
Guide to VAX RPG II
Order Number: AA-JA05A-TE

August 1986

This manual describes language elements, programming constructs, and
features of the VAX RPG II language.

Revision/Update Information: This revised manual supersedes
Programming in VAX RPG II (Order No.
AA-R4318-TE)

Operating System and Version: VAX/VMS Version 4.4 or higher
MicroVMS Version 4.4 or higher

Software Version:

digital equipment corporation
maynard, massachusetts

VAX RPG II Version 2.1

First Printing, February 1984
Revised, November 1985
Revised, August 1986

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright © 1984, 1985, 1986 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this doc
ument requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM-20
DECUS
DECwriter

DIBOL
EduSystem
IAS
MASS BUS
PDP
PDT
RSTS
RSX

UNIBUS
VAX
VAXcluster
VMS
VT

ZK-3253

This document was prepared using an in-house documentation production
system. All page composition and make-up was performed by Te)(, the
typesetting system developed by Donald E. Knuth at Stanford University. TeX
is a trademark of the American Mathematical Society.

Contents

PREFACE xxiii

DEVELOPING VAX RPG II PROGRAMS ON VMS

CHAPTER 1 UNDERSTANDING THE VAX RPG II LOGIC CYCLE 1-1

1.1 THE VAX RPG II GENERAL LOGICAL SEQUENCE 1-5

1.2 THE FIRST CYCLE 1-6

1.3 THE LAST CYCLE 1-7

1.4 A NORMAL CYCLE 1-7
1.4.1 Total Time 1-8
1.4.2 Detail Time 1-9

1.5 VAX RPG II DETAIL PROGRAM LOGIC CYCLE 1-17

CHAPTER 2 USING THE VAX RPG II EDITOR 2-1

2.1 QUALIFIERS 2-1
2.1.1 /COMMAND Qualifier 2-3
2.1.2 /CREATE Qualifier 2-4
2.1.3 /JOURNAL Qualifier 2-4
2.1.4 /OUTPUT Qualifier 2-4
2.1.5 /READ_ONLY Qualifier 2-5
2.1.6 /RECOVER Qualifier 2-5
2.1.7 /START_POSITION Qualifier 2-6

iii

2.2 THE EDITOR SCREEN 2-6

2.3 THE CURSOR 2-10

2.4 THE BUFFERS 2-11

2.5 KEYS AND FUNCTIONS 2-12
2.5.1 GOLD Function 2-15
2.5.2 HELP_KEYPAD Function 2-15
2.5.3 HELP_SPECIFICATIONS Function 2-17
2.5.4 FIND_NEXT Function 2-20
2 . .5.5 FIND Function 2-20
2.5.6 DELETE_LINE Function 2-21
2.5.7 UNDELETE_LINE Function 2-21
2.5.8 PAGE Function 2-21
2.5.9 COMMAND Function 2-22
2.5.10 SECTION Function 2-23
2.5.11 DISPLAY Function 2-23
2.5.12 REVIEW_ERROR Function 2-23
2.5.13 MOVE_ TO_RULER Function 2-24
2.5.14 DELETE_FI ELD Function 2-24
2.5.15 UNDELETE_FIELD Function 2-24
2.5.16 ADVANCE Function 2-25
2.5.17 BOTTOM Function 2-25
2.5.18 BACKUP Function 2-25
2.5~ 19 TOP Function 2-25
2.5.20 CUT Function 2-26
2.5.21 PASTE Function 2-26
2.5.22 SHIFT_LEFT Function 2-26
2.5.23 SHIFT_RIGHT Function 2-27
2.5.24 FIELD Function 2-28
2.5.25 END_Of_LINE Function 2-29
2.5.26 DELETE_ TO_END_Of_LINE Function 2-30
2.5.27 CHARACTER Function 2-31
2.5.28 COLUMN Function 2-32
2.5.29 ENTER Function 2-32
2.5.30 LINE Function 2-32
2.5.31 OPEN_LINE Function 2-32
2.5.32 SELECT Function 2-33
2.5.33 RESET Function 2-33

iv

2.5.34 UP Function 2.;33
2.5.35 DOWN Function 2-33
2.5.36 RIGHT Function 2-34
2.5.37 LEFT Function 2-34
2.5.38 FIELD_BACKWARD Function 2-34
2.5.39 DELETE_CHARACTER Function 2-34
2.5.40 NEW_LINE Function 2-34
2.5.41 FIELD_fORWARD Function 2-35
2.5.42 REFRESH-SCREEN Function 2-35
2.5.43 DELETE_ TO_BEGINNING_Of_LINE Function 2-35
2.5.44 EXIT Function 2-35

2.6 EDITOR COMMANDS 2-36
2.6.1 COMPILE Command 2-36
2.6.2 DEFINE KEY Command 2-38
2.6.3 EXIT Command 2-41
2.6.4 HELP Command 2-43
2.6.5 INCLUDE Command 2-47
2.6.6 QUIT Command 2-47
2.6.7 RESEQUENCE Command 2-49
2.6.8 SET Command 2-50

2.6.8.1 COMMAND Option• 2-50
2.6.8.2 DEFAULT Option• 2-51
2.6.8.3 HELP Option • 2-51
2.6.8.4 RULER Option • 2-51
2.6.8.5 SCROLL Option• 2-53
2.6.8.6 SECTION Option• 2-54
2.6.8.7 STARTCOLUMN Option• 2-54
2.6.8.8 SYNT AXCHECK Option • 2-55

2.6.9 SHOW Command 2-56
2.6.10 SUBSTITUTE Command 2-57

2.7 CUSTOMIZING THE VAX RPG II EDITOR 2-59
2.7.1 Using Editor Commands 2-59
2.7.2 Start-up Command Files 2-59
2.7.3 Modifying Screen Length 2-61

2.8 CREATING AND EDITING PROGRAMS 2-61
2.8.1 Creating a New Program 2-64
2.8.2 Editing an Existing Program 2-77

v

CHAPTER 3 PROCESSING VAX RPG II PROGRAMS

3.1 COMPILING PROGRAMS
3.1.1 Default Compiler Options
3.1.2 Compiler Qualifiers

3.1.2. 1 /CHECK Qualifier• 3-6
3.1.2.2 /CROSS_REFERENCE Qualifier• 3-7
3.1.2.3 /DEBUG Qualifier• 3-7
3. 1.2.4 /LIST Qualifier• 3-8
3.1.2.5 /MACHINE_CODE Qualifier• 3-9
3.1.2.6 /OBJECT Qualifier• 3-9
3.1.2.7 /SEQUENCE_CHECK Qualifier• 3-10
3.1.2.8 /WARNINGS Qualifier• 3-10

3.2 LINKING AND RUNNING PROGRAMS

3.3 INTERPRETING COMPILER ERROR MESSAGES

CHAPTER 4 INTERPRETING A COMPILER LISTING

CHAPTER 5 DEBUGGING PROGRAMS

5.1

5.2

5.3

5.4

vi

USING THE DEBUGGER WITH VAX RPG II

DEBUGGER COMMANDS AND KEYWORDS

PREPARING TO DEBUG A PROGRAM
5.3.1 SET LANGUAGE Command
5.3.2 SHOW LANGUAGE Command

CONTROLLING PROGRAM EXECUTION
5.4.1 SET BREAK, SHOW BREAK, and CANCEL BREAK

Commands
5.4.2 SET TRACE, SHOW TRACE, and CANCEL TRACE

Commands

3-1

3-1
3-2
3-3

3-11

3-12

4-1

5-1

5-3

5-4

5-4
5-5
5-5

5-6

5-7

5-9

5.4.3 SET WATCH, SHOW WATCH, and CANCEL WATCH
Commands

5.4.4 SHOW CALLS Command
5.4.5 GO and STEP Commands
5.4.6 TYPE Command
5.4.7 EDIT Command
5.4.8 CTRL/Y Command
5.4.9 EXIT Command

5.5 EXAMINING AND MODIFYING LOCATIONS
5.5.1 EXAMINE Command
5.5.2 DEPOSIT Command
5.5.3 EVALUATE Command

USING VAX RPG II FEATURES ON VMS

CHAPTER 6 VAX RPG II SCREEN HANDLING

6.1 CREATING AND MODIFYING FORMS

6.2 CREATING FORM LIBRARIES

6.3 WORKSTN Fl LES
6.3.1 Control Specifications (H)
6.3.2 File Specifications (F) with WORKSTN Files
6.3.3 Input Specifications (I)
6.3.4 Calculation Specifications (C)
6.3.5 Primary WORKSTN File
6.3.6 Output Specifications (0)
6.3. 7 VAX FMS Call Interface Run-Time Support

6.3.7.1 Initialization• 6-8
6.3.7.2 Displaying a Form• 6-8
6.3.7.3 Reading from a Form• 6-9
6.3. 7 .4 Termination • 6-9
6.3. 7 .5 Current Workspace • 6-9

5-10
5-11
5-12
5-13
5-14
5-14
5-15

5-15
5-15
5-17
5-18

6-1

6-2

6-3

6-3
6-4
6-4
6-5
6-5
6-6
6-7
6-7

vii

viii

6.4

6.5

6.6

COMMAND KEYS (K INDICATORS) AND FUNCTION KEYS
6.4.1 K Indicators
6.4.2 Command Keys
6.4.3 Function Keys
6.4.4 User-Defined Command Key$
6.4.5 Selective Enabling of Command Keys

INFOS
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9

6.4.5. 1 Defining a Function Key UAR • 6-13
6.4.5.2 Defining a Named Data Item • 6-14
6.4.5.3 Generating an Object File Containing UAR

Information • 6-14 ·
6.4.5.4 Linking Your Program• 6-14

File Description Specification (F)
Input Specification (I)
Calculation Specification (C)
*STATUS Keyword
*OPCODE Keyword
*RECORD Keyword
*FMSSTA Keyword
*FMSTER Keyword
Other· Subfields

EXAMPLE PROGRAM DEVELOPMENT CYCLE

6-19
6-11
6-11
6-11
6-12
6-13

6-15
~-15
6-15
6-16
6-17
6-17
6-18
6-18
6-18
6-18

6-19

6.7 CONVERTING FROM SAND D SPECIFICATIONS 6-25
6. 7 .1 S and D Specification Conversion Utility 6-25

6. 7. 1. 1 Invoking the Conversion Utility • 6-26
6. 7. 1.2 Overview of Converter Utility Operation • 6-26
6f 1.3 Screen Specification (S) • 6-27
6. 7. 1 .4 Display Specification (D) • 6-29

6. 7 .2 Manual Conversion 6-30
6. 7 .2. 1 Use of Line 24 • 6-31
6. 7 .2.2 Duplicate Field Names • 6-31
6. 7 .2.3 Sand D Specification VAX RPG II Indicators • 6-31
6. 7. 2 .4 Record Buffer Layout • 6".31
6. 7 .2.5 Multiple Input Constants • 6-32
6. 7 .2.6 Output and No Input Fields • 6-32

CHAPTER 7 USING INDICATORS 7-1

7.1 USER-DEFINED INDICATORS 7-1
7.1.1 Record-Identifying Indicators 7-2
7.1.2 Field Indicators 7-4
7.1.3 Resulting Indicators 7-6
7.1.4 Control-Level Indicators 7-9
7.1.5 Overflow Indicators 7-12
7.1.6 K Indicators 7-13

7.2 INTERNALLY DEFINED INDICATORS 7-15
7.2.1 First-Page Indicator 7-15
7.2.2 Last-Record Indicator 7-17
7.2.3 Matching-Record Indicator 7-18
7.2.4 External Indicators 7-18
7.2.5 Halt Indicators 7-19

7.3 USING INDICATORS AS FIELDS 7-22
7.3.1 *IN and *IN,n 7-22
7.3.2 *INxx 7-23

CHAPTER 8 USING FILES 8-1

8.1 FILE CHARACTERISTICS 8-1

8.2 FILE NAMES 8-2

8.3 RECORD FORMATS 8-3

8.4 FILE TYPES 8-3

8.5 FILE ORGANIZATIONS 8-3
8.5.1 Sequential Organization 8-4
8.5.2 Direct Organization 8-4
8.5.3 Indexed Organization 8-5

ix

8.6 FILE ACCESS METHODS 8-6
8.6.1 Sequential Access 8-8
8.6.2 Sequential Access by Key 8-9
8.6.3 Sequential Access Within Limits 8-10
8.6.4 Random Access 8-14

8.6.4. 1 Random Access by Relative Record Number • 8-14
8.6.4.2 Random Access by Key• 8-16
8.6.4.3 Random Access by ADDROUT File • 8-17

8.6.5 Sequential Access and Random Access by Key 8-21

8.7 CREATING FILES 8-24
8. 7 .1 Creating Sequential Files 8-24
8. 7 .2 Creating Direct Files 8-25
8. 7 .3 Creating Indexed Files 8-26

8.8 ADDING RECORDS TO FILES 8-27
8.8.1 Adding Records to a Sequential File 8-27
8.8.2 Adding Records to a Direct File 8-29
8.8.3 Adding Records to an Indexed File 8-31

8.9 UPDATING RECORDS IN FILES 8-31

8.10 DELETING RECORDS FROM FILES 8-34

8.11 PROCESSING FILES WITH MATCHING RECORDS 8-35
8.11 .1 Checking Record Sequence for One Record Type 8-35
8.11.2 Checking Record Sequence for More Than One Record

Type 8-35
8.11.3 Using Matching Fields with Field-Record-Relation

Indicators 8-38
8.11.4 Using Matching Fields to Process More Than One

File 8-40

8.12 PROCESSING FILES WITH MULTIPLE KEYS 8-48

8.13 FILE BUFFERS 8-49

x

CHAPTER 9 USING PRINTER OUTPUT FILES

9.1

9.2

9.3

9.4

9.5

9.6

EDITING OUTPUT
9 .1 .1 Using Edit Codes and Edit Code Modifiers
9.1.2 Using Constants

USING SPECIAL WORDS
9.2.1 Printing the Date: UDATE, UDAY, UMONTH,

UY EAR
9.2.2 Printing the Time
9.2.3 Numbering Pages: PAGE and PAGE1 through

PAGE7
9.2.4 Saving Time by Repeating Data: *PLACE

CONDITIONING OUTPUT LINES
9.3.1 Printing Lines Before Reading the First Record:

First-Page Indicator
9.3.2 Specifying Page Breaks: Overflow Indicator

AUTOMATIC OVERFLOW

DEFINING THE PAGE SIZE

SPACING AND SKIPPING LINES

CHAPTER 10 USING TABLES

10.1 COMPILE-TIME TABLES

10.2 PREEXECUTION-TIME TABLES

10.3 CREATING TABLE INPUT RECORDS

10.4 DEFINING TABLES
10.4.1 Defining a Compile-Time Table
10.4.2 Defining a Preexecution-Time Table

9-1

9-2
9-2
9-3

9-4

9-4
9-6

9-6
9-9

9-10

9-11
9-11

9-15

9-15

9-16

10-1

10-2

10-3

10-3

10-5
10-6
10-8

xi

10.5 REFERENCING TABLE ENTRIES 10-9

10.6 SEARCHING TABLES 10-10

10.7 UPDATING TABLES 10-12

10.8 OUTPUTTING TABLES 10-13

CHAPTER 11 USING ARRAYS 11-1

11.1 COMPILE-TIME ARRAYS 11-2

11.2 PREEXECUTION-TIME ARRAYS 11-4

11.3 EXECUTION-TIME ARRAYS 11-4

11.4 CREATING ARRAY INPUT RECORDS 11-4

11.5 DEFINING ARRAYS 11-6
11.5.1 Defining a Compile-Time Array 11-7
11.5.2 Defining a Preexecution-Time Array 11-8
11.5.3 Defining an Execution-Time Array 11-9
11.5.4 Defining Related Arrays in Alternating Format 11-10

11.6 REFERENCING ARRAYS 11-12

11.7 SEARCHING ARRAYS 11-17

11.8 MOVING ARRAY DATA 11-21

11.9 UPDATING ARRAYS 11-22

11.10 OUTPUTTING ARRAYS 11-23

xii

CHAPTER 12 CALLING SYSTEM ROUTINES FROM VAX RPG II 12-1

12.1 RUN-TIME LIBRARY ROUTINES 12-2

12.2 SYSTEM SERVICES ROUTINES 12-3

12.3 PROCEDURE FOR CALLING SYSTEM ROUTINES 12-4
12.3.1 Declare the System Routine 12-5
12.3.2 Determine the Type of Call (Function or Procedure) 12-6
12.3.3 Declare the Arguments 12-7

12.3.3.1 Parameter-Passing Mechanisms• 12-12
12.3.3.2 Parameter Access Types (Column 54) • 12-15

· 12.3.3.3 Parameter Data Types (Columns 55 through
57)• 12-15

12.3.4 Include Symbol Definitions 12-16
12.3.5 Call the Routine or Service 12-17

12.3.5.1 Calling a System Routine as a Function Call • 12-17
12.3.5.2 Calling a System Routine as a Procedure Call• 12-20

12.3.6 Check the Condition Value 12-20
12.3. 7 Locate the Result 12-24

12.3.7.1 Function Results• 12-24
12.3.7.2 Procedure Results• 12-25

12.4 EXAMPLES OF CALLING VAX/VMS RUN-TIME LIBRARY
ROUTINES

12.5 EXAMPLES OF CALLING VAX/VMS SYSTEM SERVICES

12.6 EXAMPLES OF CALLING SUBPROGRAMS

12. 7 EXAMPLES OF SCREEN HANDLING WITH SYSTEM CALLS

12-25

12-28

12-32

12-33

xiii

CHAPTER 13 OPTIMIZING YOUR PROGRAMS

13.1 OPTIMIZING WITH DATA STRUCTURES

13.2 OPTIMIZING WITH ADJACENT FIELDS IN RECORDS

13.3 OPTIMIZING WITH BLANK FACTOR 1

13.4 OPTIMIZING WITH THE ASTERISK INDICATOR

13.5 OPTIMIZING FILE PERFORMANCE

LANGUAGE REFERENCE

CHAPTER 14 VAX RPG II LANGUAGE ELEMENTS

14.1 VAX RPG II CHARACTER SET

14.2 VAX RPG II DATA TYPES
14.2.1 Character Data Type
14.2.2 Binary Data Type
14.2.3 Packed Decimal Data Type
14.2.4 Overpunched Decimal Data Type

14.3 USER-DEFINED NAMES

xiv

13-1

13-1

13-3

13-3

13-3

13-4

14-1

14-1

14-2
14-2
14-3
14-4
14-5

14-8

CHAPTER 15 VAX RPG II SPECIFICATIONS 15-1

LANGUAGE CONVENTIONS AND FORMAT 15-2
15.1 GENERAL LANGUAGE INFORMATION 15-2

15.1.1 Notation Conventions 15-2
15.1.2 Common Fields 15-3

15. 1.2. 1 Line Number • 15-4
15.1.2.2 Specification Type • 15-4
15.1.2.3 Comments • 15-5

15.1.3 Compiler Directing Statements 15-5
15. 1.3. 1 COPY Directive • 15-6
15.1 .3.2 COPY _coo Directive • 15-7
15. 1 .3.3 COPY _COD Directive Modifiers • 15-9

CONTROL SPECIFICATION (H) 15-13

15.2 DESCRIPTION 15-13
15.2.1 Control Specification Format 15-13
15.2.2 Specification Type 15-13
15.2.3 Currency Symbol 15-14
15;2.4 Inverted Print 15-14
15.2.5 Alternate Collating Sequence 15-15
15.2.6 Forms Position 15-17
15.2.7 Forms Library 15-18
1 f;.2.8 Example 15-18

FILE DESCRIPTION SPECIFICATION (F) 15-19
15.3 DESCRIPTION 15-19

15.3.1 File Description Specification Format 15-20
15.3.2 Specification Type 15-20
15.3.3 File Name 15-20
15.3.4 File Type 15-21
15.3.5 File Designation 15-22
15.3.6 End-of-File 15-24
15.3.7 Sequence 15-24
15.3.8 File Format 15-25
15.3.9 Block Length 15-26
15.3.10 Record Length 15-28
15.3.11 Mode of Processing 15-28
15.3.12 Key Length 15-34

xv

15.3.13 Record Address Type 15-35
15.3.14 File Organization or Additional Input/Output Area 15-36
15.3.15 Overflow Indicators 15-36
15.3.16 Key Location 15-37
15.3.17 Extension Code 15-37
15.3.18 Device Code 15-38
15.3.19 Symbolic Device 15-39
15.3.20 Tape Label 15-40
15.3.21 F Specification Continuation Lines 15-40
15.3.22 Core Index 15-41
15.3.23 File Addition and Unordered Output 15-42
15.3.24 Expansion Factor 15-43
15.3.25 File Sharing 15-45
15.3.26 Tape Rewind 15-47
15.3.27 File Condition 15-47
15.3.28 Example 15-48

EXTENSION SPECIFICATION (E) 15-50
15.4 DESCRIPTION 15-50

15.4.1 Extension Specification Format 15-51
15.4.2 Specification Type 15-51
15.4.3 From File Name 15-51
15.4.4 To File Name 15-52
15.4.5 Table or Array Name 15-53
15.4.6 Number of Entries in a Record 15-54
15.4.7 Number of Entries in a Table or Array 15-55
15.4.8 Length of Entry 15-55
15.4.9 Format 15-56
15.4.10 Decimal Positions 15-57
15.4.11 Sequence 15-58
15.4.12 Alternate Table or Array 15-59
15.4.13 Comments 15-59
15.4.14 Example 15-59

LINE COUNTER SPECIFICATION (L) 15-61
15.5 DESCRIPTION 15-61

15.5.1 Line Counter Specification Format 15-61
15.5.2 Specification Type 15-61
15.5.3 File Name 15-62
15.5.4 Form Length 15-62

xvi

15:5.5
15.5.6
15.5.7
15.5.8

FL
Overflow Line Number
OL
Example

INPUT SPECIFICATION (I)
15.6 DESCRIPTION

15.6.1 Input Specification Format
15.6.2 Specification Type
15.6.3 File Name
15.6.4 Data Structures

15.6.5
15.6.6
15.6.7
15.6.8
15.6.9

15.6.10
15.6.11
15.6.12
15.6.13
15.6.14
15.6.15

15.6.4.1 Data Structure Statement • 15-68
15.6.4.2 Data Structure Subfields• 15-69
15.6.4.3 Local Data Area• 15-70
Sequence
Number
Option
Record-ldehtitying Indicator
Record Identification Codes
15.6.9.1 Position • 15-75
15.6.9.2 Not • 15-75
15.6.9.3 CZD Portion • 15-76
15.6.9.4 Character • 15-76
AND and OR
Format
Field Locations From and To
Decimal Positions
Field Name
Examples of Using Data Structures

15-63
15-63
15-64
15-64

15-65
15-65
15-65
15-66
15-67

15-71
15-71
15-72
15-72
15-74

15-77
15-79
15-80
15-81
15-81
15-83

15.6.15.1 Multiple Definitions of Storage Area • 15-83
15.6.15.2 Defining Subfields Within a Field or Subfield• 15-84
15.6.15.3 Reorganizing Fields in an Input Record • 15-85
15.6.15.4 Selecting the Internal Numeric Data Type for

15.6.16
15.6.17
15.6.18
15.6.19

Fields • 15-86
15.6. 15.5 Examples of Using Local Data Area • 15-88
Controi-Level Indicator
Matching Fields
Field-Record-Relation Indicator
Field Indicators

15-90
15-92
15-94
15-97

xvii

CALCULATION SPECIFICATION (C) 15-9Q
15.7 DESCRIPTION 15-98

15.7.1 Calculation Specification Format 15-98
15.7.2 Specification Type 15-99
15.7.3 Control Level 15-99
15.7.4 Indicators 15-1Q1
15.7.5 Factors 1 and 2 , 5-104
15.7.6 Operation Code 15-107
15.7.7 Result Field 15-107
15.7.8 Field Length 15-108
15.7.9 Decimal Positions 15-109
15.7.10 Half Adjust 15-109
15.7.11 Resulting Indicators 15-110
15.7.12 Comments 15-112

OUTPUT SPECIFICATION (0) 15-113
15.8 DESCRIPTION 15-113

15.8.1 Output Specification Format 15-113
15.8.2 Specification Type 15-113
15.8.3 File Name 15-114
15.8.4 AND and OR Lines 15-114
15.8.5 Record Type 15-116
15.8.6 ADD and DEL Options 15-118
15.8.7 Fetch Overflow or Release 15-119
15.8.8 Space Before and Space After 15-120
15.8.9 Skip Before and Skip After 15-121
15.8.10 Example 15-123
15.8.11 Indicators 15-123
15.8.12 Field Name 15-126
15.8.13 EXCPT Name 15-i27
15.8;14 Edit Codes 15-128
15.8.15 Blank After 15-131
15.8.16 End Position and Form 15-132
15.8.17 Format 15-134
15.8.18 Edit Code Modifiers, Constants or Form Names, and

Edit Words 15-135
15.8.18.1 Edit Code Modifiers• 15-135
15.8.18.2 Constants or Form Names• 15-137
15.8.18.3 Edit Words• 15-138

xviii

CHAPTER 16 OPERATION CODES 16-1

16.1 ARITHMETIC OPERATION CODES 16-1
16.1.1 ADD Operation 16-3
16.1.2 Z-ADD Operation 16-3
16.1.3 SUB Operation 16-3
16.1.4 Z-SUB Operation 16-3
16.1.5 MUL T Operation 16-3
16.1.6 DIV Operation 16-4
16.1.7 MVR Operation 16-4
16.1.8 SQRT Operation 16-4
16.1.9 XFOOT Operation 16-5
16.1.10 Example 16-5

16.2 MOVE OPERATION CODES 16-6
16.2.1 MOVE Operation 16-6
16.2.2 MOVEA Operation 16-7
16.2.3 MOVEL Operation 16-8
16.2.4 Example 16-9

16.3 SET OPERATION CODES 16-10
16.3.1 SETON Operation 16-10
16.3.2 SETOF Operation 16-11

16.4 SUBROUTINE OPERATION CODES 16-11
16.4.1 BEGSR Operation 16-12
16.4.2 ENDSR Operation 16-12
16.4.3 EXSR Operation 16-12
16.4.4 Example 16-13

16.5 BIT OPERATION CODES 16-13
16.5.1 BITON Operation 16-13
16.5.2 BITOF Operation 16-14
16.5.3 TESTB Operation 16-14
16.5.4 Example 16-15

16.6 COMP OPERATION CODE 16-16

xix

16.7 INPUT AND OUTPUT OPERATION CODES 16-17
16.7.1 CHAIN Operation 16-17
16.7.2 DSPL V Operation 16-19
16.7.3 Example 16-20
16.7.4 EXCPT Operation 16-21
16.7.5 FORCE Operation 16-22
16.7.6 READ Operation 16-23
16.7.7 SETLL Operation 16-24

16.8 BRANCHING OPERATION CODES 16-25
16.8.1 GOTO Operation 16-25
16.8.2 TAG Operation 16-26
16.8.3 Example 16-27

16.9 LOKUP OPERATION CODE 16-27
16.9.1 Searching Tables 16-28
16.9.2 Searching Arrays 16-30
16.9.3 Example 16-31

16.10 SUBPROGRAM OPERATION CODES 16-31
16.10.1 CALL Operation 16-32
16.10.2 EXTRN Operation 16-32
16.10.3 GIVNG Operation 16-33
16.10.4 PARM Operation 16-33
16.10.5 PARMD Operation 16-34
16.10.6 PARMV Operation 16-35
16.10.7 PUST Operation 16-35
16.10.8 Example 16-36

16.11 TIME OPERATION CODE 16-37

APPENDIX A CHARACTER SETS A-1

xx

APPENDIX B DIFFERENCES BETWEEN VAX RPG II AND
Pi:>P-11 RPG II B-1

APPENDIX C VAX PERFORMANCE COVERAGE ANALYZER APPLIED
TO A VAX RPG II PROGRAM C-1

INDEX

FIGURES

1-1 Logical Flow of the VAX RPG II Logic Cycle

1-2 Detailed VAX RPG II Logic Cycle Flowchart

1-3 Logic Cycle for the Matching-Fields Routine

1-4 Logic Cycle for Chained and Demand Files

1-5 Logic Cycle for Overflow Processing

1-6 Logic Cycle for Look-Ahead Processing

4-1 Sample Compiler Listing

8-1 Sequential File Organization

8-2 Direct File Organization

8-3 Indexed File Organization

8-4 Index Key Value

8-5 Sequential File Access Within Limits

8-6 Random Access by ADDROUT File

8-7 An ADDROUT File

8-8 Adding Records to the End of a Sequential File

8-9 Adding Records to a Direct File

8-10 Using Matching Fields For Multifile Processing

1 0-1 Table Input Record

1 0-2 Related Tables

11-1 Array Input Record

11-2 Related Arrays

14-1 Format of a Character String

14-2 Address of a String

14-3 Word Data Type

1-3

1-10

1-18

1-20

1-21

1-22
4-2

8-4

8-5
8-5

8-6

8-11

8-18

8-19

8-28

8-29

8-42

10-4

10-4

11-5

11-6

14-3
14-3

14-4

xxi

14-4 Longword Data Type 14-4

14-5 Packed Decimal Data Type 14-5

14-6 Overpunched Decimal Data Type (123) 14-7

14-7 Overpunched Decimal Data Type (-123) 14-8

TABLES
2-1 RPG/EDIT Command Qualifiers 2-3

2-2 VAX RPG II Editor Define Key Defaults 2-13

2-3 VAX RPG II Keynames for Valid Definable Keys 2-39

3-1 VAX RPG II Command Qualifiers 3-5

5-1 Debugger Commands and Keywords 5-4

8-1 File Access Methods 8-7

8-2 Matching Field Lengths 8-37

8-3 Matching Primary and Secondary File Field Values 8-41

8-4 Matching Field Values 8-47

8-5 Processing Records with Matching Fields 8-47

11-1 Array Element Values 11-14

11-2 Array Elements in Calculations 11-14

12-1 VAX/VMS Run-Time Library Facilities 12-3

12-2 Groups of VAX/VMS System Services 12-3

12-3 VAX/VMS Data Structures 12-9

14-1 Overpunched Decimal Representation of All but the Least
Significant Digits 14-6

14-2 Overpunched Decimal Representations of Least Significant
Digits and Signs 14-6

15-1 Modes of Processing for Primary, Secondary, and Demand Files 15-30
15-2 Modes of Processing for Record-Address Files 15-32

15-3 Modes of Processing for Input or Update Chained Files 15-33

15-4 Expansion Factor and Block Length Values 15-45

15-5 File Sharing 15-46

15-6 Edit Codes and Examples 15-130

16-1 Summary of Operation Codes 16-38

xx ii

Preface

This manual describes the features, uses, constructs, and syntax of the
VAX RPG II programming language on VAX/VMS systems.

Structure of This Document

This manual contains 16 chapters and 3 appendixes.

Chapter 1 explains the VAX RPG II logic cycle.

Chapter 2 explains how to use the VAX RPG II editor to create and
edit RPG II programs.

Chapter 3 explains how to compile, link, and run programs.

Chapter 4 explains the format of a listing file.

Chapter 5 explains how to use the VAX/VMS Debugger to debug VAX
RPG II programs.

Chapter 6 explains how to perform screen activities with VAX RPG II
programs.

Chapter 7 explains how to use VAX RPG II indicators.

Chapter 8 explains how to manage files.

Chapter 9 explains those elements that affect printer output files.

Chapter 10 explains how to create and access tables.

Chapter 11 explains how to create and access arrays.

Chapter 12 explains how to use the VAX RPG II CALL interface to
access VAX/VMS Run-Time Library procedures, system services, and
subprograms.

Chapter 13 explains how to improve the efficiency of programs.

Chapter 14 explains VAX RPG II elements and data types.

Chapter 15 lists specifications, allowable entries, and their functions.

Chapter 16 explains how to use VAX RPG II operation codes.

xx iii

Appendix A lists the VAX RPG II character sets.

Appendix B explains the differences between VAX RPG II and PDP-11
RPG II.

Appendix C. shows the VAX Performance Coverage Analyzer applied
to a VAX RPG II program~

Intended Audience

This manual is intended for use by programmers familiar with computer
programming fundamentals and the RPG II language. It is designed to be
used both as a reference manual and as a user's guide.

Conventions Used in This Document

Conventions

I
[]

{}

$SHOW TIME
05-AUG-1986
11:55:22

Meaning

The VAX RPG II editor cursor is represented by a box.

Brackets enclose an optional portion of a format.

Braces enclose a mandatory portion of a format.

A vertical ellipsis indicates that not all of the program lines
in an example are shown.

Command examples show all output lines or prompting·
characters that the system prints or displays in· black letters.
All user-entered commands are shown in red letters.

Associated Documents

xx iv

If you need additional information on VAX/VMS you should refer to the
following mariuals:

• VAX/VMS Debugger Reference Manual
• VAX/VMS Linker Reference Manual
• VAX/VMS Librarian Reference Manual

• VAX/VMS Run-Time Library Routines Reference Manual
• VAX/VMS System Services Reference Manual
• VAX/VMS Utility Routines Reference Manual
• VAX/VMS System Manager's Reference Manual
• VAX/VMS Record Management Services Reference Manual

xxv

Developing VAX RPG II Programs on VMS

This part of the manual provides information on the devel
opment of VAX RPG II programs:

• Creating the source
• Using the VAX RPG II editor
• Compiling, linking, and running the program
• Interpreting a VAX RPG II compiler listing
• Using the VAX/VMS Debugger

Chapter 1

Understanding the VAX RPG II Logic Cycle

VAX RPG II is a language processor that provides a convenient and effi
cient means of preparing a wide variety of reports as well as performing
other commercial data processing tasks. VAX RPG II is an extended imple
mentation of the RPG II language that was developed by IBM; it includes
DIGITAL extensions for integration with the VAX/VMS architecture. VAX
RPG II runs on the VAX/VMS or MicroVMS operating system and con
sists of a compiler, special editor, run-time support, conversion utility for
existing screen definitions, and sample programs showing use of VAX RPG
II in screen handling applications.

VAX RPG II is a nonprocedural language; that is, every program compiled
by the VAX RPG II compiler executes according to a fixed plan. Unlike a
procedural language such as COBOL, the logic of this plan is not supplied
by the programmer, but is built into the compiler. This built-in logic
is called the VAX RPG II logic cycle. The execution of a VAX RPG II
program consists of a number of iterations of the logic cycle.

You provide directions to the program using VAX RPG II specifications.
Specifications are the record-oriented instructions by which you define
input and output formats, arithmetic processes, and special operations to
be performed depending on the data input and desired output. There are
seven different specification types. Each specification is structured in an
80-column format; the columns are grouped into fields according to the
purpose of the specification. You choose a specification according to the
program function you wish to do and supply input in the fields according
to the specific application. See Chapter 15 for an explanation of each
specification. The VAX RPG II specifications you include determine what
happens within the various phases of the logic cycle, but do not change
the basic sequence of program execution.

Understanding the VAX RPG II logic Cycle 1-1

For example, you can write an Input specification to program VAX
RPG II to recognize and process a particular input file record type; you
cannot program VAX RPG II to read three input records in a row, print a
report heading, load a table, write four different output records, and then
perform total calculations. This series of steps, while perfectly acceptable
in a COBOL program, does not fit into the structure of the VAX RPG II
logic cycle.

The VAX RPG II fixed logic cycle was· designed specifically to accom
modate the sequence of operations needed to generate most common
business reports and file maintenance functions. However, the fixed na
ture of the VAX RPG II logic cycle does not prevent you from controlling
the set of functions performed for each input record and, to some extent,
the sequence and timing of these functions. This control is provided by
the use of indicators. For example, by setting various indicators on or off
when certain conditions occur, you can affect the sequence of program
execution within the phases of the normal logic cycle. See Chapter 7 for
more information on indicators. Therefore, to write effective VAX RPG II
specifications and to take advantage of what flexibility and control VAX
RPG II does provide, you must thoroughly understand the structure and
timing characteristics of the overall VAX RPG II logic cycle, and recognize
both VAX RPG II's special capabilities and its limitations.

There are 10 fundamental operations that are performed during the
operation (and reiterations) of the VAX RPG II logic cycle, as shown in
Figure 1-1 and identified in the accompanying keyed list.

1-2 Understanding the VAX RPG II Logic Cycle

Figure 1-1: Logical Flow of the VAX RPG II Logic Cycle

FIRST CYCLE

ZK-5538-86

Understanding the VAX RPG II Logic Cycle 1-3

Key to Figure 1-1:

In the FIRST CYCLE, several initialization tasks are accomplished. Files
are opened, the local data area is loaded, the system date is obtained from
the system, and counters, tables, and arrays are initialized. The program
then transits.into the NORMAL CYCLE.

0 When the NORMAL· CYCLE is entered, p~ogram instruction lines
with special conditions for Output specifications are processed.

8 All control-level and record-identifying indicators are set off.
e A record is read, and the appropriate record-identifying indicator is

set on.
e If the control field of the record just read is different from the control

field of the previous record, a control break occurs. When a control
break does occur, the appropriate control-level indicator is set on, plus
all lower control-level indicators.

9 If VAX RPG II detects that this is the first iteration after the FIRST
CYCLE, it branches to step 8.

8 Total calculations (conditioned by control-level indicators in the
Calculation specifications) are processed i~ the appropriate control,.
level indicators are on.

8 If totals are requested in the program, the program does total output
operations.

0 If the last-record indicator is on, the LAST CYCLE is entered alld the
program ends. · · ·

0 Detail calculations and program output are processed from data read
in this cycle.

4D All remaining detail calculations are processed on the data from
the c~rrent record read at the beginning of the NORMAL CYCLE.
Then, the cycle continues around, repeating while there are records to
process.

Upon detecting the last-record indicator, the program enters t~e LAST
CYCLE, does one-time cleanup work including total calculations and total
output operations, and the program ends. ·

1-4 Understanding the VAX RPG II Logic Cycle

1. 1 The VAX RPG II GeQeral Logical Sequence

Every VAX RPG II program follows the same sequence of execution steps
which form the general or normal logic cycle. Some of the programs
you write will require you to use one or more of the additional operations
of VAX RPG II: matching fields (described in Section 8.11, chaining (de
scribed in Section 16.7.1), overflow processing (described in Section 9.3.2),
and look-ahead processing (described in Section 15.6.8). Each of these
additional operations executes according to the fixed logic cycle within the
general logical sequence of the program. These functions are discussed
later in this chapter.

The VAX RPG II logic cycle is executed once for each input record. The
logic cycle consists of the following three steps, performed in order for
each record:

1. Inputting a record

2. Performing calculations
3. Outputting one or more records

Each logic cycle begins when a new record is input and ends just before
the next record is input. The VAX RPG II specifications you develop
determine the range and type of specific functions performed during each
phase. During the calculation and output steps within each cycle, there
are two distinct timing phases:

• Total time-operations are performed on summary data accumulated
from a group of related records.

• Detail time-operations are performed on individual records.

Sections 1.4.1 and 1.4.2 describe total-time and detail-time characteristics
and operations.

The first and last iterations of the VAX RPG II logic cycle are somewhat
different from all other iterations. Sections 1.2 and 1.3 describe these
differences and explain how you can take advantage of them.

Understanding the VAX RPG II Logic Cycle 1-5

1.2 The First Cycle

When program execution begins and before the first input record is read,
several one-time-only operations are performed, which constitutes the
first cycle. You can exert control over this process by providing detail
time output records conditioned by the first-page (lP) indicator, and by
using Output specifications with either no conditioning indicators or with
all negative conditioning iildicators. (See Chapter 7 for more details on
conditioning indicators.) During the first cycle, VAX RPG II performs the
following initialization operations:

• Obtains the current (system) date (UDATE, UDAY, UMONTH, and
UYEAR (see Chapter 9).

• Loads the local data area.
• Opens all files (see Chapters 6 and 8).
• Loads preexecution-time tables and arrays (see Chapters 10 and 11).
• Initializes page number counters.

• Prints heading and detail lines conditioned by the lP indicator, by all.
negative indicators other than the lP indicator, and by no indicators.

Although all iterations of the logic cycle (other than the first) include a
total-time phase, VAX RPG II bypasses all total-time calculations and
total-time steps 4uring the first cycle unless the last-record (LR) indicator
is on. This behavior, like the logic cycle, is built into VAX RPG II.

After initialization tasks are performed, VAX RPG II reads the first record
in the primary file, if used, and then reads the first record in each sec
ondary file, if used, and determines the type of each record read. (The
distinction between primary, secondary, and demand files is complex and
is discussed in Chapters() and 15.)

1-6 Understanding the VAX RPG II Logic Cycle

1.3 The Last Cycle

The last cycle is performed after all the records you specified for pro
cessing have been read from all primary and secondary files. When the
last record from the last file has been read, VAX RPG II sets on the LR
indicator and all the control-level indicators (Ll through L9). Then, after
this last record has been processed, VAX RPG II performs the following
operations:

• Performs total-time calculations.

• Writes total-time output.
• Outputs any tables or arrays that have output files associated with

them.

• Closes all files. (Some files are left to be closed automatically by the
VAX Record Management System (VAX RMS) when the program ends
execution.) ·

• Outputs the local data area.

• Ends program execution.

1.4 A Normal Cycle

A normal cycle (sometimes referred to as the general cycle) in a VAX
RPG II program can be defined as any cycle but the first or the last.
During a normal cycle, VAX RPG II performs all operations necessary to
process a single input record. Because of the nature of most VAX RPG
II applications, a normal program cycle includes two special phases
total-time and detail-time. Total time occurs before detail time because
detail time is for the previous record. When the first record is read, there
is no previous record; hence there is no detail time. Note that the cycle
is a closed loop. In a normal cycle, VAX RPG II performs the following
sequence of steps:

1. Outputs heading lines, if specified
2. Outputs detail-time information pertaining to the previous record

3. Reads an input record

4. Performs total-time calculations for the previous record, if required

5. Performs total-time output

Understanding the VAX RPG II Logic Cycle 1-7

6. Checks the LR indicator; if it is on, VAX RPG II terminates the
program (see Section 1.3)

7. Processes the record read in step 3; performs all detail-time
calculations ·

Steps 4 and 5 constitute total time; steps l, 2, and 7 constitute detail time.

This list of steps in a normal cycle is an overview only. Figure 1-2 is a
detailed flowchart of a normal VAX RPG II logic cycle.

1.4. 1 Total Time

During total time, VAX RPG II checks which control-level indicators (Ll
through L9) you have defined and the control field you have associated
with each. (See Chapter 7 for details on using control-level indicators.)
For example, if your application involves the generation of a monthly
sales report, you may have associated indicator L9 with the grand total
of monthly sales, indicator LS with total sales by region, indicator L7
with total sales by district office, and indicator L6 with total sales by
salesperson. This is shown in the following example:

Field length
Control level
I

I Deci~al positions
I !Half adjust <H>
I II I Indicators

I I
I I Factor
I I 1

C I NxxNxxNxx I

Operation
I
I
I
I

Factor
2
I

I llResulting
Result! llindicators
field I II+ - 0
I I II><=+- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** *
CL9
CL8
CL7

* MONTH
REGION
DIST

i . *
HULT 12
ADD REGION
ADD DIST

* *--*** * * *
GRAND
TOTREG
TOTDIS

ZK-4386-85

If during a particular cycle VAX RPG II determines that the salesperson
identification number in the record just read is different from the sales
person number in the previous record, a control break occurs at the
salesperson total level. At this control break, your program outputs the
accumulated total sales for the salesperson whose number was found in
the previous record.

1-8 Understanding the VAX RPG II Logic Cycle

You might print each person's name and sales total on a separate line. Or,
you might choose to print a page heading (with a date), and then print
a salesperson's total sales, thus providing a separate one-page report for
each salesperson. The Output and Calculation specifications you develop
determine the contents, order, and appearance of your report.

During another cycle, it might be determined that the region identifier of
the record just read is different from the region number in the previous
record. Given the control-level indicators described in the preceding
example (L9, L8, L7, L6), this means that a three-level control break has
occurred. In this situation, you must first output the accumulated total for
an individual salesperson (L6), then the accumulated total for a district
office (L7) and, finally, the accumulated total for the region (L8).

Similarly, after the last input record in the file is read, a four-level control
break occurs automatically. At that point, your program must first output
the accumulated total for the last individual salesperson in the last district
office (L6); then, the accumulated total for the last district office (L7); then,
the accumulated total for the last region (L8); and, finally, the accumulated
grand total of all sales for the month (L9).

After all control breaks have occurred, total time ends and detail time
begins. Detail-time operations are for the record just read.

1.4.2 Detail Time

During detail time, your program performs operations specific to each
individual record. In the example described in Section 1.4.1, each time a
record is read, the detail-time operations might consist of the following
steps:

1. Printing an output line on your report. For example, each record in
your file might contain a weekly sales figure for a particular salesper
son. The report would list the week's beginning and ending dates and
the sales figure.

2. Adding the sales figure to all active accumulators. Then, when the
next control break occurs, each accumulator will contain the correct
amount.

3. Performing any other operations you defined in your specifications.
These might include moving data fields and handling errors.

Figure 1-2 is a detailed flowchart of a complete, normal VAX RPGH pro
gram cycle. Each processing and decision box is numbered; the numbers
are keyed to the annotations that immediately follow the figure.

Understanding the VAX RPG II Logic Cycle 1-9

Figure 1-2: Detailed VAX RPG II Logic Cycle Flowchart

1. First cycle

Get date if UDATE, UDAY, UMONTH, or UYEAR used.
Load pre-execution-time tables and arrays.
Open all files.

l
2. Beginning of normal cycle

•DETL
Perform heading. detail, and fetched overflow output.
Set 1P indicator off.

3.

Overflow
routine.

>-----y-es_~ Terminate

4.

5.

6.

7.

Set off control-level and any record-identifying
indicators.
Set off overflow indicators unless they were set on
during detail-time calculation or output operations
of previous cycle.

yes

Read input record from the last file processed, if
required. (Not required for input files with
look-ahead fields, or on the first cycle).
For the first cycle, read and determine record type
and sequence of the first record in all primary and
secondary files.

1-1 0 Understanding the VAX RPG II Logic Cycle

program.

yes

no

(Continued on next page)

Figure 1-2 (Cont.): Detailed VAX RPG II Logic Cycle
Flowchart

8.

9.

10.

11.

12.

13.

14.

Determine record type and check sequence.

Determine which file to process.
If a FORCE operation was specified, use unless
the file is at its EOF.
If no FORCE operation was specified, call the
matching field routine.

Set on the record-identifying indicator
for the selected record.

Save contents of the control fields.

yes

yes

no

Matching
field routine.

(Continqed on next page)

Understanding the VAX RPG II Logic Cycle 1-11

Figure 1-2 (Cont.): Detailed VAX RPG II Logic Cycle
Flowchart

15.

16.

17.

18.

19.

Set on control-level indicators,
as required.

•TOTC
Perform total-time calculations.

•TOTL
Perform total-time output and
fetched overflow output.

no

Overflow
routine.

Perform table and '

>-----ye_s_~~~~=: t~~~i~~t~lose
program.

20.

no

21.

Perform overflow output. •OFL
Overflow routine.

(Continued on next page)

1-12 Understanding the VAX RPG II Logic Cycle

Figure 1-2 (Cont.): Detailed VAX RPG II Logic Cycle
Flowchart

22.

23.

24.

Set MR indicator on or off, as required.

Set off command key indicators

Set on command key indicator corresponding to
command key pressed.

Extract data fields from the record to be processed.
Set field-record-relation indicators on or off, as
required.

25.

no

26.

Perform look-ahead operation.

27.

•DETC
Perform detail-time calculations.

Return to the beginning of the normal cycle (step 2.).

ook-ahead routine

ZK-1571-84

Understanding the VAX RPG II logic Cycle 1-13

Key to Figure 1-2:

0 This step is executed only during the first cycle. It initializes your
program for execution. Initialization consists of retrieving the date
(if you specified UDATE, UDAY, UMONTH, or UYEAR), opening all
files, and loading all preexecution-time taples and arrays.

8 VAX RPG II writes heading and detail lines (identified by H or D in
column 15 (Type) of the Output specification). Heading and detail
lines are always executed at the $ame time. If conditioning indicators
are specified, the conditions for the indicator must be satisfied. If
the fetch overflow logic is specified and the overflow indicator is on,
RPG II writes the appropriate overflow lines. If the lP indicator is on
(during the first cycle only), VAX RPG II prints all lines conditioned by
it, then sets the lP indicator off. VAX RPG II executes this step at the
beginning of the program so that heading lines can be printed before
processing begins.

9 VAX RPG II checks whether any halt indicators (Hl through H9)
are on; if any are, the program terminates. If you do not want your
program to terminate here, you must set all halt indicators off previous
to this step. You can set halt indicators on, however, at any time
during the program.

0 VAX RPG II sets control-level indicators (Ll through L9) and all
indicators used as record-identifying indicators off. VAX RPG II also
sets overflow indicators (OA through OG, and OV) off, unless they
were set on during detail time (detail-ti~e calculations or output
operations) in the preceding cycle. All other types of indicators that
are on remain on.

CD Here, VAX RPG II determines whether the LR indicator is on. If it
is, RPG H branches to step 15 and sets on control-level indicators L1
through L9, if used.

0 VAX RPG II determines whether a primary file was specified by the
program. If not, VAX RPG II proceeds directly to step 16.

0 If required, VAX RPG II reads an input record from the last primary
or secondary file processed. If this was an input file with look-ahead
fields, the record is already available; therefore, no read operation may
be necessary at this time. On the first cycle, a record is read from each
primary and secondary file.

0 VAX RPG II tests the file just read for end-of-file. If end-of-file has
been encountered, the program bypasses step 9.

CD If VAX RPG II reads a record from a file, the record type is determined
and the record sequence is checked. If the record type cannot be
determined, or the record is out of sequence, the program terminates.

1-14 Understanding the VAX RPG II Logic Cycle

~ In this step, VAX RPG II determines which file to process. If a FORCE
operation was executed during the previous cycle, the forced file
is selected for processing. (All records processed with a FORCE
operation are processed with the matching-records (MR) indicator set
off.) However, if the forced file is at end-of-file (EOF), the normal
multifile logic selects the next record for processing. If no forced
file was specified, VAX RPG II determines whether matching fields
were specified. If so, the matching-fields routine is given control (see
Figure 1-3). Otherwise, all records in a primary file are processed
first, then the records from each secondary file in order of their
specification.

4D Here, VAX RPG II determines whether the LR indicator should be set
on. The LR indicator is set on when the program has reached the end
of all the files that you have specified for processing until the end-of
file, and when all the records from secondary files that match the last
primary record have been processed. If the LR indicator should be set
on, VAX RPG II branches to step 15 and sets on indicators L1 through
L9.

48 VAX RPG II sets on the record-identifying indicator for then .Jrd
selected for processing.

G> VAX RPG II determines whether the record selected for processing
has caused a control break to occur. A control break occurs when the
value in the control field of the record being processed differs from
the previous value of the control field. See Section 1.4.1 for more
information.

4D If a control break has occurred, VAX RPG II saves the contents of all
appropriate control fields.

~ If a control break has occurred, VAX RPG II sets the appropriate
control-level indicator (Ll through L9) on; at the same time,
VAX RPG II sets all lower-level control-level indicators on. The L1
through L9 indicators can be used for conditioning only if they have
been defined as conditioning indicators.

~ VAX RPG II determines whether total-time calculation and output
operations should be performed. If control-level indicators are not
specified in columns 59 and 60 (control-level) of the Input specifica
tion, VAX RPG II bypasses total-time calculation and output operations
during the first cycle only; after the first cycle, VAX RPG II performs
total-time calculation and output operations for every cycle.

If control-level indicators are specified, VAX RPG II bypasses total
time calculation and output operations until after the first record with
control fields is processed. When the LR indicator is on, VAX RPG II
always performs total-time calculation and output operations.

Understanding the VAX RPG II Logic Cycle 1-15

'8 In this step, VAX RPG II performs all total-time calculations condi
tioned by a control-level indicator or containing LO in columns 7 and
8 of the Calculation specification. Total-time. calculations can include
CHAIN operations, in which a record is immediately retrieved horn
an input file (see Figure 1-4), or READ operations, in which the next
record is retrieved from a demand file.

e Here, VAX RPG II writes all total-time output lines that satisfy the
conditions specified by the indicators. If an overflow indicator (OA
through OG, or OV) is on, and fetch overflow is specified, VAX RPG
II writes the overflow lines as well.

~ VAX RPG II determines whether the LR indicator is on. If it is on,
VAX RPG II performs table and array output, closes all files, and
terminates the program.

G> VAX RPG II checks to determine whether any overflow indicators (OA
through OG, or OV) are on.

a. If any overflow indicators are on, the overflow routine is given control
(see Figure 1-5). VAX RPG II outputs all lines conditioned by those
overflow indicators that are on. However, VAX RPG II outputs these
lines only if they were not output by fetch overflow logic (step 2 or
step 18).

0 VAX RPG II determines whether the MR indicator should be set
on. If this is a multifile program and the record being processed is
a matching record, VAX RPG II sets the, MR indicator on; it remains
on for the duration of the cycle during which the matching record is
processed. If these conditions are not present, VAX RPG II sets the
Mk indicator off.

fl If the program contains a WORKSTN file, VAX RPG II sets off the
KA through KZ and KO through K9 indicator_s. If form input was
terminated by a command key, VAX RPG II sets on the corresponding
command key indicator. Note that if an error occurred on the read,
the command key indicators are not changed.

e VAX RPG II extracts data fields from the record to be processed and
sets the field indicators on or off, as appropriate, for those fields.

9 VAX RPG II then determines whether look-ahead fields are specified
in the last file processed and whether it is an input file.

fl& If the last file processed was an input file with look-ahead fields, VAX
RPG II passes control to the VAX RPG II look-ahead routine (see
Figure 1-6). In this routine, VAX RPG II retrieves the look-ahead
record and extracts the look-ahead fields. If look-ahead fields are not
specified, VAX RPG II continues with detail-time calculations
(step 27).

1-16 Understanding the VAX RPG II Logic Cycle

f> This is the detail-time calculations step. Here, VAX RPG II performs
all conditioned detail-time calculations and subroutines. The calcu
lations may include CHAIN and READ operations (see Figure 1-4).
Detail-time calculations complete the VAX RPG II logic cycle. Then,
the cycle branches to step 2 to begin again.

1.5 VAX RPG II Detail Program Logic Cycle

This section consists of annotated flowchart diagrams that show, in detail,
various routines within the VAX RPG II logic cycle. The following figures
are provided:

• Figure 1-3 shows the VAX RPG II matching-fields routine.

• Figure 1-4 shows VAX RPG II file processing for chained and demand
files.

• Figure 1-5 shows VAX RPG II overflow processing.

• Figure 1-6 shows VAX RPG II look-ahead processing.

Understanding the VAX RPG II Logic Cycle 1-17

Figure 1-3: Logic Cycle for the Matching-Fields Routine

1.

2.

3.

4.

5.

Determine the file
to be processed.

yes

Move the matchi11g fields
to the temporary buffer.

Return to program.

1-18 Understanding the VAX RPG II Logic Cycle

no

Issue a run-time
error message.

ZK-1458-83

Key to Figure 1-3:

0 VAX RPG II determines whether the program uses more than one pri
mary and secondary file. If multifile processing is in effect, processing
continues with step 2. Otherwise, the program branches to step 3.

8 VAX RPG II compares the matching fields to determine which file is
to be processed. VAX RPG II extracts the matching fields and checks
their sequence.

8 If the matching fields are not in sequence, a run-time error occurs and
the program terminates.

0 VAX RPG II moves the matching fields into a temporary buffer. The
next record is selected, based on the value of the matching fields.

0 VAX RPG II returns to the program.

Understanding the VAX RPG II Logic Cycle 1-19

Figure 1-4: Logic Cycle for Chained and Demand Files

1.

3.

Retrieve the record.

no

Set on the record-identifying
indicator.

no '•
Issue a run-time error.

yes

Set on resulting indicator.

Extract the specified fields and
set on field indicators, if used.

4.

Return to program.

ZK-1459-83

Key to Figure 1-4:

0 VAX RPG II retrieves the next record in the file specified by the
CHAIN or READ operation code. If the record is not found on a
CHAIN operation or an end-of-file occurs during a READ operation
and a resulting indicator is not specified, a run-time error occurs. If
the record is not found on a CHAIN operation or an end-of-file occurs
during a READ operation and a resulting indicator has been specified,
the indicator is set on and control returns to the program.

8 VAX RPG II sets on the record-identifying indicator associated with
the chained or demand file for the record type read.

1-20 Understanding the VAX RPG II Logic Cycle

C) VAX RPG II extracts the fields from the record just retrieved. Also,
VAX RPG II sets on any field indicators associated with the record.

8 VAX RPG II returns to the program.

Figure 1-5: Logic Cycle for Overflow Processing

1.

2.

3.

Key to Figure 1-5:

no

Output lines conditioned
by the overflow indicator.

Return to the program.

yes

ZK-1460-83

0 VAX RPG II uses the fetch overflow routine to determine whether
the overflow lines were written previously. If the overflow lines were
written previOusly, the program branches to the specified return point;
otherwise, it continues with step 2.

8 VAX RPG II evaluates all overflow lines and writes those lines that
satisfy the conditions of the indicators.

C) VAX RPG II returns to the program.

Understanding the VAX RPG II Logic Cycle 1-21

Figure 1-6: Logic Cycle for Look-Ahead Processing

1.

2.

3.

Retrieve next record
for this file.

yes Set all look-ahead
fields to 9s.

Extract look-ahead
fields.

Return to program.

ZK-1461-83

Key to Figure 1-6:

0 VAX RPG II reads the next record for the file being processed. If the
end-of-file has been reached, all look-ahead fields are filled with 9s
and control is returned to the program.

8 VAX RPG II extracts the look-ahead fields from the record.
9 VAX RPG II returns to the program.

1-22 Understanding the VAX RPG II Logic Cycle

Chapter 2

Using the VAX RPG II Editor

This chapter explains how to use the VAX RPG II editor to create, edit,
and read (or view) VAX RPG II programs.

The VAX RPG II editor is available on the VTlOO, VT200, and VKlOO
(GIGI) terminals.

The VAX RPG II editor allows overstriking; that is, you can change a
program line by placing the cursor in the column where you want to make
a change and typing a new character, without affecting any characters to
the right of the cursor.

The cursor is represented as a box (I) in the examples throughout this
chapter.

All examples in this chapter assume a terminal page size of 24 lines,
unless otherwise noted.

2. 1 Qualifiers

Invoke the VAX RPG II editor by typing the RPG/EDIT command.
To create a file, provide a file specification, as shown in the following
example:

$ RPG/EDIT FIRSTTRY

You do not have to supply the RPG file type, because it is the default.

To edit or read a file, include the name of the file you want to edit or
read when you invoke the VAX RPG II editor. See Section 2.8.2 for an
example.

Using the VAX RPG II Editor 2-1

The following error message may be displayed when you invoke the VAX
RPG II editor:

%TPU-E-NONANSICRT. SYS$INPUT must be an ANSI CRT

If this error occurs, leave the VAX RPG II editor and make sure that the
VAX/VMS terminal characteristics are set properly for your terminal by
typirig the SET TERMINAL/INQUIRE command.

Wlien you invoke the VAX RPG II editor, if the number of columns
(SET TERMINAL/WIDTH=m) is less than 80 or the number of lines
(SET TERMINAL/PAGE=n) is less than 6, the VAX RPG ·II editor will
display the following message, then will exit:

At least 6 lines and 80 columns on the screen are required

See the VAX/VMS DCL Dictionary for information on the SET TERMINAL
command.

Note that .the SET TERMINAL command must be entered before invoking
the VAX RPG II editor.

If you are using a VKlOO (GIGI) terminal and the terminal screen does
not appear to update correctly, leave the VAX RPG II editor and type the
SHOW TERMINAL command to make sure that the device is a VK100~ If
it is not, type the SET TERMINAL/INQUIRE command to make sure that
the VAX/VMS terminal characteristics are set properly for your terminal.

If the file you specify when invoking the VAX RPG II editor is a new file,
the VAX RPG II editor displays the following message:

File not found

If the file you specify when invoking the VAX RPG II editor is an existing
file, the VAX RPG II editor displays the following message:

n lines read from file device:[directory]filename.type;version

Finally, the VAX RPG II editor displays the following message:

Press the PF2 key to get help information

If the terminal page size is less than 17 lines, the initial HELP message is
not displayed. If HELP is requested using the HELP key or a SET HELP
command in a start-up command file, and the terminal page size is less
than 17 lines, the following message is displayed and the usual HELP
action will not be performed:

At least 17 lines on the screen are required by the editor to provide HELP

2-2 Using the VAX RPG II Editor

Table 2-1 lists the qualifiers that you can use with the RPG/EDIT com
mand. If you precede a qualifier with /NO, that qualifier is not in effect.

Table 2-1: RP~/EDIT Command Qualifiers
Qualifier

/COMMAND

/CREATE

/JOURNAL

/OUTPUT

/READ_ONLY

/RECOVER

/START_POSITION

Negative Form

/NOCOMMAND

/NOCREATE

/NOJOURNAL

/NOOUTPUT

/NOREAD_ONL Y

/NO RECOVER

/NOSTARLPOSITION

Default

/COMMAND=RPGINI

/CREATE

/JOURNAL

/OUTPUT

/NOREAD_ONL Y

/NO RECOVER

/START_POSITION=(l, l)

Sections 2.1.1 through 2.1.7 describe the qualifiers and their use.

2.1.1 /COMMAND Oualifier

The /COMMAND qualifier causes the VAX RPG II editor to execute a
specified file in the start-up command file. Its format is as follows:

/COMMAND[=file-spec]

The VAX. RPG II editor reads commands from any file specified by
the qualifier. Each command in the specified file is treated as if the
/COMMAND qualifier were used.

The /COMMAND qualifier is present by default, with a default value of
RPGINI. If the /NOCOMMAND qualifier is used, then no command file
is executed. See Section 2.7.2 for information on start-up command files.

Using the VAX RPG II Editor 2-3

2.1.2 /CREATE Qualifier

The /CREATE qualifier creates a file for the editing session. If the
specified file already exists, that file is opened. Its format is as follows:

/CREATE

The /CREATE qualifier is present by default. If the /NOCREATE qualifier
is used, the file is not created. However, if the file already exists, it is
opened.

2.1.3 /JOURNAL Qualifier

The /JOURNAL qualifier creates a journal file for the current editing
session. Its format is as follows:

/JOURNAL[=file-spec]

If you should leave an editing session abnormally, you can use the journal
file to reexecute all the commands you issued during the session. To do
this, type the RPG/EDIT /RECOVER command.

The /JOURNAL qualifier is present by default. If you do not provide a
file specification with /JOURNAL, the VAX RPG II editor creates a journal
file with the same name as your input file and the default file type JOU.

2.1.4 /OUTPUT Qualifier

The /OUTPUT qualifier defines the name of the output file. Its format is
as follows:

/OUTPUT[=file-spec]

The /OUTPUT qualifier is the default. If you do not provide a file
specification with /OUTPUT, the VAX RPG II editor creates an output file
with the same node, device, directory, name, and type as the input file,
whose version number is one higher than the highest existing version of
the input file.

If you use the /NOOUTPUT qualifier, the VAX RPG II editor does not
create an output file. In this case, you must either use the QUIT command
or specify a file specification with the EXIT command to leave the VAX
RPG II editor.

2-4 Using the VAX RPG II Editor

2.1.5 /READ-ONLY Qualifier

The /READ_ONL Y qualifier tells the VAX RPG II editor not to create
a journal file or an output file for the file you are currently editing. Its
format is as follows:

/READ_ONLY

You can use the /READ_ONLY qualifier when you want to view a file
without changing its contents. In this case, you must either use the QUIT
command or specify a file specification with the EXIT command to leave
the editor.

The /NOREAD_QNL Y qualifier is the default and automatically creates
a journal file and output file for the file you are currently editing (unless
you leave the VAX RPG II editor using the QUIT command).

Using the /READ_ONL Y qualifier has the same effect as using both the
/NOOUTPUT and the /NOJOURNAL qualifiers with the RPG/EDIT
command.

2.1.8 /RECOVER Qualifier

The /RECOVER qualifier reads the commands from a journal file and
reexecutes all the edits you made during an editing session. Its format is
as follows:

/RECOVER

When the recovery is done, the VAX RPG II editor responds with:

Recovery complete

At this time, you can continue editing your file.

If the name of the recovery journal file is different from the default
(the same file name as the input file with the JOU file type), use
/JOURNAL=file-spec and /RECOVER to specify another name, as shown
in the following example:

$ RPG/EDIT/JOURNAL=FILE1.JOU/RECOVER FILE2.RPG

In this example, the journal file name is FILEl.JOU, and the name of both
the input and output files is FILE2.RPG. If you do not use /JOURNAL,
the journal file name is FILE2.JOU.

The /NORECOVER qualifier is the default.

Using the VAX RPG II Editor 2-5

2.1. 7 /START-POSITION Qualifier
. .

The /START_pQSITION qualifier determines where the VAX RPG II
editor starts in the editing buffer. Its format is as follows:

/START_POSITION[=(line,column)]

The /START_posiTION qualifier is the default. The setting is line 1,
column 1.

The /NOSTART_pQSITION qualifier is equivalent to
START_pQSITION=(l, l).

2.2 Thi Editor Screen

The VAX RPG II editor screen consists of the following components:

• The HELP wiridow

• An 80-column ruler

• Tab stops

• The editing window

• The prompt line

• The message line

Note that when you use a terminal. without scrolling regions (for example,
VKlOO (GIGI)), the VAX RPG II editor must redisplay the information on
the screen rather than scrolling new information onto the screen.

The following screen show~ an example of each of the VAX RPG II editor
screen components. Note that all screens shown are based on a default
setting of 24 lines for the page size with a top ruler. If you want to change
the page size, see the SET TERM/PAGE commands in the VAX/VMS DCL
Dictionary.

2-6 Using the VAX RPG II Editor

PF1/PF2 - RPG II specification formats +-------+-------+-------+-------+
Press the Pri /~:n ke!:t and t!:tpe HELP for I Go 1 d I He 1 p I r nx r nd I D l L Udll
information on commands and functions. +-------+-------+-------+-------+

For help on a specific ke!:t, press the IPag CmdlSec DsplRev HovlDlf Udfl
PF2 ke!:t followed b!:t the ke~ for which +-------+-------+-------+-------+
~ou want help information. IAdv BotlBck ToplCut PaslShL ShRI

Other ke~s: BS-KEY DEL-KEY +-------+-------+-------+-------+
TAB_KEY UP,DOWN,LEFT,RIGHT lfld IEol DEllChr Coll
CTRL_R_KEY CTRL_W_KEY +-------+-------+-------+Ent
CTRL_U_KEY CTRL_Z_KEY I Lin Opl ISel Resl

+---------------+-------+-------+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7

:.~~.......•.•. ~ 1234567890123456789012345678901234567890123456789012345678901234567890123456789

H* fUNCTIONAL DESCRIPTION: }
H* This program produces a report of shipments for various
HI products broken down b!:t division and department using an
H• input file with the shipment data for the past·4 9uarters.
H•--
H
FSHIPS IP r 41 DISK }

Search for: editor
Str1n not found }

help window

80-column
ruler

tab stops

source window

prompt line

message line

"---. .--/ ---------------------------
ZK-4666-85

When you use the HELP function (default= PF2), the HELP window
appears on the screen. It includes a diagram of the keypad and other key
functions.

When the keypad diagram is displayed and you enter the HELP function
again, the following message appears:

Press the key for which you want further HELP information

You can press the HELP key and any other key listed in the keypad
diagram to display HELP information on that key in the HELP window.
See Section 2.5.2 for an example.

Using the VAX RPG II Editor 2-7

The HELP_SPECS function (default= PF1/PF21) causes the HELP window
to display the specification format for the current line. See Section 2.5.3
for an example. See the DISPLAY function, Section 2.5.11, for information
on how to remove HELP from the screen.

If you press <:;:TRL/C while HELP information from the VAX RPG II
editor HELP command is being written to the terminal, you must type a
terminator to resume editing.

If you do not request HELP information, the VAX RPG II editor displays
the program in the entire screen except for the ruler and tab stops and the
prompt and message lines, as shown in the following example:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

*·I I I I 11III1*11*1II1*1IIIIII1°1 I I I I Ill I I I l·I I I I I I I I Ii I I I I I I I I I I I I I I I I I I

I H*++
H* FUNCTIONAL DESCRIPTION:
H* This progra~ produces a report of ship~ents for various
H* products broken doNn b~ division and depart~ent using an
H* input file with the ship~ent data for the past 4 ~uarters.
Hf--
H
FSHIPS IP F
FSUHREP 0 F
E
LSUHREP 55FL 500L
!SHIPS AA 01
I
I
I
I
C*
c 01

41
98

QTY

XFOOTQTY

DISK
LPRINTER
4 2 0

1 5 DIV L2
6 7 DEPT L1
B 16 PROD

17 24 QTY

PROQTY 30

Press the PF2 ke to et hel information

------------~-------------~

1 PF1/PF2 indicates that these two keys should be pressed in succession.

2-8 Using the VAX RPG II Editor

_/
ZK-4330-85

An 80-column ruler in reverse video is displayed above or below the
source window. See Section 2.6.8.4 for information on setting the ruler.
Below the ruler, a tab stop marks the beginning of each field· for the
specification of the current line.

An asterisk (•) indicates a tab stop where you can enter a field value. A
dot (.) indicates that the column must be left blank. A dash (-) after an
asterisk indicates that the field must contain numeric data. Numeric data
must be right-justified. Blanks after an asterisk indicate that the field must
contain alphanumeric data. Alphanumeric data must be left-justified.

The VAX RPG II editor marks the line after the last line in the editing
buffer with the end-of-buffer [EOB) symbol. The [EOB) symbol will not
appear in the output file.

The last two lines of the screen consist of the prompt line and the message
line. The prompt line displays prompts in reverse video for input when
you use functions such as FIND and COMMAND. The message line
displays informational and error messages. The following example shows
what the VAX RPG II editor screen looks like with the specification
format for the current line, the prompt for the FIND function, and an
informational message.

Using the VAX RPG II Editor 2-9

Currency sy111bol
I Inverted print <DIJ)
I I Alternate collating sequence <SE>
I I I ·1p for111s position (1)
I I I I

H I I I I
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7

1234567890123456789012345678901234567890123456789012345678901234567890123456
, *I' I I I I I. I I I I ', * ·, I I I • I • *. ~ ' I • ,·I I I I • I' I I* I I • I i I I I I I .'1 I I I I • I I I I I I • I I I I • I .·I •.•

H*++
H* rUNCTIONAL DESCRIPTION:
H* This progra111 produces a report of ship111ents for various
H* products broken down by division and depart111ent using an
H* input file with ihe ship~ent data for the past 4 quarters.
H*--
H
FSHIPS IP r 41 DISK

Mill1 •. 1.1.rw;n~111t1Mii·'w•1 .. 1•¥¥'

_/
------------------------------ ZK-4331-85

2.3 The Cursor

The VAX RPG II editor cursor is represented as a box (I) or an underscore
(-), depending on the cursor setting for your terminal. The cursor is
displayed in the current column on the current line. Note, however, that
if the current column is column 81, the cursor is displayed in column 80
on the current line. If you try to move the cursor to the right of column

2-1 0 Using the VAX RPG II Editor

81 or to the left of column l, the current column remains unchanged and
one of the following messages is displayed on the message line:

Attempt to move past column 81

Attempt to move before column 1

2.4 The Buffers

The VAX RPG II editor uses the following four buffers:

• Editing

The editing buffer contains the file of source code that is displayed on
the VAX RPG II editor screen.

• Deleted-field

The deleted-field buffer contains the field deleted when you use the
DELETEJIELD function (default= MINUS). See Section 2.5.14for
information on the DELETEJIELD function. You can access the
contents of the deleted-field buffer by using the UNDELETEJIELD
function. See Section 2.5.15 for information on the
UNDELETEJIELD function.

• Deleted-line

The deleted-line buffer contains the line deleted by the
DELETE_LINE function (default= PF4). See Section 2.5.6 for more
information on the DELETE_LINE function. You can access the
contents of the deleted-line buffer by pressing the UNDELETE_LINE
function (default= PF1/PF4). See Section 2.5.7 for more information
on the UNDELETE_LINE function.

• Paste

The paste buffer contains the range of lines delimited by the
SELECT (default= PERIOD) and CUT (default= KP6) functions
(see Section 2.5.32). You can access the contents of the paste buffer
by using the PASTE function (default= PF1/KP6). See Section 2.5.21
for more information on the PASTE function. ·

Using the VAX RPG II Editor 2-11

2.5 Keys and Functions

To make sure the VAX RPG II editor is using the correct VAX/VMS
terminal characteristics for your terminal, type the DCL command
SET TERM/INQUIRE before invoking the VAX RPG II editor. The
following diagram represents the VAX RPG II editor keypad:

VT1 OO/VT200/VK1 OO(GIGI) Keypad VAX RPG II Editor Keypad
/" '

PF1 PF2 PF3 PF4

7 8 9 -

4 5 6 '

1 2 3

Enter

0 •
\..

ZK-1605-84 ZK-5550-86

This chapter. refers to those keys with numbers and symbols as KPn,
where KP means keypad and n is the number of the key shown on the
VTlOO, VT200, and VKlOO (GIGI) keypad. For example, KP6 refers to the
keypad key numbered 6. Table 2-2 lists the name and default function of
each key.

Note that many keys have alternate functions. An alternate function
is enabled when you press the GOLD key (default= PFl) followed by
the key you want to use. This sequence is referred to in this chapter as
PFl /[key _name].

2-12 Using the VAX RPG II Editor

Table 2--2: VAX RPG II Editor Define Key Defaults
COMMAND l<EY DEFAULT

DEFINE KEY IPF1 I GOLD

DEFINE KEY i UP

DEFINE KEY ! DOWN

DEFINE KEY ~ LEFT

DEFINE KEY --+ RIGHT

DEFINE KEY IPF21 HELP_KEYPAD

DEFINE KEY /GOLD IPF21 HELP-SPECIFICATIONS

DEFINE KEY lPF31 FIND_NEXT

DEFINE KEY /GOLD IPF3I FIND

DEFINE KEY IPF41 DELETE_LINE

DEFINE KEY /GOLD IPF41 UNDELETE_LINE

DEFINE KEY KP7 PAGE

DEFINE KEY /GOLD KP7 COMMAND

DEFINE KEY KP8 SECTION

DEFINE KEY /GOLD KP8 DISPLAY

DEFINE KEY KP9 REVIEW_ERROR

DEFINE KEY /GOLD KP9 MOVE_TO_RULER

DEFINE KEY B DELETE_FIELD

DEFINE KEY /GOLD B UNDELETE_FIELD

DEFINE KEY KP4 ADVANCE

DEFINE KEY /GOLD KP4 BOTTOM

DEFINE KEY KPS BACKUP

DEFINE KEY /GOLD KPS TOP

DEFINE KEY KP6 CUT

DEFINE KEY /GOLD KP6 PASTE

DEFINE KEY [J SHIFLLEFT

DEFINE KEY /GOLD [J SHIFLRIGHT

DEFINE KEY KPl FIELD

DEFINE KEY KP2 END_OLLINE

Using the VAX RPG II Editor 2-13

Table 2-2 (Cont.): VAX RPG II Editor Define Key Defaults
COMMAND KEY DEFAULT

DEFINE KEY /GOLD KP2 DELETE_ TO_END_OLLINE

DEFINE KEY KP3 CHARACTER

DEFINE KEY /GOLD KP3 COLUMN

DEFINE KEY lENTERl ENTER

DEFINE KEY KPO LINE

DEFINE KEY /GOLD KPO OPEN_LINE

DEFINE KEY 0 SELECT

DEFINE KEY /GOLD 0 RESET

DEFINE KEY lCTRL/Hl FIELD-BACKWARD

DEFINE KEY lCTRL/il FIELD-FORWARD

DEFINE KEY lRETURNl NEW_LINE

DEFINE KEY lCTRL/Rl REFRESH-SCREEN

DEFINE KEY lCTRL/Ul DELETE_ TO_BEGINNING_OLLINE

DEFINE KEY lCTRL/Wl REFRESH_SCREEN

DEFINE KEY lCTRL/Zl EXIT

DEFINE KEY <XI DELETE-CHARACTER

DEFINE KEY FlO EXIT

DEFINE KEY F12 FIELD_BACKWARD

DEFINE KEY FlS HELP_KEYPAD

DEFINE KEY F16 ENTER

DEFINE KEY lFINDl FIND

DEFINE KEY l INSERT HERE I PASTE

DEFINE KEY lREMOVEl CUT

DEFINE KEY lSELECTl SELECT

DEFINE KEY IPREV SCREEN! SECTION_BACKWARD

DEFINE KEY I NEXT SCREEN I SECTION-FORWARD

See DEFINE KEY (Section 2.6.2) for a complete list of definable keys.
Sections 2.5.10 through 2.5.44 describe these functions and explain how
to use them.

2-14 Using the VAX RPG II Editor

2.5.1 GOLD Function
...

The GOLD function (default= PFl) enables you to select the alternate
function of a key. In the following diagram of the keypad, the alternate
key names appear in the shaded areas:

VAX RPG II Editor Keypad

ZK·5550·86

2.5.2 HELP-KEYPAD Function

The HELP_KEYPAD function (default= PF2) displays the keypad diagram
in'·the HELP window, as shown in the following example.

Using the VAX RPG II Editor 2-15

PF1/PF2 - RPG II specification fbr~ats +-------+-------+-~-----+-------+
Press the PF1/KP7 key and t~pe HELP for I Gold I Help IFnx F~dlDlL UdLI
infor~ation oh commands and functi~ns. +-------+-------+-------+-~--·--+

For help on a specific key, press the IPag CmdlSec DsplRev MovlDlF UdFI
PF2 key followed by the key for which +-~-----+-------+-----~-+-------+
you want help infor~ation. IAdv BotlBck ToplCut PaslShL ShRI

Other keys: BS~KEY DEL-KEY +-------+-------+-------+~------+
TAB-KEY UP,DOWN,LEFT,RIGHT IFld IEol DEllChr Coll
CTRL_R_KEY CTRL_W_KEY +-------+-------+-~--~--+Ent
CTRL_U_KEY CTRL_Z~KEY I Lin OpL ISel Resl

+---------------+------~·~~--~--+
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
*· e I I I I I 1,1 I •*I Ill I I l*I I I I I I I.I I I I I I l*I I I I I I I I I II I I I I I I I I IJ I I I I I I I a·1 I II,

I H*++
H* FUNCTIONAL DESCRIPTION:
H* This program produces a report of shipments for variobs
H* products broken down by division and depart~ent using an
H* input file with the shipment data for the past 4 ~uarters.
H*--
H
FSHIPS IP F 41 DISK

"--- __/
------------------------------- ZK-4333-85

If HELP is requested while the terminal page size is less than 17 lines, the
following message will be displayed and the usual HELP action will not
be performed:

At least 17 lines on the screen are required by the editor to provide HELP

HELP cannot be displayed unless there are enough lines on the screen to
position the HELP window and still keep the ruler, prompt line, message
line, and one line of the editing window visible.

2-16 Using the VAX RPG II Editor

KP6

If the keypad diagram is already displayed, you can get HELP information
on any function (except GOLD) by using HELP_KEYPAD (default= PF2)
and the key for which you want HELP information. HELP information
will appear in the HELP window. The following example displays HELP
for the CUT (default= KP6) and PASTE (default= PF1/KP6) functions:

The CUT function ~oves the selected range of lines to the paste buffer. The
selected range of lines consists of the line identified b~ the SELECT
function up to the current line. The line following the selected range of
lines beco~es the current line. The current colu~n re~ains unchanged.

The PASTE function inserts the contents of the paste buffer directl~ in
front of the current line. The current line is ~oved down to acco~~odate
the lines fro~ the paste buffer. The current colu~n and line re~ain

ha d
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
*·I I I I I I I I I Ill l*I I I l*I I I I a I I I I I I I I l*I

I H*++
H* FUNCTIONAL DESCRIPTION:
H* This progra~ produces a report of ship~ents for various
H* products broken down b~ division and depart~ent using an
H* input file with the ship~ent data for the past 4 quarters.
H*--
H
FSHIPS IP F 41 DISK

_-/
--------------------------- ZK-4332-85

2.5.3 HELP _SPECIFICATIONS Function

The HELP_SPECIFICATIONS function (default= PF1/PF2) displays the
specification format for the current line. In the following example, if
the current line is line 100, the VAX RPG II editor displays the Control
specification format when you use HELP_SPECIFICATIONS.

Using the VAX RPG II Editor 2-17

Currencli Slilllbol
I Inverted print CDIJ)
I I Alternate collating sequence CSE>
I I I 1P for111s posit~on (1)
I I I I

H I I I I
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
*·I I I• I I I I 1-111 Ill a I l~l·I I I I I j I l·I I I I •*I I·, I I I 1'1 I I I I'

I 100H*++
H* FUNCTIONAL DESCRIPTION:
H* This progra111 produces a report of ship111ents for various
H* product~ broken down b~ division and depart111ent using an
H* input file with the ship111ent data for the past 4 quarters.
H*--
H
FSHIPS IP F 41 DISK

ZK-4334-85

2-18 Using the VAX RPG II Editor

To restore the editing buffer to the entire screen, as shown in the following
example, use the DISPLAY function (default= PF1/KP8).

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

I
,.I I I I I I I 1'1 I l*I ·*•I I l*I i I I I I I 1,1 I 'I I I·*·· I I I I I I I I I I I I I I I I I I I 1,1 I I I I I I I I 8 I I

H*++
H* FUNCTIONAL DESCRIPTION:
H* This progra~ produces a report of ship~ents for various
H* products broken doNn b~ division and depart~ent using an
H* input file Nith the ship~ent data for the past 4 quarters.
H1--
H
FSHIPS IP F
FSUHREP 0 F
E
LSUHREP 55FL 500L
!SHIPS AA 01
I
I
I
I
C*
c 01
c 01 PROQTY

41
98

QTY

XFOOTQTY
ADD DEPQTY

DISK
LPRINTER
4 2 0

1 5 DIV L2
6 7 DEPT Li
8 16 PROD

17 24 QTY

PROQTY 30
DEPQTY 30

____,/

ZK-4335-85

The VAX RPG II editor automatically updates the tab stops and the
specification format, if displayed, for the specification type of the current
line after a terminator (such as TAB) is typed.

Using the VAX RPG II Editor 2-19

2.5.4 FIND-NEXT Function

The FIND-NEXT function (default= PF3) moves the cursor to the first
character position of the next or last occurrence of the search string, de
pending on the current direction (ADVANCE or BACKUP). Use the FIND
function to enter the search string. If the current direction is ADVANCE,
the VAX RPG II editor will try to locate the next occurrence of the search
string by searching forward from the current column and line to the end
of the editing buffer. If the current direction is BACKUP, the VAX RPG II
editor will try to locate the next occurrence of the search string by search
ing backward from the current column and line to the beginning of the
editing buffer. If the VAX RPG II editor cannot locate the search string,
the current column and line remain unchanged and an error message is
displayed on the message line. See Section 2.8.2 for an example of the
FIND-NEXT function.

2.5.5 FIND Function

The FIND function (default= PF1/PF3) locates the search string you
specify. The VAX RPG II editor moves the cursor forward or backward to
the beginning of the nearest occurrence of the search string, depending on
the current direction (ADVANCE or BACKUP). If the current direction is
ADVANCE, the VAX RPG II editor will try to locate the search string by
searching forward from the current column and line toward the end of the
editing buffer. If the current direction is BACKUP, the VAX RPG II editor
will try to locate the search string by searching backward from the current
column and line toward the beginning of the editing buffer.

When you use the FIND function, the VAX RPG II editor displays the
following prompt on the prompt line:

Search for:

You can enter up to 63 characters for the search string. If no search string
is entered, the VAX RPG II editor will search for the last search string
specified. Note that you cannot use control characters (RETURN,
FORM FEED, TAB, and so on) in the search string.

If the VAX RPG II editor cannot locate the search string, the current
column and line remain unchanged and the following error message is
displayed on the message line:

String not found

2-20 Using the VAX RPG II Editor

Terminate the search string by pressing either the RETURN key or the
ENTER key.

See Section 2.8.2 for an example of the FIND function.

2.5.6 DELETE-LINE Function

The DELETE_LINE function places the current line in the deleted-line
buffer, at the same time removing it from the screen. The line following
the deleted line becomes the current line. The current column remains
unchanged. If there is no line following the deleted lirte, the cursor is left
in column 1 at the [EOB] mark.

2.5.7 UNDELETE-LINE Function

The UNDELETE_LINE function (default= PF1/PF4) inserts the contents
of the deleted-line buffer before the current line. The new line becomes
the current line, and the current column remains unchanged.

If the deleted-line buffer is empty, no action is taken but an error message
is displayed on the message line.

2.5 .. 8 PAGE Function

The PAGE function (default= KP7) causes the editing buffet to move
forward or backward to the next or preceding page, depending on the
current direction (ADVANCE or BACKUP). A page is the start or finish of
a section with the same specification type (column 6).

In the following example, (1) the current cursor position is in column 34
on line 120, (2) the current direction is ADVANCE, (3) the current setting
for the SET STARTCOLUMN command is 7, and (4) when you use the
PAGE function, the VAX RPG II editor will move the cursor to column 7
on line 170.

Using the VAX RPG II Editor 2-21

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** *
10H*++

I *
20H* FUNCTIONAL DESCRIPTION:

I I 1--111 I * I

30H* This progra~ produces a report of ship~ents for various
40H* products broken down b~ division and depart~ent using an
50H* input file Nith the ship~ent data for the past 4 quarters.
60H*--
70H
80FSHIPS IP F
90FSUHREP 0 F

100E
110LSUHREP 55FL 500L
120ISHIPS AA 01
130I
140I
150I
160I
170CI
180C 01
190C 01 PROQTY

41
99

QTY

XFOOTQTY
ADD DEPQTY

DISK
LPRINTER
4 2 0

1 5 DIV L2
6 7 DEPT Li
8 16 PROD

17 24 QTY

PROQTY 30
DEPQTY 30

"'----- ___/ ----------------------------- ZK-4336-85

2.5.9 COMMAND Function

The COMMAND function (default = PF1/KP7) allows you to execute
a VAX RPG II editor command. The VAX RPG II editor displays the
following prompt:

Command:

The following commands can be entered:

• COMPILE
• DEFINE KEY

2-22 Using the VAX RPG II Editor

• EXIT

• HELP

• INCLUDE

• QUIT

• RESEQUENCE

• SET

• SHOW

• SUBSTITUTE

Sections 2.6.1 through 2.6.10 describe these VAX RPG II editor commands
and explain how to use them.

2 .. 5.10 SECTION Function

The SECTION function (default= KP8) causes the editing buffer to move
forward or backward the number of lines specified by the current setting
of the SET SECTION command. The direction of the movement depends
on the current direction (ADVANCE or BACKUP). The current column
remains unchanged. See Section 2.6.8.6 for information on changing the
SECTION value. See Sections 2.5.16 and 2.5.18 for information on setting
the current direction.

2.5.11 DISPLAY Function

The DISPLAY function (default= PF1/KP8) removes any HELP informa
tion from the screen.

2.5.12 REVIEW-ERROR Function

If you use the VAX RPG II editor COMPILE command to compile your
program, and your program contains errors, the VAX RPG II editor moves
the cursor to the column and line where the first error occurs and displays
the error text on the message line. The REVIEW-ERROR function
(default= KP9) moves the cursor to the column and line where the next
error occurs and displays the error message for that error on the message
line. You can edit the line to correct the error and use the
REVIEW-ERROR function again to move the cursor to the next error.

Using the VAX RPG II Editor 2-23

If you use REVIEW-ERROR and there are no more errors, the
VAX RPG II editor displays the following message on the message line:

No more errors found

If you added or deleted a line in the program while correcting errors,
when REVIEW-ERROR is used again the VAX RPG II editor will display
the following message:

Reissue the editor COMPILE command

2.5.13 MOVE_ TO-RULER Function

The MOVE_TO-RULER function (default= PF1/KP9) places the cursor
as close as possible to the top of the ruler (if the editing window is above
it) or toward the bottom of the ruler (if the editing window is below it).
The current column remains unchanged. Movement is restricted to the
boundaries of the SET SCROLL offsets. If the ruler is positioned above
the editing window and the last line of the buffer appears, movement is
stopped. If the ruler is positioned below the editing window and the first
line of the buffer appears, movement is stopped. The MOVE-TO-RULER
function will have no effect if no ruler is visible.

2.5.14 DELETE _FIELD Function

The DELETE_FIELD function (default= MINUS) places all the characters
between the cursor and the next field (forward or backward, depending
on the current direction) into the deleted-field buffer and replaces the
characters with spaces.

2.5.15 UNDELETE-FIELD Function

The UNDELETE-FIELD function (default= PFl/MINUS) replaces the
current field with the contents of the deleted-field buffer.· If the contents
of the deleted-field buffer are longer than the current field, the
VAX RPG II editor copies to the current field until it is filled. If the
contents of the deleted-field buffer are shorter than the current field, the
VAX RPG II editor fills the current field to the right with spaces. Also,
the cursor moves to the next field, depending on the current direction
(ADVANCE or BACKUP).

2-24 Using the VAX RPG II Editor

2.5.18 ADVANCE Function

2.5.17

The ADVANCE function (default= KP4) sets the current direction to
forward, that is, to the right and down, toward the end of the editing
buffer. ADVANCE sets the direction for the following functions:

• CHARACTER

• DELETEJIELD

• UNDELETEJIELD

• FIELD

• END_OF_LINE

• FIND

• FIND_NEXT

• LINE

• PAGE

• SECTION

BOTIOM Function

The BOTTOM function (default= PF1/KP4) moves the cursor to the last
line in the editing buffer. The current column remains unchanged.

2.5.18 BACKUP Function

The BACKUP function (default= KPS) sets the current direction to back
ward, that is, to the left and up, toward the beginning of the editing
buffer. BACKUP sets the direction for the same functions as ADVANCE.

2.5.19 TOP Function

The TOP function (default= PF1/KP5) moves the cursor to the first line in
the editing buffer. The current column remains unchanged.

Using the VAX RPG II Editor 2-25

2.5.20 CUT Function

The CUT function (default= KP6) moves the selected range of line~ to
the paste buffer. The selected range of lines consists of the line identified
by the SELECT function (default = PERIOD) through the current line.
The line following the selected range of lines becomes the current line.
The current column remains unchanged. If there is no line following
the selected range, the cursor is left in column 1 at the [EOB] mark. See
Section 2.8.2 for an example using CUT.

2.5.21 PASTE Function

The PASTE function (default= PF1/KP6) inserts the contents of the paste
buffer directly in front of the current line. The current line is moved down
to accommodate the lines from the paste buffer. The current column and
line remain unchanged. See Section 2.8.2 for an example using PASTE.

2.5.22 SHIFT-LEFT Function

The SHIFT_LEFT function (default = COMMA) deletes the character in
the current column. All characters to the right of the current column are
moved one column to the left, and the cursor position remains the same.

In the following example if the cursor is in column 45 on line 350 and
SHIFT_LEFT is used, the VAX RPG II editor deletes the blank in column
45, moves all the characters to the right of the cursor one column to the
left, and inserts a blank in column 80.

Before using SHIFT_LEFT:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** 3500
***** * *

2-26 Using the VAX RPG II Editor

* *** ___ **
48 l'Qi Q2 Q3 Q4 TOTAL'

ZK-4337-85

After using SHIFT_LEFT:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** 3500 ***** * * * IH---H
48 IQ1 Q2 Q3 Q4 TOTAL'

t
cursor

ZK-4338-85

2.5.23 SHIFT-RIGHT Function

The SHIFT-RIGHT function (default= PFl/COMMA) moves all characters
in the current column through the end of the line one column to the right.
A space is placed in the current column, and the cursor location remains
unchanged.

In the following example if the cursor is in column 44 on line 350 and
SHIFT-RIGHT is used, the VAX RPG II editor moves all characters one
column to the right of the cursor and inserts a blank in column 44. The
blank in column 80 is lost.

Before using SHIFT-RIGHT:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** 3500 ***** * * * IH---H
48IQ1 Q2 Q3 Q4 TOTAL'

t
cursor

ZK-4339-85

Using the VAX RPG II Editor 2-27

After using SHIFT-RIGHT:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

**
3500

***** * * * *H---H
48l'Q1 Q2 Q3 Q4 TOTAL'

t
cursor

ZK-4340-85

2.5.24 FIELD Function

The FIELD function (default= KPl) moves the cursor to the nearest
character in the next nonblank field. If the current direction is ADVANCE,
using FIELD moves the cursor to the beginning of the next nonblank field
following the current column. If the current direction is BACKUP, using
FIELD moves the cursor to the end of the next nonblank field preceding
the current column.

In the following example if the cursor is in column 16 and the current
direction is ADVANCE, using FIELD moves the cursor to column 21.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * *** *--- *--- *--- ·** ___ * ___ **
IINPUT A~ I 35 CA

f !ursor after
cursor before

2-28 Using the VAX RPG II Editor

******

ZK-4341-85

In the following example if the cursor is in column 21 and the current
direction is l3ACKUP, using FIELD moves the cursor to column 16.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * ~** *...;-~ *-~- *--~ . ·**---*---** * * *. * * *
!INPUT A~ I 35 CA

t !ursor before
cursor after

ZK-4342-85

Note that you cannot use FIELD to move from one program line to
another.

2.5.25 ENO_Qf _LINE Function

The END_QF_LINE function (default= KP2) moves the cursor one
column to the right of the end of the current line (the last nonblank
character) if ADVANCE is the current direction. If the current direction is
BACKUP, using END_QF_LINE moves the cursor one column to the right
of the end of the pre~eding line.

If the cursor is already at the end of the current line and the current
direction is ADVANCE, using END_QF_LINE moves the current column
one column to the right of the next line.

In the following example if the cursor is in column 45 and the current
direction is ADVANCE and if you use END_QF_LJNE, the VAX RPG II
editor moves the cursor to column 68.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

**
3500

***** * * - * ***_...;_**
48 IQi Q2 Q3 Q4 TOTAL'I

t t
cursor before cursor after

ZK-4343-85

Using the VAX RPG II Editor 2-29

In the following example if the cursor is in column 68 of line 350 and the
current direction is BACKUP and if you use END_QF_LINE, the
VAX RPG II editor moves the cursor to column 54 in line 340.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

**
3400
3500

***** * * * ***_"'."_**
24 'PRODUCT'I
48 'Qi Q2 Q3

t
Q4 TOTAL'I

t
cursor before

cursor after

ZK-4344-85

2.5.26 DELETE_ JO_END_Of _LINE Function

The DELETE_TQ_END_QF_LINE function (default= PF1/KP2) deletes
the characters from the current column to the end of the line. The cursor
position remains unchanged.

In the. following example if the cursor is in column 46 and you use
DELETE_TQ_END_QF_LINE, the VAX RPG II editor deletes the charac
ters in columns 46 through 67.

Before using DELETE_TQ_END_QF_LINE:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

**
3500

***** * *

2-30 Using the VAX RPG II Editor

* ***---H
48 'Wt Q2 Q3 Q4 TOTAL'

t
cursor

ZK-4345-85

After using DELETE_ TQ_END_QF_LINE:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

II

3500
Hiii I I I 111---11

48 'I
t
cursor

ZK-4346-85

2.5.27 CHARACTER Function

The CHARACTER function (default= KP3) moves the cursor position
to the right or left, depending on the current direction (ADVANCE or
BACKUP). If you attempt to move the cursor to the right of column 81
or to the left of column l, no action is taken and an error message is
displayed on the message line ..

