,
0

(Jq ..,
~ s
t;
CD
<:
CD

0
"C s

CD
::J
~

0
::J

< >
~
~
r::n

......

Table 1-1 (Cont.): Summary of File Specification Syntax

Field

filename

file type

version

Syntax Rules

0 - 9 characters

0 - 3 characters
preceded by .

0 - 32767
preceded by ; or .

Defaults

Input: temporary
defaults apply

Output: same as
input file

Applied by
command; temporary
defaults apply

Input: highest
Output: highest + 1

Notes

* - all file names
String - match all names containing 'string '
str%ng - match any character in % position

W.ildcard rules same as for filename

Command

PLI
LINK
LIBRARY
LIBRARY /TEXT
RUN
PRINT, TYPE

* - all versions

Input

PLI,TLB
OBJ, OLB
OBJ
TXT
EXE
LIS

; - use most recent version

Output

OBJ,LIS
EXE, MAP
OLB
TLB

1.2.1 Directories and Subdirectories
A directory file lists files on a device that belong to a particular user or
account. VAXNMS uses the information in the directory file to locate the
desired file in the directory.

To specify a directory, enclose its name in square brackets:

[PROJECT]

If you do not include a directory in a file specification, V AXNMS uses
your current default directory. Section 1.2.2 shows how to change this
default.

Within a directory, you can create subdirectories to contain related files.
You then refer to the subdirectory by concatenating the directory and
subdirectory names, separated by a period. For example:

[PROJECT.SOURCE]

Use the CREATE/DIRECTORY command to create a subdirectory. For
example, the commands

$ CREATE/DIRECTORY [PROJECT.SOURCEJ
$ CREATE/DIRECTORY [PROJECT.OBJECT]
$ CREATE/DIRECTORY [PROJECT.LIST]

create the three subdirectories shown, which can then be used to contain
source files, object files, and listing files, respectively. Once you have cre
ated a subdirectory, you can copy or rename files into it, list the files it
contains, make it your default directory, and use it in any other way as you
would a main directory.

1.2.2 Changing the Default Directory
To change the default device or directory that V AXNMS applies to all file
specifications, use the SET DEFAULT command. Unless overridden in the
explicit specification of an individual file, defaults set by this command
remain in effect for all subsequent commands until you either issue a new
SET DEFAULT command or log off the system. For example:

$ SET DEFAULT CPRCJECT.SCURSEJ
$ PLI METRIC

The PLI command compiles the source program METRIC.PL! from the
current default directory [PROJECT.SOURCE]. The output file,
METRIC.OBJ, is also placed in this directory.

1.2.3 Logical Names
An alternative way of referring to a specific device, directory, or file is to
use a logical name. A logical name can represent an entire file specification

8 Chapter 1

or the leftmost portion of one. You can create logical names with the
DEFINE command. For example:

$ DEFINE SRC CPROJECT,SOURCEJ
$ T~PE SRC:ALPHA.PLI

The DEFINE command creates the logical name SRC to represent the
directory specification [PROJECT.SOURCE]. When SRC is used in the
TYPE command, the system translates it: that is, the logical name in the
file specification is replaced by its current equivalence name. The TYPE
command displays the file [PROJECT.SOURCEJALPHA.PLI.

Only one logical name is permitted in a file specification. The name must
be the first or only element of the file specification, and it must be followed
by a colon if any other elements are present.

The V AXNMS system maintains tables of all logical names that are cre
ated by users. There are three kinds of logical name table:

• Process logical name tables. A separate logical name table exists for
every user, or process, on the system. Names in a process logical name
table are available only to the user who defines them. A DEFINE
command places a logical name in your process logical name table by
default.

• Group logical name tables. A separate logical name table exists for
every group in the system. The names in any of these tables can be
accessed only by users who have the same group number in their user
identification code.

• System logical name table. There is only one system logical name
table. The logical names in this table can be accessed by all users.

When the system translates a logical name, it first searches the process,
then group, then system logical name tables, in that order, for a logical
name. Each time the system translates a logical name, it checks to see if
the result is itself a logical name. If so, the system translates the result.
Therefore, you can define a logical name in terms of another logical name.

You can determine the current equivalence for a logical name by entering
the SHOW TRANSLATION command. For example:

$ SHOW TRANSLATION SRC
SRC = CPROJECT.SRCJ (process)

V AXNMS system programs use logical names in many ways. For example,
the PL/I compiler and the linker use them to provide default libraries for
INCLUDE modules and object module libraries, respectively. (See Sec
tions 3.3 and 4.3 for a full description.)

A principal use for programmers is to provide device and file independence
for executahle program images or command procedures. For example, the

Introduction to Program Development on V AXNMS 9

name you give a file constant in a PL/I source program can be a logical
name: each time you execute the program, you can issue a DEFINE com
mand to provide a new equivalence name for the PL/I file. The relationship
between PL/I file constants and VAX/VMS file specifications is described
in Section 16.2.

Table 1-2 lists the DCL commands for creating, deleting, and examining
logical names.

Table 1-2: Commands for Maintaining Logical Names

Command

DEFINE

DEFINE/USER

ASSIGN

DEASSIGN

SHOW TRANSLATION

SHOW LOGICAL

Function

Creates a logical name and places it in the specified logical
name table. The /PROCESS, /GROUP, and /SYSTEM
qualifiers specify which table.

Creates a logical name for the execution of the next image
only. The name is automatically deleted after the next com
mand or program is executed.

Performs the same function as DEFINE. However. the order
of the command parameters is reversed.

Deletes a logical name from the process, group, or system
logical name table.

Displays the result of translating a logical name once, and
displays the name of the table in which the result was found.
This command can be issued when a program is interrupted
with ~ without terminating the program (see Section
5.1.3.).

Displays the result of translating a logical name recursively.
The SHOW LOGICAL command causes the current image
that is executing, if any, to he terminated (see Section
5.1.3).

Sections 16.2.2 and 16.2.3 describe uses of logical names that are of special
interest to the PL/I programmer.

1.3 File Creation and Maintenance
Table 1-3 describes some of the basic file-handling commands available to
programmers in DCL. For online assistance in entering a command or
determining its parameters, qualifiers, or options, use the HELP command
at a terminal.

10 Chapter 1

........
::i
c-t.,
0
~
c
("')
c-t-

5·
::i
c-t-
0

~ .,
0

crq .,
p.;

s
u
('!)

<:
('!)

0
'O
s
('!)

::i
c-t-

0
::i

< > :x:
<
~
w.

Table 1-3:

Category

File creation

Correcting and
modifying files

Cataloging and
organizing files

VAX/VMS Commands for File Maintenance

Command

CREATE

EDIT[/ editor]

EDIT[/editor]

CREATE/DIRECTORY

DIRECTORY

Command Function

Creates a file from records or data that follows in the input stream;
for example, lines entered from a terminal or placed in a batch input
file.

Invokes one of the VAX/VMS interactive editing programs, for ex
ample, SOS or EDT .

Invokes one of the interactive editors to make changes or additions to
a disk file.

Establishes a new directory or a hierarchy of d~rectories to catalog
files.

Lists files and information about them. Can list files with common
file names or file types, files in one or more directories, files created
since a certain date, and so on.

~

(')
::r
~

'O
M
(!)
o-;

I-'

Table 1-3 (Cont.): VAX/VMS Commands for File Maintenance

Category

Cataloging and
organizing files
(Cont.)

Copying and
backing up files

Deleting files

Command

LIBRARY

RENAME

SET DEFAULT

{

ALLOCATE}
BACKUP
INITIALIZE
MOUNT

COPY

DELETE

PURGE

Command Function

Creates and maintains libraries of INCLUDE text modules and li
braries of object modules.

Changes the directory in which a file is cataloged; or changes the file
name, file type, or version number of a file or files.

Changes the current default device or directory.

Provide device-handling and control commands that let you access
data written on nonsystem disks, on magnetic tapes, or on punched
cards; or that output data to a disk or tape.

Copies the contents of a file or files to another file or files.

Makes the contents of a file inaccessible by removing its directory
entry.

Deletes a specified number of earlier versions of a file or a group of
files.

1.4 Command Procedures

commands and, optionally, data. You can cause the commands in the
procedure to be executed in either of two ways:

• Interactively: you specify the name of the file following the@ (Execute
Procedure) command. For example:

$ @TE:3TAM

The @ command assumes that the file type of the specified command
procedure is COM. This command executes the procedure
TESTAM.COM.

• You can submit the command procedure to a system batch job queue
for execution. After the job completes, the system prints a log file that
indicates how the job ran. The SUBMIT command submits a job. For
example:

$ SUBMIT TESTAM

This command places the file TESTAM.COM in the system batch job
queue.

The following subsections contain two examples of command procedures.

1.4.1 Command Procedures for Program Development
You can devise command procedures to simplify and enhance your pro
gram development. For example, you can write a command procedure that
will invoke an editor with which you can create a PL/1 source file, and,
when you exit from the editor, will automatically compile, link, and run
your program. The command procedure can specify all the needed libraries
for the PLI and LINK commands, and can even contain all the input data
required to test the program.

Command procedures can also be generalized. By taking advantage of such
DCL commands as the assignment statement and the IF, GOTO, and ON
commands, you can write a command procedure that looks like a PL/I
program: it can process variables, make decisions based on their values,
and handle errors.

The following example will give you an idea of how to construct command
procedures to help you with your PL/I program development and testing.
The procedure issues all the DCL commands necessary to create and test a
single-module, interactive program. The notes following the example are
keyed to the numbered lines of the example.

Introduction to Program Development on VAX/VMS 13

$ ON WARNING THEN EXIT 0
$ IF Pl .NES. 1111 THEN GOTO EDIT }A
$INQUIRE Pl "File nar11e:" ~

$ ED IT:
$ DEFINE/USER SYSSINPUT SYSSCOMMAND 8
$EDIT 'Pl',PLI 0
$WRITE SYSSOUTPUT "Besinnins cor11Pile .. ,"
$ PLI Ip 1 I 0
$WRITE SYSSOUTPUT "Besinnins linf: .••• "
$LINK 'Pl' f)
$DEL 'Pl',OBJi* 0
$WRITE SYSSOUTPUT "Besinnins run •• ,"
$ DEFINE/USER SYSSINPUT SYSSCOMMAND 0
$ RUN Ip 1 ! ~
$INQUIRE CLEANUP "Purse Pre\.!ious t.iersions?" 4D
$ IF CLEANUP THEN PURGE I Pl I.*

0 This command establishes the way the command procedure deals with
errors that occur during its execution. Should any command return a
severity of WARNING or worse, execution of the command procedure
will cease.

Each command that is intended for the command interpreter (all com
mands, in this example) must begin with a dollar sign ($).

8 These three commands establish the name of the PL/I source file. You
can supply parameters when you invoke a command procedure. These
parameters are assigned to symbols named Pl, P2, and so on up to P8.
For example, if the command procedure above were named P.COM and
you wanted to work on a source file named METRIC.PL!, you could
issue the command
$ @P METRIC

This command would invoke P.COM and assign the value METRIC to
Pl.

If you do not supply a parameter with the command, the symbol Pl is
null. The first command of the three tests whether Pl is null. If not, the
command procedure skips to the line labeled "EDIT:". If Pl is null, the
procedure requests that you supply a file name, assigns the file name to
Pl, and only then proceeds to EDIT:. This dialog appears as follows on your
terminal:
$ @P

File name: METRIC

14 Chapter 1

0 This command gives the logical name SYS$INPUT the equivalence
name of SYS$COMMAND (that is, your terminal) for the duration of
the next image, which is the invocation of the editor that foiiows. The
editor, while active, will receive its input from the terminal. If you omit
this command, the editor seeks its input from the command procedure
and therefore is not usable interactively.

8 This command invokes a system editor to edit the file having the name
you specified (now assigned to Pl) and the type PLI. The apostrophes
around Pl request substitution; they are required syntax.

0 This command types the message "Beginning compile ... " on your termi
nal. It does not execute until you have finished using the editor. Since
the commands in a command procedure are normally not echoed on
your terminal, such messages are helpful for keeping track of the proce
dure's progress.

0 This command compiles the source file having the name you specified
and (by default) the type PLI. If you customarily use extra qualifiers,
libraries, and so on, you can include them here.

0 This command links the object file having the name you specified and
(by default) the type OBJ.

0 This command deletes the object file, which is no longer necessary after
the link operation.

0 This command serves the same purpose as the one preceding the EDIT
command. It equates the default PL/I device SYSIN to your terminal
instead of the command file, thus allowing you to enter data for your
program from your terminal.

Alternatively, you can include test data for your program in the com
mand procedure. Such data would consist of lines with no preceding
dollar signs following the RUN command in the procedure. However, in
this case you must omit the DEFINE/USER command.

~ The RUN command executes the file having the name you specified
and (by default) the type EXE.

G> These two lines ask you if you wish to purge previous versions of the
source and image file. If you answer YES or Y, the PURGE command
purges them.

Introduction to Program Development on V AXNMS 15

1.4.2 The Login Command Procedure File
When you log in, the system searches for a file in your directory named
LOGIN.COM. If such a file exists, the system executes the commands
contained in it before giving you control. The login command file is there
fore useful for establishing logical names and symbols that you use often.

The login command procedure shown in the following example contains
commands that might be of special interest to a programmer. The notes
following the example are keyed to the numbered lines.

$ 0 : = = II SHOW QUEUE/BATCH/ DE\)l CES/ ALL/ FULL II 0
$ p :== "@P" f)
$ EDT :== "EDIT/EDT" }
$ PED :== "EDIT/EDT/COMMAND=PROG.EDT" €)
$ LIST :== "PLI/NOOBJ/LIST=LP:"
$ DEFINE
$ DEFINE
$ DEFINE
$ DEFINE
$ DEFINE
·$DEFINE

CODE DB 1 : [PROJECT, SOURCE, PL I J }
LISTS DB1:[PROJECT.LISTINGSJ ~

PROG DB1:[PROJECT.IMAGESJ
LIB DB1:[PROJECT,LIBRARYJ
PLI $LIBRARY LIB: I NCF I LES, TLB } 0
LNK$LIBRARY LIB:MATHMODS,OLB

0 This command and the four that follow it define symbob. Once defined,
symbols can replace their equivalent DCL command lines. They pro
vide a convenient shorthand for lengthy, frequently used command
lines. The command shown equates the symbol Q to the qualified
SHOW QUEUE command, which displays the status of print and batch
queues.

f) This command equates the symbol P to the command @P. When you
type Pin response to the DCL prompt, DCL executes the command file
P.COM from your current directory. (This could be the program devel
opment command file shown in Section 1.4.1.) Defining this symbol
saves you the trouble of typing the at-sign (@).

€) These three commands equate symbols to commonly used command
lines. The first symbol invokes EDT, a system editor. The second sym
bol invokes EDT with a special startup command file. The third symbol
invokes the PL/I compiler to compile a source file and produce a listing
on the line printer without creating an object or listing file. When you
use these symbols, you type a file specification following the symbol. To
use LIST, you would type

$ UST METRIC

16 Chapter 1

0 These four commands define four logical names. Once they are defined,
you can use them at the beginning of file specifications to save yourself
the trouble of typing all the device and directory information. The
command

$ PLI CODE:METRIC

would be equivalent to

$ PLI DBl:CPROJECT.SOURCE.PLIJMETRIC

0 These two commands define the logical names PLI$LIBRARY and
LNK$LIBRARY. Note that they use the logical name LIB, defined in
the previous line. These two logical names are default library specifica
tions for the PL/I compiler and the linker, respectively. The PL/I com
piler searches PLI$LIBRARY to locate INCLUDE modules that it can
not find by searching text libraries specified in the PLI command. The
linker searches LNK$LIBRARY to resolve references that it cannot
resolve by searching libraries and modules specified in the LINK
command.

Introduction to Program Development on VAX/VMS 17

Chapter 2

Creating and Correcting Programs

The first step in developing a V AX-11 PL/I program consists of creating
the program's source file. VAX/VMS offers two supported text editors that
allow you to do this: SOS and EDT. This chapter provides an introduction
to the use of EDT. For information on SOS, refer to the VAX-11 SOS Text
Editing Reference Manual.

There are three other sources of information on EDT available to you. The
first is the VAX-11 EDT Editor Reference Manual. 1 The second is the
computer-assisted course titled "Introduction to the EDT Editor" supplied
with the VAX/VMS operating system. The third is EDT's help facility,
described in Section 2.1.2.

2.1 Introduction to EDT

EDT, the DEC Standard Editor, is an interactive general-purpose text
editor. It offers two modes of operation: line editing, in which operations
are performed on entire lines of text; and character editing, in which opera
tions are performed on characters and words as well as on lines. Line
editing is possible on either hardcopy or video terminals. Character editing,
while usable on hardcopy terminals, is most effective on video terminals.

Line editing mode, with its English-like commands, is simple for the inex
perienced user to learn. Character editing mode, while requiring practice,
is also very simple. Therefore, EDT is a good editor for someone who must
learn a text editor quickly.

1. Some installations may have the EDT Editor Manual instead of the VAX-11 EDT Editor
R<'ference Manual. The two manuals contain the same information about EDT.

18

EDT also offers many advanced features for more experienced users:

• Multiple text buffers. By default, editing operations take place within
a single text buffer called MAIN. However, you can maintain an un
limited number of alternate text buffers as "holding areas" for text
that you do not necessarily wish to incorporate in the output file.

• Flexible input and output commands. You can copy files into an EDT
text buffer after beginning the editing session, and you can output text
buffers (or portions of text buffers) to files before ending the session.

• Macro capability. You can create sequences of line editing commands
that you invoke with a single command.

• The ability to define keys for custom character editing applications.
For example, a keypad key can be defined so that it inserts a specified
line of text each time it is pressed. This function is especially useful in
programming applications where certain statements may be repeated
frequently.

Finally, EDT protects your text. Should your editing session end in an
unexpected manner, you can recover all your editing operations by reenter
ing the EDT command line with the /RECOVER qualifier. EDT then
"replays" your editing session up to the point of interruption, using the
contents of the journal file that it maintained during the lost session.

The following subsections introduce EDT's line editing commands and
help facilities.

2.1.1 Line Editing Command Summary
When you invoke EDT, and throughout your editing session, EDT prompts
you to enter line editing commands by displaying an asterisk. For example:

$EDIT/EDT METRIC,PLI
1 METRIC: PROCEDURE DPTIONS<MAINl;

*
Table 2-1 describes briefly (in alphabetical order) the most useful com
mands that you can enter in response to the line editing prompt(*). Exam
ples of these commands occur throughout Sections 2.2, 2.3 and 2.4. Each
command has a smallest acceptable abbreviation, shown in bold type in
the table.

All line editing commands are terminated with a IBTI). Most of the com
mands allow or require you to specify a range or ranges; the range specifica
tion tells EDT where the action of the command should take place. Section
2.4.1 summarizes range specifications, and the command examples show
various ways of specifying a range.

Creating and Correcting Programs 19

Table 2-1: Summary of Line Editing Commands

Command

CHANGE [range]

CLEAR

COPY [rangelJ TO [range2J [/QUERYJ

DEFINE { M~~~O}
DELETE [range] [/QUERYJ

EXIT [file-spec]

FILL [range]

FIND range

HELP [topic ...]

INCLUDE file-spec [range]

INSERT [range]

MOVE [rangell TO lrange2J [/QUERYJ

PRINT file-spec [range]

QUIT [/SAVEJ

REPLACE [range]

RESEQUENCE [range]

SET [parameter]

SET [NOJNUMBERJ

SHOW [parameter]

SUBSTITUTE /stringl/string2/[range]
[/QUERYJ

[SUBSTITUTEJ NEXT [/stringl/string2J

20

Function

Invokes character editing mode for specified
buffer

Deletes the contents of a text buffer

Copies lines specified by rangel to a location in
an EDT buffer specified by range2; does not de
lete lines from original location

Defines a new or revised key function for charac
ter editing mode, or defines a macro name

Deletes a specified line or lines

Terminates EDT, saving the contents of the text
buffer MAIN as the output file

Reformats a block of text so a maximum number
of full words fill a line as without exceeding the
right margin

Moves the current line to a specified line

Displays information on the specified EDT com
mand or function

Copies an external file to a location in a text
buffer specified by range

Opens a text buffer for the insertion of text at
the location specified by range

Moves lines specified by rangel to the location
specified by range2, deleting the lines from the
source location

Creates a listing file with the specified file name

Terminates EDT without creating an output
file, optionally saving the journal file

Deletes specified lines from a text buffer and
leaves the buffer open for insertion of text

Assigns new line numbers to a range of lines

Sets a variety of editor operating parameters

Enables/disables the display of line numbers

Displays specified editor operating parameters

Replaces stringl with string2, either in the cur
rent line or in the specified range

Replaces stringl with string2, based either
on the strings specified or on the previous
SUBSTITUTE command

Chapter 2

Table 2-1 (Cont.): Summary of Line Editing Commands

Command Function

TAB AD.JUST [-Jn [range]

[TYPEJ [range]

WRITE file-spec [range]

2.1.2 The Help Facilities

Shifts each of a range of lines a specified number
of logical tab stops

Displays specified lines and makes the first line
in range the current line; the default command

Moves a copy of specified text from a buffer to a
file

EDT offers online help in both line and character editing modes. In line
editing mode, you invoke the help facility by entering the HELP com
mand. Issued without parameters, this command displays information on
how to get further help, plus a list of subjects for which help is available. If
you enter one of the subjects as a parameter to the HELP command, EDT
displays information on that subject, and possibly another list. For
example:

*HELP DELETE

DELETE

The DELETE (abbreviation: Dl command deletes the line specified

Additional information available:

/QUERY
*HELP DELETE /QUERY

DELETE

/QUERY

*

Q Quit' do not delete anY of the rest of the
lines

A All 1 delete all the rest of the lines

In character editing mode, you obtain help by pressing the HELP key on
your keypad; EDT will display a diagram of the keypad with all the key
functions identified. You can then obtain help on an individual function by
pressing the key that invokes that function. (Section 2.5 shows you how to
finrl tho J...JRT P lrou \
.&..l..L.l.'-..1. \JA..I.'-' ..&...&.~l.lr..\,....)•l

Creating and Correcting Programs 21

2.2 Invoking and Terminating EDT

An editing session begins when you invoke EDT with the EDIT/EDT com
mand, and ends when you terminate EDT with the EXIT or QUIT com
mand. You may start an editing session with no file and create the text for
the file during the course of the session. Or you may specify an existing file
when you start the session, in which case EDT loads the file into its MAIN
text buffer. EDT does not destroy the contents of any existing file that you
edit; it simply produces a new version, leaving the old version intact.

2.2.1 Invoking EDT
To invoke EDT, issue an EDIT/EDT command in the format

EDIT /EDT[/qualifier ...] file-spec

Qualifiers

/[NO]COMMAND[=file-spec]
/[NO]JOURNAL[=file-spec)
/[NO]OUTPUT[=file-spec]
/[NO)READ_ONL Y
/[NO]RECOVER

Defaults

/COMMAND=EDTINl.EDT
I JOURNAL=infile-name.JOU
/OUTPUT =infile-spec
/NOREAD_ONL Y
/NORECOVER

file-spec

Specifies the file to be created or edited. If the file does not exist,
EDT creates it.

EDT does not provide a default file type. If you do not specify one,
the file type is null.

/OUTPUT[=file-spec]
/NOOUTPUT

Supplies an alternate file specification for the output file. By default,
EDT creates an output file upon exit that has the same name and
type as the input file and a version number of 1 (if the input file does
not exist) or one higher than the highest existing version (if the input
file does exist).

If you specify /NOOUTPUT, EDT does not automatically create an
output file when you issue the EXIT command.

The remaining qualifiers, which describe specialized editor functions, are
described elsewhere: the /COMMAND qualifier, in Section 2.7 .3; the
/JOURNAL, /READ_ONLY, and /RECOVER qualifiers, in Section 2.6.

For convenience, you can issue the following command to equate a short
command symbol (EDT, in this example) to EDIT/EDT:

$ EDT :== "Ef.)IT/EDT"

22 Chapter 2

After you issue this command, the command interpreter will recognize the
symbol EDT (or any other symbol you specify) as equivalent to
D T"\ TIT' ID TVT'
.t.:.i.LJ J. J. I Col.LI J. •

When you invoke EDT, the response varies depending on whether or not
the file that you specify exists. (Other factors, such as commands con
tained in a startup command file named EDTINI.EDT, may further alter

, the response.) If the file does not exist, EDT so informs you, and prompts
you to issue editing commands:

$EDIT/EDT METRIC.PL!
InPut file does not exist
[EDB J

*
The asterisk (*) is EDT's line editing prompt. When EDT is displaying the
asterisk prompt, you can enter any of the commands listed in Table 2-1.

If the file exists, its first line is displayed instead of [EOBJ:

$EDIT/EDT METRIC.PL!

*
1 METRIC: PROCEDURE OPTIONS(MAIN);

NOTE
If you invoke EDT and it does not display an asterisk prompt,
you cannot enter line editing commands. This condition can
result when the current default directory contains a startup
command file named EDTINI.EDT that causes EDT to enter
character editing mode directly. If this happens, you can enter
line editing mode by typing a tTRL/Zl. You can override the
unwanted effects of a startup command file by including the
/NOCOMMAND qualifier on the command line.

2.2.2 Terminating EDT
Use the EXIT command to terminate EDT and create an output file from
the contents of the MAIN text buffer. To override the default output file,
you can specify an output file with the EXIT command, as shown in the
following example:

*E/IT ALTNAME.PL.
_DB 1: [PROJECT JAL TNAME. PL I ; 1
$

55 lines

The QUIT command terminates EDT without creating an output fiie. You
can use QUIT if you are simply reading a file without modifying it or if you
do not want to save your edits.

Creating and Correcting Programs 23

2.3 Creating a New File in Line Mode

To create a new file, you issue an EDIT/EDT command that specifies a file
that does not currently exist in your directory. After EDT responds with
the asterisk prompt, issue the INSERT command (abbreviation I) followed
by 00). The cursor or print head then moves to the right 16 spaces; this
space is left by EDT to accommodate line numbers, although none appear
at this stage. You can now enter as many lines of text as you wish. When
you are finished entering text, terminate the insert with ~.The follow
ing example illustrates this process:

$ EDIT/EDT EXAMPLE.TXT
InPut file does not exist
[EOBJ
*I

This i s the
This i s the
This 1 s the
This i s the
This i s the
This i s the
This i s t n"'
QB[Z

. -,
i...

*

f i rs t line of Ei<AMPLE, Ti<T
second line of Ei<AMPLE, Ti<T
th i rd 1 in e 0 f Ei<AMPLE, Ti<T
fourth 1 in e of E><AMPLE, Ti<T
fifth 1 in e 0 f E>(AMPLE, Tin
sixth 1 in e of E>(AMPLE, Ti<T
SE" 1 enth 1 in e of E>(AMPLE. T>'.T

The [EOBJ designation indicates that you are currently at end-of-buffer,
and that any text you insert will be the only text in the buffer.

If you do not want EDT to leave space in front of each line for line num
bers, you can issue the SET NONUMBERS command; EDT will then
begin each line at the left margin of the terminal. EDT continues to num
ber lines, but does not display the numbers. You can restore the line
number display later by issuing a SET NUMBERS command.

2.4 Editing an Existing File in Line Mode

To edit an existing file in your directory, issue an EDIT/EDT command
that specifies its name. (To edit a file from a directory other than your own,
see Section 2.4.8.) EDT displays the first line in the file, as shown in the
following example:

$ EDIT'EDT EXAMPLE.TXT
1 This is the first line of EXAMPLE,TXT

*
The number 1 to the left of the line is the line number. It is not part of the
file. The file starts with the word This.

24 Chapter 2

The line displayed is the current line. EDT uses the current line as the
default in many of its operations. For example, an INSERT command that
does not specify a range causes EDT to insert text in front of the current
line.

The concept of "range" is central to all EDT line editing operations. The
next section describes ways of specifying range. The sections that follow
describe the most common and useful line editing operations.

2.4.1 Range Specifications
A range is the line or lines on which EDT performs an operation. A range
specification is a description of a range in terms that EDT can understand.
All the line editing commands (except SUBSTITUTE NEXT) described in
the sections that follow accept one or more range specifications, although
many do not require one.

The simplest range specification identifies a single line of text. A line can
be located by its position in the file relative to the current line, by a text
string that it must contain, and by its line number. Since line numbers are
primarily useful in range specifications, they are described here.

When you insert lines of text in a new file, or when EDT loads an existing
file into its MAIN buffer, each line of the file receives a number. The
numbering starts with 1 and is incremented by ones. If you insert lines of
text between existing lines, EDT numbers the new lines using appropriate
decimal increments. This technique ensures that there will be enough
unique line numbers to cover any reasonable editing operation. EDT dis
plays the line numbers whenever it displays text, unless you have issued
the SET NONUMBERS command. In that case, EDT does not display
line numbers, but it does continue to assign them.

Single-line range specifications are listed in Table 2-2; examples appear
below.

Table 2-2: Single-Line Range Specifications

Specification Meaning

The current line

number The line specified by the number

'string' or The next line containing the string you specify

- 'string ' or The preceding line containing the string you specify
-"string"

Creating and Correcting Programs 25

Table 2-2 (Cont.): Single-Line Range Specifications

Specification

[range] { : } [number]

END

Specification

20.6

'INSERT:'

"-GET LIST (A);"

-6

'PUSH:' +4

Meaning

The line that is the specified number of lines after (or before, if
minus) the single line specified by range (range defaults to the
current line; number defaults to 1)

The first line in the text buffer

An empty line (designated by [EOB]) following the last line of
text in the text buffer

Meaning

The line numbered 20.6

The next line that contains the string INSERT:

The first preceding line that contains the string GET
LIST (A);

The line six lines before the current line

The line four lines after the line that contains the
string PUSH:

When EDT searches for a string, the case of the search string need not
match the case of the target. For example, get list is a match for GET LIST
or Get List. This condition is the default; you can change it with the SET
SEARCH command.

There are several methods available for specifying a range of more than one
line. They are listed in Table 2-3; examples appear below.

Table 2-3: Multiple-Line Range Specifications

Specification

[rangel] { : l [range2J
THRU j

[range] { F6R } number

BEFORE

REST

26

Meaning

The set of lines from rangel through range2, which are
single line range specifications (both rangel and range2
default to the current line, if omitted)

The specified number of lines beginning with the single
line specified by range (range defaults to the current line,
if omitted)

All lines in the buffer that precede the current line

The current line and all lines in the buffer that follow it

Chapter 2

Table 2-3 (Cont.): Multiple-Line Range Specifications

Specification

WHOLE

range, range ...
or
range AND· range AND ...

[range J ALL 'string 'J

Specification

2:6.5

'INSERT: '#5

.-10:.

10:50 ALL 'GET'

Meaning

The entire buffer

All lines specified by each single line range

All lines in the range containing the specified string (the
default for range is the entire buffer)

Meaning

Lines 2 through 6.5, inclusive

The line containing the string INSERT: and the four
lines following it, for a total of five lines

The line 10 lines before the current line through the
current line, inclusive

All lines from line 10 through line 50 that contain the
string GET

Most range specifications can be combined with a text buffer specification.
During your editing session, you may wish to hold and edit text in buffers
other than MAIN. To create and gain access to alternate buffers, include
the name of the buffer in a range specification, using the following syntax:

=buffer [range]

or
BUFFER buffer [range]

In this syntax, "buffer" stands for the name of the buffer. It can be from 1
to 30 alphanumeric characters, but it must start with an alphabetic char
acter. If you include a range of lines following the buffer name, you specify
the range within the named buffer. If you omit the range specification, you
specify either the entire named buffer or its first line, depending on
context.

Creating and Correcting Programs 27

The following examples show buffer specifications in use.

Specification

=PROGl

Meaning

The entire contents of the text buffer named
PROGl, or (for commands requiring a sin
gle-line range specification) its first line

=INC 'SUBl: ':'RETURN' The lines that contain the strings SUBJ and
RETURN in the text buffer named INC,
and all lines between

=COM ALL 'COPY' All lines that contain the string COPY in
the buffer named COM

2.4.2 Maneuvering in the File
This section describes commands for maneuvering in a buffer containing
text, in other words, for changing the location of the current line.

The TYPE command, followed by a range, causes EDT to display the line
or lines in the range and resets the current line to the first (or only) line
displayed. The word TYPE (abbreviation T) is optional: it need not be
entered. For example:

*T 1 :]

1 This i s the f i rs t 1 in e of Ei<AMPLE. Tin
2 This i s the second 1 in e of EYAMPLE, Ti<T
3 T.h is i s the th i rd 1 in e of E>(AMPLE. Ti<T

* .4tt2

LI This is the fourth line of E>'.AMPLE, T:<T
5 This is the fifth line of E>(AMPLE, Ti<T

*

If you do not include the word TYPE, and if the range specification begins
with an alphabetic character (such as WHOLE or REST), you must
precede it with a percent sign (%). Otherwise, EDT tries to interpret the
range specification as a command. For example:

*REST

Unrecosnized command
* x.r;i;;_::~. T

*

28

LI
5
G
7

This is the fourth line of EXAMPLE.TXT
This is the fifth line of EXAMPLE.TXT
This is the sixth line of EXAMPLE.TXT
This is the seventh line of EXAMPLE.TXT

Chapter 2

A carriage return in response to the asterisk prompt displays the line fol
lowing the current line and sets the current line to the displayed line. A
series of carriage returns, therefore, displays successive lines and sets the
current line to the displayed line each time. This is an easy way to work
through a file line by line. For example:

* •B_TI;
5 This i s the fifth line of E><AMPLE, T/T

*rBDl
G This is the sixth line of E><AMPLE, T/T

*

The FIND command (abbreviation F) locates a specified line without dis
playing it. It is useful for setting the current line to the top of a large block
of text that would be cumbersome to display on the terminal. For example,
each of the following commands resets the current line to the top of the
MAIN text buffer:

*=MAIN

*F =MAIN

However, the first command (an implied TYPE command) displays the
entire contents of the MAIN text buffer. The second command just sets the
current line and displays an asterisk prompt.

If you specify a range that EDT cannot locate, EDT issues a message and
does not change the current line setting.

2.4.3 Inserting New Text
The procedure for inserting new text in a buffer already containing text is
exactly the same as that for inserting text in an empty buffer (see Section
2.3), except that you can control where the text goes by including a range
specification with the INSERT command. The lines you insert are placed
in front of the line you specify. If you specify multiple lines, the insert goes
in front of the first line in the range. If you omit the range specification, the
insert goes in front of the current line.

In the following example, the INSERT command causes EDT to insert text
in front of line 5 in the current buffer. Then the range specification (an
implied TYPE command) causes EDT to display lines 4 through 6, show
ing the result of the insertion.

Creating and Correcting Programs 29

*I 5

*

ll
ll • 1

ll. 2

l!. 3
5
G

First insert line
Secan~ insert line
Thir~ insert line
1~:r:&::Z ,_

This is the fourth line of EXAMPLE.TXT
First insert line
Second insert line
Third insert line
This is the fifth line of EXAMPLE.TXT
This is the sixth line of EXAMPLE.TXT

NOTE
EDT, which inserts text in front of the current line, is different
from many other text editors that insert text following the cur
rent line.

2.4.4 Deleting and Replacing Text
Use the DELETE command (abbreviation D) to delete a specified range. If
you omit the range, the DELETE command delete8 the current line. After
a delete operation, EDT displays the line following the last line deleted;
this is the new current line. For example:

*C-1 6 + 1 #2
2 lines deleted

ll.3 Third insert line

*L
1 line deleted

5 This is the fifth line of EXAMPLE.TXT

*
The /QUERY qualifier to the DELETE command causes EDT to prompt
you before deleting each line of the range. The prompt is a question mark
(?). You can respond to the prompt in one of four ways:

Y (yes) Delete this line
N (no) Do not delete this line
A (all) Delete all remaining lines in the specified range
Q (quit) Quit the delete operation

The REPLACE command (abbreviation R) deletes a specified range and
allows you to insert lines to replace those deleted. You terminate the inser
tion with a tffilJt), just as with the INSERT command.

30 Chapter 2

2.4.5 Moving Text
The COPY and MOVE commands (abbreviations CO and M, respectively)
allow you to move one or more iines of text from one place in the buffer to
another, or from one buffer to another. The effect of these commands is
similar; the only difference is that the COPY command does not delete the
text from its original location, whereas the MOVE command does.

The following example illustrates both commands, as well as alternative
ways of specifying a range:

* ·;:l·JHIJLE
1

2

5

G
7

This is the first line of EXAMPLE.TXT
This is the second line of EXAMPLE.TXT
This is the third line of EXAMPLE,TXT
This is the fourth line of EXAMPLE,TXT
This is the fifth line of EXAMPLE.TXT
This is the sixth line of EXAMPLE,TXT
This is the seventh line of EXAMPLE.TXT

*C::C::1F'/ 1:3 Tl] 'SI TH'

3 line'.:. coPied
*S:G

5

5. 1

G

3 lines rno 1-.1ed

*

0' 1
0+2
0,3

2

3

LI

5

G

7

This
This
This
This
This

This
This
This
This
This
This
This
This
This
This

i -· the
i s the
i s the
i s the
i s th e

i s the
i s the
is the
i s the
i s the
i s the
i s the
i s the
is the
is the

fifth line of EXAMPLE.TXT
first line of EXAMPLE.TXT
second line of EXAMPLE.TXT
third line of EXAMPLE.TXT
sixth line of EXAMPLE,TXT

f i rst line of E/AMPLE I T/T
second 1 ine of Ei<AMPLE, T/T
th i rd 1 in e of E/AMPLE, T/T
f i rst line of Ei<AMPLE, T/T
second 1 ine of E/AMPLE,TXT
th i rd 1 in e of E/AMPLE I T>'.T
fourth 1 in e of E>'.AMPLE + T:n
fifth 1 in e of Ei<AMPLE, T>'.T
sixth 1 in e of Ei<AMPLE, PT
set.ienth line of Ei<AMPLE + nn

The /QUERY qualifier to either COPY or MOVE causes EDT to prompt
you before copying or moving each line of the range. It operates the same
way as the /QUERY qualifier to DELETE (see Section 2.4.4).

2.4.6 Substituting Text
Two commands, SUBSTITUTE and SUBSTITUTE NEXT, substitute
one string for another within a line or lines. These are the only line editing
commands that can alter text within a line, as opposed to changing the

Creating and Correcting Programs 31

entire line. The SUBSTITUTE command (abbreviation S) operates on the
current line or on a specified range; the SUBSTITUTE NEXT command
(abbreviation N) makes a substitution at the next opportunity within the
buffer.

The format of the SUBSTITUTE command is

SUBSTITUTE /string1 /string2/[range] [/QUERY]

The command finds stringl and substitutes string2 for it. If you do not
specify a range, the substitution takes place in the current line. If you do,
the command makes every substitution within the range. The following
example illustrates the command first without and then with a range
specified:

*S I f i r s t / 1 s t /

1 substitution
*S / o f / i n / LI : G

LI

5

G
3 substitutions

*

This is the first line of EXAMPLE.TXT

This is the 1st line of EXAMPLE.TXT

This is the fourth line in EXAMPLE,TXT
This is the fifth line in EXAMPLE.TXT
This is the si~th line in EXAMPLE,TXT

Slashes (/) are not the only characters you can use to delimit stringl and
string2. Any nonalphanumeric character will work, as long as the delim
iters are matched and do not occur in either string. For example, the
following command substitutes the string A/3 for A/2 in the current line,
using dollar signs ($) as delimiters:

*S $A/2$A/3$
25 SIZE = A/3i

1 substitution

*
The /QUERY qualifier to SUBSTITUTE causes EDT to prompt you before
making each substitution. It operates the same way as the /QUERY quali
fier to DELETE (see Section 2.4.4).

The SUBSTITUTE NEXT command (abbreviation N) substitutes for the
next occurrence of stringl that it finds in the buffer. If you specify neither
stringl nor string2, the command takes the values of both strings from the
last SUBSTITUTE command you issued. For example:

*N 0 f

LI This is the fourth line of EXAMPLE,TXT
*N

5 This is the fifth line of EXAMPLE.TXT
*

32 Chapter 2

2.4. 7 Input from and Output to Files
Two EDT commands, INCLUDE and WRITE, allow you to incorporate
text from files and output text to files during your editing session. The
INCLUDE command (abbreviation INC) incorporates the contents of a file
at a specified location in a text buffer. If you do not want the entire file
incorporated in the MAIN text buffer, you can specify an alternate buffer
as the range, and then copy the desired portions of the file to their proper
places in MAIN. For example:

*INC SBRTNES.PLI =SUBS

*
This command creates a buffer called SUBS and fills it with the contents
of the file SBRTNES.PLI from the EDT default directory (that is, the
directory of the input file given with the EDIT/EDT command).

The WRITE command (abbreviation WR) creates a file by copying the
contents of a specified range in a text buffer. The text is not deleted from
the text buffer and EDT does not terminate following the operation. If you
do not specify a range with the command, EDT outputs the entire contents
of the current text buffer. The following example shows the command used
with a range:

*WR ROUTINEl I PLI =SUBS 'ADD: I: 'RETURN
_OBl:CPROJECTJROUTINEl,PLiil 45 lines

*
This command creates the file ROUTINEl.PLI from the lines that contain
the strings ADD: and RETURN in the buffer named SUBS, and all lines in
between.

Unless you include a directory in the file specification, WRITE always
creates the file in your current default directory. This is true even if the
input and output files are in another directory.

2.4.8 Editing a File from Another Directory
You can edit a file that exists in another directory and use the /OUTPUT
qualifier to EDIT/EDT to direct the output file to your directory. However,
EDT uses the directory of the input file that you specify in the EDIT/EDT
command line as its default directory. This default has the following ef
fects:

• EDT attempts to create its journal file in its default directory, that is,
the other directory. If you do not have the privilege to do this, EDT
issues an error message and terminates. You should instead use the
/JOURNAL qualifier to place the journal file in your directory. (See
Section 2.6 for a description of the journal file and /JOURNAL.)

Creating and Correcting Programs 33

• If you issue an INCLUDE command and do not specify a directory,
EDT attempts to locate the file in its default directory, that is, the
other directory. To specify a file in your own directory, use a directory
specification with INCLUDE.

In the following example, a user with the account [WILBUR) edits a file
from the account [PROJECT):

$EDIT/EDT [PROJECTJDATADEF,PLI
$_/OUTPUT=[WILBURJ IJOURNAL=[WILBURJ

*INCLUU~ LWILBURJENTRIES,PLI

The input file for this editing session is [PROJECTJDATADEF.PLI; the
output file is [WILBURJDATADEF.PLI. The INCLUDE command incor
porates a file from directory [WILBUR). If the INCLUDE command had
not specified a directory, EDT would have looked for the file
[PROJECTJENTRIES .PLI.

2.5 Character Editing

EDT's character editing mode allows you to perform editing operations at
any position in your text instead of line by line. For most applications,
especially those requiring extensive detail modification of existing text,
character editing is faster and more straightforward than line editing.
When you use character editing mode on a video terminal, your screen
always contains an accurate picture of the area of the file in which you are
working. The terminal's cursor shows exactly where you are at all times.

There are two types of character editing: nokeypad and keypad. Nokeypad
character editing works on all terminals, including hardcopy terminals. It
requires you to enter short commands through the keyboard and terminate
each command with a (BIT). Keypad character editing works on the VT52
and VTlOO video terminals and on terminals that are compatible with
them. In keypad editing, you request editor functions by pressing keys on
the auxiliary keypad; no 00) is required to terminate the command. Any
thing you type on the keyboard, including carriage returns, is inserted into
the file as text.

This section describes only keypad character editing. To learn about
nokeypad character editing, read the VAX-11 EDT Editor Reference Man
ual.

The keypads for the VT52 and VTlOO (and compatible) terminals are
different. Therefore, the following description refers to functions rather
than to specific keys. It is a good idea to keep a copy of the appropriate

34 Chapter 2

keypad diagram handy while you are learning character editing. Figures
2-1 and 2-2 contain the keypad diagrams for the VT52 and VTlOO, respec
tively. The numbers or characters shown in the upper right of each key
correspond to what you see on the key.

Note that most keys perform two functions. To use the upper of the two
functions listed, press the key. To use the lower function, first press and
release the GOLD key.

2.5.1 Entering and Exiting Character Editing Mode
To enter character editing mode from line editing mode, use the CHANGE
command (abbreviation C). When you issue the CHANGE command, the
screen first goes blank and then fills with text. You will find the cursor
somewhere on the screen, positioned at the current line or the line you
specified with the CHANGE command. (If the buffer is empty, the cursor
and [EOBJ appear at the top of the screen.)

EDT does not display line numbers while in character editing mode, al
though it does continue to assign them as you insert text.

When you have finished your character editing operations and wish to
return to line mode, enter a tTRLiZ). It terminates character editing and
causes EDT to display the asterisk prompt. You can then perform line
editing operations or end the editing session, as appropriate.

The sections that follow describe some of the character editing operations
available to you.

2.5.2 Maneuvering the Cursor
Before performing most character editing operations, you must move the
cursor to the location in the file where you wish the operation to take place.
There are many ways to move the cursor; experience eventually teaches
which is best in a given situation.

The LEFT and RIGHT functions move the cursor one character to the left
or right. If the cursor is at the end of a line, the RIGHT function moves it to
the beginning of the next line. Conversely, if the cursor is at the beginning
of a line, the LEFT function moves it to the end of the previous line.

The UP and DOWN functions move the cursor one line up or down. The
column position of the cursor does not change, unless there is no text in the
corresponding coiumn above or beiow. In that case, the cursor moves to the
end of the preceding or following line.

Creating and Correcting Programs 35

~
en

()
::;J""
Pl

'"O
..,-t-
ro ...,
t'V

r---- ,...-----,.-----r----,
I I I t I

I I I
I GOLD I HELP I DEL L I UP '1
I I I UNO L I REPLACE

L----~-----+----~----j
I 1 1 s I 91 •I
I I 1 I I I PAGE FNDNXT DEL w I DOWN I
I COMMAND : FIND : UNO w I SECT I
~----r----r----r---~
I 4 I 5 I 6 1 -1
I ADVANCE I BACKUP I DEL c I RIGHT '1
I BOTTOM I TOP I UNO c I SPECINS

1----L----~----J ____ J
1 I 21 31 -1

I I I I I
l WORD I EOL I CUT I LEFT I
I CHNGCASE I DEL EOL I PASTE I APPEND I

~----L---~t---~t-~~~1
I I I I
I LINE I SELECT I ENTER I
I OPEN LINE I RESET I SUBS I
L---------~----L ____ J

ZK-020-81

Figure 2-1: VT52 Keypad

r-----r----,---.=r---:...1
I t I t t I I
I UP I DOWN I LEFT I RIGHT I
I I I I I
L---~-----L----L----~

r----pF1 r----~21---~31---PF~
'1 GOLD I HELP I FNDNXT I DEL L I

, I FIND I UNO L I

~- ---;-}----- ~ ----~----~
I 7 I s I 9 I - ,
I PAGE I SECT I APPEND '1 DEL w I
I COMMAND I FILL I REPLACE I UNO w I
1r----T'----~----~----~ 4 5 I 6 I ' I
I I I I I
I ADVANCE I BACKUP I CUT I DEL c I
I BOTTOM I TOP I PASTE I UNO c I

lr-----L----~----L---~
1 I 2 I 3 I ENTER I

I I I I I WORD I EOL I CHAR I I
I CHNGCASE I DEL EOL I SPECINS I I
L----L----r' ____ , ENTER ,
I 0 • I SUBS I
I I I I
I LINE I SELECT I I
I OPEN LINE I RESET I I

L---------L----L---~
ZK-021-81

Figure 2-2: VTIOO Keypad

The beginning-of-line function, obtained by pressing the BACK SPACE
key, moves the cursor to the beginning of the line in which it is positioned.
If the cursor is already at the beginning of a line, the function moves it to
the beginning of the previous line.

The TOP and BOTTOM functions move the cursor to the beginning and
end of the buffer, respectively.

All the remaining cursor movement functions depend in part on the
ADVANCE and BACKUP functions. The ADVANCE function causes sub
sequent cursor movement to occur in the forward direction, that is, toward
the end of the buffer. The BACKUP function causes subsequent cursor
movement to occur in the backward direction, toward the beginning of the
buffer. When character editing begins, cursor movement is forward, until
reversed by the BACKUP function.

The following functions depend on the current direction established by
ADVANCE and BACKUP:

• The CHAR function moves the cursor one character.

• The WORD function moves the cursor to the beginning of the next or
previous word (the end-of-line character is considered a word).

• The LINE function moves the cursor to the beginning of the next line,
if the current direction is forward. If backward, the LINE function
moves the cursor to the beginning of the line in which the cursor is
positioned, or, if the cursor is at the beginning of a line, to the begin
ning of the previous line.

• The EOL (for end-of-line) function moves the cursor to the next or
previous end-of-line character.

• The SECT (for section) function moves the cursor one 16-line section.

• The PAGE function moves the cursor to the next or previous page
mark (by default, a form feed).

All of these cursor movement functions can be combined with a repeat
count, which causes the function to be repeated a specified number of
times. To enter a repeat count, press the GOLD key, then type in the count
on the keyboard (not keypad) number keys, then type in the function to be
repeated. As you enter the repeat count, the numbers appear on the screen
below the area reserved for text. The numbers disappear as soon as you
enter the function.

You can also use FIND and FNDNXT (for find next) to move the cursor to
a certain string. To find a string, enter the FIND function. EDT prompts
you for a search string. Type the search string without delimiters, and
terminate it with either the ADVANCE or BACKUP function to determine
the direction of search. EDT rnove:s the cursor to the beginning of the

Creating and Correcting Programs 37

search string. If the search string is not found, EDT issues a message and
does not move the cursor.

The FNDNXT function finds the next occurrence of the current search
string in the current direction. The current search string is the last string
you entered with the FIND function.

Note that you can locate strings that include carriage returns with the
FIND function. Simply enter the carriage return as part of the search
string. The carriage return does not terminate the search string; you do
that with the ADVANCE or BACKUP function. EDT echoes a carriage
return in a search string as 'M.

2.5.3 Inserting Text
Once the cursor is positioned, you can insert text in front of it simply by
typing the text on the keyboard. No command is required and whatever
you type becomes part of the file. Your insertion appears on the screen as
you type it, and the surrounding text moves as necessary to accommodate
it.

When you insert text at the beginning or in the middie of a iine, the end of
the line may disappear off the edge of the screen. The text is not lost,
however: if you enter a carriage return in the text you are typing, the text
appears on the next line. To avoid this problem, you can use the OPEN
LINE function. When the cursor is at the beginning of a line, OPEN LINE
provides a blank line above that line, and positions the cursor at the begin
ning of the blank line.

As you type new text, you may notice errors in surrounding text. You can
move the cursor to these errors and correct them at any time, and then
move the cursor back and continue to insert text.

2.5.4 Deleting and Undeleting Text
EDT character editing provides several methods of deleting text in units of
varying sizes. EDT also maintains three buffers to contain text that has
been deleted. The character buffer contains the iast character deleted; the
word buffer contains the last word deleted; and the line buffer contains the
last line deleted. You can insert the contents of each of these three buffers
at the cursor position by using the UND C, UND W, and UND L functions,
respectively. There is no limit to the time or number of operations between
a delete operation and the undelete operation that reinserts the deleted
text. Furthermore, you can undelete one unit of text as many times as you
wish, and at any locations you wish.

The DEL C (for character) function deletes the character at which the
cursor is positioned, and moves the cursor to the next character. The

38 Chapter 2

DELETE key on the keyboard deletes the character before the cursor posi
tion (the last character typed, if you are inserting text) and does not
change the cursor position. Both of these functions move the deleted char
acter into the character buffer, from which it can be retrieved by using the
UND C function.

The DEL W (for word) function deletes from the current cursor position to
(but not including) the first character of the next word. The LINE FEED
key on the keyboard deletes from (but not including) the cursor position
back to the first character of the current word. Both of these functions
move the deleted text into the word buffer, from which it can be retrieved
by using the UND W function.

The DELL (for line) function deletes from the cursor position through the
next end-of-line character. The DEL EOL (for end-of-line) function is simi
lar, except that it does not delete the end-of-line character. Typing (CTRL/ul

deletes from (but not including) the cursor position to the beginning of the
current line. All of these functions move the deleted text into the line
buffer, from which it can be retrieved by using the UND L function.

2.5.5 Moving Text
Character editing provides two basic methods of moving text. The first is
available through the three undelete functions. You can delete a unit of
text from one location, move the cursor to another location, and undelete
the text there. However, this method is only effective for units that can be
deleted by the various functions described in Section 2.5.4. To move larger
or more precise blocks of text, use CUT and PASTE. These two functions
allow you to "cut" any amount of contiguous text from one location and
"paste" it elsewhere.

The first step is defining the text to be moved. To do this, move the cursor
to either the beginning or end of the text and enter the SELECT function.
Then move the cursor to the other extremity of the text. In so doing, you
create a select range: that is, all the text between the cursor position and
the position at which you entered the SELECT function. On VTlOO termi
nals, EDT highlights the select range with reverse video. If you make a
mistake while you are defining the select range, enter the RESET function
to cancel the select range currently in effect.

Once you have defined the select range, enter the CUT function. The text
within the select range disappears. (EDT moves it into a text buffer named
PASTE.) Move the cursor to the position at which the text is desired, and
enter the PASTE function. The text appears at the cursor position.

You can paste the cut text in as many locations as required. Specifically,
you can paste the text as soon as you cut it, then move the cursor and paste
the text again. This is in effect a copy operation.

Creating and Correcting Programs 39

Each CUT operation destroys the previous contents of the PASTE buffer
and replaces them with the select range. To add the select range to the
contents of the PASTE buffer, use the APPEND function.

The PASTE buffer is an ordinary EDT text buffer. You can edit within it,
load it from a file with the INCLUDE command, and create a file from its
contents with the WRITE command.

2.6 Protecting and Recovering Text
Three qualifiers to the EDIT/EDT command allow you to protect files
against inadvertent modification and to recover editing operations that
have been lost. This section discusses them.

The /READ_ONL Y qualifier controls whether journaling and the creation
of an output file are enabled. (Specifying /READ-ONLY is equivalent to
specifying /NOOUTPUT and /NOJOURNAL.) /NOREAD_ONLY, the
default, allows EDT to create an output file and a journal file. Use
/READ_ONLY in situations where you want to be sure you do not create a
modified file, or for reading a file in a directory where you do not have write
privileges.

The /JOURNAL qualifier allows you to disable (using /NOJOURNAL) or
to specify the name of the journal file that EDT creates to record your
editing activity. By default, EDT creates a journal file with the file name of
the input file and a file type of JOU. If the editing session ends abnormally,
EDT can use the contents of the journal file to re-create the session. If the
editing session ends normally (that is, as the result of an EXIT or QUIT
command without a /SAVE qualifier), EDT deletes the journal file.

The /RECOVER qualifier causes EDT to use the contents of a journal file
to re-create a previous editing session, perhaps one that was lost as the
result of an accidental tTRL/Y) or system problem. If you specify /RECOVER,
EDT locates a file with the same name as the input file and a file type of
JOU, then applies all the editing operations recorded in the journal file to
the input file. These operations appear on your terminal as EDT performs
them. When EDT has exhausted the contents of the journal file, the activ
ity on the terminal ceases. You can now continue to edit.

Two notes of caution are necessary. First, it is important for the
EDIT/EDT command that starts a recovery operation to match exactly the
command that started the lost session, including any special startup com
mand files. The only difference between the two commands should be the
/RECOVER qualifier. In particular, the input file must be the same version
that you started with at the beginning of the lost session. Second, note that
EDT does not necessarily recover your session to the exact point where it
was lost. A few keystrokes may be missing.

40 Chapter 2

2. 7 EDT Aids for the Programmer

In addition to the general-purpose editing operations discussed in Sections
2.1 through 2.6, EDT provides some advanced functions that are especially
useful for programming. The following sections introduce some of these.

2.7.1 Structured Tabs
Although PL/I is a free-form language, in which excess spaces and tabs
have no significance, it is common practice to indent lines to indicate the
relationship of statements. It is laborious to enter repeatedly the correct
combination of tabs and spaces to achieve the desired indention. EDT
solves this problem by providing a system of structured tabs in character
editing mode. While you are inserting text, a depression of the tab key
inserts the correct combination of tabs and spaces to bring the cursor to the
desired column. When you need to begin lines at a different column, you
can increase or decrease the indention level to move the starting column to
the left or right by a preset increment.

To use the structured tab feature, follow these steps:

1. While in line editing mode, set the increment between tabs by issu
ing the SET TAB command with a suitable value. For example:

*SET TAB a

*
At this point, the first @@on a line (while in character editing mode)
positions the cursor at column 5. Subsequent tab stops are at the
normal locations.

2. When you want to change the indention level, use (CTRL/E) or (CTRL/p.

Each depression of ©TRUE) increases the indention by one increment;
the first tab stop is n spaces further to the right, where n is the
number you gave with the SET TAB command. Pressing (CTRL/D) de
creases the indention level.

3. If you want to set the indention level to correspond to a given col
umn, position the cursor at that column and press (CTRL/A). The col
umn must be at an even multiple of n spaces from the left edge of the
screen.

4. If you want to change the indention of a block of lines, first define a
select range that includes the lines to be shifted. (To define a select
range, position the cursor at one end of the block of lines, enter the
SELECT function, and then position the cursor at the other end.)
Then enter a repeat count (the GOLD key followed by a number
typed on the keyboard) to indicate how many units of n spaces the

Creating and Correcting Programs 41

lines should be shifted. A positive repeat count shifts the lines to the
right; a negative repeat count shifts the lines to the left. Finally,
press tTRL/Tl •

2. 7 .2 Special-Purpose Key Definitions
EDT allows you to redefine the functions invoked by all the keys on the
auxiliary keypad and many control characters as well. There are two ways
to redefine a key's function:

• While in character editing mode, press tTRL/Kl. EDT prompts you to
press the key you wish to define. Once you have pressed the key, EDT
prompts you to enter the new function. You can do this either by
typing the nokeypad commands that make up the function, or by
pressing the keypad keys that correspond to the functions you require.
You must follow the function specification with a period. The ENTER
function terminates a definition of this type.

• While in line editing mode, issue the DEFINE KEY command. You
define the new function to perform as a string of nokeypad character
editing commands, followed by a perio<l. The string and period must
be enclosed in quotes.

Key redefinition requires a good grasp of nokeypad character editing syn
tax, as well as a good deal of practice. The EDT help facility (particularly
HELP DEFINE KEY and HELP CHANGE SUBCOMMANDS) and the
VAX- I I EDT Editor Reference Manual are good sources of information.
However, this section describes one common application: the redefinition
of a key to insert a string of text.

While writing a program~ you may find that you are typing the same group
of words over and over. For example, you might get tired of typing PUT
SKIP UST. In character editing mode, follow this procedure to define a
key to insert the string PUT SKIP LIST:

42

1. Press tTRL1K). EDT prompts you with

Press the key YOU wish to define

2. Select a function that you do not use often, for example, SPECINS.
You might also select a control character. Enter the function or
control character. EDT then prompts you with

Now enter the definition terminated bY ENTER

3. Type the following:

1 F u T s k I F L I ~; T ~wcz .
(The period is required syntax.)

4. Press ENTER to terminate the definition procedure.

Chapter 2

For the remainder of the editing session, the key that used to invoke the
SPECINS function will instead insert the string PUT SKIP LIST at the
r11r~nr nn~itinn - ----- .r-~----~···

In line editing mode, you can redefine a key by using the DEFINE KEY
command. To identify a keypad key in the command, you use a number.
You can find out which numbers are assigned to which keys by issuing the
command HELP DEFINE KEY VT52 or HELP DEFINE KEY VTlOO.
These commands display the numbers assigned to keypad keys on the
respective terminals.

Next, you issue a DEFINE KEY command, specifying the key and the
function you wish the key to perform. The following example redefines the
SPECINS function (GOLD/3 on a VTlOO) to insert the string PUT SKIP
LIST:

*D E F I N E h E y c; 0 L. D J (1 :::; II i p u T s h I p i._ I :; T .·. z "

*
The quotes and period are required syntax. The · Z is not a (CTRLIZ), but a
circumflex followed by a Z. For the remainder of the editing session,
GOLD/3 will insert the string PUT SKIP LIST at the cursor position.

The preceding examples represent only a small fraction of the capabilities
of key redefinition. With practice, you can create powerful custom func
tions that can save you a great deal of time. You may want to store these
functions in a startup command file so that you will not have to define
them each time you begin an editing session. The next section describes
startup command files.

2. 7 .3 Startup Command Files
When you invoke EDT, it searches your current default directory for a file
named EDTINI.EDT. If EDT finds such a file, it executes the line editing
commands contained in the file before turning control over to you. This
function allows you to customize EDT to suit your needs. Some of the
commands that a startup command file might contain are

• DEFINE KEY. These commands redefine the function invoked by a
keypad key or control character while in character editing mode. (See
Section 2.7 .2.)

• DEFINE MACRO. These commands associate a name with a se
quence of line editing commands stored in a text buffer. You can then
invoke the sequence by entering the macro name in response to the
line editing asterisk prompt.

Creating and Correcting Programs 43

• INCLUDE. These commands bring text from a file into a text buffer.
You might use them to load macros into a buffer, or to fill a buffer
with text that you often use. (See Section 2.4.7.)

• SET. These commands establish EDT operating parameters. Particu
larly useful are SET TAB, which establishes the increment for struc
tured tabs, and SET MODE CHANGE, which causes EDT to enter
directly into character editing mode. (Section 2. 7 .1 describes the use
of structured tabs.)

You can use the /COMMAND qualifier to the EDIT/EDT command to
cause EDT to search for a file other than EDTINI.EDT. This means that
you can have several startup command files, each designed for a particular
application. You may want to include a command in your login command
procedure file (see Section 1.4.2) to equate a short mnemonic to an
EDIT/EDT command that invokes a special startup command file. For
example, if you have the following line in your login command file:

$EDP:::::= "E[,IT ::::'='' '::CMt1 =PL I - T"

then the command

invokes EDT with the startup command file PLI.EDT to edit the file
METRIC.PL!.

44 Chapter 2

Chapter 3

Compiling PL/I Programs

This chapter describes how to use the PLI command to compile your source
programs into object modules. It discusses

• The functions of the compiler.

• PLI command syntax and qualifiers.

• The use of text libraries.

• Compiler diagnostic messages and error conditions.

3. 1 Functions of the Compiler

The primary functions of the VAX-11 PL/I compiler are to verify the PL/I
source statements and to issue messages if there are any errors; to generate
machine language instructions from the source statements of the PL/I pro
gram; and to group these instructions into an object module for the linker.

When the compiler creates an object module, it provides the linker with the
following information:

• The module name. This is taken from the name of the main procedure
in the source program, that is, the procedure that specifies OPTIONS
(MAIN). If no procedure specifies OPTIONS (MAIN), the module
name is the name on the first procedure statement in the source file.

• A list of all entry points and external variables that are declared in the
module. The linker uses this information when it binds two or more
modules together and must resolve references to the same names in
the modules.

• Traceback information. This is used by the system default condition
handler when an error occurs that is not handled by the program itself.
The traceback information permits the default handler to display a
list of the active blocks in the order of activation, which aids program
debugging.

45

• If specifically requested (with the /DEBUG qualifier), a symbol table.
A symbol table lists the names of all external and internal variables
within a module, with definitions of their locations. The table is of
primary use in program debugging.

The linker is described in Chapter 4.

3.2 The PLI Command

The syntax of the PLI command and its qualifiers follows, as well as de
scriptions of the parameters and qualifiers. Subsequent sections give de
taiied examples and rules for specifying input and output files for the PLI
command. The format is

PLl[/qualifier ...] file-spec[/ qualifier ...], ...

Command Qualifiers
/[NO]CHECK
/CHECK[=Option]
/[NO]CROSS_REFERENCE
/[NO]DEBUG
/DEBUG[=Option]
/[NO]ERROR_LIMIT
/ERROR_LIMIT[=n]
/[NO]G_FLOAT
/[NO]LIST[~,file-spec]

/[NO]MACHINE_CODE
/MACHINE_CODE[- option]
/[NO]OBJECT[=file-spec]
/[NO]OPTIMIZE[=(option, ...)]
/SHOW[(option, ...)]

IV ARIANT[co["]alphanumeric ____ string["]
/[NO]WARNINGS

File Qualifier
/LIBRARY

Defaults
/NOCHECK
/CHECK,"ALL
/NOCROSS_REFERENCE
/NODEBUG
/DEBUG=ALL
/NOERROR_LIMIT
/ERROR_LIMIT =100
/NOG_FLOAT
/NOLIST (interactive default)
/LIST (batch default)
/NOMACHINE_CODE
/MACHINE_CODE=INTERSPERSED
/OBJECT
/OPTIMIZE~ ALL
/SHOW=(NOINCLUDE.
NO DICTIONARY,
NOMAP,
SOURCE.
NOTRACE,
TERMINAL,
NOEXPANSION,
NOST ATISTICS)
IV ARIA NT =n"

/WARNINGS

file-spec, ...

46

Specifies one or more PL/I source files to be compiled and, optionally,
libraries to be searched for INCLUDE files that are referenced in the
source file(s).

Chapter ;3

You must separate multiple input file specifications with either com
mas(,) or plus signs(+). They have different meanings:

compiles each file and creates an object module for each.

• Plus signs delimit files to be concatenated or libraries containing
INCLUDE files. PL/I compiles the source files as a single file and
creates one object module. Library file specifications must be qualified
with the /LIBRARY qualifier.

If a file specification does not contain a file type, PL/I assumes a default
file type of PLI for a source file. If a file specification is qualified with
/LIBRARY, PL/I assumes a default file type of TLB. INCLUDE files and
INCLUDE file libraries are described in Section 3.3 and Chapter 20.

A single file may contain multiple PL/I procedures; PL/I concatenates
them into a single object module.

Command qualifiers request processing options of the compiler. You can
specify qualifiers to the PLI command after the command name or an
individual file specification. When a qualifier is specified after the PLI
command name, its action applies to each file in the list, unless overridden
by a qualifier specified for an individual file.

When a qualifier is specified after a file specification in a list of files
separated by commas, its action is applied only to the compilation of that
file.

/CHECK
/NOCHECK (default)

Controls the checking of array subscripts and of positional references
in arguments to the SUBSTR built-in function. /CHECK is primarily
of use during initial program debugging; it results in the generation of
additional code and, consequently, a slower program.

Specifying /CHECK is equivalent to specifying /CHECK=ALL and
/CHECK=BOUNDS. Likewise, /NOCHECK is the equivalent of
specifying /CHECK=NONE and /CHECK=NOBOUNDS.

/CROSS_REFERENCE
/NOCROSS_REFERENCE (default)

Specifies whether the compiler is to generate, in the listing file, cross
references for variable names. If you specify /CROSS-REFERENCE,
the compiler lists all variable names, including all members of struc
tures as separate entities in an alphabetical cross-reference listing.
The cross-reference entry for each structure member also lists the
name of the structure that contains the member. The listing contains
the line numbers of the lines on which all variables are referenced.

Com piling PL/I Programs 47

Note that /SHOW=MAP is required with /CROSS-REFERENCE.

By default, the compiler does not include cross-references in the list
ing.

/DEBUG[=Option l
/NODE BUG

Requests that information be included in the object module for use
with the V AX-11 Symbolic Debugger. You can select the following
options:

ALL Include symbol table records and traceback re
cords. This is equivalent to /DEBUG.

SYMBOLS Include symbol definitions for all identifiers.
This is the default for symbols if the /DEBUG
qualifier is used.

NOSYMBOLS Do not include symbol definitions. Without
symbol definitions, traceback is done according
to virtual address.

TRACEBACK Include only traceback records. This is the de
fault if the /DEBUG qualifier is not present in
the command.

NOTRACEBACK Do not include traceback records.

NONE Do not include any debugging information. This
is equivalent to /NODEBUG. Use this option to
exclude all debug information from thoroughly
debugged program modules.

For an example of a traceback, see Section 5.1.2.

/ERROR_LIMITJ=:n)
/NOERROR_LIMIT

VAX-11 PL/I permits you to specify the number of errors acceptable
during program compilation. Normally, compilation terminates when
the number of errors reaches 100, but /NOERROR-LIMIT raises this
default number to 1000. However, you may specify a different error
limit with the /ERROR-LIMIT=n qualifier. The maximum number
of error messages permitted by the system is 32767.

All error and warning messages are counted toward the error limit.
Fatal messages immediately terminate the compilation.

/G_FLOAT
/NOG_FLOAT (default)

48

For VAX-11 computers that are equipped with the appropriate hard
ware option, specifies the representation of floating-point variables
with a binary precision in the range 25 through 53 and increases the

Chapter 3

maximum precision available. By default, the compiler uses D (dou
ble-precision) floating point. Specify /G_FLOAT to override this de
fault and to request the compiler to use the G floating-point type for
these variables.

The default and maximum precisions for all floating-point formats
are summarized in Section 8.2.3.

/LiST[=file-spec l (batch default)
/NOLIST (interactive default)

Controls whether a listing file is produced. When /LIST is in effect,
the compiler gives a listing file the same file name as the source file
and a file type of LIS. If you supply a file specification with /LIST,
the compiler uses that file specification to override the default values
applied.

You can control the contents of the listing file by specifying the
/CROSS-REFERENCE and /MACHINE-CODE qualifiers, and by
specifying options on the /SHOW qualifier.

/MACHINE_CODE[=optionl
/NOMACHINE_CODE (default)

Controls whether the listing file produced by the compiler includes a
listing of the machine code generated during the compilation.

You can select the following options:

AFTER Put machine code after the source code.

BEFORE Put machine code before the source code.

INTERSPERSED Intersperse source and machine code.

/OBJECT[=file-spec l (default)
/NOOBJECT

Controls whether the compiler produces object modules. By default,
the compiler produces an object module with the same file name as
the source file and a file type of OBJ.

Specify /NOOBJECT when you want to compile a program to obtain
only a listing or when you want the compiler to check the source
program only for errors and display diagnostic messages. The com
piler can execute more rapidly if it does not need to create an object
module.

/OPTI M IZEf-=-(option, ...) I
iNOOPTiMiZE

Controls the optimization performed by the compiler. By default, all
possible optimizations are performed. The optimizations and the op
tions that control them are described in the VAX-I I PL/I User's
Guide.

Compiling PL/I Programs 49

If you specify /OPTIMIZE with any options, the settings of other
options are not affected. For example, /OPTIMIZE=NOPEEPHOLE
disables the PEEPHOLE option but leaves all other options enabled.

/SHOW[=(option, ...)1

Sets or cancels specific compilation listing options. You can select or
cancel any of the options listed in Table 3-1. The following options
are enabled by default:

NOINCLUDE
NO MAP
NODICTIONARY
SOURCE
TERMINAL
NOSTATISTICS
NOTRACE
NOEXPANSION

The /SHOW qualifier must be used in combination with the /LIST
qualifier before it can be effective. The /LIST qualifier specifies that a
source listing is to be made, and the /SHOW qualifier gives you
control over which portions of the source listing you want to see.

When you specify any option with the /SHOW qualifier, the settings
for other options are not changed.

Table 3-1: PL/I Compiler Options

Option

ALL

NONE

[NOJINCLUDE

Function

Include the contents of all files and modules in the program listing.

Do not include the contents of any of the files and modules in the
program listing.

Include/do not include the contents of INCLUDE files and modules in
the program listing.

[NOJDICTIONARY Include/do not include the contents of Common Data Dictionary rec
ord modules in the program listing.

[NOJMAP Include/do not include the storage map of the compiled program in the
program listing. The storage map includes a list of all external entry
points, the size and attributes of all variables that are referenced in
the program, and a program section summary and procedure defini
tion map.

[NOJSOURCE Include/do not include the source program statements in the program
listing.

[NOJSTATISTICS Include/do not include performance statistics in the program listing.

[NOJTERMINAL Display/do not display compilation messages to SYS$0UTPUT at
compile time.

50 Chapter 3

Table 3-1 (Cont.): PL/I Compiler Options

Opiion Funciion

[NOJTRACE Include/do not include each step of preprocessor replacement and
rescanning.

[NOJEXPANSION Include/do not include the final replacement values for preprocessor
variables.

You can also control the content of the source listing by using prepro
cessor statements to suppress preprocessor portions in the program
text. For example, if you previously specified /SHOW=INCLUDE,
you may suppress included files from the listing with the %NOLIST _
INCLUDE statement in your program.

By default, the /SHOW qualifier includes two listing notations specif
ically for preprocessor statements. An asterisk * in the column to the
right of the line numbers indicates which portions of the program text
were not used at compile time. A 'P' in the column to the right of the
line numbers indicates that the preprocessor statement on that line is
contained within a preprocessor procedure.

By default, the /SHOW qualifier yields a listing with two items (P
and *) noted in the column to the right of the line numbers. However,
additional items are noted depending on the value given to the quali
fier. Table 3-2 summarizes the characters that can appear in the
listing.

Table 3-2: Listing Notation Characters

Character Qualifiers

/LIST

/LIST

D /LIST/SHOW=DICTIONARY

E /LIST/SHOW=EXPANSION

/LIST/SHOW=INCLUDE

p /LIST

T /LIST/SHOW=TRACE

Compiling PL/I Programs

Meaning

Indicates a line that contains a comment
only.

Indicates program text that was not used
at compile time.

Indicates CDD text included by a
%DICTIONARY statement.

Indicates the final replacement value of a
preprocessor variable or procedure.

Indicates text included by a %INCLUDE
statement.

Indicates lines contained within a prepro
cessor procedure.

Indicates each step of preprocessor re
placement and rescanning.

51

If you specify /LIST/SHOW=ALL, the compiler includes the full
complement of character notations in the column to the right of the
line numbers.

The effect of the /SHOW and /LIST qualifiers on the program listing
is illustrated in the sample listings in Appendix A.

/VARIANT
/VARIANT""

Permits specification of compilation variants. The value specified for
/VARIANT is available at compile time via the VARIANT() prepro
cessor built-in function.

If/VARIANT is not specified, or if/VARIANT is specified without a
value, /VARIANT='"' is assumed.

/WARNINGS (default)
/NOWARNINGS

Controls whether the compiler prints messages for diagnostic warn
ings. If you specify /NOWARNINGS, the compiler does not print
warning messages. It does, however, continue to display messages for
informational, error, and fatal diagnostics. (Section :.:L4 contains more
information about the significance of warning messages.)

File Qualifier

/LIBRARY

Indicates that the associated input file is a library containing text
modules that may be included in the compilation of one or more of
the specified input files. The specification of a library file must be
preceded by a plus sign. If the file specification does not contain a file
type, PL/I assumes the default file type of TLB.

For information on how the PL/I compiler locates text libraries, see
Section 3.3. For information on creating INCLUDE file libraries, see
Chapter 6.

3.2.1 PLI Command Examples
The following examples illustrate the use of the PLI command.

$ PU METRIC

The PLI command compiles METRIC.PL! and creates the file
METRIC.OBJ.

$ P L. I / L I '.:; T / :=.; H D l·~ = I (~ C L_ U D F M A C H I !J F _ C U () [P P L .. I
$ PF'HH APPLIC

The PLI command compiles the file APPLIC.PLI and creates the files
APPLIC.OB,J and APPLIC.LIS. The listing shows the contents of all files

52 Chapter ;3

and text modules included in the compilation by %INCLUDE statements,
as well as a machine code listing of the program. The /LIST qualifier is not
necessary because /MACHINE-CODE implies /LIST. The PRINT com
mand queues a copy of the listing file for printing. The default file type
given to a listing file by the compiler is LIS; this is also the default file type
assumed by the PRINT command.

$ PLI SWITCH,TXT/CHECK

The PLI command compiles the statements in the file SWITCH.TXT. The
/CHECK qualifier causes the compiler to verify all array references and
substring extents. The compiler produces the file SWITCH.OBJ.

The VAX-11 PL/I compiler lists the PLI command and its specified com
mand qualifiers in the program listing.

3.2.2 Specifying Input and Output Files
To specify an alternative name for a listing or object file or an alternative
target directory or device, you can include a file specification on the /LIST
or /OBJECT qualifier. Some examples follow:

Command Output File(s)
$ PLI METRIC/LIST=TEST METRIC.OBJ (by default)

TEST.LIS

$ PLI METRIC-
$_/LIST =[PROJECT .LISTINGSJ
$_}0BJECT=[PROJECT.OBJECTJJ

$ PLI METRIC/LIST=LPAO:

$ PLI/LIST=SYS$0UTPUT METRIC

[PROJECT.LISTINGS] METRIC.LIS
[PROJECT.OBJECT] METRIC.OBJ

METRIC.OBJ (by default)
line printer listing

METRIC.OBJ (by default)
listing on the current
output device

In the third and fourth examples, the listing files are not saved on disk;
they are deleted after output.

3.3 Using Text Libraries

You can use text libraries to provide application-specific text modules
within your particular environment. Chapter 6 contains information on
creating text libraries. You gain access to modules in text libraries with the
%INCLUDE statement.

The %INCLUDE statement (described in Section 7.4.3) provides a way for
many separate programs to share common source text. For example, an
application may consist of many separately compiled external procedures
that share the same structure declaration or external variable declarations,

Compiling PL/I Programs 53

In such cases, it is convenient to maintain only one copy of the declaration
of the variables and to include this declaration in each source program.

An %INCLUDE statement in a PL/I source file requests inclusion of an
entire file, or of a module from a library of text files. When the compiler
reads the %INCLUDE statement during compilation of a source program,
it begins reading from the file or module specified by %INCLUDE. When it
reaches the end of the included text, it resumes reading from the previous
input file.

When an %INCLUDE statement in your program requests inclusion of a
module from a library, you must be sure that the PL/I compiler can find
the library. Either specify it explicitly in the PLI command, or request a
module from one of the libraries that the compiler searches by default.

3.3.1 Specifying Text Libraries in the PLI Command
When you specify a library file in a PLI command, you must precede the
specification with a plus sign and use the /LIBRARY qualifier. For
example:

$ P! .. T P TiiB Ifpp,r:;·,

This PLI command compiles the source program APPLIC.PLI and uses the
library DATAB.TLB to locate any INCLUDE files that are referenced in
the format

%INCLUDE text-module-name;

The module name must not be enclosed in apostrophes.

When you specify more than one library, PL/I searches the libraries in the
order specified each time it processes an %INCLUDE statement that speci
fies a text module name. For example:
$ r:.:. f' 1- ~ 1 ;:.. r: i._ I :: ;:;- ~; r;; ,
$ _ + r,1 E c:; 1 F r~· ~ R ,· + 1 ; 1 n F ~' L ::::;; " M :; L. I B r:;i ?i P ,

When PL/I processes an %INCLUDE statement in the source file
APPLIC.PLI, it searches for modules referenced in the libraries
DATAB.TLB, NAMES.TLB, and GLOBALSYMS.TLB, in that order.

On a command that requests multiple compilations, a library must be
specified for each compilation in which it is needed. For example:

In this example, PL/I compiles METRIC.PL! and APPLIC.PLI separately
and uses the library DATAB.TLB for each compilation.

54 Chapter 3

The order of appearance of the library file specification within a conca
tenated list of files is irrelevant. For example, the following are equivalent:

$ PLI ALPHA+~YLIB LIBRAPY+BETA
S PLI PHA+BETA+~YLIB! IBRARY

3.3.2 Default PL/I Libraries
You can define one of your private INCLUDE file libraries as a default
library for the PL/I compiler to search. The compiler searches the default
library after it searches libraries specified on the PL/I command.

To define a default library, define an equivalence for the logical name
PLI$LIBRARY, as in the following example:

S DEFINE PLISLIBRARY DATAB

While this assignment is in effect, the compiler automatically searches the
library DATAB.TLB for any INCLUDE modules that it cannot locate in
libraries explicitly specified on the PLI command.

You can define the logical name PLI$LIBRARY in the process, group, or
system logical name table. If the name is defined in more than one table,
the PL/I compiler uses the equivalence for the first match it finds in the
normal order of search (that is, the process, then group, then system table).
Thus, if PLI$LIBRARY is defined in both the process and group logical
name tables, the process logical name table assignment overrides the group
logical name table assignment.

When it cannot find INCLUDE modules in libraries specified on the PLI
command or in the default library defined by PLI$LIBRARY, PL/I
searches the library identified by the name

SYS$LIBRARY:PLISYSDEF.TLB

where SYS$LIBRARY is normally defined by the system manager to iden
tify the device and directory containing system libraries.
PLISYSDEF.TLB is a library ofINCLUDE modules supplied by VAX-11
PL/I. It contains declarations for the entry points for V AXNMS system
services, local symbol definitions required for use with them, and variables
to test their return status values.

3.4 Compiler Diagnostic Messages and Error
Conditions

One of the functions of the PL/I compiler is to identify syntax errors and
violations of language rules in the source program. If the compiler locates

Compiling PL/I Programs 55

any errors, it writes messages to your default output device; thus, if you
enter the PLI command interactively, the messages are displayed on your
terminal. If the PLI command is executed in a batch job, the messages
appear in the batch job log file.

Each compilation with diagnostic messages terminates with a diagnostic
summary that indicates the number of error, warning, and informational
messages generated by the compiler. The diagnostic summary has the
format

'i.',PLIG-I-SUMMARY

Completed with n error(s) 1 n warninslsl 1

n informational messases,

If the compiler creates a listing file, it also writes the messages to the
listing. Messages typically follow the statement that caused the error.

When it appears on the terminal, a message from the compiler has the
format

%PLIG-s-ident, message-text
At line number n device:[directory]file.nme;x.

~tePL!G

s

56

Is the facility, or program, name of the the VAX-11 PL/I Subset G
compiler. This portion indicates that the message is being issued by
PL/I.

Specifies the severity of the error. The letters that represent the possi
ble severities are

F Fatal. The compiler stops executing, does not continue the com
pilation, and does not produce an object module. You must cor
rect the error before you can compile the program.

E Error. The compiler continues, but does not produce an object
module. You must correct the error before you can successfully
compile the program.

W Warning. The compiler produces an object module. It attempts
to correct the error in the statement, but you should verify that
the compiler's action is acceptable. Otherwise, your program may
produce unexpected results.

I Information. This message usually appears with other messages
to inform you of specific actions taken by the compiler. Informa
tional messages also indicate nonstandard constructs and items
that are syntactically correct, but that may contain programming
errors. No action is necessary on your part.

Chapter 3

ident

Is the message identification. This gives a descriptive abbreviation of
the message text.

message-text

Is the compiler's message. In many cases, the message text consists of
more than one line of output. The messages generally provide enough
information for you to determine the cause of an error and correct it.

At line number n
Specifies the source file line number of the statement that caused the
error. This is the line number assigned to a statement by the com
piler. It is not necessarily the same as the line number, if any, as
signed by a text editing program.

device:[directory]file. nme;x.
Indicates its location, the filename, and version number.

The compiler produces messages with warning severity if it encounters

• Syntax errors (such as a missing END statement) that the compiler
attempts to fix.

• Language elements (such as undeclared variables) that are not part of
th~ PL/I G subset but do belong to ful-1 PL/I.

• Legal PL/I G subset usage (such as assignment of a bit-string value to
a fixed-point binary variable) that nonetheless may represent a pro
gramming error or produce unexpected results.

3.5 User-Generated Diagnostic Messages
V AX-11 PL/I permits you to create and insert special-purpose preprocessor
diagnostic messages to do the following:

• Write the message text.

• Specify the severity level.

• Define the condition which issues the message.

User-generated diagnostic messages are appropriate in the source program
wherever a potential compile-time problem may develop or when specific
compile-time information is required.

The following preprocessor statements, when used in conjuction with a
%IF -group, specify the conditions that cause the diagnostic messages to be
issued during program compilation:
'Y.. INFORM
%WARN
i..ERRDR
/,,FATAL

Compiling PL/I Programs 57

You determine the severity of the diagnostic message by your choice of
statement. For example, if you wanted compilation information only, then
you would use %INFORM. If you wanted to stop compilation where spe
cific conditions developed, then you would use %FATAL.

The message text is specified by a preprocessor expression. The resulting
message is returned in the same format as other compiler diagnostic mes
sages.

When you determine the severity, you may also define the conditions
which control the production of an object module. As with non-user-gener
ated compiler messages, informational and warning messages do not in
hibit the production of an object module. Error and fatal messages do. For
example:

'X.IF SUBSTR<TIME() tl 12)

'X.THEN
7 ~: SUBSTR<TIME<) t112) 18

%FATAL 'Please comPile this outside of Prime time';

Here, the compiler aborts compilation if someone attempts to compile the
program between the hours of 7 a.m. and 6 p.m., and it issues the following
fatal diagnostic message:

%PLIG-F-USERDIAG, Please compile this outside of prime time

You can use preprocessor built-in functions to return-at specific points in
the program-the number of diagnostic messages generated at compile
time. For example, if you wanted to know how many warnings had been
issued when compilation was half complete, you could insert the WARN
preprocessor built-in function in the source program. Then, you could elect
to terminate compilation if errors threaten successful compilation. For ex
ample:

'XIF WARN() = 5
'X.THEN

%FATAL 'ComPilation aborted with 5 warninss•;
!..ELSE

·x.;

See Chapter 20 for more information on the Embedded Preprocessor.

58 Chapter 3

Chapter 4

Linking Programs

This chapter describes how to use the linker and object module libraries to
combine object modules into executable programs. It discusses

• The functions performed by the linker.

• The LINK command and its input and output files.

• Object module libraries.

The topics in this chapter are confined to areas of particular interest to
PL/I programmers. For additional information on linker capabilities and
detailed descriptions of LINK command qualifiers and options, see the
VAX-I I Linker Reference Manual.

4.1 Functions of the Linker

The primary functions of the linker are to allocate virtual memory within
the executable image, to resolve symbolic references among modules being
linked, to assign values to relocatable global symbols, and to perform relo
cation. The linker's end product is an executable image that you can run.

For any PL/I procedure, the object module generated by the compiler con
tains calls and references to VAX-11 PL/I run-time procedures, which the
linker locates automatically in the default system object module libraries.
The libraries are described in Section 4.3.

4.2 Using the LINK Command

The format of the LINK command is

LINK[/ qualifier ...] file-spec[/ qualifier ...], ...

file-spec, ...

Specifies one or more files containing object modules to be linked
and, optionally, libraries containing modules that can be included.
You can separate the file specifications with commas or plus signs. In
either case, all files specified are used as linker input for the creation
of a single executable image.

59

If the file specification does not contain a file type and is not qualified
by /LIBRARY, /INCLUDE, or /OPTIONS, the linker assumes a de
fault file type of OBJ.

/qualifier ...

Specifies one or more LINK command qualifiers.

The /LIBRARY, /INCLUDE, and /OPTIONS qualifiers can be speci
fied only after the specification of an input file. All other qualifiers
can be specified either after the LINK command or after any input
file specification. Table 4-1 summarizes the LINK command quali
fiers in categories.

4.2.1 Linker Messages
If the linker detects any errors while linking object modules, it displays
messages about their cause and severity. If any error or fatal conditions
occur (severities E or F), the linker does not produce an image file.

Linker messages are descriptive, and you do not normally need additional
information to determine the specific error. Some of the more common
errors that occur during linking follow:

• An object module has compilation errors. This error occurs when you
attempt to link a module that had warnings or errors during compila
tion. Although you can usually link compiled modules for which the
compiler generated messages, you should verify that the modules will
actually produce the output you expect.

• The modules that are being linked define more than one transfer ad
dress. The linker generates a warning if more than one module has an
entry point designated with the OPTIONS (MAIN) keywords. The
image file created by the linker in this case can be run; the entry point
to which control is transferred is the first one that the linker found.

• A reference to a symbol name remains unresolved. This error occurs
when you omit required module or library names from the LINK com
mand and the linker cannot locate the definition for a specified global
symbol reference.

If an error occurs when you link modules, you can often correct it simply by
reentering the command string and specifying the correct modules or li
braries.

Should an error indicate that a module with a name in the format
PLI$_name cannot be located, you may not be linking the program with
the correct PL/I run-time library. If you cannot locate or define the PL/I
run-time library for any reason, check with your system manager or opera
tor for information.

60 Chapter 4

l' s·
:;.;-"'

5·
(Jq

"ij ...,
0

(Jq ...,
~

s
r:f1

~

Table 4-1: LINK Command Qualifiers

Function

Hequest output files and de
fine a file specification .

Request and specify the con
tents of a memory allocation
listing.

Specify the amount of
debugging information.

Indicate that input files are
libraries and to specifically
include certain modules.

Hequest or disable the search
ing of default user libraries
and system libraries.

Indicate that an input file is a
!:inker options file.

Qualifiers

/EXECUTABLE[=file-spec]

/HEADER
/PROTECT
ISHAREABLE[=file-spec]
/SYMBOL_ TABLE[=file-specl

/BRIEF
[NOJCONTIGUOUS
/[NOJCROSS-REFERENCE
/FULL
/POIMAGE
/[NOJMAP

/[NOJSYSTEM[=base address]

/[NOJDEBUG
/[N OJTRACEBACK

/INCLUDE=(module-name)
/LIBRARY
/SELECTIVE_SEARCH

/[NOJSYSLIB
/[NOJSYSSHR
/[NOJUSERLIBRARY[=tableJ

/OPTIONS

Defaults

/EXECUTABLE=name.EXE, where name
is the name of the first input file.

/NO SHAREABLE
/NOSYMBOL_TABLE

/NOCROSS_REFERENCE

/NOMAP (interactive)
/MAP=name.MAP (batch) where name
is the name of the first input file.