In the following ex(}mple, if the cursor is in column 4 7 and the current
direction is ADVANCE and if you use CHARACTER, the VAX RPG II
editor moves the cursor to column 48. If the cursor is in column 47 and
the current direction is BACKUP and if you use CHARACTER, the
VAX RPG II editor moves the cursor to column 46.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** 3500
11111 I I I 111---11

48 IWB Q2 Q3 Q4 TOTAL'

li!ursor after <ADVANCE!
cursor before

cursor after <BACKUP)

ZK-4347-85

Using the VAX RPG II Editor 2-31

2.5.28 COLUMN Function

The COLUMN function (default= PF1/KP3) highlights the number of the
current column by causing the column number in the 80-column ruler to
blink. The column function takes no action if no ruler is visible.

On a terminal without Advanced Video Option (AVO), the COLUMN
function performs no action.

On the VKlOO (GIGI) terminal, the blinking for the COLUMN function is
sometimes wider than the width of one character.

2.5.29 ENTER Function

The ENTER function (default= ENTER) terminates the FIND function (see
Section 2.5.5) and VAX RPG II editor commands (see Section 2.5.9).

The ENTER function also clears any information on the message line.

2.5.30 LINE Function

The LINE function (default= KPO) causes the cursor to move one line up
or down, depending on the current direction (ADVANCE or BACKUP).
The cursor is moved to the current setting for the SET STARTCOLUMN
command.

2.5.31 OPEN _LINE Function

The OPEN_LINE function (default= PFl/KPO) creates a new line above
the current line. The new line becomes the current line, and the cursor is
moved to the current setting for the SET STARTCOLUMN command. If
the current setting for the SET STARTCOLUMN command is greater
than 6, the new line will have the same specification· format as the
previous line. See Section 2.8.2 for an example of the OPEN _LINE
function.

2-32 Using the VAX RPG II Editor

2.5.32 SELECT Function

The SELECT function (default= PERIOD) marks the current line as the
beginning of the range of lines you are selecting (select range). The
SELECT function highlights column 1 of the current line in reverse video.
You can use SELECT to select a range of lines to be deleted or moved.
You can then use CUT to move the selected lines from the editing buffer
to the paste buffer (see Section 2.5.20), and you can use PASTE to reinsert
them into the editing buffer at another location (see Section 2.5.21). The
cursor position in the line does not matter-the entire line will be moved
into the paste buffer when CUT is used.

If you select a line as the beginning of a select range and then delete that
line, the select range will no longer be in effect and a message will be
displayed on the message line.

You cannot select the line where [EOB] appears. If you select a range of
lines that includes [EOB], [EOB] will not be placed in the paste buffer.

See Section 2.8.2 for an example of the SELECT function.

2.5.33 RESET Function

You can clear the current setting for the SELECT function by using the
RESET function (default= PFl/PERIOD).

2.5.34 UP Function

The UP function (default= UP) causes the cursor to move up one line.
The current column remains unchanged. If the current line is the first line
in the editing buffer, the cursor will not be moved and an error message
will be displayed.

2.5.35 DOWN function

The DOWN function (default = DOWN) causes the cursor to move down
one line. The current column remains unchanged. If the current line is the
last line in the editing buffer, the cursor will not be moved and an error
message will be displayed.

Using the VAX RPG II Editor 2-33

2.5.38 RIGHT Function

The RIGHT function (default= RIGHT) moves the cursor to the right one
column. If the current column is 80, the cursor is not moved and column
81 becomes the current column. If the current column is 81, the cursor
will not be moved and an error message will be displayed.

2.5.37 LEFT Function

The LEFT function (default= LEFT) moves the cursor to the left one
column. If the current column is column l, the cursor will not be moved
and an error message will be displayed.

2.5.38 FIELD-BACKWARD Function

The FIELD_BACKWARD function (default= BS-KEY) moves the cursor to
the tab stop preceding the current column. Or, if the cursor is before the
first tab stop, it moves the cursor to column 1. If the current column is 1,
the cursor will not be moved and an error message will be displayed.

2.5.39 DELETE-CHARACTER Function

The DELETE-CHARACTER function (default= DEL-KEY) replaces the
character to the left of the cursor with a space and moves the cursor one
column to the left. If you try to delete a character to the left of column l,
the cursor will not be moved and an error message will be displayed.

2.5.40 NEW-LINE Function

The NEW"'7'"LINE function (default= RET-KEY) creates a new line
following the current line. The lines following the current line are moved
down to accommodate the new line. If the current line is the last line irt
the current buffer, a new last line is created. The cursor is moved to the
current setting for the SET STARTCOLUMN eommand. If the current
setting for the SET STARTCOLUMN command is greater than 6, the new
line will have the same specification format as the previous line.

2-34 Using the VAX RPG II Editor

2.5.41 FIELD-FORWARD Function

The FIELDJORWARD function (default= TAB_KEY) moves the cursor
to the next tab stop after the current column. If the cursor has already
passed the last tab stop, FIELDJORWARD moves the cursor to
column 81. If the current column is column 81, the cursor will not be
moved and an error message will be displayed.

. . .

2.5.42 REFRESH-SCREEN Function

The REFRESH-SCREEN function (default= CTRL_R-1(EY and
CTRL_W-1(EY) rewrites the screen display. The cursor location remains
unchanged.

2.S.43 DELETE-YO-BEGINNING-OF_LINE Function

The DELETE_ TQ_BEGINNING_QF_LINE function
(default= CTRL_U-1<EY) replaces the characters from the current column
to column 1 with spaces. The cursor location remains unchanged;

2.5.44 EXIT Function

The EXIT function (default= CTRL-2:-1<EY) writes the editing buffer to
an output file as described in Section 2.1.4. If a journal file was created, it
is not saved.

If you have issued the VAX RPG II editor COMPILE command, and then
leave the VAX RPG II editor using EXIT, the following message will be
displayed:

Subprocess terminated

If you invoked the VAX RPG II editor with the /NOOUTPUT qualifier or
the /READ-ONLY qualifier, the following message will be displayed:

Use EXIT with an output file specification or QUIT

The EXIT function performs the same function as the EXIT /NOSAVE
command.

Using the VAX RPG II Editor 2-35

2.6 Editor Commands

This section describes the VAX RPG II editor commands and explains how
to use them. You must issue the COMMAND function before executing
a VAX RPG II editor command. Section 2.5.9 discusses the COMMAND
function.

The following conditions exist when executing VAX RPG II editor
commands:

• If you type a command with a. missing required parameter, you will
receive a prompt to supply the missing parameter.

• Qualifiers can appear anywhere on the line; they do not have to
immediately follow the command and can appear in any order.

• Qualifiers can be negated.
• Command line input can be in uppercase, lowercase, or both.

• Abbreviations are allowed. You must type enough information to
resolve any ambiguity.

• You can enter full line comments, end-of-line comments, and blank
lines in a command line.

• You can continue a command line by entering a hyphen (-) at the end
of the line. You will get a prompt for more input.

• Terminate a command by pressing either the RETURN key or the
ENTER key.

2.6.1 COMPILE Command

The COMPILE command compiles the source code in the editing buffer
and displays the following messages:

Subprocess activated
Beginning compilation

The message "Subprocess activated" appears only when the COMPILE
command is issued for the first time during an editing session.

The format of the COMPILE command is as follows:

COMPILE [/LIST]

2-36 Using the VAX RPG II Editor

The following message is displayed to indicate how many errors were
found:

Compilation complete - n errors found

If n is 0, no errors were found and you can leave the VAX RPG II editor,
then link and run your program.

If the compilation encounters errors, the error text associated with the
first error is displayed on the message line and the cursor is moved to the
column and line where the first error occurs. If there is more than one
ertor, use the REVIEW-ERROR function to move the cursor to the column
and line causing the next error. See Section 2.5.12 for more information
on the REVIEW-ERROR function.

You can use only the /LIST qualifier with the COMPILE command to
create a listing file for the compiled source code. The default is /NOLIST.
The /OBJECT qualifier is always in effect. However, if the compilation
encounters fatal errors, an object module will not be produced.

You ca1' specify a symbol definition at the DCL command level to change
the defaults for a compilation. When you issue the VAX RPG II editor
COMPILE command, the compiler will use these settings. In the following
example, the symbol RPG is defined to compile a program and generate a
listing file with machine-generated. code. The compiler will also generate
code in the program to check for blanks in numerics.

$ RPG :== RPG/LIST/MAC/CHECK:BLANKS_IN_NUMERICS

You must use COMPILE/LIST in the VAX RPG II editor to get a program
listing~

To use the debugger after you enter the COMPILE command, you must
first define the following command before invoking the VAX RPG II editor:

$ RPG : = RPG/DEBUG

See Chapter 5 for information on how to set the appropriate source file for
debugging.

The COMPILE command requires each line in the editing buffer to be 140
characters or less.

If you define RPG to invoke something other than the VAX RPG II
compiler, or if the VAX RPG II compiler encounters an unexpected error,
the following message is displayed on the message line:

Unexpected error during compilation - leave editor and try DCL RPG colilmand

Using the VAX RPG II Editor 2-37

2.8.2 DEFINE kEY Command

The DEFINE KEY command allows you to bind specific keys to specific
VAX RPG II editor functions. These functions are listed with their default
key definitions in Table 2-2 at the beginning of Section 2.5.

· You can bind the following keys in the VAX RPG U editor:

• Control keys

• Cursor keys

• Editing keys (LK201 except Rainbow)

• Function keys (LK201 except Rainbow)

• Keypad keys

• Gold versions of all these keys

Exceptions:

The following list contains seven control key restrictions. These are special
functions of the VAX/VMS operating system.

• CTRL _C_KEY

• CTRL_O_KEY

• CTRL_T_KEY

• CTRL _Q _KEY

• CTRL _x_KEY

• CTRL _S_KEY

• CTRL _ Y_KEY

Note that key redefinition does not cause automatic update to the
VAX RPG II editor keypad diagram and key-specific HELP text.

The format of the DEFINE KEY command is as follows:

DEFINE KEY[/GOLD] key_name function

Iri this command, /GOLD indicates that you must press the GOLD key
followed by key _name to execute the chosen function. For example:

DEFINE KEY/GOLD KP6 CUT

When you enter this command and then press the GOLD key, followed
by pressing the KPS key, the CUT function is executed.

2-38 Using the VAX RPG II Editor

If key_name is not a valid definable key, or if function is not a valid
VAX RPG II editor function that you can bind to a key, an error message
is displayed.

To redefine the GOLD key, enter the following line at the command
prompt:

DEFINE KEY key_name GOLD

To remove the GOLD key completely, enter the following line at the
command prompt:

DEFINE KEY/GOLD PF1 GOLD

Note that if you use a key name other than PFl with this command, it
will be treated as if PFl had been entered.

Note also that you must redefine the GOLD key (default= PFl) before
you can define the PFl key to a function other than GOLD.

See Table 2-2 for a list of default key definitions. This table provides a list
of definitions that you can bind to keys. Note that in some cases, more
than one key is bound to the same procedure. Note also that TAB_KEY
and CTRL--1_KEY (the default settings for FIELDJORWARD), and the
RETURN--1<EY and CTRL_M--1<EY (default settings for RETURN), can
only be bound to the same function, while the Fl 0 key and
CTRL -Z--1<EY (the default settings for EXIT) may be bound to separate
functions.

The SECTION -FORWARD and the SECTION _BACKWARD functions are
not bound by default to any key on the VTlOO and VKlOO (GIGI) terminal
keyboards. However, you can bind any of the valid definable keys to
those functions.

Table 2-3 contains additional keys that you can bind to the functions
listed in Table 2-2.

Table 2-3: VAX RPG II Keynames for Valid Definable Keys
VTlOO Family

VAX RPG II Keyname . LK201 VK100 (GIGI)

PFl IPF1 I IPF11
PF2 IPF21 IPF21
PF3 IPF31 IPF31
PF4 IPF41 IPF41

Using the VAX RPG II Editor 2-39

Table 2-3 (Cont.): VAX RPG II Keynames for Valid Definable
Keys

VAX RPG II Keyname

KPO,KPl ... KP9

PERIOD

COMMA

MINUS

ENTER

UP

DOWN

LEFT

RIGHT

El

E2

E3

E4

ES

E6

HELP

DO

F7 ... F20

TAB_KEY

RELKEY

DEL_KEY

2-40 Using the VAX RPG II Editor

LK201

0,1 ... 9

D
IJ
G
I ENTER I

i
l
+-

--+

IFINDI /El

I INSERT HERE I /E2

I .REMOVE I /E3

I SELECT I /E4

I PREV SCREEN I /ES

I NEXT SCREEN I /E6

IHELPI /FIS

[QQ] /F16

F7 ... F20

I Tab I

I RETURN I

<X1

VT100 Family
VK100 (GIGI)

0,1 ... 9

D
IJ
G
I ENTER I

i
l

--+

Lfill
I RETURN I

I DELETE I

Table 2-3 (Cont.): VAX RPG II Keynames for Valid Definable
Keys

VAX RPG II Keyname

LLI<EY

BS_KEY

CTRL _A_KEY

CTRL .-2_I<EY

LK201
VTlOO Family
VKlOO (GIGI)

I une-feed l
I Back-space l
@Tu@

Note the list of exceptions at the beginning of this section.

You can modify the key bindings shown in Table 2-2 at VAX RPG II
editor start-up l?y creating a start-up command file with the desired
DEFINE KEY commands. For more information on using DEFINE KEY,
see Section 2.7.2.

2.8.3 EXIT Command

The EXIT command writes the editing buffer to the output file, leaves
the VAX RPG II editor, and returns to the DCL command prompt ($), as
shown in the following example.

Using the VAX RPG II Editor 2-41

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 l
12345678901234567890123456789012345678901234567890123456789012345678901234567890

' **
10H*++

* *** *---

20H* FUNCTIONAL DESCRIPTION:

'I--- .
I **.-"--*---** '******

30H* This progra~ produces a report pf ship~ents for various
40H* products broken down b~ division and depart~ent using an
50H* input file with the ·•hip~ent data for the past 4 ~uarters.
60H*-- ·
70H
BOFSHIPS IP F
90FSUHREP 0 r

100E
110LSUMREP 55FL 500L
120ISHIPS AA 01
130I
HOI
150I
160I
170C*
180C 01
i90C 01 PROQTY

41
98

QTY

XFOOTQTY
ADD .DEPQTY

DISK
LPRINTER
4 2 0

1 5 DIV L2
6 7 DEPT Li
8 16 PROD

17 24 QTY

PROQTY 30
DEPQTY 30

53 records written to file MYDISK:CMYDIRECTORYJMYFILE.RPG;2

$ I

The format of the EXIT command is as follows:

EXIT [/SAVE] [file-spec]

The output file is one of the following:

• The file name you supplied with the EXIT command

ZK-4348-85

• The file name you supplied with the /OUTPUT qualifier to the
RPG /EDIT command

• The same file name as the input file you specified when you invoked
the VAX RPG II editor, if both the /READ_QNL Y and /NOOUTPUT
qualifiers were not used with the RPG /EDIT command

The VAX RPG II editor will write the editing buffer to the output file even
if no changes have been made.

2-42 Using the VAX RPG II Editor

You can use the /SA VE qualifier with the EXIT command to save the
journal file, if one was created. The file name of the jcmrnal file is the
name of the output file, if specified, with the JOU file type. If a journal file
name was not specified, the VAX RPG II editor uses the same file name as
the input file. See Section 2.1.3 for information on journal files.

If an error occurs during the execution of an EXIT/SAVE command and
you resume editing, the journal facility will still be in effect.

If you have issued the VAX RPG II editor COMPILE command and then
leave the VAX RPG II editor by typing the EXIT command, the following
message will be displayed on the message line:

Subprocess terminated

2.8.4 HELP Command

The HELP command displays information on VAX RPG II editor functions
and commands in the HELP window of the VAX RPG II editor screen.
The following example shows what the screen looks like after you issue
the COMMAND function, type the HELP command, and press either the
RETURN key or the ENTER key. .

Using the VAX RPG II Editor 2-43

~Ip infor.ation describes the VAX RPG II editor. Infor•ation is~
included on editing functions performed b~ pressing ke~pad ke~s and control
ke~s. Editor commands issued with the COMMAND function are described.
Brief notes describing the journaling facilit~ are included. You can read
this help information while using the editor b~ t~ping the HELP command or
using the help functions.

Additional information available:

Commands Cursor
s 'f' t'

Functions Help Journal Ke~pad

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
1234567890123456789012345678901234567890123456789012345678901234567890

*·I I I It Ii I I I l*I l*I I I l*I I I I I I I I I I It I l*I

H*++
H* FUNCTIONAL DESCRIPTION:
H* This program produces a report of shipments for various
H* products broken down b~ division and department using an
H* input file with the shipment data for the past 4 quarters.
H*--
H
FSHIPS IP F 41 DISK

"'----- __/
--------------------------~ ZK-4349-85

The format of the HELP command is as follows:

HELP [/FULL] [/PAGE] [/PROMPT] list-of-topics

The /PAGE qualifier is similar to the DCL HELP command /PAGE
qualifier. If the HELP text does not fit in a logical page (in this case,
the HELP window), the text is displayed one page at a time and you
must press the RETURN key to advance to the next page. The default is
/NOP AGE.

2-44 Using the VAX RPG II Editor

The /PROMPT qualifier is similar to the DCL HELP command /PROMPT
qualifier. After HELP for the given list of topics is displayed, you are
prompted for additional topics, which are then linked to the current list of
topics. Press the RETURN key repeatedly to back up through the levels of
HELP text. Press CTRL/Z to terminate the HELP command. The default
is /NOPROMPT.

The /FULL qualifier uses the entire screen, except for the prompt and
message lines,. to. display HELP text. When the requested HELP text has
been displayed, the previous screen layout is restored. You a_re prompted
to press the RETURN key before the screen is repainted. If the previous
screen contained HELP text, it is not restored. Instead, the last 11 lines of
text from the current HELP command is left in the HELP window. The
default is /NOFULL.

Note that /FULL, /PAGE, and /PROMPT are positional qualifiers. If they
occur after a topic or subtopic, they are interpreted as subtopics on which
HELP is desired.

There is no fixed number on the list of topics. Whatever can fit on the
command line is valid. If you use the /PROMPT qualifier, you can extend
the depth indefinitely.

By default, the VAX RPG II editor searches its own HELP library
(SYS$HELP:RPGEDIHLP) for the given list of topics.

You can access other libraries in the following ways:

• If the first topic has the form @filespec, that library is searched
instead.

• If you define logical names of the form HLP$LIBRARY,
HLP$LIBRARY_l HLP$LIBRARY_999, the LIBRARIAN searches
them in the following order: root library, main library, process li
braries, group libraries, and system libraries.

Using the VAX RPG II Editor 2-45

The following example shows what the screen looks like after you issue
the COMMAND function, type HELP COMMANDS, and press either the
RETURN key or the ENTER key:

~HANDS ~
Editor co111111ands are executed b1:t pressing the COHHAND function (Pf'1/KP7 - see
infor111ation for FUNCTIONS>. Ani:t co111111and, para111eter or qual Hier can be
abbreviated so that the infor111ation ti:tped is una111biguous. The pro111pt
11 Co111111and: " is displai:ted in reverse video on the pro111pt line. Ani:t
characters that can nor111alll:t be tl:tped in the editor 111a1:t be ti:tped at the
pro111pt.

Qualifiers can be negated and can also appear in an1:t order on a co111111and line
after the na111e of the co111111and.

Blank co111111and lines are ignored. Also ani:t text on a co111111and line after an
excla111ation point ("!") is ignored.

Additional infor111ation available:

COMPILE DEFINE
RESEQUENCE SET

EXIT
SHOW

HELP INCLUDE QUIT
SUBSTITUTE

0 I 1 I 2 I 3 I 4 I 5 I 6 I l I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

·* I I I I I I. I I I I I *I I * I I I I *I I I I I I I I I I I I I I *I I ~ I I ·, I I I I I I I I I I I I I I I •• I I I I I, I I I I I I

H*++
H* FUNCTIONAL DESCRIPTION:
H* This progra111 produces a report of ship111ents for various
H* products broken down b1:t division and depart111ent using an
H* input file with the ship111ent data for the past 4 quarters.
H*--

"---- ~SHIPS IP F DISK

ZK-4350-85

After you press either the RETURN key or the ENTER key to execute
a HELP command and HELP information is displayed, the VAX RPG II
editor returns the cursor to its current column and line so you can resume
editing.

If you terminate the HELP display by pressing CTRL/C, you must type a
terminator to resume editing. · ·

2-46 Using the VAX RPG II Editor

2.6.5 INCLUDE Command

The INCLUDE command copies a text file into the source buffer using the
VAX RPG II editor. The format of the INCLUDE command is as follows:

INCLUDE file-spec

The file is copied into the editing buffer, immediately before the current
line. The cursor position remains unchanged. Note that the lines read in
are not syntax checked.

If the INCLUDE command is successful, the number of records read in is
displayed on the message line.

2.6.6 QUIT Command

The QUIT command allows you to leave the VAX RPG II editor and
return to the DCL command level, without writing the editing buffer to
the output file, as shown in the following example.

Using the VAX RPG II Editor 2-4 7

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** 10H*++ * *** *--- *_.;.._

20H* FUNCTIONAL DESCRIPTION:

*--- ·**--'-*---H * * * * * *
JOH* This progra~ produces a report of ship~ents for various
40H* products broken down by division and depart~ent using an
~OH* input file with the ship~ent data for the past 4 quarters.
60H*--
70H
80fSHIPS IP F
90FSUHREP 0 F

100E
110LSUHREP 55fl 500L
120ISHIPS AA 01
130I
140!
150I
160!
170C*
180C 01
190C 01

ci.]u@i.t.Mmlll
PROQTY

41
98

QTY

XfOOTQTY
ADD DEPQTY

DISK
LPRINTER
4 2 0

1 5 DIV L2
6 7 DEPT L1
8 16 PROD

17 24 QTY

PROQTY 30
DEPQTY 30

The format of the QUIT command is as follows:

QUIT [/SAVE]

Use the QUIT command if you have made no changes to the editing
buffer or if you have decided not to save the changes you made. If you
have made changes, or if you have pressed keys to move the cursor past
the last nonblank character in any line, the VAX RPG II editor displays the
following message:

Buffer modifications will not be saved, continue quitting (Y or N)?

2-48 Using the VAX RPG II Editor

You can respond by typing Y, YE, or YES. Any other response will
continue the editing session. If you resume editing, a journal file for your
edits will not be created. To resume journaling, you must leave the
VAX RPG II editor, and invoke the VAX RPG II editor again.

You can use the /SA VE qualifier with the QUIT command to save the
journal file, if one was created.

If you issue the VAX RPG II editor COMPILE command and then leave
the VAX RPG II editor by typing the QUIT command, the following
message will be displayed on the message line:

Subprocess terminated

2.8. 7 RESEQUENCE Command

The RESEQUENCE command either generates a new line number for each
program line in the editing buffer or resequences existing· line numbers.
The format of the RESEQUENCE command is as follows:

RESEQUENCE [/REMOVE] [initial-value [increment]]

The RESEQUENCE command renumbers program lines up to the first line
containing a double slash (/ /) and a blank or a double asterisk(**) and a
blank in columns 1 through 3. Lines are numbered beginning at the initial
value (default= 10) and are incremented by the increment value
(default= 10).

The .maximum line number is 99,999. If during resequencing, a line
number plus the increment exceeds 99,999, that line and all remaining
lines are numbered 99,999. In this case, reissue the RESEQUENCE
command with smaller values for the initial value and increment by the
increment value.

The RESEQUENCE/REMOVE command will remove all line numbers in
the editing buffer.

The following command renumbers the line numbers in the editing buffer
beginning with 100 and increments each number by 20:

RESEQUENCE 100 20

See Section 2.8.2 for another example of the RESEQUENCE command.

Using the VAX RPG II Editor 2-49

2.6.8 SET Command

The VAX RPG II editor has eight optional functions which are controlled
by the SET command:

• COMMAND

• DEFAULT

• HELP

• RULER

• SCROLL

• SECTION

• STARTCOLUMN

• SYNTAX CHECK

The SET command controls VAX RPG II editor options. Once set, these
options are in effect until you leave the VAX RPG II editor or reissue the
SET command.

You can include SET commands in a start-up command file. See
Section 2.7.2 for information on start-up command files.

The format of the SET command is as follows:

SET option

2.6.8.1 COMMAND Option

The COMMAND option allows you to process additional start-up com
mand files at the beginning of the VAX RPG II editing session. The format
of the COMMAND option is as follows:

SET COMMAND file-spec

For information on the SET COMMAND option, see Section 2.7.2.

2-50 Using the VAX RPG II Editor

2.6.8.2 DEFAULT Option

The DEFAULT option allows you to determine the default value of
qualifiers used in other editor commands. The format of the DEFAULT
option is as follows:

SET DEFAULT option

For example, the following command means that any later HELP com
mand uses the PAGE and PROMPT options by default. You can tum
defaults· off by using the negated form of an option. (For example, SET
DEFAULT NOPROMPT.)

SET DEFAULT PAGE.PROMPT

2.6.8.3 HELP Option

The HELP option allows you to choose a variety of settings. The format
of the HELP option is as follows:

SET HELP { KEYPAD I NONE I SPECIFICATIONS }

The HELP KEYPAD option has the same effect as using the
HELP_KEYPAD function (default= PF2). See Section 2.5.2 for information
on HELP_KEYPAD.

The HELP NONE option· allows you to start up as if you used the
DISPLAY function. See Section 2.5.11 for information on the DISPLAY
function.

The HELP SPECIFICATIONS option has the same effect as using the
HELR SPECIFICATIONS function (default= PF1/PF2). See Section 2.5.3
for information on HELP_SPECIFICATIONS.

2.6.8.4 RULER Option

The RULER option moves the three-line 80-column ruler with tab stops as ·
a unit, to either the top or bottom of the current window. The
SET RULER NONE option removes the ruler from the screen.

The format of the RULER option is as follows:

SET RULER { TOP I BOTTOM I NONE }

Using the VAX RPG II Editor 2-51

The following example shows an editor screen as it appears after a
SET RULER BOTTOM command, with an 18-line terminal page size. The
next example shows the same screen followed by a HELP request.

r-
FSHIPS IP F 41 DISK
FSUHREP 0 F 98 LPRINTER
E QTY 4 2 0
LSUHREP 55FL 500L
I SHIPS AA 01
I 1 5 DIV L2

I I 6 7 DEPT L~
I 8 16 PROD
I 17 24 QTY
C*
c 01 XFOOTQTY PROQTY 30
c 01 PROQTY ADD DEPQTY DEPQTY 30
C*

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7
12345678901234567890123456789012345678901234567890123456789012345678901234567

** * *** *--- *--- *--- ·** ___ * ___ ** ******

"----- _/ --------------------------- ZK-4352-85

2-52 Using the VAX RPG II Editor

PF1/PF2 - RPG II specification for~ats +-------+-------+-------+-------+
Press the PF1/KP7 key and type HELP for I Gold I Help IFnx FndlDlL UdLI
information on co~~ands and functions. +-------+-------+-------+-------+

For help on a specific key, press the IPag C~dlSec DsplRev HovlDlF UdFI
PF2 key followed by the key for which +-------+-------+-------+-------+
you want help information. IAdv BotlBck ToplCut PaslShL ShRI

Other keys: BS-KEY DEL-KEY +-------+-------+-------+-------+
TAB-KEY UP,DOWN,LEFT,RIGHT IFld IEol DEllChr Coll
CTRL_R_KEY CTRL_W_KEY +-------+-------+-------+Ent
CTRL_U_KEY CTRL_Z_KEY I Lin OpL ISel R~sl

+---------------+-------+-------+
I I 6 7 DEPT Li

I 8 16 PROD
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7

12345678901234567890123456789012345678901234567890123456789012345678901234567

** * *** *--- *--- *--- ·*l--~1~--11 **I I* I

"-----------------~------------ ZK-4353-85

2.6.8.5 SCROLL Option

The SCROLL option specifies the region within the editing window where
the cursor will stay.

The format of the SCROLL option is as follows:

SET SCROLL [top-offset [bottom-offset]]

Using the VAX RPG II Editor 2-53

Top-offset is the number of lines from the top of the editing window to
the top of the scrolling region. Bottom-offset is the number of lines from
the bottom of the scrolling region to the bottom of the editing window. If
bottom-offset is omitted, the current offset from the bottom is not changed.
If the top and bottom offsets are omitted, both offsets are set to the initial
editor defaults of zero.

If you enter SET SCROLL 0 1, then the cursor will move from the line
next to the ruler on the top, to within one line above the bottom of the
editing window. If you want to keep the cursor from hitting the top line,
enter a number greater than zero for top-offset. The higher the number,
the greater the number of source code lines that will remain on the screen
between the cursor and the top or bottom of the editing window.

2.6.8.6 SECTION Option

The SECTION option specifies the number of lines the VAX RPG II editor
will move the cursor (forward or backward) when the SECTION fitnction
(default= KP8) is used and there is no HELP information displayed. You
can specify any value between 1 and 5 less than the terminal page length.
By default, the bottom line of the editing window moves to the top (just
under the tab stops), regardless of the size of the window.

The format of the SECTION option is as follows:

SET SECTION lines

If you specify a SECTION value other than the default (when the HELP
window is displayed), the SECTION value is proportional to the visible
number of lines in the editing window.

2.6.8. 7 STARTCOLUMN Option

The STARTCOLUMN option specifies the current column for the following
functions:

• NEW_LINE

• OPEN_LINE

• LINE
• PAGE

The format of the STARTCOLUMN option is as follows:

SET STARTCOLUMN column

2-54 Using the VAX RPG II Editor

The default value is column 7. When the setting for the STARTCOLUMN
option is greater than 6, the RETURN key and OPEN _LINE
(default= PFl/KPO) function supply a specification type in column 6 that
is the same as is present on the current line.

2.6.8.8 SYNTAX CHECK Option

The SYNTAXCHECK option specifies that syntax checking and automatic
right justification of numeric fields will occur.

The format of the SYNTAXCHECK option is as follows:

SET SYNTAXCHECK { ON I OFF I PROMPT }

By default, the VAX RPG II editor starts up with the SYNTAXCHECK
option set on. This setting can be changed in a start.:up command file, or
interactively.

If you modify a line when syntax checking is on, and then attempt to
move off the line, one of the following events will occur:

• If there are no errors on the line and all numeric entries are properly
justified, the requested action takes place.

• If there are no errors on the line, but one or more numeric entries are
not properly justified, the numeric entries are justified, the justified
fields are highlighted, and the requested action takes place. The
highlighting is removed from the fields when the next line is syntax
checked.

• If a syntax error is detected, the requested action does not take place.
The cursor is positioned at the column of the error, and the error
message is displayed on the message line. You can either correct the
error or ignore the error by immediately moving off the line. Another
syntax check will take place on that line only if you modify it again.

If you enter table and array data while SYNTAXCHECK is set on, there is
a risk that the data will be right-justified as if it were part of the source
program. This will yield unexpected results. Therefore, it is recommended
that SYNTAXCHECK be set off while entering table and array data, or
that you use the PROMPT argument with SYNTAXCHECK. When the
PROMPT argument is in effect, the VAX RPG II editor will highlight any
proposed numeric right justification before it occurs and will prompt you
to confirm whether you want right justification.

Using the VAX RPG II Editor 2-55

Note that SYNTAXCHECK detects all errors, regardless of the severity.
Therefore, depending on the qualifiers you use when compiling, it is
possible that informational messages that you see in the editing session
will not be issued by the compiler. You can ensure that the errors will
be reported by compiling at DCL with the /WARNINGS=ALL qualifier.
This will cause both warning and informational messages to be sent. See
Section 3.1.2.8 for additional information on this qualifier.

2.8.9 SHOW Command

The SHOW command displays the current settings for the following
options:

• DEFAULT

• SCROLL
• SECTION

• STARTCOLUMN

• SYNTAXCHECK
• VERSION

The format of the SHOW command is as follows:

SHOW option

The current settings appear on the message line, as shown in the following
examples:

COMMAND: SHOW DEFAULT PAGE.PROMPT
Current defaults are NOPAGE,NOPROMPT

Command: SHOW SCROLL
Scroll offset from top is 0, from bottom is 0

Command: SHOW SECTION
Section length is: 18 or when HELP is displayed: 1

Comm~d: SHOW STARTCOLUMN
STARTCOLUMN value is: 7

Command: SHOW SYNTAXCHECK
SYNTAXCHECK is ON

2-56 Using the VAX RPG II Editor

The VERSION argument displays the current version of the VAX RPG II
editor and a VAX RPG II copyright statement, as shown in the following
example:

Command: SHOW VERSION
VAX RPG II V2.1 editor· COPYRIGHT (C) DIGITAL EQUIPMENT CORPORATION 1986

2.6.10 SUBSTITUTE Command

The SUBSTITUTE command allows you to substitute text using the
VAX RPG II editor. The format of the SUBSTITUTE command is as
follows:

SUBSTITUTE search-argument replace-argument [/SELECT] [/QUERY]

The SUBSTITUTE command replaces all occurrences of the search
argument with the replace-argument in the specified range. If the
/SELECT qualifier is specified, the command applies to all lines in the
select range. Otherwise, it applies to all lines in the buffer.

Only exact matches of the search-argument with text in the editing buffer
are performed.

Only equal length substitutions are performed. If one argument is shorter
than the other, it is padded on the right with spaces before searching and
replacing begins.

If you specify the /QUERY qualifier, then at each occurrence of the string
to be substituted the following occurs:

• The string to be substituted is highlighted.

• A "Substitute this occurrence (YES, NO, ALL, or QUIT)?" prompt is
displayed on the prompt line.

• You may answer YES, NO, ALL, or QUIT.

• If you answer YES, the text is replaced and the VAX RPG II editor
finds the next occurrence.

• If you answer NO, the text is not replaced and the VAX RPG II editor
finds the next occurrence.

• If you answer ALL, the current text is replaced as well as any further
occurrences of the text, without additional prompting.

Using the VAX RPG II Editor 2-57

• If you answer QUIT, the text is not replaced and the SUBSTITUTE
command terminates.

• If you make any other response, the sequence is repeated from the
point where the prompt message is displayed.

If the SYNTAXCHECK option is on, the current line is syntax checked
after each change is made. If a syntax error is found, the substitution is
terininated.

The command does not display the lines on which substitutions are made
(except in /QUERY mode).

Upon completion of this command, the message "Substitutions: n" is
_displayed in the message area, where 'n' indicates the number of substitu
tions performed.

Upon completion of this command when the /SELECT qualifier was
specified, the select range is removed.

The SUBSTITUTE command ignores the current editing direction. It
always proceeds from the beginning of the range to the end. The current
editing direction is not changed; it is ignored for the duration of the
command.

The cursor is returned to where it was before the command was issued.

Rules for Specifying Search-Argument and
Replace-Argument

• The search-argument must contain at least one nonblank character. If
it does not, the message "The search string must contain at least one
nonblank character" is displayed in the message area.

• If lowercase characters are desired in the substitution, the argu
ment must be enclosed within double quotation marks (for example,
"string"). Otherwise, lowercase characters are converted to uppercase.

• If the argument contains a terminator, such as a blank space or a slash
(/), the argument must be enclosed within double quotation marks
(for example, " " and "/").

• If the argument contains a double quotation mark ("), two double
quotation marks ("") must be entered.

• Single quotation marks (') are not treated like double quotation marks
("").

• Control characters cannot be entered in arguments.

2-58 Using the VAX RPG II Editor

2. 7 Customizing the VAX RPG II Editor

This section describes several VAX RPG II editor commands that are
available to you. These commands enable you to customize your editing
environment.

2. 7 .1 Using Editor Commands

For the purpose of this example, you want the ruler to lie on the bottom of
the screen and the HELP keypad to show in the HELP window. Because
you are entering a program with a compile-time table or array, you want
to be prompted before any numeric fields are right justified. Because you
have chosen a small scrolling region, you want the SECTION function to
give you 10 Jines. Finally, you want to use CTRL/P to review errors.

You would use the COMMAND function (default= PF1/KP7) to enter
each of the following commands:

• SET RULER BOTTOM
• SET SCROLL 2 2

• SET SECTION 10
• SET HELP KEYPAD

• SET SYNTAXCHECK PROMPT
• DEFINE KEY CTRLJ-1<EY REVIEW-ERROR

See Section 2.6.8.4 for an example of a screen with the ruler on the bottom
and the HELP keypad displayed.

2. 7 .2 Start-up Command Files

Start-up command files allow you to specify a set of commands to be
executed automatically each time you begin an editing session. A start-up
command file can contain any of the VAX RPG II editor commands. It
can also contain comment and blank lines to improve readability. Each
command is executed as if the COMMAND function were used.

The VAX RPG II editor uses the /COMMAND qualifier to find a start-up
file. This qualifier is present by default, with a default value of RPGINI.

Using the VAX RPG II Editor 2-59

The uses of the /COMMAND qualifier and their effects are as follows:

• If /COMMAND=filespec is used, the specified file is executed.

• If the /NOCOMMAND qualifier is used, no command file is executed.

All start-up files are opened with a default file type of RPG. The value for
the /COMMAND qualifier can be a full or partial file specification, or a
logical name that translates to a file specification.

Control can be passed from one start-up file to another by using the
COMMAND option of the SET command. When the VAX RPG II editor is
executing commands from a start-up command file and encounters a
SET COMMAND command, it tries to find the associated file by translat
ing logical names, if necessary. If a file is found, the contents of that file
are then executed in the same way as the original start-up file. The rest of
the commands in the start-up file are not executed. If the file is not found,
the rest of the commands in the start-up file are executed.

Following are several ways of using these options to customize your
editing environment.

If you do not want to execute any start-up file, your command line should
be as follows:

$ RPG/EDIT/NOCOMMAND filespec

To execute your own start-up commands, create a file of VAX RPG II
editor commands and define the logical name RPGINI to reference it. For
example, create the file MYSTART-UP.RPG to contain the following:

SET DEFAULT PAGE,PROMPT
SET HELP KEYPAD
SET RULER NONE
DEFINE KEY CTRL_N_KEY REVIEW_ERROR

Add to your LOGIN.COM file the following:

$DEFINE RPGINI MYDISK:[MYDIRECTORY]MYSTARTUP.RPG

Then, whenever you invoke the VAX RPG II editor, your commands will
be executed.

One way to establish a customized environment for many users at the
same time is described here. A system-wide start-up command file can
be established by defining the logical name RPGINI in the system logical
name table. In the following example, the file SYSRPGINI.RPG is in the
directory addressed by SYS$PUBLIC.

2-60 Using the VAX RPG II Editor

! System-wide start-up co111111ands
SET HELP SPECIFICATIONS
SET RULER BOTTOM
SET COMMAND RPGINI.RPG

If RPGINI was defiried by the following command then, by default,
all users on the system would have that set of commands executed
automatically. The last command shown would mean that after executing
the system-wide commands, the VAX RPG II editor would also execute
any commands found in the RPGINI.RPG file in the default directory.

$ DEFINE/SYSTEM RPGINI SYS$PUBLIC:SYSRPGINI.RPG

2. 7 ;.3 Modifying Screen Length

You can determine the number of lines on the terminal screen that are
used by the VAX RPG II editor. This is a useful option for a variety of
reasons. If you have a VT100 terminal that does not have Advanced
Video Option (AVO), there are only 14 lines in 132-column mode. It
is also useful if you have a terminal with more than 24 lines. Also,
if you have a terminal that runs at a slow baud rate, you can control the
number of lines displayed on the VAX RPG II editor screen. This improves
performance over a slow communication line by decreasing the number of
lines on the screen that must be updated during an editing session.

Use the DCL command SET TERMINAL/P AGE=n to set the length of the
page on your terminal screen. You can also set the width of the page with
SET TERMINAL/WIDTH=n. If you set the width to 132 columns, you
will get the full text of the VAX RPG II editor error messages.

Note that there must be at least six lines on the screen to allow for the
two-line ruler, tab stop line, prompt line, message line, and one line in the
source editing window.

2.8 Creating and Editing Programs

This section contains a sample VAX RPG II program and some of the
output it might produce. Section 2;8.1 shows you how to create a program
using the VAX RPG II editor, and Section 2.8.2 shows you how to edit
a program using the VAX RPG II editor. Both sections use the following
sample program.

Using the VAX RPG II Editor 2-61

Note that this example assumes a 24-line screen and no start-up file.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

H*++
H* FUNCTIONAL DESCRIPTION:
H* This progra~ produces a report of ship~ents for various
H* products broken down b~ division and depart~ent using an
H* input file with the ship~ent data for the past 4 quarters.
H*--
H
FSHIPS IP F
rSUHREP 0 r
E
LSUHREP 55FL 500L
!SHIPS AA 01
I
I
I
I
C*
c 01
c 01
C*

PROQTY

41
98

QTY

XFOOTQTY
ADD DEPQTY

DIS~::
LPRINTER
4 2 0

1 5 DIV L2
6 7 DEPT Li
8 16 PROD

17 24 QTY

PROQTY 30
DEPQTY 30

CL1 DEPQTY ADD DIVQTY DIVQTY 30
CU Z-ADDO DEPQTY
~ DIVQTY ADD FIHQTY FIHQTY 40 ~

---------------------------- ZK-4354-85

2-62 Using the VAX RPG II Editor

12345678901234567890123456789012345678901234567890123456789012345678901234567890

OSUMREP H 001 1P
0
0
0
0
0
ci
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

"-J

48 'PRODUCT SHIPMENT REPORT'
H 02 1P

UDATE Y 12
48 'PRODUCT SHIPMENT REPORT'

H 1P
42 'SHIPMENTS'

H 2 1P
15 'DIVISION DEPT'
24 'PRODUCT'
48 'Qi Q2 Q3 Q4 TOTAL'

D 1 01
L2 DIV 8
Li DEPT 14

PROD 25
QTY z 41
PROQTYZ 48

T 1 Li
T 0 L2

DIV 69
T 0 L2

DIV 69
T 02 L2

DIVQTYZB 48
63 '<== Total for'

DIV 69
t 0 LR

___./ FINQTY1 48
65 '<== GRAND TOTAL'

ZK-4355-85

A sample of the output from this program might appear as follows:

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

9/09/83 PRODUCT SHIPMENT REPORT
SHIPMENTS

DIVISION DEPT PRODUCT Qi Q2 Q3 Q4 TOTAL
East 12 CPU-19 12 13 14 15 54

CPU-20 11 11 11 10 43

13 TERM-12
TERM-13
TERM-20

12 34 34 35
23 24 25 26
11 12 13 14

115
98
50

360 <== Total for East

Using the VAX RPG II Editor 2-63

North 23 DISK-46 18 17 16 14 64
DISK-48 12 14 20 36 81
DISK-60 10 10 10 11 41

24 TAPE-12 8 7 6 3 24
TAPE-13 1 2 4 11 18
TAPE-32 10 10 10 11 41
TAPE-33 4 4 4 5 17

286 <== Total for North

South 26 MEMORY-11 19 20 21 21 81
MEMORY-16 19 18 17 16 70
MEMORY-17 12 13 13 12 60

201 <=• Total for South

West 39 SOFT-12 11 13 13 12 49
SOFT-14 6 7 8 8 29
SQFT-23 13 14 20 19 66

40 SOFT-24 16 14 14 13 66
SOFT-26 3 3 4 7 17

217 <=• Total for West

1,064 <=• GRAND TOTAL

2.8.1 Creating a New Program

Invoke the VAX RPG II editor by typing the following command:

$ RPG/EDIT MYFILE

The VAX RPG II editor displays the following message:

File not found

2-64 Using the VAX RPG II Editor

The following screen is displayed:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** 0EOBl

Press the PF2 ke to et hel information

'--- ___/ ----------------------------- ZK-4356-85

Using the VAX RPG II Editor 2-65

H

Although VAX RPG II does not require a Control specification (see
Chapter 15 for information on all VAX RPG II specifications), it is use-
ful to place an asterisk in column 7 of a Control specification to include
a comment describing what your program does. Press either the TAB
key or the RIGHT key repeatedly to move the cursor to column 6. Type
Hin column 6. Use the HELP....;.SPECS function (default= PF1/PF2) to
display the specification format for the Control specification. Because the
current line is a Control specification, the VAX RPG II editor automatically
displays the tab stops for the Control specification. HELP information will
be displayed in the HELP window of the VAX RPG II editor screen, as
shown in the following example:

Currency.sy111bol
I Inverted print CDIJ>
I I Alternate collating sequence CSE>
I I I 1P for111s position (1)
I I I I
I I I I

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

*·a I I I I I I I I •*I l*I I I l*I I 11 I I I I I I I I I Ill I

CEOBlHI

_/
----------------------------- ZK-4357-85

2-66 Using the VAX RPG II Editor

H

Enter an asterisk (*) in column 7. Type th~ description of the program.
Press the RETURN key at the end of each line. After the RETURN key is
pressed, the VAX RPG II editor.moves the current line ori the screen one
line up, if necessary; automatically enters H in column 6; and moves the
cursor to column 7. (Column 7 is the default setting for the
SET STARTCOLOMN command.) To display the current default for the
SET STARTCOLUMN command, issue the COMMAND function
(default = PF1/KP7), type SHOW STARTCOLUMN, and press the
RETURN key, as shown in the following example:

Currenc!:f S!:f11tbol
I Inverted print <DIJ>
I I Alternate collating sequence <SE>
I I I 1P for11ts position <1>
I I I I
I I I I

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

*·I 1•1 I II I I l*I •*•I I 111 I I I I I I I 11aI11*1 I I II I I I I I I I I I I I Ill I I I I I I I I I a I I I I

H*++
H• FUNCTIONAL DESCRIPTION:
HI This progra11t produces a report of ~hip11tents for various
HI products broken doNn b!:f division and depart11tent using an
HI input file Nith the ship11tent data for the past 4 quarters.
HI--
HI

CEOBl

<Pf"1/KP7>

"--- _/
---------------~-------------- ZK-4358-85

Using the VAX RPG II Editor 2-67

File
na111e
I

Fl

The specification type for the· current line will be duplicated until you
enter a new specification type in column 6. His automatically entered
in column 6 and the cursor is moved to column 7. The next specification
needed is the File Description specification. To replace H, move the cursor
to column 6 by using the FIELD_BACKWARD function
(default= BS_KEY), and enter F (File description).

Enter the name of the file, beginning in column 7, and then use the
FIELD-FORWARD function, hereafter referred to by its default setting,
TAB_KEY. Because HELP information is displayed in the HELP window
of the VAX RPG II editor screen, after TAB_KEY or any terminator is
pressed the VAX RPG II editor displays the specification format and tab
stops for the File Description specification, as shown in the following
example:

Mode <LR>
IKey length

Type <IOUDC> I I Record address type <APIB> Addtn<AU>
IDes<PSRCTDF>I I !Organization <IT,1-9) !Expand
1 IEOF <E> 11 I IOverflo"' indicator Continue <K> I IShr<SR>
I I I Seq <AD> I I I I I Key location I Opt Entry I I I Re"'nd
llllF111t <FV> II Ill I Extension <EUii I Ill I
I I I I IBlk Rec I I I I I I I Device Sy111b Tape Core I I I I File
I I I I 11 en 1 en I I I I I I I code dev 1abe1 index I I I I cond
111111 I 11 111 I 11 I I I 111 11

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** ******---*---**-*** *---** * *······*-----***·**
H*++
H* FUNCTIONAL DESCRIPTION:
H* This progra~ produces a report of ship~ents for various
H* products broken down by division and depart~ent using an
H* input file with the ship111ent data for the past 4 quarters.
H*--
H
FSHIPS I

CEOBl

"'-- __/ ---------------------------- ZK-4359-85

2-68 Using the VAX RPG II Editor

Note that you can press TAB_KEY to move the cursor to the next tab
stop. Enter the rest of the File Description specifications as shown in the
following example:

Mode <LR>
IKe~ length

T~pe <IOUDC> I I Record address t~pe <APIB> Addtn(AU>
IDes<PSRCTDF'>I I !Organization <IT,1-9) !Expand
I IEOF <E> 11 I !Overflow indicator Continue <K> I IShr<SR>
I I ISeq <AD> I I I I I Ke~ location IOpt EntrH I II Rewnd

File llllF111t <rV> II Ill I Extension <EUii I Ill I
na111e I I I I IBlk Rec I I I I I I !Device SHlllb Tape Core II I !File
I 111 111 en l en 11 111 I I code dev label index 111 I cond

Fl 111111 I II Ill I II I I I Ill II
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890

[EOBl

** ****** ___ * ___ **~*** *---** * H* FUNCTIONAL DESCRIPTION:
H*
H*
H*

This progra111 produces a report of ship111ents for various
products broken down bH division and depart111ent using an
input file with the ship111ent data for the past 4 quarters.

H*-
FSH I PS
FSUHREP
Fl

IP F
0 F

41
98

DISK
LPRINTER

"'---- _/ --------------------------- ZK-4360-85

Using the VAX RPG II Editor 2-69

E

Replace F i.n column 6 with E (Extension) and press TAB-1<EY. The
VAX RPG II editor displays the specification format and tab stops for
the Extension specification. Then, enter the rest of the entries for the
Extension specification, as shown in the following example:

f'ro111
file
na111e
I
I

To
file
na111e
i
1,

------F = For111at <PB>
I -----D = Deci111al positions
I I ----S = Sequence <AD>
111
I llAlternating table or arra~

Table EntEnt Len I I lna111e Len
or perin of Fl II of r
arra~ RecTbl EntlDll EntlD
naflie I I I I I S I I I I S
I I I I I I II I I II+~- Co111~ents ---+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

CEOBl

···· * * *--*---*--**** *--****
H* This progra~ p~oduces a rjport of ship111ents for various
H*
H*

products broken down b~ division and depart111ent using an
input file with the ship111ent data for the past 4 quarters.

H*-
FSH I PS.
FSUHREP
E
El

IP F
o r

41
98

QTY

DISK
LPRINTER
4 2 0

"--- ___/
-------------~------------~ ZK-4361-85

2-70 Using the VAX RPG II Editor

Fi le
na11te
I

LI

Enter L (Line Counter) in column 6. Then, enter the rest of the entries for
the Line Counter specification, as shown in the following example:

for11t length <1-112>
I fl (if for11t length used)
I I Overflow line nu11tber <1-112)
I I I OL (if Overflow line used)
I I I J

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** 1--· 1--· I 8 I

Htt
H*

products broken down b~ division and depart11tent using an
input file with the ship11tent data for the past 4 quarters.

H1-
FSH I PS
FSUHREP
E
LSUHREP

CEOBlll

IP f
0 f

55f L 500L

41
98

QTY

DISt.:
LPRINTER
4 2 0

"--- __,/
------------~------------- ZK-4362-85

Using the VAX RPG II Editor 2-71

Enter the Input specifications, as shown in the following example:

Se~uence <AA-ZZ, 01-99)
I Nu111ber <1-N>
I IOptional/External <OU> Deci111al positions
I I I Record identif~ing indicator I Control level
I I I I I I Hatch field
I I I I + Identif~ing codes + ror111at I I I rid rec rel

rile I II I I I I (PB) Irie l d I I I
na111e I I II I c c Cl lrield lna111e I I I rield
I I 111 I Z Z ZI I location I I I I I indicatrs

II I I I I Pos NDcPos NDcPos NDc Irr To I I I I I + - 0
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** * *** *--- *-~-
E QTY
LSUHREP 55FL 500L
!SHIPS AA 01
l
I
I
I

CEOBJII

*--- I** ___ * ___ ** * * * * * * 1111
4 2 0

1 5 DIV L2
6 7 DEPT L1
8 16 PROD

17 24 QTY

"---- _/
------------------------------- ZK-4363-85

2-72 Using the VAX RPG II Editor

Use the DISPLAY function (default= PF1/KP8) to display the program on
the entire screen (except lines 1 through 3, 23, and 24), as shown in the
following example:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

CEOBl

**
H*++

* *** *---

H* FUNCTIONAL DESCRIPTION:
* * * * * *

H* This progra~ produces a report of ship~ents for various
H* products broken doNn b~ division and depart~ent using an
H* input file Nith the ship~ent data for the past 4 quarters.
H*--
FSH I PS IP F
FSUHREP 0 F
E
LSUHREP 55FL 500L
!SHIPS AA 01
I
I
I
I
II

41
98

QTY

DISK
LPRINTER
4 2 0

1 5 DIV L2
6 7 DEPT Li
8 16 PROD

17 24 QTY

"'--- ___/
-------------~--------------- ZK-4364-85

Using the VAX RPG II Editor 2-73

Enter the Calculation specifications without displaying the specification
format in the HELP window, as shown in the following example:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * . *' * * * *--*** * '* * H*--
F'SHIPS IP F' 41 DISK
F'SUHREP 0 F' 98 LPRINTER
E QTY 4 2 0
LSUHREP 55F'L 500L
I SHIPS AA 01
I 1 5 DIV L2
I 6 7 DEPT Li
I 8 16 PROD
I 17 24 QTY
C*
c 01 XF'OOTQTY PROQTY 30
c 01 PROfHY ADD DEPQTY DEPQTY 30
C*
CL1 DEPQTY ADD DIVQTY DIVQTY 30
CL1 z.:..ADDO DEPQTY
CL2 DIVQTY ADD F'INQTY F'INQTY 40
C*
Cl

CEOBJ

"'---
ZK-4365-85

2-7 4 Using the VAX RPG II Editor

Enter the Output specifications as shown in the following example. Note
that the VAX RPG II editor screen can display only 19 source lines at
a time when the terminal has 24 lines and when the ruler is displayed.
After you enter more than 19 lines, the VAX RPG II editor moves the
editing window up.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** ***** * *' * ***---**
OSUHREP H 001 1P
0 48 'PRODUCT SHIPMENT REPORT'
0 H 02 1P
0 UDATE Y i2
0 48 'PRODUCT SHIPMENT REPORT'
0 H i iP
0 42 'SHIPMENTS'
0 H 2 iP
0 i5 'DIVISION DEPT'
0 24 'PRODUCT'
0 48 'Qi Q2 Q3 Q4 TOTAL'
0 D i Oi
0 DIV 8
0 L1 DEPT 14
0 PROD 25
0 QTY z 41
0 PROQTYZ 48
0 T i Li
01

"'-- /
ZK-4366-85

Using the VAX RPG II Editor 2-75

Enter the rest of the Output specifications. Use the EXIT function
(default= CTRL-2-1<EY) to save the contents of the editing buffer and to
leave the VAX RPG II editor. When EXIT is used, the VAX RPG II editor
displays the following message as shown in the next example:

46 records written to file MYDISK:[MYDIRECTORY]MYFILE.RPG;1

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** ***** * * * ***---**
0 H 02 1P
0 UDATE Y 12
0 48 'PRODUCT SHIPMENT REPORT'
0 H 1 1P
0 42 'SHIPMENTS'
0 H 2 1P
0 15 'DIVISION DEPT'
0 24 'PRODUCT'
0 48 'Qi Q2 Q3 Q4 TOTAL'
0 D 1 01
0 DIV B
0 L1 DEPT 14
0 PROD 25
0 QTY z 41
0 PROQTYZ 48
0 T 1 L1
0 T 0 LR
0 FINQTY1 48
0 65 '<== GRAND TOTAL'

45 records written to file MYDISK:CMYDIRECTORYJMYFILE.RPG;1

~ ___/
--------------------------- ZK-4367-85

2-76 Using the VAX RPG II Editor

2.8.2 Editing an Existing Program

When you invoke the VAX RPG II editor to edit the program created in
Section 2.8.l, the VAX RPG II editor displays the following message:

46 records read from file MYDISK: [MYDIRECTORY]MYFILE.RPG;1

The following screen is displayed:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

*·I I I I I I I I I I l*I ·*··I a l*I I I I I I I II I I I I l*I I I I I 811 I I I I I I I 111IIIIIII811 I I I I I

It H*++
H* rUNCTIONAL DESCRIPTION:
H* This progra~ produces a report of ship~ents for various
H* products broken down b~ division and depart~ent using an
H* input file with the ship~ent data for the past 4 quarters.
H*-- .
H
fSHIPS IP r 41 DISK
rSUMREP 0 r 98 LPRINTER
E QTY 4 2 0
LSUMREP 55FL 500L
!SHIPS AA 01
I 1 5 DIV L2
I 6 7 DEPT Li
I 8 16 PROD
I 17 24 QTY
C*
C 01 XFOOTQTY PROQTY 30
C 01 PROQTY ADD DEPQTY DEPQTY 30

Press the PF2 ke to et hel information

ZK-4368-85

Using the VAX RPG II Editor 2-77

In this session, the control-level indicator L2 must condition the DIV field
in the detail record Output specification. Use the FIND function
(default= PF1/PF3) to locate DIV. The VAX RPG II editor displays the
command prompt "Search for: ". Enter the search string DIV and press
the ENTER key, as shown in the following example:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

*•I I I I I I I I I l*I •*I I I l*I I I I I I I I I I I I I l*I I.I I I I I I I

H*++
H* FUNCTIONAL DESCRIPTION:
H* This progra~ produces a report of ship~ents for various
H* products broken down b~ division and depart~ent using an
H* input file with the ship~ent data for the past 4 quarters.
H1--
H
fSHIPS IP f
f SUHREP 0 f
E
LSUHREP 55f L 500L
!SHIPS AA 01
I
I
I
I
C*
c 01
c 01

Search for: DIV
PROQTY

41
98

QTY

XfOOTQTY
ADD DEPQTY

DI St::
LPRINTER
4 2 0

1 5 DIV L2
6 7 DEPT L1
8 16 PROD

17 24 QTY

PROQTY 30
DEPQTY 30

"'--- _/
----------------~------------ ZK-4369-85

2-7 8 Using the VAX RPG II Editor

The VAX RPG II editor responds by moving the cursor to the first charac
ter of the first occurrence of the search string DIV (see the comment line),
as shown in the following example:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

.·I I I I I I 1J I I .·1 I I I I I I* I I ,I I I I I I I I I I I ·.~I I I I I I I I I I I I I I I·. I I I I I I I I 1·1 I I I I I I I

H*++
H• FUNCTIONAL DESCRIPTION:
H• This program produces a report of shipments for various
H• product~ broken down b~ ~ivision and department using an
H• input file with the shipment data for the past 4 ~uarters.
H•-- .
H
FSHIPS IP F
FSUHREP 0 F
E
LSUHREP 55FL 500L
!SHIPS AA 01
I
I
I
I
C•
c 01
c 01 PRO QTY

41
98

QTY

XFOOTQTY
ADD DEPQTY

DISK
LPRINTER
4 2 0

1 5 DIV L2
6 7 DEPT L1
B 16 PROD

17 24 QTY

PROQTY 30
DEPQTY 30

"---- __/ ---------------------------- ZK-4370-85

Using the VAX RPG II Editor 2-79

Because this is not the correct string, use the FIND-NEXT function
(default= PF3). The VAX RPG II editor moves the cursor to the first
character of the next occurrence of the string DIV, as shown in the
following example:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** H•++ *. *** ·--- ·---
H* FUNCTIONAL DESCRIPTION:

·--- * * * * * *

H* This program produces a report of shipments for v~rious
H• products broken dowri bM division and depart~~nt using ~n
H• input file with the ship~ent data for the past 4 quarters.
H•--
H
FSHIPS IP F
FSUHREP 0 F
E
LSUMREP 55FL 500L
!SHIPS AA 01
I
I
I
I
C•
c 01
c 01 PROIHY

2-80 Using the VAX RPG II Editor

41
98

QTY

XFOOTIHY
ADD DEPQTY

DISK
LPRINTER
4 2 0

1 5 [DIV L2
6 7 DEPT L1
8 16 PROD

17 24 QTY

PROQTY 30
DEPQTY 30

Again, this occurrence of the string DIV is incorrect, so issue the
FIND-NEXT function five more times to move the cursor to the correct
occurrence. You could have specified DIV and a blank as the search string
to avoid duplicating key strokes. L2 must be entered in columns 24 and
25. To do this, move the cursor to column 24 by pressing BS_J(EY to
column 23, then use the RIGHT function (default= RIGHT) once. Enter
the string L2 in columns 24 and 25, as shown in the following example:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** c 01
C*
cu
cu
CL2
C*
OSUMREP
0
0
0
0
0
0
0
0
0
0
0
0

***** * * PROGi TY

DEPGITY

DIVGITY

H 001

H 02

H 1

H 2

D 1

iP

iP

1P

iP

01
L21

I Hf---H

ADD DEPGITY DEPGITY 30

ADD DIVGITY
Z-ADDO
ADD rINGITY

. DIVGITY 30
DEPGITY
rINGITY 40

48 'PRODUCT SHIPMENT REPORT'

UDATE Y 12
48 'PRODUCT SHIPMENT REPORT'

42 'SHIPMENTS'

15 'DIVISION DEPT'
24 'PRODUCT'
48 'Qi Gl2 Gl3 Gl4 TOTAL'

DIV 8

~ ___/
--------------~-------------- ZK-4372-85

Using the VAX RPG II Editor 2-81

Number the program lines for reference by issuing the COMMAND
function (default= PF1/KP7) and typing the RESEQUENCE command, as
shown in the following example:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

**
190C 01
200C*
210CL1
220CL1
230CL2
240C*
2500SUMREP
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700

***** * *
PRO QTY

DEPQTY

DIVQTY

H 001

H 02

H 1

H 2

D 1

Command: RESEQUENCE

1P

1P

1P

1P

01
L2tt

* ·*H---H
ADD DEPQTY DEPQTY 30

ADD DIVQTY
Z-ADDO
ADD rINQTY

DIVQTY 30
DEPQTY
f INQTY 40

48 'PRODUCT SHIPMENT REPORT'

UDATE Y 12
48 'PRODUCT SHIPMENT REPORT'

42 'SHIPMENTS'

15 'DIVISION DEPT'
24 'PRODUCT'
48 'Qi Q2 Q3 Q4 TOTAL'

DIV B

"'--- /
---------------------------~ ZK-4373-85

2-82 Using the VAX RPG II Editor

Use the SECTION function (default= KP8) fo move the cursor the number
of lines set by the SET SECTION commarid, as shown in the following
example:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** ***** * * * IH---H

2800 UDATE Y 12
2900 48 'PRODUCT SHIPMENT REPORT'
3000 H 1 1P
3100 42 'SHIPMENTS'
3200 H 2 1P
3300 15 'DIVISION DEPT'
3400 24 'PRODUCT'
3500 48 'Qi Q2 Q3 Q4 TOTAL'
3600 D 1 01
3700 L2 DIV 8
3800 Li DEPT 14
3900 PROD 25
4000 QTY z 41
4100 PROQTYZ 48
4200 T 1 Li
4300 T 0 LR
4400 FINIHY1 48
4500 I 65 '<== GRAND TOTAL'

CEOBl

Attem t to move ast end of buffer

"----- ___/
--------------------------------~· ZK-4374-85

Using the VAX RPG II Editor 2-83

Enter two Output specifications between lines 420 and 430 by using the
following functions:

1. UP (default= UP) to line 430

2. OPEN_LINE (default= PFl/KPO) to create a new line

Use the OPEN_LINE function to create a line preceding the current line.
The VAX RPG II editor automatically places the specification type of the
current line in column 6 and moves the cursor to column 7. Enter the new
specifications, as shown in the following example:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** ***** * * * *H---H
2900 48 'PRODUCT SHIPMENT REPORT'
3000 H 1 1P
3100 42 'SHIPMENTS'
3200 H 2 1P
3300 15 'DIVISION DEPT'
3400 24 'PRODUCT'
3500 48 'Qi Q2 Q3 Q4 TOTAL'
3600 D 1 01
3700 L2 DIV 8
3800 Li DEPT 14
3900 PROD 25
4000 QTY z 41
4100 PROQTYZ 48
4200 T 1 L1

0 T 0 L2
0 DIV 691

4300 T 0 LR
4400 rINQTY1 48
4500 65 '<== GRAND TOTAL'

"---- _/
ZK-4375-85

2-84 Using the VAX RPG II Editor

Enter two more specifications (identical to the two specifications just
entered) by using the following functions:

I '

1. SELECT (default= PERIOD) to mark the beginning of the selected
region

2. UP (default = UP) once

3. CUT (default= KP6) to place the selected region irito the paste buffer
4. PASTE (default= PF1/KP6) twice

The following example shows the effects of the procedure just described:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** 2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200

d
0
0
0

4300

lllH I I

H 1 1P

H 2 1P

D 1 01
L2
L1

T 1 L1
T 0 L2

T 0 L2

T 0 LR

I 111---11 , I I I I

48 'PRODUCT SHIPMENT REPORT'

42 'SHIPMENTS'

15 'DIVISION DEPT'
24 'PRODUCT'
48 'Qi Q2 Q3 Q4 TOTAL'

DIV 8
DEPT 14
PROD 25
QTY Z 41
PROQTYZ 48

DIV 69

DIV 69
I

ZK-4376-85

Using the VAX RPG II Editor 2-85

Enter four more specifications. Then, remove the line numbers, as shown
in the following example:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** ***** * * * IH---*I
0 H 2 1P
0 15 'DIVISION DEPT'
0 24 'PRODUCT'
0 48 'Qi , Q2 Q3 Q4 TOTAL'
0 D 1 01
0 L2 DIV 8
0 Li DEPT 14
0 PROD 25
0 QTY z 41
0 PROQTYZ 48
0 T 1 Li
0 T 0 L2
0 DIV 69
0 T 0 L2
0 DIV 69
0 T 02 L2
0 DIVQTYZB 48
0 63 '<== Total for'
0 DIV 691

Command: RESEQUENCE/REMOVE

ZK-4377-85

2-86 Using the VAX RPG II Editor

Use the COMMAND function and type the EXIT command to save the
modified program, as shown in the following example:

1234567890123456789012345678901234567890123456789012345678901234567890123

** ***** * * * ···---·· 0 H 2 1P
0 15 'DIVISION DEPT'
0 24 'PRODUCT'
0 48 'Qi Q2 Q3 Q4 TOTAL'
0 D 1 01
0 L2 DIV 8
0 Li DEPT 14
0 PROD 25
0 QTY z 41
0 PROQTYZ 48
0 T 1 L1
0 T 0 L2
0 DIV 69
0 T 0 l2
0 DIV 69
0 T 02 l2
0 DIVQTYZB 48
0 63 1 <== Total for'
0 . DIV 691

Bri:•l1114.1nn•m•1 .. 1a1;•·••»••ig111;111;i1111•dam

~ __/
---------------------------------- ZK-4378-85

Using the VAX RPG II Editor 2-87

Chapter 3

Processing VAX RPG II Programs

You can create a source program using the VAX RPG II editor; then,
you must compile, link, and run the program with commands to the
VAX/VMS operating system. You can optionally create an object file be
fore leaving the VAX RPG II editor using the VAX RPG II editor COMPILE
command. If your VAX RPG II program does not execute correctly, you
must modify it and repeat these steps until it does.

When you compile a VAX RPG II program, the VAX RPG II compiler
creates an object module file. When you link your program, use the
VAX/VMS Linker. The linker reads the object module file and uses
libraries to replace external references with the address of the executable
code that defines it. Then the linker places that code in an executable
image file. When you execute your program, the system executes that
image.

3. 1 Compiling Programs

To compile a source program, use the RPG command as follows.

$ RPG[/qualifier(s)] file-spec-list[/qualifier(s)]

/qualifier(s)
Specifies special actions the compiler is to perform. See Sections 3.1.2.1
through 3.1.2.8 for information on qualifiers.

Processing VAX RPG II Programs 3-1

file-spec-list
Specifies the source files to be compiled. Normally, you would specify.a
single source file, but if you need to create a single object file from more
than one source file, separate the file specifications with plus (+) signs.
VAX RPG II appends the files in the order you specify. If you separate
source file specifications with commas, VAX RPG II compiles the programs
separately and creates a single objt:ct file for each source file.

When you execute the RPG command, VAX RPG II compiles the program
and generates an object module with the specified file name and the
default file type OBJ. The compiler can also generate other output files,
depending on the qualifiers you supply.

When you compile a source file and specify only its file name, the com
piler searches for a source file with the specified name that is stored on
the default device in the default directory and has a file type of RPG.

If more than one file meets these conditions, the compiler chooses the one
with the highest version number.

For example, assume that your default device is DBAO:, your default
directory is [SMITH], and you give this command:

$ RPG FIRSTTRY

•
The appearance of the second DCL command prompt ($) indicates that
the compilation is finished.

The compiler searches device DBAO: in directory (SMITH], seeking the
highest version of FIRSTTRY.RPG. If you do not specify an output file, the
compiler generates the file FIRSTTRY.OBJ and stores it on device DBAO:
in directory [SMITH], with a version number that is one higher than any
existing version number for FIRSTTRY.OBJ.

3. 1. 1 Default Compiler Options

When you compile a program, you can specify optional qualifiers such
as /LIST or /NOWARNINGS. The qualifiers you get when you do not
specify them are called defaults.

You can change these defaults for your own programs by using qualifiers
with the RPG command. The RPG command accepts qualifiers to change
the defaults for a single compilation, as shown in the following example:

$ RPG/LIST/NOOBJECT MYPROG

3-2 Processing VAX RPG II Programs

This RPG command instructs VAX RPG II to compile a single source file
(MYPROG.RPG) and overrides the default compiler settings for:

• Listing-the VAX RPG II compiler will produce a compiler listing.

• Object file-the VAX RPG II compiler will not produce an object file.

You can specify other defaults by defining RPG as a symbol, as shown in
the following example:

$ RPG :== "RPG/CHECK/LIST/CROSS"

If you then type RPG MYPROG, the /CHECK, /LIST, and /CROSS
qualifiers are in effect.

3.1.2 Compiler Qualifiers

This section describes the RPG command; Sections 3.1.2.1 through 3.1.2.8
describe the RPG command qualifiers and list their default values.

You can change defaults by using qualifiers with the RPG command.
Qualifiers have the form:

/qualifier[=value]

Many qualifiers have a corresponding form that negates the action speci
fied by the qualifier. The negative form is as follows:

/NOqualifier

For example, /LIST tells the compiler to produce a listing file; /NOLIST
suppresses the listing.

You can specify qualifiers so that they affect either all files in the com
mand, or only certain files. If the qualifier immediate! y follows the RPG
command, it applies to all files, as shown in the following example:

$ RPG/LIST ABC,XYZ,RST

This command specifies listing files for ABC.RPG, XYZ.RPG, and
RST.RPG.

Qualifiers following a file specification (with some exceptions) affect only
the associated file, as shown in the following example:

$ RPG/LIST ABC,XYZ/NOLIST,RST

Processing VAX RPG II Programs 3-3

The preceding RPG command specifies listing files for ABC.RPG and
RST .RPG, but not for XYZ.RPG. Qualifiers to a single file specification in
an appended list of file specifications are exceptions to this rule. (A list of
file specifications separated by plus signs (+)is called an appended list or
plus list.) See Example 5 in the following list.

1. $ RPG/LIST AAA,BBB,CCC

VAX RPG II compiles source files AAA.RPG, BBB.RPG, and CCC.RPG
as separate files and produces three object files (AAA.OBJ, BBB.OBJ,
and CCC.OBJ) and three listing files (AAA.LIS, BBB.LIS, and
CCC.LIS).

2. $ RPG XXX+YYY+ZZZ

VAX RPG II appends source files XXX.RPG, YYY.RPG, and ZZZ.RPG
and compiles them as a single program. This command produces one
object file named XXX.OBJ, but does not produce a listing file.

3. $ RPG/OBJECT=SQUARE CIRCLE

VAX RPG II compiles source file CIRCLE.RPG and produces object file
SQUARE.OBJ. This command produces no listing file.

4. $RPG AAA+BBB,CCC/LIST

VAX RPG II produces two object files: AAA.OBJ (created from
AAA.RPG and BBB.RPG) and CCC.OBJ (created from CCC.RPG).
VAX RPG II also produces the listing file CCC.LIS.

5. $ RPG ABC+DEF /NOOBJECT+XYZ

VAX RPG II appends and compiles the source files ABC.RPG,
DEF.RPG, and XYZ.RPG. Because qualifiers in a list of appended
files affect all files in the list, this command suppresses the creation of
an object file.

Table 3-1 lists the qualifiers you can use with the RPG command.

3-4 Processing VAX RPG II Programs

-0 a
(")

CD

~ s·
CCI

<
)>
x
::c
-0 en
=
-0 a

CCI
@
3
en

w
I

U'I

Table 3-1: ·VAX R·PG ·II Command Qualifiers
Qualifier Negative Form

/CHECK=[NO)BOUNDS /NOCHECK
[NO]RECURSION
· [NO]BLANKS_IN :__NUMERICS

ALL
NONE

/CROSS-REFERENCE

/DEBUG=[NO]SYMBOLS
[NO)TRACEBACK
ALL
NONE

/LIST[=file-spec]

/MACHINE_CODE

/OBJECT[=file-spec]

/SEQUENCE_CHECK

/WARNINGS=[NO)OTHER
[NO]INFORMATION
ALL
NONE

/NOCROSS_REFERENCE

/NODEBUG

/NO LIST

/NOMACHINE....:.CODE

/NOOBJECT

/NOSEQUENCE_CHECK

/NOWARNINGS

Default

/NOCHECK

/NOCROSS_REFERENCE

/DEBUG=
(NOSYMBOLS,

TRACEBACK)

/NOLIST (interactive)
/LIST (batch)

/NOMACHINE_ CODE

/OBJECT

/NOSEQUENCE_CHECK

/WARNINGS=
(OTHER,

NO INFORMATION)

Sections 3.1.2.1 through 3.1.2.8 describe VAX RPG II command qualifiers
in detail.

3. 1.2.1 /CHECK Qualifier

The /CHECK qualifier causes VAX RPG II to generate code to check
for run-time errors in array indexes, recursive calls to subroutines, and
blanks in overpunched numeric fields. The /CHECK qualifier format is as
follows:

/CHECK[=(option[, ...])]

option
Can be one of the following:

• [NO]BOUNDS

• [NO]RECURSION
• [NO]BLANKS-1N _NUMERICS

• ALL

• NONE

BOUNDS
Checks array indexes at run time to make sure they are within array
boundaries specified by the program.

RECURSION
Verifies at run time that subroutines are not called recursively.

BLANKS_/N_NUMERICS
Converts blanks in overpunched numeric fields to zeros at run time. This
option is the default if the program contains a WORKSTN file. Use the
RPG/CHECK=BLANKS-1N_NUMERICS command to convert blanks in
numeric data to zeros if you run your program and receive the following
message:

A numeric field contains invalid data

ALL
Indicates that RECURSION, BOUNDS, and BLANKS-1N -.NUMERICS
checking will be performed.

NONE
Indicates that RECURSION, BOUNDS, and BLANKS-1N -.NUMERICS
checking will not be performed.

3-6 Processing VAX RPG II Programs

Specifying the /CHECK qualifier is equivalent to specifying /CHECK=ALL;
/NOCHECK is equivalent to /CHECK=NONE. The /NOCHECK qualifier
is the default.

Use /CHECK=(RECURSION,BOUNDS) for programs only during initial
program debugging, because compiling with this qualifier results in
additional code and, consequently, takes more time to process. Using
/NOCHECK means that no error will be signaled at run time for an array
reference outside the bounds of an array or for a subroutine that has
been called recmsively. Therefore, using /NOCHECK may result in your
program getting a memory-management or access-violation error at run
time.

3. 1.2.2 /CROSS-REFERENCE Qualifier

The /CROSS-REFERENCE qualifier causes the compiler to include
cross-reference information in the listing file for the compiled source
file. Cross-reference information lists variable names, indicators, and the
program lines on which they were referenced. Its format is as follows:

/CROSS_REFERENCE

When you use the /CROSS-REFERENCE qualifier, you must also use
the /LIST qualifier, or /LIST must be in effect (default for batch mode)
to produce a listing file. The /NOCROSS_REFERENCE qualifier is the
default.

3.1.2.3 /DEBUG Qualifier

The /DEBUG qualifier causes the compiler to provide information for the
VAX/VMS Debugger and the system run-time error traceback mechanism.
Its format is as follows:

/DEBUG[=(option[, ...])]

option
Can be one of the following:

• [NO]SYMBOLS

• [NO)TRACEBACK

• ALL

• NONE

Processing VAX RPG II Programs 3-7

SY/VI BO LS
Causes the compiler to provide the debugger with local symbol definitions
for user-defined names (including dimension information for arrays). If
you use SYMBOLS, you can refer to data entities by their names when
you use the debugger.

TRACEBACK
Causes the compiler to provide an address correlation table so that the
de~ugger and the run-time error traceback mechanism can translate
absolute addresses into source program routine names and line numbers.

ALL
Causes the compiler. to provide both local symbol definitions and an
address correlation table.

NONE
Prevents the compiler from providing debugging information~

Neither the /TRACEBACK qualifier nor the /SYMBOLS qualifier affects a
program's executable code.

Specifying the /DEBUG qualifier is equivalent to specifying /DEBUG=ALL;
/NODEBUG is equivalent to /DEBUG=NONE. The /DEBUG==TRACEBACK
qualifier is the default. For information on debugging, see Chapter 5.

3.1.2.4 /LIST Qualifier

The /LIST qualifier controls whether VAX RPG II produces a listing file
for the compiled program. The listing file contains the source program and
a compilation summary. If you also use the /MACHINE-CODE qualifier,
the listing file will jndude the compiler-generated object code for the
compiled program. If you also use the /CROSS-REFERENCE qualifier,
the listing file will include cross-reference information. The format of the
/LIST qualifier is as follows:

/LIST[•file-spec]

You can include a file specification for the listing file. Otherwise, the
output file defaults to the name of the first source file and the file type
us.
If the RPG command is executed in interactive :mode, the default qualifier
is /NO LIST. If the RPG command is executed in batch mode, the default
qualifier is /LIST. ·

3-8 Processing VAX RPG II Programs

The listing file uses a listing page length which depends on the logical
SYS$LP_LINES. Any value between 30 and 255 can be used for
SYS$LP_LINES. The listing page length uses three-line top and bottom
margins. If the logical SYS$LP_LINES is not defined, the default page
length will be 66 lines (60 listing lines after the three-line top and bottom
margins are subtracted).

It is possible to enter nonprintable characters when using an editor other
than the VAX RPG II editor to create or edit a program. If a source line
in the compiler listing contains one or more periods (.) where you have
not entered a period on the program line, it is because the program line
contains a nonprintable character (for example, a TAB character or a null
character).

3.1.2.5 /MACHINE-CODE Qualifier

The /MACHINE_CODE qualifier specifies that the listing file include the
compiler-generated object code. Its format is as follows:

/MACHINE_ CODE

When you use the /MACHINE-CODE qualifier, you must also use the
/LIST qualifier, or /LIST must be in effect (default for batch mode) to
produce a listing file. The /NOMACHINE_CODE qualifier is the default.

3.1.2.6 /OBJECT Qualifier

The /OBJECT qualifier causes VAX RPG II to produce an object module
and optionally specifies its file name. Its format is as follows:

/OBJECT[=file-spec]

The default qualifier is /OBJECT.

By default, the compiler generates object files as follows:

• If you specify one source file, VAX RPG II generates one object file.

• If you specify multiple source files separated by plus signs (+), VAX
RPG II appends the files and generates one object file.

• If you specify multiple source files separated by commas (,), VAX
RPG II compiles and generates a separate object file for each source
file.

You can use both plus signs (+) and commas (,) in the same command
line to produce different combinations of appended and separated object
files. See Examples 1 through 5 in Section 3.1.2.

Processing VAX RPG II Programs 3-9

To produce an object file with an explicit file specification, you must use
the /OBJECT qualifier in the form /OBJECT=file-spec. Otherwise, the
object file has the same name as its corresponding source file and the
default file type OBJ. By default, the object file produced from appended
source files has the name of the first source file specified. All other file
specification attributes (node, device, directory, and version number)
assume the default values.

During the early stages of program development, you may find it useful to
suppress the production of object files until your source program compiles
without errors. Use the /NOOBJECT qualifier to do this.

3.1.2. 7 /SEQUENCE-CHECK Qualifier

The /SEQUENCE_CHECK qualifier causes the compiler to check the line
numbers in columns 1 through 5 of every program line to make sure they
are in ascending line-number sequence. If the line numbers are not in
sequence, the compiler issues a warning message. Its format is as follows:

/SEQUENCE_ CHECK

The /NOSEQUENCE_CHECK qualifier is the default.

3.1.2.8 /WARNINGS Qualifier

The /WARNINGS qualifier allows you to specify whether VAX RPG II
displays informational and warning messages. Its format is as follows:

/WARNINGS[=(option[, ...])]

option
Can be one of the following:

• [NO]OTHER

• [NO]INFORMATION

• ALL
• NONE

OTHER
Causes VAX RPG II to display warning messages.

INFORMATION
Causes VAX RPG II to display informational messages.

3-10 Processing VAX RPG II Programs

ALL
Causes VAX RPG II to display both warning and informational messages.

NONE
Prevents VAX RPG II from displaying warning or informational messages.

Specifying the /WARNINGS qualifier is equivalent to specifying
/WARNINGS=ALL; /NOWARNINGS is equivalent to /WARNINGS=NONE.
The /WARNINGS= (NOINFORMATION,OTHER) qualifier is the default.

for information on how /WARNINGS affects the VAX RPG II editor
SYNTAXCHECK option, see also Section 2.6.8.8.

3.2 Linking and Running Programs

The VAX/VMS Linker uses the object module produced by the VAX RPG
II compiler as input and produces an executable image file as output. This
file has the same name as your program and the default file type EXE.

When your program calls other programs-that is, when it is comprised
of more than one program module-the linker takes multiple object files
and creates a single executable image from them. For information on
subprograms, see Section 12.6.

You use the LINK command to invoke the VAX/VMS Linker. The format
of the LINK command is as follows:

LINK[/command-qualifier(s)] file-spec-list[/file-qualifier(s)]

command-qualifier(s)
Specifies output file options. Use the /DEBUG qualifier to provide infor
mation for the VAX/VMS Debugger. See Chapter 5 for information on
debugging VAX RPG II programs. For information about other command
qualifiers, see the VAX/VMS Linker Reference Manual.

file-spec-list
Specifies a file or the files to be linked.

file-qualifier(s)
Specifies input file options. For information on file qualifiers, see the
VAX/VMS Linker Reference Manual.

Processing VAX RPG II Programs 3-11

When you type LINK, the system prompts with:

_File:

Respond by typing the file specifications. If multiple file specifications do
not fit on a single line, type a hyphen (-) as the last character on the line
and continue on the next line.

' For example, to link the object file created from the program FIRSTTRY in
Section 3.1, type:

$ LINK FIRSTTRY

•
NOTE

If you link a program with a WORKSTN file and get a message
that FDV$ATERM is undefined, you are attempting to link on a
system that does not have the VAX Forms Management System
(VAX FMS) installed.

This command tells the linker to accept FIRSTTRY.OBJ as input and to
produce FIRSTTRY.EXE as output. After the executable file has been
created, you run it with the RUN command:

$ RUN FIRSTTRY

•
NOTE

If you run a program with a WORKSTN file and get a message
that there was an error activating FDVSHR, you are attempting
to run a WORKSTN program on a system that does not have
the VAX FMS Form Driver installed.

3.3 Interpreting Compiler Error Messages

The format of a VAX RPG II compiler error message is as follows:

fac-severity-IDENT

3-12 Processing VAX RPG II Programs

rac . .
Represents the facility. The facility is always RPG.

severity
Indicates the severity of the error, which can be I (information), W (warn
ing), E (error), or F (fatal).

/DENT
Represents the IDENT field.

The IDENT field of a VAX RPG II compiler error message designates the
error recovery action taken by the VAX RPG II compiler. IDENT fields can
h~ve one of the following values:

• SPEC-IGNORED

The current specification is ignored. The resulting program, if nonfa
tal, executes as if the specification were not entered.

• ENTRY-IGNORED

The entry in the current field is ignored. The resulting program, if
nonfatal, executes as if the field were blank. ·

• DEFN-1GNORED

The current definition of this field is ignored. The resulting program,
if nonfatal, U$es the previous definition.

• CHAR-IGNORED

The current character is ignored. The resulting program, if nonfatal,
ex~cutes as if the column were blank.

• FATAL

No error recovery action can be taken. The severity level is a,lways
fatal. ·

• ACCEPTED

The compiler accepts the entry exactly as specified.

Processing VAX RPG II Programs 3-13

• SEE-MESSAGE

The error text contains the recovery action taken by the VAX RPG II
compiler.

• 0--.ASSUMED

The entry in the current field is ignored. The resulting program, if
nonfatal, executes as if the field contained 0.

3--14 Processing VAX RPG II Programs

Chapter 4

Interpreting a Compiler Listing

This chapter explains the parts of a full compiler listing. The sample listing
in Figure 4-1 is for the program shown under the Source Listing title. The
circled numbers on the program listing correspond to the numbered key
which follows the figure.

Interpreting a Compiler Listing 4-1

t ·Figure 4-1: Sample. Compiler Listing
N

~
co -a
~ ::;·

<C

C"')
0
3

"S!.
~
r-
~
::;·

<C

SHIPS 8
Source Listin:g

f) 28-Jun~1986 16:~8:46 e 28-Jun-1-986 16:56:12
VAX RPG:.Il V2.1 f)

RPG$: HIEBERT. RPG] SHIPS . RPG; 1 (1) e
0 1 2 3 4 6 6 7 8
12346678901234667890123456789012346678901234667890123456789012346678901234667890

· 8 1 0 H*++
2 H•· FUNCTIONAL DESCRIPTION:
3 H• This program produces a report of shipments.for various
4 H• products broken down by division and·department using. an
5 H• input file with the shipment data for the past 4 quarters~
6 H•--
7 H
8 FSHIPS IP .F
9 . FSUMREP. 0 F

10 E
11 LSUMREP 65FL 500L
12 !SHIPS AA 01
13 I
14 I
15 I
16 I
17 C•
18 c 01
19 c . 01
20 C•
21 CL1
22 CL1
23 CL2
24 C•

.PROQTY..

DEPQTY

. DIVQTY

41
98

QTY

DISK
LPRINTER

.4 2 0

XFOOTQTY
ADD· DEPQTY

ADD. DIVQTY
Z-ADDO
ADD FINQTY·

1 5 DIV L2.
6 7 DEPT Lt
8 16·PROD

17 24 QTY

PROQTY 30
DEPQTY 30

DI.VQTY 30
DEPQTY
FINQTY 40

Page 1

25 OSUMREP H 001 1P
26 0 48 'PRODUCT SHIPMENT REPORT'
27 0 H 02 1P
28 0 UDATE Y 12
29 0 48 'PRODUCT SHIPMENT REPORT'
30 0 H 1 1P
31 0 42 'SHIPMENTS'
32 0 H 2 1P
33 0 16 'DIVISION DEPT'
34 0 24 'PRODUCT'
35 0 48 'Q1 Q2 Q3 Q4 TOTAL'
36 0 D 1 01
37 0 L2 DIV 8
38 0 L1 DEPT 14
39 0 PROD 26
40 0 QTY z 41
41 0 PROQTYZ 48
42 0 T 1 L1
43 0 T 0 L2
44 0 DIV 69
46 0 T 0 L2
46 0 DIV 69
47 0 T 02 L2
48 0 DIVQTYZB 48
49 0 63 '<== Total for'
50 0 DIV 69
51 0 T 0 LR
52 0 FINQTY1 48
53 0 66 '<== GRAND TOTAL'
54

~ (Continued on next page)
-a
a :;·

CCI
Q)

C"')
0
3

"E.
~
r-a·
:;·

CCI

~
I
w

t Figure 4-1 (Cont.): Sample Compiler Listing
.;..

~
Ct)

-a
§.
5·

(CJ

(.J
0
3
~
~
.-
~-
5·

(CJ

SHIPS
Machine Code Listing CD
00000000 .BYTE -x5a,-x4s,-x49,-x5o,-x53
00000008 .BYTE -x53,-x55,-x4D,-x52,-x45,-x5o

28-Jun-1986 15:58:45
28-Jun-1986 16:56:12

VAX RPG II V2.1
RPG$:[HEBERT.RPG]SHIPS.RPG;1 (1)

"SHIPS"
"SUMREP"

Page 2

00000010 .BYTE -x41,-xoa,-xo2,-x40,-x20,-x91.-xo3,-x91,-x44,-x2F,-x92,-x44,-x2F,-x92,-xoo "G .. ~ ... D/ .D/ .. "
"G .. ~ 00000020 .BYTE -x41,-xo2.-xo2,-x40,-x20,-x92.-xoo

00000028 .BYTE -x41,-xo3,-xo2,-x4o,-x20,-x93,-xoo "G .. ~
00000030 .BYTE -x41,-xo4,-xo2,-x4o,-x20,-x91,-x44,-x2c,-x92,-xo3,-x91,-xoo "G .. ~ .D, "
0000003C .BYTE -xoo,-xoo,-xoo,-xoc
00000040 .LONG -xooooooo3
00000044 .ADDRESS UDAY
00000048 .ADDRESS UMONTH
0000004C .ADDRESS UYEAR
00000050 . LONG -xooooooo1
00000054 .ADDRESS SHIPS+68
00000058 .LONG -xooooooo2
0000005C .LONG -xooooooo2
00000060 .ADDRESS SHIPS
00000064 .LONG -xooooooo1
00000068 .ADDRESS SHIPS
0000006C .LONG -xooooooo2
00000070 .LONG -xooooooo1
00000074 .ADDRESS SHIPS
00000078 .LONG -xooooooo1
0000007C .ADDRESS SUMREP+68
00000080 .LONG -xooooooo2
00000084 .LONG -xooooooo2
00000088 .ADDRESS SUMREP
0000008C .LONG -xooooooo1
00000090 .ADDRESS SUMREP
00000094 . LONG -xooooooo2
00000098 .LONG -xooooooo1
0000009C .ADDRESS SUMREP

~
"5!
~ s·
cc
Q)

n
0
3

"E.
~ ,....
fa"
s·
cc

~

c::,

OOOOOOAO
OOOOOOBO
OOOOOOBS
OOOOOOC4
OOOOOOD4
OOOOOOE4
OOOOOOEC
OOOOOOFO
OOOOOOF4
OOOOOOFS
00000108

00000000
00000002
00000009
00000010
00000013
0000001A
00000021
00000028

+

.BYTE -x50,-x62,-x4F,-x44,-x55,-x43,-x54,-x20.-x53,-x4s,-x49,-x5o,-x4D,-x45,-x4E,-x54

.BYTE -x20,-x62,-x45,-x5o,-x4F,-x52,-x54

.BYTE -x53, -14s, -x49, -x50, -x4D, -x45, -x4E, -x54, -x53

.BYTE -x44,-x49,-X66,-X49,-X63,-X49,-X4F,-X4E,-x20.-x20.-x44,-x45,-x5o,-x54

.BYTE -x51,-x31,-x20.-x20.-x61,-x32,-x20.-x20,-x61,-x33,-x20.-x20,-x61,-x34,-x20.-x20;

.BYTE -x54,-x4F,-X64,-x41,-x4C

.LONG -xooooooo2

.LONG -xooooooo3

.ADDRESS SHIPS

. BYTE -x3c. -x3D. -x3D. -x20. -x54. -xeF. -x74. -xe1. -xec. -x20. -xee. -xeF. -x12

.BYTE -x3c,-x3D,-x3D,-x20,-x41,-x62,-x41,-x4E,-x44,-x20,-x54,-x4F,-x54,-x41,-x4c

.PSECT $CODE

.ENTRY SHIPS, -xoFFC
MOVAB G-RPG$HANDLER, (FP)
MOVAB $LOCAL+-X26, -(SP)
SUBL2 ·-xoc, SP
MOVAB $LOCAL+~X80, R11
MOVAB $PDATA+-xso. R10
MOVAB G-RPG$IOEXCEPTION, R9
MOVAB G-RPG$PRINT, RS

Program epilogue code

00000539
00000541
00000544
00000548
0000054A 72$:
0000054A 73$:
0000054A
0000054D

CALLG
BLBS
CALLG
BRB

MOVL
RET

$PDATA+-x8C(R10), G-RPG$TERM_PRINT
RO, 72$ -
$PDATA+-X94(R10), G-RPG$IOEXCEPTION(R9)
73$

1-xo1. RO

"PRODUCT SHIPMENT"
" REPORT"
"SHIPMENTS"
"DIVISION DEPT:
"Q1 Q2 Q3 Q4
"TOTAL"

"<== Total for"
"<== GRAND TOTAL"

(Continued on next page)

~ Figure 4-1 (Cont.): Sample Compiler Listing I
en

~
SHIPS ~ 28-Jun-1986 15:58:45 VAX RPG II V2.1 Page 11

~ Cross Reference in Alphabetical Order ~ 28-Jun-1986 15:56:12 RPG$: [HEBERT.RPG]SHIPS.RPG;1 (1)
~
::;·
= DEPQTY 19# 19 21 22
C")

DEPT 14# 38
0 DIV 13# 37 44 46 50 3

"'E. DIVQTY 21# 21 23 48
~ FIN QTY 23# 23 52
r- PROD 15# 39 ~-

5· PRO QTY 18# 19 41 = QTY 10# 16 18 40
SHIPS 8# 12
SUMREP 9# 11 25
UDATE 28

SHIPS 28-Jun-1986 16:58:45 VAX RPG II V2.1 Page 12
Indicator Cross Reference 41 28-Jun-1986 15:56:12 RPG$:[HEBERT.RPG]SHIPS.RPG;1 (1)
01 12 18 19 36
L1 14 21 22 38 42
L2 13 23 37 43 46 47
LR 51
1P 25 27 30 32

SHIPS 28-Jun-1986 16:58:45 VAX RPG II V2.1 Page 13
Compilation Summary 28-Jun-1986 16:56:12 RPG$:[HEBERT.RPG]SHIPS.RPG;1 (1)

PROGRAM SECTIONS

Name 48 8 Bytes Attributes 41>
0 $CODE 1368 PIC CON REL LCL SHR EXE RD NOWRT Align(2)
1 $LOCAL 1280 PIC CON REL LCL NOSHR NOEXE RD WRT Align(2)
2 $PDATA 279 PIC CON REL LCL SHR NOEXE RD NOWRT Align(2)
3 RPG$UDATE 6 PIC OVR REL GBL NOSHR NOEXE RD WRT Align(2)
4 RPG$HALTS 9 PIC OVR REL GBL NOSHR NOEXE RD WRT Align(2)

a
CD -a
i s·

CCI

I»

("")
0
3
'E.
ii"
r-
~: s·

CCI

·~
I

COMMAND QUALIFIERS 49
RPG /LIST/MACHINE_CODE/CROSS_REFERENCE/CHECK=ALL/DEBUG/OBJECT/SEQUENCE_CHECK/WARNINGS=ALL SHIPS.RPG
/CROSS_REFERENCE /MACHINE_CODE /SEQUENCE_CHECK
/CHECK=(RECURSION,BOUNDS,BLANKS_IN.;.NUMERICS)
/DEBUG=(SYMBOLS,TRACEBACK)

./WARNINGS=(OTHER,INFORMATION)

STATISTICS
CD Run Time:
-~ Elapsed Time:
41 Page Faults:
41> Dynamic.Memory:

6.26 seconds
6.58 seconds
270
348.pages

Key to Figure 4-1:

0 The program name.

8 The date and time of compilation.

8 The name and version number of the compiler.

e The creation date and time of the source file.
0 The complete file specification (device:[directory]filename.type;version)

for the source file. The number in parentheses is a text editor page
number.

Items 1 through 5 appear at the top of each page in the listing file.
0 The 80-column ruler.

8 Source line numbers assigned by the compiler. The VAX/VMS
Debugger uses these line numbers as location specifications.

The letter C after the line number indicates that the line was generated
by a copy directive.

0 Source Listing-source code.

0 Machine Code Listing-the compiler-generated object code for the
program you compiled.

~ Cross-Reference in Alphabetical Order-the user-defined names in
alphabetical order and the line numbers on which they are referenced.
The first column with the pound sign (#) after the number lists the
line number where the data name is defined. For example, DEPQTY
is defined on line 19 and referenced on lines 19, 21, and 22.

DEPQTY 19# 19 21 22

• Indicator Cross-Reference-the indicators and the line numbers on
which they are referenced. For example, indicator 01 is referenced on
lines 12, 18, 19, and 36.

01 12 18 19 36

48 PROGRAM SECTIONS-names the PSECT numbers and names.

ti) The bytes allocated for each PSECT.
e The PSECT attributes. See the VAX/VMS Linker Reference Manual for

information on PSECT attributes.
CD COMMAND QUALIFIERS-lists the command line you entered and·

names the compiler defaults that were in effect when the program was
compiled.

4D The CPU time used to compile the program.

4-8 Interpreting a Compiler Listing

• The time elapsed to compile the program.
G) The number of page faults.
4D The number of virtual memory pages used to compile the program.

Interpreting a Compiler Listing 4-9

Chapter 5

Debugging Programs

The VAX/VMS Debugger enables you to debug VAX RPG II programs
by monitoring the flow of program execution and logic. For a complete
description of debugger capabilities, see the VAX/VMS Debugger Reference
Manual.

The debugger lets you d,o the following:

• Set breakpoints to stop program execution just before a specified line
is executed.

• Set tracepoints to cause the debugger to pause and display a message
whenever a specified line is executed.

• Set watchpoints to cause the debugger to stop and display a message
whenever a specified variable is modified.

• Examine and modify source code.

• Examine and modify data.

• Evaluate arithmetic expressions.
• Step through a program-single STEP commands cause the debugger

to execute one or more lines and then stop program execution.

The debugger needs information generated by both the VAX RPG II com
piler and the VAX/VMS Linker. Specifying the /DEBUG qualifier with
the RPG command creates the symbolic information for the debugger.
Specifying the /DEBUG qualifier with the LINK command makes the
information available to the debugger.

Debugging Programs 5-1

At compile time, VAX RPG II supports the following options for the
/DEBUG=options qualifier:

• ALL

• NONE
• [NO]TRACEBACK

• [NO]SYMBOLS

Specifying the /DEBUG=SYMBOLS qualifier for the RPG command allows
you to examine and change the contents of variables throughout your
program. However, file names from File Description specifications are not
available as variables.

If you omit the /DEBUG qualifier from the RPG and LINK commands,
you can specify the /DEBUG qualifier with the RUN command. In this
case, no symbolic information is available to the debugger; you must make
every reference to a program variable in terms ofits absolute address.

If you do not specify the /DEBUG qualifier with any of the RPG, LINK,
or RUN commands and an error occurs, you receive a traceback list
(a description of the logic flow up to the point where the error was
detected). However, you cannot invoke the debugger. If you compile
your program with the /DEBUG=NOTRACEBACK qualifier or link your
program with the /NOTRACE qualifier, you do not receive the traceback
list. The default options for the /DEBUG qualifier are TRACEBACK and
NOSYMBOLS. .

If you want to use the source line display while using the COMPILE
command, you must inform the debugger where the source file resides.
To do this, complete the following steps:

1. Define the symbol RPG to include symbols for the VAX/VMS
Debugger. For example:

$ RPG : == RPG/DEBUG·

2. Execute the VAX RPG II editor COMPILE command during the editing
session

3. Execute the LINK/DEBUG command after exiting from the VAX RPG
II editor

4. Execute the RUN command

5. Enter the debugger command: SET SOURCE source-file-spec

See Chapter 3 for information on compiling and linking VAX RPG II
programs and their respective command qualifiers.

5-2 Debugging Programs

If you are using the VAX Performance and Coverage Analyzer (the
Analyzer), you must specify the following:

/DEBUG=SYS$LIBRARY:PCA$0BJ.OBJ MYPROGRAM.OBJ

The VAX Performance and Coverage Analyzer consists of a collector and
an analyzer. The collector gathers information (such as execution counts)
on your program while it is executing. The analyzer makes it possible to
interpret the data gathered by the collector. The analyzer is used to track
a performance problem in an entire program down to a certain module,
or even down to a certain line of code. See Appendix C for an example
of the VAX Performance and Coverage Analyzer applied to a VAX RPG II
program.

5. 1 Using the Debugger with VAX RPG II

Debugging VAX RPG II programs is somewhat different from debugging
programs in other languages. The VAX RPG II program cycle determines
the order in which the program lines are processed. See Chapter 1 for a
complete discussion of the VAX RPG II program cycle.

You can reference those line numbers VAX RPG II assigns to your program
in the listing file. The line numbers you specify in columns 1 through 5
of a specification are not used. The compiler assigns line numbers only to
certain specifications at specific points in the logic cycle; therefore, you can
specify a breakpoint or tracepoint at these points in the program:

• A break at a File Description specification (see Chapter 15 for more
information on specifications) occurs just before an input or update file
is opened or just before an output file is created. The line number of
this break corresponds to the File Description specification for this file.

• A break at an Input specification occurs before the fields are loaded
with data from a record. The line number of this break corresponds to
the re~ord definition in an Input specification.

• You can set two breaks for each Calculation specification. The first
break occurs just after testing control-level indicators, if used, and just
before testing conditioning indicators. The second break occurs just
before executing the operation code. For example, if a Calculation
specification begins with line number 25, you can specify the line and
statement number SET BREAK 25.1 to test indicators.

Debugging Programs 5-3

SET BREAK 25.2 breaks just before executing the operation code. If a
particular Calculation specification has no indicators, SET BREAK 25
breaks just before executing the operation code.

• A break at an Output specification occurs after the output buffer has
been built but before the record is output. The line number of the
break corresponds to the record definition in an Output specification.

5.2 Debugger Commands and Keywords

There are many debugger commands, but not all are appropriate for
use in debugging VAX RPG II programs. Table 5-1 lists some debugger
commands and keywords (and their abbreviations) that are helpful in
debugging VAX RPG II programs.

Table 5-1: Debugger Commands and Keywords
Command
Names (abbrev) Keywords (abbrev)

SET (SE) LANGUAGE (LA)

SHOW (SH) MODULE (MODU)

CANCEL (CAN) SCOPE (SC)

EXAMINE (E) BREAK (B)

EVALUATE (EV) TRACE (T)

DEPOSIT (D) WATCH (W)

EXIT (EXI)

STEP (S)

GO (G)

EDIT (ED)

The rest of this chapter describes these debugger commands and explains
how to use them.

5.3 Preparing to Debug a Program

This section describes the SET LANGUAGE and SHOW LANGUAGE
commands used to create the proper environment for debugging a
VAX RPG II program.

5-4 Debugging Programs

5.3.1 SET LANGUAGE Command

The SET LANGUAGE command causes the debugger to conduct the
debugging dialogue according to the conventions of the specified language.
If your program does not call any subprograms written in languages other
than RPG II, you do not need to use the SET LANGUAGE command.
If your program calls a subprogram written in another language, you
can cause the debugger to execute the subprogram by specifying the
STEP /INTO command. See Section 5.4.5 for information about the
/INTO qualifier. After the debugger has stepped into the subprogram,
you must use the SET LANGUAGE command to specify the language of
the subprogram. After you have finished executing the subprogram and
you have returned to the main program, you must use the
SET LANGUAGE command to specify the language of the main program.

The format of the SET LANGUAGE command is as follows:

SET LANGUAGE language

language
Specifies the language to be used.

5.3.2 SHOW LANGUAGE Command

To determine the language of the program currently being executed, use
the SHOW LANGUAGE command. The format of the
SHOW LANGUAGE command is as follows:

SHOW LANGUAGE

The debugger responds by displaying the program's language, as shown
in the following example:

DBG>SHOW LANGUAGE
language: RPG

Debugging Programs 5-5

5.4 Controlling Program Execution

To see what is happening during execution of your program, you must be
able to suspend and resume the program at specific points. The following
commands are available for these purposes:

• SET BREAK

• SHOW BREAK

• CANCEL BREAK

• SET TRACE

• SHOW TRACE

• CANCEL TRACE

• SET WATCH

• SHOW WATCH

• CANCEL WATCH

• SHOW CALLS

• GO

• STEP

• TYPE

• CTRL/Y

• EXIT

You can specify a VAX RPG II label as a breakpoint or a tracepoint. These
labels correspond to specific points in the logic cycle. The following list
describes VAX RPG II labels:

• •DETL breaks just before outputting heading and detail lines.
• •GETIN breaks just before reading the next record from the primary

or secondary file.

• •TOTC breaks just before performing total-time calculations.
• •TOTL breaks just before performing total-time output.

• •OFL breaks just before performing overflow output.

• •DETC breaks just before performing detail-time calculations.

5-6 Debugging Programs

5.4.1 SET BREAK, SHOW BREAK, and CANCEL BREAK Commands

The BREAK commands allow you to select specific locations for program
suspension, so that you can examine or modify the following data:

• Variables
• Table entries

• Array elements

When you specify a table name, you can examine or modify the entry
retrieved from the last LOKUP operation.

You can also set a breakpoint at any point listed in Section 5.1.

The BREAK commands perforin the following functions:

• SET BREAK defines the line number that will suspend execution.

• SHOW BREAK displays all breakpoints currently set in the program.

• CANCEL BREAK removes selected breakpoints.

The format of the SET BREAK command is as follows:

SET BREAK Y.LINE lin-num[.stmnt-num] [DO(command(s))]

lin-num
Specifies the line number where the breakpoint will occur. You can also
specify a logic cycle label, a TAG name, or a subroutine label.

stmnt-num
Specifies the statement number where the breakpoint will occur. You
can use statement numbers only with Calculation specifications that have
conditioning indicators.

DO(command(s}}
Requests the debugger to perform the specified debugger commands, if
specified, when the breakpoint is reached.

Debugging Programs 5-7

In the following example, SET BREAK examines variables TOTAL and
AREA when the breakpoint at line 100 is reached:

DBG>SET BREAK %LINE 100 DO(EXAMINE TOTAL; EXAMINE AREA)

The format of the SHOW BREAK command is as follows:

SHOW BREAK

SHOW BREAK takes no arguments. The debugger responds by displaying
the current breakpoints, as shown in the following example:

DBG>SET BREAK LOOP
DBG>SET BREAK %LINE 50
DBG>SHOW BREAK
breakpoint at ARRX37\LOOP
breakpoint at ARRX37\%LINE 50

The format of the CANCEL BREAK command is as follows:

CANCEL BREAK %LINE lin-num[.stmnt-num]
/ALL

lin-num[.stmnt-num]
Removes the breakpoint at the specified line and statement number, logic
cycle label, TAG name, or subroutine label.

/ALL
Removes all breakpoints in the program.

Normally, the debugger displays the line number when it suspends
execution because of a breakpoint or step. There are two exceptions to
this behavior:

• When stepping through a subroutine, the debugger displays the
subroutine label.

DBG>STEP
stepped to PROG1\SUB1

• When stepping through a TAG, the debugger displays the TAG name.

DBG>STEP
stepped to PROG1\TAG1

5-8 Debugging Programs

5.4.2 SET TRACE, SHOW TRACE, and CANCEL TRACE Commands

The TRACE commands let you set, examine, and remove tracepoints in
your program. A tracepoint is similar to a breakpoint in that it suspends
program execution; however, after displaying the trace variables, program
execution resumes immediately. Thus, tracepoints let you follow the
sequence of program execution to ensure that execution is occurring in the
proper order.

Tracepoints and breakpoints are mutually exclusive. If you set a tracepoint
at a current breakpoint, the breakpoint will be canceled. If you set a
breakpoint at a current tracepoint, the tracepoint will be canceled.

The TRACE commands perform the following functions:

• SET TRACE establishes points within the program where execution is
momentarily suspended.

• SHOW TRACE displays the points in the program where tracepoints
are currently set.

• CANCEL TRACE removes one or more tracepoints currently set in the
program.

The format of the SET TRACE command is as follows:

SET TRACE Y.LINE lin-num[.stmnt-num]

lin-num[.stmnt-num]
Specifies the line and statement number, logic cycle label, TAG name, or
subroutine label where the tracepoint will occur.

The format of the SHOW TRACE command is as follows:

SHOW TRACE

SHOW TRACE takes no arguments. The debugger responds by displaying
the current tracepoints, as shown in the following example:

DBG>SET TRACE LOOP2
DBG>SET TRACE Y.LINE 100
DBG>SHOW TRACE
tracepoint at ARRX37\LOOP2
tracepoint at ARRX37\Y.LINE 100

Debugging Programs 5-9

The format of the CANCEL TRACE command is as follows:

CANCEL TRACE Y.LINE lin-num[.stmnt-num]
/ALL

lin-nulTi[.stmnt-num]
Removes the tracepoint at the specified line and statement number, logic
cycle label, TAG name, or subroutine label.

/ALL
Removes all tracepoints in the program.

5.4.3 SET WATCH, SHOW WATCH, and CANCEL WATCH Commands

The WATCH commands let you monitor the contents of variables.
Watchpoints determine when an attempt is made to modify variables.
When an attempt is made, the debugger halts program execution and
prompts for a debugger command. Watchpoints are monitored contin
ually. Thus, you can determine whether a particular variable is being
modified inadvertently during program execution. Watchpoints, trace
points, and breakpoints are mutually exclusive. The WATCH commands
perform the following functions:

• SET WATCH defines the variables to be monitored.

• SHOW WATCH displays the variable currently being monitored.
• CANCEL WATCH disables monitoring of specified variables.

The format of the SET WATCH command is as follows:

SET WATCH vbl

vb/
Specifies the variable to be monitored. You can monitor variables and
array elements.

5-10 Debugging Programs

In the following example, SET WATCH sets a watchpoint for the variable
AREA:

DBG>SET WATCH AREA

The format of the SHOW WATCH command is as follows:

SHOW WATCH

SHOW WATCH takes no arguments. The debugger responds by display
ing the current watchpoints, as shown in the following example:

DBG>SET WATCH INDEX2
DBG>SHOW WATCH
watchpoint of ARRX37\INDEX2

The format of the CANCEL WATCH command is as follows:

CANCEL WATCH vbl/ALL

vb/
Specifies the variable that disables monitoring.

/ALL
Removes all watchpoints from the program.

The following command cancels the watchpoint for the variable AREA:

DBG>CANCEL WATCH AREA

5.4.4 SHOW CALLS Command

The SHOW CALLS command can be used to produce a traceback of calls
to program modules. It is particularly useful when you have returned to
the debugger following a CTRL/Y command. The format of the SHOW
CALLS command is as follows:

SHOW CALLS [n]

The debugger displays a traceback list, showing the sequence of calls to
program modules leading to the current module.

If you include a value for n, the n most recent calls are displayed.

Debugging Programs 5-11

5.4.5 GO and STEP Commands

The GO and STEP commands let you initiate and resume program execu
tion. The GO command initiates execution from the current line or at a
specified point in the program and continues to the end of the program or
to the next breakpoint. The STEP command initiates execution from the
current line, and continues for a specified number of lines.

The format of the GO command is as follows:

GO CXLINE lin-num[.stmnt-num]]

lin-num[.stmnt-num]
Specifies the line and statement number, TAG name, or subroutine label
where execution will begin.

The normal use of the GO command is to continue execution after a
breakpoint or at program initiation. Resuming execution at a point other
than the current line can cause unpredictable results because of the nature
of the VAX RPG II logic cycle.

Use the STEP command to execute one or more VAX RPG II program
lines and immediately return to the debugger. The format of the STEP
command is as follows:

STEP [/qualifiers] [n]

The value specified for n determines the number of statements to be
executed. If you specify 0, or omit a value for n, a value of 1 is assumed.

You can specify the following qualifiers with the STEP command:

/[NO]SYSTEM
Causes the debugger to count steps wherever they occur. The
/NOSYSTEM qualifier is the default.

/[NO JOVER
Causes the debugger to ignore calls to subprograms as it steps through
the program. That is, it steps over each call to a subprogram. The /OVER
qualifier is the default.

5-12 Debugging Programs

/[NO]INTO
Causes the debugger to recognize calls to subprograms as it steps through
the program. That is, it steps into each subprogram. The /NOINTO
qualifier is the default.

/[NO]LINE
Causes the debugger to step through the program on a line by line basis.
The /LINE qualifier is the default.

/[NO]SOURCE
Causes the debugger to display the lines of source code that corresponds
to the lines being executed with each step. Source lines are also displayed
when a breakpoint or watchpoint occurs. When stepping through Input
and Output specifications, the debugger displays the first line of a record
definition. The /SOURCE qualifier is the default.

You can specify one or more qualifiers each time you issue a STEP
command, or you can use a SET STEP command to override the defaults.

The following command specifies that the defaults for the /LINE, /INTO,
and /SYSTEM qualifiers are overridden:

DBG>SET STEP NOLINE,INTO,SYSTEM

When you subsequently issue a STEP command with no qualifiers, the
debugger assumes these qualifiers (/NOLINE, /INTO, and /SYSTEM) are
in effect. You can, however, supersede the current qualifiers by including
a qualifier with a STEP command.

The following command executes 10 lines, regardless of the SET STEP
command:

DBG>STEP/LINE 10

It is advisable to use STEP to execute only one or a few lines at a time.
To execute many lines and then stop, use a SET BREAK command to set a
breakpoint, then issue a ·GO command.

5.4.6 TYPE Co ... mand

The TYPE command displays the line of source code you specify. The
format of the TYPE command is as follows:

TYPE [lin-num[:lin-num] [, ...]]

Debugging Programs 5-1 J

lin-num[:lin-num]
Specifies the lines of source code to be displayed.

The following command displays lines 1 through 30:

DBG> TYPE 1 : 30

The following- command displays lines 1 and 30:

DBG> TYPE 1 , 30

You can display the line after the current line by typing TYPE and by
pressing the RETURN key.

5.4. 7 EDIT Command

The EDIT command allows you to edit the file you are debugging.

The editing session begins at the current debugging line.

EDIT /EXIT specifies that you want to end the debugging session and
begin an editing session.

EDIT /NOEXIT specifies that you want to return to the debugging session
after you make your edits. The /NOEXIT qualifier is the default.

5.4.8 CTRL/Y Command

You can use the CTRL/Y command at any time to return to the system
command level. You issue this command when you press the CTRL
key and the Y key at the same time. The dollar sign ($) prompt will be
displayed on the screen. To return to the debugger, type DEBUG. Use the
CTRL/Y command if your program goes into an infinite loop or, for some
reason, fails to stop at a breakpoint. To find out where you were when
CTRL/Y was executed, use the SHOW CALLS command after you have
returned to the debugger.

5-14 Debugging Programs

5.4.9 EXIT Command

The EXIT command lets you exit from the debugger when you are ready
to terminate a debugging session. The format of the EXIT command is as
follows:

EXIT

The EXIT command uses no arguments. To return to system command
level after your program has terminated, use the EXIT command.

5.5 Examining and Modifying Locations

After you have set breakpoints and begun execution, the next step is
to see whether correct values are being generated and, if necessary, to
change the contents of variables as execution proceeds. You may also
want to calculate the value of an expression that appears in your program.
The debugger provides the following commands for these purposes:
EXAMINE, DEPOSIT, and EVALUATE.

5.5.1 EXAMINE Command

The EXAMINE command lets you look at the contents of the following:

• A variable

• The current table entry

• An array element

• The I/ 0 buffer

The format of the EXAMINE command is as follows:

EXAMINE vbl [, vbl]

vb/
Specifies a simple or subscripted variable.

The following command displays the contents of the variable SALES:

DBG>EXAMINE SALES

Debugging Programs 5-15

The following command displays the contents of the ninth element in
array ARRAY:

DBG>EXAMINE ARRAY(9)

The following command displays the contents of the first through the
tenth elements of the array ARRAY:

DBG>EXAMINE ARRAY(1:10)

You can examine indicators to see whether they are set on or off. Precede
the indicator you want to examine with the string •IN. If an indicator is
set on, 1 is displayed. If an indicator is set off, 0 is displayed.

The following command displays the current setting for indicator 56:

DBG>EXAMINE •IN56

The debugger responds by displaying:

•IN56: "0"

You cannot examine external indicators in this way, but you can do the
following. To determine the current value of US, for example, enter this
command:

DBG>CALL RPG$EXT_INDS(6)

The debugger responds by displaying:

value returned is 0

The program must have been linked with the /NOSYSSHARE qualifier to
do this.

You can also display the current contents of the 1/0 buffer. To display
the 1/0 buffer, specify the name of the input file, update file, or output
file, a dollar sign ($), and the string BUF.

The following command displays the contents of the 1/0 buffer for the
input file INPUT:

DBG>EXAMINE INPUT$BUF

The following command displays the ASCII equivalent of the string
STRING, which is n characters in length:

DBG>EXAMINE/ASCII:n STRING

To examine a variable which contains the at sign (@), use %NAME as
follows:

DBG>EXAMINE %NAME 'ITEM~'

5-16 Debugging Programs

5.5.2 DEPOSIT Command

The DEPOSIT command lets you change the contents of specified vari
ables. The format of the DEPOSIT command is as follows:

DEPOSIT vbl=value

vb/
Specifies the variable that the value is deposited into.

value
Specifies the value to be deposited.

You can change the contents of a specific variable or of several consecutive
variables, as shown in the examples in this section.

Values deposited into numeric fields are aligned on the decimal point.
Shorter fields are padded with zeros to the left and right of the ,decimal
point.

The following command places the decimal value 100 into the variable
BONUS:

DBG>DEPOSIT BONUS=100

The following command places the decimal values 100, 150, and 200 into
elements l, 2, and 3 of array ARRAY:

DBG>DEPOSIT ARRAY(1)=100, 160, 200

The delimiters used to enclose ASCII strings in the DEPOSIT command
can be either single (') or double (") quotation marks. Use the keyboard
apostrophe for the single quotation mark.

Values deposited into character fields are left justified. If the value con
tains fewer characters than the character field, the field is padded on the
right with spaces.

The following command places the string ACTIVE in the variable STATUS:

DBG>DEPOSIT STATUS="ACTIVE"

You can also use DEPOSIT to set indicators on or off. Precede the indica
tor you want to set with the string •IN. To set an indicator on, specify 1 as
the variable value. To set an indicator off, specify 0 as the variable value.

The following command sets indicator 56 on:

DBG>DEPOSIT •IN56 = "1"

Debugging Programs 5-17

5.5.3 EVALUATE Command

The EVALUATE command lets you use the debugger as a calculator
to determine the value of arithmetic expressions. The format of the
EVALUATE command is as follows:

EVALUATE expression

expression
Specifies the expression whose value is to be determined.

The following command displays the value of the expression
ARRAY(FLDl) • FLD2:

DBG>EVALUATE ARRAY(FLD1) * FLD2

5-18 Debugging Programs

Using VAX RPG II Features on VMS

This part of the manual provides information on the use
of VAX/VMS features in the development of VAX RPG II
programs:

• Screen handling
Workstation (WORKSTN) files syntax
VAX RPG II interface with VAX Forms Management
System (VAX FMS)
Screen and display forms conversion utility

• Indicators
• Files
• Printer output files
• Tables
• Arrays
• System routines and system services
• Program optimizing

Chapter 6

VAX RPG II Screen Handling

VAX RPG II screen handling is accomplished in two ways: (1) language
syntax in the VAX RPG II program, and (2) various screen design ac
tivities outside of the VAX RPG II program, including the VAX Forms
Management System (VAX FMS).

The general language syntax is based on WORKSTN files used in other
vendor RPG II implementations which allow RPG II programs to
interact with a terminal. In these implementations, a WORKSTN file
interacts with forms that are defined externally to the RPG program.

The VAX RPG II language provides an interface between WORKSTN
files and VAX FMS forms. You can create and modify these forms with
an interactive forms editor. If you are developing new applications, you
should refer to the FMS /EDIT chapter of the VAX FMS Utilities Reference
Manual. If you are working with existing WORKSTN file programs and
forms based on Screen and Display (Sand D) specifications, VAX RPG
II provides a Conversion Utility that converts the Screen and Display
specifications to the VAX FMS form language. You can use the forms on
VTlOO and VT200 terminals. Additional information on VAX FMS can be
found in the VAX FMS Utilities Reference Manual.

NOTE

Use of the DSPL Y operation code and WORKSTN files in the
same program can produce undesirable run-time results on your
terminal screen. Displayed information can become mixed and
garbled, because neither screen handling mechanism is aware
of the other and no coordination takes place. Concurrent use is
highly discouraged.

VAX RPG II Screen Handling 6-1

6. 1 Creating and Modifying Forms

A VAX PMS form provides the communications bridge between a VAX
RPG II program WORKSTN file and a terminal screen. VAX PMS forms
include fields and constant information. You can specify various video
attributes, such as blink or underline, for parts of the form. You can use
fields in the form to display information from the program, or to input
information that will be returned to the program. VAX PMS has various
methods of validation for each input field.

VAX FMS has two methods for creating forms:

1. The VAX PMS Form Editor Utility allows you to interactively design
the layout of a form, showing the position of each field as well as
constant information. The form can be modified later. You invoke the
VAX PMS Form Editor Utility with the following command:

$ FMS/EDIT form-name1

2. You can also create a form by editing a text file that contains the
VAX FMS form language description for the form. After you cre
ate a text file, it can be translated to the VAX FMS binary form
representation with the following command:

$ FMS/TRANSLATE form-language-file

Note that the output from either FMS/EDIT or PMS/TRANSLATE
is the binary representation of a form with the default file type FRM.
You can use the VAX PMS Form Editor Utility to modify the form
after a form language file has been translated. The form language
file can be edited again and retranslated. You can also get a file that
has the form language from any VAX PMS form using the following
command:

$ FMS/DESCRIPTION/FULL form-name

1 For detailed information on VAX FMS and this command, refer to the VAX FMS Utilities Reference Manual.

6-2 VAX RPG II Screen Handling

6.2 Creating Form Libraries

You place the forms used by your program in a VAX FMS form library.
For example, an inventory program could have three forms:

1. PART-NUMBER-to display a part number

2. P ART_DISPLAY-to display data about a part

3. PART-ERROR-to display a message if a request was made for an
invalid part.

You would place these three forms in the PARTS form library as follows:

$ FMS/LIBRARY/CREATE PARTS PART_NUMBER,PART_DISPLAY,PART_ERROR

The VAX RPG II program would then be able to access the three forms in
this library by referencing the indicated names. Note that other program
ming languages in the VAX/VMS language family can access these forms
from the PARTS form library.

6.3 WORKSTN Files

WORKSTN files allow you to access many VAX FMS form capabilities
from a VAX RPG II program. However, WORKSTN files provide only
a subset of the capabilities available with VAX FMS. The most complete
interface between VAX RPG II and VAX FMS is provided by the callable
interface to VAX FMS. These features are accessed in VAX RPG II pro
grams by the CALL, P ARMx1, EXTRN, and GIVNG operation codes. For
additional information on these operation codes, see Chapters 12 and 16.
In most cases, WORKSTN files will provide all the capabilities you need
to access VAX FMS. You can use the CALL interface with WORKSTN
files to access those VAX FMS features that are not supported directly
by WORKSTN files. If you choose to use WORKSTN files and the CALL
to VAX FMS in the same program, careful attention to Section 6.3.7 will
ensure the best results.

WORKSTN files are further described on Control, File Description, Input,
Calculation, and Output specifications.

1 PARMx includes PARM, PARMD, and PARMV.

VAX RPG II Screen Handling 6-3

6.3.1 Control Specifications (H)

The H specification program name is used only as a second choice for
the VAX FMS form library name, if an FMTS name is not supplied. See
Section 6.3.2 for a detailed description.

6.3.2 File Specifications (F) with WORKSTN Files

WORKSTN files must include the letter C for the file type and WORKSTN
for the file device. There can be only one WORKSTN file in a program. A
WORKSTN file can have continuation lines that describe the form library
name (FMTS), the INFDS data structure, and SLN variable. You indicate
continuation lines for the File specification by inserting a K in column 53.
The only fields available for use on a continuation line are columns 53
through 65 (or 53 through 67, depending on the option). The following
continuation-line option format is accepted by VAX RPG II.

Column

53

54-59

60-65/67

Contents

K

Option name

Value

NOTE

If the F specification is a WORKSTN file, it cannot specify a
symbolic device.

If you supply an FMTS name, then that name will be used for the
VAX FMS form library name (such as PARTS in the preceding example).
If you do not supply an FMTS name, the program name (in columns 75
through 80 of the Control specification) is used for the VAX FMS form
library name. If the program name is not supplied, the WORKSTN file
name is used as the VAX FMS form library name.

If you supply a start line (SLN) option, the SLN value will offset the form
from the start line of the form. The offset form must fit on the screen, or
an error status will occur at run time. See Section 6.5.1 for examples.

6-4 VAX RPG II Screen Handling

WORKSTN files must have a file designation of primary (P) or demand
(D). If you choose P, all forms display and forms input will be performed
at a specific point in the logic cycle. If you choose D, the EXCPT and
READ operation codes can be used to determine when forms are displayed
and when input from forms is performed. (Note that if you make the
WORKSTN file the primary file, no secondary files are allowed in the
program.) See Section 6.5.1 for further details.

8.3.3 Input Specifications (I)

VAX RPG II Input specifications are used to describe the declarations and
processing to be performed when input is received from the WORKSTN
file. The Input specifications extract data from record buffers and set any
record identifying indicators on.

You program the Input specifications similarly to an input or update
file. The most important part of the Input specifications is ensuring that
the start and end positions for each field match the field size and order
that was specified in the form. You can help to set up the input field
specifications correctly with the following command:

$ FMS/DESCRIPTIONS/BRIEF form-name

The output from this VAX FMS command is a list of the fields in the form,
including the size of each field. If particular fields are display only, they
are indicated as such. This information can help you select the proper
starting and ending field positions for any input field specifications. Some
input constants may cause the VAX FMS record buffer to be adjusted. If
you are converting from Screen and Display specifications, see Section 6. 7.

8.3.4 Calculation Specifications (C)

If you use a D file designation, making the WORKSTN file a demand (D)
file, then you must use the EXCPT and READ operation codes to control
both form display and form input. The EXCPT operation code works with
a WORKSTN file similarly to any other file. EXCPT will cause output
from all exception Output specifications with conditioning indicators set
on. Note that you can use EXCPT with factor 2 for finer control over the
specific Output specifications.

You use the READ operation code to get input from the last form dis
played (that had input fields) since your previous read.

VAX RPG II Screen Handling 6-5

To detect end-of-file (EOF) on the WORKSTN file, you can specify an
indicator in columns 58 and 59 with the READ operation code. End-of-file
is reached when a READ operation code is executed and the last group
of forms displayed since the previous read had no input fields. This read
operation will cause the EOF indicator on the READ operation code to be
set on, if present. Otherwise, your program terminates. ·

The READ operation code can also have an indicator to detect errors. See
Section 6.5 for further details.

6.3.5 Primary WORKSTN File

A primary WORKSTN file does not require any Calculation specification
operation codes. However, form display and form input during the
logic cycle are similar to an EXCPT operation code followed by a READ
operation code. The LR indicator will be set on when a READ operation
to the primary WORKSTN file is executed and the last form displayed has
no input fields.

Primary WORKSTN files are processed just like any other primary input
file. However, input can become complicated, especially if this is the first
time through the logic cycle.

When the logic cycle starts, input to the WORKSTN file can come from
one of two places. If no form has b~en displayed on the first cycle, then
a blank record is generated in place' of input from the WORKSTN file.
If an input form has already been displayed because the first-page (lP)
indicator is present in a WORKSTN Output specification, then input is
obtained from the WORKSTN file.

When it is not the first logic cycle, all input is assumed to be coming from
the WORKSTN file. If no input form was displayed for this logic cycle,
then end-of-file will be flagged and your program will teiminate.

In any requested READ operation code (for a demand WORKSTN file), a
blank record will be returned until a form is output.

6-6 VAX RPG II Screen Handling

8.3.8 Output Specifications (0)

Output specifications for WORKSTN files differ only slightly from Output
specifications for other files. Insert a Kin column 42 of an Output field
specification, indicating that the literal that begins in column 45 on that
Output specification is the name of a form to be displayed. The field
output specifications that follow the form specification can be data that is
to be displayed on the form.

The input and output record buffers for each form have the same field
layout, except for an input constant converted by the Sand D Converter.
See Section 6. 7 for further details.

You can use FMS/DESCRIPTIONS/BRIEF (as in Input specifications) to
help you specify the ending positions for output fields that contain data to
be displayed on a form.

Note that logic cycle output of forms requires you to insert a D in column
15 for each output record for the WORKSTN file that indicates detail
output. Each output record corresponds to one form that can be dis
played. Insert an E in column 15 for a demand WORKSTN file, indicating
exception output that will be controlled by EXCPT operation codes.

To indicate end-of-file on the WORKSTN file, the last-record (LR) indi~
cator can be set on, or a READ operation code can be executed on the
WORKSTN file, if the forms displayed since the last READ operation had
no input fields. For a primary WORKSTN file, the LR indicator will be
set on. For a demand WORKSTN file, any indicator specified on a READ
operation code in columns 58 and 59 is set on.

8.3. 7· VAX FMS Call Interface Run-Time Support

VAX RPG II provides run-time support to interface WORKSTN files to
VAX FMS. If you want to use the WORKSTN files and call
VAX FMS (FDV$) routines in the same program, you must understand
the built-in WORKSTN run-time support as described in this section. The
VAX RPG II sample program SYS$EXAMPLE:RPGFMS.RPG uses
VAX FMS to demonstrate the combined use of WORKSTN file syntax
and VAX FMS calls. Comments in that program have particularly helpful
information on the FMS form 'REGISTER' that is manipulated with
VAX FMS (FDV$) routines. Workspace and input/output must be con
trolled through calls to VAX FMS. See the VAX FMS documentation for
detailed information on the VAX FMS call interface.

VAX RPG II Screen Handling 6-7

To use the sample program, enter the following commands:

$RPG SYS$EXAMPLES:RPGFMS
$LINK RPGFMS,SYS$LIBRARY:RPGSCR
$DEFINE FMS$EXAMPLES SYS$SYSROOT: [SYSHLP.EXAMPLES.FMS]
$DEFINE INP FMS$EXAMPLES:SAMP
$ DEFINE SAMP FMS$EXAMPLES: SAMP
$RUN RPGFMS

The VAX RPG II WORKSTN run-time support provides an interface for
performing four functions:

• Initialization

• Display a form

• Read from a form

• Termination

Any error returned by a VAX FMS call will cause the program to halt,
except as described in the following sections.

6.3. 7. 1 Initialization

During initialization, the run-time support attaches the terminal to
FDV$ATERM using VAX FMS logical channel 255. Then, each form
that you reference on the Output specifications is loaded into a separate
workspace. Even if the same form name is given in different Output
specification records, a separate workspace is created for each Output
specification form reference. The form library is opened (on VAX FMS
logical channel 254) only if loading a form fails. Thus, some or all of
the forms can be linked into the program, and VAX FMS accesses the
disk library only if necessary. Also during initialization, VAX RPG II
loads RPG-specific n~med data for handling input constants and selective
enabling and disabling of VAX FMS terminators.

6.3. 7 .2 Displaying a Form

Any program request to display a form (EXCPT operation code or logic
cycle output) causes the run-time support to switch to the appropriate
workspace, use FDV$PUTAL to output data from the WORKSTN file
record buffer, and then use FDV$DISPW to display the loaded form. The
run-time support keeps a list of all forms displayed since the previous
program request to read from a form. Note that if the FDV$PUTAL
returns the FDV$_NOF error, this error will be ignored.

6-8 VAX RPG II Screen Handling

6.3. 7 .3 Reading from a Form

Any program request to read from a form (READ operation code or logic
cycle input) will cause the run-time support to attempt to use FDV$GETAL
on the form in the current workspace. If FDV$GETAL fails because the
form in the current workspace has no input fields, the current workspace
will be switched to the form displayed just prior to the last form. The
specific errors which cause FDV$GETAL to try another form are
FDV$_NOF and FDV$_DSP. The FDV$_UNF error is ignored.
FDV$GETAL is then tried again. This process repeats until the
FDV$GETAL succeeds, or until there are no more forms in the list. If
the list is exhausted, the LR indicator will be set on in the program (this
is because no input-capable forms have been displayed since the last
READ operation). One special case is a READ operation before any out
put has occurred. In this case, a blank record will be returned. After the
FDV$GETAL completes, all forms displayed since the last READ operation
are marked with FDV$NDISP.

If you wish to be able to read from a form, it must be either the last
form displayed prior to the READ operation, or one of the first 100 forms
displayed since the last READ operation.

6.3. 7 .4 Termination

During termination, all workspaces and the terminal are detached. If a
VAX FMS form library is open, it is closed.

6.3. 7 .5 Current Workspace

VAX FMS maintains a current workspace. Therefore, you should be
careful when you use VAX FMS calls that modify the current workspace.
If you process forms that are not handled by the WORKSTN file, you will
not be able to issue a READ operation to the WORKSTN file until you
have displayed another form using WORKSTN file output. The output
will properly reestablish the current workspace as corresponding to the
form displayed with WORKSTN file output.

VAX RPG II Screen Handling 6-9

6.4 Command Keys (K Indicators) and Function Keys

Command keys provide a way for you to interact with the program. When
a form is displayed on a screen and the operator is ent~ring input values,
there are a number of ways to indicate that the form is complete.

The most common method is to press either the RETURN key or the
ENTER key. VAX FMS recognizes these keys as form terminators; when
they are received, no further input is allowed to the current form and
control returns to the program. The input operation that requested form
input is considered to have concluded successfully.

Command keys provide an alternative method to interact with a
VAX RPG II program. In addition to the effects just described, one of the
K indicators is set on while the others are set off. These input operations
are also considered successful. Data from the form is read by the program;
the status field in the INFOS indicates that a command key was entered.
One of the typical uses for this feature is to provide a way for you to
indicate which form to process next. The program can use the K indicators
to condition further processing.

All other form terminators are considered to be function keys. Any of
these terminate input to the form and control returns to the program with
normal status. Data from the form is read by the program; the status
field in the INFOS indicates that a function key was entered; no error
processing is initiated. In this case, all the K indicators are set off.

In addition to providing a default definition of key sequences associated
with command keys, VAX RPG II also allows you to specify a different set
of command keys at run time.

When a form is displayed, you may terminate the form by pressing the
PFl key followed by one of 36 characters. Other terminators act as
function keys.

6-10 VAX RPG II Screen Handling

8.4. 1 K Indicators

VAX RPG II provides 36 K indicators: KA through KZ and KO through K9.
These can be used as general-purpose indicators. In a program containing
a WORKSTN file, their values can be modified at the following times:

• If the WORKSTN file is a primary file, K indicators can change during
normal logic cycle processing of the primary input file.

• If the WORKSTN file is a demand file, K indicators can change as part
of the processing for a READ operation code on the WORKSTN file.

In both cases, the indicators do not change if an error was encountered
during the input operation. If there was no error, then all K indicators are
set off and the K indicator corresponding to the command key entered is
set on.

8.4.2 Command Keys

VAX RPG II provides 36 command keys. Each command key is associated
with one K indicator. The default K indicator command key equivalence is
described by the following table.

Command Key

IPF1 I <letter>

IPF11 <digit>

K Indicator

K <letter>

K <digit>

The <letter> is an uppercase letter. VAX FMS considers PFl/ A or
PFl/a to be different terminators. There is no provision for having two
different VAX FMS terminators set on the same K indicator.

8.4.3 Function Keys

All form terminators except the ENTER and RETURN keys and the
command keys are considered to be function keys.

VAX RPG II Screen Handling 6-11

6.4.4 User-Defined Command Keys

Terminating a form by pressing the PFlA key will result in the KA
indicator being set on. The default command keys definitions are given in
Section 6.4.2. If you prefer another set of keys to be associated with the K
indicators, you can enter a command like the following:

• DEFINE RPG.COMMAND_KEYS "306,306,307"

The logical name is translated at run time and should consist of a list of
numeric values separated by commas. Each entry is the
VAX FMS-defined key sequence that identifies the key or sequence of
keys that the operator must enter. The position within the list identifies
the associated K indicator. The indicators have the following order: KA
through KZ and KO through K9. The preceding example indicates that the
sequence PFl/1 would set on the KA indicator, PFl/2 would set on the
KB indicator, and P.Fl/3 would set on the KC indicator.

You can redefine some or all of the default definitions. A default defi
nition will not be changed if the corresponding entry in the list has no
value. A command key will not be associated with a K indicator if the
corresponding entry is -1.

Thus, this DCL command line has the meaning described in the following
table .

• DEFINE RPG.COMMAND_KEYS "306,,-1,307"

Parameter Keys Indicator Explanation

305 IPF1 I [I] KA Redefines default definition

null I PF1 I [fil KB No change to default definition

-1 KC No keys are associated with KC

307 IPF1 I (1) KD Redefines default definition

The other keys would retain their default definitions.

Refer to the VAX FMS Form Driver Reference Manual for the VAX FMS
key codes. To use the keypad keys as terminators, your keypad must
be in application mode. You can do this by entering the following DCL
command:

• SET TERMINAL/APPLICATION_KEYPAD

Or, you can include a call to FDV$SP ADA in the Calculation specifications
(see the VAX VMS Form Driver Reference Manual).

6-12 VAX RPG II Screen Handling

6.4.5 Selective Enabling of Command Keys

VAX RPG II enables all command keys and all function keys. Thus, if the
program is trying to read from a WORKSTN file and you enter one of the
key sequences that VAX FMS recognizes as a terminator, input to the form
will be terminated and control will return to the program.

Pressing the RETURN key or the ENTER key automatically terminates
form input, but you can control the treatment of other keys.

You can enable a list of terminators. Entering one of these keys terminates
form input. Entering any other terminator does not end form input. VAX
FMS instead signals an error and the key is ignored.

As an alternative, you can disable a list of terminators. Entering one
of these keys causes VAX FMS to signal an error and ignore the key.
Entering any other terminator causes form input to be terminated.

To use selective enabling, follow these steps:

1. Define a function key User Action Routine (UAR) for each form with
input fields.

2. Define the named data item RPG$ENABLE_J(EYS or
RPG$DISABLE_J(EYS for each form with input fields.

3. Generate an object file that contains UAR information.

4. Link this object file with your VAX RPG II program.

Note that you can specify the same or different terminators for each form.

6.4.5. 1 Defining a Function Key UAR

VAX RPG II provides the run-time routine needed to define a UAR as part
of its VAX/VMS Run-Time Library support. You need to modify the form
definition so that the VAX FMS Form Driver will invoke this routine when
you enter a terminator.

If you are using the VAX FMS Form Editor Utility, invoke the Editor
Utility with the following command:

$ FMS/EDIT form_library_name/FORM_NAME=formname

In the FORM phase (assign form attributes), specify that you want a
UAR for this form; then enter RPG$FUN_J(EY_UAR in the field labeled
Function Key UAR Name.

VAX RPG II Screen Handling 6-13

If you are using the VAX FMS Translate Utility, describe the UAR by
adding the following command to the form definition:

FUNCTION_KEY_ACTION_ROUTINE = 1RPG$FUN_KEY_UAR 1

6.4.5.2 Defining a Named Data Item

If you are using the VAX FMS Form Editor Utility, you must first invoke
the Editor Utility. Then, in the DATA phase (Enter Named Data Items),
enter RPG$ENABLE_KEYS or RPG$DISABLE_KEYS on the first (Name)
line of a named data item, and a list of terminators (separated by commas)
that are to be enabled or disabled. (If you enter both the
RPG$ENABLE-1<EYS and RPG$DISABLE_KEYS items for the same
form, the disable entry will be ignored.) Terminator values are the same
as those described in Section 6.4.4. For example, to enable PFl/ A only,
you would define a named data item with the name RPG$ENABLE-1<EYS
and a value of 321.

If you are using the VAX FMS Translate Utility, describe the named data
item by adding a named data clause of the form:

NAMED_DATA INDEX= n NAME= 'RPG$ENABLE_KEYS' DATA= '321';

6.4.5.3 Generating an Object File Containing UAR Information

When all the forms in a form library have been modified, enter a com
mand of the form:

$ FMS/VECTOR formlibraryname

VAX FMS generates an object file that contains references to all UARs in
the specified form files.

6.4.5.4 Linking Your Program

The object file containing UAR information must be linked with your
VAX RPG II program.

6-14 VAX RPG II Screen Handling

6.5 INFOS

The WORKSTN file INFOS is a language feature that you can use to
handle errors on WORKSTN file operations. The INFOS data structure,
if specified, contains status information, including errors that occurred
and an identification of the WORKSTN operation that caused the error.
The INFOS also contains status information on normal operations. For
example, if a command key was pressed, that status is in the INFOS. The
information in the INFOS is updated for each WORKSTN operation. If an
error condition occurs, you can use the INFOS information to determine
the type of error that occurred, then use that information to control the
program logic.

8.5.1 File Description Specification (F)

To use the File Description (F) specification, you must specify the INFOS
clause on an F specification continuation line for the WORKSTN file. The
following program segment shows F specifications for a WORKSTN file
and all of the continuation clauses.

The syntax for these specifications is described in the Continuation-line
specification. Note that there is a user-defined name (WRKINF) associated
with the INFOS clause.

FWRK
F
F
F

CD F

8.5.2 Input Specification (I)

80 WORKSTN
KSLN WRKSLN
KFMTS WRKFLB
KINFDS WRKINF

You must define a data structure using Input (I) specifications. The
following example shows a data structure definition:

IWRKINF DS
I •STATUS WRKSTA
I •OPCODE WRKOPC
I •RECORD WRKREC
I •FMSSTA WRKFST
I •FMSTER WRKTER

The syntax of the specifications associated with the INFOS data structure
is as follows. ·

VAX RPG II Screen Handling 6-15

The first line of the input specifications includes the following:

• Columns 7 through 12 contain the name of the data structure.

• Column 18 may contain U, or may be blank.

• Columns 19 through 20 must contain DS.
• All other fields that contain information must be blank.

The second and following lines include the following:

• Columns 44 through 51 contain one of these keywords:
•STATUS

•OPCODE

•RECORD

•FMSSTA
•FMSTER

• Columns 53 through 58 contain a subfield name. These are the names
that will be referenced in the program.

• All other fields that contain information must be blank.

The clauses shown can occur in any order, and the same keyword can ,
occur more than once. You do not need to enter all of the clauses.

Note that this is not a general-purpose data structure; you cannot define
other subfields in the INFOS data structure.

8.5.3 Calculation Specification (C)

You can refer to the various fields that are defined in a Calculation
specification (C) within the body of the VAX RPG II program. This is of
particular importance in user-defined error handling.

6-16 VAX RPG II Screen Handling

8.5.4 •STATUS Keyword

The •STATUS keyword identifies a one-digit numeric subfield with zero
decimal positions within the INFOS data structure. This subfield contains
a code that identifies the status of the last WORKSTN file operation. The
codes are as follows:

Code Definition

0 No error (form input was terminated by pressing the ENTER key or the
RETURN key)

1 Command key (form input was terminated by a command key)

2 Function key (form input was terminated by a function key)

3 Error

Any code in •STATUS greater than 2 is considered to be an error con
dition. If an error occurs on a READ operation code that has an error
indicator, the indicator is set on. If in error occurs on the following
operations, the program will terminate.

• A READ operation code with no error indicator

• A primary file read

• Normal output

• EXCPT output

8.5.5 •OPCODE Keyword

The •OPCODE keyword identifies a five-character alphanumeric subfield
within the INFOS data structure. This subfield contains a value that
identifies which WORKSTN operation was executing when the error
occurred. The value inserted in the •OPCODE subfield is OPEN, CLOSE,
READ, or WRITE. A value is inserted in the •OPCODE subfield on each
WORKSTN file operation.

VAX RPG II Screen Handling 6-17

8.5.8 •RECORD Keyword

The •RECORD keyword identifies an eight-character alphanumeric
subfield within the INFOS data structure. If •OPCODE contains WRITE,
then •RECORD contains the current form name1• Otherwise, •RECORD
contains blanks.

8.5. 7 •FMSSTA Keyword

The • FMSSTA keyword identifies a longword integer (binary) numeric
subfield with zero decimal positions within the INFOS data structure. This
subfield indicates the general status returned by the last VAX FMS Form
Driver call.

8.5.8 •FMSTER Keyword

The * FMSTER keyword identifies a word integer (binary) numeric subfield
with zero decimal positions within the INFOS data structure. This subfield
indicates the field terminator entered by the operator to terminate input to
the form. If the form was terminated by pressing the RETURN key or the
ENTER key, this subfield will contain a value of 0. See the VAX FMS Form
Driver Reference Manual for terminator codes.

8.5.9 Other Subfields

VAX RPG II does not support the following INFOS subfields:

• SIZE

• MODE

• INP

• OUT

• MAJOR/MINOR

1 Only the first eight characters of the current form name are in *RECORD.

6-18 VAX RPG II Screen Handling

6.6 Example Program Development Cycle

The previous sections of this chapter have described various features of
VAX RPG II screen handling. This section will use an example to step
through the various program development steps that can be performed
to produce a running interactive application using VAX RPG II and VAX
FMS.

The following example shows the VAX RPG II program INVENT that
includes three VAX FMS forms:

• PART-NUMBER
• PART_UPDATE

• P ART_ERROR

The program uses the following indexed file INVENT.DAT:

INVENT.DAT

P01NUT W2RED 0300136
P02BOLT W2GREEN0880167
P03SCREW W1BLUE 0180048
P04SCREW W2RED 0160143
P05CAM W1BLUE 0130205
P06COG W3RED 0200216
P07GEAR W3GREY 0100234
P08BEARINGW2GREY 0260136
P09BOLT W1WHITE0060015

The goal of the program is to allow you to select parts from the INVENT
file and display the inventory information for the part, with the possibility
of entering updated data. The PART-NUMBER form will be used to
retrieve the three-character part number that will be used as the key into
the INVENT file to retrieve the inventory information. The
PART_UPDATE form will be used to display the inventory information
if the part number is located in the inventory. PART_UPDATE will also
allow you to update any inventory field except the part number.
P ART_ERROR will display an ~rror message if an invalid part number
is entered. The program will terminate when a part number of POO is
entered.

First, the forms will be defined using the VAX FMS Form Editor Utility to
create the PART-NUMBER as follows:

$ FMS/EDIT PART_NUMBER

VAX RPG II Screen Handling 6-19

The editing session allows any constant text or labels to be placed on
the form. A one-character field to contain the form code is defined. This
technique is used often in RPG, when multiple input forms are allowed, to
distinguish between the various forms in the Input specifications. You will
see later in the program how the form code is initialized for each input
form.

The input field for the part number is then defined to contain three
characters. This field is defined with X99 in VAX FMS to select only part
numbers ending with two numbers. As part numbers are entered,
VAX FMS will verify that the last two digits are numeric. A prompt for
the part number is defined as constant text.

After exiting the VAX FMS Form Editor Utility, you can obtain information
about this first form using the /DESCRIPTION qualifier:

$ FMS/DESCRIPTION/BRIEF PART_NUMBER

VAX FMS Form Description Application Aid - V2.2 -

Form Name = PART_NUMBER
No Help Form
Area to Clear = 1:1
Memory Resident Form Size = 262

Brief Description

Field Name (Max Index) Pic(Length) Access UARs

FORM_ CODE
PN

Total Length Required = 4
Longest Field = 3

No Named Data

No User Action Routines

X(1)
X(3)

DISP

Two additional VAX FMS editing sessions are used to create
PART_UPDATE.FRM and PART_ERROR.FRM. You can then get a brief
text description of these forms using this command:

$ FMS/DESCRIPTION/BRIEF PART_UPDATE

FMS Form Description Application Aid - V2.2 -

Form Name = PART_UPDATE
No Help Form
Area to Clear = 1:23
Memory Resident Form Size = 554

6-20 VAX RPG II Screen Handling

Brief Description

Field Name (Max Index)

FORM_ CODE
PN
PNAME
WHOUSE
COLOR
WEIGHT
QTY

Total Length Required = 26
Longest Field = 7

No Named Data

No User Action Routines

$ FMS/DESCRIPTION/BRIEF PART_ERROR

Pic(Length) Access

X(1)
X(3)
C(7)
C(2)
C(6)
9(3)
9(4)

DISP
DISP

UARs

FMS Form Description Application Aid - V2.2 - Brief Description

Form Name = PART_ERROR
No Help Form

Area to Clear = 2:23
Memory Resident Form Size = 146

Field Name (Max Index) Pic(Length) Access

F$0002 C(22)

Total Length Required = 22
Longest Field = 22

No Named Data

No User Action Routines

You can then create the form library as follows:

$ FMS/LIBRARY/CREATE PARTS PART_NUMBER,PART_UPDATE,PART_ERROR

UARs

VAX RPG II Screen Handling 6-21

Next, you develop the VAX RPG II program that will be used to access
these forms and the inventory data file:

10FPARTS CD F 25 WORKSTN
20FINVENT UC F 24R 3AI 1 DISK s
30IINVENT
40I 1 24 DATA
60IPARTS 01 1 CA
601 2 4 PN
70I 02 1 CB
SOI 2 25 DATA
90IDATA DS

100I 1 3 PN
110I 4 10 PNAME
120I 11 12 WHOUSE
130I 13 17 COLOR
140I 18 200WEIGHT
160I 21 240QTY
160C EXCPTP_NUM
170C READ PARTS
180C PN CHAIN INVENT 99
190C 99 PN COMP 'POO' LR
200C 99NLR EXCPTP_ERR
210C N99 EXCPTP_UPD
220C N99 READ PARTS
230C N99 EXCPTINV
2400PARTS E P_NUM
2500 K 'PART_NUMBER'
2600 PN 4
2700 1 'A'
2800 E P_UPD
2900 K 'PART_UPDATE'
3000 DATA 26
3100 1 '8'
3200 E P_ERR
3300 K 'PART_ERROR'
3400 22 'No part by that number'
3600INVENT E INV
3600 DATA 24

The WORKSTN file is defined on line 10 as a combined demand file. The
record length of 25 is chosen based on the longest form buffer required.
This value is obtained from the 'Total Length Required' item listed as part
of FMS/DESCRIPTION/BRIEF for each form in the library.

Line 20 shows the definition for the inventory file that will be indexed,
updated, shared, and accessed using the CHAIN operation.

The data layout for the inventory file is given in the data structure on lines
90 through 150 and referenced in the input record on lines 30 through 40.

6-22 VAX RPG II Screen Handling

Lines 50 through 80 show the definition of the form that provided the
input. The first character in the WORKSTN file record buffer is examined
to see if it is 'A' or 'B'. Note that lines 270 and 31~ place an 'A' or 'B'
into the first position of the WORKSTN file record buffer. This first byte
corresponds to the FORM_CODE field, specified as part of the two input
forms, but not displayed on these forms. This special FORM-CODE byte
is stored to provide a means for the_ Input specifications to determine the
last input form. You can use other methods, such as field record relation
indicators on Input specifications, to determine the current input form.

Lines 240 through 340 show the lines that output forms to the screen.
The three forms are listed, along with an EXCPT name, to make it easy
to select the appropriate form for display. Note that data is placed in
the WORKSTN record buffer in lines 260 thro.ugh 270, 300 through 310,
and line 340. The ending positions for these fields match the information
obtained with PMS/DESCRIPTION/BRIEF. The ending position for DATA
in line 300 is 25 because the initial byte for the FORM_CODE is not
included as part of the DATA data structure.

Lines 160 through 230 include the actions performed during each logic
cycle. First, the PART-NUMBER form is displayed on line 160. Then,
input is requested from that form on line 170. The part number obtained
is used on line 180 to retrieve the part information from the inventory
file. Line 190 determines if the program should terminate, and line 200
displays the error form for any part number that was in error. Lines 210
through 220 display valid part information and allow you to update part
information that is returned to the program by the READ operation in line
220. Finally, the inventory file is updated on line 230, and the cycle is
repeated until a part number of POO is supplied.

You can then compile, link, and run the program as follows:

$ RPG INVENT
$LINK INVENT,SYS$LIBRARY:RPGSCR
$RUN INVENT

Note that you include SYS$LIBRARY:RPGSCR only when you link
programs that use a WORKSTN file. This object module contains the
run-time support to interface with VAX FMS.

The program does not need to be run on a VAX/VMS system with
VAX RPG II installed.

VAX RPG II Screen Handling 6-23

You may wish to create an object module library by logging in to the
SYSTEM account and setting the default to [SYSLIB]. Then use the follow
ing command:

$ LIBRARIAN/CREATE RPGSCR RPGSCR

Then, each VAX RPG II user may set up the following logical:

$ DEFINE LNK$LIBRARY SYS$LIBRARY:RPGSCR

This logical definition eliminates the need for explicit references to
RPGSCR on LINK commands. If the necessary logicals are not de-
fined, or if you do not properly link your program files, you may get an
error message that RPG$SCR is undefined. If you link a program with a
WORKSTN file and get a message that FDV$ATERM is undefined, you are
attempting to link on a system that does not have VAX FMS installed.

The following program shows a WORKSTN primary file. This is an
example of a display-only application; you are not allowed to update the
inventory information in this case.

FPARTS CP F 26 WORKS TN
FINVENT IC F 24R 3AI 1 DISK s
!INVENT 02
I 1 24 DATA
!PARTS 01 1 CA
I 2 4 PN
!DATA DS
I 1 3 PN
I 4 10 PNAME
I 11 12 WHOUSE
I 13 17 COLOR
I 18 200WEIGHT
I 21 240QTY
c PN CHAIN INVENT 99
c 99 PN COMP 'POO' LR
OPARTS D 99
0 K 'PART_ERROR'
0 NLR 22 'No part by that number'
0 LR 22 'Exit requested'
0 D 02
0 K 'PART_UPDATE'
0 DATA 26
0 1 'B'
0 D NLR
0 K 'PART_NUMBER'
0 PN 4
0 1 'A'

6-24 VAX RPG II Screen Handling

6. 7 Converting from S and D Specifications

Some RPG implementations provide a method for describing forms with
Screen and Display specifications. These specifications have information
similar to that available in the VAX FMS Form Language. Many of the
fields in the Screen and Display specifications can be converted to the
VAX FMS Form Language using the VAX RPG II Conversion Utility as
follows:

$ RPG/CONVERT=SD_TO_FMS s-and-d-file

The input to the Conversion Utility is a file containing Screen and Display
specifications for one or more forms. The output is 0 or more VAX FMS
Form Language files (with the FLG file type) containing the VAX FMS
Form Language. This corresponds closely to the Screen and Display speci
fication description of the forms. Certain Screen and Display specification
features cannot be represented in the VAX FMS Form Language, but must
be handled separately. These features include:

• Use of screen line 24

• Sand D specification RPG indicators

• Multiple input constants

• Output/no input fields

After the Conversion Utility has created the VAX FMS Form Language
files, PMS/TRANSLATE and FMS/LIBRARY can be used. You can then
modify the forms either by modifying the FLG files, or by using the
VAX FMS Form Editor Utility.

6. 7 .1 S and D Specification Conversion Utility

The input to the SD converter is a single file containing Screen and
Display specifications for 0 or more forms. The output is 0 or more FLG
files based on the SD specifications. Each group of SD specifications
produces one file with the FLG extension.

VAX RPG II Screen Handling 6-25

6. 7. 1. 1 Invoking the Conversion Utility

The Conversion Utility is invoked with the following qualifier:

$ RPG/CONVERT=SD_TO_FMS/NODISPLAY file-spec

The /CONVERT=SD_TQJMS qualifier can be abbreviated to
/CONVERT because the default is SD_TOJMS. Also, /NODISPLAY
is required only if the Conversion Utility is run in batch mode, or on a
terminal with no TPU support. If you omit /NODISPLAY, the screen will
be cleared before the Conversion Utility begins.

To save typing, the following symbol is recommended:

$ RPGCNV :== RPG/CONVERT=SD_TO_FMS/NODISPLAY

If you define this symbol on your system, the Conversion Utility can be
called with the following command:

$ RPGCNV file-spec

The Conversion Utility can also be invoked with the following command:

$ EDIT/TPU/NODISPLAY/SECTION=RPGCONVERT file-spec

You can get help by typing the following:

$ HELP RPG Conversion (or)
$ HELP RPG /CONVERT

To abort the RPG/CONVERT command operation, press CTRL/Y.

6. 7. 1.2 Overview of Converter Utility Operation

After you invoke the Conversion Utility, a message will be displayed
that shows the file specification and the number of lines that were input
from the file containing the Screen and Display specifications. The default
file type is SD for the input file. Each Screen specification defines a
single form that is output as an FLG file. All Display specifications
following a Screen specification are output as fields in the FLG. If no
Screen specification is seen, no FLG file is created.

If anything other than a comment, or Screen, Display, or Help specification
is seen, the input line is output to SYS$0UTPUT, along with the following
message:

Y.RPG-W-SPEC_IGNORED, specification was not an S or D spec

Any noncontinuation line with an asterisk in column 7 is recognized as a
comment. There is no VAX RPG II support for Help specifications.

6-26 VAX RPG II Screen Handling

An input line that cannot be completely translated into the VAX FMS
form language is output to SYS$0UTPUT, along with a message in the
following form:

Y.RPG-W-COLS_IGNORED, columns a1-a2,a3-a4 have been ignored

For example, if columns 37 through 38 and 49 cannot be translated
into the VAX FMS Form Language for a Display specification, then the
following message is displayed:

Y.RPG-W-COLS_IGNORED, columns 37 to 38,49 have been ignored

In certain cases, additional messages beyond the three mentioned previ
ously will be issued.

If you use a field that is not translated to the VAX FMS Form Language, it
is possible that the field will be used on many Display specifications.
VAX RPG II will report the error on all specifications that have the field
that is being ignored, to enable you to check off Screen and Display
specifications as the manual conversion (if necessary) is completed.

Note that the output from the converter is a text file. If you wish to use
an interpretation for a Screen or Display specification field that is different
from that used by the converter, you can make any necessary adjustments
to the VAX FMS Form Language text file that is output by the converter.
You can also use the VAX FMS Form Editor Utility to make any desired
modifications to the form after the form language is translated.

6. 7. 1.3 Screen Specification (S)

Columns 1 through 5 are not examined in the Screen specification. If
column 6 specifies S, then the specification is recognized as a Screen
specification, and the processing takes place. If column 7 is an asterisk
(•), the Screen specification is ignored.

The following table identifies the significant Screen specification columns
and the corresponding VAX FMS Form Language that is output. All other
Screen specification columns are ignored. The VAX FMS Form Language
used is a close approximation of the Screen specification meaning. In
many cases, the exact functionality of a Screen specification feature cannot
be duplicated with VAX FMS.

VAX RPG II Screen Handling 6-27

Begin End S Spec VAX FMS Interpretation

7 14 name FORM NAME

17 18 01-24 FORM START LINE (defaults to 1)

19 20 00-24 AREA_TO_CLEAR (specified on S specifica-
tion as lines to clear)

21 not Y UPPERCASE on all fields

28 y RPG$ENABLE__KEYS defined for each letter
in columns 64-79

N RPG$DISABLE__KEYS defined for each letter
in columns 64-79

Your FORM START LINE must be constant and less than 24. If you use
a FORM START LINE greater than 23, it will be converted to 23. Your
AREA_TO_CLEAR must go no higher than 23, otherwise a value of 23
is used. The default value for the START of the AREA_TO_CLEAR is 1,
and you cannot use a value less than 1. The AREA_ TO_CLEAR_ STOP
must be at least as large as the AREA_TO CLEAR_START, or no
AREA_TO_CLEAR clause will be output. Note that START line 1 and
AREA_TO_CLEAR 23 is the same as leaving AREA_TO_CLEAR blank.

In addition, BACKGROUND=CURRENT is output for each form.

The converter outputs a NAMED_DATA statement when you specify
either selective enabling or disabling. For each capital letter that you put
in columns 64 through 79 of the Screen specification, a number indicating
the key value of the corresponding VAX FMS terminator is output in
the data clause. These are the same default encodings used to describe
command keys. Note that if you do not use the default command key
definitions, you will need to define the logical name
RPG$COMMANDJEYS and modify the RPG$ENABLE_KEYS or
RPG$DISABLEJEYS named data items appropriately.

6-28 VAX RPG II Screen Handling

6. 7. 1.4 Display Specification (D)

Columns 1 through 5 are not examined.

The letter D in column 6 indicates that this is a Display specification.
Display specifications must be preceded by a Screen specification. If no
Screen specification is included, the Display specification is ignored, and
the following warning is issued:

1.RPG-W-SPEC_IGNORED, D specifications must follow an S spec

If column 7 is an asterisk (*) the Display specification is ignored, unless
the Display specification is a continuation line as described below.

If the previous Display specification had any nonblank character in
column 80, then the remainder of the Display specification is processed
as a continuation of the previous specification. Otherwise, if column 7 is
an *, it is recognized as a comment, and the rest of the specification is not
examined.

The following table gives the Display specification columns and the
corresponding VAX FMS Form Language that is output. All other Display
specification columns are ignored. The VAX FMS Form Language used
is a close approximation of the Display specification meaning. In many
cases, the exact functionality of a Display specification feature cannot be
duplicated with VAX FMS.

Begin End D spec VAX FMS Interpretation

7 14 name FIELD NAME

15 18 >O PICTURE (field length)

19 20 >O Screen line number (based on Screen
specification starting line). Any line number
greater than 23 is converted to 23.

21 22 01-99 Screen column number

26 y Input field

27 Data validation

A A

N N

D 9

VAX RPG II Screen Handling 6-29

Begin End D spec

(other)

28 y

29 y

31 Z,B

35 not Y

39 y

41 y

43 44 N

45 y

47 y

49 y

51 blank

VAX FMS Interpretation

X (Note that you must manually convert S
on the Display specification. The VAX FMS
record buff er will use the length as specified
on the Display specification. The sign must
be placed in the last byte position for fields
to be displayed. There is no automatic data
conversion that overpunches the sign on
data input or decodes an overpunched sign
on data output.)

MUSLFILL

RESPONSE-REQUIRED

RIGHLJUSTIFIED

AUTO_TAB (column 26 on Display specifi
cation must also be Y)

BOLD

BLINKING

NOECHO

REVERSE

UNDERLINE

UNDERLINE (this handles column separa
tors)

UPPERCASE

Indicators anywhere on Display specifications are ignored. If column 56 is
C or P, or columns 57 through 79 are nonblank, then columns 57 through
79 are interpreted as VAX FMS background text (except in the case where
coh1mn 26 is Y). Input constants are handled as VAX FMS NOECHO
DISPLAY_ONLY fields.

8. 7 .2 Manual Conversion

If you manually convert from Screen and Display specifications, there are
several items to observe that are described in the following sections.

6-30 VAX RPG II Screen Handling

6. 7 .2. 1 Use of Line 24

VAX FMS reserves line 24 on the terminal screen for messages. No field
or constant text can be placed on line 24. Because the converter changes
line 24 references to line 23, a conflict could arise if line 23 is already
being used. The PMS/TRANSLATE operation will issue an error message
if any conflicts are detected.

6. 7 .2.2 Duplicate Field Names

If .two Display specifications for the form contain the same field name, you
will get the following errors from PMS/TRANSLATE:

1.FMS~E-DUPFLDNAM, Field ~ame {field-name} was already specified;
default name .has been assigned.

1.FMS-E-~NDNOFRM, Translation was completed with errors.
No binary forin was output.

This is because VAX FMS requires unique field names. You can correct
the error by first making the field names unique in the file containing the
Display specifications, and then rerunning the Sand D Conversion Utility.
Or, you can modify the VAX FMS Form Language file so that all field
names in a form are unique.

6. 7 .2.3 S and D Specification VAX RPG II Indicators

All occurrences of VAX RPG II indicators in Screen and Display specifi
cations are ignored by the converter. A diagnostic will be issued by the
converter for each use of VAX RPG II indicators. You can handle many of
the uses of VAX RPG II indicators by conditioning indicators in the VAX
RPG II program.

6. 7 .2.4 Record Buffer Layout

Display specifications provide a way for specifying fields that will be input
and not output, and fields that will be output but not input. Thus, Display
specifications provide you with two alternative record buffer layouts.
VAX FMS provides a single consistent record buffer layout for both input
and output fields. The messages shown in the next sections will be
displayed for those Display specification fields that may require some
modification in the program Input or Output specifications.

VAX RPG II Screen Handling 6-31

To verify the correct field layout, use FMS/DESCRIPTION/BRIEF to
display the field layout for the form in VAX FMS format and match the
layout to the program Input and Output specifications for the form. Note
that the first input constant (if any) will be automatically handled at run
time. The VAX FMS record buffer layout will not show the first input
constant.

6. 7 .2.5 Multiple Input Constants

If more than one field has been encountered which has a Yin Display
specification column 26, and with a letter other than Y in Display specifi
cation column 23, the following message is displayed:

Y.RPG-E-MORE_CONVER, (1) At most one input constant in a form is converted.

This type of field is referred to as an input constant. Many programs with
multiple input forms use an input constant so that each form will be able
to identify itself when input is done. The converter automatically handles
one input constant in each form by creating VAX FMS named data:

RPG$CONSTANT_TEXT
RPG$CONSTANT_LENGTH
RPG$CONSTANT_START

This data will be used at run time to adjust the field layout so that it can
accommodate the input constant. No manual conversion is needed for this
first input constant. However, some forms might use two input constants.
The MORE_CONVER error message will be displayed if more than one
input constant is used. The manual conversion involves adjusting the
Output specification ending positions for the form to allow space for the
input constant. You must list the input constant as an Output specification
constant.

6.7.2.6 Output and No Input Fields

If a field has been encountered which has a Yin Display specification
column 23 and with a letter other than Y in Display specification column
26 (that is followed by an input field), the following message is displayed:

Y.RPG-E-MORE_CONVER, (1) Output I no input fields may require I specification changes.

This fype of field receives output data but no input data. VAX RPG II will
allow space in the record buffer for these forms. Even though the form
will have the field marked as display only, VAX FMS expects space to
be allocated in the WORKSTN record buffer for both Input and Output
specifications. There is no automatic conversion for any use of output and
no input fields.

6-32 VAX RPG II Screen Handling

Chapter 7

Using Indicators

Indicators are two-character alphabetic, numeric, or alphanumeric entries
that condition certain operations within the steps of a normal program
cycle. Generally, you use indicators to control the following program
decisions:

• Under what conditions VAX RPG II uses a file during program execu-
tion

• When and under what conditions VAX RPG II performs calculations

• When VAX RPG II can access a field for input

• Under what conditions VAX RPG II writes a field or record to an
output file

This chapter describes types of indicators and explains how to use them.

Section 7.1 describes those indicators that are user-defined within a
program. Section 7.2 describes internally defined indicators. Section 7.3
describes how to use indicators as fields.

7 .1 User-Defined Indicators

Each indicator has a specific function; however, some indicators can be
user-defined for more than one function.

To use an indicator to control program operations, you must first define
the conditions under which it is set on or off. Then, check the status
(on or off) of the indicator to determine what steps your program should
perform.

Using Indicators 7-1

7. 1. 1 Record-Identifying Indicators

File
na111e
I

I I

Record-identifying indicators are used to distinguish the types of input
records that will be encountered within your program at run time.

You must first define each record type by specifying an identification code
in columns 21 through 41 of the Input specification. Then, associate one
of the following indicators with each record type in columns 19 and 20 of
the Input specification:

• 01 through 99

• Ll through L9

• LR
• Hl through H9

In the following example, VAX RPG II associates the record-identifying
indicator 01 with a record type:

Se~uence <AA-ZZ, 01-99)
I Nu111ber (1-N>
I !Optional/External <OU> Deci111al positions
I I I Record identif~ing indicator I Centro l level
I II I I I Hatch field
I II I + Identif~ing codes + For111at I I I Fld rec rel
I II I I I I <PB> !Field I I I
I II I I c c Cl I Field lna111e I I I Field
I II I I z z Z I I location 11 I I I indicatrs
I II I Pos NDcPos NDcPos NDc IFr To II I I I + - 0

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
123456789012345678901234567890123456789012345678901234567890~2345678901234567890

** * Ill 1--- 1--- 1--- ,11---1---11 * * I I * * IINPUT AA 01 20 Ci
ZK-4387-85

In this example, if the character in the twentieth position is the number
l, the indicator 01 is set on. Then, you can use the indicator to condition
program operations for that particular record type.

The record-identifying indicator for a particular record type is set on when
VAX RPG II processes a record of that type. For a primary or secondary
file, the record-identifying indicator is set on before total-time calculations.
For a chained or demand file, the record-identifying indicator is set on
immediately after the record is read. (See Chapter 8 for information on
file usage with VAX RPG II.) In either case, it is set off when the program
reaches the end of the current program cycle (after detail-time output).

7-2 Using Indicators

You can use record-identifying indicators to condition both detail-time
and total-time calculation and output operations for each record type. The
following example shows how record-identifying indicators can be used to
condition program operations:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
123456789012345678901?345678q012345678901234567890123456789012345678901234567890

I

11 ISALES AA 01 1 CJ
12 I 2 50ITEM
13 I 10 16 DESCR
14 I 20 242SALES
15 I 30 342COST
16 I 40 432PROrIT
17 c 01 SALES SUB COST NET 52
18 c 01 TSALES ADD SALES TSALES 62
19 c 01 TCOST ADD COST TCOST 62
20 c TPROrI ADD NET TPROrI 62
21 OREPORT H 201 1P
22 0 OR or
23 0 UDATE Y 8
24 0 44 'JANUARY SALES REPORT'
25 0 PAGE 72
26 0 68 'PAGE'
27 0 H 22 1P
28 0 OR or
29 0 5 I ITEM'
30 0 23 'DESCRIPTION'
31 0 41 'SALES'
32 0 56 'COST'
33 0 72 'PROrIT'
34 0 D 01
35 0 ITEM 3 5
36 0 DESCR 25
37 0 SALES 1 41
38 0 COST 1 57
39 0 PROrITi 72
40 0 T 1 LR
41 0 30 'TOTALS'
42 0 TSALES1 41 '$'
43 0 TCOST 1 57 '$'
44 0 TPRor11 72 '$'

ZK-4388-85

Using Indicators 7-3

In the preceding example:

• Line 11 causes VAX RPG II to begin reading records from the file
SALES. The identification code (columns 21 through 41) groups these
records according to a code that represents the month. If the code for
the month is J, the record-identifying indicator 01 is set on.

• Lines 17 through 19 use the same record-identifying indicator 01
to condition detail-time calculations. VAX RPG II performs the
calculation each time a record of the type described on line 11 is
read:

• Line 34 uses the same record-identifying indicator to condition detail
time output. VAX RPG II performs the output operation each time a
record of the type described on line 11 is read.

The output file produced by this program might appear as follows:

o I 1 I 2 I 3 I 4 I 6 I 6 I 7 I
1234se1a901234se1a9012345e18901234se1a9012345e1a9012a4667890123466789012a4667890
2/4/83 JANUARY SALES REPORT PAGE 1
ITEM DESCRIPTION SALES COST PROFIT
10006 AMMONIA 60.30 60.00 10.30
10982 MATCHES 296.00 206.00 90.00
22660 NUTMEG 209.00 170.00 39.00
TOTALS $664.30 $426.00 $139.30

If you use the CHAIN or READ operation to retrieve records, the program
does not set the record-identifying indicators off until the beginning of the
next program cycle. Be careful when performing more than one CHAIN
or READ operation for a file with multiple record types, because more
than one indicator can be set on during a single cycle.

1. 1.2 Field Indicators

Field indicators test a field in an input record for a positive, negative, zero,
or blank value.

You can use any of the following indicators as field indicators:

• 01 through 99

• Hl through H9

Field indicators are used to test the value of a field in the following ways:

• For a positive value, specify a field indicator in columns 65 and 66 of
the Input specification.

7-4 Using Indicators

• For a negative value, specify a field indicator in columns 67 and 68 of
the Input specification.

• For a zero or blank value, specify a field indicator in columns 69 and
70 of the Input specification.

Field indicators are set when the data in the field is extracted from the
record. After a field indicator is set on, it remains on until the next
time the field is extracted, unless it is set off by another use of the same
indicator in the program. A field indicator can be used to condition any
detail-time or total-time operations. However, at total time, the field
indicators assigned to fields from a primary or secondary file retain the
setting from the previous detail-time cycle.

The following example shows how field indicators can be used to
condition a calculation:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

.
24 IPARTLIS AA 01 1 Cf
25 I 2 100INVCDE 112233

ITEM
ITEM
ITEM

HULT FACT1
HULT FACT2
HULT FACT3

In the preceding example:

ORDER 62H
ORDER 62H
ORDER 62H

ZK-4389-85

• Line 25 tests the value of the field INVCDE to see if it contains a
positive value, a negative value, or a zero value. The following is a
list of indicators that are set on for each value:

If the field contains a positive value, indicator 11 is set on and
indicators 22 and 33 are set off.

Using Indicators 7-5

If the field contains a negative value, indicator 22 is set on and
indicators 11 and 33 are set off.

If the field contains a zero value, indicator 33 is set on and
indicators 11 and 22 are set off. ·

• Lines 41 through 43 calculate the number of parts to order according
to the status of the field indicators.

7 .1.3 Resulting Indicators

Resulting indicators condition operations that depend on the result of a
calculation. These indicators specify the test (> , <, or=) and indicate
the result· of the calculation. If the result matches the test, the indicators
are set on. The indicators are set off if the next instance of that calculation
does not satisfy the indicated test or if the same indicator is used again in
the program.

You specify resulting indicators in columns 54 through 59 of the
Calculation specification. You can use any of the following indicators
as resulting indicators:

• 01 through 99

• L1 through L9

• LR

• Hl through H9

• OA through OG, and OV

• Ul-U8

• KA through KZ

• KO through K9

Resulting indicators in columns 54 and 55 test for the following conditions:

• The result field contains a positive value after an arithmetic operation.

• When comparing two factors, the value in factor 1 is higher than the
value in factor 2 in a COMP operation.

• The value of the element found in factor 2 is higher than the value in
factor 1 in a LOKUP operation.

• The record is not found in a CHAIN operation.

• Each bit defined in factor 2 is set off in the result field for a TESTB
operation.

7-6 Using Indicators

Resulting indicators in columns 56 and 5 7 test for the following conditions:

• The result field contains a negative value after an arithmetic operation.

• The value in factor 1 is lower than the value in factor 2 in a COMP
operation.

• The value of the element found in factor 2 is lower than the value in
factor 1 in a LOKUP operation.

• The defined bits in factor 2 are of mixed status (some on, some off) in
the result field for a TESTB operation.

• A subprogram returns with an error status from a CALL operation.
• A READ operation is executed on a WORKSTN file, and an error other

than EOF occurred.

Resulting indicators in columns 58 and 59 test for the following conditions:

• The result field contains a zero after an arithmetic operation.

• The value in factor 1 is equal to the value in factor 2 in a COMP
operation.

• The value of the element found in factor 2 is equal to the value in
Factor 1 in a LOKUP operation.

• An end-of-file condition occurs for the demand file in a READ opera
tion.

• A REAP operation is executed on a WORKSTN file and the last form
displayed has no input fields, or no form has been displayed since the
previous READ.

• Each bit defined in factor 2 is set on in the result field for a TESTB
operation.

Resulting indicators are also used with the SETON and SETOF operation
codes to specify that the indicators are to be set on or off.

Using Indicators 7-7

The following example shows how resulting indicators can be used to
control program operations:

Contra 1 1eve1
I
I Indicators
I I
I I Factor
I I 1

Operation

Factor
2

rield length
I Deci~al positions
I !Half adjust <H>
I II
I I I Resulting

Resultl llindicators
field I II+ - 0

Cl NxxNxxNxxl

I
I
I
I I I I I I> < = +- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * 10 c
20 c
30 c
40 c
50 c
60 c
70 c

* SEARCH
F'LD1
KEY

F'LD1

* *
LOKUPTAB1
COMP 100
CHAINF'ILE1
TESTB'123'
READ F'ILE1
SETOF'
SUB F'LD2

In the preceding example:

* *--H* * * *
10 11
222324
32

TEST 404142
50

1011
RES 606162

.. ZK-4390-85

• Line 10 causes VAX RPG II to search for field SEARCH in table TABl.
If VAX RPG II can find an entry that is equal to the search word,
indicator 11 is set on. If VAX RPG II can find an entry that is nearest
to and higher in sequence than the search word, indicator 10 is set on.

• Line 20 causes VAX RPG II to compare the· contents of FLDl with
the numeric literal 100. If the contents of FLDl are greater than
100, indicator 22 is set on and indicators 23 and 24 are set off. If
the contents of FLDl are less than 100, indicator 23 is set on and
indicators 22 and 24 are set off. If the contents of FLDl equal 100,
indicator 24 is set on and indicators 22 and 23 are set off.

• Because the input file is an indexed file, line 30 instructs VAX RPG II
to retrieve a record using the key KEY from the indexed file FILE 1. If
the record is not found, indicator 32 is set on. Otherwise, indicator 32
is set off.

• Line 40 causes VAX RPG II to test the bits l, 2, and 3 in TEST. If the
bits are all off, indicator 40 is set on and indicators 41 and 42 are set
off. If some bits are on and some are off, indicator 41 is set on and
indicators 40 and 42 are set off. If the bits are all on, indicator 42 is
set on and indicators 40 and 41 are set off.

7-8 Using Indicators

• Line 50 causes VAX RPG II to read the next record from FILEl. If
an end-of-file condition occurs, indicator 50 is set on. Otherwise,
indicator 50 is set off.

• Line 60 sets indicators 10 and 11 off.

• Line 70 causes VAX RPG II to evaluate the contents of the result field
after the SUB operation. If the result field contains a positive value,
indicator 60 is set on and indicators 61 and 62 are set off. If the result
field contains a negative value, indicator 61 is set on and indicators 60
and 62 are set off. If the result field contains a zero value, indicator 62
is set on and indicators 60 and 61 are set off.

7. 1.4 Control-Level Indicators

Control-level indicators indicate that a particular field in the input record
is a control field. Each time VAX RPG II reads a record that contains the
control field, it compares the data in the control field with the current
value of the control field. If the contents change, a control break occurs,
the control-level indicator is set on, and the value in _the control field
becomes the new current value.

You associate a control-level indicator (Ll through L9) with an input field
by specifying the indicator in columns 59 and 60 of the Input specification.

The lowest control level indicator is L1 and the highest is L9. When you
use more than one control-level indicator and a higher level control-level
indicator is set on because of a control break, VAX RPG II automatically
sets on all lower level control-level indicators. When you use a control
level indicator as another type of indicator (for example, as a record
identifying indicator), and that indicator is set on, lower level control-level
indicators are not automatically set on.

A control break is likely to occur after the first record with a control field is
read. VAX RPG II compares the data in the control field with hexadecimal
zeros. Therefore, VAX RPG II bypasses total-time calculation and output
operations for the first record containing control fields.

All control-level indicators are set on before total-time calculations when
the last-record (LR) indicator is on. All control-level indicators are set off
after detail-time output.

Using Indicators 7-9

7-10

The following example shows how to use three different control-level
indicators to condition calculation and output operations:

0 I 1 I 2 I 3 I 4 I 5 I 6 I •7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1 H
2 FSLSCAR IP F 14 DISK
3 FSLSREP 0 F 132 OF PRINTERTMP
4 ISLSCAR AA 01
5 I 1 20BRANCHL3
6 I 3 40SLSPERL2
7 I 5 90CUSTNOL1
8 I 10 142SLSAMT
9 c 01 SL SA MT ADD CUSTOT CUSTOT 62

10 cu CUSTOT ADD SP TOT SP TOT 72
11 CL2 SP TOT ADD BRTOT BRTOT 72
12 CL3 BR TOT ADD FINTOT FINTOT 82·
13 OSLSREP H 201 1P
14 0 OR OF
15 0 UDATE Y 9
16 0 25 'SALES REPORT'
17 0 38 'PAGE'
18 0 PAGE 43
19 0 H 1P
20 0 OR OF
21 0 6 'BRANCH'
22 0 22 'SALESPERSON'
23 0 35 'CUSTOMER'
24 0 46 'SALES'
25 0 H 2 1P
26 0 OR OF
27 0 4 'NO'
28 0 19 'NO'
29 0 32 'NO'
30 0 46 'AMOUNT'
31 0 D 1 01
32 0 BRANCHZ 4
33 0 SLSPERZ 16
34 0 CUSTNOZ 30
35 0 SLSAMT1 45
36 0 T 2 Li
37 0 CUSTOT1B 45
38 0 46 '*'
39 0 T 12 L2
40 0 42 'TOTAL SALESPERSON'
41 0 SLSPERZ 45
42 0 SPTOT 18 54
43 0 56 '**'
44 0 T 3 L3
45 0 46 'TOTAL BRANCH NO'
46 0 BRANCHZ 49
47 0 BRTOT 1B 61
48 0 65 '***'
49 0 T 1 LR
50 0 46 'FINAL TOTAL'
51 0 FINTOT1 59 '$'
52 0 64 '****'

ZK-4391-85

Using Indicators

In the preceding example:

• Lines 5 through 7 assign three control-level indicators, one each
to three different control fields. The specification associates the
highest control-level indicator (L3) to the most significant input
field, BRANCH. The specification associates the next highest control
level indicator to SLSPER and the lowest control-level indicator to
CUSTNO.

If the value of BRANCH changes from the previous record, indicator
L3 is set on, which automatically sets on indicators L2 and Ll. These
three indicators can be used to condition calculation and output
operations.

• In line 10, when indicator L1 is on, VAX RPG II adds the amount of
the customer sale to the total sales for a particular salesperson. In
line 11, when indicator L2 is on, VAX RPG II adds the total sales for
the salesperson to the total sales for each branch. In line 12, when
indicator L3 is on, VAX RPG II adds the total sales for each branch to
compute the final total.

• Line 36 causes VAX RPG II to output the total sales for each customer
number when indicator L1 is on. ·

• Line 39 causes VAX RPG II to output the total sales for each salesper
son when indicator L2 is on.

• Line 44 causes VAX RPG II to output total sales for each branch when
indicator L3 is on.

Using Indicators 7-11

You can assign the same control-level indicator to more than one control
field. These fields are called split-control fields. The following example
shows how to use split-control fields:

Se~uence <AA-ZZ, 01-99)
I Nu111ber <1-N>
I IOptional/External <OU> Deci111al positions
I I I Record identif~ing indicator I Control level
I I I I I I Hatch field
I I I I + Identif~ing codes + ror111at I I I rid rec rel

r ii e I 111 I I I (PB> Irie Id I I I
na~e I I I I I C C Cl lrield lna111e I I I rield
I I 111 I Z Z ZI I location I I I I I indicatrs

II I I I I Pos NDcPos NDcPos NDc lfr To I I I I I + - 0
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** * *** *--- *--- *-~- .11---1---11 I I I I I *

5 I 1 20BRANCHL1
6 I 3 40SLSPERL1
7 I 5 90CUSTNOL1

ZK-4392-85

In this example, the fields BRANCH, SLSPER, and CUSTNO combine to
form the control field. When VAX RPG II compares the data in these fields
with the same fields in a previous record, indicator L1 is set on when the
data changes.

7 .1.5 Overflow Indicators

When the printer reaches the overflow line that signals the end of the
page, VAX RPG II sets on the overflow indicator. assigned to that printer
output file. (See Chapter 9 for information on printer output files.)

You define overflow indicators OA, OB, OC, OD, OE, OF, OG, and OV in
columns 33 and 34 of the File Description specification.

7-12 Using Indicators

file
na111e
I

01

In the following example, after reaching the overflow line, VAX RPG II
sets on the overflow indicator OF. Then, the printer moves to the top of
the next page and outputs the heading lines.

T~pe <HDTE> Edit codes I 0 No CR -
lfetch ofl I Rel <rR> I X -------------
I I Space I Y date edit y y 1 A J
II I Skip I Z zero suppress y N 2 B K
111 I I N y 3 c L
111 I Indicators !Blank-after N N 4 D H
111 I I field 11 End position
111 I I na111e 111 for111at <PB>
111 I I I 111 I
I IBAB A NxxNxxNxxl 11.1 I+ Constant or edit Nord +

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** ***** * * * *** ___ **
14 OSLSREP H 201 or
15 0
16 0
17 0
18 0

UDATE Y 9
25 'SALES REPORT'
38 'PAGE'

PAGE 43
ZK-4393-85

See Chapter 9 for a full description of the overflow routine and overflow
indicators.

7 .1.6 K Indicators

K indicators (KA through KZ and KO through K9) can be used to condition
calculations, output records, and output fields. They can also be used as
resulting indicators. K indicators are set on or off if a WORKSTN file is
used. WORKSTN files are used when you want to interact with your VAX
RPG II program at a terminal screen. See Chapter 6 for details.

In the following program, a K indicator is set on and is displayed when
its associated cursor control key is typed. CTRL/Z is pressed to end the
program. Note that this use of K Indicators does not require a WORKSTN
file.

Using Indicators 7-13

7-14 Using Indicators

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456 789012345678901234567890123456 78901234567890123456 7890

.EL

ru
F* File: READ-CURSOR.RPG
F*
F* This RPG II progra111 de111onstrates the use of the RTL routine
F* SHGSREAD_KEYSTROKE to read a ke!:§stroke fro111 the ter111inal.
r*
F* The progra111 takes input fro111 the ter111inal until CTRL/Z is t!:§ped.
F* If an!§ of the four cursor positioning ke!:§s is t!:§ped, a string
F* is displa!:§ed corresponding to the ke!:§.
r*
F* Bui Id this progra111 using the fol lowing co111111ands:
r*
r* $ RPG READ_CURSOR
r * $ CREATE SHGDEF. HAR
F* • TITLE SHGDEF - Define SHG$ constants
r* • ldent /1-000/
F* $SHGDEF GLOBAL
F* .END
F* $ HACRO SHGDEF
F* $ LINK READ-CURSOR, SHGDEF
r*-
rnv D v 5 TTY
C CALL REAKEY
C* External definitions for SHG routines.
C CREKB EXTRN'SHG$CREATLVIRTUAL_KEYBOARD'
C DELKB EXT RN' SHG$DELETLVIRTUAL_KEYBOARD'
C RE AKEY EXTRN' SHGSREAD-KEYSTROKE'
C* Externa I definitions for SHG ter111inators.
c LUP EXTRN, SHG$L TRH_UP I
c T _DOWN EXTRN I SHG$L TRH_DOWN I
C T _LEFT EXT RN' SHG$L TRH_LEFT'
C LRIGHT EXTRN'SHG$L TRH_RIGHT'
C LCTRLZ EXTRN' SMG$K_ TRH_CTRLZ'
C* Create the virtual ke!:§board.
C N99 CALL CREKB
C PARH KB_ID 90 WL
C SETON 99
C* Read a ke!:§stroke.
C CALL REAKEY
C PARH KB_ID 90 RL
C PARM T _CODE 50 WW
C* Turn on an indicator if a cursor positioning ke!:§ was t!:§ped.
C T _CODE COMP T _up KA
C T _CODE COHP T _DOWN KB
C T _CODE COHP T _LEFT KC
C LCODE COHP LRIGHT KD
C* Turn on LR to quit if CTRL/Z was t!:§ped.
C LCODE COHP LCTRLZ LR
C* Displa!:§ a 111essage if a cursor positioning ke!:I was t!:§ped.
c KA I UP I DSPL YTTY
C KB 'DOWN' DSPL YTTY
C KC 'LEFT' DSPL YTTY
C KD 'RIGHT' DSPLYTTY
C* Delete the virtual ke!:§board.
CLR CALL DELKB
CLR PARH KB_ID 90 RL

ZK-4661-85

7 .2 Internally Defined Indicators

There are some indicators that you do not need to define; VAX RPG II
defines them for you. This section describes internally defined indicators
and explains how to use them.

7 .2. 1 First-Page Indicator

When you specify a first-page (lP) indicator, it is set on at the start of the
program and set off after detail-time output but before the first record is
read. ·Therefore, you can use the lP indicator to condition these heading
lines you want printed before VAX RPG II processes the first record.

You specify the lP indicator, which is always represented by lP, in
columns 24 and 25, 27 and 28, or 30 and 31 of the Output specification.

Using Indicators 7-15

The following example shows how to use the lP indicator to print a
header on the first page of a report:

T~pe <HDTE> Edit codes , 0 No CR -
1retch ofl I Rel <rR> I X -------------
I I Space I Y date edit y y 1 A J
111 Skip I Z zero suppress y N 2 B K
111 I I N y 3 c L
111 I Indicators !Blank-after N N 4 D H

rile 111 I I field 11 End position
na111e 111 I I na111e 111 ror111at <PB>
I 111 I I I 111 I

01 I IBAB A NxxNxxNxxl 111 I+ Constant or edit word +
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** ***** * * * *H---H
OOUTPUT H 201 1P
o OR or
0 UDATE Y 8
0 43 'SALES REPORT'
0 PAGE 72
0 67 'PAGE'
0 H 22 1P
o OR or
0
0
0
0
0

5 'ITEM'
23 'DESCRIPTION'
41 'SALES'
56 'COST'
72 'PROrIT'

The following heading lines are printed on the first page:

ZK-4385-85

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890
5/19/83 SALES REPORT PAGE 1
ITEM DESCRIPTION SALES COST PROFIT

You can use the lP indicator to condition only detail or heading output
lines. If you have a detail or heading output line conditioned by no
indicators or all negative indicators, use a negative lP (NlP) indicator to
prevent this line from being output on the first cycle before the first record
is read.

7-16 Using Indicators

7 .2.2 Last-Record Indicator

File
na111e
I

01

Like the first cycle in a VAX RPG II program, the last cycle differs from
all other program cycles. After VAX RPG II processes the last record in all
primary and secondary files for which you specified processing until the
end-of-file, the last-record (LR) indicator is set on, along with all the other
control-level indicators you specified. The LR indicator causes VAX RPG
II to perform all total-time calculations and output operations conditioned
by any control-level indicators and by the LR indicator.

The LR indicator is always represented by LR, as shown in the following
example:

T~pe <HDTE>
!Fetch ofl I Rel <FR>
I I Space
111 Skip
111 I
I I I I Indicators
111 I I rield
111 I I na111e
111 I I I
I IBAB A NxxNxxNxxl

Edit codes , 0 No CR -
I X -------------
1 Y date edit Y Y 1 A J
I Z zero suppress Y N 2 B K
I N Y 3 C L
!Blank-after N N 4 D H
11 End position
111 For111at <PB>
II I I
II I I+ Constant or edit word +

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** 0
0
0
0
0

***** * * T 1 LR
* *H---H

TSALESi
TCOST 1
TPROFI1

30 'TOTALS'
41 '$'
57 '$'
72 '$'

ZK-4384-85

The following information is printed only after processing the last record:

o I 1 I 2 I 3 I 4 I 6 I 6 I 7 I
12346678901234667890123466789012346678901234667890123466789012346678901234667890

TOTALS $664.30 $426.00 $139.30

If your program does not contain a primary input file, you must set on the
LR indicator to end the execution of the program. If your program sets
on the LR indicator, VAX RPG II automatically sets on all control-level
indicators just before total-time calculations. If the LR indicator is set on
during total-time calculations, VAX RPG II does not automatically set on
all control-level indicators.