/NODEBUG
/TRACEBACK

/SYSLIB
/SYSSHR
/USERLIBRARY =ALL

4.2.2 Linker Input Files
You can specify the object modules to be included in an executable image
in any of the following ways:

• Specify files containing individual object modules created by a com
piler. The linker assumes that any unqualified file specification is an
object module.

• Specify one or more object module libraries to be searched to resolve
references to external procedures and variables. These libraries are
searched for all references that are not resolved among the modules
specifically included in the compilation. You must qualify the file
specification of the library with the /LIBRARY qualifier. Object mod
ule libraries are described in Section 4.3.

• Specify explicit modules in an object module library that are to be
included in the image. You must qualify the file specification of the
library with the /INCLUDE qualifier and specify the names of the
desired object modules.

• Specify in a shareable image library explicit shareable images that are
to be included in the image. You must qualify the file specification of
the library with the /INCLUDE qualifier and specify the names of the
desired shareable images.

• Specify an options file containing additional file specifications and
special linker options. You must qualify the file specification of an
options file with the /OPTIONS qualifier.

The linker uses the following default file types for input files:

File

Object module
Library
Options file

File Type

OBJ
OLB
OPT

The format and content of a linker options file are described in detail in the
VAX-11 Linker Reference Manual. You may wish to use an options file if
you have a very long list of input files to specify, if you want to link a
module with a shareable image file, or if you want to request special linker
options regularly.

4.2.3 Linker Output Files
When you enter the LINK command interactively and do not specify any
qualifiers, the linker creates only an executable image file. By default, the
image file has the same file name as the first or only object module speci
fied and a file type of EXE. For example:
$ i .• l

62 Chapter 4

This LINK command links the object modules in the files A.OBJ, B.OBJ,
and C.OBJ and creates the image file A.EXE.

In a batch job, the iinker creates both an executable image file and a
storage_ map file by default. The default file type for map files is MAP.

To specify an alternative name for a map file or image file, or to specify an
alternative output directory or device, you can include a file specification
on the /MAP or /EXECUTABLE qualifier. Some examples follow.

Command Output File(s)
$ LINK METRIC/MAP=TEST METRIC.EXE (by default)

TEST.MAP

$LINK METRIC/EXE=lPROJECT.EXEJ
$_}MAP=!PROJECT.MAPJ

$ LINK METRIC/MAP=LP:

[PROJECT .EXEJ METRIC.EXE
!PROJECT.MAP! METRIC.MAP

METRIC.EXE (by default)
line printer listing of
the map file

In the third example, the map file is not saved on disk after it is printed.

4.3 Using Object Module Libraries

When they are linked, all PL/I programs use a system-supplied object
module library containing routines that provide 1/0 and other system func
tions. However, you can use additional libraries to provide application
specific object modules within your particular environment. Chapter 6 con
tains information on creating such libraries.

To use the contents of an object module library, you must

1. Refer to the object module by name in your program in a CALL
statement or function reference.

2. Make sure that the linker can locate the library containing the ob-
ject module.

You specify that a linker input file is a library file by following it with the
/LIBRARY qualifier. This qualifier causes the linker to search for a file
with the name you specify and a default file type of OLB. If you specify a
file that the linker cannot locate, a fatal error occurs and the link
terminates.

The next sections describe the order in which the linker searches libraries
that you specify explicitly, default user libraries, and system libraries.

4.3.1 Defining the Search Order for Libraries
You can specify as many libraries as you wish as input for the linker; there
is no practical limit. More than one library can contain a definition for the

Linking Programs 63

same module name. The linker uses the following conventions to search
libraries specified in the command string:

• A library is searched only for definitions that are unresolved in the
previous input files specified.

• If more than one object module library is specified, the libraries are
searched in the order in which they appear.

For example:

$ LINK METRI ·DEFLIB/LIBRAP ·APPLI

The library DEFLIB will be searched only for unresolved references in the
object module METRIC. It is not searched to resolve references in the
object module APPLIC. However, this command can also be entered as
follows:

In this case, DEFLIB.OLB is searched for all references that are not re
solved between METRIC and APPLIC.

4.3.2 Default User Object Module Libraries
You can define one or more of your private object module libraries as
default user libraries. The linker searches default user libraries for unre
solved references after it searches modules and libraries specified in the
LINK command.

To indicate that a private library is a default user library, enter a DEFINE
command as in the following example:

$ DEFINE LNKSLIBRAPY DEFLlB

LNK$LIBRARY is a logical name; DEFLIB is the name of an object mod
ule library, having the file type OLB, that you want the linker to search
automatically in all subsequent link operations.

You can establish any object module library as a default user library by
creating a logical name for it. The logical names you must use are
LNK$LIBRARY (as above), LNK$LIBRARY-1, LNK$LIBRARY-2, and
so on, to LNK$LIBRARY-999. When more than one of these logical names
exists during a link, the linker searches them in numeric order beginning
with LNK$LIBRARY. The search order is as follows:

64

1. The process, group, and then system logical name tables are
searched for the name LNK$LIBRARY. If the logical name exists in
any of these tables and if it contains the desired reference, the search
is ended.

Chapter 4

2. The process, then group, and then system logical name tables are
searched for the name LNK$LIBRARY-1. If the logical name exists
in any of these tables, and if it contains the desired reference, the
search is ended.

This search sequence is taken for each reference that remains unresolved.

4.3.3 Temporary Defaults for INCLUDE Files
The VAX-11 PL/I compiler uses the DCL rule for the application of tempo
rary defaults in lists of input files, that is, for lists that are delimited with
either commas or plus signs. For example:

$ PLI [INTRO.SRCJA1B

The directory specification above is applied to both B and A.

Temporary defaults also apply to file specifications in INCLUDE files; that
is, if a file in an %INCLUDE statement does not specify a device and/or
directory, the compiler uses the device and directory of the file in which the
%INCLUDE statement was read. For example, if the file [INTRO.SRCJA
contains the statement

·x. I NCLLIDE 'STATE';

the compiler attempts to locate [INTRO.SRCJSTATE.PLI.

4.3.4 System Libraries
The directory identified by the system-defined logical name
SYS$LIBRARY contains the library files

• IMAG ELIB. OLB

• STARLET.OLE

• PLIRTL.EXE

• VMSRTL.EXE

The library IMAGELIB.OLB contains references to entry points in
VMSRTL.EXE, which contains the VAX-11 Run-Time Library, and to
entry points in PLIRTL.EXE, which contains the PL/I run-time library.
The procedures in these libraries provide

• Commonly used mathematical and string-handling functions.

• Procedures that support code produced by VAX/VMS compilers.

IMAGELIB.OLB is a shareable image library; that is, it is prelinked and
can be accessed by many images concurrently. The procedures in a share
able image library can be used by a program even though the procedures

Linking Programs 65

are not physically included in the program image; the references to the
procedure in the shareable image library are not resolved until the program
is run.

STARLET.OLB contains, in object module form, all the procedures in
VMSRTL.EXE, as well as additional run-time modules required by vari
ous compilers and system programs.

By default, the linker searches these two libraries to resolve references to
external names that are still unresolved after it searches libraries specified
in the LINK command and default user libraries.

4.3.5 Creating Shareable Images
You can create a shareable image that resides in your directory and that
you can include in your applications by using the /SHAREABLE qualifier
on the LINK command. The resulting image is stored as an executable
image, but must be included in another program before it can be executed.
The format is

SLIN~ SHAREABLE f tle- Pee

This command creates an individual shareable image that can be copied
from your directory to that of another user.

Note that the concept of a shareable image includes the idea that a single
copy of an image is created and stored in system memory so that many
applications may use the same shareable image and save space by doing so.
If you create a shareable image that resides in your directory and copy it to
the directory of another user, you have in fact created two copies of the
image and have defeated the purpose of shareable images.

The INSTALL utility allows you to create a single shareable image that
can be shared across the system. Use of this utility conserves disk storage
space and main physical memory, reduces paging l/0, and preserves the
integrity of memory-resident data bases. For details on the use of the
INSTALL utility, see the VAX-I! Guide to Creating Modular Library
Procedures, Chapter 7, Building Modular Procedure Libraries.

66 Chapter 4

Chapter 5

Running PL/I Programs on VAX/VMS

This chapter describes the following considerations for executing your PL/I
programs on the VAX/VMS operating system:

• Using the RUN command to execute programs interactively

• Passing status values to the command interpreter

5.1 The RUN Command

You execute a PL/I program with the RUN command. The default file type
for RUN is EXE, so you need not specify it. For example:

This RUN command locates the file METRIC.EXE in the current default
directory. It then gives control to the main entry point, that is, the entry
point designated with the OPTIONS (MAIN) keywords on its
PROCEDURE or ENTRY statement. If no procedure specifies OPTIONS
(MAIN), then control is given to the first or only module in the image.

5.1.1 Image Exit
When the main procedure executes a RETURN or END statement, or
when any procedure in the program executes a STOP statement, the image
is terminated. In the VAX/VMS operating system, the termination of an
image, or image exit, causes the system to perform a variety of cleanup
operations during which open files are closed, system resources are freed,
and so on.

In a PL/I program, you can define an ON-unit to receive control when
image exit occurs by executing an ON statement for the FINISH condition.
FOi an example, see Section 15.1.5.

67

5.1.2 Run-Time Errors
When an error occurs during the execution of a program, and no ON-unit
exists to handle the error, the program is terminated and one or more
messages are displayed on the current SYS$ERROR device. The mes
sage(s) may actually be generated by one of the following:

• The default PL/I ON-unit, or, in VAXNMS terms, condition handler.
This condition handler exists if one of the procedures in the program
was compiled with OPTIONS (MAIN).

• A default error condition handler established by the command
interpreter.

In either case, the message is followed by a traceback. For each module
having traceback information, the default handler lists the procedures that
were active when the error occurred and the sequence in which the proce
dures were called, that is, the order of block activation.

For example, if an integer divide-by-zero condition occurs, and no
ZERODIVIDE ON-unit exists in any active procedure block, the following
run-time messages appear:

%PLI-F-ERROR1 PL/I ERROR condition sisnaled
%SYSTEM-F-FLTDIV-F1 arithwetic fault1 floatinS divide
by zero at PC=000007C41 PSL=03COOOA5

These messages are followed by a traceback message like the following:

ZTRACE-F-TRACEBACK, sYwbolic stack duwP follows

r11odule routine
n ar11e n a111e line relative PC absolute PC

SETUP Dll.JIDE 9 00000074 000007C4
SETUP BEG I Ni..ll 4 00000035 00000707
SETUP SETUP 4 oooooooc 00000600
LIBS NEi<T 14 0000004ll OOOOOGA3
LIBS LIBS 15 0000004c 0000065E

These columns provide information as described below.
module name

Indicates the name of a level-1 procedure that was active when the
error occurred. The first module is that in which the error occurred.
Each subsequent line names the caller of the procedure on the previ
ous line. In this example, the level-1 procedures are LIBS and
SETUP; a call to SETUP occurred during the execution of LIBS.

routine name

68

Indicates the entry name of the internal procedure or block in the
calling sequence. When BEGIN San appears in this column, it indi
cates that an unlabeled begin block, a PUT statement, or a GET
statement was active when the error occurred.

Chapter 5

PL/I assigns labels to these blocks, giving them names in this form,
where n is the source program line number on which the block is
entered.

line

Indicates the compiler-generated source program line number of the
statement at which the error occurred, or at which the call or refer
ence to the next procedure was made. This line number matches
those on the listing file created if /LIST was specified to the compiler.

relative PC

Gives the value of the PC (program counter).

absolute PC

Gives the value of the PC in absolute terms.

5.1.3 Interrupting a Program
When you execute the RUN command interactively, you cannot execute
any other program images or DCL commands until the current image
completes. However, if your PL/I program is not performing as ex
pected-if, for instance, you have reason to believe it is in an endless
loop-you can interrupt it. To do so, use (CTRL/Y). (You may also use (CTRL/c) ,

unless your program takes specific action in response to ©TRL!C) •) For
example:

$ PUN APPLIC

$.

This command interrupts the program APPLIC. After you have inter
rupted a program, you can terminate it by entering a DCL command that
causes another image to be executed or by entering the DCL command
EXIT. PL/I signals the FINISH condition to allow a FINISH ON-unit to
execute before the given DCL command is executed. You can also issue the
DCL STOP command, which terminates the program and does not give
control to the FINISH ON-unit.

Following a (CTRUY) interruption, you can also force an entry to the debugger
by entering the DEBUG command.

There are some other DCL commands you can enter that have no direct
effect on the image. After using them, you can resume the execution of the
image with the DCL command CONTINUE. For example:

$ R U IJ A P P LI C

$ SHOW TRANSLATION INFILE
HJFILE = (undefined)

Running PL/I Programs on VAX/VMS 69

For a complete list of the commands you can enter following a tTRL!Yl inter
ruption without affecting the current image, see the VAX/VMS Command
r,anf{UQf{f' LT.c.;er's Guide.

As noted above, you may use tTRL/C) to interrupt your program; in most
cases, the effect of tTRL/cJ and tTRL/Y) is the same. However, some programs
(including programs you may write) establish particular actions to take to
respond to (CTRL/c) • If a program has no (CTRLIC) handling routine, then (CTRL cl is
the same as tTRL/Y) and in fact is echoed as ~ Y on the terminal.

5.2 Returning Status Values to the Command
Interpreter

You can define a main procedure to be executed under the control of the
DCL command interpreter as a PL/I function. Then the RETURN state
ment that terminates the main procedure can specify a status value to be
used as a success, failure, or informational indicator to the command inter
preter. For example:

TESTP: PROCEDURE OPTIONS IMAINl
RETURNS \FI/ED 5INARi(31 :1 ! ;

RETURN (•.1alue);

where the value specified on the RETURN statement can be any constant,
variable, or expression convertible to a fixed-point binary value. For mean
ingful results, you must specify the returns descriptor on the RETURNS
option for the PROCEDURE statement as FIXED BINARY (31).

When the command interpreter receives a status value from a terminating
program, it attempts to locate a corresponding message in a central system
message file or a user-defined message file. Every possible message that
can be issued by a system program, command, or component, has a unique
32-bit numeric value associated with it.

If you write a main procedure that returns arbitrary values, the command
interpreter may use them to display messages that you would not expect.
On the other hand, you may take advantage of this convention and use the
RETURN statement to exit from a program's error-handling routine by
specifying the status value associated with the error. For an example of this
technique, see Section 15.1.5.

70 Chapter 5

The command interpreter does not display messages on completion of a
program under the following circumstances:

• A RETURN statement specifies the vaiue 1, corresponding to
SUCCESS.

• The procedure does not return a value. If the main procedure is not
declared with the RETURNS option, a value of 1 is always returned
and no message is displayed.

• The procedure executes a STOP statement.

Running PL/I Programs on VAX/VMS 71

Chapter 6

Creating Libraries

VAXNMS and VAX-11 PL/I allow you to build, maintain, and use the
contents of two kinds of library: text and object module. Text libraries
contain modules of source text that you can include in a program by using
an %INCLUDE statement. Object module libraries-both user-written
and system-supplied-contain compiled code that the linker incorporates
into an image to satisfy unresolved references.

This chapter covers the use of the LIBRARY command to create and
maintain text and object module libraries.

6.1 The LIBRARY Command
The following description of the LIBRARY command does not include all
the available qualifiers, only those that are useful to the PL/I programmer.
For a complete description of the command, see the VAX/VMS Command
Language User's Guide. The DCL HELP command also provides informa
tion about LIBRARY command qualifiers and functions not covered here.

The format of the LIBRARY command is

LIBRARY library-file-spec [input-file-spec[, ...]]

Qualifiers with No Default

/COMPRESS [=option[, ...]
/CREATE[=(option[. ...])
I CROSS_REFERENCE[=(option (, ...])
/DELETE=(module(, ...])
/EXTRACT =(module(, ...])
/FULL
/HELP
/INSERT
/MACRO
/OBJECT
/ONL Y=(module[, ...])
/OUTPUT =file-spec

72

Qualifiers with No Default

/REMOVE=(symbol[, ...])
/REPLACE

/SELECTIVE_SEARCH

/TEXT
/WIDTH=n

Qualifiers

/[NO]GLOBALS

/[NO]LIST[=file-spec]
/[NO] LOG

/[NO]NAMES

/[NO]SQUEEZE

library-file-spec

Default

/GLOBALS

/NOLIST
/NO LOG

/NONAMES

/SQUEEZE

Gives the name of the library you want to create or modify. If the file
specification does not include a file type, the LIBRARY command
assumes a default type of OLB, indicating an object library.

input-file-speer , ... 1
Gives the names of one or more files that contain modules you want to
insert into the specified library.

Whenever you include an input file specification, the LIBRARY com
mand either replaces or inserts the modules contained in the input
file(s) in the specified library. The input-file-spec parameter is re
quired when you specify either /REPLACE (the LIBRARY com
mand's default operation) or /INSERT (an optional qualifier).

When you use the /CREA TE qualifier to create a new library, the
input-file-spec parameter is optional. If you include it with
/CREATE, the library command first creates a new library and then
inserts the contents of the input file(s).

Note that the /EXTRACT qualifier does not accept an input file
specification.

If any file specification does not include a file type, the LIBRARY
command assumes a default file type of OBJ, designating an object
library. You can control the default file type by specifying the appro
priate qualifier as indicated below:

Qualifier

/HELP

/MACRO
/OBJECT
/TEXT
/SHARE

Creating Libraries

Default File Type

HLP

MAR

OBJ
TXT

EXE

73

/COMPRESSI =(optionf, ... DI
Requests the LIBRARY command to recover unused space in the
library resulting from module deletion or to reformat a library.

Options override values specified on creation:

BLOCKS:n
GLOBALS:n
HISTORY:n
KEEP
KEYSIZE:n
MODULES:n
VERSION:n

/CREATE

Requests the LIBRARY command to create a new library. You may
optionally specify a file or a list of files that contains modules to be
placed in the library. By default, the LIBRARY command creates an
object module library; specify trEXT to change the library type to a
text library.

/CROSS_REFERENCE[=(option[, ...])]

Requests a cross reference listing of an object library.

Options:

ALL
MODULE Global symbol definitions and references
NONE
SYMBOL Symbols by name
VALUE Symbols by value

/DELETE=(modulef , ... I)

Requests the LIBRARY command to remove the specified module(s)
from the library.

/EXTRACT =(module[, ... J)

Copies one or more modules from an existing library into a new file.
By default, the /EXTRACT qualifier copies the modules into a file
that has the same file name as the library and a type of OB,J, MAR,
or HLP. TXT. Use the /OUTPUT qualifier to override this default.

/FULL

Requests a full description of each module in the module name table.
Use this qualifier in conjunction with /LIST.

/GLOBALS
/NOGLOBALS

74

Controls for object module libraries, whether the names of global
symbols in modules being inserted in the library are included in the
global symbol table.

Chapter 6

/HELP

Indicates that the library is a help library. When you specify the
/HELP qualifier, the library file type defaults to HLB and the input
file type defaults to HLP.

/INSERT

Requests the LIBRARY command to add the contents of one or more
files to an existing library. If a module name or global symbol name is
already in the library, the command issues an error message and does
not add the module.

/LIST[=file-spec l
/NOLIST (default)

Controls whether or not the LIBRARY command creates a listing of
the contents of the library. If you specify /LIST without a file specifi
cation, the listing appears on the current SYS$0UTPUT device. If
you include a file specification that has no file type, the LIBRARY
command uses the default file type of LIS.

/LOG
/NO LOG

Controls whether the LIBRARY command verifies each library opera
tion. If you specify /LOG, the LIBRARY command displays the mod
ule name, followed by the library operation performed, followed by
the library file specification.

/MACRO

Indicates that the library is a macro library. When you specify
/MACRO, the library file type defaults to MLB and the input file
type defaults to MAR.

/NAMES
/NO NAMES

Controls when /LIST is specified for an object module library,
whether the LIBRARY command lists the names of all global symbols
in the global symbol table as well as the module names in the module
name table.

The default is /NONAMES, which does not list the global symbols
names.

/OBJECT

Indicates that the library is an object module library. This is the
default condition. The LIBRARY command assumes a library file
type of OLB and an input file type of OBJ.

Creating Libraries 75

/ONLY=(module[, ... l)

Specifies the individual modules on which the LIBRARY command
may operate. When you use the /ONLY qualifier, the LIBRARY com
mand lists or cross references only those modules specified.

/OUTPUT =file-spec

With the /EXTRACT qualifier, specifies an output file to contain the
modules extracted from a library. If you do not include a file type, the
default is OBJ for modules extracted from object libraries and TXT
for modules extracted from text libraries.

/REMOVE=(symbol[, ... l)

Requests the LIBRARY command to delete global symbol entries
from the global symbol table in an object library.

/REPLACE

Requests the LIBRARY command to replace one or more existing
library modules with those specified in the input file. If any module
contained in the input file does not have a corresponding module in
the library, the LIBRARY command inserts it. /REPLACE is the
LIBRARY command's default operation.

/SELECTIVE_SEARCH

Defines the input files being inserted into a library as candidates for
selective searches by the linker. If you specify /SELECTIVE_
SEARCH, the linker selectively searches the modules when the li
brary is specified as a linker input file; the linker only indicates the
global symbol(s) in the module(s) referenced by other modules in the
symbol table of the output image file.

/SQUEEZE
/NOSQUEEZE

Controls whether the LIBRARY command compresses individual ma
cros before adding them to a macro library.

/TEXT

Indicates a text library. When you use the /TEXT qualifier, the li
brary file type defaults to TLB and the input file type to TXT.

/WIDTH=n

Controls the screen width (in characters) when /NAMES is specified.

File Qualifier

/MODULE=module-name

76

Specifies the module name of a text module. By default, text libraries
use the file name from the input-file-spec parameter as the module
name. Use the /MODULE qualifier if you want to override this de
fault.

Chapter 6

6.2 Creating and Correcting Text Libraries
A text library is a file that contains individual files and a table indexing
them. The LIBRARY command creates and modifies text libraries, which
have a -default file type of TLB. To use libraries for PL/I INCLUDE files,
you must

1. Create one or more iibraries consisting of INCLUDE files.

2. Specify the name of the INCLUDE module in an %INCLUDE state
ment in the PL/I source program.

3. Specify the name of the library on the PLI command to compile the
source program or define a default user library.

Figure 6-1 illustrates the creation of an INCLUDE file library and its use
in compiling PL/I programs. When the LIBRARY command adds a module
to a library, it uses by default the file name of the input file as the name of
the module. In the example in Figure 6-1, the LIBRARY command adds
the contents of the files APPLIC.SYM and DECLARE.PLI to the library
and names the modules APPLIC and DECLARE.

Alternatively, you can specify a name to be given a module in a library
with the /MODULE qualifier. For example:

$ LIBRARY/TEXT/INSERT PLIFILES -
$_DECLARE.PLIIMODULE=EXTEPNAL_DECLARATIDNS

This command inserts the contents of the file DECLARE.PLI in the library
PLIFILES under the name EXTERNALDECLARATIONS. This module
can be included in a PL/I source file during compilation with the statement

%INCLUDE EXTERNAL-DECLARATIONS;

You can correct a module in a text library by following these steps:

1. Extract the module from the library by using the /EXTRACT quali
fier to the LIBRARY command. Use the /OUTPUT qualifier to place
the module in a file.

2. Make the necessary corrections by editing the file.

3. Replace the module in the library.

For example:

$ ~IBRARY TEXT1EXTRACT=(E TERNAL_OECLARATIONS'
$_PLIFILES /OUTPUT=TEMP,PLI
$EDIT TEMP,P! [

$ i ___ Ici~A;?1 TE/T PL_tFIL.E::, TEr1P.FLJ--

$_ MO ~ E~E TERNAL ~EC RATIO~S

Creating Libraries 77

$LIBRARY /TEXT /CREATE 0
$_LIBRARY: PU FILES
$_FILE: APPLIC.SYM,DECLARE.PLI

• S PLI METRIC+PLIFILES/LIBRARY

O The LIBRARY /TEXT command creates a library containing
text modules. This command creates the library PLIFILES.TLB
that contains the modules APPLIC and DECLARE.

f) The PU command processes the input files METRIC.PU
and uses the library PLIFILES.TLB to locate all INCLUDE
file references in the format %INCLUDE module-name.

ZK-022-81

Figure 6-1: Creating and Using an INCLUDE File Library

6.3 Creating and Correcting Object Module
Libraries

An object module library is a single file containing individual object mod
ules and two tables that index the modules:

78

1. A module name table lists the names of the modules in the library.
The names are those given at compilation.

2. A global symbol table lists all global symbols defined in each
module.

Chapter 6

These are the tables that are searched by the linker.

You can use object module libraries to

• Catalog and group together commonly used subroutines and
functions.

• Provide a default set of modules for the linker to use in resolving
global references in object modules it is linking.

• Enhance the performance of linking operations by putting all needed
modules in a single library, thus reducing the number of files that
need to be opened during the linking.

Figure 6-2 illustrates the sequence of creating object modules, creating a
library, and using the library in linking programs.

The LIBRARY command uses the following default file types:

• OLB for an object module library file

• OBJ for an object module file

When the LIBRARY command inserts an object module in a library, it

• Enters the name of the module in the library's module name table.

• Enters all global symbols from the object module, including the names
of all entry points and all variables designated as global symbols, in
the library's global symbol table.

For example, a PL/I program named QUEUES.PL! might contain the
following designations:

READY: PROCEDURE;

ADDEL: Er"HRY (QUEUE, PO I hlTER) ;

REMVEL: ENTRY !OUEUE1POihlTERl;

This module can be compiled and placed in a library as follows:

$ 1 ... ![J..IE

$ TF F IF i::;11 .. 1E1..JE'::

After this LIBRARY command, the module name table for the library
DEFLIB.OLB contains an entry for the module named READY, and the
library's global symbol table contains entries for the names ADDEL,
REMVEL, and READY. Object modules that refer to any of those names
can be linked with this library. When the library is specified as input to the
linker, it searches both tables for unresolved references.

Creating Libraries 79

$ PLI METRIC, APPLIC

The PU command compiles the programs
METRIC.PU and APPUC.PU separately
and creates the object modules
METRIC.OBJ and APPUC.OBJ.

$ LIBRARY /CREATE DEFLIB
$_FILE: METRIC, APPLIC $ PLI TEST ALL

The LIBRARY command creates the
object module library DEFLIB.OLB
that contains the modules in the
files METRIC and APPLIC.

The PU command compiles the file
TESTALL.PU. This source program
contains references to the
global symbols APPUC and METRIC.

$ LINK TESTALL. DEFLIB/LIBRARY
The LINK command specifies DEFUB
as the default library to search
for unresolved references in the
module TEST ALL. The linker locates
METRIC and APPUC in this library
and includes them in the image file.

ZK-023-81

Figure 6-2: Creating and Using an Object Module Library

80 Chapter 6

You can correct a module in an object module library by correcting the
source file, compiling it, and then using the LIBRARY command to replace
the module in the library. The following example shows commands you
could use to correct a module in DEFLIB.OLB:

S EDIT QUEUES.PLI

S PLI QUEUES
$ LIBRARY DEFLIB QUEUES

Creating Libraries 81

Chapter 7

Program Structure and Content

This chapter introduces and summarizes the elements of a PL/I program:

• Section 7 .1 describes the blocks that make up a program and their
effect during program execution.

• Section 7 .2 describes the elements that make up a PL/I statement and
lists the statements available in V AX-11 PL/I.

• Section 7 .3 describes PL/I data types and lists the V AX-11 PL/I data
type attributes.

• Section 7.4 discusses the text of a PL/I program.

Subsequent chapters treat these subjects in more detail.

7.1 Blocks

PL/I is a block-structured language: statements are grouped into blocks.
There are two types of blocks: procedure blocks and begin blocks. A proce
dure executes only as the result of a specific request from another proce
dure or, in the case of the main procedure, as the result of a RUN com
mand. A begin block is always contained within a procedure, and executes
when control flows into it.

When control passes to either type of block, a block activation is created
for it. A block activation consists of the allocation of storage for some of the
variables declared within the current block and information that connects
the current block to the previous one.

7 .1.1 Begin Blocks
A begin block is a sequence of statements headed by a BEGIN statement
and terminated by an END statement. Generally speaking, you can use a
begin block wherever a single PL/I statement would be valid. In some

82

contexts, such as an ON-unit, a begin block is the only way to perform
several statements instead of one. Another primary use of begin blocks is to
localize variables. Since execution of a begin block causes a block activa
tion, automatic variabies deciared within the begin biock are iocal to it,
and their storage disappears when the block completes execution.

Another way to allow your program to perform several statements in place
of one is to use a DO-group (see Section 14.1.1). You should choose it when
possible because it does not incur the overhead associated with block ac
tivation. Use a a begin block when there are declarations present or you
require multiple statements in an ON-unit.

Section 14.2 contains the syntax fer the BEGIN statement and examples of
begin blocks.

7 .1.2 Procedures
A procedure is a sequence of statements (perhaps including begin blocks
and other procedures) headed by a PROCEDURE statement and termi
nated by an END statement. Unlike a begin block, which executes when
control reaches it, a procedure executes only when it is specifically invoked.
Invocation occurs in two ways:

• The DCL RUN command invokes the main procedure of a PL/I pro
gram. This is either the procedure that has OPTIONS (MAIN) on its
PROCEDURE statement or the first procedure encountered by the
linker.

• Statements within a procedure can invoke other procedures. The
CALL statement invokes a procedure as a subroutine. A function ref
erence invokes a procedure to return a value for use in the evaluation
of an expression.

A PL/I program must have at least one procedure, the main procedure. Any
procedure, including the main procedure, can contain others; these are
called internal procedures. A procedure that is not contained within any
other is called an external procedure. Note that the main procedure is
therefore an external procedure.

Except for the main procedure, no procedure executes unless it is invoked
by a CALL statement or function reference.

See Chapter 13 for more detailed information.

Program Structure and Content 83

7 .2 Statements

A statement is the basic element of a PL/I procedure. Statements are used
to

• Define and identify the structure of the program and the data that it
acts upon.

• Request specific actions to be performed on data.

• Control the flow of execution in a program.

In this manual, each PL/I statement is described in the chapter that covers
the function associated with it. The description of each statement gives its
syntax, abbreviation, if any, and options.

The general format of a PL/I statement consists of an optional statement
label, the body of the statement, and a required terminator, the semicolon
(;).

7.2.1 Statement Labels
A label identifies a statement so that the statement can be referred to
elsewhere in the program, for example, as the target of a GOTO statement.
A label precedes its statement; it consists of any valid identifier (see Sec
tion 7.2.3) terminated by a colon. For example:

TARGET: A=A+B;
READ_LOOP: READ FI LE (TE)<T) INTO (TEMP);

No statement can have more than one label.

7 .2.2 Keywords and Punctuation
A keyword is a name that has a special meaning to PL/I when used in a
specific context. In context, keywords identify statements, attributes, and
options.

You can abbreviate some PL/I keywords. The valid abbreviations for PL/I
keywords are given with the keyword description in this manual.

PL/I also recognizes punctuation marks in statements. The punctuation
marks serve to

84

• Specify arithmetic or relational operations to be performed on expres
sions (see Section 12.2 for details).

• Delimit and separate identifiers, keywords, and constants.

Chapter 7

For example, in the statement

A = B + c;

the equal sign (=), representing the assignment statement, the addition
operator (+), and the semicolon (;) delimit the identifiers A, B, and C, as
well as defining the operation to be performed. (Section 12.2 describes the
effect of the various operators in expressions.)

Whenever you use a punctuation mark in a PL/I statement, you can
precede or follow the character with any number of spaces. For example,
the following two statements are equivalent:

DECLARE (A,Bl FIXED DECIMAL 17101;
DECLAREIA1BlFIXED DECIMALl710l;

In the second statement, the spaces preceding and following parenthetical
expressions are omitted; the parentheses themselves are sufficient to dis
tinguish elements in the statement. The only space required in this state
ment is the space that separates the two keywords FIXED and DECIMAL.

Table 7-1 summarizes the punctuation marks that PL/I recognizes. Note
that operators consisting of two characters (for example, ** and >=) must
be entered without intervening spaces in a PL/I program.

Table 7-1: Punctuation Marks Recognized by VAX-11 PL/I

Category

Arithmetic
operators

Relational (or
comparison)
operators

Logical
operators

Concatenation
operator

Symbol

+

I

**

>
<

>
<

2'.

:s:

&
: or !

: : or ! !

Meaning to PL/I

Addition or prefix plus
Subtraction or prefix minus
Division
Multiplication
Exponentiation

Greater than
Less than
Equal to
Not greater than
Not less than
~ot equal to
Greater than or equal to
Less than or equal to

Logical NOT
Logical AND
Logical OR

String concatenation

Program Structure and Content 85

Table 7-1 (Cont.): Punctuation Marks Recognized by VAX-11 PL/I

Category Symbol Meaning to PL/I

Separators Delimits elements in a list

Terminates a PL/I statement

Separates identifiers in a structure name; specifies a decimal
point

Terminates a procedure name or a statement label; separates
elements of a bound pair in an array declaration

() Enclose lists and extents; define the order of evaluation of ex
pressions; separate statement and option names from specific
keywords

Delimit character strings and bit strings

Locator
qualifier

-> Pointer resolution

In addition to punctuation marks, PL/I accepts spaces, tabs, and line-end
characters between identifiers, constants, and keywords.

The line-end character is a valid punctuation mark between items in a
PL/I statement except when it is embedded in a string constant, where it is
ignored. For example:

A = 'THIS IS A VERY LONG STRING THAT MUST BE CONTI
NUED ON MORE THAN ONE LINE IN THE SOURCE FILE' i

This assignment statement gives the variable A the value of the specified
character-string constant, ignoring the line-end character. Note, however,
that any tabs or spaces preceding NUED in the example above will be
included in the string.

7 .2.3 Identifiers
An identifier is a user-supplied name for a procedure, a statement label, or
a variable that represents a data item.

7 .2.3.1 Rules for Identifiers
The rules for forming identifiers are

86

• An identifier can have from 1 to 31 characters.

• An identifier can consist of any of the following characters:

- The alphabetic letters A through Z and a through z. PL/I converts
all lowercase letters to uppercase when it compiles a source pro
gram. Thus, the identifiers abc, ABC, Abe, and so on all refer to
the same object.

Chapter 7

- The numeric digits 0 through 9.

- The underscore character (_).

- A dollar sign character ($).

• An identifier cannot contain any blanks.

• An identifier must begin with an alphabetic letter; a dollar sign ($),or
an underscore (_).

Some examples of valid identifiers are

STATE
total
FICA_PAID_YEAR_TO_DATE
ROUNDl
SS$_UNWIND

7 .2.4 Alphabetic Summary of Statements
Table 7-2 provides an alphabetic summary of PL/I statements, and identi
fies the section that contains their descriptions.

Table 7-2: Summary of VAX-11 PL/I Statements

Statement

assignment

null

ALLOCATE

BEGIN

CALL

CLOSE

DECLARE

DELETE

DO

END

ENTRY

Use Section

Evaluates an expression and gives its value to an identifier 12.1

Specifies no operation 14.9

Allocates storage for a based or controlled variable 9.5.3

Denotes the beginning of a block of statements to be executed 14.2
as a unit

Transfers control to a subroutine or external procedure 13.1.4

Terminates association of a file control block with an input or 16.1.3
output file

Defines the variable names and identifiers to be used in a PL/I 11.l
program and. specifies the data attributes associated with them

Removes an existing record from a file

Denotes the beginning of a group of statements to be executed
as a unit

Denotes the end of a block or group of statements begun with a
BEGI~, DO, SELECT, or PROCEDURE statement

Specifies an alternate point at which a procedure can be
invoked

18.1.4

14.1

14.3

13.1.3

Program Structure and Content 87

Table 7-2 (Cont.): Summary of VAX-11 PL/I Statements

Statement Use Section

FORMAT

FREE

GET

GOTO

IF

LEAVE

ON

OPEN

Specifies the format of data that is being read or written with
GET EDIT and PUT EDIT statements and defines the conver
sion, if any, to be performed

Releases storage of a based or controlled variable

Obtains data from an external stream file or from a character
string expression

Transfers control to a labeled statement

Tests an expression and establishes actions to be performed
based on the result of the test

Transfers control out of a DO-group

Establishes the action to be performed when a specified condi
tion is signaled

Establishes the association between a file control block and an
external file

PROCEDUHE Specifies the point of invocation for a program, subroutine, or
user-defined function

PUT Transfers data to an external stream file or to a character-string
variable

READ Obtains a record from a file

RETURN Gives control back to the procedure from which the current
procedure was invoked

REVERT Cancels the effect of the most recently established ON-unit

REWRITE Replaces a record in an existing file

SELECT Tests a series of expressions and establishes action to be per
formed based on the result of the test

SIGNAL Causes a specific condition to be signaled

STOP Halts the execution of the current program

WRITE Copies data from the program to an external record file

7 .3 Data and Variables

17.1.3

9.5.4

17.1.1

14.6

14.4

14.7

15.1

16.1.2

13.1.2

17.1.2

18.1.1

13.1.6

15.2

18.1.3

14.5

15.3

14.8

18.1.2

The statements in a PL/I program process data, generally in the form of
variables that take on different values as the result of program execution.
In V AX-11 PL/I, you usually must declare variables in a DECLARE state
ment before you can use them in other statements. Declaring a variable
associates an identifier and a set of attributes with a region of storage.

88 Chapter 7

Thus, when you declare a variable you must usually specify one or more
data type attributes to be associated with it. Furthermore, you can specify
how the variable is to be allocated by supplying a storage class attribute in
the declaration. Table 7-3 is an alphabetic list of all the attributes avail
able in VAX-11 PL/I.

Table 7-3: Summary of VAX-11 PL/I Attributes

ALIGNED

ANY

AREA

Attribute

{
AUTOMATIC }
AUTO

[BASED [(pointer-reference)]]

{
BINARY}
BIN

BIT

BUILTIN

{ g~~~ACTER } [(length)]

{
CONTROLLED }
CTL

{
DECIMAL}
DEC

{
DEFINED} .
DEF (vanable-reference)

dimension

DIRECT

ENTRY (descriptor, ...)

{
ENVIRONMENT} .
ENV (option,. ..)

extent

{
EXTERNAL}
EXT

FILE

Use

Requests alignment of bit-string variables in storage

Indicates that a parameter may have any data type

Defines a unit of storage for the allocation of based
variables

Requests dynamic allocation of storage for a variable

Indicates that a variable's storage is located by a
pointer

Defines a binary base for arithmetic data

Defines bit-string data

Defines a built-in function name

Defines character-string data

Defines a variable whose storage is allocated and
freed in successive and fixed-sequence generations

Defines a decimal base for arithmetic data

Indicates that a variable will share the storage allo
cated for another variable

Indicates that a variable is an array and defines the
number and extent of its dimensions

Specifies that a file will be accessed only randomly

Describes an external procedure and its parameters

Specifies system-dependent information about a file

Gives the length or dimension of a variable

Identifies the name of a variable whose storage is
referenced or defined in other procedures

Identifies a PL/I file constant or file variable

Program Structure and Content 89

Table 7-3 (Cont.): Summary of VAX-11 PL/I Attributes

Attribute Use

FIXED Defines a fixed-point arithmetic variable

FLOAT Defines a floating-point arithmetic variable

GLOBALDEF [(psect-name)l

GLOBALREF

{
INITIAL } _ ,
INIT (value, ... ,

INPUT

{
INTERNAL}
INT

KEYED

LABEL

length

LIKE

OFFSET

OPTIONS

OUTPUT

parameter

{
PICTURE} PIC , picture '

{
POINTER}
PTR

{
POSITION }
POS

precision, [scale-factorl

PRINT

READONLY

RECORD

REFER

90

Defines an external variable and specifies the pro
gram section in which the variable will reside

Defines an external variable whose value is defined in
an external procedure

Provides initial values for variables

Specifies that a file will be used for input

Limits the scope of a variable to the block in which it
is defined

Specifies that a file may be accessed randomly by key

Defines a label variable

Specifies a length for a string variable

Copies the declaration of a structure to another struc
ture variable

Defines an offset variable

Specifies attribute options

Specifies that a file will be used for output

Indicates that a variable will be assigned a value
when the procedure is invoked

Specifies the format of numeric data stored in
character form

Defines a pointer variable

Specifies the position within a variable at which a
defined variable begins

Specifies the number of digits in an arithmetic varia
ble and, with fixed-point data, the number of frac
tional digits

Specifies that a file is to be formatted for printing

Specifies that a static variable's value does not
change during program execution

Specifies that a file will be accessed by record I/0
statements

Defines dynamically self-defining structures

Chapter 7

Table 7-3 (Cont.): Summary of VAX-11 PL/I Attributes

Attribute

RETURNS(returns-descriptor)

f SEQUENTIAL)
,SEQ f
STATIC

STREAM

UNION

UPDATE

VALUE

VARIABLE

{~~YING}

Use

Specifies that an external entry is a function and de
scribes the value returned by it

Specifies that a file may be accessed sequentially

Requests static allocation of storage

Specifies that a file will be accessed by stream I/0
statements

Indicates that a variable will share the storage allo
cated for another variable

Specifies that records in a file may be rewritten or
deleted

Requests (1) that a global symbol be accessed by
value rather than by reference, or (2) that an argu
ment be passed to a non-PI)I procedure by immedi
ate value

Defines variable entry and file data

Defines a varying-length character string

An identifier can refer to a single variable (called a scalar variable) or to a
collection of related variables. Such a collection is called an aggregate.
There are two kinds of aggregate: the array, in which all members have the
same data type and are referenced by relative position; and the structure,
in which the members may have different data types and are referenced in
a hierarchical fashion.

The following chapters provide information on these topics:

• Chapter 8 describes the data types that you can specify for variables.

• Chapter 9 describes the storage classes.

• Chapter 10 describes aggregates.

• Chapter 11 describes the DECLARE statement and the scope of a
declaration.

7 .4 Program Text
The text of a PL/I program consists of PL/I statements and comments.
This section discusses program format, gives rules for comments, and de
scribes the %INCLUDE s~atement, which allows you to include text from
files or text libraries in a compilation,

Program Structure and Content 91

7 .4.1 Program Format
The source text of a PL/I program is freeform. As long as you terminate
every statement with a semicolon (;), individual statements can begin in
any column, spill over onto additional lines, or be written with more than
one statement to a line.

Individual keywords or identifiers of a statement, however, must be con
fined to one line. Only a character-string constant (which must be enclosed
in apostrophes) can spill over onto more than one line.

PL/I programs are easier to read and to comprehend if you follow a stand
ard pattern in formatting. For example:

• Write source statements with no more than one statement per line.

• Use indention to show the nesting level of blocks and DO-groups.

7 .4.2 Comments
A comment is an informational tool for documenting a PL/I program. To
insert a comment in a program, enclose it within the character pairs/* and
*/. For example:

I* This is a coMMent •• ,, *I

Wherever the characters I* appear in a program, the compiler ignores all
text until it encounters the characters */. Thus, a comment can span sev
eral lines.

The rules for entering comments are

• A comment can appear anywhere that a space can appear, that is:

- Between any identifiers, keywords, or constants: in this context, a
comment separates tokens, or discrete text items, in a statement.

- Preceding or following punctuation marks that normally serve as
delimiters, for example, spaces, tabs, or commas.

• A comment can contain any character except the pair */; comments
cannot be nested.

Some examples of comments are

A = B + C ; I* Add B and C *I

I* ********* START OF SECOND PHASE ********* *I

DECLARE/*COUNTER*/A FIXED BINARY (71;

I* This Module PerforMs the followinf steps:

92

1, Initializes all arrays and data structures.
2, Establishes default condition handlers.

Chapter 7

Although complete comments cannot be nested, you can "comment out" a
statement such as

DECLARE EDF BIT<l>; I* end-of-file *I

This statement can be commented out by preceding the DECLARE with
another /* pair. The compiler will then ignore all text, including the
DECLARE statement, until it reaches the */ pair.

7 .4.3 %INCLUDE Statement
An %INCLUDE statement in a PL/I source file requests inclusion of an
entire file, or of a module from a library of text files. When the compiler
reads the %INCLUDE statement during compilation of a source program,
it begins reading from the file or module specified by %INCLUDE. When it
reaches the end of the included text, it resumes reading from the previous
input file.

When an %INCLUDE statement in your program requests inclusion of a
module from a library, you must be sure that the PL/I compiler can find
the library. Either you must specify the library explicitly in the PLI com
mand, or request a module from one of the libraries that the compiler
searches by default.

Source
Result as
Compiled

DECLARE X FIXED, } { DECLARE X FIXED,
NAME CHAR(*); ------------- NAME CHAR(*);

%INCLUDE 'APPLIC.SYM '; { DECLARE FOUND EXT STATIC

~ (

DONE EXT STATIC
DECLARE P POINTER; . ; FIXED BIN(7) INIT(1),

A:PLIC.SYM Ir LO~l:i~:~N~~~:~IT(2),
_ - _ FIXED BIN(7) INIT(3);

DECLARE P POINTER;

ZK-024-81

Figure 7-1: Using the %INCLUDE Statement

Included text can contain an %INCLUDE statement. The maximum depth
to which included text can be nested is four.

The %INCLUDE statement format is

%INCLUDE { 'file-spec, } ;
text-module-name

Program Structure and Content 93

file-spec

A file specification enclosed in apostrophes. The default file type is
PLI. The entire file is included in the compilation.

text-module-name

The 1- to 31-character name of a text module in a library of
INCLUDE files or other text modules. Only the contents of the mod
ule are included in the compilation.

For example, the following specifications are different:

!INCLUDE 'STATE';
'X. INCLUDE SiATE;

In the first example, PL/I assumes that STATE is a file specification and
looks for the file STATE.PL! in the directory that contains the file being
compiled. In the second example, PL/I searches any library files specified
in the PLI command for a module named STATE.

When you use the %INCLUDE statement to request inclusion of a text
module from a library file, you must ensure that the compiler can locate
the appropriate library. If PL/I cannot locate a specified file or module, it
issues a fatal error message and terminates the compilation.

94 Chapter 7

Chapter 8

Data Types

This chapter includes the following topics:

• A brief summary of the data types

• Arithmetic data types, which are used to represent numeric values

• Character-string data, which consists of sequences of ASCII characters

• Bit-string data, which consists of sequences of binary digits (bits)

8.1 Summary of Data Types

VAX-11 PL/I supports the following computational data types:

• The arithmetic data types define values that can be used in arithmetic
computation. They are

- fixed-point (binary and decimal integers and fractions).

- floating-point (binary and decimal).

- pictured (fixed-point data stored in character form).

Sections 8.2.1 through 8.2.4 describe them.

• Character-string data consists of a sequence of ASCII characters. (See
Section 8.3.)

• Bit-string data consists of sequences of binary digits. (See Section
8.4.)

The data types listed below represent noncomputational program values
that are used within a PL/I program for control. Each of them is described
along with its associated function in the indicated section.

95

• Entry constants and variables are used to invoke procedures through
specified entry points. (See Section 13.2.1.)

• Label variables and constants provide you with a flexible means of
control within a program. (Section 14.6 contains a description of label
data.)

• File variables and constants provide access to files. (See Section
16.1.1.)

• Pointers represent the location in memory of data, and are used to
access based variables in areas and data in system-allocated buffers.
(See Section 9.5.1.1.)

• Areas are regions of storage in which based variables may be allocated
and freed. Offsets represent the location of a based variable in an area.
(See Section 9.5.1.2.)

8.2 Arithmetic Data Types

Arithmetic data types are used for variables on which arithmetic calcula
tions are to be performed. The arithmetic data types supported by VAX-11
PL/I are

• Fixed-point-for binary and decimal data with a fixed number of frac
tional digits.

• Floating-point-for calculations on very large or very small numbers,
with the decimal point (n.umber of fractional digits) allowed to
"float."

• Pictured-for fixed-point decimal data that is stored internally in
character form, with special formatting characters.

Sections 8.2.1 through 8.2.4 describe these four data types. Section 8.2.5
describes the precision of all arithmetic data types.

When you declare an arithmetic variable, you do not always have to define
all its characteristics, or attributes; the PL/I compiler makes assumptions
about attributes that are not explicitly defined. For example:

DECLARE NUMBER FIXED;

The FIXED attribute implies the attributes BINARY(31,0). Thus, the var
iable NUMBER has the attributes FIXED BINARY(31,0).

96 Chapter 8

Table 8-1 shows the default attributes implied by each arithmetic data
attribute.

Table 8-1: Implied Attributes for Computational Data

Specified Implied

FIXED BINARY(31,0)

FLOAT BINARY(24)

BINARY FIXED(31,0)

DECIMAL FIXED(lO,O)

FIXED BINARY (31,0)

FLOAT BINARY (24)

FIXED DECIMAL (10,0)

FIXED DECIMAL(p) (p,0)

FLOAT DECIMAL (7)

8~2.1 Fixed-Point Binary Data
The attributes FIXED BINARY are used to declare integer variables in
PL/I. The BINARY attribute is implied by FIXED. The declaration of a
single fixed-point binary variable is of the form

DECLARE identifier FIXED [BINARY] [(p[,q])];
BIN

identifier

p

q

The name used to refer to the variable.

An integer constant giving the total number of binary digits used to
represent values of the variable. The value must be in the range

1 ::; p ::; 31

An integer constant giving the number of fractional binary digits in
values of the variable. The value must be in the range

-~1 < rt < n
-~ ~ '1 - ¥

If you omit p and q, the default values are p=31, q=O.

Data Types 97

Precision is an integer from 1 to 31. If you do not specify the precision, the
default is 31. The precision that you specify establishes the storage allo
cated for the variable and the range of values that the variable can take on,
as follows:

Precision Storage Maximum Range

l::;p::;7 byte -128 through 127
(8 bits)

8::;p::;15 word -32, 768 through
(16 bits) 32,767

16::;p::;31 longword -2,147,483,648 through
(32 bits) 2,147,483,647

There is no representation in VAX-11 PL/I for a fixed-point binary con
stant. Instead, integer constants are represented as fixed decimal. How
ever, fixed decimal integer constants (and variables) are converted to fixed
binary when combined with fixed binary variables in expressions. For ex
ample, assume that I is a fixed binary variable:

I = I+J;

In this example, the integer 3 is represented as fixed decimal, but PL;1
converts it to fixed binary when evaluating the expression.

Because fixed binary variables have a maximum precision of 31, fixed
binary integers can have values only in the range of -2,147,483,648 through
2,147,483,647. An attempt to calculate a binary integer outside this range,
in a context that requires an integer value, signals the FIXEDOVERFLOW
condition.

8.2.2 Fixed-Point Decimal Data
Fixed-point decimal data is used in calculations where exact decimal val
ues must be maintained, for example, in financial applications. Fixed
point decimal data with a scale factor of zero may also be used whenever
integer data is required.

This section is divided into the following parts:

• Constants

• Variables

• Use in expressions

8.2.2.1 Fixed-Point Decimal Constants
A fixed-point decimal constant can have between 1 and 31 decimal digits
(0 through 9) with, optionally, a decimal point and/or a sign. If there is no

98 Chapter 8

decimal point, PL/I assumes it to be immediately to the right of the right
most digit. Some examples of fixed-point decimal constants are . ,..,
.LL

LI. 56
12345.54

.0004
01 +

The precision (p) of a fixed-point decimal value is the total number of
digits in the value. The scale factor (q) is the number of digits to the right
of the decimal point, if any. The scale factor cannot be greater than the
precision.

8.2.2.2 Fixed-Point Decimal Variables
The attributes FIXED DECIMAL are used to declare fixed-point decimal
variables. The FIXED attribute is implied by DECIMAL. The form of a
declaration of a single fixed-point decimal variable is

DECLARE identifier [FIXED] { DECIMAL} [(p[,q])];
DEC

identifier

The name tu- be used for the variable.

p

An integer constant giving the total number of decimal digits used to
represent values of the variable. The value must be in the range

1 ::; p ::; 31

q

An integer constant giving the number of fractional digits in values of
the variable. The value must be in the range

0::; q::; p

If you omit p and q, the default values are p=lO, q=O.

Some examples of fixed-point decimal declarations are

DECLARE PERCENTAGE FIXED DECIMAL (512l;
DECLARE TONNAGE FIXED DECIMAL (8l;

8.2.2.3 Using Fixed-Point Data in Expressions
You cannot use fixed-point decimal data with a nonzero scale factor in
calculations with binary integer variables. If you must combine the two
types of data, use the DECIMAL built-in function (described in Section

Data Types 99

19.2) to convert the binary value to a scaled decimal value before attempt
ing an arithmetic operation. For example:

DECLARE I FIXED BINARY,
SUM FI>(ED DECIMAL (10 12);

SUM = SUM+ DECIMAL (I);

8.2.3 Floating-Point Data
The floating-point data types provide a way to express very large and very
small numbers, for example, in scientific calculations. All floating-point
calculations are performed on values in one of the V AX-11 binary floating
point formats. In general, the precision of the result is determined by the
maximum precision of any operands in the operation. The numerical result
of an operation is rounded to the result precision; therefore, the results of
most operations are approximate.

This section is divided into the following parts:

• Constants

• Variables

• Use in expressions

• Floating-point data formats

8.2.3.1 Constants
A floating-point constant can have one or more of the decimal digits 0
through 9 (with an optional decimal point), followed by the letter E and
from one to five decimal digits representing a power of 10. The floating
point value and the integer exponent can both be signed. The first portion
of the value, to the left of the letter E, is called the mantissa. The value to
the right of the letter E is called the exponent.

Some examples of floating-point constants are

2E10
-3E8
32E-8
.ll5G32E1G

The decimal precision of each of these values is the number of digits in the
mantissa.

If you write a constant without the E and the exponent, it is considered to
be fixed-point decimal. However, you can use such constants freely in
expressions involving floating-point data.

100 Chapter 8

8.2.3.2 Variables
The keyword FLOAT identifies a floating-point variable in a declaration.
The fnl"m nf the rle,,JaJ"at;n,..., nf a C!;1"'1'1'la f1n<:d-;.,..,... .,.,.,..,.;.,..f un.,.;nh.ln ;..,

.a. .1...1.v .&.'-'.&..&..&..&. '-'..&. v.1..1.'-' 'l..A.""'\J.Lc.A..1.f..A.V.&.V.1..1. V.L """" 1.::1.1..1..1.f;.1."' .1..1.VCA.l.IJ.J..J.f,-pVJ...l.l VCl.l..lClV.l~ .10

DECLARE identifier FLOAT [BINARY] [(p)];
DECIMAL

identifier

The name to be used for the variable.

[
BINARY]
DECIMAL

p

An attribute that determines whether the variable is to be floating
point binary or decimal. The primary effect of this attribute is to
determine how the compiler interprets the precision attribute.
BINARY is the default.

An integer constant that specifies the precision of the variable. For a
floating-point binary variable, p is the number of bits to be main
tained in the mantissa; the range of p is 1 to 113, and the default
value is 24. For a floating-point decimal variable, p is the number of
decimal digits to be maintained in the mantissa; the range of pis 1 to
34, and the default value is 7. Section 8.2.3.4 describes the effect of
different values of p on floating-point variable representation.

Note that you can use either BINARY or DECIMAL to declare a floating
point value. Since the internal representation of floating-point variables is
binary, it is recommended that you use BINARY FLOAT to declare varia
bles (this is the default). In any event, you should declare all floating-point
variables using the same base.

8.2.3.3 Using Floating-Point Data in Expressions
You can use both integer and scaled decimal constants freely in floating
point expressions. An arithmetic constant is always converted to the appro
priate internal representation for use in a floating-point operation. The
target type for the conversion depends on the context. In the following
example

DECLARE X FLOAT BINARY 1531;
><=~<+1.3;

the constant 1.3 is converted to floating point when the expression is evalu
ated.

Data Types 101

8.2.3.4 G_FLOAT and H_FLQAT Support
If your main program or a procedure that it invokes uses floating-point
variables with a binary precision greater than 53 (decimal precision greater
than 15), and your computer does not include hardware support for G- and
H-floating data, you must provide your program with access to a software
emulation routine for these types. Include the following lines in your MAIN
procedure:

DECLARE SS$_0PCDEC FIXED BIN GLOBALREF VALUE;
ON VAXCONDITIONISS$_0PCDECl CALL RESIGNAL();

Compile the program with the /G_FLOAT qualifier, and link it as follows:

$LINK vour_Prog•SYSSLIBRARY:STARLET/INCLUDE=LIBSESTEMU

None of this is necessary for external procedures not having
OPTIONS(MAIN).

8.2.3.5 Floating-Point Data Formats
VAX-11 PL/I supports four types of floating-point values. Table 8-2 sum
marizes the ranges of precision for each type.

Table 8-2: VAX-11 Floating-Point Types

Floating-Point Sign Exponent Fractional
Typel Bits Bits Bits

F (single precision) 8 24

D (double precision) 8 53

G 11 53

H 15 113

1. Types G and H require a VAX-11 hardware option; types F
and D are available on all VAX processors.

The approximate ranges of the V AX-11 floating-point formats are as fol
lows:

• F format: 0.29*10-38 to l.7*1038

• D format: same as F, but with more precise mantissa (see Table 8-2)

• G format: 0.56*10-308 to 0.9*10308

• H format: 0.84*10-4932 to 0.59*104932

The PL/I compiler selects the appropriate VAX-11 floating-point type
based on, first, the precision you specify and, second, a compile-time quali
fier on the PLI command. The types are selected as shown in Table 8-3.
The default is F (single precision).

102 Chapter 8

Table 8-3: Floating-Point Types Used by PL/I

Range of p Range of p Floating-point
(DECIMAL) (BINARY) Type

1 $ p $ 7 1 $ p $ 24 F

8 $ p $ 15 25 $ p $ 53 Dor G1

16 $ p $ 34 54 $ p $ 113 H2

1. D is used unless /G_FLOAT is requested at compile
time.
2. His possible only if /G_FLOAT is requested at compile
time.

8.2.4 Pictured Data
Use pictured data when you want to manipulate a quantity arithmetically
and accept or display its value using a special format. Pictured variables
are especially useful in applications that require values to be shown with
special symbols, such as commas, dollar signs, or debit indicators (DB).

This section describes

• Pictured variables-variables declared with the PICTURE data at
tribute.

• Assigning values to pictured data-the process by which a value is
assigned to a pictured variable or written out with the P format item.

• Extracting values from pictured data-the process by which a pic
tured value is assigned to other variables or acquired with the P for
mat item.

• Picture characters-the special characters that make up a specifica-
tion in the PICTURE attribute and in the P format item.

Although the formatting possible with pictured data is useful in many
applications, pictured data is much less efficient than fixed-point decimal
data in computations. Therefore, do not use pictured data unless you need
the formatting.

8.2.4.1 Pictured Variables
A pictured variable has the attributes of a fixed-point decimal variable,
but values assigned to it are stored internally as character strings. Such a
character string contains digits representing the variable's numeric value
as well as such special symbols as the dollar sign. When the value of a
pictured variable is written out by, for example, the PUT LIST statement,
the internally stored character string is placed in the output stream. The
value that appears on a line printer or terminal thus contains a fixed-point
decimal number that has been "edited" with the requested special sym
bols.

Data Types 103

The declaration of a single pictured variable has the form

DECLARE identifier { PICTURE } 'picture' ;
PIC

identifier

The name to be used for the variable.

'picture·

A string of picture characters that define the representation of the
variable. (These characters and their uses are described in Section
8.2.4.4.) The apostrophes surrounding the picture are required syn
tax.

A picture specification (or picture) describes both the numeric attributes of
a pictured variable and its output format. A simple picture looks like this
in a DECLARE statement:

DECLARE CREDIT PICTURE '$99999V.99DB';

This statement declares the variable CREDIT as a pictured variable; its
picture comprises the characters within the apostrophes.

The two assignments

CREDIT = 12003.oo;

and

CREDIT = -12003.oo;

would look like this on output:

$12003.00 I* a Positive value (credit) *I

$12003.00DB I* a nesative value (debit) */

8.2.4.2 Assigning Values to Pictured Variables
Assignment of a computational value to a pictured variable is performed in
the following two steps:

1. The value is converted to fixed decimal, with precision and scale as
specified by the picture.

2. The resulting fixed decimal value is edited into the pictured varia
ble.

If PL/I cannot perform one of these steps in a meaningful fashion, an error
occurs. The following examples show two programming errors that are
common in assignments to pictured variables.

CREDIT= '$12003.oo·;

104 Chapter 8

This example signals the ERROR condition, because the character string
contains a dollar sign and is therefore not convertible to fixed-point deci
mal. The value assigned to CREDIT should be either '12443.00' or simply
12443.00, both of which result in the same value assigned to CREDIT.

If a negative value is assigned to a pictured variable, the picture must
include one of the sign picture characters (such as DB). If, for example, the
picture of CREDIT did not contain the DB characters, then the assignment

CREDIT = -12443.oo;

would signal the FIXEDOVERFLOW condition, because the sign would be
lost.

In some circumstances (for example, with the READ statement), it is
possible to assign a value to a pictured variable that is not valid with
respect to the variable's picture specification. In such cases, the VALID
built-in function (described in Section 19.2) can be used to validate the
contents of the variable.

8.2.4.3 Extracting Values from Pictured Data
When you use a pictured value in an arithmetic context (such as assign
ment to an arithmetic variable), the picture is used to extract the fixed
point decimal number from the character string that internally represents
the pictured value. Extraction also occurs when you input a pictured value
with the GET EDIT statement and the P format item. If the contents of
the pictured variable or input item do not conform to the picture, an error
occurs.

For example, in the picture for CREDIT

DECLARE CREDIT PICTURE '$89988V,88DB';

the 9 character specifies the position of a decimal digit; since the picture
contains seven of these, the fixed-point decimal precision of CREDIT is 7.
The V character separates the integral and fractional digits; since there are
two 9 characters to the right of the V, the scale factor of CREDIT is 2. The
V character is unique among picture characters in that it specifies only a
numeric property; it does not cause a decimal point (or any other charac
ter) to appear in the internal representation of CREDIT. Therefore, ape
riod picture character (.) can be included after the V to ensure that the
output value has a decimal point in the correct place.

The period and dollar sign are always inserted in the internal representa
tion and the output value regardless of CREDIT's numeric value.

The picture character DB appears only when the value of CREDIT is less
than zero; otherwise, two spaces appear in the indicated positions. The DB
character also indicates that a value of CREDIT is numerically negative, so
that if CREDIT is later assigned to an arithmetic variable, the variable will
be given a negative value.

Data Types 105

8.2.4.4 Picture Characters
An individual picture character, and its position in the picture, indicate
the interpretation of an associated position in the pictured value. Table 8-4
lists the characters that can appear in a picture.

Table 8-4: Picture Characters

Character

9

z

Meaning

Decimal digit, including leading zeros

Decimal digit with leading-zero suppression

Decimal digit with asterisk for leading zero

Y Decimal digit with space for any zero

V Position of assumed decimal point

(n) Iteration factor for subsequent character

T Position of digit and encoded plus sign or minus sign

Position of digit and encoded plus sign if number 2: 0

R

I

B

$

+

Position of digit and encoded minus sign if number < 0

Position at which decimal point is inserted

Position at which comma is inserted

Position at which slash is inserted

Position at which space is inserted

Position[s) of [drifting) dollar sign

Position[s) of [drifting) plus sign if number 2: 0

Position[s] of [drifting] minus sign if number < 0

S Position[s) of [drifting] plus sign or minus sign

CR Positions at which 'CR' is inserted if number < 0

DB Positions at which 'DB' is inserted if number < 0

Although all picture characters are shown here in uppercase form, the
lowercase equivalents function identically.

Any picture character that can appear more than once in a picture may be
preceded by an iteration factor, which must be a positive integer constant
enclosed in parentheses. For example, the picture
I (a) 9 I

is the same as

'9999'

The following paragraphs describe the picture characters in more detail.

106 Chapter 8

Decimal Place Character (V)
The V character shows the position of the "assumed" decimal point, or, in
other words; the scale factor for the fixed-point decimal value. It does not
cause a decimal point to appear. (Use the period insertion character for
this purpose.) The following rules apply to the V character:

• Only one V character may appear in a picture.

• If a picture does not contain the V character, it is assumed to be at the
right end of the picture.

• If a fixed-point value assigned to a pictured variable has fewer integral
digits than are indicated by the picture characters to the left of the V,
then the integral value of the pictured variable is extended on the left
with zeros. If the assigned value has too many integral digits, the value
of the pictured variable is undefined and the FIXEDOVERFLOW
condition is signaled.

• If a fixed-point value assigned to a pictured variable has fewer frac
tional digits than are indicated in the picture, then the fractional
value of the pictured variable is extended on the right with zeros. If
the assigned value has too many fractional digits, then the excess
fractional digits are truncated on the right; no condition is signaled.
Thus, if the V character is the last character in the picture or is
omitted, assigned fixed-point values are truncated to integers.

The following example illustrates the effect of the V character:

DECLARE PR I CE p I CTURE f $$9l.J + 99 I t

BAO_PRICE PICTURE '$$9,99'i
PRICE = ,99; I* OutPut
BAD_ PRICE = '98; I* Out Put
PRICE = 9s; I* Output
BAO_PRICE = 99; I* Out PU t

as $0,98 *I
as $0,00 *I
as $98.00 *I
as $0,98 *I

In this example, note that the variable PRICE, which contains the V char
acter, represents the value properly. The variable BAD-PRICE, which
contains only the period insertion character, has an assumed V character at
the end of the picture, which causes the variable to misrepresent the value.

Digit Characters (9, z, •, Y)
All of these characters mark the positions occupied by decimal digits. The
number of these characters present in a picture specifies the number of
digits, or precision, of the fixed-poin.t decimal value of the pictured varia
ble.

• The position occupied by 9 always contains a decimal digit, whether or
not the digit is significant in the numeric interpretation of the pic
tured value. Thus, leading zeros at positions occupied by a 9 are out
put.

Data Types 107

• The position occupied by Z contains a decimal digit only if the digit is
significant in the integral portion of the numeric interpretation; if the
digit is an insignificant, or leading, zero, it is replaced by a space.

- The Z character must not appear in the same picture with the
character *. It must not appear to the right of the characters 9, T, I,
or R nor to the right of a drifting string (see "Drifting Characters"
below).

- If the Z character appears to the right of the V character, then all
digits to the right of the V must be indicated by Z characters.
Fractional zeros are then suppressed only if all fractional digits are
zero and all of the integral digits are suppressed; in that case, the
internal representation contains only spaces in the digit positions.

• The position occupied by the* character functions identically with the
Z character, except that leading zeros are replaced by asterisks instead
of spaces.

• The position occupied by the Y character contains a decimal digit only
if the digit is not zero. All zeros in the indicated positions, whether
significant or not, are replaced by spaces.

Encoded-Sign Characters (T, I, R)
The characters T, I, and Rare digit characters that may be used wherever
9 is valid. Each represents a digit that has the sign of the pictured value
encoded in the same position. Only one can be used in a picture.

An encoded-sign character cannot be used in a picture that contains an S,
+, -, CR, or DB (described below).

The meanings of the characters are as follows:

• The T character indicates that the position contains an encoded
minus sign if the numeric value is less than zero and an encoded plus
sign if the numeric value is greater than or equal to zero. These en
coded-sign digits are represented internally and in output by the
ASCII characters shown in Table 8-5.

• The I character indicates an encoded plus sign if the numeric value is
greater than or equal to zero. Otherwise, the position contains an
ordinary digit.

• The R character indicates an encoded minus sign if the numeric value
is less than zero. Otherwise, the position contains an ordinary digit.

Table 8-5 shows the ASCII characters that indicate digits with encoded
signs: +digit means the digit with an encoded plus sign; -digit, an encoded
minus sign. The characters in Table 8-5 are used in the internal represen
tation of a pictured value and must be used for input of an encoded-sign
digit from a stream file.

108 Chapter 8

Table 8-5: ASCII Representation of Encoded-Sign Digits

Digit ASCII Character Digit ASCII Character

+O -0

+1 A -1 J

+2 B -2 K

+3 c -3 L

+4 D -4 M

+5 E -5 N

+6 F -6 0

+7 G -7 p

+8 H -8 Q

+9 -9 R

Drifting Characters ($, +, , S)
The drifting characters can be used to indicate digits, and they also indi
cate a symbol to be inserted when, for example, a pictured value is written
out by PUT LIST.

• The dollar sign ($) causes a dollar sign to be inserted.

• The plus sign (+) causes a plus sign to be inserted if the numeric value
is greater than or equal to zero.

• The minus sign (-) causes a minus sign to be inserted if the numeric
value is less than zero.

• The S character causes a plus sign to be inserted if the numeric value
is greater than or equal to zero, and a minus sign if the value is less
than zero.

If one of these characters is used alone in the picture, it marks the position
at which a special symbol or space is always inserted, and it has no effect
on the value's numeric interpretation. In this case, the character must
appear either before or after all characters that specify digit positions.

However, if a series of n of these characters appears, then the rightmost n-1
of the characters in the series also specify digit positions. If the digit is a
leading zero, the leading zero is suppressed, and the leftmost character
"drifts" to the right; the character appears either in the position of the last
drifting character in the series or immediately to the left of the first signifi
cant digit, whichever comes first. Used this way, then-I drifting charac
ters also define part of the numeric precision of the pictured variable, since
they describe at least some of the positions occupied by decimal digits. For

Data Types 109

an example of this behavior by a drifting character (the dollar sign), see the
decimal place character (V) above.

The following additional rules apply to drifting characters:

• A drifting string is a series of more than one of the same drifting
character. Only one drifting string can appear in the picture; any other
drifting characters can be used only singly and therefore designate
insertion characters, not digits.

• The characters Zand* cannot appear to the right of a drifting string.

• A digit position cannot be specified (for instance, with a 9) to the left
of a drifting string.

• A drifting string can contain the V character and one of the insertion
characters (defined below). The following additional rules apply:

- If the drifting string contains an insertion character, it is inserted
in the internal representation only if a significant digit appears to
its left. In the position of the insertion character, a space appears if
the the leftmost significant digit is more than one position to the
right; the drifting symbol appears if the next position to the right
contains the leftmost significant digit.

- If the drifting string contains a V character, all digit positions to
the right of the V (the fractional digits) must also be part of the
drifting string. In this case, insignificant fractional digits are sup
pressed only when all integral and fractional digits are zeros: they
are replaced by spaces in the internal representation. If any digit is
not zero, all fractional digits appear as actual digits.

- Any insertion characters immediately to the right of a drifting
string are considered part of it.

Insertion Characters
The insertion characters indicate that characters are inserted between di
gits in the pictured value. The insertion characters are the comma (,),
period (.), slash (/), and the space (B). The B character indicates that a
space is always inserted at the indicated position.

The drifting characters also function as insertion characters when used
singly (that is, not as part of a drifting string).

Note that the period(.) does not imply a decimal place character (V). This
is illustrated by the example of the decimal place character, above.

The following rules describe insertion by the comma, period, and slash
insertion characters.

110 Chapter 8

• If zero suppression occurs, the insertion character is inserted only in
these cases:

- A significant digit appears immediateiy to its ieft.

- The V character appears immediately to its left, and the fractional
part of the numeric value contains significant digits.

= To guarantee that the decimal point is in the same position in both the
numeric and character interpretations, the V and period characters
must be immediately adjacent. Note, however, that if the period
precedes the V, then it is suppressed if there are no significant integral
digits, even though all the fractional digits are significant. This prop
erty can make fractions appear to be integers when the internal (char
acter) value is displayed. Consequently, the period should immedi
ately follow the V character; it will then be in the correct location and
will appear whenever any fractional digit is significant. The following
example illustrates correct and incorrect placement of the period:

DECLARE NUM PICTURE 'ZZZV.ZZ' t

BAD_NUM PICTURE ·zzz.vzz·;
NUM=0.02; I* Output as .02 *I
BAD_NUM=0.02; I* Output as 02 *I

• Other insertion characters, such as the comma, can be used to sepa
rate the integral and fractional portions of a number. However, the
comma should not be used with GET LIST input, because in that
context it separates different data items in the input stream.

Credit (CR) and Debit (DB) Characters
These picture characters are always specified as the character pairs CR and
DB. If either pair is included, it appears if the numeric vaiue is less than
zero. In each case, the associated positions contain two spaces if the nu
meric value is greater than or equal to zero.

The characters are always inserted with the same case as used in the
picture. If the lowercase form er is used in the picture, lowercase letters are
inserted in the pictured value; if the combination Cr is used, then Cr is
inserted.

The credit and debit characters cannot be combined in one picture, nor can
they be used in the same picture as any other character that specifies the
sign of the value (S, +, and-). In addition, they must appear to the right of
all picture characters specifying digits.

8.2.5 Precision of Arithmetic Data Types
The precision attribute applies to binary and decimal data; the precision of
an item is the total number of decimal or binary digits used to represent a

Data Types 111

value. You can specify the precision and scale of an arithmetic variable in a
DECLARE statement in any of the following formats, depending on the
numeric base of the data item:

BINARY [FIXED] [(precision[,scale-factor])]
[BINARY] FLOAT [(precision)]
DECIMAL [FIXED] [(precision[,scale-factor])]
DECIMAL FLOAT [(precision)]

The precision of a floating-point data item is the number of decimal or
binary digits in the mantissa of the floating-point representation.

The ranges of values you can specify for the precision for each arithmetic
data type, and the defaults applied if you do not specify a precision, are
summarized as follows:

Data Type Scale Default
Attributes Precision Factor Precision

BINARY FIXED 1:::; p:::; 31 sp 31
BINARY FLOAT 1 :::; p:::; 113 24
DECIMAL FIXED 1:::; p:::; 31 :::; p 10
DECIMAL FLOAT 1 :::; p :::; 34 7

If no scale factor is specified for fixed-point data, the default is zero.

8.2.6 Scale of Fixed-Point Data Types
In addition to the precision attribute, fixed-point data may also have the
scale attribute, which is the number of fractional bits or digits contained
within the specified precision. The scale factor q specifies that all values of
the fixed-point variable are "scaled" by the factor 2-9 for binary data or
10-9 for decimal data.

Data Type Scale Default
Attributes Factor Scale

BINARY FIXED
DECIMAL FIXED

For example:

-31 :::; p :::; 31 0
0:::; p:::; 31 0

DECLARE x FIXED DECIMAL!1013J;

indicates that the value of x has 10 decimal digits, but 3 of those are
fractional. In effect, this is similar to multiplying or dividing the decimal
number by a factor of 10.

Positive scale factors for fixed binary numbers function the same as scale
factors for fixed decimal numbers. A negative scale factor indicates the
number of fractional bits that are shifted from the left to the right. For a
fixed-point binary number, the scale factor has the effect of multiplying or
dividing the number by a factor of 2.

112 Chapter 8

Even though arithmetic operands can be of different arithmetic types, all
operations must actually be performed on objects of the same type. Conse
quently, the compiler may convert operands to a derived type. Therefore,
when you declare a fixed binary number with a scale factor, and assign it a
decimal value, the results may not be what you expect. This is because the
binary scale factor left-shifts the specified number of bits to the right of the
decimal point. During conversion to a decimal representation, the differ
ence between the resulting binary number and its decimal representation is
not the equivalent of dividing or multiplying the decimal number by 10.
Instead, the binary number is divided or multiplied by 2 and then con,.
verted to its decimal representation.

In addition, excess fractional digits may be truncated, and no condition is
signaled. Any resulting loss of precision may be difficult to detect because
truncated fractional digits do not signal a condition.

8.3 Character-String Data

A character string is a sequence of zero or more ASCII characters (see
Appendix C for a table of the ASCII characters). A character-string value
can consist of any ASCII characters, to a maximum length of 32767
charaders.

This section is divided into the following parts:

• Constants

• Variables

8.3.1 Character-String Constants
When you use character-string constants in a program, you must enclose
the strings in apostrophes, as shown in the following examples:

'Total is:'
'Enter your name and ase'
'Error - value is out of ranse'

To specify a string containing a literal apostrophe, use two apostrophes
within the string, for example:

'Life isn"t fair'

When a character string that has embedded apostrophes is specified as
shown above, the final result contains only a single apostrophe.

Note that the quotation mark (") is not a legal delimiter for PL/I character
constants.

Data Types 113

8.3.2 Character-String Variables
The CHARACTER keyword identifies a character-string variable in a dee~
laration. The addition of the VARYING keyword indicates a varying char
acter-string variable. The format for specifying a character-string variable
lS

DECLARE identifier {CHARACTER} [(n)] [VARYING] ;
CHAR VAR

identifier

n

The name to be used for the variable.

Specifies the length of the variable, that is, the number of bytes
needed to contain its value. The maximum value for n is 32767. The
length attribute specifies either the length of all values of the variable
(fixed-length strings) or the maximum length of a value of the varia
ble (varying-length strings). If n is not specified, PL/I uses the default
length of one character, or byte. The rules for specifying n are as
follows:

• For a static variable declaration, n J;IlUSt be an integer constant.

• In the declaration of a parameter or in a parameter or returns de
scriptor, n may be specified as an integer constant or as an asterisk
(*). The resulting string is fixed length unless VAR YING is also
specified.

• For an automatic, based, or defined variable, n may be specified as
an integer constant or as an expression. In the case of automatic or
defined variables, the expression must not contain any variables or
functions that are declared in the same block, except for parame
ters.

If specified, n must immediately follow the keyword CHARACTER
and must be enclosed in parentheses.

[
VARYING]
VAR

Indicates a varying-length character-string variable. The effect of this
attribute is described below.

8.3.2.1 Fixed-Length Character-String Variables
For a particular allocation of a fixed-length character-string variable, all its
values have the same length. When a program assigns a value to a fixed
length character-string variable, however, the value is not always exactly

114 Chapter 8

the same as the length defined for the variable. Depending on the size of
the value, PL/I does the following:

• If the value is smaller than the length of the character string, PL/I
pads the value with spaces on the right. For example:

DECLARE STRING CHARACTER C10);
STRING = 'ABCDEF I;

The final value of the variable STRING is 'ABCDEF
characters ABCDEF followed by four space characters.

', that is, the

• If the value is larger than the length of the variable, PL/I truncates the
value on the right. For example:

DECLARE STRING CHARACTER (4);
STRING = 'ABCDEF I;

Here, the final value of STRING is 'ABCD ', that is, the first four
characters of the value 'ABCDEF '.

8.3.2.2 Varying-Length Character-String Variables
In a varying character-string variable, the length is not fixed. The length
specified in the declaration of the variable defines the maximum length of
any value that can be assigned to the variable. Each time a value is as
sig-Ued, the cur:re-Iit · 1ength changes~ For example:
DECLARE NAME CHARACTER (20) VARYINGi
NAME = 'COOPER';
NAME= 'RANDOM FACTOR'i

The declaration of the variable NAME indicates that the maximum length
of any character-string value it can have is 20. The current length becomes
6 when NAME is assigned the value 'COOPER'; the length becomes 13
when NAME is assigned the value 'RANDOM FACTOR'; and so on.

When a varying character string is assigned a value with a length greater
than the maximum defined, the value is truncated on the right.

The initial length of an automatic varying-length character-string variable
is undefined unless the variable is initialized.

You can use the LENGTH built-in function (described in Section 19.2) to
determine the current length of any string.

8.4 Bit-String Data
A bit string consists of a sequence of binary digits, or bits. It may be used
as a Boolean value, which has one of two states: true (if any bit is 1) or false
(if all bits are 0).

Data Types 115

Like a fixed-length character string, a bit string has a fixed length defined
in the declaration or specified by the number of bits in a bit-string con
stant. The maximum length of any bit string is 32767 bits. Bit-string varia
bles cannot be declared with the VARYING attribute.

Sophisticated applications that depend on the internal representation of
bit strings and other types of data may not be directly transportable from
other PL/I implementations to VAX-11 PL/I. In VAX-11, bit strings are
stored in memory with the leftmost bit (as represented by PUT LIST) in
the lowest memory location, and bits following the leftmost in successively
higher memory locations. This representation of a bit string by PUT LIST
is reversed with respect to a conventional picture of memory locations, in
which higher locations appear on the left, not on the right. For example:

DECLARE ABIT BIT 110);
ABIT = '1011'5;

A memory diagram of the storage resulting from this assignment would
look like this:

... 0000001101 ...
HIGH MEMORY LOW MEMORY

< - LOCA TiONS LOCATIONS - >

All this is of no concern until you try to interpret non-bit-string data as a
bit string. For example, a fixed binary value is stored with the sign bit in
the highest memory location, the most significant bit in the next highest
location, and so on to the l~ast significant bit in the lowest memory loca
tion. Thus, a FIXED BINARY (7) variable with a value of 2 would appear
in memory as follows:

... 00000010 ...
HIGH MEMORY LOW MEMORY

<- LOCATIONS LOCATIONS ->

Should you treat this storage as a bit string (for example, by using it as the
argument of the UNSPEC built-in function in a PUT LIST statement), the
result would be

'01000000'5

If you are accustomed to using PL/I on computers other than VAX-11, this
result may not be what you expect.

Consult the VAX Architecture Handbook for detailed information about
the V AX-11 representation of data. The VAX- JI PL/I Encyclopedic Refer
ence provides extensive information about the internal representation of
PL/I data types.

116 Chapter 8

The remainder of this section is divided into the following parts:

• Constants

• Variables

• Alignment

• The use of bit strings to represent integers

8.4.1 Bit-String Constants
To specify a bit-string constant, enclose the string in apostrophes and
follow the closing apostrophe with the letter B. Some examples are

'0101 '5
'10101010'5
I 1 I 5

The length of a bit-string constant is always the number of binary digits
specified; the B does not count in the length of the string. A bit-string
constant can be specified with a maximum of 1000 characters between the
apostrophes.

You can also specify a bit-string constant using the syntax

'character-string, Bn

where n is the number of bits to be represented by each character in the
string. This format allows you to specify bit-string constants with bases
other than 2. For example:

'EF8'5ll
'117'53
'223'52

These constants specify the hexadecimal value EF8, the octal value 117,
and the base 4 value 223. All such constants are stored internally as bit
strings, not as integer representations of the value.

The valid characters for each type of bit-string constant are listed below:

• For B or Bl, only the characters 0 and 1 are valid.

• For B2, only the characters 0, 1, 2, and 3 are valid.

• For B3, only the characters 0, 1, 2, 3, 4, 5, 6, and 7 are valid.

• For B4, the characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and Fare
valid. (The letters A through F can be either upper- or lowercase.)

Using the B format items, you can also acquire or output (with the GET
EDIT and PUT EDIT statements) bit-string data in binary, base 4, octal,
or hexadecimal format. These format items are described in Section 17.3.1.

Data Types 117

8.4.2 Bit-String Variables
Use the BIT attribute to declare a bit-string variable. The form of the
declaration of a single bit-string variable is

DECLARE identifier BIT [(n)] [ALIGNED];

identifier

n

The name to be used for the variable.

Specifies the length of the variable. The range is 0 to 32767; the
default length is one bit. The rules for specifying n are as follows:

• If BIT is specified for a static variable declaration or in a returns
descriptor, length must be an integer constant.

• If BIT is specified in the declaration of a parameter or in a parame
ter descriptor, length may be specified as an integer constant or as
an asterisk (*).

• If BIT is specified for an automatic, based, or defined variable,
length may be specified as an integer constant or as an expression.
In the case of automatic or defined variables, the expression must
not contain any variables or functions that are declared in the same
block, except for parameters.

If specified, the length must immediately follow the keyword BIT.

ALIGNED

Specifies that the bit-string variable must be aligned on a byte
boundary. Section 8.4.3 describes the uses and implications of this
attribute.

A program can assign to a bit-string variable a value larger or smaller than
the variable's defined length. In such cases, PL/I does the following:

• If the assigned string is shorter than the defined length, PL/I pads the
bit-string value with zeros in the direction of least significance. The
"less significant" bits are on the right, as the string is represented by
PUT LIST.

• If the assigned string is longer, PL/I truncates the least significant bits
from the bit-string value.

You can convert bit-string variables to other data types; however, there are
some precautions you must observe if you do so. Section 8.4.4 provides
details.

118 Chapter 8

8.4.3 Alignment of Bit-String Data
PL/I distinguishes between aligned and unaligned bit-string variables.
(Bit-string constants are always unaligned.) A bit-string variable is aligned
only if it is declared with the ALIGNED attribute, as shown in this exam
ple:

DECLARE FLAGS BIT <Bl ALIGNED;

PL/I allocates storage for an aligned bit-string variable on a byte boundary
and reserves an integral number of bytes to contain the variable. Unaligned
bit-string variables always occupy only as many bits as are needed to
contain them. They need not be on byte boundaries.

In general, operations involving unaligned bit-string variables are less effi
cient than those involving aligned bit-string variables. Unaligned bit-string
variables are also invalid as the targets of the FROM and INTO options of
record I/0 statements, and as the argument of the ADDR built-in function.
Moreover, most non-PL/I programs that accept bit-string arguments re
quire the strings to be aligned.

It is recommended, therefore, that you declare bit-string variables with the
ALIGNED attribute in most cases. Use unaligned bit-string variables when
bit strings must be packed as tightly as possible, for example, in arrays and
in structures.

8.4.4 Bit Strings and Integers
PL/I defines conversions between bit-string data and other data types, and
the V AX-11 PL/I compiler carries out these conversions. (Appendix A
contains details of the rules governing them.) However, the conversions
defined by PL/I are not always straightforward or intuitive. Consider the
following example:

DECLARE BITS TR BIT (10 l ;
BITSTR = li
PUT LI ST <BITS TR l ;

Its output is

'0001000000'5

While the result may seem strange, it conforms to PL/I's rules for conver
sion to bit strings. In this case, the fixed-decimal constant 1 is converted to
a FIXED BINARY(4) value, which is in turn converted to an intermediate
bit string of length 4:

'0001 'B

Data Types 119

Next, this intermediate bit string is assigned to the variable BITSTR.
Since BITSTR is of length 10, the intermediate bit string is padded on the
right with zeros, producing the result as output by PUT LIST. If you now
attempt to interpret the value of BITSTR as an integer (for example, by
using BITSTR as the argument of the BINARY built-in function), the
result would be 64, not 1.

This example illustrates a general consideration to be kept in mind when
using bit-string variables as integers: the padding and truncation that take
place during assignment of bit strings of different lengths result in implicit
multiplication or division of the bit string's integer value.

One more factor to remember when using bit strings to represent integers is
that extra execution time is required to reverse the order of bits when
computing the integer's value. Using arithmetic variables to represent in
tegers is more efficient.

The upshot of these considerations is that you should not use bit strings to
represent integers (or other data types) unless there is a compelling reason
to do so.

8.4.5 Replication Factor for String Constants
A replication factor is an unsigned integer constant that specifies the num
ber of times a simple string constant is replicated. A replication factor
permits repetition of character strings and bit strings in any context where
a simple string constant is permissible, including format items and
assignment, string, and arithmetic operations. The format of a replication
factor is

(r) ·string·

An unsigned integer that represents the number of times that the
string is to be replicated.

string

A simple string constant to be replicated. The string is enclosed in
apostrophes.

For example:

(L!) 'season

120 Chapter 8

This example replicates the string four times. The resulting character con
stant looks like this:

season season season

For example:

DECLARE (A) BIT (800 i ;

A = (400i '2'B2;
PUT SKIP LIST ((Ail;

ENDi

season

In this example, A will be replicated to its maximum specified length of
800 characters.

The resulting character constant looks like this:

'10101010101010101010101010101010

10101010101010101010101010'5

A replication factor may be used in combination with the iteration factor in
INITIAL. For example, the following two statements are equivalent:

INITIAL CC10l('ABCABC'l)

INITIAL ((10) ((2) 'ABC I))

The first statement uses an iteration factor exclusively; the second state
ment combines an iteration factor of 10 with a replication factor of 2. Note
than an extra set of parentheses is required to separate the iteration factor
from the replication factor and the character string.

Data Types 121

Chapter 9

Storage Classes

The storage ciass to which a variable belongs determines whether PL/I
allocates storage for it at compile time or dynamically during the execution
of the program, and also indicates the method and the extent of access to
the variable. This chapter describes

• Automatic variables-for which PL/I allocates storage upon activation
of the declaring procedure.

• Static variables-for which PL/I allocates storage at program activa
tion, and which exist for the duration of the program execution.

• Internal variables-that can be referenced only by the declaring proce
dure and its dynamic descendants.

• External variables-that can be known to blocks outside the block in
which they are declared.

• Based variables-that are allocated dynamically under program con
trol during execution, and that are accessed by means of a pointer.

• Controlled variables-that are allocated dynamically under program
control during execution, and that are accessed sequentially, as on a
stack.

• Defined variables-for which storage is not allocated, but which share
the storage of a specified base variable.

In addition to their storage class, variables can be categorized as address
able and nonaddressable. In some contexts, such as in argument lists of
certain built-in functions, a variable must be addressable. A variable is
addressable if it has the following properties:

1. It is not suitable for bit-string overlay defining; that is, it does not
consist entirely of unaligned bit data.

2. It is not an unconnected array (typically a member of an array of
structures).

3. It is not declared with the VALUE attribute.

122

These rules ensure that the variable can occupy contiguous storage begin
ning on a byte boundary. (Note that constants are never addressable in
PL/I.)

9.1 Automatic Variables

The default storage class attribute for PL;1 variables is AUTOMATIC.
PL/I does not allocate storage for an automatic variable until the block
that declares it is activated. When the block is deactivated, the storage is
released.

The storage requirements of an automatic variable are evaluated each time
the block is activated. Thus, the length of an automatic character-string
variable may be specified as follows:

DECLARE STRING_LENGTH FIXED;

COPY: BEGIN;
DECLARE TEXT CHARACTER<STRING_LENGTHl;

When this begin block is activated, the length of TEXT is evaluated. The
variable is allocated storage depending -on the value -of- STRING_
LENGTH, which must have a valid value.