Using Indicators 7-17

7 .2.3 Matching-Record Indicator

When you use more than one primary and secondary file, VAX RPG II
multifile logic supplies you with a method of selecting the next record to
process. You can designate one or more fields in each record to be the
matching fields (columns 61 and 62 of the Input specification). When the
fields from a primary file and one or more of the secondary files match,
the matching-record (MR) indicator is set on. The MR indicator remains
set on while processing the records from the primary and secondary
files that match. See Chapter S for a complete discussion of multifile
processing.

At the beginning of detail time, the MR indicator is set on or off, as de
termined by the matching status of the record to be processed. Therefore,
at total time, the MR indicator reflects the matching status of the previous
record with the record to be processed.

7 .2.4 External Indicators

You can use external indicators to condition any operation in your pro
gram. External indicators, which are always represented by Ul through
US, can also appear in columns 71 and 72 of the File Description spec
ification and in columns 54 through 59 of the Calculation specification.
External indicators can also be used as resulting indicators.

To use the external indicator, you must also assign the logical name
RPG$EXT-1NDS to an external indicator using the DEFINE or ASSIGN
command, as shown in the following example:

t DEFINE RPG$EXT_INDS "external-indicator-list"

An external indicator is set on by specifying it in the external-indicator list.
An external indicator is set off by not specifying it in the external-indicator
list.

The following example sets on external indicators Ul, US, and U4 and sets
off external indicators U2, U3, U6, U7, and US:

$ DEFINE RPG$EXT_INDS "164"

When you turn external indicators on or off in a program, the
RPG$EXT-1NDS is updated automatically for possible subsequent use by
another program.

7-18 Using Indicators

When you use an external indicator to condition a file, the file is opened
only when the external indicator is set on. If the external indicator is set
off, input files being processed sequentially are treated as if the end-of-file
were reached. Use the same external indicator as a conditioning indicator
to control calculation and output operations for those files being processed
by methods other than sequential processing. Otherwise, a run-time error
will occur when you attempt input or output operations on a file that was
not opened because the external indicator was set off.

7 .2.5 Halt Indicators

You can use halt indicators Hl through H9 as record-identifying indi
cators, field indicators, or resulting indicators to stop a program when a
specific condition occurs.

When you use a halt indicator as a record-identifying indicator, a specific
type of record causes the halt.

In the following example, a halt indicator is used as a record-identifying
indicator, causing the program to check the character in position 80 of
records read from the input file FILEIN. If the eightieth character is not an
S, the halt indicator Hl is set on and the program will halt execution. A
run-time message willfthen be displayed saying that this indicator is set
on.

Sequence <AA-ZZ, 01-99)
I Nuiilber (1-N>
I !Optional/External <OU> Deci~al positions
I I I Record identifying indicator I Control level
I I I I I I Hatch fie 1 d
I I I I + Identifying codes + ror~at I I I rid rec rel

r ii e I II I I I I <PB> Irie 1 d I I I
na~e I II I I C c Cl lrield lna~e I I I rield
I I 111 I Z Z ZI I location I I I I I indicatrs

II I I I I Pos NDcPos NDcPos NDc I Fr To I I I I I + - 0
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** * *** *--- *--- *--- ·**---*---** * * * * * *
IrILEIN AA Hi BONCS
I 02 BO CS
I 1 10 rIELD1

ZK-4383-85

When a halt indicator is used as a field indicator, a halt occurs because of
erroneous input data.

Using Indicators 7-19

The following program uses a halt indicator as a field indicator. When a
record is read from the input file FILEIN, FIELDl is checked for a negative
value. If FIELDl contains a negative value, the indicator H2 is set on.
After this record has been processed, the program will halt.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * * * * *

I

IFILEIN AA 01
I 1 50rIELD1 H2
C NH2 SQRT FIELD1 rDL2 95

ZK-4382-85

When a halt indicator is used as a resulting indicator, a halt occurs when
calculations produce erroneous results during either detail time or total
time.

In the following example, a halt indicator is used as a resulting indicator.
If the field FIELDl is equal to zero, the indicator H4 is set on. After the
current record is processed, the program halts.

rield length
Control level
I

I Deci~al positions
I IHalf adjust <H>

I Indicators
I I
I I ractor
I I 1

C I NxxN><><N><>< I

Operation
I
I
I
I

ractor
2
I

I 11
I 11 Resulting

Resultl I I indicators
field I I I+ - 0
I I I I> < = +- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * c
C NH4

* FIELD1
rIELD2

* * SUB 59.0
DIV rIELDi

* *--*** * * *
rIELDi H4
rIELDi

ZK-4381-85

When a halt indicator is set on, a halt does not occur immediately. Before
the program halts, it completes the current cycle and processes the record
that caused the error condition.

If any halt indicators are on after detail-time output, a run-time error
occurs.

7-20 Using Indicators

Halt indicators can also be used as field-record-relation indicators and
to condition calculation and output operations. See Chapter 15 for more
information on using halt indicators as field-record-relation indicators. If
you are converting from another RPG II implementation, you might find
an incompatibility with the halt indicators Hl through H9. For example,
when IBM or Honeywell RPG II encounters a halt indicator, the operator
is prompted to respond to a continue message. This allows the program
to continue to execute. When VAX RPG II encounters a halt indicator,
the program stops executing. The following code can be added to your
program as a workaround. This will prompt the operator and provide the
option of continuing:

F• File spec for the screen display
F•
FTTYFILE D F 81 TTY

C• First time only
C•
C N99 MOVEL'continue'PROMPT 10
c N99 MOVE I? I PROMPT
C•
C• If halt indicator is on prompt for continue
C•
C H1 PROMPT DSPLYTTYFILE ANSWR 1

C• Test operator's response if YES then setof HALT indicator
C• to continue and blank out answer
C•
C H1
c 98
c

ANSWR COMP 'Y'
SET OF
MOVE I I ANS WR

98
H198

The testing of the halt indicator should come after the detail-time calcula
tions.

If this workaround is running from within a command procedure,
SYS$INPUT needs to be redefined to your terminal. For example:

$ DEFINE/USER_MODE SYS$INPUT SYS$COMMAND
$RUN SAMPLE

For more information on running the program from a command procedure,
see the Guide to Using DCL and Command Procedures on VAX/VMS.

Using Indicators 7-21

7 .3 Using Indicators as Fields

The •IN, •IN,n, and •INxx are special words that allow you to use prede
fined indicators in your program. Sections 7.3.1 and 7.3.2 describe each
type of special word.

7 .3.1 •IN and •IN,n

The special word •IN is a predefined array with 99 one-position character
elements. The elements in this array represent indicators 01 through
99. Use •IN,n, where n is the array index, to reference an indicator. For
example, •IN,54 refers to indicator 54.

The elements in this array can assume only two character values-1 and 0.
If you reference an indicator using •IN,n and the contents of the element
are 0, the indicator is set off. If the contents of the element are l, the
indicator is set on.

You can use either the array or the array element to reference an indicator
anywhere any other one-character array or array element can be used.
You cannot, however, specify the entire array •IN as the Result field of
a PARM operation. To.prevent unpredictable results when modifying an
element in •IN, assign the character literal 0 or 1 to •IN.

In the following example, the program tests whether the setting for
indicator 15 is equal to the setting for indicator 20. In the next line,
indicator 20 is set on. Using the MOVE operation to transfer 1 to •IN,20
produces the same result as using the SETON operation code to set on
indicator 20.

Field length
Control level I Deci~al positions

I IHalf adjust <H>
I II

I
I Indicators
I I
I I Factor
I I 1

Cl Nx·xNxxNxx I

Operation
I
I Factor
I 2
I I

I I I Resulting
Result I I I indicators
field I II+ - 0
I I II><=+~ Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * c
c

7-22 Using Indicators

* *IN,20 * * COHP *IN, 15
HOVE '1'

* *--*** * * *
99

•IN,20
ZK-4380-85

7.3.2 •INxx

The special word •INxx is a predefined one-position character field where
xx represents any indicator except the first-page (lP), overflow, or external
indicators. Like •IN, it can contain only the character 0 or 1.

You can use •INxx anywhere any other one-character field can be used,
except as the result field of a PARM operation.

In the following example, the value of the MR indicator is compared to the
value of M. If they are the same, indicator 99 is set on. The MR indicator
is represented as •INMR.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

.
IFILEi 01
I 1 20 TEXT
I i9 20 HATCH Hi
IrILE2 02
I 2 21 TEXT
I 20 2i HATCH Hi
c *INHR COMP H 99

ZK-4379-85

Using Indicators 7-23

Chapter 8

Using Files

A file is a collection of information that is organized into groups or
sections called records. Each record consists of one or more blocks of
characters or numbers called fields.

this chapter explains the VAX RPG II file organizations and record
operations that are implemented through VAX Record Management
Services (RMS). For additional information on file organization and file
and record operations, see the VAX Record Management Services Reference
Manual and the Guide to VAX/VMS Disk and Magnetic Tape Operations.

8. 1 File Characteristics

Files are created, modified, and processed according to their respective
characteristics, which are chosen to make the most efficient use of both
system resources and the data in the files. Significant characteristics of
files used in VAX RPG II programs are the file type, designation, and mode.
of processing.

The file type used in VAX RPG II programs determines how the records in
the files are processed. See Chapter 15 for information on file type. The
file types include:

• Input (I)

• Output (0)

• Update (U)

• Display (D)

• Combined (C)

Using Files 8-1

See Chapter 6 for detailed information on Combined (WORKSTN) files.

File designations define the order in which VAX RPG II processes files.
See Chapter 15 for information on file designations. The file designations
include:

• Primary (P)

• Secondary (S)
• Record-address (R)

• Chained (C)

• Preexecution-time table or array (T), (A)

• Demand (D)
• Full-procedural (F)

8.2 File Names

8-2 Using Files

Columns 7 through 14 (File name) of the File Description specification
define the file name. VAX RPG II uses the entry in columns 7 through 14
(File name) and the entry in columns 47 through 52 (Symbolic device) to
associate the file name with the VAX/VMS file specification. The default
VAX RPG II file type is DAT.

You can use a logical name for the entry in columns 47 through 52
(Symbolic device), and then assign a VAX/VMS file specification to the
logical name. If you assign a full file specification to the logical name,
VAX RPG II ignores the entry in columns 7 through 14 when determining
the file specification. If you do not assign the file-name part of the file
specification to the logical name, VAX RPG II uses the entry in columns 7
through 14 when determining the file specification. If you do not assign a
file type to the logical name, VAX RPG II uses DAT.

If you do not specify an entry in columns 47 through 52, you can use a
logical name as the entry in columns 7 through 14 for the VAX/VMS file
specification. If you do not specify a logical name as the entry in columns
7 through 14, the file specification will consist of the file name in columns
7 through 14 and the file type DAT.

The entry in columns 7 through 14 is used as the VAX Run-Time Library
default file name string. The entry in columns 47 through 52 (symbolic
device) is used as the VAX/VMS Run-Time Library file name string. See
the VAX Record Management Services Reference Manual for information
about file-name strings and default file-name strings.

8.3 Record Forniats

The records in a file can all be the same length (fixed) or of different
lengths (variable). Variable-length records often use disk storage space
more efficiently. The characteristics and requirements of individual appli
cations should be carefully considered when you decide whether to use
fixed-length or variable-length records.

8.4 File Types

You can use files in four ways:

• As input to a VAX RPG II program
• As output from a VAX RPG II program

• As an update file in which the records are changed by the program

• To interact with the terminal screen using the VAX Forms
Management System (VAX FMS) (see Chapter 6 for details)

8.5 File Organizations

The organization of a file determines how the records in it are arranged.
VAX RPG II allows three different file organizations:

• Sequential

• Direct
• Indexed

Sections 8.5.1 through 8.5.3 describe these file organizations.

Using Files 8-3

8.5.1 Sequential Organization

Sequential file organization is available on all types of devices. Sequential
files contain records in the order that they were written. The first logical
record in the file is always in the first physical record position, the second
logical record in the file is always in the second physical record position,
and so on. If you need to access the fourth logical record, you can find it
between the third and fifth physical records, as shown in Figure 8-1.

Figure 8-1: Sequential File Organization

I 2 3 4 5

t fourth record

ZK-1462-83

You can retrieve records from a sequential file either sequentially, by
reading through the entire file from beginning to end, or randomly, by
using relative record numbers or an ADDROUT file.

8.5.2 Direct Organization

8-4 Using Files

Direct file organization is available on disk devices only. The VAX/VMS
Run-Time Library handles VAX RPG II direct files as files with relative
file organization. A direct file consists of a series of fixed-length positions
(or cells) that are numbered consecutively from 1 ton. This number is
the relative record number; it indicates the record's position relative to the
beginning of the file. (The relative record number of the first cell is always
1.) Each record you write is assigned to a specific cell within the file. For
example, you can assign the second record to the fourth cell; its relative
record number would be 4. This assignment can result in empty cells;
therefore, you must specify a record's relative record number to access it.
Figure 8-2 shows that cell numbers 2 and 5 are empty cells.

Figure 8-2: Direct File Organization

cell no. ---- 2 3 4 5 6

records~ 2 3 4

t t
empty cell empty cell

ZK-1463-83

Direct files can be accessed sequentially or randomly by using the CHAIN
operation code (see Section 16.7.1 for information on the CHAIN op
eration code) or by using an ADDROUT file. When you access a direct
file sequentially, empty cells are skipped. When you access a direct file
randomly using the CHAIN operation, the indicator specified in columns
54 and 55 of the Calculation specification will be set on for an empty cell.

8.5.3 Indexed Organization

Indexed file organization is available on disk devices only. Each record in
an indexed file contains an index key value, as shown in Figure 8-3.

Figure 8-3: Indexed File Organization

index key value data

----- record------

ZK-1464-83

An index key value is a field within each record that is defined by its
relative location within the record and by its length. The index key value
is the primary means of locating records within the. file. For example,

Using Files 8-5

you could use an employee's badge number as the index key value for
an employee record. The index key value in Figure 8-4 is the first six
characters in the record, or 768979.

Figure 8-4: Index Key Value

768979Heriry Alberts

record

ZK-1465-83

You can retrieve a record from an indexed file by specifying its index
key value. In fact, you can retrieve records in an indexed file either
sequentially or randomly by using index key values, or randomly by using
an ADDROUT file.

Another way to access records from an indexed file is sequentially within
limits. See Section 8.6.3 for more information on this method of accessing
records from indexed files.

8.6 File Access Methods

8-6 Using Files

There are several ways you can access the records in a file, depending on
its organization. Table 8-1 lists file organizations and the methods you
can use to retrieve records.

Table 8-1: File Access Methods
File Designation

Primary

Secondary

Demand

Full-procedural

Chained

Organization

Sequential

Direct

Direct

Indexed

Sequential

Indexed

Access Method

Sequentially

Randomly by ADDROUT file1

Sequentially

Randomly by relative record number

Sequentially

Sequentially by key

Sequentially within limits

Randomly by ADDROUT file1

Randomly by relative record
number2

Randomly by key

1You cannot process demand or full-procedural files using an ADDROUT file.

2You can access the records in a sequential file randomly by relative record number if the records are
fixed-length and the file resides on disk.

Although you cannot change the organization of a file after you have
created it, you can change the file access method each time you use the
file. The method you use depends on how many records your file contains
and how often you need to access a record. Use the following guidelines
in selecting a file organization and access method:

• If you always process all the records in a file from beginning to end (as
in a payroll application), use a sequential file and access the records
sequentially.

• If you need to access some or all records under changing or unpre.:..
dictable conditions (as in a transaction processing system), use an
indexed or direct file and access the records randomly.

Sections 8.6.1 through 8.6.5 describe each file access method and provide
programming guidelines for each.

Using Files 8-7

8.8.1 Sequential Access

When you access a file sequentially, each input operation retrieves the
next record in the file, regardless of the file organization, until either the
end-of-file is reached or the program terminates. For an indexed file,
records are retrieved in the order of the primary keys.

To specify sequential access for a file, you must make the following entries
in its File Description specification:

• Column 15 (file type)-specify I or U to indicate whether the file is to
be opened for input or for update.

• Column 16 (file designation)-specify P, S, D, or F to indicate whether
the input file is primary, secondary, demand, or full-procedural.

• Column 19 (record format)-specify F or V to describe the record
format.

• Columns 24 through 27 (record length)-specify the length of fixed-
length records or the maximum length of variable-length records.

The following example specifies the name of a file, INPUT, designated as
an input primary file with fixed-length records and a record length of 60
bytes:

Mode <LR>
IKe~ length

T~pe <IOUDC> I I Record address t~pe <APIB> Addtn<AU>
IDes<PSRCTDr>I I !Organization <IT,1-9) !Expand
11 EOr (E) 11 11 Overf l ON indicator Continue (K) 11 Shr (SR)
I I I Seq <AD> I I I I I Ke~ location I Opt Entr~ I I I ReNnd

rile llllr111t <rV> II Ill I Extension <EUii I Ill I
na111e I I I I I Bl k Rec I I I I I I I Device S~111b Tape Core I I I I rile
I I I I I 11 en I en I I I I I I I code dev I abe I index I I I I cond

Fl 111111 I II Ill I II I I I Ill II
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** ****** ___ * ___ **-*** *---** * *······*-----***·**
FINPUT IP F 60 DISK

ZK-4394-85

8-8 Using Files

8.6.2 Sequential Access by Key

You can process only indexed primary, secondary, demand, and full
procedural files sequentially by key. VAX RMS reads records in ascending
key sequence until it reaches the end of the file or until the program
terminates.

To specify sequential access by key for a file, you must make the following
entries in its File Description specification:

• Column 15 (file type)-specify I or U to indicate whether the file is to
be opened for input or for update.

• Column 16 (file designation)-specify P, S, D, or F to indicate whether
the input file is primary, secondary, demand, or full-procedural.

• Column 19 (record format)-specify F or V to describe the record
format.

• Columns 24 through 27 (record length)-specify the length of fixed
length records or the maximum length of variable-length records.

• Columns 29 and 30 (key length)-specify the length of the key field.
For binary, use 2 for word and 4 for longword.

• Column 31 (record address type)-specify either A, P, or B to indicate
that the index keys are in character (A), packed decimal (P), or binary
(B) data format.

• Column 32 (file organization)-specify I to indicate that the file is an
indexed file.

• Columns 35 through 38 (key location)-specify the starting character
position of the key field.

Using Files 8-9

The following example shows how to specify a primary input file, INPUT,
with fixed-length records 60 bytes long. The file organization is indexed
with its index keys in packed decimal data format.

Mode <LR>
IKey length

Type CIOUDC> I I Record address type CAPIB> AddtnCAU>
IDesCPSRCTDF>I I !Organization CIT,1-9) !Expand
llEOF CE> II llOverflo"' indicator Continue CK> llShrCSR>
I I I Seq CAD> I I I I I Key location I Opt Entr~ I I I Re"'nd

File llllF111t <FV> II Ill I Extension <EUii I Ill I
na111e I I I I IBlk Rec I I II I I !Device S~111b Tape Core I I I !File
I 11111 len len 11 111 I lcode dev label index 111 lcond

Fl 111111 I II Ill I II I I I Ill II
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** ******---*---**-*** *---** * *······*-----***·**
FINPUT IP F 60 3PI 1 DISK

ZK-4395-85

8.6.3 Sequential Access Within Limits

8-1 0 Using Files

You can process indexed files sequentially within limits by creating a
record-limits file that specifies a range of index keys in each record.

In Figure 8-5, the first record in the record-limits file causes VAX RPG II
to retrieve those records whose keys are greater than or equal to the low
key (C) and less than or equal to the high key (E). When the program
reaches a record with a key value greater than E or reaches end-of-file,
it reads the next record from the record-limits file to get a new high and
low range. The second record in the record-limits file causes the program
to retrieve those records whose keys are greater than or equal to the low
key (E) and less than or equal to the high key (G). The indexed file is
processed until it reaches the end of the record-limits file or the program
terminates.

Figure 8-5: Sequential File Access Within Limits

record record-limits file

A data

~ -
first record

B data - second record G

c data

t t file

D data high key
low key

E data

F data

key

ZK-1466-83

Rules

• In the record-limits file, you can specify only one set of limits for a
record.

• The record length must be at least twice the length of the record key.

• The low key must begin in character position 1, and the high key
must immediately follow the low key. ·

• The length of the high and low keys must be the same and must be
equal to the length of the key field in the file to be processed.

• Numeric keys can contain leading zeros.

• Alphanumeric keys can contain blanks.

Using Files 8-11

To access a file sequentially within limits, you must make the following
entries in its File Description specification:

• Column 15 (file type)-specify I or U to indicate whether the file is to
be opened for input or for update.

• Column 16 (file designation)-specify P, S, D, or F to indicate whether
the input file is primary, secondary, demand, or full-procedural.

• Column 19 (record format)-specify F or V to describe the record
format.

• Columns 24 through 27 (record length)-specify the length of fixed
length records or the maximum length of variable-length records.

• Column 28 (access mode)-specify L to indicate that the indexed file
is to be processed sequentially within limits.

• Columns 29 and 30 (key length)-specify the length of the key field.
• Column 31 (record address type)-specify either A, B, or P to indicate

that the index keys are in character (A), packed decimal (P), or binary
(B) data format.

• Column 32 (file organization)-specify I to indicate that the file is an
indexed file.

• Columns 35 through 38 (key location)-specify the starting character
position of the key field.

The following example shows how to specify an input secondary file,
INPUT, with fixed-length records 60 bytes long. This file is to be pro
cessed sequentially within limits. The file organization is indexed, the key
field is three bytes long beginning in character position 1, and the keys are
in character format.

Hode <LR>
IKe~ length

T~pe <IOUDC> I I Record address t~pe <APIB> Addtn<AU>
IDes<PSRCTDr>I I !Organization (IT,1-9) !Expand
11 EOr (E) I I 11Overf101r1 indicator Continue < K > 11 Shr (SR)
I I ISeq <AD> I I I 11 Ke~ location IOpt Entr~ I II Rewnd

rile llllr111t <rV> II Ill I Extension <EUii I Ill I
na111e II lllBlk Rec II II I I !Device S~111b Tape Core I II lfile
I I I I I 11 en 1 en I I I I I I I code dev 1abe1 index I I I I cond

f" I 11 1111 I 11 11 I I 11 I I I 111 11
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** ****** ___ * ___ **-*** *---** * *······*-----***·**
rINPUT IS r 60L 3AI 1 DISK

ZK-4396-85

8-12 Using Files

To access a file sequentially within limits, you must make the following
entries for the record-limits file in its File Description specification:

• Column 15 (file type)-specify I to indicate that the file is to be
opened for input.

• Column 16 (file designation)-specify R to indicate that the file named
in columns 7 through 14 is a record-limits file.

• Column 19 (record format)-specify F or V to describe the record
format.

• Columns 24 through 27 (record length)-specify the length of fixed
length records or the maximum length of variable-length records.

• Columns 29 and 30 (key length)-specify the length of the key field.

• Column 31 (record address type)-specify either A, P, or blank to
indicate that the index keys are in character (A), packed decimal (P), or
the same data format as the file being processed by the record-address
file (blank).

• Column 39 (extension)-specify E to cause the system to look for an
Extension specification.

You must also make the following entries for the record-limits file in its
Extension specification:

• Columns 11 through 18 (from file name)-specify the name of the
record-limits file.

• Columns 19 through 26 (to file name)-specify the name of the file to
be processed by the record-limits file.

The following example shows how to specify the File Description and
Extension specifications for processing a file sequentially within limits:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FIDXA12 IR F 6 3A
FIDXI12 IP F 60L 3AI
E IDXA12 IDXI12

EDI SK
1 DISK

ZK-4397-85

An indexed demand or full-procedural file can also be processed se
quentially within limits using the SETLL operation. See Chapter 16 for
information on the SETLL operation code.

Using Files 8-13

8.8.4 Random Access

Accessing records randomly allows you to retrieve or write a record
anywhere in the file. To do this, you must specify the record location
using one of the following methods:

• Relative record numbers

• Keys

• An ADDROUT file

The method you use depends on the organization of the file. Sections
8.6.4.1 through 8.6.4.3 explain these methods.

8.6.4.1 Random Access by Relative Record Number

8-14 Using Files

You can randomly access records in sequential and direct files by specify
ing relative record numbers that identify records relative to the beginning
of the file. For example, the relative record number for the fifth record is
5. Accessing a sequential file using this method requires that the records
be of fixed length and that the file reside on disk.

To access a file randomly by relative record number, you must make the
following entries in its File Description specification:

• Column 15 (file type)-specify I or U to indicate whether the file is to
be opened for input or for update.

• Column 16 (file designation)-specify C or F to indicate whether the
file named in columns 7 through 14 is a chained or full-procedural
file.

• Column 19 (record format)-specify F or V to describe the record
format.

• Columns 24 through 27 (record length)-specify the length of fixed
length records or the maximum length of variable-length records.

• Column 28 (mode)-specify R to cause VAX RPG II to access the file
randomly, using a relative record number.

You must also make the following entries for the file in its Calculation
specification:

• Columns 18 through 27 (factor 1)-specify the relative record number
of the record you want to retrieve.

• Columns 28 through 32 (operation code)-specify the CHAIN op
eration code. Use an indicator in columns 54 and 55 to signal an
empty cell condition for a direct file. Otherwise, attempting to use the
CHAIN operation code to randomly access an empty cell will cause a
run-time error.

• Columns 33 through 42 (factor 2)-specify the name of the file that
contains the record you want to retrieve.

The following example shows how to randomly access the direct file
RAN07A by relative record number. The primary input file RANI07
provides the record numbers in the field ITEM#.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FRANI07 IP F
FRAN07A UC F
FRAN07B 0 F
IRANI07 AA 01
I
I
IRAN07A
I
I
I
c
c 50
c
c
c
c
c
c 50
ORAN07A
0
0
0
ORAN07B
0
0
0
0
0

AB 02

ITEHM

1

HANDLR

E

H 22

D

13
10R
30

CHAINRAN07A
GOTO HANDLR
ADD ACCESS
SETON
EXCPT
SETOF
TAG
SETON

02 40
RECM
ACCESS
VALUE

1PN40

01N40
STORE
ACCESS
VALUE

DISK
DISK
PRIN~ER

1
13

1
3
7

ACCESS

1
5

10

11 STORE
130ITE:HM

10RECM
50ACCESS

10 VALUE
50

40

40

LR

22 'STORE PURCHASES'

14
20
27

ZK-4398-85

Using Files 8-15

8.6.4.2 Random Access by Key

8-16 Using Files

You can randomly retrieve records from an indexed file by specifying their
index keys.

To access a file randomly by key, you must make the following entries in
its File Description specification:

• Column 15 (file type)-specify I or U to indicate whether the file is to
be opened for input or for update.

• Column 16 (file designation)-specify C or F to indicate whether the
file named in columns 7 through 14 is a chained or full-procedural
file.

• Column 19 (record format)-specify F or V to describe the record
format.

• Columns 24 through 27 (record length)-specify the length of fixed
length records or the maximum length of variable-length records.

• Column 28 (mode)-specify R to tell VAX RPG II to access records
randomly, using index key values.

• Columns 29 and 30 (key length)-specify the length of the key field.
• Column 31 (record address type)-specify either A or P to indicate

that the index keys are in character (A) or packed decimal (P) data
format.

• Column 32 (file organization)-specify I to indicate that the file is an
indexed file.

• Columns 35 through 38 (key location)-specify the starting character
position of the key field. ·

You must also make the following entries for the file in its Calculation
specification:

• Columns 18 through 27 (factor 1)-specify the index key of the record
you want to retrieve.

• Columns 28 through 32 (operation code)-use the CHAIN operation
code. The record you specify can be read from the file either during
detail-time or total-time calculations. Specify an indicator in columns
54 and 55 to signal a record-not-found condition. Otherwise, a
record-not-found condition will cause a run-time error.

• Columns 33 through 42 (factor 2)-specify the name of the file to be
processed.

The following example randomly accesses the indexed file GROCER
using keys. The primary input file STORES provides the keys in the field
ITEM#.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

rSTORES
rGROCER
rREPORT
I STORES
I
I
I GROCER
I
I
I
c
c 50
OREPORT
0
0
0
0
0

IP r
IC r
o r
AA 01

AB 02

ITEHM

H 22

D

13
iOR iAI
30

DISK
1 DISK

PRINTER

1 11 STORE
13 130ITEHM

CHAINGROCER
SETON

1PN40

1 10RECM
3 50COUNT
7 10 VALUE

50
LR

22 'STORE PURCHASES'
01N40

STORE 14
COUNT 20
VALUE 27

ZK-4399-85

8.6.4.3 Random Access by ADDROUT File

Another way to process files is by using an ADDROUT file. You can use a
record-limits file to process only indexed files. You can use an ADDROUT
file to process sequential, direct, or indexed files.

ADD ROUT files are created by the VAX/VMS Sort/Merge Utility
(SORT/MERGE) when you use the /PROCESS=ADDRESS qualifier.
You specify a field or fields in the record by which SORT/MERGE sorts
the records, as shown in Figure 8-6.

Using Files 8-17

8-18 Using Files

Figure 8-6: Random Access by ADDROUT File

record

A data

D data

c data

B data

t
field to sort

ZK-1467-83

SORT /MERGE sorts the records and places the disk addresses of the
sorted records in an ADDROUT file, as shown in Figure 8-7.

Figure 8-7: An ADDROUT File

0OO143 ____ address of A

9 4 8 5 6 7 .: address of B

762341_~--address of C

0 9 8 7 4 5 ... •----address of D

ADDROUT file

ZK-1468-83

The program reads the records (addresses) in the ADDROUT file sequen
tially. Each record in the ADDROUT file corresponds to a record in the
original file. The addresses of the records are referred to as Record File
Addresses (RFAs) by VAX RMS. For additional information on RFAs, see
the VAX Record Management Services Reference Manual.

To access a file using an ADDROUT file, you must make the following
entries in the File Description specification of the file to be accessed:

• Column 15 (file type)-specify I or U to indicate whether the file is to
be opened for input or for update.

• Column 16 (file designation)-specify P or S to indicate that the file
named in columns 7 through 14 is primary or secondary.

• Column 19 (record format)-specify F or V to describe the record
format.

• Columns 24 through 27 (record length)-specify the length of fixed
length records or the maximum length of variable-length records.

• Column 28 (mode)-specify R to cause VAX RPG II to access records
randomly.

• Columns 29 and 30 (key length)-specify the length of the key field if
you plan to access an indexed file.

• Column 31 (record address type)-specify I to cause the program to
access the file according to the ADDROUT file.

Using Files 8-19

8-20 Using Files

• Column 32 (file organization)-specify I if you plan to access an
indexed file.

• Columns 35 through 38 (key location)-specify the starting character
position of the key field if you plan to access an indexed file.

To access a file using an ADDROUT file, you must make the following
entries for the ADDROUT file in its File Description specification:

• Coluinn 15 (file type)-specify I to indicate that the file is to be open
for input.

• Column 16 (file designation)-specify R to indicate that the file named
in columns 7 through 14 is an ADDROUT file.

• Column 19 (record format)-specify F to describe the record format.

• Columns 24 through 27 (record length)-specify 6, because record
addresses are always 6 bytes in length.

• Columns 29 and 30 (key length)-specify 6, because key addresses are
always 6 bytes in length.

• Column 31 (record address type)-specify I to indicate that this is an
ADDROUT file.

• Column 32 (file organization)-specify T to indicate an ADDROUT
file.

• Column 39 (Extension)-specify E to cause VAX RPG II to look for an
Extension specification.

You must also make the following entries for the ADDROUT file in its
Extension specification:

• Columns 11 through 18 (from file name)-specify the name of the
ADDROUT file ..

• Columns 19 through 26 (to file name)-specify the name of the file to
be processed by the ADDROUT file.

The following example shows how to specify the ADDROUT file
IDXA13 and how to specify the file IDXI13 which will be accessed by
the ADDROUT file.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

rIDXAi
F'IDXI13
F'IDX13A 0
E IDXA13
IIDXI13 AA
I
I
I
I
I
I
I
I
I
I
I

I

•

OIDX13A H 202 1P
0 OR OF
0
0
0
0 D 1 02
0
0
0
0
0
0
0
0
0

...
: .

UDATE Y 10

1 3 KEY
1 12 TOWN

13 14 STATE
15 25 COUNTY
26 30 ZIP
31 350CEN30
36 400CEN40
41 450CEN50
46 500CEN60
51 550CEN70
56 600CEN80

49 'NEW HAMPSHIRE TOWNS'
PAGE 77

TOWN 13
COUNTY 26
STATE 30
CENBO J 38
CEN70 J 46
CEN60 J 54
CEN50 J 62
CEN40 J 70
CEN30 J 78

8.8~5 Sequential Access and Random Access by Key

ZK-4400-85

A full-procedural file allows you to read a file both randomly and sequen
tially. If the full-procedural file is an indexed file, then you can read the
file randomly by key using the CHAIN or SETLL operation, and you can
read the file sequentially.

Using Files 8-21

8-22 Using Files

To specify an indexed full-procedural file, make the following entries for
the file in its File Description specification: ·

• Columns 7 through 14 must contain the file name.

• Column 15 (file type)-specify I or U to indicate that the file is to be
opened for input or for update.

• Column 16 (file designation)-specify F to indicate a full-procedural
file. ·

• Column 19 (record format)-specify F or V to describe the record
format. ·

• Columns 24 through 27 (record length)-specify the length of fixed
length records or the maximum length of variable-length records.

• Column 28 (access mode)-specify L to indicate that the indexed file
is to be processed sequentially within limits. ·

• Columns 29 and 30 (key length)-specify the length of the key field.
• Column 31 (record address type)-specify either A, B, or P to indicate

that the index keys are in character (A), packed decimal (P), or binary
(B) data format.

• Column 32 (file organization)-specify I to indicate that the file is an
indexed file. ·

• Columns 40 through 43 (device code)-specify DISK.

The following example specifies the full-procedural file FPFJOl to be
accessed by a CHAIN operation with the key specified in FPFIOl. The file
FPFJOl is then processed sequentially from that point on.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 · I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FTTY
FrPFIOi
FrPFJOi
FrPFOiA
LFPFOiA
IFPFI01
I
IFPFJOi
I
I
I
I
c
c
c
c 98
c 98
c
c
C NLR
C NLR
c
OFPFOiA
0
0
0
0
0
0
0
0
0
0
0

D F 80
ID F 04

TTY
DISK

IF V 47R04AI i DISK
LPRINTER 0 v 73

55FL 500L

PARTNO

'BAD'

LOOP

END
H 20i iP

H iO iP

H 00 iP

H Oi iP

E Oi

READ FPFIOi
CHAINFPFJOi
EXCPT
DSPLYTTY
GOTO END
TAG
READ FPFJOi
EXCPT
GOTO LOOP
TAG

PARTNO
DESCR

i 4 PARTNO

i 4 PARTNO
5 39 DESCR

40 43 PRICE
44 47 AMOUNT

98

LR

32 'PARTS SUMMARY INVENTORY'

ii 'PART NO'
30 'DESCRIPTION'

30 '-----------'

ii '-------'
9

47

ZK-4662-85

Using Files 8-23

8. 7 Creating Files

There are a variety of ways to create files with sequential, direct, and
indexed organizations. Sections 8.7.1 through 8.7.3 describe how to create
files using a VAX RPG II program.

8. 7 .1 Creating Sequential Files

You can create sequential files by writing consecutive records to an output
file. After a sequential file is created, you can use it as an input file, an
update file, or an output file with the ADD option.

To create a sequential file, you must make the following entries in the File
Description specification:

• Column 15 (file type)-specify 0 to indicate the creation of an output
file.

• Column 19 (record format)-specify F or V to describe the record
format.

• Columns 24 through 27 (record length)-specify the length of fixed
length records or the maximum length of variable-length records.

The following example shows how to create the sequential file OUT60A:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

rDUTI24 IP r 24 DISK
FOUT60A 0 r 24 DISK
IOUTI24 AA
I 1 3 PN
I 4 10 PNAHE
I 11 12 WHOUSE
I 13 17 COLOR
I 18 20 WEIGHT
I 21 24 QTY
OOUT60A D N1P
0 PN 3
0 PNAHE 10
0 4 , 1,
0 WHOUSE 12
0 COLOR 17
0 WEIGHT 20
0 QTY 24

ZK-4401-85

8-24 Using Files

8. 7 .2 Creating Direct Files

You can create a direct file by specifying a chained output file. To do this,
you must make the following entries in its File Description specification:

• Column 15 (file type)-specify 0 to indicate the creation of an output
file.

• Column 16 (file designation)-specify C to indicate that the file named
in columns 7 through 14 is a chained file.

• Column 19 (record format)-specify F or V to describe the record
format.

• Columns 24 through 27 (record length)-specify the length of fixed
length records or the maximum length of variable-length records.

• Column 28 (mode)-specify R to cause VAX RPG II to load a direct
file.

The following program shows how to create the direct file OUT60B with
variable length records:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

F'OUTI24
F'OUT60B
IOUTI24
I
I
I
I
I
I

IP F'
OC V
AA

24
24R

c COUNT ADD 1
c
OOUT60B D
0
0
0
0
0
0
0

COUNT CHAINOUT60B
N1P 25

PN
PNAME

WHOUSE
COLOR
WEIGHT
QTY

DISK
DISK

1
4

11
13
18
21

COUNT

3
10
4 '3,

12
17
20
24

3 PN
10 PNAME
12 WHOUSE
17 COLOR
20 WEIGHT
24 QTY

10
99

ZK-4402-85

Using Files 8-25

8. 7 .3 Creating Indexed Files

8-2 6 Using Files

You can create an indexed file either in unordered key sequence or in
ordered key sequence. If you specify unordered, you can write records to
an indexed file in any order, regardless of the key sequence. If you specify
ordered, you must write records in the order of their key; the order must
be ascending. After the file is created, VAX RMS sorts the index keys in
ascending order, regardless of the order in which they were written.

To create an indexed file in ordered sequence, you must make the follow
ing entries in its File Description specification:

• Column 15 (file type)-specify 0 to indicate the creation of an output
file.

• Column 19 (record format)-specify F or V to describe the record
format.

• Columns 24 through 27 (record length)-specify the length of fixed
length records or the maximum length of variable-length records.

• Columns 29 and 30 (key length)-specify the length of the key field.
For binary, use 2 for word length and 4 for longword length.

• Column 31 (record address type)-specify either A, P, or B to indicate
that the index keys are in character (A), packed decimal (P), or binary
(B) data format.

• Column 32 (file organization)-specify I to indicate an indexed file.

• Columns 35 through 38 (key location)-specify the starting character
position of the key field.

The following program shows how to create an indexed file OUT60A with
an alphanumeric key that is three bytes long. The key begins in character
position 1 of each record.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FOUTI24 IP f"
FOUT60A 0 V
IOUTI24 AA 01

24
24 3AI

DISK
1 DISK

I
I
I
I
I
I
OOUT60A
0
0
0
0
0
0
0

1 3 PN
4 10 PNAHE

11 12 WHOUSE
13 17 COLOR
18 20 WEIGHT
21 24 QTY

D 01
PN 3
PNAHE 10

4 , 1'
WHOUSE 12
COLOR 17
WEIGHT 20
QTY 24

ZK-4403-85

To create an indexed file in unordered sequence, make the same entries as
for an ordered sequence and specify U in column 66 (Unordered).

8.8 Adding Records to Files

After you create a file, it may be necessary to add new records to the file.
You can add records to a file during detail-time or total-time output, or by
using exception output. Sections 8.8.1 through 8.8.3 explain how to add
records to files on the basis of their file organization.

8.8.1 Adding Records to a Sequential File

Because the location of each record in a sequential file is fixed in relation
to all others, there is no unused space where a new record might be
inserted. Therefore, you can add records to a sequential file only at the
end of the file, as shown in Figure 8-8.

Using Files 8-27

8-28 Using Files

Figure 8-8: Adding Records to the End of a Sequential File

2 3 4 5

D--t
ZK-1469-83

To add a record to the end of a sequential file, you must make the
following entries in its File Description specification:

• Column 15 (file type)-specify 0 to indicate the creation of a new
record.

•

•

•

Column 19 (record format)-specify F or V to describe the record
format.

Columns 2.4 through 27 (record length)-specify the length of fixed
length records or the maximum length of variable-length records.

Column 66 (file addition)-specify A to cause VAX RPG II to add new
records to the file. ,

You must also make the following entries in the file's Output specification:

• Columns 7 through 14 (file name)-define the output file name.

• Columns 16 through 18-specify ADD to identify the record to be
added.

The following example accepts input from the terminal and writes records
to the end of the file LOG.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FINPUT
FLOG
I INPUT
I
OLOG
0

IP
0

DADD

r
r
01

01

80 TTY
80 DISK A

1 80 DATA

DATA 80
ZK-4404-85

8.8.2 Adding Records to a Direct File

To add a new record to a direct file, you can either specify the relative
record number of an empty cell or add the record at the end of the file, as
shown in Figure 8-9.

Figure 8-9: Adding Records to a Direct File

2 3 4

ZK-1470-83

To add records to empty cells in a direct file, you must make the following
entries for the file in its File Description specification:

• Column 15 (file type)-specify I or U to indicate that the file is to be
opened for input or update.

• Column 16 (file designation)-specify C or F to indicate a chained or
full-procedural file.

• Column 19 (record format)-specify F or V to describe the record
format.

• Columns 24 through 27 (record length)-specify the length of fixed
length records or the maximum length of variable-length records.

Using Files 8-29

• Column 28 (mode)-specify R to access records randomly, using a
relative record number.

• Column 66 (addition)-specify A to add records to the file.

You must also make the following entries in the Calculation specification:

• Columns 18 through 27 (factor 1)-specify the relative record number
of the empty cell.

• Columns 28 through 32 (operation code)-specify the CHAIN oper
ation code. Use an indicator in columns 54 and 55 to check whether
the cell is empty. The indicator will be set on if the cell is empty. If
the cell is empty and an indicator is not specified, a run-time error
occurs.

• Columns 33 through 42 (factor 2)-specify the name of the file to
which you want to add the record.

Finally, you must make the following entry in the Output ~pecification:

• Columns 7 through 14 (file name)-define the output file name.

• Columns 16 through 18-specify ADD to identify the record to add.

The output operation must foilow the CHAIN operation, but before the
next CHAIN operation. If not, the output will be to the cell specified by
the second CHAIN operation.

The following example reads a primary input file and adds records to the
direct file DIRECT. The input field RECNO specifies the record cell to
which the field is written.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

f"INPUT IP F 35 DISK
FD I RE CT IC F 30R DISK A
FTTY D F 30 TTY
I INPUT
I 1 30 DATA
I 31 350RECNO
I DIRECT
c RECNO CHA INDIRECT 99
C· N99 'EXISTS' DSPLYTTY
OD I RE CT DADD 99
0 DATA 30

ZK-4405-85

8-30 Using Files

8.8.3 Adding Records to an Indexed File

If the file is an indexed file, you can add records at any location. The key
values for the new records are placed in the index and the entire index is
sorted in ascending sequence.

NOTE

When adding records to an indexed file, you cannot specify A in
column 66 (file addition) of the File Description specification for
indexed files processed sequentially within limits or processed
by an ADDROUT file.

You can add new records to an indexed file while processing the file
by specifying an A in column 66 (file addition) of the File Description
specification. The file can be an input or update file that is processed
sequentially or randomly. If you want only to add records, you can
specify an output file.

You must also make the following entries in the Output specification:

• Columns 7 through 14 (file name)-define the output file name.
• Columns 16 through 18-specify ADD to identify the records to be

added.

The following program adds records to an indexed file using the ADD
option on the Output specification:

0 I 1 I 2 I 3 I 4 - I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FIDXIOi IP F 24 DISK
FOUT43A 0 F 24 3AI 1 DISK A
IIDXIOi AA
I 1 24 PN
dOUT43A DADD N1P
0 PN 24

ZK-4406-85

8.9 Updating Records in Files

VAX RPG II allows you to update the records in a primary, secondary,
demand, full-procedural, or chained file. VAX RPG II allows you to
update the records in a sequential file only if the records are of fixed

Using Files 8-31

8-32 Using Files

length. You can update a record in a primary or secondary file only once
during the program cycle at detail time. Unlike other types of update files,
records irt a chained, full-procedural, or demand file can be updated at
detail time or at total time.

To update a record, you must retrieve the record you want to change,
change the contents, and then write the record back to the file. You need
only specify the fields to be changed in a record. The remainder of the
record is rewritten, using the data that was read into the input buffer.

You can use a data structure to update a record. See Chapter 12 for an
example of updating files with data structures.

VAX RPG II allows you to change the length of a variable-length record
being updated. VAX RPG II determines the length of the record by
using the highest end position (columns 40 through 43 of the Output
specification) of any field in the record. If you need to change the contents
of a field in the middle of a variable-length record, but do not want to
change the length of the record, you must define the length of the record
by defining a one-character field in the last character position of the
record.

The following example updates records in the master file MASTER.
MASTER contains two different record types of different lengths. Both
records contain the field EMP# that must be updated in different character
positions. The fields LNGTHl and LNGTH2 ensure that the records are
updated using the correct length. The records of type 01 are 80 characters
long. The records of type 02 are 60 characters long.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FTRANSACTIP r 25 DISK
FMASTER UC V 80R21AI 1 DISK
I TRANSACT
I
I
!MASTER 01 1 CA
I
I
I 02 1 CB
I
I
C* Update record t~pe 01
C MOVEL'A'
C MOVE NAME
C KEY CHAINMASTER
C EXCPT
C SET OF
C* Update record t~pe 02
C MOVEL'B'
C KEY CHAINMASTER
C EXCPT
OMASTER E 01

KEY
~~EY

KEY

0 NEWM 40
0 LNGTH1 80
OMASTER E 02
0 NEWM 50
0 LNGTH2 60

1 20 NAME
21 25 NEWM

36 40 EMPM
80 80 LNGTH1

46 50 EMPM
60 60 LNGTH2

21

01

21

ZK-4407-85

To update the records in a direct or indexed file and simultaneously add
new records, you must make the following entries for the file in its File
Description specification: ·

• Column 15 (file type)-specify U to indicate that the file is to be
opened for update.

• Column 66 (file addition)-specify A to add new records to the file.

You must also define both Input and Output specifications for the file
to be updated. Enter ADD in columns 16 through 18 of those Output
specifications that identify the records to be added. The output records
without ADD in columns 16 through 18 identify those records to be
updated.

Using Files 8-33

You can update records in an indexed file randomly by key, sequentially,
or both randomly and sequentially if the file is defined as a full-procedural
file. To specify an indexed full-procedural file to be processed in the
update mode, you must make the following entries for the file in its File
Description specification:

• Column 15 (file type)-specify U to indicate that the file is to be
opened for update.

• Column 16 (file designation)-specify F to indicate a full-procedural
file.

• Column 32 (file organization)-specify I to indicate an indexed file.

8. 10 Deleting Records from Files

You can delete records only from update, direct, and indexed files. To
prevent the deletion of needed records, perform the following steps:

• Retrieve the record.

• Evaluate its contents.
• Based on the results of the evaluation, set an indicator to control

deletion of the record.

The last record retrieved from the file is the one that is deleted when you
specify DEL in columns 16 through 18 of the Output specification. You do
not need to describe any fields in the output record, because the operation
deletes the entire record.

The following example deletes a record in the master file MASTER,
depending on the keys read from the file DELETE:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

f"DELETE
FMASTER
f'TTY
I DELETE
I
I MASTER
c
c 99
OMASTER

8-34 Using Files

IP F
UC F
D F

4
50R 4AI
80

DISK
47 DISK

TTY

KEY CHAINMASTER
'NOTFOUND'DSPLYTTY

DDEL N99N1P

1 4 KEY

99

A

ZK-4408-85

8. 11 Processing Files with Matching Records

Matching fields can be used with primary and secondary files to check the
sequence of records and to define the order in which records are selected
from multiple files.

To use matching fields to verify that the records in the file are in sequence
(either ascending or descending), you define one or more fields to be
checked by specifying a matching field value (Ml through M9) in columns
61 and 62 in the Input specification. Then, your program checks the
sequence by comparing the matching field of one record with the matching
field of the previous record. If the field is out of order, a run-time error
occurs.

8.11.1 Checking Record Sequence for One Record Type

You designate a record sequence by specifying A or D (ascending or
descending) in column 18 of the File Description specification. Assign a
matching field value (Ml through M9) to one or more of the fields you
want to use as matching fields in columns 61 and 62 (matching field)
of the Input specification. When you specify more than one matching
field, assign M9 to the most important field. Your program considers all
matching fields as one contiguous field with the M9 field in the leftmost
position, next to the MS field, and so on, until you reach Ml, even though
the fields may not be adjacent in the record or in numeric (M9 through
Ml) order.

8.11.2 Checking Record Sequence for More Than One Record Type

The fields in a record of one type can be in a different order than the
fields in other record types in the same file. For example, in a payroll file
consisting of two different record types, one type represents commission
payment and the other type represents salary. All employee records are
to be in ascending sequence according to district (DSTRCT). Records
in a district are to be in ascending sequence according to department
and employee number. Therefore, three fields (DSTRCT, DEPT, and
EMPNUM) must be checked in each record. The matching field value M3

Using Files 8-35

rue
na111e
I

I I

is assigned to DSTRCT, the most important field; M2 is assigned to DEPT,
the next most important field; and Ml is assigned to EMPNUM, the least
important field. Refer to the following example:

Sequence CAA-ZZ, 01-99)
I Nu111ber C1-N>
I IOptional/External (OU> Deci111al positions
I I I Record identif~ing indicator I Contra I I eve I
I 111 I I Hatch field
I 111 + Identif~ing codes + ror111at I I I rid rec rel
I 111 I I I <PB> lrield I I I
I 111 I c c Cl Irie Id lna111e I I I field
I 111 I z z ZI 11ocation11 I I I indicatrs
I I II Pos NDcPos NDcPos NDc Irr To l I I I I + ..:. 0

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

II * *II 1--- 1--- 1--- ,l*~--1---11 * I I * I I
IPAYROLL AA 01 80 CC
I
I
I
I

1
6

14
25

3 DEPT H2
7 DSTRCT H3

152COHH
27 EHPNUH Hi

I BB 02 80 CS
I
I
I
I

8-36 Using Files

i 3 DEPT H2
8 9 DSTRCT H3

i3 i72SALARY
25 27 EHPNUH Hi

ZK-4409-85

First, the program determines the record type. Then, it looks at the
matching fields for the same record type.

In the preceding example, the same three matching fields (DSTRCT,
DEPT, and EMPNUM) appear in both record types and are the same
length.

The length of matching fields assigned to the same match code must be
the same length for each record type. Table 8-2 shows that this is true for
the following example:

!PAYROLL AA
I

01 80 CC ~ first record tHpe
1 3 DEPT H2
6 7 DSTRCT H3

25 27 EHPNUH Hi
80 CS ..-. second record tHpe

I
I
I
I
I
I

BB 02
1 3 DEPT H2
8 9 DSTRCT H3

25 27 EHPNUH Hi

Table 8-2: Matching Field Lengths
Record Matching Field Field
Type Field Location Length

first DSTRCT 6 to 7 2
DEPT 1 to 3 3
EMPNUM 25 to 27 3

8 <-total

second DSTRCT 8 to 9 2
DEPT 1 to 3 3
EMPNUM 25 to 27 3

8 <-total

ZK-4410-85

Matching fields need not be specified for all the record types in a file.

Using Files 8-37

8.11.3 Using Matching Fields with Field-Record-Relation Indicators

Although there may be different record types in a file, the fields for each
record type are often the same. Many fields have the same name, contain
the same data, and are in the same character positions for all the record
types in a file. When only a few fields differ, you can des~ribe more than
one record type in an OR relationship. Refer to the following example:

Sequence CAA-ZZ, 01-99)
I Nu111ber-, (1-N)
I !Optional/External COU> Deoi111al positions
I I I Record identif9ing iridicator I Control level
I I I I I I Hatch field
I I I I + Identif9ing codes + ror111at I I I rid rec rel

rile I Ill I I I CPB> lrield I I I
na111e I Ill I C C Cl 1rield lna111e I I I rield
I I 111 I Z Z ZI I location I I I I I indicatrs

11 I II I Pos NDcPos NDcPos NDc Irr To I I J I I ~ - 0
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
*I * I** 1--- *--- 1--- ,l*---*---*I 1*1111
!PAYROLL AA 01 80 CS
I OR 02 80 CH

9:...39 Using Files

ZK-4411-85

You specify common fields only once, because they apply to both record
types. The field-record-relation indicators specified in columns 63 and 64.
of the Input specification identify the fields unique to a particular record
type. Therefore, the COMM field in the following example is associated
with record type 01 and the SALARY field is associated with record type
02.

The DSTRCT, DEPT,. and EMPNUM matching fields are used in checking
the sequence of the records in the PAYROLL file, and the matching-field
values Ml, M2, and M3 are described only once in columns 61 and
62 without any field-record-relation indicators in columns 63 and 64.
Therefore, the matching fields and their values apply to both record types
(01 and 02) as shown in the following example.

File
na111e
I

. II

Sequence CAA-ZZ, 01-99)
I Nu111ber <1-N >
I IOptional/External <OU> Deci111al positions
I llRecord identif~ing indicator I Control level
I I I I I I Hatch fie 1 d
I II I + Identif~ing codes+ For111at I I i Fld rec rel
I 111 r I I <PB> IField I I I
I 111 I C C Cl IField lna111e I I I F'ield
I 111 I Z Z ZI I location I I I I I indicatrs

. I .11 I Pos NDcP~s NDcPos NDc IFr To I I I I I + - 0
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
II I Ill 1--- 1--- I---
! PAYROLL AA 01 80 CS
I OR 02 BO CH
I
I
I
I
I

I I I I I I

1 3 DEPT H2
B 9 DSTRCT H3

25 27 EHPNUH Hi
14 152COHH 01
13 172SALARY 02

ZK-4412-85

If one of the matching fields is in a different record position for each
record type, you must assign matching field entries, as shown in the
following example:

Sequence CAA-ZZ, 01-99)
I Nuiilber <1-N>
I IOptional/External <OU> Deci111al positions
I I I Record identif~ing indicator I Control level
I I I I I I Hatch field
I I I I + Identif~ing codes + For111at I I I Fld rec rel

File I Ill I I I <PB> IField I I I
na111e I II I I C C Cl IField lna111e I I I Field
I I 111 I Z Z ZI I location I I I I I indicatrs

II . I .I I I fos NDcPos NDcPos NDc lfr To I I I I I + ~ ~
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
II I l*I 1-~- *--- *---
I PAYROLL AA 01 80 CS
I OR 02 80 CH
I
I
I
I
I
I

.l*---*---1* * * * * * *

1 3 EMPNUH Mi
20 21 DSTRCT H3
6 72COHH 01

10 12 DEPT H201
5 7 DEPT M202

10 142SALARY 02
ZK-4413-85

Using Files 8-39

For a 01 record type, matching field DEPT is in field location 10 through
12. For a 02 record type, matching field DEPT is in field location 5
through 7.

8.11.4 Using Matching Fields to Process More Than One File

8-40 Using Files

The processing of a primary file with one or more secondary files is called
multifile processing. In multifile processing without matching fields,
VAX RPG II first reads all the records from the primary file, then reads
all the records from each secondary file in the same order in which they
are specified in the File Description specification. By using matching
fields, your program can select the records from the secondary file before
selecting the records from the primary file, based on the value of their
matching fields.

When you use matching fields to process more than one file, the program
selects records according to the contents of the matching fields, as follows:

• One record is read from every file and the matching fields are com
pared. If the records are in ascending sequence, the record with the
lowest matching field value is selected for processing. If the records
are in descending sequence, the record with the highest matching field
value is selected for processing.

• When a record is selected from a file that is then processed, the next
record from the file is read. The new record is then compared with
the other records not selected in the previous cycle.

You can combine records with and without matching fields in the same
file. Records without matching fields are processed before records with
matching fields. If two or more of the records being compared have no
matching fields, selection of those records is determined by the priority of
their files, as follows:

• The records in primary files are processed before the records in
secondary files.

• The records in secondary files are processed in order of appearance in
the File Description specifications.

Table 8-3 shows that the matching fields from a primary file are com
pared with the matching fields from a secondary file to select records in
ascending sequence. The letters represent the data in the matching fields.

Table 8-3: Matching Primary and Secondary File Field
Values

Record Number Primary File Secondary File

1 A B

2 c D2

3 Dl x
4 F z

Figure 8-10 shows the logic flow when your program uses matching fields
to do multifile processing. A keyed list follows the figure.

Using Files 8-41

Figure 8-10: Using Matching Fields For Multifile Processing

Primary File Secondary File

1
· [Al Record 1 2· B Record 1

Process A.
3.

Cycle n

4. c Record 2

Process 8.
5.

Cycle n + 1

6.
Record 1

Process C.
7.

Cycle n + 2

(Continued on next page)

8-42 Using Files

Figure 8-10 (Cont.): Using Matching Fields For Multifile Processing

8. Fl ~ Record 3

Process 01.
9.

Cycle n + 3

10.
F Record 4

Process 02.
11.

Cycle n • 4

12. r:lx I ~ I Record 3

Process F.
13.

Cycle n + 5

ZK-14i"5-83

Using Files 8-43

8-44 Using Files

Key to Figure 8-10:

0 The first record of the primary file is read and the matching field (A)
is located.

f) The first record of the secondary file is read and the matching field (B)
is located.

9 The contents of the matching field (A) of the first record in the primary
file are compared with the contents of the matching field (B) of the
first record in the secondary file. A is selected.

e The second record of the primary file is read and the matching field
(C) is located.

9 The contents of the matching field (B) of the first record in the sec
ondary file are compared with the contents of the matching field (C)
of the second record in the primary file. Bis selected.

0 The second record of the secondary file is read and the matching field
(02) is located.

8 The contents of the matching field (02) of the second record in the
secondary file are compared with the contents of the matching field
(C) of the second record in the primary file. C is selected.

C) The third record of the primary file is read and the matching field (01)
is located.

CD The contents of the matching field (02) of the second record in the
secondary file are compared with the contents of the matching field
(01) of the third record in the primary file. 01 is selected.

4D The fourth record of the primary file is read artd the matching field (F)
is located.

• The contents of the matching field (02) of the second record in the
secondary file are compared with the contents of the matching field
(F) of the fourth record in the primary file. 02 is selected.

• The third record of the secondary file is read and the matching field
(X) is located.

48 The contents of the matching field (F) of the fourth record in the
primary file are compared with the contents of the matching field (X)
of the third record in the secondary file. Fis selected. Because the
primary file is now at its end, the remaining records in the secondary
file (X and Z) are processed in order of appearance.

When the matching fields in a primary file match one or more of the
matching fields in the secondary files, VAX RPG II sets the matching
record (MR) indicator on before detail-time calculations. You can use the
MR indicator to condition calculation and output operations for the record
just selected. The indicator remains on for one complete program cycle.
It is set off if the record selected for processing contains no matching
fields. A record selected using the FORCE operation code causes the MR
indicator to remain off for one program cycle while the forced record is
processed.

VAX RPG II processes matching records for two or more files in the
following ways:

• When a record from the primary file matches a record from the
secondary file, the record from the primary file is processed before the
record from the secondary file is processed. The record-identifying
indicator that identifies the record type just selected is on at the time
the record is processed.

• When records from ascending files do not match, your program
processes the record with the lowest matching field content first.

• When records from descending files do not match, your program
processes the record with the highest matching field content first.

• A record type that has no matching field specification is processed
immediately after the previous record is processed. In this case, the
MR indicator is set off. If this record type is the first in the file, your
program processes this record first, even when it is not in the primary
file.

• The matching of records makes it possible to enter data from primary
records into their secondary records because your program processes
the record from the primary file before matching the record from the
secondary file. However, the transfer of data from the secondary
record to matching primary records can be done only when look
ahead fields are specified.

In the following example, matching fields are used to combine a primary
file with two secondary files in ascending sequence. Record-identifying
indicators are assigned in the following way:

• 01-Records from the primary file with matching fields

• 02-Records from the primary file without matching fields

• 03-Records from the first secondary file with matching fields

Using Files 8-45

• 04-Records from the first secondary file without matching fields

• OS-Records from the second secondary file with matching fields

• 06-Records from the second secondary file without matching fields

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

fRECl99A IP AF
FRECI99B IS f
FRECI99C IS f
FOUTPUT 0 F
IRECI99A Oi
I
I
I 02
I
IRECI99B 03
I .
I
I 04
I
IRECI99C 05
I
I
I 06
l
OOUTPUT D
0

BO
BO
BO
BO

BO Ci

DISK
DISK
DISK
DISK

Hi

Hi

Hi

ZK-4414-85

Table 8-4 lists the contents of the matching fields for all three files:
primary, first secondary, and second secondary. Field values with A after
the value represent values from the primary file. Field values with B after
the value represent values from the first secondary file. Field values with
C after the value represent values from the second secondary file.

8-46 Using Files

Table 8-4: Matching Field Values
Record Primary First Secondary Second Secondary
Number File File File

1 none none lOC

2 none 20B 30C

3 20A 30B soc
4 20A 30B !;OC

\
)

5 40A 60B none

6 SOA none 60C

7 none 70B BOC

8 60A BOB BOC

9 BOA BOB none

Table 8-5 lists the steps involved in processing the files in Table 8-4 and
those indicators that must be set on for the operation to occur.

Table 8-5: Processing Records with Matching Fields
Step Record Type Matching Field Value Indicators for Processing

1 02 none Not MR and 02

2 02 none Not MR and 02

3 04 none Not MR and 04

4 05 lOC Not MR and 05

5 01 20A MR anq 01

6 01 20A MR and 01

7 03 20B MR and 03

B 03 30B Not MR and 03

9 03 30B Not MR and 03

10 05 30C Not MR and 05

11 01 40A Not MR and 01

12 01 SOA MR and 01

13 02 none Not MR and 02

14 05 soc MR and 05

Using Files 8-4 7

Table 8-5 (Cont.): Processing Records with Matching Fields
Step Record Type Matching Field Value Indicators for Processing

15 05 soc MR and 05

16 06 none Not MR and 06

17 01 60A MR and 01

lB 03 60B MR and 03

19 04 none Not MR and 04

20 05 60C MR and 05

21 03 70B Not MR and 03

22 01 BOA MR and 01

23 03 BOB MR and 03

24 03 ·BOB MR and 03

25 05 BOC MR and 05

26 05 BOC MR and 05

27 06 none Not MR and 06

8. 12 Processing Files with Multiple Keys

8-48 Using Files

The following program reads one input file with three keys. It uses three
different file specifications to gather the three keys. Note that the three
file names use identical fields, and that each file name uses a different key
to point to the same file. Also note the use of the same fields by a data
structure.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

rIDXI01 IP r 24 4AI 21 DISK
F"IDXJ01 IS r 24 3AI 1 DIS~~ IDXI01
F"IDX~~01 IS r 24 2AI 11 DISK IDXI01
F"IDX03A 0 r 24 DIS~:
IIDXI01 AA
I 1 3 PN
I 4 10 PNAME
I 11 12 WHOUSE
I 13 17 COLOR
I 18 20 WEIGHT
I 21 24 QTY
IIDXJ01 BB
I 1 3 PN
I 4 10 PNAME
I 11 12 WHOUSE
I 13 17 COLOR
I 18 20 WEIGHT
I 21 24 QTY
IIDXK01 cc
I 1 24 FIELDS
IF"IELDS DS
I 1 3 PN
I 4 10 PNAME
I 11 l2 WHOUSE
I 13 17 COLOR
I 18 20 WEIGHT
I 21 24 QTY
OIDX03A D N1P
0 FIELDS 24

ZK-4667-85

8. 13 File Buffers

The VAX RPG II compiler creates one buffer for each file in a
VAX RPG II program. However, there are some programs in which input
and output buffers for the same file should be distinct.

Using Files 11-49

8-50 Using Files

As an example, consider a program that is sequentially reading an indexed
file and occasionally executing the ADD operation code in the file using
EXCPT processing at total time. At the beginning of the logic cycle, a
record is selected for input. (For this example, use the FOO record.) When
a control break occurs, the program does some total-time processing and
ends with an EXCPT operation on the same file. This results in a new
record being added to the file, for example the BAR record. Continuing
with the normal logic cycle, the program enters detail time and the record
selected for input has become the BAR record which was just written
instead of the expected FOO record. The same buffer is used for both
input and output. When the BAR record is written, the record buffer is
overwritten and its previous contents lost, so that when it is time for field
extraction to occur, the wrong record is found.

There are a number of workarounds that you can use. The ADD records
could be written to a distinct output file and merged with the master files
outside of the application. Or, you can use the total-time processing to
save the record to be written, and set an indicator on. Then, during detail
time processing, use the indicator to trigger the EXCPT operation. Because
the fields of the input record have been populated by this time, no conflict
occurs with a single record buffer.

The best alternative is to open two streams to the same file and have two
F specifications which effectively refer to the same file. Normal input
processing takes place using one stream and all ADD processing occurs
on the other stream. Because a record buffer is allocated for each file, two
buffers are created in this scheme, and no conflict occurs. Both files need
to use the file sharing option (S in column 68 of the F specifications) in
this case.

Only one update is allowed for each logic cycle for update files other than
demand and chained files.

Chapter 9

Using Printer Output Files

If you want to create a formatted report by printing an output file, you
must decide what the report will look like before you write your program.
You must know what information is to be printed on each heading, detail,
and total line, and where the individual fields are to appear.

Designing the physical layout of your report is an important part of the
work necessary to produce a formatted report. VAX RPG II provides
several features you can use to print certain information automatically and
to control the printing of other information. Sections 9.1 and 9.2 describe
these features and explain how to use them.

NOTE

Printer output files cause a file to be in VAX/VMS print-file
format. The default PRINT command causes the insertion
of a form-feed character when the form nears the end of a
page. To suppress the insertion of form-feed characters, use
the /NOFEED qualifier on the PRINT command when printing
printer output files created by VAX RPG II programs.

Using Printer Output Files 9-1

9.1 Editing Ou~put

VAX RPG II has several means of structuring and editing your program
output:

• Edit codes are one-letter codes you can specify in column 38 of your
Output specification to edit the data in a numeric output field.

• Constants are single-quoted literals (for example, 'foobar') you can
specify in columns 45 through 70 of the Output specification to
describe or label printer output columns, rows, and other items of
importance to the program output.

• Edit words are special instructions placed in. columns 45 through 70
of the Output specification that affect the sign of numeric data, the
body of the field to be edited, and the characters that will be printed
regardless of the sign. Certain digit selection, zero suppression, blank
insertion, and currency symbol manipulation are all controlled by edit
words.

You can use predefined edit codes and edit words to format numeric
data for your report. Edit codes and words supply additional information
about the output, thus increasing your report's usefulness to the end
user. Section 9.1.2 describes constants and explains how to use them.
Section 9 .1.1 describes edit codes and their modifiers and explains how to
use them. See Chapter 15 for detailed information on edit words.

9.1.1 Using Edit Codes and Edit Code Modifiers

You can specify specialized editing for numeric data by entering one of
the one-character edit codes in column 38 of the Output specification.
Edit codes consist of (1) simple edit codes (X, Y, and Z) that perform one
predefined function, and (2) combined edit codes (1, 2, 3, 4, A, B, C, D,
J, K, L, and M) that perform a combination of predefined functions. See
Chapter 15 for detailed information on edit codes.

In most cases, using one or more edit codes to format numeric data
is sufficient. However, in some cases you might want to use an edit
code modifier for special formatting such as replacing leading zeros with
asterisks (•) or putting a dollar sign ($) immediately to the left of the
leftmost character.

See Chapter 15 for detailed information on edit code modifiers.

9-2 Using Printer Output Files

9.1.2 Using Constants

F'i le
n1111e
I

01

Constants are used to specify headings that describe the contents of
a particular column. To specify a constant, enter the constant string,
enclosed in apostrophes, in columns 45 through 70 (constant or edit
word). In the following example, SALES REPORT appears in character
positions 24 through 35 of the printed output file:

T!:fpe <HDTE> Edit codes , 0 No CR -
IF'etch ofl I Rel (F'R > I X -------------I I Space I Y date edit y y 1 A J
II I Skip I Z zero suppress y N 2 B K
II I I I N y 3 c L
II I I Indicators !Blank-after N N 4 D H
II I I I F'ield 11 End position
II I I I na111e II I For111at <PB>
II I I I I II I I
llBAB A NxxNxxNxxl II I I+ Constant or edit word +

0 I .1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** 0 ***** * * * *H---H

35 'SALES REPORT'
ZK-4415-85

Rules

• Constants can contain from 1 to 24 characters.
• Enclose constants in apostrophes (for example, 'EMPLOYEE NAME').

The apostrophes are not printed.

• When using constants, leave columns 32 through 39 and column 44
blank.

Using Printer Output Files 9-3

9.2 Using Special Words

VAX RPG II provides special words that enable you to perform the
following kinds of formatting:

• Printing the date on every page
• Printing a page number and incrementing the page number by one for

each new page
• Repeating data fields in an output record

This section describes special words and explains how to use them.

9.2.1 Printing the Date: UDATE, UDAY, UMONTH, UYEAR

UDATE automatically prints the date in the format mm-dd-yyyy. To put
slashes(/) between the fields (for example, 05/27 /1986), specify Yin
column 38 of the Output specification.

The default date is the system date. To change the default date, define the
logical name RPG$UDATE to the date format you want. The following
example changes the date to June 12, 1986, using the format
dd-mmm-yyyy:

• DEFINE RPG$UDATE "12-JUN-1986"

You can change the UDATE output format by specifying D, I, or Jin
column 21 of the Control specification. Specifying D changes the UDATE
format to dd-mm-yyyy. Specifying I or J changes the UDATE format to
dd.mm.yyyy.

9-4 Using Printer Output Files

You can use UDAY, UMONTH, and UYEAR to print each component of
the date in the format you need, as shown in the following example:

T~pe <HDTE> Edit codes , 0 No CR -
IF'etch ofl I Rel <FR> I X -------------
I I Space I Y date edit y y 1 A J
111 Skip I Z zero suppress y N 2 B K
111 I I N y 3 c L
II I I Indicators !Blank-after CB> N N 4 D H

Fi le II I I I Field 11 End position
na111e 111 I I na111e 111 F'or111at <PB>
I 111 I I I 111 I

01 I IBAB A NxxNxxNxxl 111 I+ Constant or edit word +
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890

** 0
0
0
0
0
0

***** * * ·* Hl---H

H 1P
UYEAR 8

9
,_,

UHONTH 11
12 ,_,

UDAY 14
ZK-4416-85

In this example, the special words UYEAR, UMONTH, and UDAY in the
Output specification change the date format to yy-mm-dd. The output
might look like this:

83"."06-16

Rules

• You cannot specify Y in column 38 (edit code) of the Output specifi
cation for UDAY, UMONTH, or UYEAR. Instead, specify ·a constant
in columns 45 through 70 (constant or edit word) to separate the day,
month, and year.

• You can use these special words in factor 1 or 2 of the Calculation
specification.

• You cannot use these special words in the result field of the
Calculation specification.

• You cannot use the blank after option (column 39 of the Output
specification) with these special words.

Using Printer Output Files 9-5

9.2.2 Printing the Time

The TIME operation code on a Calculation specification prints the system
time of day on your program output.

See Section 16.11 for more information on using the TIME operation code.

9.2.3 Numbering Pages: PAGE and PAGE1 through PAGE7

VAX RPG II provides eight special words, PAGE and PAGEl through
PAGE7, for numbering pages in printed output files. VAX RPG II auto
matically increments the page number by one for each new page. You can
use more than one special word to page number several different output
files. For example, if your program produces four different reports, each
of the four can have its own page numbering sequence by using PAGEl,
P AGE2, P AGE3, and P AGE4. A total of eight concurrent page sequences
is possible (using PAGE through PAGE7).

To use one of the special words for page numering, specify it as a field in
the Input, Calculation, or Output specification. When you use a special
word for page numbering as an input field or as the result field of a
calculation, you can use any field length up to 15 digits, but you must
specify zero decimal positions. VAX RPG II suppresses leading zeros and
signs on output unless you use an edit word or an edit code, or specify a
packed decimal or binary data format.

If you do not define the length of a special word for page numbering
elsewhere (for example, defining a field to represent the page number as a
result of a calculation), the page number is output as a four-digit numeric
field with zero decimal positions. Page numbering begins with 1.

9-6 Using Printer Output Files

To change the beginning page number, enter the page number you want
to use as an input record and name the field PAGE or use a PAGE field as
the result of a calculation. Enter the field in columns 53 through 58 of the
Input specification, as shown in the following example:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

.
!INPUT AA 99
I 1 40PAGE

.
OOUTPUT H 2 1P

OF 0 OR
0
0
0
0
0

UDATE Y 8
36 'D E p 0 s I T I

49 I R E p 0 R T'
68 'PAGE'

PAGE 72
ZK-4417-85

In the preceding example, the contents of the field PAGE appear in
character positions 69 through 72. If the value of the field is 0032, the
page numbering begins with 33, because VAX RPG II adds 1 to the
number. The output appears as follows:

o I 1 I 2 I 3 I 4 I 6 I 6 I 7 I
12346678901234667890123466789012346678901234667890123466789012346678901234667890
6/16/83 D E P 0 S I T R E P 0 R T PAGE 33

Using Printer Output Files 9-7

Another way to change the page number is to assign the page number
you want minus one to a PAGE field in the result field, as shown in the
following example:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7
1234567890123456789012345678901234567890123456789012345678901234567890123456789

c N99
c

I

OOUTPUT
0
0
0
0
0
0

Z-ADDB9 PAGE
SETON 99

H 2 1P
OR or

UDATE Y B
36 'D E P 0 S I T '
49 ' R E P 0 R T'
68 'PAGE'

PAGE 72
ZK-4418-85

The output appears as follows:

o I 1 I 2 I 3 I 4 I 6 I 6 I 7 I
12346678901234667890123466789012346678901234667890123466789012346678901234667890
6/16/83 D E P 0 S I T R E P 0 R T PAGE 90

In the preceding example, Z-ADD assigns 89 to PAGE. VAX RPG II adds
1 to this number and begins numbering pages with 90. The assignment
occurs when indicator 99 is set off so that VAX RPG II makes the initial
page number assignment only once and not every time a record is read.

You can restart page numbering at any point in the program. Use any one
of these methods to reset the value of a PAGE field:

• Specify the blank after option (column 39 of the Output specification)
for a PAGE field to reset the page number to 1 after the current record
is output.

• Use a PAGE field as the result of an operation in the Calculation
specification or as an Input field.

• Use output indicators in the Output specification to condition the
value of a PAGE field. When the indicator is set on, the value of
the PAGE field is reset to 1 before the current record is output. You
cannot use these indicators to control the printing of a PAGE field,
because a PAGE field is always printed.

9-8 Using Printer Output Files

9.2.4 Saving Tiine by Repeating Data: •PLACE

You can use the special word •PLACE to repeat data in an output record.
The fields or constants you want to repeat must have been previously
defined. Then, you can use the same fields or constants without hav-
ing to specify their field names (columns 32 through 37 of the Output
specification) and end positions (columns 40 through 43 of the Output
specification). When you specify •PLACE in columns 32 through 37,
VAX RPG II repeats all the data between the beginning position and the
highest end position for any previously defined field in the output record.
To prevent overlapping, the end position on the same Output specification
as •PLACE must be at least twice as high as the highest end position of
the group of fields you want to repeat.

When using •PLACE, the following columns in the Output specification
that contain •PLACE must be left blank:

• Column 38 (edit code)

• Column 39 (blank after)

• Column 44 (data format)
• Columns 45 through 70 (constant or edit word)

In the following example, •PLACE specifies these fields again:

• LIST#
• DESCR

• STOCK#

• ONHAND

• PRICE

Using Printer Output Files 9-9

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

9.3

F'OUTl91 IP F
FOUT91A 0 F
I*
IOUTI91 AA 01
I
I
I
I
C*
C 01 LISTI
O*
OOUT91A D
0
0
0
0
0
0

N1P

26
80

ADD 1

LISTI Z
DES CR
STOCKI
ONHANDZ
PRICE K
*PLACE

. DISK
PRINTER

1 6 STOCKI
7 18 DESCR

19 2100NHAND
22 262PRICE

LISTI 30

4
18
26
31
39 '$'
79

ZK-4419-85

Sample output from this example might look like the following:

1 PARSt;IPS VEG1PQ 17 $.89 1 PARSNIPS VEG1PQ 17 $.89
2 SKIM MILK DAROSK 134 $1.70 2 SKIM MILK DAROSK 134 $1.70
3 POTATO CHIPS SNK946 100 $1.19 3 POTATO CHIPS SNK946 100 $1.19
4 2 QRT PEPSI DRNK1A 87 $1.29 4 2 QRT PEPSI DRNK1A 87 $1.29
6 BAKED BEANS CANFOD 90 $.66 6 BAKED BEANS CANFOD 90 $.66

Conditioning Output Lines

Although you can use any type of indicator to condition output, the
first-page (lP) and overflow indicators specifically condition output.
Sections 9.3.1 and 9.3.2 describe how these indicators condition output.

9-1 0 Using Printer Output Files

9.3.1 Printing Lines Before Reading the First Record: First-Page Indicator

You can use the lP indicator to condition those heading lines you want
printed before VAX RPG II processes the first record.

You specify the lP indicator in columns 24 and 25, 27 and 28, or 30 and
31 of the Output specification.

See Section 7.2.1 for complete information on the lP indicator, including
a program example to print heading lines before reading the first record.

9.3.2 Specifying Page Breaks: Overflow Indicator

You use overflow indicators to specify when a page break should occur
before certain lines are printed. These indicators are used primarily to
condition the printing of heading lines, but can also be used to condition
calculation operations and other types of output lines.

You can use overflow indicators only for output files going to the printer.
You define the indicator in columns 33 and 34 of the File Description
specification. The same overflow indicator must be used to condition
the overflow lines for that same file. If no indicator is specified for that
file, VAX RPG II automatically handles overflow. See Section 9.4 for
information on automatic overflow.

VAX RPG II sets on an overflow indicator only the first time an overflow
condition occurs for the current page. An overflow condition exists
whenever one of the following occurs:

• A line is printed on the overflow line.

• A line is printed past the overflow line.

• The overflow line is passed during a space operation.

• The overflow line is passed during a skip operation.

Rules

• Spacing past the overflow line sets the overflow indicator on.

• Skipping past the overflow line to any line on the same page sets the
overflow indicator on.

• Skipping past the overflow line to any line on the new page does
not set the overflow indicator on unless the skip is specified past the
overflow line on the new page.

Using Printer Output Files 9-11

• A skip to a new page specified on a line not conditioned by an
overflow indicator sets the overflow indicator off before the form
advances to a new page.

• If you specify a skip to a new line and the printer is currently on that
line, a skip does not occur.

• When an OR line is specified for an output print record, the space
and skip entries of the preceding line are used. If space and skip
requirements differ from the preceding line, enter space and skip
entries on the OR line.

• An overflow indicator can appear on either line of an AND or an OR
relationship. In an AND relationship, the overflow indicator must
appear on the main specification line for that line to be considered
an overflow line. In an OR relationship, the overflow indicator can
be specified on either the main specification line or the OR line.
However, only one overflow indicator can be associated with one
group of output indicators.

• If an overflow indicator is used on an AND line, the line is not an
overflow line. In this case, the overflow indicator is treated like any
other output indicator.

• An overflow indicator cannot condition an exception line (E in column
15 of the Output specification), but can condition fields within the
exception record.

During a normal program cycle, VAX RPG II checks whether the over
flow indicator is set on only once (immediately after total-time output).
Detection of the overflow indicator causes the following operations:

• VAX RPG II prints all total lines conditioned by an overflow indicator
when the indicator is set on.

• VAX RPG II prints those heading and detail lines conditioned by an
overflow indicator when the indicator is set on.

• Advancement to a new page does not happen automatically.
Normally, one of the overflow lines specifies a skip to the top of a
new page.

If the overflow indicator is set on, you can fetch the overflow routine
before printing any total or detail line by specifying F (fetch overflow) in
column 16 of the Output specification. Fetch overflow alters the

9-12 Using Printer Output Files

VAX RPG II logic cycle to prevent printing detail, total, and exception lines
on or over the perforation between pages. When you fetch the overflow
routine, VAX RPG II performs the following operations:

• When an output line specifies fetch overflow, VAX RPG II checks
whether the overflow indicator for that file is set on. If it is, VAX
RPG II calls the overflow routine and prints only those overflow lines
associated with the file described on the Output specification.

• After VAX RPG II prints the overflow lines, it prints the line that
specified the fetch overflow.

• VAX RPG II prints any detail-time and total-time lines left for that
program cycle.

Rules

• If you want to fetch the overflow line for each record in an OR
relationship, you must specify F (fetch overflow) in column 16 for
each line.

• You cannot specify an overflow indicator in columns 23 through 31 on
the same line with F (fetch overflow) in column 16.

To decide when to fetch the overflow routine, study all possible overflow
situations and count lines, spaces, and skips to determine what happens
when an overflow occurs.

In the following example, the length of a page is 15 lines. The overflow
line is line 12. When the overflow line is reached, the overflow indicator
is set on, which conditions the heading line that prints the date, report
title, and page number at the top of each page.

Using Printer Output Files 9-13

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FOUTI93 IP F 74 DISK
FOUT93A 0 F 80 OG LPRINTER
LOUT93A 15FL 120L
IOUTI93 AA 01
I 1 5 ZIP
I 10 150CEN30
I 16 210CEN40
I 22 270CEN50
I 28 330CEN60
I 34 390CEN70
I 40 450CEN80
I 46 47 STATE
I 48 59 COUNTY
I 63 74 TOWN
OOUT93A H 102 1P
0 OR OG
0 UDATE Y 10
0 47 'SOUTHERN NEW HAMPSHIRE'
0 53 'TOWNS'
0 PAGE 77
0 D 1 01
0 TOWN 13
0 COUNTY 26
0 STATE 30
0 CEN80 J 38
0 CEN70 J 46
0 CEN60 J 54
0 CEN40 J 62
0 CEN40 J 70
0 CEN30 J 78

ZK-4421-85

A sample of the output from this example might look like the following:

.o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

12/14/83 SOUTHERN NEW HAMPSHIRE TOWNS 1
Hampstead Rockingham NH 3,785 2,401 1,261 823 823 775
Kingston Rockingham NH 4,111 2,882 1,672 1,002 1,002 1,017
Litchfie'id Hillsborough NH 4,160 1,420 721 341 341 286
Newmarket Rockingham NH 4,290 3,361 3,153 2,640 2,640 2,511
Atkinson Rockingham NH 4,397 2,291 1,017 434 434 407
Rye Rockingham NH 4,508 4,083 3,244 1,246 1,246 1,081
Hollis Hillsborough NH 4,679 2,616 1,720 996 996 879
Peterborough Hillsborough NH 4,895 3,807 2,963 2,470 2,470 2,521
Raymond Rockingham NH 5,453 3,003 1,867 1,340 1,340 1,165

9-14 Using Printer Output Files

9.4

12/14/83 SOUTHERN NEW HAMPSHIRE TOWNS 2
Plaistow Rockingham NH 6,609 4,712 2,916 1,414 1,414 1,366
Windham Rockingham NH 6,664 3,008 1,317 630 630 638
Seabrook Rockingham NH 6,917 3,063 2,209 1,782 1,782 1,666
Pelham Hillsborough NH 8,090 6,408 2,606 979 979 814
Amherst Hillsborough NH 8,243 4,606 2,061 1,174 1,174 1,116
Milford Hillsborough NH 8,686 6,622 4,863 3,927 3,927 4,068
Bedford Hillsborough NH 9,481 6,869 3,636 1,661 1,661 1,326
Hampton Rockingham NH 10,493 8,011 6,379 2,137 2,137 1,607
Exeter Rockingham NH 11,024 8,892 7,243 6,398 6,398 4,872

12/14/83 SOUTHERN NEW HAMPSHIRE TOWNS 3
Goffstown Hillsborough NH 11,316 9,284 7,230 4,247 4,247 3,839
Londonderry Rockingham NH 13,698 6,346 2,467 1,429 1,429 1,373
Hudson Hillsborough NH 14,022 10,638 6,876 3,409 3,409 2,702
Merrimack Hillsborough NH 16,406 8,696 2,989 1,263 1,263 1,084
Derry Rockingham NH 18,876 11,712 6,987 6,400 6,400 6,131
Salem Rockingham NH 24,124 20,142 9,210 3,267 3,267 2,761
Portsmouth Rockingham NH 26,264 26,717 26,900 14,821 14,821 14,496
Nashua Hillsborough NH 67,866 66,820 39,096 32,927 32,927 31,463
Manchester Hillsborough NH 90,936 87,764 88,282 77,686 77,686 76,834

Automatic Overflow

When an overflow indicator is not assigned to an output file going to the
ptjnter, the compiler assigns the first unused indicator to the file. This
causes a skip to line 1 whenever an overflow occurs, and the overflow
routine executes for this file.

You can override the printing of overflow lines by specifying an overflow
indicator on the File Description specification. However, do not use the
same indicator to condition any output line. This causes continuous
printing of lines, regardless of page boundaries.

9.5 Defining the Page Size

The Line Counter specification allows you to alter the default format of a
printed output file1• You can use this specification to change the number
of lines on a page and to change the overflow line.

1 The default format is 66 lines, with the overflow line at 60.

Using Printer Output Files 9-15

To define the page size, you must make the following entries in the Line
Counter specification:

• Columns 7 through 14 (file name)-specify the name of the out
put file. This file must have been previously defined on the File
Description specification with PRINTER in columns 40 through 46
(device code) and Lin column 39 (extension).

• Columns 15 through 17 (form length)-specify the number of lines
printed on a page.

• Columns 18 and 19 (FL)-if you specify an entry in columns 15
through 17 (form length), you must enter FL in columns 18 and 19.
This entry indicates to the compiler that columns 15 through 1 Tdefine
the form length.

If you do not specify an entry for form length, the default is 66 lines.

To define the overflow line, you must make the following entries in the
Line Counter specification:

• Columns 20 through 22 (overflow line number)-specify the line
number where an overflow occurs.

• Columns 23 and 24 (OL)-if you specify an overflow line number in
columns 20 through 22, you must enter OL in columns 23 and 24.
This entry indicates to the compiler that columns 20 through 22 defirie
the overflow line number.

If you do not specify an entry for the overflow line, the default is line 60.

9.6 Spacing and Skipping Lines

You can define how your printed output file will look by specifying the
number of lines to space or skip. Spacing is relative to the line currently
being printed; therefore, use spacing between detail lines in a repor~.
Skipping lines repositions the printer to an absolute line number; there
fore, specify skipping for the column headers of a report. For example,
if you specify skip to line number 2, the output line associated with that
specification will be printed only on the second line of each page.

9-16 Using Printer Output Files

To specify the number of lines to space, you must make the following
entries in the Output specification:

• Column 17 (space before)-specifies the number of lines to be spaced
before printing a line.

• Column 18 (space after)-specifies the number of lines to be spaced
after printing a line.

To specify the number of lines to skip, you must make the following
entries in the Output specification:

• Columns 19 and 20 (skip before)-specifies the line number to skip to
before printing a line.

• Columns 21 and 22 (skip after)-specifies the line number to skip to
after printing a lirie.

If you make entries in both spacing and skipping columns for the same
line, VAX RPG II formats the output in the following order:

1. Skip before

2. Space before
3. Print the output line

4. Skip after

5. Space after

You can specify entries in columns 17 through 22 (space and skip) for the
second line in an OR relationship; otherwise, the preceding line specifies
the entries for spacing and skipping.

NOTE

If the line printer listing of a printer output file includes an
unexpected blank page at the end of the file, use the DCL
PRINT/NOFEED /PASSALL command.

Using Printer Output Files 9-17

The following example prints TOP on line 1, TEST LINE on line 7, PRINT
TWICE FOR BOLDING on line 13, and the fields beginning on line 16.

T~pe <HDTE> Edit codes , 0 No CR -
1retch ofl I Rel <rR> I X -------------
I I Space I Y date edit y y 1 A J
111 Skip I Z zero suppress y N 2 B K
111 I I N y 3 c L
111 I Indicators !Blank-after N N 4 D H

rile 111 I I rield 11 End position
na"'e 111 I I na111e 111 ror111at <PB>
I 111 I I I 111 i

01 I IBAB A NxxNxxNxxl 111 I+ Constant or.edit Nord +
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890

** ***** * * OOUT92A H 1P
0
0 H 320411 1P
0
0 H 0 1P
0
0 H 15 1P
0
0 D 1 N1P
0
0
0
0

9-18 Using Printer Output Files

* *H---H

DESCR
STOCKI
ONHANDZ
PRICE K

41 'TOP'

44 'TEST LINE'

30 'PRINT TWICE roR BOLDING'

30 'PRINT TWICE roR BOLDING'

18
26
31
39 '$'

ZK-4422-85

Sample output from this example might look like the following:

o I 1 I 2 I 3 I 4 I 6 I 6 I 7 I
12346678901234667890123466789012346678901234667890123466789012346678901234667890
1 TOP
2
3
4
6
6
7
8
9
10
11
12
13
14
16
16
17
18
19
20

TEST LINE

PRINT TWICE FOR BOLDING

1 LB CARROTS VEG1MQ
6 PACK SODA DRNK2A
1 LB BUTTER DAROBT
STEAK METO
HEAD LETTUCE VEG1WQ

47 $.79
40 $1.48
38 $1.69
22 $3.16
63 $.36

Using Printer Output Files 9-19

Chapter 10

Using Tables

In VAX RPG II, a table is a collection of similar data items arranged in a
specific order. Each entry in a table must have the same length and the
same data type (either character or numeric). There are two types of tables
you can use to locate a specific data item quickly and easily.

• Single tables-consist of one group of similar entries. When you
search a single table, the result of the search is whether the item you
are searching for is present in the table. If the searched-for item is
found, that entry becomes the current entry.

• Related tables-are two associated tables that can be entered in
alternating format. You search the first table to find out if the entry is
present. If the entry is found, VAX RPG II retrieves the corresponding
entry from the second table. Related tables need not have the same
number of entries unless they are described in alternating forinat in
the same Extension specification.

If you describe a table in alternating format, the first entry from the first
table is read first; then, the first entry from the second table is read. This
alternate reading continues until all entries from both tables are read. .
Together, the corresponding entries from each table form one record. For
an example of alternating format using arrays, see Section 11.5.4.

Types of tables are differentiateci by whether they are loaded at compile
time or preexecution time. Loading is the process by which the program
assigns the data you supply to the elements in the table.

The following characteristics determine when a table should be loaded:

• The contents of a table
• The frequency with which the entries in the table require changing

• The way the table is to be used

Using Tables 10-1

10. 1 Compile-Time Tables

Compile-time tables are part of the source program. They are compiled
with the source program and become a permanent part of the object
program. The following example shows a source program and a compile
time table:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FINPUT IPE f' 30 DISK
f'REPORT 0 40 DISK
E TABA 10 50 5
I INPUT AA 01
I 1 5 ITEM
I 6 102f'LD1
I 15 30 f'LD2
c 01 ITEM LOKUPTABA 11
c Nii SETON Hi
c 11 100 ADD f'LD1 NEW 62
OREPORT D 01 11
0 NEW B 20

II
10001100021000310004100051000610007100081000910010
20001200022000320004100052000610007200082000920010
30001300023000330004100053000610007300083000930010
40001400024000340004100054000610007400084000940010
50001500025000350004100055000610007500085000950010
I*

10-2 Using Tables

ZK-4431-85

One advantage of compile-time tables is that they do not need to be
loaded separately each time the program is run. However, if you need
to change any of the entries in a compile-time table, you must revise the
table and then recompile the program with the revised table. You can,
however, make temporary changes in the table during calculations. To
make these temporary changes permanent, you must output the table. See
Section 10.8 for information about outputting tables.

The data in a compile-time table must follow the source program and any
alternate sequence records.

10.2 Preexecution-Time Tables

Preexecution-time tables are not part of the object program; each table is
loaded separately from an input data file. One advantage of preexecution
time tables is that you can make frequent changes to the table without
recompiling the program.

Preexecution-time tables are loaded before the first program cycle begins.

10"3 Creating Table Input Records

Table input records are the values for the entries in a table. When creating
table input records, observe the following rules.

General Rules

• The first entry must begin in character position 1.

• All entries must be contiguous, with no space between entries, as
shown in Figure 10-1.

• You cannot span an entry across two records. Therefore, the length
of a record is limited to the device's maximum record length. If you
use related tables in alternating format, corresponding records cannot
exceed the maximum record length.

• Each input record, except the last, must have the same number
of entries. This record can be shorter to accommodate an uneven
number of entries.

Compile-Time Rules

• The first record must be preceded by a record containing either double
slashes (/ /) and a blank or double asterisks ("'"') and a blank in
character positions 1 through 3. Because these strings are delimiters,
records in a compile-time table cannot contain either of these three
characters in positions 1 through 3.

• The last record of the last compile-time table or array can be followed
with a record containing a slash and an asterisk (/•) in the first two
character positions. This record is optional and must be the last record
in the source program, if used.

Using Tables 1 0-3

Figure 10-1: Table Input Record

/

,....-----------record

entry entry entry entry entry \
I \/ \/ \/ \/ \
1 2 3 4 5 6 7 8 9 O 1 2 3 4 5 6 7 8 9 O 1 2 3 4 5 6 7 8 9 O 1 2 3 4 5 6 7 8 9 O 1 2 3 4 5 6 7 8 9 O 4 table

10-4 Using Tables

ZK-1471-83

The table in Figure 10-1 consists of five entries in a record, and each entry
is 10 characters long.

When creating table input records for related preexecution-time and
compile-time tables in alternating format, you must enter an entry from
the first table and then follow with the corresponding entry from the
second table.

If you define each entry from the first table to be one character long and
each entry from the second table to be three characters long, your table
input record might appear as in Figure 10-2.

Figure 10-2: Related Tables

entry

'' 13331333133313331333,. _____ _ one record

1 ytry from second table

entry from first table

ZK-1474-83

The table in Figure 10-2 consists of fives entries in a record, and each
entry consists of two related entries. The first entry is one character long.
The second entry is three characters long.

10.4 Defining Tables

To define a single table, you must make the following entries in the
Extension specification:

• Columns 27 through 32 (table name)-specify the name of the table.
Table names can be up to six characters long, but the first three
characters must be TAB.

• Columns 33 through 35 (entries per record)-specify the number of
entries in a record. Because tables can have one or more entries for
each record, calculate the maximum number of entries in a record by
dividing the record length by the length of an entry.

• Columns 36 through 39 (number of entries per table)-specify the
number of entries in the table.

• Columns 40 through 42 (length of entry)-specify the length of each
entry.

• Column 43 (data format)-if the table contains numeric data, you
must specify its format. Specify P (packed decimal format), B (binary
format), or leave the entry blank (overpunched decimal format).
When you specify packed decimal format, make sure the length of
entry represents the length of the numeric data in unpacked form.
When you specify binary format, the length of entry you specify must
indicate the number of bytes required to store the binary field. (Use 4
for two-byte signed binary numbers or 9 for four-byte signed binary
numbers.)

• Column 44 (decimal positions)-for numeric data, specify the number
of positions to the right of the decimal point. You must specify 0 for
no Decimal positions.

• Column 45 (sequence)-specify ascending (A) or descending (D) to
indicate that the entries in a table are in the specified sequence, or
leave this column blank to specify an unsequenced table.

There are additional considerations for compile-time tables and
preexecution-time tables, which are discussed in Sections 10.4.1
and 10.4.2.

Using Tables 10-5

10.4.1 Defining a Compile-Time Table

E.

To define a compile-time table, you must make the entries shown for any
single table. There is one notable exception to the requirements shown in
Section 10.4-columns 43 and 55 must be blank for a compile-time table
because packed and binary data formats are not allowed in VAX RPG II
program source code.

In the following example, the table name is TABLEl. There are 10 entries
in the table, with one entry in each record. The length of each entry is
five digits, with two decimal positions. The data type of the entry in each
record is overpunched numeric by default.

------F' = F'or~at <PB>
I -----D = Deci111al positions
II ----S =Sequence <AD>
111

F'ro111
file
na111e
I

To
file
na111e
I

II !Alternating table or arra~
Table EntEnt Lenll lna111e Len
or perin of F'I I I of F'
array RecTbl EntlDll EntlD
na111e I I I I I S I I I I S

I I I I I I II II I II I+-- Co111111ents --•+
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
·I I•
E

10-6 Using Tables

* * *--*---*--**** *--HH
TABLE1 1 10 5 2

ZK-4423-85

You can define one or two tables either individually, or as a main table
with an alternate table defined in alternating format. To define an alter
nate table, you must make the following entries for the alternate table in
the same Extension specification you used to describe the main table:

• Columns 46 through 51 (table name)-specify the name of the alter
nate table. Table names can be up to six characters long, but the first
three characters must be TAB.

• Columns 52 through 54 (length of entry)-specify the length of each
entry in the alternate table.

• Column 55 (data format)-if the alternate table contains numeric data,
you must specify its format. Specify packed decimal format (P), binary
format (B), or leave the entry blank (overpunched decimal format).
When you specify packed decimal format, make sure the length of
entry represents the length of the numeric data in unpacked form.

E

When you specify binary format, the length of entry you specify must
indicate the number of bytes required to store the binary field. (Use 4
for two-byte signed binary numbers or 9 for four-byte signed binary
numbers.)

• Column 56 (decimal positions)-for numeric data, specify the number
of positions to the right of the decimal point. You must specify 0 for
no decimal positions. ,

• Column 57 (sequence)-specify ascending (A) or descending (D) to
indicate that the entries in a table are in the specified sequence, or
leave this column blank to specify an unsequenced table.

The main table's values for entries per table (columns 36 through 39),
from file name (columns 11 through 18), and entries per record (columns
33 through 35) are also used for the alternate table.

In the following example, two related tables are loaded from the input file
INPUT. The second table, TAB2, is the alternate table.

------f' = f'or111at <PB>
I -~---D = Deci111al positions
II ----S =Sequence <AD>
111

f'ro111
file
na111e
I

To
file
na111e
I

lllAlternating table or array
Table EntEnt Lenll lna111e Len
or perin of f'lll off'
array RecTbl EntlDll EntlD
na111e I I I I I SI I I I S

I I I I I I 1111 I Ill+-- Co111111ents ---+
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

1234567890123456789012345678~012345678901234567890123456789012345678901234567890

·I I• * * ·--·---•--***** ·--****
E INPUT TAB1 2 4 5 OATAB2 5 OA

ZK-4424-85

When defining compile-time tables, observe the following rules.

Rules

• If the compile-time table contains numeric data, it must be in over
punched format. Therefore, leave column 43 (data format) blank or
leave column 55 (data format) blank, if you are using related tables in
alternating format.

• The input records for compile-time tables must be in the same order
in which the tables appear in the Extension specification.

Using Tables 10-7

10.4.2 Defining a Preexecution-Time Table

E

To define a preexecution-time table, make the same entries you made for
a single table as in Section 10.4. In addition, in columns 11 through 18
(from file name), enter the name of the input file that contains the data for
the table, as shown in the following example:

f ro111
file
na111e
I
I

To
file
na111e
I
I

------r = ror111at <PB>
I -----D ~ Deci~al positions
II ----S =Sequence <AD>
111 .
II !Alternating table or arra~

Table EntEnt Lenlllna111e Len ·
or perin of fll I off
array RecTbl Ent I DI I Ent ID
na111e I I I . I IS I I I IS
I I I I Ill I I I II+-- Co111111ents ---+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

·I I·' * * *--*---*--***** *--HH .

E INPUTFIL TABLEA 10 50 5

10-8 Using Tables

ZK-4425-85

The table input file must be defined in a File Description specification by
specifying Tin column 16 (file designation).

When using preexecution-time tables, observe the following rules.

Rules

•

•

The input file cannot contain more entries than are defined for the
table. If it does, a run-time error occurs.

The input file can contain fewer entries than are defined for the table,
only if you do not specify a sequence. When you do not specify a
sequence and the table contains fewer entries than are defined, the
remaining entries are automatically filled with blanks for character
data or zeros for numeric data.

10.5 Referencing Table Entries

When you use a table name as an operand other than as factor 2 in an
operation or other than as the result field in a LOKUP operation, the table
name refers to the data retrieved by the last successful search. You can
then use the entry as an operand in a calculation or modify the contents of
the entry when the table name is used as the result field in a calculation.

In the following example, FLDl is the search argument in the LOKUP
operation. If the program can locate FLDl in TABl, indicator 10 is set on.
Then, the result of the calculation on the next line replaces the current
contents of the located entry in TABl because the table entry is used as
the result field.

Control level
I
I Indicators
I I
I I Factor
I I 1

Operation

Factor
2

rield length
I Deci~al positions
I IHalf adjust <H>
I II
I I I Resu 1 ting

Resultl llindicators
field I II+ - 0

C I N><><N><><N><>< I

I
I
I
I I I I II><=+- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

II I ·1 I I I I I I I I 'I I I I I I I I I I 1·. I I I I I I I I I I I I I I I I I I I 1--111 I I I I I *I

c
c 10

FLD1
TAB1

LOKUPTAB1
HULT 100 TAB1

10

ZK-4426-85

You can specify which entry is the current entry for related tables and then
reference the current entry in subsequent calculations. In the following
example, FLDl is the search argument in the LOKUP operation. If the
program locates FLDl in TABl, that entry becomes the current entry.
Then, VAX RPG II locates the corresponding entry in TAB2 and it then
becomes the current entry for TAB2. When you reference these entries in
subsequent calculations, VAX RPG II uses the current entry in both tables.

Using Tables 10-9

Contra 1 1eve1
I
I Indicators
I I
I I factor
I I 1

Operation

factor
2

field length
I Deci~al positions
I IHalf adjust <H>
I 11
I llResulting

Resultl llindicators
field I II+ - 0

C I NxxNxxNxx I

I
I
I
I I I I II><=+- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

**I* I I I I I I I I *I I I I I I I I I *I I I I *I I I I I I I I I *I I I I I *--fff I *I *I *I

c fLDi LOKUPTABi TAB2 10
ZK-4427-85

10.6 Searching Tables

The LOKUP operation code searches for an entry in a table. This opera
tion starts with the first entry and searches each element for a match with
the search argument. Specifying a table sequence is not necessary when
performing LOKUP operations for an equal match. However, if you spec
ify a sequence, the table can be searched faster. To save time in searching
an unsequenced table, place the more frequently referenced entries at the
beginning of the table.

To search a table for an entry, you must make the following entries in the
Calculation specification:

• Columns 18 through 27 (factor 1)-specify a field or literal repre
senting the entry you want to locate. Make sure the search argument
has the same length and data format as the entries of the table being
searched.

• Columns 28 through 32 (operation code)-specify the LOKUP opera
tion code.

• Columns 33 through 42 (factor 2)-specify the name of the table to be
searched.

• Columns 54 through 59 (resulting indicator)-specify one or more in
dicators to condition the search and to indicate whether the search has
been successful. You can use this indicator to condition subsequent
calculation and output operations.

10-10 Using Tables

In the following example, the program tries to match the search argument
ITEM with an entry in table TABA. If a matching entry is found, indicator
11 is set on. If no matching entry is found, the halt indicator Hl is set on
and the program terminates.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

f'INPUT IPE f' 30 DISK
f'REPORT 0 40 DISK
E TABA 10 50 5
I INPUT AA 01
I 1 5 ITEH
I 6 102f'LD1
I 15 30 f'LD2
c 01 ITEH LOKUPTABA 11
c NU SETON Hi
c 11 100 ADD f'LD1 NEW 62
OREPORT D 01 11
0 NEW B 20

II
10001100021000310004100051000610007100081000910010
20001200022000320004100052000610007200082000920010
30001300023000330004100053000610007300083000930010
40001400024000340004100054000610007400084000940010
50001500025000350004100055000610007500085000950010
I*

ZK-4431-85

In this compile-time table, there are 10 entries in a record and 50 entries
in a table. Each entry is five characters long.

When you specify a sequence (either ascending or descending), you can
use resulting indicators (EQUAL, HIGH, and LOW) in the Calculation
specification to indicate the condition to search for and the result of the
search. You can specify one of the following search conditions:

• Columns 54 and 55 (HIGH)-nearest to but greater than value only

• Columns 56 and 57 (LOW)-nearest to but less than value only
• Columns 54 and 55, and 58 and 59 (EQUAL or HIGH)-equal or

nearest to but greater than value
• Columns 56 and 57, and 58 and 59 (EQUAL or LOW)-equal or

nearest to but less than value

Using Tables 10-11

The following program searches the unsequenced table TABLE2 for the
value LENGTH and searches the sequenced table TABLEl to check for a
value greater than or equal to COST. If both conditions are satisfied, the
subroutine PROCES is called to process the entry.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FFILE1 IT F 80 80 EDI SK
FFILE2 IT F 80 80 EDI SK
FINFILE IP F 80 80 DISK
E FILE1 TABLE! 1 6 3 2A
E FILE2 TABLE2 1 6 3 0
IINFILE AA 11
I
I
I
c
c
c
c
c
c

1 32COST
4 60LENGTH
7 100NUHBER

11 LENGTH LOKUPTABLE2 20
N20 11 GOTO NOPROC

11
N26

COST LOKUPTABLE1 26 26
GOTO NOPROC
EXSR PROCES

NOPROC TAG
ZK-4430-85

You can also specify a table in the result field to retrieve the entry that
corresponds to the entry located in a LOKUP operation. See the example
in Section 10.6 for an example of the LOKUP operation.

10. 7 Updating Tables

To change the contents of an entry in, or add new entries to, a preexecu
tion table, edit the input file that contains the table. You can also use a
program to modify a table and output the new entries.

The following example searches related tables in alternating format. The
first table, TABA, consists of a list of numbers of items in stock. The
second table, TABB, consists of a list of unit prices corresponding to the
item numbers. We want to raise the unit price of each item by 5 % and
output the updated table.

10-12 Using Tables

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** 11111 I I I 111---11
FHASTER IPE F 30 DISK
FTABLE1 IT F 22 EDI SK
FTABLE2 0 F 22 DISK
FREPORT 0 F 60 DISK
E TABLE1 TABLE2 TABA 2 10 5 TABB 6 2
I MASTER
I
c 01
c NH
c 11
OREPORT
0

AA 01
1 5 ITEM

ITEM LOKUPTABA TABB 11
SETON Hi

1.05 HULT TABB TABB 62H
D 11

TABB 20
ZK-4428-85

The related tables, TABA and TABB, are preexecution-time tables. They
are loaded from the input table file TABLEl. In the Extension specification,
the output file TABLE2 is automatically created. (Automatic creation
means that the output file does not require an Output specification.)

When the program executes, it reads the first record from the primary
input file MASTER. If the search argument ITEM is matched, indicator 11
is set on and the corresponding entry from TABB is made available for
processing. If no match is found, the halt indicator Hl is set on and the
program terminates without creating the output file TABLE2.

When the program ends, the tables TABA and TABB are written to file
TABLE2 with the same number of entries per record as the table input file
TABLEl.

10.8 Outputting Tables

When you specify the name of an output file in columns 19 through 26
(to file name) of the Extension specification, your program creates the file
automatically, as shown in the example in Section 10.7.

When you specify a table as a field on an Output specification, you can
output only the entry found by the last LOKUP operation.

Using Tables 10-13

In the following example, the table TABSH is read from the file TABFILE.
For this example, the table is short; that is, not all 80 entries contain data ..
The LOKUP operation searches the table for the first entry containing
zeros. This entry is replaced with a field read from the input file IFILE.
The EXCPT operation code outputs the entry TABSH with the new data.
Remember, the entry that is updated and then output by the Output
specification is the entry found by the last LOKUP operation. When
the last. cycle occurs, the entire updated table will be written to the file
TABFILE2.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FIFILE IP r 80 DISK
HABrILE IT r 80 EDI SK
HABrILE20 r 80 DISK
rDFILE 0 r 80 DISK
E TABrILE TABrILE2TABSH 10 80 4 0
IIrILE AA 01
I 1 40ENTRY
c 01 0000 LOKUPTABSH 20'
c 01 20 Z-ADDENTRY TABSH
c 01 20 EXCPT
OOFILE E
0 TABSH 10

ZK-4429-85

10-14 Using Tables

Chapter 11

Using Arrays

In VAX RPG II, an array, like a table, is a collection of similar data items
arranged in a specific order. You can reference individual array elements
(entries) by specifying an array index, or process an entire array by
specifying the array name during calculation operations.

You use an array instead of a table when you want to affect all the
elements in the array with a single reference or be able to reference a
specified number of separate elements at the same time. For example,
when you want to compute a 5% sales tax for each element in an array,
you use a single specification to perform the operation for every element.

Types of arrays are differentiated by whether they are loaded at compile
time, preexecution time, or execution (run) time. Loading is the process
by which the program assigns the data you specify to the elements in an
array.

The following characteristics determine when an array should be loaded:

• The contents of an array
• The frequency with which the elements in the array require changing

• The way the array is to be used

Using Arrays 11-1

11.1 Compile-Time Arrays

11-2 Using Arrays

Compile-time arrays are part of the source program. They are compiled
with the source program and become a permanent part of the object
program. One advantage of compile-time arrays is that they do not need
to be loaded separately each time the program is run. However, if you
need to change any of the entries in a compile-time array, you must revise
the array and then recompile the program with the revised array. You
can, however, make temporary changes in the array during calculation
operations. To make these temporary changes permanent, you must
output the array and then, using the output file as input, recompile the
program. See Section 11.10 for information about outputting arrays.

When you use a compile-time array, the array input data must follow the
source program and any alternate sequence (AL TSEQ) records. If you
use more than one array, the data for each array must follow in the same
sequence as specified on the Extension specifications.

The following example shows a source program with the input data
for two compile-time arrays and their alternate compile-time arrays.

0 I 1 I 2 I 3 i 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

01010H
01040f PROCD IP
01050FINLIST 0
02010E
02020E
03010IPROCD AA
03020I
03030I
04010C
04020C
04030C
04040C
04050C 21
050100INLIST H
050200 OR
020300
050400
050500
050600 H
050700 OR
050800
050900
051000 H
051100 OR
051200
051300
051400
060100 D 1
060200
060300
060400
060450
060500
060700
060800
060900 T 1
061000
**
17526BOLT
18171SCREW
19226NAIL
25116NUT
29258MAGNESIUM COVER

01

20
N20

21

N21
21
LR

PRODNO
AL Ti, I

ALT2,T
QUAN

AMT

**
175260126181710059192260173292585843

17 'NUMBER'
45 'DESCRIPTION QTY'
64 'PRICE AMOUNT'

16 I 0 1

39
39 '***NO DESCRIPTION***'
53 I o, I

45 I 0 I

53 '*NONE'
65 I 1 0, I

27 'END Of PRICE LIST'

NOPRIN
NOPRiN
NOPRIN
NOPRIN

l co~pile-time arra!:j AR1
and the alternate compile-time
arra!:j ALT1

}
compile-time arra~ AR2 and
the alternate co~pile-time
arra!:j ALT2

ZK-4448-85

Using Arrays 11-3

11.2 Preexecution-Time Arrays

Preexecution-time arrays are not part of the object program; each array
is loaded separately and is used like an input data file. One advantage
of preexecution-time arrays is that you can make frequent changes to the
array without recompiling the program.

11.3 Execution-Time Arrays

Execution-time arrays are created by using Input or Calculation specifica
tions. These arrays are loaded either from input data or as the result of
calculation operations after program execution begins.

11.4 Creating Array Input Records

11-4 Using Arrays

When creating array input records for compile-time and preexecution-time
arrays, observe the following rules.

General Rules

• The first entry must begin in character position 1; all entries must be
contiguous, with no space between entries, as shown in Figure 11-1.

• You cannot span an entry across two records. Therefore, the length
of a record is limited to the device's maximum record length. If you
use related arrays in alternating format, corresponding entries cannot
exceed the maximum record length.

• Each array input record, except the last, must have the same number
of entries. This record can be shorter to accommodate an uneven
number of entries.

The array in Figure 11-1 consists of five entries, and each entry is 10
characters long.

Figure 11-1 : Array Input Record

1
entry\

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 O 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 O 1 2 3 4 5 6 7 8 9 0 ..., array

ZK-1473-83

When creating compile-time array input records, observe the following
rules.

Compile-Time Rules

• The first record must be preceded by a record containing either double
slashes (/ /) and a blank or double asterisks (**) and a blank in
character positions 1 through 3. Because these strings are delimiters,
compile-time array records cannot contain either of these characters in
positions 1 through 3.

• The last record of the last compile-time table or array can be followed
by a record containing a slash and an asterisk (/*) in the first two
character positions. This record is optional and must be the last record
in the source program, if used.

When creating array input records for related preexecution-time and
compile-time arrays in alternating format, you must enter an entry from
the first array and then follow with the corresponding entry from the
second array.

If you define each entry from the first array to be one character long and
each entry from the second array to be three characters long, your array
input record might appear as in Figure 11-2.

Using Arrays 11-5

Figure 11-2: Related Arrays

entry

" 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 _ .. ____ one record

l ytry from second array
entry from first array

ZK-1472-83

The array in Figure 11-2 consists of five entries in a record, and each entry
consists of two related entries. The first entry is one character long. The
second entry is three characters long.

11.5 Defining Arrays

11-6 Using Arrays

To define an array, you must make the following entries in the Extension
specification:

• Columns 27 through 32 (array name)-specify the name of the array.
You cannot use TAB as the first three letters of an array name.

• Columns 36 through 39 (number of entries per array)-specify the
number of entries in the array.

• Columns 40 through 42 (length of entry)-specify the length of each
entry.

• Column 44 (decimal positions)-for numeric data, specify the number
of positions to the right of the decimal point. You must specify 0 for
no decimal positions.

• Column 45 (sequence)-specify ascending (A) or descending (D) to
indicate that the entries in an array are in the specified sequence, or
leave this column blank to specify an unsequenced array.

11.5.1 Defining a Compile-Time Array

E

To define a compile-time array, you must make the following entry in the
Extension specification in addition to the entries required for all arrays:

• Columns 33 through 35 (entries for each record)-specify the number
of entries in a record. Arrays can have one or more entries per record.
The length of all entries in a compile-time array cannot exceed 96
characters. All records, except the last, must contain the same number
of entries; each entry must be the same length.

The following example describes the compile-time array Al. The array
has eight entries with four entries in each record. Each entry is a character
field that is six bytes long. The array records are located at the end of the
program.

------F = For111at <PB>
I -----D = Deci111al positions
I I ----S = Sequence CAD>
II I

Fro111
file
na111e
I

To
file
na111e
I

I I I Alternating table or arra~
Table EntEnt lenl llna111e Len
or perin of Fii I of F
arra~ RecTbl EntlDll EntlD
na111e I I I I I S I I I I S

I I I I I I I Ill I II I+-- Co111111ents ---+
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890

* E

**
KAUNISKAUPPANAINENKAIKKI
MUKAVAPALJONJUUSTOOSOITE
I*

* Ai
* __ * __ ,..;.*--*****

4 8 6

ZK-4434-85

Using Arrays 11-7

11.5.2 Defining a Preexecution-Time Array

11-8 Using Arrays

To define a preexecution-time array, you must make the following entries
in the Extension specification in addition to the entries required for all
arrays:

• Columns 11 through 18 (from file name)-specify the name of the
input file that contains the data for the array. This input file is called
a table input file. It must be defined in a File Description specification
by specifying Tin column 16 (File designation); the T associates the
file with the array.

• Columns 33 through 35 (entries per record)-specify the number of
entries in a record. Arrays can have one or more entries per record.
The length of all entries in a preexecution-time array cannot exceed
the maximum number of characters for the device from which the
array is loaded. All records except the last must contain the same
number of entries; each entry must be the same length.

If your preexecution-time array contains numeric data, you can indicate
the data format by specifying packed decimal format (P) or binary format
(B), or by leaving the column blank (overpunched decimal format). When
you specify packed decimal format, make sure the length of entry repre
sents the length of the numeric data in unpacked form. When you specify
binary format, the length of entry you specify must indicate the number of
bytes required to store the binary field. (Use 4 for two-byte signed binary
numbers or 9 for four-byte signed binary numbers.)

When using preexecution-time arrays, observe the following rules.

Rules

• The input file cannot contain more entries than are defined for the
array. If it does, a run-time error occurs.

• The input file can contain fewer entries than are defined for the array,
but only if you do not specify a sequence. When you do not specify
a sequence and the array contains fewer entries than are defined,
the remaining entries are automatically filled, either with blanks for
alphanumeric data or with zeros for numeric data.

11.5.3 Defining an Execution-Time Array

To define an execution-time array, the number of entries that must be
made in the Extension specification is the same as that required for all
arrays.

If you want to load an execution-time array from an input file, you must
make the following entries for the array input file in its Input specification:

• Column 43 (data format)-if the array contains numeric data, indicate
the data format by specifying packed decimal format (P) or binary
format (B), or by leaving the entry blank (overpunched decimal
format).

• Columns 44 through 51 (field location)-specify the beginning and
ending character positions of the entire array, partial array, or array
element being loaded. If the data format is packed decimal or binary,
the field location must represent the actual size of an array element in
bytes.

The following example shows how to use the Input specification to load
an entire execution-time array containing packed decimal numbers as a
single field. Array ARR contains seven elements, and each element is four
bytes long. The execution-time array is loaded from the input file ARRIN
as a single field in packed decimal format.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

E ARR 7 7 0
IARRIN AA 03
I P 1 280ARR

ZK-4435-85

You can load part of an execution-time array using one input field. The
length of the field must be a multiple of the length of one entry. The
array is loaded beginning with the first element and entries continue to be
loaded until the end of the input field is reached.

Using Arrays 11-9

In the following example, ARR contains· 25 entries. Each entry is one
character long. VAX RPG II loads the first· 10 elements of tlie array ARR.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

E ARR 25 1
IARRIN AA 03
I 1 iOOARR

ZK-4436-85

11.5.4 Defining Related Arrays in Alternating Format

You can define related arrays either individually or in alternating format.
To define arrays in alternating format, you must make the following
entries for the second (alternate) array in the same Extension specification
you used to describe the first (main) array:

• Columns 46 through 51 (array name)-specify the name of the
alternate array.

• Columns 52 through 54 (length of entry)-specify the length of an
entry in the alternate array.

• Column 55 (data format)-you need only specify the data format
for alternate preexecution-time arrays that contain numeric data.
Specify packed decimal format (P) or binary format (B), or leave the
entry blank (overpunched decimal format). When you specify packed
decimal format, make sure the length of entry represents the length of
the numeric data in unpacked form. When you specify binary format,
the length of entry you specify indicates the number of bytes required
to store the binary field. (Use 4 for two-byte signed binary numbers
or 9 for four-byte signed binary numbers.)

• Column 56 (decimal positions)-for numeric data, specify the number
of positions to the right of the decimal point. You must specify 0 for
no decimal positions.

• Column 57 (sequence)-to indicate that the order of entries in an
alternate array are in the specified sequence, specify either ascend
ing (A) or descending (D) or leave this column blank to specify an
unsequenced array.

11-1 0 Using Arrays

E

The entries made in the following columns for the main array also apply
to the alternate array:

• Columns 11 through 18 (from file name)

• Columns 33 through 35 (entries per record)

• Columns 36 through 39 (entries in array)

The following example describes the preexecution-time array Al with 6
entries in each record and 24 entries in the array. The entries for array
Al are alternated with entries for array Bl. Al contains overpunched
numeric data that is six digits long with no decimal places. Bl contains
overpunched numeric data that is six digits long with two decimal places.
Each record in the data file contains six entries for Al and six entries for
Bl. The arrays are loaded from the file ARRFIL.

------r = ror111at <PB>
I -----D = Deci111al positions
I I ----S = Sequence <AD>
111

rro111
f'ile
na111e
I

To
f'ile
na111e
I

I I I Alternating table or arra~
Table EntEnt Len I I lna111e Len
or perin of' Fil I of' r
arra~ RecTbl Ent I DI I Ent ID
na111e I I I I IS I I I I S

I I I I I I I Ill I I I I+-- Co111111ents ---+
0 I i I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
·I I• * ·--·---•-.;..*****
E ARRFIL * Ai 6 24 6 0 Bi

A sample record from ARRFIL might look like this:

000001245000000216240000034520000004799000000577770000066550
\ /\ /\ /\ I

I I I I
A1,1 B1,1 A1,2 B1,2

ZK-4437-85

Using Arrays 11-11

11.6 Referencing Arrays

11-12

With tables, you can reference only the entry retrieved by the last LOKUP
operation. With arrays, you can refer to either an entire array or an
individual array element. One advantage of referencing an entire array is
that a single operation can affect all the elements in the array.

You can specify an array name, a comma, and an index up to 10 characters
long for factor 1 or factor 2 in a Calculation specification. You can specify
an array element up to six characters long for the result field.

You can use an entire array as factor l, factor 2, or the result field in the
following operations:

• ADD

• Z-ADD

• SUB

• Z-SUB

• MULT

• DIV

• SQRT

• MOVE

• MOVEL

• MO VEA

• XFOOT

• LOKUP

• PARM

When you specify an array name in the following calculations,
VAX RPG II repeats the operation for each element in the array:

• ADD

• Z-ADD

• SUB

• Z-SUB

• MULT

• DIV

• SQRT

Using Arrays

• MOVE

• MOVEL

When using entire arrays (nonindexed) in any calculations, observe the
following rules.

Rules

• When you specify arrays with the same number of elements for factor
1, factor 2, and the result field, VAX RPG II performs the operation on
the first element, then on the second element, and so on, until all the
elements in the array have been processed.

If the arrays do not have the same number of elements, VAX RPG II
ends the operation when the last element of the array with the fewest
elements is processed.

• When one factor is a field or constant and the other factor or result
field is an entire array, VAX RPG II performs the operation once for
every element in the array.

• If the operation requires factor 2 only and the result field is an array,
VAX RPG II performs the operation once for every element in the
array.

• You must specify an array for the result field.
• You cannot use resulting indicators to condition calculations with

arrays.

If you use cm array for the result field and an element as one of the factors
in a cakulation, VAX RPG II alters the value of the element as a result
of the calculation. When this occurs, VAX RPG II uses the new value in
all subsequent operations that reference that element. For example, two
numeric arrays contain the data shown in Table 11-1.

Using Arrays 11-13

Table 11-1: Array Element Values
Array Element Value

ARRl,1 4

ARRl,2 3

ARRl,3 1

ARRl,4 5

ARR2,l 2

ARR2,2 7

ARR2,3 5

ARR2,4 9

If every element of ARRl is added to element ARR2,3 and the result
is placed in ARR2, the elements of the resulting array are as shown in
Table 11-2.

Table 11-2: Array Elements in Calculations
Array Element Expression Resulting Value

ARR2,l (4 + 5) 9

ARR2,2 (3 + 5) 8

ARR2,3 (1 + 5) 6

ARR2,4 (5 + 5) 10

You can specify an array element in most operations that take a character
or numeric field as factor 1, factor 2, or the result field. To specify an
individual array element, enter the array name, a comma, and the index.
For example, ARR,12 specifies the twelfth element of array ARR. You can
also use a field name to represent the index. For example, if you specify
ARR,FLD, the index value is determined by the value of the field FLD.

An array index, whether it is a literal or a field, must always be greater
than or equal to 1 and less than or equal to the number of elements in
the array. If it is not and you specify the /CHECK=(BOUNDS) qualifier
to the RPG command, a run-time error will occur. If it is not and you
do not specify the /CHECK=(BOUNDS) qualifier to the RPG command,
unpredictable results will occur.

11-14 Using Arrays

If you plan to use the same array element in a calculation for every
program cycle, use a constant number as the index. If, however, you want

- to reference different array elements, use a field name as the index.

When array elements are scattered throughout an input record, each
field must be described individually on the Input specification. A field
description indicates the position of an element in the array. In such
cases, there are two ways to load the data into the array:

• Assign a unique field name,,.to each field of array data on the input
record and then enter calculations to move individually each data field
into the appropriate array element.

• Assign the array name with the proper index to each field of array
data in the input record. The array is loaded automatically as the data
is read.

The following example shows how to load individually each element of
an execution-time array:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

E
I ARR IN
I
I
I
I
I
I
I

ARR 7 7 0
AA 03

p 1 40ARR,1
p 5 BOARR,2
p 9 120ARR,3
p 13 160ARR,4
p 17 200ARR,5
p 21 240ARR,6
p 25 280ARR,7

ZK-4438-85

In the following example, a company employs eight sales people whose
weekly sales amounts are recorded in an input file. Each record of the file
contains the weekly sales amounts; one new record is recorded in the file
each week. At the end of the year, the company generates a report listing
the sales totals for each week and the grand total for the entire year.

Using Arrays 11-1 5

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FINPUT1
FREPORT
E
E
IINPUT1
I
c 01
c 01
CLR
OREPORT
0
0
0
0
0

IPE F 60 DISK
0 r 60 DISK

WEEK B 6 2
YEAR B 8 2

AA 01
1 482WEEK

XFOOTWEEK TOTAL 82
WEEK ADD YEAR YEAR

XFOOTYEAR GRAND 102
D 01

20 'WEEKLY TOTAL='
TOTAL 35 '$ '

T LR
20 'YEARLY TOTAL='

GRAND 35 '$ '
ZK-4439-85

Two execution-time arrays, WEEK and YEAR, are defined in the Extension
specification. The Input specification instructs the program to load the
array WEEK after reading each sales record from the input file INPUTl.

The input file for the execution-time array is not like a table input file
with a corresponding File Description specification. Therefore, data is not
automatically loaded into the array at the beginning of execution. Instead,
you must describe on Input specifications the input data to be loaded into
the array.

The array elements are in contiguous positions in the input record.
Therefore, when the name of the array is specified as the field name,
the data is automatically loaded into the appropriate elements of the array
as the input record is read. In this case, only one Input specification is
necessary to describe an input record of array data.

The XFOOT operation calculates the sum of all the elements in the array
WEEK and puts the sum in the result field TOTAL. The next calculation
adds one array to the other. Adding arrays involves adding each element
of one array to the corresponding element of the other array. Normally,
when you use an array name in a calculation, the operation is performed
on each element of the array; then, an array of the results is created.
Therefore, you cannot use resulting indicators to indicate the result of the
operation.

11-16 Using Arrays

These arrays have the same number of elements; therefore, any specified -
operation is performed until all elements have been processed. In the
case of two arrays containing different numbers of elements, the specified
operation is performed only until the last element in the shorter array is
processed.

In the following example, the program produces results identical to those
of the previous example. However, here the array elements are scattered
throughout the input record.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FINPUT2 IPE f" 60 DISK
FREPORT 0 F" 60 DISK
E WEEK 8 6 2
E YEAR B B 2
I INPUT AA 01
I 1 62WEEK,1
I B 132WEEK,2
I 15 202WEEK,3
I 22 272WEEK,4
I 29 342WEEK,5
I 36 412WEEK,6
I 43 482WEEK,7
I 50 552WEEK,B
c 01 XF"OOTWEEK TOTAL 82
c 01 WEEK ADD YEAR YEAR
CLR XF"OOTYEAR GRAND 102
OREPORT D 01
0 20 'WEEKLY TOTAL='
0 TOTAL 35 '$,
0 T LR
0 20 'YEARLY TOTAL='
0 GRAND 35 '$ I

ZK-4440-85

11. 7 Searching Arrays

The LOKUP operation code searches for an element in an array. To
determine whether a particular element exists, you specify a search
argument and define the conditions under which the LOKUP operation
will succeed. You must also use a resulting indicator that specifies the
condition and that will indicate the result of the LOKUP operation. The
indicator is set on only if the search is successful; otherwise, the indicator

Using Arrays 11-17

is set off. When searching for a HIGH or LOW condition, you must
specify a sequence for the array in column 45 (sequence) of the Extension
specification. Enter an indicator in these columns to test for the following
conditions:

• Columns 58 and 59 (EQUAL)-equal
• Columns 54 and 55 (HIGH)-nearest to but greater than value

• Columns 56 and 57 (LOW)-nearest to but less than value

• Columns 54 and 55, and 58 and 59 (EQUAL or HIGH)-equal or
nearest to but greater than value

• Columns 56 and 57, and 58 and 59 (EQUAL or LOW)-equal or
nearest to but less than value

If you specify both EQUAL and HIGH or EQUAL and LOW, the EQUAL
condition takes precedence if entries satisfy both conditions.

To search an array for an element, you must make the following entries in
the Calculation specification:

• Columns 18 through 27 (factor 1)-specify a field, literal, array
element, or table representing the element you want to locate. Make
sure the search argument has the same length and data format as the
elements in the array being searched.

• Columns 28 through 32 (operation code)-specify the LOKUP opera
tion code.

• Columns 33 through 42 (factor 2)-specify the name of the array to
be searched.

• Columns 54 through 59 (resulting indicator)-specify one or more
indicators to test for a condition and to indicate whether the search has
been successful. You can use these indicators to condition subsequent
calculation and output operations.

In the following example, the program tries to match the search argument
QTY with an entry in the array ARR. If a matching entry is found,
indicator 11 is set on. If the entry is not found, indicator 11 is set off.

11-18 Using Arrays

Field length
Control level
I

I Deci~al positions
I IHalf adjust <H>
I 11 I Indicators

I I
Operation
I
I
I
I

I I I Resulting
Result I I I indicators
field I 11+ - 0

I I Factor Factor
2 I I 1

Cl NxxNxxNxxl I I I II><=+- Co~~ents --+
0 I 1 I 2 I 3 I 4 I 5 I 6 I · 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * c 01 * QTY * * LOKUPARR *
ZK-4441-85

If you want to start searching an array at some point other than at the
beginning, specify the array and its index where you begin the search.
The index can be a literal or a field name. In the following example, the
search begins with the seventh element of array ARR:

Field length .
Contra l l eve 1
I

I Deci~al positions
I IHalf adjust <H>

I Indicators
I I

Operation
I
I
I
I

I 11
I I I Resulting

Result I I I indicators
field I I I+ - 0

I I Factor Factor
2 I I 1

Cl NxxNxxNxxl I I. I II><~+~ Co~~ents --t
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** * c 01 * QTY * * LOKUPARR,7 * *--*** * * *

11
ZK-4442-85

If you want to reference the element found in the last LOKUP operation,
specify. the array name and ari index field in factor 2 of the LOKUP
operation. If the search is. successful, the index value of the array element
that satisfied the condition is stored in the index field and the resulting
indicator is set on. If the search is unsuccessful, the value 1 is placed
in the index field and the resulting indicator is set off. If you do not
specify the index field, a successful LOKUP operation indicates whether
an element contains the data for which you are searching, but does not
return the element's index value.

If you want to begin the search with the first element, you must initialize
the index field to 1 before the LOKUP operation occurs.

Using Arrays 11-19

You can also search for more than one array element by locating all the
elements in an array that satisfy a certain condition. When the condition
is satisfied, the program adds 1 to the value in the index field to continue
the search with the next element.

In the following example:

•
•

•

•

The program loads a preexecution-time array from the file INPUTl .

The search argument SEARCH contains the value 50000; the LOKUP
operation searches for any array element containing a value lower
than the search argument.

If the search is successful, indicator 56 is set on. This indicator causes
the EXCPT operation to print the contents of each array element (and
its index) that satisfies the search condition.

After the program prints the array element, it sets indicator 56 off and
adds 1 to the field containing the array index. While the index field
remains below 11, the search continues by setting indicator 54 on; this
causes the program to loop back to line 01090. This process continues
until all 10 elements are searched.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

01020FINPUT1 IT F 50 EDI SK
01030FINPUT2 IPE F 10 DISK
02040FOUTPUT 0 F 60 DISK
01050E INPUT1 ARY1 10 10 5 OD
01060IINPUT2 AA 01
01070I 1 50SEARCH
01080C 01 Z-ADD1 I 20
01090C LOOP TAG
01100C 01 SEARCH LOKUPARY1,I 56
01105C 56 EXCPT
01107C SETOF 56
01110C 01 1 ADD I I
01120C 01 11 COMP I 54
01130C 01 54 GOTO LOOP
0114000UTPUT E 56
011500 7 'INDEX='
011600 I 9
011700 18 'VALUE='
011800 ARY1,I 23

ZK-4443-85

11-20 Using Arrays

An example of the output file might appear as follows:

o I 1 I 2 I 3 I 4 I 6 I 6 7
12346678901234667890123466789012346678901234667890123466789012346678901234667890

INDEX=06 VALUE=40000
INDEX=07 VALUE=30000
INDEX=08 VALUE=20000
INDEX=09 VALUE=10000
INDEX=10 VALUE=OOOOO

The column numbers in this example are for reference and do not appear
in the output.

11.8 Moving Array Data

You can use the MOVEA operation code to move the following array data:

• Contiguous array elements to a field
• A field or literal to contiguous array elements

• Contiguous elements of one array to contiguous elements of another
array

If the array is not indexed, data movement starts with the first element of
an array or field. If the array is indexed, the move starts with the element
you specify. Data movement stops when either of the following conditions
is met:

• The last array element is moved or filled.

• The number of characters moved equals the length of the shorter field,
as specified either in columns 33 through 42 (factor 2) or in columns
43 through 48 (result field) of the Calculation specification.

See Chapter 16 for more information on the MOVEA operation code.

Using Arrays 11-21

The following example shows a preexecution-time array ARR20 being
loaded from the file ARRFILE. A copy of ARR20 is moved into the
execution-time array ARRIS using the MOVEA operation code.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
123456789012345678901234567890123456789012345678901234567890123456789012345678~0

FARRFILE IT F 80 EDI SK
E ARRFILE ARR20 5 50 4

ARR15 50 4 E
c HOVEAARR20 ARR15

ZK-4444-85

11.9 Updating Arrays

To change the contents of an element in a compile-time array, or to add
new elements to a compile-time array, edit the source program containing
the artay data, and then recompile the program.

To change the contents of an element in a preexecution-time array, or to
add new elements to such an array, edit the table input file that contains
the array.

You can make temporary changes in arrays during program execution by
using the array name as a result field. You can make these temporary
changes permanent by writing the array to an output file that you can use
later as an input file.

The following example describes the array COSTL, which consists of
six-digit overpunched numeric data with two decimal places. This array is
read from the file ARRAYIN. During program execution, changes can be
made to this array. At the completion of the program, the array will be
written to the output file ARRAYOUT. The format in which it is written
is the same as that in which it was read, that is, eight entries in each
record with each entry being a six-digit overpunched numeric data type
with two decimal positions. The files ARRAYIN and ARRAYOUT must
also be described on File Description specifications as an input table file
(ARRAYIN) and an output table file (ARRAYOUT).

11-22 Using Arrays

E

Fro111
file
na111e
I
I

To
file
na111e
I
I

------r = For111at <PB>
I -----D = Deci111al positions
I I ----S = Sequence <AD>
111
I I I Alternating table or arra~

Table EntEnt Lenll lna111e Len
or perin of fl II of r
arra~ RecTbl Ent I DI I Ent ID
na111e I I I I I SI I I I S
I I I I II II I I I I+-- Co111111ents ---+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

···· * * *--*---*--****
E ARRAYIN ARRAYOUTCOSTL 8 100 6 2

ZK-4445-85

11. 10 Outputting Arrays

You can output either an entire array or individual array elements. To out
put entire arrays, you can make entries either in an Extension specification
or in an Output specification.

To write a compile-time or preexecution-time array using an Extension
specification, you must make the following entry:

• Columns 19 through 26 (to file name)-specify the name of a se
quential output file. This file must have been previously defined in a
File Description specification. The program automatically writes the
compile-time or preexecution-time array you specified in the Extension
specification to this output file after reaching the end of the program.

To write a compile-time, preexecution-time, or execution-time array using
an Output specification, you must make the following entries:

•

•

Columns 32 through 37 (field name)-specify the name of the array
you want to write. The array is written every time the program
processes a record unless you specify indicators in columns 23 through
31 of the Output specification.

Columns 40 through 43 (end position)-specify the character position
where the last entry of the array ends.

Using Arrays 11-23

In the following example, for each record read from FILEA, the executiori
time array DISCNT is written out to the file FILEB using Output specifica
tions:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

E COSTLIST PRICE 5 10 5 2
E
IFILEA
I
c 01
OFILEB
0
0
0
0
0

DISCNT 10 5 2
AA 01

1 22PERCNT
PRICE HULT PERCNT DISCNT

I> 1 01
60 'COST WITH DISCOUNT or ,

PERCNT3 72
74 '%'

D 1 01
DISCNT 120 , $0.

ZK-4446-85

To output an individual array element, specify the array and the index of
the desired element (in the form ARR,n, where n is either a constant or a
field name) in columns 32 through 37 (field name).

The following example outputs only the first and second elements of array
DSCT:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

E COSTLIST PRICE 5 10 5 2
E DSCT 10 5 2
IrILEA AA 01
I 1 22PERCNT
c 01 PRICE HULT PERCNT DSCT
OFILEB D 1 01
0 20 'ITEM 1 COST: '
0 DSCT,1 32 , $0.
0 50 'ITEM 2 COST: '
0 DSCT,2 62 , $0.

ZK-4447-85

11-24 Using Arrays

If you want to output numeric array elements, you can use edit codes or
edit words to add commas or dollar signs, or to suppress leading zeros.
Do not use edit codes or edit words to modify array data if you are going
to use the data as input to subsequent programs.

When you specify an edit code with an entire array (nonindexed),
VAX RPG II automatically inserts two spaces between elements of the
array in the output record.

Using Arrays 11-25

Chapter 12

Calling System Routines from VAX RPG II

This chapter describes the use of VAX RPG II operation codes to access
VAX/VMS Run-Time Library (RTL) routines, system services, utilities
(such as the VAX Forms Management System (VAX FMS) and the
VAX Terminal Data Management System (TOMS)), and subprograms
written in languages other than VAX RPG 111

• You can access these
routines by using the following VAX RPG II operation codes:

• CALL operation code-invokes the routine
• PUST operation code-defines the parameter list, if used

• PARM, PARMD, and PARMV operation codes-determine the
parameter-passing mechanism.

• GIVNG operation code-receives a function value or return status
• EXTRN operation code-defines a VAX RPG II name for an external

symbol name

See Chapter 16 for more information on these operation codes.

Although calling VAX/VMS Run-Time Library routines, system services,
utilities, and subprograms can provide many advantages, you should note
the following:

• Do not call these routines if you can perform the task using
VAX RPG II.

• Do not mix VAX/VMS Run-Time Library and VAX RPG II output
routines.

1 There are no VAX RPG II subprograms. VAX RPG II modules cannot be called from VAX RPG II or any
other language.

Calling System Routines from VAX RPG II 12-1

• If a VAX/VMS Run-Time Library routine and a system service perform
the same task, use the VAX/VMS Run-Time Library routine.

System routines are subroutines and functions provided by the VAX/VMS
operating system. Each system routine has an entry point (the routine or
service name) and an argument list. Each system routine may also return
a function value or condition value to the program that calls it.

System routines perform common tasks, such as finding the square
root of a number or allocating virtual memory. If you use system rou
tines, you will not have to rewrite code every time you want to perform
a common task. Using system routines allows you to concentrate on
application-specific tasks, not utility tasks. Some system routines even
help independent parts of programs allocate resources cooperatively.

A system routine can be called from any VAX/VMS language if that
language supports the data structures required by the particular routine.
The results of a system routine will be the same, no matter what language
you use.

The system routines that are most commonly called from user programs
are VAX/VMS Run-Time Library routines and system services. These
system routines are documented in the VAX/VMS Run-Time Library
Routines Reference Manual and the VAX/VMS System Services Reference
Manual.

12. 1 Run-Time Library Routines

The VAX/VMS Run-Time Library routines are assigned facility names that
represent specific types of common tasks. These facilities and the types of
tasks they perform are shown in Table 12-1.

12-2 Calling System Routines from VAX RPG II

Table 12-1: VAX/VMS Run-Time Library Facilities
Facility

LIB$

MTH$

OTS$

SMG$

STR$

Tasks Performed

General purpose procedures that obtain records from devices, manip
ulate strings, convert data types for 1/0, allocate resources, obtain fhe
system date or time, signal exceptions, establish condition handlers,
enable detection of hardware exceptions, and process cross-reference
data.

Mathematics procedures that perform arithmetic, algebraic, and
trigonometric calculations.

Language-independent support procedures that perform tasks such as
data type conversions as part of a compiler's generated code.

Screen management procedures that assist you in designing, compos
ing, and keeping track of complex images on a video screen and that
provide terminal-independent tasks.

String manipulation procedures that perform tasks such as searching
for substrings, concatenating strings, and prefixing and appending
strings.

12.2 System Services Routines

The VAX/VMS system services are routines that perform various tasks
such as controlling processes, communicating among processes, and
coordinating I/ 0.

Unlike VAX/VMS Run-Time Library routines, which are grouped by
facility name, all system services share the same facility prefix (SYS$).
However, these services are logically divided into groups of services that
perform similar tasks. Table 12-2 describes these groups.

Table 12-2: Groups of VAX/VMS System Services
Group

AST

Change Mode

Condition Handling

Tasks Performed

Allows processes to control the handling of
AS Ts

Changes the access mode of particular routines

Designates condition handlers for special
purposes

Calling System Routines from VAX RPG II 12-3

Table 12-2 (Cont.): Groups of VAX/VMS System Services
Group Tasks Performed

Event Flag Clears, sets, reads, and waits for event flags,
and associates with event flag clusters

Information Returns information about the system, queues,
jobs, processes, locks, and devices

Input/Output Performs 1/0 directly, without using VAX RMS

Lock Management Enables processes to coordinate access to
shareable system resources

Logical Names Provides methods of accessing and maintaining
pairs of character string logical names and
equivalence names

Memory Management Increases or decreases available virtual memory,
controls paging and swapping, and creates and
accesses shareable files of code or data

Process Control Creates, deletes, and controls execution of
processes

Security Enhances the security of VAX/VMS systems

Timer and Time Schedules events; obtains and formats binary
Conversion time values

12.3 Procedure for Calling System Routines

Seven steps are required to call any system routine:

1. Declare the system routine

2. Determine the type of call (function or procedure)

3. Declare the arguments

4. Include symbol definitions (if applicable)

5. Call the routine or service

6. Check the condition value (if applicable)

7. Locate the result

12-4 Calling System Routines from VAX RPG 11

In the following sections, you can follow these steps in writing a program
to call the VAX/VMS Run-time Library routine LIB$STAT_ TIMER. This
system routine returns one of five statistics: (1) elapsed time, (2) CPU
time, (3) buffered 1/0 count, (4) direct 1/0 count, or (5) page fault count.

12.3.1 Declare the System Routine

Declare a system routine in your program as you declare any other
external routine. The declaration statement will vary depending on
whether the system routine is being called as a function or procedure.

The routine declaration statement for calling LIB$STAT_TIMER as a
function should appear as follows:

field length
Contra 1 1eve1 • I Deci~al positions

I !Half adjust <H> I
I
I
I
I

Cl

Indicators
I
I factor
I 1
NxxNxxNxxl

Operation
I
I
I
I

factor
2
I

I II
I llResulting

Result I I I indicators
field I I I+ - 0
I I I I> < = +- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * c
c
c
c
c

* STATIM
* * * f--*** * * *
EXTRN'LIB$STAT_TIMER'
CALL STATIH
PARM
PARM
GIVNG

CODE
VALUE
RETVAL

90 RL
90 WL

ZK-4638-85

Calling System Routines from VAX RPG II 12-5

The routine declaration statement for calling LIB$STAT_TIMER as a
procedure should appear as follows:

Centro l level
I
I Indicators
I I
I I F'actor
I I 1

Operation

F'actor
2

F'ield length
I Deci~al positions
I IHalf adjust <H>
I II
I 11 Resulting

Result I I I indicators
field I II+ - 0

C I NxxNxxNxx I

I
I
I
I I I I II><=+- Com~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * c
c
c
c

* STATIM
* * * *--*** * * *
EXTRN'LIB$STAT_TIMER'
CALL STATIM
PARM CODE 90 RL
PARM VALUE 90 WL

ZK-4639-85

12.3.2 Determine the Type of Call (Function or Procedure)

Before you can call a system routine or service, you must determine
whether the call should be a function call or a procedure call by referring
to the Returns section of the system routine documentation.

A system routine must be called as a functlon if it returns a condi-
tion value or a function value. For example, the Returns section of the
LIB$5TAT_TIMER system routine documentation contains the following
description:

RETURNS
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Because the LIB$STAT_TIMER system routine returns a condition value,
you must call it as a function.

NOTE

To call a system routine as a function in VAX RPG II, you must
use the GIVNG operation code.

12-6 Calling System Routines from VAX RPG II

You can call many system routines as procedures, if you choose not to
refer to the condition code. This is highly discouraged because it can lead
to many undiscovered errors. (Checking condition values is described in
Section 12.3.6.) DIGITAL recommends that you call a system routine as a
procedure only if it does not return a condition value or a function value.
In this case, the Returns section of the system routine documentation
contains the following description:

RETURNS
None

12.3.3 Declare the Arguments

Most system routines have one or more arguments that you can use to
pass information to the system routine and to obtain information from the
system routine. Arguments can be required or optional.

For example, consider the arguments for the VAX/VMS Run-Time Library
routine LIB$STAT_TIMER. This routine has three arguments; two are
required and on~ is optional. You can determine which arguments are
required by looking at the Format section of the system routine documen
tation. In the case of LIB$STAT_TIMER, the format is as follows:

LIB$STAT_TIMER code ,value [,handle-adr]

The handle-adr argument appears in brackets ([]), indicating that it is
an optional argument. Optional arguments to a system routine appear in
brackets in that routine's Format section. For this example, you want to
declare only the two required arguments, code and value.

To declare an argument for a system routine, first check that argument's
description in the system routine documentation. The argument descrip
tion for the code argument is as follows:

code

VMS Usage: function_code
type: longword integer (signed)
access: read only
mechanism: by reference

The code argument contains the address of a signed longword, and that is
the statistic returned by LIB$STAT_TIMER. The signed longword must be
an integer from one to five.

Calling System Routines from VAX RPG II 12-7

The VMS Usage function_code indicates that the data type returned by
the routine is dependent on other factors. Table 12-3 lists the
VAX RPG II equivalent for each of the VAX/VMS Usages. You can declare
the argument using the code provided in Table 12-3.

The following example shows that the parameter contained in the field
CODE of the code argument is passed by reference:

Field length
Control level
I

I Deci~al positions
I IHalf adjust <H>
I 11 I Indicators

I I
Operation
I
I
I
I

I 11 Resulting
Resultl llindicators
field I II+ - 0

I I Factor Factor
2 I I 1

Cl NxxNxxNxxl I I I II><~+- Co~~ents --+
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** * c * * *' * . *--*** * * *

PARM CODE 90 RL

For more information on parameter-passing mechanisms, see
Section 12.3.3.1.

ZK-4630-85

The procedure used in declaring the code argument is also used in declar
ing the value argument. First, check the argument description for ~he
value argument: ·

value

VMS Usage: varying_arg
type: unspecified
access: write only
mechanism: by reference

The value argument contains the address of a longword or quadword,
and that is the statistic returned by LIB$STAT_TIMER. All statistics are
longword integers except elapsed time, which is a quadword.

The VMS Usage varyin~rg indicates that the data type returned by the
routine is dependent on other factors. In this case, the data type returned
is dependent. on the statistic you want to re~rn. For this example, the
statistic that you want to return is code 5, page fault count. This statistic
is returned in a signed longword integer. Therefore, you need to check
Table 12-3 to find the VAX RPG II statements that are used to declare a
longword-signed data structure.

12-8 Calling System Routines from VAX RPG II

The declaration statements for all VAX/VMS routines and system ser
vices arguments can be found by looking up the VAX/VMS Usage in
Table 12-3.

Table 12-3: VAX/VMS Data Structures
VAX/VMS Data Structure

access_bit_names

access_mode

address

address_range

arg__list

ast_procedure

boolean

byte__signed

byte_unsigned

channel

char__string

complex__number

concLvalue

context

date_time

device_name

ef_cluster__name

ef_number

exiLhandler_block

VAX RPG II Implementation

NA

Declare as text string of one byte. When
using this data structure, you must
interpret the ASCII contents of the string
to determine the access_mode.
L1

Ql

NA
Ll

NA

Declare as text string of one byte. When
using this data structure, you must
interpret the ASCII contents of the string.

Same as for byte__signed.1

wi
TEXT STRING

DATA STRUCTURE

condvalue GIVNG OPCODE
Columns 43 through 58
L1

Ql

TEXT STRING

TEXT STRING
Ll

DATA STRUCTURE

1 VAX RPG II does not typically support unsigned data structures. However, unsigned information
may be passed using the signed equivalent, if the contents do not exceed the range of the signed
data type.

Calling System Routines from VAX RPG II 12-9

Table 12-3 (Cont.): VAX/VMS Data Structures
VAX/VMS Data Structure

fab

file-protection

floating_point

function_code

io_status_block

item-1isL2

item-1isL3

item_quota-1ist

lock_id

- lock_status_block

lock_value_block

logical_name

longword_signed

longword_unsigned

mask_byte

mask-1ongword

mask_quadword

mask_word

nulLarg

octaword_signed

octaword_unsigned

page-protection

procedure

process_id

VAX RPG II Implementation

Generated implicitly by the compiler on
your behalf. It is not possible for a user
to access the fab data structure from a
VAX RPG II program.
wt
For D
Column 55

F

Q

DATA STRUCTURE

DATA STRUCTURE

NA
Lt

DATA STRUCTURE

DATA STRUCTURE

TEXT STRING

L
Lt

NA
Lt
Qt

wt
NA

DATA STRUCTURE

DATA STRUCTURE
Lt
Lt

Lt

t VAX RPG II does not typically support unsigned data structures. However, unsigned information
may be passed using the signed equivalent, if the contents do not exceed the range of the signed
data type.

12-10 Calling System Routines from VAX RPG II

Table 12-3 (Cont.): VAX/VMS Data Structures
VAX/VMS Data Structure

process_name

quadworcLsigned

quadword_unsigned

rights_holder

rights_id

rab

section_id

section_name

system_access_id

time_name

uic

user_arg

varying_arg

vector_byte_signed

vector_byte_unsigned

vector-1ongworcLsigned

vector-1ongworcLunsigned

vector_quadworcLsigned

vector_quadword_unsigned

vector_ worcLsigned

vector_ word_unsigned

worcLsigned

word_unsigned

VAX RPG II Implementation

TEXT STRING

Q

Ql

Ql

Ll

NA

Ql

TEXT STRING

Ql

TEXT STRING

Ll

Ll

Dependent upon application.

ARRAY OF CHARACTER STRING

ARRAY OF CHARACTER STRING1

ARRAY OF LONGWORD INTEGER
(SIGNED) L

ARRAY OF LONGWORD INTEGER L1

NA

NA

ARRAY OF WORD INTEGER (SIGNED)
w
ARRAY OF WORD INTEGER W1

w
wi

1VAX RPG II does not typically support unsigned data structures. However, unsigned information
may be passed using the signed equivalent, if the contents do not exceed the range of the signed
data type.

Calling System Routines from VAX RPG II 12-11

12.3.3.1 Parameter-Passing Mechanisms

This section describes conventions for passing arguments in YAX RPG II
programs.

A calling program can pass a parameter in one of three ways:

• By value-the P ARMY operation code passes a parameter by value.

• By reference-the PARM operation code passes a parameter by
reference.

• By descriptor-the P ARMD operation code passes a parameter by
descriptor.

When the P ARMY operation code passes a parameter by value, the
parameter list contains the actual, uninterpreted 32-bit value of the
parameter.

In the following example, the constant 0 is passed by value:

Field length
Control level
I

I Deci~al positions
I IHalf adjust <Hl

I Indicators
I I

Operation
I
I
I
I

I 11
I I !Resulting

Resultl llindicators
field I I I+ - 0

I I Factor Factor
2 I I 1

Cl NxxNxxNxxl I I I I I> < = +- Co~~ents --+
0 I 1 I 2 I 3 , I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * c * * * PARHV
*
0 *--*** * * *

ZK-4632-85

When the PARM operation code passes a parameter by reference, the
parameter list contains the address of the location that contains the value
of the parameter. Most languages pass scalar data by reference.

Character data is always passed as a fixed-length string. Numeric data,
by default, is passed as a packed decimal string. When passing a param
eter by reference, you may specify an access type and a data type for
numeric data in columns 54 through 57 of the Calculation specification.
Sections 12.3.3.2 and 12.3.3.3 describe access and data types in detail.

In the following example, the parameter contained in the field TIMLEN is
passed by reference.

12-12 Calling System Routines from VAX RPG II

Centro l level
I
I Indicators
I I
I I Factor
I I 1

C I NxxNxxNxx I

Operation
I
I
I
I

Factor
2
I

Field length
I Decimal positions
I IHalf adjust <H>
I 11
I I I Resu It i ng

Resultl llindicators
fie Id I 11 + - 0
I I I I> < = +- Comments --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * c * * * PARM
* *--*** * * *
TIHLEN 90 WL

ZK-4633-85

When the P ARMD operation code passes a parameter by descriptor, the
parameter list entry contains the address of a descriptor for the parameter.

In the following example, the field TIMBUF containing the parameter
(fixed-length string) is passed by descriptor:

Field length
Centro 1 1eve1
I

I Decimal positions
I IHalf adjust <H>

I Indicators
I I

Operation
I
I
I
I

I 11
I 11Resu1 ting

Resultl I I indicators
fie 1 d I 11 + - 0

I I Factor Factor
2 I I 1

C I NxxNxxNxx I I I I I I> < = +- Comments --+
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** * c * * * PAR HD

* *--*** * * *
TIHBUF 23

ZK-4634·85

In passing the arguments to the procedure, you must declare the passing
mechanism. When passing parameters by descriptor (using the PARMD
operation code), VAX RPG II uses:

• An array descriptor for entire arrays
• A scalar decimal descriptor for numeric data with positions to the right

of the decimal point

• A scalar descriptor for all other data types

Calling System Routines from VAX RPG II 12-13

VAX RPG II passes parameters in a scalar format, unless the parameter is
an entire array.

The passing mechanism required for a system routine argument is in
dicated in the argument description. This is shown in the following
description of the one-char-str argument to LIB$CHAR:

one-char-str

VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

In this case, the required passing mechanism is by descriptor. The
passing mechanisms allowed in system routines are those listed in the
VAX Procedure Calling and Condition Handling Standard section of the
Introduction to VAX/VMS System Routines.

NOTE

Any passing mechanisms not described in this section are
unsupported in VAX RPG II. If a system routine requires a
passing mechanism not described in this section, it is not
possible to call that routine directly from VAX RPG II.

You are required to specify the passing mechanism, as shown in the
following example, where the PARM operation codes indicate that both
CODE and VALUE are being passed by reference:

Field length
Control 1eve1 I Deci~al positions

I IHalf adjust <H> I .
I Indicators
I I
I I Factor
I I 1

Operation

Factor
2

I 11
I llResulting

Resultl I I indicators
field I I I+ - 0

C I NxxNxxNxx I .

I
I
I
I I I I I I> < = +- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * c
c
c
c
c

* STATIH
* * * *--*** * * *
EXTRN'LIB$STAT_TIHER'
CALL STATIM
PARM
PARM
GIVNG

CODE
VALUE
RETSTA

90 RL
90 WL

12-14 Calling System Routines from VAX RPG II

ZK-4643-85

12.3.3.2 Parameter Access Types (Column 54)

The parameter access type indicates the actions that the VAX/VMS Run
Time Library routine is permitted to perform on the parameter. Access
types that you can use in VAX RPG II are as follows:

• Read-only (R)-the parameter can only be read.

• Write-only (W)-the parameter can only be written.
• Modify (M)-the parameter can be modified (read and written).

You can specify the parameter access type and data type with the PARM
operation code. If you specify a parameter access type, you must also
specify its data type.

In the following example, the TIMLEN field is a longword integer (column
55) with write-only access (column 54):

Field length
Control level
I

I Deci~al positions
I IHalf adJust CH>

I Indicators
I I
I I Factor
I I 1

Operation

Factor
2

I II
I I IResulting

Resultl llindicators
fie 1 d I 11 + - 0

Cl NxxNxxNxxl

I
I
I
I I I I I I> < ~ +- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * c * * * PARM
* *--*** * * *
TIMLEN 90 WL

ZK-4635-85

12.3.3.3 Parameter Data Types (Columns 55 through 57)

If you specify a parameter access type, you must also specify its data type.
The following parameter data types can be passed from a VAX RPG II
program to a VAX/VMS Run-Time Library routine:

• Word integer (W)-signed

• Longword integer (L)-signed
• Quadword integer (Q)-signed

• F...Jloating single-precision (F)

• D_floating double precision (D)

Calling System Routines from VAX RPG II 12-15

• Numeric string, right overpunched sign (NRO)
• Packed decimal string-default data type for numeric data

• Character string-default data type for character data

Define the parameter data type in columns 55 through 57 of the
Calculation specification. You can specify a data type only for numeric
fields passed by reference.

In the following example, the data type of the numeric field TIMLEN is a
right overpunched sign (NRO):

rield length
Control level
I

I Deci~al positions
I IHalf adjust <H>

I Indicators
I I

Operation
I
I
I
I

I 11
I I I Resulting

Result! I I indicators
field I I I+ - 0

I I Factor Factor
2 I I 1

Cl NxxNxxNxxl I I I I I> < =.+- (o~~ents --+
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * c * * *
PARM

* *--*** * * *
TIMLEN MNRO

ZK-4637-85

12.3.4 Include Symbol Definitions

Many system routines require values that are defined in separate symbol
definition files. For example, when you call any VAX/VMS Run-Time
Library routine in the VAX Screen Management (VAX SMC$) facility, you
must include the file SMCDEF.

VAX/VMS Run-Time Library routines require you to include symbol
definitions when you call a VAX Screen Management (VAX SMC$)
routine, or a routine that is a jacket to a system service. (A jacket routine
provides a simpler, more easily used interface to a system service.)

All system services routines require you to include the file System Services
Definition File (SSDEF) to check status. Many system services require
other symbol definitions as well. To determine whether you need to
include other symbol definitions for the system service you wish to
call, refer to the documentation for that service. For example, if the

12-16 Calling System Routines from VAX RPG II

documentation states that values are defined in the foobar macro, you
must include those symbol definitions in your program.

In VAX RPG II, a definition macro is included as follows:

$CREATE SMGDEF.MAR
.TITLE SMGDEF - Define SMG$ constants
$SMGDEF GLOBAL
.END

$ MACRO SMGDEF
$ LINK RPGPROG,SMGDEF

The LIB$STAT_TIMER system routine does not use any included defini
tion files, so this step is not applicable for this example.

12.3.5 Call the Routine or Service

The call to a VAX/VMS Run-Time Library routine or system service is set
up as an external call in VAX RPG II. The syntax of the CALL statement
will depend on whether the call is a function call or a procedure call.

12.3.5. 1 Calling a System Routine as a Function Call

Call a system routine as a function call according to the format section in
the routine or service description. For example, the format for
LIB$STAT_TIMER is as follows:

LIB$STAT_TIMER code ,value [,handle-adr]

In a format statement, an optional argument can appear in one of two
ways:

• [,optional-argument]
• ,[optional-argument]

In general, VAX/VMS Run-Time Library routines use the format
[,optional-argument]. If the comma appears inside the brackets
([,optional-argument]), you can omit the optional argument if it is the last
argument in the list. For example, look at the optional arguments of an
imaginary routine, LIB$EXAMPLE-ROUTINE:

LIB$EXAMPLE_ROUTINE arg1 [, arg2] [, arg3] [, arg4]

Calling System Routines from VAX RPG II 12-17

You can omit all of the optional arguments without using a placeholder,
as shown in the following example:

Contra 1 1eve1
I
I Indicators
I I
I I Factor
I I 1

Cl NxxNxxNxxl

Operation
I
I
I
I

Factor
2
I

Field length
I Decimal positions
I !Half adjust <H>
I II
I I !Resulting

Result I I I indicators
field I I I+ - 0
I I I I> < = +- Comments --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * c
c
c
c

* LIBEXA
* * * *--*** * * *
EXTRN'LIB$EXAMPLE_ROUTINE'
CALL LIBEXA
PARM ARG1
GIVNG RETSTA

ZK-4640-85

However, if you omit an optional argument in the middle of the argument
list, you must insert a placeholder, as shown in the following example:

Contra 1 1eve1
I
I Indicators
I I
I I Factor
I I 1

Cl NxxNxxNxxl

Operation
I
I
I
I

Factor
2
I

Field length
I Decimal positions
I !Half adjust <H>
I 11
I I !Resulting

Result I I I indicators
field I 11+ - 0
I I I I> < = +- Comments --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * c
c
c
c
c
c

* LIBEXA
* * * *--*** * * *
EXTRN'LIB$EXAMPLE_ROUTINE'
CALL LIBEXA
PARM
PARMV
PARM
GIVNG

ARG1
0
ARG3
RETSTA

12-18 Calling System Routines from VAX RPG II

ZK-4641-85

Calling the system routine LIB$EXAMPLE-ROUTINE as a function call
using all optional arguments would appear as in the following example:

Contra 1 1 eve I
I
I Indicators
I I
I I ractor
I I 1

Operation

ractor
2

rield length
I Deci~al positions
I !Half adjust <H>
I II
I 11 Resulting

Result! llindicators
field I II+ - 0

C I NxxNxxNxx I

I
I
I
I I I I II><=+- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

II I
c

I

LIBEXA
I I I 1--111 I I *
EXTRN'LIB$EXAMPLE_ROUTINE'

c
c
c
c
c

CALL LIBEXA
PARM
PARM
PARM
GIVNG

ARG1
ARG2
ARG3
RETSTA

ZK-4642-85

In general, VAX/VMS system services use the format ,[optional-argument].
If the comma appears outside the brackets (,[optional-argument]), you must
pass a zero by value. In the following example, the constant 0 is passed
by value:

Contra 1 1eve1
I
I Indicators
I I
I I ractor
I I 1

C I NxxNxxNxx I

Operation
I
I
I
I

ractor
2
I

rield length
I Deci~al positions
I IHalf adjust <H>
I 11
I I I Resulting

Result! I I indicators
field I II+ - 0
I I II><=+- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * c * * * PARMV * 0
1--H* * * *

ZK-4636-85

Calling System Routines from VAX RPG II 12-19

12.3.5.2 Calling a System Routine as a Procedure Call

If the routine or service you are calling does not return a function value
or condition value, you may call the system routine as a procedure. The
same rules apply to optional arguments, and you should still follow the
calling sequence presented in the Format section of the routine or service
description.

One system routine that does not return a condition value or func
tion value is the VAX/VMS Run-Time Library routine LIB$SIGNAL.
LIB$SIGNAL should always be called as a procedure, as shown in the
following example:

Contra 1 1eve1
I
I Indicators
I I
I I ractor
I I 1

Operation

ractor
2

rield length
I Deci~al positions
I !Half adjust <H>
I II
I I I Resulting

Result! I I indicators
field I II+ - 0

C I NxxNxxNxx I

I
I
I
I I I I II><=+- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * c
c
c

* SIGNAL
* * * *--*** * * *
EXTRN'LIB$SIGNAL'
CALL SIGNAL
PARHV CODE 90

ZK-4644-85

12.3.8 Check the Condition Value

After you call the system routine and control is returned to your program,
you should check the condition value returned (if there is one). In general,
all system routines return a condition value with the following exceptions:

• The system routine returns a function value.
• The system routine has no condition values.

• The system routine has no condition values returned, but rather, has
condition values signaled. (Success conditions are not signaled;)

• The call to the routine was made as a procedure call.

These exceptions are described in the Returns, Condition Values Returned,
or Condition Values Signaled section of the system routine documentation.

12-20 Calling System Routines from VAX RPG II

If there is a condition value, you must check this value to make sure
that it indicates success. All success condition values are described in the
Condition Values Returned section of the system routine documentation.
Success condition values always appear first in this list.

Many system routines return the condition value SS$_NORMAL as a
success value. If this is the only possible success condition, you can test
for its presence, as shown in the following example: ·

Contra 1 1eve1
I
I Indicators
I I
I I Factor
I I 1

Operation

Factor
2

Field length
I Deci~al positions
I !Half adjust <H>
I II
I I !Resulting

Resu 1 t I 11 indicators
field I II+ - 0

C I. NxxNxxNxx I

I
I
I
I I I I I I> < ~ +- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * * * * * *--*** * * *
c SSNORM EXTRN'SS$_NORMAL'
c STATIM EXTRN'LIB$STAT_TIMER'
c CALL STATIM
c PARM CODE 90 RL
c PARM VALUE 90 WL
c GIVNG RETSTA
c SSNORM COMP RETSTA 01
c STOP EXTRN'LIB$STOP'
c N01 CALL STOP
c PARMV RETSTA 90 RL

ZK-4645-85

I

Calling System Routines from VAX RPG II 12-21

It is also possible to check for any success code because all success codes
have an odd value {not evenly divisible by 2). The following example
program segment will continue execution if any success code is returned.
The call to STATIM is conditioned by an indicator which will be set off if
any success code is returned.

Control level
I
I Indicators
I I
I I Factor
I I 1

Operation

Factor
2

Field length
I Deci~al positions
I IHalf adjust <H>
I II
I ilResulting

Resultl llindicators
field I II+ - 0

Cl NxxNxxNxxl

I
I
I
I I I I II><=+- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * * * * * *--*** * * * c STATIM EXTRN'LIBSSTAT_TIMER'
c CALL STATIM 01
c PARM CODE 90 RL
c PARM VALUE 90 IJL
c GIVNG RETSTA
c STOP EXTRN'LIBSSTOP'
c 01 CALL STOP
c PARMV RETSTA 90 RL

ZK-4646-85

12-22 Calling System Routines from VAX RPG II

When several success condition values are possible, you can continue exe
cution on specific success codes. For example, the system service $SETEF
returns one of two success values, SS$_WASSET or SS$_WASCLR. If you
want to continue when the success code SS$_WASSET is returned, you
can check for this condition value as follows:

Control level
I
I Indicators
I I
I I Factor
I I 1

Operation

Factor
2

Field length
I Decimal positions
I !Half adjust <H>
I II
I I !Resulting

Result I I I indicators
field I II+ - 0

C I NxxNxxNxx I

I
I
I
I I I I I I> < = +- Comments --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** *
c
c
c
c
c
c

* SETEF

lJASSET
lJASSET

* * * ·--*** * * *
EXTRN'SYS$SETEF'
CALL SETEF
PARM EFN RL
GIVNG RETSTA
EXTRN'SS$_lJASSET'
COMP RETSTA 01

ZK-4647-85

If indicator 01 is on, then SS$_WASSET was returned by the call.

If the condition value returned is not a success condition, then the routine
did not complete normally and the information it was to return may be
missing, incomplete, or incorrect.

Calling System Routines from VAX RPG II 12-23

lf the .condition value returned was not a success code, you can check for
a particular error condition, as shown in the following example:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * * * * * *--*** * * *
c HOVE 'Input: ' PRHSTR 7
c RHSEOF EXTRN' RHS$_EOF'.
c GETINP EXTRN'LIB$GET_INPUT'
c CALL GETINP 02
c PARHi> INPSTR255
c PAR HD PRHSTR
c PARM INPLEN WW
c GIVNG RETVAL
c 02 'Error' DSPLYTTY
c 02 RHSEOF COMP RETVAL 03
c 03 ' EOF' DSPLYTTY

ZK-4648-85

12.3. 7 Lacate the Result

After you have declared the arguments, called the routine, and checked
the condition value, you are ready to use the result. To find out where
the result is returned, look at the description of the system routine you are
calling.

12.3.7.1 Function Results

Ifthe system routine is called as a function, the result is written into the
variable in factor 2 of the GIVNG operation code.

For. example, in the call to MTH$ACOS in the following example, the
result is written into the variable RESULT:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * c
c
c
c

* ACOS
* * * *--*** * * *
EXTRN'HTH$ACOS'
CALL ACOS
PARM COS RF
GIVNG RESULT

12-24 Calling System Routines from VAX RPG II

ZK-4649-85

This result is described in the Returns section of the system routine
description.

12.3. 7 .2 Procedure Results

if the system routine is called as a procedure, the result is written into
one or more of the arguments. To determine which argiurient holds the
result, examine the access entry in each of the argument descriptions. If
the access entry in an argument description is "write-only" or "modify",
that argument contains output information written by the procedure.

For example, LIB$CURRENCY returns the default system currency symbol
($). The following argument description shows that the currency string is
returned in the currency_sfr argument:

currency_str

VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

In ali system routines, the output information returned by the routine or
service has an access of "write-only" or "modify".

12.4 Examples of Calling VAX/VMS Run-Time Library Routines

The following examples demonstrate calls to VAX/VMS Run-Time Library
routines from VAX RPG II programs.

You cannot call all VAX/VMS Run-Time Library routines because
VAX RPG II cannot supply some types of parameters, such as addresses.
See the VAX/VMS Run-Time Library Routines Reference Manual for infor
mation on all VAX/VMS Run-Time Library routines and the parameters
they require.

Calling System Routines from VAX RPG II 12-25

The following example shows a call to the STR$UPCASE routine to
change the lowercase string to uppercase letters. This routine requires two
parameters: (1) the source string, and (2) the destination string. Both the
source string HEAD and the destination string RESULT must be passed by
descriptor, so the P ARMD operation code is used.

Because the name of this VAX/VMS Run-Time Library routine is longer
than eight characters, the EXTRN operation code is used to refer to
STR$UPCASE as UPCASE.

Control level
I
I Indicators
I I
I I Factor
I I 1

Operation

Factor
2

Field length
I Deci~al positions
I !Half adjust <H>
I II
I llResulting

Result I I I indicators
field I II+ - 0

C I NxxNxxNxx I

I
I
I
I I I I II><=+- Comments--+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * c
c
c
c
c

I I * I 1--111 I I I
HOVE 'rep head'HEAD 8

UPC ASE EXTRN'STR$UPCASE'
CALL UPCASE
PARHD RESULT 8
PAR HD HEAD

ZK-4650·85

The following example calls the LIB$SET_SYMBOL routine to redefine
the Command Language Interpreter (CLI) symbol MY_pARAMETER to
be the string OFF. This routine requires two parameters to be passed by
descriptor: (1) the symbol to be defined, and (2) the value to be given

12-26 Calling System Routines from VAX RPG II

to the symbol. Line 220 moves the string OFF (the value to be given to
the symbol) to the field SETVAL. Line 230 assigns a five-character name,
STSYM, to this routine name. Lines 240 and 250 assign the 12-character
string MYJ ARAMETER to the field SYMBL, the symbol to be defined.
Line 260 invokes this routine. Lines 270 and 280 pass the two parameters
to the routine.

Contra l level
I
I Indicators
I I
I I factor
I I 1

Operation
I
I
I

factor
2

field length
I Deci~al positions
I !Half adjust <H>
I II
I I I Resulting

Resultl I I indicators
field I II+ - 0

Cl NxxNxxNxxl . I I I I II><=+- Co~~e~ts --+
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * 220C
230C
240C
250C
260C
270C
280C

*
STSYM

* * * *--*** * * *
MOVE 'Off' SETVAL 3
EXTRN'LIB$SET_SYMBOL'
MOVE 'METER' SYMBL 12
MOVEL'MY_PARA' SYMBL
CALL STSYM
PAR MD SYMBL
PAR MD SETVAL

ZK-4651-85

The following example calls the LIB$GET--1NPUT routine to ask the user
for input from the terminal screen. This procedure requires three param
eters: (1) the input text INPSTR (passed by descriptor) from the screen,
(2) the prompt string PRMSTR (passed by descriptor) that is displayed
before accepting input, and (3) the number of characters INPLEN (passed
by reference) that are written to the input text. Also, this example des
ignates the field RETVAL to accept the return status (RMS$_EQF is the
VAX/VMS Run-Time Library symbolic constant representing one possible
return status) of the operation. The program uses the EXTRN operation
code to retrieve the value of the symbolic constant representing a return

Calling System Routines from VAX RPG II 12-27

status. If the operation is unsuccessful, indicator 02 is set on and the string
Error is displayed on the screen. If the operation is unsuccessful because
the file is at the end-of-file, the string EOF is also displayed.

Control level
I
I Indicators
I I
I I ractor
I I 1

Operation

ractor
2

rield length
I Deci~al positions
I IHalf adJust <H>
I II
I I I Resulting

Resultl I I indicators
field I II+ - 0

Cl NxxNxxNxxl

I
I
I
I I I I II><=+- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * c
c
c
c
c
c
c
c
c 02
c 02
c 03

* * * * *--*** * ·* * HOVE 'Input: ' PRHSTR 7
RHSEOr EXTRN'RHS$_EOr'
GETINP EXTRN'LIB$GET_INPUT'

CALL GETINP 02
PAR HD INPSTR255
PAR HD PRHSTR
PARH INPLEN IJIJ
GIVNG RETVAL

'Error' DSPLYTTY
RHSEOr COHP RETVAL 03
' EOr' DSPLYTTY

ZK-4652-85

The information provided in this chapter is general to all VAX/VMS Run
Time Library routines and system services. For specific information on
these routines, refer to the VAX/VMS Run-Time Library Routines Reference
Manual and the VAX/VMS System Services Reference Manual.

12.5 Examples of Calling VAX/VMS System Services

Most system services are used primarily by the VAX/VMS operating
system on behalf of users. However, many system services are useful for
application programming.

The use of some system services is restricted to protect system perfor
mance and the integrity of user processes. The privileges and quotas
assigned in the User Authorization File (UAF) determine whether you can
use a restricted system service. These privileges and quotas apply to every
image that your process executes.

12-28 Calling System Routines from VAX RPG II

The following example calls the SYS$ASCTIM system service to obtain
the time. The time is converted from 64-bit system time format to an
ASCII string. This service requires three parameters: (1) the length of the
returned output string TIMLEN (passed by reference), (2) the character
string TIMBUF, to receive the converted time (passed by descriptor), and
(3) the conversion value 0 (passed by value). A conversion value of 1
causes only the hour, minute, second, and hundredth of a second fields
to be returned. A value of 0 causes the full date and time to be returned.
Note that the length of the returned output string must be long enough
to accommodate the data to be returned. Because the TIMLEN parameter
must be a longword, the access type (write-only) and data type (longword
integer) are specified in columns 54 and 55.

If the operation is successful, the date and time (TIMBUF) are displayed
on the screen. If the operation is unsuccessful, indicator 02 is set on.

Control level
I
I Indicators
I I
I I Factor
I I 1

Operation

Factor
2

Field length
I Deci~al positions
I IHalf adjust <H>
I 11
I I !Resulting

Resultl I I indicators
f' ie 1 d I 11 + - 0

Cl NxxNxxNxxl

I
I
I
I I I I II><=+- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
1234567890123456789012345678901234567890123456789012345678901234567890

** * c
c
c
c
c
C N02

CEOBl

* ASCTIH

TIHBUF

* * * *--*** * * *
EXTRN'SYS$ASCTIH'
CALL ASCTIH
PARH
PAR HD
PARHV
DSPLYTTY

TIHLEN
TIHFUF' 23
0

02
WL

ZK-4654-85

The following example calls two VAX/VMS System
Services-SYS$CRELOG and SYS$GETMSG. The VAX/VMS System
Service SYS$CRELOG sets on external indicators 3 and 7 to control the
opening of files in a VAX RPG II program by calling SYS$CRELOG to
define the logical name RPG$EXLJNDS. If the operation is unsuccessful,
BUFFER receives the error message which SYS$GETMSG returns, and the
program displays the error message.

Calling System Routines from VAX RPG II 12-29

This example also demonstrates a method for modifying the external
indicators logical. The effect is that subsequent program runs will have
the appropriate external indicators set on, depending on the value of the
RPG$EXT-1NDS logical. The external indicators in the program example
below are not modified in the currently running program. See Chapter 7
for information on modifying the external indicators in a currently running
program.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FERROR D F
Co+

BO TTY

C* Call SYS$CRELOG to set on the external indicators 3 and 7.
c*--c
c
c
C*
c
c
c
c
c
c
c
CH+

CRELOG

HOVEL'RPG$EXT_'LOGNAH 12
HOVE 'INDS' LOGNAH
HOVE '3,7' STRING 3

EXTRN'SYS$CRELOG'
CALL CRELOG
PARHV
PAR HD
PAR HD
PARHV
GIVNG

1
LOG NAM
STRING
0
RETVAL

C* If the call was not successful,
C* call SYS$GETHSG to get the error text
C*-
C 99
c

CALL GETHSG
PARHV RETVAL 100

c PARM LENGTH 90 WL
c
c
c
c
CH+

GET MSG

PARHD BUFFER BO
PARHV 0
PARMV 0
EXTRN'SYS$GETHSG'

C* Display the error text
C*--
C 99
CH+

BUFFER DSPLYERROR

C* Set on an indicator to end the progra~
C*-
C SETON

12-30 Calling System Routines from VAX RPG II

LR

99

ZK-4655-85

The following example calls a VAX/VMS Run-Time Library routine and
a VAX/VMS system service. The VAX/VMS Run-Time Library routine
LIB$CVTJITB accepts as input an eight-digit hexadecimal value. The
program calls the system service SYS$GETMSG to retrieve the error
message text associated with the condition.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FERROR D r
C*++
Cl Pro~pt ~essage
C*--
C
c
C2
Crl++

HESSAG

80 TTY

HOVE 'x value:'HESSAG 16
HOVEL'Enter ' HESSAG
DSPLYERROR HEX 8

C* Call LIB$CVT_HTB to convert to binar~
C*-
C
c
c
c
c
C1++

CVTHTB

CALL CVTHTB
PARHV 8
PARH HEX
PARH VALUE
EXTRN'Ll8$CVT_HTB'

C* Call SYS$GETHSG to get the error text
C*-
C
c

CALL GETHSG
PARHV VALUE 90

WL

c PARH LENGTH 90 WL
c
c
c
c
C1++

GETHSG

PARHD BUFFER 80
PARHV 0
PARHV 0
EXTRN'SYS$GETHSG'

C* Displa~ the error text
C*-
C
C1++

BUFFER DSPLYERROR

C* Set on an indicator to end the progra~
C*-
C SETON LR

ZK-4656-85

For additional information on coding considerations when using external
routines, see the Introduction to VAX/VMS System Routines and the Guide
to Creating Modular Procedures on VAX/VMS.

Calling System Routines from VAX RPG II 12-31

The Introduction to VAX/VMS System Routines contains the VAX Procedure
Calling and Condition Handling Standard. The VAX/VMS Modular
Programming Standard can be found in Appendix A of the Guide to
Creating Modular Procedures on VAX/VMS.

12.6 Examples of Calling Subprograms

In addition to calling VAX/VMS Run-Time Library routines and system
services, VAX RPG II programs can also call subprograms written in
languages other than VAX RPG II.

The following program calls a VAX COBOL subprogram and a VAX BASIC
subprogram: · · ·

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * C*-- * * * *:--*** * * *
C*++
C* The sa~e para~eter list is used b~ both calls
C*-
C
c
C*++

PARAH PUST
PARM HESSAG 16

C* Call the VAX COBOL progra~
C1-c ·
c
c
Cit++

HOVEL'RPG call'HESSAG
HOVE 'ed COBOL'HESSAG
CALL 'COBOL1' PARAH

C* Call the VAX BASIC progra~
-C*-
c
c
CH+

HOVE 'BASIC' HESSAG
CALL 'BASIC1' PARAH

C* Set on an indicator to end the progra~
c*-c SETON

12-32 Calling System Routines from VAX RPG II

LR

ZK-4657-85

The following example is the VAX COBOL subprogram:

IDENTIFICATION DIVISION.
PROGRAM-ID. COBOL1.
DATA DIVISION.
LINKAGE SECTION.
01 MESSAGE-1 PIC X(16).
PROCEDURE DIVISION USING MESSAGE-1.
PO.

DISPLAY MESSAGE-1.
EXIT PROGRAM.

The following example is the VAX BASIC subprogram.

100 SUB BASIC1 (STRING MESSAGE = 16 BY REF)
200 PRINT MESSAGE
300 END SUB

12. 7 Examples of Screen Handling with System Calls

This section provides examples of VAX RPG II program fragments that
perform screen handling using the VAX Terminal Data Management
System (TOMS), the VAX Forms Management System (FMS), ·the VAX
Screen Management (SMG$), and the CALL statement. Note that access
to a subset of VAX FMS is integrated into the language using WORKSTN
files, making.it unnecessary to use the CALL statement. See Chapter 6 for
details.

VAX TOMS, VAX FMS, and VAX SMG$ are designed to make it easier to -
develop interactive applications. Both VAX TOMS and VAX FMS provide
utilities that let you define all the screen forms outside the VAX RPG II
program. They also let you design forms by typing them directly onto
the terminal screen. An example of a TOMS program is provided in
SYS$EXAMPLES:RPGTDMS.RPG.

The following TOMS examples are part of the complete program example
provided in SYS$EXAMPLES.

NOTE

If you use SYS$EXAMPLES:RPGTDMS.COM and get a TOM~
TSS error that the form display failed, use the OCL command
SET TERMINAL/DEVICE to set the device type (if possible) to
a device supported by TOMS.

Calling System Routines from VAX RPG II 12-33

The following example demonstrates the use of data structures and the
COPY_CDD directive in a VAX RPG II program that calls TOMS. See
Chapter 15 for more information on data structures and the COPY_CDD
directive.

0 I 1 I 2 · I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * *** ·--- ·--- ·--- ·** ___ * ___ ** * * * * * *
!EMPLOYEE 1 88 EMPREC
I
IEMPREC DS
I/CDPY-CDD 'CDD$TOP TDHS$EXAHPLES.EHPLDYEE.EHPLDYEE-RECDRD'

CEOBl

Press the PF2 ke to et hel 1 information

ZK-4669-85

12-34 Calling System Routines from VAX RPG II

The following example demonstrates the use of long character literals
in an VAX RPG II program that calls TOMS. See Chapter 15 for more
information on long character literals.

Control level
I
I Indicators
I I
I I Factor
I I 1

Operation

Factor
2

Field length
I Deci~al positions
I !Half adjust <H>
I 11
I I !Resulting

Result! I I indicators
field I 11 + - 0

C I NxxNxxNxx I

I
I
I
I I I I II><:+- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

II I
c
c
c
c
c
C"

I

REQUES
I I '*
EXTRN'TSS$REQUEST'
CALL REQUES
PARH
PARH
PARHD

CHAN
LIB ID
II

1--111 I I I

99
90 WL
90 WL

'EHPLOYEE_INITIAL_REQUEST'

For further information on VAX TOMS, see the following related
documents:

• VAX TDMS Forms Manual
• VAX TDMS Request and Programming Manual
• VAX TDMS Application Programming Manual
• VAX TDMS Sample Application Manual

ZK-4658-85

Calling System Routines from VAX RPG II 12-35

The following program segment is from a VAX RPG II program that calls
VAX FMS to display a form: '

Contra l level
I
I Indicators
I I
I I factor
I I 1

Operation

factor
2

field length
I Deci~al positions
I IHalf adjust <H>
I 11
I llResulting

Resultl llindicators
field I I I+ ~ 0

CI NxxNxxNxx I

I
I
I
I I I I II><=+- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * c
c
c
c

* f CLRSH
* * * *--*** * * *
EXTRN'rDV$CLRSH'
MOVE 'fIRST I fORMi 6
CALL f CLRSH
PARMD fORMi

ZK-4659-85

For further information on VAX FMS, see Chapter 6 and the VAX FMS
Reference Manual.

Following is. a VAX RPG II program that calls VAX SMG$ routines. This
program displays the word "Menu" beginning on line 2, column 5.

12-36 Calling System Routines from VAX RPG II

Control level
I
I Indicators
I I
I I ractor
I I 1

Cl NxxNxxNxxl

Operation
I
I
I
I

ractor
2
I

rield length
I Deci~al positions
I IHalf adjust <H>
I II
I llResulting

Resultl llindicators
field I II+ - 0
I I I I> < = +- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * * * * * *--*** * * *
c CREPAS EXTRN'SMG$CREATE_PASTEBOARD'
c CREDIS EXTRN'SMG$CREATE_VIRTUAL_DISPLAY'
c PUTCHA EXTRN'SMG$PUT_CHARS'
c PASDIS EXTRN'SMG$PASTE_VIRTUAL_DISPLAY'
c Z-ADDO ZERO 90
c Z-ADD1 LINCOL 90
c Z-ADD2 LINE 90
c Z-ADD5 COLUMN 90
c HOVE 'Menu' OUT 4
C* Create the pasteboard.
c CALL CREPAS
c PARH PASTID 90 WL
c PARMV ZERO
c PARM HEIGHT 90 WL
c PARM WIDTH 90 WL
C* Create the virtual displa~.
c CALL CREDIS
c PARM HEIGHT RL
c PARM WIDTH RL
c PARM DI SP ID 90 WL
C* Output the 'Menu'.
c CALL PUTCHA
c PARM DI SP ID RL
c PAR MD OUT
c PARM LINE RL
c PARM COLUMN RL
C* Paste the virtual displa~.
c CALL PASDIS
c PARM DI SP ID RL
c PARM PASTID RL
c PARM LINCOL RL
c PARM LINCOL RL
c SETON LR

ZK-4668-85

For further information on VAX SMG$ routines, see the VAX/VMS
Run-Time Library Routines Reference Manual.

Calling System Routines from VAX RPG II 12=37

Chapter 13

Optimizing Your Programs

The word uoptimization" as used in this chapter, refers to the process of
improving the efficiency of programs. The objective of optimization is to
produce programs that achieve the greatest amount of processing with the
least amount of time, memory, and secondary storage.

13.1 Optimizing with Data Structures

Using data structures to update files can improve the run-time perfor
mance of your programs. The following example updates a file with a
data structure defined in an Input specification and used in an Output
specification.

Optimizing Your Programs 13-1

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

F"OUT94A UD r 24 DISK
roUT94B UD r 24 DISK
IOUT94A AA
I 1 3 PN
I 4 10 PNAHE
I 11 12 WHOUSE
I 13 17 COLOR
I 18 20 WEIGHT
I 22 2401HY
IOUT94B AA
I 1 24 DS94B
IDS94B DS
I 1 3 PN2
I 4 10 PNAHE2
I 11 12 WHOUS2
I 13 17 COLOR2
I 18 20 .WEIGH2
I 22 240QTY2

OOUT94A E
0 PN 3
0 PNAHE 10
0 WHOUSE 12
0 COLOR 17
0 WEIGHT 20
0 QTY 24
OOUT94B E
0 DS94B 24

ZK-4432-85

Note that the fields to be updated in the Output specification for file
OUT94B are not listed a second time, as they would have to be without
use of a data structure. Because the layout of the fields is described only
once in the data structure, the results are. shorter code and a program less
prone to error. Without a data structure, the fields must be described on
both the Input and Output specifications.

13-2 Optimizing Your Programs

13.2 Optimizing with Adjacent Fields in Records

VAX RPG II extracts adjacent fields from the record buffer with a single
MOVE instruction and writes them back in the same way to save time.
This optimization is performed only if data conversion is unnecessary.
Therefore, you should keep the fields contiguous to avoid requiring
multiple MOVE instructions.

13.3 Optimizing with Blank Factor 1

If you use blank factor 1, you will have less code to write and your
program will be less prone to error because you are not writing the same
factor twice. The following example, which is part of the preceding
example program, demonstrates this technique:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

I 22 240QTY2
C* Read records fro~ update files.
C READ OUT94A LR
C NLR READ OUT94B
C* Update quantit~ to reflect the fact that 100 of each part ca~e in.
C NLR ADD 100 QTY
C NLR ADD 100 QTY2
C* Write the updated records.
C NLR EXCPT

ZK-4433-85

13.4 Optimizing with the Asterisk Indicator

The asterisk indicator (*) is used when you have multiple calculation
specifications that are conditioned by the same indicators. There are two
advantages to using the asterisk indicator. First, it saves you coding time
and reduces errors, because multiple indicators do not have to be repeated
in groups of Calculation specifications that are to be conditioned by the
same indicator. Second, it improves run-time performance.

Optimizing Your Programs 13-3

If you do not use the asterisk indicator, groups of indicators must be tested
on each Calculation specification, even if the same indicators are used to
condition a group of Calculation specifications. With an • in column
11, only a single test for each Calculation specification is needed to test
whether the previous specification was executed.

The • can be used in a similar fashion to condition output records and
output fields.

13.5 Optimizing File Performance

You can control file access and improve file performance through optimiz
ing techniques discussed in this manual and in the Guide to VAX/VMS
File Applications. The following optimizing techniques are discussed in
Chapter 15 of this manual:

• For information on the use of expansion factors to prevent bucket
splitting and to improve search efficiency, see Section 15.3.24.

• For information on file sharing, see Section 15.3.25.

• For information on multibuffer count, see Section 15.3.21.
• For information on longer block length for decreasing 1/0 processing

time, see Section 15.3.9.

• For information on multiblock count, see Section 15.3.14.

For more information on optimizing techniques, the Guide to VAX/VMS
File Applications provides pertinent informqtion on tuning sequential,
relative, and indexed files. That manual also describes optimizing file
performance and processing in a VAXcluster, and offers performance
recommendations.

13-4 Optimizing Your Programs

Language Reference

This part of the manual provides reference information on
the primitives and constructs of VAX RPG II:

• Language elements: ·
• VAX RPG II specifications
• Operation codes

Chapter 14

VAX RPG II Language Elements

This chapter describes the primitives or elements of a VAX RPG II program.
These elements include the character set, the various data types, and the
names that are defined and used to identify program constructs and certain
parts of those constructs.

14. 1 VAX RPG II Character Set

VAX RPG II uses the full ASCII character set, including:

• Uppercase letters A through Z, except for character literals and
comment fields

• Digits 0 through 9

• Special characters (such as#, $, @)

Appendix A contains the complete ASCII character set and character
values.

VAX RPG II Language Elements 14-1

14.2 VAX RPG II Data Ty.pes

VAX RPG II input and output operations use the following data types
that determine how many bits of storage compose a unit of data in a
program, and how that unit is to be interpreted and manipulated at
program execution time.

VAX RPG II supports five different data types for input and output
operations:

• Character :

•
•
•
•

Word binary numeric

Longwor~ binary numeric
Packed dedmal

Overpunched decimal

This section describes each data type.

14.2.1 Character Data ,Type

Character data is a string of bytes containing ASCII codes as binary data.
The length can be from 1 to 9999 bytes. The format of a character string
is shown in Figure 14-1.

NOTE

In all subsequent diagrams, A represents the address of the first
byte of the string and L represents the length of the string in
bytes.

14-2 VAX RPG II Language Elements

Figure 14-1: Format of a Character String

7 0

- A

•
•
•

• A+ L - 1

7 0

ZK-1452-83

The address of a string specifies the first character of a string. The address
XYZ is shown in Figure 14-2.