9.2 Static Variables

A static variable is allocated storage when the program is activated, and it
exists for the duration of the program. A variable has the static attribute if
it is declared with any of the attributes STATIC, EXTERNAL,
GLOBALDEF, or GLOBALREF. Static arrays and strings must be de
clared with constant extents.

If a block that declares a static variable is entered more than once during
the execution of the program, the value of the static variable remains valid.
For example:

UN I QUE_ ID: PROCEDURE RETURNS (FI i{ED BI NARY (31)) ;
DECLARE ID STATIC INTERNAL FIXED INITIAL <Ol;

ID= ID+ 1; I* Increment ID *I
RETURN (ID) ;
ENDi

The function UNIQUE-1D declares the variabie ID with the STATIC
attribute and specifies an initial value of zero for it. The variable is initial
ized to this value when the program is activated. The storage for the
variable is preserved, and the function returns a different integer value
each time it is referenced.

Storage Classes 123

A variable with the STATIC attribute can also have external scope: that is,
its definition and value can be accessed by any other procedure that de
clares it with the STATIC and EXTERNAL attributes.

9.3 Internal Variables

An internal variable is known only within the block in which it is defined
and within all contained blocks. By default, PL/I gives all variables the
internal attribute.

9.4 External Variables
An external variable provides a way for external procedures to share com
mon data. All declarations that refer to an external variable must also
declare it with the attribute EXTERNAL (or with an attribute that im
plies EXTERNAL) and with identical data type attributes. Figure 9-1
illustrates how procedures can use external variables.

The format of the EXTERNAL attribute is

{
EXTERNAL}
EXT

The EXTERNAL attribute is implied by the FILE, GLOBALDEF, and
GLOBALREF attributes, and also by declarations of entry constants (that
is, declarations that contain the ENTRY attribute but not the VARIABLE
attribute). For variables, the EXTERNAL attribute implies the STATIC
attribute.

The following rules apply to the use of external names:

• The EXTERNAL attribute directly conflicts with the AUTOMATIC,
BASED, CONTROLLED, and DEFINED attributes.

• The EXTERNAL attribute cannot be applied to minor structures,
members of structures, parameters, or descriptions in an ENTRY or
RETURNS attribute.

• The EXTERNAL attribute is invalid for variables that are the param
eters of a procedure.

• If a variable is declared as EXTERNAL STATIC INITIAL, all blocks
that declare the variable must initialize the variable with the same
value.

124 Chapter 9

w
<4--
0 ...,
~

(JQ
ro
()
p;-'
Cl1
Cl1
ro
Cl1

-~
01

Block activation created when
the main program is executed

APPLIC

Storage for static and static l 1
external variables T FLAGS J

Figure 9-1: External V aria hies

APPLIC: PROCEDURE OPTIONS(MAIN);
DECLARE FLAGS BIT(64) ALIGNED EXTERNAL; .

.
CALL READY;
END:

READY: PROCEDURE:
DECLARE FLAGS BIT (64) ALIGNED EXTERNAL;

READY

t

A reference to FLAGS in either procedure
is resolved to the same storage
location when these procedures are linked.

Block activation created when
READY is invoked

ZK-025-81

9.5 Based Variables
The BASED attribute defines a variable whose storage is accessed by
means of a pointer. When you declare a based variable, you provide PL/I
with a description of the data to be accessed by the variable. The actual
data must be referenced by a pointer that contains the address of its
storage location. For example:

DECLA~E BUFFER CHARACTER<BOl BASED <BUF_PTR>,
LI NE CHARACTER (80) ,
BUF_PTR POINTER i

BUF_PTR = ADDR<LINE);

The declaration of the variable BUFFER does not allocate any storage for
it. Rather, PL/I associates the declaration of the variable with the pointer
variable BUF _PTR. During the execution of the program, the value of the
pointer variable is set to the location (address) in storage of the variable
LINE by means of the ADDR built-in function. This effectively associates
the description of BUFFER with the actual data value of LINE.

A based variable can be associated with a storage location by using the
ADDR built-in function, as in the preceding example; by the ALLOCATE
statement; by a locator-qualified reference to the based variable; by the
SET option of the READ statement; or by explicit allocation within an
area.

The next sections cover the following topics:

• Data types used with based variables: pointers, areas, and offsets

• Declarations of based variables

• The ALLOCATE and FREE statements, used to obtain and release
storage for based variables

• Mechanisms for referring to based variables and for obtaining pointer
values to them

• An example of based variables in use

• Rules for data type matching in references to based variables

9.5.1 Data Types Used with Based Variables
The data types most commonly associated with based variables are
pointers, areas, and offsets.

A pointer is a variable whose value represents the location in memory of
another variable or data item. Pointers are used to access based variables
and buffers allocated by the system as a result of the SET option of the
READ and ALLOCATE statements.

126 Chapter 9

Areas are regions of storage in which based variables may be allocated and
freed. The use of areas can simplify and speed operations involving large or
numerous based variableso An offset is a value indicating the location of a
based variable relative to the beginning of an area.

9.5.1.1 Pointer Data
Use the POINTER attribute to indicate that the associated variable will
identify locations of data. The format of the POINTER attribute is

{
POINTER}
PTA

The POINTER attribute conflicts with all other data type attributes.

Expressions containing pointer variables are restricted to the relational
operators = and A=, for testing the equality or inequality of two values. You
can also use pointer variables in simple assignment statements that assign
a pointer value to a pointer variable. Finally, you can use a pointer variable
as the source or target in an assignment statement involving an offset
variable or offset value. Section 9.5.1.2 describes these assignments.

9.5.1.2 Area and Offset Data
Areas . provide the following . programming capahili ties:

• You can allocate based variables within a specific area, and assign or
transmit the entire area in a single operation. You can refer to the
variables by offset values within the area; the offset values remain
valid through assignment or transmission.

• You can control the allocation of storage for related variables by plac
ing them in the same area, thus improving the locality of reference.
Also, the storage for all allocations within an area may be recovered in
one operation by freeing the area itself.

• You can use a structure containing an area to represent a disk file that
is mapped into a process's virtual memory space.

It is the responsibility of the user, in the program that declares and allo
cates an area, to control the allocation of variables within it. The first
longword is reserved for future use by DIGITAL; it must be set to zero
when the area is initialized, and, remain unmodified.

You define an area by the declaration of a variable with the AREA attrib
ute. An area variable can belong to any storage class. The format of the
AREA attribute is

AREA (extent);

Storage Classes 127

extent

The size of the area in bytes. The extent must be a nonnegative
integer value. The maximum size is 500 million bytes. The rules for
specifying the extent are as follows:

• For a static variable declaration, extent must be a decimal integer
constant.

• In the declaration of a parameter or in a parameter descriptor,
extent may be specified as an integer constant or an asterisk (*).

• For an automatic or based variable, extent may be specified as an
integer constant or an expression. In the case of automatic varia
bles, the extent expression must not contain any variables or func
tions declared in the same block, except for parameters.

You can specify an area variable as the target of an assignment statement
only in the following case:

area-variable-I = area-variable-2;

where both areas have the same extent. The complete contents of the
source are copied to the target. All other specifications of an area variable
as the target of an assignment statement are invalid. An area variable
cannot be used in an expression containing operators.

An area can be the source or target of data transmission in either of the
record 1/0 statements READ or WRITE. The complete contents of the area
are transmitted.

You declare an offset variable with the OFFSET attribute. The format of
the OFFSET attribute is

OFFSET [(area-reference)];

area-reference

The name of a variable with the AREA attribute. The value of the
offset variable will be interpreted as an offset within the specified
area. You must omit the area reference if the OFFSET attribute is
specified within a returns descriptor, parameter declaration,. or a pa
rameter descriptor.

For example:

DECLARE MAP_SPACE AREA caosGOl'
MAP_START OFFSET CMAP_SPACEl,
MAP_LISTC100l CHARACTERCBOl BASED CMAP_START>;

These declarations define an area named MAP _SPACE; an offset varia
ble, MAP _START, that will contain offset values within that area; and a
based variable whose storage is located by the value of MAP _START.

128 Chapter 9

Offset variables are given values by assignment from existing offset values
or from conversion of pointer values. The OFFSET built-in function (de
scribed in Section 19.2) converts a pointer value to an offset value. PL/I
also automatically converts a pointer value to an offset value, and vice
versa, in an assignment statement. The following assignments are valid:

1. pointer-variable = pointer-value;

2. offset-variable = offset-value;

3. pointer-variable = offset-variable;

4. offset-variable = pointer-value;

In (2), any area references are ignored in the assignment; therefore, the
offset value and variable can refer to different areas. In (3) and (4), the
offset variable must have been declared with an area reference.

Expressions containing offset variables are restricted to the relational oper
ators = and A=, for testing the equality or inequality of two values.

9.5.2 Declaring Based Variables
You declare based variables with the BASED attribute. The format is

DECLARE variable-reference BASED I (Joe-reference)];

variable-reference

The variable that is to have the BASED attribute. It can be any
scalar, array, area, or major structure variable possessing any of the
attributes that do not conflict with BASED (listed below).

loc-reference

A reference to a pointer or offset variable or pointer-valued function.
If the reference is to an offset variable, that variable must be declared
with a base area. Each time a reference is evaluated, that is, to the
based variable without an explicit pointer or offset qualifier, loc-refer
ence is evaluated to obtain the pointer or offset value.

The following restrictions apply to declarations of based variables:

• These attributes conflict with the BASED attribute:

AUTOMATIC
CONTROLLED
DEFINED
EXTERNAL
GLOBALDEF
GLOBALREF

INITIAL
parameter
READONLY
STATIC
VALUE

• The BASED attribute cannot be applied to minor structures or mem
bers of structures, parameters, or descriptors in an ENTRY or
RETURNS attribute.

Storage Classes 129

9.5.3 ALLOCATE Statement
The ALLOCATE statement obtains storage for a based or controlled varia
ble and optionally sets a pointer variable equal to the address of the stor
age. I ts format is

{
ALLOCATE } . . variable-reference [SET(pointer-reference)];
ALLOC

variable-reference

A based or controlled variable for which storage is to be allocated. It
can be any scalar, array, area, or major structure variable; it must be
declared with the BASED or CONTROLLED attribute.

SET(pointer-reference)

The specification of the pointer variable that is assigned the value of
the location of the allocated storage. If the SET option is omitted, the
based variable must have been declared with BASED(pointer-refer
ence), and the variable designated by that pointer reference is as
signed the location of the allocated storage.

A pointer reference cannot be used with controlled variables.

The following example illustrates the declaration and allocation of based
variables.

DECLARE STATE CHARACTER<lOOI BASED ISTATE_POINTERl,
STATE_POINTER POINTER;

ALLOCATE STATE;

This ALLOCATE statement allocates storage for the variable ST ATE; the
pointer STATE-POINTER points to the location of the allocated storage.

An ALLOCATE statement obtains as much storage as is necessary to
accommodate the current extent of the specified variable. If, for example, a
character-string variable is declared with an expression for its length, the
ALLOCATE statement evaluates the current value of the expression to
determine the amount of storage to be allocated. For example:

DECLARE BUFFER CHARACTER IBUFLENl BASED,
BUF _ PTR PO INTER;

BUFLEN BOi
ALLOCATE BUFFER SET IBUF_PTRl;

Here, the value of BUFLEN is evaluated when the ALLOCATE statement
is executed. The ALLOCATE statement allocates 80 bytes of storage for
the variable BUFFER and sets the pointer variable BUF _FTR to
BUFFER's location.

130 Chapter 9

9.5.4 FREE Statement
The FREE statement releases the storage that was allocated for a based
variable. Its format is

FREE variable-reference ;

variable-reference

A reference to the based variable whose storage is to· be released.

If you do not explicitly free the storage acquired for a based variable, it is
not freed until the program terminates.

If you free a variable that is explicitly associated with a pointer, the pointer
variable becomes invalid and must not be used to reference storage.

The following examples illustrate the use of the FREE statement.

FREE LI ST;
FREE P->INRECi

These statements release the storage acquired for the based variable LIST
and for the allocation of INREC pointed to by the pointer P.

ALLOCATE STATE SET <STATE_PTRl;

FREE STATEi

This FREE statement releases the storage for the based variable ST ATE
and makes the value of STATE-PTR undefined.

9.5.5 Referring to Based Variables
A reference to a based variable (except in an ALLOCATE statement) must
specify a pointer or offset reference designating the storage to be accessed.
This qualifying pointer or offset reference may be implicit, by specifying it
in the BASED attribute, or explicit, by prefixing the based variable refer
ence with a locator qualifier. A complete based variable reference ·(with the
locator qualifier) has the form

qualifying-reference -> base-reference

Whether explicit or implicit, the qualifying reference must be to a pointer
variable, a pointer-valued function, or an offset variable declared with a
base area. The qualifying reference is evaluated each time the complete

Storage Classes 131

reference is evaluated and must yield a valid pointer value. If the qualify
ing reference is to an offset variable, the offset value is converted to a
pointer using the base area specified in the offset variable's declaration.

You may use both implicit and explicit qualification with the same based
variable; the explicit qualifier overrides the implicit one. For example:

DECLARE X FIXED BIN BASEDCPl,
P POINTER,
CA1Bl Fii<ED BINi

P = ADDR<Al;
;-: = ADDRCBJ->;.;;

In the second assignment statement, the reference to X on the left-hand
side of the assignment has the implicit qualifier P, which is the address of
the variable A. The reference to X on the right-hand side is explicitly
qualified with the address of another variable, B. This assigns the value of
B to the variable A.

In V AX-11 PL/I, a valid pointer value may be obtained in any of the
following ways:

• Through the SET option of the ALLOCATE statement

• From a user-provided storage allocation routine

• Through the SET option of the READ statement

• From applying the ADDR built-in function to an addressable variable

• By converting an offset value to a pointer value

A pointer value is valid only as long as the storage to which it applies
remains allocated. Moreover, a pointer obtained by applying ADDR to a
parameter is valid only as long as the parameter's procedure invocation
exists, even though the storage pointed to may exist longer.

The NULL built-in function returns a null pointer value that can be as
signed to pointer and offset variables, but that is not valid for qualifying a
based variable reference.

When you use the READ statement with a based variable, you do not have
to define storage areas within your program to buffer records for l/0 opera
tions. If you specify the SET option on the READ statement, the READ

132 Chapter 9

statement places an input record in a system buffer and sets a pointer
variable to the location of this buffer. For example:

DECLARE REC_PTR POINTER ,
NEW_BALANCE FIXED DECIMAL CG12l,
INFILE FILE RECORD INPUT SEQUENTIAL

DECLARE 1 RECORD_LAYOUT BASED CREC_PTR>,
2 NAME CHARACTER (15),
2 AMOUNT p I CTURE I 9991.!99 I ;

2 BALANCE FIXED DECIMAL CGr2l;

READ FILE CINFILEl SET CREC_PTRI

REC_PTR-:BALANCE = NEW_BALANCE;
REWRITE FILE (INFILEl;

In this example, the structure defined to describe the records in a file is
declared with the BASED attribute; the declaration does not reserve stor
age for this structure. When the READ statement is executed, the record is
actually read into a system buffer, and the pointer REC_pTR is set to its
location.

When you use the SET option with the READ statement, a subsequent
REWRITE statement need not specify the record to be rewritten. PL/I
rewrites the record indicated by the pointer variable specified in the READ
statement.

The ADDR built-in function returns the storage location of a variable. You
can use it to associate the storage occupied by a variable with the descrip
tion of a based variable. For example:

DECLARE A FIXED BINARY BASED CXl,
B FI)<ED BINARY,
}(POINTER;

}(ADDR CB) ;
A 15;

In this example, the variable A is declared as a based variable, with X
designated as its pointer. The variable B is an automatic variable; PL/I
allocates storage for B when the block is activated. When the ADDR built
in function is referenced, it returns the location in storage of the variable B,
and the assignment statement gives this value to the pointer X. This
assignment associates the variable A with the storage occupied by B. Be
cause A is based on X and X points to B, an assignment statement that
gives a value to A actually modifies the storage occupied by the variable B.
Figure 9-2 illustrates this example.

Storage Classes 133

-ei.:i
~

Q
::r
~

'O
<'."+
Cb
""'$

i:.o

DECLARE A CHARACTER (1000) BASED(X}; No storage is allocated for A.

DECLARE B CHARACTER (1000); B I I Bis allocated a thousand bytes of storage.

DECLARE X POINTER; X I =:=] Xis allocated a longword of storage.

X = ADDR (B);
A 'STRING.; X I i---:, I The value of Xis B's memory location

; string A reference to A is resolved as a
reference to B.

ZK-026-81

Figure 9-2: Using the ADDR Built-In Function

9.5.6 Example of Based Variable Use
The program DEFINED uses based variables and the READ SET
statement to process a fiie of personnei data (PERSONNEL.DAT). The
file has two types of valid records, a pay record and a health record, which
are identified by a 1-character code in the first position. The two record
types are declared as based structures (PAY-RECORD and
HEALTH-RECORD), one of which is selected based on the record type
character ('P' for pay, 'E' for health). Any record that does not begin
with one of these characters is invalid and is written out as a reference to
the based character variable INVALID-RECORD.
DEFINED: PROCEDURE OPTIDNS<MAINl;

DECLARE P POINTER; I* Pointer to structures */

DECLARE PAY _RECORD BASED (Pl t

2 RECORD_ TY PE CHARACTER (1 l t

2 NAME CHARACTER (20 l t

I* the two structures differ in this member: *I
2 GRDSS_PAY PICTURE '999999V.99'i

DECLARE 1 HEAL TH_RECORD BASED (P) t •

2 RECORD_ TY PE CHARACTER (1 l t

2 NAME CHARACTERC20l t
2 EXAM_DATE CHARACTER<Bl;

DECLARE INVALID_RECDRD CHARACTER<30l BASEDCPl;

DECLARE PERSONNEL RECORD FILEi
DECLARE PERSDUT STREAM OUTPUT PRINT FILE;

I* used to control DO SrouP: *I
%REPLACE NOTENDFILE BY '1'Bi

ON ENDFILECPERSDNNELl BEGIN;
PUT FILECPERSOUTl SKIP LIST

STOP;
ENDi

('All Processins complete.');
I* Prosram stops here */

OPEN FI LE (PERSONNEL l IN PUT TITLE C 'PERSONNEL, DAT' l ;

DD WHILECNDTENDFILEl;
I* terminated by ENDFILE ON-unit */

READ FILECPERSONNELl SETCPl;
I* P is the location of the
record acquired br the READ statement */

IF P->PAY_RECORD.RECORD_TYPE = 'P' THEN
PUT FILEIPERSDUT) SKIP LIST

('Na1r1e=' tP->PAY_RECORD.NAME,
'Gross PaY=' tP->GRDSS_PAY);

Storage Classes 135

ELSE /* either a health record or an invalid record *'
Do;
IF P->HEALTH_RECORD.RECORD_TYPE = 'E' THEN
PUT FILE(PERSOUTl SKIP LIST

('N ar11 e = ' , P- >HEAL TH_RECORD, NAME'
'Exar11 date:' 1P->Ei{AM_DATEl;

ELSE /* invalid record tYPe *I
PUT FILE<PERSOUT) SKIP LIST

('Ini.1alid record:' 1P->INl.JALID_RECORD) i
ENDi

ENDi /* rePeat DO srouP until ENDFILE is sisnaled */

END DEFINED;

For example, if the file PERSONNEL.DAT contains these records:

PMarY A, Ford 125000.55
EMarY A, Ford 22JulY 80
t12345878901234587890PPPPPP+PP

then the output file (PERSOUT.DAT) will contain the following output:

Mary A. Ford Gross pay= 125000+55
Name= Mary A, Ford Exam date: 22JulY 80
Invalid record: t12345878901234~G/88UPPPPPP+PP

All Processins complete,

Notice these other features of the program:

• The references to based variables have a locator qualifier (P->) for
clarity. However, since all were declared with P as their pointer refer
ence, the locator qualifier could have been omitted.

• References to the structure members RECORD_ TYPE and NAME
must be fully qualified with the name of their containing structures
(PAY-RECORD and HEALTH----RECORD) because both structures
have members with these names. In contrast, GROSS_pAY and
EXAM-DATE are unique to their structures and need not be fully
qualified.

9.5. 7 Data Type Matching for Based Variables
In most applications, the data type of a based variable reference is identi
cal to the data type under which the accessed storage is allocated. (The
VAX-11 PL/I Encyclopedic Reference contains a precise definition of iden
tical data types.) However, it is not required that the data types be identi
cal. In standard PL/I, it is sufficient that the data types match as for
overlay defining or that they are left-to-right equivalent. In VAX-11 PL/I,
the data types may be quite different, although the program will then
depend on the VAX-11 internal representation of data. The following sec
tions discuss type-matching criteria in more detail.

136 Chapter 9

9.5. 7 .1 Matching by Overlay Defining
This type of matching is in effect if the based variable reference and the
variable for which the storage was originally allocated are both suitable for
character- (or bit-) string overlay defining. (See Section 9.7 for a discussion
of string overlay defining.) The only further restriction is that the size n (in
characters or bits) of the based variable reference must be less than or
equal to the size in characters or bits of the original variable. The based
variable reference accesses the first n characters or bits of the storage.

The program in the preceding section contains an example of this type of
matching. The structure members PAY-RECORD.GROSS-PAY (a char
acter string) and HEALTH-RECORD.EXAM DATE (a picture) are not
identical data types. However, both are stored as a character string of
length 9; therefore, they meet the criteria for string overlay defining and for
data type matching.

9.5. 7 .2 Matching by Left-to-Right Equivalence
This type of matching applies to structured variables that are identical up
to a certain point. To see if this applies, examine the declaration of the
based variable, and consider only the portion on the left that includes the
referenced member and all of the level-2 substructure containing the refer
enced member (if the member is not itself at level 2). If the original varia
ble's declaration has a similar left part with identical data type, then the
based variable reference and the original reference match. For example:

DECLARE 1 S 1 BASED (P) t

2)-{ t

3 CA1Bl FIXED BIN1

DECLARE 1

ALLOCATE

2 y t

S" .:...

2

2

s 1 ;

3 C CHAR (10) t

3 DC5) FLOAT;

BASED (P) t

\I
i\ t

3 (A 1B) FI){ED

y t

3 c CHAR< 10) t

3 E BITC32);

BIN t

S2.A = 3; I* valid 1-to-r match */
s2.c = '}('; I* INl.'ALID */

In the first assignment, S2.A is a valid reference because Sl and S2 match
through the level-2 structure X. In the second assignment, S2.C is invalid
in standard PL/I because the level-2 structures S2.Y and SLY do not
match. (However, the reference to S2.C does work in VAX-11 PL/I.)

Storage Classes 137

This sort of matching is useful in connection with data structures and files,
where the first part of a record contains a value indicating the precise
structure of the remainder of the record.

9.5. 7 .3 Nonmatching Based Variable References

In VAX-11 PL/I, a based variable reference need not match the variable
for which the storage was originally allocated. The only requirement is that
the size of the based variable in bits be less than or equal to the size of the
original variable in bits. However, use of such nonmatching references
requires knowledge of the VAX-11 internal representation of data, and you
should not expect the resulting code to be transportable to other PL/I
implementations. For example:

DECLARE X FLOAT BINARY!24l;
DECLARE 1 S BASEDIADDR!Xll,

2 FRAC_ 1 BIT (7) ,

2 Ei<P BIT<Bl,
2 SIGN BIT (1 l ,
2 FRAC_2 BIT<lG);

EXP = 'O'B; I* set exPonent to 0 *I
SIGN= '1'B; /*set si5ri riesatit)e */
}(=>~+1;

The declaration of S describes the internal representation of a V AX-11
single-precision floating-point number. The first two assignments set the
sign and exponent fields to the reserved operand combination; the assign
ment to X causes a reserved operand exception.

9.6 Controlled Variables

A controlled variable is a variable whose actual storage is allocated and
freed dynamically in "generations," of which only the most recent is acces
sible to the program. Controlled variables must be defined by the
CONTROLLED attribute, which has the format

DECLARE variable-reference { CONTROLLED t ;
CTL j

variable-reference

138

The variable that is to have the CONTROLLED attribute. It can be
any scalar, array, area, or major structure variable possessing any of
the attributes that do not conflict with CONTROLLED (listed be
low).

Chapter 9

The following restrictions apply to declarations of controlled variables:

• These attributes conflict with the CONTROLLED attribute:

AUTOMATIC
BASED
DEFINED
GLOBALDEF
GLOBALREF

INITIAL
parameter
READONLY
STATIC
VALUE

• The CONTROLLED attribute cannot be applied to minor structures,
members of structures, parameters, or descriptions in an ENTRY or
RETURNS attribute.

A controlled variable has no storage assigned to it until an ALLOCATE
statement allocates storage for it. Each storage assignment is a "genera
tion" of the variable. Subsequent ALLOCATE statements allocate subse
quent generations. At any time in the program's execution, a reference to a
controlled variable is a reference to the most recent generation of that
variable, that is, the generation created by the most recent ALLOCATE
statement.

The FREE statement frees the most recent generation of a controlled varia
ble. If an attempt is made to free a controlled variable for which no genera
tion exists (or to refer to such a variable), PL/I signals the ERROR
condition.

The following example illustrates the use of controlled variables:

CONT: PROCEDURE 0 PT IONS (MA IN l ;

DECLARE STR CHARACTER !10) CONTROLLED;

END;

ALLOCATE STR;
STR = 'First';
ALLOCATE STR;
STR = 'Second'i
ALLOCATE STR;
STR = 'Third'
PUT SKIP LIST <STRl;
FREE STR;
PUT SKIP LIST !STRl;
FREE STR;
PUT SKIP LIST (STRl;
FREE STR;

The output of this program is

Third
Second
First

Storage Classes 139

9.6.1 Using the ALLOCATION Built-In Function

Since only the most recent generation of a controlled variable is available
to a program, controlled variables provide an easy way to implement a
stack. The ALLOCATE statement is equivalent to a push operation and
the FREE statement is equivalent to a pop operation. The ALLOCATION
built-in function returns the number of generations of a variable, so it can
be used to find out if the stack is empty. For example:

DECLARE NEXT_MOVE CHARACTERl51 CONTROLLED1
DIRECTIONS<41 CHARACTER<S> INITIAL!
'North', 'East', 'South', 'West'),
D FI)ffD BINARY (7);

ALLOCATE NEXT_MOVEi /* Part of a loop that rePorts *I

NEXT_MOVE = DIRECTIONS<DI; I* moues in reverse order */

DO WHILE I* Print moues in correct order */

ENDi

<ALLOCATIONCNEXT_MOVEl ·= Ol;
PUT SKIP LIST ('Go ', NE)<T_MOl.JE);
FREE ND;T _MOt.JE;

9.6.2 Using the ADDR Built-In Function

A controlled variable can be used as the argument of the ADDR built-in
function. If a generation exists, ADDR returns a pointer to it. If no genera
tion of the variable exists, ADDR returns the null pointer. Thus, ADDR
can be used to preserve a pointer to a generation of a controlled variable
that later becomes "hidden" under further generations, as in the following·
example:

DECLARE STOPS CHARACTER <20) VARYING CONTROLLED,
M ID P 0 I NT CH AR AC T E R (2 0) l.J AR Y I NG B A SE D (P l ,

140

P POINTERi

ALLOCATE STOPS;
STOPS = CURRENT_Loc;
IF I = 5 THEN P = ADDR<STOPSl;

PUT SK IP LI ST (
'End reached I Halfway Point was', MIDPOINT);

Chapter 9

At a certain point during the execution of this program, the ADDR built-in
function captures the address of the current generation of STOPS and
assigns it to P. Later, after more generations of STOPS have been allo
cated, MIDPOINT (which is based on P) has the value of that same inter
mediate generation of STOPS.

Note, however, that the value of P (and therefore of MIDPOINT) is valid
only so long as the intermediate generation of STOPS to which P points is
allocated. As soon as that generation is freed, the value of P becomes
invalid, and it must not be used in a pointer-qualified reference until it is
reassigned.

A controlled variable cannot be used in a pointer-qualified reference. In the
example above, a reference like the following would be illegal:

P->STOPS

9. 7 Defined Variables
The DEFINED attribute indicates that PL/I is not to allocate storage for
the variable, but is to map the description of the variable onto the storage
of a base variable. The DEFINED attribute provides a way to access the
same data using different names. Its format is

{ ~~~INED} (variable-reference) [POSITION (expression)]

variable-reference

A reference to a base variable that has storage associated with it. It
must not have the BASED or DEFINED attribute. The base variable
and the declared variable must satisfy the rules given later in this
section.

POSITION (expression)

Specifies the character or bit position in the base variable at which
the defined variable begins. The expression is an integer expression
that specifies a position in the base. A value of 1 indicates the first
character or bit. You can only use the POSITION attribute when the
defined variable satisfies the rules for string overlay defining (de
scribed later in this section).

The following restrictions apply to defined variables:

• These attributes conflict with the DEFINED attribute

AUTOMATIC GLOBALDEF
BASED GLOBALREF
CONTROLLED READONLY
EXTERNAL STATIC
INITIAL parameter
VALUE

Storage Classes 141

• The DEFINED attribute cannot be applied to minor structures, mem
bers of structures, parameters, or descriptions in an ENTRY or
RETURNS attribute.

When you use the DEFINED attribute in the declaration of a variable,
PL/I associates the description of the variable in the declaration with the
storage allocated for the variable on which the declaration is defined. For
example:

DECLARE NAMES(10l CHARACTER!5) DEFINED <LISTI,
LIST(10) CHARACTER(5);

In this example, the variable NAMES is a defined variable; its data de
scription is mapped to the storage occupied by the variable LIST. Any
reference to NAMES or to LIST is resolved to the same location in mem
ory.

With defined variables that meet the criteria for string overlay defining
(described below), you can use the POSITION attribute to specify the
position in the base variable at which the definition begins. For example:

DECLARE ZIP CHARACTER< 20 l ,
ZONE CHARACTER<lOl
11FFTNFl1i7TP) PnSTTTONU.ll;

This statement declares the variable ZONE and maps it to characters 4
through 13 of the variable ZIP.

The extent of a defined variable is determined at the time of block activa
tion, but the base reference (and the position, if the POSITION attribute is
also specified) is interpreted each time the defined variable is referenced.
For example:

DECLARE I FI ><ED,
A< 10) FJ;<ED,
5 FIXED DEFINED(AIIl l;

DO I = 1 TO 10i
5 = I ;
ENDi

The DO group assigns I to A(I) for I = 1,2, ... 10.

The base reference of a defined variable may not be a reference to a based
variable or to another defined variable. A defined variable and its base
reference must satisfy one of the following criteria:

• They must have identical data types (see the VAX-11 PL/I Encyclo
pedic Reference for a precise definition).

• They must both be suitable for character-string overlay defining.

• They must both be suitable for bit-string overlay defining.

142 Chapter 9

If the defined variable is specified with the POSITION attribute, then both
the defined variable and the base reference must be suitable for bit- or
character-string overlay defining.

In brief, a variable is suitable for overlay defining if it consists entirely of
characters or bits, and those characters or bits are packed into adjacent
storage without gaps. (The VAX-11 PL/I Encyclopedic Reference contains
precise rules.) Such a variable can be treated as a string or interpreted as
different types of aggregates. For example, Figure 9-3 shows a 50-byte
region of storage treated either as a IO-element array (A) of 5-character
strings or as a 5-element array (B) of IO-character strings.

DECLARE A (10) CHARACTER (5) ;

DECLARE 8 (5) CHARACTER (10) DEFINED(A);

A(1) = 'AAAAA';
A(2) = '88888';
PUT LIST (8(1));

Result: AAAAABBBBB

A(1) { AAAAA

8 8 8 8 8

A(10) {

Figure 9-3: An Overlay Defined Variable

Storage Classes

f f 8(1)

; 8(5)

The declaration of A reserves
storage for a 10-element array
of 5-byte character strings.

The declaration of 8 defines
B's storage as equivalent to
A's. Any reference to B will
access the same storage as
that allocated for A.

ZK-1302-83

143

Chapter 10

Aggregates

Aggregates are groupings of variables. There are two types of aggregate:

• An array is an aggregate in which all items, called elements, have the
same data type. An individual element of an array is referred to by an
integer subscript that designates the element's position, or order, in
the array. Elements can be scalar data items or structures.

• A structure is an aggregate in which individual items, called members,
can have different data types. Individual members are referred to by
qualified references that give, in general, the names of the structure
itself and of the individual member.

Aggregates can also be formed from arrays whose elements are structures,
or from structures whose individual members are arrays.

10.1 Arrays
Arrays provide an orderly way to manipulate related variables of the same
data type. An array variable is defined in terms of the number of elements
that the array contains and the organization of those elements. These
attributes of an array are called its dimensions.

10.1.1. Array Declarations
The declaration of an array specifies its dimensions, the bounds of each
dimension, and the attributes of the elements. The format of a DECLARE
statement for an array is

DECLARE identifier (bound-pair, ...) [attribute ...];

or

DECLARE (declaration, ...) (bound-pair, ...) [attribute ...];

where each bound pair has the format

[lower-bound:]upper-bound

or

144

One bound pair is specified for each dimension of the array, to define the
number of elements in that dimension. The extent of an array is the prod
uct of the numbers of elements in its dimensionso If omitted, the lower
bound is 1 by default.

You can use the asterisk (*) as the bound pair when you declare arrays as
parameters of a procedure; the asterisk indicates that the parameter can
accept array arguments with any number of eiements. (If one dimension is
specified with an asterisk, all must be specified with asterisks.)

For example, the statement

DECLARE SALARIES!lOOl FIXED DECIMAL!7t2l;

declares a 100-element array with the identifier SALARIES. Each element
is a fixed-point decimal number with a total of seven digits, two of which
are fractional. The statement

DECLARE GAME-BOARDl8t8l FIXED BINARYl7l;

declares a two-dimensional array of 64 integers. The statement

DECLARE PM_HOURSl13:24l CHARACTER<2l;

declares a one-dimensional array of 12 character strings. The elements of
the array are numbered 13 through 24 instead of 1 through 12.

You can replace the identifier in a statement with a list of declarations,
thereby declaring several arrays with the same attributes. For instance

DECLARE <SALARIEStPAYMENTSl(lOOl FIXED DECIMAL<7t2l;

declares SALARIES and another array, PAYMENTS, with the same di
mensions and other attributes.

The following rules apply to specifying the dimensions of an array and the
bounds of a dimension:

• The maximum number of dimensions that an array can have is eight.

• The values you can specify for bounds are restricted as follows:

- If the array has the STATIC attribute, you must specify all bounds
as restricted integer expressions. A restricted integer expression
yields only integral results and has only integral operands. Only
the operators +, -, *, and the DIVIDE built-in function can be used
in such an expression.

- If the array has the AUTOMATIC, BASED, CONTROLLED, or
DEFINED attribute, you can specify the bounds as optionally
signed integer constants or as expressions that yield integer values

Aggregates 145

at run time. If the array has AUTOMATIC or DEFINED, the
expressions must not contain any variables or functions that are
declared in the same block, except for parameters.

- If an array is a parameter, you can specify the bounds using option
ally signed integer constants or asterisks (*). If you specify any
bound as an asterisk, you must specify all bounds with asterisks.
An array parameter declared this way inherits the dimensions of
the corresponding argument.

• The value of the lower bound you specify must be less than the value
of the upper bound.

10.1.2 References to Individual Elements
You refer to an individual element in the array by means of subscripts.
Since an array's attributes are common to all of its elements, a subscripted
reference has the same properties as a reference to a scalar variable with
those attributes.

You must enclose subscripts in parentheses in a reference to an array
element. For example, in a one-dimensional array named ARRAY declared
with the bounds (1:10), the elements are numbered 1 through 10 and are
referred to as ARRA Y(l), ARRA Y(2), ARRAY(3), and so on. The lower and
upper bounds that you declare for a dimension determine the range of
subscripts you can specify for that dimension.

For multidimensional arrays, the subscript values represent an element's
position with respect to each dimension in the array. In subscripted refer
ences for multidimensional arrays, the number of subscripts must match
the number of dimensions of the array, and must be separated by commas.

You can specify the subscript of an array element using any variables or
expressions having integer values, that is, values that can be expressed as
fixed binary or fixed decimal with a zero scale factor. For example:

DECLARE DAYS_IN_MONTHC12) FIXED BINARY;

DECLARE !COUNT, TOTAL> FIXED BINARY;
TOTAL = o;
DD COUNT = 1 TD 12;

TOTAL = TOTAL + DAYS_IN_MONTHICOUNTl;
ENDi

Here, the variable COUNT is used as a control variable in a DO loop. As
the value of COUNT is incremented from 1 to 12, the value of the corre
sponding element of the array DA YS_IN_MONTH is added to the value
of the variable TOTAL.

146 Chapter 10

10.1.3 Initializing Arrays
The INITIAL attribute can be specified for arrays. For example:

DECLARE MONTHS (12l CHARACTER (9) VARYING
INITIAL ('January', 'February' 1 'March' 1 'APril''

'May', 'June', 'Jul}''' 'Ausust'1
'September'' 'October'' 'November'' 'December');

Each element of the array MONTHS is assigned a value according to the
order of the character-string constants in the initial list: that is,
MONTH(l) is assigned the value 'January'; MONTH(2) is assigned the
value 'February'; and so on.

If the array being initialized is multidimensional, the initial values are
assigned in row-major order (see Section 10.1.5).

When you want to assign identical initial values to some or all elements of
an array, you can use an iteration factor with the INITIAL attribute. For
example:

DECLARE TEST_AVGS (3014) FIXED DECIMAL (512)
STATIC INITIAL ((120) 50);

This statement declares the array TEST-A VGS with 120 elements, each
of which is given an initial value- of 50.

Although VAX-11 PL/I supports the initialization of automatic arrays with
the INITIAL attribute, it is not always the most efficient way (in terms of
program compilation and execution) to initialize array elements. The fol
lowing notes cover the things you should consider:

• When you initialize elements in an array that has the AUTOMATIC
attribute, the compiler does not check that all elements are initialized
until run time. Thus, you do not receive any compile-time checking of
initialization, even if you used constants to specify the array bounds
and iteration factors.

• Your programs will run more efficiently if you initialize automatic
arrays with assignment statements rather than the INITIAL attribute.

• If the array is not modified by your program, you can increase program
efficiency by declaring the array with the STATIC and READONLY
attributes and using the INITIAL attribute to initialize its elements.
In this case, the compiler checks that you have initialized all the
elements and that they are valid.

Section 11.1.5 provides full details about the INITIAL attribute.

Aggregates 147

10.1.4 Assigning Values to Array Variables
You can specify an array variable as the target of an assignment statement
in the following cases:

• array-variable = expression;

where the expression yields a scalar value. Every element of the array
is assigned the resulting value. The array variable must be a con
nected array whose elements are scalar.

Note that the arithmetic operators, such as + and -, cannot have
arrays as operands. An assignment of the form

ARRAYC = ARRA YA + ARRAYS;

is invalid.

• array-variable-I = array-variable-2;

where the specified array variables have identical data type attributes
and dimensions. Each element in array-variable-I is assigned the
value of the corresponding element in array-variable-2. In this type of
assignment, both arrays must be connected. The actual storage they
occupy must not overlap, unless the arrays are identical.

All other specifications of an array variable as the target of an assignment
statement are invalid.

When you specify an array variable name in the input-target list of a GET
LIST or GET EDIT statement, elements of the array are assigned values
from the data items in the input stream. For example:

DECLARE VERBS CGl CHARACTER C15l VARYING;
GET Li ST (t.JERBS) ;

When this GET LIST statement executes, it accepts data from the default
input stream. Each blank-, tab-, or comma-delimited input field is consid
ered a separate string. The values of these strings are assigned to elements
of the array VERBS in the order VERBS(I), VERBS(2),. .. VERBS(6). If a
multidimensional array appears in an input-target list, input data items
are assigned to the array elements in row-major order (see Section 10.1.5).

An array can also appear, with similar effects, in the output-source list of a
PUT statement.

148 Chapter 10

10.1.5 Order of Assignment and Output for Multidimensional
Arrays

When a multidimensional array is initialized, or when it is assigned values
without references to specific elements, PL/I assigns the values in row
major order. In row-major order, the rightmost subscript varies the most
rapidly. For example, an array can be declared as follows:

DECLARE TESTS <21213);

If TESTS is specified in a GET statement or in a declaration with the·
INITIAL attribute, values are assigned to the elements in the following
order:

TESTS (1,1,1)
TESTS (1,1,2)
TESTS (1,1,3)
TESTS (1,2,1)
TESTS (1,2,2)
TESTS (1,2,3)
TESTS (2,1,1)
TESTS (2,1,2)
TESTS (2,1,3)
TESTS (2,2,1)
TESTS (2,2,2)
TESTS (2,2,3)

When an array is output with a PUT statement, PL/I uses the same order
to output the array elements. For example:

PUT LI ST <TESTS) ;

This PUT statement outputs the contents of TESTS in the order shown
above.

10.2 Structures
A structure is a data aggregate consisting of one or more members. The
members may be scalar data items, arrays of scalar data items, structures,
or arrays of structures, and different members may have different data
types. Structures are useful when you want to group related data items
having different data types.

A structure declaration defines a structure variable by means of level num
bers. For example:
DECLARE 1 TRANSACTIONt

Aggregates

2 PART_NLJMBERt
3 FACTORY CHARACTER < 3) t

3 ITEM CHARACTER < 5) ,
2 I!'LSTOC!': BIT (1);

149

The level number 1 indicates that TRANSACTION is a structure variable.
TRANSACTION is the name of the entire, or "major," structure. The
relationship of the higher numbers (2 and 3) indicates that the associated
identifiers are the names of members of the structure TRANSACTION or
its "minor" structure, PART _NUMBER.

10.2.1 Structure Declarations
The declaration of a structure defines its organization and the names of
members at each level in the structure. The format of a DECLARE state
ment for a structure is

{
DECLARE} . DCL declaration(, ...]

where each declaration is

level identifier [(bound-pair, ...)] [attribute ...]

or

level (declaration, ...) [(bound-pair, ...)] [attribute ...]

Each declaration specifies a member of the structure and must be preceded
by a level number. As shown, a single variable can be declared at a particu
lar level; or the level can contain one or more complete declarations, in
cluding declarations of arrays or of other structures. The major structure
name is declared as structure level l; minor members must be declared
with level numbers greater than 1. For example, the statement

DECLARE 1 PAYROLL,
2 NAME,

3 LAST CHARACTERIBOI VARYING,
3 FIRST CHARACTERIBOI VARYING,

2 SALARY FIXED DECIMALl712l;

declares a structure named PAYROLL. You can access the last name with
a qualified reference:

PAYROLL.NAME.LAST= 'ROOSEVELT';

Alternatively, since the last and first names have the same attributes, you
can declare the same structure as

DECLARE 1 PAYROLL,
2 NAME ,

3 ILAST1FIRSTl CHARACTERIBOJ VARYING,
2 SALARY FIXED DECIMALl712l;

The following additional rules apply to the specification of level numbers:

• Level numbers must be specified using decimal integer constants.

• A level number must be separated from its associated variable name
by at least one space or tab character.

150 Chapter 10

• Level numbers after level 1 can have any integer value, as long as each
level number is equal to or greater than the level number of the pre
ceding level. (There can be only one level 1.)

• Each identifier in the structure must be separated from the declara
tion of the previous identifier by a comma.

• Substructures at the same logical level of nesting do not have to have
the same level number.

• The deepest possible logical level is 15.

• The largest possible level number constant is 32767.

Within a structure, only members at the lowest level of each substructure
can be declared with data type attributes. Additional rules for specifying
attributes for the various components of a structure are as follows:

• Only these attributes are valid for the major structure name:

AUTOMATIC EXTERNAL
BASED INTERNAL
CONTROLLED STATIC
DEFINED

• The major structure, a minor structure, or any member of the struc
ture can be dimensioned: that is, there can be arrays of structures and
structures whose members are arrays.

• Member names cannot have any of these attributes:

AUTOMATIC
BASED
CONTROLLED
DEFINED
EXTERNAL

GLOBALDEF
GLOBALREF
READONLY
STATIC
VALUE

• If a structure has the STATIC attribute, the extents of all members
(that is, lengths for character- and bit-string variables, dimensions for
array variables, and area extents) must be specified using optionally
signed decimal integer constants.

A structure can be initialized by giving the INITIAL attribute to its mem
bers. Not all members need be initialized. For example:

DECLARE 1 COUNTS,
2 FIRST FIXED BIN!15) INITIAL!O) t

2 SECOND FIXED BIN!15),
2 THIRD (5) FIXED BIN!15l INITIAL 15111 I;

The first and third members of the structure COUNTS are initialized.

Aggregates 151

The INITIAL attribute cannot be applied, however, to a major or a minor
structure name.

10.2.2 Member Attributes
VAX-11 PL/I supports three "member attributes" so named because they
apply specifically to the declaration of structure members rather than to
the structure as a whole. Member attributes may be applied to major or
minor members of a structure. They are

• The LIKE attribute

• The REFER option

• The UNION attribute

Each is discussed in detail in the following sections.

10.2.2.1 Using the LIKE Attribute
The LIKE attribute copies the member declarations contained with a ma
jor or minor structure declaration into the structure variable to which it is
applied. The format of the LIKE attribute is

level-number identifier [attributes] LIKE reference

level-number

Gives the level number to which the declarations in the reference are
copied.

identifier

Names the variable to which the declarations in the reference are to
be copied.

attribute

Storage class or dimensions appropriate for the level number. You
may specify a storage class and dimensions with a minor structure.

reference

The name of a major or minor structure that is known in the current
block.

You can use the LIKE attribute to copy the declaration of a major or minor
structure to another structure variable. The LIKE attribute copies the
logical structuring and member declarations from the major or minor
structure to the target variable, but does not copy any storage class attrib
utes or dimensioning (except for dimensioning that is applied to members).

The identifier names the variable to which the declarations in the reference
are copied. The reference is the name of a major or minor structure known

152 Chapter 10

to this block. Note that the identifier must be preceded by a level number.
Any attributes which can be used with a structure variable at that level
can be used with the identifier; for example, a major structure can specify
a storage class and dimensions, and a minor structure can specify
dimen&ions.

The following example illustrates the LIKE attribute:

DECLARE 1 RES_DATA BASED (RPTR) t

2 DATE CHARACTER (8) t

2 HOTEL_CODE CHARACTER(J),
2 PARTY_NAME1

3 LAST CHARACTER (20 l ,
3 FIRST CHARACTER (10 i ,

2 STAY Fii<ED 5IN<7l t

1 NEW_RESER LIKE RES_DATAt

GET LIST CNEW_RESER.DATEtNEW_RESER,HOTEL_CODEl;

RES_DATA = NEW_RESERi

In this example, the declaration of NEW-RESER-uses. the LIKE attribute
to create a set of member declarations that duplicate those in
RES_DATA. The declaration of NEW _RESER is equivalent to the fol
lowing:

DECLARE 1 NEW_RESERt
2 DATE CHARACTER (8) t

2 HOTEL_CODE CHARACTER (3 i t

.:.. PAR'TY _NAME'
3 LAST CHARACTER (20) ,
3 FIRST CHARACTER (10) ,

2 STAY FIXED 5INARYC7i;

After the various members of NEW-RESER are assigned data and that
data is validated, the entire contents of NEW-RESER are assigned to
RES-DAT A. This is possible because the two structures are identical,
which is a byproduct of using the LIKE attribute.

10.2.2.2 Using the REFER Option
The REFER option is provided in PL/I to create self-defining BASED
structures. That is, the value of one member of a based structure is used to
determine the size of the storage space allocated for another member of the
same structure. The REFER option may be used in a DECLARE state
ment to specify array bounds, the length of a string, or the size of an area.
The format of the REFER option is

refer-element REFER (refer-object-reference)

Aggregates 153

refer-element

An expression that represents the value assigned to the refer object
when the structure is allocated. The refer element must satisfy the
following:

• It must be an expression which produces a FIXED BINARY(31)
value or a value that can be converted to FIXED BINARY (31).

• It may not reference storage in the structure containing the refer
element.

refer-object-reference

A reference to a scalar variable. The refer object reference must
satisfy the following:

• It cannot be a subscripted variable reference.

• It cannot be locator qualified.

• It must reference a refer object that is a previous member of the
structure containing the REFER option.

refer-object

A scalar variable contained by the structure. The refer object must
satisfy the following:

• It must be a previous member of the structure containing the RE
FER option which references the refer object.

• It must be scalar; it cannot be dimensioned or a dimensioned array.

• It must have a computational data type.

A structure declaration containing the REFER option has the basic format

DECLARE 1 STRUCTURE S BASED(Pl,
2 I FIXED BINARY<31),
2 A CHARACTER (20 REFER (I)) ,

where I is the refer object, 20 is the refer element, and I is the refer object
reference.

In order to allocate storage for a BASED structure, the structure must have
a known size. In the above example, the initial length for A is taken from
the refer element, 20. However, the REFER option permits the size of the
structure to change at run time as the value of the refer object changes.
After allocation, the length of A is determined by the refer object, I.

Multiple REFER options are premitted within a structure.

The following example and diagrams illustrate storage mapping using the
REFER option.

154 Chapter 10

DECLARE 1

ALLOCATE s;
}-{ 5;
'{ = 10;

BASED (PO INTER) t

I FL<ED BINARY< 15) t

J FI~<ED BINARY< 15) t

A CHARACTER (<)-{*-2+2) REFER (I)) ;

B<2l CHARACTER <Y REFER(Jl);

S.A = 'A5CDEFGHIJKL';
S.5<1l '0123456789';
S,5(2) = 'NOW IS THE';

ENDi

When this structure is allocated, the refer elements ((X*2+2) and Y) are
evaluated and used to determine the length of the associated string. The
evaluated refer element value (X*2+2) is assigned to the refer object I and
Y is assigned to J. Thereafter, the size of strings A and B are determined by
the value of the refer objects I and J.

Storage for the above structure would look like this:

Aggregates

S.I

S.J

S.A

S.8(1)

S.8(2)

12

10

8 A

D c
F E

H G

J I

L K

1 0

3 2

5 4

7 6

9 8

0 N

w

~
~ ZK-1303-83

155

If the refer objects, I and J, were assigned the following values

I = G;
J = a;

the resulting storage would be remapped as this:

S.I

S.J

S.A

S.8(1)

S.8(2)

8

D

F

H

J

L

1

6

4

A

c
E

G

I

K

0
ZK-1304-83

Note that VAX-11 PL/I does not restrict the use of the REFER option
within structure declarations: therefore, exercise caution in its use. If you
change a value that causes the size of one or more structure members to
decrease, then some storage at the end of the allocated storage will become
inaccessible for future reference.

If the scalar variable (the refer object) does not satisfy the following, the
results are undefined:

• It must not be assigned a value which is less than zero or greater than
the refer element value used for structure allocation.

• It must have the value used for allocation, if the structure is freed.

The following additional rules apply to structures containing the REFER
option: .

• A structure containing the REFER option may not be the target of a
LIKE reference.

• When a BASED structure is allocated, the order in which the refer
elements are selected for evaluation is undefined.

• When a BASED structure is allocated, the order in which the refer
objects are selected for initialization is undefined.

10.2.2.3 Using the UNION Attribute
A union is a variation of a structure in which all immediate members
occupy the same storage. The UNION attribute (which must be associated

156 Chapter 10

with a level number in a structure declaration) declares a union. All imme
diate members of the union-that is, all members having a level number
one higher-occupy the same storage, A reference to one member of a
union refers to storage occupied by all members of the union. Therefore, a
union provides a convenient way to look at a large entity (such as a charac
ter string or a bit mask) as a series of smaller entities (such as component
character strings or individual flag bits).

The UNION attribute is not part of the PL/I G subset; it is provided in
VAX-11 PL/I to give users convenient access to data as it is internally
represented. Potential applications of unions might depend on the internal
representation of data, and would therefore not be transportable to other
implementations of PL/I, given that these implementations had the
UNION attribute.

The format for using the UNION attribute is

level-number identifier [storage class] UNION

level-number

The level number of the variable with which the declarations in the
reference share storage.

identifier

The name of the variable with which the declarations in the reference
share storage. A variable declared with the UNION attribute must be
a major or minor structure. All members of a UNION must have a
constant size.

storage class

The storage class specified for the structure.

The following example illustrates unions:
DECLARE 1 CUSTOMER_INF01

Aggregates

2 PHONE_DATA UNION,
3 PHONE_NLJMBER CHARACTER (13) ,

3 COMPONENTS,
4 LEFT_PAREN CHARACTER (1),

a AREA_CODE CHARACTER (3) ,
a RIGHT_PAREN CHARACTER (1),

a E)<CHANGE CHARACTER (3 l ,
a HYPHEN CHARACTER (1) ,

a SPECIFIC_NLJMBER CHARACTER (Q),

2 ADDRESS_DATA,

157

The UNION attribute associated with the declaration of PHONE_DATA
signifies that PHONE_DATA's immediate members (PHONE_
NUMBER and COMPONENTS) occupy the same storage. Any modifica
tion of PHONE-NUMBER also modifies one or more members of
COMPONENTS; conversely, modification of a member of COMPO
NENTS also modifies PHONE_NUMBER. Note, however, that the UN
ION attribute does not apply to the members of COMPONENTS, since
they are not immediate members of PHONE_DATA. The members of
COMPONENTS occupy separate storage in the normal fashion for struc
ture members.

Unions provide capabilities similar to those provided by defined variables.
However, the rules governing defined variables are more restrictive than
those governing unions. The following example demonstrates a use of a
union that would not be possible with a defined variable:

DECLARE 1 X UNION1
2 FLOAT _NUM FLOAT BI NARY (2ll l t

2 BREAKDOWN1
3 FRAC_ l BIT (7) t

3 E)<PONENT BIT (8 > ,

3 SIGN BIT (1) t

3 FRAC_2 BIT (16)i

The union X has two immediate members, FLOAT _NUM (a floating
point variable) and BREAKDOWN. The members of BREAKDOWN are
bit-string variables that overlay the storage occupied by FLOAT_NUM
and provide access to the individual components of its internal representa
tion. Assignment to FLOAT _NUM modifies the members of
BREAKDOWN, and vice versa. For example:

E)<PONENT = 'O'Bi
SIGN= 'l'B;

FLOAT_NUM = FLOAT_NUM + li

The first two assignment statements set the exponent and sign fields of
FLOAT _NUM to the reserved operand combination; the expression
FLOAT-NUM + 1 causes a reserved operand exception to occur.

Note that, unlike the character-string example which precedes it, the
example above depends on the VAX internal representation of data.

10.2.3 Structure-Qualified References
To refer to a structure in a program, you use the major structure name,
minor structure names, and individual member names. Member names
need not be unique even within the same structure. To refer to the name of
a member or minor structure, you must ensure only that the reference
uniquely identifies it. You can qualify the variable name by preceding it

158 Chapter 10

with the name(s) of higher-level (lower-numbered) variable(s) in the struc
ture; names in this format, called a qualified reference, must be separated
hu rn:>riorh: ()
~..l .t'~~~~~~ ,., •

The following sample structure definition illustrates the rules for identify
ing names of variables within structures:

DECLARE 1 STATEt
2 NAME CHARACTER (20) ,
2 POPULATION FIXED (10),
2 CAP ITAL,

3 NAME CHARACTER (30 l ,
3 POPULATION FIXED (1010),

2 SYMBOLS,
3 FLOWER CHARACTER <20>,
3 BIRD CHARACTER (20);

The rules for selecting and specifying variable names for structures are as
follows:

• The name of the major structure is subject to the rules for the scope of
variables in a program.

• The name of any minor structure or member in a structure can be
qualified by the names of higher-level members in the structure. The
variable names must be specified from· left to right in order of increas
ing level numbers, separated by periods. The members of the above
sample, completely qualified, are

STATE.NAME
STATE.POPULATION
STATE.CAPITAL.POPULATION
STATE.CAPITAL.NAME
STATE.SYMBOLS.FLOWER
STATE.SYMBOLS.BIRD

• Names of minor structures or members within structures do not have
to be qualified if they are unique within the scope of the name. The
following names in the sample structure can be referred to without
qualification (so long as there are no other variables with these
names):

CAPITAL
SYMBOLS
FLOWER
BIRD

• Intermediate qualification names can be omitted if the reference re
mains unambiguous. The following references to members in the sam
ple structure are valid:

STATE.FLOWER
om A rnr.i nTnr-,.
01 i'\. l r...01nu

Aggregates 159

If a name is ambiguous, the compiler cannot resolve the reference and
issues a message. In the example, the names POPULATION and NAME
are ambiguous.

You can specify the name of a major or minor structure in an assignment
statement only if the source expression and the target variable are identical
in size and structure, and all corresponding members have the same data
types.

10.2.4 Arrays of Structures
An array of stmctures is an array whose elements are structures. Each
structure has identical logical levels, minor structure names, and member
names and attributes.

For example, a structure STATE can be declared an array:

DECLARE 1 STATE (50) ,
2 NAME CHARACTER (201 VARYING,
2 POPULATION FI)<ED <31 l,
2 CAPITAL,

3 NAME CHARACTER (30) VARYING,
3 POPULATION Fii<ED \31 i,

2 SYMBOLS,
3 FLOWER CHARACTER (20 l ,
3 BI RD CHARACTER (20 l ;

A member of a structure that is an array inherits the dimensions of the
structure. For example, the member CAPITAL.NAME of the structure
STATE inherits the dimension 50. You must use a subscript whenever you
refer to the variable CAPITAL.NAME, as in this example:

PUT LIST (CAPITAL.NAME(Ill ;

A subscript for a member of a structure that is an array element can appear
following any name within a qualified reference. For example, all of these
references are equivalent:

STATE(lOJ,CAPITAL+NAME
STATE,CAPITALC10l.NAME
STATE,CAPITAL.NAME<10)

10.2.4.1 Arrays of Structures That Contain Arrays
A structure that is defined with a dimension can have members that are
arrays. For example:

DECLARE 1 STATE 150),
2 OVERAGE_TEMPSl12l FIXED DECIMAL 1512),

160 Chapter 10

In this example, the elements of the array STATE are structures. At the
second level of the hierarchy of each structure, AVERAGE_ TEMPS is an
array of 12 elements. Because AVERAGE-TEMPS inherits the dimension
of STATE, any of AVERAGE-TEMPS's elements must be referred to by
two subscripts:

1. The first subscript references an element in STATE.

2. The second subscript references an element in AVERAGE-TEMPS.

These subscripts can appear following any name in the qualified reference.
For example:

STATE(3l.AVERAGE_TEMPS<4l
STATE.AVERAGE_TEMPS(314l

These references are equivalent.

Note the following rules for specifying subscripts for members of structures
containing arrays:

• The number of subscripts specified for any member must include any
dimensions inherited from a major or minor structure declaration, as
well as those specified for the member itself.

• The subscripts that refer to a member of a structure in an array do not
have to follow immediately the name to which they apply. However,
the order ~f subscripts must be preserved.

• The total number of dimensions, including the inherited dimensions,
must not exceed eight.

10.2.4.2 Connected and Unconnected Arrays
A connected array is one whose elements occupy consecutive locations in
storage. For example:

DECLARE NEWSPAPERS (10l CHARACTER C30l;

In storage, the 10 elements of the array NEWSPAPERS occupy 10 consec
utive 30-byte units. Thus, NEWSPAPERS is a connected array.

A connected array is valid as the target of an assignment statement, as long
as the source expression is a similarly dimensioned array or a single scalar
value.

In an unconnected array, the elements do not occupy consecutive storage
locations. An unconnected array is not valid in an assignment statement or
as the source or target of a record I/O statement. A structure with the

Aggregates 161

.J

dimension attribute always results in unconnected arrays. When a struc
ture is dimensioned, each member of the structure inherits the dimensions
of the structure and becomes, in effect, an array. For example:

DECLARE 1 STATE (50) 1
2 NAME CHARACTER (20) VARYING1
2 POPULATION FL<ED <31);

The members NAME and POPULATION of the major structure STATE
inherit the dimension 50 from the major structure. When PL/I allocates
storage for a structure or a dimensioned structure, each member is allo
cated consecutive storage locations; thus the elements of the arrays NAME
and POPULATION are not connected.

Figure 10-1 illustrates the storage of connected and unconnected arrays.

CONNECTED:

DECLARE 1 STATE,
2 NAME (50) CHAR(20),
2 POP (50) FIXED(10);

The members NAME and POP of the
structure STATE are dimensioned.
The elements of each array occupy
consecutive storage locations.

UNCONNECTED:

DECLARE 1 ST A TE (50),
2 NAME CHAR(20),
2 POP FIXED(10):

The array STATE is dimensioned. Its
members NAME and POP inherit the
dimension: each of these variables
is an array of 50 elements, but the
elements do not occupy consecutive
storage locations.

name(1)

name(2)

name(3) . .
~

name(SO)

pop(1)
pop(2)
pop(3) .

~ . ~ 1 po,j(50i J

name(1)

pop{t)

pop{2)

I

;::;::: I
I

pop{49) I
1

pop{SOJ

Figure 10-1: Connected and Unconnected Arrays

162

::;~

l
name(2)

name(3)

~~

name(50)

ZK-028-81

Chapter 10

Chapter 11

Declarations

Before you can use a variable in a PL/I program, you must declare it with
the DECLARE statement. When you declare a variable, you give it one of
the fundamental data types described in Chapter 8; you may assign it to
one of the storage classes described in Chapter 9; and you may make it an
array or structure variable, as described in Chapter 10.

This chapter covers two topics:

• Section 11.1 describes the syntax of the DECLARE statement.

• Section 11.2 describes the scope of a declaration, that is, the region of
a program in which a variable is known.

11.1 DECLARE Statement

The DECLARE statement specifies the attributes associated with names.
Its general format is

{
DECLARE} . DCL declaration[, ...];

declaration

One or more declarations consisting of an identifier and attributes.
Formally, each declaration has the format

[level] identifier [(bound-pair, ...)] [attribute ...]

or

[level] (declaration, ...) [(bound-pair, ...)] [attribute ...]

Bound pairs are used to specify the dimensions of arrays. If bound pairs are
present, they must be in parentheses and must immediately follow the
identifier or the parenthetical list of declarations. (Section 10.1 describes
arrays.)

Levels are used to specify the relationship of members of structures; if a
level is present in the declaration, it must be written first. (Section 10.2
describes structures,)

163

The format of the DECLARE statement varies according to the number
and nature of the items being declared. It can list a single identifier, op
tionally specifying a level, bound-pair list, and other attributes for that
identifier. Alternatively, the statement can include, in parentheses, a list
of declarations to which the level and all subsequent attributes apply. The
declarations in the second case can be simple identifiers or can include
attributes that are specific to individual identifiers. The various formats
are described individually, below.

11.1.1 Simple Declarations
A simple declaration defines a single name and describes its attributes. Its
format is

DECLARE identifier [attribute ...) ;

identifier

A 1- to 31-character user-supplied name, which must be unique
within the current block. An identifier can consist of any of the alpha
numeric characters A through Z, a through z, 0 through 9, $ and-,
but must begin with an alphabetic letter, dollar sign, or underscore.
Note that PL/I does not distinguish between upper- and lowercase
letters in a declaration.

attribute ...

One or more attributes of the name. Attributes, if specified, must be
separated by spaces. They can appear in any order. The valid attrib
ute keywords and their meanings are described with their data types
in Chapters 8 and 9.

Some examples of simple declarations are

DECLARE COUNTER FIXED BINARY <7>;
DECLARE TEXT_STRING CHARACTER 1801 VARYING;
DECLARE INFILE FILE;

Names that are not given specific attributes in a DECLARE statement or
that are referenced without being declared are given the default attributes

BINARY FIXED (31) AUTOMATIC

The compiler issues a warning message whenever it gives a name to these
default attributes.

11.1.2 Multiple Declarations
Multiple declarations define two or more names and their individual at
tributes. This format of the DECLARE statement is

164

DECLARE identifier [attribute ...)
[,identifier [attribute ...]] ... ;

Chapter 11

When you specify more than one set of names and their attributes, sepa
rate each name and attribute set from the preceding set with a comma. A
semicolon must follow the last name.

An example of a multiple declaration is

DECLARE CBUNTER FIXED BINARY C7l t

TEXT_STRING CHARACTER C80l VARYINGt
Y FILE;

This DECLARE statement defines the variables COUNTER, TEXT_
STRING, and Y. The attributes for each variable follow its name.

11.1.3 Factored Declarations
When two or more names have the same attribute(s), you can combine the
declarations into a single factored declaration. This format of the
DECLARE statement is

DECLARE (identifier[,identifier, ...])
[attribute ...];

When you use this format, you must place names that share common
attributes within parentheses, separated by commas. The attributes that
follow the parenthetical list are applied to all the named identifiers.

Some examples of factored declarations are

DECLARE (COUNTER t RATE, I NDEiO FIXED BI NARY (7 l ;
DECLARE CINPUT_MESSAGEt OUTPUT_MESSAGE, PROMPT)

CHARACTER C80) VARYING;

The variables COUNTER, RATE, and INDEX share the attributes
FIXED BINARY (7). The variables INPUT-MESSAGE, OUTPUT_
MESSAGE, and PROMPT share the attributes CHARACTER (80)
VARYING.

You can also specify, within the parentheses, attributes that are unique to
individual variable names, using this format:

DECLARE (identifier attribute ... ,
identifier [attribute ...], ...)
attribute ...

For example:

DECLARE <INFILE INPUT RECORD,
OUTFILE OUTPUT STREAM) FILE;

The DECLARE statement declares INFILE as a RECORD INPUT file and
OUTFILE as an OUTPUT STREAM file.

Declarations 165

The parentheses can be nested. For example:

DECLARE (<INFILE INPUT, OUTFILE OUTPUT} RECORDt
SYSFILE STREAM } FILE;

The DECLARE statement declares INFILE as a RECORD INPUT file,
OUTFILE as a RECORD OUTPUT file, and SYSFILE as a STREAM
INPUT file (STREAM implies INPUT).

11.1.4 Declarations Outside of Procedures
A variable may be declared outside of any procedure. Any variable so
declared will be visible within all procedures contained by the module; that
is, the scope of the variable will be all procedures in the module. The
format for declarations outside of procedures is the same as for other decla
rations except that variables may have any storage class except
AUTOMATIC. If a storage class is not specified, STATIC is supplied.

The following example illustrates the use of this type of declaration:

DECLARE A STATIC FIXED BINARY!31};

FIRST: PROCEDURE;
DECLARE B FIXED BINARY<31};

END FIRST;

SECOND: PROCEDURE;
DECLARE C FIXED BINARY131l;

END SECOND;

In this example, variable A is visible in both the FIRST and SECOND
procedures, but variables B and C are visible only in their containing
procedures.

(Section 11.2 describes the scope of names.)

11.1.5 Initializing Variables in the DECLARE Statement
You can use the INITIAL attribute to provide an initial value for a de
clared variable. The format of the INITIAL attribute is

INITIAL (initial-element[,initial-element...])

166 Chapter 11

initial-element

A construct that supplies a value for the initialized variable. The
value must be valid for assignment to the initialized variable. If the
initialized variable is an array, a list of initial elements separated by
commas is used to initialize individual elements. The number of ini
tial elements must be one for a scalar variable and must not exceed
the number of elements of an array variable, Each initial element
must be one of the following forms:

• string-constant

• (iteration-factor) (string-constant)

• [(iteration-factor)] arithmetic-constant

• [(iteration-factor)] scalar-reference

• [(iteration-factor)] (scalar-expression)

• [(iteration-factor)] *

The iteration factors are nonnegative integer-valued expressions that
specify the number of successive array elements to be initialized with
the following value. (Notice that a string constant must be in
parentheses if it is used with an iteration factor.)

The asterisk form specifies that the corresponding array elements are
to be skipped during the initialization.

Some examples are

DECLARE RATE FIXED DECIMAL (212) STATIC INITIAL (,04);
DECLARE EDF BIT STATIC INITIAL ('1 'B);
DECLARE BELL_CHAR BI NARY STATIC IN IT I AL ('07 'B4) ;
DECLARE OUTPUT_MESSAGE CHARACTER<20l STATIC

INITIAL ('GOOD MORNING I);
DECLARE (A IN IT I AL (I A I) t B IN IT I AL (I BI) t

C INITIAL ('C' l l STATIC CHARACTER;
DECLARE OUEUE_END POINTER STATIC INITIAL<NULL());
DECLARE TABLE (30 13) BINARY STATIC INITIAL ((90) 10) ;

The last example initializes all elements of the array TABLE with the
value 10.

In a factored declaration, a single initial value applies to all the declared
variables, not just to the first one. For example:

DECLARE (A,B1Cl BINARY STATIC INITIAL 110);

This statement declares the integers A, B, and C, all with an initial value
of 10.

Declarations 167

The following restrictions apply to the use of the INITIAL attribute:

• You cannot specify the INITIAL attribute for a structure variable.
Instead, initialize individual members of the structure.

• You cannot specify the INITIAL attribute for a variable or member of
a variable that has any of these attributes:

BASED
CONTROLLED
DEFINED
ENTRY

FILE
LABEL
parameter

• You cannot specify the INITIAL attribute for a member of a structure
unless the entire structure was declared with the STATIC or
AUTOMATIC attribute.

• If the initialized variable is STATIC, only constants and references to
the NULL built-in function are allowed. They may be used with a
constant iteration factor and may be enclosed in parentheses.

• Variables and functions (except for parameters) occurring in an initial
element must not be declared in the same block as the variable being
initialized.

You can generally initialize both static and automatic variables. However,
you realize a saving in execution time only with static variables. With
automatic variables, the initial values are assigned at block activation, so
there is little or no difference in execution time between use of the INITIAL
attribute and assignment statements.

11.2 Scope of Declarations
The scope of a declaration of a name is that region of the program in which
the name is known. A declaration of a name is known in

• The block in which it is declared.

• Any blocks contained within the declaring block, so long as the name
is not redeclared in the contained block.

• Any procedures contained in the program, if the name is declared
outside of a procedure.

Two or more declarations of the same name are not allowed in a single
block (unless one or more of the declarations are of structure members).
Two declarations of the same name in different blocks denote distinct
objects unless both specify the EXTERNAL attribute. All EXTERNAL
declarations of a particular name denote the same variable or constant,

168 Chapter 11

and all must agree as to its properties. Note that EXTERNAL is supplied
by default for declarations of ENTRY and FILE constants. It must be
specified explicitly for variables.

Figure 11-1 illustrates the scope of internal names.

DECLARE Z STATIC FIXEDl

MAI NP: PROCEDURE OPTIONS <MAIN);

DECLARE IX1 y, VALUE) FIXED;

ALPHA: PROCEDURE;

BETA: BEGIN;

JECL:::ou:~~:.:LOATl

END BETA;

ERROR:
END ALPHA;

CALC: PROCEDURE;
DECLARE ISUM1TOTAL) FLOAT;

I
END CALCj

END MAINP;

Name

z

MAINP

X, y
VALUE (MAINP)
ALPHA

BETA
VALUE (BETA)

ERROR

CALC
. SUM, TOTAL

Figure 11-1: Scope of Internal Names

Scope

MAINP, ALPHA, BETA, and CALC

MAINP, ALPHA, BETA, and CALC

MAINP, ALPHA, BETA, and CALC
MAINP, ALPHA, and CALC
MAINP, BETA, and CALC

ALPHA
BETA

ALPHA, BETA

MAINP, ALPHA
CALC

ZK-1257-83

Declarations may appear outside of procedures and, if contained within the
same block, have meaning throughout all procedures contained in the
block. However, if there are multiple blocks, declarations outside of proce
dures must have the EXTERNAL attribute if they are to be recognized by
all blocks and procedures in the program.

For example:

DECLARE X FIXED EXTERNAL STATIC;

A: PROCEDURE 0 PT IONS (MA IN) ;

DECLARE B ENTRY;

END A;

B: PROCEDURE;

END B;

Declarations 169

In this example, the variable X has meaning in both procedures. Since they
incorporate two different files, X must be declared with the EXTERNAL
attribute. If X is declared with the INTERNAL attribute, Xis recognized
only in the first procedure.

170 Chapter 11

Chapter 12

Expressions and Assignments

An expression is a representation of a value or of the computation of a
value, and an assignment gives the value contained in an expression to a
variable. Together, expressions and assignments form the mechanism for
performing computation.

This chapter describes the following topics:

• The assignment statement

• Operators and operands, the elements of an expression

• The manner in which expression evaluation takes place, including the
sequ·ence and precedence of operations performed

• Conversion of the data types of operands during expression evaluation
and assignment

• Pseudovariables, which can be assigned values in assignment state
ments

12.1 Assignment Statement

The assignment statement gives a value to a specified variable. Its format
IS

target = expression;

target

The name of the variable to be assigned a value. It can be

• Any reference to a scalar variable or scalar array element.

• A pseudovariable (for example, SUBS TR).

• A reference to a major or minor structure name or any member of a
structure.

• A reference to an array variable.

171

expression

Any valid expression.

PL/I evaluates an assignment statement and performs the assignment as
follows:

1. The target is evaluated. If it contains a pseudovariable, any expres
sions in the argument list are evaluated. (Section I2.5 describes
pseudovariables.)

2. The expression on the right-hand side of the assignment statement is
evaluated, producing a result. An expression can consist of many
subexpressions and operations, each of which will be evaluated. Sec
tion I2.3 describes expression evaluation.

3. If the data type of the result does not match that of the target
variable, the resulting value is converted to the data type of the
target. Such an implicit conversion may produce a warning message
from the compiler.

Some general rules regarding the types of data you can specify in assign
ment statements are given below. For more complete information about
data conversion in assignments, see Section 12.4.3 and Appendix A.

• Area data-You can specify an area variable as the target of an assign
ment statement only in the following case:

area-variable-1 = area-variable-2;

where both areas have the same extent. The complete contents of the
source are copied to the target.

• Arithmetic data-PL/I converts an arithmetic expression to the type
of the target, if their types are different. If the target is a character- or
bit-string variable, PL/I converts the arithmetic expression to its char
acter- or bit-string equivalent.

A character-string expression can be converted to the data type of an
arithmetic target only if the string consists solely of characters that
have numeric equivalents.

• Arrays-You can specify an array variable as the target of an assign
ment statement in only the following ways:

172

- array-variable = expression;

where expression yields a scalar value. Every element of the array
is assigned the resulting value.

- array-variable-I = array-variable-2;

where the specified array variables have identical data type attrib
utes and dimensions. Each element in array-variable-I is assigned

Chapter I2

the value of the corresponding element in array-variable-2. The
storage occupied by the two arrays must not overlap.

Any array variable specified in an assignment statement must occupy
connected storage.

All other specifications of an array variable as the target of an assign
ment statement are invalid.

• Bit data-When the target of an assignment is a bit-string variable,
the resulting expression is converted to bit, if necessary, and truncated
or padded with trailing zeros to match the length of the target. (Sec
tion 8.4 describes the effects of this process.)

• Character data-When the target of an assignment is a fixed-length
character string, the resulting expression is converted to character, if
necessary, and truncated on the right or padded with trailing spaces to
match the length of the target. If the target is a varying-length charac
ter string, the resulting expression is truncated on the right if it ex
ceeds the maximum length of the target.

When one character-string variable is assigned to another, the storage
occupied by the two variables cannot overlap.

• Entry data-If the specified expression is an entry constant, an entry
variable, or a function reference that returns an entry value, the target
must be an entry variable.

• Label data-If the specified expression is a label constant, a label
variable, or a function reference that returns a label value, the target
must be a label variable.

• Pointer and offset data-If the specified expression is a pointer or
offset, or a function reference that returns either, the target must be a
pointer or offset variable.

• Structures-You can specify the name of a major or minor structure as
the target of an assignment statement only if the source expression is
an identical structure with members in the same hierarchy and with
identical sizes and data type attributes. The storage occupied by the
two structures must not overlap.

Any structure variable specified in an assignment statement must
occupy connected storage (see Section 10.2.4).

12.2 Operators and Operands
An operator is a symbol that requests a unique operation. Operands are the
expressions on which operations are performed.

Expressions 173

12.2.1 Operators
A prefix operator precedes a single operand. The prefix operators are the
unary plus (+), the unary minus (-), and the logical not (A).

• The plus sign can prefix an arithmetic value or variable. However, it
does not change the sign of the operand.

• A minus sign reverses the sign of an arithmetic operand.

• The A prefix operator performs a logical NOT operation on a bit-string
operand; the bit value is complemented.

Some examples of expressions containing prefix operators are

A = +55;
B = -BB;
BITC = .·.BITB;

An infix operator appears between two operands, and indicates the opera
tion to be performed on them. PL/I has infix operators for arithmetic,
logical, and relational (comparison) operations, and for string concatena
tions. Some examples of expressions containing infix operators are

RESULT = A I B;
IF NAME = FIRST_NAME : : LAST_NAME THEN GOTO NAMEOK;

An expression can contain both prefix and infix operators, for example:

A = -55 * +BB;

Prefix and infix operators can be applied to expressions by using
parentheses for grouping.

The categories of operator and the operator symbols are listed in Table
12-1.

Table 12-1: Operators

174

Category

Arithmetic
operators

Relational (or
comparison)
operators

Symbol Operation

+ Addition or prefix plus
Subtraction or prefix minus
Division
Multiplication

** Exponentiation

>
<

>
<

>=
<=

Greater than
Less than
Equal to
Not greater than
Not less than
Not equal to
Greater than or equal to
Less than or equal to

Chapter 12

Table 12-1 (Cont.): Operators

Category

Bit-string (or
logical)
operators

Concatenation
operator

12.2.2 Operands

Symbol Operation

Logical ~OT
& Logical AND
or ! Logical OR

: : or ! ! String concatenation

Since all operators must yield scalar values, operands may not be arrays or
structures. The data type that you can use for an operand in a specific
operation depends on the operator:

• Arithmetic operators must have arithmetic operands; if the operands
are of different arithmetic types, they are converted before the opera
tion to a single type, called the derived data type. Section 12.4.1
describes this process.

• Logical operators must have bit-string operands.

• Relational operators must have two operands of the same type. (Note,
however, that comparisons are allowed between offsets and pointers.)

• The operators greater than (>), less than (<), not greater than C >),
not less than C <), greater than or equal to (>=), and less than or
equal to (<=) are valid only with computational operands.

• The concatenation operator must have two bit-string operands or two
character-string operands.

12.3 Expression Evaluation and Precedence of
Operations

In a PL/I program, you can use expressions to

• Indicate constant values or scalar variables. For example:

A = 55i
NAME = I HECTOR I ;

B = A;

• Perform algebraic or logical calculations on variables or constants. For
example:

B A + lOi

c = A + B * ao;
B = ·A;

COMMON - A 0: 5;

Expressions 175

• Compare the values of two or more expressions and obtain a Boolean
result. For example:
IF A B THEN C = 10;
IF NAME = SAVED_NAME THEN GOTO REPEAT;

• Concatenate character- or bit-string values. For example:
NAME = FIRST _NAME: : LAST _NAME;

All expressions except simple constants and references consist of an opera
tor and one or more operands. Each operator requires operands of specific
types (either arithmetic, character-string, or bit-string) and produces a
result of a specific type. The operands may be constants, variable refer
ences, function references, or other expressions, as long as they are objects
of the type required by the operator.

Built-in functions may also be considered operators in this sense, and their
arguments, operands.

All V AX-11 PL/I expressions and functions have scalar results.

Expressions are evaluated from left to right, with the following qualifica
tions:

• Some PL/1 operators take precedence over others used in the same
expression. Operations with higher priority are evaluated first, and
their results are used as single operands. The rules of precedence usu
ally guarantee an algebraically correct re.suit without the use of
parentheses.

All built-in functions are of equal priority.

Table 12-2 lists the priorities of PL/I operators. In Table 12-2, low
numbers indicate high priority; that is, the exponentiation operator
(**) has the highest priority and the OR operator (:) , the lowest.

Table 12-2: Precedence of Operations

Operator Priority Operator Priority

** > 5

+ (prefix) < 5

- (prefix) > 5

< 5

2 5

2 <= 5

+ (infix) 3 >= 5

- (infix) 3 & 6

I I 4 7 I I

176 Chapter 12

• You can enclose any expression in parentheses to override the usual
rules of precedence. Expressions at the deepest level of nested
parentheses are always evaluated first, and their results used as single
operands.

• Exponential operations of the form A**B**C are evaluated from right
to left.

• The run-time evaluation of a logical expression may be terminated as
soon as its result is known. For instance, evaluation of the expression

A & USER_FUNCTIDN<ALPHA1BETAl

may be terminated without evaluating the USER-FUNCTION refer
ence if the evaluation of A results in a "false" Boolean value.

• You cannot count on left-to-right evaluation of an expression, since
the compiler may evaluate subexpressions in any order that produces
an algebraically correct result. For example, in the expression

A+B+FUNC(Il+C

you cannot assume that the subexpression A+B will be evaluated and
the result stored before FUNC(I) is evaluated. In other words, if
FUNC(I) alters A, B, or C, results may not be as expected.

• If a function referenced in an expression executes a nonlocal GOTO
statement, the expression is not evaluated further.

12.4 Conversion of Operands and Expressions
Data conversion in PL/I takes place in many contexts, not all of them
obvious ones. Program results that seem improper may in fact be caused by
data conversion at some point in the program's execution. Section 12.4.1
describes how arithmetic operands of different types are converted to a
single derived type during expression evaluation. Section 12.4.2 describes
how you can control conversions precisely by using conversion built-in
functions designed for that purpose. Section 12.4.3 describes several con
texts in which VAX-11 PL/I automatically converts data from one type to
another-for example, in input and output by the GET and PUT state
ments. (Appendix A contains precise rules for these conversions.)

12.4.1 Derived Data Types for Arithmetic Operations
Even though arithmetic operands can be of different arithmetic types, all
operations will be performed on objects of the same type. Any set of

Expressions 177

operands of different arithmetic types has an associated derived type, as
follows:

• If any operand has the attribute BINARY, the derived base is
BINARY. Otherwise, the derived base is DECIMAL.

• If any operand has the attribute FLOAT, the derived scale is FLOAT.
Otherwise, the derived scale is FIXED.

All arithmetic operations except exponentiation are performed in the de
rived type of the two operands. Exponential operations are performed in a
data type that is based on the derived type of the operands. All operations,
including exponentiation, have results of the same type as that in which
they are performed.

The result of an arithmetic operation may be assigned to a target variable
of any computational type. The result is converted to the target type,
following the rules in Section 12.4.3 and Appendix A. Such conversion
may, however, result in a warning message from the compiler.

12.4.2 Built-In Conversion Functions
The buiit-in conversion functions can take arguments that are either arith
metic or string expressions. They are, in fact, often used to convert an
operand to the type required in a certain context-for instance, to convert
a bit string to an arithmetic value for use as an arithmetic operand.

For the purpose of these functions, and in a few other contexts, derived
arithmetic attributes are also defined for bit- and character-string
expressions:

• The derived type of a bit string is fixed-point binary; its converted
precision is 31, with a scale factor of 0.

• The derived type of a character string is fixed-point decimal; its con-
verted precision is also 31, with a scale factor of 0.

PL/I uses these derived attributes to determine the precision of values
returned by the conversion functions if no precision is specified in the
functions' argument lists. Of course, the value of a string argument must
also be convertible to the result type; for instance, '1.333' is convertible to
arithmetic, but 'ABCD' is not.

Table 12-3 indicates which built-in functions you should use for each con
version between an arithmetic and a nonarithmetic type. In addition, you
can use the BINARY, DECIMAL, FIXED, and FLOAT built-in conversion
functions to control conversions between two arithmetic types.

178 Chapter 12

Table 12-3: Built-In Functions for Conversions Between
Arithmetic and Nonarithmetic Types

Conversion Function

Arithmetic to Bit BIT(s[,l])

Arithmetic to Character CHARACTER(s[,lJ)

Bit to Arithmetic BINARY(x[,p[,qll)

Bit to Character CHARACTER(s[,ll)

Character to Bit BIT(s[,lJ)

Character to Decimal DECIMAL(x[,p[,qll)

Character to Float FLOAT(x,p)

Character to Integer BINARY(x[,p[,qll)

For more information, see the individual descriptions of the built-in func
tions in Section 19.2.

12.4.3 Implicit Conversion During Assignment
During assignment, V AX-11 PL/i automatically converts the derived data
type of an expression to the data type of a target, if necessary. In assign
ments, conversions are defined between the noncomputational types
POINTER and OFFSET, and between any two computational types. The
rules for assignments apply to

• Assignment statements.

• Arguments passed to a procedure.

• Values specified in a RETURN statement.

• An argument converted by the built-in function FIXED, FLOAT,
BINARY, DECIMAL, BIT, or CHARACTER.

• Conversions to and from character strings performed by the PUT and
GET statements, respectively.

However, a conversion during assignment results in an error if PL/I cannot
perform it in a meaningful way. For example, you can assign the string
'123.4' to a fixed decimal variable; you cannot, however, assign the string
'ABCD' to the same variable. Similarly, an assignment of an arithmetic
type to a fixed variable results in the FIXEDOVERFLOW condition if
integral digits are lost.

Expressions 179

Although VAX-11 PL/I performs conversions in assignment statements,
such conversions may represent programming errors and are, furthermore,
in violation of the PL/I G subset standard. Therefore, the compiler issues a
warning message that an implicit conversion is taking place. These mes
sages do not terminate the compilation and may not indicate errors; they
simply alert you to the fact that your program converts one data type to
another in a way that may cause a problem when the program is run. You
can prevent such warning messages in two ways:

• Use the /NOWARNINGS qualifier to the PLI command to suppress
diagnostic warning messages. (The compiler will continue to print
messages of greater severity.) However, you run the risk of missing
important diagnostic information.

• Use the built-in conversion functions to convert data types explicitly.
This method is recommended. Section 12.4.2 summarizes the
functions.

For example:

DECLARE !A1Bl FIXED DECIMAL (512);
A= '123.ll5'i I* Warnins Messase *I

/ * N o i,.t a r ri i r1 s * /

Both assignment statements assign the same value to their targets; how
ever, the first statement causes a warning message from the compiler,
while the second statement does not.

Appendix A defines the rules and results of the following types of conver
sion:

• Assignments to arithmetic variables

• Assignments to bit-string variables

• Assignments to character-string variables

• Assignments to pictured variables

• Conversions between offsets and pointers

12.5 Pseudovariables

In VAX-11 PL/I, the pseudovariables PAGENO, STRING, SUBSTR, and
UNSPEC can substitute, in certain assignment contexts, for an ordinary
variable reference. For example:

SUBSTR(S12tll ='A';

assigns the character 'A' to a I-character substring of S, beginning at the
second character of S.

180 Chapter 12

You can use a pseudovariable wherever the following three conditions are
true:

1. The syntax specifies a variable reference.

2. The context is one that explicitly assigns a value to the variable.

3. The context does not require the variable to be addressable.

The principal contexts in which pseudovariables are used are

• On the left side of an assignment statement.

• As the input target of a GET statement.

Note that you cannot include a pseudovariable in an argument list. For
example:

CALL P<SUBSTR<S t2 tl)) i

Here, SUBSTR is interpreted as a built-in function reference, not as a
pseudovariable. The actual argument passed to procedure P is a dummy
argument containing the second character of string S.

The V AX-11 PL/I pseudovariables are described individually in alphabetic
order in the following paragraphs.

INT Pseudovariable
The INT pseudovariable assigns a signed integer value to the storage speci
fied. Its format is

INT(reference[,position[,length]]) = expression;

reference

A reference to connected storage. If position and length are not speci
fied, the length of the referenced storage must not exceed 32 bits.

position

A positive integer value that denotes the position of the first bit in the
field. If omitted, position defaults to 1, signifying the first bit of the
storage denoted by reference. If specified, position must satisfy the
condition

1 s position s size(reference)

where size(reference) is the length in bits of the storage denoted by
reference. A position equal to size(reference) implies a zero-length
field.

length

An integer value in the range 0 to 32 that specifies the length of the
field. If omitted, length is the number of bits from the bit denoted by

Expressions 181

position through the end of the storage denoted by reference. If speci
fied, length must satisfy the condition

0 ~ length :::::; size(reference) - position

where size(reference) is the length in bits of the storage denoted by
reference.

The INT pseudovariable is valid only in an assignment statement. It can
not be used as the target of an input statement or in other instances where
pseudovariables are normally acceptable.

The expression to be assigned to the pseudovariable is first converted to the
data type FIXED BINARY (31); then, the internal representation of the
resulting integer value is assigned to the storage specified by the arguments
to INT. If the representation of the value is too large for assignment to the
storage, the most significant bits of the integer are removed, and no error is
signaled.

For example:

DECLARE F FLOAT INITIAL (123.a5> i

INT<F1818> = 25;
PUT SKIP LIST <Fl;

In this example, the INT pseudovariable is used to modify the exponent
field of a floating-point variable. This example prints the value

9.5102a1BE-32

Proper interpretation of this result requires understanding of the internal
representation of floating-point numbers.

The next example demonstrates how the INT pseudovariable treats cases
in which the value is too large for the specified storage:

INTOVER: PROCEDURE OPTIONS <MAIN>;

DECLARE I15 FI:<ED BINARY (15> t

I31 FI>\ED BINARY (31);

ON FIXEDOVERFLOW PUT SKIP LIST C 'FIXEDOVERFLOW sisnaled');

I31 -87G5a3i I* Too bis for 115 */

115 131; I* Arithmetic assisnment */
INTII15l 131i /*No error sisnaled */
PUT SKIP LIST (115li

ENDi

This example produces the following output:

FIXEDOVERFLOW sisnaled
-2t.1575

182 Chapter 12

The arithmetic assignment to 115 signals FIXEDOVERFLOW because the
value of 131 is outside the range of a FIXED BINARY (15) variable. How
ever, the assignment using the INT pseudovariable does not signal an
error; it just copies the low-order 16 bits of the value of I31 into 115's
storage.