Figure 14-2: Address of a String

7 0

x ... A

y .. A+ 1

z .. A+2

ZK-1451-83

14.2.2 Binary Data Type

Binary data is stored as binary values in a word or longword. A word is
two contiguous bytes, starting on an arbitrary byte boundary. The bits are
numbered from the right (0 through 15). When interpreted as a signed

VAX RPG II Language Elements 14-3

quantity, a word is a twos complement number with bits increasing in
significance from bit 0 through bit 14, and with bit 15 designating the
sign. A two-byte word supports up to four decimal digits. The largest
numbe.r that can be represented by a word in VAX RPG II is 9999. A
word data type is shown in Figure 14-3.

Figure 14-3: Word Data Type

15 0

,._ A

ZK-1453-83

A longword is four bytes, starting on an arbitrary byte boundary. The
bits are numbered from the right (0 through 31). When interpreted as a
signed quantity, a word is a twos complement number with bits increasing
in significance from bit 0 through bit 30, and with bit 31 designating
the sign. A four-byte longword supports up to 9 decimal digits. The
largest number that can be represented by a longword in VAX RPG II is
999,999,999. A longword datatype is represented in Figure 14-4.

Figure 14-4: Longword Data Type

31 0

.. A

ZK-1454-83

14.2.3 Packed Decimal Data Type

Packed decimal data is stored as a string of bytes. Each byte is divided
into two 4-bit half bytes (nibbles), with one decimal digit stored in each
half byte. The first, or most significant digit is stored in the high-order
half byte of the first byte; the second digit is stored in the low-order half

14-4 VAX RPG II Language Elements

byte of the first byte; the third digit is stored in the high-order half byte
of the second byte; and so on. The sign of the number is stored in the
low-order half byte of the last byte of the string. The number +123, in
packed decimal format, is shown in Figure 14-5.

Figure 14-5: Packed Decimal Data Type

7 4 3 0

2 ... A

3 12 A+ 1

ZK-1455-83

A decimal 10, 12, 14, or 15 represents a plus sign, although 12 is used
when the number is created as a result of a VAX arithmetic instruction. A
decimal i 1 or 13 represents a minus sign, although 13 is used when the
number is created as a result of a VAX arithmetic instruction.

The. following formula can be used to determine the length in digits of a
packed decimal field:

number of digits = 2n - 1
where n = number of bytes used

See Section 15.6.15.4 for examples of selecting numeric data types in a
VAX RPG II program.

14.2.4 Overpunched Decimal Data Type

Overpunched decimal data is a contiguous sequence of bytes in memory,
with one decimal digit in a byte. Digits of decreasing significance are
assigned to increasing addresses. The sign is superimposed on the last
digit (trailing numeric string).

All bytes of overpunched decimal data, except the least significant digit,
must contain ASCII decimal digits (0 through 9). Table 14-1 lists the
representation for all digits but the least significant digits.

VAX RPG II Language Elements 14-5

Table 14-1: Overpunched Decimal Representation of All but
the Least Significant Digits

Sign Decimal Hexadecimal ASCII Character

0 48 30 0

1 49 31 1

2 50 32 2

3 51 33 3

4 52 34 4

5 53 35 5

6 54 36 6

7 55 37 7

8 56 38 8

9 57 39 9

There are several variations of overpunched decimal format. Alternate
forms of overpunched decimal format are accepted on input. The normal
form of overpunched decimal format is generated on output. Valid
representations of the digits and signs in each of the latter two formats
(input and output) are shown in Table 14-2.

Table 14-2: Overpunched Decimal Representations of Least
Significant Digits and Signs

Overpunched Decimal Format ASCII Characters
Digit Decimal Hexadecimal Normal Alternate

0 48 30 0 { [?

1 49 31 1 A

2 50 32 2 B

3 51 33 3 c
4 52 34 4 D

5 53 35 5 E

6 54 36 6 F

7 55 37 7 G

8 56 38 8 H

14-6 VAX RPG II Language Elements

Table 14-2 (Cont.): Overpunched Decimal Representations
of Least Significant Digits and Signs

Overpunched Decimal Format ASCII Characters
Digit Decimal Hexadecimal Normal Alternate

9 57 39 9 I

-0 125 7D]:!

-1 74 4A

-2 75 4B K

-3 76 4C L

-4 77 4D M

-5 78 4E N

-6 79 4F 0

-7 80 50 p

-8 81 51 Q
-9 82 52 R

Figure 14-6 shows 123 in trailing numeric string format.

Figure 14-6: Overpunched Decimal Data Type (123)

7 4 3 0

3 1 ,,,.. A

3 2 _. A+ 1

3 3 _. A+ 2

ZK-1456-83

VAX RPG II Language Elem~nts 14-7

Figure 14-7 shows -123 in trailing numeric string format.

Figure 14-7: Overpunched Decimal Data Type (-123)

7 4 3 0

3 1 ~ A

3 2 ... A+ 1

4 c -.. A+ 2

ZK-1457-83

14.3 User-Defined Names

A user-defined name is a named quantity that identifies items in a VAX
RPG II program. These items include:

• Files-a file name is assigned to a file.

• Fields-a field name is assigned to a field in a program. You can use
a field name in more than one field definition if each definition using
that name has the same data type, the same length, and the same
number of decimal positions.

• Arrays-an array name is assigned to an array. The first three charac
ters cannot be TAB.

• Tables-a table name is assigned to a table. The first three characters
must be TAB.

• Labels-a label identifies the destination of a GOTO operation code.
• Subroutines-a subroutine name is assigned to a subroutine.

• PUST-a PUST name is assigned to a list of parameters to be passed
to a subprogram.

• EXCPT-an EXCPT name can be used in factor 2 of the EXCPT
operation code and in the Field name field of exception record Output
specifications. See Section 15.8.5 for information on exception record
types.

14-8 VAX RPG II Language Elements

When defining a name, observe the following rules:

Rules

• The first character of a name must be one of the following:

Uppercase letters A through Z
An underscore (_)

A pound sign (#)

A dollar sign ($)
An at sign(@)

• The remaining characters of a name can be the uppercase letters A
through Z, the digits 0 through 9, an underscore (_), a pound sign
(#), a dollar sign ($), or an at sign(@). ·

• You must left justify names.
• You cannot embed blanks in a name.
• You cannot use a VAX RPG II special word as a name. See Chapter 9

for information on special words.

• The maximum length of a name is six characters, except for a file
name, which can be up to eight characters long.

• Every user-defined name must be unique. For example, a name
assigned to a file cannot be used as a field name.

VAX RPG II Language Elements 14-9

Chapter 15

VAX RPG II Specifications

VAX RPG II specifications are the major program element of the language
and tell the computer what data to use, how to process it, and what to do
with the results. This chapter provides general VAX RPG II information
and a description of each VAX RPG II specification.

The VAX RPG II specifications described in this chapter are as follows:

• Control

• File Description

• Extension

• Line Counter

• Input

• Calculation

• Output

Each specification description includes the following information:

• A brief explanation of the specification's purpose

• The specification's format

• A detailed explanation of each column

A brief explanation of the column's purpose
A table listing valid entries for the column

An example of a typical use

Use the information in this chapter for quick reference. For information
on topics requiring a more detailed explanation, see the Table of Contents
or Index.

VAX RPG II Specifications 1 5-1

Language Conventions and Format

15.1 General Language Information

This section provides a description of the notation conventions for VAX
RPG II specifications, data fields that are common to all specifications, and
special instructions to the language compiler.

15.1.1 Notation Conventions

This section describes the notation convention.s of the specifications
described in this chapter.

Two rows of digits identify column numbers, as shown in the following
example:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

ZK-4454-85

The arrow in the following example points to column 43. The vertical line
above the first zero separates columns 30 through 39 from columns 40
through 49; the vertical line above the second zero separates columns 40
through 49 from columns 50 through 59.

ZK-4530-85

Asterisks (*) in the dotted line below the two rows of column numbers
indicate the beginning of fields that have values for the specification being
described. Each field is terminated by another asterisk, by a dot, or by
column 75.

The positions of the asterisks are different for each specification.

The asterisk in the following example indicates that you can enter a value
in column 6.

15-2 VAX RPG II Specifications

Language Conventions and Format

The dots in the line below the two rows of column numbers identify fields
that must be blank.

0 I 1 I 2 I 3 I 4 I 5 I 6 .1 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

*·I

ZK-4455-85

In the following example, dashes after an asterisk indicate a field that must
contain numeric data. Numeric data must be right justified in the field.
Blanks after an asterisk indicate a field that must contain alphanumeric
data. Alphanumeric data must be left justified in the field.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * *I I I I I I*-----** I I **
ZK-4456-85

In the following example, the value 32 has been entered in columns 20
through 23; the value 41 has been entered in columns 24 through 27; no
value has been entered in column 28; the value 9 has been entered in
columns 29 and 30; no value has been entered in column 31.

------**-*
32 41 9

ZK-4457-85

15.1.2 Common Fields

This section describes fields that are common to all specifications.

VAX RPG II Specifications 15-3

Language Conventions and Format

15. 1.2. 1 Line Number

You can associate a line number in columns 1 through 5 on each line of
your program. Line numbers are optional, but can be useful in checking
the sequence of lines. To check whether line numbers are in the proper
sequence, you must specify the /SEQUENCE-CHECK qualifier to the
RPG command. If you do not, VAX RPG II will ignore all line numbers.
The absence of line numbers does not affect your program.

Column Allowable
Number Values

1-5 Any number

Additional Information

Explanation

Associates a line number with the program line

If you specify the /SEQUENCE_CHECl< qualifier to the RPG command
and the line numbers are out of sequence, VAX RPG II will issue a
warning compile-time error.

15. 1.2.2 Specification Type

You must identify the type of specification in. column 6 on each line of
your program.

Column Allowable
Number Values Explanation

6 H Control specification

F File Description specification

E Extension specification

L Line Counter specification

I Input specification

c Calculation specification

0 Output specification

15-4 VAX RPG II Specifications

Language Conventions and Format

15. 1.2.3 Comments

You can use columns 75 through 80 to write comments about the program
line. VAX RPG II ignores entries in columns 75 through 80. In other
implementations of VAX RPG II, these columns are used for a program
name. VAX RPG II uses the source file name as the name of the program.

Column Allowable
Number Values

75-80 Any character

Rules

Explanation

Documents the program line

• Blank lines can appear between any two specifications. VAX RPG II
ignores blank lines.

• A specification containing only a form feed can appear between any
two specifications. Specifications containing only a form feed are
treated like blank lines except in the listing file, where they cause the
listing to skip to the top of the next page.

Additional Information

You can also use an entire specification to write a comment when you
precede the comment with an asterisk (*)in column 7. You can do this
with any type of specification. Any line with an asterisk (*) in column 7
before the first double slash (/ /) or double asterisk ("'"') is considered a
comment.

15.1.3 Compiler Directing Statements

You can include compiler directing statements in your program source file
to access other files as information resources. You do this with the COPY
and COPY_CDD directives as described in the following subsections.

VAX RPG II Specifications 15-5

Language Conventions and Format

15. 1.3. 1 COPY Directive

The COPY directive allows you to copy one or more source files into the
main source file during compilation. This feature can be used for copying
in common subroutines, record definitions, or other useful information.

The COPY directive can be followed by a modifier statement which
supplies additional information on a preceding Input specification field.
See Section 15.1.3.3 for the syntax and rules of modifier statements.

If you specify the /SEQUENCE_CHECK qualifier, then the copied lines
are sequence checked separately from the main source file.

The COPY and COPY_CDD directive lines are always listed in the listing
file. The copied lines immediately follow the COPY directive line in the
listing. Each line is given a unique listing line number. A "C" is placed
after the line number in the listing record to indicate that the line was
generated by a COPY directive. There is still a single set of line numbers
to mark the entire source file, after allowing for text that has been copied
into the main source file.

If a COMPILE command is issued from the VAX RPG II editor and
an error is flagged within the compilation of a COPY or COPY_CDD .
directive, the cursor is placed at the COPY directive, and the message is
displayed on the message line. You must leave the VAX RPG II editor if
you want to see the compiler source listing.

The file SO_MUCH_TIME-AND_SO_LITTLE_TO_DO.RPG is copied
in as a result of the following example:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
123456789012345678q0123456789012345678901234567890123456789012345678901234567890

** * * * * * *--*** * * *
C/COPY 'SO_HUCH_TIHE_AND_SQ_LITTLE_TQ_DO'

ZK-4458-85

If multiple COPY directives are used in a program to define compile-time
tables or arrays, the second and subsequent entries beyond the first COPY
directive will be flagged as errors. For example:

0/COPY 1 ARRAY1 1

0/COPY 'ARRAY2'

The second COPY directive is flagged as an error because a •• was
recognized from the first COPY directive, and COPY directives cannot
follow a •• or / /. For detailed information, see Section 15.1.3.

15-6 VAX RPG II Specifications

Language Conventions and Format

The workaround for this is to use append.or plus lists on the RPG com
piler command. For detailed information on the RPG command, see
Section 3.1.2.

The COPY directive adheres to the following rules:

Rules

• The COPY directive may appear anywhere within the source file
before the first double slash (/ /) or double asterisk (••) line. It
cannot appear after that, because the remaining lines do not contain
a specification type. All lines after the first // or •• are treated as
nonsource lines even if the// or•• occurs in a COPYgfile.

• The COPY directive cannot appear within a long character literal.

• .There is no limit on the number of copy directives in a program.

• Copy directives cannot be nested. A file copied in cannot contain a
COPY or COPY_CDD directive. See Section 15.1.3.2 for information
on the COPY_CDD directive.

• A COPY directive must appear on a line of its own and have the
following syntax:

Column 6-must contain any valid specification type (not checked
for sequence)
Columns 7 through 12-must contain COPY (note the blank space
in column 12)

Columns 13 through 74-must contain the file specification
enclosed in single quotes; the file specification does not need to
start in column 13

• A default file type of RPG is used

15.1.3.2 COPY-CDD Directive

Record definitions can be stored in the VAX Common Data Dictionary
(CDD) and shared among VAX RPG II programs. You can extract these
data definitions from the CDD and use them as field definitions on Input
or Output specifications. If you change a definition in the CDD, you do
not need to rewrite the program using the new definition; however, you
must recompile the program to obtain the latest definition in the CDD.

VAX RPG II Specifications 15-7.

Language Conventions and Format

The following example shows how to use the COPY_CDD directive to
copy field information from the COD on an Input specification:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * *** *--~ *--- *--- ·**--~*~--** * * * * * *
I/COPY_CDD 'RECORD.IN'

ZK-4459-85

RECORD.IN is the COD path name for a record description stored in the
COD. A path name must be enclosed in single quotation marks; note that
the path name does not need to start in column 17.

For information on COD path names, see the VAX Common Data Dictionary
User's Guide.

Any COD name larger than six characters is truncated to the first six
characters of the COD name. If this truncated name has been used
previously in a data structure, the last six characters of the COD name are
used.

The COD provides these RPG-specific features: NAME FOR RPG, EDIT_
WORD FOR RPG,· and EDIT_CQDE FOR RPG. For more information on
attributes, see the VAX Common Data Dictionary Utilities Reference Manual.

The following example and figure show field definitions entered in the
COD and the Input specifications that must be entered to extract the
information.

Using the DCL command CDDL, these field definitions are entered:

DEFINE RECORD CDD$TOP.EXAMPLE.ADDRESS_RECORD
ADDR STRUCTURE.

STREET DATATYPE IS TEXT

CITY

STATE

SIZE rs 30 CHARACTERS
DATATYPE IS TEXT
SIZE IS 30 CHARACTERS
DATATYPE IS TEXT
SIZE IS 2 CHARACTERS

PHONE STRUCTURE.
AREA DATATYPE IS NUMERIC RIGHT OVERPUNCHED

SIZE IS 3 DIGITS
NUMBER DATATYPE IS NUMERIC RIGHT OVERPtfflCHED

SIZE IS 7 DIGITS
NAME FOR RPG IS
P#

END PHONE STRUCTURE.
END ADDR STRUCTURE.

END ADDRESS_RECORD.

1 5-8 VAX RPG II Specifications

Language Conventions and Format

In the VAX RPG II program, these Input specifications are entered:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

II I Ill 1--- ~--- 1--- .11---1---11 I * I I I * O I I ,I

IINro AA
I/COPY_CDD 'EXAHPLE.ADDRESS_RECORD'

ZK-4460-85

The information is extracted from the COD and parsed as though the user
had entered the following:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

II I Ill 1--- 1~-- 1--- .11---1---11 * I I I I I
IINro AA
I 1 30 STREET
I 31 60 CITY
I 61 62 STATE
I 63 72 PHONE
I 63 650AREA
I 66 720PM

ZK-4461-85

15.1.3.3 COPV_CDD Directive Modifiers

To include indicators on input fields copied from the COD you must enter
a modifier statement after the COPY_CDD directive. You can modify
any field in the current record including those copied from the COD. The
following fields call be modified:

• Control-level indicator

• Matching fields

• Field-record-relation

• Field indicators

VAX RPG II Specifications 15-9

Language Conventions and Format

Rules

• A modifying statement is distinguished from other specifications by an
ampersand (&) in column 7.

• Only specifications that define fields can be modified.

• As many modifiers as desired can be specified in one modifier specifi
cation.

• The same field can be modified by multiple modifiers.

• A field specification must be syntactically valid before and after a
modifier is applied.

A modifier can be used to add an indicator where there was none in
the original specification. The following example shows a control-level
indicator set on the AREA field in the program:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * *** 1--- 1--- 1---
II NFO AA
I/COPY_CDD 'EXAHPLE.ADDRESS_RECORD'
I&

* * * * * *
AREA Li

ZK-4462-85

The field AREA is treated as if it had been specified with an L1 indicator
in the control-level indicator field, that is, as if the specification had been
as follows: ·

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

I 63 650AREA Li .
ZK-4463-85

15-10 VAX RPG II Specifications

Language Conventions and Format

A modifier can be used to supersede a previously specified value. You can
also blank a field by entering an ampersand (&) as the first character of
the desired field and leaving the rest of the field blank, as in the following
example:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * **I 1--- 1--- 1--- ,l*---1---I* * I I I * *
IHSLI27 01 1 CA
I/COPY 'HSL27A'
I& FLDA &

ZK-4465-85

The previous example assumes that the file to be copied (MSL27 A.RPG)
contains the following specification:

0 I 1 I 2 I 3 I 4 .I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

II I Ill 1--- 1--~ 1--- ,11---1---I* * I * I I I
I 6 6 FLDA 01

ZK-4464-85

In the example, FLDA is treated as if no field-record-relation indicator is
given, that is, as if the Input specification is as follows:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

I* I Ill 1--- 1--- . *~-- ,11---1---11 * * * I I I
I 6 6 FLDA

ZK-4466-85

Modifiers can apply to all field definitions that follow the record containing
the last COPY or COPY_CDD directive. In the preceding example, if
FLDA occurred several times in the copied file, each occurrence would be
modified.

VAX RPG II Specifications 1 5-11

Language Conventions and Format

If the source program looked like the following example, then only
occurrences of the FLDA field associated with the second COPY directive
would be modified.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** . * *** *--- *~-- *--- ·** ___ * ___ ** *. * * * * *
IHSLI27 AA 01
I/COPY 'HSL27A'
I BB 02
I/COPY 'HSL27A'
I& rLDA &

ZK-4467-85

When a modifier specification is not preceded by a COPY directive, all
previous input fields can be modified.

15-12 VAX RPG II Specifications

Control Specification (H)

15.2 Description

The Control specification allows you to do the following:

• Assign a character other than the default (a dollar sign ($)) as the
currency symbol

• Specify the notation for numeric fields, edit codes, and UDATE
• Specify an alternate collating sequence

• Check the alignment of printed forms

• Specify the program name that can be used with WORKSTN files to
determine which forms library to use

A. Control specification is not required and should be used only when you
need to define the use of one or more items described in the previous list.
Use only one Control specification in a program.

15.2.1 Control Specification Format

The format of the Control specification is as follows:

Currenc~ s~111bol
I Inverted print <DIJ>
I I Alternate collating sequence CSE>
I I I 1P for111s position (1)
I I I I

.H I I I I
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
·I I I I I I I I I•••*• I I •*I I I I I I I I I I I I I l*I I I I I e I• I I I I I 8 I I I I I I I I I I I I I I I I I a I

ZK-4468-85

15.2.2 Specification Type

Use column 6 to identify the type of specification for every program line.

VAX RPG II Specifications 15-13

Control Specification (H}

Column Allowable
Number Values

6 H

15.2.3 Currency Symbol

Explanation

Indicates that this program line is a Control specifi
cation

Use column 18 to specify a character other than the dollar sign ($) to
represent the currency symbol.

Column Allowable
Number Values

18 Blank

Character

Explanation

Uses the dollar sign ($) as the currency symbol.
The dollar sign is the default.

Uses the character you specify instead of the dollar
sign ($) for the currency symbol.

You can use any character for the currency symbol except zero (0 },
asterisk (•), comma (,), ampersand (&), decimal point (.), minus sign
(-), C (C), and R (R).

15.2.4 Inverted Print

The inverted print feature allows you to format your program output to
conform with a variety of notation conventions. For example, using the
United States convention for expressing a number with thousands and
decimals, a number could be 12,345.67; the same value could be correctly
expressed as 12.345,67 using other conventions. Use column 21 to specify
the notation the printer uses for numeric fields, edit codes, and UDATE.

1 5-14 VAX RPG II Specifications

Column Allowable
Number Values

21 Blank

D

15.2.5 Alternate Collating Sequence

Control Specification (H)

Explanation

Uses a period as the decimal notation and a comma
as the thousands separator in numeric literals and
edit codes (for example, 1,234.56 and .56). Uses a
slash (/) as the separator for the Y edit code; uses
the mm/dd/yy format for UDATE (for example,
07 /04/76). See Section 15.8.14 for information
on edit codes. See Chapter 9 for information on
UDATE.

Uses the same format as the BLANK option for
numeric literals and edit codes. Uses a slash (/) as
the separator for the Y edit code; uses dd/mm/yy
format for UDATE.

Uses a comma as the decimal notation and a period
as the thousands separator in numeric literals (for
example, 1.234,56) and edit codes. Uses dd/mm/yy
format for UDATE; decimal points separate the day,
month, and year elements (for example, 24.03.83).

Uses the same format as the I option for UDATE,
numeric literals, and edit codes with the following
exception: writes a zero to the left of the comma
when the field contains only a fraction (for example,
0,56).

Use column 26 to specify the collating sequence you want VAX RPG II to
use when comparing character fields using the COMP operation code and
when checking the sequence of matching fields.

VAX RPG II Specifications 15-15

Control Specification (H)

Column Allowable
Number Values

26 Blank

E

s

Explanation

Uses the ASCil collating sequence. See Appendix
A for the ASCII character set.

Uses the EBCDIC collating sequence. See
Appendix A for the EBCDIC character set.

Uses a user-defined collating sequence. See
Appendix A for the ASCII characters and their
hexadecimal values.

To define a collating sequence that is different from the standard ASCII
or EBCDIC sequences, you must specify the hexadecimal value of each
character whose position in the sequence you want to change, as follows:

• Specify S in column 26 of the Control specification.
• Include the specification for ALTSEQ records after the Output specifi

cation, but before any compile-time table and arrays, if used.
• Precede the AL TSEQ records with double slashes (/ /) and a blank or

double asterisks (••) and a blank in columns 1 through 3.
• Specify the entries in the following table.

Column
Number

1-8

9,10

11,12

Allowable
Values

ALTSEQbb

Hexadecimal
value

Hexadecimal
value

Explanation

Indicates that you are specifying an alternate
collating sequence. Note that bb represents two
blanks.

Specifies the hexadecimal value of the character you
want to change.

Specifies the new hexadecimal value of the char
acter whose position in the collating sequence you
want to change.

Repeat this sequence of hexadecimal numbers up to column 80 for ad
ditional changes. The first blank space in an AL TSEQ record terminates
the AL TSEQ entries for that record. The rest of the line can be used for
comments.

15-16 VAX RPG II Specifications

Control Specification (H)

In the following example, columns 9 and 10 and 13 and 14 contain the
hexadecimal value of the character to be changed, and columns 11 and 12
and 15 and 16 contain the new hexadecimal value of the character. In the
following collating sequence, VAX RPG II changes the uppercase Z (SA) to
an uppercase A (41) and the lowercase w (77) to an uppercase J (4A).

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** II
ALTSEQ 5A41774A

ZK-4469-85

15.2.8 Forms Position

Use column 41 to check the alignment of printed output on a nonstandard
form.

Column Allowable
Number Values

41 Blank

1

Explanation

Specifies no forms-positioning check

Checks the forms positioning by printing the first
output line

This entry is optional and valid only for a nonspooled device.

Additional Information

When you specify forms positioning, the printer outputs the first line.
Then, VAX RPG II asks the following question· for each printer output file
in the order that the first lines are output:

Is forms positioning correct?
Yes, type Continue, No, type Retry:

If you type CONTINUE, the program will print the second output line,
and so on, until all lines are output. If the forms are not correctly posi
tioned, realign the form, and then type RETRY. VAX RPG II will print the
first line again so that you can determine whether the form is positioned
correctly.

VAX RPG II Specifications 15-17

Control Specification (H)

15.2.7 Forms Library

Use columns 75 through 80 to indicate the VAX Forms Management
System (VAX FMS) forms library if the continuation line option FMTS in
the F specification is not to be included in the WORKSTN file specification.

15.2.8 Example

In the following example, these control characteristics are defined:

• Program line is a Control specification

• Currency symbol is a pound sign (#)

• VAX RPG II uses

A comma (,) as the decimal notation for numeric literals and edit
codes ·

A period (.) as the thousands separator for numeric literals and
edit codes

The dd.mm.yy format for UDATE
• Collating sequence is EBCDIC

• Forms-positioning check is not required

Currenc!;i S!;illlbol
I Inverted print <DIJ>
I I Alternate colleting sequence <SE>
I I I · 1P for111s position (1)
I I I I

H I I I I
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
·I I 9 I I I I I I I·~ I· I I I*· I I I.I I I I I I I

0

1 I•*· I I I I I I I I I I I I I I I I I I 1,1 I I I I I '1 I I I I I I.

H It I E
ZK-4470-85

15-18 VAX RPG II Specifications

File Description Specification (F)

15.3 Description

The File Description specification describes the following attributes of each
file you use in your program:

• File Description specification format

• Specification type

• File name

• File type

• File designation

• End-of-file

• Sequence

• File format

• Block length

• Record length

• Mode of processing

• Key length

• Record address type

• File organization or additional input/ output area

• Overflow indicators

• Key location

• Extension code

• Device code

• Symbolic device

• Tape label

• File Description specification continuation lines

• Core index

• File addition and unordered output

• Expansion factor

• File sharing

• Tape rewind

VAX RPG II Specifications 15-19

File Description Specification (F)

• File condition

• Example

15.3.1 File Description Specification Format

The format of the File Description specification is as follows:

Hode (LR>
IKey length

Type (IQUDC> 11 Record address type (APIB>· Addtn<AU>
IDes(PSRCTDF>ll !Organization (IT,1-9> IEKpand
llEOF (E) II llOverfloN indicator Continue (K) llShr(SR>
II ISeq (AD> II I II Key location IOpt Entry II I ReNnd

File llllF11tt <rV> II Ill I EKtension <EUii I Ill I
na11te Ill llBlk Rec II Ill I !Device Sy11tb Tape Core II I !File
I I I I I 11 en 1 en I I I I I I I code dev 1 abe 1 i ndeK I I I I cond

Fl 111111 I II Ill I II I I I Ill II
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** ******---*---**-*** *---** * *······*-----***·**

ZK-4471-85

15.3.2 Specification Type

Use column 6 to identify the type of specification for every program line.
Note that F specification continuation lines contain blanks in columns 7
through 52.

Column Allowable
Number Values

6 F

15.3.3 File Name

Explanation

Indicates that this program line is a File Description
specification

Use columns 7 through 14 to identify the files you use in a VAX RPG II
program.

15-20 VAX RPG II Specifications

Column Allowable
Number Values

7-14 File name

Rules

File Description Specification (F)

Explanation

Identifies the file

• The number of files you can open depends on the open file quota set
by your system manager. To determine the number of files you can
open in a VAX RPG II program, type the SHOW PROCESS/QUOTA
command and look for the number to the right of open file quota:.

• The specification options explained in Sections 15.3.4 through 15.3.26
apply to the file you identify in columns 7 through 14.

• VAX RMS uses the file name as the default file specification string.
See Chapter 8 for information about how VAX RPG II uses the file
name field and the symbolic device field to generate the VAX/VMS
file specification.

• VAX FMS uses the file name as part of determining the form library
name to be used for WORKSTN files. See Chapter 6 for additional
information.

15.3.4 File Type

Use colunm 15 to specify the file type which defines how VAX RPG II
processes the records in the file.

Column Allowable
Number Values

15

0

Explanation

Designates an input file. VAX RPG II reads the
records from an input file and uses these records
as data. These records must be defined in Input
specifications unless column 16 contains R or T.
Input files can reside on disk or tape, or can be read
from a terminal or from cards.

Designates an output file. The program writes or
prints the records of an output file. These records
must be defined in Output specifications unless this
is a table output file. Output files can be written to
a printer, disk, tape, or terminal.

VAX RPG II Specifications 15-21

File Description Specification (F)

Column Allowable
Number Values

u

D

c

15.3.5 File Designation

Explanation

Designates an update file. Update files must reside
on disk. VAX RPG II can read, change, and write
records in an update file. The records in these
files must be defined in the Input and Output
specifications.

Designates a display input or output file. Use
display files to accept input from a terminal or to
display output on a terminal. You must complete
a Calculation specification to define the fields you
want to display using the DSPL Y operation code.
See Chapter 16 for information on the DSPL Y
operation code.

Designates a combined input/output file. A com
bined file must have a device code of WORKSTN.

Use column 16 to specify file designation which defines the order of
processing files. See Chapter 8 for information on processing files.

Column Allowable
Number Values

16 Blank
p

15-22 VAX RPG II Specifications

Explanation

Specifies a nonchained output file or a display file.

Specifies a primary file. You can use only one
file as the primary file. It can be an input or an
update file. In multifile processing, the primary
file determines the order of record selection; in
single file processing, the primary file provides all
input records. If a primary file is not specified and
one or more secondary files are specified, the first
secondary file is assigned as the primary file. If no
primary or secondary files are specified, you must
provide an exit for your program by setting on the
last-record (LR) indicator.

Column Allowable
Number Values

s

R

c

T

D _

F

File Description Specification (F)

Explanation

Specifies a secondary file. A secondary file can
be an input or an update file. See Chapter 8 for
information on processing secondary files.

Specifies a record-address file. A record-address file
indicates which records to process and the order
in which they are to be processed. This file must
be associated with a file defined in an Extension
specification. See Chapter 8 for information on
record-address files.

Specifies a chained file. A chained file resides
on disk and can be used as an input, output, or
update file. You use the CHAIN operation code
in the Calculation specification to randomly read
records from a chained file. You use an output
chained file to add records to a direct file. The
CHAIN operation positions the file before VAX
RPG II writes each record. See Chapter 16 for more
information on chained files.

Specifies a preexecution-time table or array. You
must enter, in columns 11 through 18 of the
Extension specification, the name of the file that
contains the data from which you want to load the
table or array. See Chapter 10 for information on
tables. See Chapter 11 for information on arrays.

Specifies a demand input or update file. You can
use the READ operation code in the Calculation
specification to sequentially access the records in a
demand file. See Chapter 16 for more information
on using the READ operation code to access records
from demand files.

Specifies a full-procedural input or update file. You
can use the READ and/ or CHAIN operation code in
the Calculation specification to sequentially and/or
randomly access the records.

VAX RPG II Specifications 15-23

File Description Specification (F)

15.3.1 End-of-Fila

Use column 17 to specify end-of-file that indicates whether the program
can end before VAX RPG II processes all the records in the file.

Column Allowable
Number Values

17 Blank

E

15.3. 7 Sequence

Explanation

Causes the program to finish reading all the records
from every primary and secondary file before
ending, if column 17 is blank for all primary and
secondary files. If column 17 is not blank for all
primary and secondary files, VAX RPG II may or
may not process all the records in this file (the
file described in this specification). If column 17
is blank for all primary and secondary files, VAX
RPG II processes all the records in this file (the file
described in this specification).

Causes the program to finish reading the records
in the file before ending the program, regardless of
the presence of other files. You can use this option
for input or update files as primary, secondary, or
record-address files. You cannot use this option on
a file being processed by a record-address file.

When you specify E in column 17 for the primary
file, and there are matching records in the primary
and secondary files, VAX RPG II reads and pro
cesses any records in the secondary file that match
the last record of the primary file before ending the
program.

Use column 18 to specify ascending or descending sequence to check
matching fields. See Chapter 8 for information on matching fields.

15-24 VAX RPG II Specifications

Column Allowable
Number Values

18 Blank

Rules

A

D

File Description Specification (F)

Explanation

Indicates that the program contains no matching
fields or, if it does, assumes the same value as
specified for a previous primary or secondary file.
If the program contains matching fields and you
do not specify a sequence for any file containing
matching fields, VAX RPG II assumes an ascending
order.

Checks matching records for ascending order.

Checks matching records for descending order.

• This entry applies only to primary or secondary files with matching
fields. See Chapter 8 for more information on primary and secondary
files.

• This entry must be the same for each file you process with matching
fields.

15.3.8 File Format

Use column 19 to specify file format. File format specifies whether the
records in the file are all the same length, or whether they can be of
different lengths. You can save processing time if all the records are the
same length and each record is completely filled with data. If the records
are not completely filled with data, you waste space. Variable-length
records use space more efficiently, but take longer to process.

Column Allowable
Number Values

19 F

v

Explanation

Indicates that all records are the same (fixed) length

Indicates that records can be of different (variable)
lengths

VAX .RPG II Specifications 15-25

File Description Specification (F)

Rules

• If you specify variable-length records, VAX RPG. II uses the highest
value in columns 40 through 43 in the Output specification as the
length for that record.

• You must specify fixed-length records for sequential files being pro-
cessed as update files.

Additional Information

When a variable-length record is read, VAX RPG II fills :the unused portion
of the input buffer with spaces. Character fields with characters beyond
the end of the record will be filled with spaces. Numeric fields with digits
beyond the record will be filled with spaces. This condition will cause a
run-time error,. unless you use the /CHECK:BLANKS--1N....NUMERICS
qualifier with the. RPG· command. A numeric field in packed dedmal or
binary format cannot extend beyond the end of the input record. If it
does, unpredictable results will occur.

15.3.9 Block Length

Use columns 20 through 23 to specify the length of a block. Data is stored
in physical records called blocks. A block is the smallest number of bytes
VAX RPG II transfers in a physical READ or WRITE operation.

In general, by specifying a longer block length, you decrease I/O pro
cessing time because more records will be available at any given time.
For example, a program that loads a single key .indexed file with ap
proximately 1700 80-byte records could result in an approximately 60%
decrease in direct I/Os and a 40 to 50% decrease in elapsed time. This oc
curs when the block length is increased from 512 bytes (VAX RMS bucket
size of 1 byte) to 4096 bytes (VAX RMS bucket size of 8). However, do
not specify a block length that exceeds the Working Set Quota. To display
the Working Set Quota, type the following:

$ SHOW WORKING_SET

15-26 VAX RPG II Specifications

Column Allowable
Number Values

20-23 Blank

1-9999

Rules

File Description Specification (F)

Explanation

Uses the same entry for block length as the record
length (columns 24 through 27)

Specifies the bucket size (in bytes) for those direct
and indexed files being created on disk, or specifies
the block length (in bytes) for files on tape

• For disk files, the block length you specify sets the VAX RMS bucket
size parameter. VAX RPG II divides the block length you specify by
512 and rounds the result to the next highest integer, if necessary. For
example, if you specify a block length of 2048 bytes, the VAX RMS
bucket size is 4 bytes.

• For disk files, the minimum block length is 512 bytes.

• For output tape files, the block length you specify sets the VAX RMS
block size parameter. The block length must be either (1) equal
to the entry in columns 24 through 27 (record length) of the File
Description specification, or (2) an integer multiple of the record
length. In either case, the block length cannot be greater than the
maximum record length for the device. See your System Manager for
the maximum record length. Block length is not needed for an input
tape. If specified, it is ignored by VAX RMS.

To make your tape compatible with non-DIGITAL systems, use the
ANSI standard block length: less than or equal to 2048 bytes.

• Right justify this entry.
• Leading zeros can be omitted.

Additional Information

For additional information on quotas, see the VAX/VMS Guide to File
Applications.

VAX RPG II Specifications 15-27

file Description Specification (F)

15.3.10 Record Length

Record length specifies the length of each fixed-length record in a file, or
the maximum length for variable-length records.

Column Allowable
Number Values

24-27 1-9999

Rules

Explanation

Specifies the number of characters in each record

• The record length for fixed-length records in an update file must be
the same value you used to write the records.

• Right justify this entry.
• Leading zeros can be omitted.

15.3.11 Mode of Processing

Use column 28 to specify the method VAX RPG II uses to access records
in a file. Your choice of processing method depends on the entries for file
designation and file organization. Your choice of processing method for
input and update files depends on the entries for the file type, the mode of
processing, the record address type, and file organization. See Tables 15-1
through 15-3 to select the correct value.

Column Allowable
Number Values

28 Blank

L

R

Additional Information

Explanation

Accesses records sequentially, or accesses records
sequentially by key

Accesses records sequentially within limits

Accesses records randomly using a relative record
number or an index key, or using an ADDROUT
file, or tells the program to load a direct file

Sequential processing reads the records in the order in which they were
written. Sequential-by-key processing reads records from indexed files_
that are used as primary, secondary, or demand files. The key refers to

15-28 VAX RPG II Specifications

File Description Specification (F)

the index, which is read in ascending order. Sequential-within-limits
processing reads records in one of two ways:

• Specifying a range of records to be read.

• Using the SETLL operation code in the Calculation specification to set
the lowest key for the records in a demand file. The program reads
records with keys equal to or higher than the key you specify.

Random processing reads records from chained files in one of the follow
ing two ways:

• For sequential or direct files, records are accessed by their relative
record number. A relative record number identifies the position of a
record relative to the beginning of the file.

• For indexed files, records are accessed by their index key values.

ADDROUT file processing uses the ADDROUT file generated by
SORT /MERGE. The ADDROUT file contains binary record numbers
that correspond to the addresses of records; therefore, the records to be
read are located by their addresses.

Files on devices other than disk can be accessed only sequentially.

For input or update primary, secondary, or demand files that reside on
disk, you can use the entries listed in Table 15-1.

VAX RPG II Specifications 15-29

File Description Specification (F)

Table 15-1: Modes of Processing for Primary, Secondary,
and Demand Files

File
Organization

Allowable
Access Modes

Sequential Sequential

Direct

Indexed

Legend

P-Primary file
S-Secondary file
I-Indexed file
D-Demand file
F-Full-Procedural file
b-Blank
R-Random

By ADDROUT
file

Sequential

By ADDROUT
file

L-Sequential within limits
A/P-Alphabetic or Packed keys
A/P /B-Alphabetic, Packed, or Binary keys
1-9-Additional areas

15-30 VAX RPG II Specifications

Allowable
Entries

Column:
16 28

p b
s b
D b
F b

p

s

p

s
D
F

p
s

R
R

b
b
b
b

R
R

31

b
b
b
b

b
b
b
b

32

b
b
b
b

b
b

b
b
b
b

(b or 1-9)
(b or 1-9)
(b or 1-9)
(b or 1-9)

(b or 1-9)
(b or 1-9)

File Description Specification (F)

Table 15-1 (Cont.): Modes of Processing for Primary,
Secondary, and Demand Files

File
- Organization

Legend

Allowable
Access Modes

Sequential
by key

Sequential
within
limits

P-Primary file
5-Secondary file
I-Indexed file
D-Demand file
F-Full-Procedural file
b-Blank
R-Random
L-Sequential within limits
A/P-Alphabetic or Packed keys
A/P /B-Alphabetic, Packed, or Binary keys
1-9-Additional areas

Allowable
Entries

Column:
16 28

p
s
D
F
p
s
D
F

b
b
b
b

L
L
L
L

31 32

A/P/B
A/P/B
A/P/B
A/P/B
A/P
A/P
A/P
A/P

VAX RPG II Specifications 15-31

File Description Specification (F)

For record-address files, you can use the entries listed in Table 15-2.

Table 15-2: Modes of Processing for Record-Address Files
File
Organization

Sequential

Direct

Allowable
Access Modes

Sequential 1

Sequential2

1 Indicates a record-limits file

2Indicates an ADDROUT file

Legend

I-Indexed file
T-Table
b-Blank
R-Random

15-32 VAX RPG II Specifications

Allowable
Entries

Column:
16 28 31 32

R b b b

R b T

File Description Specification (F)

For input or update chained files, you can use the entries listed in
Table 15-3.

Table 15-3: Modes of Processing for Input or Update
Chained Files

File
Organization

Sequential
or Direct

Indexed

Legend

I-Indexed file
C-Chained
F-Full-Procedural file
b-Blank
R-Random

Allowable
Access Modes

Random, by
relative record
number

Random, by key

A/P /B-Alphabetic, Packed, or Binary keys

Allowable
Entries

Column:
16 28 31 32

c R b b
F R b b

c R A/P/B
F R A/P/B

VAX RPG II Specifications 15-33

File Description Specification (F)

In the following example, the program accesses an indexed file as a
demand file and three update chained files.

Mode <LR>
IKe~ length

T~pe <IOUDC> I I R~cord address t~pe <APIB> Addtn<AU>
IDes(PSRCTDr>I I !Organization <IT,1-9) !Expand
llEOr <E> I I llOverflow indicator Continue <K> I IShr<SR>
I I ISeq <AD> I I Ill Ke~ location IOpt Entr~ I I I Rewnd

rile I I I lr111t <rV> 11 111 I Extension <EU 11 I 111 I
na111e I I I I IBlk Rec I I Ill I !Device S~111b Tape Core I I I lrile
I 111111 en l en 11 111 I I code dev label index I 11 I cond

r1 111111 I 11 111 I 11 I I I 111 11
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** ****** ___ * ___ **-*** *---** *
FINDEX1 ID F 18 5AI 5 DISK
FCHAIN1 UC F 24R DISK
FINDEX2 UC F 24R 3AI 1 DISK
FCHAIN2 UC F 24R DISK

ZK-4472-85

15.3.12 Key Length

Use columns 29 and 30 to specify key length. Key length indicates the
length in bytes of one of the following:

• The index keys in an indexed file
• The index keys in a record-limits file

• The addresses in an ADDROUT file

Column Allowable
Number Values

29,30 Blank

1-99

Rules

Explanation

Indicates a sequential, direct, or display file

Specifies the length of the record key for an indexed
file or a record-address file

• You must use a value of 6 for the length of the record addresses in an
ADDROUT file.

• Right justify this entry.
• Leading zeros can be omitted.

15-34 VAX RPG II Specifications

file
na111e
I

fl

File Description Specification (F)

In the following example, the program reads a chained indexed file. The
length of the record key is three bytes.

Hade <LR>
IKe~ length

T~pe <IOUDC> I I Record address t~pe <APIB> Addtn<AU>
I Des (PSRCTDr> I I I Organization (IT, 1-9) I Expand
11 EOr < E > 11 11Overf1 ow indicator Continue < K > 11 Shr (SR>
I I I Seq <AD> I I I I I Ke~ location I Opt Entr~ I I I Rewnd
llllf111t <rV> II Ill I Extension CEUll I Ill I
I I I I I B 1 k Rec I I I I I I I Device S~111b Tape Core I I I I ri 1 e
111111 en 1 en 11 I 11 I I code dev 1abe1 index 111 I cond
I I J I I I I I I . 11 I I I I I I I 11 I . I I

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** *****•---*---**-*** *---** * *·······-----***·**
rINDEX IC r 2•R 3AI 1 DISK

ZK-4473-85

15.3.13 Record Address Type

Use column 31 to specify record address type. Record address type helps
define the mode of processing. See Table 15-2 to select the correct value.

Column Allowable
Number Values

31 Blank

A

p

B

Explanation

Uses relative record numbers to process sequential
and direct chained files, or reads records sequen
tially from an input or update file, or creates or
adds records to a sequential output file

Processes or loads indexed files according to the
record keys in alphanumeric format

Processes or loads indexed files according to record
keys in packed format

Processes or loads indexed files according to record
keys in binary (word or longword) format

Processes the file according to an ADDROUT file,
or identifies an ADDROUT file

VAX RPG II Specifications 15-35

File Description Specification (F)

15.3.14 File Organization or Additional Input/Output Area

File organization specifies how records are arranged in a file. Additional
1/0 allows you to specify the number of 1/0 areas. Both attributes work
in conjunction with the mode of processing. See Tables 15-2 and 15-3 to
select the correct value.

Column Allowable
Number Values

32 Blank

T

1-9

Additional Information

Explanation

Indicates a sequential or direct file, using one I/O
area

Indicates an indexed file

Indicates an ADDROUT file

Indicates the number of I/O areas for a sequential
or direct file

For sequential files, VAX RPG II adds 1 to the Additional 1/0 area value
you specify in column 32. VAX RPG II uses the value for Additional 1/0
to set the VAX RMS multiblock count in the Record Access Block (RAB).

See the Guide to VAX/VMS File Applications for information about multi
block count and for optimizing file performance.

15.3.15 Overflow Indicators

Use columns 33 and 34 to specify an overflow indicator. You can use an
overflow indicator to specify a page break before or after certain lines are
printed. See Chapter 9 for information on overflow indicators.

Column Allowable
Number Values

33,34 Blank

OA-OG, OV

15-36 VAX RPG II Specifications

Explanation

Specifies no overflow indicator

Specifies an overflow indicator to condition output
lines when an overflow occurs

File Description Specification (F)

Rules

• You can use an overflow indicator to condition only printer output
files.

• You can assign only one overflow indicator to a file. If you have more
than one printer output file and you want to use an overflow indicator
to condition each file, you must specify a unique overflow indicator
for each file.

15.3.18 Key Location

Use columns 35 through 38 to specify key location. Each record in an
indexed file has a key field that VAX RMS uses to locate records. This key
field can be anywhere in the record, but must be in the same location. for
each record in the file. Key location specifies where to find the key field in
the record. ·

Column Allowable
Number Values

35-38 Blank

1-9999

Rules

• Right justify this entry.

Explanation

Indicates that the file is not indexed

Specifies the location of the key field

• Leading zeros can be omitted.

15.3.17 Extension Code

Use column 39 to specify the extension code that causes VAX RPG II
to read either the Extension or the Line Counter specification for more
information about the file. You must complete an Extension specifica
tion for tables, arrays, and record-address files. You can complete a Line
Counter specification for a printer output file. The Line Counter specifica
tion specifies the length of the printed page and defines the overflow line
number.

VAX RPG II Specifications 15-37

File Description Specification (F)

Column Allowable
Number Values

39 Blank

E

L

15.3.18 Device Code

Explanation

Specifies no Extension or Line Counter specification

Causes VAX RPG II to read the Extension specifica
tion for the file

Causes VAX RPG II to read the Line Counter
specification for the file

Use columns 40 through 46 to specify the device code that indicates on
what type of device the file is stored.

Column Allowable
Number Values

40-46 Blank

DISKXXX

TAPEXXX

PRINTXX

TTYXXXX

READXXX

15-38 VAX RPG II Specifications

Explanation

Specifies the default disk device.

Specifies a disk device where X is any character.
Disk can be specified for sequential files but is
required for indexed and direct files. Disk is the
default device.

Specifies a tape device for sequential files only. X
can be any character.

Specifies a print device for an output file. X can be
any character.

Specifies a terminal device for a display file or a
sequentially processed input or update file. X can
be any character.

Specifies a card reader for sequentially processed
input files. X can be any character.

To use a card reader, you must specify I in column
15 and P, S, T, or D in column 16. Also, leave
columns 28 through 38 blank.

Column Allowable
Number Values

WORKS TN

Rules

Left justify this entry.

Additional Information

File Description Specification (F)

Explanation

Specifies the mechanism by which many VAX
FMS form capabilities can be accessed from a VAX
RPG II program. You must include a C for the
file type when you specify WORKSTN as the file
device. There can only be one WORKSTN file in a
program. See Chapter 6 for additional information.

If you specify a device name other than one of the allowable values1
VAX RPG II accepts it1 but issues a warning message at compile time.
VAX RPG II assumes a disk device1 unless you specify Din column 151 in
which case VAX RPG II assumes a terminal (TTY) device.

For additional information on tape and disk operations1 see the Guide to
VAX/VMS Disk and Magnetic Tape Operations.

15.3.19 Symbolic Device

Use columns 47 through 52 to specify the symbolic device. The symbolic
device can be a logical name for any device. VAX RPG II uses the sym
bolic device as the file name string. VAX RMS uses the file name string
and the default file name string (the file name that appears in columns
7 through 14) as the default name of a file being processed for input or
output operations. See Chapter 8 for information on how VAX RPG II
uses the symbolic device field (columns 47 through 52) and the file name
field (columns 7 through 14) to generate the VAX/VMS file specification.

Column Allowable
Number Values

47-52 Any
character

Explanation

Represents the symbolic device

The symbolic device name can contain up to six characters. It must not be
specified for display or WORKSTN files.

VAX RPG II Specifications 15-39

File Descr•ption Specification (F)

15.3.20 Tape label

Use column 53 to identify the label for a magnetic tape.

Column Allowable
Number Values

53 Blank

s

Explanation

Indicates that the magnetic tape has a standard
VAX/VMS ANSI label

Indicates that the magnetic tape has a standard
VAX/VMS ANSI label

VAX/VMS can process only magnetic tapes with VAX/VMS ANSI labels.

15.3.21 F Specification Continuation lines

F specification continuation lines can optionally follow a WORKSTN file
specification. You can use continuation lines to indicate:

• A VAX FMS forms library
• A WORKSTN file information data structure

• An offset of forms on the screen

15-40 VAX RPG II Specifications

Column Allowable
Number Values

7-52 Blank

53-59 FMTS

60-65

60-67

15.3.22 Core Index

INFOS

SLN

Field name
or
data
structure
name

VAX FMS
form
library
name

File Description Specification (F)

Explanation

These columns must be blank.

A VAX FMS library option.

A WORKSTN file information data structure option.

Offset of forms on screen option.

Specifies the variable containing the number of
lines to offset the forms on the screen for the SLN
option. Or, specifies the WORKSTN file information
data structure name.

Specifies the VAX FMS forms library name for the
FMTS option.

Use columns 60 through 65 to set the VAX RMS multibuffer count in the
Record Access Block (RAB). See the Guide to VAX/VMS File Applications
manual for information about multibuffer count and for optimizing file
performance.

Column Allowable
Number Values

60-65 Blank

1-9999

Rules

Explanation

Specifies that the file is not indexed or that an
indexed file has no core index

Specifies the number of bytes to reserve for the core
index

• VAX RPG II divides the core index value by 512 and rounds the value
to the next highest integer, if necessary. For example, if the core index
is 513, the VAX RMS multibuffer count is 2.

VAX RPG II Specifications 15-41

File Description Specification (F)

If the operation results in an integer that is greater than 127, VAX
RPG II uses 127 as the VAX RMS multibuffer count.

• Right justify this entry.

• Leading zeros can be omitted.

15.3.23 File Addition and Unordered Output

Use column 66 to specify file addition and unordered output. File addition
and unordered output determine how new records are added to a file. You
can add records to sequential, direct, and indexed files that reside on disk.
On tape, you must go to the logical end of the tape before adding records
to a file; otherwise, new records would overwrite existing records.

Column Allowable
Number Values

66 Blank, A, U

For output files, you can choose one of the following entries.

Entry

Blank

A

u

Explanation

Creates an indexed file and adds records by primary key, or creates a
sequential or direct file.

Adds records to an existing indexed or direct file or to the end of
an existing sequential file. When you use this option, you must also
specify ADD in columns 16 through 18 of the Output specification.

Creates an indexed file and adds records in an unordered sequence.

For input files, you can choose one of the following entries.

Entry

Blank

A

15-:-42 VAX RPG II Specifications

Explanation

Reads records from a file without adding new records or changing
existing records.

Reads records from an indexed or direct file and allows you to add
new records. When you use this option, you must also specify ADD
in columns 16 through 18 of the Output specification.

File Description Specification (F)

For update files, you can choose one of the following entries.

Entry Explanation

Blank Allows you to update the records in a file.

A Allows you to update the records in, and add records to, an indexed
or direct file. When you use this option, you must also specify ADD
in columns 16 through 18 of the Output specification.

You cannot add records to an indexed file that is being processed by a
record-address file.

15.3.24 Expansion Factor

When records are added to indexed files, they are placed in buckets.
(Buckets hold the contents of records.) If you attempt to randomly add a
record to a full bucket, VAX RMS causes the bucket to split. VAX RMS
tries to keep half of the records in the original bucket and moves the
other records to a newly created bucket. Each split record leaves behind
a pointer to the new bucket. When the system searches for one of the
records in the newly created bucket, it must first go to the bucket where
the record previously resided, read the pointer, and then move to the
bucket indicated by the pointer. This pointer manipulation overhead takes
time and wastes disk space.

To prevent bucket splitting and to improve search efficiency, use an
Expansion factor when creating an indexed file to reserve bucket space for
the records you write to an indexed file. Also, specify a bucket size that is
a multiple of the disk cluster size. To show the disk cluster size, type the
following:

$ SHOW DEVICE device/FULL

Use column 67 to specify the expansion factor.

VAX RPG II Specifications 15-43

File Description Specification (F)

Column Allowable
Number Values

67 Blank or 0

1 (minimum)

2 (average)

3 (above
average)

4 (maximum)

Additional Information

Explanation

Completely fills a bucket

Sets indexed bucket fill size to 50% and sets data
fill size to 100%

Sets indexed bucket fill size to 50% and sets data
fill size to 75%

Sets indexed bucket fill size to 50% and sets data
fill size to 60%

Sets indexed bucket fill size to 50% and sets data
fill size to 50%

If the records you want to add are distributed unevenly by their key
values, then VAX RMS must split the buckets. In this case, use an expan
sion factor of zero. Records with key values that are close in sequence and
records added to the end of the file cause VAX RMS to split the buckets
anyway. For these kinds of records, use an expansion factor of zero.

For output or update indexed files that are being created, VAX RMS uses
the expansion factor to set the data bucket fill size and indexed bucket fill
size in the key Extended Attribute Block (XAB). VAX RPG II multiplies the
bucket size value by 512 and adjusts the result based on the percentages
listed.

Table 15-4 shows how the values for expansion factor and block length
set the values for the following VAX RMS parameters:

• FAB$B_BKS (bucket size)

• XAB$W-1FL (indexed bucket fill size)
• XAB$W_DFL (data bucket fill size)

See the VAX Record Management Services Reference Manual for information
on these parameters. See the Guide to VAX/VMS File Applications for
information on indexed bucket fill size (index_fill) and data bucket fill size
(da ta_fill).

1 5-44 VAX RPG II Specifications

File Description Specification (F)

Table 15-4: Expansion Factor and Block Length Values
File Block
Expansion Length FABSB-BKS XAB$W-1FL XAB$W_DFL

1 (minimal) 1536 3 768 1536

2 (average) 2048 4 1024 1536

3 (above average) 1024 2 512 614

3 (above average) 2048 4 1024 1228

4 (maximum) 2000 4 1024 1024

15.3.25 File Sharing

Use column 68 to specify the file sharing requirements of the file. File
sharing allows more than one program to access the records in a file at
the same time. If more than one program tries to access the same record,
the first program that accessed the record will be allowed to change it and
then one of the following options will take effect:

• S option-the record will be locked, preventing access by other
programs until the first program is finished with the record

• R option-the record will be locked, preventing update access by
other programs, but will not be locked from programs attempting to
read the record

However, on a CHAIN operation code, you can specify an indicator to be
set on when a record is locked, allowing the program to proceed while
the record is still locked. See Section 16.7.1 for information on CHAIN
indicators for locked records.

Column Allowable
Number Values

68 Blank

s
R

Explanation

Uses VAX RMS default file sharing

Specifies file sharing

Specifies file sharing with the lock for writing
option

VAX RPG II Specifications 15-45

File Description Specification (F)

Rules

• Column 68 must be blank for a display file. (D in column 15 of the File
Description specification) and for an ADDROUT file (T in column 32
of the File Description specification).

• Specifying S or R in colµ.mn 68 is valid for a sequential file only if
the sequential file has fixed-format records (Fin column 19 of the File
Description specification) and with a record length of 512.

Additional Information

Table 15-5 shows file sharing that is inherently specified as a result of
the combination of the entries in columns 15, 66, and 68 of the File
Description specification. The File Description specification that specifies
these entries is assumed to be the first to open the file.

Table 15-5: File Sharing
Columns

15

File
Type

I
0
u
I,
0,
u

(b =blank)

66 68

File
Addition Share

b b

A b
b,A,U b,
b,A b

b,A,U S,
R

Explanation

Any number of programs with the same
entries in these three columns can read the file
simultaneously. Any program with a different
entry in file type or File Addition for this file
will receive a file-locked error.

No other program is allowed simultaneous
access to the file. Any other program will
receive a file-locked error.

Any other program with an S or R in Share
can access the file simultaneously, unless the
file is for output and the file does not specify A
for File Addition, in which case a new version
of the file is created. Any other program with
a blank in Share will receive a file-locked error.

VAX RPG II does not set the SHR field of the File Access Block (FAB) for
the file when Share is left blank. When you specify Sin column 68,

15-46 VAX RPG II Specifications

File Description Specification (F)

VAX RPG II sets the SHR field to allow GET, PUT, DEL, and UPD access.
When you specify R in column 68, VAX RPG II also sets the RLK option.
See the Guide to VAX/VMS File Applications for more information on file
sharing.

15.3.26 Tape Rewind

Use column 70 to specify tape rewind that positions a tape according to
the current conditions.

Column Allowable
Number Values

70 Blank

U or R

N

K

L

15.3.27 File Condition

Explanation

Indicates either that the file does not reside on tape,
or, if the file does reside on tape, that the tape will
rewind when the file is opened and closed

Rewinds the tape when the file is opened and when
the file is closed

Does not rewind the tape

Rewinds the tape when the file is opened

Rewinds the tape when the file is closed

Use columns 71 and 72 to specify the file condition. File condition
associates an external indicator with a file. External indicators control file
access at run time. When you condition the file with an external indicator,
VAX RPG II opens the file only when the external indicator is set on. You
can use external indicators to condition primary and secondary input and
update files, record-address files, and output files. You can condition a
record-address file by using an external indicator only if the following
conditions are met:

• The record-address file is associated with a primary or secondary input
or update file.

• The same indicator (or no indicator) is used to condition the
associated file.

VAX RPG II Specifications 15-47

File Description Specification (F)

See Chapter 7 for more information on external indicators.

Column Allowable
Number Values

71,72 Blank

Ul-U8

Explanation

Indicates no external indicator for this file

Names the external indicator that controls file access
at run time

When you condition a file with an external indicator, use the same
indicator to condition calculations and output operations for the
same file.

15.3.28 Example

In the following example:

• Line 1020 describes a primary input file with fixed-record format.
Each record is 96 bytes long. The file CICWMS resides on disk with a
symbolic device of XXl.

• Line 1030 describes a demand file for input with fixed-record format.
Each record is 96 bytes long. The file CARD58 resides on disk with a
symbolic device of XX2. The external indicator Ul must be set on if
the file is to be opened.

• Line 1040 describes a demand file for update with fixed-record format.
Each record is 190 bytes long. The file ICM resides on disk with a
symbolic device of XX4.

• Line 1110 describes an output file with fixed-length records. Each
record is 132 bytes long. The output file CONTRL will be written to
the printer whose symbolic device is Xl 1. The overflow indicator is
specified to condition output lines when an overflow occurs.

15-48 VAX RPG II Specifications

F'ile
na111e
I

F' I

Hade <LR>
IKe~ length

File Description Specification (F)

T~pe <IOUDC> I I Record address t~pe <APIB> Addtn<AU>
I Des (PSRCTDF'> 11 I Organization (IT, 1-9) I Expand
I IEOF' <E> 11 I IOverflo"' indicator Continue <K> I IShr<SR>
I I ISeq <AD> I I II I KeH location IOpt Entr~ I I I Re"'nd
llllF'111t <F'V> II Ill I Extension <EUii I Ill I
I I I I IBlk Rec I I II I I !Device S~111b Tape Core I I I IF'ile
I I I I llen len I I I II I Icade dev label index I I I lcond
111111 I 11 111 I 11 I I I 111 II

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

II 111111---1---11-111 1~--11 I 11111111-----111111 II

01020F'CICWHS IP F' 96 DISK XX1
01030F'CARD58 ID F' 96 DISK XX2 U1
01040F'ICH UD F' 190 DISK XX4
01110F'CONTRL 0 r 132 or PRINTR Xii

ZK-4474-85

VAX RPG II Specifications 15-49

Extension Specification (E)

15.4 Description

The Extension specification allows you to give VAX RPG II additional
information about record-address files, tables, and arrays. See Chapter 8
for information about record-address files. See Chapter 10 for information
about tables. See Chapter 11 for information about arrays.

In general, use the Extension specification to describe the following
information about a table or array:

• Name of the table or array

• Number of entries per record
• Number of entries per table or array

• Length of each table entry or array element

• Format of numeric data

• Decimal position
• Sequence of entries

• Related tables or related arrays in alternating format

If your program uses a record-address file, complete columns 11 through
26 to provide the following information:

• Name of the record-address file
• Data file associated with the record-address file

If your program uses tables or arrays, the time at which you load the
tables or arrays determines the columns you must complete. For compile
time tables and arrays, you must complete columns 19 through 57; for
preexecution-time tables and arrays, complete columns 11 through 57; and
for execution-time arrays, complete columns 27 through 32 and columns
36 through 45.

15-50 VAX RPG II Specifications

Extension Specification (E)

15.4.1 Extension Specification Format

E

The format of the Extension specification is as follows:

rro111
file
na111e
I
I

To
file
na111e
I
I

------r = ror111at CPB>
I -----D = Deci111al positions
I I ----S = Sequence CAD>
111
I llAlternating table or arra~

Table EntEnt Lenlllna111e Len
or perin of r111 of r
arra~ RecTbl EntlDI EntlD
na111e I I I I I S I I I I S
I I I I Ill I I I II+-- Co111111ents ---+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

·I I• * * *--*---*:--****
ZK-4475-85

15.4.2 Specification Type

Use column 6 to identify the type of specification for every program line.

Column Allowable
Number Values

6 E

15.4.3 From File Name

Explanation

Indicates that this program line is an Extension
specification

Use columns 11 through 18 to specify the from file name that identi
fies the name of the record-address file or the input file used to load a
preexecution-time table or array.

VAX RPG II Specifications 15-51

Extension Specification {E)

Column Allowable
Number Values

11-18 Blank

Name

Rules

Explanation

Loads the table or array named in columns 27
through 32 (table or array name) at compile time,
if columns 33 through 35 (entry per record) are
completed.

Loads the array at execution time if specified by
the Input and/ or Calculation specification and if
columns 33 through 35 are left blank.

Names a record-address file, if specified. Otherwise,
names the table or array input file. VAX RPG II
uses this file to load the table or array at preexecu
tion time.

• This file name must be the same file name you used in the File
Description specification.

• Left justify this entry.

15.4.4 To File Name

Use columns 19 through 26 to specify the to file name in connection with
your entry in columns 11 through 18 (from file name). If you name a
record-address file in columns 11 through 18, specify the name of the
input or update file it processes in columns 19 through 26.

Column Allowable
Number Values

19-26 Blank

File name

15-52 VAX RPG II Specifications

Explanation

Does not write the table or a:rray file at the end of
the program.

Identifies the data file associated with the record
address file, if you use a record-address file. If you
do not use a record-address file, this entry names
the output file that receives the data from the table
or array at the end of the program.

Extension Specification (E)

Rules

• This file name must be the same file name you used in the File
Description specification.

• If you want to write a table or an array to an output file at the end of
the program, enter the file name in columns 19 through 26.

• You cannot write an execution-time array to an output file.

• Left justify this entry.

15.4.5 Table or Array Name

Use columns 27 through 32 to name the table or array you want to use.

Column Allowable
Number Values

27-32 Blank

Name

Rules

Explanation

Indicates that the file named in columns 11 through
18 (from file name) is a record-address file

Identifies the name of the table or array

• A table name can be any string of three to six alphanumeric characters,
beginning with TAB. Table names cannot contain embedded blanks.

• An array name can be any string of one to six alphanumeric char
acters, beginning with an alphabetic character. Array names cannot
begin with TAB and cannot contain embedded blanks.

• If you use tables or arrays in alternating format, this entry describes
the name of the main table or array. Identify the alternate table or
array name in columns 46 through 51.

• Left justify this entry.

VAX RPG II Specifications 15-53

Extension Specification (E)

15.4.8 Number of Entries in a Record

Use columns 33 through 35 to specify the number of entries in a
table or array input record. Complete this entry for compile-time and
preexecution-time tables and arrays.

Column Allowable
Number Values

33-35 Blank

1-999

Rules

Explanation

Indicates a record-address file or an execution-time
array

Specifies the number of entries in a table or array
input record

• All records except the last must have the same number of entries. The
last record can have fewer entries to accommodate a number of entries
that is not an even multiple of the defined number of entries in the
record.

• The first entry must begin in the first position of the record.
• Leave no spaces between entries in a record.

• Entries cannot span two records.

• If you use tables or arrays in alternating format, each record must
contain a corresponding entry. The entries from the main table or
array and the corresponding entries from an alternate table or array
are treated as one entry.

• Right justify this entry.

• Leading zeros can be omitted.

15-54 VAX RPG II Specifications

Extension Specification (E)

15.4.7 Number of Entries in a Table or Array

Use columns 36 through 39 to specify the number of entries in a table or
array and in an alternate table or array, if an alternate table or array is
used.

Column Allowable
Number Values

36-39 Blank

1-9999

Rules

Explanation

Indicates that the file named in columns 11 through
18 (from file name) is a record-address file

Specifies the number of entries in a table or array

• If a compile-time or preexecution-time table or array is not completely
full, VAX RPG II fills the unused entries with blanks for alphanumeric
data or zeros for numeric data. If you specify an entry in column
45 (sequence) of the Extension specification, preexecution-time and
compile-time tables and arrays must be full (VAX RPG II does not fill
the short entries).

• Right justify this entry.

• Leading zeros can be omitted.

15.4.8 Length of Entry

Use columns 40 through 42 to specify the length of entry that defines the
number of character (alphanumeric or numeric) positions in each table or
array entry.

Column Allowable
Number Values

40-42 Blank

1-999

Explanation

Indicates that the file named in columns 11 through
18 (from file name) is a record-address file

Specifies the number of character positions (both
alphanumeric and numeric) in each table or array
entry

VAX RPG II Specifications 15-55

Extension Specification (E)

Rules

• For an alphanumeric entry, the maximum number of characters is 999.

• For a numeric entry, the maximum number of digits is 15.

• For numeric data, the maximum number of digits in binary format
is 9.

• For compile-time arrays, the maximum length of an entry is 96
characters, because this is the largest record that can be entered in the
source program.

• When you use table and arrays in alternating format, this entry
specifies the length of the entry in the main table or array.

• Because all entries in a table or array must be the same length, fill
unused alphanumeric character positions with blanks and fill numeric
entries with zeros.

• Right justify this entry.

• Leading zeros can be omitted.

15.4.9 Format

Use column 43 to specify how numeric data is stored. Data can be stored
in one of the following three formats:

• Overpunched decimal
• Packed decimal

• Binary

Select a format based on the storage space available and the frequency of
use. See Chapter 14 for more information on data formats.

15-56 VAX RPG II Specifications

Column Allowable
Number Values

43 Blank

p

B

15.4.10 Decimal Positions

Extension Specification (E)

Explanation

Specifies that numeric data is in overpunched
decimal format, or that the table or array contains
alphanumeric data. If you do not specify a table
or an array, a blank indicates that the file named
in columns 11 through 18 (from file name) is a
record-address file.

Specifies that numeric data is in packed decimal
format. This format is valid only for preexecution-
time tables or arrays. .

Specifies that numeric data is in binary format. This
format is valid only for preexecution-time tables or
arrays.

Use column 44 to specify the number of positions to the right of the
decimal point for numeric data in a table or array.

Column Allowable
Number Values

44 Blank

0-9

Explanation

Specifies a record-address file or indicates that the
table or array, if used, contains alphanumeric data

Specifies the number of positions to the right of the
decimal point for numeric data in a table or array

You must specify zero for numeric data with no decimal positions.

VAX RPG II Specifications 15-57

Extension Specification (E)

15.4.11 Sequence

Use column 45 to specify the sequence that defines the order of entries in
a table or array. VAX RPG II checks each entry for the order you specify.

Column Allowable
Number Values

45 Blank

A

D

Rules

Explanation

Specifies a record-address file, or indicates that the
entries in a table or an array are unordered

Specifies that the entries in a table or array are in
ascending order

Specifies that the entries in a table or array are in
descending order

• Consecutive entries that are equal in value are considered to be in
sequence.

• When you use tables or arrays in alternating format, this entry speci
fies the sequence of the main table or array.

• When you specify a sequence for a compile-time or preexecution-time
table or array, VAX RPG II checks the sequence of the entries in a
table or an array. If an entry in a compile~time table or array is out
of sequence, VAX RPG II reports a fatal error during compilation. If a
preexecution-time table or array is out of sequence, a run-time error
occurs.

• You must specify a sequence if you use an indicator to test for a HIGH
or LOW condition in a LOKUP operation associated with the table or
array. See Chapter 16 for information on LOKUP.

• You can specify a sequence for an execution-time array, but VAX
RPG II does not check the sequence. However, if the execution-time
array is not in correct sequence and you specify a LOKUP operation
with a HIGH or LOW condition, unpredictable results will occur.

15-58 VAX RPG II Specifications

Extension Specification (E)

15.4. 12 Alternate Table or Array

Use columns 46 through 57 to define the name, entry length, data format,
number of decimal positions, and sequence for an alternate table or array.
If you specify a table, you must use another table as its alternate. If
you specify an array, you must use another array as its alternate. The
same rules for columns 27 through 45 apply to the entries in columns 46
through 57.

15.4. 13 Comments

Use columns 58 through 74 to document the program line.

Column Allowable
Number Values Explanation

58-74 Any Documents the program line
character

15.4.14 Example

The following example specifies these operations:

• A preexecution-time array to be loaded from the file TABLEF at the
start of program execution (line 40)

• A compile-time table with an alternate table (line 50)

• A compile-time array (line 60)
• An execution-time array (line 70)

VAX RPG II Specifications 15-59

Extension Specification (E)

E

Fro111
file
na111e
I
I

To
file
na111e
I
I

------F = For111at <PB>
I -----D = Deci111al positions
II ----S =Sequence <AD>
II I
lllAlternating table or arra~

Table EntEnt Len I I lna111e Len
or perin of Fl II of F
arra~ RecTbl EntlDll EntlD
na111e I I I I I S I I I I S
I I I I I Ill I I~ I+-- Co111111ents ---+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

·I I• * 40E TABLE!
50E
60E
70E

15-60 VAX RPG II Specifications

* *--*---*--**** *--****
ARRAY! 4 B 5 0
TABLE2 4 B 1 TABLE3 3 0
ARRAY2 30 100 1
ARRAY3 30 1

ZK-4476-85

Line Counter Specification (L)

15.5 Description

The default length for a page of printer output is 66 lines; the default
overflow line is line 60. When the printer reaches the overflow line,
VAX RPG II sets the overflow indicator on.

The Line Counter specification allows you to alter the default page format
of a printer output file. You can use this specification to change both the
number of lines on a page and the overflow line.

15.5.1 Line Counter Specification Format

The format of the Lirie Counter specification is as follows:

Form length (1-112)
File I FL (if Form length used)
name I I Overflow line number (1-112>
I I I I OL (if Overflow line used)

LI I I I I
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890

**
ZK-4477-85

15.5.2 Specification Type

Use column 6 to identify the type of specification for every program line.

Column Allowable
Number Values

6 L

Explanation

Indicates that this program line is a Line Counter
specification

VAX RPG II Specifications 15-61

Line Counter Specification {L)

15.5.3 File Name

Use columns 7 through 14 to name the output file.

Column Allowable
Number Values

7-14 File name

Rules

Explanation

Identifies the name of the output file

• The output file must be described on the File Description specification
with PRINTER in columns 40 through 46 (device code) and Lin
column 39 (extension).

• Left justify this entry.

See Chapter 14 for information on naming files.

15.5.4 Form Length

Use columns 15 through 17 to define the number of lines printed on a
page. When the printer reaches the last specified line, it skips to the next
page and resumes printing.

Column Allowable
Number Values

15-17 1-112

Rules

Explanation

Defines the maximum number of lines that can be
printed on a page

• This entry must be a numeric value.

• Right justify this entry.
• Leading zeros can be omitted.

15-62 VAX RPG II Specifications

15.5.5 FL

Line Counter Specification (L)

If you specify an entry in columns 15 through 17 (form length), you must
enter FL in columns 18 and 19. This entry specifies that columns 15
through 17 define the form length.

Column Allowable
Number Values

18,19 FL

Explanation

Causes VAX RPG II to use the form length defined
in columns 15 through 17

15.5.6 Overflow Line Number

Use columns 20 through 22 to specify the overflow line number. When
the page reaches the overflow line, VAX RPG II sets the overflow indicator
on.

Column Allowable
Number Values Explanation

20-22 1-112 Specifies the overflow line number

Rules

• This entry must be equal to or less than the entry in columns 15
through 17 (form length).

• This entry must be a numeric value.
• Right justify this entry.

• Leading zeros can be omitted.

VAX RPG II Specifications 15-63

Line Counter Specification (L)

15.5.7 OL

If you specify an overflow line number in columns 20 through 22 (over
flow line number), you must enter OL in columns 23 and 24. This entry
specifies that columns 20 through 22 define the overflow line number.

Column Allowable
Number Values

23,24 OL

Explanation

Causes VAX RPG II to use the overflow line number
defined in columns 20 through 22.

15.5.8 Example

In the following example, the form length is 100 lines and the overflow
line number is line 96:

Form length (1-112)
Fi le I FL. (if Form length used)
name I I Overflow line number (1-112)
I I I I OL (if Overflow line used)

LI I I I I
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890

** LINPUT
1--1 1--1 I

iOOFL 960L
ZK-4478-85

15-64 VAX RPG II Specifications

Input Specification (I)

15.6 Description

The Input specification describes the records in input and update files.
Each record is further divided into fields. Columns 7 through 42 describe
the file and its records. Columns 43 through 7 4 describe the fields in each
record.

The Input specification also describes data structure statements and data
structure subfields. See Section 15.6.4 for information on data structures.

You must use art Input specification to describe each input or update file
except for table input files and record-address files.

15.8.1 Input Specification Format

File
na111e
I

I I

The format of the Input specification is as follows:

Se~uence <AA-ZZ, 01-99)
I Nu111ber <1-N>
I IOptional/External <OU> Deci111al positions
I I I Record identif~ing indicator I Control level
I 111 I I Hatch field
I 111
I 111

+ Identif~ing codes + For~at I I I Fld rec rel
I I I <PB) I F'i e 1 d I I I

I 111 I C C CI I F'i el d I na~e I I I F'i el d
I 111 I Z Z ZI llocationll I I I indicatrs
I 111 Pos NDcPos NDcPos NDc I Fr To I I I I I + - 0

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * * * * * *
ZK-4479-85

15.8.2 Specification Type

Use column 6 to identify the type of specification for every program line.

VAX RPG II Specifications 15-65

Input Specification (I)

Column Allowable
Number Values

6

15.8.3 File Name

Explanation

Indicates that this program line is an Input spedfi
cation

Use columns 7 through 14 to name the input or update file.

Column Allowable
Number Values

7-14 File name

Rules

Explanation

Identifies the name of the input or update file

• Use the same name you specified in the File Description specification.
• If this column is blank, VAX RPG II assumes that the information in

this program line describes a field or record from the file named last.

• Describe all the records and fields for one file before describing
another file.

• Left justify this entry.

15-66 VAX RPG II Specifications

Input Specification (I)

In the following example, EMPLOYEE is the name of the input file, and
the fields NAME and ADDRES, each containing 20 characters, belong to
each record in the file:

Sequence CAA-ZZ, 01-99)
I Nu111ber <1-N>
I !Optional/External (QU) Deci111al positions
I llRecord identif~ing indicator I Control level
I I I I I I Match fie 1 d
I I I I + Identif~ing codes + ror111at I I I rld rec rel

F'ile I Ill I I I CPB) lrield I I I
na111e I i I I I C C Cl lrield lna111e I I I rield
I I. 111 I Z Z Z I 11ocation11 I I I indicatrs

II I I I~ Po~ NDcPos NDcPos NDc IFr To .1 I I .I I + - 0
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** * *** *--- *--- *--- ·** ___ * ___ ** * * * * * *
IEHPLOYEEAA
I 1 20 NAME
I 21 41 ADDRES

ZK-4480-85

15.6.4 Data Structures

bata structures consist of a data structure statement and zero or more
data structure subfields. You must describe data structures on Input
specifications. Data structures follow all Input specifications (including all
modifier specifications) for records.

You can use data structures to do the following:

•
•
•
•
•

Define one area of storage more than one way
Define subfields within a field or subfield

Reorganize fields in an input re~ord
Select the internal numeric data type for fields

Communicate information between programs with a local data area

VAX RPG II Specifications 15-67

Input Specification (I)

15.6.4. 1 Data Structure Statement

The format of the data structure statement is as follows:

Column
Number

7-12

18

19-20

48-51

Rules

Allowable
Values

Data
structure
name

u

DS

1-9999

Explanation

Identifies the data structure. The data structure
name, which is not required, can be a field defined
on Input specifications or Calculation specifications
or defined nowhere else in the program.

Optional. Identifies this data structure as the local
data area.

Specifies a data structure.

Columns 48 through 51 may optionally contain the
data structure length.

• The data structure name can appear on only one data structure
specification, cannot be a look-ahead field, and can be specified
anywhere a character field is allowed ..

• The length of the data structure is one of the following:

The length specified in the Input specification, if the data structure
name is an input field
The length specified in columns 48 through 51 of the data struc
ture statement

The highest to position (end position) of a subfield within a data
structure, if the data structure name is not an input field

• The length computed by the to position must be less than or equal
to the length specified in the Input specification or the data structure
statement.

• Any length on a Calculation specification must match the largest value
specified in the Input specification or the data structure. statement.

• Because it is possible to specify the length of a single data structure in
all of the preceding ways in a single VAX RPG II program, a compiler
diagnostic will be given for any conflicts. This will not occur if the
length in columns 48 through 51 exceeds the highest to position for
any subfield in the data structure.

15-68 VAX RPG II Specifications

Input Specification (I)

15.6.4.2 Data Structure Subfields

Data structure subfields are specified in columns 43 through 58. They
are defined the same as for any other input field specification. See
Sections 15.6.11 through 15.6.14 for those field specification requirements.

The field location's start and end positions are relative to the beginning of
the data structure, not to the beginning of the data record.

Rules

• All columns except columns 43 through 58 must be left blank.

• The subfield name can be the same as a field defined on an Input
specification or a Calculation specification.

• Subfields can be used as factor l, factor 2, or the result field of a
Calculation specification or as output fields.

• The same subfield name cannot be used in more than one data
structure.

• A data structure name cannot be used as a subfield name in another
data structure.

• Numeric subfields must contain numeric data when used in CHAIN,
LOKUP, COMP, editing, or arithmetic operations.

• If arrays are specified as subfields, the length specified must equal the
amount of storage required to store the entire array.

• A data structure subfield cannot be an indicator (*IN field) or a UDATE
field.

• Overlapping subfields cannot be used in the same calculation in such
a way that the result field overlaps either factor 1 or factor 2. If either
factor l, factor 2, or the result field references a subfield in a data
structure that is an entire array or an array with a variable index,
then that array is used to determine whether overlap exists. The
same array name can be referenced in the appropriate factors of a
Calculation specification without violating the overlap rule.

• Any subfield previously defined in an input record must be the same
in length (in digits) and in decimal positions. If the numeric data type
is different from what was specified in an input record, the length (in
digits) must still be the same as previously defined.

• Any subfield defined more than once in the same data structure
must be defined with the same data type and start position, the same
length, and the same decimal positions, in the data structure.

VAX RPG II Specifications 15-69

Input Specification (I)

• Neither data structures nor data structure subfields can be individual
array elements.

• All entries for a data structure statement and its data structure sub
fields must appear together; they cannot be mixed with entries for
other data structures.

• A data structure statement and a data structure subfield cannot have
the same name.

See Section 15.6.15 for examples of using data structures.

15.6.4.3 Local Data Area

The VAX RPG II local data area is a data structure of up to 512 bytes used
to communicate information from one VAX RPG II program to another.
In addition, the YAX RPG II local data area can be manipulated (read or
written) at DCL command level or from a program written in another
language.

To specify a local data area, a data structure must have a U in column
18 on the Input specifications. The data structure does not need a name.
Only the first 512 bytes of the data structure are loaded at program start
and written at program exit. Only one data structure may have a U
specified in column 18.

The VAX RPG II local data area is implemented with VAX/VMS DCL
symbols (see the VAX/VMS DCL Dictionary for examples of manipulating
DCL symbols). The following four symbols correspond to the indicated
bytes within a data structure which has a U specified in column 18:

RPG$LDA1

RPG$LDA2

RPG$LDA3

RPG$LDA4

15-70 VAX RPG II Specifications

1-128

129-256

257-384

385-512

Input Specification (I)

15.6.5 Sequence

Use columns 15 and 16 to specify the sequence that defines the ordering
sequence of the record types in a file (for example, distinguishing em
ployee name records from employee badge number records). VAX RPG
II does not order records according to sequence; it checks the sequence of
records in the input or update file instead.

Column Allowable
Number Values

15,16 Any two
alphabetic
characters

Blanks

Any
two-digit
number

Explanation

Performs no sequence checking for this record.
You can use any two letters from AA through ZZ,
for example, BB, ZA, or DE. You must specify an
alphabetic sequence for chained and demand files
and look-ahead fields.

Specifies no sequence checking for this record.

Assigns a sequence number to a record. You can
use any two numbers from 01 to 99; however,
you must use sequence codes in ascending order,
beginning with 01.

VAX RPG II does not require that all Input specifications in alphabetic
sequence appear before those Input specifications in numeric sequence.

15.6.6 Number

If you assigned a numeric sequence code in columns 15 and 16, use
column 17 to indicate the number of records in a record type.

Column Allowable
Number Values

17 1

N

Explanation

Specifies that there is only one record of this type

Specifies that there can be more than one record of
this type

Leave this column blank if you specified an alphabetic sequence in
columns 15 and 16.

VAX RPG II Specifications 15-71

Input Specification (I)

15.8. 7 Option

If you assigned a numeric sequence code in columns 15 and 16, you can
use column 18 to specify whether a record of that type must be present to
continue processing records.

Column Allowable
Number Values

18 Blank

0

Explanation

Specifies that a record of that type must be present

Specifies that a record of that type is optional

Leave this column blank, if you specified an alphabetic sequence in
columns 15 and 16.

15.8.8 Record-Identifying Indicator

Specifying an indicator in columns 19 and 20 associates the indicator with
a particular record type. When VAX RPG II processes a record of the
type you specify for this program line, it also sets on the indicator, which
remains on until after detail-time output. Then, VAX RPG II sets off all
indicators used as record-identifying indicators. See Chapter 7 for more
information.

Column Allowable
Number Values

19,20 Blank

15-72 VAX RPG II Specifications

01-99

Ll-L9

Hl-H9

LR

**

DS

Explanation

Specifies not to set on an indicator when VAX RPG
II processes a record of the type you specify.

Specifies a record-identifying indicator.

Specifies a control-level indicator. When VAX
RPG II sets on this type of indicator, it does not
automatically set on lower-level control-level
indicators.

Specifies a halt indicator.

Specifies a last-record indicator.

Specifies that the fields described on the subsequent
program lines are look-ahead fields.

Specifies a data structure.

Input Specification (I)

Look-ahead fields allow you to do the following:

• Determine when the last record of a control group is processed
• Extend the matching-field processing capability

VAX RPG II typically processes one record at a time. The data from the
record currently being processed is available. With look-ahead fields,
you can evaluate the data from the next record to be processed and then
determine which operation to perform.

Any or all of the fields in a file can be specified as look-ahead fields. The
description applies to all records regardless of their record type.

To specify a field as a look-ahead field, you mµst enter a double asterisk
(**) in columns 19 and 20 of the Input specification. Also, you must spec
ify an alphabetic sequence in columns 15 and 16 of the Input specification.
All other columns must be blank. Then, on the next program line, enter
the field name, as shown in the following example:

Sequence <AA-ZZ, 01-99)
I Nu111ber (1-N)
I !Optional/External <OU) Deci111al positions
I I I Record identif~ing indicator I Control level
I I I I I I Hatch field
I I I I + Identif~ing codes + ror111at I I I rld rec rel

rile I 111 I I I <PB) ltield I I I
na111e I I I I I C C Cl lrield lna111e I I I rield
I I Ill I Z Z ZI llocationll I I I indicatrs

II I I I I Pos NDcPos NDcPos NDc Irr To I I I I I + - 0
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
II I Ill 1--- ~--- 1--- 1*•---1---11 I* I I I I 1111
IEHPLOYEEAA 01
I 1 20 NAME
I BB **
I 21 25 BADGE

ZK-4481-85

VAX RPG II Specifications 15-73

Input Specification (I}

Rules

• Look-ahead fields can be used only with input or update primary or
secondary files.

• For input files, look-ahead fields apply to the next record in the file.

• For update files, look-ahead fields apply only to the next record in the
file if the current record being processed was read from another file.
Therefore, if you are using only one file, the look-ahead field is the
current record being processed. ·

• Look-ahead fields can be specified only once in a file.
• Look-ahead fields cannot be the only record in the file.

• As VAX RPG II processes the last record, it fills any look-ahead fields
with 9s. In this case, if the field is 10 characters long, it will contain
the data 9999999999.

• Columns 59 through 70 must be blank on Input specifications describ
ing look-ahead fields.

• You cannot specify blank after (Bin column 39 of the Output specifi
cation) for look-ahead fields.

• A look-ahead field cannot be used as a result field in a Calculation
specification.

15.8.9 Record Identification Codes

Use columns 21 through 41 to define a record type and to specify the code
that indicates how to identify it. You can subdivide these columns into
three subsets (columns 21 through 27, 28 through 34, and 35 through 41),
each defining a different code.

If you use more than one subset, the record must satisfy all record identi
fication codes. Used in· this way, the codes form an AND relationship. If
VAX RPG II cannot identify a record according to the identification codes
of all the records in a file, it issues a run-time error. ·

If there is only one record type for a file, you can leave these columns
blank. Also, you can leave these columns blank when describing the last
record type in a file. This defines a record type to catch all r~cords that do
not fall into any of the record types you previously described.

VAX RPG II checks records for a record type in the order in which you
specify them on the Input specification.

1 5-7 4 VAX RPG II Specifications

Input Specification (I)

15.6.9. 1 Position

Use columns 21 through 24, 28 through 31, and 35 through 38 to define
the position that specifies where to look for the identification code in the
input record.

Column Allowable
Number Values

21-24 Blank
28-31
35-38

1-9999

Rules

• Right justify this entry.

Explanation

Indicates that there is no record identification code.
In this case, make sure that the corresponding not,
character (C), zone (Z), or digit (D) portion and the
character columns are blank.

Defines the position of the character you specify in
columns 27, 34, and 41. For example, the number
in columns 28 through 31 specifies the position of
the character in column 34. ·

• Leading zeros can be omitted.

15.6.9.2 Not
Use columns 25, 32, and 39 to specify whether an identification code must
be present in the input record.

Column Allowable
Number Values

25 ,32,39 Blank

N

Explanation

Indicates that the identification code you specify
in the next two columns (26 and 27, 33 and 34,
and 40 and 41) must be present to identify a record
type. For example, if column 32 is left blank, the
identification code in columns 33 and 34 must be
present.

Indicates that the identification code must not be
present to identify a record type. For example, if
you specify N in column 39, the identification code
in columns 40 and 41 must not be present.

VAX RPG II Specifications 15-7 5

Input Specification (I)

15.6.9.3 CZD Portion

Use columns 26, 33, and 40 to specify what portion of the character to use
when identifying a record code. You can use the character (C), zone (Z),
or digit (D) portion of the character. Many characters have either the same
zone or digit portion. To distinguish between zone and digit portions,
you must use their EBCDIC equivalent. See Appendix A for the ASCII
character set and their corresponding EBCDIC zone and digit codes.

Column Allowable
Number Values

26,33,40 Blank

c

z

D

15.6.9.4 Character

Explanation

Indicates that there is no record identification
code. Its corresponding position, not, and character
columns must be left blank.

Causes VAX RPG II to use the entire character to
identify the record.

Causes VAX RPG II to use the EBCDIC zone
portion to identify the record.

Causes VAX RPG II to use the EBCDIC digit portion
to identify the record.

Use columns 27, 34, and 41 to specify the identification character for the
input record.

Column Allowable
Number Values

27,34,41 Any
character

In the following example:

Explanation

Specifies the character part of the identification code

• I in column 6 specifies that this program line is an Input specification.

• EMPLOYEE in columns 7 through 14 names the input file. This file
contains the name, address, and telephone number for each employee.

• The characters AA in columns 15 and 16 specify no sequence
checking.

15-76 VAX RPG II Specifications

Input Specification (I)

• VAX RPG II sets on the indicator you specified in columns 19 and 20
(OS) after it reads a record that matches the identification code defined
in columns 21 through 41.

There are three parts to the code that identifies this record type:

1. Position 1 must contain the character A.

2. Position 31 must contain the character C.

3. Position 123 must not contain a character with an EBCDIC digit
portion of the number 6. This includes the characters F, 0, W, 6,
f, o, and w.

Se~uence (AA-ZZ, 01-99)
I Nu111ber (1-N)
I !Optional/External (QU) Deci111al positions
I I I Record identif~ing indicator I Control level
I 11 I I I Hatch field
I I I I + Identif~ing codes + For111at I I I Fld rec rel

File I Ill I I I (PB) !Field I I I
na111e I 111 I C C CI I Field I na111e I I I Field
I I 111 I Z Z Z I 11ocation11 I I I indicatrs

II I I I I Pos NDcPos NDcPos NDc IFr To I I I I I + - 0
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
' * * *~-- *--- *--- ·**---*-~-** * * * * * *
IEHPLOYEEAA 05 1 CA 31 CC 123ND6

ZK-4482-85

15.8.10 AND and OR

Entering AND in columns 14 through 16 or entering.OR in columns 14
and 15 associates two program lines that specify an identification code.

AND specifies that the identification codes in two program lines must be
matched in order to identify the record and to set on the record-identifying
indicator, if one is specified.

OR specifies that the identification code in either program line must be
matched in order to identify the record and to set on the record-identifying
indicator, if one is specified.

VAX RPG II Specifications 15-77

Input Specification (I)

Column Allowable
Number Values

14-16 AND

14,15 OR

Rules

Explanation

Specifies an AND relationship between the identifi
cation codes on this program line and the previous
program line

Specifies an OR relationship between the record
identification codes on this program line and the
previous program line

• If you use AND, columns 7 through 13 and 17 through 20 must be
left blank.

• If you use OR, columns 7 through 13 and 16 through 18 must be left
blank.

• You can enter a record-identifying indicator in columns 19 and 20
in an OR line. If you leave columns 19 and 20 blank, the record
identifying indicator in the preceding program line also applies to this
program line.

In the following example, there are four characters that identify a record
type in the file EMPLOYEE:

1. Position 1 must contain the character A.

2. Position 31 must contain the character C.

3. Position 1111 must contain the character zero.

4. Position 123 must not contain the digit 6.

The record must meet all the conditions in both program lines before
VAX RPG II sets on the indicator (05).

VAX RPG II identifies a record type in the file RETIRED if position 1
contains the character I and position 31 contains the character D, or if
position 123 does not contain the digit 6. The record must meet the
conditions defined in either program line before VAX RPG II sets on the
indicator (06).

15-78 VAX RPG II Specifications

Input Specification (I)

Sequence <AA-ZZ, 01-99)
I Nu111ber <1-N)
I IOptional/External <OU> Deci111al positions
I I I Record identif~ing indicator I Centro 1 1eve1
I 11 I I I Hatch field
I 111 + Identif~ing codes + Format I I I Fld rec rel

rile I 111 I I I <PB) !Field I I I
name I 111 I c c Cl I Field I name I I I Field
I I 111 I z z ZI I location I I I I I indicatrs

I I I 111 Pos NDcPos NDcPos NDc Irr To 11 I I I + - 0
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** * *** *--- *--- *--- ·*·---*---** * * * * * *
IEHPLOYEEAA 05 1 CA 31 CC 123NC6
I AND 1111 CO
!RETIRED AA 06 1 CI 31 CD
I OR 123NC6

ZK-4483-85

15.8. 11 Format

Use columns 7 through 41 to describe the file and the records in the file.
Use columns 43 through 75 to describe the fields of each record. Field
descriptions must begin one line below the file and record description.
Use a separate line to describe each field you plan to use.

If a field contains numeric data, use column 43 to specify its format. You
can specify overpunched decimal, packed decimal, or binary format. See
Chapter 14 for information on data formats.

Column Allowable
Number Values

43 Blank

p

B

Explanation

Indicates that the field contains either alphanumeric
characters or numeric data in overpunched decimal
format

Indicates that numeric data is in packed decimal
format

Indicates that numeric data is in binary format

See Chapter 14 for information on numeric data types.

VAX RPG II Specifications 15-79

Input Specification (I)

15.6.12 Field Locations From and To

You define the fields of a record by specifying their location. Use columns
44 through 4 7 to specify the beginning character position of the field. Use
columns 48 through 51 to specify the ending character position of the
field.

Column Allowable
Number Values

44-4 7 1-9999

48-51 1-9999

Rules

Explanation

Specifies the beginning character position of the
field

Specifies the ending character position of the field

• The maximum length of a field depends on the type of data it con
tains. The maximum field length of overpunched decimal data is 15.
The field length of binary data can be 2 or 4. The maximum field
length of packed decimal data is 8. To determine the field length
of packed decimal data, divide the number of digits by 2 and add
l, ignoring the remainder. For example, if the number of digits in
packed decimal data is 9, the length is 5. The maximum field length
of alphanumeric data is 9999.

• Fields can overlap if you give each field a different name.
• Right justify this entry.

• Leading zeros can be omitted.

15-80 VAX RPG II Specifications

Input Specification (I)

15.8.13 Decimal Positions

If a field contains numeric data, use column 52 to specify the number of
digits to the right of the decimal point.

Column Allowable
Number Values

52 Blank

0-9

Rules

Explanation

Indicates that this field contains alphanumeric data

Specifies the number of positions to the right of the
decimal point

• You must specify a value in this column even if the numeric data has
no decimal points. In this case, use zero.

• The number of decimal positions must be less than or equal to the
number of digits in the numeric field.

If you specify 2 in this column and the field contains the data 12345, the
field's value is interpreted as 123.45. If you specify 4 in this column and
the field contains the data 12345, the field's value is interpreted as 1.2345.

15.8.14 Field Name

Use columns 53 through 58 to assign a name to the field you defined in
columns 43 through 52, or to specify the page number for PAGE.

Column Allowable
Number Values Explanation

53-58 Name Specifies the name of the field. The name can be a
field name, array name, or array element.