PAGENO Pseudovariable
The PAGENO pseudovariable refers to the page number of the referenced
print file. Assignment to the pseudovariable modifies the current page
number. The format (in an assignment statement) is

PAGENO(reference) =expression;

reference

A reference to an open print file for which the page number is to be
set.

PAGENO(reference) is a FIXED BINARY(15) variable; however, values
assigned to it must not be negative.

POSINT Pseudovariable
The POSINT pseudovariable assigns an integer value to specified storage.
Its format (in an assignment statement) is

POSINT(expression[,position[,length]]) = expression;

expression

A reference to connected storage. If position and length are not speci
fied, the length of the referenced storage must not exceed 32 bits.

position

A positive integer value that denotes the position of the first bit in the
field. If omitted, position defaults to 1, signifying the first bit of the
storage denoted by expression. If specified, position must satisfy the
condition

1 s position s size(expression)

where size(expression) is the length in bits of the storage denoted by
expression. A position equal to size(expression) implies a zero-length
field.

length

An integer value in the range 0 to 32 that specifies the length of the
field. If omitted, length is the number of bits from the bit denoted by
position through the end of the storage denoted by expression. If
specified, length must satisfy the condition

0 s length s size(expression) - position

where size(expression) is the length in bits of the storage denoted by

Expressions 183

The POSINT pseudovariable is valid only in an assignment statement. It
cannot be used as the target of an input statement or in other instances
where pseudovariables are normally acceptable.

The expression to be assigned to the pseudovariable is first converted to the
data type FIXED BINARY (31); then, the internal representation of the
resulting integer value is assigned to the storage specified by the arguments
to POSINT. If the representation of the value is too large for assignment to
the storage, the most significant bits of the integer are removed and no
error is signaled.

The POSINT pseudovariable is identical in operation and use to the INT
pseudovariable.

STRING Pseudovariable
The STRING pseudovariable interprets a suitable reference as a reference
to a fixed-length string. By using it, you can modify an entire aggregate
with a single string assignment, or assign a value to a pictured variable as if
it were a character-string variable. The format (in an assignment state
ment) is

STR!NG(reference) = expression;

reference

A reference to a variable that is suitable for character-string (or bit
string) overlay defining (see Section 9.5.7.1). The length of the pseu
dovariable equals the total number of characters (or bits) in the scalar
or aggregate denoted by the reference, and must be less than or equal
to the maximum length for character-string (or bit-string) data.

Assignment to the STRING pseudovariable modifies the entire storage
denoted by the reference.

For example:

STRING_PSD_EXAMPLE: PROCEDURE;

DECLARE 1 NAMEt
2 FIRST CHARACTER (10) t

2 MIDDLE_INITIAL CHARACTER(3),
2 LAST CHARACTER<lOl;

STRING(NAMEl= 'FRANKLIN D, ROOSEVELT';

184

I* NAME.FIRST = 'FRANKLIN D'
NAME.MIDDLE_INITIAL = ' R'i
NAME.LAST = 'OOSEl,JELT I; *I

Chapter 12

END STRING_PSD_EXAMPLE;

DECLARE 1 FLAGS,
2 (A,B,Cl BIT(l);

STRINGIFLAGS) = •0•5; I* sets all three flass false */

DECLARE p PICTURE ·z.zzzv,zzDB';
GET EDIT I STRING< Pl l <Al 10) l;

I* assisns 10 characters from SYSIN to p,
without conversion */

SUBSTR Pseudovariable
The SUBSTR pseudovariable refers to a substring of a specified string
variable reference. Assignment to the pseudovariable modifies only the
substring. The format (in an assignment statement) is

SUBSTR(reference,position[,length]) = expression;

reference

A reference to a bit- or character-string variable. If the reference is to
a varying-length character string, the substring defined by the posi_
tion and length arguments must be within the current value of the
string. Assignment to the SUBSTR pseudovariable does not change
the length of a varying string.

position

An integer expression indicating the position of the first bit or charac
ter in the substring. The position must be greater than or equal to
one, and less than or equal to LENGTH(reference)+l.

length

An integer expression that indicates the length of the substring. If not
specified, length has the value

length = LENGTH(reference) - position + 1

which specifies the substring beginning at the indicated position and
ending at the end of the string. The length must satisfy the condition

0 :::; length :::; LENGTH(reference) - position + 1

Note that

SUBSTR\rtP1l) 1.J;

is equivalent to

r = SUBSTR<rtltP-1)::1.J::SUBSTR(r,p+lJ;

Expressions 185

For example:

DECLARE CNAME,NEWNAMEl CHARACTERC20l VARYING;

NAME = I ISAK DINESEN I j

NEWNAME = NAME;
SUBSTRCNEWNAME,al = 'AC NEWTON'
I* NEWNAME = I ISAAC NEWTON I *I

UNSPEC Pseudovariable
The UNSPEC pseudovariable interprets any reference to a scalar variable
as a reference to a bit string. The format (in an assignment statement) is

UNSPEC(reference) = expression;

reference

A reference to a scalar variable. The length of its storage in bits must
be less than or equal to the maximum length for bit-string data.

In an assignment of the form

UNSPEC(reference) = value;

the value is converted to a bit string if necessary and copied into the
storage of the reference. The vaiue is truncated or zero-extended as nece8-
sary to match the length of the storage.

For example:

DECLARE X FIXED BINARY C15l;

UNSPECO() = '110'Bi

The use of the constant '110 'B assigns 3 to X. The two low-order bits of X
(that is, X's first two bits of storage) are set; all other bits of X are cleared.

186 Chapter 12

Chapter 13

Procedures

A procedure is the basic executable program unit in PL/I. It consists of a
sequence of statements, headed by a PROCEDURE statement and termi
nated by an END statement, that define an executable set of program
instructions.

This chapter describes the following topics:

• Using procedures. Section 13.1 describes the concepts and statements
for defining and invoking functions and subroutines and obtaining
return values from them.

• External procedures. External procedures are not contained within
another block. They can be compiled separately from procedures that
invoke them. External procedures can be written in languages other
than PL/I. Section 13.2 concentrates on external procedures.

13.1 Using Procedures

This section describes how you define and invoke a procedure, and how the
procedure terminates and returns values through its parameter list, its
RETURN statement, or both. Section 13.1.1 presents general concepts.
Subsequent sections describe the statements and syntax you need to use
procedures:

• Section 13.1.2 describes the PROCEDURE statement.

• Section 13.1.3 describes the ENTRY statement, which defines an al
ternate entry point to a procedure.

• Section 13.1.4 describes the CALL statement, which invokes a proce
dure as a subroutine.

~ Section 13.1.5 describes functions and references to them. A function
reference invokes a procedure that returns a single value, which then
takes the place of the function reference in the expression.

187

• Section 13.1.6 describes the RETURN statement, which terminates
execution of the current procedure, and (in the case of a function
reference) specifies a return value.

• Section 13.1. 7 describes the RETURNS attribute and option. The
RETURNS attribute is included with a PROCEDURE or ENTRY
statement for a function to give the data type returned by the func
tion. The RETURNS option to the ENTRY attribute in the declara
tion of an external procedure gives the data type returned by the
procedure.

• Section 13.1.8 describes methods that PL/I uses to pass arguments to
an invoked procedure and return parameters to an invoking procedure.
The section also contains the rules that the compiler follows in deter
mining which method to use for a given type of argument.

13.1.1 Procedure Usage Concepts
Two types of procedure can be invoked by another procedure during its
execution. They are

• Subroutines~ which must be invoked with a CALL statement. Sub
routines return values to the invoking procedure only by means of
their parameter lists; they must not include an expression in their
RETURN statements and must not include a RETURNS option on
their PROCEDURE or ENTRY statements.

• Functions, which must be invoked by a function reference. A function
reference can appear in place of a scalar value in any appropriate
context in a PL/I statement. A function returns to the invoking proce
dure a single value that becomes the value of the function reference in
the invoking procedure. Functions may also return values via their
parameter lists. Functions must include a RETURNS option to de
scribe the attributes of the returned value and must specify an expres
sion in their RETURN statements.

Each type of procedure can be passed data or information from the invok
ing procedure by means of an argument list.

13.1.1.1 Entry Points
The entry points of a procedure are the points at which it can be invoked.
The PROCEDURE statement specifies one entry point. Additional entry
points may be specified with ENTRY statements within the procedure
block. ENTRY statements are allowed anywhere except within a begin
block, an ON-unit, or a DO group (except a simple, noniterative DO
group).

The labels used on PROCEDURE and ENTRY statements declare those
names as entry constants. The scope of the declarations is internal if the

188 Chapter 13

PROCEDURE and ENTRY statements appear in internal procedures, and
external if they appear in external procedures.

Note that the declaration of an entry name is made in the block containing
the procedure to which the entry point belongs. For example:

P: PROCEDURE j

Q: PROCEDURE;
DECLARE E FIXED BINARY;
E: ENTRY;

mo o;

The entry names E and Q are declared in procedure P. Within procedure
Q, E is declared as a fixed-point binary variable. This does not conflict
with the declaration of E as an entry in procedure P.

You can invoke an entry point by using the appropriate entry constant as
the reference in a CALL statement or function reference. Invoking an entry
point enters a procedure at the specified point and activates the procedure
block that contains the entry point.

13.1.1.2 Passing Arguments to Subroutines and Functions
You specify arguments for a subroutine or function by enclosing the argu
ments in parentheses after the procedure or entry point name. Arguments
correspond to parameters specified on the PROCEDURE or ENTRY state
ment of the invoked procedure. For example, you can write a procedure call
as follows:

CALL COMPUTER <A1B1Cl j

The variables A, B, and C are arguments to be passed to the procedure
COMPUTER, which might have a parameter list like this:

COMPUTER: PROCEDURE (Xt y, Zl;
DECLARE (X1Y1Z) FLOATj

The parameters X, Y, and Z, specified in the PROCEDURE statement for
the subroutine COMPUTER, are the parameters of the subroutine. PL/I
establishes the equivalence of the arguments A, B, and C with the parame
ters X, Y, and Z.

For more information about arguments, parameters, and the relationship
between them, see Section 13.1.8.

13.1.1.3 Terminating Procedures
You can terminate subroutines and functions in the following ways:

•A RETURN statement-A RETURN statement provides a normal
termination for a subroutine or function. For a function, a RETURN
statement must specify a return value.

Procedures 189

• A STOP statement-A STOP statement normally ends the entire pro
gram execution. It does not pass a return value. (The STOP statement
signals the FINISH condition, thereby allowing a FINISH ON-unit to
execute before the program terminates. For details, see Section 15.1.)

• An END statement-If an END statement closes the procedure block
of a subroutine before a RETURN or STOP statement is executed, it
has the same effect as RETURN. A function cannot be terminated
without a RETURN statement.

• A nonlocal GOTO statement-A GOTO statement that transfers con
trol to a label outside the current block terminates a subroutine or a
function. The label specified on the GOTO statement must be known
within the block that contains the GOTO statement, and the block
containing the specified label must be active when the GOTO state
ment is executed.

13.1.2 PROCEDURE Statement
The PROCEDURE statement defines the beginning of a procedure block
and specifies the parameters, if any, of the procedure. If the procedure is
invoked as a function, the PROCEDURE statement also specifies the data
type attributes of the value that the function returns to its point of invoca
tion.

The PROCEDURE statement may denote the beginning of an internal or
external subroutine or function. Its format is

{
PROCEDURE } entry-name: [(parameter, ...)]
PROC

[

OPTIONS (option, ...) J
RECURSIVE ;
RETURNS (returns-descriptor)

entry-name

A 1- to 31-character identifier denoting the entry label of the proce
dure. The label cannot be subscripted. The PROCEDURE statement
implicitly declares the entry name as an entry constant. The scope of
the name is INTERNAL if the procedure is internal, and
EXTERNAL if the procedure is external.

parameter, ...

190

One or more parameters, separated by commas, that the procedure
expects when it is activated. Each parameter specifies the name of a
variable declared in the procedure headed by this PROCEDURE
statement. The parameters must correspond one-to-one with argu
ments specified for the procedure when it is invoked with a CALL
statement or in a function reference. See Section 13.1.8 for detailed
information about arguments and parameters.

Chapter 13

OPTIONS (option, ...)

An option that specifies one or more options, separated by commas.
The valid options are

I DE NT(string)

An option specifying a character-string constant giving the iden
tifying label for the listing and the object module's version for
the linker. Only the first 31 characters of the string are placed in
the object module.

MAIN

An option specifying that the named procedure is the initial
procedure in a program. The identifier of the procedure is the
primary entry point for the program. The MAIN option is not
allowed on internal procedures, and only one procedure in a
program can have the MAIN option.

UNDERFLOW

An option that requests the run-time system to signal underflow
conditions when they occur. By default, the run-time system
does not signal them.

RECURSIVE

An option that indicates (for program documentation) that the
procedure will be invoked recursively: the procedure will be ac
tivated while it is currently active. In standard PL/I, the RE
CURSIVE option must be specified for a procedure to be in
voked recursively. However, in V AX-11 PL/I, you may invoke
all procedures recursively; the compiler ignores the RECUR
SIVE option.

RETURNS (returns-descriptor)

An option that specifies that the procedure can be invoked only
by a function reference and that specifies the attributes of the
function value returned. See Section 13.1.7 for syntax and de
tails.

You must specify RETURNS for functions. It is invalid for pro
cedures invoked by CALL statements.

13.1.3 ENTRY Statement
The ENTRY statement defines an alternate entry point to a procedure. Its
format is

entry-name: ENTRY [(parameter, ...))

r 1:u::T1 u:~N~ fr,:i.t11rnc::-rl,:i.c::rrintnr\ l·
L I·- I-· .. ·- ,. -·-·. ·- ----·'I""''"'-· I JJ

Procedures 191

entry-name

A 1- to 31-character identifier for the entry point. Specifying the entry
name implicitly declares the name as an entry constant. The scope of
the name is external if the ENTRY statement is contained in an
external procedure, and internal if in an internal procedure.

parameter, ...

One or more parameters, separated by commas, that the procedure
requires at this entry point. Each parameter specifies the name of a
variable declared in the block to which this ENTRY statement be
longs. The parameters must correspond one-to-one with arguments
specified for the procedure when it is invoked via this ENTRY state
ment. See Section 13.1.8 for detailed information about arguments
and parameters.

RETURNS (returns-descriptor)

An option giving, for an entry that is invoked as a function reference,
the data type attributes of the function value returned. (See Section
13.1.7 for syntax and details.) For entry points invoked by function
references, the RETURNS option is required; for procedures invoked
by CALL statements, the RETURNS option is invalid.

An ENTRY statement is not allowed in a begin block, ON-unit, SELECT
group, or DO group except for a simple DO. Additional rules governing the
declaration of multiple entry points are

• A particular parameter need not be specified in all of a procedure's
entry points (including the point defined by the PROCEDURE state
ment). However, a reference to the parameter is valid only if the
procedure was invoked via one of the entries specifying the parameter.

• In a procedure with multiple entry points, a RETURN statement
must be compatible with the entry point by which the procedure was
invoked. If the entry point does not have a RETURNS option, the
RETURN statement must not specify a return value (and, in addition,
the entry point must be invoked as a subroutine-that is, with the
CALL statement). If the entry point does have a RETURNS option,
the RETURN statement must specify a value that is valid for conver
sion to the data type specified in the RETURNS option.

• An ENTRY statement is not executable. If control reaches it sequen
tially, control passes on to the next statement.

The following example shows a procedure with two alternate entry points:

QUEUES: PROCEDURE<ELEMENT,QUEUE_HEADl;

192 Chapter 13

ADD_ELEMENT: ENTRY<ELEMENT>;

REMOVE_ELEMENT: ENTRY<ELEMENTl;

This procedure can be entered by CALL statements that reference
QUEUES, ADD-ELEMENT, or REMOVE-ELEMENT. If it is invoked
at QUEUES, it must be passed two parameters. At either of the entries
ADD-ELEMENT or REMOVE-ELEMENT, it must be passed only one
parameter. When it is entered at either alternate entry point, the entire
block beginning at QUEUES is activated, but execution begins with the
first executable statement following the entry point.

You should avoid unnecessary use of ENTRY statements, because their
effect is detrimental to the overall optimization of the program.

13.1.4 CALL Statement
The CALL statement invokes a subroutine. It transfers control to an entry
point of a procedure and optionally passes arguments to the procedure. The
format of the CALL statement is

CALL entry-name [(argument, ...));

entry-na-ine"

The name of an internal or external procedure that does not have the
RETURNS attribute, or the name of an alternate entry point to a
procedure. (The entry name can also be an entry variable or a refer
ence to a function that returns an entry value.)

argument, ...

The argument list to be passed to the called procedure. If specified,
the arguments must correspond to the parameters specified in the
PROCEDURE or ENTRY statement that identifies the entry name of
the called procedure.

Unless OPTIONS(VARIABLE) is specified in the declaration of an
external entry name, the number of arguments must match the num
ber of parameters in the parameter list of the invoked entry name.
OPTIONS(VARIABLE) is valid only for use with non-PL/I proce
dures.

Arguments must be enclosed in parentheses, and multiple arguments
separated by commas. See Section 13.1.8 for detailed information
about arguments and parameters.

The following example illustrates a main procedure, CALLER, and a call
to an internal subroutine, PUT-OUTPUT. PUT-OUTPUT has two
parameters, INSTRING and OUTFILE, that correspond to the arguments
LINE and DEVICE specified in the CALL statement.

Procedures 193

CALLER: PROCEDURE OPTIONS<MAINl i

CALL PUT_OUTPUTCLINE1DEVICEl i

PUT_OUTPUT: PROCEDURECINSTRING10UTFILEl i

END PUT_OUTPUTi
END CALLER;

13.1.5 Functions and Function References
A function is a procedure that returns a scalar value. It receives control
when its name is referenced in an expression. There are two types of func
tions:

• PL/I built-in functions

• User-written functions

The built-in functions, which are available in all programs and generally
need not be declared, are described in Chapter 19.

A user-written function must

• Contain the RETURNS option on the PROCEDURE statement.

• Specify a value on the RETURN statement. The value must be of a
data type that is valid for conversion to the one specified on the
RETURNS option.

For example:

ADDER: PROCEDURE CXtYl RETURNS <FLOAT> i
DECLARE CX1Yl FLOATi

RETURN < :<+Y) i
ENDi

The function ADDER has two parameters, X and Y. They are floating
point binary variables declared within the function. When the function is
invoked by a function reference, it must be passed two arguments to corre
spond to these parameters. It returns a floating-point binary value repre
senting the sum of the arguments.

The format of a function reference is

entry-name ([argument, ...])

194 Chapter 13

entry-name

The name of an entry constant or variable used to invoke the func
tion.

argument, ...

One oi more arguments to be passed to the function. If specified, the
arguments must correspond to the parameters specified in the
PROCEDURE or ENTRY statement that identifies the entry name of
the function.

Arguments must be enclosed in parentheses, and multiple arguments
separated by commas. See Section 13.1.8 for detailed information
·about arguments and parameters.

An argument can be an expression of any data type that is convertible
to the data type of the corresponding parameter.

For example, the function ADDER may be referenced as follows:

TOTAL = ADDER(518) i

The arguments in the reference to ADDER are converted to FLOAT.

If a function has no parameters, you must specify a null argument list;
otherwise, the co:µipiler treats the reference as a reference to an entry
constant. Specify a null argument list as follows:

GETDATE = TIME_STAMP() i

This assignment statement contains a reference to the function TIME
STAMP, which has no parameters.

This rule applies to PL/I built-in functions as well; however, if you declare
a PL/I built-in function explicitly with the BUILTIN attribute, you need
not specify the empty argument list. For example:

DECLARE P POINTER,
NULL BUILTINi

P = NULLi

This example assigns a null pointer value to P. Without the declaration of
NULL as a built-in function, the assignment statement would have been

P = NULL< l ;

13.1.6 RETURN Statement
The RETURN statement terminates execution of the current procedure.
Its format is

RETURN [(return-value)] ;

Procedures 195

return-value

The value to be returned to the invoking procedure. If the current
procedure was invoked by a function reference, a return value must
be specified. If the current procedure was invoked by a CALL state
ment, a return value is invalid.

A return value can be any scalar arithmetic, bit-string, or character
string expression; it can also be an entry, pointer, label, or other
noncomputational expression. The return value must be valid for
conversion to the data type specified in the RETURNS option of the
function.

The action taken by the RETURN statement depends on the context of the
procedure activation, as follows:

• If the current procedure is the main, or only, active procedure, the
RETURN statement terminates the program. If the RETURN state
ment specifies a return value, it is returned to the command inter
preter, which may then issue a message. See Section 5.2 for details.

• If the current procedure was activated by a CALL statement, control
returns to the next executable statement in the calling procedure.

• If the current procedure was activated by a function reference, control
returns to continue the evaluation of the statement that contained the
function reference.

• If the RETURN statement is executed in a begin block, the effect is to
return from the containing procedure.

The RETURN statement must not be immediately contained in an ON
unit or in a begin block that is immediately contained in an ON-unit.

13.1. 7 RETURNS Attribute and Option
The RETURNS option must be specified on the PROCEDURE or ENTRY
statement if the corresponding entry point is invoked as a function. The
RETURNS attribute is specified with the ENTRY attribute, to give the
data type of a value returned by an external function. The format of the
option or attribute is

RETURNS (returns-descriptor)

returns-descriptor

196

One or more attributes that describe the value returned by the func
tion to its point of invocation. The returned value becomes the value
of the function reference in the invoking procedure. The attributes
must be separated by spaces except for attributes (precision, for ex
ample) that are enclosed in parentheses.

Chapter 13

The data types you can specify for a returns descriptor are restricted to
scalar elements of either computational or noncomputational types. Areas
are not allowed.

The extent of a character-string value may be specified as an asterisk (*),
to indicate that the string may have any length; in this case, VARYING
must not be specified. Otherwise, extents must be specified using unsigned
decimal integer constants.

The RETURNS option and RETURNS attribute must not be used for
procedures that are invoked by the CALL statement.

The attributes specified in a returns descriptor of a RETURNS attribute
must correspond to those specified in the RETURNS option of the
PROCEDURE statement or ENTRY statement(s) in the corresponding
procedure. For example:

CALLER: PROCEDURE OPTIONS <MAIN);
DECLARE COMPUTER ENTRY <FIXED BINARY)

RETURNS <FIX~D BINARY); I* RETURNS attribute */

DECLARE TOTAL FIM~D BINARY;

TOTAL = COMPUTER <A+B);

The first DECLARE statement declares an entry constant named
COMPUTER, which will be used in a function reference to invoke an
external procedure. The function reference must supply a fixed-point bi
nary argument. The invoked function returns a fixed-point binary value,
which then becomes the value of the function reference.

The function COMPUTER contains

COMPUTER:PROCEDURE (X)
RETURNS <FIXED BINARY>; I* RETURNS option */

DECLARE ex, VALUE> FIXED BINARY;

RETURN (t,JALUE) ;

In the PROCEDURE statement, COMPUTER is declared as an external
entry constant, and the RETURNS option specifies that the procedure
returns a fixed-point binary value to the point of invocation. The RETURN
statement specifies that the value of the variable VALUE is returned by
COMPUTER. If the data type of the returned value does not match the
one specified in the RETURNS option, PL/I converts the value to the
correct data type according to the rules given in Section 12.4.3 and Appen
dix A.

Procedures 197

13.1.8 Parameters and Arguments
A parameter is a variable that occurs in the parameter list of a
PROCEDURE or ENTRY 'statement. When the entry point is invoked,
each parameter in the list is associated with an argument variable. Within
the procedure invocation, any reference to the parameter is equivalent to a
reference to the associated argument variable.

If the invoked entry point is external to the invoking procedure, the attrib
utes of the parameters must be described in parameter descriptors, which
are part of the declaration of the external entry point.

Each entry point in a procedure must have a parameter list if that entry
point is to be invoked with an argument list. Multiple entry points in a
procedure do not need to have identical parameters, but a reference to a
parameter is valid only if the procedure was invoked via an entry point that
specified that parameter.

An argument is an expression or variable reference denoting a value to be
passed to the invoked procedure. A procedure must be invoked with the
same number of arguments as it has parameters; the maximum number is
253. The argument variable associated with a parameter, or "actual argu
ment," may be a variable written in the argument list or a dummy argu
ment. The compiler creates a dummy argument when the specified argu
ment is a constant or expression existing only for the duration of the proce
dure invocation. Therefore, references in the invoked procedure to the
parameter associated with a dummy argument do not modify any storage
in the invoking procedure.

An argument list consists of zero or more arguments specified in the invo
cation of a procedure, built-in function, or built-in subroutine. In the case
of built-in functions, arguments are expressions that supply values to the
built-in function, and the argument types must be those required by it. In
the case of user-defined procedures, arguments correspond to parameters
defined on the PROCEDURE or ENTRY statement of the invoked
procedure.

13.1.B.1 Rules for Specifying Parameters
The general rules listed below for specifying parameters are followed by
specific rules that pertain only to certain data types.

• A parameter must be declared explicitly in a DECLARE statement (to
give it a data type) within the invoked procedure. This declaration
must not be part of a structure.

• A parameter must not be declared with any of these attributes:

198

AUTOMATIC
DEFINED

GLOBALREF
INITIAL

Chapter 13

CONTROLLED READONLY
EXTERNAL STATIC
GLOBALDEF VALUE

• A maximum of 253 parameters can be specified for an entry point.

• The parameters of an external entry must be explicitly specified by
parameter descriptors in the declaration of the entry constant. The
parameters of a procedure that is invoked via an ENTRY variable
must be specified by parameter descriptors in the ENTRY attribute of
the variable's declaration. An internal entry (and its parameters)
must not be declared explicitly in the containing procedure.

• Each parameter must have a corresponding argument, at the time of
the procedure's invocation. PL/I matches the data type of the parame
ter with the data type of the corresponding argument and creates a
dummy argument if they do not match. (See Section 13.1.8.2.)

Array Para111eters
If the name of an array variable is passed as an argument, the correspond
ing parameter descriptor or parameter declaration must specify the same
number of dimensions as the argument variable. You can declare the
bounds of a dimension for an array parameter using asterisks (*) or option
ally signed integer constants. I:f the bounds are spedfiecf with integer con~
stants, they must match exactly the bounds of the corresponding argu
ment. An asterisk indicates that the bounds of a dimension are not known.
(If one dimension contains an asterisk, all the dimensions must contain
asterisks.) For example:

DECLARE SUMUP ENTRY ((*) FIXED BINARY);

This declaration indicates that SUMUP's argument is a one-dimensional
array of fixed-point binary integers that can have any number of elements.
Any one-dimensional array of fixed-point binary integers may be passed to
this procedure.

All the data type attributes of the array argument and parameter must
match.

Arrays are always passed by reference. They cannot be passed by dummy
argument.

Structure Para111eters
If the name of a structure variable is passed as an argument, the corre
sponding parameter descriptor or declaration must be identical, in terms of
structure levels, members' sizes, and members' data types. The level num
bers do not have to be identical but the levels must be logically equivalent.
You can specify array bounds and string lengths with asterisks or with

Procedures 199

optionally signed integer constants. The following example shows the pa
rameter descriptor for a structure variable:

DECLARE SEND_REC ENTRY Cl,
2 FI~<ED BINARYC31),
2 CHARACTERl40) VARYING,
2 PICTURE '889V98');

The written argument in the invocation of the external procedure SEND_
REC must have the same structure, and its members must have the same
data types.

Structures are always passed by reference. They cannot be passed by
dummy argument.

Character-String Parameters
If a character-string variable is passed as an argument, the corresponding
parameter descriptor or parameter declaration can specify the length using
an asterisk (*) or an optionally signed nonnegative integer constant. For
example:

COPYSTRING: PROCEDURE CINSTRING1COUNTl;
DECLARE INSTRING CHARACTERl*l;

The asterisk in the declaration of this parameter indicates that the string
may have any length. The string is fixed length unless VARYING is also
included in the declaration.

Entry, Fila, and Label Constant Parameters
Entry, file, and label constants may be passed as arguments. The actual
parameter is a variable.

13.1.8.2 Argument Passing
The following paragraphs describe the precise rules that determine how
PL/I passes an argument to procedures written in PL/I. For rules and
details on passing arguments to procedures written in other languages, see
Section 13.2.2.

Number of Arguments
The number of arguments in the argument list must equal the number of
parameters of the invoked entry point. The compiler checks that the count
matches as follows:

• For an internal procedure, the compiler checks the number of argu
ments in the argument list against the number of parameters on the
PROCEDURE or ENTRY statement for the internal procedure.

• For an external procedure, the compiler checks that the number of
parameter descriptors in the ENTRY declaration list matches the
number of arguments in the procedure invocation.

200 Chapter 13

Actual Arguments
When a PL/I procedure is invoked, each of its parameters is associated with
a variable determined by the corresponding written argument of the proce
dure call. This is the actual argument for this procedure invocation. It may
be

• A reference to the written argument.

•A dummy argument.

The data type of the actual argument is the same as that of the correspond
ing parameter. When a written argument is a variable reference, PL/I
matches the variable against the corresponding parameter's data type ac
cording to the rules given under the heading "Argument Matching," below.
If they match, the actual argument is the variable denoted by the written
argument. That is, the parameter denotes the same storage as the written
variable reference. If they do not match, the compiler creates a dummy
argument and assigns to it the value of the written argument.

Dummy Arguments
A dummy argument is a unique variable allocated by the compiler, which
exists only for the duration of the procedure invocation.

When the written argument is a constant or an expression, the actual
argument is always a dummy argument. The value of the written argument
is assigned to the dummy argument before the call. The data type of the
written argument must be valid for assignment to the data type of the
dummy argument.

Aggregate Arguments
An array, structure, or area argument must be a variable reference that
matches the corresponding parameter. It may not be a reference to an
unconnected array. A dummy argument is never created for an array,
structure, or area.

Argument Matching
A written argument that is a variable reference is passed by reference only
if the argument and the corresponding parameter have identical data
types:

• For an internal procedure, the attributes of the argument must match
those specified in the declaration of the parameter.

e For an external procedure or a procedure invoked via an ENTRY
variable, the attributes specified in the ENTRY attribute parameter
descriptor must match those of the arguments.

Procedures 201

When the compiler detects that a scalar variable argument does not match
the data type of the corresponding parameter, it issues a warning message,
creates a dummy argument, and associates the address of the dummy
argument with the corresponding parameter. You can suppress the warning
message and force the creation of a dummy argument if you enclose the
argument in parentheses. For example, if a parameter requires a
CHARACTER VARYING string and an argument is a CHARACTER non
varying variable, you would enclose the variable in parentheses.

For string lengths and array bounds, an asterisk (*) in the parameter
matches any expression. An integer constant matches only an integer con
stant with the same value.

Conversion of Arguments
When the data type of a written argument is suitable for conversion to the
data type of the corresponding parameter descriptor, PL/I performs the
conversion of the argument to a dummy argument using the rules de
scribed in Section 12.4.3 and Appendix A.

13.2 Calling External Procedures
An external procedure is one whose text is not contained in any other
block. The source text of an external procedure can be compiled sepa
rately from that of a calling procedure. The primary coding differences
between internal and external procedures are

• Before an external procedure can be invoked (except via an entry
variable), its name must be declared within the procedure that in
vokes it. The DECLARE statement for the external entry name must
also provide a list of parameter descriptors that give the data type(s)
of the parameters that the procedure requires, if any, as well as a
RETURNS attribute for a function procedure.

Internal procedures must not be explicitly declared. The procedure
name is implicitly declared by its occurrence in the PROCEDURE or
ENTRY statement.

• External procedures can reference the same variable only if it is de
clared with the EXTERNAL attribute in all of them.

An internal procedure, on the other hand, can reference internal varia
bles declared in any procedure in which it is contained.

• Any procedure can call an external procedure.

202

An internal procedure can be called only by the procedure that con
tains it or by other procedures at the same level of nesting within the
containing procedure. The only exception is invocation via an entry
variable.

Chapter 13

The following example illustrates the use of an external procedure:

WINDUP: PROCEDURE;

DECLARE PITCH EXTERNAL ENTRY <CHARACTERC15l VARYING,
FIXED BINARY17l l;

CALL PITCH <PLAYER_NAME1NUMBER_OF_OUTSl;

The procedure WINDUP declares the procedure PITCH with the
EXTERNAL and ENTRY attributes. The text of PITCH is in another
source program that is separately compiled. When the object module that
contains WINDUP is linked, the linker must be able to locate the object
module that contains PITCH. This can be accomplished by including both
object modules in the LINK command line, or by placing PITCH in an
object module library and including the library in the LINK command
line.

When a CALL statement or function reference invokes an entry point in an
external procedure, the entry constant must be declared with the ENTRY
attribute, as in the example above. Such a declaration must also describe
the parameters for that entry point, if any. For example:

DECLARE PITCH ENTRY (CHARACTER<* l , FI)<ED BI NARY (15 l l ;

The identifier PITCH is declared as an entry constant (in this context,
ENTRY external). When the procedure containing this declaration is
linked to other procedures, one of them must define an entry point named
PITCH as the label either of a PROCEDURE statement or an ENTRY
statement. If the linker cannot locate an external entry point, it issues a
warning message.

The parameter descriptors define the data types of the parameters for the
entry point PITCH. Arguments of these types must be supplied when
PITCH is invoked.

If PITCH is to invoke a function, the DECLARE statement must also
include a RETURNS attribute describing the attributes of the returned
value, such as

DECLARE PITCH ENTRY <CHARACTER (* l , FIXED BI NARY (15 l l
RETURNS (FIXED l ;

Within the scope of this DECLARE statement, the entry constant PITCH
must be used in a function reference. The function reference will invoke the
external entry point, and a returned fixed-point binary value will become
the value of the function reference.

Procedures 203

Section 13.2.1 provides a full description of entry data and the declaration
of entry constants.

A PL/I program can invoke an external procedure that is not written in
PL/I. A common instance is the use of a V AXNMS system service by a
PL/I program to obtain some system function not available directly
through PL/I. Or, a PL/I program can invoke an external procedure written
in another language that provides an application-specific function. Such
instances are possible because of the V AX-11 Calling Standard, a set of
conventions for passing arguments among procedures. Section 13.2.2 de
scribes these conventions.

13.2.1 Entry Data
Entry constants and variables invoke procedures through specified entry
points. An entry value specifies an entry point and a block activation of a
procedure.

No conversions are defined between entry data and other data types. An
entry variable can be assigned only the value of an entry constant or the
value of another entry variable. The only valid operations for entry data
are comparisons for equality (=) and inequality C'=); two entry values are
equal if they refer to the same entry point in the same block activation.

13.2.1.1 Entry Constants
You declare entry constants implicitly when you write labels on
PROCEDURE or ENTRY statements.

Internal entry constants are declared by writing labels on PROCEDURE or
ENTRY statements whose procedure blocks are nested in another block.
An internal entry constant can be used anywhere within the containing
block to invoke its procedure block. You cannot explicitly declare an inter
nal entry constant in the containing block.

External entry constants are declared by writing labels on PROCEDURE
or ENTRY statements that belong to external procedures, and by expli
citly declaring the name with the ENTRY attribute in the calling proce
dure. You can use an external entry constant to invoke its procedure block
from any program location within its scope, which is either the scope of its
declaration (as a label in the external procedure) or the scope of a
DECLARE statement for the constant (in the calling procedure).

The declaration of an external entry constant gives the compiler the infor
mation it needs to invoke a separately compiled procedure. The declaration
must agree with the actual entry point: it must contain parameter descrip
tors for any parameters specified at the entry point; and, if the entry
constant is to be used in a function reference, the declaration must have a

204 Chapter 13

returns descriptor describing the returned value. The format for a declara
tion of an external entry constant is

DECLARE identifier ENTRY [(parameter-descriptor, ...)]

identifier

[
OPTIONS (VARIABLE)] .
RETURNS (returns-descriptor) '

The label associated with the external entry point.

parameter-descriptor

A set of attributes describing a parameter of the specified entry. The
attributes of a single parameter must be separated by spaces; sets of
attributes (each set describing a different parameter) must be sepa
rated by commas.

OPTIONS (VARIABLE)

An option indicating that the specified external procedure can be
invoked with a variable number of arguments. This option is provided
for use in calling non-PL/I procedures.

RETURNS (returns-descriptor)

An option giving, for an entry invoked as a function reference, the
data type attributes of the function value returned. For such entry
points, the RETURNS attribute is required; for those invoked by
CALL statements, the RETURNS attribute is invalid. Section 13.1.7
describes the syntax of this option.

The following example declares the external entry constant
COPYSTRING:

DECLARE COPYSTRING ENTRY !CHARACTER (QOl VARYING,
Fli<ED BINARY<7l l

RETURNS <CHARACTER(*));

This entry has two parameters: (1) a varying-length character string with a
maximum length of 40 and (2) a fixed-point binary value. The RETURNS
attribute indicates that COPYSTRING is invoked as a function and that it
returns a character string with any length. COPYSTRING might look like
this:
COPYSTRING: PROCEDURE IINSTRING1 ITERATIONS)

RETURNS !CHARACTER (*));
DECLARE INSTRING CHARACTER 140) VARYING,

ITERATIONS FI:<ED BINARY 17),
OUTSTRING CHARACTER 140);

RETURN I OUTS TR I NG) ;
END;

Procedures 205

13.2.1.2 Entry Variables
Entry variables are those (including parameters) that take entry values. If
you specify the VARIABLE attribute with the ENTRY attribute in a
DECLARE statement, or if the declared identifier occurs in a parameter
list, the declared identifier is an entry variable. You can assign an entry
constant to an entry variable, or you can assign to it the value of another
entry variable.

When you use an entry variable to invoke a procedure, its declaration must
agree with the definition of the entry point: the parameter descriptor for
the entry variable must match the parameter descriptor on the declaration
of the entry constant.

The scope of an entry variable name can be either INTERNAL or
EXTERNAL. If you specify neither with ENTRY VARIABLE, the default
is INTERNAL.

You can use an entry variable to represent different entry points during the
execution of the PL/I program. For example:

DECLARE E ENTRY <FIXED BINARY 17ll VARIABLE,
CA 1Bl ENTRY <FI:<ED BINARY (7) l;

E = A;
CALL E C 10 l i

In this example, the entry constant A is assigned to the entry variable E.
The CALL statement results in the invocation of the external entry point
A.

13.2.2 Passing Arguments to Non-PL/I Procedures
There are three ways that a PL/I procedure can pass an argument to a non
PL/I procedure. They are

• By immediate value. The actual value of the argument is passed.

• By reference. The address in storage of the argument is passed.

• By descriptor. The address in storage of a data structure describiiig
the argument is passed.

The following sections describe the requirements for each of these argu
ment-passing mechanisms.

13.2.2.1 Passing Arguments by Immediate Value
You must use the VALUE attribute in a parameter descriptor for an argu
ment to be passed by immediate value. The following declaration of the
external entry SYS$SETEF illustrates such a descriptor:

DECLARE SYS$SETEF ENTRY <FIXED BINARYl31l VALUE> i

This declaration of the Set Event Flag system service (SYS$SETEF) speci
fies a single argument to be passed by immediate value.

206 Chapter 13

Arguments that can be passed by immediate value are limited to the
following data types, which can be expressed in 32 bits:

• FIXED BINARY (31)

• BIT (32) ALIGNED

•ENTRY

•OFFSET

•POINTER

When you specify the VALUE attribute in a parameter descriptor, you can
specify the ANY attribute instead of declaring any data type attributes.
For example, the declaration of SYS$SETEF can appear as follows:

DECLARE SYSSSETEF ENTRY <ANY VALUE>;

At the time of the procedure's invocation, PL/I converts the written argu
ment as needed to create a longword dummy argument.

13.2.2.2 Passing Arguments by Reference
By default, PL/I passes all arguments except character strings and arrays
with nonconstant extents by reference. The parameter descriptor for an
argument to be passed by reference need specify only the data type of the
parameter.

For example, the Read Event Flags (SYS$READEF) system service re
quires that its first argument be passed by immediate value and its second,
by reference. You could declare this procedure as follows:

DECLARE SYSSREADEF ENTRY <FIXED BINARYC31> VALUE,
BIT <32) ALIGNED);

When the procedure is invoked, the second argument must be a variable
declared as BIT(32) ALIGNED. PL/I passes the argument by reference.

An argument of any data type may be passed by reference. Bit-string
variables, however, must have the ALIGNED attribute.

You must always ensure that the data types in the parameter descriptors of
all output arguments match the data types of the written arguments. For
convenience, you can specify ANY in the parameter descriptor. To describe
an argument to be passed by reference, you can specify the ANY attribute
without the VALUE attribute. The argument can be of any addressable
data type known to PL/I. For example, you could declare the
SYS$READEF service as follows:

DECLARE SYSSREADEF ENTRY <FIXED BINARY131) VALUE, ANY);

The second parameter descriptor in the ENTRY attribute indicates that
the second argument is to be passed by reference to the procedure
SYS$READEF~ and that it can have any data type, When you specify

Procedures 207

ANY for an argument to be passed by reference, you cannot specify data
type attributes. Note that if you specify the VALUE attribute in conjunc
tion with the ANY attribute, PL/I passes the argument by immediate
value.

The ANY attribute is especially useful when you must specify a data
structure as an argument. You need not declare the structure within the
parameter descriptor, only the ANY attribute.

When an argument is passed by reference, PL/I passes the address of the
actual argument. This address can be interpreted as a pointer value. In
fact, you can explicitly specify a pointer value as an argument for data to
be passed by reference. For example:

DECLARE SYSSREADEF <ANY VALUEt POINTER VALUEI t

FLAGS BIT<321 ALIGNEDi

CALL SYSSREADEF ca, ADDRCFLAGSll;

At this procedure invocation, PL/I places the pointer value returned by the
ADDR built-in function directly in the argument list.

13.2.2.3 Passing Arguments by Descriptor
A descriptor is a structure that describes the data type, extents, and ad
dress of a data item. When passing an argument by descriptor, PL/I creates
the descriptor and places its address in the argument list for the called
procedure.

PL/I passes arguments by descriptor when a parameter descriptor specifies
the following:

• A character string with an asterisk length or an array with asterisk
extents

• An unaligned bit string or an array or structure consisting entirely of
unaligned bit strings

• A structure containing any strings or arrays with asterisk extents

• ANY without VALUE, and the corresponding written argument is
specified using the DESCRIPTOR built-in function

For example, PL/I passes by descriptor the arguments associated with the
following parameter descriptors:

DECLARE UNSTRING ENTRY CCHARACTERC*ll,
TESTBITS ENTRY <BIT(3l),
MODEST ENTRY C 1 ,

208

2 CHARACTER (*) ,

2 t

3 BIT<3l,
3 BIT(3) Ii

Chapter 13

When you declare a non-PL/I procedure that requires a character-string
descriptor for an argument, specify the parameter descriptor as
CHARACTER(*). For example, the Set Process Name (SYS$SETPRN)
system service requires the address of a character-string descriptor as an
argument. You can declare this service as follows:

DECLARE SYS$SETPRN ENTRY <CHARACTER<*>>;

When a parameter is declared as CHARACTER(*), its written argument
can be

• A character-string constant or expression.

• A fixed-length character-string variable.

• A varying character-string variable or a variable declared as
CHARACTER(*)VARYING.

For any of those arguments, PL/I constructs a character-string descriptor
and passes its address.

To force an argument to be passed by descriptor, use the DESCRIPTOR
built-in function. For example:

DECLARE P ENTRY <ANYl;
DECLARE CX1Yl FIXED DECIMAL C712l;

CALL P (DESCRIPTOR (){ l l ;
CALL PCYl;

Here, X is passed by descriptor as specified by the DESCRIPTOR built-in
function. Y is passed by reference. Section 19.2 contains the syntax and
rules for the DESCRIPTOR built-in function.

Procedures 209

Chapter 14

Program Control

The statements described in this chapter allow your program to repeat
sequences of operations, to transfer control or select operations based on
the result of a test, and to terminate. They are the DO, BEGIN, END, IF,
SELECT, GOTO, LEAVE, STOP, and null statements.

14.1 DO Statement

The DO statement defines the beginning of a sequence of statements to be
executed in a group. The group ends with the nonexecutable statement
END. DO-groups have several formats, which are described individually
under the following subheadings:

• Simple DO

•DO WHILE

•DO UNTIL

• Controlled DO

•DO REPEAT

14.1.1 Simple DO
A simple DO statement is noniterative. Its format is

DO;

END;

210

The statements that appear between the DO statement and its correspond
ing END statement are executed once, after which control passes to the
next executable statement in the program.

For example:

IF A < B THEN DO;
PUT LIST ('More data needed');
GET LIST !VALUE!;
A= A+ l.JALUEi
END;

The most common use of the simple DO statement is as the action of the
THEN clause of an IF statement, as shown above, or of an ELSE option.

14.1.2 DO WHILE
A DO WHILE statement executes a group of statements as long as a
particular condition is satisfied. When the condition is not true, the group
is not executed and control passes to the next executable statement in the
program. This format of the DO statement is

DO WHILE (test-expression);

END;

test-expression

Any expression that yields a scalar bit-string value. If any bit of the
value is a 1, then the test expression is true; otherwise, the test ex
pression is false. The test expression must be enclosed in parentheses.

This expression is evaluated before each execution of the DO-group.
It must have a true value in order for the DO-group to be executed.
Otherwise, control passes outside of the DO-group to the next execut
able statement after the END statement that terminates the group.

The following examples illustrate the use of the DO WHILE statement.

DO WHILE <A Bl i

This DO-group executes as long as the value of the variable A is less than
the value of the variable B.

DO WHILE <LIST->NE><T '·= NULL(l l;

This DO-group executes while a forward pointer in a linked list has a value.

Program Control 211

DECLARE EDF BIT< 1) INITIAL< 'O 'Bl i

ON ENDFILE<INFILEl EDF I 1 I B j

DO WHILE ("·EDF> i
READ FILE(INFILEl INTO(INREC) i

ENDi

This DO-group reads records from the file INFILE until the end of the file
is reached. At the beginning of each iteration of the DO-group, the expres
sion AEOF is evaluated; the expression is true until the ENDFILE ON-unit
sets the value of EOF to '1 'B.

14.1.3 DO UNTIL
A DO UNTIL statement executes a group of statements until a particular
condition is satisfied. That is, while the condition is false, the group is
repeated. The format of the DO UNTIL statement is

DO UNTIL (test-expression);

END;

test-expression

Any expression that yields a scalar bit-string value. If any bit of the
value is 1, then the test expression is true; otherwise the test expres
sion is false. A false value is necessary for the DO-group to be re
peated. Otherwise, control passes to the next executable statement
following the END statement that terminates the DO-group. The test
expression must be enclosed in parentheses.

The following examples illustrate the use of the DO UNTIL statement.

DO UNTIL CK< ALPHA>;

This DO-group is executed at least once and then repeats as long as the
value of the variable K is greater than or equal to the value of the variable
ALPHA.

DO UNTIL <LIST ->NEXT= NULL())

This DO-group is executed until a forward pointer in a linked list has a null
value.

212 Chapter 14

DECLARE STR BIT (8) CONTROLLED;

ALLOCATE STRj I* 1st allocation */

ALLOCATE STR; I* nth allocation */

DO UNTIL <ALLOCATIONISTRl=O);
PUT SK IP LI ST < STR l ;
FREE STRi
ENDi

ENDi

This DO-group frees bit strings from storage until all generations have been
released. Because the UNTIL option is always executed at least once, at
least one generation must be allocated; otherwise the ERROR condition is
raised. At the end of each repetition of the DO-group, the status of the
generations is checked with the ALLOCATION built-in function. A null
string terminates the execution of the group and passes control to the next
executable statement after the first END statement.

14.1.4 Controlled DO
A controlled DO statement identifies a variable whose value controls the
execution of the DO-group, and defines the conditions under which the
control variable is to be modified and tested. When the value of the control
variable exceeds the specified end value, control passes out of the DO
group. A WHILE or UNTIL clause may also be included. The WHILE
expression is evaluated before each iteration, including the first, but after
assignment to the control variable. The UNTIL expression is evaluated
after each iteration, including the first, but before assignment to the con
trol variable. The format of the controlled DO statement is

DO control-variable = start-value

{
TO end-value [BY modify-value] }
BY modify-value
[WHILE (test-expression)] .
[UNTIL (test-expression)] '

END;

Program Control 213

A controlled DO statement that does not specify a TO or BY option results
in a single iteration of the following DO-group. Since there is no TO or BY
expression to change the value of the variable, the DO-group will not be
executed again.

control-variable

A reference to a variable whose current value determines whether the
DO-group is executed. The control variable must be of an arithmetic
data type.

start-value

An expression specifying the initial value to be given to the control
variable. Evaluation of this expression must yield an arithmetic
value.

end-value

An expression giving the value to be compared with the control varia
ble during successive iterations. Evaluation of this expression must
yield an arithmetic value.

modify-value

An expression giving a value by which the control value is to be
modified. Evaluation of this expression takes place once when control
first reaches the DO statement, and must yield an arithmetic value. If
the BY option is not specified, the modify value is 1 by default.

WHILE(test-expression)
UNTIL(test-expression)

Options specifying conditions that further control the execution of the
DO-group. See the preceding sections for details.

The following examples illustrate the controlled DO statement.

DO I = 2 TO 100 BY z;

This DO-group executes 50 times, with values for I of 2, 4, 6, and so on.

DO I = LBOUNDIARRAY1ll TO HBOUND<ARRAYrll;

This DO-group executes as many times as there are elements in the array
variable ARRAY, using the subscript values of the array's elements.

DO I = 1 BY 1 WHILE I)-(< Yl ;

This DO-group continues executing with successively higher values for I
until the value of the variable X equals or is greater than the value of the
variable Y.

DO I = 1 BY -1 UNTIL <X < Yl;

This DO-group continues executing with successively lower values for I
while the value of the variable X is equal to or greater than the value of the
variable Y.

214 Chapter 14

14.1.5 DO REPEAT
The DO REPEAT statement executes a DO-group repetitively for different
vaiues of a variable. The variable is assigned a start value that is used on
the first iteration of the group. The REPEAT expression is evaluated be
fore each subsequent iteration, and its result is assigned to the variable. A
WHILE clause may also be included; if it is, the WHILE expression is
evaluated before each iteration, including the first but after assignment to
the variable. The format of the DO REPEAT statement is

DO variable =start-value REPEAT (expression)
[WHILE (test-expression)] .
[UNTIL (test-expression)] '

END;

variable

A reference to a scalar variable of any type.

start-value

An expression specifying the initial value to be given to the variable.
The evaluation of this expression must yield a value that is valid for
assignment to the variable.

expression

An expression giving the value to be assigned to the variable on re
iterations of the DO REPEAT group. The expression is evaluated
before each reiteration. Evaluation of this expression must yield a
result that is valid for assignment to the variable.

WH I LE(test-expression)
UNTIL(test-expression)

Options specifying conditions that control the termination of the DO
REPEAT group. The specified test expression must yield a scalar bit
string value. If any bit of the value is 1, then the test expression is
true; otherwise, the test expression is false. The test expression must
be enclosed in parentheses.

The WHILE test expression is evaluated each time control reaches
the DO statement; a true value is necessary for the DO-group to be
executed. Otherwise, control passes outside of the DO-group to the
next executable statement following the END statement that termi
nates the group.

Both the WHILE and UNTIL options check the status of test expres
sions, but they differ in that the WHILE option tests the value of the
test expression at the beginning of the DO-group, and the UNTIL

Program Control 215

option tests the value of the test expression at the end of the DO
group. Therefore, a DO-group with the UNTIL option will always be
executed at least once, but a DO-group with the WHILE option may
never be executed.

NOTE
If the WHILE or UNTIL options are omitted, the DO
REPEAT statement specifies no means for terminating the
group; the execution of the group must be terminated by a
statement or condition occurring within the group, such as
a GOTO statement, LEA VE statement, or an ENDFILE
condition.

The following examples illustrate the use of the DO REPEAT statement:

DD LETTER='A' REPEAT <BYTE(I))i

Here, the group will be repeated with an initial LETTER value of 'A' and
with subsequent values assigned by the built-in function BYTE(I). The
variable I may be assigned new values within the group. The group will
iterate endlessly unless terminated by a statement or condition within the
group.

DD I = 1 REPEAT II + 2) WHILE (I <= 100 l;

This example has the same effect as the controlled DO statement:

DD I = 1 TD 100 BY 2;

The most common use of the DO REPEAT statement is in the manipula
tion of lists. For example:

DO P = LIST_HEAD REPEAT <P->LIST.NEXTl
WHILE (P "=NULL() l;

In this example, the pointer P is initialized with the value of the pointer
variable LIST-HEAD. The DO-group is executed with this value of P. The
REPEAT option specifies that, each time control reaches the DO state
ment after the first execution of the DO-group, P is to be set to the value of
LIST.NEXT in the structure currently pointed to by P.

Both WHILE and UNTIL may be used in combination to check the status
of a DO-group both before and after execution.

14.2 BEGIN Statement

The BEGIN statement denotes the start of a begin block. Its format is

BEGIN;

A begin block is a sequence of statements headed with a BEGIN statement
and terminated by an END statement. In general, a begin block can be
used wherever a single executable statement is valid, for instance, in an

216 Chapter 14

ON-unit. The statements in a begin block can be any PL/I statements, and
begin blocks can contain DO-groups, DECLARE statements, procedures,
and other (nested) begin blocks.

A begin block provides a convenient way to localize variables. Those de
clared as internal variables within a begin block are not allocated storage
until the block is activated. When the block terminates, storage for inter
nal automatic variables is released. A begin block terminates when

• Its corresponding END statement is encountered. Control continues
with the next executable statement in the program.

• It executes a nonlocal GOTO to transfer control to a previous block.

• It executes a RETURN statement.

A begin block differs from a DO-group chiefly in its ability to localize
variables. Variables declared within DO-groups are not localized to the
group (unless, of course, the group contains a begin block or procedure that
declares internal variables). Begin blocks are preferable when you want to
restrict the scope of variables; furthermore, there are some cases (such as
ON-units) in which DO-groups cannot be used. Otherwise, DO-groups are
often more efficient, because they do not have the overhead associated with
block activation. In general, you should use a DO-group instead of a begin
block unless there are declarations present or you require multiple state
ments in an ON-unit.

A begin block can designate a series of statements to be executed depend
ing on the success or failure of a test in an IF statement. For example:

IF A = B THEN BEGIN ;

mo;

A begin block also provides the only way to denote a series of statements to
be executed when an ON condition is signaled. For example:

ON ERROR BEGIN;
[stater11ent ••• J
END;

14.3 END Statement

The END statement marks the end of the block or group headed by the
most recent BEGIN, DO, SELECT, or PROCEDURE statement. Its for
mat is

END [identifier];

Program Control 217

identifier

An optional reference to the unsubscripted label on the
PROCEDURE, BEGIN, SELECT, or DO statement terminated by
the END statement. If specified, the identifier must match the label
of the most recent BEGIN, DO, SELECT, or PROCEDURE state
ment that is not already matched with an END statement. If the
identifier is omitted, the most recent statement is matched by de
fault. The identifier cannot be a reference to a subscripted label.

Note that a procedure invoked as a function must execute a RETURN
statement before it encounters the END statement marking the end of the
procedure.

When the END statement is encountered, one of the following actions is
performed, depending on the type of block or group that it terminates:

• When an END statement denotes the end of a procedure, it is termi
nated. The storage allocated for the block is released, and all auto
matic variables are made inaccessible. If the current procedure is the
main or only procedure, the program terminates. Otherwise, control
returns to the statement following the CALL statement that invoked
the procedure.

• When an END statement denotes the end of a begin block, it is termi
nated. Storage allocated for the block is released, and all automatic
variables are made inaccessible. Control passes to the next executable
statement.

• When an END statement denotes the end of a DO-group, control
returns either to the DO statement that heads the group or to the next
executable statement following the END statement. If the DO-group
is headed by a simple DO, that is, one that causes the DO-group to be
executed only once, control passes to the next executable statement.
Otherwise, control returns to the head of the DO-group, where the
control variable or expression is tested.

14.4 IF Statement

The IF statement tests an expression and performs a specified action if the
result of the test is true. Its format is

IF test-expression THEN action [ELSE action];

test-expression

218

Any valid expression that yields a scalar bit-string value. If any bit of
the value is 1, then the test expression is true; otherwise, the test
expression is false.

Chapter 14

action

Any of the following:

•Any unlabeled statement except a DECLARE, FORMAT,
PROCEDURE, END, or ENTRY statement

• An unlabeled DO-group, SELECT-group, or begin block

The IF statement evaluates the test expression. If the expression is true,
the action specified following the keyword THEN is executed. Otherwise,
the action, if any, specified following the ELSE keyword is executed. For
details on the syntax of specifying expressions, see Chapter 12.

The following examples illustrate the use of the IF statement.

IF A < B THEN BEGIN;

The begin block after this statement is executed if the value of the variable
A is less than the value of the variable B.

IF "SUCCESS THEN
CALL PRINT_ERRORi

ELSE
CALL PRINT_SUCCEss;

The IF statement defines action to be taken if the variable SUCCESS has
a false value (the THEN clause) and an action to be taken otherwise (the
ELSE clause).

You can nest IF statements; that is, the action specified in a THEN or an
ELSE clause may be another IF statement. An ELSE clause is matched
with the nearest preceding IF/fHEN that is not itself matched with a
preceding ELSE. For example:

IF ABC
THEN IF

THEN GOTO GBH;
ELSE GOTO THESTORE;

ELSE GOTO HOME;

The first ELSE clause is executed if ABC is true and XYZ is false. The
second ELSE clause is executed if ABC is false.

In some cases, proper matching of IF and ELSE may require a null state
ment as the target of an ELSE. For example:

IF ABC
THEN IF XYZ THEN GOTO HOME;

ELSE;
ELSE GOTO THESTOREi

The ELSE GOTO THESTORE statement is executed if ABC is false.

Program Control 219

14.5 SELECT Statement

The SELECT statement tests a series of expressions and performs speci
fied action if the result of any of the tests is true. The format for the
SELECT statement is

SELECT;

END;

WHEN (condition-list) select-action;
WHEN (condition-list) select-action;

WHEN (condition-list) select-action;
[OTHERWISE select-action];

condition-list

One or more test expressions that yield a scalar bit-string value. If
any bit of the value is 1, then the test expression is true; otherwise the
test expression is false.

The format of a condition list is

(exPression[t•• ,])

select-action

Any of the following:

•Any statement except an END, ENTRY, DECLARE, FORMAT, or
PROCEDURE statement.

• A DO-group, SELECT-group, or a BEGIN-END block.

If any of the test expressions in the condition list results in a bit string
containing any bit with the value of '1 'B, the action specified following
the keyword WHEN is executed. No further expressions in that WHEN
clause or subsequent WHEN clauses are evaluated, and no subsequent
select actions are executed.

If none of the expressions in the WHEN clauses evaluates to a bit string
containing '1 'B, the action specified after the OTHERWISE clause is
executed unconditionally. If the OTHERWISE clause is omitted and the
evaluation of the SELECT-group does not result in the selection of any
action, an ERROR condition is raised.

After execution of a select action following a WHEN or OTHERWISE
clause, control passes to the next executable statement following the END
statement that terminates the SELECT-group, unless normal flow is al
tered within the select action.

220 Chapter 14

For example:

SELECT;
WHEN <A=50l B=B+lj
WHEN <A=GOl B=B+2j
WHEN <A=70) B=B+3j
WHEN <A=BOl B=B+l!j
WHEN <A=SOl B=B+5j
OTHERWISE B=B+c;

ENDj

The SELECT statement defines action to be taken if the variable A has
any of the values specified in the WHEN clauses. If none of the WHEN
clauses are true, the action specified in the OTHERWISE clause is exe
cuted.

The action specified in a WHEN or OTHERWISE clause may be another
SELECT statement, resulting in nested SELECT statements. Then, the
OTHERWISE clause is matched to the nearest preceding
SELECT/WHEN. For example:

SELECTi
WHEN (condition Al

SELECTi
WHEN (condition-All statement ii
WHEN (condition A2) statement 2;
END;

WHEN (condition Bl
SELECTi

WHEN (condition 51) statement 3;
WHEN <condition B2l statement a;
OTHERWISE statement 5;
END;

OTHERWISE statement G;
ENDi

In this example, the first statement is executed when both A and Al
conditions are true. The second statement is executed when both A and A2
conditions are true. If none of the A conditions are satisfied, B conditions
are checked. Statement 5 is executed when condition B is true, but condi
tions Bl and B2 are false. Statement 6 is executed when all of the preced
ing conditions are false.

Conditions are checked from top to bottom; thus, if two conditions are
true, only the first course of action is taken.

Notice that an END statement follows statements 2 and 5: you must close
each group in nested SELECT-groups. Also notice that there is no
OTHERWISE after statement 2: you do not have to include an OTHER
WISE clause, but an ERROR could result if none of the WHEN clauses are
selected.

Program Control 221

In some cases, proper matching of WHEN and OTHERWISE may require
a null statement as the target of OTHERWISE. For example:

SELECT;

END;

WHEN (condition A1B1Cl GOTO FILE_READ;
WHEN (condition DtEl GOTO UPDATE;
OTHERWISE i

In this example, control is passed to the next executable statement after
END if conditions A, B, C, D, and E are not true.

14.6 GOTO Statement
The GOTO statement causes control to be transferred to a labeled state
ment in the current or any outer procedure. Its format is

{ GOTO } label-reference·
GO TO '

label-ref ere nee

A label constant or an expression that, when evaluated, yields a label
value. A label value denotes a statement in the program and a block
activation. The specified label cannot be the label of an ENTRY,
FORMAT, or PROCEDURE statement.

If the specified label value is not in the current block, the GOTO statement
is considered nonlocal. The following can occur:

• The current block, and any blocks intervening between it and the
block containing the label value, are released. This rule applies to
procedure blocks and to begin blocks.

• If a GOTO statement transfers control out of a procedure that is
invoked in a function reference, the statement containing the function
reference is not evaluated further.

A label consists of any valid identifier terminated by a colon. A name
occurring as a statement label is implicitly declared as a label constant,
with the attributes LABEL and constant. Label constants may not be
explicitly declared.

The following restrictions apply to the use of labels and label data:

• No statement can have more than one label. However, an executable
statement can be preceded by any number of labeled null statements,
which have the same effect as would multiple labels.

• Operations on label values are restricted to the operators= and A=, for
testing equality or inequality. Two values are equal if they refer to the
same statement in the same block activation.

222 Chapter 14

• Any statement in a PL/I program can be labeled except

- A DECLARE statement.

- A statement beginning an ON-unit, THEN clause, ELSE clause,
WHEN clause, or OTHERWISE clause.

• Labels on PROCEDURE, ENTRY, and FORMAT statements are not
considered statement labels and may not be used as the targets of
GOTO statements.

• An identifier occurring as a label in a block may not be declared in
that block (except as a structure member) or occur in the block's
parameter list.

• Any reference to a label value after its block activation terminates is
an error with unpredictable results.

This example demonstrates the use of the GOTO statement:

ON ERROR GOTO ERROR_MESSAGEi

The GOTO statement provides a transfer address for the current procedure
when the ERROR condition is signaled.

The following subsections describe label array constants, which allow you
to write labels with constant subscripts, and label variables, which can be
assigned values and then used in GOTO statements to provide flexibility.

14.6.1 Label Array Constants
Any label constant except the label of a PROCEDURE or FORMAT state
ment can have a single subscript. Subscripts must be specified using inte
ger constants or constant identifiers, which must appear in parentheses
following the label name. For example:

PART (1 l:

PART<2l:

When labels are written as shown here, the unsubscripted label name
represents the implicit declaration of a label array constant. In this exam
ple, the array is named PART and is treated as if it were declared within
the block containing the subscripted labels. Elements of this array may be
referenced in GOTO statements that specify a subscript, for example:

GOTO PART (I) ;

where I is a variable whose value represents the subscript of the element of
PART that is the label to be given control.

Program Control 223

14.6.2 Label Variables
When an identifier is explicitly declared with the LABEL attribute, it
acquires the VARIABLE attribute by default. Such a variable can be used
to denote different label values during the execution of the program. The
following examples demonstrate the use of label variables.

DECLARE PROCESS LABEL;

IF CODE THEN
PROCESS BILLING;

ELSE
PROCESS CHARGE;

GOTO PROCESS;

When the GOTO statement evaluates the reference to the label
PROCESS, the result is the current value of the variable. The GOTO
statement transfers control to either of the labels BILLING or CHARGE,
depending on the current value of the Boolean variable CODE.

%REPLACE REMOVE_TEXT BY 2;

DECLARE PROCESSC5l LABEL VARIABLE;

GOTO PROCESSCREMOVE_TEXTl;

The GOTO statement evaluates the label reference and transfers control to
the label constant corresponding to the second element of the array
PROCESS. PROCESS consists of label variables.

14. 7 LEAVE Statement

The LEA VE statement causes control to be transferred out of the immedi
ately containing DO-group or out of the containing DO-group whose label
is specified with the statement. The format of the LEA VE statement is

LEAVE [label-reference];

label-reference

224

A reference to a label on a DO statement that heads a containing DO
group. The label reference can be a label constant or a subscripted
label constant for which the subscript is specified with an integer

Chapter 14

constant. The label reference cannot be a label variable, nor can it be
a subscripted label constant for which the subscript is specified with a
variable.

Upon execution, a LEAVE statement with no label reference causes control
to be transferred to the first statement following the END statement that
terminatesthe immediately containing DO-group. If the LEA VE statement
has a label, control is passed to the first executable statement following the
end statement for the corresponding label indicated in the LEA VE state
ment. Thus, the LEAVE statement provides an alternative means of termi
nating execution of a DO-group. In the case of a LEA VE statement with a
label reference, several nested DO-groups can be terminated as control is
transfered outside the referenced DO-group.

The following restrictions apply to the use of the LEA VE statement:

• A LEA VE statement must be contained within a DO-group.

• A LEAVE statement must be in the same block as the DO statement
to which it refers.

• A LEA VE statement label reference must refer to a label on a DO
statement that heads a DO-group containing the LEA VE statement.
The LEAVE __ staternent_must be in the sameblocka~theJabeled DO
statement.

• The label reference specified with a LEA VE statement must be a label
constant or a subscripted label constant with an integer constant sub
script.

The following example shows a LEA VE statement with a label reference:

LDDP1: DD WHILE <MDREJ;

LDOP2: DD I 1 TD 12;

IF QUAN< I) > 150 THEN LEAt.JE LDDP1 i
ENDi I* loop 2 *I

ENDi I* loop 1 *I

In this example, the LEAVE statement transfers control to the first state
ment beyond the last END statement.

Program Control 225

14.8 STOP Statement

The STOP statement terminates execution of the program. Its format is

STOP;

The STOP statement terminates the program regardless of the current
block activation, signals the FINISH condition, and closes all open files. If
the main procedure has the RETURNS attribute, no return value is ob
tainable.

14.9 Null Statement

The null statement performs no action. Its format is

The null statement usually serves as the target statement of a THEN or
ELSE clause in an IF statement, as the target of a WHEN or
OTHERWISE clause in a SELECT statement, or as an action in an ON
unit. The following examples illustrate these uses.

IF A B THEN GOTO COMPUTE;
ELSE ;

In this example, no action takes place if A is greater than or equal to B;
execution continues at the statement following ELSE ; . A construction of
this type may be necessary when IF statements are nested (see Section
14.4).

SELECTi

ENDi

WHEN <condition A1B1Cl GOTO FILE_REAO;
WHEN tsondition D1El GOTO UPDATE;
OTHERWISE;

In this example, control is passed to the next executable statement after
END if conditions A, B, C, D, and E are not true.

ON ENDPAGE (SYS PR I NT) ;

In this example, no action takes place upon execution of the ON-unit; the
I/0 operation that caused the ENDPAGE condition continues.

The null statement can also be used to declare two labels for the same
executable statement, as in

LABELl:
LABEL2: statement , ••

226 Chapter 14

Chapter 15

Error Handling

In PL/I, errors are signaled through ON conditions and handled by groups
of statements called ON-units. An ON condition is any one of several
named conditions whose occurrences during the execution of a program
interrupt it. When an ON condition occurs, or is signaled, the correspond
ing ON-unit is executed.

This chapter describes the following statements, which allow you to estab
lish and control ON-units:

• The ON statement-establishes an ON-unit to react to a particular
ON condition

• The REVERT statement-cancels an ON-unit and returns control to
a previously established ON-unit

• The SIGNAL statement-signals an ON condition explicitly

• The RESIGNAL built-in subroutine-within an ON-unit, signals the
condition to another ON-unit

The description of the ON statement contains more information about ON
units and ON conditions.

15.1 ON Statement

The ON statement defines the action to be taken when a specific condition
is signaled during the execution of a program.

The ON statement is an executable statement. For its ON-unit to be
effective, it must be executed before the statement that signals the speci
fied condition.

The format of the ON statement is

ON condition-name on-unit;

227

condition-name

The name of the specific condition for which an ON-unit is estab
lished. There is a keyword name associated with each condition. The
conditions are summarized in Table 15-1. and treated in more detail
in Section 15.1.4.

on-unit

228

The action to be taken when the specified condition is signaled. An
ON-unit can be any single unlabeled statement except DECLARE,
DO, END, ENTRY, FORMAT, IF, ON, PROCEDURE, RETURN,
or SELECT. It can also be an unlabeled begin block.

If no ON-unit is established for a particular condition, the default
PL/I condition handler, if any, is executed.

Table 15-1: Summary of ON Conditions

Condition Name Usage

ANYCONDITION

END FILE

ENDPAGE

ERROR

FINISH

FIXEDOVERFLOW

KEY

OVERFLOW

UNDEFINED FILE

UNDERFLOW

V AXCONDITION

ZERO DIVIDE

Handles any condition not specifically handled by an
other ON-unit

Handles end-of-file condition for a specified file

Handles end-of-page for a specified file with PRINT
attribute

Handles miscellaneous error conditions and conditions
for which no specific ON-unit exists

Handles program exit when the main procedure exe
cutes a RETURN statement, when any block executes
a STOP statement, or when the program exits due to
an error that is not handled by an ON-unit

Handles fixed-point decimal and integer overflow ex
ception conditions

Handles any error involving the key when using keyed
access to a specified file

Handles floating-point overflow exception conditions

Handles any errors opening a specified file

Handles floating-point underflow exception conditions

Handles a specific VMS condition value

Handles divide-by-zero exception conditions

Chapter 15

Subsequent sections provide the following information about ON-units:

• What an ON-unit can (and cannot) contain

• How PL/I searches for an ON-unit

• What happens when an ON-unit completes

• Descriptions of each ON condition

• Examples of ON-units

For the procedure that specifies OPTIONS (MAIN), PL/I defines a default
condition-handling action that performs as follows:

• If the signal is the ENDPAGE condition, the default PL/I handler
executes a PUT PAGE for the file, and then continues the program at
the point at which ENDPAGE was signaled.

• If the signal is the ERROR condition and the severity is fatal, the
default handler signals the FINISH condition. Then, one of the follow
ing occurs:

- If a FINISH ON-unit is found, it is given a chance to execute. If it
executes a nonlocal GOTO or signals another condition, program
execution continues.

- If no FINISH ON-unit is found, or if a FINISH ON-unit completes
execution by handling the condition, then PL/I resignals the condi
tion to the default VAXNMS condition handler. This handler
prints a message, displays a traceback, and terminates the pro
gram.

• If the signal is UNDERFLOW; a message is printed and execution
continues. The value that caused the condition is replaced by zero.
UNDERFLOW is signaled only if the procedure containing the expres
sion specified OPTIONS (UNDERFLOW) on its PROCEDURE state
ment.

• If the signal is any condition other than ENDPAGE, ERROR with a
fatal severity, or UNDERFLOW, the default PL/I handler signals the
ERROR condition with the severity of the original condition. Then,
one of the following occurs:

- If an ERROR ON-unit is found, it is executed. If it completes
execution by handling the condition, the program continues.

- If an ERROR ON-unit is not found, the default PL/I handler resig
nals the condition. If this resignal results in return of control to the
system, the default VAXNMS condition handler prints a message
and a traceback. If the error is a fatal error, the default handler
terminates the program; otherwise, the program continues.

Error Handling 229

Note that PL/I does not provide any default condition handler unless a
procedure in the program specifies OPTIONS (MAIN). If no PL/I-supplied
default handler exists, conditions are handled by VAXNMS default condi
tion handlers.

If the default handler is not satisfactory, you can use an ON statement to
establish your own ON-unit for a specific ON condition. The ON-unit is
established following the execution of an ON statement that specifies that
condition name. For example:

ON ENDFILE <ACCOUNTS) GOTO CLOSE_FILESl

This ON statement defines an ON-unit for an ENDFILE condition in the
file specified by the name ACCOUNTS. The ON-unit consists of a single
GOTO statement.

After an ON-unit is thus established, it remains in effect for the activation
of the current block and all its dynamically descendent blocks, unless one
of the following occurs:

• Another ON statement is specified for the same condition in a descen
dent block. The ON-unit established within the descendent block re
mains in effect as long as the descendent block is active.

• A REVERT statement is executed for the specified condition. A
REVERT statement nullifies the most recent ON-unit for the speci
fied condition.

• Another ON statement is specified for the same condition within the
current block. Within the same block, an ON statement for a specific
condition cancels the previous ON-unit.

• The block or procedure within which the ON-unit is established termi
nates. When a block exits, any ON-units it has established are can
celed.

15.1.1 Contents of an ON-Unit
An ON-unit can consist of a single simple statement, a group of statements
in a begin block, or a null statement. The following ON statement specifies
a single statement in the ON-unit:

ON ERROR GOTO WRITE_ERROR_MESSAGEi

This ON statement specifies a GOTO statement that transfers control to
the label WRITE-ERROR-MESSAGE in the event of the ERROR condi
tion.

230 Chapter 15

A simple statement must not be labeled and must not be any of the follow
ing:

DECLARE
DO
END
ENTRY

FORMAT
IF
ON

PROCEDURE
RETURN
SELECT

An ON-unit can also consist of a sequence of statements in a begin block.
For example:

ON ENDFILE <SYSIN> BEGIN;
CLOSE FILE (TEMP>;
CALL PRINT_STATISTICS<TEMP>;
END;

This ON-unit consists of CLOSE and CALL statements that request spe
cial processing when the end-of-file condition occurs during reading of the
default system input file, SYSIN.

When a BEGIN statement is specified for the ON-unit, it must not be
labeled. The begin block can contain any statement except a RETURN
statement.

A null statement specified for an ON-:ur~it indicates_thatno processing is to
occur when -the condition occurs. Program execution continues as if the
condition had been handled. For example:

ON ENDPAGE<SYSPRINT>;

This ON-unit causes PL/I to continue output on a terminal regardless of
the number of lines already output.

You can use the condition-handling built-in functions ONARGSLIST,
ONCODE, ONFILE, and ONKEY to provide an ON-unit with information
about the error that invoked it. Section 19.2 contains descriptions of these
built-in functions.

15.1.2 Search for ON-Units
When a condition is signaled during the execution of a PL/I procedure,
PL/I searches for an ON-unit to respond. It first searches the current block,
that is, the block in which the condition occurs. If no ON-unit exists in this
block for the specific condition, it searches the block that activated the
current block, and then the block that activated that block, and so on.

PL/I executes the first ON-unit it finds, if any, that can handle the speci
fied condition. If none is found, and if a procedure in the program specified
OPTIONS (MAIN), the default PL/I condition handling is performed.

Figure 15-1 presents a program with ON-units established at several levels
of block activation and shows the sequence for iocating them.

Error Handling 231

15.1.3 Completion of ON-Units
PL/I executes an ON-unit as if it were a procedure having no parameters,
that is, by creating a block activation for it and linking it to the block in
which the condition occurred. The ON-unit can complete execution in any
of the following ways:

• If the ON-unit executes a nonlocal GOTO statement, or if it invokes a
subroutine or function that executes a nonlocal GOTO, program con
trol is transferred to that statement and continues sequentially.

• If the ON-unit executes a STOP statement, then the FINISH condi
tion is signaled. If no FINISH ON-unit exists, the program terminates.

• An ON-unit can use the RESIGNAL built-in subroutine to request
that PL/I continue to search for an ON-unit to handle a specific condi
tion.

• Normal completion of any ON-unit (except ERROR signaled
as the default action) results in return of control either to the state
ment that caused the condition or to the statement immediately fol
lowing the statement that caused the condition. However, the effects
of normal return from ERROR, FIXEDOVERFLOW, OVERFLOW,
UNDERFLOW, and ZERODIVIDE are generally unpredictable. Ex
ceptions are cases of ERROR that are specifically documented to allow
normal return, and ON-units that execute as a result of a SIGNAL
statement. In the case of UNDERFLOW, return from the default PL/I
condition handler continues execution, with zero as the result of the
operation that caused the condition.

15.1.4 ON Condition Descriptions
The following paragraphs describe the ON conditions in alphabetic order.

ANYCONDITION Condition
The ANYCONDITION keyword designates an ON-unit established for all
signaled conditions that are not handled by specific ON-units. It is not
defined in the PL/I language, but is provided specifically for use in the
VAXNMS operating system environment. See the VAX-11 PL/I User's
Guide for more information.

232 Chapter 15

t_rj
'"'I
'"'I
0
'"'I

~
PJ
~

~ s·
(JQ

N

A

A: PROCEDURE OPTIONS (MAIN);

ON .FIXEDOVERFLOW BEGIN;

END;
CALL B;

B: PROCEDURE ;

ON UNDEFINEDFILE (PRINTFILE) OPEN
FILE(PRINTFILE) TITLE('SYS$0UTPUT');

B

CALL C;

c

C: ~ROCEDURE; /Fixed overflow signaled

RETURN; /
END;

ON-unit

ON-unit established
in procedure A for
FIXEDOVERFLOW condition

ZK-030-81

~ Figure 15-1: Search for ON-Units

ENDFILE Condition
The ENDFILE condition designates an end-of-file condition for a specific
file. PL/I signals the ENDFILE condition when a GET or READ statement
attempts an input operation on a file or device after the last data item has
been input. The format of the ENDFILE condition name is

ENDFILE (file-reference)

file-reference

The name of a file constant or file variable for which the ENDFILE
ON-unit is established.

An ENDFILE ON-unit can be established for any input file; the meaning
of the end-of-file condition depends on the type of device. For example, it is
signaled for a terminal device when a tTRL/zl is read. For a stream file, end
of-file is signaled whenever a GET statement attempts to access either an
empty file or a file after its last input field has been read. For a record file,
end-of-file is signaled when a READ statement is executed with the file at
the end-of-file position, or when a read is attempted beyond the last record
in the file.

An ON-unit established to handle end-of-file conditions can reference the
ONFILE built-in function to determine the name of the file constant for
which the condition was signaled.

If the ON-unit for the ENDFILE condition does not transfer control else
where in the program, control returns to the statement following the GET
or READ statement that caused the condition to be signaled.

Once the ENDFILE condition is signaled, it remains in effect until the file
is closed. Subsequent GET or READ statements for the file cause the
END FILE condition to be signaled repeatedly.

ENDPAGE Condition
The ENDPAGE condition indicates when end-of-page is reached for a
specific print file. The format of the ENDPAGE condition name is

ENDPAGE (file-reference)

file-reference

The name of the file constant or file variable for which the
ENDPAGE ON-unit is to be established. The file must have the
PRINT attribute.

The maximum number of lines that can be output on a single page is set by
the PAGESIZE option of the OPEN statement. The maximum number of
lines allowed on a single page is 32767. If not specified, PL/I uses the
default page size.

234 Chapter 15

PL/I signals the ENDPAGE condition when a PUT statement attempts to
output a line beyond the last line specified for an output page. When the
ENDPAGE condition is signaled, the current line number associated with
the file is (pagesize+l). An ENDPAGE ON-unit allows you to provide
special processing before output continues on a new page. For example:

ON ENDPAGE <PRINTFILE) BEGINi
PUT FILE <PRINTFILE) PAGEi
PUT FILE (PRINTFILEJ LIST<HEADER_LINEJ;
PUT FILE (PRINTFILEl SKIP(2) i
ENDi

An ON-unit established to handle end-of-page conditions can reference the
ONFILE built-in function to determine the name of the file constant for
which the condition was signaled.

If the ON-unit does not transfer control elsewhere in the program, the line
number is set to 1, and the program continues execution of the PUT state
ment. An ENDPAGE condition can occur only once per page of output. If
the ON-unit does not specify a new page, then execution and output con
tinue. The current line number can increase indefinitely; PL/I does not
signal the ENDPAGE condition again. If, however, a LINE option on a
PUT statement specifies a line number that is less than the current line, a
new page is output and the current· line is set to 1.

If the ENDPAGE condition is signaled during file processing, and no user
supplied ON-unit is present to handle the condition, PL/I starts output on
a new page and continues processing. If the ENDPAGE condition is sig
naled as a result of a SIGNAL statement, the statement following the
SIGNAL statement is executed and no page is output by default.

ERROR Condition
PL/I signals the ERROR condition in the following circumstances:

• When the compiled code or a PL/I routine detects an error for which
no specific condition name exists in the VAX-11 PL/I language

• When the SIGNAL ERROR statement signals the condition

• When a default condition handler was established as a result of
OPTIONS (MAIN), and a condition is signaled for which there is no
corresponding 0 N -unit

When any condition is signaled for which no specific ON-unit is estab
lished, the default PL/I action for all conditions except ENDPAGE and
UNDERFLOW is to signai the ERROR condition.

Any ON-unit being executed can reference the built-in function ONCODE,
which returns the numeric condition value associated with the specific
error that signaled the condition.

Error Handling 235

An ERROR ON-unit can act in the following ways:

• It can execute a nonlocal GOTO to resume normal program execution.

• It can pass control along to the default PL/I condition handler (or to
an ERROR ON-unit established by a containing procedure) by calling
the RESIGNAL built-in subroutine.

• It can terminate normally in cases that are specifically documented to
allow normal return from an ERROR ON-unit. An example of such a
case is a READ statement whose target is too small for the record it
reads. In all other cases, the program continues, but execution is un
predictable.

• It can execute a STOP statement.

FINISH Condition
PL/I signals the FINISH condition in the following circumstances:

• When any procedure in the program executes the STOP statement

• When a procedure that specifies OPTIONS(MAIN) executes a
RETURN statement, or, if the procedure does not execute a RETURN
statement, when its corresponding END statement is executed

• When a program either exits as a result of a call to the system proce
dures SYS$EXIT or SYS$FORCEX (Force Exit), or after it is inter
rupted by an external CTRL key function

• When the SIGNAL FINISH statement signals the condition

If a FINISH ON-unit that executes as a result of a SIGNAL FINISH
statement does not execute a nonlocal GOTO, control returns to the state
ment following SIGNAL FINISH. If the FINISH ON-unit executes as a
result of any of the other three causes listed above, the program terminates.

FIXEDOVERFLOW Condition
The FIXEDOVERFLOW condition indicates that an overflow has occurred
during an operation involving fixed-point numbers. PL/I signals the
FIXEDOVERFLOW condition in the following circumstances:

• When the result of an arithmetic operation on a fixed-point decimal or
binary integer value exceeds the maximum precision of the VAX-11
hardware. The maximum precision allowed for a fixed-point decimal
or binary value is 31 (decimal or binary digits, respectively).

• When the source value of a fixed-point expression exceeds the declared
precision of the target data type in assignment or conversion.

The value resulting from an operation that causes this condition is unde
fined.

236 Chapter 15

Two VAX-11 hardware exceptions result in the FIXEDOVERFLOW con
dition. They are SS$-1)ECOVF (for a fixed-point decimal overflow) and
SS$-INTOVF (for a fixed-point binary integer overflow). An ON-unit that
receives control when FIXEDOVERFLOW is signaled can reference the
ONCODE built-in function to determine which exception has occurred. To
define an O~-unit to respond to either of these errors specifically, use the
VAXCONDITION keyword.

If the ON-unit does not transfer control elsewhere in the program, control
returns to the point at which the condition was signaled, but further execu
tion is unpredictable.

KEY Condition
The KEY condition indicates a key error condition for a specific file. The
format of the KEY condition name is

KEY (file-reference)

file-reference

A reference to the file constant or file variable for which the ON-unit
is to be established.

PL/I signals the KEY condition during an operation on a keyed file when
an error occurs in processing a key. Some examples of errors for which PL/I
signals the KEY condition are

• The record indicated by the specified key cannot be found.

• The key specification required conversion from one data type to an
other, and the conversion is not valid.

• The key is not correctly specified.

• The key of a relative file exceeds the maximum record number speci
fied when the file was created.

An ON-unit established to handle the KEY condition can obtain informa
tion about the condition by invoking the following built-in functions:

• The ONFILE built-in function, which returns the name of the file
being processed when the condition was signaled

• The ONCODE built-in function, which returns the specific condition
value associated with the error

• The ONKEY built-in function, which returns the key value that
caused the condition to be signaled

If the ON-unit does not execute a nonlocal GOTO, control returns to the
statement immediately following the statement that caused the KEY con
dition.

Section 16.5.2 contains an exampie of an ON-unit for the KEY condition.

Error Handling 237

OVERFLOW Condition
During an operation involving floating-point numbers, PL/I adjusts the
exponent of a floating-point value, if possible, to represent the value with
the specified precision. When the result of an arithmetic operation on a
floating-point value exceeds the maximum allowed exponent size of the
VAX-11 hardware, PL/I signals the OVERFLOW condition. The value
resulting from an operation that causes this condition is undefined.

If the ON-unit does not execute a nonlocal GOTO, control returns to the
point of the interruption, but execution is unpredictable.

UNDEFINEDFILE Condition
The UNDEFINEDFILE condition indicates that a specified file cannot be
opened. The format of the UNDEFINEDFILE condition name is

UNDEFINEDFILE (file-reference)

file-reference

A reference to a file constant or file variable for which the ON-unit is
established.

Some examples of errors that CflURe the UNDEFINEDFILE condition are

• The value specified by the TITLE option is an invalid file specifica
tion or the name of a file constant is not a valid VMS file specification,
and no logical name assignment exists.

• The file is opened for input or update, and the specified file does not
exist.

• An existing file is accessed with PL/I file description attributes that
are inconsistent with the file's actual organization.

• Any system-detected file error prevents the file from being accessed.

The UNDEFINEDFILE condition lets you establish an ON-unit to provide
processing when a file cannot be opened, for example, to provide a default
file if no file is specified at run time. The ON-unit can obtain information
about the condition by invoking the following built-in functions:

• The ONFILE built-in function, which returns the name of the file
being processed when the condition was signaled

• The ONCODE built-in function, which returns the specific status
value associated with the error

The action taken on a normal return from the UNDEFINEDFILE condi
tion depends on whether the file was opened explicitly or implicitly:

• If the UNDEFINEDFILE condition was signaled following an explicit
OPEN statement, then the normal action following the ON-unit exe
cution is for the program to continue. If the ON-unit does not transfer

238 Chapter 15

control elsewhere in the program, control returns to the statement
following the OPEN statement.

• If the UNDEFINEDFILE condition was signaled during an implicit
open attempt, the run-time system tests the state of the file. If it is not
open, the ERROR condition is signaled. If the file was opened by the
ON-unit, execution of the I/0 statement continues.

• If an ON-unit receives control when an explicit OPEN results in the
UNDEFINEDFILE condition, and the ON-unit does not handle the
condition by opening the file or by transferring control elsewhere in
the program, control returns to the statement following the OPEN. If
an attempt is then made to access the file with an I/0 statement, the
UNDEFINEDFILE condition is signaled again when PL/I attempts
the implicit open of the file. This time, PL/I signals the ERROR
condition on completion of the ON-unit.

UNDERFLOW Condition
PL/I signals the UNDERFLOW condition when the absolute value of the
result of an arithmetic operation on a floating-point value is smaller than
the minimum value that the VAX-11 hardware can represent. The value
resulting from an operation that causes this condition is set to zero. PL/I
signals-this condition only· in ptt>c-edutes-iri whiCh the-UNDERFLOW op
tion is enabled.

The UNDERFLOW option must be specified in each procedure for which
underflow conditions are to be signaled. Following normal completion of
the default PL/I action, control returns to the point of the interrupt, and
execution continues with zero as the result of the operation. If a program
supplied ON-unit does not execute a nonlocal GOTO, control returns to
the point of the interruption, but execution is unpredictable.

VAXCONDITION Condition
The VAXCONDITION condition name provides a way to signal and han
dle operating system or program-specific condition values. The format of
the VAXCONDITION condition name is

VAXCONDITION (expression)

expression

An expression yielding a fixed binary value. It is evaluated when the
ON statement is executed, not when the condition is signaled.

This condition name is provided specifically for PL;1 procedures that in
teract with VAXNMS operating system routines. For details on using the
VAXCONDITION condition name and the meanings of system- and user
defined values you can specify, see the VAX-11 PL/I User's Guide.

Error Handling 239

ZEROOIVIDE Condition
The ZERODIVIDE condition indicates a divide-by-zero operation. PL/I
signals it when the divisor in a division operation has a value of zero. The
value resulting from such an operation is undefined.

Following normal completion of the ON-unit, control returns to the point
of the interruption, but execution is unpredictable.

15.1.5 ON-Unit Examples
The examples below illustrate some typical ON-units. The first example
establishes an ON-unit for the FINISH condition. The ON-unit ensures
that two files are closed properly, and calls a routine that stops a timer in
an orderly fashion.

ON FINISH BEGINi
CLOSE FILE<INFILE) j

CLOSE FILE<OUTFILE);
CALL TIMER_ENDi
ENDi

Normally, the FINISH ON-unit should be declared in the main procedure;
however, it will be executed on image exit if it is established in any block
that is active when that occurs.

The next example contains an ERROR ON-unit that will terminate a
program in an orderly fashion, should some error occur that is not handled
by a specific ON-unit.

DECLARE STATUS FIXED BINARY(31);

ON ERROR BEGINi
CLOSE FILE <INFILE>;
CLOSE FILE <OUTFILEl i
STATUS= ONCODE<l;
GOTO FINIS;
ENDi

FINIS: RETURN <STATUS);

The ERROR ON-unit provides a cleanup procedure to ensure that the files
identified as INFILE and OUTFILE are properly closed before the image
exits. The ON-unit saves the value returned by ONCODE in the variable
STATUS, and transfers control to a RETURN statement that returns the
numeric value to the caller. If the procedure was invoked by a RUN com
mand, this value is returned to the command interpreter, which in tum
displays on the terminal the mnemonic code for the error and the error
·message.

240 Chapter 15

The next example contains an ON-unit that changes the value of a bit
variable when end-of-file is encountered.

DECLARE STATE_PTR POINTERt
STATE_FILE FILE,
EDF BIT(1) STATIC INIT('O'Bl i

ON ENDFILE(STATE_FILE) EDF= '1'Bi

OPEN FILE(STATE_FILE) INPUT SEQUENTIAL;
READ FILE(STATE_FILE) SET<STATE_PTR);
DD WHILE (.·.EDF);

READ FILE<STATE_FILE) SET(STATE_PTR);
ENDi

The procedure reads the records in the file STATE_FILE until it en
counters end-of-file. At that point, the ON-unit executes and changes the
value of EOF from 0 to 1. This action causes the test in the DO WHILE
statement to fail, terminating the loop that reads the records.

Section 16.5.2 demonstrates an ON-unit that handles errors encountered
during record I/0 operations.

15.2 REVERT Statement

The REVERT statement cancels an ON-unit established for a specified
condition in the current block. Its format is

REVERT condition-name ;

condition-name

The condition name for which the ON-unit is to be reverted. It must
be one of the condition names described in Section 15.1.4.

If no ON-unit is established for the specified condition for the current
block, the REVERT statement has no effect. When the REVERT state
ment is executed for a specific condition for which an ON-unit exists, then:

• If a previous block activation specified an ON-unit for the indicated
condition, that ON-unit will be executed when the condition is sig
naled.

• If no previous block activation specified an ON-unit for the condition,
the default PL/I condition handling is reestablished.

Error Handling 241

15.3 SIGNAL Statement

The SIGNAL statement causes a specified condition to be signaled. Its
format is

SIGNAL condition-name ;

condition-name

The condition to be signaled. It must be one of the condition names
described in Section 15.1.4.

Most conditions occur as a result of a hardware trap or fault, or as a result
of signaling by PL/I run-time procedures. The SIGNAL statement may be
used within a program as a general-purpose communication technique. In
particular, the VAXCONDITION keyword lets you specify unique pro
gram-defined values as well as operating-system-specific values.

15.4 RESIGNAL Built-In Subroutine

The RESIGNAL built-in subroutine is used in an ON-unit to "pass" a
signaled condition, so that the run-time system will attempt to locate
another ON-unit to handle the condition.

RESIGNAL works by setting up the internal mechanism for passing the
signal. It does not, by itself, cause an exit from the ON-unit that calls it.
Instead, it returns to the next statement in the ON-unit. Resignalling does
not occur until execution of the ON-unit is completed.

The format of the RESIGNAL built-in subroutine is

CALL RESIGNAL();

When an ON-unit has determined that it cannot or should not respond to a
condition, RESIGNAL permits the ON-unit to pass the signal along.

This subroutine is not part of the standard PL/I language. It is provided
specifically for use in the V AXNMS operating system environment.

242 Chapter 15

Chapter 16

File Control

This chapter describes file specification syntax, statements, options, and
subroutines of general use for controlling files, as well as techniques for
detecting and responding to errors during file operations. The DECLARE
statement with the FILE option declares a file constant or variable. The
OPEN and CLOSE statements gain and terminate access to files. The
ENVIRONMENT options, specified with the DECLARE and OPEN state
ments and (in some cases) with the CLOSE statement, control the attrib
utes, processing, and disposition of a file. The file-handling built-in sub
routines provide convenient ways of performing common operations. A
final section on error handling describes how to detect an error, determine
its nature, and take steps to correct it. .

The subjects covered here are generally relevant to I/0 operations on all
types of files. The next two chapters describe the two broad categories of
PL/I I/0, stream and record, as well as the statements, files, and file
organization used with each.

16.1 File Control Statements

The DECLARE statement with the FILE attribute declares file constants
and variables. The OPEN and CLOSE statements provide access to a file
and terminate that access, respectively. They are applicable to both
stream and record files.

16. 1.1 Declaring a File
File constants and variables provide your program with access to files.
Your program first declares a file constant or variable, and then associates
the constant or variable with a file when it opens the file. (Section 16.1.2
contains information about opening files.)

A file declaration specifies an identifier, the FILE attribute, and one or
more file description attributes that describe the type of I/0 operation that

243

will be used to process the file. Subsequent l/0 statements denote the file
by a FILE option:

Fl L E(fi le-reference)

where file-reference is the name specified in the file's declaration. For
example:

DECLARE INFILE FILE SEQUENTIAL INPUT;
OPEN FILE(INFILEl i

Here, INFILE is the name of a file constant. A file constant is an identifier
declared with the FILE attribute but not the VARIABLE attribute. Except
for the default file constants SYSIN and SYSPRINT, all files must be
declared before they can be opened and used.

By default, all file constants have the EXTERNAL attribute. Any external
procedure that declares the identifier with the FILE attribute but not the
INTERNAL attribute can access the same file constant and therefore the
same physical file, as long as all other file attributes match.

You can also refer to files using file variables and file-valued functions. For
example:

DECLARE ANYFILE FILE VARIABLE;

ANYFILE = INFILEi
OPEN FILE<ANYFILE);

The OPEN statement opens the file INFILE.

A file variable can also be given a value by passing a file constant as an
argument or by return of a file constant as the value of a function. For
example:

GETFILE: PROCEDURE \PRINTFILEI;
DECLARE PRINTFILE FILE VARIABLE;

This file variable is given a value when the procedure GETFILE is invoked.

Table 16-1 lists the file description attributes that you can use in declara
tions with the FILE attribute. (You can also use these attributes with the
OPEN statement, described in Section 16.1.2.) Section 16.1.2.1 and Chap
ters 17 and 18 contain more information about these attributes and the
operations they denote.

16.1.2 OPEN Statement
The OPEN statement explicitly opens a PL/I file with a specified set of
attributes that describe the file and the method for accessing it. The for
mat of the OPEN statement is

244

OPEN FILE(file-reference)
[file-description-attribute ...] ;

Chapter 16

file-reference

A reference to the file to be opened. If the file is already open, the
OPEN statement has no effect.

file-description-attribute ...

The attributes of the file. They are merged with any permanent at
tributes of the file specified in its declaration. Default rules are then
applied to the union of these sets of attributes to complete the set of
attributes in effect for this opening. (Section 16.1.2.2 describes this
process.)

The attributes and options you can specify on the OPEN statement
are

DIRECT
ENVIRONMENT(option, ...)
INPUT
KEYED
LINESIZE(expression)
OUTPUT
PAGESIZE(expression)

PRINT
RECORD
SEQUENTIAL
STREAM
TITLE(expression)
UPDATE

INPUT, OUTPUT, and TITLE are described in Section 16~1.2.L
ENVIRONMENT and its options are described in Section 16.3.
LINESIZE, PAGESIZE, PRINT, and STREAM are described at the be
ginning of Chapter 17. DIRECT, KEYED, RECORD, SEQUENTIAL, and
UPDATE are described at the beginning of Chapter 18.

Table 16-1: File Description Attributes

Attribute Meaning

DIRECT Records in the file will be accessed randomly only.

ENVIRONMENT Specifies V AXNMS-specific file properties.

INPUT The file is an input file and will only be read.

KEYED Records in the file will be accessed by key.

OUTPUT The file is an output file and will only be written.

PRINT The format of the file will be suitable for output on a
printer or terminal.

RECORD

SEQUENTIAL

STREAM

UPDATE

File Control

The file will be accessed using record I/0 statements.

Records in the file will be accessed sequentially.

The file will be accessed using stream I/0 statements.

The file will be accessed for both reading and writing, and
records may be rewritten and deleted.

245

The following examples demonstrate the OPEN statement.

DECLARE INFILE FILEi

OPEN FILE (INFILE) i

Neither INFILE's declaration nor its open specify any file description at
tributes. PL/I applies the default attributes STREAM and INPUT. If any
statement other than GET is used to process this file, the ERROR condi
tion is signaled.
DECLARE STATE_FILE FILE KEYEDi

OPEN FILE<STATE_FILE) UPDATEi

CLOSE FILE<STATE_FILE) i

OPEN FILE<STATE_FILE) INPUT SEQUENTIALi

The file STATE_FILE is declared with the KEYED attribute, which im
plies the RECORD attribute. On the first OPEN statement that specifies
this file, the file is given the UPDATE attribute and opened for updating;
that is, READ, WRITE, REWRITE, and DELETE statements may be
used to operate on records in the file.

The second OPEN statement specifies the INPUT and SEQUENTIAL
attributes. During this opening, the file may be accessed by sequential and
keyed READ statements; REWRITE, DELETE, and WRITE statements
may not be used.

DECLARE COPYFILE FILE OUTPUT;
OPEN FILE<COPYFILE) TITLE('COPYFILE+DAT I) j

The file associated with the file constant COPYFILE is opened for output.
Each time this program is run, it creates a new version of the stream file
COPYFILE.DAT.

16.1.2.1 General-Purpose Attributes and Options
The INPUT and OUTPUT attributes and the TITLE option are equally
applicable to stream and record files. They are described below.

INPUT Attribute
The INPUT file description attribute indicates that the associated file is to
be an input file; that is, it represents an external source of data. Specify
the INPUT attribute on a DECLARE statement for a file constant or on an
OPEN statement to access the file for reading. For a stream file, INPUT
indicates that the file will be accessed using GET statements; for a record
file, INPUT indicates that it will be accessed using only READ statements.

The INPUT attribute conflicts with the OUTPUT, UPDATE, and PRINT
attributes and with any data type attribute other than FILE.

246 Chapter 16

OUTPUT Attribute
The OUTPUT file description attribute indicates that data is to be written
to, and not road from, the associated external device or file. Specify the
OUTPUT attribute on a DECLARE statement for a file constant or on an
OPEN statement to access the file for writing. For a stream file, OUTPUT
indicates that the file will be accessed using PUT statements; for a record
file, OUTPUT indicates that it will be accessed using only VIRITE state
ments.

The OUTPUT attribute conflicts with the INPUT and UPDATE attrib
utes and with any data type attributes other than FILE.

TITLE Option
The TITLE option is specified in an OPEN statement to designate the
external file specification of the file to be associated with the PL/I file. The
TITLE option can be specified only on the OPEN statement for a file, not
on the DECLARE statement. Its format is

TITLE(expression)

expression

A character-string expression of up to 128 characters, representing an
external file specification for the file.

The file specification can be any valid V AXNMS file specification, device
name, or logical name. When the name given with TITLE does not fully
specify a VAXNMS file or device, VAX-11 PL/I

1. Performs logical name translation.

2. Applies default values given in the DEFAULT-FILE-NAME
option of the ENVIRONMENT attribute.

3. Applies system defaults.

This process is described in more detail in Section 16.2.

16.1.2.2 Opening a File
A file is opened explicitly by an OPEN statement or implicitly by a READ,
WRITE, REWRITE, DELETE, PUT, or GET statement issued for (or
built-in subroutine reference to) a file that is not open. Opening a file
either explicitly or implicitly in PL/I has the following effects:

• Any permanent attributes specified in the DECLARE statement of a
file constant are merged with any attributes specified in the OPEN
statement, or with the attributes implied by the context of the open
ing. (For example, if no attributes are specified for a file in its declara
tion, and the first reference to it is a GET statement, PL/I opens the
file with the INPUT and STREAM attributes.)

File Control 247

• The merged attributes apply to the file for the duration of this opening
only. When the file is closed, only its permanent attributes are re
tained for subsequent openings.

• The file specification is determined, using the value of the TITLE
option. (Section 16.2.1 describes this process.)

• If the file already exists, it is located and its attributes are checked for
compatibility with those specified or implied by the open.

• If the file does not exist, and if the attempted access does not require
that it exist, PL/I creates a new file using the specified or implied
attributes to determine its organization.

• If the open is successful, the file is positioned.

Some of these steps are described in more detail below. If an error occurs
during the opening of a file, the UNDEFINEDFILE condition is signaled.

Establishing the File's Attributes
The file description attributes specified by the opening context are merged
with the file's permanent attributes. Duplicate specification of an attribute
is ailowed only for one that does not specify a value.

If the set of attributes is not complete, it is augmented with implied attrib
utes. Table 16-2 summarizes the attributes that may be added to an in
complete set.

Table 16-2: File Description Attributes
Implied at Open Time

Attribute

DIRECT

KEYED

PRINT

SEQUENTIAL

UPDATE

Implied Attributes

RECORD KEYED

RECORD

STREAM OUTPUT

RECORD

RECORD

If the set of attributes is still not complete, PL/I takes the following steps:

1. If neither STREAM nor RECORD is present, STREAM is supplied.

2. If neither INPUT, OUTPUT, nor UPDATE is present, INPUT is
supplied.

3. If RECORD is specified, but neither SEQUENTIAL nor DIRECT is
present, SEQUENTIAL is supplied.

248 Chapter 16

4. If the file's identifier is associated with SYSPRINT, and the attrib
utes STREAM and OUTPUT are present, PRINT is supplied.

5. If the set contains the LINESIZE option, it must contain STREAM
and OUTPUT. If it contains these attributes and does not contain
LINESIZE, the default system line size value is supplied.

6. If the set contains the PAGESIZE option; it must contain PRINT. If
PRINT is present but PAGESIZE is not, the default PL/I page size
is supplied. ~

7. If the set does not contain TITLE, a default option TITLE(name) is
supplied, where name is the name of the file constant associated
with the file.

The completed set of attributes applies only for the current opening of the
file. The file's permanent attributes, specified in the declaration of the file,
are not changed.

Accessing an Existing File
An open accesses an existing file if the file specified by the TITLE option
actually exists and if the following attributes are present:

• The file is opened for INPUT or UPDATE.

• The file is opened with the OUTPUT attribute and with the
ENVIRONMENT (APPEND) option.

Whenever PL/I accesses an existing. file, its organization is checked for
compatibility with the PL/I attributes specified. If any incompatibilities
exist, the UNDEFINEDFILE condition is signaled.

Creating a File
An open creates a new file if the following are all true:

• The OUTPUT attribute is specified.

• The TITLE option, after logical name translation and the application
of system defaults, specifies a mass storage device, for example, a disk
or a tape.

• The ENVIRONMENT(APPEND) option is not specified.

ENVIRONMENT options can specify the organization and record format
of a new file. If no ENVIRONMENT options are given, the new file's
organization is determined as follows:

• If the KEYED attribute is present, PL/I creates a relative file with a
maximum record size of 480 bytes and a maximum record number
of 0.

File Control 249

• If the PRINT attribute is present, PL/I creates a sequential file having
variable-length records, a maximum record length equal (in bytes) to
the line size (see Section 17.2.1), and a fixed-control field used by PL/I
to store carriage control information.

• If neither KEYED nor PRINT is specified, PL/I creates a sequential
file with variable-length records and a maximum record size of 510.

When you open a file with the RECORD and OUTPUT attributes, you
may use only WRITE statements to access the file. If the file has the
KEYED attribute as well, the WRITE statements must include the
KEYFROM option.

File Positioning
When PL/I opens a file, the initial positioning depends on the type of file
(record or stream), the access mode, and certain ENVIRONMENT op
tions. Sectj.on 17.2 describes file positioning for stream files; Section 18.1,
for record files.

16.1.3 CLOSE Statement
The CLOSE statement dissociates a PL/I file from the physical file with
which it was associated when it was opened. The format of the CLOSE
statement is

CLOSE FILE(file-reference) [ENVIRONMENT(option, ...)];

file-reference

The file to be closed. If it is already closed, the CLOSE statement has
no effect.

ENVIRONMENT(option, ...)

One or more of the ENVIRONMENT options listed below, separated
by commas:

BATCH SPOOL
DELETE TRUNCATE
REWIND-ON-CLOSE

No other ENVIRONMENT options are valid. They are summarized
in Section 16.3.

The following examples illustrate the use of the CLOSE statement.

CLOSE FILE<INFILE);

This CLOSE statement closes the file constant INFILE.

250 Chapter 16

DECLARE STATE_FILE FILE KEYED;

OPEN FILE(STATE_FILEl DIRECT UPDATE;

CLOSE FILE<STATE_FILEl;
OPEN FILE<STATE_FILEJ INPUT SEOUENTIALi

The file STATE_FILE is declared with the KEYED attribute. On the first
OPEN statement that specifies this file, the file is given the DIRECT and
UPDATE attributes and opened for updating; that is, it can be accessed
only by key. The CLOSE statement closes the file, and the second OPEN
statement specifies the INPUT and SEQUENTIAL attributes. The file
may then be accessed sequentially.

16.2 PL/I Files and VAX/VMS File Specifications

In a PL/I program, all I/O operations are performed on a file, using the
name of a file constant or file variable. When the file is opened, PL/I
associates the name of the file constant with a specific device or file on the
computer system.

When a file variable is specified in an OPEN statement or in an I/0
statement, the name used is that of the file constant with which the varia
ble is currently associated. For example:

DECLARE F FILE,
G FILE t.JARIABLE;

G = Fi
OPEN FILE(G);

In this example, F is a file constant and G is a file variable assigned the
value of F. In the OPEN statement, PL/I uses the name F to associate the
PL/I file with a VAXNMS file. The default file would be F.DAT.

The sections that follow describe in more detail how VAX-11 PL/I associ
ates a file constant with a device or file.

16.2.1 The TITLE Option
When you specify the TITLE option on an OPEN statement, you can
include all or part of a VAXNMS file specification to indicate the file or
device to be associated with the PL/I file. The following examples illustrate
the use of the TITLE option.

File Control 251

OPEN FILE <OUTFILE)
TITLE (I 051: [PAYROLL. DAT J JANUARY. LOG; 2 I) ;

This file specification completely defines a file on the local V AXNMS
system.

OPEN FILE (PRINTFILE) PRINT TITLE('LPCO:SAMPLE,DAT');

This output file will be directed to the system printer device named LPCO:;
the listing file will have the title SAMPLE.DAT on its burst page.
V AXNMS spools low-speed VO devices such as printers by accumulating
data for the device in a file, and then queueing the file for processing when
it is closed.

NAME = I TEST I : : COUNT;

OPEN FILE<NEWFILE) OUTPUT TITLE<NAME>;

The specification of this file is determined by the value of COUNT. For
example, if COUNT is 5 when this OPEN statement executes, the file
created is TEST5.DAT.

When no TITLE option is specified, PL/I supplies a default value for the
file's title. The default title is the name of the file constant associated with
the PL/I file. Whenever a title does not completely specify a file, VAX-11
PL/I takes the following steps, in order:

1. It performs logical name translation. If there is a colon(:) present in
the TITLE option, the file system attempts to find an equivalence
name for the portion of the file specification on the left of the colon.
If there are no punctuation marks in the TITLE option, the file
system attempts to find an equivalence name for the entire specifi
cation.

2. It supplies 'missing fields from the value specified in the
DEFAULT_FILE-NAME option of the ENVIRONMENT attrib
ute, if that option is specified.

3. It then applies system defaults to complete the file specification.

If the file specification that is finally achieved is invalid (for example, it
contains a dollar sign or underscore character) or represents an illegal
device or file (for example, an input file cannot be found), the
UNDEFINEDFILE condition is signaled.

16.2.2 Using Logical Names
At the command level before executing a program, you can create a logical
name to assign a VAXNMS file specification to the identifier of a PL/I file

252 Chapter 16

constant or to a value specified in a TITLE option. For example, suppose
your PL/I program declares and opens a file as follows:

DECLARE INFILE FILE;

OPEN FILE <INFILEl RECORD INPUT;

Before running the program, you might associate a V AXNMS file with the
identifier INFILE:

$DEFINE INFILE DB1:CTEMPJA,DAT

The DEFINE command gives the PL/I file INFILE the V AXNMS file
equivalent of DBl: [TEMPJA.DAT. In VAXNMS terms, the name INFILE
is a logical name, and the name DBl:[TEMPJA.DAT is an equivalence
name for the logical name.

You can also use the DEFINE command to specify alternate device or file
equivalents for the PL/I default file constants SYSIN and SYSPRINT. For
example, to redirect output for the default file SYSPRINT, you could
specify a command as follows:

$ DEFINE SYSPRINT TEST.OUT

While this assignment is in effect, any PL/I procedure that outputs data to
SYSPRINT (without opening SYSPRINT with an explicit title) will create
a file named TEST.OUT on the current default device.

Logical names may also be established by other commands. For example,
you can specify a logical name for a device when you enter an ALLOCATE
or MOUNT command while placing the device on line. For example:

$ ALLOCATE
$_Dei.iice: MT:
$_Los_NaMe: INFILE

_MTA1: ALLOCATED

This ALLOCATE command allocates a tape drive and establishes the
logical name INFILE for it. When a PL/I program reads from the file
INFILE, the system will translate the name INFILE and use the tape
MTAl: as the input device.

16.2.3 Process Permanent Logical Names
The system provides every user and every batch job with a default set of
process logical name assignments, which are listed in Table 16-3. Because
the files associated with these assignments exist for the life of the process,
or job, and because they are permanently open, they are called process
permanent files.

File Control 253

Table 16-3: Default Process Logical Names

Logical Name

SYS$1NPUT

SYS$0UTPUT

SYS$ERROR

SYS$DISK

SYS$COMMAND

Default Equivalence Name

Input stream. For an interactive user, this is the terminal
or a command procedure file; for a batch job, the input
command file.

Output stream. For an interactive user, this is the termi
nal; for a batch job, the batch job log file.

Error stream. Unless overridden by the user, it is the
same as SYS$0UTPUT.

Default device and directory.

Default command stream. For an interactive user, this is
the terminal; for a batch job, the batch job input com
mand file.

The default files associated with the GET and PUT statements, SYSIN
and SYSPRINT, are defined by PL/I as follows:

Statement Default PL/I File

GET SYSIN
PUT SYS PRINT

Default TITLE

8Y8$1NPUT
SYS$0UTPUT

Thus, when your program executes a GET statement that does not specify
the FILE option, and if SYSIN was not explicitly opened with a title, the
run-time system and the file system perform the following translations:

1. PL/I attempts to translate the logical name SYSIN. If no logical
name assignment exists for it, PL/I replaces the name SYSIN with
the name SYS$INPUT.

2. The system translates the logical name SYS$INPUT. The resulting
file specification is your current input device.

A similar set of associations occurs when a program executes a PUT state
ment without the FILE option: the resulting output is written to the cur
rent output file, SYS$0UTPUT.

16.2.4 Expanding File Specifications

After logical name translation, the defaults that the VAX-11 PL/I 1/0
system applies are as follows:

Field

node
device
directory
file name

254

System Default Provided

Local system
Current default device
Current default directory
None

Chapter 16

Field System Default Provided

file type DAT
version number For an input file, the most recent version; for an out

put file, the highest existing version number plus 1

16.3 Summary of ENVIRONMENT Options
The options to the ENVIRONMENT attribute provided by VAX-11 PL/I
let you

• Describe the attributes of a file when it is created.

• Request special processing and optimization options when the file is
being read or written.

• Specify the disposition of a file when it is closed.

The options to the PL/I ENVIRONMENT attribute are summarized in
alphabetical order in Table 16-4. The columns in the table provide the
following information:

Option Gives the name of the ENVIRONMENT option and its
argument, if any. An option that does not show an argu
ment may be-specified -with a Boolean- argument.

Usage

Specify at

Gives a brief description of the option.

Specifies when the option is meaningful. The possible
items in this column are

Create-the option can be specified on a DECLARE or
OPEN. It is meaningful only when a file is created.

Open-the option can be specified on a DECLARE or
OPEN. It is meaningful when an existing file is opened.

Close-the option can be specified on a DECLARE,
OPEN, or CLOSE. It takes effect when the file is closed.

Update-the option is meaningful when an existing file
is opened with the UPDATE attribute or with the
ENVIRONMENT option APPEND.

Valid I/0 types Indicates whether the option is valid for stream or rec
ord files.

Default Value Indicates the default value, if any, when the option is
not specified for a file.

Data Type Specifies the required data type of the argument.

The VAX-11 PL/I User's Guide contains complete information and exam
nlt:>Q for ~11 tli"' RNVTR()NMRl\T'T' rmt1nn" .f" ... _..._,_, ... '""".L.L V.L.LV_, 1' .&..&.'1..._,..._,.i..y.&.lr.."I ..&. V_tJlJ.&.V.1..1.i...Jle

File Control 255

~ Table 16-4: Summary of ENVIRONMENT Options 01
~

Specify
Valid

Default
Option Usage 1/0 Data Type

At Types
Value

-----~--··-·· ···--···· ---- --·-···---.. ---------- ~------------------------ - - ---------------~----------

APPEND Places output for a file at the end of Create Record Disabled BIT(l)
a file. Open Stream

BATCH Submits a copy of the file to the sys- Create Record Disabled BIT(l)
tern batch job queue on close. Open Stream

Close

BLOCK_BOUNDARY _FORMAT Indicates that records must not cross Create Record Disabled BIT(l)
block boundaries. Stream

BLOCK-10 Specifies a file will be read or written Create Record Disabled BIT(l)
by blocks instead of records. Open

BLOCK_SIZE(expression) Specifies the size of a block for the Create Record Mount FIXED BIN(31)
creation of a magnetic tape file. Stream value

BUCKET _SIZE(expression) Defines the number of 512-byte Create Record Maximum FIXED BIN(31)
blocks in a bucket for an indexed se- record size
quential or a relative file.

CARRIAGE__RETURN_FORMAT Indicates that records in the file will Create Record Enabled BIT(l)
be printed with default carriage con-
trol.

CONTIGUOUS Specifies that an output file must be Create Record Disabled BIT(l)
placed in a physically contiguous ex- Stream

() tent on the disk. :::;-'
p,

'O CONTIGUOUS_BEST _TRY Requests that if possible an output Create Record Disabled BIT(l) M-
(!) file be placed in a physically contig- Stream
I-" uous extent on the disk.
m

~ Table 16-4 (Cont.): Summary of ENVIRONMENT Options

°' (') Specify
Valid

Default 0 Option Usage 1/0 Data Type ::i At Value M" Types ..,
2..

CREATION_DATE(variable) Overrides default creation data of Create Record Current BIT(64)
file. Stream date and ALIGNED

time

CURRENT _FOSITION Leaves magnetic tape positioned at Create Record Disabled BIT(l)
last close. Open Stream

DEFAULT _FILE_NAME Defines a default file specification Create Record '.DAT' CHAR(128)
(expression) for a file. (_)pen Stream

DEFERRED_ WRITE Requests file system optimization of Create Record Disabled BIT(l)
output. Open

DELETE Specifies that the file be deleted Create Record Disabled BIT(l)
when it is closed. Open Stream

Close

EXPIRATION _ _DATE(variable) Defines the expiration date for a Create Record Creation BIT(64)
magnetic tape file. Stream date ALIGNED

EXTENSION __ SIZE(expression) Specifies a default extension size for Create Record System FIXED BIN(3l)
a disk file. Open Stream default

FILE_ID(variable) Identifies a file by its internal file Create Record n/a (6) FIXED BIN(31)
FILE_ID_ TO (variable) identification. Open Stream n/a (6) FIXED BIN(31)

FILE_SIZE (expression) Defines the initial number of blocks Create Record n/a FIXED BIN(3:t)
to allocate for a file. Stream

N
~
---1

t-..:1 Table 16-4 (Cont.): Summary of ENVIRONMENT Options Cl
00 -------·----------· ------·---------------------------------- - - --- ________________ ,, ____ ,, ___

Sp<~cify
Valid

Default Option Usage 1/0 Data Type
At Types Value

---------~--------------------- - ------------------------- -~----- ~--------------------- --------------------

FIXED_CONTROL_SIZE Defines records as variable length Create Record Disabled FIXED BIN(31)
(expression) with fixed-length control and speci- Op(·n

FIXED_CONTROL_SIZE_ TO fies the size of the fixed control area.
(variable) On open, returns the length of the

fixed control area.

FIXED_LENGTH_RECORDS Specifies a file with fixed-length re- Create Record Disabled BIT(l)
cords of a maximum record size.

GROUP _FROTECTION Defines the type of file access al- Create Record Current CHAR(4)
(expression) lowed to members of the owner's Stream process

group. default

IGNORE_LINE_MARKS Specifies that end-of-line characters Create Stream Disabled BIT(l)
are not to be treated as field delim- Open
iters in GET LIST statements.

INDEX_NUMBER(expression) Specifies the initial index to use in Create Record 0 FIXED BIN(31)
accessing records in an indexed se- Open
quential file.

INDEXED Defines an indexed sequential file. Create Record Disabled BIT(l)
Opm

INITIAL_FILL Requests the file system to leave Open Record Disabled BIT(l)
Q unused space in file index overflow
::r buckets.
~
'C
M- MAXIMUM_RECORD __ NUMBER Specifies the largest record number Create Record 0 FIXED BIN (31) (!)
I-'

(expression) that will be valid for records in a rel-
m ative file.

~ Table 16-4 (Cont.): Summary of ENVIRONMENT Options
ro
CJ Specify

Valid
Default 0 Option Usage 1/0 Data TyJPe ==i At Value rt- Types ...,

2... - ----·---~---------·-

MAXIMUM_RECORD_SIZE Specifies the maximum size that is Create Record 512 bytes1 FIXED BIN (:31)

(expression) valid for any record in the file.

MUL TIBLOCK_COUNT Specifies the number of blocks to al- Create Record Current FIXED BIN (:31)
(expression) locate for file system buffering. Open process

default

MULTIBUFFEFLCOUNT Specifies the number of buffers to al- Create Record Current FIXED BIN(:n)
(expression) locate for file system buffering. Open process

default

NO_SHARE Prohibits all type of shared access to Create Record 2 BIT(l)
the file. Open

0 WNEFLG RO UP(expression) Specifies the group number in the Create Record Current FIXED BIN(:31)
user identification code (UIC) of the Stream process
owner of the file. group

number

OWNEILMEMBER(expression) Specifies the member number in the Create Record Current FIXED BIN(:n)
user identification code (UIC) of the Stream process
owner of the file .. member

number

OWNEFLPROTECTION Specifies the type of file access al- Create Record Current CHAR(4)
(expression) lowed the owner of the file. Stream process

default

1. For sequential files with fixed-length records. For sequential files with variable-length records, the default is 510 bytes.

N For relative files, the default is 480 bytes.
01 2. Disabled if the file is opened for input, enabled if opened for output or update. ~

N Table 16-4 (Cont.): Summary of ENVIRONMENT Options ~
Q

Specify Valid
Default

Option Usage 1/0 Data Type At Types Value

SHARED-READ Allows other users to read records in Create Record 3 BIT(l)
the file. Open

SHARED_ WRITE Allows other users to read and write Create Record Disabled BIT(l)
records in the file. Open

SPOOL Queues a copy of the file to the sys- Create Record Disabled BIT(l)
tern printer when the file is closed. Open Stream

Close

SUPERSEDE Replaces an existing file with the Create Record Disabled BIT(l)
same file name, file type, and ver- Stream
sion number.

SYSTEM_PROTECTION Defines the type of file access al- Create Record Current CHAR(4)
(expression) lowed to users with system user Stream process

identification codes. default

TEMPORARY Specifies a temporary file for which Create Record Disabled BIT(l)
no directory entry is made. Stream

TRUNCATE Truncates a sequential file at its log- Create Record Disabled BIT(l)
ical end-of-file when it is closed. Update Stream

Close

0
::r'
~

"t:l
c-t-
('t)
i-;

I-' 3. EnabJed if the file is opened for input, otherwise disabled. m

~ Table 16-4 (Cont.): Summary of ENVIRONMENT Options
ro
0 Specify Valid

Default 0 Option Usage 1/0 Data Type ~ At Value M- Types ..,
2.. ---- ------~-----------

PRINTER_FORMAT Specifies that records in the file will Create Record Disabled BIT(l)
be printed using printer format car-
riage control embedded in the fixed
control area of the records.

READ__AHEAD Requests file system optimization on Open Record Enabled BIT(l)
read operations. Stream

READ_ CHECK Requests verification of read opera- Create Record Disabled BIT(l)
tions. Open Stream

HECORD__lD _ _ACCESS Indicates that records will be ac- Create Record Disabled BIT(l)
cessed by internal file system identi- Open
fication.

RETRIEV AL __ POINTERS Specifies the number of file system Create Record Current FIXED BIN(31)
(expression) extent pointers to maintain for file Open Stream system

access. default

REWIND_ON_CLOSE Requests that a magnetic tape vol- Create Record Disabled BIT(l)
ume be rewound when the file is Open Stream
closed. Close

REWIND_ON_OPEN Requests that a magnetic tape vol- Create Record Enabled BIT(l)
ume be rewound when the file is Open Stream
opened.

SCALARVARYING Specifies that varying character Create Record Disabled BIT(l)
strings will be read/written using the Open

N entire storage of the variable.
~ -

N
~
N

CJ
t:J""
P:>

'O
M
(t) ..,
!--"'
O':I

Table 16-4 (Cont.): Summary of ENVIRONMENT Options
----------·---------- ---~--------------··-·-·-------·-----·-···--····-

Specify Option Usage
At

WORLD_PROTECTION Specifies the type of file access al- Create
(expression) lowed to general system users.

WRITE_BEHIND Requests file system optimization on Create
output operations. Update

WRITE_ CHECK Requests verification of output oper- Create
ations. Update

Valid
Default

1/0 Data Type
Types

Value

Record Current CHAR(4)
Stream process

default

Record Disabled BIT(l)
Stream

Record Disabled BIT(l)
Stream

16.4 Summary of File-Handling Built-In Subroutines

features available through the options of the ENVIRONMENT attribute,
there are also several built-in file-handling subroutines. These subroutines
invoke VAX-11 RMS procedures. They are "builtin" because you do not
need to declare them before using them in a PL/I program. These sub
routines are summarized in Table 16-5, and described in the sections that
follow.

Table 16-5: Summary of File-Handling Built-in Subroutines

Subroutine Function

DISPLAY Returns information about a file

EXTEND Allocates additional disk blocks for a file

FLUSH Requests the file system to write all buffers onto disk to
preserve the current status of a file

NEXT_ VOLUME Begins processing the next volume in a multivolume tape
set

REWIND Positions a file at its beginning or at a specific record

SPACEBLOCK Positions a file forward or backward a specified number
of blocks

16.4.1 DISPLAY Built-In Subroutine
The DISPLAY built-in subroutine returns information about a specified
file. Its calling sequence is

CALL DISPLAY (file-reference.variable-reference) ;

file-reference

Specifies the file variable or constant for which information is to be
obtained. If the file is not currently open, the DISPLAY subroutine
implicitly opens it with the attributes specified in the file's declara
tion.

variable-reference

Specifies the name of a structure variable in which information about
the file is to be placed.

The format of the data returned by DISPLAY is defined in the data struc
ture PLl_FILE-DISPLAY. This structure is declared in the text module
PLLFILE-DISPLAY in the default INCLUDE library PLISYSDEF (the
PL/I compiler searches this library by default when it compiles a PL/I
program). Each member of PLl_FILE-DISPLA Y contains, on return

File Control 263

from a call to DISPLAY, a value associated with the file for which informa
tion is requested. To reference a value, you need only refer to the corre
sponding member name in the structure. Tables 16-6 through 16-8 sum
marize the members of the structure in the following categories:

• Members containing information about the settings of
ENVIRONMENT options (listed in Table 16-6)

• Members containing information on file attributes (listed in Table
16-7)

• Members containing information on device attributes (listed in Table
16-8)

The structure PLI-FILE__DISPLA Y is declared with the BASED attrib
ute; thus, to use this variable, you must also declare a pointer variable to
reference the structure and use an ALLOCATE statement to allocate stor
age for it before calling DISPLAY. For example:

%INCLUDE PLI_FILE_DISPLAY;
DECLARE STATE_FILE FILE RECORD KEYED,

FILEPTR POINTERi
OPEN FILE<STATE_FILE>;
ALLOCATE PLI_FILE_DISPLAY SET <FILEPTR>;
CALL DISPLAY (5TATE_FILE1

FILEPTR->PLI_FILE_DISPLAYl;

Following this call to DISPLAY, you can reference any of the members of
FILEPTR->PLLFILE_DISPLAY to determine information about the file
STATE-FILE. The next statements use the EXPANDED-TITLE field to
display the expanded file specification of ST ATE_FILE, and the
INDEXED and NUMBER-OF-KEYS fields to display the number of
keys in the file:
PUT SKIP EDIT ('Fi le' 1FILEPTR->E>:PANDED_ TITLE,

'opened for inPut')
<A 1)-\ 1A ,}(1Al;

IF FILEPTR->INDEXED THEN PUT SKIP EDIT
('It is indexed •Aiith',

FILEPTR->NUMBER_OF_KEYS1'Keys')
<A,}(1F(3l ,).; ,A);

If you do not use the structure PLI-FILE-DISPLA Y, as shown in the
example, you must provide a structure with the same declaration. To ob
tain a copy of PLI_FILE-DISPLA Y, use the LIBRARY command, as in
this example:
$ LIBRARY/TEXT/EXTRACT=PLI_FJLE_DISPLAY
$_/QUTPUT=FILESTRUC, PLI SYSSLIBRARY:PLISYSDEF

where FILESTRUC.PLI is the name of the output file into which the
LIBRARY command will copy PLI-FILE-DISPLA Y.

Table 16-6 summarizes the values returned by
DISPLAY that correspond to ENVIRONMENT options and the data type
of each structure member.

264 Chapter 16

~ Table 16-6: ENVIRONMENT Option Values Returned by DISPLAY
c:o
(')
0 ::s
M-
1-j

2..

~
~
01

APPEND

BATCH

Member Name

BLOCK-130UNDARY __ FORMAT

BLOCK_IO

BLOCK __ SIZE

BUCKET __ SIZE

CARRIAGE __ HETURN __ FORMAT

CONTIGUOUS

CONTIGUOUS __ BEST __ TRY

CREATION_DATE

CURRENT__P'OSITION

DEFERRED_ WRITE

DELETE

EXPIRATION_DATE

EXTENSION __ SIZE

FILE_ID(6)

FILE __ SIZE

FIXED __ CONTROL __ SIZE

Data Type of
Value Returned

BIT(l)

BIT(l)

BIT(l)

BIT(l)

FIXED BIN(31)

FIXED BIN(31)

BIT(l)

BIT(l)

BIT(l)

BIT(64)

BIT(l)

BIT(l)

BIT(l)

BIT(64)

FIXED BIN(31)

FIXED BIN(31)

FIXED BIN(31)

FIXED BIN(31)

Meaning

APPEND option is enabled/disabled

BATCH option is enabled/disabled

Records cannot cross block boundaries

File is opened for block 1/0

Block size of file (magtape files only)

Bucket size of file (disk files only)

Records have carriage return carriage control

CONTIGUOUS option is enabled/disabled

CONTIGUOUS-13EST __ TRY option is enabled/disabled

Creation date of file

CURRENT__pOSITION option is enabled/disabled

DEFERRED __ WRITE option is enabled/disabled

DELETE option is enabled/disabled

Expiration date (magnetic tape files only)

Current extension size (disk files only)

File identification (disk files only)

File allocation (disk files. only)

Size of fixed control area

N Table 16-6 (Cont.): ENVIRONMENT Option Values Returned by DISPLAY ~
~

Member Name
Data Type of

Meaning
Value Returned

FIXED_LENGTH_RECORDS BIT(l) File has fixed-length records

GROUP _pROTECTION CHAR(4) VARYING Protection for group members

IGNORE_LINE_MARKS BIT(l) IGNORE_LINE_MARKS option is enabled/disabled

INDE:x_NUMBER FIXED BIN(31) Current index number

INDEXED BIT(l) File is/is not an indexed sequential file

INITIA~ILL BIT(l) INITIA~ILL option is enabled/disabled

MAXIMUM__RECORD __ NUMBER FIXED BIN(31) Relative file maximum relative record

MAXIMUM__RECORD __ SIZE FIXED BIN(31) Largest record size

MULTIBLOCK_COUNT FIXED BIN(31) Multiblock count (disk files only)

MULTIBUFFER._COUNT FIXED BIN(31) Multibuffer count

NO_SHARE BIT(l) NO_SHARE option is enabled/disabled

OWNER-GROUP FIXED BIN(31) Group number of file's owner

OWNER-MEMBER FIXED BIN(31) Member number of file's owner

OWNER_FROTECTION CHAR(4) VARYING Protection for file's owner

RETRIEV AL_pQINTERS FIXED BIN(31) Number of mapping pointers
(J PRINTER-FORMAT BIT(l) Records have printer carriage control ::r'
~

'O READ-----.AHEAD BIT(l) READ-----.AHEAD option is enabled/disabled .-1-
(I) ..,

READ_ CHECK BIT(l) READ_CHECK option is enabled/disabled
m

~ 1rable 16-6 (Cont.): ENVIRONMENT Option Values Returned by DISPLAY
c:o
n
0
~
M.,
8..

N
a')
-.'.I

Member Name

HECORD-1D _ _ACCESS

HEWIND_ON __ CLOSE

HEWIND_ON __ OPEN

SCALARV ARYING

SHARED-READ

SHARED_ WRlTE

SPOOL

SUPERSEDE

SYSTEM__FROTECTION

TEMPORARY

TRUNCATE

WORLD__FROTECTION

WRITE_BEHIND

WRITE_CHECK

Data Type of
Value Returned

BIT(l)

Meaning

File is opened for access by record identification

BIT(l) REWIND_ON_CLOSE option is enabled/disabled

BIT(l) REWIND_ON_OPEN option is enabled/disabled

BIT(l) SCALARVARYING option is enabled/disabled

BIT(l) SHARED-READ option is enabled/disabled

BIT(l) SHARED_WRITE option is enabled/disabled

BIT(l) SPOOL option is enabled/disabled

BIT(l) SUPERSEDE option is enabled/disabled

CHAR(4) VARYING Protection for system users

BIT(l) TEMPORARY option is enabled/disabled

BIT(l) TRUNCATE option is enabled/disabled

CHAR(4) VARYING Protection for world users

BIT(l) WRITE_BEHIND option is enabled/disabled

BIT(l) WRITE_CHECK option is enabled/disabled

Table 16-7 summarizes the file attribute information returned by
DISPLAY, including

• PL/I file description attributes and options specified for the file.

• The file's organization, expanded file specification, and, for an in
dexed sequential file, the number of keys it has.

All names in Table 16-7 are second-level members of the structure
PLLFILE-DISPLA Y.

Table 16-8 lists the names of the structure members that contain informa
tion about the device to which a file is written or from which the file is to be
read. All of the names in Table 16-8 are third-level members of the struc
ture PLI-FILE_DISPLAY; they each appear within the following minor
structures, which have identical declarations:

•DEVICE

• SPOOLING-DEVICE

If the field PLI-FILE_DISPLA Y.DEVICE.SPL is true, then the members
of the minor structure DEVICE contain information about the device that
is spooled, and the members of the minor structure PLI_FILE_
DISPLA Y.SPOOLING_DEVICE contain information about the interme
diate, or spooling, device.

All fields within these structures are BIT(l) values.

16.4.2 EXTEND Built-In Subroutine
The EXTEND built-in subroutine increases the amount of space allocated
to a disk file. Its calling sequence is

CALL EXTEND (file-reference,integer-expression) ;

file-reference

Specifies the name of a file variable or constant associated with the
file to be extended. If the file is not currently open, the EXTEND
subroutine opens it with the OUTPUT attribute in order to extend it.

integer-expression

268

Is a fixed binary expression in the range 0 to 4,294,967,295, specifying
the number of 512-byte disk blocks to be added to the file. If 0 is
specified, PL/I uses the default extension quantity for the file.

To specify a value larger than 2,147,483,647 (the largest value that
can be contained in a fixed binary integer in PL/I), you must express
the number as a negative value; RMS interprets the number as an
unsigned integer.

Chapter 16

Use the EXTEND built-in subroutine to explicitly extend a file during
processing. Normally, whenever an output operation causes a file to exceed
its allocated space, RMS extends it automatically, using the current exten
sion size value. The default value that RMS uses to extend a file is set by
the ENVIRONMENT option EXTENSJON_SIZE.

Table 16-7: File Attribute Information Returned by DISPLAY

Member Name
Data Type of

Meaning
Value Returned

COLUMN_NUMBER FIXED BIN(31) Current column (stream output files
only)

DIRECT BIT(l) File has/does not have DIRECT
attribute

EXPANDED_ TITLE CHAR(128) VARYING Expanded file specification

FILE_ORGANIZATION CHAR(3) SEQ, REL, or IDX

FORTRAN_FORMAT BIT(l) File has/does not have FTN (ASA)
carriage control

INPUT BIT(l) File has/does not have INPUT
attribute

KEYED BIT(l) File has/does not have KEYED
attribute

LINE_NUMBER FIXED BIN(31) Current line number (stream output
files only)

LINESIZE FIXED BIN(31) File's line size (stream output files
only)

NUMBER-OF _KEYS FIXED BIN(31) Number of keys (indexed sequential
files only)

OUTPUT BIT(l) File has/does not have OUTPUT
attribute

PAGE_NUMBER FIXED BIN(31) Current page number (PRINT files
only)

PAGESIZE FIXED BIN(31) Page size (PRINT files only)

PRINT BIT(l) File has/does not have PRINT
attribute

RECORD BIT(l) File has/does not have RECORD
attribute

SEQUENTIAL BIT(l) File has/does not have SEQUEN-
TIAL attribute

STREAM BIT(l) File has/does not have STREAM
attribute

UPDATE BIT(l) File has/does not have UPDATE
attribute

File Control 269

Table 16-8: Device Information Returne~ by DISPLAY

Member
Name

ALL

AVL

CCL

DIR

DMT

ELG

FOD

FOR

GEN

IDV

MBX

MNT

NET

ODV

RCK

REC

RND

RTM

SDI

SHR

SPL

SQD

SWL

TRM

WCK

Meaning

Device is/is not allocated.

Device is/is not online and available.

Device has carriage control.

Device is/is not directory structured.

Device is/is not marked for dismounting.

Device is/is not enabled for error logging.

Device is/is not file-oriented.

Device is/is not a foreign device.

Device is/is not a generic device.

Device is/is not capable of input.

Device is/is not a mailbox.

Device is/is not mounted.

Device is/is not a network device.

Device is/is not capable of output.

Device performs read checking.

Device is/is not a record-oriented device (terminal or
line printer, for example).

Device is/is not random-access device.

Device is/is not a real-time device.

Device has a master directory only.

Device is/is not shareable.

Device is/is not spooled.

Device is/is not sequential block-oriented (magnetic
tape).

Device is/is not currently software write-locked.

Device is/is not a terminal.

Device performs write checking.

You can improve the performance of a program that is going to add a large
number of records to a file by an explicit call to EXTEND before records
are added. RMS does not then need to extend the file during the actual 1/0
operations.

270 Chapter 16

16.4.3 FLUSH Built-In Subroutine
The FLUSH built-in subroutine writes all RMS buffers that have been
modified and preserves all the attributes of the file. This subroutine pro
vides the ability to checkpoint a file during its processing and ensure its
integrity. Its calling sequence is

CALL FLUSH (file-reference);

file-reference

Specifies the name of the file variable or file constant associated with
the file whose buffers are to be flushed. If the file is not currently
open, the FLUSH subroutine performs no operation.

Use the FLUSH subroutine to explicitly request RMS to write all internal
file buffers back to the file. This subroutine is called implicitly by the
REWIND and NEXT_ VOLUME built-in subroutines.

16.4.4 NEXT_VOLUME Built-In Subroutine
The NEXT_ VOLUME built-in subroutine performs the positioning and
labeling functions necessary when the next volume is required during 1/0
to a magnetic tape file that spans more than one physical tape volume. Its
calling sequence is

CALL NEXT _VOLUME (file-reference);

file-reference

Specifies the name of the file constant or file variable associated with
the tape volume set being P.rocessed. If the file is not currently open,
the NEXT_ VOLUME subroutine implicitly opens it with the attrib~
utes specified in the file's declaration.

When a multivolume tape file is being read or written, volume switching is
normally transparent to the PL/I program. RMS, and the magnetic tape
Ancillary Control Program (ACP), perform all the steps necessary to ensure
that the next required volume is physically mounted, initialized, and veri
fied.

However, when a program wishes to advance to the next volume before
reaching the end of the current volume on input, or before the end of the
tape is reached on output, it can call the NEXT_ VOLUME built-in sub
routine. This subroutine performs all the necessary volume checking when
a multivolume tape file is being read. When a file is being written, the
subroutine writes the appropriate information on the output tapes.

File Control 271

16.4.5 REWIND Built-In Subroutine
The REWIND built-in subroutine positions a file so that the next record to
be read will be the first record in the file or index. Its calling sequence is

CALL REWIND (file-reference);

file-reference

Specifies the name of the file constant or file variable associated with
the file to be rewound. If the file is not currently open, the REWIND
subroutine implicitly opens it with the attributes specified in the
file's declaration.

Use this subroutine to begin processing a file at its logical beginning. This
subroutine is valid for disk files of all organizations and for sequential files
on tape volumes. The position of the file following the call to the REWIND
subroutine is as follows:

• For a sequential file, the REWIND subroutine positions the file at its
first record.

• For a relative file, the REWIND subroutine positions the file at its
first occupied cell.

• For an indexed sequential file, the REWIND subroutine positions the
file at the lowest key value in the current index.

• If a magnetic tape file is on a single volume, the volume is rewound. If
the tape file exists on a multivolume tape set, the REWIND subrou
tine rewinds the file to the beginning of the volume set.

16.4.6 SPACEBLOCK Built-In Subroutine
The SPACEBLOCK built-in subroutine positions a file forward or back
ward a specified number of blocks. This subroutine can be used to process
unlabeled magnetic tapes, as well as sequential disk files being processed
with block 1/0. Its calling sequence is

CALL SPACEBLOCK (file-reference.integer-expression);

file-reference

Specifies the name of the file constant or file variable to be spaced. If
the file is open, it must have been opened with the BLOCK-10
option. If the file is not open, the SPACEBLOCK subroutine opens it
with the BLOCK-10 option.

integer-expression

272

Is a fixed binary expression specifying the number of blocks to be
spaced forward or backward. If the expression is negative~ the file is
spaced backward the specified number of blocks; if positive, forward
the specified number of blocks.

Chapter 16

16.5 File Error Handling

V AX-11 PL/I uses the standard PL/I 0 N condition names to signal run
time errors that occur during file operations. The ON conditions that are
signaied, -and the circumstances under which they are signaled, are as
follows:

• The UNDEFINEDFILE condition is signaied whenever a file cannot
be opened.

• The ENDFILE condition is signaled when the end-of-file is reached
during an input operation.

• The ENDPAGE condition is signaled for a file with the PRINT attrib
ute when the current line number exceeds the page size specified for
the file.

• The KEY condition is signaled for a file with the KEYED attribute
when any error occurs involving the interpretation, writing, or specifi
cation of a key.

• The ERROR condition is signaled for all other file-related errors.

To handle any of those conditions in a PL/I procedure, you can establish an
ON-unit to receive control if the specified condition is signaled. For exam
ple:

ON UNDEFINEDFILE (lNFILE) OPEN FILE <INFILE)
TITLE (1 SYS$INPUT I);

The ON statement provides a default title for the file INFILE.

16.5.1 Values Returned by PL/I Built-In Functions
An ON-unit can be a generalized error-handling routine, written so that it
responds to specific errors or so that it prints an error message. The PL/I
built-in functions that provide meaningful information in an ON-unit to
handle a file system error are

• ONCODE

• ONFILE

• ONKEY

Whenever an error is signaled, the built-in function ONCODE makes
available the condition value associated with the specific error. When a
PL;1 program is executing under control of the V AXNMS operating sys
tem, the value returned by the ONCODE built-in function is a unique 32-
bit condition value from the system, from RMS, or from the PL/I run-time
system, which indicates the reason for the error. Section 16.5.2 contains an
example of an ON-unit that examines the value returned by ONCODE.

File Control 273

The built-in function ONFILE returns a character string giving the name
of the file constant on which the error occurred.

If the file was being accessed by key, the ONKEY built-in function returns
the key value that caused the error to be signaled.

16.5.2 Writing an Error Handler
You can write an ON-unit to detect and correct errors that occur during file
operations. The example below illustrates an ON-unit that detects whether
a record with a given key value was not found or whether an attempt was
made to write a record whose key duplicates the value of an existing key.

ON KEY<STATE_FILEl BEGIN;
DECLARE <RMSS_RNF, RMS$_DUPi GLOBALREF

FIXED BINARY<31l VALUE;

'* ChecK for a record not found */
IF ONCODE<l = RMSS_RNF THEN DO; I* if record not found*/

PUT SKIP EDIT(STATENAME,;Not found,')

STOP;
ENDi

(A,;.(tA);

I* Check for duplicate keY *I
ELSE IF ONCODE = RMS$_DUP THEN oo;

END;

PUT SKIP EDIT('Record already exists for·
:3TATENAME)

STOP i
ENDi

(A,;.; tA);

In this example, the ON-unit declares symbolic names for two specific
status values returned by ONCODE:

• The value RMS$_RNF indicates that no record exists with the speci
fied key value.

• The value RMS$_DUP indicates that a record already exists with the
specified key in an index for which duplicate keys are not allowed.

In an ON-unit for the KEY condition, ONCODE may also return the value
associated with the status code RMS$_KEY. This code indicates that a
key value is invalid; for example, it is an incorrect data type.

The symbolic names for RMS status codes must be declared with the
GLOBALREF and VALUE attributes because the names are defined as
global symbols by the VAXNMS system.

274 Chapter 16

16.5.3 Default Error Handling
If a file system error occurs during the execution of a PL/I statement, the
PL/I run-time system signals either the specific PL/I condition name or the
ERROR condition. If no user-specified ON-units exist to handle either the
specific PL/I condition or the ERROR condition, PL/I performs its default
condition handling.

If any active procedure specified OPTIONS (MAIN), a default PL/I condi
tion handler is present and executed. It prints a PL/I run-time error mes
sage. If there is no default PL/I handler, the error signal is passed to the
default condition handler established by V AXNMS, which prints the mes
sage associated with the RMS error. If the error was a fatal error, the
handler terminates the program; otherwise, the program continues.

The following example illustrates the type of message that the PL/I run
time system displays when an error occurs during an 1/0 operation:

%PLI-F-ERRORt PL/I ERROR condition.
-PLI-I-IOERRORt I/O error on file 'STATE_FILE'
-PLI-I-FILENAME1 File naMe:

'_DB7:[PROJECTJSTDATA.DATi'
-PLI-I-NOTKEYDt Not a KEYED file.
%TRACE-F-TRACEBACK, SYMbolic stack duMP follows

fTl 0dIJ1 e routine
n ar11e n ar!le 1 in e relatit.ie PC absolute PC

FLOWERS BEG I N'i.'.35 35 00000085 OOOOOCBB
FLOWERS BEG I N'X.29 29 OOOOOOBD OOOOOC02
FLOWERS FLOWERS 25 00000003 OOOOOB42

In this example, the error occurred because a keyed 1/0 statement was
specified for a file lacking the KEYED attribute. For an explanation of the
information in a traceback message, see Section 5.1.2.

File Control 275

Chapter 17

Stream Input/Output

Stream 1/0 is one of the two general kinds of I/0 performed by PL;l (record
I/0, described in Chapter 18, is the other). In stream 1/0, more than one
record or line can be processed by a single statement, and, conversely,
multiple statements can process a single line or record. In record I/O, only
one record of a file is processed by each READ or WRITE statement.

Stream input and output are performed by the statements GET and PUT,
respectively. Both statements can perform either list-directed or edit-di
rected operations.

This chapter describes

• Statements used for stream I/0-GET, PUT, and FORMAT.

• Processing and positioning that take place during stream I/0 opera
tions.

• Format items and methods of combining them into format specifica-
tions for edit-directed stream I/0 operations.

The rest of this section describes the attributes and options applicable to
stream I/0. You can use PRINT and STREAM when you declare a file or
when you open it. LINESIZE and PAGESIZE are only valid when you
open the file.

LINESIZE Option
The LINESIZE option specifies the maximum number of characters that
can be output in a single line when the PUT statement writes data to a file
with the STREAM and OUTPUT attributes. Its format is

LIN ESIZE(expression)

expression

A fixed-point binary expression in the range 1 to 32767, giving the
number of characters per line.

The value specified in the LINESIZE option is used as the output line
length for all subsequent output operations on the stream file, overriding
the system default line size.

276

The default line size is as follows:

• If the output is to a physical record-oriented device, such as a line
printer or terminal, the default line size is the width of the device.

• If the output is to a print file, the default line size is 132.

• If the output is to a nonrecord device (magnetic tape), the default line
size is 510.

The line size is used by output operations to determine whether output will
be placed on the current line or on the next line.

PAGESIZE Option
The PAGESIZE option is used in the OPEN statement to specify the
maximum number of lines that can be written to a print file without
signaling the ENDPAGE_condition. The PAGESIZE option is valid only
for print files. Its format is

PAGESIZE(expression)

expression

A fixed-point binary expression in the range 1 to 32767, giving the
number of lines per pag~. The maximum value for a print file's page
number is 32767. If a program generates a value in excess of 32767, a
run-time error occurs.

The value specified in the PAGESIZE option is used as the output page
length for all subsequent output operations on the print file, overriding the
system default page size (see Section 17.2.2). During output operations, ~he
ENDPAGE condition is signaled the first time that the specified page size
is exceeded.

PRINT Attribute
The PRINT attribute is used to declare a print file. The file SYSPRINT,
used as the default output by PUT statements, is also a print file.

Print files are stream output files with special formatting characteristics
(see Section 17 .2.2). The PRINT attribute implies the OUTPUT and
STREAM attributes, and conflicts with the INPUT, RECORD, UPDATE,
KEYED, SEQUENTIAL, and DIRECT attributes.

STREAM Attribute
The STREAM file description attribute indicates that the file consists of
ASCII characters and that it will be processed using GET and PUT
statements.

The STREAM attribute is implied by the PRINT attribute. It is also
supplied by default for a file that is implicitly opened with a GET or PUT

Stream Input/Output 277

Specify the STREAM attribute in a DECLARE statement for a file identi
fier or in the OPEN statement that opens the file.

The STREAM attribute directly conflicts with the RECORD, KEYED,
DIRECT, SEQUENTIAL, and UPDATE attributes.

17 .1 Statements lor Stream 110
The three sections that follow describe the GET, PUT, and FORMAT
statements.

17 .1.1 GET Statement
The GET statement acquires data from an input stream, which is either a
stream file or a character-string expression. The input file may be a file
declared with the STREAM attribute, or it may be the default file SYSIN,
which is commonly associated with the user's default input device.

The GET statement has several forms. They are summarized in Figure
17-1 and described bf:'low.

GET EDIT (input-target• •...) (format-specification, ...)

[

FILE(file-reference)* l
[SKIP[(expression)]]•
[OPTIONS(option, ...)]*

STRING(expression)*

GET LIST (input-targe1*, ...)

[
FILE(file-reference)*

l [SKIP[(expression)]]•
[OPTIONS(option, ...)]*

STAI NG(expression)*

GET [FILE(file-reference)]* SKIP [(expression)] ;

Options•
NO_ECHO
NO_FILTER
PROM PT(expression)
PURGE._ TYPE.__AHEAD

•Syntax elements common to two or more forms

ZK-031-81

Figure 17-1: Forms of the GET Statement

278 Chapter 17

17 .1.1.1 Common Syntax Elements
The syntax elements flagged with a star in Figure 17-1 are common to two
or more forms of the GET statement. This section describes those eie
ments. The sections that follow describe aspects of GET EDIT, GET LIST,
and GET SKIP that are unique to each form.

input-target

The names of one or more variables to be assigned values from the
input stream. The input targets must be separated by commas. An
input target has the following forms:

1. Reference

where the reference is to a scalar or aggregate variable of any
computational type. If the reference is to an array, data is as
signed to array elements in row-major order. If the reference is to
a structure, data is assigned to structure members in the order of
their declaration.

2. (input-target, ... DO reference=expression[TO expression]
[BY expression] [WHILE (expression) [UNTIL(expression)])

where the input target may be of any of these forms, and the
feferences and expressions are as for the DO statement. Notice
that the parentheses surrounding this form of input target are in
addition to those surrounding the entire input list.

3. (input-target, ... DO reference=expression [REPEAT expression]
[WHILE (expression)[UNTIL (expression)])

where the input target may be of any of these forms, and the
references and expressions are as for the DO statement. Notice
that the parentheses surrounding this form of input target are in
addition to those surrounding the entire input list.

FILE(file-reference)

An option specifying that the input stream is a file; the reference is to
a declared file variable or constant. If neither the FILE option nor the
STRING option is specified, PL/I assumes the file SYSIN. This file is
associated with the default system input file SYS$INPUT, which is
usually a terminal.

If a file is specified but not currently open, PL/I opens it with the
attributes STREAM and INPUT. The UNDEFINEDFILE condition
is signaied if the file cannot be opened.

STRING(expression)

An option specifying that the input stream is a character-string ex-

Stream Input/Output 279

pression. The STRING option cannot be used with the FILE option,
nor can it be used with the OPTIONS or SKIP option.

SKIP [(expression)]

An option that advances the input file a specified number of lines
before processing the input list. It may be used only with the implied
or explicit FILE option. The expression, if specified, indicates the
number of lines to be advanced; if it is omitted, the default is to skip
to the next line. The SKIP option is always executed first, before any
other input or positioning of the input file, and regardless of its posi
tion in the statement.

OPTIONS (option, ...)

An option that specifies one or more of the following options. It may
be used only with the default or explicit FILE option; it cannot be
used with the STRING option. The options must be separated by
commas and enclosed in parentheses.

NO_ECHO

Specifies, when the input device is a terminal, that the data entered
at the terminal will not be displayed as it is entered. This option is
ignored for other input devices.

NO_FILTER

Specifies, when the input device is a terminal, that the recognition of
tTRL/uJ, ~, and the @ill key is to be suppressed. These characters
are interpreted as terminators. This option is ignored for other input
devices.

PROMPT (string-expression)

Specifies, when the input device is a terminal, a character-string
prompt to be displayed prior to actual input. The string expression
can be 1 to 254 characters long.

PURGE_TYPE_AHEAD

Specifies, when the input device is a terminal, that all data in the
terminal's type-ahead buffer be deleted before the input operation.
This option is ignored for other input devices.

17.1.1.2 GET EDIT
The GET EDIT statement acquires fields of character-string data from an
input stream (a stream file or a character-string expression). The stream
file may be a declared file or the default file SYSIN. GET EDIT converts
the character strings under control of a format specification and assigns the
resulting values to a specified list of input targets (variables). It also allows
input of characters from selected positions in the input stream.

280 Chapter 17

The form of the GET EDIT statement is

GET EDIT (input-target, ...) (format-specification, ...)

r
FILE(file-reference) ~

[SKIP[(expression)]]
[OPTIONS(option, ...)J

lsTRING(expression) J
input-target

The names of one or more variables to be assigned values from the
input stream; described fully in Section 17.1.1.1. For a discussion of
the matching of format items to input targets, see Section 17.3.

format-specification

A list of format items to control the conversion of data items in the
input list. Section 17 .3 describes format items and specifications.

FILE(file-reference)
STRING(expression)
SKIP [(expression)]
OPTIONS (option, ...)

These common syntax elements are described in Section 17.1.1.1.

The following examples demonstrate GET EDIT.

GET EDIT <FIRST1MID_INITIAL1LAST>
<A< 12) 1A(1) 1A(20)) j

This statement reads the next 33 characters from the default stream input
file (SYSIN) and assigns them to FIRST (12 characters), MID--1NITIAL
(1 character), and LAST (20 characters).

GET EDIT <SOCIAL_SECURITY> <A< 12))
FILE <SOCIAL) SKIP <12> j

This statement opens (if necessary) the stream file SOCIAL, advances 12
lines, reads the first 12 characters of the line, and assigns the characters to
the variable SOCIAL-SECURITY.

GET EDIT <N, <A< I l DO I=l TO Nl l
(F(l'.I) ,SKIP t100 F(10 ,5)) j

The dimension of A is less than or equal to 100. The value of N is read from
the input stream using the format item F(4). The process then skips to the
next line (record), and N elements are read into the array A. Each element
is read using the format item F(l0,5).

GET EDIT <NAME.FIRST1NAME.LASTl
<A< 10) ,;{(3) 1A(20) l

STRING\ 'PhiiiP

Stream Input/Output

I\•
I l

281

This statement assigns 'Philip ' to the structure member NAME.FIRST,
skips the middle initial, period, and space, and assigns 'Rothberg ' to
NAME.LAST.

For more examples, see Section 17 .3.

17.1.1.3 GET LIST
The GET LIST statement acquires character-string or bit-string data from
an input stream (a stream file or a character-string expression). The
stream file may be a declared file or the default file SYSIN. The acquired
character strings and bit strings are assigned to input targets named in the
GET LIST statement; the strings are converted automatically to the tar
gets' data types.

Use the GET LIST statement to read "unformatted" data from a stream
file or character string. Because you need not place the input data in
specific columns, GET LIST is useful for acquiring data from a terminal.

The form of the GET LIST statement is

GET LIST {input-target, ...)

[

FILE{file-reference) l
[SKIP[{ expression)]]
[OPTIONS(option, ...)]

STAI NG{ expression)

input-target

The names of one or more variables to be assigned values from the
input stream; described fully in Section 17 .1.1.1.

FILE(file-reference)
STRING(expression)
SKIP [(expression)]
OPTIONS (option, ...)

Each of these elements is described in Section 17.1.1.1.

The items to be read into the input targets by GET LIST are separated by
a space or a single comma. Multiple spaces are treated as a single space,
and a comma may be surrounded by spaces. The following rules apply:

• GET LIST treats an acquired item as a character string unless it has
the form of a bit string, in which case GET LIST treats it as a bit
string. For example, the input item '7' is a 1-character string; the
item '7 'B3 is the 3-bit string '111 'B.

• No items can be split across lines unless the split occurs inside a
quoted string or ENVIRONMENT (IGNORE-LINE_MARKS) is

282 Chapter 17

specified. In these cases, the acquired item does not include a carriage
return or end-of-line.

• Character strings need not be enciosed in apostrophes unless they
contain a space or comma or are written on more than one line. When
apostrophes do enclose a character string, an apostrophe within the
string is written as two apostrophes; for instance, to input the word
isn't, write 'isn, 't '.

• When a line begins with a comma or when two commas appear in the
line without intervening nonspace characters, the item in the input
target list corresponding to that item is not updated. The target re
tains whatever value it contained before GET LIST was executed.

• Every input field, except the last one in a line, must be terminated
by a space or comma. Unless it occurs in a quoted string (or
ENVIRONMENT (IGNORE-LINE-MARKS) is used), a carriage
return or the end of a line in a file acts as a field terminator. The value
thus acquired does not have a space or comma at the end.

• Input fields are also terminated by the end-of-file (FILE option) or
end-of-string (STRING option) unless the end is encountered inside a
quoted string.

• If an input request from GET LIST encounters a null record, the
corresponding input target is nulled (if a string) or assigned a value of
zero (if arithmetic). A null input record means a null record in a file
or, if the input is from a terminal, a carriage return with no other
input. If ENVIRONMENT (IGNORE_LINE_MARKS) is used for
the input file, record terminators such as the carriage return are ig
nored, and the GET LIST statement waits until the input request is
satisfied.

• The ERROR condition is signaled whenever a data item in the stream
cannot be converted to the data type of the corresponding item in the
input-target list.

• The ENDFILE condition is signaled if the end of the file is encoun
tered during file input. The ERROR condition is signaled if the ex
pression in the STRING option does not contain enough characters to
complete processing of the input-target list.

The following examples demonstrate GET LIST.

GETS: PROCEDURE OPTIONS (MA IN) ;

DECLARE NAME CHARACTER<BO) VARYING;
DECLARE AGE FIXED;
DECLARE IWEIGHT,HEIGHTl FIXED DECIMALl512l;
DECLARE SALARY PICTURE '$$$$$$V,$$';
DECLARE DOSAGE FLOATi

Stream Input/Output 283

DECLARE INFILE STREAM INPUT FILEi
DECLARE OUTFILE PRINT FILEi

GET FILE<INFILE>
LISTCNAME1AGE1WEIGHT1HEIGHT1SALARY1DOSAGE> i

PUT FILE<OUTFILE>
LIST<NAME1AGE1WEIGHT1HEIGHT1SALARY1DOSAGEl i

END GETSi

If the file INFILE.DAT contains the data

'ThoMas R. Dooley' ,33,150,so,5,97,15000.5015E-G,

then the program GETS writes the following output to OUTFILE.DAT:

ThoMas R. Dooley 33 150,GO 5,87 $15000,50 a,9999999E-OG

In the input file (INFILE.DAT) the string 'Thomas R. Dooley' was sur
rounded by apostrophes so that the spaces between words would not be
interpreted as field separators.

GSTR: PROCEDURE OPTIONSCMAINl;

DECLARE STREXP CHARACTERCBOl VARYINGi
DECLARE CA1B1C1D1El FIXEDi
DECLARE OUTFILE STREAM OUTPUT FILEi

OPEN FILECOUTFILEl TITLE< 'GSTR.OUT'li

STRE>:P = '112131a15'i
GET STRINGCSTREXPI LISTCA1B1C1D1El i
PUT FILE<OUTFILEl LISTCA1B1C1D1El i

END GSTR i

The program GSTR writes the following output to GSTR. OUT:

2 3 5

17.1.1.4 GET SKIP
The GET SKIP statement positions the input file at the start of a new line.
This form of the GET statement is

GET [FILE(file-reference)] SKIP [(expression)] ;

file-reference

The name of the file to be advanced one or more lines. The defaults
for the file reference are specified in Section 17. l .1.1.

expression

284

An integer expression giving the number of lines to be advanced. The
default is one line.

Chapter 17

17 .1.2 PUT Statement
The PUT statement transfers data from the program to the output stream,
which may be either a stream file or a character-string variable. The out
put file may be a declared file or the default file SYSPRINT.

The PUT statement has several forms. These forms are summarized in
Figure 17-2 and described individually below.

17 .1.2.1 Common Syntax Elements
The syntax elements flagged with a star in Figure 17-2 are common to two
or more forms of the PUT statement. This section describes those ele
ments. The sections that follow describe aspects of PUT EDIT, PUT
LINE, PUT LIST, PUT PAGE, and PUT SKIP that are unique to each.

output-source

A construct that specifies one or more expressions to be placed in the
output stream. The output sources must be separated by commas. An
output source has the following forms:

1. expression

where the expression is of any computational type, including a
reference to a scalar or aggregate variable. If the reference is to an
array, data is output from array elements in row-major order. If it
is to a structure, data is output from structure members in the
order of their declaration.

2. (output-source ... DO reference=expression[TO expression]
[BY expression] [WHILE(expression)] [UNTIL(expression)])

where the output source may be of any of these forms, and the
references and expressions are as for the DO statement. Notice
that the parentheses surrounding this form of output source are in
addition to the parentheses surrounding the entire output-source
list.

3. (output-source, ... DO reference=expression
[REPEAT expression] [WHILE(expression)] [UNTIL(expression)])

where the output source may be of any of these forms, and the
references and expressions are as for the DO statement. Notice
that the parentheses surrounding this form of output source are in
addition to the parentheses surrounding the entire output-source
11 t iiS.,,

Stream Input/Output 285

PUT EDIT (output-source*, ...) (format-specification, ...)

[

FILE(file-reference)* l
{PAGE]* [LINE(expression)]*
[SKIP[(expression)]]*
(OPTIONS(option)]*

STRING(reference)*

PUT [FILE (file-reference)*] LINE (expression) ;

PUT LIST (output-source, ...)*

[

FILE(file-reference)* l
[PAGE]* [LINE(expression)]* J
[SKIP[(expression)]]*
[OPTIONS(option)]*

STRING(reference)*

PUT [FILE(file-reference)*) PAGE;

PUT [FILE(file-reference)*) SKIP [(expression)] ;

Option*
CANCEL_CONTROL_O

*Syntax elements common to two or more forms

ZK-032-81

Figure 17-2: Forms of the PUT Statement

FILE(file-reference)

An option specifying that the output stream is a stream file; the
reference is to a declared file variable or constant. If neither the FILE
option nor the STRING option is specified, PL/I uses the default file
SYSPRINT; this print file is associated with the default system out
put file SYS$0UTPUT, which in turn is generally associated with the
user's terminal.

If a specified file is not currently open, PL/I opens it with the attrib
utes STREAM and OUTPUT.

PAGE

286

An option that advances the output file to a new page before any data
is transmitted. The PAGE option may be used only with implied or
explicit print files. The file is positioned at the beginning of the next
page, and the current page number is incremented by 1. The PAGE,
LINE, and SKIP options are always executed, in that order, before

Chapter 17

any other output or file-positioning operations. The page size is either
the default value or the specific value that you have established for
the file.

LINE (expression)

An option that advances the output file to a specified line. The LINE
option may be used only with implied or explicit print files. The
expression must yield an integer i. Blank lines are inserted in the
output file so that the next output data appears on the ith line of a
page.

If the file is currently positioned at the beginning of line i, no opera
tion is performed by the LINE option.

If the file is currently positioned before line i, and i is less than or
equal to the page size, then blank lines are inserted following the
current line until line i is reached.

If the file is currently positioned at or beyond line i but not at the
beginning of line i, then the remainder of the page (the portion be
tween the current line and the current page size) is filled with blank
lines. The ENDPAGE condition is signaled.

When the LINE option is used within an ENDPAGE ON-unit, it
causes a skip to the next page.

SKIP [(expression)]

An option that advances a specified number of lines from the current
line. The SKIP option may be used only with the implied or explicit
FILE option. The expression must yield an integer i, which must not
be negative and must be greater than 0 except for print files. If the
expression is omitted, i equals 1.

If the file is not a print file, i-1 blank lines are inserted following the
current line, and subsequent output of data begins at the beginning of
(current line)+i.

If the file is a print file, i=O causes a return to the beginning of the
current line. If i is greater than 0, and either the current line exceeds
the page size or the page size is greater than or equal to the current
line plus i, then i-1 blank lines are inserted. Otherwise, the remainder
of the current page is filled with blank lines, and the ENDPAGE
condition is signaled.

On output devices with the space-suppression feature, SKIP(O) can
be used to cause overprinting, underscoring, and so forth.

OPTIONS (CANCEL_CONTROL_O)

A statement option that may be included only with the implied or
explicit FILE option. It specifies, when the output device is a termi-

Stream Input/Output 287

nal, that the effect of ~ is disabled prior to output, thus ensuring
that the beginning of the output list is displayed. Use this option on a
PUT statement that you want to display regardless of whether previ
ous output has been interrupted by ~. This option is ignored
when the output device is not a terminal.

STRING(reference)

An option specifying that the output stream is the referenced charac
ter-string variable. The STRING option cannot be used in the same
statement with FILE, OPTIONS, PAGE, LINE, or SKIP.

17 .1.2.2 PUT EDIT
The PUT EDIT statement takes output sources (variables and expressions)
from the program, converts the results to characters under control of a
format specification, and places the resulting character strings in the out
put stream (either a stream file or a character-string variable).

With PUT EDIT, the format of the output data is controlled by the pro
gram.

The form of the PUT EDIT statement is

PUT EDIT (output-source, ...) (format-specification, ...)

Fl LE(file-reference)
[PAGE] [LINE(expression)]
[SKIP[(expression)]]
[OPTIONS(option, ...)]

STAI NG(reference)

output-source

A construct that specifies one or more expressions to be placed in the
output stream. Section 17 .1.2.1 contains a complete description of
this element. For a discussion of the matching of format items to
output sources, see Section 17 .3.

format-specification

A list of format items to control the conversion of data items in the
output list. Section 17 .3 describes format items and specifications.

Fl LE(file-reference)
PAGE
LINE (expression)
SKIP [(expression)l

288 Chapter 17

OPTIONS (CANCEL_CONTROL_O)
STRING(reference)

Section 17.1.2.1 contains descriptions of these elements.

The following example demonstrates the PUT EDIT statement.

PUTE: PROCEDURE OPT IONS< MA IN) ;

DECLARE SOURCE FIXED DECIMALC7t2l;

DECLARE OUTFILE PRINT FILEi

OPEN FILE(OUTFILEl TITLE('PUTE.OUT I) j

SOURCE = 12345.67;

PUT SKIP FILECOUTFILEl EDITCSOURCEl (FC 8 ,2 l);
PUT SUP FILECOUTFILEl EDITCSOURCEl (E (13 l l;
PUT SKIP FILECOUTFILEl EDITCSOURCEJ (A);

PUT SKIP FILE<DUTFILEl EDIT('Arr1erican: I ;SOURCE)
CA1P'ZZ1ZZZV.ZZ'l;

PUT SKIP FILE(OUTFILE) EDIT('European: '1SOURCEl
(At p I zz t ZZZl) tZZ I) ;

END PUTE;

The program PUTE writes the following output to PUTE.OUT:

12345.67
l.234567E+04

12345.67
AMerican: 121345.67
European: 12.345167

17 .1.2.3 PUT LINE
The PUT LINE statement advances a print file to a specified line. The
form of the PUT LINE statement is

PUT [FILE (file-reference)] LINE (expression);

file-reference

A reference to the file to which the statement applies. The file must
be a print file. The defaults for the file reference are specified in
Section 17.1.2.1.

expression

An expression giving a line in the print file, relative to the top of the
current page. The expression must yield an integer. The processing
performed by PUT LINE for 'various values of the expression is de
scribed in Section 17.1.2.1.

Stream Input/Output 289

17 .1.2.4 PUT LIST
The PUT LIST statement specifies a list of output sources (variables and
expressions) whose results are converted to character strings and transmit
ted to the output stream. If the output file is a print file, the output
character strings are separated by enough spaces to start the new string at
a tab boundary. Otherwise, the strings are separated by single spaces. For a
nonprint file, character-string data is output with enclosing apostrophes;
for a print file, there are no apostrophes. For both print and nonprint files,
bit-string data is output with enclosing apostrophes, followed by the letter
B.

With PUT LIST, the conversion of the output sources and formatting of
the output data are automatic.

The form of the PUT LIST statement is

PUT LIST (output-source, ...)

FILE(file-reference) ~
[PAGE] [LINE(expression)]
[SKIP[(expression)]]

[OPTIONS(option, ...)] J
STRING(reference)

output-source

A construct that specifies one or more expressions to be placed in the
output stream; see Section 17.1.2.1.

FILE(file-reference)
PAGE
LINE (expression)
SKIP [(expression)] OPTIONS (CANCEL_CONTROL_O)
STRING(reference)

Section 17.1.2.1 fully describes these elements.

The following example demonstrates the PUT LIST statement.

PUTL: PROCEDURE OPTIONS<MAINl;

DECLARE I F I:<ED BINARY,
F FLOAT,
p PICTURE '99l,J t 99 It

s CHAR< 10);

DECLARE INF ILE STREAM INPUT FILEi
DECLARE OUTFILE PRINT FILEi

290 Chapter 17

OPEN FILE(INF ILE) TITLE< 'PUTL, IN');
OPEN FILE<DUTFILE) TITLE('PUTL.OUT');

GET FILE(INFILE) LIST (I 1F 1P 1Sl;
PUT FILE(OUTFILEl SKIP LIST (I 1F 1P 1Sl;

END PUTLi

If the file PUTL.IN contains the data

213.54122.331'A strins'

then the program PUTL writes the following output to PUTL.OUT:

2 3.5400000E+OO 22.33 A strins

For print files, each output item is written at the next tab position. Float
ing-point values are represented in floating-point notation, and character
values are not enclosed in apostrophes.

If the file PUTL.OUT is changed from a print file to a nonprint file (by
substituting OUTPUT for PRINT in the declaration of OUTFILE), the
output of the program becomes

2 3.5400000E+OO 22.33 'A strins

Note that PUT_ LIST now sepa:rates items with a space and encloses the
character-string item in apostrophes. (One of the two spaces preceding the
second item is the result of conversion from an arithmetic data type to a
character string.)

17 .1.2.5 PUT PAGE
The PUT PAGE statement positions the output file at the start of a new
page. This statement is valid only for print files, that is, files that have
been opened with the PRINT attribute.

The form of the PUT PAGE statement is

PUT [FILE(file-reference)] PAGE;

file-reference

A reference to a print file that is to be advanced to the next output
page. The defaults for the file are specified in Section 17.1.2.1.

The following example demonstrates the PUT PAGE statement:

PUT FILE<REPORTl PAGE SKIP LINE<2l;

The PUT statement advances the file REPORT to the beginning of the
next page, advances to line 2, and skips to the beginning of the next line
(3).

Stream Input/Output 291

17 .1.2.6 PUT SKIP
The PUT SKIP statement positions the output file at the start of a new
line.

The form of the PUT SKIP statement is

PUT [FILE(file-reference)] SKIP ((expression)];

file-reference

A reference to the file to which the SKIP option applies. The defaults
for this file are specified in Section 17.1.2.1.

expression

An expression giving the number of lines to be advanced. It must
yield an integer i, which must not be negative and must be greater
than 0 (except for print files). If the expression is omitted, i equals 1.
The processing performed by PUT SKIP is described in Section
17.1.2.1.

17 .1.3 FORMAT Statement
The FORMAT statement describes a remote format-specification list to be
used by GET EDIT or PUT EDIT statements. The FORMAT statement
and remote (R) format item are convenient when the same format specifi
cation is used by a large number of GET EDIT and/or PUT EDIT state
ments. In such a case, any change in the format specification can be made
in the single FORMAT statement, rather than in each GET or PUT state
ment.

The form of the FORMAT statement is

label

label: FORMAT (format-specification, ...);

A valid PL/I label, which is required. It is specified in the GET EDIT
or PUT EDIT statement that contains a remote format item, R, in its
format-specification list.

format-specification

A list of one or more format items that match corresponding input
targets in a GET EDIT statement, or output sources in a PUT EDIT
statement. For more information, see Section 17 .3.

17 .2 Stream 1/0 Processing and Positioning
The following sections describe how PL/I positions a stream when the
source or target of the stream is a stream file (Section 17 .2 .1) or a string

292 Chapter 17

(Section 17 .2.3). Section 17 .2.2 describes special features of print files,
which are stream files having the OUTPUT and PRINT attributes.

17 .2.1 Processing and Positioning of Stream Files
A stream file is a file of ASCII text, divided into lines. For every stream file
used in a program, PL/I maintains the following information:

• The locations of the beginning and end of the file. On input opera
tions, the ENDFILE condition is signaled on the first attempt to read
past the end of the file.

• For output files, the maximum number of ASCII characters in a line,
or the line size. The line size is either a default value or the specific
value you have established for the file. The default line size is as
follows:

- If the output is to a physical record-oriented device, such as a line
printer or terminal, the default line size is the width of the device.

- If the output is to a nonrecord device (disk), the default line size is
510.

The line size is used to determine when to skip to the next line. On
input, a single data item cannot cross a line unless it is a character
string enclosed in apostrophes. On output, data items may be split
across lines.

• The current position in the file. Essentially, this is the point at which
the last input or output operation stopped. It is the exact character
position (sometimes in the middle of a line) at which the next output
item is written or from which the next input item is read.

Input operations can begin anywhere from the current position onward.
The default is the current position. To acquire data from a different posi
tion, you can

• Use the SKIP option of the GET statement to advance by a specified
number of lines before reading data.

• Use control format items to move to a specified position before reading
data. With the GET statement, control format items are restricted to
SKIP (same operation as the SKIP option), COLUMN (advance to a
specified character position), and X (advance by a specified number of
character positions from the current position). Note that the control
format items, unlike the SKIP option, are executed during, not before,
the input of data. (Section 17 .3 describes format items.) The control
format items can signal the ENDFILE and ERROR conditions if the
end-of-file is encountered.

Stream Input/Output 293

• Close and then reopen the file, to set the current position at the first
character in the file.

• Use the REWIND built-in subroutine (see Section 16.4.5).

Because stream files are sequential, output operations always place data at
the end of the file. You can do the following additional formatting of output
with any stream output file:

• Use the SKIP option of the PUT statement to skip lines. The SKIP
option inserts null lines in the file between the current position and
the position of the next output. The SKIP option can reposition the
file even though no data is output.

• Use the control format items to advance to a specified line or character
position, or to a new page. The control format items are COLUMN
(move to a specified character position), SKIP (same effect as the
SKIP option), and X (skip a specified number of characters following
the current position). As is the case with input, control format items
are executed only during the output of data; if only part of the format
list is used, the excess items are ignored.

17 .2.2 Processing and Positioning .of Print Files
A print file is a stream output file that is intended for output on a terminal,
line printer, or other output device. Any stream output file can be declared
a print file by use of the PRINT attribute. The default stream output file,
SYSPRINT, is also a print file. Terminals should always be declared as
print files when used for output.

The following list describes the special features of print files as opposed to
ordinary stream output files.

• Character strings are not enclosed in apostrophes on list-directed out
put.

• List-directed output data items are separated by tabs instead of
spaces. Tab stops occur at 8-column increments beginning with col
umn 1. With the PUT EDIT statement and the TAB format item, you
can begin output at a specified tab stop.

• Print files are divided into both lines and pages. A record is kept
internally of the number of lines per page. You can specify a page size
when the file is created.

• During output of data to a print file, the ENDPAGE condition is
signaled when the output exceeds the page size.

• New pages are started by the PUT PAGE statement, the PAGE for
mat item, and certain other format items. Each of these operations
increments the current page number by 1.

294 Chapter 17

• If the print file is a terminal, the output is written to it at the conclu
sion of each PUT statement.

• A print fiie is created with PRN-format carriage control. PRN format
is efficient for both terminals and line printers because blank lines do
not require individual records. (It is discussed in the VAX-11 Record
Management Services Reference Manual.)

• Print files usually cannot be read properly with GET LIST or GET
EDIT.

PL/I maintains several values for a print file. These values, and the ways
you can use them, are

• The current page number. The first output to a print file is written to
page 1. The current page number is incremented by the PAGE option,
the PAGE format item, and, in some circumstances, by the LINE
option and LINE format item. The PAGENO built-in function returns
the current page number from a print file, thus allowing you to keep
track of the number of pages being written to a file. You can set the
current page number to a specific value by assigning the value to the
PAGENO pseudovariable.

• The page size. This is an integer that specifies the number of lines on a
page. The page size is either the default value or the specific number
that you have established for the print file. The default page size is as
follows:

- If the logical name SYS$LP _LINES is defined, the default page
size is the numeric value of SYS$LP _LINES - 6.

- If SYS$LP _LINES is not defined, or if its value is less than 30 or
greater than 99, or if its value is not numeric, the default page size
is 60.

When the last line on a page is filled, the first attempt to write (or
position the file) beyond that position signals the ENDPAGE condition.
It is signaled only on the first such attempt; PL/I executes a PUT PAGE
unless an ON-unit is established for the condition. The ON-unit can, for
example, write a trailer at the bottom of the current page, or a header at
the top of the next one, before printing a new page of data.

• The current line number. This is an integer specifying the line cur
rently being used for output, relative to the top of the page. The first
line on the page is line 1. The LINENO built-in function can evaluate
the current line of a specified print file. The LINE option of the PUT
statement, and the LINE format item, can reposition the file to a
specified line.

Stream Input/Output 295

• Position of tab stops. The TAB format item can reposition a print file
to a specified tab stop relative to the current position.

17 .2.3 Processing and Positioning of Character Strings
If the input or output stream is a character string, the processing is similar
to that of files, but the positioning options are more limited:

• Input can begin either at the beginning of the string or at a specified
character position. The ERROR condition is signaled if the end of the
string is encountered inside a quoted string, or if an attempt is made
to read past the last input field or to read a null string. Only the X
format item can be used for positioning.

• The first output by a PUT statement always occurs at the beginning of
the string, and subsequent output by the same statement follows the
previous output. The ERROR condition is signaled if the maximum
length of the string is exceeded. Only the X format item can be used
for positioning.

On input, the value of the character-string expression specified in the
STRING option mu:st include commas or spaces to separate input fields, as
with any stream input. For an example, see Section 17.1.1.3.

17 .3 Format Items and Specifications
This section describes the formatting of input and output data in GET
EDIT and PUT EDIT statements. Section 17 .3.1 describes the individual
format items; Section 17 .3.2 shows how to combine them into format speci
fications.

17 .3.1 Format Items
There are three categories of PL/I format items:

• The data format items, A, B, E, F, and P, are used for input or output
of data. A and B are used for character- and bit-string formats, respec
tively. E and F are used for floating- and fixed-point formats, respec
tively. P is used for input or output of data in a specified picture
format. All data format items can be used with either the FILE or
STRING option in edit-directed statements.

• The remote format item, R, is used to specify the label of a FORMAT
statement, which contains a remote list of format items.