PAGE Specifies a page number. See Chapter 9 for more
PAGE1-PAGE7 information on paging special words.

•IN,•INxx Sets the specified indicator. See Chapter 7 for more
information on indicators.

VAX RPG II Specifications 15-81

Input Specification (I)

rile
na111e
I

I I

Rules

• The field name can be any combination of six characters except for
blanks or special characters, as long as the first character is a letter.
See Chapter 14 for more information on user-defined names.

• You cannot use the reserved words UDATE, UDAY, UMONTH, and
UYEAR as a field name.

• Use a unique name for each field. If you use the same name to
describe more than one field in the same record type, VAX RPG II
uses the field described last.

• You can use the same name for fields of different record types as long
as both fields are numeric with the same number of digits, or both
fields are alphanumeric with the same length. ·

• You can load an entire array from an input record by entering the
array name in columns 53 through 58. If you do, columns 59 through
62 and 65 through 70 must be blank.

• You can load an array element by entering the array name followed
by a comma and an array index.

To eliminate duplicate coding, use OR in columns 15 and 16 to define
the same field names for different record types, as shown in the following
example:

Sequence CAA-ZZ, 01-99)
I Nu111ber <1-N>
I IOptional/External COU) Deci111al positions
I I I Record identif~ing indicator I Control level
I 111 I I Hatch field
I 111 + Identif~ing codes + F'or111at I I I fld rec rel
I 111 I I I CPB> lfield I I I
I 111 I c c Cl I field lna111e I I I field
I 111 I z z ZI 11ocation11 I I I indicatrs
I 111 Pos NDcPos NDcPos NDc IF'r To 11 I I I + - 0

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * *** *--- *~-- *---
I EHPLOYEEAA 05 1 CA
I OR 06 51 D6
I
I
I

15-82 VAX RPG II Specifications

·**---*---** * * * * * *

1 30 NAME
31 50 ADDRES
51 600PHONE

ZK-4484-85

Input Specification (I)

In this example, there are the same three fields (NAME, ADORES, and
PHONE) in two different types of records. In the first record type, the
character A is in position 1. In the second record type, the number 6 is in
position 51.

The NAME field contains alphanumeric data; it begins in position 1 and
ends in position 30. The ADORES field contains alphanumeric data; it
begins in position 31 and ends in position 50. The PHONE field contains
numeric data with no decimal positions; it begins in position 51 and ends
in position 60.

15.8.15 Exa111ples of Using Data Structures

This section provides examples of using data structures in a VAX RPG II
program.

15.6.15.1 Multiple Definitions of Storage Area

The following example shows two fields that would normally require 1550 ·
and 2400 bytes of storage without data structures. With data structures,
however, these two fields are allocated using the same 2400 bytes of
storage. In addition, several subfields within these fields are defined. The
byte locations for each data structure subfield identify the locations, in a
single data structure, where each data structure subfield is allocated.

This example also demonstrates the optional length specification of
the data structure on the data structure statement. If you omit the
length of the data structure, VAX RPG II computes it as described in
Section 15.6.4.1.

VAX RPG II Specifications 15-83

Input Specification (I)

SeC1uence <AA-ZZ, 01-99)
I Nu111ber (1-N)
I !Optional/External <OU> Deci111al positions
I I I Record identif~ing indicator I Contra l level
I 111 I I Hatch field
I 111 + Identif~ing codes + f'or111at I I I Fld rec rel

f'ile I 111 I I I <PB> lf'ield I I I
na111e I 111 I c c Cl I Field lna111e I I I f'ield
I I 111 I z z ZI I locationl I I I I indicatrs

I I I 111 Pos NDcPos NDcPos NDc lf'r To 11 I I I + - 0
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
II * Ill 1--- 1--- 1---
I PERSNELL 01
I
I MEDICAL 02
I
I DS
I1PERSONNEL RECORDS FIELDS
I
I
I
I
I
I
I*MEDICAL RECORDS FIELDS
I
I
I
I
I
I

.11---1---11 I I I I I I

11550 PREC

12400 HREC
2400

11550 PREC
1 50 CTGRYA

50 100 CTGRYB
100 150 CTGRYC
150 800 BKGRND
8001500 f'TRUSE

12400 MREC
1 550 IMNLGY

550 950 HMTLGY
9501550 RADLGY

15501950 XRAY
19502400 OPROOM

15.6.15.2 Defining Subfields Within a Field or Subfield

ZK-4485-85

The following example shows how to divide a field into subfields. To do
this, you must specify the name of the field to be divided on the Input
specification data structure statement.

15-84 VAX RPG II Specifications

Input Specification (I)

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * *** *--- *--- *--- I** ___ * ___ ** * * * * * * 1111

I SURPLUS 01
I 1 12 ITEM
I ITEM DS
I
I
I
I

1 4 IJHOSEM
5 8 AREAll
9 12 YEAR

11 11 DECADE
ZK-4486-85

15.6. 15.3 Reorganizing Fields in an Input Record

In the following example, a data structure is used to reorganize fields
from an input record. The first collection of fields describes the input
record field layout. The second collection of fields (in the data structure)
describes how the fields are organized in memory when the program runs.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * *** * __ ...; *--- *--- l**---*---H * * * * * *
I PART AA
I 1 3 PN
I 4 10 PNAME
I 11 12 WHOUSE
I 13 20 COLWEI
I 13 17 COLOR
I 18 20 WEIGHT
I 19 200NWEIGH
I 21 24 QTY
IREGROP DS
I 19 21 PN
I 4 10 PNAME
I 11 17 WHOCOL
I 11 12 WHOUSE
I 13 17 COLOR
I 1 3 WEIGHT
I 23 26 QTY

ZK-4487-85

VAX RPG II Specifications 15-85

Input Specification (I)

This example shows the difference between an ihput field (the PART
record) and a data structure subfield (the REGROP data structure). If either
of the fields COLOR or WEIGHT is changed in a Calculation specification,
no change will be reflected in the field COLWEI because COLOR and
WEIGHT are not redefinitions of that field. In contrast, if either COLOR
or WHOUSE is changed, WHOCOL will also change because COLOR is a
redefinition of one portion of that field, and WHOUSE is a redefinition of
another portion of that field. Changing WHOCOL changes COLOR and
WHOUSE. Changing the value of COLWEI in a Calculation specification
will not change COLOR or WEIGHT.

15.6.15.4 Selecting the Internal Numeric Data Type for Fields

The following example shows how to use a data structure to select a
numeric data type that will be used internally. Choosing specific numeric
data types can improve performance where numeric fields are passed as
parameters in a CALL statement, because numeric data type conversion
is then not needed at run time. In this example, the numeric data type is
indicated by the field name.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

I* I Ill 1--~ 1--- 1--- ,l*~--1---I* I I I * I I
I DS
I P 1 30PACt.:ED
I B 4 50WORD
I B 6 90LONGWO
I 10 1400VERPU

ZK-4488-85

If you specify a numeric data type for a data structure subfield, VAX RPG
II does not automatically convert numerics to packed decimal format. A
numeric conversion is performed if you define a subfield with a numeric
data type that is different from the input field declaration. Arithmetic com
parisons are done with the field maintaining the declared data type. Note
that arithmetic operations (ADD /SUB /MULT /DIV) are still performed in
packed decimal format, and a conversion is made before performing any
of the arithmetic operations.

Where VAX/VMS Run-Time Library routines are called with various
numeric data types, you can use data structures to declare the numeric
data type so a conversion is not needed for the CALL statement.

Note that data structures do not support floating point numeric data.

15-86 VAX RPG II Specifications

Input Specification (I)

The following example shows several numeric fields defined in an input
record, then redefined with different numeric data types in a data struc
ture. Each field redefinition must have the same number of digits as any
previous field definition.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * *** *--- 1--- *--- ,H---*---H * * * * * *
I FI LE BB
I B 1 20IWORD4
I B 11 140ILONG9
I p 21 250IPACK9
I 31 340IOVER4
I 41 470IOVER7
I 51 590IOVER9
I DS
I
I
I
I
I
I

1 40IWORD4
p 11 150ILONG9
B 21 240IPACK9
B 31 320IOVER4
p 41 440IOVER7
B 51 540IOVER9

ZK-4489-85

Each field is named to highlight the number of digits assigned to it, as
defined in the input record. For example, PACK9 is defined to be a 5-byte
(9-digit) field in the input record. The data structure indicates that P ACK9
will be stored internally in the data structure as a longword (4 bytes).
OVER7 is defined to be a 7-byte (7-digit) field in the input record. The
data structure indicates that OVER7 will be stored internally in the data
structure as a packed field (4 bytes). In all cases, the number of digits for
the field as defined on the input record must be the same as the number
of digits in any subsequent field redefinition.

VAX RPG II Specifitations 15-87

Input Specification (I)

15.6.15.5 Examples of Using Local Data Area

The following example demonstrates use of a local data area. The program
LO A is as follows:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FTTY
I
I
I
c
c
c
c
t

D v 80 TTY
UDS

1 15 NAME
16 170AGE

NAME DSPLYTTY
AGE DSPLYTTY

HOVEL'S. Jones'NAME
Z-ADD29 AGE
SETON LR

ZK-4665·85

The following commands load the local data area with a name and age.
The name and age are modified in the program, and this information is
written back to the local data area upon exiting the program.

$ RPG$LDA1 = "K. Smith
$ RPG$LDA1[15,2] := "45"
$ RUN LDA
K. Smith
45
$ SHOW SYMBOL RPG$LDA1
RPG$LDA1 = "S. Jones 29"
$ RUN LDA
S. Jones
29

15-88 VAX RPG II Specifications

Input Specification (I)

The following example demonstrates use of a local data area which
contains binary data. The program LDA_BINARY is as follows:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FTTY
I
I
I
c
c
c
c
c

D v BO TTY
UDS

1 15 NAME
B 16 170AGE

NAME DSPLYTTY
AGE DSPLYTTY

HOVEL'S. Jones'NAME
Z-ADD29 AGE
SETON LR

ZK-4664-85

The following commands load the local data area with a name and age.
The name and age are modified in the program, and this information is
written back to the local data area upon exiting the program.

$ RPG$LDA1 = "K. Smith
t RPG$LDA1[15*8,16] = 45
$ RUN LDA_BINARY
K. Smith
46
$ RUN LDA_BINARY
S. Jones
29

The following example demonstrates use of a local data area with 386
bytes of information. The program LDA_386 is as follows:

O I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

IDS386
I
I
c
c

UDS

MOVE 'abc'
SETON

1 383 DATA1
384 386 DATA2

DATA2
LR

ZK-4663-85

VAX RPG II Specifications 15-89

Input Specification (I)

The following commands display the information written to the local data
area by the program:

$ RUN LDA_386
$ CHAR_384 = F$EXTRACT(127,1,RPG$LDA3)
$ SHOW SYMBOL CHAR_384
CHAR_384 = "a"
$ SHOW SYMBOL RPG$LDA4
RPG$LDA4 = "be"

Note that in this example, the field DATAl overlaps RPG$LDAi,
RPG$LDA2, and RPG$LDA3. The field DATA2 is written to the last
byte of RPG$LDA3 and the first two bytes of RPG$LDA4.

15.8. 18 Control-Level Indicator

Use columns 59 and 60 to specify control-level indicators. Control-level
indicators cause VAX RPG II to <:ompare the contents of a field with the
contents of the same field from a previous record. If the fields are not
equal, a control break occurs and VAX RPG II sets on the control-level
indicator assigned to that field.

You can use this type of indicator to condition input, calculation, and
output operations.

Column Allowable
Number Values

59,60 Blank

Ll-L9

Rules

Explanation

Indicates that this field is not a control field

Associates a control-level indicator with the field
you specify in columns 53 through 58

• You can specify control-level indicators for primary and secondary
files only.

• You can assign control-level indicators in any order.
• Control-level indicators are ranked from highest (L9) to lowest (Ll).

When a control break causes VAX RPG II to set on a control-level
indicator, all lower control-level indicators are set on. All control-level
indicators are set off after detail-time output.

15-90 VAX RPG II Specifications

Input Specification (I)

• When you assign the same control-level indicator to more than one
field, the fields are referred to as split-control fields. In this case,
fields must be either all numeric or all alphanumeric and described on
adjacent lines. Split-control fields do not need to be the same length.

• Fields with different control-level indicators can overlap in a record.
• You do not need to specify the same number of control fields for all

record types.
• VAX RPG II initializes control fields to hexadecimal zeros. This usually

causes a control break to occur on the first record with a control field.
Because of this, VAX RPG II bypasses total-time calculation and output
operations for this cycle.

• You cannot specify control-level indicators for binary data or look
ahead fields. Also, you cannot specify a control-level indicator when
you specify an array name in columns 53 through 5S.

• VAX RPG II ignores decimal positions and signs (positive and nega
tive) when determining a control break.

• Because field names are ignored, you can assign the same control-level
indicator to multiple fields with the same name.

• If you assign the same control-level indicator to more than one field
in different types of records, the fields must be either all numeric with
the same number of digits or all alphanumeric with the same number
of characters.

• The total length of a split-control field must be the same length as
other uses of the same control-level indicator.

• If a control field contains packed decimal data the zoned decimal
length, which is two times the packed decimal length minus one, is
considered the length of the field.

See Section 15.6.lS for information about using a field-record-relation
indicator with control fields.

In the following example, each record in the file EMPLOYEE contains the
same three fields: NAME, ADORES, and DEPTNO. The length of NAME
is 30 characters; the blank in column 52 indicates that the contents of the
field are alphanumeric. The length· of ADD RES is 20 characters. Both
fields are assigned the same control-level indicator (LS), so they are split
control fields. DEPTNO contains more significant data and is assigned
a higher-level control-level indicator. When the contents of DEPTNO
change, VAX RPG II sets on both control-level indicators (L9 and LS).

VAX RPG II Specifications 15-91

Input Specification (I)

Sequence <AA-ZZ, 01-99)
I Nu111ber (1-N>
I !Optional/External <OU> Deci111al positions
I I I Record identif~ing indicator I Contra 1 1eve1
I 111 I I Match field
I 111 + Identif~ing codes + ror111at I I I rid rec rel

rue I 111 I I I <PB> lrield I I I
na111e I 111 I c c Cl I rield lna111e I I I rield
I I 111 I z z ZI 11ocation11 I I I indicatrs

II I 111 Pos NDcPos NDcPos NDc IF'r To 11 I I I + - 0
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** * *** *--- *--- *--- ·** ___ * ___ ** * * * * * *
I EMPLOYEEAA 05 1 CA 31 CC
I OR 99 123ND6
I
I
I

1 30 NAME LS
31 51 ADDRESL8

123 1230DEPTNOL9
ZK-4490-85

15.6.17 Matching Fields

Use columns 61 and 62 to specify matching fields. Matching fields instruct
VAX RPG II to compare the fields in records from one or more files. When
the contents of a field from a primary file match the contents of a field
from a secondary file, VAX RPG II sets on the matching-record indicator
(MR).

You can use the matching-record indicator to condition calculation and
output operations.

Column Allowable
Number Values

61,62 Blank

Ml-M9

15-92 VAX RPG II Specifications

Explanation

Indicates that this field is not a matching field.

Identifies a matching field. See Chapter 8 for
information about matching fields and multifile
processing.

Input Specification {I)

Rules

• You can use matching fields with one file to perform sequence check
ing or with multiple files to control the order of processing records.
See Chapter 8 for information on multifile processing.

• You can compare only those fields from records in primary and
secondary input and update files.

• You can compare up to nine different fields in a single record.

• If you specify more than one matching field for a record type, all
the fields are logically concatenated and treated as one continuous
field. The fields are combined according to descending sequence (M9
through Ml) of matching field values.

• The program performs sequence checking for all record types with
matching field specifications. An error in sequence causes a run-time
error and terminates the program.

• You must define the same number of matching fields and the same
matching field values (Ml through M9) for all those records that
contain matching fields.

• You can overlap matching fields in a single record.

• Whenever you use more than one matching code, all matching fields
must match before VAX RPG II sets on the matching-record indicator
(MR).

• Matching fields assigned the same matching code (Ml through M9)
must be either numeric with the same number of digits, or alphanu
meric with the same length.

• Not all files or all record types within one program must have match
ing fields. However, at least one record type from each of two files
must have matching fields if the files are to be matched.

• If the matching field contains packed data the zoned decimal length,
which is two times the packed length minus one, is considered the
length of the matching field. It is valid to match a packed field in one
record against a zoned decimal field in another if the digit· 1engths
are identical. The length must always be odd because the length of a
packed field is always odd.

• The file sequence you specify in column 18 of the File Description
specification must be the same for the files you compare-all
ascending or descending.

• You can check the sequence of a single sequential file using Ml
through M9 codes to designate the sequence. If the file is out of
sequence, a run-time error occurs.

VAX RPG II Specifications 15-93

Input Specification (I)

• You cannot specify matching values for binary data and look-ahead
fields. You cannot specify matching values when you specify an array
name in columns 53 _through 58.

• If you specify an alternate collating sequence, VAX RPG II uses the
alternate sequence·. when comparing the values in matching fields
containing alphanumeric data.

• VAX RPG II ignores field names, so fields fr0m different record types
can have the same name and match code.

• When you specify an ascending sequence check, VAX RPG II initial
izes the matching value to hexadecimal zeros. When you specify a
descending sequence check, VAX RPG II initializes the matching value
to hexadecimal FFs. VAX RPG II initializes the matching value of a
numeric field to zero.

• VAX RPG II compares matching fields containing numeric data based
on their absolute values because decimal positions and signs are
ignored.

• Matching fields cannot be split; the same matching field value cannot
be used more than once for one type of record.

• When you specify a matching field value for a field without a field
record-relation indicator, you must specify all matching field values
once without a field-record-relation indicator. If all matching fields
are not common to all records, use a dummy matching field. See
Section 15.6.19 for information on using a field-record-relation indica
tor with matching fields.

• Matching fields are independent of control-level indicators.

See Chapter 8 for examples of matching fields.

15.6. 18 Field-Record-Relation Indicator

Use columns 63 and 64 to specify field-record-relation indicators that
control the conditions under which VAX RPG II extracts data from the
input buffer into a field. These conditions include control breaks, matching
records, halts, and external indicators.

The most common use of a field-record-relation indicator is as a record
identifying indicator to group several different record types in an OR
relationship and associate fields with a particular record type. You can
also use field-record-relation indicators to extract data if a particular
external indicator is on.

15-94 VAX RPG II Specifications

Column Allowable
Number Values

63,64 Blank

01-99

Ll-L9

MR

Ul-U8

Hl-H9

Rules

Input Specification (I)

Explanation

Indicates no field-record-relation indicator

Indicates that the field-record-relation indicator is a
record-identifying indicator

Indicates that the field-record-relation indicator is a
control-level indicator

Indicates that the field-record-relation indicator is
the matching-record indicator

Indicates that the field-record-relation indicator is
an external indicator

Indicates that the field-record-relation indicator is a
halt indicator

The following rules apply to field-record-relation indicators used with
control and matching fields:

• You must specify control fields and matching fields without field
record-relation indicators before you specify those fields with them.

• When the field-record-relation indicator associated with a matching
or control field is on, VAX RPG II uses that field as the control
or matching field for the record rather than the same control or
matching field specified without a field-record-relation indicator.
Otherwise, VAX RPG II uses the control or matching field without the
field-record-relation indicator.

• When you have not defined an entire set of matching fields without
a field-record-relation indicator, a full set of matching fields must be
assigned to each field-record-relation indicator used with a matching
field.

• You must use the same field-record-relation indicator for split-control
fields. You must describe the split-control fields on consecutive lines.

• You must group control and matching fields that use field-record
relation indicators according to indicator.

• Field-record-relation indicators for control and matching fields can
be only 01 through 99 or Hl through H9 indicators. Also, the field
record-relation indieator for control and matching fields must be a
record-identifying indicator specified on either the preceding record
definition line, or in one of the lines in an OR relationship.

VAX RPG II Specifications 15-95

Input Specification (I)

If you have two records with eight fields each, and the first seven fields are
the same but the last field is different, you can use the record-identifying
indicator as the field-record-relation indicator to condition the field that is
different, rather than defining all eight fields for both records.

In the following example, the last two fields were conditioned 1with the
same record-identifying indicators in lines 1 and 2. If the job code is 2,
VAX RPG II uses the bonus value from positions 72 through 74. If the
job code is not 2, VAX RPG II will use the bonus value from positions 75
through 77.

Sequence <AA-ZZ, 01-99)
I Nu111ber (1-N)
I IOptional/~xternal (OU> Deci111al positions
I I I Record identif~ing indicator I Control level
I Ill I I Hatch field
I I I I + Identif~ing codes + For111at I I I Fld rec rel

File I Ill I I I <PB> !Field I I I
na111e I I I I I C C Cl I Field lna111e I I I Field
I I 111 I Z Z ZI I location I I I I I indicatrs

II I I I I Pos NDcPos NDciPos NDc lfr To I I I I I +.- 0
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** * *** f--- *_. __ *-~- ,H---f---H * * * * * *
IEMPLOYEEAA 01 71 C2
I . OR 02 71NC2
I 1 10 FNAME
I 11 12 HINIT
I 13 33 LNAHE
I 34 54 ADDRES
I 55 60 STATE
I 61 700PHONE
I 71 710JOBCDE
I 72 742BONUS 01
I 75 772BONUS 02

ZK-4491-85

15-96 VAX RPG II Specifications

Input Specification (I)

15.6.19 Field Indicators

Use columns 65 through 70 to specify field indicators. Field indicators
check the condition of numeric or alphanumeric fields when they are
extracted from the input record. Once checked, the field can be in one of
three conditions:

1. If the numeric field in columns 53 through 58 is greater than zero,
the condition is positive and VAX RPG II sets on the field indicator in
columns 65 and 66. Otherwise, VAX RPG II sets off the indicator.

2. If the numeric field in columns 53 through 58 is less than zero, the
condition is negative and VAX RPG II sets on the field indicator in
columns 67 and 68. Otherwise, VAX RPG II sets off the indicator.

3. If the numeric field in columns 53 through 58 is equal to zero, or if
the alphanumeric field in columns 53 through 58 contains blanks, the
condition is null and VAX RPG II sets on the field indicator in columns
69 and 70. Otherwise, VAX RPG II sets off the indicator.

Column Allowable
Number Values

65-70 Blank

Rules

01-99

Hl-H9

Explanation

Indicates no field indicators.

Associates a field indicator with a field.

Indicates that the field indicator is a halt indicator.
Halt indicators check for errors in data. For exam
ple, you can specify a halt indicator to check for
zeros in a numeric field. If VAX RPG II processes
the record and finds a zero in the field, it sets on
the halt indicator that results in a run-time error.

• Use columns 65 through 70 to check numeric fields.

• Use columns 69 and 70 to check alphanumeric fields.

• You can use the same field indicator for more than one field in
different record types. The status of the indicator depends on the
record type last read.

• Columns 65 through 70 must be blank when columns 53 through 58
contain an array without an index or look-ahead fields.

• You can assign one or more field indicators to a numeric field.

VAX RPG II Specifications 15-97

Calculation Specification (C)

15. 7 Description

The Calculation specification allows you to describe the calculations you
want to perform and to define their order in the following ways:

• Entries in columns 7 through 17 control when a calculation is to be
performed.

• Entries in columns 18 through 53 describe the type of calculation to
be performed.

• Entries in columns 54 through 59 specify which indicators the program
sets on or off as a result of the calculation.

There are two general rules:

1. Specify each calculation on a single line; arrange the calculations in
the order you want them executed.

2. Specify detail-time calculations first, then total-time calculations and,
finally, calculations in subroutines.

15. 7 .1 Calculation Specification Format

The format of the Calculation specification is as follows:

Contra 1 1eve1
I
I Indicators
I I
I I Factor
I I 1

Cl NxxNxxNxxl

Operation
I
I
I
I

Factor
2
I

Field length
I Decimal positions
I IHalf adJust <H>
I 11
I I !Resulting

Result I I I indicators
fie 1 d I 11 + - 0
I I I I> < = +- Comments --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * * * * * ZK-4492-85

15-98 VAX RPG II Specifications

Calculation Specification (C)

15. 7 .2 Specification Type

Use column 6 to identify the type of specification for every program line.

Column Allowable
Number Values

6 c

15. 7 .3 Control Level

Explanation

Indicates that this program line is a Calculation
specification.

Use columns 7 and 8 to indicate whether the calculation is performed at
detail time, at total time, or is part of a subroutine.

Column Allowable
Number Values

7,8 Blank

LO

Ll-L9

LR

SR

Explanation

Performs the calculation at detail time, or indicates
that the program line is part of a subroutine.

Performs the calculation at total time for each
program cycle.

Performs the calculation at total time after a
control break occurs, or when you use the SETON
operation to set on the control-level indicator, or
when the indicator is set on as a record-identifying
indicator, or when the indicator is set on as a
resulting indicator in a calculation.

Performs the calculation at total time after the
program processes the last record, or when you
use the SETON operation to set on the last-record
(LR) indicator, or when the indicator is set on as a
record-identifying indicator, or when the indicator is
set on as a resulting indicator in a calculation.

Indicates that the calculation is part of a subroutine.

VAX RPG II Specifications 15-99

Calculation Specification (C)

Column Allowable
Number Values

AN or OR

Additional Information

Explanation

Establishes a relationship between two program
lines. If you use AN, the conditions for the in
dicators in both program lines must be satisfied
before VAX RPG II executes the calculation. If you
use OR, the conditions for the indicators in one
program line or the other must be satisfied before
VAX RPG II executes the calculation.

You can use an unlimited number of AN or OR
program lines with up to three indicators on each
line to condition a single calculation. The last
line in an AN or OR relationship specifies the
calculation.

You can specify the following declarative statements in total-time calcula
tions and optionally leave columns 7 and 8 blank:

• EXT RN

• GIVNG

• PARM

• PARMD

• PARMV

• PUST

• TAG

15-100 VAX RPG II Specifications

Calculation Specification (C)

In the following example, the Ll, L2, L3, and LR control-level indicators
perform calculations at total time after a control break occurs or when the
SETON operation code sets on the indicator.

Contra 1 1eve1
I
I Indicators
I I
I I Factor
I I 1

C I NxxNxxNxx I

Operation
I
I
I
I

Factor
2
I

Field length
I Deci~al positions
I IHalf adjust <H>
I 11
I I !Resulting

Result I I I indicators
field I 11+ - 0
I I I I> < = +- Co~roents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * * * * * *--*** * * *
C* Total calculations:
C*
Cli SETOF LRL9L8
CL1 SETOF L7L6L5
CL1 SETOF L4L3L2
Cli 'L 1' DSPLYS
CL1 SETOF L2L3LR
C*
Cli EXSR HILLS
Cli PELHAM TAG
C*
CL1 'L 2' DSPLYS
CL3 'L 3' DSPLYS
C*
CL3 EXSR CARROL
Cli GOTO PETERB
C*
Cli 'L 4' DSPLYS
CL2 6 COMP BERRY 313233
CLR SETOF 24

ZK-4493-85

15. 7 .4 Indicators

Use indicators in columns 10, 11, 13, 14, 16, and 17 to condition the
calculations you specify in columns 28 and 32. You can specify tip to
three indicators on a program line; precede the indicator with N to cause
VAX RPG II to perform the calculation only when the indicator is not
on. Use columns 9 through 11 to describe the first indicator, columns 12

VAX RPG II Specifications 15-101

Calculation Specification (C)

through 14 to describe the second, and columns 15 through 17 to describe
the third. Using the indicators in this way forms an AND relationship.

Column Allowable
Number Values

10 Blank
13-14
16-17

11 *

Indicator

9,12,15 N

Additional Information

Explanation

Performs the calculation whenever the conditions
specified in columns 7 and 8 are satisfied.

Repeat line. If the preceding line was performed,
then the * line will be performed.

Performs the calculation when the conditions for
the indicator are met.

Causes VAX RPG II to perform the calculation
only when the indicators associated with N are not
set on. N in column 9 conditions the indicator in
columns 10 and 11. N in column 12 conditions the
indicator in columns 13 and 14. N in column 15
conditions the indicator in columns 16 and 17.

You can use one of the following indicators in columns 10 and 11, 11, 13
and 14, and 16 and 17:

• Asterisk (•)

• Record-identifying (01-99)

• Control-level (Ll-L9)

• Last-record (LR)

• Matching-record (MR)

• Halt (Hl-H9)

• External (Ul-U8)

• Overflow (OA-OG, and OV)

• KA-KZ and KO-K9

VAX RPG II performs total calculations for a control break before per
forming detail-time calculations for the record that causes the control
break.

15-102 VAX RPG II Specifications

Calculation Specification (C)

When multiple calculation lines are to be performed for the same set of
conditions, you must specify the conditions only on the first line; indicate
the same conditions for the successive lines with an asterisk indicator (•)
in column 11. The result is that if the preceding line is performed, the
• line will be performed. If there are additional conditions that must be
met before the• line is to be performed, those conditions may be stated in
columns 12 through 17.

Halt indicators in columns 10, 11, 13, 14, 16, and 17 cause VAX RPG II
to bypass the operation when it finds an error in the input data or in a
previous calculation. VAX RPG II processes the record that causes the
error before stopping your program. In this case, the record in error could
cause an error in calculation before your program terminates.

Depending on the relationship between indicators in columns 7 and 8 and
columns 9 through 17, the actions VAX RPG II takes will vary as follows:

• When you specify a control-level indicator in columns 7 and 8 and
a matching-record indicator in columns 9 through 17, MR indicates
the result of matching the previous record rather than the record
just read that caused a control break. VAX RPG II executes all the
operations conditioned by control-level indicators before determining
the matching condition of the record just read.

• When you use a control-level indicator in columns 10, 11, 13, 14, 16,
and 17 instead of in columns 7 and 8 of the Calculation specification,
VAX RPG II performs the calculation on the first record of a new
control group at detail time.

• In a single program cycle, VAX RPG II performs all operations con
ditioned by the control-level indicators in columns 7 and 8 before it
performs the operations conditioned by the control-level indicators in
columns 9 through 17.

• If you condition a calculation with a last-record indicator in columns
9 through 17 when columns 7 and 8 are blank, the calculation is
performed only if the last-record indicator is set on during detail-time
calculations. If the last-record indicator is set on when VAX RPG II
reaches the end-of-file or during total-time calculations, VAX RPG II
does not perform detail-time calculations.

VAX RPG II Specifications 15-103

Calculation Specification (C)

In the following example, the record-identifying indicators 01, 02, and 03
must be on to perform the calculation SALARY* BONUS1 =GROSS. In
the second program line, the indicator 04 must be off and indicator 05
must be on to perform the calculation SALARY * BONUS2 = GROSS.

Field length
Contra 1 1eve1 I Deci~al positions

I IHalf adjust CH>
I II

I
I Indicators
I I
I I Factor
I I 1

Cl NxxNxxNxx I

Operation
I
I Factor
I 2
I I

I I I Resulting
Resultl llindicators
field I I I+ - 0
I I II><=+- Co~~ents ~-+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * * * * * *--*** * * *
C 01 02 03SALARY HULT BONUS1 GROSS
C N04 05 SALARY HULT BONUS2 GROSS

ZK-4494-85

15. 7 .5 Factors 1 and 2

Use columns 18 through 27 and 33 through 42 to provide the operands
for the calculation you specify in columns 28 through 32. Use columns
18 through 27 for factor 1 and columns 33 through 42 for factor 2. The
operands you use depend on the operation you specify. See Chapter 16
for information on operations and the operands they requir~.

15-104 VAX RPG II Specifications

Column
Number

18-27 or
33-42

18-27 or
33-42

8-74

Allowable
Values

Field name

Literal

Long
character
literal

Calculation Specification (C)

Explanation

Names the field that contains data. These are the
same fields you defined in columns 53 through 58
of the Input specification or in columns 43 through
48 of the Calculation specification.

Specifies an alphanumeric or numeric constant.
Numeric literals can consist of the digits 0 through
9, one decimal point, and one arithmetic sign.
Numeric literals cannot exceed 10 characters and
cannot contain blanks. You must specify the sign in
the leftmost character position.

Alphanumeric literals can be up to eight characters
including blanks. You must enclose alphanumeric
literals in single quotation marks (for example,
'NH'). Use the keyboard apostrophe mark for
the single quotation mark. If you want to use
an apostrophe in a literal, you must enter two
consecutive apostrophes (for example, it"s).

Specifies an alphanumeric constant that contains
1 to 460 characters. A double quotation mark (/1

)

is placed in the first character of the field on the
specification. The rest of the field is left blank. On
the next line, a double quotation mark (/1

) is placed
in column 7. Columns 8 through 74 contain the
character literal, which must be enclosed within
single quotation marks ('). The character literal can
be anywhere on the line.

If you wish the character literal to continue on the
next line, follow the ending single quotation mark
with a plus sign (+) and continue the literal in
the same manner on the next specification. All the
rules for "normal" character literals apply to the
long character literal placed in columns 8 through
74.

If more than one long character literal is entered on
a Calculation specification, the character literal for
the first (leftmost) entry is on the next specification,
followed by the character literal for the second
entry on the specification after that.

VAX RPG II Specifications 15-105

Calculation Specification (C)

Column Allowable
Number Values

Table or
array

Subroutine
name

Special
words

Label

File name

Explanation

Specifies the table name, array name, or array
element you specified previously in an Extension
specification.

Specifies one of the following components of a
subroutine: BEGSR (marks the beginning of a
subroutine) and EXSR (executes a subroutine).

Specifies one of the following special words:
UDATE, UMONTH, UDAY, UYEAR, PAGE, PAGEl
through PAGE7, •IN, and •INxx. See Chapter 9 for
information on special words. See Chapter 7 for
information on •IN and •INxx.

Specifies the label for TAG, GOTO, and ENDSR
operations. See Chapter 16 for information on TAG,
GOTO, and ENDSR operation codes. \

Specifies the file name for CHAIN, DSPL Y, READ,
SETLL, or FORCE operations. See Chapter 16 for
information on specifying files for these operations.

Note that you must left justify the entries in Factors 1 and 2 unless they
are numeric literals, which must be right justified.

In the following example, the literal 'All work and no play makes Jack a
dull boy.' is moved to the field SHINE: ·

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * * * * * *-~*** * * * c HOVE II SHINE 80
C" 'All work and no play 111ake Jack a dull boy.'

ZK-4495-85

15-106 VAX RPG II Specifications

Calculation Specification (C)

This example shows a long character literal continuing on another line:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * * * * * *--*** * * * c HOVE II SHINE 80
C" 'All work and no plal:j ~ake Jack '+
C" 'a dull bo!:j.'

ZK-4496-85

15. 7 .6 Operation Code

Use columns 28 through 32 to specify the operation code that indicates
which calculation to perform on the operands you specified in columns 18
through 27 and 33 through 42. See Chapter 16 for more information on
operation codes.

Column Allowable
Number Values

28-32 Operation
code

15. 7. 7 Result Field

Explanation

Performs the action specified by the operation code.
See Chapter 16 for information on operation codes.

Use columns 43 through 48 to provide the result field that will contain
the outcome of the calculation you specified in columns 18 through 42.
You can use a field you specified previously in an Input, Calculation, or
Extension specification or use columns 49 through 52 to define its length
and decimal positions.

Column Allowable
Number Values

43-48 Name

Explanation

Identifies the result field. The result field can
contain a field name, table or array name, array
element, or one of the following special words:
PAGE, PAGEl-7, •IN, or •lNxx.

VAX RPG II Specifications 15-107

Calculation Specification (C)

Rules

• The result field name can be any combination of alphanumeric charac
ters; the first character must be alphabetic. Embedded blanks are not
allowed.

• You cannot use a look-ahead field, a field defined by an EXTRN
operation, UDATE, UDAY, UMONTH, or UYEAR as a result field.

15. 7 .8 Field Length

If you use the Calculation specification to define a result field, use columns
49 through 51 to define the length of the result field you specified in
columns 43 through 48. Otherwise, you can leave columns 49 through 51
blank. To prevent undefined or truncated results, make sure the length of
the result field is long enough to hold the largest possible result.

Column Allowable
Number Values

49-51 1-999

Rules

Explanation

Specifies the length of the result field

• The maximum length for numeric data is 15 digits.

• The maximum length for alphanumeric data is 999 characters.
• If the field is described elsewhere in the program and an entry is made

in columns 49 through 51, both entries must specify the same length.

• Right justify this entry.

• Leading zeros can be omitted.

15-108 VAX RPG II Specifications

Calculation Specification (C)

15. 7 .9 Decimal Positions

If you use the Calculation specification to define the result field and the
result field contains numeric data, use column 52 to specify the number of
positions to the right of the decimal point.

Column Allowable
Number Values

52 Blank

0-9

Rules

Explanation

Indicates that this field contains alphanumeric data
or that the result field has been defined elsewhere

Specifies the number of positions to the right of the
implied decimal point

• If the field has been described previously in the program and an entry
is made in column 52, both entries for decimal positions must be the
same.

• The number you specify in this column must be smaller than the
number in columns 49 through 51.

• If the result field contains alphanumeric data, leave this column blank.

• When the result is numeric, but has no decimal positions, you must
specify zero.

15. 7 .10 Half Adjust

Use column 53 to specify whether VAX RPG II is to round the numeric
data in the result field. VAX RPG II adds five to the position immediately
to the right of the last digit and puts the new value in the result field.
VAX RPG II performs the addition on the absolute value of the number.
For example, if the result of an arithmetic operation is 123.456 and the
result field specifies two decimal positions, VAX RPG II half adjusts the
value in the result field to 123.46.

VAX RPG II Specifications 15-109

Calculation Specification (C)

Column Allowable
Number Values

53 Blank

H

Rules

Explanation

Performs no half adjusting

Half adjusts the numeric data in the result field

• You cannot half adjust the result field of an MVR operation or a DIV
operation that is followed immediately by an MVR operation.

• You cannot half adjust alphanumeric data.

Additional Information

VAX RPG II sets resulting indicators according to the value of the result
field after half adjusting. See Table 16-1 in Chapter 16 for a list of
operation codes that allow you to specify half adjust.

15. 7 .11 Resulting Indicators

Use columns 54 through 59 to enter resulting indicators that test the out
come of a calculation. You can use these resulting indicators to condition
other calculation or output operations, or to establish field-record relations.

15-110 VAX RPG II Specifications

Column Allowable
Number Values

54-59 01-99

Hl-H9

KO-K9
KA-KZ

Ll-L9

LR

OA-OG, OV

Ul-U8

Rules

Calculation Specification (C)

Explanation

Uses a record-identifying indicator as the resulting
indicator.

Uses a halt indicator as the resulting indicator.

Uses a K indicator as the resulting indicator.

Uses a control-level indicator as the resulting
indicator.

Uses a last-record indicator as the resulting
indicator.

Uses an overflow indicator as the resulting indicator.

Uses an external indicator as the resulting indicator.

• A resulting indicator is set on if the condition specified is satisfied. If
the specified condition is not satisfied, the resulting indicator is set off.
See Chapter 16 for information on ,how resulting indicators are used
with each operation code.

• If you use the same indicator to test the results of more than one
operation, the last operation determines the indicator setting.

• You cannot use resulting indicators when the result field contains a
nonindexed array.

VAX RPG II Specifications 15-111

Calculation Specification (C)

Additional Information

After a resulting indicator is on, it remains on until one of the following
occurs:

• The operation is repeated and the result resets the indicator

• The conditions the indicator specifies are not met
• The indicator is set off by another method (such as the SETOF

operation)

Using a control-level indicator as a resulting indicator does not automati
cally set on lower-level indicators.

Using an external indicator as a resulting indicator allows you to set the
indicator, then to test the indicator value after the program exits.

15. 7 .12 Comments

Use columns 60 through 74 for comments.

Column Allowable
Number Values

60-74 Any
character

15-112 VAX RPG II Specifications

Explanation

Documents the program line

Output Specification (0)

15.8 Description

15.8.1

The Output specification describes the records and fields in an output,
update, or input (with the ADD option) file. Columns 7 through 37
describe the record and columns 23 through 70 describe the position and
format of each field in the record.

Output Specification Format

The format of the Output specification is as follows:

T~pe <HDTE> Edit codes I 0 No CR -
lfetch ofl I Rel (fR> I X -------------
I I Space I Y date edit y y 1 A J
Ill Skip I Z zero suppress y N 2 B K
111 I I N y 3 c L
111 I Indicators IBlank-after N N 4 D H

f'i le 111 I I f'ie 1 d I I End position
na111e 111 I I na111e 111 ror111at <PB>
I 111 I I I 111 I

01 I IBAB A NxxNxxNxxl 111 I+ Constant or edit word +
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** ***** * * * ***---H

ZK-4497-85

15.8.2 Specification Type

Use column 6 to identify the type of specification for every program line.

Column Allowable
Number Values

6 0

Explanation

Indicates that this program line is an Output
specification

VAX RPG II Specifications 15-113

Output Specification (0)

15.8.3 File Name

Use columns 7 through 14 to name the output, update, or input (with the
ADD option) file.

Column Allowable
Number Values

7-14 File name

Rules

Explanation

Identifies the name of the output file

• Use the same file name you specified in the File Description specifi
cation. An output file can be a file you specified as an output file, an
update file, or an input file with A in column 66 of the File Description
specification.

• Left justify this entry.
• If columns 7 through 14 are blank, VAX RPG II assumes that the

information in this program line describes a field or record from the
file last named. ·

All the records for a single file need not be described together.

15.8.4 AND and OR Lines

If you need more than three indicators to condition record output, or if
you want to output a record under a number of conditions, use columns
14 through 16 to enter AND or columns 14 through 15 to enter OR.

Column Allowable
Number Values

14,15 OR

14-16 AND

15-114 VAX RPG II Specifications

Explanation

Performs the output operation when the conditions
for all indicators in columns 23 through 31 in either
program line are met

Performs the output operation when the conditions
for all indicators in columns 23 through 31 in both
program lines are met

rile
na111e
I

01

Output Specification (0)

Rules

• You must use at least one indicator on a program line in an OR or
AND relationship.

• If you use AND, columns 17 through 22 must be blank.

• If you use AND or OR, columns 7 through 13 must be blank.

• You can use AND and OR lines only with record description entries,
not with field description entries.

• You can specify an unlimited number of AND or OR lines.

In the following example, if these conditions are satisfied, VAX RPG II
writes the specified fields and constants:

Indicator 01 is off

OR, indicator 01 is on

AND, indicator 23 is off

T~pe <HDTE> Edit codes I 0 No CR -
lretch of'l I Rel <rR> I X -------------
I I Space I Y date edit y y 1 A J
111 Skip I Z zero suppress y N 2 B K
111 I I N y 3 c L
111 I Indicators IBlank-after N N 4 D H
111 I I rield 11 End position
111 I I na111e 111 ror111at <PB>
111 I I I 111 I
I IBAB A NxxNxxNxxl 111 I+ Constant or edit word +

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 · I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** ***** * * * ***---H
0 OR N01
0 OR 01
0 AND N23
0 PN 3
0 01 28 '01'
0 PNAME 10
0 WHOUSE 12
0 COLOR 17
0 WEIGHT 20
0 QTY 24

ZK-4498-85

VAX RPG II Specifications 15-115

Output Specification (0)

15.8.5 Record Type

Use column 15 to specify the point in the VAX RPG II program cycle at
which a record is output. Heading records are normally used to describe
the heading information in the output report, such as column names, page
numbers, and the date. Detail records contain the data from input and
calculation operations at detail time. Total records usually contain the
data from the result of calculations on several detail records at total time.
Exception records are written as a result of using the EXCPT operation in
a Calculation specification.

Column Allowable
Number Values

15 Blank

H

D

T

E

Rules

Explanation

Indicates that this program line describes a field or
constant

Indicates that this program line describes a heading
record

Indicates that this program line describes a detail
record

Indicates that this program line describes a total
record

Indicates that this program line describes an
exception record

• You must specify a record type for every output record.

• Records of the same type are tested for output and written in the order
in which you specify them in the Output specifications.

Additional Information

There is no difference between a heading record and a detail record. The
different entries are for documentation purposes only.

The following example defines heading, detail, total, and exception
records.

15-116 VAX RPG II Specifications

Output Specification (0)

T~pe <HDTE> Edit codes , 0 No CR -
IFetch ofl I Rel <FR> I X -------------
I I Space I Y date edit y y 1 A J
111 Skip I Z zero suppress y N 2 B K
111 I I N y 3 c L
111 I Indicators IBlank-after N N 4 D M

File 111 I I Field 11 End position
na111e 111 I I na111e 111 For111at <PB)
I 111 I I I 111 I

01 I IBAB A NxxNxxNxxl 111 I+ Constant or edit word +
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** ***** * * * *** ___ **
OOUT44A E 12
0 OR 16
0 OR LR
0 N 3
0 PNAHE 10
0 WHOUSE 12
0 COLOR 17
0 WEIGHT 20
0 rm 24
0 26 'E'
0 N12 16 28 '16'
0 12 01 28 '12'
0 LR 28 'LR'
0 H
0 N 3
0 PNAHE 10
0 WHOUSE 12
0 COLOR 17
0 WEIGHT 20
0 QTY 24
0 26 'H'
0 01 28 '01'
0 D 17
0 OR N01
0 OR 01 01
0 AND N23
0 N 3
0 01 28 '01'
0 PNAHE 10
0 WHO USE 12
0 COLOR 17
0 WEIGHT 20
0 QTY 24
0 26 'D'
0 T
0 N 3
0 PNAHE 10
0 WHOUSE 12
0 COLOR 17
0 01 28 '01'
0 WEIGHT 20
0 QTY 24
0 26 'T'

ZK-4499-85

VAX RPG II Specifications t 5-117

Output Specification (0)

15.8.8 ADD and DEL Options

Use columns 16 through 18 to add and delete records. See Chapter 8 for
information on adding and deleting records.

Column Allowable
Number Values

16-18 ADD

DEL

Rules

Explanation

Adds a record to an input, output, or update
file with an indexed, direct, or sequential file
organization

Deletes the last record read in the update file with
an indexed or direct file organization

• You can add records to input, output, and update files that reside on
disk. Therefore, the File Description specification must contain DISK
in columns 40 through 46 and A in column 66.

• You can delete records only from update files that reside on disk.
• ADD or DEL must appear on the same line that defines the record

type for the record you want to add or delete.

• If a line in an OR relationship follows an ADD or DEL entry, the ADD
or DEL entry applies to both lines.

The following example adds records to the file:

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

OOUT43A DADD
0
0
0
0
0
0

15-118 VAX RPG II Specifications

N1P
N 3
PNAME 10
WHOUSE 12
COLOR 17
WEIGHT 20
QTY 24

ZK-4500-85

Output Specification (0)

The following example deletes the last record read from the update file:

T~pe <HDTE> Edit codes , 0 No CR -
!Fetch ofl I Rel <FR> I X -------------
11 Space I Y date edit y y 1 A J
I II Skip I Z zero suppress y N 2 B K
111 I I N y 3 c L
111 I Indicators !Blank-after N N 4 D M

File 111 I I Field 11 End position
na111e 111 I I na111e 111 For111at <PB>
I 111 I I I 111 I

01 I IBAB A NxxNxxNxxl 111 I+ Constant or edit ~ord +
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** ***** * * * OOUT45B EDEL N25
OOUT45C EDEL N25

ZK-4501-85

15.8. 7 Fetch Overflow or Release

Use column 16 to specify fetch overflow for a printer file, or release for
a WORKSTN file. Fetch overflow causes VAX RPG II to check whether
the overflow indicator assigned to the printer output file is on before
printing total, detail, or exception records. See Chapter 9 for information
on overflow.

Release terminates processing of the WORKSTN file. See Chapter 6 for
information on release. ·

Column Allowable
Number Values

16 F

R

Rules

Explanation

Executes the overflow routine if overflow has
occurred

Release is performed on the WORKSTN file

• An entry in this column is valid only for printer output files with
overflow lines (F), or a WORKSTN file (R).

• Do not specify an overflow indicator on the same line as fetch
overflow.

VAX RPG II Specifications 1 5-119

Output Specification (0)

file
na111e
I

01

• If you specify an OR relationship between two lines, you must specify
fetch overflow for each record type that requires it in both lines of the
OR relationship.

Additional Information

VAX RPG II fetches an overflow routine when overflow occurs and all
conditions specified by the indicators in columns 23 through 31 are met.
When you specify fetch overflow, only overflow output associated with
the file containing the executed fetch routine is output. The overflow
routine does not automatically advance to the next page.

The following example specifies fetch overflow:

T~pe <HDTE) Edit codes , 0 No CR -
lfetch ofl I Rel (fR) I X -------------
i I Space I Y date edit y y 1 A J
I II Skip I Z zero suppress y N 2 B K
111 I I N y 3 c L
111 I Indicators !Blank-after (B) N N 4 D H
111 I I field I I End position
111 I I na111e 111 ror111at <PB)
111 I I I 111 I
I IBAB A NxxNxxNxxl 111 I+ Constant or edit word +

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** **~** * * *
OOUT66A Ef 1 01
0 AND 02 03

ZK-4502-85

15.8.8 Space Before and Space After

Use columns 17 and 18 to define the format of a printer output file. Use
column 17 to specify the number of lines to advance before printing the
next line of output. Use column 18 to specify the number of lines to
advance after printing a line of output.

15-120 VAX RPG II Specifications

Column Allowable
Number Values

17 Blank

0-3

18 Blank

0-3

Rules

Output Specification (0)

Explanation

Does not advance before printing a line of output.

Specifies the number of lines the printer will
advance before printing a line of output. A value of
zero allows overprinting.

Does not advance after printing a line of output.

Specifies the number of lines the printer will
advance after printing a line of output. A value of
zero allows overprinting.

• If you leave columns 17 through 20 blank for a record specification
line, VAX RPG II automatically spaces one line after printing the
output line.

• If there are no entries in columns 17 through 20 of an OR line, VAX
RPG II uses the entries in a preceding line.

• You cannot define the spacing and skipping for an AND line.

Additional Information

Because you can space up to only three lines before and after a line of
output, you cannot specify more than five blank lines between output
lines using entries in columns 17 and 18. Spacing to or past the overflow
line causes VAX RPG II to set on the overflow indicator.

15.8.9 Skip Before and Skip After

Like the space before and space after columns, columns 19 through 22
define the format of a printer output file. Unlike the entries in columns 17
and 18, the entries in columns 19 and 20 can be used to specify more than
five lines between lines and to specify a move to the next page.

Use column 19 to specify the line number the printer must move to before
printing a line of output. Use column 20 to specify the line number the
printer must move to after printing a line of output.

VAX RPG II Specifications 15-121

Output Specification (0)

Column Allowable
Number Values

19,20 Blank

21,22

Rules

01-99

AO-A9

BO-B2

Blank

01-99

AO-A9

BO-B2

Explanation

Specifies no skipping before printing a line of
output

Causes the printer to move to the line number you
specify before printing a line of output

Causes the printer to move to the line number you
specify 100 (AO) to 109 (A9) before printing a line
of output

Causes the printer to move to the line number you
specify 110 (BO) to 112 (B2) before printing a line of
output

Specifies no skipping after printing a line of output

Causes the printer to move to the line number you
specify after printing a line of output

Causes the printer to move to the line number you
specify 100 (AO) to 109 (A9) after printing a line of
output

Causes the printer to move to the line number you
specify 110 (BO) to 112 (B2) after printing a line of
output

• Follow the same rules in Section 15.6.10 for AND and OR lines.

• You can specify entries in all space and skip columns for a single
program line. When you do, VAX RPG II executes the entries in the
following order: skip before, space before, print the output line, skip
after, and space after.

• Specifying a skip entry past the overflow line causes VAX RPG II to
set on the overflow indicator. See Chapter 9 for more information.

• If you specify a skip entry to the same line number that the printer is
currently on, no skipping takes place.

• If you specify a skip entry to a line number less than the current line
number, the printer advances to that line number on the next page.

• The skip entry cannot exceed the entry for forms length (columns 18
and 19 of the Line Counter specification). If there is no Line Counter
specification, the skip entry cannot exceed the default, line 66.

15-122 VAX RPG II Specifications

Output Specification (0)

15.8.10 Example

F'ile
na111e
I

01'

The following example causes VAX RPG II to perform the following
operations:

• Skip to line 27 and space two lines before printing the output line
• Skip to line 30 and space three lines after printing the output line

Type <HDTE>
IF'etch ofl I Rel (f'R)
I I Space
I II Skip
111 I
I I I I Indicators
Ill I I field
111 I I na111e
111 I I I
llBAB A NxxNxxNxxl

Edit codes , 0 No CR -
I X -------------
1 Y date edit Y Y 1 A J
I Z zero suppress Y N 2 B K
I N Y 3 C L
!Blank-after CB> N N 4 D H
11 End position
I I I F.or111at CPB>
II I I .
I I I I+ Constant or edit word +

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** ***** * * * *H---H
0 D 232730N1P 18
0 N 3
0 PNAHE 10
0 WHOUSE 12
0 COLOR 17
0 WEIGHT 20
0 QTY 24

ZK-4503-85

15.8.11 Indicators

Use columns 24 and 25, 27 and 28, and 30 and 31 to enter previously
assigned indicators to condition a line of output.

VAX RPG II Specifications 15-123

Output Specification (0)

Column Allowable
Number Values

24-25 Blank
27-28
30-31

Indicator

25 *

23,26,29 N

Rules

Explanation

Outputs the record or field.

Outputs the record or field when the indicator you
specify is on.

Repeat line. If the preceding record was output, this
record will be output. If the preceding field was
output, this field will be output.

Outputs the record or field when the indicator is
off. N in column 23 conditions the indicator in
columns 24 and 25. N in column 26 conditions the
indicator in columns 27 and 28. N in column 29
conditions the indicator in columns 30 and 31.

• When you want an indicator to condition an entire record, enter the
indicator on the line that specifies the type of record. When you want
an indicator to condition a field, enter the indicator on the same line
as the field name (columns 32 through 37).

• If you specify more than one indicator on a line, the indicators form
an AND relationship.

• You can use overflow indicators on AND or OR lines; however, you
can associate only one overflow indicator. with a group of output
indicators. If a line is to be considered an overflow line, the overflow
indicator must appear on the main specification line or on an OR line.

• If you use an overflow indicator, it must be the same one assigned to
the file on the File Description specification.

• You cannot use overflow indicators to condition exception output
lines, but you can use them to condition fields in an exception record.

Additional Information

You can use one of the following indicators in columns 24 through 25, 27
through 28, and 30 through 31:

• Record-identifying (01-99)
• Control-level (Ll-L9)

• Last-record (LR)

15-124 VAX RPG II Specifications

Output Specification (0)

• Matching-record (MR)

• Halt (Hl-H9)

• External (Ul-UB)

• Overflow (OA-OG and OV)

• K (KA-KZ and KO-K9)

• First-page (lP)

• Asterisk indicator (•)

Note that VAX RPG II outputs those detail and heading lines conditioned
by the first-page (lP) indicator, no indicator, or all negative indicators
(N in columns 23, 26, or 29) before reading the first record from a file.
Therefore, use the lP indicator to condition only heading and detail output
lines that do not depend on data from an input record. For a line with
no indicators or all negative indicators that requires data from an input
record, use a negative first-page indicator (NlP in columns 23 through 31)
to prevent the line from being output before reading the first record.

Because the lP indicator is set off after the first detail-time output, it can
be used only to condition heading and detail lines.

If you use a control-level indicator with a total record and no overflow
indicator, VAX RPG II writes the record when a control break occurs and
after VAX RPG II processes the last record of a control group. If you use a
control-level indicator with a detail record and no overflow indicator, VAX
RPG II writes the record when a control break occurs and after it processes
the first record of a new control group. If you use a control-level indicator
with an overflow indicator, VAX RPG II writes the record when a control
break occurs and passes the overflow line.

If you have two or more output records that are to be output when· the
same conditions are set, you can specify the conditions on one Output
specification record line and thert use • in column 25 on following Output
specification record lines of the same type. If you have two or more
output fields that are to be output when the same conditions are set, you
can specify the conditions on one Output specification field line and then
use • in column 25 on following Output specification field lines.

VAX RPG II Specifications 15-125

Output Specification (0)

File
na111e
I

01

The following example causes VAX RPG II to print the specified fields in
the detail record if the lP indicator is off:

T~pe <HDTE>
!Fetch ofl I Rel <FR>
I I Space
II I Skip
II I I
II I I Indicators
Ill I I Field
II I I I na111e
II I I I I
llBAB A NxxNxxNxxl

Edit codes , 0 No CR -
I X -------------
1 Y date edit Y Y 1 A J
I Z zero suppress Y N 2 B K
I N Y 3 C L
IBlank-after N N 4 D H
11 End position
111 For111at <PB>
111 I
I I I I+ Constant or edit word +

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** ***** * * * **f---H
OOUT50A D N1P
0 N 3
0 PNAME 10
0 WHOUSE 12
0 COLOR 17
0 WEIGHT 20
0 QTY 24
0 PAGE 30

ZK-4504-85

15.8. 12 Field Name

Use columns 32 through 37 to specify the field name that identifies the
item to be written to the output file.

Column Allowable
Number Values

32-37 Blank

Name

15-12 6 VAX RPG II Specifications

Explanation

Indicates the presence of a constant in columns 45
through 70.

Specifies the name of the item to print. The item
can be a field name, table or array name, array
element, or one of the following special words:
PAGE, PAGEl-7, UDAY, UMONTH, UYEAR,
UDATE, •IN, •INxx, and •PLACE. See Chapter 9
for information on special words.

rile
na111e
I

01

Output Specification (0)

Rules

• All field names must have been previously defined in an Input,
Calculation, or Extension specification.

• Left justify this entry.

• You cannot enter a field name if you enter a constant in columns 45
through 70.

• If you enter a field name in columns 32 through 37, columns 7
through 22 must be blank.

• If you specify a nonindexed array name, the entire array is output.

The following example specifies fields in the detail record:

T~pe <HDTE>
1retch ofl I Rel <rR>
11 Space
111 Skip
111 I
I I I I Indicators
Ill I I rield
I I I I I na111e
111 I I I
I IBAB A NxxNxxNxxl

Edit codes , 0 No CR -
I X -------------
1 Y date edit Y Y 1 A J
I Z zero suppress Y N 2 B K
I N Y 3 C L
IBlank-after CB> N N 4 b M
11 End position
111 ror111at CPB>
111 I
I I I I+ Constant or edit word +

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** ***** * *
OOUT50A D N1P
0 N 3
0 PNAHE 10
0 WHOUSE 12
0 COLOR 17
0 WEIGHT 20
0 QTY 24
0 PAGE 30

ZK-4505-85

15.8.13 EXCPT Name

When the record type is an exception record (indicated by an E in column
15), a name can be placed in columns 32 through 37 of the record line.
The EXCPT operation can specify the name assigned to a group of records
to be written. The name is called an EXCPT name.

VAX RPG II Specifications 15-127

Output Specification (0)

Column Allowable
Number Values

32-37 Blank

Name

Rules

Explanation

Identifies exception output records to be written
when an EXCPT opcode with a blank factor 2 is
executed.

Identifies exception output records to be written
when an EXCPT opcode with the same name in
factor 2 is executed.

• An EXCPT name must follow the rules for field names.
• An EXCPT name cannot be the same as a file name, field name, data

structure name, array name, table name, label, or subroutine name.

• A group of any number of output records can use the same EXCPT
name, and the records do not have to be consecutive records.

15.8.14 Edit Codes

Use column 38 to specify an edit code. Edit codes allow you to perform a
variety of editing functions on the data in a numeric output field.

Column Allowable
Number Values

38 1

2

3

4

15-128 VAX RPG II Specifications

Explanation

Prints a number with commas before every third.
digit to the left of the decimal point, prints a zero
balance, and suppresses signs and leading zeros.

Prints a number with commas before every third
digit to the left of the decimal point and suppresses
a zero balance, signs, and leading zeros.

Prints a number without commas, prints a zero
balance, and suppresses signs and leading zeros.

Prints a number without commas and suppresses a
zero balance, signs, and leading zeros.

Column Allowable
Number Values

A

B

c

D

K

L

M

x
y

z

Output Specification (0)

Explanation

Prints a number with commas before every third
digit to the left of the decimal point, prints a zero
balance, uses CR to represent a negative sign, and
suppresses leading zeros.

Prints a number with commas before every third
digit to the left of the decimal point, suppresses a
zero balance, uses CR to represent a negative sign,
and suppresses leading zeros.

Prints a number without commas, prints a zero
balance, uses CR to represent a negative sign, and
suppresses leading zeros.

Prints a number without commas, suppresses a zero
balance, uses CR to represent a negative sign, and
suppresses leading zeros.

Prints a number with commas before every third
digit to the left of the decimal point, prints a zero
balance and prints a negative sign, and suppresses
leading zeros.

Prints a number with commas before every third
digit to the left of the decimal point, suppresses a
zero balance, prints a negative sign, and suppresses
leading zeros.

Prints a number without commas, prints a zero
balance and a negative sign, and suppresses leading
zeros.

Prints a number without commas, suppresses a
zero balance, prints a negative sign, and suppresses
leading zeros.

Performs no editing.

Edits a date field using the format mm/dd/yyyy or
the format dd/mm/yyyy, if you specify inverted
print. If the first digit of a. date field is zero, it is
suppressed.

Suppresses signs and leading zeros.

VAX RPG II Specifications 15-129

Output Specification (0)

Rules

• If you use an edit code in column 38, columns 45 through 70 must be
blank unless you specify an edit code modifier.

• If you use an edit code to edit an array, VAX RPG II leaves two spaces
to the left between the elements of the array.

• You cannot use edit codes on numeric data in packed or binary format.

Additional Information

To prevent overlapping of the output fields, leave enough space for the
characters so that the edit code will insert into the output field.

Unedited numeric output fields with negative values are output with the.
overpunched representation of the sign. For example, "'.1 will be output as
J, -2 as K, and so on. See Chapter 14 for information on overptinched data
format. Therefore, use an edit code or edit word to prevent the output of
an overpunched representation of a sign.

Table 15-6 shows the results of several edit code examples.

Table 15-6: Edit Codes and Examples
Print

Edit Zero
Code +12345.67 +1234567 -1234.567 -1234567 Balance

none 1234567 1234567 123456P 123456P yes

1 12,345.67 1,234,567 1,234.567 1,234,567 yes

2 12,345.67 1,234,567 1,234.567 1,234,567 no

3 12345.67 1234567 1234.567 1234567 yes

4 12345.67 1234567 1234.567 1234567 no

A 12,345.67 1,234,567 l,234.567CR l,234,567CR yes

B 12,345.67 1,234,567 l,234.§.67CR l,234,567CR no

c 12345.67 1234567 1234.567CR 1234567CR yes

D 12345.67 1234567 1234.567CR 1234567CR no

12,345.67 1,234,567 1,234.567- 1,234,567- yes

15-1 JO VAX RPG II Specifications

Output Specification (0)

Table 15-6 (Cont.): Edit Codes and Examples
Print

Edit Zero
Code +12345.67 +1234567 -1234.567 -1234567 Balance

K 12,345.67 1,234,567 1,234.567- 1,234,567- no

L 12345.67 1234567 1234.567- 1234567- yes

M 12345.67 1234567 1234.567- 1234567- no

15.8.15 Blank After

Use column 39 to specify blank after, which causes VAX RPG II to
reset the contents of the output field after writing it. VAX RPG II resets
alphanumeric data with blanks and numeric data with zeros. Specifying
blank after is especially useful when accumulating totals for each control
group.

Column Allowable
Number Values

39 B

Rules

Explanation

Causes VAX RPG II to reset the field after writing it

• This column must be blank for look-ahead fields, fields defined by
an EXTRN operation, constants, and the following special words:
UDATE, UDAY, UMONTH, UYEAR, and •PLACE.

• If indicators condition the field you want to reset, the same indicators
condition blank after.

• If you specify blank after for a field that you want to write more than
once, enter Bin this column on the last line specifying output for that
field. Otherwise, the· field will be reset before being output again.

VAX RPG II Specifications 15-131

Output Specification (0)

The following example specifies blank after for P AGE3:

T~pe <HDTE> Edit codes I 0 No CR -
lfetch ofl I Rel <fR> I X -------------
I I Space I Y date edit y y 1 A J
111 Skip I Z zero suppress y N 2 B K
111 I I N y 3 c L
111 I Indicators !Blank-after N N 4 D M

file 111 I I field 11 End position
na111e 111 I I na111e 111 for111at <PB>
I 111 I I I 111 I

01 I IBAB A NxxNxxNxxl 111 I+ Constant or edit word +
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** ***** * * * *H---H
OOUT50A D N1P

0 PAGE3 ZB 50
ZK-4506-85

15.8.18 End Position and Form

Use columns 40 through 43 to indicate the location of an output field or
constant. Enter the number of the position for the rightmost character.
For example, if a field contains 20 characters and you specify 40 as the
end position, the output might appear as follows:

o I 1 I 2 I 3 I 4 I
12345678901234567890123456789012345678901234567890

South LyndeboroughNH

The numbers above this example are for reference only; they do not
appear in the output.

Use Kin column 42 if you are specifying a WORKSTN form name.

15-132 VAX RPG II Specifications

Column Allowable
Number Values Explanation

Output Specification (0)

40-43 1-9999 Indicates the position of the rightmost character in
an output field or constant

42 K Indicates WORKSTN form name begins in column
45.

Rules

• If fields overlap, the last field you specify on the Output specification
is the only field that is completely written.

• When specifying the end position for an array, use the rightmost
position of the last element in the array.

• The end position must be less than or equal to the record length
(columns 24 through 27 of the File Description specification) of the file
to which the record belongs.

• Right justify this en try.

• Leading zeros can be omitted.

Be sure to allow enough room for the number of characters in each output
field and for the editing characters you specified using an edit code or edit
word.

The following example shows the rightmost character in each of these
positions:

• First field is in character position 22

• Second field is in character position 40

• Third field is in character position 5 7

• Fourth field is in character position 75

VAX RPG II Specifications 15-133

Output Specification (0)

Type <HDTE> Edit codes 0 No CR -
lfetch ofl I Rel <FR> I X -------------
I I Space I Y date edit y y 1 A J
111 Skip I Z zero suppress y N 2 B K
111 I I N y 3 c L
111 I Indicators IBlank-af'ter N N 4 D H

f'i le 111 I I field 11 End position
na111e II I I I na111e II I f'or111at <PB>
I II I I I I II I I

01 llBAB A NxxNxxNxxl II I I+ Constant or edit word +
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
**
0
0
0
0

***** * * * *** ___ **
22 'EMPLOYEE NUMBER'
40 'EMPLOYEE NAME'
57 'REG EARNINGS'
75 'OVER EARNINGS'

The output appears as follows:

ZK-4507-85

o I 1 I 2 i 3 I 4 I 6 I 6 I 7 I
12346678901234667890123466789012346678901234667890123466789012346678901234667890

EMPLOYEE NUMBER EMPLOYEE NAME REG EARNINGS OVER EARNINGS

The numbers above this example are for reference only; they do not
appear in the output.

15.8.17 Format

If an output field contains numeric data, use column 44 to specify over
punched decimal, packed decimal, or binary data format. The packed
decimal and binary formats conserve disk space.

Column Allowable
Number Values

44 Blank

p

B

15-134 VAX RPG II Specifications

Explanation

Indicates that the field contains either alphanumeric
characters or numeric data and is in overpunched
decimal format

Indicates that numeric data is in packed format

Indicates that numeric data is in binary format

rile
na111e
I

01

Output Specification (0)

Leave this entry blank for the output field if you specify an edit code, edit
word, or the special word *PLACE.

The following example specifies packed decimal format for the field QTYP
and binary format for the field QTYB.

T!:fpe <HDTE> Edit codes I 0 No CR -
1retch ofl I Rel <rR> I X -------------
I I Space I Y date edit y y 1 A J
111 Skip I Z zero suppress y N 2 B K
111 I I N y 3 c L
111 I Indicators IBlank-after N N 4 D H
111 I I rield 11 End position
111 I I na111e 111 ror111at <PB>
111 I I I 111 I
I IBAB A NxxNxxNxxl I II I+ Constant or edit word +

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

**
0
0

***** * * * *** ___ **
IHYP 32P
QTYB 38B

ZK-4508-85

15.8.18 Edit Code Modifiers, Constants or Form Names, and Edit Words

This section describes the options you can use to.specify edit code modi
fiers, constants or form names, and edit words.

15.8. 18.1 Edit Code Modifiers

Use columns 45 through 47 to specify edit code modifiers. Edit code
modifiers can replace suppressed zeros to the left of the decimal point
with asterisks (asterisk fill) or put a dollar sign ($)before the leftmost
character (floating currency symbol). To specify these modifiers, enter the
appropriate value described as follows.

VAX RPG II Specifications 15-135

Output Specification (0)

Column ·Allowable
Number Values

I

45-47 '•'

'Symbol'

Rules

Explanation

Replaces suppressed zeros to the left of the decimal
point with asterisks (*).
Places the currency symbol before the first signifi
cant digit in a .numeric field. The currency symbol
is the same symbol you define in column 18 of the
Control specification.

• Enclose edit code modifiers in apostrophes.

• The floating currency symbol will not be printed for a zero balance
when you use an edit code that suppresses a zero balance.

• You cannot use the floating currency symbol or asterisk fill with
simple (X, Y, and Z) edit codes.

• You can specify a currency symbol before an asterisk fill by making
the following entries:

Column 38 (edit code)-specify one of the combined edit codes.
Place a currency symbol constant one space before the beginning
of the edited field on the Output specification..

Place an asterisk enclosed in apostrophes ('•') in columns 45
through 47 on the same line as the edit code.

15-136 VAX RPG II Specifications

Output Specification (0)

In the following example, if the field OTEARN, which is four digits long
with two decimal positions, contains a zero balance, VAX RPG II prints a
dollar sign before the asterisk fill.

T~pe <HDTE> Edit codes I 0 No CR -
lretch ofl I Rel <rR> I X -------------
I I Space I Y date edit y y 1 A J
111 Skip I Z zero suppress y N 2 B K
111 I I N y 3 c L
111 I Indicators IBlank-after N N 4 D H

rue 111 I I field 11 End position
na111e 111 I I na111e 111 for111at <PB>
I 111 I I I 111 I

01 I IBAB A NxxNxxNxxl 111 I+ Constant or edit word +
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12J45678901234567890123456789012345678901234567890123456789012345678901234567890

** 0
0

***** * * * *H---H
56 '$'

OTEARNi 61 '*'

The output might appear as follows:

ZK-4509-85

o I 1 I 2 I 3 I 4 I 6 I 6 I 7 I
12346678901234667890123466789012346678901234567890123466789012345678901234567890

••••••
VAX RPG II uses a dollar sign ($) as the currency symbol unless you
specify another symbol in column 18 (currency symbol) of the Control
specification.

15.8.18.2 Constants or Form Names

Use columns 45 through 70 to specify constants or WORKSTN form
names. Place a double quotation mark (") in column 45 to specify a
long character literal as a constant or form name. Constants are used to
describe constant data in an output file. A WORKSTN form name requires
a K in column 42.

VAX RPG II Specifications 15-137

Output Specification (0)

Column Allowable
Number Values

45 Double
quotation
(II)

. 45-70 Any
character

Rules

Explanation

Causes VAX RPG II· to print the characters within
single quotation marks on the line(s) that fol-
low. All the rules for long character literals on
Calculation specifications apply when used on
Output specifications. See Section lS.7.5 for
information on long character literals. ·

Causes VAX RPG II to print the characters in
columns 45 through 70 for non-WORKSTN files.
For WORKSTN files, the constant is used as a form
name for a form to be displayed when column 42
contains K.

• Constants can contain up to 24 characters.
• You must enclose constants within single quotation marks ('). Use the

keyboard apostrophe mark as the single quotation mark (for example,
'Subroutine'). The single quotation marks are not printed.

• When using constants, leave columns 32 through 39 and column 44
blank.

• To include an apostrophe in a constant, you must use two consecutive
apostrophes to represent one apostrophe (for example, 'Subroutine"s
calculations').

15.8. 18.3 Edit Words

Use columns 45 through 70 to specify edit words. Edit words can be
used to edit a numeric field. Edit words consist of three parts: the body,
sign status, and expansion. The body is the portion of the edit word
that provides space for the digits from the field to be edited. The body
begins at the leftmost character position of the edit word and ends at the
rightmost character position that is to contain a digit from the field to be
edited. ·

The sign status is the portion of the edit word that is used to specify
whether the field is positive or negative and to specify a constant, if
needed. The sign status begins at the first character position to the right
of the body and ends with CR or a negative sign (-). If you specify one of
these symbols and the field is positive, blank spaces will be substituted in

15-138 VAX RPG II Specifications

Output Specification (0)

the edited field. If you use CR or a negative sign and the field is negative,
that symbol will be substituted in the edited field.

If an edit word contains no CR or a negative sign to the right of the
rightmost character that is to contain a digit, the edit word does not
·contain a sign status portion.

The expansion consists of characters that will be printed regardless of the
field's sign status. The expansion begins immediately after the sign status
(or body, if no sign status is used) and continues to the end of the edit
word.

The following table describes those characters you can use in the body of
the edit word.

Column Allowable
Number Values

45-70 Blank

0

Explanation

Indicates that the position in the edited field is
to contain the digit from the same position in the
numeric field.

Indicates that the field is to be zero-suppressed.
Place the zero in the rightmost position where
zero-suppression is to stop. Each leading zero
that appears to the left of and including the stop
position of the numeric field is replaced with a
blank space in the edited field. The first zero
VAX RPG II encounters is the zero-suppression
character. Any zero appearing after the first zero is
treated like any other character. Zero-suppression
begins at the leftmost position in the data and
continues up through the stop position unless a
nonzero digit is encountered to the left of the stop
position. If VAX RPG II encounters a nonzero digit
to the left of the stop position, zero-suppression
stops at the position where the nonzero digit is
encountered; that digit and all following digits to
the right of the nonzero digit are printed.

VAX RPG II Specifications 15-139

Output Specification (0)

Column Allowable
Number Values

45-70

45-70

*

&

Symbol

Decimal point
or comma

Any other
character

15-140 VAX RPG II Specifications

Explanation

Indicates that the field is to be edited using asterisk
protection. Place the asterisk in the rightmost
position where asterisk protection is to stop. Each
leading zero that appears in the data to the left of
and including the stop position is replaced with an
asterisk. The first asterisk VAX RPG II encounters
is the asterisk protection character. Any asterisk
appearing after the first asterisk is treated like any
other character.

Indicates that the position in the edited field is to
be a blank space.

Prints the currency symbol. If the currency symbol
appears in the body of the edit word immediately
to the left of the zero suppression, it is printed
immediately to the left of the first significant digit
in the edited field. This type of currency symbol
is called a floating currency symbol. A floating
currency symbol cannot be used with asterisk
protection.

The currency symbol in the leftmost position of
the edit word indicates that the dollar sign is to be
printed in that exact position in the edited field.
This type of currency symbol is called a fixed
currency symbol.

Indicates the exact position in the edited field where
it is to be printed. If a decimal point or comma
appears to the left of the most significant digit,
VAX RPG II will replace it with a blank space or, if
asterisk protection is specified, with an asterisk.

Prints the characters in the edited fields, if the
position is to the right of the most significant digit
in the edited field. Any character to the left of
the most significant digit in the edited field is
replaced with a blank space or an asterisk if asterisk
protection is specified.

Output Specification (0)

The following example shows both the floating and fixed currency symbol
types:

T~pe CHDTE> Edit codes , 0 No CR -
lretch ofl I Rel CFR> I X -------------
11 Space I Y date edit y y 1 A J
111 Skip I Z zero suppress y N 2 B K
II I I I N y 3 c L
II I I Indicators !Blank-after CB> N N 4 D H

rile II I I I field 11 End position
na111e II I I I na111e II I For111at CPB>
I II I I I I II I I

01 I IBAB A NxxNxxNxxl 111 I+ Constant or edit word +
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
**
0
0

rile
na111e
I

01

***** * * *
fLOAT
rIXED

*H---H
45 '$0
45 '$

ZK-4510-85

In the example, if FLOAT and FIXED contain the characters 1234, the
output appears as follows:

o I 1 I 2 I 3 I 4 I 6 I 6 I 7 I
12346678901234667890123466789012346678901234667890123466789012346678901234567890

$1234
• 1234

In the following example, VAX RPG II prints a comma before the fifth
digit from the right and a decimal point before the rightmost two digits:

T~pe CHDTE> Edit codes , 0 No CR -
1retch ofl I Rel CFR> I X -------------
I I Space I Y date edit y y 1 A J
II I Skip I Z zero suppress y N 2 B K
111 I I N y 3 c L
II I I Indicators !Blank-after CB> N N 4 D H
II I I I field I I End position
111 I I na111e II I ror111at <PB>
II I I I I II I I
I IBAB A NxxNxxNxxl 111 I+ Constant or edit word +

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

**
0

***** * * * ***---**
fLD 45 '$,

ZK-4511-85

VAX RPG II Specifications 15-141

Output Specificaiion (0)

File
na111e
I

01

In the preceding example, if FLD contains the data 123456, the output
appears as follows:

o I 1 I 2 I 3 I 4 I 6 I 6 I 7 I

12345678901234567890123456789012346678901234667890123466789012346678901234567890
$1,234.56

In the preceding example, if FLD contains the data 56, the output appears
as follows:

o I 1 I 2 I 3 I 4 I 6 I 6 I 7 I

12345678901234567890123456789012346678901234667890123466789012346678901234667890
• 56

T~pe <HDTE> Edit codes , 0 No CR -
Ir etch of 1 I Re 1 <FR> I X -------------
11 Space I Y date edit y y 1 A J
111 Skip I Z zero suppress y N 2 B K
111 I I N y 3 c L
111 I Indicators IBlank-after N N 4 D M
111 I I Field 11 End position
111 I I na111e 111 For111at <PB>
111 I I I 111 I
I IBAB A NxxNxxNxxl 111 I+ Constant or edit word +

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

**
0

***** * * * ***---**
FLD 45 '$, • &BALANCE'

ZK-4512-85

In the preceding example, if FLD contains the data 123456, the output
appears as follows:

o I 1 I 2 I 3 I 4 I 6 I 6 I 7 I

12346678901234567890123456789012346678901234667890123466789012346678901234667890
$1,234.66 BALANC~

15-142 VAX RPG II Specifications

f"i le
na111e
I

01

Output Specification (0)

The following table describes those characters you can use in the status
portion of the edit word.

Column Allowable
Number Values

45-70 CR or -

Any
character

T~pe CHDTE>
lf"etch of l I Rel
I I Space
II I Skip
II I I

<rR>

111 I Indicators
II I I I f"ield
II I I I na111e
II I I I I
llBAB A NxxNxxNxxl

Explanation

Indicates that the specified symbol (CR or a negative
sign (-)) is to be printed in the edited field if the
data is negative. If the edited field is positive, the
specified symbol is replaced by blanks.

Prints the specified character(s) in the edited field
if the data is negative; otherwise the character
is replaced by a blank. If an ampersand (&) is
specified, it will be replaced by a blank space.

Edit codes , 0 No CR -
I X -------------
I Y date edit y y 1 A J
I Z zero suppress y N 2 B K
I N y 3 c L
!Blank-after N N 4 D M
11 End position
I II For111at <PB>
II I I
111 I+ Constant or edit Nord +

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

**
0

***** * * * *** ___ **
FLD 45 '$, • &CR&BALANCE'

ZK-4513-85

In the preceding example, if FLD contains the data -123456, the output
appears as follows:

o I 1 I 2 I 3 I 4 I 6 I 6 I 7 I
12346678901234567890123456789012345678901234567890123466789012345678901234567890

$1,234.56 CR BALANCE

VAX RPG II Specifications 15-143

Output Specification (0)

Rules

• Leave column 38 (edit code) blank.

• You must complete colum.ns 32 through 37 (field name) and columns
40 through 43 (end position).

• Edit words can be used only with overpunched numeric data.
(Column 44 (data format) must be blank.)

• Edit words can be up to 24 characters long.

• Enclose edit words in apostrophes.

• The number of replaceable characters in an edit word must be greater
than or equal to the number of digits in the numeric field.

• If you want all leading zeros to be printed, increase the edit word by
one position to the left of the leftmost digit and place a zero in that
position.

• When the floating currency symbol is used, the sum of the number
of blanks and the zero-suppression in the edit word must be equal
to or greater than the number of digits in the edited field. A floating
currency symbol is not counted as a digit position.

• Any zeros or asterisks following the leftmost zero suppression code or
asterisk protection are treated as constants and are not replaced with
digits.

15-144 VAX RPG II Specifications

Chapter 16

Operation Codes

VAX RPG II operation codes perform calculations on the operands you
specify in Calculation specifications. In the following sections, operation
codes are grouped by function and discussed individually in detail. A
summary of all operation codes is provided at the end of this chapter, in
Table 16-1.

16. 1 Arithmetic Operation Codes

This section describes arithmetic operation codes which perform a variety
of functions, ranging from adding two operands to taking the square root
of an operand.

When you use arithmetic operation codes, you must consider the following
restrictions and default characteristics:

• You can use arithmetic operation codes only with numeric fields and
numeric literals.

• VAX RPG II aligns the operands according to their decimal points
before performing any arithmetic operation. VAX RPG II aligns the
result on the decimal point in the result field, which could cause
truncation.

• The contents of factor 1 and factor 2 do not change during an arith
metic operation unless the same field is used as the result field.

• Any existing data in the result field is replaced with the result of the
current operation.

• Make sure the field length of the result field is large enough to hold
the result of the operation. Otherwise, the result of the operation is
truncated before being placed in the result field.

Operation Codes 16-1

• You can specify half adjust (column 53 of the Calculation specification)
for any arithmetic operation except an MVR operation and the DIV
operation immediately preceding it.

• You can specify the same field for factor 1 and factor 2 and/or the
result field, if desired.

• You can leave factor 1 blank. If you do, the statement is treated as if
the result field were specified in factor 1. ·

• You can specify an entire array as an operand of the ADD, SUB,
Z-ADD, Z-SUB, MULT, DIV, and SQRT operation codes. See
Chapter 11 for information on using arrays in calculations.

• No field in an arithmetic operation can be longer than 15 digits.

• VAX RPG II performs all arithmetic operations algebraically.

• The result of all arithmetic operations is signed. The sign of the result
of an arithmetic operation depends on the operation.

16-2 Operation Codes

Addition:
If factor 1 and factor 2 have like signs, the result field has the
same sign.
If factor 1 and factor 2 have unlike signs, the result field uses the
sign of the factor with the largest absolute value.

Subtraction:

- Change the sign of factor 2 (positive to negative or negative to
positive) and use the same rules as for addition.

Multiplication:

If factor 1 and factor 2 have like signs, the sign of the result field
is positive.
If factor 1 and factor 2 have unlike signs, the sign of the result
field is negative. ·

Division:

If factor 1 and factor 2 have like signs, the sign of the result field
is positive.
If factor 1 and factor 2 have unlike signs, the sign of the result
field is negative.

The sign of the remainder is the same as the sign of factor 1.

16.1.1 ADD Operation

The ADD operation adds the contents of factor 1 to factor 2 and puts the
sum in the result field. If you leave factor 1 blank, the statement is treated
as if the result field were specified in factor 1.

16.1.2 Z-ADD Operation

The Z-ADD operation assigns the value of factor 2 to the result field.

16.1.3 SUB Operation

The SUB operation subtracts the contents of factor 2 from the contents of
factor 1 and puts the difference in the result field. If you leave factor 1
blank, the statement is treated as if the result field were specified in
factor 1.

16.1.4 Z-SUB Operation

The Z-SUB operation multiplies the contents of factor 2 by -1 and puts the
result in the result field.

16.1.5 MULT Operation

The MUL T operation multiplies factor 1 by factor 2 and puts the product
in the result field. If you leave factor 1 blank, the statement is treated as if
the result.field were specified in factor 1.

The field length of the result field for a MUL T operation should equal the
sum of the field lengths of factor · 1 and factor 2. This procedure ensures
that the result field can contain the maximum value.

Operation Codes 16-3

16.1.6 DIV Operation

The DIV operation divides factor 1 by factor 2 and puts the quotient in the
result field. If you leave factor 1 blank, the statement is treated as if the
result field were specified in factor 1.

Factor 2 cannot be zero. If it is, a run-time error occurs. The remainder
is lost unless you use the MVR operation immediately following the DIV
operation.

16.1.7 MVR Operation

MVR moves the remainder from the division operation on the preceding
line to the result field. The decimal position of the remainder is the greater
of either of the following:

1. The number of decimal positions specified for factor 1

2. The sum of the number of decimal positions specified for factor 2 and
the result field of the preceding DIV operation

The sign of the remainder is the same as the sign of factor 1 in the DIV
operation.

Because DIV and MVR operation codes work together, use the same
indicators to condition both operations.

You cannot specify half adjust (column 53 of the Calculation specification)
for a DIV operation immediately followed by an MVR operation.

You cannot use the MVR operation if, in the immediately preceding DIV
operation, you specified an entire array (nonindexed) in the result field.

16. 1.8 SQRT Operation

The SQRT operation calculates the square root of factor 2, half adjusts
the value, and puts the result into the result field. The result of a SQRT
operation is always half adjusted. Factor 2 cannot be a negative number.
If the field contains a negative number, a run-time error occurs. If you use
a negative numeric literal, a compile-time error occurs.

16-4 Operation Codes

18.1.9 XFOOT Operation

The XFOOT operation puts the sum of all the array elements into the
result field. Factor 2 contains the name of the array. If the result field
contains an array element of the array you specify in factor 2, the original
value of the element is used during the operation.

You can half adjust the contents of the result field.

18.1.10 Example

The following example demonstrates the use of arithmetic operation c()des:

Contra l level
I
I Indicators
I I
I I Factor
I I 1

C I NxxNxxNxx I

Operation
I
I
I
I

Factor
2
I

rield length
I Deci~al positions
I IHalf adjust CH>
I II
I llResulting

Result! I I indicators
field I II+ - 0
I I !I><=+~ Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** *
12 c
13 c
14 c
15 c
16 c
17 c
18 c

30 c
31 c

46 c

* PURCH
AHTFIN
FINCHG
AHTDUE

* * SUB DlJNPAY
HULT .18
ADD AHTFIN
DIV 13
HVR
Z-ADD5.00
ADD AHTDUE

Z-SUB10.00
Z-ADD6.99

SQRT FINCHG

* *--*** * * *
AHTFIN 62H
FINCHG 62H
AHTDUE 62H
HTHPAY 52
REMAIN 42
TOTDUE 62
TOTDUE

EARPAY 42H
LATCHG 32H

TAX 42H
ZK-4514-85

Operation Codes 16-5

For the preceding example, the following table lists the data in each
operand before and after the operation.

Program line Factor 1 Operation Factor 2 Result field

12 122.99 100.00 22.99

13 1200.00 • .18 216.00

14 216.00 + 1200.00 1416.00

15 1416.00 I 13 108.92

16 MVR 0.04

18 ADD 1416.00 1421.00

30 Z-SUB 10.00 -10.00

31 Z-ADD 6.99 6.99

46 SQRT 216.00 14.70

16.2 Move Operation Codes

MOVE operation codes transfer data from a field in factor 2 to the result
field. Although the contents of factor 2 remain unchanged, you can move
all or part of the field in factor 2 and either retain or change the format of
the data as you move it.

In move operations, VAX RPG II ignores the decimal positions of numeric
fields. You cannot use resulting indicators with any move operation.

16.2.1 MOVE Operation

The MOVE operation transfers the contents of factor 2 to the result
field. The transfer begins with the rightmost character of factor 2 to the
rightmost character of the result field. If the result field is not large enough
to accommodate factor 2, VAX RPG II moves only enough characters
(beginning with the rightmost character) to fill the result field. If the field
length of the result field is longer than factor 2, the leftmost characters of
the result field are not changed. If VAX RPG II transfers numeric data, the
sign of the result field is the same as the sign of factor 2.

16-6 Operation Codes

When you move an alphanumeric field to a numeric field, VAX RPG II
converts the digit portion of each character to its corresponding numeric
character and then moves the numeric character to the result field. VAX
RPG II converts the zone portion of the rightmost character to its corre
sponding sign and then moves the sign to the rightmost character position
of the numeric result field, where it becomes the sign of that field.

18.2.2 MOVEA Operation

The MOVEA operation transfers data from factor 2 to the result field.
Either factor 2 or the result field must contain an array or array element.
If you specify an array element, it specifies the beginning position of the
transfer. Both factor 2 and the result field must be character fields or
arrays.

You can move several contiguous array elements to a single field or move
a single field to several contiguous array elements.

Movement of data from factor 2 to the result field begins with one of the
following: \j

1. The leftmost character of the first element in the array, if you specify
an entire array (nonindexed)

2. The leftmost character of the element you specify, if you specify an
array element (indexed)

3. The leftmost character of the field, if you specify a field

The length of factor 2 and the result field is determined by the length of
one of the following:

1. An entire array, if you specify an entire array (nonindexed)
2. An array from the specified array element to the end of the array, if

you specify an array element (indexed)
3. A field, if you specify a field

If the field length of factor 2 is greater than the field length of the result
field, VAX RPG II does not move the excess rightmost characters. If the
field length of the result field is greater than the field length of factor 2,
the rightmost characters in the result field remain unchanged.

Array element boundaries are ignored in a MOVEA operation. Therefore,
movement of data into the result field can end in the middle of an array
element.

Operation Codes 16-7

16.2.3 MOVEL Operation

The MOVEL operation transfers the contents of factor 2 to the result field.
The transfer begins with the leftmost character of factor 2 to the leftmost
character of the result field.

When the field length of factor 2 is equal to the field length of the result
field, the following rules apply:

• If factor 2 contains alphanumeric data and the result field is alphanu
meric, VAX RPG II moves characters without changing them.

• If factor 2 contains numeric data and the result field is numeric, the
sign of factor 2 becomes the sign of the result field.

• If factor 2 contains numeric data and the result field is alphanumeric,
VAX RPG II moves the sign in the rightmost character position.

• If factor 2 contains alphanumeric data and the result field is numeric,
each character is converted to its corresponding numeric digit and
moved to the result field. The zone portion of the rightmost character
in factor 2 is used to determine the sign of the result field.

When the field length of factor 2 is longer than the field length of the
result field, the following rules apply:

• If factor 2 contains alphanumeric data and the result field is alphanu
meric, VAX RPG II moves only the number of characters needed to fill
the result field.

• If factor 2 contains numeric data and the result field is numeric, the
sign of factor 2 becomes the sign of the result field.

• If factor 2 contains numeric data and the result field is alphanumeric,
the result field contains only numeric data; that is, the sign of factor 2
is not used.

• If factor 2 contains alphanumeric data and the result field is numeric,
the leftmost characters of factor 2 are converted to the corresponding
numeric digits and moved to the result field. The zone portion of the
rightmost character in factor 2 is used to determine the sign of the
result field.

When the field length of factor 2 is shorter than the field length of the
result field, the following rules apply:

• If factor 2 contains either numeric or alphanumeric data and the result
field is numeric, VAX RPG II moves the digits of numeric fields or
the corresponding numeric digits of factor 2, if alphanumeric, into the

16-8 Operation Codes

leftmost character positions of the result field. The sign of the result
field remains unchanged.

• If factor 2 contains either numeric or alphanumeric data and the result
field is alphanumeric, VAX RPG II moves the data into the result
field beginning with the leftmost character position. The rightmost
character positions in the result field remain unchanged.

18.2.4 Example

In the following example, the preexecution-time array ARRl is read from
the input file ARRFILE and is copied to the execution-time array DUPARR.
The array is modified by moving the input field INPFLD to the second
and third elements of the array. In addition, the field MYREC consists of
the first element in ARRl and the last three characters of the third element
in ARRl.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

E ARRFILE
E
IARRFILE AA 01
I
c
c
c
c

ARR! 6
DU PARR

MOVEAARR1
MOVEAINPFLD
MOVE ARR1,3
MOVELARR1,1

6 5
6 5

1 10 INPFLD
DU PARR
ARR!, 2
MYREC 8
MYREC

ZK-4515-85

For the preceding example, the input file (ARRl) contains the following
data:

Field

ARRl,l

ARRl,2

ARRl,3

ARRl,4

Data

12345

67890

zzzzz
zzzzz

Operation Codes 16-9

Field Data

ARRl,5

ARRl,6

INPFLD

zzzzz
zzzzz
ABCDEFGHIJ

After executing the program, the fields would contain the following data:

MYREC = 12346HIJ
ARR1,1 = 12346
ARR1,2 = ABCDE
ARR1,3 = FGHIJ
ARR1,4 = ZZZZZ
ARR1,6 = ZZZZZ
ARR1,6 = ZZZZZ
DUPARR = 1234667890ZZZZZZZZZZZZZZZZZZZZ

16.3 SET Operation Codes

SET operation codes (SETON and SETOF) set indicators on and off. They
affect only those indicators in columns 54 through 59.

If you use SET operation codes to set control-level indicators on and off,
they do not affect lower-level control-level indicators.

16.3.1 SETON Operation

The SETON operation sets on the indicators you specify in columns 54
and 55, 56 and 57, and 58 and 59. You cannot set the first-page (IP) or
matching-record (MR) indicators on.

If you use SETON to set the LR indicator on at total time, processing stops
after VAX RPG II finishes total-time output operations.

If you use SETON to set the LR indicator on at detail time, processing
stops after VAX RPG II finishes the next total-time output operation.

If you use SETON to set halt indicators on and they are not set off before
VAX RPG II finishes detail-time output operations, processing stops.

16-1 0 Operation Codes

18.3.2 SETOF Operation

The SETOF operation sets off the indicators you specify in columns 54
and 55, 56 and 57, and 58 and 59. You cannot set the first-page (lP) or
matching-record (MR) indicators off.

In the following example:

• The SETON operation sets indicators 11 and 22 on.

• The SETOF operation sets indicator 33 off.

Control level
I
I Indicators
I I
I I ractor
I I 1

Operation

ractor
2

Field length
I Decimal positions
I !Half adJust CH>
I 11
I llResulting

Result! llindicators
field I II+ - 0

C I NxxNxxNx.x I

I
I
I
I I . I I II><=+- Comments--+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

II I

c
c

I I I

SETON
SETOF

I 1--111 I I *
1122
33

ZK-4516-85

16.4 Subroutine Operation Codes

Subroutine operation codes are used to identify and execute subroutines.
A subroutine is a group of Calculation specifications that you can execute
more than once in a single program cycle using the ESXR operation code.

You can specify SR in columns 7 and 8 to indicate that the specification
is part of a subroutine, although this is optional. You cannot use control
level indicators in columns 7 and 8 of a subroutine. However, you can use
any indicator in columns 9 through 17. Also, you can use AN and OR in
columns 7 and 8 to specify a relationship between two program lines.

You can use a maximum of 254 subroutines in a program. Subroutines
must be placed after all other calculations. Subroutines cannot be nested
or recursive. However, you can use the EXSR operation to call one
subroutine from another.

Operation Codes 16-11

16.4.1 BEGSR Operation

The BEGSR operation indicates the beginning of a subroutine and must be
the first specification in a subroutine. Factor 1 contains the name of the
subroutine. All other columns in the same specification must be left blank
except for an optional SR in columns 7 and 8.

16.4.2 ENDSR Operation

The ENDSR operation indicates the end of a subroutine and must be the
last specification in a subroutine. Factor 1 can contain a label for a GOTO
operation within the subroutine. All other columns in this specification
must be blank, except an optional SR in columns 7 an_d 8.

After the program reaches the ENDSR operation, it returns program
control to the specification immediately following the EXSR operation
code that invoked the subroutine.