• The control format items, SKIP, LINE, PAGE, TAB, COLUMN, and
X, are used to control the position in the input or output stream at

296 Chapter 17

which data is placed or from which it is acquired. Only X can be used
with the STRING option in edit-directed statements.

NOTE

Arguments for all format items, except picture (P) and remote
(R), may be integer expressions.

Each data format item refers to a field of characters in the stream. It
specifies the width of the field in characters and either the manner in
which the field is used to represent a value (output) or the manner in which
the characters in the field are to be interpreted (input). Because the repre
sentation or interpretation is under control of the format items, certain
symbols used in the stream with GET LIST and PUT LIST are not used
with GET EDIT or PUT EDIT:

• Strings input by the GET EDIT statement should not be enclosed in
apostrophes unless they are intended to be part of the string. Strings
output by PUT EDIT are not enclosed in apostrophes.

• Bit strings input by the GET EDIT statement should not be enclosed
in apostrophes nor be followed by the radix factors B, Bl, B2, B3, or
B4. These factors are not added by the PUT EDIT statement on
output.

• The comma and space characters are not interpreted as data separa
tors on input. On output, values are not automatically separated by
spaces.

The following guidelines apply to errors and mismatches that occur be
tween the actual data values and the fields specified by data format items:

• On input, the ERROR condition is signaled if the field of characters
cannot be interpreted as required by the format item.

• On output, strings are left justified in the specified field, and numeric
data is right justified. Truncation occurs if the field is too narrow to
contain the necessary characters. Strings are truncated on the right
and numeric data on the left.

17 .3.2 Format Specifications
In the GET EDIT, PUT EDIT, and FORMAT statements, format items
are used singly or in combination to make up format specifications. A
format specification can be written four ways:

format-item
(replication-factor) 'format-item·
iteration-factor format-item
iteration-factor(format-specification, ...)

Stream Input/Output 297

The entire format specification must be enclosed in parentheses.

The iteration factor is an integer that repeats its subsequent format item or
list of format specifications. If the iteration factor precedes a single format
item not in parentheses, the iteration factor and format item must be
separated by a space. For example, the statement

PUT EDIT <Al (F(5 12)) i

specifies a 5-character field containing decimal digits, two of which are
fractional. Used by itself as a format specification, this item specifies one
such field. To specify two such fields, you must precede the item with the
iteration factor 2:

PUT EDIT (A 1Bl (2 F(5 12)) i

As shown by the thirq form above, an iteration factor can also repeat an
entire list of format specifications, as in

PUT EDIT ((A(I) DO I = 1 TO 10)) I* 10 array elements */

I* 10 format items *'
Expanded into individual format items, this specification is

F<512) 1F(712) 1E(8) 1F(712) 1E(8) 1

F(512) 1F(712) 1E(8) 1F(7 12) 1E(8)

When PL/I performs an edit-directed operation, it examines the list of
input targets or output sources, beginning with the first. If the target or
source is an array, the array is expanded in row-major order to form an
ordered list of individual data items. (For example, in the PUT EDIT
statement above, you could simply write PUT EDIT (A) followed by the
format specification; the DO clause is not necessary.) If the target or source
is a structure, the structure is expanded in the order of its declaration to
form a list of individual items. If the target or source contains a DO specifi
cation, the item or items that precede the DO keyword are expanded in the
preceding manner, and an ordered list of individual items is then created
as per the DO specification.

Within a single target or source, items at the deepest level of parentheses
are processed first.

Table 17-1: Summary of Format Items

Format Item Use

A[(w)l With GET EDIT, reads w characters from the input stream; with
PUT EDIT, converts the value to be output to aw-character string
and outputs the resulting string. If w is omitted with PUT EDIT, the
field width equals the length of the converted output source. You
cannot omit w with GET EDIT.

298 Chapter 17

Table 17-1 (Cont.): Summary of Format Items

Format Item Use

B[(w)J

Bn[(w)J

COLUMN (position)

E(w[,dl)

F(w[,d])

LINE(number)

With GET EDIT, reads w binary digits (Os and ls) from the input
stream; with PUT EDIT, the corresponding value is first converted
to a BIT value (if necessary), then converted to a character string of
length w, containing Os and ls, and written to the output stream.
The B format item is equivalent to Bl. If w is omitted with PUT
EDIT, the field width equals the length of the converted output
source. You cannot omit w with GET EDIT.

With GET EDIT, reads a character string of length w from the input
stream; with PUT EDIT, the corresponding value is first converted
to a BIT value (if necessary), then converted to a character string of
length w and written to the output stream. The base and allowable
characters are controlled by n, which is the power of 2 in which the
value is represented. Bl is equivalent to B and results in binary
values. B2 results in base-4 values; B3 in octal values; B4 in hexade
cimal values. The characters allowed for each value of n are:

n Characters

0,1
2 0-4
3 0-7
4 0-9,A-F

If w is omitted with PUT EDIT, the field width equals the length of
the converted output source. You cannot omit w with GET EDIT.

With GET EDIT, specifies the position at which reading of data is to
proceed; with PUT EDIT, outputs spaces until the specified column
position. May be used with files only.

With GET EDIT, converts a field of w characters from the input
stream to a floating-point number; with PUT EDIT, converts a value
to a w-character floating-point representation with d fractional di
gits in the mantissa and writes the w-character string to the output
stream. If dis omitted on output, all fractional digits are written out.
If d is omitted on input, it is assumed to be zero (no fractional
digits). If the input value contains a decimal point, the value of dis
ignored.

With GET EDIT, converts a field of w characters from the input
stream to a fixed-point value; with PUT EDIT, converts a value to a
w-character fixed-point representation with d fractional digits, and
writes the w-character string to the output stream. If d is omitted
with GET EDIT, it is assumed to be zero, although a decimal point
in the source overrides a specification of d. If d is omitted with PUT
EDIT, it is assumed to be zero; only the integral part of the number
(without a decimal point) appears in the output stream. (If d is
specified with PUT EDIT, d plus the number of integral digits must
not exceed 31.)

Valid for print files only. Specifies a line number, relative to the top
of the page, at which output is to continue.

Stream Input/Output 299

Table 17-1 (Cont.): Summary of Format Items

Format Item Use

P 'picture

PAGE

R(label)

SKIP[(linecoun t) l

TAB[(n)l

X[(n)l

With GET EDIT, acquires a character string from the input stream
whose length is specified by the picture specification, and signals
ERROR if the string is not a valid pictured value; with PUT EDIT,
converts an expression to a pictured value as specified by the pic
ture, and writes the pictured value to the output stream.

Valid for print files only. Specifies that output is to be continued at
the top of the next page.

Indicates that format items are to be acquired from the FORMAT
statement at the specified label.

With GET EDIT, continues reading after 'linecount, lines; with
PUT EDIT, outputs 'linecount' blank lines and continues output.
May be used with files only. If omitted, linecount defaults to 1.

Valid for print files only. Continues output at the nth tab stop rela
tive to the current position.

With GET EDIT, ignores n characters in the input stream; with
PUT EDIT, places n spaces in the output stream. May be used with
either files or character strings. If n is omitted (permissible only with
PUT EDIT), it defaults to 1.

Given a list of one or more data items contained in the first target or
source, PL/I processes the data items from left to right. Beginning with the
leftmost data item, and for each subsequent item, PL/I executes format
items until the data item has been either assigned a value from the input
stream or converted to a character representation and placed in the output
stream. Control format items are therefore executed in the order in which
they occur in the format-specification list. With the first target or source,
the execution of format items begins with the leftmost format item in the
list. If the end of the list is reached, PL/I returns to the leftmost format
item and continues.

When all items contained in the first target or source have been processed,
PL/I evaluates the next target or source, then examines the format-specifi
cation list, beginning where the previous operation stopped. This process
ing continues until all data items in the input-target or output-source list
have been processed, at which point the edit-directed statement termi
nates. If termination occurs while PL/I is in the middle of the list of format
items, those items to the right of the termination point are not executed.

300 Chapter 17

Chapter 18

Record Input/Output
Record I/0 is performed by the READ, WRITE, DELETE, and REWRITE
statements; each statement processes an entire record. (In stream I/0,
more than one line or record can be processed by a single statement.) In
addition, some forms of record I/O allow you to access records in the file by
record number or by a key field contained in the record.

This chapter describes the following topics:

• Statements used for record I/0

• The organization and use of sequential files, including files on mag
netic tape

• The organization and use of relative files

• The organization and use of indexed sequential files

Table 18-1 contains a summary of attributes for record files.

18.1 Statements for Record 110
Sections 18.1.1 through 18.1.4 describe the READ, WRITE, REWRITE,
and DELETE statements, and provide some examples of their use. Section
18.1.5 describes their options. Sections 18.2, 18.3, and 18.4 contain exam
ples of the statements in use with sequential, relative, and indexed sequen
tial files, respectively.

For an open record file, PL/I maintains the following position information:

• The next record, for files with the SEQUENTIAL INPUT or
SEQUENTIAL UPDATE attributes. It designates the record to be
accessed by a READ statement that does not specify the KEY option.
The next record may contain end-of-file.

• The current record, for a file with the UPDATE attribute. It desig
nates either of the following:

- The record to be modified by a REWRITE statement that does not
specify the KEY option

- The record to be deleted by a DELETE statement that does not
specify the KEY option

The value of the current record may be undefined.

301

~ Table 18-1: Attributes and Access Modes for Record Files
N

0
::J
PJ

'O
rl
(1)
'"'i

to-'
00

Attributes Attributes
Specified Implied

SEQUENTIAL RECORD
OUTPUT

SEQUENTIAL RECORD
INPUT

SEQUENTIAL RECORD
UPDATE

DIRECT KEYED
OUTPUT RECORD

DIRECT KEYED
INPUT RECORD

DIRECT KEYED
UPDATE RECORD

Valid Devices
and File

Organizations

Any output
device or file
except indexed

Any input
device or file

Relative,
indexed,
sequential disk

Relative,
indexed,
sequential disk2

Relative,
indexed,
sequential disk1

Relative,
indexed,
sequential disk1

Usage

Records may be added to the end of the file using WRITE statements.
Each WRITE statement adds a single record to the file.

Records in the file are read using READ statements. Each statement
reads a single record.

READ statements read a file's records in order. PL/I maintains the
current record, which is the record just read. This record may be re
placed in a REWRITE statement. 1 In a relative or indexed sequential
file, the current record may also be deleted with a DELETE statement.
Each statement processes a single record.

WRITE statements insert records into the file at positions specified by
keys. Each statement inserts a single record.

READ statements specify records to be read randomly by key. Each
statement reads a single record.

READ, WRITE, and REWRITE statements specify records randomly
by key. In a relative or indexed file, records may also be deleted by key.

1. For a file with sequential organization, the record being written must have the same length as the one that was read.
2. The file must have fixed-length records.

fud
("";)

0 ...,
0.. -::s

'O c
rt_
0 c
rt

'O c
rt

""' Q

""'

Table 18-1 (Cont.): Attributes and Access Modes for Record Files

Attributes
Specified

KEYED
SEQUENTIAL
OUTPUT

KEYED
SEQUENTIAL
INPUT

KEYED
SEQUENTIAL
UPDATE

Attributes
Implied

RECORD

RECORD

RECORD

Valid Devices
and File

Organizations

Relative,
indexed,
sequential disk2

Relative,
indexed,
sequential diskl

Relative,
indexed,
sequential disk1

Usage

WRITE statements insert records into the file at positions specified by
keys. Each statement inserts a single record. This mode is identical to
DIRECT OUTPUT.

READ statements access records in the file randomly by key or sequen
tially.

Any record 1/0 operation is allowed except a WRITE statement that
does not specify a key or a DELETE statement for a sequential disk file
with fixed-length records.

-l. For a file with sequential organization, the record being written must have the same length as the one that was read.
~~- The file must have fixed-length records.

When a file is opened, the current record is undefined and the next record
designates the first record in the file or, if the file is empty, end-of-file.
After a sequential read, the current record designates the record just read;
the next record indicates the following record or, if there are no more
records, end-of-file.

After a keyed 1/0 statement, that is, one that specifies the KEY or KEY
FROM option, the current record and next record are set as follows:

Current Next
Statement Record Record

READ x X+l
WRITE x X+l
REWRITE x X+l
DELETE undefined X+l

where X is the record specified by key, and X+l is the next record or, if
there are no more records, the end-of-file.

18.1.1 READ Statement
The READ statement reads a record from a file, either the next record or a
record specified by the KEY option. The file must have either the INPUT
or the UPDATE attribute. The format of the READ statement is

READ FILE (file-reference)

{
INTO (variable-reference) }
SET (pointer-variable)

[
KEY (expression)]
KEYTO (variable-reference)

[OPTIONS (option, ...)];

file-reference

Specifies the file from which the record is to be read. If the file is not
currently open, PL/I opens it with the implied attributes RECORD
and, if it lacks the UPDATE attribute, INPUT. The implied attrib
utes are merged with those specified in the file's declaration (see
Section 16.1.2).

INTO (variable-reference)

304

Specifies that the contents of the record are to be assigned to the
specified variable. The variable must be byte addressable.

If the variable has the VARYING attribute and the file does not have
the attribute ENVIRONMENT(SCALARVARYING), the entire rec-

Chapter 18

ord is treated as a string value and assigned to the variable; if the
record is longer than the variable, it is truncated and the ERROR
condition is signaled. For any other type of variable, the record is
simply copied into the variable's storage. If the record is not exactly
the same size as the target variable, as much of the record as will fit is
copied into the variable and the ERROR condition is signaled.

SET (pointer-variable)

Specifies that the record should be read into a buffer allocated by
PL/I and that the specified pointer variable be assigned the value of
the location of the buffer in storage.

This buffer remains allocated until the next operation on the file, but
no longer. Therefore, neither the pointer value nor the buffer should
be used after that operation. The only valid use of the buffer during a
subsequent I/0 operation is in a REWRITE statement, in which case,
the record is rewritten from the buffer before it is deallocated.

KEY (expression)

Specifies that the record to be read is to be located using the key
specified by the expression. The file must have the KEYED attribute.
The key value must have a computational data type.

The nature of the key depends on the file's organization, as follows:

• For a relative file or a sequential disk file with fixed-length records,
the key is a fixed binary value indicating the relative record number
of the record to be read.

• For an indexed sequential file, the key specifies a key contained
within a record. The data type of the key and its location within the
record are as specified when the file was created.

The value of the specified expression is converted to the data type of the
key. If no record with the specified key exists in the file, or if the value
specified is not valid for conversion to the data type of the key, the KEY
condition is signaled.

KEYTO (variable-reference)

Specifies that the key of the record being read is to be assigned to the
designated variable. The value of the key is converted from the data
type implied by the file's organization to that of the variable. The
variable must have a computational data type, but cannot be an
unaligned bit string or an aggregate consisting entirely of unaligned
bit strings.

KEYTO can be specified only for a file that has both the KEYED and
SEQUENTIAL attributes. It conflicts with the KEY option.

Record Input/Output 305

OPTIONS (option, ...)

Specifies one or more of the following READ statement options, sepa
rated by commas:

FIXED_CONTROL_ TO (variable-reference)
INDEX_NUMBER (expression)
MATCH_GREATER
MATCH_GREATER_EQUAL
RECORD_ID (variable-reference)
RECORD_ID_ TO (variable-reference)

These options are summarized in Section 18.1.5.

If the file is accessed sequentially, the READ statement reads the next
record. If the next record position is at the end-of-file, the END FILE condi
tion is signaled.

After a successful read, the current record position denotes the record that
was just read. The next record position denotes the following record or, if
there is none, end-of-file.

If any error occurs other than an incorrect record size, the current record
becomes undefined and the next record remains as it was before the read
was attempted.

The examples below demonstrate the READ statement.

The following program illustrates reading a file with variable-length re
cords into a character string with the VARYING attribute, and writing the
records to a new output file:

COPY: PROCEDURE i
DECLARE INREC CHARACTER<BO> VARYINGt

ENDED BIT(1) STATIC INIT('O 'B) t
(INFILEtOUTFILE> FILEi

306

OPEN FILE (INFILE) RECORD INPUT
TITLE('RECFILE.DAT I);

OPEN FILE (OUTFILE) RECORD OUTPUT
TITLE< 'COPYFILE,DAT') i

ON ENDF I LE (I NF I LE) ENDED = I 1 I B;

READ FILE(INFILE) INTO (INREC) i

DD WHILE ("ENDED> i

WR I TE FI LE <OUTF I LE l FROM (I NREC l i

READ FI LE (I NF I LE) I NTD (I NREC l i

ENDi
CLOSE FILE(INFILEl;
CLOSE FILE<OUTFILEl i
RETURN;
ENDi

Chapter 18

•

The procedure COPY uses a DO-group to read the records in the file
sequentially until the end-of-file is reached. It uses the ON statement to
establish the action to be taken when the end-of-file occurs: it sets the bit
ENDED to '1 'B so that the DO-group will not execute again.

The VARYING character-string variable INREC has a maximum length of
80 characters. If any record in the file is longer than that, the ERROR
condition is signaled. If no ERROR ON-unit exists, the program exits.

The next example shows a keyed READ statement accessing a record in an
indexed sequential file:
DECLARE 1 STATE,

2 NAME CHARACTER (30) ,
2 CAPITAL,

3 NAME CHARACTER (20) ,

2 SYMBOLS,
3 FLOWER CHARACTERl30l,
3 BI RD CHARACTER (30) ,

STATE_FILE FILE,
INPUT_NAME CHARACTERl30l VARYING;

OPEN FILEISTATE_FILEl KEYED;
PUT SKIP LISTI 'State?');
GET LIST!INPUT_NAMEl;
READ FILE<STATE_FILEl INTOISTATEl

KEY (INPUT _NAME);

PUT SKIP LISTl'The flo1,Jer of'1STATE.NAME1
'is the,.1FLOWERli

The file ST ATE-FILE is opened for keyed access, and the READ state
ment specifies the key of interest in the KEY option. The value for this
option is determined at run time by a GET statement. In the READ
statement, the contents of a record from the file ST ATE-FILE are read
into the structure STATE.
The next example illustrates accessing a relative file sequentially with
READ statements and obtaining the key value of each record, that is, the
relative record number:
PRINT_DATA: PROCEDURE OPTIONSIMAINl;

DECLARE 1 EMPLOYEE BASED (EP) ,
2 NAME,

3 LAST CHAR (30) ,
3 FIRST CHARl20l,
3 MIDDLE_INIT CHAR (1),

2 DEPARTMENT CHAR (LI) ,

2 SALARY Fl)<ED DECIMAL !612),
EP POINTER,
EMP_FILE FILEi

Record Input/Output 307

DECLARE EDF BIT< 1) STATIC !NIT< 'O'B) t

NUMBER FI){ED BIN (31) ;

ENO;

ON ENDFILE<EMP_FILE) EDF= 'l'Bi
OPEN FILE<EMP_FILE) INPUT SEQUENTIAL KEYED;

READ FILE<EMP_FILE) SET<EP) KEYTO<NUMBER);
DO WHILE (.·.EDF) ;

PUT SK Ip LI ST (I EMPLOYEE I t NUMBER'
NAME.FIRSTtNAME.LASTtMIDDLE_INIT);

READ FILEIEMP_FILEJ SET<EP) KEYTO<NUMBER);
ENO;

CLOSE FILE<EMP_FILE>;

The records in the file EMP _FILE are arranged according to employee
numbers, each of which corresponds to a relative record number in the file.
READ statements read records into the based structure EMPLOYEE and
set the pointer EP to the location of the allocated buffer. The READ
statements specify the KEYTO option to obtain the record number of each
record. The procedure prints the employee numbers and names. When the
last record has been read; the progrnm closes the input file and exits.

18.1.2 WRITE Statement
The WRITE statement adds a record to a file, either at the end of a file
that has the SEQUENTIAL and OUTPUT attributes, or in a specified key
position in a file that has the KEYED and OUTPUT attributes or the
KEYED and UPDATE attributes. The format of the WRITE statement is

WRITE FILE(file-reference) FROM (variable-reference)

[KEYFROM (expression)]
[OPTIONS (option)];

file-reference

A reference to the file to which the record is to be written. If the file is
not currently open, the WRITE statement opens it with the implied
attributes RECORD, OUTPUT, and SEQUENTIAL; they are
merged with the attributes specified in the file's declaration (see Sec
tion 16.1.2).

variable-reference

308

A reference to the variable containing data for the output record. The
variable must be byte addressable.

Chapter 18

If the variable has the VARYING attribute, and the file does not have
the attribute ENVIRONMENT(SCALARVARYING), the WRITE
statement writes only the current value of the varying string into the
specified record. In all other cases, the WRITE statement writes the
entire storage of the variable. If the contents of the variable do not fit
the specified record size, the WRITE statement outputs as much of
the variable as will fit, and the ERROR condition is signaled.

KEYFROM (expression)

An option specifying that the record to be written is to be positioned
in the file according to the key specified by expression. KEYFROM is
required if the file has the KEYED attribute and invalid if it does not.

The nature of the key depends on the file's organization, as follows:

• For a relative file or a sequential disk file with fixed-length records,
the key value is fixed binary and indicates the relative record num
ber of the record to be written.

• For an indexed sequential file, the key specifies the record's pri
mary key. PL/I inserts the key value specified into the correct key
field in the record and sets the key number to the primary index.

The value of the specified expression is converted to the data type of the
key. If a record with the specified key already exists, or if the value speci
fied cannot be converted to the data type of the key, the KEY condition is
signaled.

OPTIONS (option, ...)

An option specifying one or both of the following WRITE statement
options, separated by commas:

FIXED_CONTROL_FROM (expression)
RECORD_ID_ TO (variable-reference)

These options are summarized in Section 18.1.5.

If the file has the UPDATE attribute, the current record is set to designate
the record just written. The next record is set to designate the following
one; if there is none, the next record is set to end-of-file.

The examples below demonstrate the WRITE statement.

The program TRUNC reads a file with variable-length records into a char
acter string with the VARYING attribute, and creates a sequential output
file in which each record has a fixed length of 80 characters.

Record Input/Output 309

TRUNC: PROCEDUREi
DECLARE INREC CHARACTERIBOl VARYING,

OUTREC CHARACTER (80) 1
ENDED BIT(l) STATIC INITI 'O'B),
IINFILEtOUTFILEl FILE;

OPEN FILE IINFILEl RECORD INPUT
TITLE! 'RECFILE.DAT');

OPEN FILE (OUTFILEl RECORD OUTPUT
TITLE (I TRUNCF I LE+ DAT I)

ENVIRONMENT<FIXED_LENGTH_RECORDS1
MA)< I MUM_RECORD_S I ZE (80)) ;

ON ENDF I LE (I NF I LE) ENDED = I 1 I B;

READ FI LE (I NF I LE l INTO (I NREC l ;
DO WHILE (... ENDED) ;

OUTREC = I NREC;
WRITE FILE IOUTFILEl FROM <OUTREC);
READ FILE (INF ILE) INTO (INRECl;
ENDi

CLOSE FILE<INFILE);
CLOSE FILEIOUTFILEl;
RETURN;
ENDi

The ENVIRONMENT attribute for the file OUTFILE specifies the record
format and length of each fixed-length record. When records are written to
a file with fixed-length records, the variable specified in the FROM option
must have the same length as the records in the target output file. Other
wise, the ERROR condition is sign~led. Thus, in the above example, each
record read from the input file is copied into a fixed-length character-string
variable for output.

Each time this program is executed, it creates a new version of the file
TRlJNCFILE.DAT.

The next example adds records to the existing relative file EMP _FILE.
The file is organized by employee numbers, with each record occupying the
relative record number in the file that corresponds to the employee
number.

ADD_EMPLOYEE: PROCEDURE;

DECLARE 1 EMPLOYEE,

310

2 NAME1
3 LAST CHAR (30) ,
3 FIRST CHAR!20) 1
3 MIDDLE_INIT CHAR< 1 l,
DEPARTMENT CHAR (4) ,
SALARY FI)<ED DECIMAL <G ,z:i ~

EM _FILE FILEi

Chapter 18

DECLARE MORE_INPUT BIT<ll STATIC INIT('1'B)1
NUMBER FIXED DECIMAL (510);

OPEN FILE(EMP_FILE) DIRECT UPDATE;

DO WHILE (MORE_INPUT);
PUT SKIP LIST('E111Plo}·ee Nur11ber');
GET LI ST (NUMBER) ;
PUT SKIP LIST

('Nar11e (Last, First, Middle Initial)');
GET LI ST

(EMPLOYEE.NAME.LAST1EMPLOYEE.NAME.FIRST1
EMPLOYEE.NAME.MIDDLE_INITl;

PUT SKIP LIST< 'Department');
GET LIST <EMPLOYEE.DEPARTMENT);

PUT SKIP LIST< 'Start ins salan');
GET LIST(EMPLOYEE.SALARY);

WRITE FILE (EMP_FILE)
FROM (EMPLOYEE) KEYFROM(NUMBER);

PUT SKIP LIST('More (0 or 1)?')i
GET LIST(MORE_INPUT);
END;

CLOSE FILE<EMP_FILEl;
RETURN;
ENDi

The file is opened with the DIRECT and UPDATE attributes, since re
cords will be written only by referring to a key number. Within the DO
group, the program prompts for data for each new record that will be
written to the file. After the data is input, the WRITE statement specifies
the KEYFROM option to provide the relative record number. The number
itself is not a part of the record, but will be used to retrieve the record when
the file is accessed for keyed input.

18.1.3 REWRITE Statement
The REWRITE statement replaces a record in a file, either the current
record or one specified by the KEY option. The file must have the
UPDATE attribute. The format of the REWRITE statement is

REWRITE FILE (file-reference)

[FROM (variable-reference) [KEY (expression)]]
[OPTIONS (option, ...)];

file-reference

A reference to the file that contains the record to be replaced. If the
file is not open, it i8 opened with the implied attributes RECORD and

Record Input/Output 311

UPDATE; they are merged with the attributes specified in the file's
declaration (see Section 16 .1. 2).

FROM (variable-reference)

An option giving the variable whose value is to be used to rewrite the
specified record. The variable must be byte addressable.

If the FROM option is not specified, there must be a currently allo
cated buffer from an immediately preceding READ statement that
specified the SET option, and the file must have the SEQUENTIAL
attribute. In this case, the record is rewritten from the buffer contain
ing the record that was read.

If the variable has the VARYING attribute, and the file does not have
the attribute ENVIRONMENT(SCALARVARYING), the
REWRITE statement writes only the current value of the varying
string into the specified record. The size of the new record must be the
same as the size of the old record, or an RMS error will occur. In all
other cases, the REWRITE statement writes the variable's entire
storage.

KEY (expression)

An option specifying that the key specified by expression will locate
the record to be rewritten. This option is required if the file has the
KEYED or DIRECT attribute. The expression must have a computa
tional data type. The FROM option must be specified.

The nature of the key depends on the file's organization, as follows:

• For a relative file or a sequential disk file with fixed-length records,
the key is a fixed binary value indicating the relative record number
of the record to be rewritten.

• For an indexed sequential file, the key specified is contained within
a record. The data type of the key and its location within the record
are as specified when the file was created. The primary key field in
the record cannot be modified.

The value of the specified expression is converted to the data type of the
key. If no record with the specified key exists, if the value specified is not
valid for conversion to the data type of the key, or if the primary key in a
record in an indexed sequential file has been modified, the KEY condition
is signaled.

OPTIONS (option, ...)

312

An option giving one or more of the REWRITE statement options
listed below, separated by commas:

FIXED_CONTROL_FRO M(expression)
INDEX_NUMBER (expression)

Chapter 18

MATCH_GREATER
MATCH_GREATER_EQUAL
RECORD_!D (variable-reference)
RECORD_ID_ TO (variable-reference)

These options are summarized in Section 18.1.5.

After execution of the REWRITE statement, the next record position is set
to denote the record immediately following the one rewritten or, if there is
none, end-of-file. The current record is set to designate the record just
rewritten. For disk files with sequential organization, the record rewritten
must have the same length as the one that was read.

The examples below demonstrate the REWRITE statement.

The procedure NEW-SALARY updates the salary field in a relative file
containing employee records. The procedure receives two input parame
ters: the employee number and the new salary. The employee number is
the key value for the records in the relative file.
NEW_SALARY: PROCEDURE CEMPLOYEE_NUMBER1PAYl;

DECLARE EMPLOYEE_NUMBER FIXED DECIMALl510l,
PAY FIXED DECIMAL (812l;

DECLARE 1 EMPLOYEE,
2 NAME ,

3 LAST CHAR (30) ,
3 FIRST CHAR (20) I

3 MIDDLE_ IN IT CHAR (1) ,

2 DEPARTMENT CHAR (l!) 1
2 SALARY FI){ED DECIMAL (8 12),

EMP_FILE FILEi

OPEN FILE<EMP_FILE) DIRECT UPDATE;
READ FILECEMP_FILEl INTOCEMPLOYEEl

KEY CEMPLOYEE_NUMBERl i
EMPLOYEE.SALARY = PAY;
REWRITE FILECEMP_FILE) FROMCEMPLOYEEl

KEY<EMPLOYEE_NUMBER);
CLOSE FILE<EMP_FILEl i
RETURN;
ENDi

The KEY option is specified in the READ statement, which obtains the
record of interest, and in the REWRITE statement, which replaces the
record with its new information in the file. Note that the FROM and KEY
options must both be specified on the REWRITE statement.

The program CHANGE-HEADER changes the contents of the first record
in the sequentially organized file TITLE-PAGE. The file consists of 80-
byte, fixed-length records.

Record Input/Output 313

CHANGE_HEADER: PROCEDURE OPTIONS<MAINl i

DECLARE TITLE_PAGE FILE SEQUENTIAL UPDATE,
INREC CHARACTERl80) BASEDIPl,
P POINTERi

OPEN FILEITITLE_PAGEl i
READ FILE<TITLE_PAGEl SET<Pl i

INREC = 'SuMMary of Courses for Fall 1983' i
REWRITE FILEITITLE_PAGE) i
CLOSE FILE<TITLE_PAGEl;
RETURNi
ENDi

The READ statement specifies the SET option. The input record is read
into a buffer, INREC, which is a based character-string variable. The
assignment statement modifies the buffer, and the REWRITE statement
rewrites the record. Because the REWRITE statement does not specify a
FROM option, PL/I uses the contents of the buffer to rewrite the current
record in the file (that is, the one just read).

18.1.4 DELETE Statement
The DELETE statement deletes a record from a file: the current record,
the one specified by the KEY option, or the record specified by the
RECORD-ID option. The file must have the UPDATE attribute. The
format of the DELETE statement is

DELETE FILE(file-reference} [KEY (expression)]
[OPTIONS(option, ...)];

file-reference

A reference to the file from which the specified record is to be deleted.
If the file is not currently opened, PL/I opens it with the implied
attributes RECORD and UPDATE; they are merged with the attrib
utes specified in the file's declaration (see Section 16.1.2).

KEY (expression)

314

An option specifying that the key specified by expression will ,be used
to locate the record to be deleted. The file must have the KEYED
attribute.

The nature of the key depends on the file's organization, as follows:

• For a relative file, the key is a fixed binary value indicating the
relative record number of the record to be deleted.

• For an indexed sequential file, the key is contained in the record; its
position in the record and its data type are as determined when the
file was created.

Chapter 18

The value of the specified expression is converted to the data type of
the key. If no record with the specified key exists in the file, or if the
value specified is not valid for conversion to the data type of the key,
the KEY condition is signaled.

OPTIONS(option, ...)

An option giving one or more of the DELETE statement options
listed below, separated by commas:

FAST __ DELETE
INDEX_NUMBER (expression)
MATCH_GREATER
MATCH_GREATER_EQUAL
RECORD_ID (variable-reference)

These options are summarized in Section 18.1.5.

After execution of the DELETE statement, the next record is set to denote
the record following the deleted one. The current record is undefined.

The program BAD-RECORD, below, deletes an erroneous record in an
indexed sequential file containing data about states. The primary key in
the file is the name of a state.

BAO_RECORD: ~ROCEOURE OPTIONS<MAINJ;

DECLARE STATE_FILE FILE KEYED UPDATE;

RETURN;
mo;

OPEN FILE<STATE_FILEl TITLE< 'STATEDATA,DAT');
DELETE FILE<STATE_FILEI KEY('ArUansas');
CLOSE FILE<STATE_FILE);

The file is opened with the UPDATE attribute, and the OPEN statement
specifies the file from which the record is to be deleted.

18.1.5 Options for Record 110 Statements
The options described in this section can be used with one or more of the
record I/0 statements. The description of each statement lists the options
that are applicable to it.

FAST _DELETE
The FAST-DELETE option specifies, for a record in an indexed sequen
tial file with alternate indexes, that only the primary index be updated.
The alternate indexes for the deleted record are not updated until access to
the record is attempted through the alternate index. This option applies
only to indexed sequential files; it can improve the speed of deletions when
such files are updated.

Record Input/Output 315

FIXED_CQNTROLFROM (expression)
The FIXED_CONTROLFROM option specifies a value to be written in
the fixed control portion of a record in a file with variable-length records
and a fixed control area. The expression can be a scalar or a connected
aggregate variable. It must not be an unaligned bit string or an aggregate
consisting entirely of unaligned bit-string variables.

Observe the following rules when using this option:

• The file must have variable-length records with a fixed-length control
area and must be opened with the OUTPUT or UPDATE attribute.
With OUTPUT, the ENVIRONMENT option FIXED-CONTROL
SIZE must also be specified.

• The length of the expression must match the length of the fixed con
trol area, as specified in the FIXED-CONTROL-SIZE option of
ENVIRONMENT. If the variable is not of the correct length, the
ERROR condition is signaled.

FIXED_CQNTROLTO (variable-reference)
The FIXED-CONTROL-TO option specifies that the contents of the
fixed control area of a record in a file with a fixed control area are to be
assigned to a variable specified by the variable-reference. The variable can
be scalar or a connected aggregate. It must not be an unaligned bit string or
an aggregate consisting entirely of unaligned bit-string variables.

Observe the following rules when using this option:

• The file must have variable-length records with a fixed-length control
area, must be opened with the INPUT or UPDATE attributes, and
should have the ENVIRONMENT option FIXED-CONTROL_
SIZE-TO specified.

• For an existing file, the length of the variable must match the length
of the fixed control area. If the length is not correct, the ERROR
condition is signaled.

INDELNUMBER (integer-expression)
The INDEX_NUMBER option specifies the particular index in an in
dexed sequential file to which a KEY option applies (primary index, sec
ondary index, and so on). The integer-expression specifies the index to use.
The value of the expression must be the number of an index in the file. The
primary index is 0, the secondary index is 1, and so on. The KEY option
must also be specified on the statement.

The INDEX_NUMBER option on an I/0 statement overrides the current
index number, which may be set explicitly by the INDEX-NUMBER
option of ENVIRONMENT or implicitly by a WRITE statement that
specifies the KEY option or by a READ, REWRITE, or DELETE state
ment that specifies the RECORD_ID option.

316 Chapter 18

When the INDEX-NUMBER option is used, the specified index becomes
the current index for the file; it is used in this and in all subsequent I/0
operations until the INDEX_NUMBER option is again changed. For
example:

GET LIST<BIRD> OPTIONS <PROMPT('Enter bird:'));
READ FILE<STATEFILEl INTO<STATEl KEY<BIRDl

OPTIONS (INDE)CNUMBER(2l l;

In this example, the READ statement accesses the record in the file
STATEFILE using the second alternate index.

MATCH-GREATER
The MATCH-GREATER option indicates that the record of interest is
the first record whose key is greater than that specified in the KEY option.
MATCH-GREATER overrides the default rule for key matching, which is
to look for an exact match.

Observe the following rules when using this option:

• The KEY option must also be specified.

• The file must be an indexed sequential or relative file.

• MATCH-GREATER conflicts with the MATCH-GREATER--
EQUAL option.

MATCH-GREATER remains in effect only for the current statement. On
subsequent accesses of the file, the default rule is in effect, unless you
specify MATCH-GREATER again or MATCH-GREATER-EQUAL.

MATCH_GREATEIL.EQUAL
The MATCH-GREATER-EQUAL option indicates that the record of
interest is the record whose key matches the one specified in the KEY
option or, if no match is found, the first record whose key is greater than
the one specified.

Observe the following rules when using this option:

• The KEY option must also be specified.

• The file must be an indexed sequential or relative file.

• MATCH_GREATER-EQUAL conflicts with the MATCH_
GREATER option.

MATCH-GREATER-EQUAL remains in effect only for the current
statement. On subsequent keyed accesses of the file, the default rule (an
exact key match) is in effect, unless you specify MATCH-GREATER-
EQUAL again or MATCH-GREATER.

Record Input/Output 317

RECORD_ID (variable-reference)
The RECORD-ID option indicates that the record of interest is specified
by its record identification. The variable reference specifies the name of a
2-element array variable containing the record identification. The variable
must be declared as (2) FIXED BINARY(31) and must be a connected
array.

Observe the following rules when using this option:

• RECORD-ID conflicts with the KEY option on the READ,
REWRITE, or DELETE statement.

• The file on which the operation is being performed must have
been opened with the RECORD--1D-ACCESS option in the
ENVIRONMENT attribute.

• If RECORD-ID is specified for an operation on an indexed sequential
file, the RECORD-ID option resets the value of the current index
number to 0 (the primary key).

RECORD_ID_ TO (variable-reference)
The RECORD-ID-TO option specifies the name of a variable to be as
signed the value of the record identification of the record on which the
current operation is being performed. The variable reference denotes a 2-
element array variable to receive the value of the record's identification.
The variable must be declared as (2) FIXED BINARY(31), and it must be
connected. The file on which the operation is being performed must have
been opened with the RECORD-ID-ACCESS option of the
ENVIRONMENT attribute.

18.2 Sequential Files
This section gives examples of some typical I/0 operations on sequential
disk files and on sequential devices, including magnetic tapes.

18.2.1 Creating a Sequential File
Whenever a PL/I program opens a file with the SEQUENTIAL OUTPUT
attributes, V AX-11 PL/I normally creates a new sequential file. By de
fault, records are variable length with a maximum length of 510 bytes.
Each WRITE statement adds a new record to the file.

In VAX-11 PL/I, you can open a file with the APPEND option of
ENVIRONMENT to add new records to the end of an existing sequential

318 Chapter 18

file. This overrides the default action of PL/I, which is to create a new
version when an existing file is opened for output. For example:

OPEN FILE!BIRD_FILEl OUTPUT SEQUENTIAL
TITLE('BIRDS.DAT I) Et·N<APPEND);

WRITE FILEIBIRD_FILEl FROM CNEWDATAl;

This OPEN statement opens the file BIRD-FILE and positions it at its
current end-of-file. The \X/RITE statement then adds a new record at the
end of the file.

18.2.2 Using Magnetic Tape Files
Before you execute a PL/I program that performs I/0 to a file on a mag
netic tape volume, you must use the following VAXNMS operating system
command language (DCL) commands:

1. Use the ALLOCATE command to allocate a device on which to
mount a tape volume. For example:

$ ALLOCATE MT:
_MTAO: ALLOCATED

The ALLOCATE command responds with the name of the physical
device, on which you can now place the physical tape reel.

2. If the tape is new and you are going to write or overwrite, use the
INITIALIZE command to format the tape and write a label on it.
For example:

$ I r.j I T I A L I Z E M T A 0 : M Y T A P E

This command writes the label MYTAPE on the tape volume
mounted on MTAO:.

3. Use the MOUNT command to ready the volume for use and, option
ally, to define a logical name for the device and file. For example:

$ MOUNT MTAO: MYTAPE TAPEFILE

After this sequence of commands, a PL/I program that writes records
using the logical name TAPEFILE will be writing to the tape volume
mounted on the device MTAO:. For example:

DECLARE OUTFILE FILE RECORD OUTPUT;
OPEN FILEIDUTFILEl TITLE! 'TAPEFILE:TAPEl ,FIL');

When this OPEN statement executes, the logical name TAPEFILE
is translated to its equivalence MTAO:, and the open creates the
file MTAO:TAPEl.FIL;O. Magnetic tape files always have a version
number of 0.

Record Input/Output 319

18.2.2.1 Format of Magnetic Tapes
V AX-11 RMS (Record Management Services) supports the magnetic tape
structure defined by ANSI X3.27-1977, the Magnetic Tape Labels and File
Structure for Information Interchange. The tapes are encoded in ASCII
format and can be processed on 9-track tape drives only. The INITIALIZE
command writes a label on the tape in the required format. A tape created
on a V AXNMS system can be read on another system that supports the
same tape label format.

18.2.2.2 Multivolume Tape Files
The ANSI standard X3.27-1977 for magnetic tapes allows any of the follow
ing combinations of tape files:

• A single file on a single volume (that is, a reel)

• A single file on more than one volume

• Multiple files on a single volume

• Multiple files on more than one volume

When more than one tape volume is required to contain a file or files, the
tapes constitute a volume set. VAX/VMS processes volume sets as follows:

• When a file is being created on a tape volume, and the tape reaches its
end-of-volume, the magnetic tape control program (ACP) sends a
message to a designated system operator requesting the operator to
mount another tape volume. The program that is attempting to write
to the tape must wait until the operator (or user who is performing
operator functions) responds to the request. The response generally
includes the initialization of another tape, with a volume number one
greater than the volume number of the current volume.

• When a file that spans two or more volumes is being read and the tape
reaches end-of-tape, the magnetic tape ACP sends a message to the
system operator requesting the operator to mount the next tape in the
volume set.

Normally, RMS requests new volumes automatically. However, a PL/I
program can request that the next volume in a volume set be mounted, for
either an input or an output operation, by calling the NEXT_ VOLUME
built-in subroutine (described in Section 16.4.4).

The physical process of volume switching, whether the switching is per
formed automatically by RMS or as a result of a call to the NEXT_
VOLUME built-in subroutine, is transparent to the PL/I program. As a
user, you may wish to function as an operator to receive the volume switch
ing requests and to mount the volumes yourself. For a description of the
procedure for handling volume switching, see the VAX/VMS Command
Language User's Guide.

320 Chapter 18

18.3 Relative Files

This section describes the organization of a relative file; suggests considera
tions for creating and using relative files, and shows examples of some
typical relative file 1/0 operations.

18.3.1 The Organization of a Relative File
Relative organization is suitable for files with data that can be arranged
serially and uniquely identified by an integer value, for example, a part
number or an employee identification number. Within the file, records are
written into numbered cells. There is a one-to-one correspondence between
the cell number and the integer value associated with the data in the
record. This number, called the relative record number, is the key by which
records are written and accessed.

Figure 18-1 illustrates a relative file in which not all cells contain records.
The first record written to the file was relative record number 1 (which may
have been data for a part numbered 1 or for an employee whose identifica
tion number was 1, for example). The second record written was relative
record number 2. The third was relative record number 4; thus cell number
three does not contain a record.

Although the cells in a relative file have the same length, the records need
not be fixed-length records. However, when a record is smaller than the
length of a cell, the unused space is wasted.

18.3.2 Creating a Relative File
In VAX-11 PL/I, relative organization is the default for files opened with
the KEYED attribute. Thus, when a WRITE statement is directed to a file
with the KEYED and OUTPUT attributes, VAX-11 PL/I creates a relative
file.

When you create a relative file in a PL/I program, you can specify the
following ENVIRONMENT options:

• MAXIMUM-RECORD-NUMBER

• MAXIMUM_RECORD_SIZE

Considerations for specifying values for them in PL/I are given in Sections
18.3.2.1 and 18.3.2.2, respectively.

Record Input/Output 321

~
N
N

(')
::J"'
p:i

"O
n
ro
i-;

........
00

CELL
NUMBERS 2

FIRST SECOND
RECORD RECORD
WRITTEN WRITTEN

Figure 18-1: A Relative File

3 4

THIRD
RECORD
WRITTEN

5 n-1 n

RECORD

... l 999 ----

ZK-033-81

18.3.2.1 Maximum Record Number
The MAXIMUM-RECORD-NUMBER option specifies the largest rela
tive record number that will be used in the fiie, and thus the maximum
number of cells that the file can have. If you do not specify it, V AX-11 PL/I
sets the maximum record number to zero, thus permitting the file to ex
pand to any size.

For example, if a relative file is to contain inventory data about 600 parts,
and the part number is to be used as the relative file's key, the
MAXIMUM-RECORD-NUMBER option can be specified as follows:

DECLARE PARTS FILE ENVIRONMENT (
MAXIMLJM_RECORD_NLJMBER <GOOll;

You should be realistic and allow for future expansion of the file when you
specify a maximum record number; the number is a permanent attribute of
the file and cannot be changed. PL/I signals the KEY condition when a key
value is too large. For an example of a PL/I ON-unit for a KEY condition,
see Section 16.5.2.

18.3.2.2 Maximum Record Size
When you specify the length of the records in a file, RMS uses the value
you specify in the MAXIMUM-RECORD-SIZE option to calculate a cell
size. It uses the following formulas to calculate the size:

Fixed-Length Records
cell-size = 1 + record-size

One byte is required for overhead: this byte contains a deletion indicator.

Variable-Length Records
cell-size = 3 + maximum-record-size

Three bytes are required for overhead: two bytes for the individual record
size and one byte for a deletion indicator.

When you select a record size for a relative file, you should try to specify a
size no greater than the largest record that will be written. Otherwise, any
unused space in each cell will be wasted. If you do not specify a maximum
record size for either fixed- or variable-length records, VAX-11 PL/I uses
the default length of 480 bytes.

18.3.3 Using Relative Files
You can create a relative file from any existing file that is suitable for such
organization. The following program illustrates copying a sequential file
with fixed-length records into a relative file. The circled numbers refer to
the notes below.

Record Input/Output 323

COPY_TO_RELATIVE: PROCEDURE OPTIONS!MAINl;

%INCLUDE PARTLIST; /* declaration of PARTLIST */

DECLARE 1 PARTLIST, 0
2 NAME CHARACTERl20l VARYING,
2 NUMBER CHAR (3 l ,
2 UNIT_PRICE FIXED DECIMAL !512),
2 QUANTITY,

3 IN_STOCK FIXEDl31l t

3 ON_ORDER FIXED!31l;
I* end of INCLUDE */

DECLARE OLDFILE FILE INPUT RECORD SEQUENTIAL;
ON ENDFILE!OLDFILE> STOP; f)

DECLARE PARTS FILE OUTPUT KEYED RECORD ENVIRONMENT!
MA>: I MUM_RECORD_NUMBER (GOO l t C)
FIXED_LENGTH_RECORDS1
MAXIMUM_RECORD_SIZE!38ll;

DECLARE RECORD_NUMBER FIXED BIN!15l;

LOOP:

END;

OPEN FILEIOLDFILEl;
OPEN FILE\ PARTS) i

READ FI LE IOLDF I LE l INTO (PART LI ST l ;
RECORD_NUMBER = PARTLIST.NUMBERi
WRITE FILEIPARTSl FROM!PARTLISTl

KEYFROMIRECORD_NUMBERl; 0
GOTO LOOP;

0 The structure PARTLIST describes the layout of the records in the file.
They will be ordered in the relative file according to part number, that
is, using the field P ARTLIST .NUMBER.

8 The file OLDFILE is the sequential file containing the records to be
copied. When the end-of-file is reached, the STOP statement termi
nates the program.

8 The relative file PARTS is declared with a maximum record number of
600. It has fixed-length, 38-byte records.

0 As each record is read into the structure PARTLIST, the value of
NUMBER is copied to the fixed binary integer RECORD-NUMBER.
The part number is maintained in each record in its character-string
form.

0 Each WRITE statement copies the record to the output file, specifying
the value of the part number as a relative record number.

324 Chapter 18

Records in this file can subsequently be accessed either sequentially or by
part number. To access a record by part number, you specify the number
as a key. For example:

GET LIST(INPUT_NUMBERI OPTimJS(PROMPT(;Par·t';· · .i .i,

READ FILE<PARTSl INTO(PARTLISTl KEY(INPUT_NUMBERl;

Here, the value entered in response to the GET statement is used as a key
value to access a record in the file.

18.3.3.1 Updating a Relative File
To add or modify records in a relative file, open it with the DIRECT and
UPDATE attributes. For example, a procedure that updates the file
PARTS when new stock is ordered might contain the following:

ORDER_PARTS: PROCEDURE IORDERED_AMOUNTtPART_NUMBERl;
%INCLUDE PARTLIST; /* Declaration of PARTLIST */
DECLARE <ORDERED_AMOUNTtPART_NUMBERl FIXED BIN!15l;
DECLARE PARTS FILE RECORD DIRECT UPDATEi

ENDi

OPEN FILE(PARTSl;
READ FILE(PARTSl INTOIPARTLISTI

KEY(PART_NUMBERl;
PARTLIST.ON_ORDER = PARTLIST.ON_ORDER +

ORDERED_AMOUNTi
REWRITE FILE(PARTSl FROM(PARTLISTl;
CLOSE FI LE (PARTS l ;

The procedure ORDER-PARTS receives as its parameters the order quan
tity and the part number. It reads the record associated with the part
number from the file, adds the order quantity to the existing quantity, and
rewrites the record.

18.3.3.2 Reading a Relative File Sequentially
You can access a relative file sequentially as well as by key. In that case,
each READ statement returns the record in the next cell that contains a
record, skipping empty cells. The following example illustrates reading a
relative file sequentially:

PRINT_PART: PROCEDURE OPTIONS(MAINl;
%INCLUDE PARTLIST;

DECLARE PARTS FILE,
CHECK_NUM Fii<ED;

I* Declaration of PARTLIST */

OPEN FILEIPARTSl INPUT SEQUENTIAL RECORD KEYED;
ON ENDFILE<PARTSl STOP;

Record Input/Output 325

LOOP:

ENDi

READ FILE<PARTSl INTO<PARTLISTl KEYTO!CHECK_NUMl;

PUT SKIP EDIT<PARTLIST.NAME,
UNIT_PRICE1
IN_ STOCK ,
ON_ ORDER l

I* OutPut data */

PUT SKIP EDIT< 'Relative record nur11ber' 1CHECK_NUM'
'Part nuf!1ber:' 1PARTLIST,NUMBERl

0((10l 1A ,)-(1F(Sl 1A ,;< 1Al i

GOTO LOOPi

I* OutPut
1.ierification */

This procedure outputs the contents of the file PARTS, listing each field in
the data records described by PARTLIST. The READ statement specifies
the KEYTO option; the procedure outputs the value returned to the varia
ble CHECK_NUM.

18.3.3.3 Error Handling
PL/I signals the KEY condition when errors occur while processing record
numbers for relative files. For example, it signals the KEY condition when
a relative record number exceeds the maximum record number specified
for the file, or when the number of a record that already exists is specified
in a KEYFROM option in a WRITE statement.

Section 16.5.2 contains an example of an error handler designed to handle
the KEY condition.

18.4 Indexed Sequential Files

This section describes the organization of indexed sequential files, suggests
considerations for creating and using them, and shows examples of some
typical operations on them.

326 Chapter 18

18.4.1 Indexed File Organization
In an indexed sequential file, the file contains data records and pointers to
the records. Data records and record pointers are arranged in buckets,
which consist of an integral number of physically contiguous 512-byte disk
blocks.

Individual records within the file are located by specifying the keys associ
ated with the records. Each file must have a primary key: that is a field
within the record that has a unique value to distinguish it from all other
records in the file. An indexed sequential file can also have up to 254
alternate keys, which need not have unique values.

As RMS writes records to an indexed file, it writes them in collating se
quence according to the primary key, in buckets that are chained together.
Thus, the file can be accessed sequentially using any key.

Figure 18-2 illustrates an indexed sequential file with a single key, or
index. The records in this file consist of address data that might have been
defined in a PL/I structure as follows:

DECLARE 1 ADDRESS_FILE1
2 EMPLOYEE_NAME CHARACTERC30l,
2 ADDRESS,

3 STREET CHARACTER (20) ,
3 ZIP_CODE CHARACTERC5l;

The key here is the employee name.

When RMS writes records to an indexed sequential file, it builds and
maintains a tree-like structure of key value and location pointers. When
records are accessed by key, RMS uses the tree to locate individual records.
Thus, when a PL/I program wants to access the record whose key value is
JONES, RMS traverses the indexes to locate the record.

When new records are added to an indexed sequential file, a data bucket
may not have enough room to accommodate a new record. In this case,
RMS performs what is called bucket splitting-it inserts a new bucket in
the chain of data buckets and moves enough records from the previous
bucket to preserve the primary key sequence. Bucket splitting is transpar
ent to the PL/I program; the program only knows that it has added a record
to the file.

Record Input/Output 327

~
N
00

Q
::T
PJ
"d ,,..
(!)
""'!

.......
00

KEY DEFINITION

, BAKER : SMITH : WY;:J

~ I I •
.---·

PRIMARY INDEX (Employee Name) ,,
... CLARK • ••• JONES ··E . ..

J J
'

... CLARK ELM AVE 24379 ••• JONES MAIN ST 19i SMITH HOLT RD 11733 . ..

...---~DATA RECORDS ~---1.,...

Note: Assumes one record per bucket.

ZK-034-81

Figure 18-2: An Indexed Sequential File

18.4.2 Defining an Indexed Sequential File
To create an indexed sequential file for VAX-11 PL/I, you can use the
RMS utility program EDIT/FDL. After you create the file, you can use
PL/I to populate the file by opening it with the UPDATE attribute and
using WRITE statements to write records to it.

To invoke the EDIT/FDL Utility, enter the following command:

$ EDIT/FOL

This utility is interactive: it prompts you to enter data and responds with
error messages when you enter data incorrectly. It also provides informa
tion when you enter a question mark (?) in response to any of its prompts.
The only information that you must specify is

• The file specification of the file you are creating.

• The file type IDX, to indicate that the file is an indexed sequential
file.

• The position of the key within the file's records.

• The size of the key.

You can obtain help by pressing ru in response to the first merm. Each
item on the menu leads to another menu in the creation of a file. You can
return to the original menu by pressing tTRL/zJ. Default values are not sup
plied. The arrows (<-) indicate lines where you enter information.

$EDIT/FDL(ffij)
_File:ADDRESS.DAT((BIT))

Parsins Definition File
%FDL-I-OPENFDL, error oPenins DBAO:[SMITHJADDRESS.OAT;
-RMS-E-FNF1 file not found

A new FDL file will be created.
Press return to continue.~

- VAX-11 FDL Editor

Add
Delete
Exit
Help

to
to
to
to

insert one or more lines into the FDL definition
remove one or more lines from the FOL definition
leave the FDL Editor after creatins the FOL file
obtain information about the FDL Editor

Invof~e

Modify
Quit
\,Ji e IA!

to
to
to
to

initiate a script of related ~uestions
chanse existins line(s) in the FDL definition
abort the FOL Editor with no FDL file creation
disPlay the current FDL definition

Main Editor Function (K e Y 1,1 o r d) [H e 1 P J : A [[RE'i < -

Record Input/Output 329

- Lesal PriMarY Attributes -

TITLE is the header line for the FOL file
SYSTEM is useful for cross-sYsteM coMPatibilitY
FILE attributes affect the entire RMS data file
DATE attributes set the date ParaMeters of the file
RECORD attributes set the non-Key asPects of each record
AREA x attributes define the characteristics of file area x
KEY Y attributes define the characteristics of KeY Y

Enter Desired PriMarY : ~· E C• m' < -

At this point in the dialog, EDIT/FDL prompts you to enter key definition
information.

After you define your data file, EDIT/FDL displays the message:

Created:
DBAO:[SMITHJADDRESS.DAT;l

$

Table 18-2 summarizes the valid data types for keys in VAX-11 RMS
indexed sequential files, lists the corresponding PL/I data type declaration,
and shows how to specify the key data type and length to the EDIT/FDL
utility.

18.4.3 Using Indexed Sequential Files
After you have created an indexed sequential file with the EDIT/FDL
Utility, you can write records to it by opening it with the UPDATE attrib
ute and using PL/I WRITE statements. For example:

OPEN FILE(STATE_FILEl RECORD DIRECT UPDATE;

WRITE FILE(STATE_FILE) FROM<STATE)
KEYFROM(STATE.NAMEl;

This WRITE statement writes the record whose key value is specified by
the field STATE.NAME in the structure STATE.

When a WRITE statement adds a record to an indexed sequential file, the
value of the KEYFROM option must always be the primary key. In fact,
the WRITE statement causes the index number (that is, the number of the
key) to be reset to zero (that is, back to the primary key) if any other index
number is in effect.

330 Chapter 18

Table 18-2: Key Data Types

Data Type PL/I Declaration

String1 CHAR(n), where
l:s:n:s:255

15-bit signed FIXED BINARY(l5)
integer

31-bit signed FIXED BINARY(31)
integer

16-bit unsigned
binary2

FIXED BINARY(l5)

32-bit unsigned
binary2

FIXED BINARY(31)

Packed decimal FIXED DECIMAL(n)
where 1 :s: n :s: 16

EDIT/FDL
Specifications

STR
n

INT
2

INT
4

BIN
2

BIN
4

PAC
n

1. VAX-11 PL/I supports segmented character-string keys.
2. PL/I does not distinguish between signed and unsigned integers. Thus,
the difference between signed integer keys and unsigned binary keys is in
the key collating sequence. For signed integer keys, the collating sequence
is from the smallest negative number to the largest positive number (for
example -32768, -32767, ... 0, 1, 2, ... 32767). For unsigned binary keys,
the collating sequence is from 0 to the largest positive number, then from
the smallest negative number to -1 (for example 0, 1, 2, ... 32766, 32767,
-32768, -32767' ... -1).

18.4.3.1 Reading an Indexed Sequential File Sequentially
To read records in an indexed sequential file in collating order by key
value, open the file with the INPUT and SEQUENTIAL attributes. The
following example illustrates reading the file STATE-FILE in sequential
order using the primary key, that is, using the STATE.NAME field. This
procedure uses the SET option of the READ statement; thus, no space is
required in the procedure for an input buffer for the records.

DECLARE STATE_PTR POINTER,
STATE_FILE FILE,
EDF BIT< 1 l INITIAL ('O 'Bl;

DECLARE 1 STATE BASED <STATE_PTRl,
2 NAME CHARACTER (20) ,

Record Input/Output 331

ON ENDFILE<STATE_FILE) EDF= 'l'B;

OPEN FILE<STATE_FILE) INPUT SEQUENTIAL;
READ FILE<STATE_FILE) SET<STATE_PTR);
DO WHILE (···EDF);

PUT SKIP(2) LIST('State:' 1STATE.NAME);
PUT SKIP(2) EDIT('Population:' ,STATE.POPULATION)

(A ,p 'ZZ ,zzz ,zzz I) i

READ FILE<STATE_FILEl SET<STATE_PTRl;
ENO;

18.4.3.2 Accessing Records by Alternate Key
You can define alternate keys for an indexed sequential file when you
create the file with the EDIT/FDL Utility. For complete information on
alternate keys, see the VAX-11 PL/I User's Guide.

To read a record in an indexed sequential file using an alternate key,
specify the INDEX-NUMBER option on a READ statement. For exam
ple, if a file containing data about states has as its primary key the state
name, it might have alternate keys for state flowers, birds, and so on.
Assuming that a field called FLOWER is the first alternate key, you could
access the record for a state whose flower is MAGNOLIA by writing the
following statements:

OPEN FILECSTATE_FILEl KEYED INPUT;
READ FILE<STATE_FILEl SET<STATE_PTR) KEY< 'MAGNOLIA')

OPTIONS<INDEX_NUMBER(l)l;

The INDEX-NUMBER option specifies the first alternate index, the
FLOWER field. This option is also valid on the REWRITE and DELETE
statements.

You can access a file starting with an alternate index by opening the file
with the INDEX_NUMBER option of ENVIRONMENT. For example:

OPEN FILE<STATE_FILEl SEQUENTIAL INPUT ENV<
I NDE)LNUMBER (2)) ;

READ FILE<STATE_FILE) SETCSTATE_PTRl;
DO WHILE (... EDF> ;

PUT SKIP EDIT<STATE.BIRD1'is the bird of',
STATE.NAME)

READ FILE<STATE_FILE> SET<STATE_PTRl;
ENO;

These statements, executed until the end-of-file is reached, access the
records in the file STATE-FILE based on its second alternate index, the
BIRD field.

332 Chapter 18

18.4.3.3 Updating Records in an Indexed Sequential File
You can modify or delete records in an indexed sequential file by opening it
with the UPDATE attribute and using REWRITE and DELETE state
ments. The following example shows the correction of an invalid field in a
record in the file STATE_FILE:

DECLARE ISTATENAMEtNEWFLOWERl CHARACTER(30l VARYING;

OPEN FILECSTATE_FILEl KEYED SEQUENTIAL UPDATE;
GET SKIP LIST<STATENAMEl

OPTIONS <PROMPT('State: 'll;
READ FILEISTATE_FILEl SET<STATE_PTRl

KEYCSTATENAMEl;
GET SKIP LIST<NEWFLOWERl OPTIONS<

PROMPT('New state flower name: '));
STATE.FLOWER = NEWFLOWERi
REWRITE FILEISTATE_FILEl;

The REWRITE statement rewrites the current record in the file, that is,
the one just read with the READ SET statement.

18.4.3.4 Error Handling
PL/I signals the KEY condition when errors occur during processing of keys
for indexed sequential files. For example, if a key value specified on a
READ statement indicates a key that does not exist, or a WRITE state
ment attempts to write a record using a primary key value that already
exists, the KEY condition is signaled.

Section 16.5.2 contains an example of an error handler designed to handle
the KEY condition.

Record Input/Output 333

Chapter 19

Built-In Functions

This chapter describes all the VAX-11 PL/I built-in functions. Section 19.l
discusses them in general, and provides a functional summary. Section
19.2 contains the individual descriptions of the built-in functions in alpha
betic order.

Several of the built-in functions have corresponding pseudovariables that
can be used on the left side of an assignment statement instead of the right
side. See Section 12.5 for a description of these pseudovariables.

19.1 Summary of Built-In Functions

Built-in functions are procedures provided by the PL/I language, which can
be used wherever an expression is valid. The built-in functions are summa
rized in Table 19-1, according to the following functional categories:

• Arithmetic built-in functions-provide information about the proper
ties of arithmetic values, or perform common arithmetic calculations

• Mathematical built-in functions-perform standard mathematical
calculations in floating point

• String-handling built-in functions-process character-string and bit
string values

• Conversion built-in functions-convert data from one data type to
another

• Condition-handling built-in functions-provide information about in
terrupts caused by signaled conditions

• Array-handling built-in functions-provide information about arrays

• Storage control built-in functions-return values concerning based
variables

• Timekeeping built-in functions-return the system date and time of
day

334

• File control built-in functions-return the current line number and
page number of a file

• Miscellaneous-check
passing

the validity of data,
__ _J

i:111U aid m

Table 19-1: Summary of PL/I Built-In Functions

Category

Arithmetic

Mathematical

Function Reference

ABS(x)

ADD(x,y ,p[,ql)

CEIL(x)

DIVIDE(x,y,p[,q])

FLOOR(x)

MAX(xl,x2)

MIN(xl,x2)

MOD(x,y)

MUL TILPY(x,y ,p[,q])

ROUND(x,k)

SIGN(x)

TRUNC(x)

ACOS(x)

ASIN(x)

ATAN(y[,x])

ATAND(y[,xl)

ATANH(x)

COS(x)

COSD(x)

COSH(x)

EXP(x)

LOG(x)

LOGlO(x)

LOG2(x)

SIN(x)

SIND(x)

SINH(x)

SQRT(x)

Built-In Functions

Value Returned

Absolute value of x

Value of x+y, with precision p and scale factor q

Smallest integer greater than or equal to x

Value of x divided by y, with precision p and
scale factor q

Largest integer that is less than or equal to x

Larger of the values xl and x2

Smaller of the values xl and x2

Value of x modulo y

Value of X*Y, with precision p and scale factor q

Value of x rounded to k digits

-1, 0, or 1 to indicate the sign of x

Integer portion of x

Arc cosine of x (the angle, in radians, whose
cosine is x)

Arc sine of x (the angle, in radians, whose sine
is x)

If x is omitted, the arc tangent of y (the angle, in
radians, whose tangent is y); if xis supplied, the
arc tangent of y/x (the angle, in radians, whose
tangent is y/x)

If xis omitted, the arc tangent of y (the angle, in
degrees, whose tangent is y); if xis supplied, the
arc tangent of y/x (the angle, in degrees, whose
tangent is y/x)

Hyperbolic arc tangent of x

Cosine of radian angle x

Cosine of degree angle x

Hyperbolic cosine of x

Base of the natural logarithm, e, to the power x

Logarithm of x to the base e

Logarithm of x to the base 10

Logarithm of x to the base 2

Sine of the iadian angle x

Sine of the degree angle x

Hyperbolic sine of x

Square root of x

335

Table 19-1 (Cont.): Summary of PL/I Built-In Functions

Category

Mathematical

String
Handling

Conversion

Condition
Handling

336

Function Reference

TAN(x)

TAND(x)

TANH(x)

BOOL(x,y,z)

COLLATE()

COPY(s,c)

HIGH(c)

INDEX(s,c)

LENGTH(s)

LOW(c)

SEARCH(s,c)

STRING(s)

SUBSTR(s,i[,jJ)

TRANSLATE(s,c[.dJ l

TRIM(s[,e,fl)

VERIFY(s,c)

BINARY(x[,p[,qll)

BIT(s[,IJ)

BYTE(x)

CHARACTER(s[,lJ)

DECIMAL(x[,p[,qJJ)

FIXED(x,p[,q])

FLOAT(x,p)

RANK(c)

UNSPEC(x)

ONARGSLIST()

ONCODE()

ONFILE()

ONKEY()

Value Returned

Tangent of the radian angle x

Tangent of the degree angle x

Hyperbolic tangent of x

Result of Boolean operation z performed on x
and y

ASCII character set

c copies of specified string, s

String of length c of repeated occurrences of the
highest character in the collating sequence

Position of the character string c within the
strings

Number of characters or bits in the string s

String of length c of repeated occurrences of the
lowest character in the collating sequence

Position of the first character in s that is found
inc

Concatenation of values in array or structure s

Part of string s beginning at i fur j characters

String s with substitutions defined in c and d

String s with all characters in e removed from
the left, and all characters in f removed from the
right

Position of the first character in s that is not
found inc

Binary value of x with precision p and scale fac
tor q

Value of s converted to a bit string of length 1

ASCII character represented by the integer x

Value of s converted to a character string of
length l

Decimal value of x

Fixed arithmetic value of x

Floating arithmetic value of x

Integer representation of the ASCII character c

Internal coded form of x

Pointer to argument lists of exception condition

Error code of the most recent run-time error

Name of file constant for which the most
recent ENDFILE, ENDPAGE, KEY, or
UNDEFINEDFILE condition was signaled

Value of key that caused KEY condition

Chapter 19

Table 19-1 (Cont.): Summary of PL/I Built-In Functions

Category

Array
Handling

Storage

Timekeeping

File Control

Miscellaneous

Function Reference

DIMENSIO:t\(x,n)

HBOU~D(x,n)

LBOUND(x,n)

ADDR(x)

ALLOCATION(x)

INT(x[,p[,lJJ)

NULL()

OFFSET(p,a)

POINTER(o,a)

POSINT(x[,p[,l]])

SIZE(x)

DATE()

TIME()

LINENO(x)

PAGENO(x)

DESCRIPTOR(x)

VALID(p)

Value Returned

Extent of the nth dimension of x

Higher bound of the nth dimension of x

Lower bound of the nth dimension of x

Pointer identifying the storage referenced by x

Number of existing generations for controlled
variable x

Signed integer value of variable x, located at
position p with length 1

A null pointer value

An offset into the location in area a pointed to
by pointer p

A pointer to the location at offset o within area a

Unsigned integer value of variable x, located at
position p with length 1

Number of bytes allocated to variable x

System date in the form yymmdd

System time of day in the form hhmmssxx

Line number of the print file identified by x

Page number of the print file identified by x

Forces its argument to be passed by descriptor
to a non-PL/I procedure

Boolean value, indicating whether the pictured
variable p has a value consistent with its picture
specification

Built-in functions are similar to operators, and their arguments, to
operands. Note the following restrictions on built-in function arguments:

• All arguments of all built-in functions except the array-handling, stor
age, file control, and STRING functions must be scalars of arithmetic,
string, or pictured data types, as specified for the individual function.

• A reference to a built-in function that takes no arguments must still
contain the pair of enclosing parentheses [example: NULL()] unless
the function's name has been declared with the BUIL TIN attribute.

Built-in functions, like other operations, can signal conditions. The mathe
matical functions, which are computed in floating point, can signal OVER
FLOW and UNDERFLOW under the appropriate conditions. Functions
that are computed in fixed point can signal FIXEDOVERFLOW. In gen
eral, string and other functions signal ERROR if a result cannot be
computed.

Built-In Functions 337

19.2 Built-In Function Descriptions
This section contains the individual descriptions of the built-in functions
in alphabetic order.

ABS Built-In Function
The ABS built-in function returns the absolute value of an arithmetic
expression x. Its format is

ABS(x)

For exam pie:

A 3.587i
y ABS (A) i I* y +3.587 *I

A -3.587i
y ABS(A) i I* y +3.587 *I

ROOT = SORT <ABS<TEMP>) i

The last example shows a common use for the ABS built-in function, that
is, to ensure that an expression has a positive value before requesting the
square root (SQRT) built-in function is requested.

ACOS Built-In Function
The ACOS built-in function returns a floating-point value that is the arc
(inverse) cosine of an arithmetic expression x. The arc cosine is computed
in floating point. The returned value is an angle w such that

The absolute value of x, after its conversion to floating point, must be less
than or equal to 1. The format of the function is

ACOS(x)

ADD BuiH-ln Function
The ADD built-in function returns the sum of two arithmetic expressions x
and y, with a specified precision p and an optionally specified scale factor
q.

The format of the function is

p

338

ADD(x,y,p(,q])

An unsigned integer constant greater than zero and less than or equal
to the maximum precision of the result type (31 for fixed-point data,
34 for floating-point decimal data, and 113 for floating-point binary
data).

Chapter 19

q

An integer constant less than or equal to the specified precision. The
scale factor may be optionally signed when used in fixed-point binary
addition. The scale factor for fixed-point binary must be in the range
-31 top. The scale factor for fixed-point decimal data must be in the
range 0 to p. If you omit q, the default value is zero. A scale factor is
not to be used for floating-point arithmetic.

Expressions x and y are converted to their derived type before the addition
is performed. See Appendix A.

ADDR Built-In Function
The ADDR built-in function returns a pointer to storage denoted by a
specified variable. The only restriction on the variable reference is that it
be addressable. The format of the function is

ADDR(reference)

If the reference is to a parameter (or any element or member of a parame
ter), the pointer value obtained must not be used after return from the
parameter's procedure invocation (for example, by saving the pointer in a
static variable or returning it as a function value).

See Section 9.5.1.1 for a general discussion of pointer values.

ASIN Built-In Function
The ASIN built-in function returns a floating-point value that is the arc
(inverse) sine of an arithmetic expression x. The arc sine is computed in
floating point. The returned value is an angle w such that

-7r/2 ::;; w ::;; 7r/2

The absolute value of x, after its conversion to floating point, must be less
than or equal to 1. The format of the function is

ASIN(x)

ALLOCATION Built-In Function
The ALLOCATION built-in function returns a fixed-point binary integer
that is the number of extant generations of a specified controlled variable.
If no generations of the specified variable exist, the function returns 0. The
format of the function is

f ~~~~~~TION l (reference)
{ f\LLUvN J

reference

The name of a controlled variable.

Built-In Functions 339

The following example illustrates one of the uses of the ALLOCATION
built-in function:

DECLARE INPUT CHARACTERl10) CONTROLLED,
A CHARACTERC3l VARYING;

DO UNTIL !INPUT= 'OUIT'l;
ALLOCATE INPUT;
GET LIST(INPUT I;

ENDi
A= ALLOCATIONCINPUTl;
PUT SKIP LISTI 'Generations = 'Ali

This example uses the ALLOCATION built-in function to return the num
ber of generations of the controlled variable INPUT. The example illus
trates how input in an interactive program can be stored on a stack for
future use.

ATAN Built-In Function
The ATAN built-in function returns a floating-point value that is the arc
tangent of an arithmetic expression y or an arc tangent computed from two
arithmetic expressions y and x. The arc tangent is computed in floating
point. If two arguments are supplied, they must not both be zero after their
conversion to floating point.

The format of the function is

ATAN(y[,x])

The returned value represents an angle in radians.

If x is omitted, the returned value v equals arc tangent(s), such that

-7r/2 < v < 7r/2

where s is the value of expression y after its conversion to floating point.

If x is present, the returned value v equals arc tangent(s/r), such that

if s 2". 0 then 0 :::; v :::; 7r, and
if s < 0 then -7r < v < 0

wheres and rare, respectively, the values of expressions y and x after their
conversion to floating point.

ATAND Built-In Function
The ATAND built-in function returns a floating-point value that is the arc
tangent of a single arithmetic expression y or an arc tangent computed

340 Chapter 19

from two arithmetic expressions y and x. The arc tangent is computed in
floating point. If two arguments are supplied, they must not both be zero
afta.,. thai.,. r>nrnral"cin.n tn flnatinn" nnint
ILA..&.\.I'-'.:&.. \.1.1..1.'-'.&..L """V.L.S.Y '-".&.U.&.V.LJ. \IV .l..LVll..A.l.<.1..1..l.f) pv.a...&..l.IL.le

The format of the function is

AT AND(y[,x])

The floating-point value returned, representing an angle in degrees, equals
ATAN(y,x)*l80hr.

ATANH Built-In Function
The ATANH built-in function returns a floating-point value that is the
inverse hyperbolic tangent of an arithmetic expression x. After its conver
sion to floating point, the absolute value of the argument x must be less
than 1.

The format of the function is

ATANH(x)

BINARY Built-In Function
The BINARY built-in function converts an arithmetic or string expression
x to its binary representation, with an optionally specified precision p and
scale factor q. The returned binary value is either fixed or floating point,
depending on whether x is a fixed- or floating-point expression.

The precision p, if specified, must be an integer constant greater than zero
and less than or equal to the maximum precision of the result type (31 if
fixed-point binary and 113 if floating-point binary). P must be specified if x
is a fixed-point decimal value with fractional digits.

The scale factor q, if specified, must be an integer constant in the range -31
to 31 and must be less than or equal to p.

The format of the function is

{
BINARY}
BIN (x[,p[,q]])

The result type is fixed- or floating-point binary, depending on whether the
argument x is a fixed- or floating-point expression. (If the argument is a
bit- or character-string expression, the result type is fixed-point binary.)

The argument x is converted to the result type, giving a value v, following
the usual rules for conversion (see Appendix A for details).

The returned value is the value v, with precision p. If pis omitted (integer
and floating-point arguments only), the precision of the returned value is

Built-In Functions 341

the converted prec1s10n of x. FIXEDOVERFLOW, OVERFLOW, or
UNDERFLOW is signaled if appropriate.

BIT Built-In Function
The BIT built-in function converts an arithmetic or string expression x to a
bit string of an optionally specified length. If x is a string expression, it
must consist of Os and ls. If the length is specified, it must be a nonnega
tive integer. If the length is omitted, the returned value has a length deter
mined by the usual rules for conversion to bit strings (see Appendix A).

The format of the function is

BIT(x[,length])

BOOL Built-In Function
The BOOL built-in function performs a Boolean operation on two bit
string arguments and returns the result as a bit string with the length of
the longer argument. Its format is

BOOL(string-1,string-2,operation-string)

string-1

A bit-string expression of any length.

string-2

A bit-string expression of any length.

operation-string

A bit-string expression that is converted to length 4. Each bit in the
operation string specifies the result of comparing two corresponding
bits in string-1 and string-2. Specify bit positions in the operation
string from left to right to define the operation, as follows:

string-I-bit string-2-bit

0 0
0 1
1 0
1 1

Result Specified as

Bit 1 of operation string
Bit 2 of operation string
Bit 3 of operation string
Bit 4 of operation string

If string-1 and string-2 are of different lengths, the smaller is extended on
the right with zeros to the length of the larger.

For example:

i-(= '101010'Bi
Y = 'llOOll'Bi
CHECK = BDDL (}('y ' I 0110 I 5) ;

The operation is the exclusive OR. The result is '011001 'B. Figure 19-1
illustrates this example.

342 Chapter 19

FIGURE 19-1: Example of the BOOL Built-In Function

BYTE Built-In Function
The BYTE built-in function returns the ASCII character whose ASCII code
is the integer x; x must not be negative. The returned value is a character
equivalent to BYTE(y), where y equals x modulo 128. The format of the
function is

BYTE(x)

For example:

DECLARE CHAR CHARACTER(l);

CHAR
CHAR

BYTE(G5);
BYTE(32);

CEIL Built-In Function

I* CHAR
I* CHAR

I A I *I

(space) */

The CEIL function returns the smallest integer that is greater than or
equal to an arithmetic expression x. Its format is

CEIL(x)

If x is a floating-point expression, a floating-point value is returned with
the same precision as x. If x is a fixed-point expression, the returned value
is a fixed-point value of the same base as x and with

precision = min(31,p-q+l)
scale factor = 0

where p and q are the precision and scale factor of x.

For example:

A LI. 3;
y

A
y

CEIL(A);

- LI, 3;
CEIL(A);

Built-In Functions

I* y 5 */

343

CHARACTER Built-In Function
The CHARACTER built-in function converts an arithmetic or string ex
pression x to a character string of an optionally specified length. If the
length is specified, it must be a nonnegative integer. If the length is omit
ted, the length of the returned value is determined by the usual rules for
conversion to character strings (see Appendix A). The format of the func
tion is

CHARACTER(x[,length])

For example:

CHAR: PROCEDURE OPTIONS(MAIN>;

DECLARE EXPRES FIXED DECIMAL<7t5);
DECLARE OUTPUT PRINT FILE;

EXPRES = 12.34567;

OPEN FI LE <OUTPUT> TITLE (I CHAR2 I OUT I) ;

PUT SKIP FILE(OUTPUT)
LIST('No lensth arsu111ent: '

CHARACTER(EXPRESI);

PUT SKIP FILE<OUTPUT>
LIST('Lensth = 4: I'

CHARACTER<EXPRES,41);

END CHAR;

The program CHAR produces the following output:

No lensth arsuMent: 12.34567
Lensth = 4: 12

In the first PUT LIST statement, CHARACTER has only one argument, so
the entire string is written out. The string '12.34567' is actually preceded
by two spaces; such is the case with any nonnegative number converted to
a character string (see Appendix A). In the second PUT LIST statement,
CHARACTER has a length argument of 4, so the first four characters of
the converted string are written out: ' 12 '.

COLLATE Built-In Function
The COLLATE built-in function returns a 256-character string consisting
of the ASCII character set in ascending order. Its format is

COLLATE()

COPY Built-In Function
The COPY built-in function copies a given string a specified number of
times and concatenates the result into a single string. Its format is

COPY(string,count)

344 Chapter 19

string

Any bit- or character-string expression. If the expression is a bit
string, so is the result. Other\vise, the result is a character string.

count

Any expression that yields a nonnegative integer. The specified count
controls the number of copies of the string that are concatenated, as
follows:

Value of
Count

0
1
n

String
Returned

a null string
the string argument
n concatenated copies
of the string argument

For example, the function reference

COPY('12't3l

returns the character-string value '121212 '.

COS Built-In Function
The COS -function returns a floating-point value that is the cosine of an
arithmetic expression x, where x represents an angle in radians. The cosine
is computed in floating point. The format of the function is

COS(x)

COSD Built-In Function
The COSD built-in function returns a floating-point value that is the co
sine of an arithmetic expression x, where x is an angle in degrees. The
cosine is computed in floating point. The format of the function is

COSD(x)

COSH Built-In Function
The COSH built-in function returns a floating-point value that is the hy
perbolic cosine of an arithmetic expression x. The hyperbolic cosine is
computed in floating point. The format of the function is

COSH(x)

DATE Built-In Function
The DATE buiit-in function returns a 6-character string m the form
yymmdd, where

yy is the current year (00-99)
mm is the current month (01-12)
dd is the current day of the month (01-31)

Built-In Functions 345

Its format is

DATE()

DECIMAL Built-In Function
The DECIMAL built-in function converts an arithmetic or string expres
sion x to a decimal value of an optionally specified precision p and scale
factor q.

P and q, if specified, must be integer constants. P must be greater than
zero and less than or equal to the maximum precision for the result type
(31 for fixed-point, 34 for floating-point decimal). If q is specified, x must
be a fixed-point expression and p must also be specified; if q is omitted, the
scale factor of the result is zero.

The format of the function is

{ ~~~IMAL } (x[,p[,q]])

The result type is fixed-point or floating-point decimal, depending on
whether xis a fixed- or floating-point expression. (If xis a bit- or character
string expression, the result type is fixed-point decimal.)

The expression x is converted to a value v of the result type, following the
usual rules (see Appendix A for details). The returned value is v with
precision p and scale factor q. If p and q are omitted, they are the con
verted precision and scale factor of x. FIXEDOVERFLOW, UNDER
FLOW, or OVERFLOW is signaled if appropriate.

DESCRIPTOR Built-In Function
The DESCRIPTOR built-in function forces its argument to be passed by
descriptor to a non-PL/I procedure. The corresponding parameter descrip
tor must specify the ANY attribute without the VALUE attribute. A refer
ence to the built-in function may occur only as an argument in such a
context and has no other use. The format of the function is

DESCRIPTOR(expression)

expression

The argument to be passed by descriptor. Its data type must be
computational but may not be pictured. (It may be an array varia
ble.)

DIMENSION Built-In Function
The DIMENSION built-in function returns a fixed-point binary integer
that is the number of elements in a specified dimension of an array. Its
format is

346

{
DIMENSION } (reference.dimension)
DIM

Chapter 19

reference

The name of an array variable.

dimension

An integer constant specifying the dimension of the array for which
the extent is to be determined.

For example:

IN IT: PROCEDURE (ARRAY l ;
DECLARE ARRAY(*) FIXED,

I Fl){ED;

DD I = 1 TO DIM<ARRAY tl l j

ARRAY<Il =Ii
ENDi

This procedure is passed a one-dimensional array of an unknown extent.
The DIMENSION built-in function is used as the end value in a controlled
DO statement. This DO-group assigns integral values to each element of
the array ARRAY so that the first element has the value 1, the second
element has the value 2, and so on to the last element of the array.

DIVIDE Built-In Function
The DIVIDE bl1ilt-=in fllnction divides an arithmetic expression x by an
arithmetic expression y and returns the quotient with a specified precision
p and optionally specified scale factor q. The scale factor q must be an
integer following these rules:

• If either x or y is fixed binary, q must be between -31 and 31.

• If both x and y are fixed decimal, q must not be negative.

• If either x or y is floating point, q must be zero.

• If q is omitted, it is assumed to be zero.

The expressions x and y are converted to their derived types before the
division is performed (see Section 12.4.1). If y is zero after this conversion,
the ZERODIVIDE condition is signaled. The quotient has the derived type
of the two arguments.

The format of the function is

DIVIDE(x,y,p[,q])

EXP Built-In Function
The EXP built-in function returns a floating-point value that is the base e
to the power of an arithmetic expression x. The computation is performed
in floating point. The format of the function is

EXP(x)

Built-In Functions 347

FIXED Built-In Function
The FIXED built-in function converts an arithmetic or string expression x
to a fixed-point arithmetic value with a specified precision p and, option
ally, a scale factor q.

The format of the function is

p

q

FIXED(x,p[,q])

The number of bits used to represent the arithmetic value. The preci
sion must be greater than zero and less than or equal to 31.

An integer in the range 0 to 31 for decimal data, and in the range -31
to 31 for binary data. If q is omitted, it is assumed to be zero. The
scale factor q must be less than or equal to the specified precision.

The result type is fixed-point binary or decimal, depending on whether xis
binary or decimal. (If x is a bit-string expression, the result type is fixed
point binary; if x is a character-string expression, the result type is fixed
point decimal.)

The expression x is converted to a value v of the result type, following the
usual rules (see Appendix A for details). The returned value is v with
precision p and scale factor q. If q is omitted, the returned value has the
converted precision of x, and a scale factor of zero. FIXEDOVERFLOW is
signaled if appropriate.

FLOAT Built-In Function
The FLOAT built-in function converts a string or arithmetic expression x
to floating point, with a specified precision. P must be an integer constant
that is greater than zero and less than or equal to the maximum precision
of the result type (34 for floating-point decimal, 113 for floating-point
binary).

The format of the function is

FLOAT(x,p)

The result type is floating-point binary or decimal, depending on whether x
is a binary or decimal expression. (If x is a bit-string expression, the result
type is floating-point binary; if xis a character-string expression, the result
type is floating-point decimal.)

The expression x is converted to a value v of the result type, following the
usual rules (see Appendix A). The value returned is v to the specified
precision; UNDERFLOW or OVERFLOW is signaled if appropriate.

348 Chapter 19

FLOOR Built-In Function
The FLOOR built-in function returns the largest integer that is less than or
equal to an arithmetic expression x. Its format is

FLOOR(x)

If x is a floating-point expression, the returned value is floating point. If x
is a fixed-point expression, the returned value is fixed point with the same
base as x and with the attributes

precision = min(31,p-q+l)
scale factor = 0

where p and q are the precision and scale factor of x.

For example:

A 3;
y FLOOR<Al i i* y 3.00 *i

A -3.32i
y FLOOR <Al ;

HBOUND Built-In Function
The HBOUND built-in function ret_urns a fixed-point bina1yinteger thatjs
the upper bound of' a specified dimension of an array. Its format is

HBOUND(reference,dimension)

reference

The name of an array variable.

dimension

An integer constant indicating a dimension of the specified array.

HIGH Built-In Function
The HIGH built-in function returns a string of specified length that con
sists of repeated appearances of the highest character in the collating se
quence. Its format is

HIGH(length)

length

The specified length of the returned string. The maximum length of
the returned string is 32767 characters.

The rank of the highest character that can appear in the collating sequence
for VAX-11 PL/I is ASCII 255.

INDEX Built-In Function
The INDEX built-in function returns a fixed-point binary integer that
indicates the position of a specified substring within a string. The vaiue

Built-In Functions 349

returned indicates the position of the leftmost occurrence of the substring.
If it is not found, or if the length of either argument is zero, the INDEX
function returns zero. ti
The format of the function is

INDEX(string,substring)

string

The string to be searched for the given substring. It can be either a
character- or bit-string expression.

substring

The substring to be located. It must have the same string data type as
the string argument.

For example:

DECLARE RESULT FIXED BINARYl31l,
NEW_STRING CHARACTER I BO>;

RESULT = INDEX< 'ABCDEF' t'DEF'l;
I* RESULT e9uals a
<DEF besins at fourth Position) */

RESULT - I NDE:< (I SHARP FORTUNE I • IR I) ;

I* RESULT e9uals a
lleftMost occurrence of Rat fourth Position) */

NEW_STRING = '315-54-3159';
IF INDEXINEW_STRINGt'-'l = a THEN

GO TO SOCIAL_SECURITY;
I* ExPression is TRUE */

INT Built-In Function
The INT built-in function treats specified storage as a signed integer, and
returns the value of the integer. Its format is

I NT (expression [,position [,length]])

expression

A scalar expression or reference to connected storage. If position and
length are not specified, the length of the referenced storage must not
exceed 32 bits.

position

350

A positive integer value that denotes the position of the first bit in the
field. If omitted, position defaults to 1, signifying the first bit of
storage denoted by the expression. If specified, position must satisfy
the condition

1 s position s size(expression)

where size(expression) is the length in bits of the storage denoted by
expression. A position equal to size(expression) implies a zero-length
field.

Chapter 19

length

An integer value in the range 0 to 32 that specifies the length of the
field. If omitted; length is the number of bits from the bit denoted by
position through the end of the storage denoted by expression. If
specified, length must satisfy the condition

0 ::; length ::; size(expression) - position

where size(expression) is the length in bits of the storage denoted by
expression.

The value returned by INT is of the type FIXED BINARY (31). If the field
has a length of zero, INT returns zero.

The following example shows the INT built-in function as used to interpret
the storage occupied by a bit string as an integer:

516 = '0000000000001101 '5 i

5IN<516) i

INT<516) i

564 = I 5076A5CDOOOOOOOO '54;

INT<B64 d 132) i

INT \564, 3"3 l i
INT(564) i

I* 16-bit strins *'
'* '*

13 *'
-20480 *'

f* 64-bit strins */

I* First 32 bitsi I = -1277858284 *'
I* ·secon•f 32 bitsi I-= l'.i-*/
I* Field too larSe1

run-tiMe error */

Notice that, unlike the BIN built-in function, the INT built-in function
performs no conversion. It simply treats the contents of the designated
storage as a signed integer. Therefore, the value returned by INT depends
on the data type (and therefore the internal representation) of the variable
occupying the storage.

LBOUND Built-In Function
The LBOUND built-in function returns a fixed-point binary integer that is
the lower bound of a specified dimension of an array. Its format is

LBOUND(reference,dimension)

reference

The name of the array variable.

dimension

An integer constant indicating the dimension of the specified array.

LENGTH Built-In Function
The LENGTH built-in function returns a fixed-point binary integer that is
the number of characters or bits in a specified character- or bit-string

Built-In Functions 351

expression. For a varying-length character string, the function returns its
current length. The format of the function is

LENGTH(string)

LINENO Built-In Function
The LINENO built-in function returns a FIXED BINARY(15) integer that
is the current line number of the referenced print file. Its format is

LINENO(reference)

If the file is closed, the returned value is the last value from the previous
opening. If the file was never opened, the returned value is zero.

LOG Built-In Function
The LOG built-in function returns a floating-point value that is the base e
(natural) logarithm of an arithmetic expression x. The computation is
performed in floating point. The expression x must be greater than zero
after its conversion to floating point.

The format of the function is

LOG(x)

LOG 1 O Built-In Function
The LOG 10 built-in function returns a floating-point value that is the base
10 logarithm of arithmetic expression x. The computation is performed in
floating point. The expression x must be greater than zero after its conver
sion to floating point. The format of the function is

LOG10(x)

LOG2 Built-In Function
The LOG2 built-in function returns a floating-point value that is the base 2
logarithm of an arithmetic expression x. The computation is performed in
floating point. The expression x must be greater than zero after its conver
sion to floating point. The format of the function is

LOG2(x)

LOW Built-In Function
The LOW built-in function returns a string of specified length that consists
of repeated appearances of the lowest character in the collating sequence.
I ts format is

LOW(length)

length

The specified length of the returned string. The maximum length
permitted is 32767 characters.

352 Chapter 19

The rank of the lowest character that can appear in the collating sequence
for VAX-11 PL/I is ASCII 0.

MAX Built-In Function
The MAX built-in function returns the larger of two arithmetic expressions
x and y. The format of the function is

MAX(x,yj

The expressions x and y are converted to their derived type (see Section
12.4.1) before the operation is performed. If the derived type is floating
point, the value returned is also floating point, with the larger precision of
the two converted arguments. If the derived type is fixed point, the re
turned value is a fixed-point value with the base of the derived type and
with the attributes

precision = min(31,max(px-qx,py-qy)+max(qx,qy))
scale factor = max(qx,qy)

where px,qx and py ,qy are the converted precisions and scale factors of x
and y, respectively.

MIN Built-In Function
The MIN built-in function returns the smaller of two arithmetic expres
sions x and y. Its format is

MIN(x,y)

The expressions x and y are converted to their derived type (see Section
12.4.1) before the operation is performed. If the derived type is floating
point, the value returned is also floating point, with the larger precision of
the two converted arguments. If the derived type is fixed point, the re
turned value is fixed point, with the base of the derived type and with the
attributes

precision = min(31,max(px-qx,py-qy)+max(qx,qy))
scale factor = max(qx,qy)

where px,qx and py,qy are the converted precisions and scale factors of x
and y.

MOD Built-In Function
The MOD built-in function returns, for an arithmetic expression x and
nonnegative arithmetic expression y, the value r that equals x modulo y.
That is, r is the smallest positive value that must be subtracted from x to
make the remainder exactly divisible by y. (The result when y is negative is
explained below.)

The format of the function is

MOD(x,y)

Built-In Functions 353

The expressions x and y are converted to their derived type (see Section
12.4.1) before the operation is performed. If the derived type is fixed-point
binary or unscaled fixed-point decimal, then the result precision is the
precision of the second operand. If the derived type is floating point, the
returned value is an approximation in floating point, with the larger preci
sion of the two converted arguments.

The value returned is

u-w*floor(u/w)

where u and ware the arguments x and y, respectively, after conversion to
their derived type. If w is zero, u is converted to the precision described
below, which may signal FIXEDOVERFLOW.

If x and y are fixed-point expressions, the returned value is fixed point with
the attributes

precision = min(31,pw-qw+max(qu,qw))
scale factor = max(qu,qw)

where qu is the scale factor of u, pw is the precision of w, and qw is the
scale factor of w. The FIXEDOVERFLOW condition is signaled if

pw-qw + max{qu,qw) > 31

For example:

MODEX: PROCEDURE OPTIONS<MAIN>;

DECLARE OUTMOD PRINT FILE;

ON FIXEDOVERFLOW PUT FILEIOUTMOD)
SKIP LISTI 'Fii<EDOt.JERFLOW siSnaled' l;

PUT FILE<DUTMODl SKIP LISTIMDDl281128l);
PUT FILEIOUTMODl SKIP LIST< MODI 130 t128l l;
PUT FILE<OUTMODl SK IP LI ST< MOD< - 28 1 128 l l ;
PUT FILE<OUTMODl SKIP LIST(MODl4.51.758ll i
PUT FILE(OUTMODl SKIP LI ST (MOD (-4. 5,. 758) l;
PUT FILE(OLJTMODl SKIP LISTI MODI 1.SE-3 1-1.4E-3)) i

PUT FILE<DUTMODl SKIP LIST<MODl28 tOl) i

END MOOD~;

The program MODEX writes the following output to OUTMOD.DAT:

28
..,
L.

100
0.710
0.048

-1.3E-03

FIXEDDVERFLOW sisnaled

354

8

Chapter 19

The last PUT statement attempts to evaluate MOD(28,0). The constants
28 and 0 are both fixed-point decimal expressions, with precisions (2,0) and
(1,0), respectively. Therefore, the attributes of the returned value are
determined to be FIXED DECIMAL, with

precision = min(31,1-0+max(O,O)) = 1
scale factor = max(O,O) = 0

Although 28 modulo 0 is 28, MOD(28,0) signals FIXEDOVERFLOW be
cause 28 cannot be represented in the result precision. (The value of the
function is therefore undefined.)

MUL TIPL y Built-In Function
The MULTIPLY built-in function multiplies two arithmetic expressions x
and y, and returns the product of the two values with a specified precision
p and an optionally specified scale factor q.

The format of the function is

p

q

MUL TIPL Y(x,y,p[,q])

An integer constant greater than zero and less than or equal to the
maximum precision of the result type (31 for fixed-point binary data,
34 for floating-point decimal data, and 113 for floating-point binary
data.)

An integer in the range -31 to p when used with fixed-point binary
multiplication. The scale factor for fixed-point decimal multiplica
tion has a range 0 to p. A scale factor is not to be used with floating
point arithmetic. If no scale factor is designated, q defaults to zero.

Expressions x and y are converted to their derived type before the multipli
cation is performed.

NULL Built-In Function
The NULL built-in function returns a null pointer value. Its format is

NULL()

For example:

IF NEXT_POINTER = NULL(l THEN CALL FINISH;

The IF statement checks whether the pointer variable NEXT _POINTER
is null; if so, it executes the CALL statement.

OFFSET Built-In Function
The OFFSET built-in function converts a pointer to an offset relative to a

Built-In Functions 355

designated area. If the pointer is null, the result is null. The format of the
function is

OFFSET(pointer.area)

pointer

A reference to a pointer variable whose current value either represents
the location of a based variable within the specified area or is null.

area

A reference to a variable declared with the AREA attribute. If the
specified pointer is not null, it must designate a storage location
within this area.

For example:

DECLARE MAP_SPACE AREA 12048),
START OFFSET (MAP_ SPACE) ,
QUELJE_HEAD POINTER;

START = OFFSET (QLJEUE_HEAD1MAP_SPACEl;

The offset variable START is associated with the area MAP-SPACE. The
OFFSET built-in function converts the value of the pointer to an offset
value.

ONARGSLIST Built-in Function
The ONARGSLIST built-in function returns a pointer to the location in
memory of the argument list for an exception condition. If the
ONARGSLIST built-in function is referenced in any context outside of an
ON-unit, it returns a null pointer. Its format is

ONARGSLIST()

The format of the argument list and the information it makes available to
an ON-unit are described in the VAX-11 PL/I User's Guide.

ONCODE Built-In Function
The ONCODE built-in function returns as a fixed-point binary integer the
status value of the most recent run-time error that signaled the current ON
condition. The function may be used in any ON-unit to determine which
specific error caused the condition. If the function is used in any context
other than an ON-unit, it returns zero. Its format is

ON CODE()

For details on the condition values returned by ONCODE and examples of
using the ONCODE built-in function, see Sections 15.1.5 and 16.5.2.

356 Chapter 19

ONFILE Built-In Function
The ONFILE built-in function returns the name of the file constant for

ON FILE()

This built-in function can be used in any of the following ON-units:

• An ON-unit established for the KEY, ENDFILE, ENDPAGE, and
UNDEFINED FILE conditions

• A VAXCONDITION ON-unit established for I/0 errors that can occur
during file processing

• An ERROR ON-unit that receives control as a result of the default
PL/I action for file-related errors, which is to signal the ERROR condi
tion

The returned value is a varying-length character string. If referenced out
side an ON-unit or within an ON-unit that is executed as a result of a
SIGNAL statement, the ONFILE function returns a null string.

ONKEY Built-In Function
The ONKEY built-in function returns the key value that caused the KEY
condition to be signaled during an I/0 operation to a file that is being
accessed by key. Its format is

ON KEY()

This built-in function can be used in an ON-unit established for these
conditions:

• The KEY, ENDFILE, or UNDEFINEDFILE conditions

• An ERROR ON-unit that receives control as a result of the default
PL/I action for the KEY condition, which is to signal the ERROR
condition

The returned key value is a varying-length character string. If referenced
outside an ON-unit, or within an ON-unit executed as a result of the
SIGNAL statement, the ONKEY built-in function returns a null string.

PAGENO Built-In Function
The PAGENO built-in function returns a FIXED BINARY(l5) integer
that is the current page number in the referenced print file. The print file
must be open. The format of the function is

PAGENO(reference)

Built-In Functions 357

POlllTER Built-la Function
The POINTER built~in function returns a pointer to the location identified
by the referenced offset and area. Its format is

POtNTER(offset,area)

offset

area

A reference to a variable whose current value either represents the
offset of a based variable within the specified area or is null.

A reference to a variable that is declared with the AREA attribute
and with which the specified offset value is associated.

The returned value is of type POINTER. If the offset value is null, the
result is null.

For example:

DECLARE MAP_SPACE AREA (20481,
START OFFSET (MAP_SPACE) ,
P POINTER;

P = POINTER <START1MAP_SPACEl;

The POINTER built-in function converts the value of the offset variable
START in the area MAP-SPACE to a pointer value.

POSINT Buitt-ln Function
The POSINT built-in function treats specified storage as an unsigned inte
ger, and returns the value of the integer. Its format is

POSINT(expression[,position[,length]])

expression

A scalar expression or a reference to connected storage. If position and
length are not specified, the length of the referenced storage must not
exceed 32 bits.

position

358

A positive integer value that denotes the position of the first bit in the
field. If omitted, position defaults to 1, thus signifying the first bit of
the storage denoted by expression. If specified, position must satisfy'
the condition

1 s position s size(expression)

Chapter 19

where size(expression) is the length in bits of the storage denoted by
expression. A position equal to size(expression) implies a zero-length
field,

length

An integer value in the range 0 to 32 that specifies the length of the
field. If omitted, length is the number of bits from the bit denoted by
position through the end of the storage denoted by expression. If
specified, length must satisfy the condition

0 :-s length :-s size(expression) - position

where size(expression) is the length in bits of the storage denoted by
expression.

The value returned by POSINT is of the type FIXED BINARY (31). If the
field has a length of zero, POSINT returns zero.

Since the POSINT built-in function treats storage as if it contained an
unsigned integer, the value returned may be larger than the maximum
positive value that can be contained in the signed integer that is stored in
the same number of bits. Specifically, if the argument to POSINT is 32
bits long and has the high-order (sign) bit set, the resulting value is too
large for assignment to a FIXED BIN (31) variable, the largest integer
available in PL/I. The results of such an operation are undefined.

The use of the POSINT built-in function is identical to the use of the INT
built-in function with the exception that POSINT treats its argument as
an unsigned integer. The example that follows illustrates this difference.

DECLARE (i<l 5 t y 1 5 tI 1 5 t p 1 5) F Ii<ED BIN (15) t

P31 FI){ED BIN (31) ;

}{ 15 585i
Y15 -585i
115 INT (i<15) i I* I 15 585 *I
I 15 INT<Y15) i I* I 15 -585 *I
P15 PDS I NT (i<l 5) i I* P15 585 *I
P31 POSINT(Y15) i I* P31 Gt.1951 *I
PlS PDSINTCY15) i I* ERROR sisnaled *I

In this example, POSINT first assigns the storage referenced by X15 to
P15. Since this storage is occupied by a positive integer and therefore has
the sign bit clear, POSINT behaves exactly like INT. However, when
POSINT is applied to storage occupied by a negative integer, it interprets
the set sign bit as representing part of the integer. When the resulting value
is assigned to a FIXED BIN (31) variable, the value is larger than the
largest possible FIXED BIN (15) value (32767). An attempt to assign the
same value to a FIXED BIN (15) variable results in PL/I signaling
ERROR.

Built-In Functions 359

RANK Built-In Function
The RANK built-in function returns a fixed-point binary integer that is the
ASCII code for the designated character. The precision of the returned
value is 15. The format of the function is

RANK(character)

character

Any expression yielding a I-character value.

For example:

CODE RANK< 'A'); I* CODE
CODE = RANK ('a') ; I* CODE
CODE = RANK ('$I) i /* CODE

Appendix C contains a list of the ASCII characters and their corresponding
numeric codes.

ROUND Built-In Function
The ROUND built-in function rounds a fixed-point decimal expression to a
specified number of decimal places. Its format is

ROUND(expression,position)

expression

An arithmetic expression that yields a fixed-point decimal value with
a nonzero scale factor, or a pictured value with fractional digits.

position

A nonnegative integer constant specifying the number of decimal
places in the rounded result.

If the arguments are an expression of type FIXED DECIMAL(p,q) and
position k, the returned value is the rounded value with the attributes

precision = max(l,min(p-q+k+l,31))
scale factor: k

The rounded value is

ROUND(x,k) = sign(x) * (lo-k) * floor(abs(x) * (lQk) + .5)

For example:

A 123ll.5G7i
y = ROUND (A, 1)

I* y 123l!.G *I

y ROUND<A 10) i y 1235

A -123l!.5G7;
'.I ROUND(A12) I

I* y -123l!.57 *I

360 Chapter 19

SEARCH Built-In Function
The SEARCH built-in function examines two strings and returns the sec
ond string position of the first appearance of any character in the first
string that also occurs in the second string. Its format is

SEARCH(string-1,string-2)

string-1

A character-string expression to be located in the second string.

string-2

A character-string expression to be searched by the first string.

The returned value is a positive integer representing the position in string-1
of the first character in string-1 that was found in string-2. If no match is
found, the returned value is zero.

For example:

A: PROCEDURE OPTIONS <MAIN;

DECLARE STR CHARACTER (13) 1

ST2 CHARACTER(10) INITIAL ('ABCDEFGHIJ') 1

>< F I><ED DEC I MAL (2) i

STR 'FIND'i

X = SEARCH !ST21STR) i

I* X=4 D was found in the fourth Position */

STR = I ABSCAM I;
X =SEARCH ISTR1ST2l;

I* X=l A was found first, even thoush other
characters appear in both strinss */

STR = I JEEPERS I I ;

i< = SEARCH (ST2 1STR) ;

I* X=5 E was the first letter found *I

SIGN Built-In Function
The SIGN built-in function returns 1, -1, or 0, indicating whether an
arithmetic expression is positive, negative, or zero. The returned value is a

Built-In Functions 361

fixed-point binary integer. The format of the function is

SIGN(expression)

SIN Built-In Function
The SIN built-in function returns a floating-point value that is the sine of
an arithmetic expression x, where x is an angle in radians. The sine is
computed in floating point. The format of the function is

SIN(x)

SINO Built-In Function
The SIND built-in function returns a floating-point value that is the sine of
an arithmetic expression x, where x represents an angle in degrees. The
sine is computed in floating point. The format of the function is

SIND(x)

SINH Built-In Function
The SINH built-in function returns a floating-point value that is the hy
perbolic sine of an arithmetic expression x. The hyperbolic sine is com
puted in floating point. The format of the function is

SINH(x)

SIZE Built-In Function
The SIZE built-in function returns a fixed-point binary integer that is the
number of bytes allocated to a referenced variable. Its format is

SIZE (reference)

reference

The name of a variable known to this block. The reference can be to a
scalar variable, an array or structure, or a structure member. The
reference cannot be to a constant or expression. Although references
to individual array elements are allowed, the returned value in this
instance is the size of the entire array, not the element.

The returned value is the variable's allocated size in bytes. In the case of
bit strings that do not exactly fill an integral number of bytes, the value is
rounded up to the next byte.

For varying character-string variables, note that the returned value is two
bytes greater than the declared length of the string. These extra two bytes
are allocated by PL/I to contain the current length of the string.

362 Chapter 19

The following example illustrates the use of the SIZE built-in function on
some scalar variables:

DECLARE S FI NED 6 I NARY (31) t

s
s
s
s
s

INT FI)<ED BINARY< 15) t

CHAR 1 CHARACTER< 5 l t

CHAR2 CHARACTER(5) VARYING,
BIT8TRING BIT(10) t

P POINTERi

SIZE< INTl; I* s
SIZE<CHARl); I* s
SIZE<CHAR2l j I* s
SIZE<BITSTRINGl i I* s
SIZE<Pli I* s

2 *I
5 *I
7 *I
2 *I
4 *I

Note the difference between the allocated size for the fixed-length and
varying character strings. Note also that the returned value for the bit
string is rounded up to 2 bytes, the integral number of bytes required to
contain 10 bits.

SQRT Built-In Function
The SQRT built-in function returns a floating-point value that is the
square root of an arithmetic expression x. The square root is computed in
floating point. After its conversion to floating point, x must be greater than
or equal to zero.

The format of the function is

SQRT(x)

STRING Built-In Function
The STRING built-in function concatenates the elements of an array or
structure and returns the result. Elements of a string array are conca
tenated in row-major order. Members of a structure are concatenated in
the order in which they were declared.

The format of the STRING built-in function is

STRING(reference)

reference

A reference to a variable that is suitable for bit- or character-string
overlay defining. Briefly, a variable is suitable if it consists entirely of
characters or bits that are packed into adjacent storage locations,
without gaps. (For more information, see Section 9.7.)

The string returned is of type CHARACTER or BIT, depending on whether
the reference is suitable for character- or bit-string overlay defining. The
length of the string is the total number of characters or bits in the base
reference.

Built-In Functions 363

For example:

STRING_BIF_EXAMPLE: PROCEDURE;

DECLARE NEW_NAME CHARACTERC40l;

DECLARE 1 FULL_NAME1
2 FIRST_NAME CHARACTERClOl,
2 MIDDLE_INITIAL CHARACTER(3),
2 LAST_NAME CHARACTERC27l ;

FIRST _NAME = I MABEL I ;

MIDDLE_INITIAL = 'S. I;
LAST_NAME = 'MERCER';
NEW_NAME = STRING(FULL_NAMEl;

I* NEVLNAME =
'MABEL66666S.6MERCER666666666666666666666'

where 6 is a blanK */
END STRING_BIF_EXAMPLE;

SUBSTR Built-In Function
The SUBSTR built-in function returns a specified substring from a string.
Its format is

SUBSTR(string,position[,length])

string

A bit- or character-string expression.

position

An integer expression that indicates the position of the first bit or
character in the substring. The position must be greater than or equal
to one and less than or equal to LENGTH(string)+l.

length

An integer expression that indicates the length of the substring to be
extracted. If not specified, length is

LENGTH(string) - position + 1

which extracts the substring beginning at the indicated position and
ending at the end of the string.

The length must satisfy the condition

0 :::; length :::; LENGTH(string) - position + 1

The returned substring is of type BIT(length) or CHARACTER(length),
depending on the type of the string argument. If the length argument is
zero, the result is a null string.

364 Chapter 19

For example:

DECLARE INAME,LAST_NAMEl CHARACTERC20l,
START FL<ED 5INARY\3i i;

NAME 'ISAK DINESEN'i

START

I* NAME = I I SAK b DI NESEN~L:..666 I
where 6 is a blank */

I NOE)< (NAME' I I) + 1 j
I* START = G *I

LAST_NAME = SUBSTRCNAME1STARTl;
I* default length = LENGTHCNAMEl-START+1 =15 */

I* LAST_NAME = 'DINESEN6~666666666' *I

TAN Built-In Function
The TAN built-in function returns a.floating-point value that is the tan
gent of an arithmetic expression x, where x represents an angle in radians.
The tangent is computed in floating point. After its conversion to floating
point, x must not be an odd multiple of 7r/2.

The format of the function is

TAN(x)

TAND Built-In Function
The TAND built-in function returns a floating-point value that is the
tangent of an arithmetic expression x, where x represents an angle in de
grees. The tangent is computed in floating point. After its conversion to
floating point, x must not be an odd multiple of 90.

The format of the function is

TAND(x)

TANH Built-In Function
The TANH built-in function returns a floating-point value that is the
hyperbolic tangent of an arithmetic expression x. The hyperbolic tangent is
computed in floating point. The format of the function is

TANH(x)

TIME Built-In Function
The TIME built-in function returns an 8-character string representing the
current time of day in the form hhmmssxx, \vhere

hh is the current hour (00 - 23)
mm is the minutes (00 - 59)

Built-In Functions 365

ss is the seconds (00 - 59)
xx is hundredths of seconds (00 - 99)

The format of the TIME built-in function is

TIME()

The time is returned as a string of type CHARACTER (8).

TRANSLATE Built-In Function
Given a character-string argument, the TRANSLATE built-in function
replaces occurrences of an old character with a corresponding translation
character and returns the resulting string. Its format is

TRANSLATE(original,translation[,oldchars])

original

A character-string expression in which specific characters are to be
translated.

translation

A character-string expression giving replacement characters for corre
sponding characters in oldchars.

If the translation is shorter than oldchars, it is padded on the right
with spaces to the length of oldchars before any translation occurs. If
the translation is longer than oldchars, its excess characters (on the
right) are ignored.

oldchars

A character-string expression indicating which characters in the origi
nal are to be replaced. If oldchars is not specified, it defaults to
COLLATE().

The following steps are performed for each character (beginning at the
leftmost) in the original:

1. Let original(i) be the current character in the original string, and let
result(i) be the corresponding character in the resulting string.

2. Search oldchars for the leftmost occurrence of original(i).

3. If oldchars does not contain original(i), then let result(i) equal origi
nal(i). Otherwise, let j equal the position of the leftmost occurrence
of original(i) in oldchars, and let result(i) equal translation(j).

4. Return to step 1.

The string returned is of type CHARACTER(length), where length is that
of the original string. If the original is a null string, so is the returned value.

366 Chapter 19

For example:

TRANSLATE_XM: PROCEDURE OPTIONSCMAIN>;

DECLARE NEWSTRING CHARACTERIBOl VARYING;
DECLARE TRANSLATION CHARACTERl12Bl;
DECLARE I FI i<ED;
DECLARE COLLATE BUILTINi

I* translate space to '0': *I
NEWSTRING =TRANSLATE('1 2' ,'0' ,'
PUT SKIP LISTCNEWSTRINGl;

I* translate letter 'F' to 'E': */

I\•
I l

NEWSTR I NG = TRANSLATE (I BFFLZFBUB I 'IE I 'IF I) ;

PUT SKIP LISTCNEWSTRINGl i

I* chanse case of letters in sentence *'
TRANSLATION = COLLATEi

DO I=GG TO 91i /* replace UPPer with lower*/
SIJBSTR C TRANSLATION, I , 1 l = SUBSTR (COLLATE, I +32, 1 l ;
ENDi
DO I=98 TO 123i /* rePlace lower with UPPer */
SUBSTRCTRANSLATION1I ill = SUBSTRICOLLATE1I-321ll;
ENDi
NEWSTRING =
TRANSLATE('THE QUICK BROWN fox JUMPS Ot.JER THE LAZY dos',
TRANSLATION l ;
PUT SKIP LISTCNEWSTRINGl;

END TRANSLATE_XMi

The first reference translates the string '1 2 ' to '102 '. The second refer
ence translates 'BFFLZFBUB' to 'BEELZEBUB'. The third reference
produces the new sentence
'the 9uick brown FOX Jumps over the lazy DOG'

TRIM Built-In Function
The TRIM built-in function accepts a character string as an argument and
returns a character string that consists of the input string with specified
characters removed from the left and right. TRIM takes either one or three
arguments. If you supply only one argument, TRIM removes blanks from
the left and right of the argument. If you supply second and third argu
ments, TRIM removes characters specified by those arguments from the
left and right of the string, respectively.

The format of the TRIM built-in function is

TRIM (input-string,[beginning-chars,end-chars])

input-string

A character-string variable or constant. This argument supplies the
string from which characters are to be trimmed.

Built-In Functions 367

beginning-chars

A character-string variable or constant. This argument specifies char
acters to be trimmed from the left of the input string. If a character
that is in the first position in the input string is also present anywhere
in beginning-chars, that character is removed from the input string.
This process is repeated until a character is encountered on the left of
the input string that is not present in beginning-chars, or until the
characters in the input string are exhausted.

end-chars

A character-string variable or constant. This argument specifies char
acters to be trimmed from the right of the input string. The process of
removing characters from the right is identical to that of removing
characters from the left, except that the character in the last position
is examined.

Any of the arguments to TRIM can consist of a null string; specifically, if
beginning-chars or end-chars is null, no characters are removed from the
corresponding end of the input string.

When only one argument is supplied, TRIM removes blanks from both
ends of that argument. In other words, the following two expressions are
equivalent:

TRIM<Sl

TRIM(S,' ',' ')

TRUNC Built-In Function
The TRUNC built-in function changes all fractional digits in an arithmetic
expression x to zeros and returns the resulting integer value. Its format is

TRUNC(x)

If x is a floating-point expression, the returned value is floating point. If x
is a fixed-point expression, the returned value is fixed point with the same
base as x and with the attributes

precision: min(31,p-q+l)
scale factor: 0

where p and q are the precision and scale factor of x.

UNSPEC Built-In Function
The UNSPEC built-in function returns a bit string representing the inter
nal coded value of the referenced scalar variable, which can be of any type.
The format of the function is

UNSPEC(reference)

The returned value is a bit string whose length is the number of bits
occupied by the referenced variable. This length must be less than or equal

368 Chapter 19

to the maximum length for bit-string data. The returned bit string contains
the contents of the referenced variable's storage, the first bit in storage
being the first bit in the returned value. The actual value is specific to
VAX-11 PL/I and may differ from other PL/I implementations. Note that
if the referenced variable is a binary integer (FIXED BINARY), the first
bit in the returned value is the lowest binary digit.

For example:

DECLARE){ CHARACTER(2), Y BIT(16);

){ = I AB I ;

Y = UNSPEC<>'.l i

DECLARE I FIXED BINARY(15l;
I = 2;
PUT LISTCUNSPECCil l;

As a result of the first UNSPEC reference, Y contains the ASCII codes of
'A' and 'B '. The PUT LIST statement containing UNSPEC(I) prints the
string

'OlOOOOOOOOOOOOOO'B

VALID Built-In Function
The VALID built-in function determines whether the argument x, a pic
tured variable, has a value that is valid with respect to its picture specifica
tion. A valid value is any of the character strings that can be created by the
picture specification. The function returns 'O 'B if x has an invalid value,
and '1 'B if it has a valid value. The function can be used whenever a data
item is read in with a record input (READ) statement, to ensure that the
input data is valid. The format of the function is

VALID(x)

x
A reference to a variable declared with the PICTURE attribute.

Note that pictured data is always validated (thus making the VALID func
tion unnecessary) when it is read in with the GET EDIT statement and the
P format item; the ERROR condition is signaled if the data does not
conform to the picture given in the P format item. If GET LIST is used (or
GET EDIT with a format item other than P), the input value is converted
to conform to the pictured input target (see Appendix A for details).

Built-In Functions 369

For example:
1-.IAL P: PROCEDURE 0 PT IONS (MA IN) ;

DECLARE INCOME PICTURE '$$$$$$V,$$';
DECLARE MASTER RECORD FILEi
DECLARE I FI i<ED;

DO I = 1 TO 2 i
READ FI LE (MASTER) INTO (INCOME) ;
IF VALID<INCOMEl THENi

ELSE PUT SKIP LIST('Ir1\.Jalid inP1Jt:' dNCOMEl;
END;

END t.JALP;

If the file MASTER.DAT contains

$15000.50
50000.50

then the program V ALP writes out

Invalid inPut: 50000.50

The picture '$$$$$$V.$$' specifies a fixed-point decimal number of up to
seven digits, two of which are fractional. To be valid, a pictured value must
consist of nine characters; the first digit must be immediately preceded by
a dollar sign; the number must contain a period before the fractional digits;
and each position specified by a dollar sign must contain either that sign, a
digit, or a space. The second record in MASTER.DAT can be assigned by
the READ statement because it has the correct size; however, the pictured
value is invalid because it does not contain a dollar sign.

VERIFY Built-In Function
The VERIFY built-in function compares a string with a test string and
verifies that all characters that appear in the string also appear in the test
string. If not, the VERIFY built-in function returns a fixed-point binary
integer that indicates the position of the first character in the string that is
not present in the test string. If each character is present, the function
returns the value zero.

The format of the function is

VERIFY (string, test-string)

string

A character-string expression representing the string to be verified.

370 Chapter 19

test-string

A character-string expression containing the set of characters against
which the string is to be verified"

For example:

STRING = 'HOW MUCH IS 1 PLUS 2 1
;

ALPHABET = 'ABCDEFGHIJKLMNOPORSTUVWXYZ I;
A = VERIFYCSTRING1ALPHABETJ;

In this example, the variable ALPHABET contains the 26 uppercase let
ters plus the space character. The function returns a value of 13, indicating
the position of the first nonalphabetic and nonspace character in STRING.
Since the test string can also be a constant, you can find the first nonspace
character in any string by writing

A = l.JERIFY(STRING' I I);

NEWSTR I NG = I ALL LETTERS I ;

A = VERIFYINEWSTRING1ALPHABETl;

In this example, VERIFY returns a value of zero. All characters in the
string NEWSTRING are present in the string ALPHABET.

Built-In Functions 371

Chapter 20

Compile Time Facilities

VAX-11 PL/I supports the VAX-11 Common Data Dictionary (CDD) for
managing data and an embedded preprocessor for manipulation of source
text at compile time. These two facilities permit you to include record
definitions from a central dictionary, include application-specific text
modules from text libraries, replace identifier values, control compilation
flow, and generate your own diagnostic messages.

The following topics are covered in this chapter:

• The VAX-11 Common Data Dictionary

• The VAX-11 PL/I embedded preprocessor

• Using text libraries

20.1 The VAX-11 Common Data Dictionary(CDD)

The VAX-11 Common Data Dictionary (CDD) is a set of shareable data
definitions, or language-independent structure declarations, which are de
fined by a system manager or data administrator. The CDD provides a
central storage repository that can be shared and that is protected from
unauthorized access. The definitions stored in the CDD help the system
manager or data administrator coordinate an effective data management
system.

The advantages to using the CDD are

• Record declarations are language independent.

• A single declaration helps guarantee the accuracy and reliability of
data.

372

NOTE
The CDD is one of the many layered products offered for the
VAX-11 and not all systems that use PL;1 use the CDD. There
fore, PL/I CDD support is meaningful only if CDD is on your
system. If you are not certain, see your system manager.

20.1.1 Creating and Maintaining a COD
CDD data definitions are organized into a hierarchical dictionary in much
the same way that files are organized in directories and subdirectories. For
example, a dictionary for defining personnel data might have separate
directories for each employee category (or type). Then, subdirectories for
employees who are salesmen might include data definitions for records
such as salary and commission history, as well as general personnel
records.

CDD entries are stored as an internal form. That is, you enter descriptions
of data definitions into the dictionary in a unique, general-purpose lan
guage called Common Data Dictionary Language (CDDL). Then, the
CDDL compiler converts the data descriptions to an internal form, making
them independent of any higher level language. When a program is com
piled, CDD data definitions are drawn into higher-level language programs
(provided the data attributes are consistent). Program listings include
CDD data definitions in the same language as the application program.

The following examples show the same structure declaration written in
both CDDL and PL/I.

Example 1:

PAYRDLL_RECDRD STRUCTURE.
SALESMAN STRUCTURE.

NAME DATATYPE IS TEXT 30.
ADDRESS
SALESMAN_ ID

END SALESMAN STRUCTURE.

Example 2:

DECLARE 1 PAYROLL_RECORD,
2 SALESMAN,

DATATYPE IS TEXT ao.
DATATYPE IS UNSIGNED NUMERIC 5,

3 NAME CHARACTER (30) ,
3 ADDRESS CHARACTER(40l,
3 SALESMAN_ ID p I c I (5) 8 I ;

The CDD provides two utilities for creating and maintaining a dictionary:

• The Dictionary Management Utility (DMU), for creating and main
taining the CDD's directory hierarchy, history lists, and access control
lists.

Compile Time Facilities 373

• The Dictionary Verify/Fix Utility (CDDV), for repairing damaged dic-
tionary files.

Once CDD records are established, they may be included and used in
VAX-11 PL/I programs. At compile time, CDD records and their attributes
are extracted from the designated CDD record node; then, the record's
corresponding PL/I declaration is entered into the object module.

20.1.2 Using the COD
The %DICTIONARY statement incorporates CDD data definitions into
the current PL/I source file during compilation. It can occur anywhere in a
PL/I source file; it need not be within a procedure. The format of the
%DICTIONARY statement is

%DICTIONARY cdd-path;

cdd-path

Is any preprocessor expression. The preprocessor expression is evalu
ated and converted to a character string if necessary; the result is
interpreted as the full or relative pathname of a CDD object. The
pathname must follow all rules for forming VAX-11 CDD pathnames.

The compiler extracts the record definition from the CDD and the corre
sponding PL/I structure is declared in the PL/I program.

If the %DICTIONARY statement is not embedded in a PL/I language
statement, that is if %DICTIONARY immediately follows a nonpreproces
sor semicolon or is the first statement in the program, then the resulting
structure is declared with the logical level 1 and the BASED storage attrib
ute is furnished. The logical member levels increment from 2. For example:

DECLARE PRICE FIXED BINARYl31l;
i..D I CT I ONARY I ACCOUNTS I ;

would result in a declaration of the form

DECLARE PRICE FIXED BINARYC31l;
DECLARE 1 ACCOUNTS BASED,

2 NUMBER,
3 LEDGER CHARACTER (3 l ,
3 SUBACCOUNT CHARACTER<5l,

2 DATE CHARACTER (12 l ,

Notice that in this example, ACCOUNTS is a relative dictionary path
name.

If the %DICTIONARY statement is embedded in a PL/I language state
ment, as in a structure declaration, then the resulting structure is declared

374 Chapter 20

with no logical level and no storage attribute. Logical member numbers are
supplied and incremented from 100. For example:

DECLARE 1 COMMON_INTERFACES STATIC EXTERNALt
·x.D 1 CT r DNARY 'ACCOUNTS' ;
'i.',D I CT I ONA RY I ADDRESSES I ;

Notice the syntax in this example: the %DICTIONARY statement is ter
minated with a semicolon before the normal PL/I line terminator. In this
context, the %DICTIONARY statement is always terminated with a semi
colon. Other declaration punctuation must also be included. At compile
time, this declaration would result in a declaration of the form

DECLARE 1 COMMON_INTERFACES STATIC EXTERNALt
100 ACCOUNTSt

101 NUMBER,
102 LEDGER CHARACTER (3) t

102 SUBACCOUNT CHARACTER(5),
101 DATE CHARACTER (12) ,

100 ADDRESSES,

The CDD supports data types that are not native to PL/I. PL/I makes
accessible all data types by declaring unsupported data types as appropri
ately sized BIT-FIELD or BYTE-FIELD: the PL/I compiler does not
attempt to approximate a data type that it does not support. For example,
an F_FLOATING_CQMPLEX number is declared BYTE---FIELD(8),
not (2)FLOAT(24). If you access CDD definitions that contain data types
not supported by PL/I, the compiler issues an error and supplies a BIT_
FIELD or BYTE-FIELD type which gives you an opportunity to manipu
late data though PL/I built-in functions such as ADDR, INT, POSINT,
and UNSPEC.

PL/I issues warnings for CDD features that it does not support and issues
error messages when the features conflict.

CDD data definitions can contain explanatory text in the CDDL
DESCRIPTION IS clause. You can include this text in the PL/I listing
comments, by specifying /SHOW=DICTIONARY. You may use these com
ments to indicate the data type of each structure and member. The punc
tuation for CDDL comments is the same as for other PL/I
programs.

When you extract a record definition from the CDD, you can choose to
include this translated record in the program's listing by using the
/LIST/SHOW=DICTIONARY qualifiers in the PLI command line.

Compile Time Facilities 375

Even if you choose not to list the extracted record, the names, data types,
and offsets of the CDD record definition are displayed in the program
listing's allocation map.

20.2 The VAX-11 PL/I Embedded Preprocessor
The VAX-11 PL/I embedded preprocessor permits you to alter a source
program at compile time. Preprocessor statements can be mixed with non
preprocessor statements in the source program, but preprocessor state
ments are executed only at compile time. The resulting source program is
then used for further compilation.

The embedded preprocessor performs two types of preprocessing:

• It interprets preprocessor statements and evaluates preprocessor ex
pressions.

• It replaces the values of preprocessor variables and procedures.

Preprocessor statements allow you to include text from alternative sources
(INCLUDE libraries and the VAX-11 Common Data DictionaryL control
the course of compilation (%DO, %GOTO, %PROCEDURE and %IF),
issue user-generated diagnostic messages, and selectively control listings
and formats. The preprocessor statements are summarized in Table 20-1 in
Section 20.3.2.

20.2.1 Preprocessor Compilation Control
At compile time, preprocessor variables, procedures, and variable expres
sions are evaluated in the order in which they appear in the source text,
and the new values are substituted in the source program in the same
order. Thus, the course of compilation becomes conditional, and the result
ing executable program may exhibit a variety of unique features. Note that
preprocessor variables and procedures must be declared and activated be
fore replacement occurs.

For example:

%DECLARE HOUR FIXED;
'.!.:HOUR = SUBSTR (TI ME () ; 1 , 2) i

%IF HOUR > 7 & HOUR < 18
'.Y..THEN

%FATAL 'Please comPile this outside of Prime time'
%DECLARE T CHARACTERi
%ACTIVATE T NORESCANi
%T = '''ComPiled on '::DATE(l:: '·

376 Chapter 20

DECLARE INIT_MESSAGE CHARACTERC40l VARYING INITIAL I Tl;

/..IF l.JARIANTCl = ' ': t.JARIANTCl ='NORMAL'
/..THEN

·x. INFORM 'NORMAL' ;
/..ELSE

'X.IF l.JARIANTC l = 'SPECIAL';
'X, THEN

'1..INFORM 'SPECIAL'!
'X.ELSE

'X.END;

'X.IF t.JARIANTCl = 'NONE'i
/..THEN 'X,;

/..ELSE
/..DO;
IT= '''unknown variant''';
'X.WARN T;
INIT_MESSAGE = INIT_MESSAGE::' with ': :T;
'X.END;

PUT LIST CINIT_MESSAGEl;

This example illustrates several aspects of the embedded preprocessor.
First, this program must be compiled outside of prime time. Second, de
pending upon the value of VARIANT, the program is compiled with a
different variant.

Notice the number of single quote marks around the string constant as
signed to T. Single quotes are sufficient if the value of Tis used only in a
preprocessor user-generated diagnostic message. That is, the value of T is
concatenated with nonpreprocessor text and assigned to INIT_MESSAGE
because during preprocessing, single quotes are stripped off of string con
stants. To ensure that the run-time program also has quotes around the
string, additional quotes are needed.

20.2.2 Preprocessor Procedures
The %PROCEDURE statement defines the beginning of a preprocessor
procedure block and specifies the parameters, if any, of the procedure. A
preprocessor procedure executes only at compile time. Invocation is similar
to a function reference and occurs in two ways:

• Preprocessor statements can invoke preprocessor procedures. In addi
tion, preprocessor statements from within preprocessor procedures can
invoke other preprocessor procedures.

• Statements from the source program can invoke preprocessor
procedures.

A preprocessor procedure is invoked by the appearance of its entry name
and list of arguments. If the reference occurs in a nonpreprocessor state
ment, the entry name must be active before the preprocessor procedure is

Compile Time Facilities 377

invoked. If the entry name is activated with the RESCAN option, the value
of the preprocessor procedure is rescanned for further possible preprocessor
variable replacement and procedure invocation. Preprocessor procedures
may be invoked recursively.

Since the preprocessor procedure is always invoked as a function, the
%PROCEDURE statement must also specify (via the RETURNS option)
the data type attributes of the value that is returned to the point of invoca
tion.

The return value replaces the preprocessor procedure reference in the in
voking source code. Preprocessor procedures may not return values via
their parameter list. The return value must be capable of being converted
to one of the data types CHARACTER, FIXED, or BIT. The maximum
precision of the value returned by the %RETURNS statement is BIT(31),
CHARACTER(255), and FIXED(lO).

Preprocessor procedures may have one of two distinctly different types of
argument lists: positional or keyword. Positional argument lists (ending
with a right parenthesis) use parameters sequentially, as in a paren
thesized list. Positional argument lists may be used in any preprocessor
procedure. Keyword argument lists (ending with a semicolon) use parame
ters in any order, as long as each keyword matches the name of a parame
ter. This permits the option of specifying the order in which parameters
may be passed. Keyword argument lists may only be used when the prepro
cessor procedure contains the STATEMENT option and is invoked from a
nonpreprocessor statement.

A keyword argument list ends with a semicolon rather than the right
parenthesis. In this way, the STATEMENT option permits you to use a
preprocessor procedure as if it were a statement. Consequently, preproces
sor procedures using the STATEMENT option permit you to extend the
PL/I language by simulating features that may not otherwise be available.

When using keyword arguments in nonpreprocessor statements, the key
words may be used in any order. The following reference exam pl es would
produce a variety of results with positional arguments, because values
would be used sequentially. Keyword arguments produce consistent results
because keyword parameters are matched with keyword arguments.

The next example illustrates the use of the STATEMENT option; to gen
erate PL/I source statements that define a unique run time feature. The
preprocessor procedure APPEND returns a string, which is incorporated
into the source program at compile time. At run time, the code resulting
from this PL/I source text performs the specified function.

This preprocessor procedure permits a varying string to accumulate text up
to its maximum size without danger of undetected truncation. Normally,
strings that exceed their maximum size are truncated. The text returned

378 Chapter 20

by the preprocessor procedure provides the run-time program with a way to
handle truncation. If the string would be truncated, a message is printed
and the FINISH condition is signaled.

7..APPEND: PROCEDURE (strins.to) STATEMENT RETURNS(CHARACTER); 0

%DECLARE (strinS1to) CHARACTER;@
7..RETURN (

'DO;' ii 8
'IF LENGTH(': :strins:: ')+LENGTH<':: to::')
' THEN DO;': :

SIZE (' : : to : : ') - 2 ' : ',

'PUT SKIP LIST (''Buffer overflowed aPPendins to '::to::''');'::
'SIGNAL FINISH;':: G)
'END;'::

'ELSE / : : to : : ' = ' : : to : : ' : : / : : st r ins: : ' ; / : :
'END;'

) ;

'7.,END;

The following notes are keyed to this example:

0 The preprocessor procedure APPEND is defined with the parameters
'string' and 'to' and the STATEMENT option.

@ 'String' and 'to' are declared as parameters within the preprocessor
procedure.

E> The %RETURN statement returns the value contained by the
parentheses. This text then becomes part of the PL/I source program.

Notice the punctuation within the character string returned by
%RETURN. At compile time, single quotes are stripped when the text
is incorporated into the run-time PL/I program. In addition, the semico~
Ion that delimits the invocation is not retained when the replacement
takes place. All customary PL/I punctuation must be included in the
character string.

e If the current varying string and the additional string together are
greater than the maximum length of the varying string, an informa
tional message is printed and the FINISH condition is signaled.

The following invocations of the preprocessor procedure APPEND are all
equivalent:

APPEND STRING('Ne1A1 Strins') TD (My_strins);

APPEND TO(My_Strins) STRING('Ne1A1 Strin.9'');

APPEND('Ne1A1 Strins') TO(My_strins);

Notice that if you have a preprocessor procedure (A) with a label that is the
same as the name of a keyword argument in another preprocessor proce
dure (B) with the STATEMENT option, then when Bis invoked the key
word argument is treated as a call to procedure A, and not as a keyword
parameter in B.

For the syntax of the %PROCEDURE statement, see Section 20.3.3.19.

Compile Time Facilities 379

20.2.3 Preprocessor Statements
All statements are preceded by a percent sign(%) and are terminated by a
semicolon (;). All text that appears within these delimiters is considered
part of the preprocessor statement and is executed at compile time. For
example:

%DECLARE HOUR FIXED; I* declaration of a Preprocessor
sinsle variable *I

%DECLARE <A1Bl CHARACTER; I* a factored PreProcessor
declaration */

'/.,HOUR SUBSTR<TIME() ti 12); I* Preprocessor assisnrrient
stateMent usins two built-in

functions */

Notice that a percent sign (%) is required only at the beginning of the
statement. Preprocessor built-in functions are contained within preproces
sor statements and consequently do not require a percent sign. However,
when you include Common Data Dictionary record definitions, you may
need to include the usual PL/I punctuation. See Section 20.4 for details.

Labels are permitted on preprocessor statements and, like other PL/I la
bels, are used as the targets of program control statements. A preprocessor
label must be an unsubscripted label constant and must be preceded by a
percent sign. As with other preprocessor statements, the percent sign alerts
the compiler that until the line is terminated with a semicolon, all subse
quent text is preprocessor text. Therefore, no other percent signs are re
quired on that line.

Labels for preprocessor procedures are necessary for the procedure to be
invoked. On a preprocessor procedure, the leading percent sign is only
required on the label; statements within the procedure do not require lead
ing percent signs.

The format for a preprocessor label is

%label: preprocessor-statement;

Table 20-1 summarizes the preprocessor statements.

Table 20-1: Summary of PL/I Preprocessor Statements

Statement

%Assignment

%

%ACTIVATE

%DEACTIVATE

380

Use

Evaluates a preprocessor expression and gives its value to a
preprocessor identifier

Null statement, specifies no preprocessor operation

Makes the value of declared preprocessor variables and pro
cedures eligible for replacement

Makes the value of declared preprocessor variables and pro
cedures ineligible for replacement

Chapter 20

Table 20-1 (Cont.): Summary of PL/I Preprocessor Statements

Statement Use

%DECLARE Defines the preprocessor variable names and identifiers to
be used in a PL/I program, and specifies the data attributes
associated with them

%DICTIONARY Specifies data definitions to be included from the VAX-11
Common Data Dictionary

%DO Denotes the beginning of a group of preprocessor statements
to be executed as a unit

%END Denotes the end of a block or group of statements that
started with a %PRQCEDURE or a %DO statement

%ERROR Generates a user-defined diagnostic error message

%FATAL Generates a user-defined fatal diagnostic message

%GOTO Transfers control to a labeled preprocessor statement

%IF Tests a preprocessor expression, and establishes action to be
performed based on the results

%INCLUDE Copies the text of an external file into the source file at
compile time

%INFORM Generates a user-defined informational diagnostic
message

%[N0JLIST _ALL

%[NOJLIST _DICTIONARY

%[NOJLIST__INCLUDE

%[N0JLIST _MACHINE

Does/does not include CDD records, INCLUDE files, ma
chine code, and source statements in the listing from that
point on

Does/does not include CDD records in the listing from that
point on

Does/does not include INCLUDE files in the listing from
that point on

Does/does not include machine code in the listing from that
point on

%[NOJLIST_SOURCE Does/does not include source program statements in the list
ing from that point on

%PAGE Provides listing pagination without form feeds in the source
text

%PROCEDURE Begins a preprocessor procedure

%REPLACE Assigns a constant value to an identifier at compile time

%RETURN Returns a value from execution of a preprocessor procedure
to the point of invocation

%SBTTL Allows specification of a listing subtitle line

%TITLE Allows specification of a listing title line

%WARN Generates a user-defined warning diagnostic message

Compile Time Facilities 381

The preprocessor statements summarized in Table 20-1 are described indi
vidually in the following sections.

20.2.3.1 %Assignment Statement
The preprocessor assignment statement gives a value to a specified prepro
cessor variable. The format of the assignment statement is

%target = expression;

target

The name of the preprocessor variable to be assigned a value. It must
be an unsubscripted reference to a preprocessor variable.

expression

Any valid PL/I expression.

For arithmetic operations, only decimal integer arithmetic of precision
(10,0) is performed. Each operand and all results are converted, if neces
sary, to a fixed decimal value of precision (10,0). Note that fractional digits
are truncated.

20.2.3.2 %Null Statement
The %NULL statement performs no action. Its format is

%;

The most common use for the preprocessor %NULL statement is as the
target statement of a %THEN or %ELSE clause in an %IF statement. For
example:

'X, IF
ERROR () 0;

'X, THEN

!..GOTO FI>< IT i
/..ELSE

'X,;

In this example, no action is taken if the program does not generate a user
diagnostic error message. If the %GOTO does not change the flow of compi
lation, control passes to the next executable preprocessor statement in the
source text.

20.2.3.3 %ACTIVATE Statement
The %ACTIVATE statement makes preprocessor variable and procedure
identifiers eligible for replacement. If the compiler encounters the named
identifier, it will initiate replacement. The format of the %ACTIVATE
statement is

% {ACTIVATE } element [RESCAN] , ... ;
ACT NO RESCAN

382 Chapter 20

element

The name of a previously declared preprocessor identifier or a paren
thesized list of identifiers that are separated by commas.

[
RESCAN]
NO RESCAN

Specifies if the preprocessor is or is not to continue checking the text
for secondary value replacement.

The RESCAN option specifies that preprocessor scanning continue
until all possible identifier replacements are completed. RESCAN is
the default option.

The NORESCAN option specifies that replacement be done once
only; the resulting text is not rescanned for possible further
replacement.

An identifier is activated by either %ACTIVATE or %DECLARE. When
an activated identifier is encountered by the compiler in unquoted non
preprocessor statements, the variable name or procedure reference is re
placed by its value. Replacement continues throughout the rest of the
source program unless it is stopped with the %DEACTIVATE statement.

If an identifier which is not a preprocessor variable is the target of an
%ACTIVATE statement, a warning message is issued and the identifier is
implicitly declared as a preprocessor variable with the FIXED attribute.
Thereafter, the identifier variable is eligible for replacement when
activated.

For example:

DECLARE CA1B1Cl FIXED;
%DECLARE IA1Bl FIXED;
'Y..ACTil.IATE (A 16);

%A 1;
'.i:'.B (A + A>;

C = A + B;
PUT SKIP LIST <Cl;

In this example, the activated preprocessor variables A and Bare assigned
values by the preprocessor. Notice that variables A and Bare also declared
as nonpreprocessor variables and are established as variables within the
nonpreprocessor program. The value of C in this case is 1+2, since the
preprocessor identifiers A and Bare both active, and therefore replaced by
their preprocessor values.
'Y..DEACT 11.IATE B;

B = soo;
C = A + B;
PUT SKIP LIST (C); 901 *I

Compile Time Facilities 383

If preprocessor variable B is deactivated, then the identifier B is not re
placed by its preprocessor value 2, and the value of C is l+B.

Values used for computation vary depending on whether the preprocessor
variables are activated, and therefore eligible, for replacement or whether
the variables are deactivated and not eligible for replacement. The value of
A is either 1 or 1100; the value for B is either 2 or 900.

Variables may be activated for replacement either with the %DECLARE or
%ACTIVATE statement, but you must declare a preprocessor variable
before it can be activated.

It is possible to activate several variables with a single statement. For
example:

%DECLARE !A1B1Cl FIXED;
%ACTIVATE !A1Bl RESCAN, C NORESCAN;

RESCAN is the default action, but this example explicitly activates A and
B with the RESCAN option. C is activated, but is not to be rescanned.

20.2.3.4 %DEACTIVATE Statement
The %DEACTIVATE statement makes preprocessor variable and proce
dure identifiers ineligible for replacement. After a variable or procedure
has been deactivated, it will not be replaced in nonpreprocessor text during
preprocessing. Replacement of a deactivated variable or procedure will not
occur again until the identifier has been reactivated with the %ACTIVATE
statement.

The format for the %DEACTIVATE statement is

% { ~~~~~IVATE} element, ... ;

element

The name of a previously declared preprocessor identifier or a paren
thesized list of identifiers that are separated by commas and sur
rounded by parentheses.

For example:

DECLARE IA1B1Cl FIXED;
%DECLARE CA1Bl FIXED;
/..DEACTit.JATE <Al;

'i:'.A 1 ;

'i:'.B I A + Al;

A 1100;
B soo;

C A + B;
PUT SKIP LIST I Cl;

384

3300 *I

Chapter 20

In this example, the preprocessor variable A is deactivated and, therefore,
the preprocessor value of 1 is not used. The preprocessor variable B is
activated by default, \vhich means that the value of B is 2200. Thus, the
run-time value of variable C is the result of adding 1100 + (A + A). It is
possible to deactivate several variables with a single statement. For
example:

%DEACTIVATE CA1B1C1D1E1Fl;

deactivates six variable identifiers in a single statement.

20.2.3.5 %DECLARE Statement
The %DECLARE statement establishes an identifier as a preprocessor
variable, specifies the data type of the variable, and activates the identifier
for replacement. It can occur anywhere in a PL/I source program.

The format of the %DECLARE statement is

% DECLARE element CHARACTER , ... ; { } [
FIXED]

DCL BIT

element

The name of a preprocessor identifier or a parenthesized list of identi
fiers that are separated by commas and surrounded by panmtheses.
Elements must be given an attribute of BIT, FIXED, or CHARAC
TER, but neither precision nor length may be specified. The compiler
supplies the variables with the following attributes:

Attribute

BIT
FIXED
CHARACTER

Implied Attributes

(31) INITIAL ((31)'0 'B)
DECIMAL (10,0) INITIAL (0)
VARYING (255) INITIAL (")

If no data type is specified, FIXED is assumed.

When a variable is declared in a preprocessor statement, it is activated for
replacement and rescanning. The scope of a preprocessor variable is all of
the text following the declaration of the variable, unless the variable is
declared inside a preprocessor procedure. Using %DECLARE inside a pro
cedure has the effect of declaring a local variable.

For example:

%DECLARE HOUR FIXED;

In this example, HOUR is declared as a preprocessor variable identifier
with the FIXED attribute. The compiler supplies the default values that
make this declaration the equivalent of

DECLARE HOUR Fn<ED DECIMAL (10 10) INITIAL (0);

Compile Time Facilities 385

NOTE
Notice that the attribute FIXED implies FIXED DECIMAL in
a preprocessor declaration. In nonpreprocessor declarations,
FIXED implies FIXED BINARY.

Factored declarations are permitted and follow the same usage rules as
nonpreprocessor declarations. For example:

%DECLARE <A1Bl CHARACTER, C BIT;

Both A and Bare declared with the CHARACTER attribute. The compiler
supplies default values that make this declaration the equivalent of

IC.DECLARE CA 1Bl CHARACTER IJARYING<25Sl INITIAL<'' l,
C BITl31lINITIALCC31> 'O'Bl;

20.2.3.6 O/aDICTIONARY Statement
The %DICTIONARY statement incorporates VAX-11 Common Data Dic
tionary (CDD) data definitions into the current PL/I source file during
compilation. It can occur anywhere in a PL/I source file; it need not be
within a procedure. The format of the %DICTIONARY statement is

%DICTIONARY cdd-path;

cdd-path

Is any preprocessor expression. The preprocessor expression is evalu
ated and converted to a CHARACTER string if necessary. The result
ing character string is interpreted as the full or relative pathname of a
CDD object. The resultant pathname must ·conform to all rules for
forming V AX-11 CDD pathnames.

The compiler extracts the record definition from the CDD, and the PL/I
structure corresponding to the record description is declared in the PL/I
program. For example:

DECLARE PRICE FIXED BINARY<31>;
%DICTIONARY 'ACCOUNTS';

would result in a declaration of the form

DECLARE PRICE FIXED BINARYC31l;
DECLARE 1 ACCOUNTS BASEDt

2 NUMBER,
3 LEDGER CHARACTERC3l,
3 SUBACCOUNT CHARACTER<Sl,

2 DATE CHARACTER (12) ,

Notice that in the above example, ACCOUNTS is a relative dictionary
pathname.

386 Chapter 20

20.2.3. 7 %00 Statement
The %DO statement begins a sequence of preprocessor statements, which
terminates with the %E~~D statement. %DO statements are noniterative
and must be simple DO-groups; however, preprocessor DO-groups are use
ful when combined with %IF statement. Preprocessor DO-groups may con
tain both preprocessor and nonpreprocessor text.

The format of the %DO statement is

%DO;

%END;

For example:

%DECLARE T CHARACTERi
%ACTIVATE T NDRESCANi

'/..IF t.JARIANT()
/..THEN ;
/..ELSE

'1..DO;

'NONE I;

I* declare T *I
I* activate T for rePlaceMent */

%T = '''unknown variant'''; I* assiSn strins to T *I
/..WARN T;

INIT_MESSAGE

'/..END!

I* output unknown variant
/warnins at coMPile tiMe */

INIT_MESSAGE::' with •::Ti I* assisn
I value of T to non-
/ Preprocessor variable */

This preprocessor DO-group performs several steps. First, a string constant
is assigned to T. Then, the value of T is used in a preprocessor user
generated diagnostic message. This message is issued at compile time to
warn the programmer that the program is compiled with an unknown
variant. Finally, the value of T is concatenated with a nonpreprocessor
string constant. !NIT-MESSAGE, including the value of T, is part of the
run-time image.

20.2.3.8 O/oEND Statement
The %END statement terminates a preprocessor procedure or DO-group.
The format of the %END statement is

%END;

After execution of a %END statement, control passes to the next execut
able statement.

Compile Time Facilities 387

20.2.3.9 %ERROR Statement
The %ERROR statement provides a diagnostic error message during pro
gram compilation. The format of the %ERROR statement is

%ERROR preprocessor-expression;

preprocessor-expression

A maximum of 64 characters giving the text of the error message to be
displayed. Messages of more than 64 characters are truncated.

The returned message displayed by %ERROR is

%PLIG-E-USERDIAG1 text

text

The preprocessor expression specified by the %ERROR statement in
the source program.

Compilation errors that result in the display of the %ERROR statement
increment the informational diagnostic count displayed in the compilation
summary, and inhibit production of an object file.

20.2.3.10 %FATAL Statement
The %FAT AL statement provides a diagnostic fatal message during pro
gram compilation. The format of the %FATAL statement is

%FAT AL preprocessor-expression;

preprocessor-expression

A maximum of 64 characters giving the text of the fatal message to be
displayed. Messages of more than 64 characters are truncated.

The returned message displayed by %FAT AL is

%PLIG-F-USERDIAG1 text

text

The preprocessor expression specified by the %FAT AL source
program.

Compilation errors that result in a fatal preprocessor error terminate com
pilation after the message is displayed.

20.2.3.11 %GOTO Statement
The %GOTO statement causes the preprocessor to interrupt its sequential
processing of source text and continue processing at the point specified in
the %GOTO statement. A %GOTO is useful for avoiding large segments of
text in the source program. The format of the %GOTO statement is

%GOTO label-reference;

388 Chapter 20

label-reference

A label of a preprocessor statement. The label reference determines
4-1..,.,. ~~:~-<- -<-~ •nl..:~1.. ~~~~;1,.,.- ~-~"'"'"";...,,,. ... ,;1] hn i--n nf'n __ ,.,.,:i. ~ 1., +-~-
1,,UC pv1111,, 1,,V VY !U\,,!! \,,V!.l.l p11c.L p.i V\,,Ci:li:l.L.116 VY .L.L.l uii::; ~.l Cl..l.l;:).lc;.l .l ii::;u.. V.l!.l.Y .iv.i -

ward transfers are allowed.

The following example illustrates forward transfers and the use of
%GOTO:

'X.IF WARN<) = 5
'/.',THEN

DOi

'X.END i
'X.ELSE i

%GOTO INSERT_TEXTi

%INSERT_TEXT: DOi

Depending upon the status of the %IF statement in this example, program
compilation takes one of two courses. The preprocessor DO-group is exe
cuted or control is transferred either to the statement labeled INSERT
TEXT. Notice also in this example that the preprocessor built-in function
WARN is used to determine preprocessor action, which makes the program
self-diagnostic.

If a %GOTO statement is used within a preprocessor procedure, the label
reference must be contained within the preprocessor procedure; that is, a
%GOTO must not transfer control outside of the preprocessor procedure.
Likewise, a %GOTO may not transfer control into another preprocessor
procedure.

20.2.3.12 O/olF Statement
The %IF statement controls the flow of program compilation according to
the scalar bit value of a preprocessor expression. The %IF statement tests
the preprocessor expression and performs the specified action if the result
of the test is true (or 1). The format of the %IF statement is

%IF test-expression %THEN action [%ELSE action]

test-expression

Any valid preprocessor expression that yields a scalar bit value. If any
bit of the value is 1, then the expression is true; otherwise the expres
sion is false.

action

A single, unlabeled preprocessor statement, %DO-group, %GOTO
statement, or a preprocessor null statement. The specified action
must not be an %END statement.

Compile Time Facilities 389

The %IF statement evaluates the preprocessor test expression. If the ex
pression is true, the action specified following the keyword %THEN is
compiled. Otherwise, the action, if any, following the %ELSE keyword is
compiled. In either case, compilation resumes at the first statement follow
ing the termination of the %IF statement, unless a %GOTO in one of the
action clauses causes compilation to resume elsewhere.

See the %DO statement (Section 20.3.2. 7) for an example.

20.2.3.13 %INCLUDE Statement
The %INCLUDE statement incorporates text from other files into the cur
rent source file during compilation. It can occur anywhere in a PL/I source
file, and it need not be part of a procedure. The format of the %INCLUDE
statement is

%INCLUDE { 'file-spec, } ;
module-name

file-spec

A file specification enclosed in apostrophes. The specification is sub
ject to logical name translation and the application of default values
by the VAXNMS operating system.

module-name

The 1- to 31-character name of a text module in a library of included
files and/or other text modules. If the text module is not in
PLISYSDEF or has the logical name PLI$LIBRARY, the name of the
library containing the module must be specified in the PLI compila
tion command.

For details on the specification of files and libraries to be included in a PL/I
compilation, see the VAX-11 PL/I User's Guide.

For example:

'X. INCLUDE I SUM. PLI I ;

This statement copies the contents of the file SUM.PL! into the current file
during compilation.

%INCLUDE SYSTEM_PROCEDURES;

This statement includes a module from a text module library. The library
containing the module SYSTEM-PROCEDURES must be present in the
command that compiles this program.

The maximum depth to which %INCLUDE statements can be nested is
four.

See Section 7.4.3 for further details.

390 Chapter 20

20.2.3.14 %INFORM Statement
The %INFORM statement specifies a user-written diagnostic informa
tionai message to be dispiayed during program compilation. The format of
the %INFORM statement is

%INFORM preprocessor-expression;

preprocessor-expression

A maximum of 64 characters giving the text of the informational
message to be displayed. Messages of more than 64 characters are
truncated.

The returned message displayed by %INFORM is

%PLIG-I-USERDIAG1 text

text

The preprocessor expression specified by the %INFORM statement in
the source program.

The %INFORM statement increments the informational diagnostic count
displayed- in the compilation summary.

20.2.3.15 O/oLIST Statement
The %LIST statement enables the selective listing display of INCLUDE
file contents, extracted CDD record descriptions, machine code, and source
code. The %LIST statement has a number of forms: each enables or dis
ables listing control for specific portions of the source text. The formats of
all forms of the %LIST statement are

%LIST_ALL;
%LIST _DICTIONARY;
%LIST _INCLUDE;
%LIST _MACHINE;
%LIST _SOURCE;

These statements are only effective when you give the appropriate value to
the /SHOW qualifier on the PLI command.

The %LIST form of each statement enables the appearance of the specified
information starting with the listing line following the %LIST statement. If
you previously specified %NOLIST, the %LIST statement has the effect of
reenabling the display.

The following summarizes the text displayed with each form of %LIST
statement

• %LIST -ALL-displays all of the following

• %LIST---DICTIONARY-displays the PL/I translation of an included
Common Data Dictionarj record

Compile Time Facilities 391

• %LIST-1NCLUDE-displays the contents of INCLUDE files and
modules in the program listing

• %LIST -MACHINE-displays the machine language code generated
during compilation

• %LIST _SOURCE-displays source program statements in the pro
gram listing

%LIST statements may not be nested.

20.2.3.16 %NOLIST Statement
The %NOLIST statement disables the selective listing display of
INCLUDE file contents, extracted Common Data Dictionary (CDD) record
descriptions, machine code, and source code. The %NOLIST statement
has a number of forms, each of which enables or disables listing control for
specific portions of the source text. The formats of all forms of the
%NOLIST statement are

%NOLIST _ALL;
%NOUST _DICTIONARY;
%NO LIST _INCLUDE;
%NOLIST _MACHINE;
%NOLIST _SOURCE;

The %NOLIST form of each statement disables the appearance of the
specified information starting with the listing line following the %NOLIST
statement. If you previously specified %LIST, the %NOLIST statement
has the effect of disabling the display.

To cancel the effect of any of the %NOLIST statements, include %LIST at
the appropriate line in the source text.

20.2.3.17 %PAGE Statement
The %PAGE statement provides listing pagination without inserting form
feed characters into the source text.

The format of %PAGE is

%PAGE;

The first source record following the record which contains the %PAGE
statement is printed on the first line of the next page of the source listing.

20.2.3.18 %PROCEDURE Statement
The %PROCEDURE statement begins a series of preprocessor statements
that constitute a preprocessor procedure. Preprocessor procedures are func
tion procedures that may occur anywhere in a source program.

392 Chapter 20

The format of the %PROCEDURE statement is

label

%1abel:PROCEDURE [(parameter-identifier, ...)]
[STATEMENT]
RETURNS(

{ CHARACTER }
j FIXED);

'BIT

[%]RETURN (preprocessor-expression);

[%]END;

An unsubscripted label constant. A preprocessor procedure is invoked
by the appearance of the label name on the %PROCEDURE state
ment and terminated by the corresponding %END statement.

The label name must be active if invoked from a nonpreprocessor
statement.

Preprocessor label names may be activated and deactivated, but may
not be specified in a %DECLARE statement.

parameter-identifier

The name of a preprocessor identifier. Each identifier is a parameter
of the procedure.

RETURNS

A preprocessor procedure attribute. The RETURNS attribute defines
the data type to be returned to the point of invocation in the source
code. If you specify a data type that is inconsistent with the returned
value, a conversion error may result.

STATEMENT

A preprocessor procedure option. The STATEMENT option permits
the use of a keyword argument list followed by an optional positional
argument list in the preprocessor procedure invocation. For further
information, see "Using the STATEMENT option" below.

Compile Time Facilities 393

preprocessor-expression

Value to be returned to the invoking source code. The preprocessor
expression must be specified. The preprocessor expression is con
verted to the data type specified in the RETURNS option and is
returned to the point of invocation. Therefore, the expression must be
capable of being converted to CHARACTER(255), FIXED(lO), or
BIT(31).

Preprocessor procedures may not be nested. The scope of a preprocessor
procedure is the procedure itself; that is, variables, labels, and any
%GOTO statements used inside of the procedure must be local.

When a preprocessor procedure (with or without the STATEMENT op
tion) is invoked from a preprocessor statement, each argument is treated as
an expression and the result of executing the preprocessor procedure is
returned to the statement containing the invocation.

When a preprocessor procedure is invoked from nonpreprocessor source
text, the arguments are interpreted as character strings and are delimited
by the appearance of a comma or a right parenthesis occurring outside of
balanced parentheses. For example, the positional argument list (Q(E,D),
XYZ) has two arguments; the strings 'Q(E,D) · and 'XYZ '.

The following example declares the preprocessor procedure Al and speci
fies that the procedure return a fixed decimal result after the preprocessor
statements within the procedure have been executed:

'X,A 1: PROCEDURE RETURNS (F D:ED) i
DECLARE (A,B1C) FIXED;

A
B

...,.

.::.. '
10;

i< A + Bi

RETURN (C) i

ENDi

This example returns the value 12 to the point of invocation. Note that the
leading percent signs, normally associated with preprocessor statements,
are not required within a preprocessor procedure.

The next example uses a preprocessor procedure to return a Fibonacci
number.

394 Chapter 20

PPFIB: PROCEDURE OPTIONS <MAIN);
DECLARE Y CHAR< llll INITIAL('Fibonacci Test'); 0
%DECLARE Y FIXED; 8
IF: PROCEDURECX) RETURNS <FIXEDli 8

DECLARE X FIXEDi
IF(){<= 1)

THEN RETURN (1) ;
ELSE RETURN<F<X-1J+FIX-2J);

ENDi I* End Preprocessor Procedure •I
'X.Y = F < 10) ; 0
PUT SKIP LIST('{);
i..Y = F(11)i 0
PUT SKIP LISTIYJ;
'X.Y = FC12H (!)
PUT SKIP LISTIY);
%DEACTIVATE Yi 8
PUT SKIP LISTIYJ; fD
ENDi I* End run-tiooe Procedure •I

In this example, the recursive preprocessor procedure labeled %F is in
voked to return a single value, a Fibonacci number, to the point of invoca
tion. The following notes correspond to the example:

0 The run-time variable 'Y 'is declared with the CHARACTER attribute
and initialized to 'Fibonacci Test'.

8 The preprocessor variable 'Y' is declared with the FIXED attribute,
which implies FIXED DECIMAL (10,0). This declaration automati
cally activates the preprocessor variable 'Y '.

8 The preprocessor procedure 'F' is defined. The percent sign for the
END statement is optional in a preprocessor procedure.

Note that this procedure is recursive, that is, it invokes itself.

0 The preprocessor procedure is called, passed the value 10, and the 10th
number in the Fibonacci series is calculated. The resulting value is
assigned to the preprocessor variable 'Y.'

Since the preprocessor variable 'Y' is active by default, the compiler
replaces the occurrence of 'Y' in the PUT statement with the new
preprocessor 'Y' value.

0 Step 4 is repeated for the value 11.

0 Step 4 is repeated for the value 12.

0 The preprocessor variable 'Y' is deactivated. No more scanning or
repiacement occurs. The preprocessor variable 'Y' retains its final re
placement value, 233.

0 The run-time value of 'Y' ('Fibonacci Test') is output.

Compile Time Facilities 395

The output from this program is

89
lllll
233
Fibonacci Test

For an example of a preprocessor procedure that uses the STATEMENT
option, see Section 20.2.2.

20.2.3.19 'loREPLACE Statement
The preprocessor %REPLACE statement specifies that an identifier is a
constant of a given value. It may be used anywhere within a procedure or
anywhere in a PL/I source file. However, note that you may not use the
same identifier as both a %REPLACE identifier and a declared preproces
sor identifier or program variable.

Beginning at the point at which a %REPLACE statement is encountered,
PL/I replaces all occurrences of the specified identifier with the specified
constant value, until the end of compilation.

The format of the %REPLACE statement is

%REPLACE identifier BY constant-value;

identifier

Any valid PL/I identifier. PL/I keywords are not valid identifiers in a
%REPLACE statement. The identifier must not be the name of a
declared preprocessor or program variable. VAX-11 PL/I permits
multiple %REPLACE statements and %REPLACE statements that
redefine the %REPLACE identifier.

constant-value

Any valid character-string, bit-string, or arithmetic constant.

Integer constants that are given values by %REPLACE statements are
valid in constant expressions. For example:

%REPLACE PREFIX BY 9;

DECLARE BUFFER CHARACTER (80 + PREFIX>;

When the program containing these lines is compiled, the variable
BUFFER is declared with a length of 88 characters.

20.2.3.20 'loRETURN Statement
The %RETURN statement terminates execution of the current preproces
sor procedure. The format of the %RETURN statement is

[%]RETURN (preprocessor-expression};

396 Chapter 20

preprocessor-expression

Value to be returned to the invoking procedure. The preprocessor
expression must be specified. The preprocessor expression is con
verted to the data type specified in the RETURNS option, and the
value of the expression is returned to the point of invocation. There
fore, it must be capable of being converted to CHARACTER, FIXED,
or BIT.

The value returned by a preprocessor procedure may not itself con
tain preprocessor statements.

The value of the evaluated preprocessor expression is passed back to the
point of invocation, and control returns to the evaluation of the source code
statement that contained the reference to the preprocessor procedure. The
maximum precision of the value returned by %RETURN is BIT(31),
CHARACTER(255), and FIXED(lO).

Within a preprocessor procedure, the leading percent (%) sign is optional
because preprocessor procedures do not require percent signs within the
procedure.

Multiple %RETURN statements are permitted in preprocessor procedures.

20~2.3~21 8/oSBTTl Statement
The %SBTTL statement allows specification of an arbitrary compile-time
string for the listing subtitle line. PL/I uses the procedure IDENT, or V002
if no IDENT was specified. If %SBTTL is used, the specified subtitle
appears to the right of IDENT or V002.

The format of the %SBTLL statement is

%S BTTL preprocessor-expression

preprocessor-expression

A maximum of 30 characters giving the listing subtitle. Subtitles of
more than 30 characters are truncated.

20.2.3.22 D/o TITLE Statement
The %TITLE statement allows specification of an arbitrary compile-time
string for the listing title line. If %TITLE is used, the specified title ap
pears to the right of the customary title. (If no TITLE option is specified,
PL/I uses the name of the first level-1 procedure in the source program as
the title.)

The format of the %TITLE statement is

% TITLE preprocessor-expression

Compile Time Facilities 397

preprocessor-expression

A maximum of 30 characters giving the listing title. Titles of more
than 30 characters are truncated.

20.2.3.23 11/oWARN Statement
The % WARN statement provides a diagnostic warning message during
program compilation. The format of the % WARN statement is

%WARN preprocessor-expression;

preprocessor-expression

A maximum of 64 characters giving the text of the warning message
to be displayed. Messages of more than 64 characters are truncated.

The returned message displayed by % WARN is

%PLIG-W-USERDIAG1 text

text

The preprocessor expression specified by the % WARN statement in
the source program.

The % WARN statement increments the warning diagnostic count dis
played in the compilation summary.

20.2.4 Preprocessor Built-In Functions
A number of PL/I built-in functions are available for use at compile time.
With few exceptions, they have the same effect as run-time PL/I built-in
functions with the same name.

The preprocessor built-in functions are summarized in Table 20-2, accord
ing to the following functional categories:

• Arithmetic built-in functions-functions that provide information
about the properties of arithmetic values, or that perform common
arithmetic calculations

• String-handling built-in functions-functions that process character
and bit-string values

• Conversion built-in functions-functions that convert data from one
data type to another

• Timekeeping built-in functions-functions that return the system
date and time of day

• Miscellaneous-functions that are specifically preprocessor built~in
functions

398 Chapter 20

Table 20-2: Summary of PL/I Preprocessor Built-In Functions

Category

Arithmetic

Function Reference

ABS(x)

MAX(xl,x2)

MIN(xl,x2)

MOD(x,y)

SIGN(x)

String-Handling COPY(s,c)

Conversion

Timekeeping

Miscellaneous

INDEX(s,c)

LENGTH(s)

SEARCH(s,c)

SUBSTR(s,i,[,jJ)

TRANSLATE(s,c[,dl)

TRIM(s[,e,f1)

VERIFY(s,c)

BYTE(x)

RANK(c)

DATE()

TIME()

ERROR()

INFORM()

LINE()

VARIANT()

WARN()

Value Returned

Absolute value of x

Larger of the values xl and x2

Smaller of the values xl and x2

Value of x modulo y

-1, 0, or 1 to indicate the sign of x

c copies of specified string s

Position of the character string c within the
strings

Number of characters or bits in the strings

Position of the first character in s that is found
inc

Part of string s beginning at i for j characters

String s with substitutions defined in c and d

String s with all characters in e removed from
the left and all characters in f removed from
the right

Position of the first character is s which is not
found inc

ASCII character represented by the integer x

Integer representation of the ASCII character c

System date of compilation in the form
YYMMDD

System time of day of compilation in the form
HHMMSSXX

Count of user-generated diagnostic error mes
sages

Count of user-generated diagnostic informa
tional messages

Line number in source program that contains
the end of a specified preprocessor statement

String result representing the value of the
N ARIANT PLI command qualifier

Count of user-generated diagnostic warning
messages

Except for those in the category labeled 'Miscellaneous, preprocessor
built-in functions are similar to their nonpreprocessor counterparts. Mis
celianeous functions are summarized in the next sections. See Chapter 19
for explanations of all other built-in functions.

Compile Time Facilities 399

20.2.4.1 ERROR Preprocessor Built-In Function
The preprocessor ERROR built-in function returns the number of prepro
cessor diagnostic error messages issued during compilation up to that par
ticular point in the source program. The format for the ERROR built-in
function is

ERROR();

The function returns a FIXED result representing the number of compile
time warning messages that were issued up to the point at which the
%ERROR statement was encountered.

20.2.4.2 INFORM Preprocessor Built-In Function
The preprocessor INFORM built-in function returns the number of diag
nostic informational messages issued during compilation up to that partic
ular point in the source program. The format for the INFORM built-in
function is

INFORM()

The function returns a FIXED result representing the number of compile
time warning messages that were issued up to the point at which the
%INFORM statement was encountered. See Section 20.3.1 for an example.

20.2.4.3 LINE Preprocessor Buitt-ln Function
The LINE preprocessor built-in function returns the line number of the
source program text containing the end of the preprocessor statement that
calls the LINE built-in function. The line number is returned as a FIXED
integer.

The format of the function within a preprocessor expression is

LINE()

20.2.4.4 VARIANT Preprocessor Built-In Function
The VARIANT preprocessor built-in function returns a string representing
the value of the N ARIANT qualifier in the PLI command that invoked the
compilation.

Its format in a preprocessor expression is

VARIANT()

The N ARIANT qualifier permits specification of compilation variants.

The format of compilation variants is

IV ARIANT [=alphanumeric-string]
="al phan u meric-stri ng"

400 Chapter 20

For example, if a program may be compiled with a choice of three different
INCLUDE files, you can use the N ARIANT command qualifier to specify
which file is to be included. In the following example, the file
'SPECIAL.SRC' is included in the program only if N ARIANT=SPECIAL
appears in the PLI command line:

%IF 1.JARIANT<> = 'SPECIAL'
%THEN

%INCLUDE 'SPECIAL.SRC';
i.. IF I.JAR I ANT () = I NONE I

i..THEN;

No action is taken if N ARIANT=NONE appears on the PLI command
line.

If N ARIANT is not specified, or if it is specified without a value, the
default value is NARIANT ="".

20.2.4.5 WARN Preprocessor Built-In Function
The preprocessor WARN built-in function returns the number of diagnos
tic warning messages issued during compilation up to that particular point
in the source program. The format for the WARN built-in function is

WARN()

The function returns a fixed result representing the number of compile
time warning messages that were issued up to the point at which the
%WARN statement was encountered.

Compile Time Facilities 401

Appendix A

Rules for Conversion of Data

This appendix provides details of the data type conversions that PL/I
performs when assigning values to variables. The rules for conversions
apply to

• Assignment statements.

• Arguments passed to a procedure.

• Values specified in a RETURN statement.

• Arguments converted by the buiit-in functions FIXED, FLOAT,
BINARY, DECIMAL, BIT, or CHARACTER.

• Character-string arguments to the PUT and GET statements.

A.1 Assignments to Arithmetic Variables

You can assign expressions of any computational type to arithmetic varia
bles. Note, however, that the compiler may issue a warning message unless
an explicit conversion function is used. The conversion rules are described
below for each source type.

A.1.1 Arithmetic to Arithmetic Conversions
You can assign a source expression of any arithmetic type to a target
variable of any arithmetic type. Note the following qualifications:

• If the target is a variable of type FIXED BINARY or FIXED
DECIMAL, then the FIXEDOVERFLOW condition is signaled when
the source value has a larger number of integral digits than are speci
fied in the precision of the target. If the target is a fixed-point binary
variable, FIXEDOVERFLOW is signaled if the source value exceeds
the storage allocated for the target.

• If the target is a variable of type FIXED-POINT(p,q) and the source
value has more than q fractional digits, then the excess fractional

402

digits of the source are truncated, and no condition is signaled. If the
source has fewer than q fractional digits, the source value is padded on
the right with zeros.

• If the target value is floating point and the absolute source value is too
large to be represented by a VAX floating-point type (see Section
8.2.3), then the OVERFLOW condition is signaled, and the value of
the target is undefined. If the absolute source value is too small to be
represented, the value zero is assigned to the target, and, if enabled,
the UNDERFLOW condition is signaled.

A.1.2 Pictured to Arithmetic Conversions
In VAX-11 PL/I, all pictured values have the associated attributes FIXED
DECIMAL(p,q), where p is the total number of characters in the picture
specification that specify decimal digits, and q is the total number of these
digits that occur to the right of the V character. If the picture specification
does not include a V character, then q is zero. This associated fixed-point
decimal value is assigned to the target, following the rules for arithmetic to
arithmetic conversion described above.

A.1.3 Bit-String to Arithmetic Conversions
When a bit-string value is assigned to an arithmetic variable, PL/I treats
the bit string as a nonnegative fixed-point binary value. If the converted
value is greater than or equal to 231 , then FIXEDOVERFLOW is signaled.
The leftmost bit in the bit string (as output by PUT LIST) is the most
significant bit in the fixed-point binary value, not its sign. If the bit string
is null, the fixed-point binary value is zero. The intermediate fixed-point
binary value is then converted to the target arithmetic type.

Note that a bit string interpreted as a fixed-point binary value changes its
value when assigned to a bit-string variable of a different length. See
Section 8.4.4 for further details.

A.1.4 Character String to Arithmetic Conversions
When a character string is assigned to an arithmetic value, PL/I interprets
the string as an arithmetic constant and creates an intermediate numeric
value based on the characters in the string. The string can contain any
series of characters that describes a valid arithmetic constant. If it contains
any invalid characters, the ERROR condition is signaled.

PL/I then converts the intermediate value to the data type of the target,
following the rules for arithmetic to arithmetic conversions. In conversions
to fixed point, FIXEDOVERFLOW is signaled if the character string speci-

Rules for Conversion of Data 403

fies too many integral digits. Excess fractional digits are truncated without
signaling a condition.

If the source character string is null or contains all spaces, the resulting
arithmetic value is zero.

A.2 Assignments to Bit-String Variables

In the conversion of any data type to a bit string, PL/I first converts the
source data item to an intermediate bit-string value. Then, based on the
length of the target string, it performs one of the following:

• If the length of the target bit-string value is greater than the length of
the intermediate string, the target bit string (as represented by PUT
LIST) is padded with zeros on the right.

• If the length of the target bit-string value is less than the length of the
intermediate string, the intermediate bit string (as represented by
PUT LIST) is truncated on the right.

The next sections describe how PL/I arrives at the intermediate bit-string
value for each data type.

A.2.1 Arithmetic and Pictured to Bit-String Conversions
In converting an arithmetic value to a bit-string value, PL/I first computes
the absolute value of the arithmetic value, and then converts it to an
integer of type FIXED BINARY with a maximum precision of 31. If this
conversion results in an integer larger than the data type can accommo
date, the FIXEDOVERFLOW condition is signaled; otherwise, each of the
bits of the intermediate bit string represents a binary digit of n.

During the conversion, the sign of the arithmetic value and any fractional
digits are lost. As a result, a value that contains only fractional digits (such
as 0.2312) is converted to an all-zero bit string.

If an arithmetic value is assigned to a bit-string variable, and that variable
is assigned to a second variable of different length, the effect is to multiply
or divide the arithmetic value as a result of padding or truncating the bit
string. See Section 8.4.4 for further details.

A.2.2 Character-String to Bit-String Conversions
PL/I can convert a character string of Os and ls to a bit string. Any charac
ter in the character string other than 0 or 1, including spaces, will signal
the ERROR condition. If the source is a null character string, the interme
diate string is a null bit string.

404 Appendix A

A.3 Assignments to Character-String Variables
In the conversion of any data type to a character string, PL/I first converts
the source value to an intermediate character-string value. Then it per
forms one of the following:

• If the length of the intermediate string is zero, a null string is assigned
to the target.

• If the target is a returns descriptor with an asterisk extent (as in
RETURNS CHAR(*)), the intermediate string is assigned to the tar
get.

• If the intermediate string is shorter than the maximum length of the
target, and the target has the VARYING attribute, it is assigned the
value of the intermediate string without trailing spaces. If the target
does not have the VARYING attribute, the string is padded with
trailing spaces.

• If the maxim um length of the target character string is less than the
length of the intermediate string, the intermediate string is truncated.

The next sections describe how PL/I arrives at the intermediate string for
conversion of each data type. Examples show the intermediate value, as
well as the resulting value.

A.3.1 Arithmetic to Character-String Conversions
The manner in which PL/I converts the arithmetic item depends on the
data type of the source, as described below.

A.3.1.1 Conversion from Fixed-Point Binary or Decimal

If the source value is of type FIXED BINARY, PL/I first converts it to type
FIXED DECIMAL. PL/I converts a value with attributes FIXED
DECIMAL to an intermediate string with the numeric value right justified
in the string. The format of the intermediate string can be described as
follows:

• If there are no fractional digits, the first two characters of the string
are spaces. The last characters in the string are the digit characters
representing all the digits in the integer; leading zeros are replaced by
spaces except in the last position. If the integer is negative, a minus
sign immediately precedes the first digit; if not, this position contains
a space. At least one digit always appears, in the last position in the
string.

• If there are no integral digits, the first three characters are (in order)
an optional minus sign if the fraction is negative, the digit 0, and a

Rules for Conversion of Data 405

decimal point. If the number is not negative, the first character is a
space. The last characters in the string are all the fractional digits of
the number.

• If there are both integral and fractional digits, the first character is
always a space. The last characters are all the fractional digits of the
number and are preceded by a decimal point; the decimal point is
always preceded by at least one digit, which may be O; all integral
digits appear before the decimal point, and leading zeros are replaced
by spaces. A minus sign precedes the first integral digit if the number
is negative; if not, then the minus sign is replaced by a space.

These rules may cause confusion if you do not take into account the ieading
spaces. In the following examples, the letter b represents a space:

DECLARE STRING1 CHARACTER (8) t

STRING2 CHARACTER (4);

STRING 1 = 283472, ;

I* intermediate strins
STRING1 = 'bbb28347' */

STRING2 = 28147?.;

I* intermediate strins
STRING2 = I bbb2 I */

STRING2 = -283472,;

/* intermediate strins
STRING2 = 'bb-2' */

STRING2 = -.003344;

I* intermediate strins
STRING2 = '-0,0' */

STRING2 = -283,472;

I* intermediate strins
STRING2 = 'b-28' */

STRING2 = 283.472;

/* intermediate strins
STRING2 = 'bb28' */

·'bbb283472';

'bbb283472';

'bb-283472''

'-0.003344''

'b-283.472''

'bb283.472';

A.3.1.2 Conversion from Floating-Point Binary or Decimal

If the source value is of type FLOAT BINARY, it is converted to FLOAT
DECIMAL. For a value of type FLOAT DECIMAL(p), where pis less than
or equal to 34, the intermediate string is of length p+6; this allows extra
characters for the sign of the number, the decimal point, the letter E, the
sign of the exponent, and the 2-digit exponent.

406 Appendix A

NOTE
If the value is a floating-point number of the VAX type G-float,
three characters are allocated to the exponent, and the length of
the string is p + 7. If the value is of type H-floa t, four characters
are allocated to the exponent, and the length of the string is
p+8.

If the number is negative, the first character is a minus sign; otherwise, the
first character is a space. The subsequent characters are a single digit
(which may be 0), a decimal point, p-1 fractional digits, the letter E, the
sign of the exponent (always+ or-), and the exponent digits. The exponent
field is of fixed length, and the zero exponent is shown as all zeros in the
exponent field.

For example:

CONCH: PROCEDURE OPTIONS(MAIN);

DECLARE OUT PRINT FILE;

OPEN FILE(OUT) TITLE('CONCH.OUT');

PUT SKIP FILE<DUT) ED IT (I I I I t 25E25 'I I I I) (A);

PUT SKIP FILE<DUT) EDIT(I I I I t-25E25' I I I I) (A) j

PUT SKIP FILE<DUT) EDIT(I I I I t1 .233325E-5 t I I I I)

PUT SKIP FILE<DUTJ EDIT(I I I I t-1.233325E-5 t I I I I)

END CONCHi

The program CONCH produces the output

I 2.5E+26'
'-2+5E+2G'
I 1.233325E-05'

'-1.233325E-05'

(A) j

(A);

The PUT statement converts its output sources to character strings, follow
ing the rules described in this section. (The output strings have been sur
rounded with apostrophes to make the spaces distinguishable.) Note that,
in each case, the width of the quoted output field (that is, the length of the
converted character string) is the precision of the floating-point constant
plus 6.

A.3.2 Pictured to Character-String Conversions
If the source value is pictured, its internal, character-string representation
is used without conversion as the intermediate character string.

Rules for Conversion of Data 407

A.3.3 Bit-String to Character-String Conversions
When PL/I converts a bit string to a character string, it converts each bit
(as represented by PUT LIST) to a 0 or 1 character in the corresponding
position of the intermediate character string.

If the bit string is a null string, the intermediate character string is also
null.

A.4 Assignments to Pictured Variables
A source expression of any computational type can be assigned to a pic
tured variable. The target pictured variable has a precision (p), which is
defined as the number of characters in its picture specification that specify
decimal digits. It also has a scale factor (q), which is defined as the number
of picture characters that specify digits and occur to the right of the V
character in the picture specification. If there is no V character, or if all
digit-specification characters are to the left of V, then q is zero.

The source expression is converted to a fixed-point decimai value v of
precision (p,q), following the rules given in Section A.i for conversion from
the source data type to fixed decimal. This value is then edited to a charac
ter string s, as specified by the picture specification, and the value s is
assigned to the pictured target.

When the value v is being edited to the strings, the ERROR condition is
signaled if the value of v is less than zero and the picture specification does
not contain one of the characters S, +, -, T, I, R, CR, or DB. The value of s
is then undefined. FIXEDOVERFLOW is also signaled if the value v has
more integral digits than are specified by the picture specification of the
target.

A.5 Conversions Between Offsets and Pointers
Offset variables are given values by assignment from existing offset values
or from conversion of pointer values. Pointer variables are given values by
assignment from existing pointer values or from conversion of offset values.

The OFFSET built-in function converts a pointer value to an offset value.
The POINTER built-in function converts an offset value to a pointer.
These functions are described in Section 19.2.

408 Appendix A

PL/I also automatically converts a pointer value to an offset value, and vice
versa, in an assignment statement. The following assignments are valid:

1. pointer-variable = pointer-value;

2. offset-variable = offset-value;

3. pointer-variable = offset-variable;

4. offset-variable = pointer-value;

In (3) and (4), above, the offset variable must have been declared with an
area reference.

Rules for Conversion of Data 409

Appendix B

Calling System Services

System services are procedures implemented by the VAXNMS operating
system. They provide timer, 1/0, and other system-related functions that
are otherwise unavailable to the VAX-11 PL/I programmer. Although the
use of some system services is restricted by privilege requirements, many
are available for general programming use. System services are described
in detail in the VAX/VMS System Services Reference Manual.

This appendix provides information on

• Deciaring system services in PL;I.

• Specifying arguments for system services.

• Testing status values returned from system services.

Section B.4 contains examples of calling system services from PL/I pro
grams.

B. 1 Declaring System Services
The default PL/I text library PLISYSDEF.TLB contains declarations for
all system services as external entries that return FIXED BINARY (31)
values. The text module names have the form

SYS$name

where SYS$name is the name of the system service., Thus, to declare a
system service you are going to use, specify an %INCLUDE statement as in
this example:

%INCLUDE SYS$TRNLOG;

The compiler, by default, locates the module SYS$TRNLOG in
PLISYSDEF.TLB during compilation. This module contains a complete
declaration for an external entry constant that invokes the Translate Logi
cal Name system service, including the appropriate parameter descriptor.
The examples in Section B.4 show the texts of several such declarations.

410

B.2 Specifying Arguments for System Services
\X/hen you specify arguments for a system service, you must determine
from its description the following information about each argument:

• Which mechanism must be used to pass the argument

• What the data type of the argument is

• Whether the argument can be omitted

• Whether you need to use system global symbols to specify an argu-
ment

To examine the PL/I parameter descriptors in the declaration of a given
system service, you can display or print the text module for that service.
For example:

$ LIBRARY/EXTRACT=SYSSTRNLOG/OUTPUT=LP:TRNLDG -
$_SYSSLIBRARY:PLISYSDEF/TEXT

This LIBRARY command prints the contents of the text module
SYS$TRNLOG from the library SYS$LIBRARY:PLISYSDEF. The file is
printed on the device LP; the listing file is named TRNLOG.TXT.

B.2.1 Argument-Passing Mechanisms Used by System
Services

There are three ways that a PL/I procedure can pass an argument to a non
PL/I procedure such as a system service. They are

• By immediate value. When an argument is passed by immediate
value, the actual value of the argument is passed.

• By reference. When an argument is passed by reference, the address in
storage of the argument is passed.

• By descriptor. When an argument is passed by descriptor, the address
in storage of a data structure describing the argument is passed.

These methods are described in Section 13.2.2. System services use the
following methods of passing arguments:

• Input arguments that are either fixed binary or bit-string values and
that can be expressed in 32 bits are always passed by immediate
value.

• Input arguments that cannot be expressed in 32 bits are passed by
reference.

Calling System Services 411

• Output arguments are always passed by reference.

• Character-string arguments, either input or output, are always passed
by character-string descriptor.

B.2.2 Parameter Descriptors for System Services Data
Types

Tables B-1 and B-2 list the types of input and output parameters used by
system services. Each table shows the parameter descriptor for a type of
argument.

Table B-1: Input Arguments for System Services

412

Argument Data Type

Numeric values:
Indicator
Channel number
Event flag
Access mode
Binary mask
Buffer size
Process identification
UIC

Character strings:
Logical name
Process name
Device name
Cluster name
Time string

Bit masks:
32 bits or less
64 bits

Time values

Entry mask or routine

Buffers:
Item list
Quota list

AST parameter

Two-longword array

Parameter Declaration
in PLISYSDEF

FIXED BINARY(31) VALUE

CHARACTER(*)

BIT(32) ALIGNED VALUE
BIT(64) ALIGNED

BIT(64) ALIGNED

ENTRY VALUE

ANY

ANY VALUE

(2) FIXED BINARY(31)

Appendix B

Table B-2: Output Arguments for System Services

A. ___ ,. ____ Til.-4..- rii ___ _
~-l"!~; uuuau, .1..1u 1.1:1 .1. y vc

Numeric values:
String length
Channel number
Access mode
Table number
Process identification

Character strings:
Equivalence name
Time string

Buffers:
VO status block

Time value

Two-longword array

Parameter Declaration
in PLISYSDEF

FIXED BINARY(15)
FIXED BINARY(l5)
FIXED BINARY(7)
FIXED BINARY(7)
FIXED BINARY(31)

CHARACTER(*)

ANY

BIT(64) ALIGNED

(2) FIXED BINARY(31)

B.2.3 Variable-Length Argument Lists
Many system services provide default values when a parameter contains a
zero. In VAX-11 PL/I, you can omit an optional argument for a system
service, and the compiler will pass a zero for the argument. The system
services are all declared with OPTIONS (VARIABLE) to allow this to
occur.

An argument list must, however, always contain the number of commas
that would be present if all arguments were specified. For example:

STS$l.JALUE = SYS$GET JPI (t t tJPI_LIST t t t t l i

In this example, the SYS$GET JPI system service has eight parameters,
but only one need be specified. Commas indicate the omitted arguments.

If an argument list does not specify the required number of arguments (or
commas), a function reference to the system service returns the value asso
ciated with the status code SS$-INSFARGS (meaning insufficient argu
ments).

B.2.4 Symbol Definitions for System Service Arguments
Many system services require you to specify values using binary integers or
bit-string masks for which symbolic names exist. Symbolic names are more
meaningful within a program listing and, should software be updated, will
not change in meaning even if their corresponding values change.

Calling System Services 413

In PL/I, you can declare the names of global symbols using the
GLOBALREF and VALUE attributes. Then you may use the names to
represent values in an argument list for a system service invocation. For
example:

DECLARE !IOS_READVBLK1 IOSM_TIMED, IO$M_CVTLOWl
FIXED BINARY (31) GLOBALREF VALUE;

%INCLUDE SYSSQIOW;
%INCLUDE SSTSDEF;

STS$t,JALUE = SYS$Q I OW (1 , TTCHAN,
IOS_READVBLK+IO$M_TIMED+IO$M_CVTLOW,
IOSB,, 1ADDR (COMMAND) ,3 1DEL TA,,, l;

In this example, IO$-READVBLK, IO$M-TIMED, and IO$M_
CVTLOW are declared as global symbols. They are bit masks that are
meaningful to the Queue I/0 Request system service. When combined in
the invocation of SYS$QIOW, they request the system to read a virtual
block; place a specified time limit on the operation, and convert the
received characters to uppercase.

B.3 Testing Return Values from System Services
All system services return a longword integer value with the severity of the
return status indicated in the low-order three bits and the success/failure
indicated in the low-order bit.

When you write references to system services, it is your responsibility to
provide tests for successful completion of the service. Neither the services
themselves nor the run-time error reporting procedures provide run-time
messages for system service errors. You can test for successful completion
in the following ways:

• Test for success/failure by testing the low-order bit of the return status
value.

• Test for specific return values by declaring the global symbol names
associated with each return status value.

The text module $STSDEF contains the declarations for the variables
STS$VALUE and STS$SUCCESS. STS$VALUE is an integer variable;
STS$SUCCESS is a 1-bit variable that is based on the low-order bit of
STS$VALUE. Thus, these variables can be used to test both the specific
return value and the low-order bit. To gain access to STS$VALUE and
STS$SUCCESS, place the following statement in your program:

%INCLUDE SSTSDEF;

414 Appendix B

System global symbol names are defined for all status values returned by
system services. These names have the format

SS$_condition

where condition is a mnemonic that describes the condition.

The definitions for all of these global symbols are located in the default
system library in SYS$LIBRARY. In a PL/I program, to test function
returns from system services you must declare the names as follows:

DECLARE SSS_condition GLOBALREF
FIXED BINARYC31l VALUE;

For example:

%INCLUDE SYSSSETEF;
DECLARE SSS_WASSET FIXED BINARY C31l GLDBALREF VALUE;
%INCLUDE SSTSDEFi

STSSVALUE = SYS$SETEFC4l;

IF "STSSSUCCESS THEN RETURN CSTSSVALUEl;
IF STSSVALUE = SS$_WASSET THEN oo;

In this example, the return status value from the call to SYS$SETEF is
placed in STS$VALUE. If STS$SUCCESS, the low-order bit of
STS$VALUE, is false, an error has occurred; the procedure then returns
the value of STS$VALUE to its caller. If STS$SUCCESS is true, the
procedure tests whether STS$VALUE is equal to the value of
SS$_ WASSET and continues.

B.4 Examples of System Services
The examples on the next few pages contain a number of system service
calls. These examples illustrate

• Translating a logical name.

• Using timer and time conversion routines.

All the sample programs use the system service INCLUDE files in
PLISYSDEF to declare the system services. The text of each sample pro
gram shows the INCLUDE file for the system service.

All procedures also include the module $STSDEF; however, the contents of
this text module are not shown in the examples.

B.4.1 Logical Name Translation
This program illustrates a call to the Translate Logical Name
(SYS$TRNLOG) system service, which returns the result of a single logical

Calling System Services 415

name translation. In this example, the procedure ORION translates the
logical name CYGNUS and displays the result on the terminal. If the name
is not defined, the procedure displays a message indicating that fact. The
circled numbers are keyed to the notes below.

ORION: PROCEDURE RETURNS<FIXED BINARY<31));

%INCLUDE SYS$TRNLOG;
I* Translate LoSical Name system service */
declare s~·s$trnlos external entry C 0

char(*); I* losical name strins *'
fixed bin C 15) ,
char<*>,
fixed bin C 7) '

'*
'*
'*

variable
variable
variable

to receive translated lensth *'
to receive translated name *'
to receive table number */

fixed bird7)'
fixed bin (31) value>

/* •1ariable

'* •.iariable
to receive access mode *I
search disable masK */

oPtionslvariable) returns(fixed binC31));
%INCLUDE $STSDEF;

DECLARE CYGDES CHARACTER<S> STATIC INITIAL< 'CYGNUS'),

NAMEDES CHARACTERIG3>,
NAMELEN F I>:ED BI NARY< 15 I ; 8

DECLARE SS$_NOTRAN GLOBALREF FIXED BINARY<31> VALUE; Q

STS$VALUE = SYS$TRNLOG<CYGDES1NAMELEN1NAMEDEs,,,,1; 0
IF STS$VALUE = SS$_NOTRAN THEN

PUT SK IP LI ST< 'CYGNUS not defined ' > ; 0
ELSE 0

IF STS$SUCCESS THEN
PUT LISTC 'CYGNUS is',

SUBSTRINAMEDES111NAMELEN>l i
RETURNISTS$VALUEl; 8
END;

0 SYS$TRNLOG's first three parameters are input and output character
string descriptors and a field in which the service returns the length of
the character string returned. The remaining parameters are optional.

8 The procedure declares the logical name to be translated and an output
character-string buffer, NAMEDES, for the translated name. The vari
able declared for the output character string must not be VARYING.
The variable NAMELEN is FIXED BINARY(15) to match the parame
ter descriptor.

8 The procedure declares the global symbol value SS$_NOTRAN. This
value is returned from SYS$TRNLOG if no logical name assignment
exists.

0 The reference to SYS$TRNLOG specifies the logical name CYGNUS
and the variables to receive the translated logical name length and
logical name. The procedure reference does not specify the final argu
ments. At run time, the argument list for this procedure will contain
zeros for these arguments.

416 Appendix B

0 On return from SYS$TRNLOG, the variable STS$VALUE is compared
with the value of the global symbol SS$_NQTRAN. If they match, the
procedure displays a message indicating there is no logical name assign
ment.

0 If they do not match, the procedure checks whether the service com
pleted successfully. If so, it displays the equivalence name returned.

0 In either case, the procedure exits with the status value returned by
SYS$TRNLOG. If this is an error value, the command interpreter will
display a message.

B.4.2 Timer and Time Conversion Routines
The system services for performing activity based on time, either an abso
lute time or a delta time, refer to a time value that is maintained in a 64-
bit field. There are system services that convert a character string that
specifies a time to its binary equivalent and vice versa.

B.4.2.1 Obtaining a Time Value in System Format

The PL/I procedure GETBINTIM, shown in the next program, accepts a
character-string time value as a parameter and returns the binary time
value to its point of invocation. The circled numbers are keyed to the notes
below.

I*

*I

This Procedure converts a time liven in ASCII format to a
64-bit time value that is used internally by VAX/VMS,
InPut strinls must be of the form:

dd-mmm-YYYY hh:mm:ss.cc (for an absolute date or time)
dddd hh:mm:ss,cc (for a delta time)

GETBINTIM: PROCEDURE IASCII_STRING) RETURNS<BIT<G4l ALIGNED>;

%INCLUDE SYS$BINTIMi
I* Convert ASCII Strini to Binary Time system service *I
declare sYsSbintim external entry (0

char I*), I* ASCII strina */
bitl64) alianed) I* variable to receive system time */

ret1.trns (fixed binar>'(31))j
%INCLUDE $STSDEFi

DECLARE ASCII_STRING CHARACTER I*),
BINARY_TIME BITl64) ALIGNED;

STS$VALUE = SYSSBINTIMIASCII_STRING,BINARY_TIMEl; @
I*

*I

If successful, return binary time to Point of invocation. Otherwise,
return 0 - this results in absolute time 17-NOV-1858,

IF STS$SUCCESS THEN RETURNIBINARY_TIMEl;
ELSE RETURN I OJ;

ENDi

Calling System Services 417

0 GETBINTIM declares the system service SYS$BINTIM, which con
verts an ASCII string to a binary time value. SYS$BINTIM requires an
input character-string descriptor, declared as CHARACTER(*), and
the address of a variable to receive the converted 64-bit time value.

8 GETBINTIM invokes SYS$BINTIM as a function and tests the return
status. An error results if the ASCII time value is not specified cor
rectly. When an error is returned, GETBINTIM returns a zero to its
point of invocation.

This procedure may be invoked as follows, to supply a date and time value
for a file in an ENVIRONMENT option:

DECLARE GETBINTIM ENTRY(CHAR<*> l RETURNS BIT!G4> ALIGNED,
<CREATED_DATEtEXPIRE_DATEl BITCG4l ALIGNED;

CREATED_DATE = GETBINTIM('15-MAY-1981 00:00:00,00·');
E>'.PIRE_DATE = GETBINTIM< '31-DEC-1981 00:00:00,00');
OPEN FILECTAPEFILE) ENVIRONMENT!

CREATION_DATEICREATED_DATEl,
EXPIRATION_DATE(FXPIRE_OATEll;

B.4.2.2 Setting the Timer

The procedure in the next program uses the Set Timer (SYS$SETIMR)
system service. It issues a time request for some activity to occur in 10
seconds and specifies the number of an event flag to be set when the 10
seconds have elapsed. The circled numbers are keyed to the notes below.

418 Appendix B

SET_TIMER: PROCEDURE OPTIONSCMAINl RETURNS
(FIXED BI NARY (31 l l ;

!INCLUDE SYS$CLREF;
/* Clear Euent Flas sYsteM service *'
declare sys$clref external entrY (

fixed bin<31l ualuel 1• euent flas nuMber */

returns (fixed binl31ll;

!INCLUDE SYS$SETIMR;
I* Set TiMer sYsteM seruice *'
declare sys$setiMr external entry

fixed bin<31> ualue. /* euent flas nuMber */
bit(641 alisned1 /* tiMe ualue */
entrY ualue. /*external AST Procedure*'
fixed binl311 ualuel I* AST ParaMeter *'

OPtions(uariablel returns(fixed binl3lll;
%INCLUDE SYS$WAITFR;
I* Wait for Euent Flas systeM seruice */
declare sys$waitfr external entry

fixed binl31> ualuel /* euent flas *I

returns (fixed bin(31));
!INCLUDE $STSDEF;
DECLARE GETBINTIM ENTRY

CHAR<*ll /* character-strins tiMe *'
RETURNS IBIT<641 ALIGNED I; 0

I* Clear euent flas 5 */

STS$VALUE = SYS$CLREF15l;
IF ··· STS$SUCCESS THEN RETURN (ST$lJALUE l ; 0

I* Set the tiMer for 10 seconds *'
STS$VALUE = SYS$SETIMR(5,GET8INTIM<'O 00:00:10'1 ,,); 8
IF "STSSSUCCESS THEN RETURNISTS$VALUEI;

/* Wait for euent flas 5 *'
STS$VALUE = SYS$WAITFR(51;
IF "STSSSUCCESS THEN RETURN <STS$VALUE>; 8

PUT SKIP LIST('Tir11er •JP 1 ');

RETURN< 1 l i
END;

Calling System Services 419

0 This procedure uses the GETBINTIM function (see Section B.4.2.1) to
convert an ASCII time value to the system's 64-bit format.

8 The SYS$CLREF system services ensures that event flag 5 is clear
before the Set Timer system service is invoked.

8 The procedure invokes SYS$SETIMR, specifying by its first argument
that SYS$SETIMR should set event flag 5 when the time expires. The
argument list contains a reference to GETBINTIM, which returns the
system time value for 10 seconds.

0 The procedure uses the Wait for Event Flag (SYS$WAITFR) system
service to wait for the event flag specified in the call to SYS$SETIMR.
When the flag is set, the procedure displays a message and exits.

420 Appendix B

Appendix C

ASCII Character Set

The American Standard Code for Information Interchange (ASCII) is a set
of eight-bit numeric values that represent the alphabet, numerals, punctu
ation, and symbols used in text and in communications protocol. This is
the ASCII character set. Table C-1 lists the set and its numeric values.

421

Table C-1: ASCII Character Set

ASCII
Decimal Character Meaning
Number

0 NUL Null
1 SOH Start of heading
2 STX Start of text
3 ETX End of text
4 EOT End of transmission
5 ENQ Enquiry
6 ACK Acknowledgement
7 BEL Beli
8 BS Backspace
9 HT Horizontal tab

10 LF Line feed
11 VT Vertical tab
12 FF Form feed
13 CR Carriage return
14 so Shift out
15 SI Shift in
16 DLE Data link escape
17 DCl Device control 1
18 DC2 Device control 2
19 DC3 Device control 3
20 DC4 Device control 4
21 NAK Negative acknowledgement
22 SYN Synchronous idle
23 ETB End of transmission block
24 CAN Cancel
25 EM End of medium
26 SUB Substitute
27 ESC Escape
28 FS File separator
29 GS Group separator
30 RS Record separator
31 us Unit separator
32 SP Space or blank
33 Exclamation mark
34 Quotation mark
35 # Number sign
36 $ Dollar sign
37 % Percent sign
38 & Ampersand
39 Apostrophe
40 Left parenthesis
41 Right parenthesis
42 Asterisk
43 + Plus sign
44 Comma
45 Minus sign or hyphen
46 Period or decimal point
47 I Slash

422 Appendix C

Table C-1: ASCII Character Set (Cont.)

ASCII
Decimal Character Meaning
Number

48 0 Zero
49 One
50 2 Two
51 3 Three
52 4 Four
53 5 Five
54 6 Six
55 7 Seven
56 8 Eight
57 9 Nine
58 Colon
59 Semicolon
60 < Left angle bracket
61 Equal sign
62 > Right angle bracket
63 ? Question mark
64 @ At sign
65 A Uppercase A
66 B Uppercase B
67 c Uppercase C
68 D Uppercase D
69 E Uppercase E
70 F Uppercase F
71 G Uppercase G
72 H Uppercase H
73 I Uppercase I
74 J Uppercase J
75 K Uppercase K
76 L Uppercase L
77 M Uppercase M
78 N Uppercase N
79 0 Uppercase 0
80 p Uppercase P
81 Q Uppercase Q
82 R Uppercase R
83 s Uppercase S
84 T Uppercase T
85 u Uppercase U
86 v Uppercase V
87 w Uppercase W
88 x Uppercase X
89 y Uppercase Y
90 '7 Uppercase Z £;

91 Left square bracket
92 \ Back slash
93 l Right square bracket
94 A or t Circumflex or up arrow
95 +-Or_ Back arrow or underscore

ASCII Character Set 423

Table C-1: ASCII Character Set (Cont.)

ASCII
Decimal Character Meaning
Number

96 Grave accent
97 a Lowercase a
98 b Lowercase b
99 c Lowercase c

100 d Lowercased
101 e Lowercase e
102 f Lowercase f
103 g Lowercase g
104 h Lowercase h
105 Lowercase i
106 j Lowercase j
107 k Lowercase k
108 l Lowercase l
109 m Lowercase m
110 n Lowercase n
111 0 Lowercase o
112 p Lowercase p
113 q Lowercase q
114 Lowercase r
115 Lowercases
116 Lowercase t
117 u Lowercase u
118 v Lowercase v
119 w Lowercase w
120 x Lowercase x
121 y Lowercase y

122 z Lowercase z
123 Left brace
124 Vertical line
125 Right brace
126 Tilde
127 DEL Delete

424 Appendix C

INDEX

A format item, 298
ABS built-in function, 338
ABS preprocessor built-in function,

399
Absolute value

computing, 338
Access modes

record files, 302
ACOS built-in function, 338
%ACTIVATE statement, 380, 382
ADD built-in function, 338
Addition operator (+), 17 4
ADDR built-in function, 140, 339

passing pointer value, 208
using, 133

Addressable variable, 122
Aggregates, 144

arrays, 144
structures, 149

ALIGNED attribute, 118
Alignment

of bit strings, 119
ALLOCATE command, 12

allocating tape drive, 319
establishing logical name, 253

ALLOCATE statement, 130, 139
Allocation

device, 12
determining status, 270

disk file space
extending, 268

ALLOCATION built-in function, 140,
339

Alternate keys, 327
accessing records by, 332

AND operator(), 175
ANSI magnetic tape labels, 320
ANY attribute, 207
ANYCONDITION condition, 232
Apostrophes

in character strings, 113
in edit-directed 1/0, 297

' with GET LIST, 283

Index

APPEND
ENVIRONMENT option, 256

determining if set, 265
example, 318

Arc cosine
computing, 338

Arc sine
computing, 339

Arc tangent
computing

in degrees, 340
in radians, 340

AREA attribute, 127
Areas, 127

allocating variables within, 127
in assignment statement, 128, 172

Argument list, -198
for exception condition, 356
maximum number of arguments,

198
null, 195
passing to function, 195
specifying in CALL statement, 193
variable-length, 413

Arguments, 198
aggregate, 201
arrays, 199
built-in functions, 337

restrictions, 337
character strings, 200
conversion, 202
dummy argument, 201
for system services, 411

data types, 412 to 413
methods of passing, 411
omitting, 413

list, 198
matching with parameter, 201
maximum number in list, 198
passing, 200

by descriptor, 208, 346
by immediate value, 206
by reference, 207

425

Arguments,
passing (Cont.)

conversion of values, 402
forcing passing by descriptor, 209
to function, 195
to PL/I procedure, 201
to subroutines and functions, 189

relationship to parameters, 198
specifying pointer values, 208
structures, 199

Arithmetic
operation

division, 347
preprocessor

built-in functions, 399
Arithmetic data, 96

in assignment statement, 172
specifying precision, 111

Arithmetic operators, 85
Arrays, 144

assigning values with GET
statement, 148

assignment statement, 148
concatenating with STRING, 363
connected, 161
declaring, 144

as parameters, 199
dimensions

determining bounds, 349, 351
determining extent of, 346
rules for specifying, 145

elements
referring to, 146

extent of, 145
handling

summary of functions, 337
in GET statements, 279
initializing, 147
of structures, 160

ref erring to elements, 160
unconnected arrays, 162

order of assignment and output, 149
passing

to non-PL/I procedures, 209
passing as arguments, 199, 207

by descriptor, 208
specifying in assignment, 172
subscripts, 146
unconnected, 161
with edit-directed 1/0, 298

ASCII character
obtaining integer value, 360

ASCII character set
obtaining string, 344
table, 421

426

ASIN built-in function, 339
Assembly language code

printing in listing file, 49
ASSIGN command, 10
Assignment, 179

conversion during, 179
%Assignment statement, 380, 382
Assignment statement, 171

and unconnected arrays, 161
conversion during

arithmetic data, 178
values, 402

specifying area variables, 128
specifying array variables, 148
structures, 160

Asterisk (*)
EDT prompt, 19
in array declaration, 145

Asterisk (*) picture character, 107
At-sign (@) command, 13
ATAN built-in function, 340
ATAND built-in function, 340
ATANH built-in function, 341
l\ttributes

alphabetic summary, 89
default, 164
default arithmetic, 96
device, determining, 269
factor in declaration, 165
file

alphabetic summary, 245
determining, 268
implied by DELETE, 314
implied by READ, 304
implied by REWRITE, 311
implied by WRITE, 308
record files, 302
specifying on OPEN, 244
stream 1/0, 276

matching parameter and argument,
202

of structure variables, 151
specifying in DECLARE statement,

163
Automatic storage class, 123

B format item, 299
specifying base, 299

B picture character, 110
BACK SPACE key

use in EDT, 37
BASED attribute, 126, 129

attributes conflicting with, 129
Based variables, 126

data type matching, 136

Index

Based variables,
data type matching (Cont.)

left-to-right equivalence, 137
overiay defining, 137

declaring, 129
example, 135
freeing storage, 131
nonmatching reference, 138
obtaining storage for, 130
offset within area, 128
REFER option, 153
referring to, 131
using READ statement, 132

BATCH
ENVIRONMENT option, 256

determining if set, 265
specifying on CLOSE, 250

Batch jobs
compiler errors during, 56
linker behavior in, 63
submitting, 13

Begin blocks, 82, 216
effect of RETURN statement, 196
in ON-unit, 231
terminating, 217 to 218

BEGIN statement, 216
Binary

fixed-point data, 97
floating-point data, 100

BINARY attribute, 97
in floating-point declarations, 101

BINARY built-in function, 341
BIT attribute, 118
BIT built-in function, 342
Bit strings, 115

acquired by GET LIST, 282
alignment, 119
as targets in assignment statements,

173
constants, 117

hexadecimal, 117
maximum length, 117
octal, 117
specifying base, 117

converting from bit strings, 119
to arithmetic, 179, 403
to character, 179, 408

converting to bit strings, 342, 404
declaring variables, 118
derived type and precision of, 178
determining length, 351
length

maximum, 116
specifying, 118

iocating substring, 349

Index

Bit strings, (Cont.)
modifying

SUBSTR pseudovariable, 185
operators for, 175
passing as arguments

by reference, 207
by value, 207

returned by UNSPEC, 368
storage in memory, 116
unaligned

passing as arguments, 208
restrictions on use, 119

variables, 118
with edit-directed 1/0, 297, 299

Block activation, 82
procedure invocation, 189

Block 1/0
space blocks, 272

block size
determining, 265

BLOCK_BOUNDARY_FORMAT
ENVIRONMENT option, 256

determining if set, 265
BLOCILJO

ENVffiONMENT option, 256
determining if set, 265

BLOCK_SIZE
ENVffiONMENT option, 256

Blocks, 82
Begin block, 216
terminating, 217

BOOL built-in function, 342
Boolean

operation
define with BOOL, 342

value, 115
Bound pair

array, 144
Bounds

of array dimensions
determining,· 349, 351
rules, 145

Bucket size
determining, 265

Bucket splitting, 327
BUCKET_SIZE

ENVIRONMENT option, 256
Buffers

argument
passing by reference, 412

EDT text, 27
file system

flushing, 271
type-ahead

purging, 280

427

Built-in functions, 334
arguments to

restrictions, 337
arithmetic, 335
array-handling, 337
condition-handling, 336
conditions in, 337
conversion, 178, 336
file control, 337
mathematical, 335
miscellaneous, 337
storage, 337
string-handling, 336
summary, 334
timekeeping, 337

Built-in subroutines
DISPLAY, 263
EXTEND, 268
file-handling, 263
FLUSH, 271
NEXT_VOLUME, 271
RESIGNAL, 242

using, 232
REWIND, 272
SPACEBLOCK, 272

BUIL TIN attribute, 195
BY option

DO statement, 214
BYTE built-in function, 343
BYTE preprocessor built-in

function, 399

CALL statement, 193
calling non-PL/I procedures, 206

passing character strings, 209
to invoke a procedure, 83

CANCEL_CONTROL_O option
PUT statement, 287

Carriage control
determining, 266
FTN, 269

determining if file has, 269
CARRIAGE__RETURN_

FORMAT
ENVIRONMENT option, 256

determining if set, 265
CDD, 372, 374, 386

data types, 375
including definitions in listing, 50

CEIL built-in function, 343
Cell

in relative file, 321
CHANGE command

EDT, 20

428

CHANGE command, (Cont.)
using, 35

Channel number
specifying as argument, 412 to 413

CHARACTER attribute, 114
CHARACTER built-in function, 344
Character editing mode, 34

entering, 35
exiting, 35
obtaining help, 21

Character set
ASCII, 421

obtaining string, 344
Character strings, 113

acquired by GET LIST, 282
and stream VO, 296
as procedure arguments

for system services, 412
passing by descriptor, 412

as targets in assignment
statements, 173

comparing with VERIFY, 370
constants, 113

as arguments, 416
continuing on more than one line,

86
converting from character strings

to arithmetic, 179, 403
to bit, 179, 404

converting to character strings, 344,
405

declaring, 114
as parameters, 200

derived type and precision of, 178
fixed-length, 114
form of PUT LIST output, 290
keys in indexed files, 331
length

determining, 351
specifying, 114

locating substring, 349
modifying

SUBSTR pseudovariable, 185
passing as arguments, 200

by descriptor, 209
variables, 114

declaring, 114
varying-length, 115
with edit-directed I/O, 297 to 298

Characters
ASCII

table, 421
picture, 106
substituting with

Index

Characters
substituting with, (Cont.)

TRANSLATE, 366
11car1 fn .. n11TH>t11ot;n.,., ;.,., PT IT QA
'-A.t..J'-''\,A. .LV.L J:-'U.l..l.""llUU.ll.LV.LJ. ..L.J.J. ..I. ~f.I.., U"'%

/CHECK qualifier, 47
Circumflex (~)

prefix operator, 174
CLEAR command

EDT, 20
CLOSE statement, 250
COLLATE built-in function, 344
Colon

in TITLE option, 252 ,
COLUMN format item, 299
Column number

determining current, 269
COM file type, 13
Comma (,) picture character, 110
Command files

EDT, 43
unexpected effect of, 23

Command procedures, 13
data in, 15
executing, 13
for program development, 13
handling errors, 14
login command file, 16
passing parameters to, 14

/COMMAND qualifier, 44
Commands

DCL
hints for entering, 4
interrupting execution of, 4
obtaining information on, 4
shortening, 4
specifying qualifiers, 1

EDT
shortening, 19
summary of, 19
using, 19

file maintainence, 11
program development, 1

Comments, 92
rules for entering, 92

Common Data Dictionary, 372, 374,
386

Comparison operators, 85, 174
Compile time facilties, 372
Compiler

controlling optimization, 49
diagnostic messages

format, 55
input and output files, 53
listing, 49

Index

Compiler, (Cont.)
listing options, 48, 50
options, 47

Compiler functions, 45
Completion

ON-unit, 232
Concatenation

COPY built-in function, 344
operator for, 175
required operands, 175

Concatenation operator (II or!!),
175

Condition handlers
default PL/I, 229

Condition handling
functions for

summary, 336
ON statement, 227

Condition values
file errors, 273

Conditions
ANYCONDITION, 232
decimal overflow, 236
ENDFILE, 234
ENDPAGE, 234
ERROR, 235
FINISH, 236
FIXEDOVERFLOW, 236
in built-in functions, 337
integer overflow, 236
KEY, 237
OVERFLOW, 238
resignaling, 242
run-time, 67
signaling, 242
UNDEFINEDFILE, 238
UNDERFLOW, 239
VAXCONDITION, 239
ZERODIVIDE, 240

Connected array, 161
Constants

bit string, 117
character string, 113
entry, 204

declaring implicitly, 190, 192
external, 204

file, 244
fixed-point decimal, 98
floating-point, 100
in argument list, 201
integer, 98
label, 222
label array, 223

Containment, 168

429

CONTIGUOUS
ENVIRONMENT option, 256

determining if set, 265
CONTIGUOUS_BEST_TRY

ENVIRONMENT option, 256
determining if set, . 265

CONTINUE command, 4, 69
CONTROLLED attribute, 138
Controlled DO statement, 213
Controlled variable, 138

obtaining storage for, 130
Conversion, 180

arithmetic to arithmetic, 402
arithmetic to bit string, 404
arithmetic to character string, 405
ASCII to integer, 360
bit string to arithmetic, 403
bit string to character string, 408
character string to arithmetic, 403
character string to bit string, 404
data

rules for, 402
fixed-point to character string, 405
floating-point to character string,

406
integer to ASCIT, 343
of argument, 202
of operands, 177
offset to pointer, 408
picture to arithmetic, 403
picture to bit string, 404
picture to character string, 407
pointer to offset, 408
summary of functions, 336
to arithmetic, 402
to binary, 341
to bit string, 342, 404
to character string, 344, 405
to decimal, 346
to fixed point, 348
to floating point, 349
to picture, 408

COPY built-in function, 344
COPY command

DCL, 12
EDT,20

using, 31
COPY preprocessor built-in

function, 399
COS built-in function, 345
COSD built-in function, 345
COSH built-in flinction, 345
Cosine

computing
from degree argument, 345

430

Cosine
computing, (Cont.)

from radian argument, 345
computing hyperbolic, 345

CREATE command, 11
/CREATE qualifier, 74
CREATE/DIRECTORY

command, 8, 11
Creation date of file

determining, 265
CREATION__DATE

ENVIRONMENT option, 256
example, 418

Credit (CR) picture character, 111
Cross-reference listing file

printing
cross references, 4 7

/CROSS__REFERENCE qualifier, 47
CTRLU

use in EDT, 39
CTRLY

interrupting DCL commands, 4
CTRL/C

effect on PL/I program, 69
handling routine, 70

CTRL/0
disabling, 288

CTRL/Y
effect on PL/I program, 69

Current line, 25
as default range, 25

DELETE command, 30
INSERT command, 29

changing location of, 28
specifying, 25

Current record, 301
CURRENT__FOSITION

ENVIRONMENT option, 256
determining if set, 265

Cursor
positioning in EDT, 35

direction of movement, 37
to a string, 37

D floating-point format, 48 to 49
DAT file type, 255

usage, 252
Data, 88

arithmetic
converting from other types, 402
converting to bit string, 404
converting to character string, 405

conversion, 180
rules for, 402

in command procedures, 15

Index

Data type attributes
alphabetic summary, 89

Data types, 95
arguments

passed by descriptor, 208
passed by immediate value, 206
passed by reference, 207

arithmetic, 96
converting to nonarithmetic, 178
default attributes, 96
default precision, 112
fixed-point binary, 97
precision of, 111

behavior in assignment
general rules, 172

bit string, 115
character string, 113
computational, 95
conversion between, 177
derived, 177
entry, 204
file, 243
fixed-point binary, 97
fixed-point decimal, 98
floating-point, 100
for CDD declarations, 375
for keys in indexed files, 330
for system service arguments, 412 to

413
nonarithmetic

converting to arithmetic, 178
noncomputational, 95
picture, 103
pointer, 127
summary, 95

DATE built-in function, 345
DATE preprocessor built-in

function, 399
Day of month

obtaining current, 345
%DEACTIVATE statement, 380, 384
DEASSIGN command, 10
Debit (DB) picture character, 111
DEBUG command, 69
/DEBUG qualifier

PLI, 48
Debugger

compile-time options, 48
invoking at run time, 69

DECIMAL attribute, 99
in floating-point declarations, 101

DECIMAL built-in function, 346
Decimal data

fixed-point data, 98
floating overflow, 238

Index

Decimal data, (Cont.)
floating underflow, 239
floating-point data, 100

Decimal place
in picture, 107

Declarations, 163
array, 144
factored, 165
initializing variables in, 166
multiple, 164
of variables with same attributes,

165
scope of, 168
simple, 164
structure, 150

level numbers, 149
%DECLARE, 385
%DECLARE statement, 381
DECLARE statement, 163

declaring files, 243
Default attributes

arithmetic, 96
Default file specifications, 5

at open, 254
changing, 8
PLI command, 47
used by linker, 62

Default libraries
INCLUDE modules, 55

PLI$LIBRARY, 55
PLISYSDEF, 55

object module, 64
LNK$LIBRARY, 64
STARLET .OLB, 65

DEFAULT_FILE_NAME
ENVIRONMENT option, 256

Defaults
directory, 8

changing, 8
EDT, 33

file specification elements, 6
line size, 293
page size, 295
program development

commands, 5
DEFERRED_ WRITE

ENVIRONMENT option, 256
determining if set, 265

DEFINE command
DCL, 10

creating logical names, 9
DEFINE/USER, 10
defining program I/O files, 252

DEFINE/USER
in command procedure, 15

431

DEFINE command, (Cont.)
EDT, 20

DEFINE KEY, 43
DEFINED attribute, 141
DELETE

ENVIRONMENT option, 256
determining if set, 265
specifying on CLOSE, 250

DELETE command
DCL, 12
EDT, 20

using, 30
DELETE key

use in EDT, 39
/DELETE qualifier, 74
DELETE statement, 314

file position following, 304
Derived type, 177

of bit and character strings, 178
Descriptor

argument passing, 208
data types created for, 208

DESCRIPTOR built-in function, 346
specifying in argument, 208
using, 209

Device attributes
returned by DISPLAY, 269

Devices
default, 254
default line size, 277

devices
specifying

rules, 6
Diagnostic message

user-generated, 57
DICTIONARY statement, 374
%DICTIONARY statement, 374, 381,

386
DIMENSION built-in function, 346
Dimensions

array of structures
rules, 161

rules for specifying, 145
DIRECT attribute

determining if file has, 269
specifying on OPEN, 245

Directories
changing default, 8
default, 254
EDT default, 33
specifying, 8
SYS$LIBRARY, 65

DIRECTORY command, 11
directory specifications

rules, 6

432

Disk files
extending allocation, 268

Disks
default line size, 293

DISPLAY built-in subroutine, 263
device information, 269
ENVIRONMENT information,

265
file attribute information, 269

DIVIDE built-in function, 347
Division

control precision, 347
ZERODIVIDE condition, 240

Division operator (/), 17 4
%DO, 387
DO option

GET statement, 279
PUT statement, 285

%DO statement, 381
DO statement, 210

controlled DO, 213
DO REPEAT, 215
DO UNTIL; 212
DO WHILE, 211
simple, 210

DO-groups
terminating, 218

Documentation
program, 92

Dollar ($) picture character, 109
Double-precision floating point

range of precision, 102
Drifting picture characters, 109
Dummy argument, 201

forcing creation of, 202
Duplicate keys

testing for errors, 27 4

E format item, 299
EDIT command, 3, 11

in command procedure, 15
EDIT option

GET statement, 280
PUT statement, 288

EDIT /EDT command, 22
parameter, 22
response, 23

unexpected, 23
to create new file, 24
to revise existing file, 24
with /RECOVER qualifier, 40

EDIT/FDL
examples, 329

Editing session
recovering lost, 40

Index

Editors
invoking, 3, 11

in command procedur~, 15
EDT

help facilities
line mode, 21

EDT, 18
computer-assisted course, 18
help facilities

character mode, 21
invoking, 22
operating modes, 18
programming aids, 41
summary of commands, 19
summary of features, 19
terminating, 23

EDTINI.EDT, 43
Elements

array, 145
referring to, 146

Embedded preprocessor, 376
statements, 380

Empty argument list, 195
Encoded-sign picture characters; 108
%END statement, 381, 387
END statement, 217

in main procedure, 67
terminating subroutine or

function, 190
End-of-tape

on volume, 320
End-of-volume switching, 320
ENDFILE condition, 234

signaled, 273
by GET LIST, 283
READ statement, 306
stream files, 293

ENDPAGE condition, 234
default PL/I action, 229
signaled, 273, 277, 287, 294 to 295

ENTRY
statement, 191

Entry
constants, 204
data type, 204
variables, 206

ENTRY attribute, 204
declaring non-PL/I procedures,

206
Entry constants, 204

declaring implicitly, 190, 192
external, 204

declaring, 204
Entry data

in assignment statements, 17:3

Index

Entry points, 45
alternate, 191
invoking, 189
main, 60, 67
multiple, 192
primary

identifying, 191
procedure, 188

identifying, 190
specifying attributes of

return value, 196
ENTRY statement

RETURNS option, 196
Entry variables, 206
ENVIRONMENT attribute

CLOSE options, 250
specifying on OPEN, 245

ENVIRONMENT options
obtaining information, 264
summary, 255

Error (severity)
meaning to compiler, 56
meaning to linker, 60

ERROR condition, 235
default PL/I action, 229
determine error status value, 356
signaled

by default handler, 229
converison of character strings,

403
conversion of values, 408
for file errors, 273
GET EDIT, 297
GET LIST, 283
in assignment to pictured

variable, 105
READ statement, 305
stream I/0 on character strings,

296
WRITE statement, 309

Error handling
in command procedure, 14
of file-related error, 357
ON conditions, 227
ONCODE built-in function, 356

Error message, 388
ERROR preprocessor built-in

function, 399 to 400
%ERROR statement, 381, 388
/ERROIL_LIMIT qualifier, 48
Errors

arithmetic operations
divide by zero, 240

at run time, 68
conversion, 179

433

Errors, (Cont.)
compiler

effect on linker, 60
implicit conversion, 178, 180
message format, 55

displaying system messages, 70
file

default handling, 275
error handler, 27 4
handling opening error, 238

handling, 227
file errors, 273
VAX-specific conditions, 239

indexed sequential files, 333
linking, 60
relative files, 326
syntax

detected by compiler, 57
Evaluation

of expressions, 176
Event flags

clearing, 418
specifying as argument, 412
waiting for, 418
with a timer, 418

Exclusive OR, 342
EXE file type, 62, 67
Executable images

creating, 59
/EXECUTABLE qualifier, 63
Execute Procedure (@) command, 13
EXIT command

DCL, 69
EDT, 20

using, 23
EXP built-in function, 347
Expiration date of file

determining, 265
EXPIRATION_DATE

ENVIRONMENT option, 257
example, 418

Exponent
floating-point data, 100

Exponentiation
order of evaluation, 177

Exponentiation operator (**), 174
Expressions, 17 5 '

area variables in, 128
conversion

of operands, 177
derived type, 177
evaluation, 176

order of, 176
in argument list, 201
offset variables in, 129

434

Expressions, (Cont.)
restricted integer, 145
using as subscripts, 146

EXTEND built-in subroutine, 268
Extension size

determining, 265
EXTENSION_SIZE

ENVIRONMENT option, 257
Extent

area, 128
array, 145
array dimension

determining, 346
static variables, 123
structure members, 151

EXTERNAL attribute, 124
External procedures, 83, 202
External storage class, 124
/EXTRACT qualifier, 74

F format item, 299
Facility name, 56
Factored declarations, 165
FAST _DELETE option, 315

DELETE statement, 315
Fatal (severity)

meaning to compiler, 56
meaning to linker, 60

Fatal message, 388
%FATAL statement, 381, 388
File

source
%INCLUDE text, 390

FILE attribute, 243
File attributes

determining current, 269
File constants

associating with VAXNMS file, 251
File identification

determining, 265
File information

displaying values, 263
file names

rules, 7
FILE option

format, 244
GET statement, 279
PUT statement, 286

File organization
determining, 269

File size
determining, 265

File specifications, 5
completing, 252, 254
defaults, 5

Index

File specifications
defaults, (Cont.)

file opening, 254
GET statement, 279
in TITLE option, 252
PUT statement, 286

expanded
determining, 269

for ermr, 357
GET statement, 279
invalid, 252
logical names, 8
PUT statement, 286
relating to file constant, 251
specifying in OPEN, 247
TITLE option, 251

file specifications
rules, 6

File types
COM, 13
DAT, 255

usage, 252
default

used by commands, 5
used by PL/I, 255

EXE, 62, 67
LIS, 49
MAP, 63
OBJ, 49, 60, 62, 79
OLB, 62, 73, 79
OPT, 62
PLI, 47
TLB, 47, 52, 76
used by LIBRARY command, 79
used by LINK command, 62

file types
rules, 7

File version numbers
default, 255

file version numbers
rules, 7

FILE_ID
ENVIRONMENT option, 257

FILE_ID_TO
ENVIRONMENT option, 257

FILE_SIZE
ENVIRONMENT option, 257

Files
attributes

implied, 248
merging at open, 248
specifying on OPEN, 245

built-in subroutines, 263
closing, 250 '
r-n.mml"linrlo fn-w- m".Jllnt".::lininrr 11
'-'V.l.J..J..1..1...lU.l.J.'t.A.O J.V.1. J..l..1.UJ..1..1.ILIU.l..1..1..1..l..l.f;' ..&..J...

Index

Files, (Cont.)
compiler input and output, 53
constants, 244
f'l'P~tlnu --------o

with EDT, 24
with OPEN, 249

creation date
example, 418

data type, 243
declaring, 243
deleting records, 314
determining end, 234
displaying information, 263
EDT input from, 33
EDT output to, 33
EDT protection against

modification, 40
error conditions, 273
errors

error handler, 274
expiration date

example, 418
functions for controlling

summary, 337
indexed sequential, 326, 329

creating, 329
error handler example, 274
handling errors, 333
organization, 327
reading sequentially, 331
updating, 333
using, 330

key error, 237
linker input, 62
linker options, 62
linker output, 62
magnetic tapes, 319
opening, 247

effects of, 24 7
for input, 246
for output, 247
OPEN statement, 244
positioning, 250
UNDEFINEDFILE condition, 238

positioning at beginning, 272
print, 294

changing page number, 183
determining current page number,

357
process permanent, 253
record, 301

access modes, 302
attributes for, 302
position information, 301

ro:>l .:itiuo:> ~91 "'_' ._,...,,

435

Files, (Cont.)
creating, 321
handling errors, 326
organization, 321
reading and writing, 325
reading sequentially, 325
updating, 325
using, 323

revising, 24
deleting text, 30
inserting new text, 29
moving text, 31

sequential, 318
creating, 318

specifying, 5
specifying line size, 276
specifying page size, 277
statements for controlling, 243
stream, 277
updating record, 311
variables, 244
writing

to spooled devices, 252
FILL command

EDT, 20
FIND command

EDT, 20
using, 29

FINISH condition, 67, 236
at image exit, 69
signaled

STOP statement, 190, 226
FIXED attribute, 97, 99
FIXED built-in function, 348
Fixed control area

determining size, 265
reading, 316
writing or rewriting, 316

Fixed-point data
binary, 97

interpreting as bit string, 116
range of precision, 97
range of values, 98

decimal, 98
constant, 98
declaring variables, 99
precision, 99
range of precision, 99
scale factor, 99

overflow condition, 236
with edit-directed I/0, 299

FIXED_CONTROL__FROM
option, 316
REWRITE statement, 312
WRITE statement, 309

436

FIXED_CONTROL__SIZE
ENVIRONMENT option, 257

FIXED-CONTROL-SIZE_ TO
ENVIRONMENT option, 257

FIXED_CONTROL__TO option,
316

READ statement, 306
FIXED_LENGTH_RECORDS

ENVIRONMENT option, 257
determining if set, 266

FIXEDOVERFLOW condition, 236
signaled

assignment to pictured
variable, 105, 107

conversion of bit strings, 403
conversion of character strings,

403
conversion of values, 402, 408
exceeding maximum integer

value, 98
FLOAT attribute, 101
FLOAT built-in function, 349
Floating-point data, 100

constants, 100
declaring variables, 101
default precision, 103
OVERFLOW condition, 238
precision, 101
range of values, 102
selecting default format, 48
UNDERFLOW condition, 239
using in expressions, 101
with edit-directed I/0, 299

FLOOR built-in function, 349
FLUSH built-in subroutine, 271
Format

of source program, 41, 92
Format items, 296

control
positioning with, 293

data, 300
iteration factor, 297
order of execution, 300
repetition of, 297
summary, 298

Format specifications, 297
FORMAT statement, 292

label restriction, 223
Format-specification lists

remote, 292
Fractional digits

specifying, 97, 99
FREE statement, 131, 139
FROM option

REWRITE statement, 312

Index

FROM option, (Cont.)
WRITE statement, 308

FTN carriage control, 269
Functions, 188, 194

built-in, 334
summary, 334

external, 202
invoking procedure with, 83
invoking with no arguments, 195
references to, 194
RETURN statement, 195
returning value from, 195
specifying attributes of return value,

196
terminating, 189
user-written

requirements, 194

G floating-point format
range of precision, 102
selecting at compile time, 48

/G_FLOAT qualifier, 48
G_FLOAT support, 102
GET statement, 278

assigning values to array
elements, 148

conversion of values, 179, 402
default file attributes, 279
default file title, 254
DO option, 279
FILE option, 279
forms, 278
GET EDIT, 280
GET LIST, 282
GET SKIP, 284
input target, 279
options, 280
SKIP option, 280
STRING option, 279

Global symbol table, 78 to 79
Global symbols

declaring, 414
referencing in ON-unit, 274

GLOBALREF attribute, 414 to 415
GOTO command

using in command procedures, 14
%GOTO statement, 381, 388
GOTO statement, 222

nonlocal GOTO, 190, 222
terminating subroutine or

function, 190
Group logical name table, 9
Group number

of file's owner

Index

GROUP _pROTECTION
ENVIRONMENT option, 257

determining current value, 266
Groups

terminating, 217
GRPNAM user privilege, 9

H floating-point format
range of precision, 102

H_FLOAT support, 102
HBOUND built-in function, 349
HELP command

EDT
using, 21

HELP command
DCL, 4
EDT, 20

HIGH built-in function, 349

I picture character, 108
IDENT option

PROCEDURE statement, 191
Identifiers, 86

associating with variables, 88
rules for forming, 86

IF command
using iri command procedures,

14
%IF statement, 381, 389
IF statement, 218

nesting, 219
IGNORE_LINE_MARKS

ENVIRONMENT option, 258
determining if set, 266

Image exit, 67
Image files

creating, 59, 62
specifying name for, 63

IMAGELIB.OLB, 65
%INCLUDE

rules for file specifications, 390
INCLUDE command

default directory for, 34
EDT, 20
using, 33

INCLUDE files, 53, 77, 93
extracting from library, 74
including in listing, 50
libraries, 54, 77

correcting, 77
default, 55
specifying in PLI

command, 46, 52
nesting level, 93
temporary defaults; 65

437

/INCLUDE qualifier (LINK
command)

when to specify, 62
%INCLUDE statement, 93, 381,

390
for files, 94
for text modules, 94
using, 53

INDEX built-in function, 349
Index number

determining current, 266
reset by WRITE statement, 330
specifying on I/0 statements,

316
INDEX preprocessor built-in

function, 399
INDEX_NUMBER

ENVIRONMENT option, 258,
332

INDEX_NUMBER option, 316
DELETE statement, 315
READ statement, 306

using, 332
REWRITE statement, ::n2

INDEXED
ENVIRONMENT option, 258

determining if set, 266
Indexed sequential files, 326, 329

creating, 329
determining if file is indexed,

266
examples, 330
handling errors, 333
key, 327

error handling, 237
key data types, 330
ONKEY built-in function, 357
organization, 327
positioning at beginning of

index, 272
reading sequentially, 331
specifying type of key match,

317
speeding up record deletion, 315
updating, 333
using, 330

Infix operators, 174
INFORM preprocessor built-in

function, 399 to 400
%INFORM statement, 381, 391
Informational (severity)

meaning to compiler, 56
Informational message, 391
INITIAL attribute, 166

restrictions, 168

438

INITIAL attribute, (Cont.)
with arrays, 147
with structures, 151

INITIAL_FILL
ENVIRONMENT option, 258

determining if set, 266
INITIALIZE command, 12

initializing magnetic tape, 319
Input

record, 301
READ statement, 304

stream, 278
GET statement, 278

INPUT attribute, 246
determining if file has, 269
specifying on OPEN, 245

Input files
compiler, 53
defining for program I/0, 251
linker, 62

Input/output
area, 128
file specifications, 251
format list, 292
record

statements, 301
record file, 301
statements

DELETE, 314
GET, 278
PUT, 285
READ, 304
REWRITE, 311
WRITE, 308

stream file, 276
INSERT command

EDT, 20
using, 24

to insert in existing file, 29
/INSERT qualifier, 75
Insertion picture characters, 110
INT built-in function, 350
INT pseudovariable, 181
Integer constants

representation, 98
Integer data

overflow condition, 236
Integers

fixed-point binary, 97
fixed-point decimal, 98
interpreting as bit strings, 116
maximum values, 98

Internal procedures, 83
Internal representation

changing with UNSPEC, 186

Index

Internal representation, (Cont.)
obtaining with UNSPEC, 368

Internal variables, 124

Interrupts
handling with ON statement,

227
INTO option

READ statement, 304
Iteration factor

format item, 297
INITIAL attribute, 147, 167
picture character, 106

Journal file, 40
automatic deletion of, 40
changing default, 40
default directory for, 33
disabling, 40
EDT use of, 40

/JOURNAL qualifier, 40

KEY condition, 237
determining key that

caused, 357
sample ON-unit, 274
signaled, 273

DELETE statement, 315
indexed sequential file

operations, 333
key value too large, 323
READ statement, 305
relative file operations, 326
REWRITE statement, 312
WRITE statement, 309

KEY option
DELETE statement, 314
READ statement, 305
required with

INDEX-NUMBER, 316
REWRITE statement, 312
specifying for relative file,

325
KEYED attribute

creating relative file, 321
determining if file has, 269
specifying on OPEN, 245

KEYFROM option
WRITE statement, 309

Keypad
redefining keys of, 42

to insert text, 42
use of in EDT, 34
VT100, 36
\l'T'J;') Q~

't' .LV._, UV

Index

Keys
alternate, 327

accessing records by, 332
binar;, 331
character-string, 331
data types

indexed sequential files, 330
decimal, 331
determining number, 269
handling errors, 27 4
handling invalid data type

errors, 274
indexed sequential file, 305
matching key values

match greater, 317
match greater or equal, 317

relative files, 321
relative or sequential file, 305
specifying alternate, 332
values

relative files, 321
keys

values
indexed sequential files, 327

KEYTO option
READ statement, 305

Keywords, 84
recognition from context, 84

LABEL attribute, 224
Label constant, 222

declaring implicitly, 222
Label data

in assignment statements, 173
Labels, 84, 222

array constant, 223
magnetic tape, 320
subscripted, 223
transferring control to, 222
variables, 224

LBOUND built-in function, 351
LEA VE statement, 224
Left-to-right equivalence

matching based variables by,
137

Length
of string

determining, 351
LENGTH built-in function, 351

using, 115
LENGTH preprocessor built-in

function,
399

Level numbers, 149
'"" lnc- f'n .. .,..,.,..,..;;.,;..,,,. 1 !;()
.l U..J.t •. ,i:J .1.V..l Of-1'-''-'J.L.,.'f J.J..15, .LVV

439

Libraries
creating, 72
default user, 64

defining at login, 17
IMAGELIB.OLB, 65
INCLUDE files, 52, 77

creating, 74
default, 55
search order, 54
system, 55

listing contents of, 75
LNK$LIBRARY, 64
object module, 63, 78

creating, 74, 78, 80
default, 64
search order, 63
specifying, 63
system, 65

PLI$LIBRARY, 55
PLISYSDEF.TLB, 55
replacing modules in, 76
run-time, 65
specifying

in LINK command, ():l
in PLI command, 46, 52

STARLET.OLE, 65
SYS$LIBRARY, 55
system, 65

LIBRARY command, 12, 72
INCLUDE file libraries, 77
object module libraries, 78
parameters, 73
printing system service module,

411
qualifiers, 73

/LIBRARY qualifier
LINK command, 62 to 63
PLI command, 52, 54

LIKE attribute, 152
using, 152

Line end character, 86
LINE FEED key

use in EDT, 39
LINE format item, 299
Line numbers

determining, 295
EDT, 25

disabling and restoring, 24
specifying, 25

source file
assigned by compiler, 57
in run-time traceback, 69

specifying
LINE format item, 299

440

Line numbers, (Cont.)
stream file

determining, 352
stream files

determining current, 269
LINE option

PUT statement, 287, 289
LINE preprocessor built-in

function, 399 to 400
Line printer

printing program listing on, 1
listing file

printing, 53
spooling program output, 252

Line size
default, 277, 293
determining current, 269
specifying, 276

LINENO built-in function, 352
using, 295

LINESIZE option, 276
specifying on OPEN, 245

LINK command, 3, 59
in command procedure, 15
parameters, 59
qualifiers, 61
specifying input files, 62
specifying output files, 62

Linker, 59
errors, 60
functions performed by, 59
input files, 62
invoking, 59
messages, 60
options, 61
output files, 62

LIS file type, 49
LIST option

GET statement, 282
PUT statement, 290

/LIST qualifier
LIBRARY, 75
PLI, 49

%LIST statement, 381, 391
Listing file

printing
INCLUDE files, 50
machine code, 49

rules for naming, 53
LNK$LIBRARY, 64

defining at login, 17
Locator qualifier

(--), 131
LOG built-in function, 352

Index

LOG 10 built-in function, 352
LOG2 built-in function, 352
Logarithm

computing base 10, 352
computing base 2, 352
computing natural, 352

Logical name tables, 9
search order, 9
searching for LNK$LIBRARY, 64

Logical name translation, 9
on TITLE option, 252
SYS$TRNLOG system service,

415
Logical names, 8

commands to manipulate, 10
defining, 9

at login, 17
with MOUNT command, 319

deleting, 10
displaying equivalence, 9
for program I/0 files, 252
LNK$LIBRARY, 64
PLI$LIBRARY, 55
process permanent files, 253
SYS$COMMAND, 254
SYS$DISK, 254
SYS$ERROR, 254
SYS$INPUT, 254
SYS$LIBRARY, 55, 65
SYS$LP _LINES, 295
SYS$0UTPUT, 254

Logical operations
NOT, 174

Logical operators, 85, 175
Login command file, 16
LOGIN.COM, 16
LOW built-in function, 352
Lowercase and uppercase letters

in identifiers, 86

/MACHINE_CODE qualifier, 49
Magnetic tapes, 319

allocating drive, 253
default line size, 277
format, 320
initializing, 319
labels, 320
mounting next volume, 271
multivolume, 271, 320
rewinding, 272
setting expiration date

example, 418
version numbers, 319
volume switching, 320 .

Index

Mailboxes
determining if file is a mailbox,

270
lMAIN option

PROCEDURE statement, 191
program transfer address, 60

Main procedure, 83
exit handler, 67
identifying, 191
return status values, 70

Major structure, 150
restriction on INITIAL, 152

Mantissa, 100
Map file (linker)

specifying name for, 63
MAP file type, 63
IMAP qualifier, 63
MATCH_GREATER option, 317

DELETE statement, 315
READ statement, 306
REWRITE statement, 312

MATCH_GREATER._EQUAL
option, 317

DELETE statement, 315
READ statement, 306
REWRITE statement, 312

Matching
based variable references, 136
parameter and argument, 201

Mathematical functions
summary, 335

MAX built-in function, 353
MAX preprocessor built-in

function, 399
Maximum record number, 323

determining, 266
Maximum record size, 323

determining, 266
MAXIMUM_RECORD_

NUMBER
ENVIRONMENT option, 258,

323
MAXIMUM_RECORD_SIZE

ENVIRONMENT option, 258,
323

Member attributes, 152
Member number

of file's owner
determining, 266

Message
diagnostic, 388, 391, 398

Messages
after image exit, 70
compiler

441

Messages
compiler, (Cont.)

format, 55
implicit conversion, 180
suppressing warning, 180

facility name, 56
identification, 57
linker, 60
run-time, 68

format, 68
severity

meaning to compiler, 56
suppressing compiler, 50

MIN built-in Function, 353
MIN preprocessor built-in

function, 399
Minor structure, 150

restriction on INITIAL, 152
Minus (-) picture character, 109
Minus sign (-)

prefix operator, 174
MOD built-in function, 353
MOD preprocessor built-in

function, 399
Module name

assigned by compiler, 45
in run-time traceback, 68
object module, 79
table, 78 to 79
text module

specifying name for, 54, 77
/MODULE qualifier, 76
Month

obtaining current, 345
MOUNT command, 12

establishing logical name, 253
mounting magnetic tapes, 319

MOVE command
EDT, 20
using, 31

Multiblock count
determining, 266

MUL TIBLOCK_COUNT
ENVIRONMENT option, 259

Multibuffer count
determining, 266

MUL TIBUFFER-COUNT
ENVIRONMENT option, 259

Multiple entry points, 192
Multiplication operator (*), 174
MULTIPLY built-in function, 355
Multivolume tape files, 320

mounting next volume, 271
Names

declaring, 163

442

Names, (Cont.)
rules for identifiers, 86
scope, 168

Nesting
IF statement, 219
%INCLUDE statement, 390
SELECT-group, 220

Next record, 301
NEXT_ VOLUME built-in

subroutine, 271
using, 320

Nine (9) picture character, 107
NO_ECHO option

GET statement, 280
NO_FIL TER option

GET statement, 280
NO_SHARE

ENVIRONMENT option, 259
determining if set, 266

Node names
default, 254

%NOLIST statement, 381, 392
Nonaddressable variable, 122
Nonlocai GOTO, 190, 222
Nonmatching based variable

reference, 138
NOT operator('), 174 to 175
/NOWARNINGS qualifier, 180
Null argument list, 195
NULL built-in function, 355

using, 132
Null pointers

NULL built-in function, 355
Null record, 283
%NULL statement, 382
Null statement, 226

as target of ELSE, 219
in ON-unit, 231
multiple labeled, 222
preprocessor, 380

Numbers
level, 149
page

changing, 183

OBJ file type, 49, 60, 62, 79
Object module file

specifying name for, 49
Object module libraries

using, 63
Object modules

creating, 49
extracting from library, 74
libraries, 78

creating, 80

Index

Object modules
libraries, (Cont.)

using, 63
1;.., Jr;.,.,.<T z:;a
.L.L.&..1..n • .a..1..1.0' ~..,

specifying label and version, 191
/OBJECT qualifier

LIBRARY, 75
PLI, 49

OFFSET
attribute, 128

Offset
data type, 128

OFFSET built-in function, 355
Offsets

converting to pointers, 358, 408
obtaining values

OFFSET built-in function, 355
OLB file type, 62, 73, 79
ON conditions, 227

alphabetic summary, 228
ENDFILE, 234
ENDPAGE, 234
ERROR, 235
FINISH, 236
FIXEDOVERFLOW, 236
KEY, ~37 _ _ _ _ _
OVERFLOW, 238
resignaling, 242
signaling, 242
UNDEFINEDFILE, 238
UNDERFLOW, 239
V AXCONDITION, 239
ZERODIVIDE, 240

ON statement, 227
ON-units

argument list for exception, 356
completion, 232
contents of, 230
default PL/I, 229
establishing, 227
examples, 240
for KEY condition

in indexed file, 274
handle any condition, 232

· invalid statements in, 231
multiple statements in, 217
referencing global symbols

examples, 274
restoring default handling, 241
scope, 230
search for, 231

ONARGSLIST built-in function,
356

ONCODE built-in function, 356
nn~~~ ()'7')
Ui.:'1.116' ~IV

Index

ONCODE built-in function
using, (Cont.)

ERROR condition, 240
KEY condition, 237
UNDEFINEDFILE condition,

238
values in KEY ON-unit, 274

ONFILE built-in function, 357
using, 273

ENDFILE condition, 234
ENDPAGE condition, 235
KEY condition, 237
UNDEFINEDFILE condition,

238
ONKEY built-in function, 357

ONCODE values, 274
using, 273

KEY condition, 237
OPEN statement, 244

specifying TITLE option, 251
Operands, 175

conversion of, 177
Operations

arithmetic, 96, 174
data type of result, 178
required operands, 175

Boolean
defining, 342

comparison
required operands, 175

concatenation
required operands, 175

logical
required operands, 175
termination of evaluation, 177

relational
required operands, 175

Operators, 17 4
arithmetic, 17 4
comparison, 17 4
infix, 174
logical, 175
precedence, 176

table, 176
prefix, 174
relational, 174

OPT file type, 62
Optimization

compile-time options, 49
linking object modules, 79

/OPTIMIZE qualifier, 49
Options

compiler, 47, 50
ENVIRONMENT
C!11mma~1 ')h,f;
lo.J'"-A1..1..1..1..l."'4.L.J' -vv

443

Options, (Cont.)
Linker, 61

OPTIONS (MAIN)
as program transfer address, 60,

67
influence on condition handling,

229
OPTIONS (VARIABLE), 205

in subroutine declaration, 193
in system service declarations,

413
Options file, 62
OPTIONS option

DELETE statement, 315
GET statement, 280
PROCEDURE statement, 191
PUT statement, 287
READ statement, 306
REWRITE statement, 312
WRITE statement, 309

/OPTIONS qualifier, 62
OR

exclusive, 342
OR operator (I or !) , 175
OTHERWISE clause, 220
Output

PUT statement, 285
record, 301
REWRITE statement, 311
stream, 285
to line printer, 294
to terminal, 294
WRITE statement, 308

OUTPUT attribute, 247
creating a new file, 318
determining if file has, 269
specifying on OPEN, 245

Output files
EDT, 23

disabling creation of, 40
overriding default, 23

linker, 62
program

defining, 251
/OUTPUT qualifier

EDT, 22
LIBRARY, 76

Overflow
fixed-point data, 236
floating-point data, 238

OVERFLOW condition, 238
signaled

conversion of values, 403
Overlay defining, 143

matching based variables by, 137

444

Owner of a file
determining, 266

OWNEIL_GROUP
ENVIRONMENT option, 259

OWNEIL_MEMBER
ENVIRONMENT option, 259

OWNEIL_PROTECTION
ENVIRONMENT option, 259

P format item, 300
example, 289

Padding
bit strings, 404
character strings, 405

PAGE format item, 300
Page number

current, 357
determining, 269, 295
resetting, 183, 295

PAGE option
PUT statement, 286, 291

Page size
default, 295
specifying, 277

Page size of PRINT files
determining current, 269

%PAGE statement, 381, 392
PAGENO built-in function, 357

using, 295
PAGENO pseudovariable, 183

using, 295
Pages

handling end-of-page condition, 234
PAGESIZE option, 277

specifying on OPEN, 245
Parameter descriptors, 198

VALUE attribute in, 206
Parameter list

in ENTRY statement, 192
in PROCEDURE statement, 190

Parameters, 198
arrays, 199
character strings, 200
declaring, 198
in ENTRY statement, 192
in PROCEDURE statement, 190
matching with argument, 201
maximum number allowed, 199
passing to command procedure, 14
relationship to arguments, 198
rules for specifying, 198
structures, 199

Parentheses
enclosing procedure argument, 202
in expressions, 177

Index

PC (Program Counter)
in run-time traceback, 69

Period (.) picture character, 110
Picture, 103

character, 106
converting from other types, 408
converting to arithmetic, 403
converting to bit string, 404
converting to character string,

407
declaring variables, 104
drifting characters, 109
extracting value from, 105
inputting with READ, 369
insertion characters, 110
validating, 369
with edit-directed I/O, 300

PICTURE attribute, 104
Picture characters, 106

asterisk (*), 107
B, 110
comma (,), 110
credit (CR), 111
debit (DB), 111
dollar ($), 109
encoded-sign, 108
I, 108
minus(--), 109
nine (9), 107
period (.), 110
plus (+), 109
R, 108
s, 109
slash (/), 110
T, 108
V, 107
Y, 107
Z, 107

Picture specification, 104
PL/I compiler, 45, 372

functions, 45
invoking, 46
listing file, 49
listing options, 50
options, 47

PLI command, 3, 46, 50, 52
examples, 52
in command procedure, 15
messages

format, 55
obtaining information about, 5
parameters, 46
qualifiers, 4 7
specifying libraries, 54

PLI file type, 47

Index

PLI$LIBRARY, 55
defining at login, 17
multiple definitions, 55

PLLFILE_DISPLA Y structure, 263
device attributes, 269
ENVIRONMENT information, 265
file attribute information, 268

PLIRTL.EXE, 65
PLISYSDEF.TLB, 55

system service declarations, 410
Plus (+) picture character, 109
Plus sign (+)

prefix operator, 174
POINTER attribute, 127
POINTER built-in function, 358
Pointers

converting to offsets, 355, 408
data type, 127
obtaining values, 132

POINTER built-in function, 358
passing as actual arguments, 208
setting value

ADDR built-in function, 339
ALLOCATE statement, 130
SET option of READ, 305

valid- value, 132
variable

setting to null value, 355
POSINT built-in function, 358
POSINT pseudovariable, 183
Position (file), 293

following DELETE, 315
following READ, 306
following REWRITE, 313
following WRITE, 309
record file, 301

after keyed operation, 304
after sequential read, 304

stream 1/0, 293
Position (string)

stream 1/0, 296
POSITION attribute, 142
Precision

arithmetic data types, 111
attribute, 111
default, 112
fixed-point binary, 98
fixed-point decimal, 99
floating-point data, 101

range, 102
pictured variables

defined by drifting characters, 109
Prefix operators, 174
Preprocessor, 376

diagnostic messages, 57

445

Preprocessor, (Cont.)
replacement listing, 51
statement

%PAGE, 392
variables, 37 4, 376

Preprocessor built-in functions, 398
Primary key, 327
PRINT attribute, 277

determining if file has, 269
specifying on OPEN, 245

PRINT command
EDT, 20

Print files, 294
changing page number, 183
declaring, 277
default line size, 277
determining current page number,

357
determining line number, 352
distinguishing features, 294
effect of PUT SKIP, 287
information maintained, 295
PRN-format carriage mntrol; 295
specifying page size, 277

Printer
files

handling end-of-page condition,
234

output, 294
Printer format

detecting, 266
PRINTER._FORMAT

ENVIRONMENT option, 260
Priority

of operators, 176
table, 176

PRN-format carriage control, 295
Procedure

declaration
outside of procedures, 166

%PROCEDURE statement, 381, 392
PROCEDURE statement, 190

label restriction, 223
RETURNS option, 196
to define a procedure, 83

Procedures, 83, 187
declaring, 190
entry points, 188
external, 83, 202
IDENT option, 191
internal, 83
invoking, 83

446

recursively, 191
with CALL statement, 193
with function reference, 194

Procedures, (Cont.)
main procedure, 83

identifying, 191
parameters of, 198
preprocessor, 393
returning from, 195
run-time

linking, 59
terminating, 189

END statement, 218
STOP statement, 226

using, 187
Process logical name table, 9
Process permanent files, 253
Program output

redefining SYSPRINT, 253
spooling to line printer, 252

Program sections
names in compiler listing, 50

Programs
compiling, 45, 372
controlling execution, 210
creating and correcting, 18
creating, compiling, and running.

3
documenting, 92
elements of, 82
executing, 67
format of, 92
image exit, 67
interrupting, 69
linking, 59
program development, 1

command procedures for, 13
EDT aids, 41

terminating
with END statement, 218
with RETURN statement, 196
with STOP statement, 226

PROMPT option
GET statement, 280

Prompts
EDT, 23
with GET statement, 280

Protection (file)
determining group access, 266
determining owner access, 266
determining system access, 267
determining world access, 267

Pseudovariables, 180
rules for use, 181

Punctuation marks
meaning to PL/I, 84
summary of PL/I, 85

PURGE command, 12

Index

PURGE_ TYPE__AHEAD option
GET statement, 280

PUT statement, 285
~,...,....,,.,,..,.;,...,... r.f' uo ln.no 1 '70 A()')
\,..VJ..1 V '-'.1.0J.V..l.I. V.L 'Y <A.J..U.\..-0, ..LI v, -XV"'-!

default file attributes, 286
default file title, 254
DO option, 285
FILE option, '286
forms, 286
LINE option, 287
options, 287
order of option execution,

286
output source, 285
PAGE option, 286
PUT EDIT, 288
PUT LINE, 289
PUT LIST, 290
PUT PAGE, 291
PUT SKIP, 292
SKIP option, 287
STRING option, 288

Qualifying reference
for based variable, 131

QUIT command
EDT, 20
using, 23

R format item, 300
R picture character, 108
Range, 25
Range specifications, 25

multiple line, 26
single line, 25

RANK built-in function, 360
RANK preprocessor built-in function,

399
READ statement, 304

file position following, 304
SET option

using, 132
with pictured data, 369

READ__AHEAD
ENVIRONMENT option, 260

determining if set, 266
READ_CHECK

ENVIRONMENT option, 260
determining if set, 266

/READ_ONL Y qualifier, 40
RECORD attribute

determining if file has, 269
specifying on OPEN, 245

Record 1/0 and unconnected arrays,
161

Index

Record identification
accessing a record, 318
obtaining, 318

D----..l -··-1...--.l\.t:l.;U.lU .llU.l.l.lUt:.l

maximum
determining, 266

relative, 321
Record size

determining, 266
relative files, 323

calculating, 323
RECORD__ID option, 318

DELETE statement, 315
READ statement, 306
REWRITE statement, 312

RECORD__ID__ACCESS
ENVIRONMENT option, 260

determining if set, 267
RECORD__ID_TO option, 318

READ statement, 306
REWRITE statement, 312
WRITE statement, 309

Records
accessing by record indentification,

318
default length, 323
deleting, 314
determining size of, 266
file

READ with SET option, 132
fixed-length

calculating size of, 323
obtaining record identification, 318
reading, 304
record files, 301

deleting records, 314
position information, 301
reading records, 304
statements for processing, 301
updating records, 311
writing records, 308

record 1/0, 301
rewriting, 311
variable-length

calculating size of, 323
writing, 308

/RECOVER qualifier, 40
RECURSIVE option

PROCEDURE statement, 191
REFER option, 152 to 153
References

structure-qualified, 158
to based variable, 131
to system services, 410
unresoived, 60

447

Relational operators, 85, 174
Relative files, 321

creating, 321
examples, 323
handling errors, 326
ONKEY built-in function, 357
organization, 321
reading sequentially, 325
rewinding to first occupied cell, 272
updating, 325
using, 323

Relative record number, 321
maximum, 323

RENAME command, 12
Repeat count

entering, 37
REPEAT option

DO statement, 215
Repetition of format item, 297
REPLACE command

EDT, 20
using, 30

/REPLACE qualifier, 76
%REPLACE statement, 381, 396
Replication factor, 120
RESEQUENCE command

EDT, 20
RESIGNAL built-in subroutine, 242

using, 232
Restricted integer expression, 145
Retrieval pointers

determining number, 266
RETRIEV AL_POINTERS

ENVIRONMENT option, 260
%RETURN Statement, 396
%RETURN statement, 392
RETURN statement, 195

conversion of values, 179, 402
effect of status values, 70
main procedure, 67

specifying value, 70
terminating subroutine or function,

189
Return status values

system services, 414
Return values, 196

specifying attributes of, 196
RETURNS

attribute, 196
main procedure, 70
with ENTRY attribute, 205

option, 196
ENTRY statement, 192
PROCEDURE statement, 191

Returns descriptor, '196

448

REVERT statement, 241
effect on ON-unit, 230

REWIND built-in subroutine, 272
REWIND_ON_CLOSE

ENVIRONMENT option, 260
determining if set, 267
specifying on CLOSE, 250

REWIND_ON_OPEN
ENVIRONMENT option, 260

determining if set, 267
REWRITE statement, 311

file position following, 304
using, 133

RMS
condition values, 274

ROUND built-in function, 360
Routine name

in run-time traceback, 68
Row-major order, 149
RUN command, 3, 67

in command procedures, 15
interrupting, 69

Run-time errors, 68
Run-time library, 65

PL/I
linker requirement for, 60

Run-time procedures
linking, 59

S picture character, 109
%SBTTL statement, 381, 397
SCALARV ARYING

ENVIRONMENT option, 260, 304,
309, 312

determining if set, 267
Scale factor, 99, 113

binary, 112
decimal, 112
default, 112
of pictured variable, 107
specifying, 97, 99

Scope
of entry variable, 206
of internal variables, 124
of names, 168
of ON-unit, 231
of static variables, 124

SEARCH built-in function, 361
Search order

INCLUDE file libraries, 54
logical name tables, 9
object module libraries, 63

logical name tables, 64
SEARCH preprocessor built-in

function, 399

Index

Segmented character-string keys, 331
Select range

use with CUT function, 39
use with structured tabs, 41

SELECT statement, 220
Selective listing control, 391 to 392
Semicolon (;)

using as null statement, 226
SEQUENTIAL attribute

determining if file has, 269
specifying on OPEN, 245

Sequential files, 318
appending records to, 318
creating, 318
magnetic tapes, 319

SET command
EDT, 20

SET TAB, 41
SET DEFAULT command, 8, 12
SET option

ALLOCATE statement, 130
READ statement, 305

example, 132
Severity

of compiler errors, 56
Shareable image file

linker options file for, 62
SHARED_READ

ENVIRONMENT option, 260
determining if set, 267

SHARED_ WRITE
ENVIRONMENT option, 260

determining if set, 267
SHOW command

EDT, 20
SHOW LOGICAL command, 10
/SHOW qualifier, 50
SHOW TRANSLATION command,

10
displaying logical names, 9

SIGN built-in function, 361
SIGN preprocessor built-in

function, 399
SIGNAL statement, 242
SIN built-in function, 362
SIND built-in function, 362
Sine

computing
from degree argument, 362
from radian argument, 362

computing hyperbolic, 362
Single-precision floating point

range of precision, 102
SINH built-in function, 362
~T7l? h1111t_1n f11n.-.-l-1nn 'lt:!')
.._,.a..&....1..&.....41 A..l'l.A.l..&.IJ--.L.1..a .1..\A.L.l. IJ.1.V.L.1' VV._.

Index

SKIP format item, 300
SKIP option

GET statement, 280, 284
n rla. n.f o-v.£t..nn.f.-;n.-. C)Q{\
V.&..,.L V.1. VA\:.l'-'U.t.i.lV.1..1, ~UV

PUT statement, 287, 292
Slash (/) picture character, 110
SOS, 18
Source files

creating, 24
revising, 24
specifying in PLI command, 4 7

Source program format, 92
Space character, 86
SPACEBLOCK built-in subroutine,

272
SPOOL

ENVIRONMENT option, 260
determining if set, 267
specifying on CLOSE, 250

Spooled devices
obtaining device information, 268

SQRT built-in function, 363
Square root

obtaining, 363
STARLET.OLB, 65
Startup command files, 43

alternate, 44
Statements, 84

alphabetic summary, 87
preprocessor, 380

file control, 243
for stream I/0, 278
format of, 84
record I/O, 301

Static
storage class, 123

STATIC attribute, 123
implied by INTERNAL, 124
with INITIAL attribute, 168

Statistics
compiler

including in listing, 50
Status values

specifying in RETURN statement,
70

STOP command, 69
STOP statement, 71, 226

effect, 67
terminating subroutine or function,

190
Storage

allocating
for a based variable, 130
for a controlled variable, 130
within areas, 127

449

Storage, (Cont.)
allocation of

at block activation, 82
automatic, 123
based, 126, 129
built-in functions, 337
classes of, 122
default class, 123
defined, 141
freeing, 131
locating with ADDR, 133
of arrays, 162
of bit strings, 116
setting null pointer, 355
static, 123

Storage class attributes
alphabetic summary, 89

Storage map
in compiler listing, 50
linker, 63

Stream
1/0 processing, 276

file attributes for, 276
positioning, 292
statements for, 278

STREAM attribute, 277
determining if file has, 269
specifying on OPEN, 245

Stream files, 277
GET statement, 278
positioning, 293
PUT statement, 285

STRING built-in function, 363
String handling

comparing with VERIFY, 370
COPY built-in function, 344
functions for

summary, 336
HIGH built-in function, 349
LENGTH built-in function, 351
locating substring, 349
LOW built-in function, 352
replication factor, 120
STRING built-in function, 363
SUBSTR built-in function, 364
TRANSLATE built-in function, 366

STRING option
GET statement, 279
PUT statement, 288

STRING pseudovariable, 184
Strings

EDT search

450

locating in character mode, 37
match criteria, 26
specifying, 25

Strings, (Cont.)
in conversion functions, 178

Structured tabs, 41
using, 41

Structures, 149
concatenating with STRING, 363
declaring, 150

as parameters, 199
level numbers, 149

dimensioned
unconnected arrays, 162

in an array, 160
in assignment statements, 160
in PUT statements, 279
initializing, 151
level numbers, 150
major, 150
minor, 150
passing as arguments, 199

by descriptor, 208
referring to members, 158
specifying in assignment, 173
structure-qualified reference, 158
with edit-directed 1/0, 298

STS$SUCCESS, 414
STS$V ALUE, 414
$STSDEF text module, 414
Subdirectories

creating, 8
specifying, 8
using, 8

SUBMIT command, 13
Subroutines, 188

CALL statement, 193
external, 202
file-handling, 263

alphabetic summary, 263
libraries, 79
terminating, 189

Subscripts, 146
label, 223
refering to array of structures, 161
variable, 146

SUBSTITUTE command, 20
using, 31

SUBSTITUTE NEXT command, 20
SUBSTITUTE NEXT command

using, 32
SUBSTR built-in function, 364
SUBSTR preprocessor built-in

function, 399
SUBSTR pseudovariable, 185
Substrings

locating in string, 349
obtaining, 364

Index

Substrings, (Cont.)
overlaying string variable, 185

Subtraction opera tor (-) , 17 4
SUCCESS

status return value, 71
SUPERSEDE

ENVIRONMENT option, 260
determining if set, 267

Symbol definitions
for system services, 413

Symbol substitution, 15
Symbol table

created by compiler, 46, 48
global, 78

Symbols
defining at login, 16
using, 16

in command procedures, 14
Syntax errors

detected by compiler, 57
SYS$BINTIM system service, 417
SYS$CLREF system service, 418
SYS$COMMAND, 254
SYS$DISK, 254
SYS$ERROR, 254
SYS$INPUT, 254

default for GET, 279
redefining in command

procedure, 15
SYS$LIBRARY, 55, 65
SYS$LP _LINES, 295
SYS$0UTPUT, 254

default for PUT, 286
SYS$SETIMR system s'ervice, 418
SYS$TRNLOG system service, 415
SYS$WAITFR system service, 418
SYSIN

default definition of, 254
default for GET, 279
redefining, 253

SYSPRINT
as print file, 277
default definition of, 254
default for PUT, 286
redefining, 253

System libraries
object module, 65
PLISYSDEF.TLB, 55

System logical name table, 9
System messages, 70
System services, 410

arguments
data types for input, 412
data types for output, 413
specifying, 411

Index

System services, (Cont.)
declaring, 410
examples, 415
'l""\O,.O't"nOfo.,.c
pu.1..u.1..1..J.'-'\.l'-'.l.O

data types, 412
symbolic definition files, 413
testing return status, 414
variable-length argument lists, 413

SYSTEM_pRQTECTION
ENVIRONMENT option, 260

T picture character, 108
TAB ADJUST command

EDT, 21
Tab character, 86
TAB format item, 300
Tab stops

in print file, 296
with edit-directed I/O, 300

Tables
global symbol, 78
logical name, 9

TAN built-in function, 365
TAND built-in function, 365
Tangent

computing
from degree argument, 365
from radian argument, 365

computing hyperbolic, 365
TANH built-in function, 365
TEMPORARY

ENVIRONMENT option, 260
determining if set, 267

Terminals
as print files, 294
output to, 294
purging type-ahead buff er, 280
suppressing input echo, 280

Termination
END statement, 217
of procedures, 189
of program execution, 67

STOP statement, 226
Text

cutting and pasting, 39
defining keypad keys to insert, 42
deleting

in character mode, 38
in line mode, 30

include from other files, 390
inserting

in character mode, 38
in line mode, 29

moving
in character mode, 39

451

Text
moving, (Cont.)

in line mode, 31
protecting and recovering, 40
replacing, 30
undeleting in character mode, 38

Text buffers, 27
specifying, 27

Text editors, 18
Text libraries, 52, 77

creating, 77
using, 53

Text modules
specifying name for, 54, 77

trEXT qualifier, 76
Time

converting ASCII string to
binary, 417

specifying for ENVIRONMENT
options, 418

system 64-bit value, 417
TIME built-in function, 365
Time of day

obtaining, 365
TIME preprocessor buiit-in

function, 399
Timekeeping

functions for, 337
Timer

setting with system service, 418
TITLE option, 247, 251

default for SYSIN, 254
default for SYSPRINT, 254
determining expanded value, 269
specifying on OPEN, 245

C/oTITLE statement, 381, 397
TLB file type, 47, 52, 76
Traceback

compiler information, 45
for run-time errors, 68

file errors, 275
information, 68

specifying at compile time, 48
Transfer control

LEA VEstatement, 224
TRANSLATE built-in function,

366
TRANSLATE preprocessor built-in

function, 399
Translating logical names, 9
TRIM built-in function, 367
TRIM preprocessor built-in

function, 399
TRUNC built-in function, 368

452

TRUNCATE
ENVIRONMENT option, 261

determining if set, 267
specifying on CLOSE, 250

Truncation
of bit strings, 404
of character strings, 405
of decimal value, 368

TYPE command
EDT, 21

TYPE command
EDT

using, 28

Unconnected array, 161
Undeclared variables, 164
UNDEFINEDFILE condition, 238

signaled
error during file opening, 248
file cannot be opened, 273, 279
invalid file specifications, 252
organization incompatibility, 249

UNDERFLOW condition, 239
default PL/I action, 229
enabling signaling of, 191
signaled

conversion of values, 403
UNDERFLOW option

PROCEDURE statement, 191
Unions, 156
Unresolved references, 60
UNSPEC built-in function, 368
UNSPEC pseudovariable, 186
UNTIL option, 212

DO REPEAT, 215
UPDATE attribute

determining if file has, 269
specifying on OPEN, 245

Uppercase and lowercase letters
in identifiers, 86

User identification code
of file's owner

determining, 266
User-generated diagnostic

messages, 57
using %ERROR, 388
using %FAT AL, 388
using % WARN,· 398

User-generated diagnostoc messages
using %INFORM, 391

V picture character, 107
VALID built-in function, 369

using, 105

Index

VALUE attribute
parameter descriptor, 206

VARIABLE

with ENTRY attribute, 206
option

ENTRY attribute, 205
Variable

preprocessor, 376
Variable-length argument lists, 413
Variable-length records

with fixed control area, 316
Variables, 88

addressable, 122
area

declaring, 127
assigning value to, 171
automatic, 123
based, 126

associating with storage, 126
declaring, 129
example, 135
referring to, 131

bit string, 118
character string, 114
declaring, 88, 163
defined, 141

criteria for declaring, 142
entry, 206
external, 124
file, 244
in begin blocks, 217
initializing, 166
internal, 124
label, 224
localizing, 83, 217
nonaddressable, 122
offset

assigning values to, 129
declaring, 128

pictured, 103
assigning values to, 104
declaring, 104
extracting values from, 105

pointer
declaring, 127

pointers, 127
static, 123

initializing, 168
undeclared, 164
using as subscripts, 146

VARIANT preprocessor built-in
function, 399 to 400

N ARIANT qualifier, 52, 400

Index

VARYING attribute, 114
VAX-11 Run-Time Procedure

library, 65
V AXCONDITION condition, 239
VERIFY built-in function, 370
VERIFY preprocessor built-in

function, 399
Version numbers

default, 255
magnetic tapes, 319

version numbers
rules, 7

VMSRTL.EXE, 65
Volume sets

magnetic tapes, 320
Volume switching, 320

WARN preprocessor built-in function,
399, 401

%WARN statement, 381, 398
Warning (severity)

data conversion, 178, 180
meaning to compiler, 56

causes, 57
suppressing messages, 52
undeclared variables, 164

W arni.ng message, 398
/WARNINGS qualifier, 52
WHEN clause, 220
WHILE option

DO REPEAT, 215
DO statement, 211

WORLD_FROTECTION
ENVIRONMENT option, 261

WRITE command
EDT, 21

WRITE command
DCL, 15
EDT

using, 33
WRITE statement, 308

file position following, 304
WRITE_BEHIND

ENVIRONMENT option, 261
determining if set, 267

WRITE_ CHECK
ENVIRONMENT option, 261

determining if set, 267

X format item, 300
XOR operation

defining with BOOL, 342

Y picture character, 107

453

Year
obtaining current, 345

Z picture character, 107
ZERODIVIDE condition, 240

454 Index

PROGRAMMING IN VAX-11 PL/I
AA-L057B-TE

READER'S COMMENTS

Your comments and suggestions will help us in our continuous effort to im

prove the quality and usefulness of our handbooks.

What is your general reaction to this handbook? (format, accuracy, completeness,

organization, etc.) ______________________ _

What features are most useful?

Does the publication satisfy your needs? ____________ _

What errors have you found?

Additional comments

Name

Title

Company Dept.

Address

City State Zip

(staple here)

- - Do Not Tear - Fold Here and Tape

~nmnomo 111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03061

- - - _,
I

No Postage
Necessary

if Mailed in the
United States

- - - - Do Not Tear - Fold Here - - - - - - - - - - - - - -