16.4.3 EXSR Operation

The EXSR operation executes a subroutine. Factor 2 contains the name
of the subroutine. It must be the same name you used in factor 1 of the
BEGSR operation. You can use control-level and conditioning indicators
to condition EXSR.

After the program performs the operations in the subroutine, control
branches to the specification immediately following EXSR.

16-12 Operation Codes

16.4.4 Example

In the following example, line 11 causes VAX RPG II to execute the
subroutine SUBl. The subroutine consists of lines 22 through 24.

Field length
Contra 1 1eve1
I

I Deci~al positions
I IHalf adjust <H>

I Indicators
I I

Operation
I
I
I
I

I II
I llResulting

Result I I I indicators I I Factor Factor
2 I I 1 field I 11+ - 0

Cl NxxNxxNxxl I I I I I> < = +- Co~~ents -~+
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** * 11 c 02

22 CSR
23 CSR 02
24 CSR

*

SUB!
HOURS

* * EXSR SUB!

BEGSR
HULT RATE
ENDSR

*

DAYPAY 52H

ZK-4517-85

16.5 BIT Operation Codes

The BIT operation codes set and test bits. You must use one-character
alphanumeric fields in factor 2 and the result field.

16.5.1 BITON Operation

The BITON operation sets on the bits you specify in factor 2 in the result
field, replacing the value in the result field. Factor 2 contains the source of
bits in bit numbers or a field name.

You can set on bit numbers 0 through 7. Zero is the leftmost bit. You
must enclose the bit number in apostrophes. For example, to set bits 1, 2,
and 3 on, enter '123' in factor 2. You cannot specify a bit number more
than once.

Operation Codes 16-13

The field name is a one-character alphanumeric field, table, or array
element. The bits that are on in the field name are set on in the .result
field. If you specify an array element, each array element must be a
one-character field.

You can use indicators in columns 7 through 17, but the following
columns must be left blank:

• Columns 18 through 27 (factor 1)

• Column 52 (decimal positions)

• Column 53 (half adjust)
• Columns 54 through 59 (resulting indicators)

16.5.2 BITOF Operation

The BITOF operation sets off the bits you specify in factor 2 in the result
field, replacing the value in the result field. To specify operands for
BITOF, follow the same guidelines as for BITON.

16.5.3 TESTB Operation

The TESTB operation compares the bits in factor 2 with the corresponding
bits in the result field. Factor 2 can contain bit numbers or a one-character
alphanumeric field. Bit numbers and one-character alphanumeric fields
follow the same rules as those for BITON and BITOF.

Indicators in columns 54 through 59 reflect the status of the bits in the
result field; therefore, you must assign at least one resulting indicator. You
can set up to three resulting indicators, but no more than two resulting
indicators can be identical.

If factor 2 is a field in which all bits are off, no resulting indicator is set
on; otherwise, indicators in columns 54 through 59 indicate the result of
the comparison as follows:

• VAX RPG II sets the indicator in columns 54 and 55 on, if all bits
specified in factor 2 in the result field are off.

• VAX RPG II sets the indicator in columns 56 and 57 on, if some bits
specified in factor 2 in the result field are on and some are off.

• VAX RPG II sets the indicator in columns 58 and 59 on, if all bits
specified in factor 2 in the result field are on.

16-14 Operation Codes

You can use indicators in columns 7 through 17, but the following
columns must be left blank:

• Columns 18 through 27 (factor 1)

• Column 52 (decimal positions)

• Column 53 (half adjust)

16.5.4 Example

In the following example:

• Line 34 sets on the bits l, 2, and 3 in the result field FLDl.

• Line 35 tests the bits 1, 2, and 3 in the result field FLDl. If all the
bits are on, indicator 11 is set on. If one or more of the bits are off,
indicator 11 is set off.

• Line 36 sets off the bits 4, 5, and 6 in the result field FLD2.

• Line 37 tests the bits 4, 5, and 6 in. the result field FLD2. If all the
bits are off, indicator 22 is set on. If one or more of the bits are on,
indicator 22 is set off.

Contra I I eve I
I
I Indicators
I I
I I F"actor
I I 1

Operation

ractor
2

Field length
I Decimal positions
I !Half adjust <H>
I 11
I I !Resulting

Result! I I indicators
field I 11 + - 0

Cl NxxNxxNxxl

I
I
I
I I I I I I> < = +- Comments --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * * * * * *--*** * * *
34 c BITON'123' F"LD1
35 c TESTB'123' F"LD1 11
36 c BITOF"'456' F"LD2
37 c TESTB'456' F"LD2 22

ZK-4518-85

Operation Codes 16-15

16.6 COMP Operation Code

The COMP operation tests fields for certain conditions. Based on the
result of the comparison, you can assign· resulting indicators to condition
calculation and output operations.

The COMP operation compares the contents of factor 1 to the contents of
factor 2. An indicator in columns 54 through 59 indicates the result of the
comparison as follows:

• If factor 1 is greater than factor 2, VAX RPG II sets on the indicator in
columns 54 and 55.

• If factor 1 is less than factor 2, VAX RPG II sets on the indicator in
columns 56 and 57.

• If factor 1 is equal to factor 2, VAX RPG II sets on the indicator in
colum:ns 58 and 59.

You must specify at least one resulting indicator. The result field must be
left blank.

When using the COMP operation, consider the following restrictions and
default characteristics:

• If y6u compare numeric fields, the. fields are aligned at their implied
decimal point. Fields are filled with zeros to the left and right of the
decimal point until both fields are equal in length. For example, if you
compare 1234.56 to 1.2, VAX RPG II fills the second field (1.2) with
zeros (0001.20) until both fields are equal in length.

• If you compare alphanumeric fields of unequal lengths, the fields are
aligned at the leftmost character. Shorter fields are filled with blanks
until the two fields are equal in length.

• VAX RPG II compares numeric fields algebraically.

• Positive numeric fields are greater than negative numeric fields.

• If you have specified an alternate collating sequence, VAX RPG II
translates character fields to the alternate collating sequence before
comparing them.

• You cannot compare an alphanumeric field to a numeric field.

• You cannot compare entire arrays (nonindexed).

16-16 Operation Codes

In the following example, if the contents of the field CODE are greater
than 1, VAX RPG II sets on indicator 11 and sets off indicators 22 and 33.
If the contents of CODE are less than 1, VAX RPG II sets on indicator 22
and sets off indicators 11 and 33. If CODE is equal to 1, VAX RPG II sets
on indicator 33 and sets off indicators 11 and 22.

field length
Contra l level
I

I Decimal positions
I IHalf adjust <H>

I Indicators
I I

Operation
I
I
I
I

I 11
I I IResulting

Result I I I indicators
field I II+ - 0

I I ractor ractor
2 I I 1

Cl NxxNxxNxxl I I I I I> < = +- Comments --+
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** * c * CODE

* *
COMP '1' * *--*** * * *

112233
ZK-4519-85

16. 7 Input and Output Operation Codes

You can use the following operation codes to alter the normal input and
output sequence, enabling the program to read and write records during
calculations.

18. 7 .1 CHAIN Operation

The CHAIN operation reads a record from a file during calculations and
places the contents of the record into the fields you specify on the Input
specification. You can read records randomly from a sequential, direct, or
indexed file.

Rules

• If you want to read a record from a sequential or direct file, factor 1
must contain the relative record number of that record. If you want to
read a record from an indexed file, factor 1 must contain a field name
or a literal that is the key of that record. The field length of the field
or literal specified in factor 1 must be the same as the field length of
the key.

Operation Codes 16-17

• Factor 2 contains the name of the file from which the record is read.
This file must be the same file you describe with a C or an F in column
16 (type) in the File Description specification.

• You can use any indicator in columns 7 through 17, but columns 43
through 53 and 56 and 5 7 must be left blank. If you condition the
chained or full-procedural file with an external indicator, use the same
indicator to condition the CHAIN operation.

• You can specify an indicator in columns 54 and 55 to verify the
CHAIN operation. If VAX RPG II cannot locate the record, it sets
on the indicator in these columns. If you do not use an indicator
in columns 54 and 55, and VAX RPG II cannot locate the record, a
run-time error occurs. If VAX RPG II cannot locate the record, you
can add a record to the chained file (if you use a resulting indicator to
indicate that a record has not been found), but you cannot update the

- record.

• You can specify on a CHAIN operation that if a record is locked, to
set on an indicator. Enter the indicator for a locked record in columns
58 and 59 of a Calculation specification. If you specify an indicator in
columns 58 and 59, the program will not wait for the record to become
unlocked before proceeding and will set on the indicator to show that
the requested record is locked. If you do not specify the indicator, the
program will wait until any record lock is released before proceeding.
This indicator is allowed only on CHAIN operations to files that. are
marked as SHARE (Sor R in column 68 on File specifications). The
file cannot be an output file. Note that if another program has locked
a record for update, but uses the file sharing option R, then a CHAIN
operation that accesses that record will be successful; no lock will be
seen and an indicator in columns 58 and 59 will be set off.

• If you chain to a file with packed keys, the field in factor 1 of the
CHAIN operation must be numeric and have the same number of
digits as the key in the chained or full-procedural file. Packed key
fields can be up to eight bytes long.

• If you use one or more chained or full-procedural files during the same
program cycle and the previous CHAIN operation was successful, any
record-identifying indicators you use remain on throughout the cycle.
If you use a chained file more than once during the same program
cycle, only the last record processed can be updated during output,
unless you specify exception output for each CHAIN operation.

• The CHAIN operation is also used to load a direct file (a chained
output file). Use the CHAIN operation to position the file to the
record you want to add to the file.

See Chapter 8 for information on processing files.

16-18 Operation Codes

In the following example:

• Line 33 retrieves the record from the input file FILEl with the relative
record number specified in the field RECNO. If the record is not
found, VAX RPG II sets on indicator 11. If the record is found, VAX
RPG II sets off indicator 11.

• Line 34 branches to a TAG operation to terminate the program if the
previous CHAIN operation causes a record-not-found error.

• Line 55 retrieves the record with the key 761 from the indexed file
FILE2. If a record with a key of 761 does not exist, VAX RPG II sets
on indicator 22. If a record with a key of 761 does exist, VAX RPG II
sets off indicator 22.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FFILE1 IC F BO DISK
10 DISK FFILE2 IC F 80 5AI

33 c RECNO
34 c 11

55 c 761

CHAINFILE1
GOTO END

CHAINFILE2

11

22
ZK-4520-85

18. 7 .2 DSPL Y Operation

The DSPL Y operatj.on allows you to display on line up to 511 characters
at run time. VAX RPG II can do the following:

• Display up to 511 characters from a field without suspending program
execution. Factor 1 names the field to display.

• Display the number of characters up to one less than your screen
width from the result field. The program suspends execution after
displaying the result field. The cursor is positioned at the next line
where you can enter a new value for the result field from the terminal.

Operation Codes 16-19

When entering a new value for the result field, terminate the input by
pressing either the RETURN key or the TAB key. If you press only a
RETURN key or a TAB key for the new value of the result field, the data
in the result field remains the same.

When using the DSPL Y operation, observe the following restrictions and
default characteristics:

• You cannot change the contents of a literal; therefore, do not specify a
literal in the result field.

• The maximum length of the result field is one character less than the
screen width.

When entering data for the result field, consider. the following
characteristics:

• You do not need to fill numeric data with leading zeros.
• Numeric data is aligned on the decimal point when entered into the

result field.

• Alphanumeric data is left-justified when entered into the result field.

• If you enter no characters and press either the RETURN key or the
TAB key, the value in the result field remains unchanged.

18. 7 .3 Example

In the following example, if the data in NUMBER is greater than 100.0,
the number will be displayed on the screen and will be followed on the
next line by the current value of RESNO. Then, you can enter a new value
for RESNO and press the RETURN key.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FTTYFILE D F 81 TTY
IINFILE AA 01
I 1 50NUMBER
C 01 NUMBER COMP 100.0 10
C 10 NUMBER DSPLYTTYFILE RESNO 50

ZK-4521-85

16-20 Operation Codes

16. 7 .4 EXCPT Operation

The EXCPT operation allows you to write a variable number of records
during detail-time or total-time calculations or to display a form with a
WORKSTN file. To do this you must specify the following entries:

• On the Calculation specification:

- EXCPT, as the operation code

- Blanks or an EXCPT name in factor 2

• On the Output specification:
E in column 15 (Type), for the record you want to write

Blanks or an EXCPT name in columns 32 through 37 (field name)

The EXCPT operation writes those records that have an E in column 15
of the Output specification and that satisfy the conditions specified by the
conditioning indicators. In addition, if the EXCPT operation has a blank
factor 2, only exception records with blanks in columns 32 through 37 of
the Output specification will be written; if the EXCPT operation has an
EXCPT name in factor 2, only these exception records with the same name
in columns 32 through 37 of the Output specification will be written.

You can use indicators in columns 7 through 17 of the Calculation specifi
cation. Factor 2 can contain blanks or an EXCPT name. All other columns
must be blank.

An EXCPT name can be used on multiple EXCPT output record lines.
Only exception records, not heading, detail, or total records, can contain
an EXCPT name.

Operation Codes 16-21

In the following example, line 22 tells VAX RPG II to write the record
described in line 89 during calculations if indicators 01, 02, and 03 are
on. Line 34 tells VAX RPG II to write the record described in line 95 if
indicator 04 is on.

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

22 c
34 c
77 OOUTFIL

89 0

95 0

E

E

EXCPT

EXCPTHDG

01 02 03

04 HDG

ZK-4660-85

18. 7 .5 FORCE Operation

The FORCE operation allows you to select the next file from which a
record is read during multifile processing. You can select primary or
secondary input and update files. Factor 2 contains the name of the file.

You can use conditioning indicators, but all other columns must be left
blank.

When VAX RPG II executes a FORCE operation it reads, at the next
program cycle, a record from the file you specify. If you specify more than
one FORCE operation during the same program cycle, VAX RPG II ignores
all FORCE operations except the last.

Although FORCE operations override normal multifile processing, they
cannot override the first record selected by the program. Reading the first
record occurs in the first cycle before the first pass through calculations.

If a FORCE operation is issued for a file that is at its end-of-file, the file is
not selected for processing. In this case, normal multifile processing logic
selects the next record.

In the following example, VAX RPG II reads the next record from the file
SPECFIL at the next program cycle if indicators 01, 02, and 03 are on.

16-22 Operation Codes

Contra 1 1eve1
I
I Indicators
I I
I I Factor
I I 1

Cl NxxNxxNxxl

Operation
I
I
I
I

Factor
2
I

Fiel~ length
I Deci~al positions
I !Half adjust CH>
I II
I llResulting

Result! I I indicators
field I 11+ - 0
I I I I> < = +- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * * * * * f--*** * * *
33 c 01 02 03 FORCESPECFIL

ZK-4523-85

18. 7 .8 READ Operation

The READ operation causes VAX RPG II to read a record from a demand
or full-procedural file. Factor 2 contains the name of the file from which
a record is read. You can read a record from the following types of input
and update files:

• Sequential and direct disk files processed consecutively

• Indexed disk files processed sequentially by key or by limits

You can use any indicators in columns 7 through 17 and in columns 58
and 59. VAX RPG II sets on the indicator in columns 58 and 59 when
an end-of-file condition occurs, or for each READ operation following
an end-of-file condition. If there is no indicator in columns 58 and 59, a
run-time error occurs. Columns 18 through 27 and 43 through 57 must
be left blank, except for WORKSTN files, which can have an indicator in
columns 56 and 57 to detect an error. See Chapter 6 for information on
WORKSTN files.

If VAX RPG II does not open a file because an external indicator is off, a
READ operation on the file causes an end-of-file condition to occur.

Operation Codes 16-23

In the following example, VAX RPG II reads the next record from the file
SPECFIL if indicator 99 is off. If an end-of-file condition occurs,
VAX RPG II sets on indicator 99. If an end-of-file condition does not
occur, VAX RPG II sets on indicator 99.

fie id l erigth
Contro 1 1eve1 I Decimal positions

I !Half adjust <H> I
I Indicators Operation I 11
I I
I I factor
I I 1

I
I
I

factor
2

I !!Resulting
Result! llindicators
field I II+ - 0

Cl NxxNxxNxxl I I I I ll> <=+-Comment~--+
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** *

22 C N99 * * * *
READ SPECrIL

*--*** * * *
99

ZK-4524-85

16. 7. 7 SETLL Operation

The SETLL operation positions a file at the next record with a key that is
greater than or equal to the key you specify in factor l. Factor 2 contains
the name of the file for which the lower limit is set. Factor 2 must be an
indexed demand or full-procedural file being processed sequentially within
limits.

Factor 1 can be a field name or a literal, and must be the same size as the
key specified in the File Description specification. If the keys in the file are
in packed decimal format, factor 1 must be numeric.

You cannot use a record-address file and the SETLL operation on the same
file.

If the program issues a READ operation before issuing a SETLL operation,
processing begins with the first record in the file.

When VAX RPG II reaches the end-of-file, you can use another SETLL
operation to reposition the file. If the SETLL operation is unsuccessful,
you must reposition the file with a successful SETLL operation.

When a SETLL operation is performed on a record whose key is greater
than the highest key in the file, the subsequent READ operation will
be as if the current record pointer had not changed from the previous
READ operation. If a successful SETLL operation is followed by a SETLL
operation for a record whose key is greater than the highest key in the

16-24 Operation Codes

file, with no intervening READ operation, the next READ operation will
occur as if the current record pointer had not changed from the previous
READ operation. In the latter case, it appears as if the successful SETLL
operation never occurred, because it was followed by an unsuccessful
SETLL operation.

In the following example, KEYl contains the lower key limit for the file
FILEl. The READ operation retrieves the first record with a key that is
greater than or equal to the field KEYl.

Centro l I eve I
I
I Indicators
I I
I I Factor
I I 1

Operation

Factor
2

Field length
I Deci~al positions
I IHalf adjust <H>
I II
I llResulting

Resultl llindicators
field I II+ - 0

Cl NxxNxxNxxl

I
I
I
I I I I II><=+- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * c
.~

* ~~EY1 * * SETLLFILEi
READ FILE!

*

ZK-4525-85

16.8 Branching Operation Codes

VAX RPG II performs operations in the order they appear in your pro
gram. However, you can use branching operation codes to skip or repeat
operations under certain conditions.

18.8.1 GOTO Operation

The GOTO operation transfers program control to the label you specify in
factor 2.

The GOTO operation is especially useful in the following situations:

• Skipping calculations when certain conditions occur

• Performing certain calculations for certain record types
• Repeating calculations

Operation Codes 16-25

You can transfer control in the following ways:

• To a previous line

• From one detail-time calculation line to another

• From one total-time calculation line to another

• From one subroutine calculation to another inside the same subroutine

You cannot transfer control from the following lines:

• Detail-time calculation line to a total-time calculation line

• Total-time calculation line to a detail-time calculation line
• Line inside a subroutine to a line outside that subroutine

• Line outside a subroutine to a line inside a subroutine

When using the GOTO operation, the following columns must be left
blank:

• Columns 18 through 27 (factor 1)

• Columns 43 through 48 (result field)

• Columns 49 through 5 ~ (field length)
• Column 52 (decimal positions)

• Column 53 (half adjust)

• Columns 54 through 59 (resulting indicators)

18.8.2 TAG Operation

The TAG operation identifies the line to which program control from a
GOTO operation branches. Factor 1 contains the same label you used in
factor 2 of the GOTO operation.

You cannot use conditioning indicators (columns 9 through 17) to condi
tion a TAG operation; however, you can use a control-level indicator if the
TAG operation is in total-time calculations. ·

16-26 Operation Codes

16.8.3 Example

In the following example, VAX RPG II branches to line 66 if indicators 67,
68, and 69 are on. ·

Control level
I
I Indicators
I I
I I Factor
I I 1

Operation

Factor
2

Field length
I Deci~al positions
I !Half adjust <H>
I II
I I !Resulting

Result! I I indicators
field I I I+ - 0

Cl NxxNxxNxxl

I
I
I
I I I I I I> < = +- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * * * * GOTO BRCH1 * *--:*** * * *
56 c 67 68 69

66 c BRCHi TAG
ZK-4526-85

16.9 LOKUP Operation Cade

The LOKUP operation searches for an entry in a table or an array. Factor
1 contains the search argument and factor 2 contains the name of the table
or array. The search argument can be an alphanumeric or a numeric con
stant, a field name, an array element, or a table name. Search arguments
must be the same length and format as the entries in the table or array.
For example, both fields must be numeric with the same number of digits,
or both must be alphanumeric with the same number of characters.

You must use at least one, but not more than two, resulting indicators to
specify the following:

• The type of search (high, low, or equal)

• The result of the search (successful or unsuccessful)

Operation Codes 16-27

The following list describes the three types of searches:

• A resulting indicator in columns 54 and 55 causes VAX RPG II to
search the table or array for the entry that is nearest to but higher in
sequence than the search argument. You can specify this search only
for sequenced tables and arrays.

• A resulting indicator in columns 56 and 5 7 causes VAX RPG II to
search the table or array for the entry that is nearest to but lower in
sequence than the search argument. You can specify this search only
for sequenced tables and arrays.

• A resulting indicator in columns 58 and 59 causes VAX RPG II to
search the table or array for the entry that is equal to the search
argument.

You can use two indicators to test for HIGH and EQUAL or LOW and
EQUAL conditions. VAX RPG II searches for an entry that satisfies either
condition, with EQUAL given precedence. You cannot specify both HIGH
and LOW conditions at the same time.

If the search is successful, VAX RPG II sets on the resulting indicators. If
the search is unsuccessful, VAX RPG II sets off the resulting indicators.

18.9.1 Searching Tables

The LOKUP operation can search one table or two related tables. When
searching a single table, you must specify the following:

• Factor 1

• Factor 2
• At least one resulting indicator

You can specify conditioning indicators in columns 7 through 17.

When VAX RPG II finds a table entry that satisfies the type of search,
it places a copy of the entry in a special storage area. If you repeat the
search, the new entry replaces the previous entry in the storage area.

When searching for an entry in two related tables, VAX RPG II searches
only the table specified in factor 2. When the search condition is satisfied,
VAX RPG II places the corresponding entries in their respective storage
areas.

16-28 Operation Codes

•

To program a search for an entry in related tables, you must make the
following entries:

• Specify the search argument in columns 18 through 27

• Specify the name of the table to be searched in columns 33 through
42 (factor 2).

• Specify the name of the related table in columns 43 through 48 (result
field).

• Specify at least one resulting indicator in columns 54 through 59
(resulting indicators).

You can specify conditioning indicators in columns 9 through 17.

Both tables should have the same number of entries. The related
table must have as many entries as or more entries than the table to be
searched.

Whenever you use a table name in an operation other than a LOKUP
operation, the table name refers to the data placed in storage by the
last successful LOKUP operation. Then, you can use the table entry in
subsequent calculations. If you specify a table name in an operation other
than a LOKUP operation but before a successful LOKUP operation occurs,
unpredictable results can occur. ·

If you specify the table name as factor 1 in a LOKUP operation, the
contents of the storage area are used as the search argument.

You can also use a table as the result field in operations other than a
LOKUP operation. In this case, the contents of the storage area are
replaced by the result of the calculation you specify. The corresponding
entry in the table is also changed. In this way, you can use calculations to
change the contents of tables.

Operation Codes 16-29

In the following example, TABLIS was defined previously as a table.
VAX RPG II searches for the entry that has the same value as the field
PARTNO and, if successful, sets on indicator 33.

Field length
Contra 1 1eve1
I

I Deci~al positions
I !Half adjust <H>

I Indicators
I I

Operation
I
I
I
I

I II
I I !Resulting

Result! llindicators
field I II+ - 0

I I ractor ractor
2 I I 1

Cl NxxNxxNxxl I I I II><=+- Co~~ents --+
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
** * 56 c *

PART NO * * LOKUPTABLIS * *--*** * * * 33
ZK-4527-85

16.9.2 Searching Arrays

LOKUP operations for arrays are the same as those for tables, except that
you cannot use the result field. If the element searched for is found, its
contents are not moved to a storage area. Indicators reflect whether the
element is present.

To program a search for an element in an array, you must specify the
name of the array to be searched in columns 33 through 42 (factor 2).
Follow the same rules for specifying indicators for arrays as for tables.

You can specify the element to begin searching by adding an index. The
index can be a numeric literal or a field. VAX RPG II begins searching at
the specified element and continues the search until it finds the element
or it reaches the end of the array. If you use a numeric literal to specify
the index, VAX RPG II does not change its value to reflect the result
of the search. If you use a field to specify the index and the search is
unsuccessful, VAX RPG II places the value of 1 in the field. If you use
a field to specify the index and the search is successful, VAX RPG II
places the number of that array element that satisfied the search (counting
from the first element) in the field. Then, you can use the index field to
reference that array element in subsequent operations.

16-30 Operation Codes

If you use an index that is less than or equal to zero, or greater than the
number of elements in the array, and you compile the program with the
RPG/CHECK=BOUNDS command, VAX RPG II issues a run-time error.
If you use an index that is less than or equal to zero, or greater than the
number of elements in the array and you do not compile the program with
the RPG/CHECK=BOUNDS command, unpredictable results can occur.

16.9.3 Example

In the following example, MNTH was defined previously as a sequenced
array and E as a numeric field. Because 1 is assigned to E, VAX RPG II
begins searching with the first element of the array and searches for the
first entry with a value that is greater than and equal to 1000. If an entry
is found, E will contain the index number of the entry and the indicator 99
will be set on. If an entry is not found, E will contain 1 and the indicator
99 will be set off.

Contro I I eve I
I
I Indicators
I I
I I ractor
I I 1

Operation

ractor
2

rield length
I Deci~al positions
I IHalf adjust <H>
I II
I I !Resulting

Result I I I indicators
field I 11 + - 0

Cl NxxNxxNxxl

I
I
I
I I I I I I> < = +- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * c
c

*
1000

* * Z-ADD1
LOKUPHNTH,E

* E
*--*** * * *

30
99 99

ZK-4528-85

16.10 Subprogram Operation Codes

VAX RPG II programs can call subprograms written in other languages
and can pass and receive parameters between the main program and the
subprogram. See Chapter 12 for examples of subprogram operation codes.

Operation Codes 16-31

11.10 .. 1 CALL Operation

The CALL operation transfers control to a subprogram. Factor 2 contains a
character· literal or a field defined by the EXTRN operation that names the
entry point in the subprogram. Factor 2 cannot be·a VAX RPG II progra~
name.

The result field can contain the name of the parameter list associated with
the PUST operation. This enables it to share parameters between the
main program and the subprogram. You can also specify the individual
parameters immediately following the CALL operation code.

Factor 1, half adjust, and the resulting indicators in columns 54 and 55
and 58 and 59, must be blank. However, you can specify a resulting
indicator in columns 56 and 57. VAX RPG ii sets this indicator on when
the subprogram returns an error status.

18.10.2 EXTRN Operation

The EXTRN operation initializes the value of a numeric unscaled field to
a link-time constant. You can use the EXTRN operation to perform the
following operations:

•
•

Extend the subprogram name to more than eight characters
Allow your program to access link-time constants, including status
codes

You define link-time constants using external names. Use factor 1 to name
the field VAX RPG II initializes, using the value of the link-time constant.
Use factor 2 to name the external constant. You can use a maximum of
31 characters to name the constant. You must enclose the constant in
apostrophes.

The external name must be defined as a global symbol in an object module
available to the program at link time. Otherwise, an error will occur at
link time.

Factor 1 of the EXTRN operation is defined as a nine-digit numeric field
with zero decimal positions. The field cannot be defined elsewhere in
the program. Fields defined by an EXTRN operation cannot be used as a
result field in a calculation or have blank after spe~ified when used on an
Output specification.

Conditioning indicators must be left blank.

16-32 Operation Codes

18.10.3 GIVNG Operation

The GIVNG operation allows you to define a parameter that receives the
return status from the subprogram. See the VAX/VMS Run-Time Library
Routines Reference Manual for information on the definition of return
status. The GIVNG operation must follow the last PARM, P ARMV, and
P ARMD operation following a CALL operation. The result field contains
the name of an unscaled numeric field, table, or array element.

Entries in decimal positions and field length are optional. If you specify a
field length, the entry for decimal positions must be zero. The following
columns must be left blank:

• Columns 9 through 17 (conditioning indicators)

• Columns 18 through 27 (factor 1)

• Columns 33 through 42 (factor 2)
• Column 53 ·(half adjust)

• Columns 54 through 59 (resulting indicators)

18.10.4 PARM Operation

The P ARfyi operation passes parameters by reference to a subprogram.
The result field identifies the parameter. The parameter can be a field,
a table, an array element, or an array. Factor 2 can contain a field, a
table, an array element, an array, or a literal. The contents of factor 2
are copied into the result field before the subprogram is called. If the
result field is numeric, factor 2 must be numeric: In this case, the value
in factor 2 is copied into the result field in the same way that a Z-ADD
operation is copied. If the result field is alphanumeric, factor 2 must be
alphanumeric. In this case, the value is left-justified in the result field and
trailing characters are filled with blanks.

The subprogram can change the contents of the result field but cannot
change the contents of factor 2. Using factor 2 allows you to pass the
values from factor 2 knowing that the subprogram cannot modify the
field.

After a successful CALL operation, VAX RPG II copies the contents of the
parameter into factor 1. Factor 1 can contain a field, a table, an array, or
an array element. The copying is done in the same way as for factor 2.
Entries for factor 1 and factor 2 are optional.

Operation Codes 16-33

Entries in decimal positions and field length are optional. Conditioning
indicators must be left blank. VAX RPG II, by default, passes numeric data
by reference in packed decimal format.

You can also use the PARM operation to convert to the numeric data
type needed by the subprogram being called. Use columns 54 through
59 (resulting indicators) to specify the notation for the parameter. See
Chapter 12 for information on specifying parameters.

You can use one of the following access types:

• Read-only (R)-the parameter is read by the subprograms, but not
modified.

• Write-only (W)-the parameter is not read by the subprograms, but a
new value is supplied by the subprogram.

• Modify (M)-the parameter is read by the subprograms and a new
value is supplied by the subprogram.

You can use one of the following data types:

• Word integer (signed) (W)
• Longword integer (signed) (L)
• Quadword integer (signed) (Q)
• F_floating single-precision (F)
• D_floating double-precision (D)
• Numeric string, right overpunched sign (NRO)

See Chapter 14 for information on data types.

You cannot specify an access type or data type if the result field is an
entire array (nonindexed).

18.10.5 PARMD Operation

The P ARMD operation passes parameters by descriptor to a subprogram.
The result field contains the name of the field, the name· of an array
element, the name of the array, or a literal that identifies the parameter.
Long character literals can be used effectively in the P ARMD result field.
See Section 15.7.5 for information on long character literals.

16-34 Operation Codes

Entries in decimal positions and field length are optional. The following
columns must be left blank:

• Columns 9 through 17 (conditioning indicators)

• Columns 18 through 27 (factor 1)

• Columns 33 through 42 (factor 2)
• Column 53 (half adjust)

• Columns 54 through 59 (resulting indicators)

See the VAX/VMS Run-Time Library Routines Reference Manual for infor
mation on argument descriptor format.

18.10.8 PARMV Operation

The P ARMV operation passes parameters by value to a subprogram. The
result field contains the name of an unscaled numeric field, table, array, or
an unscaled numeric literal that identifies the parameter.

Entries in decimal positions and field length are optional. If you specify
a field length, the entry for decimal positions must be 0. The following
columns must be left blank:

• Columns 9 through 17 (conditioning indicators)

• Columns 18 through 27 (factor 1)
• Columns 33 through 42 (factor 2)

• Column 53 (half adjust)
• Columns 54 through 59 (resulting indicators)

18.10. 7 PUST Operation

The PUST operation identifies the name of the parameter list for a subpro
gram. Use this operation with the CALL operation to access parameters in
the subprogram. You can pass a maximum of 255 parameters.

Factor 1 contains the name of the parameter list. The following columns
must be left blank:

• Columns 9 through 17 (conditioning indicators)
• Columns 33 through 42 (factor 2)

• Columns 43 through 48 (result field)

Operation Codes 16-35

• Columns 49 through 51 (field length)
• Column 52 (decimal positions)
• Column 53 (half adjust)
• Columns 54 through 59 (resulting indicators)

If you want to pass parameters, you must use one of the parameter
operations (PARM, PARMD, PARMV) to specify how you want to p~ss
the parameters. Parameter operations must immediately follow the CALL
or PUST operation. Parameter operations must also be in the order
expected by the subprogram.

11.10.8 Example

The following example makes a call to the VAX/VMS Run-Time Library
routine STR$UPCASE. The call places REP HEAD in the result field
RESULT.

Centro 1 1eve1
I
I Indicators
I I
I I Factor
I I 1

Cl NxxNxxNxxl

Operation
I
I
I
I

Factor
2
I

Field length
I Deci~al positions
I IHalf adjust <H>
I II
I I !Resulting

Result! llindicators
field I I I+ - 0
I I II><=+- Co~~ents --+

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * c
c
c
c
c

16-36 Operation Codes

*
UPCASE

* * * *--*** * * *
HOVE 'rep head'HEAD 8
EXTRN'STR$UPCASE'
CALL UPCASE
PARHD RESULT B
PAR HD HEAD

ZK-4529-85

16. 11 TIME Operation Code

The TIME operation code allows you to access the system time of day
and the optional system date. Note that the system date may be different
from the date accessed with UDATE, UDAY, UMONTH, or UYEAR if the
RPG$UDATE logical is used.

The tesult field must be numeric with 0 decimal places and contain
either 6 or 12 digits. A 6-digit result field displays the time in the format
hhmmss. A 12-digit result field displays the time anci date in the format
hhmmssyymmdd.

Operation Codes 16-37

- Table 16-1: Summary of Operation Codes en
I

w
co

0 Indicators
"O

~
C» - Operation Factor 1 Factor 2 Result Control Conditioning Resulting 5·
::l

Code Field n Level +> -< O=
0
c..
cg
en 28-32 18-27 33-42 43-48 7-8 9-17 54-55 56-57 58-59

ADD'H' 0 R R 0 0 O+ 0- 00
BEGSR R
BITOF R R 0 0
BITON R R 0 0
CALL R 0 0 0 OE
CHAIN R R 0 0 ONR ORL
COMP1 R R 0 0 OH OL OEQ
DJV'H' 0 R R 0 0 O+ 0- oz
DSPLY 0 R 0 0 0
END SR 0
EXCPT 0 0 0
EXSR R 0 0
EXTRN R R 0
FORCE R 0 0
GIVNG R 0
GOTO R 0 0
LOKUP IA R R 0 0 OH OL OEQ
LOKUP IT R R 0 0 0 OH OL OEQ
MOVE R R 0 0
MO VEA R R 0 0
MOVEL R R 0 0
MULT•H• 0 R R 0 0 O+ 0- oz
MVR R 0 0 O+ 0- oz
PARM 0 0 R 0
PARMD R 0
PARMV R 0
PLIST R 0
READ R 0 0 OEOF
SETLL R R 0 0

0
"Cl
~ s
5·
::::I

n
0
c..
CD
en

-en
I
w
c.o

SETOF 1 0 0
SETON 1 0 0
SQRT' 11 ' R R 0 0
SUB' 11 ' 0 R R 0 0
TAG R 0
TESTB 1 R R 0 0
TIME R
XFOOT' 11 ' R R 0 0
Z-ADD' 11 ' R R 0 0
Z-SUB' 11 ' R R 0 0

'II' You can specify Half adjust for this operation.
I Specify at least one resulting. indicator for this operation.

Conditioning indicators are valid only for executable operation codes.
Fields without entries in this table must be blank.

'A' Factor 2 is an array.

' 1 Factor 2 is a table.

Legend

+ = positive
E = error
NR = no record
ZB = zero or blank

- = negative
EQ =equal
R =required
RL = record locked

EOF = end of file
0 =optional
Z = zero

0 0 0
0 0 0

O+ 0- oz

0 0 0

O+ 0- oz
O+ 0- oz
O+ 0- oz

ZK-5537-86

Appendix A

Character Sets

ASCII EBCDIC
Character Decimal Hexadecimal Decimal Hexadecimal

NUL 000 00 000 00

SOH 001 01 001 01

STX 002 02 002 02

ETX 003 03 003 03

EOT 004 04 055 37

ENQ 005 05 045 2D

ACK 006 06 046 2E

BEL 007 07 047 2F

BS 008 08 022 16

HT 009 09 005 05

LF 010 OA 037 25

VT 011 OB 011 OB

FF 012 oc 012 oc
CR 013 OD 013 OD

so 014 OE 014 OE

SI 015 OF 015 OF

DLE 016 10 016 10

DCl 017 11 017 11

Character Sets A-1

ASCII EBCDIC
Character Decimal Hexadecimal Decimal Hexadecimal

DC2 018 12 018 12

DC3 019 13 019 13

DC4 020 14 060 3C

NAK 021 lS 061 30

SYN 022 16 oso 32

ETB 023 17 038 26

CAN 024 18 024 18

EM 02S 19 02S 19

SUB 026 lA 063 3F

ESC 027 18 039 27

FS 028 lC 028 lC

GS 029 1D 029 1D

RS 030 1E 030 1E

us 031 lF 031 lF

space 032 20 064 40

033 21 079 4F
II 034 22 127 7F

03S 23 123 78

$ 036 24 091 58

% 037 2S 108 6C

& 038 26 080 so
039 27 12S 70

040 28 077 40

041 29 093 SD

* 042 2A 092 SC

+ 043 28 078 4E

044 2C 107 68

04S 20 096 60

046 2E 07S 40

A-2 Character Sets

ASCII EBCDIC
Character Decimal Hexadecimal Decimal Hexadecimal

I 047 2F 097 61

0 048 30 240 FO

1 049 31 241 Fl

2 050 32 242 F2

3 051 33 243 F3

4 052 34 244 F4

5 053 35 245 FS

6 054 36 246 F6

7 055 37 246 F7

8 056 38 248 FB

9 057 39 249 F9

058 3A 122 7A

059 3B 094 6E

< 060 3C 076 4C

061 3D 126 7E

> 062 3E 110 6E

? 063 3F lil 6F

@ 064 40 124 7C

A 065 41 193 Cl

B 066 42 194 C2

c 067 43 195 C3

D 068 44 196 C4

E 069 45 197 cs
F 070 46 198 C6

G 071 47 199 C7

H 072 48 200 CB

073 49 201 C9

074 4A 209 Dl

K 075 4B 210 D2

Character Sets A-3

ASCII EBCDIC
Character Decimal Hexadecimal Decimal Hexadecimal

L 076 4C 211 03

M 077 40 212 04

N 078 4E 213 DS

0 079 4F 214 06
p 080 so 21S 07

Q 081 Sl 216 08

R 082 S2 217 09

s 083 S3 226 E2

T 084 S4 227 E3

u 08S SS 228 E4

v 086 S6 229 ES

w 087 S7 230 E6

x 088 S8 231 E7
y 089 S9 232 EB

z 090 SA 233 E9

091 SB 074 4A

\ 092 SC 224 EO

] 093 SD 090 SA

094 SE 09S SF

09S SF 109 60

096 60 121 79

a 097 61 129 81

b 098 62 130 82

c 099 63 131 83

d 100 64 132 84

e 101 6S 133 8S

f 102 66 134 86

g 103 67 13S 87

h 104 68 136 88

A-4 Character Sets

ASCII EBCDIC
Character Decimal Hexadecimal Decimal Hexadecimal

105 69 137 89

106 6A 145 91

k 107 68 146 92

108 6C 147 93

m 109 6D 148 94

n 110 6E 149 95

0 111 6F 150 96

p 112 70 151 97

q 113 71 152 98

r 114 72 153 99

s 115 73 162 A2

116 74 163 A3

u 117 75 164 A4

v 118 76 165 AS

w 119 77 166 A6

x 120 78 167 A7

y 121 79 168 AB
z 122 7A 169 A9

123 78 192 co
124 7C 106 6A

125 7D 208 DO

126 7E 161 Al

DEL 127 7F 007 07

Character Sets · A-5

Appendix B

Differences Between VAX RPG II and
PDP-11 RPG II

This appendix describes the following:

• PDP-11 RPG II functionality that is not supported by VAX RPG II

• VAX RPG II functionality that is supported differently than
PDP-11 RPG II functionality

• Additional functionality that is supported only by VAX RPG II

This appendix does not list new features which have been added to
VAX RPG II Versions 2.0 and 2.1. See the online release notes for details
of the new features in Version 2.1.

VAX RPG II does not support the following PDP-11 RPG II functionality:

• Control specification (H)

Column 11 (listing options)-the equivalent functionality is
implemented using the /LIST qualifier to the DCL command RPG.

Column 15 (debug)-the DEBUG operation code is not supported.
Instead, use the VAX/VMS Debugger.
Column 25 (source listing)-a single page size for the listing is
supported.

• Extension specification (E)
Columns 11 through 18 (from file name)-PDP-11 RPG II al
lows the same table input file to be specified for more than one
preexecution-time table or array; VAX RPG II requires a different
file for each preexecutiorHime table or array.

Differences Between VAX RPG II and POP-11 RPG II B-1

• Calculation specification (C)

- Columns 28 through 32 (operation)-the DEBUG operation code
is not supported. ·

• Output specification (0)

- Column 39 (blank after)-specifying blank after for a constant
field is not supported.

• General
VAX RPG II uses PRN format files for printer output files. This
format requires that yqu use the /NOFEED qualifier with the
PRINT command when printing printer output files.
PDP-11 RPG II handles both zoned numeric and overpunched
decimal data formats for input. VAX RPG II supports only over
punched decimal data format.
All user-defined names must be unique for VAX RPG II.
VAX RPG II does not support the HO indicator. Errors detected by
VAX RPG II result in run-time errors.
VAX RPG II does not recognize LO as an indicator. Although
LO can be used as a control-level indicator in columns 7 and 8
of the Calculation specification, it cannot pe used in an Output
specification.

VAX RPG II supports the following functionality differently than
PDP-11 RPG II:

• File specification (F)
Column 15 (file type)-when 0 (output) is entered in column
15 and column 66 (file addition) does not contain A, VAX RPG
II always creates a new version of the file, even if the file is an
indexed or direct file. PDP-11 RPG II accesses an existing indexed
or direct file if the specified file is found.
Columns 40 through 46 (device code)-VAX RPG II uses the
device code to define the functions that can be performed on the
associated file. It does not refer to a specific device.
Columns 47 through 52 (symbolic device)-VAX RPG II uses the
symbolic device in conjunction with the file name specified in
columns 7 through 14 (file name) to associate the VAX RPG II file
name with the VAX/VMS file specification.

B-2 Differences Between VAX RPG II and PDP-11 RPG II

If you specify a symbolic device on the File Description specifi
cation and no VAX/VMS logical name translation exists for that
symbolic device, then VAX RPG II will have VAX RMS use the
symbolic device as the file name.

If a symbolic device consists of all blanks, then VAX RMS will
operate as if the symbolic device did not exist (for example, an
attempt will be made to translate the file name as a logical name).
The symbolic device may consist of any characters and will be
passed to VAX RMS when the file is opened.

The file name will be translated as a logical name if a symbolic
device is not supplied. The hierarchy by which the file name is
constructed by VAX RMS is as follows:

1. File name (symbolic device)

2. Default file name (VAX RPG II file name)

3. Related file name (DAT file type)

The related file name can be overridden by supplying a different
file type for the symbolic device.

Column 68 (share)-VAX RPG II requires you to specify Sor R to
open a file for shared access. PDP-11 RPG II requires you to use
the /MULTIUSER qualifier with RPGASN.

• Input specification (I)
Column 43 (data format)-when loading an execution-time array
from an Input specification that is in packed decimal or binary
format, VAX RPG II requires packed decimal (P) or binary (B) in
column 43 of the Input specification. PDP-11 RPG II requires
packed decimal (P) or binary (B) in column 43 on the Extension
specification.

• Calculation specification (C)

A READ operation code on a file that has not been opened
because it was conditioned by an external indicator that was off,
sets on the end-of-file indicator if one is specified. In this case,
PDP-11 RPG II does not set on the end-of-file indicator.

VAX RPG II MOVE and MOVEL semantics are not the same as
those of PDP-11 RPG II when the result field is numeric. The
differences are the following:

1. , VAX RPG II does not perform the "spurious sign" and "sign
ignored" cases of PDP-11 RPG II.

Differences Between VAX RPG II and PDP-11 RPG II 8-3

2. When the sending field is a character field, VAX RPG II
converts the characters in the sending field in the following
manner:

• All valid overpunched decimal characters are converted to
the sign and digit they represent.

• All other characters are converted to a positive zero (+O).
3. If a READ operation is done before a SETLL operation,

VAX RPG II reads the record with the lowest key. PDP-11
RPG II reads a record containing blanks in this case.

4. PDP-11 RPG II does not issue an error when the DSPLY
operation code is used with a field that is larger than the file
record length. VAX RPG II does issue an error message in this
case.

5. VAX RPG II will display (DSPLY operation code) the sign of a
negative numeric.

• Output specification (0)
Columns 17 and 18 (space after)-PDP-11 RPG II assumes a
single space after if the entries in columns 17 and 18 are left blank
or are zero. VAX RPG II assumes a single space after only if all
entries in columns 17 through 22 are left blank. An entry of zero
in columns 17 and 18 allows overprinting.

• General

AL TSEQ records-VAX RPG II uses hexadecimal representation to
specify the entries in AL TSEQ records. PDP-11 RPG II uses octal
representation.

Tables-For VAX RPG II, a reference to a table before the first
LOKUP operation will locate the first element in the table.
PDP-11 RP~H returns a blank.
VAX RPG II and PDP-11 RPG II support two-word (4-byte) binary
data. PDP-11 RPG II places the words in reverse order to what
is required by VAX architecture. PDP-11 RPG II data files that
include two-word (4-byte) binary data will require conversion to
be used by VAX RPG II.
VAX RPG II uses the logical name RPG$UDATE to specify UDATE
and uses the logical name RPG$EXT-1NDS to specify the settings
for external indicators.

PDP-11 RPG II treats blanks in a numeric field in overpunched
decimal format as zeros. VAX RPG II does the same when you
use the /CHECK=BLANKS-1N _NUMERICS qualifier with the
RPG command.

B-4 Differences Between VAX RPG II and PDP-11 RPG II

VAX architecture reports a reserved operand fault when irtvalid
data is found in a numeric field. For VAX RPG II, this causes a
run-time error. PDP-11 RPG II processes invalid numeric data
without halting program execution.

PDP-11 RPG II's run-time system changes the name of the process
to the program name while the program is running. VAX RPG II
does not do this.

When compiling with RPG [FOO]TEST.RPG, PDP-11 RPG II
places the OBJ, LST, CMD, and ODL files in the [FOO] directory,
no matter what the current default directory is.

VAX RPG II places the OBJ and LIS files into the default directory
in a manner similar to.other VAX languages. This VAX RPG II
operation is similar to the following P,PP-11 command lines:

$ MCR PDPRPG
RPG>TEST=[FOO]TEST.RPG
RPG>CTRL/Z

The preceding commands cause PDP-11 RPG II to place the files
in the current default directory.

Use the following command to simulate the PDP-11 RPG II
operation:

$ RPG [FOO]TEST/LIS/OBJ

/NOLIST is the default for invoking the VAX RPG II compiler
interactively. PDP-11 RPG II produces a listing file by default.

Note that RPGDMP is not provided with VAX RPG II. A similar func
tionality is provided with the VAX/VMS Dump and Sort/Merge Utilities
(DUMP and SORT/MERGE). See the VAX/VMS DCL Dictionary for infor
mation on DUMP and SORT /MERGE. See the VAX/VMS Utility Reference
Manual for information on the three SORT qualifiers, /CONDITION,
/FIELD, and /INCLUDE.

VAX RPG II supports the following additional functionality:

• Control specification (H)
A Control specification (H) is not required.

Column 18 (currency symbol)-you can specify the character to
represent the currency symbol.

Differences Between VAX RPG II and PDP-11 RPG II B-5

Column 21 (inverted print)-an entry of I, D, or J switches the
function of decimal point and comma notation in numeric literals
and edited formats, and changes the format of UDATE to day,
month, and year (ddmmyy).

• File specification (F)
Columns 7 through 14 (file name)-file names can be up to eight
characters long.
Column 16 (file designation)-VAX RPG II does not require a
primary file.
Column 19 (file format)-you can specify V to indicate that the
file contains variable-length records.
Columns 24 through 27 (record length)-VAX RPG II allows all
files, with the exception of display files, to have a record length of
up to 9999 characters.

• Extension specification (E)
The definition of compile-time tables and arrays can be mixed
with the definition of execution-time and preexecution-time tables
and arrays.

• Input specification (I)
Columns 15 and 16 (sequence)-you can specify input records
with an alphabetic sequence before or after inputi records with a
numeric sequence.

Columns 19 and 20 (record-identifying indicator)-you do not
have to specify look-ahead fields as the last record in a file.

• Calculation specification (C)

Columns 28 through 32 (operation)-the following operations
have been added to allow VAX RPG II programs to call subpro
grams written in other languages and routines in the VAX/VMS
Run-Time Library and system services:

1. CALL-calls a subprogram with optional parameters

2. PARM-passes a parameter by reference

3. P ARMD-passes a parameter by descriptor
4. P ARMV-passes a parameter by value

5. GIVNG-retums the status of a subprogram

6. EXTRN-equates a VAX RPG II name with an external link
time constant

7. PUST-defines a parameter list

B-6 Differences Between VAX RPG II and PDP-11 RPG II

Columns 28 through 32 (operation)-VAX RPG II allows factor
2 and the result field to reference the same array on a MOVEA
operation.
Columns 49 through 52 (field definition)-you do not have to
define fields before they are used, if they are defined within the
program.

• Output specification (0)

Columns 16 through 18 (ADD/DEL)-you can specify the DEL
option to identify the record to be deleted. You can delete records
from indexed or direct files.
Columns 45 through 70 (edit word)-the number of replaceable
characters in the edit word can be greater than or equal to the
number of digits in the numeric field.

• General
The stririg containing double slashes (/ /) and a blank and the
string containing a double asterisk (**) and a blank are accepted
as delimiters between specifications and any AL TSEQ records, and
between compile-time tables and arrays.

The special words, •IN and •INxx, can be used to reference
indicators as one-position character fields.

A user-defined name can contain a pound sign (#), an underscore
(-), a dollar sign ($), and an at sign (@).

A character field can have a length of up to 9999 characters.

The VAX RPG II editor does not support the following PDP-11 RPG II
features:

•
•
•
•

•
•

Editing of SORT-11 specifications
VT05 or VT52 terminals

Harp-copy terminals

The following qualifiers:

/ID ENT
/PAGE and /NOP AGE

/SAVE and /NOSAVE
/TERMINAL

CTRL/D
SET SKIP command

Differences Between VAX RPG II and PDP-11 RPG II B-7

• Automatically advancing the cursor to the next tab stop if the current
field is full

• Displaying a tab stop as data from an input file as the TAB character

• Renaming the input file with a BAK file type

8-8 Differences Between VAX RPG II and PDP-11 RPG II

Appendix C

VAX Performance Coverage Analyzer
Applied to a VAX RPG II Program

The following command procedure produces execution information by
source line. (Note that for purposes of illustration, unimportant informa
tion on the accompanying listing is truncated on the right side.)

$ rpg/debug/nolist ships
$ link/debug=sys$library:pca$obj.obj/nomap ships
$run ships
set datafile ships
set counters program_address by line
go
$pea ships
tabulate/counters/source module ships by line
file pea.lie
exit
$type pca.lis

VAX Performance and Coverage Analyzer
Exact Execution Counts (164 data points total)

Percent
SHIPS\

Count Line

1: B•++
2: B• FUNCTIONAL DESCRIPTION:

Page 1

3: B• This program produces a report of shipments f
4: B• products broken down by division and departme
6: B• input file with the shipment data for the pas
6: B•--
7: B

0.6% 1 8: FSBIPS IP F 41 DISK
0.6% 1 9: FSUMREP 0 F 98 LPRINTER

10: E QTY 4 2 0
11: LSUMREP 66FL 600L

VAX Performance Coverage Analyzer Appli~d to a VAX RPG II Program C-1

i.2.2X 20 i2: I SHIPS AA Oi
i3: I i 6 DIV
i4: I 6 7 DEPT
i6: I 8 i6 PROD
i6: I i.7 24 QTY
i7: C•

24.4); 40 i8: c Oi XFOOTQTY PRO QTY 30
24.4); 40 i9: c 01 PRO QTY ADD DEPQTY DEPQTY 30

20: C• (Li break on DEPT I L2 breal,t on DIV)
4.3); 7 2i: CLi DEPQTY ADD DIVQTY DIVQTY 30
4.3); 7 22: CLi Z-ADDO DEPQTY
2.4% 4 23: CL2 DIVQTY ADD FINQTY FIN QTY 40

24: C•
0.6); 1 26: OSUMREP H OOi 1P

26: 0 48 'PRODUCT SHI
0.6); i 27: 0 H 02 f p

28: 0 UDATE Y i2
29: 0 48 'PRODUCT SHI

o.6x i 30: 0 H i iP
3i: 0 42 'SHIPMENTS'

0.6% i 32: 0 H 2 iP
33: 0 i6 'DIVISION D
34: 0 24 'PRODUCT'
36: 0 48 'Qi Q2 Q3

i2.2X 20 36: 0 D i Oi
37: 0 L2 DIV 8
38: 0 Li DEPT i4
39: 0 PROD 26
40: 0 QTY z 4i
41: 0 PROQTYZ 48

4.3% 7 42: 0 T 1 Li
2.4% 4 43: 0 T 0 L2

44: 0 DIV 69
2.4% 4 46: 0 T 0 L2

46: 0 DIV 69
2.4% 4 47: 0 T 02 L2

48: 0 DIVQTYZB 48
49: 0 63 '<•• Total f
60: 0 DIV 69

0;6% 1 61: 0 T 0 LR
62: 0 FINQTY1 48
63: 0 66 '<•• GRAND T

C-2 VAX Performance Coverage Analyzer Applied to a VAX RPG II Program

•FMSSTA • 6-18
•FMSTER • 6-18
•operation code • 6-17
•RECORD• 6-18
•ST A TUS • 6-17

A
Access mechanism• 12-25
Adding records• 8-27 to 8-31
Additional 1/0 area• 15-36

rules for specifying• 15-36
Addition operation • 16-3
ADD operation code • 16-3

example • 16-5
ADD option • 15-118

example• 15-118
rules for specifying • 15-118

ADDROUT files
creating • 8-1 7
example•8-18, 8-19, 8-21
rules for specifying• 8-19 to 8-20
specifying

key length • 15-34
ADVANCE function• 2-25
Alternate array• 15-59
Alternate collating sequence • 15-15, 15-16

specifying
example • 15-17

Alternate format
arrays • 11-10

compile-time• 11-10
example • 11-11

INDEX

Alternate format
arrays (cont'd.)

preexecution-time • 11-10
related• 11-10

Alternate table • 15-59
AND• 15-77, 15-114

example• 15-78
Output specification

example• 15-115
rules for specifying• 15-78, 15-114

Appended list • 3-4
Append list • 15-7
Arguments

optional• 12-17
Arithmetic operation codes• 16-1

ADD• 16-3
Blank factor 1 • 16-3

DIV• 16-4
blank factor 1 • 16-4

example • 16-5
MULT• 16-3

blank factor 1 • 16-3
MVR• 16-4
rules• 16-1

signs• 16-2
SORT• 16-:4
SUB• 16-3

blank factor 1 • 16-3
XFOOT• 16-5
Z-ADD• 16-3
Z-SUB• 16-3

Array elements
outputting • 11-24
referencing • 11-17
searching • 11-19

lndex-1

Array elements (cont'd.)

XFOOT operation code • 11-17
Arrays• 11-1

addition operation • 16-5
alternate format• 11-10, 15-59
IN,n indicators• 7-22
IN indicators• 7-22
compile-time• 11-2

example • 11-3
creating • 11-4

array input records• 11-4
definition • 11-1
execution-time• 11-4
in calculations • 11-12

example • 11-14
input records

example • 11-5
loading time

selecting • 11-1
LOKUP operation code • 11-17, 16-30

example • 11-19
MOVEA operation code• 11-21

example• 11-22
moving data• 11-21, 16-7

example. 11-22
names • 14-8 ·
outputting

array elements• 11-24
example• 11-24

entire arrays• 11-23
preexecution-time • 11-4
referencing • 11-12

array elements• 11-12
example• 11-17

entire arrays• 11-12
related • 11-5
resulting indicators• 11-18
searching • 11-17, 16-30

example• 11-18, 16-31
searching for elements• 11-19
specifying• 11-6, 15-22

alternate format• 15-59
data format • 15-56
decimal positions • 15-5 7
elements • 11-14

2-lndex

from file name • 15-51
length of entry• 15-55
names• 15-53

Arrays
specifying (cont'd.)

number of entries per record • 15-54
number of entries per table or array •

15-55
sequence • 15-58
to file name • 15-52

transferring data • 16-7
types

compile-time• 11-2
execution-time• 11-4
preexecution-time • 11-4

updating• 11-22
example• 11-23

using• 11-1
writing

array elements• 11-24
example• 11-24

entire arrays• 11-23
XFOOT operation code• 16-5

example• 11-16 ·
ASCII character set • A-1
Asterisk indicator (*) • 13-3
Asterisk protection • 15-140
Automatic overflow• 9-15

B
BACKUP function• 2-25
BEGSR operation code• 16-12

example • 16-13
rules • 16-12

IN,n indicators• 7-22
example• 7-22
function • 7-22
specifying array elements• 7-22

IN indicators• 7-22
example• 7-22
function • 7-22
specifying arrays• 7-22

INxx indicators• 7-23
example• 7-23
function• 7-23
representing indicators• 7-23

Binary data types
longword • 14-4
specifying • 15-56

Binary data types (cont'd.)

word• 14-3
BITOF operation code• 16-14

example• 16-15
rules• 16-14

BITON operation code • 16-13
example • 16-15
rules • 16-14

Bit operation codes • 16-13
BITOF• 16-14
BITON• 16-13
example • 16-15
TESTB• 16-14

Bits
setting off• 16-14
setting on • 16-13
testing • 16-14

Blank after• 15-131
example • 15-132
rules for specifying• 15-131

Blank factor 1
example• 16-5

Block length• 15-26
rules for specifying• 15-27

BOTTOM function• 2-25
Branching operation codes• 16-25

example• 16-27
GOT0• 16-25
TAG• 16-26

BS_KEY • 2-34, 2-68
Buffers• 2-11

c
Calculations

arrays• 11-12
documenting • 15-112
operations

addition • 16-3
division • 16-4
multiplication • 16-3
square root • 16-4
subtraction • 16-3

referencing
array elements • 11-12
entire arrays • 11-12

result field • 15-107

Calculations (cont'd.)

rounding data • 15-109
saving the remainder• 16-4
specifying

decimal positions • 15-109
factor 1 • 15-104
factor 2 • 15-104
field length • 1 5-108
operation codes • 15-107
resulting indicators • 15-110

totaling data • 7-17
using indicators• 15-101

control'-level • 7-9
resulting • 7-6

Calculation specification • 15-98
comments • 15-112
control-level indicators • 15-99
decimal positions • 15-109
factor 1 • 15-104
factor 2 • 15-104
field length • 15-108
format• 15-98
half adjust • 15-109
Indicators • 15-101
long character literal• 15-104
operation codes• 15-107, 16-1
result field • 15-107
resulting indicators • 15-110
type• 15-99

Calculation specifications
WORKSTN • 6-5

Calling
subprograms• 12-32
system services• 12-28
VAX/VMS Run-Time Library procedures •

16-32
Call interface• 12-1

subprograms• 12-32
system services• 12-28

CALL operation code• 16-32
example• 16-36
rules • 16-32

Card reader device
specifying • 15-38

Chained files
input

selecting mode of processing • 15-33
logic cycle • 1-20

lndex-3

Chained files
logic cycle (cont'd.)

flowchart• 1-20
update

selecting mode of processing • 15-33
CHAIN operation code• 16-17

example • 16-19
indicator for locked record • 16-17
reading records• 16-17
rules• 16-17

Character
see record identification codes

Character data type
example• 14-2, 14-3

CHARACTER function• 2-31
Character sets

ASCII• A-1
decimal • A-1
EBCDIC•A-1
hexadecimal• A-1

CHECK qualifier• 3-6
checking

array boundaries • 3-6
blanks in numeric fields • 3-6
recursive calls to subroutines • 3-6

format• 3-6
options • 3-6

BLANKS_IN_NUMERICS • 3-6
BOUNDS•3-6
RECURSION • 3-6

Codes, device
specifying

WORKSTN • 15-38
Collating sequences• 15-16

alternate• 15-15
ASCII• 15-15
EBCDIC• 15-15
specifying

example • 15-17
COLUMN function• 2-32
80-column ruler• 2-6

definition • 2-9
COMMAND function• 2-22

example• 2-82
Command keys• 6-10, 6-11

selective enabling • 6-13
user-defined • 6-12

4-lndex

Command line

conditions• 2-36
COMMAND option• 2-50
COMMAND qualifier• 2-3
Commands

DCL• 3-1
debugger • 5-4
VAX RPG II editor• 2-36
RUN•3-12

Comments• 15-5, 15-112
rules for specifying • 15-5

Compare operation codes
COMP• 16-16

Compiler directives• 15-5
COPY• 15-6
COPY _CDD • 15-7

Compiler error messages • 3-12
format • 3-12
IDENT field • 3-13
interpreting • 3-12

Compiler ,listing • 4-1
command qualifiers• 4-8
copy directive • 4-8
cross-reference information

CROSS-REFERENCE qualifier• 4-8
indicators • 4-8
user-defined names• 4-8

example• 4-8
identification • 4-8
interpreting • 4-1
machine-generated code• 4-8

MACHINE_CODE qualifier• 4-8
PSECTs•4-8
source code • 4-8
statistical information • 4-8

Compiler options
default • 3-3
example• 3-3

Compile-time arrays• 11-2
advantages• 11-2
creating • 11-5, 11-7

example• 11-7
rules for specifying • 11-5

example• 11-3
outputting • 11-23
updating • 11-22
writing • 11-23

Compile-time tables• 10-2

Compile-time tables (cont'd.)
advantage• 10-2
example• 10-2
input records

creating • 10-3
rules for specifying • 10-3

outputting • 10-13
rules for defining • 10-7
searching

example • 10-11
writing • 10-13

Compiling programs• 3-1
example• 3-2
generating an object module• 3-2
specifying more than one program• 3-2

COMP operation code• 16-16
example • 16-17
rules • 16-16

Condition values
returned• 12-20
signaled• 12-20

Constants• 15-137
rules for specifying• 15-138

Control breaks
identifying • 7-9
split-control fields • 7-12

Control-level indicators• 7-9, 15-90, 15-99
conditioning data • 15-90
control breaks • 7-9
example•7-9, 15-91, 15-101
function• 7-9
hierarchy • 7-9
identifying control breaks • 7-9
rules for specifying • 15-90
signaling changes in control fields • 7-9
split-control fields• 7-12

Control specification • 15-13
alternate collating sequence • 15-15
currency symbol • 15-14
example• 15-18
format• 15-13
forms library name • 15-18
forms position • 15-17
inverted print • 15-14
type• 15-13

Conversion
from S and D specifications• 6-25
manual conversion • 6-30

Conversion (cont'd.)

multiple input constants• 6-32
output/no input fields• 6-32
utility program conversion • 6-26
VAX RPG II indicators• 6-31

Conversion utility
overview• 6-26

COPY _CDD qualifier• 15-7
COPY qualifier • 15-6
Core index • 15-41

rules for specifying • 15-4 1
CREA TE qualifier• 2-4
Creating files

buffers • 8-49
CROSS_REFERENCE qualifier• 3-7

cross referencing
indicators • 3-7
user-defined fields • 3-7

format•3-7
generating cross-reference information • 4-8

C specification
INFDS•6-16

CTRL-2.-'<EY
example• 2-76

Currency symbol • 1 5-14
rules for specifying • 15-14

Current workspace • 6-9
Cursor• 2-10
CUT function • 2-26

example• 2-85
CZD portion

See record identification codes

D
Data

comparing contents • 16-16
displaying • 16-19
moving • 16-6
moving from the left • 16-8
repeating • 9-9
transferring • 16-6

Data formats
binary • 15-56
Extension specification• 15-56
Input specification • 15-79
Output specification • 15-134

lndex-5

Data formats
Output specification (cont'd.)

example • 15-135
overpunched decimal • 15-56
packed decimal • 15-56

Data structure • 15-65
Data structures• 15-67

examples of using• 15-83, 15-84, 15-85,
15-86

local data area• 15-70
examples • 15-88

updating files• 8-31
Data structure subfield • 15-68
Data types• 14-2

binary • 14-3
character• 14-2
overpunched decimal • 14-5
packed decimal • 14-4
specifying • 15-56

Date
formatting • 9-4
printing• 9-4

DCL commands
RPG•3-1

DCL RPG command • 3-1
default compiler options• 3-2
qualifiers• 3-5

example• 3-4
Debugger commands

CANCEL BREAK• 5-7
CANCEL TRACE• 5-9
CANCEL WATCH•5-10
CTRL/Y • 5-14
DEPOSIT • 5-17
EDIT• 5-14
EVALUATE • 5-18
EXAMINE • 5-15
EXIT• 5-15
GO• 5-12
SET• 5-8

stepping through a TAG• 5-8
stepping through subroutines • 5-8

SET BREAK• 5-7
SET LANGUAGE• 5-5
SET STEP• 5-12
SET TRACE• 5-9
SET WATCH• 5-10
SHOW BREAK• 5-7

6-lndex

Debugger commands (cont'd.)

SHOW CALLS• 5-11
SHOW LANGUAGE• 5-5
SHOW TRACE• 5-9
SHOW WATCH•5-10
STEP• 5-12

qualifiers
INTO• 5-13
LINE• 5-13
OVER• 5-12
SOURCE• 5-13
SYSTEM• 5-12

TYPE• 5-13
Debugging VAX RPG II programs• 5-1

debugger commands
table•5-4

•DETC logic cycle label • 5-6
•DETL logic cycle label • 5-6
displaying source code • 5-13
edit the file you are debugging • 5-14
evaluating expressions • 5-18
examining

array elements • 5-7
contents of

array elements • 5-15 to 5-16
1/0 buffers• 5-15 to 5-16
table entries • 5-15 to 5-16
variables • 5-15 to 5-16

data• 5-7
locations • 5-15
table entries • 5-7

executing program lines • 5-12
•GETIN logic cycle label• 5-6
leaving the debugger• 5-15
modifying

array elements • 5-7, 5-17
data• 5-7
locations • 5-15
table entries • 5-7
variables • 5-17

•OFL logic cycle label • 5-6
referencing

array elements • 5-7
data• 5-7
line numbers • 5-3
logic cycle labels • 5-6
table entries • 5-7

resuming program execution • 5-12

Debugging VAX RPG II programs (cont'd.)
returning to system command level • 5-14
setting

breakpoints• 5-7
indicators • 5-17
tracepoints• 5-9
watchpoints• 5-10

subprograms• 5-11
suspending program execution • 5-9
table entries • 5-15 to 5-16
•TOTC logic cycle label• 5-6
•TOTL logic cycle label• 5-6
tracing calls • 5-10

DEBUG qualifier• 3-7, 5-1
format•3-7
options • 3-7

SYMBOLS • 3-8
TRACEBACK• 3-8

providing
an address correlation table • 3-8
information for the VAX/VMS Debugger•

3-7
local symbol definitions • 3-8

DEBUG qualifiers
ALL• 5-2
NONE• 5-2
SYMBOLS • 5-2
TRACEBACK• 5-2

Decimal character set• A-1
Decimal positions • 15-5 7, 15-81, 15-109

rules for specifying • 15-5 7, 15-81, 15-109
Default compiler options• 3-2
DEFAULT option• 2-51
DELETE_CHARACTER function• 2-34
DELETE_FIELD function• 2-24
DELETE_LINE fun·ction • 2-21
DELETE_ TO_BEGINNING_OF _LINE function• 2-35

example• 2-30
Deleted-field buffer• 2-11
Deleted-line buffer• 2-11
DEL option • 15-118

example • 15-119
rules for specifying • 15-118

Demand files
logic cycle• 1-20

flowchart• 1-20
READ operation code• 16-23
selecting mode of processing• 15-29

DEPOSIT • 5-17
Detail time

processing individual records • 1-9
Detail-time • 1-5
Developing programs

creating
example• 2-62 to 2-63

generating a listing file• 4-1
Device codes• 15-38

rules for specifying• 15-39
specifying

card reader • 15-38
disk• 15-38
magnetic tape • 15-38
printer• 15-38
terminal • 15-38
WORKSTN • 15-38

Direct file organization• 8-4
example • 8-4

Direct files
adding records• 8-29

example• 8-29, 8-30
rules for specifying• 8-29

creating • 8-25
example• 8-25
rules for specifying • 8-25

updating records
rules for specifying • 8-33

Directives, compiler• 15-5
COPY• 15-6
COPY _CDD • 15-7

Disk device
specifying • 15-38

DISPLAY function• 2-23
example• 2-73

Division operation • 16-4
saving the remainder • 16-4

DIV operation code• 16-4
example• 16-5

DOWN function• 2-33
D specification• 6-25, 6-29
DSPL Y operation code • 16-19

displaying data • 16-20
example• 16-20
rules • 16-20

Duplicate field names• 6-31

lndex-7

E
EBCDIC character set• A-1
Edit code modifiers • 15-135

example• 15-137
rules for specifying • 15-136

Edit code modifiers
asterisk fill• 9-2
floating dollar sign• 9-2

Edit codes • 15-128
combined• 9-2
constants

example• 9-3
rules for specifying • 9-3

example • 15-130
modifiers• 9-2
printer output files• 9-2
rules for specifying• 15-129
simple•9-2
specifying

notation • 15-14
Editing buffer• 2-11
Editing window• 2-6
Editor

SeeVAX RPG II
Edit words• 15-138

body• 15-138
example • 15-140
expansion • 15-139
rules for specifying • 15-143
sign status • 15-138
specifying

asterisk protection• 15-140
blank spaces• 15-140
commas• 15-141
CR• 15-143
currency symbol • 15-140
decimal points • 15-14 1
negative signs • 15-143
zero-suppression • 15-139

END_OF _LINE function• 2-29
example• 2-29

End-of-file• 15-24
rules for specifying• 15-24

End position• 15-132
example• 15-133
rules for specifying • 15-133

8-lndex

ENDSR operation code • 16-12
example • 16-13
rules • 16-12

ENTER function• 2-32
ENTER key

example• 2-78
EOB mark• 2-9
Error messages

compiler • 3-12
IDENT field values• 3-13

Errors
DUPFLDNAM • 6-31
handling• 7-19

halt indicators • 7-19
EVALUATE • 5-18
EXAMINE • 5-15
EXCPT

names• 14-8
EXCPT name• 15-127
EXCPT operation code • 16-21

writing records during calculations• 16-21
Execution-time arrays • 11-4

creating• 11-4, 11-9
example• 11-9
rules for specifying • 11-4

loading
example• 11-10, 11-15

outputting• 11-23
example• 11-24

specifying
array elements

example • 11-15
entire arrays

example • 11-15, 11-16
writing • 11-23

example• 11-24
EXIT function• 2-35
Expansion factor • 15-43

improving search efficiency• 15-43
preventing bucket splitting • 15-43
table • 15-44

EXSR operation code • 16-12
example • 16-13
rules • 16-12

Extension code• 15-37
Extension specification

comments• 15-59
data format • 15-56

Extension specification (cont'd.)
decimal positions• 15-57
defining

arrays • 15-50
record-address files • 15-50
tables • 15-50

example • 15-59
format • 15-51
from file name • 15-51
length of entry• 15-55
name of record-address file • 15-51
name of table input file• 15-51
number of entries per record• 15-54
number of entries per table or array• 15-55
sequence• 15-58
table or array name• 15-53
to file name• 15-52
type• 15-51

External indicators• 7-18
controlling the opening of files• 7-18
example• 7-18, 12-30
function • 7-18
setting• 7-18
specifying • 7-18

EXTRN operation code• 16-32
accessing

F

link-time constants• 16-32
VAX/VMS Run-Time Library status codes

• 16-33
example• 16-36
rules• 16-32

Factor 1•15-104
Factor 2 • 15-104
Fetch overflow • 9-12, 15-119

example• 9-13, 15-120
rules for specifying • 9-13, 15-119

FIELD_BACKW ARD function• 2-34
example• 2-68

FIELD_FQRW ARD function• 2-35
FIELD function• 2-28

example• 2-28
Field indicators • 7-4

checking the condition of data fields• 15-97
conditioning input data• 15-97

Field indicators (cont'd.)

example• 7-5
function • 7-4
rules for specifying• 15-97

Field length • 15-108
rules for specifying• 15-108

Field locations • 15-80
rules for specifying• 15-80

Field name • 15-81, 15-126
Input specification • 15-81

example • 15-82
rules for specifying • 15-81

Output specification • 15-126
example• 15-127
rules for specifying • 15-126

Field names • 14-8
Field-record-relation indicators • 15-94

conditioning input data • 15-94
controlling data extraction • 15-94
example• 15-96
rules for specifying• 15-95
using matching fields• 8-38

example• 8-38, 8-39
Fields

common • 15-4
defining locations • 15-80 .
indicators • 7-4
input

specifying
decimal positions • 15-81

look-ahead• 15-73
matching• 8-35, 15-92

checking sequence • 15-24
naming• 15-81
repeating • 9-9
specifying

data format• 15-79
IN• 15-81
IN,xx • 15-81
length • 15-1 08
PAGE special word • 15-81

split-control • 7-12
testing values• 7-4
that require

blanks• 15-2
character values• 15-2
numeric values• 15-3

using indicators to compare contents • 15-90

lndex-9

File access methods• 8-6
random • 8-14
sequential • 8-8
sequential by key • 8-9
sequential within limits• 8-10
table• 8-7

File addition• 15-42
rules for specifying • 15-43

File buffers • 8-49
File condition • 15-4 7
File Description specification • 15-19

additional 1/0 area• 15-36
block length • 15-26
core index • 1 5-4 1
device code • 15-38
end-of-file • 15-24
example• 15-48
expansion factor• 15-43
extension code • 15-37
file addition • 15-42
file condition• 15-4 7
file designation• 15-22
file format• 15-25
file name• 15-20
file organization • 15-36
file sharing• 15-45
file type• 15-21
format• 15-20
F spec continuation lines• 15-40
key length • 1 5-34
key location • 15-3 7
mode of processing• 15-28
overflow indicators• 15-36
record address type• 15-35
record length• 15-28
sequence• 15-24
symbolic device• 15-39
tape label • 15-40
tape rewind • 15-4 7
type• 15-20
unordered output• 15-42

File designations• 15-22
array• 15:-22
chained• 15-22
demand • 15-22
full-procedural• 15-22
primary• 15-22
record-address• 15-22

10-lndex

File designations (cont'd.)

secondary• 15-22
table• 15-22

File format • 15-25
rules for specifying• 15-25

File names • 14-8
File Description specification• 15-20

rules for specifying • 15-21
Input specification • 15-66

rules for specifying • 15-66
Line Counter specification • 15-62

rules for specifying • 15-62
Output specification • 15-114

rules for specifying • 15-114
rules for specifying • 8-2

File organizations • 15-36
direct• 8-4
indexed • 8-5
sequential • 8-4

Files
adding records• 8-27
ADDROUT • 8-17

specifying
key length • 15-34

CHAIN operation code• 16-17
changing processing order• 16-22
characteristics• 8-1
compiler listing • 4-1
conditioning with an external indicator• 15-4 7
creating• 8-24

ADDROUT • 8-18
direct• 8-25
indexed• 8-26
output• 9-1
printer output• 9-1
record-limits• 8-10
sequential • 8-24

definition • 8-1
deleting records • 8-34
DSPL Y operation code • 16-19
EXCPT operation code• 16-21
external indicators • 7-18
file access methods • 8-6
file names• 8-2
file types • 8-3
FORCE operation code• 16-22
full-procedural • 8-21

example. 8:..23

Files (cont'd.)

improving search efficiency • 1 5-43
indexed

specifying
key length • 15-34

input
specifying

file addition • 15-42
unordered output• 15-42

input/output operation codes• 16-17
matching-record indicators • 7-18
multifile processing • 8-40
organization• 8-3
output• 9-1

controlling overflow • 15-36
using overflow indicators• 15-36

performance optimizing• 15-26
preventing bucket splitting • 15-43
primary WORKSTN • 6-6
printer output• 9-1

controlling overflow• 15-36
using overflow indicators• 15-36

processing using matching fields• 15-92
random access • 8-14
random access by key • 8-16
reading record during calculations• 16-17
READ operation code• 16-23
record formats • 8-3
record-limits • 8-10

specifyihg
key length • 15-34

sequential access• 8-8, 8-21
sequential by key access• 8-9
sequential within limits access • 8-10
SETLL operatio'n code• 16-24
specifications • 6-4
specifying

chained• 15-22
demand• 15-22
display• 15-21
full-procedural• 15-22
input• 15-21
mode of processing• 15-28
output• 15-21
primary• 15-22
record-address• 15-22
secondary• 15-22
update• 15-21

Files (cont'd.)

update
specifying

file addition • 15-42
unordered output• 15-42

updating records • 8-31
WORKSTN • 6-3

File sharing • 15-45
rules for specifying • 15-45

File types• 15-21
display• 15-21
input• 8-3, 15-21
output• 8-3, 15-21
update• 8-3, 15-21

FIND_NEXT function• 2-20
example• 2-80

FIND function• 2-20
example• 2-78

First cycle • 1-6
First-page indicators • 7-15, 9-11

conditioning output data • 7-15
example• 7-16
function • 7-15
specifying • 7-15

FL• 15-63
FMS • 12-33, 12-36
FMTS

name•6-4
FORCE operation code• 16-22

changing file processing order• 16-22
example• 16-23
rules• 16-22
selecting files• 16-22

Form• 15-132
creation• 6-2
libraries• 6-3
modification• 6-2
terminators • 6-11

Form length • 15-62
FL• 15-63
rules for specifying • 15-62

Form names• 15-137
Forms alignment

changing • 15-17
Forms library name • 15-18
Forms position • 15-1 7
From file name

arrays • 15-5 1

lndex-11

From file name (cont'd.)
record-address files• 15-51
rules for specifying • 15-52
tables • 15-51

F specification
INFOS clause • 6-15

Function calls
for system routines• 12-17

Function keys • 6-10
defining a UAR• 6-13
form terminators• 6-11

Functions• 2-12
ADVANCE• 2-25
BACKUP• 2-25
BOTTOM• 2-25
CHARACTER• 2-31
COLUMN• 2-32
COMMAND• 2-22
CUT• 2-26
DELETE_CHARACTER • 2-34
DELETE_FIELD • 2-24
DELETE_LINE • 2-21
DELETE_ TQ_BEGINNING_OF _LINE• 2-35
DELETE_ TQ_END_OF _LINE• 2-30
DISPLAY• 2-23
displaying specification formats• 2-17
DOWN•2-33
END_OF _LINE• 2-29
ENTER• 2-32
executing editor commands• 2-22
EXIT•2-35
FIELD• 2-28
FIELD_BACKWARD • 2-34
FIELD_FORW ARD• 2-35
FIND• 2-20

specifying the search string• 2-20
FIND_NEXT • 2-20
finding the next occurrence of the search

string• 2-20
GOLD• 2-15
HELP _KEYPAD• 2-15
HELP _SPECIFICATIONS• 2-17
LEFT• 2-34
LINE• 2-32
MOVE_ TO_RULER • 2-24
NEW_LINE • 2-34
OPEN_LINE • 2-32
PAGE• 2-21

12-lndex

Functions (cont'd.)

G

paging through the source file• 2-21
PASTE•2-26
REFRESH_SCREEN • 2-35
RESET•2-33
REVIEW_ERROR • 2-23
RIGHT•2-34
SECTION• 2-23
SELECT• 2-33
selecting alternate functions• 2-15
SHIFLLEFT • 2-26
SHIFLRIGHT • 2-27
table• 2-12
TOP•2-25
UNDELETE_FIELD • 2-24
UNDELETE_LINE • 2-21
UP• 2-33
VAX RPG II editor•2-12

General logic cycle• 1-5
GIVNG operation code• 16-33

retrieving VAX/VMS Run-Time Library return
status• 16-33

rules • 16-33
GOLD function• 2-15
GOTO operation code• 16-25

example• 16-27
rules• 16-26

H
Half adjust • 15-109

rules for specifying • 15-110
using resulting indicators• 16-32

Halt indicators • 7-19
controlling program execution • 7-19
example• 7-19, 7-20
function • 7-19
handling errors• 7-19

HELP _KEYPAD function• 2-15
displaying HELP information on key functions•

2-17
example• 2-16

HELP _SPECIFICATIONS function• 2-17
displaying specification formats

example• 2-18
HELP _SPECS function

example• 2-66
HELP option• 2-51
HELP window• 2-6

definition• 2-7
displaying HELP information• 2-7

Hexadecimal character set• A-1
H specification • 6-4

I
1/0 areas

specifying
additional areas• 15-36

IDENT field
values• 3-13

Indexed file organization • 8-5
example • 8-5
index key• 8-5

example• 8-6
Indexed files

adding records • 8-31
example • 8-31
rules for specifying • 8-31

creating • 8-26
example• 8-27
rules for specifying• 8-26

specifying
addition of records • 15-42
Key length • 15-34
Key location• 15-37

updating records
rules for specifying • 8-33

Indicators • 7-1
IN• 7-22
IN,n• 7-22
INxx• 7-23
Calculation specification • 15~ 1O1

example • 15-104
conditioning

calculations • 15-101
output • 15-123

control-level • 7-9, 15-90, 15-99
external • 7-18

Indicators (cont'd.)
field• 7-4, 15-97
field-record-relation • 15-94
first-page• 7-15, 9-11
function • 7-1
halt•7-19, 7-20
internally defined • 7-15
K • 6-11
last-record • 7-1 7
matching-record • 7-18
negating • 15-101
Output specification

example• 15-126
rules for specifying • 15-124

overflow• 7-12, 9-11, 15-36
1 p • 7 -1 5 t 9-11
printer output files• 9-11
read only• 16-34
record-identifying • 7-2, 15-7 2
resulting•7-6, 15-110
setting off• 16-11
setting on • 16-10
usage• 7-1
user-defined• 7-1
using as fields• 7-22
write only • 16-34

INFOS
•FMSST A • 6-18
•FMSTER • 6-18
•OPCODE • 6-17
•RECORD• 6-18
•ST A TUS • 6-17
WORKSTN file operations• 6-15

Input/output operation codes• 16-17
CHAIN• 16-17
DSPL Y • 16-19
EXCPT • 16-21
FORCE • 16-22
READ• 16-23
SETLL • 16-24

Input files
selecting mode of processing • 15-29
specifying

file addition • 15-42
unordered output • 15-42

Input specification • 15-65
AND• 15-77
character• 15-76

lndex-13

Input specification (cont'd.)

control-level indicators• 15-90
COPY _coo. 15-7

copy modifiers• 15-9
CZD portion• 15-76
data format• 15-79
data structure• 15-65
data structures• 15-67
data structures

. examples• 15-83, 15-84, 15-85, 15-86
decimal positions• 15-81
field indicators• 15-97
field locations • 15-80
field name• 15-81
field-record-relation indicators• 15-94
file name • 15-66
format• 15-65
identifying record types• 15-72
matching fields• 15-92
not• 15-75
number• 15-71
optional • 1 5-7 2
OR• 15-77
position• 15-75
record identification codes • 15-7 4
record-identifying indicators • 15-7 2
sequence • 1 5-71
specifying

alphabetic sequence code • 15-71
data formats• 15-79
data structure statement• 15-67
data structure subfield • 15-68
file names

example• 15-67
input file names• 15-66
look-ahead fields• 15-73
numeric sequence code • 15-71
record identification codes• 15-7 4
sequence code • 15-71
update file names• 15-66

type• 15-65
Input specifications

WORKSTN • 6-5
INTO• 5-12
Inverted print• 15-14
I specification • 6-15

14-lndex

J

JOURNAL qualifier• 2-4

K
Key length

ADDROUT files • 15-34
example• 15-35
Indexed files • 15-34
record-limits files• 15-34
rules for specifying • 15-34

Key location• 15-37
rules for specifying• 15-37

Keypad• 2-12
Keys

command• 6-10
function • 6-1 0

K indicators • 6-10, 6-11 , 7-13
example• 7-13

L
Label names• 14-8
Language elements • 14-1
Last cycle • 1-7
Last-record indicators• 7-17

example• 7-17
function • 7-17
totaling data • 7-17

LEFT function• 2-34
Length of entry• 15-55

arrays• 15-55
rules for specifying• 15-55
tables• 15-55

Library
form• 6-3
multiple forms • 6-3

LINE• 5-12
Line Counter specification • 15-61

example• 15-64
file name • 15-62
FL• 15-63
format • 15-61
form length • 15-62
naming the output file• 15-62

Line Counter specification (cont'd.)

OL• 15-64
overflow line number• 15-63
type• 15-61

LINE function• 2-32
example• 2-84

Line numbers • 15-4
checking • 3-10, 15-4

Line relationships
AND• 15-77
OR• 15-77

LINK command• 3-11
example • 3-12
format • 3-11

Linking
object file with UAR• 6-14

Linking programs• 3-11
List, appended• 3-3
LIST• 3-3
Listing file

generating • 3-8
LIST qualifier• 3-8

format• 3-8
generating a listing file• 3-3, 3-8, 4-1
including cross-reference information • 3-8
including machine code• 3-8

Local data area • 15-70
examples • 15-88

Logic cycle • 1-1
detail time • 1-9
characteristics and operations• 1-5
flowchart• 1-10
general • 1-5
look-ahead processing• 1-22
matching-fields routine • 1-18
normal cycle • 1-7
overflow processing• 1-21
processing chained and demand files• 1-20
steps of

a normal cycle• 1-7
the first cycle• 1-6
the last cycle • 1-7

the first cycle • 1-6
the last cycle • 1-7
total time• 1-8
characteristics and operations • 1-5

LOKUP operation code• 16-27
arrays • 11-17

LOKUP operation code
arrays (cont'd.)

example• 11-19
example• 16-30, 16-31
referencing entries • 10-9
searching

arrays • 16-30
related tables• 16-28
tables• 10-10, 16-28

specifying array elements• 16-30
Long character literals• 15-137
Longword binary data type

example • 14-4
Look-ahead fields• 15-73

example• 15-73
function• 15-73
logic cycle• 1-22

flowchart • 1-22
rules for specifying• 15-73

LR indicators • 7-17

M
MACHINE_CQDE qualifier• 3-9

format• 3-9
generating machine code • 3-9, 4-8

Magnetic tape device
specifying• 15-38

Magnetic tapes
rewinding • 15-4 7

Manual conversion • 6-30
line 24 • 6-31

Matching fields • 15-92
checking record sequence• 8-35, 15-24

example• 8-36
for more than one record type• 8-35

example• 8-36
logic cycle • 1-18

flowchart• 1.: 18
multifile processing• 8-35, 8-40

example• 8-46
figure • 8-42 to 8-44
record selection• 8-40, 8-45 to 8-46
rules for specifying • 8-40
tables• 8-41, 8-4 7 to 8-48

rules for specifying• 15-92

lndex-15

Matching fields (cont'd.)
using with field-record-relation indicators • 8-38

example• 8-38, 8-39
Matching-record indicators• 7-18

function• 7-18
multifile processing • 7-18

Message line• 2-6
definition• 2-9
example• 2-8

Mode of processing• 15-28
example• 15-34
loading a direct file• 15-28
rules for specifying• 15-28
selecting• 15-29
specifying

access
random• 15-28
sequential• 15-28
sequential within limits• 15-28

an ADDROUT file• 15-28
record address type• 15-35

Modular Programming Standard• 12-32
MOVE_ TQ_RULER function• 2-24
MOVE A operation code• 16-7

arrays• 11-21
example• 11-22, 16-9
rules• 16-7

MOVEL operation code• 16-8
example• 16-9
rules• 16-8

MOVE operation code• 16-6
example • 16-9
rules• 16-7

Move operation codes• 16-6
example • 16-9
MOVE• 16-6
MOVEA • 16-7
MQVEL• 16-8

Multifile processing • 8-40
checking record sequence• 8-35

example • 8-36
for more than one record types• 8-35

matching fields•, 8-35
using

matching fields • 8-35
matching-record indicators• 7-18, 8-35
MR indicators• 8-35

16-lndex

Multiple keys• 8-48
Multiplication operation • 16-3
MUL T operation code• 16-3

example • 16-5
MVR operation code• 16-4

example• 16-5
saving the remainder• 16-4

N
Named data item • 6-14
Names

arrays • 14-8
specifying • 15-53

EXCPT • 14-8
fields • 14-8
files• 14-8
labels • 14-8
PUST• 14-8
subroutines • 14-8
tables• 14-8

specifying • 15-53
user-defined • 14-8

NEW_LINE function• 2-34
Normal cycle • 1-7
Not

see record identification codes
Notations

edit codes • 15-14
numeric fields • 15-14
UDATE• 15-14

Number• 15-71
rules for specifying • 15-71

Number of entries per record • 15-54
arrays • 15-54
rules for specifying • 15-54
tables • 15-54

Number of entries per table or array• 15-55
rules for specifying• 15-55

Numeric data
specifying

format • 15-134
Numeric fields ,

editing • 15-138
example • 15-3
rounding• 15-109

Numeric fields (cont'd.)
specifying

notation • 15-14
Numeric sequence code• 15-7 2

0
OBJECT qualifier• 3-9

format• 3-9
generating an object module • 3-9
rules• 3-9
specifying an output file• 3-1 O

OL• 15-64
OPEN_LINE function• 2-32
Operation codes • 16-1

arithmetic • 16-1
ADD• 16-3
DIV• 16-4
MULT• 16-3
MVR• 16-4
SORT• 16-4
SUB• 16-3
XFOOT• 16-5
Z-ADD• 16-3
Z-SUB • 16-3

bit. 16-13
BITOF • 16-14
BITON• 16-13
TESTB • 16-14

branching• 16-25
example• 16-27
GOT0• 16-25
TAG• 16-26

compare • 16-16
COMP• 16-16

input/ output• 16-17
CHAIN• 16-17
DSPL Y • 16-19
EXCPT• 15-127, 16-21
FORCE• 16-22
READ• 16-23
SETLL • 16-24

LOKUP • 16-27
move• 16-6

MOVE• 16-6
MOVEA• 16-7
MOVEL• 16-8

Operation codes (cont'd.)

SET• 16-10
SETON• 16-10
SETOF• 16-11

specifying • 15-107
subprogram• 16-31

CALL• 16-32
EXTRN • 16-32
GIVNG • 16-33
PARM• 16-33
PARMD • 16-34
PARMV • 16-35
PUST • 16-35

subroutine • 16-11
BEGSR• 16-12
ENDSR• 16-12
EXSR• 16-12

summary
table • 16-38

TIME• 16-36
Optimizing

file performance• 15-26, 15-41
Optimizing programs • 13-1

asterisk indicator• 13-3
expansion factor• 13-4
file applications • 13-4
file performance • 13-4
file sharing • 13-4
1/0 processing• 13-4
multiblock count • 13-4
multibuffer count • 13-4
multiple C specifications • 13-3
with adjacent fields• 13-3
with blank factor 1 • 13-3
with data structures • 13-1

Optional• 15-72
rules for specifying• 15-72

OR • 15-77 I 15-114
example• 15-78
Output specification

example• 15-115
rules for specifying• 15-78, 15-114

Output files
controlling overflow• 15-36
specifying

file addition • 15-42
file name• 15-62
unordered output • 15-42

lndex-17

Output files (cont'd.)
using overflow indicators• 15-36

OUTPUT qualifier• 2-4
Output specification • 15-113

AND• 15-114
blank after• 15-131
constants

iong character literals• 15-137
COPY _CDD • 15-7
data format • 15-134
edit code modifiers• 15-135
edit codes• 15-128
edit words• 15-138
end position • 15-132
fetch overflow • 15-119
field name • 15-126
file name• 15-114
format• 15-113
form names• 15-137
function • 15-113
indicators • 15-123
OR• 15-114
record type • 15-116
skip after• 15-121
skip before• 15-121
space after• 15-120
space before • 15-120
specifying

ADD option • 15-118
DEL option • 15-118

type• 15-113
Output specifications

WORKSTN files• 6-7
OVER• 5-12
Overflow

automatic• 9-15
Overflow indicators• 7-12, 9-11, 15-36

causing page breaks• 7-12
example•7-13, 9-14
function • 7-12
rules for specifying • 9-11, 15-36
specifying • 7-12

Fetch overflow • 15-119
Overflow line number• 15-63

OL • 15-64
rules for specifying • 15-63

Overflow processing
logic cycle• 1-21

18-lndex

Overflow processing
logic cycle (cont'd.)

flowchart• 1-21
Overpunched decimal

specifying • 15-56
Overpunched decimal data type

example • 14-7

p

representation of all but the least significant
digits• 14-5

representation of least significant digits and
signs• 14-6

trailing numeric string • 14-7

Packed decimal data type
example• 14-5
specifying • 15-56

PAGE 1 special word • 9-6
PAGE2 special word • 9-6
PAGE3 special word • 9-6
PAGE4 special word• 9-6
PAGE5 special word• 9-6
PAGES special word • 9-6
PAGE7 special word• 9-6
PAGE function• 2-21

example• 2-21
Page size

defining • 9-15
PAGE special word• 9-6

changing the page number• 9-7
example • 9-7

resetting the page number• 9-8
Paging special words

rules for specifying • 9-6
Parameters

list• 16-35
passing

PARM

access types • 16-34
data types • 16-34
mechanisms• 16-34

by descriptor • 16-34
by reference • 16-33
by value• 16-35

operation code • 16-33
example• 12-8

PARM
operation code (cont'd.)

rules • 16-33
PARMD

operation code • 16-:34
example• 16-36
rules• 16-35

PARMD operation code
example• 12-13

PARM operation code
example• 12-13

PARMV
operation code • 16-35

example• 12-12
PARMV operation code

example• 12-19
rules • 16-35

Passing mechanisms• 12-13
Paste buffer• 2-11
PASTE function• 2-26

example. 2-85
PDP-11 RPG II

See also VAX RPG II • B-1
comparison with VAX RPG II • B-1

1 P indicators• 7-15, 9-11
conditioning output data• 7-15
example • 7-16
function • 7-15
specifying • 7-15

•PLACE special word • 9-9
example• 9-10
rules for specifying • 9-9

PUST
names • 14-8
operation code• 16-35

rules• 16-35
Plus list• 3-4, 15-7
Position

see record identification codes
rules for specifying• 15-75

Preexecution-time arrays• 11-4
creating• 11-4, 11-8

rules for specifying • 11-4
outputting • 11-23
searching

example • 11-20
updating • 11-22
writing• 11-23

Preexecution-time tables • 10-3
creating

example. 10~8
outputting• 10-13
rules for defining • 10-8
updating • 10-12

example • 10-13
writing • 10-14

Primary files
selecting mode of processing• 15-29

Primary WORKSTN file• 6-6
Printer device

specifying • 15-38
Printer output files• 9-1

automatic overflow • 9-15
changing page numbers• 9-6
checking the alignment• 15-17
conditioning output • 9-10
constants

example • 9-3
controlling overflow• 15-36
creating • 9-1
defining

page numbers • 9-6
page size • 9-1 5

rules for specifying• 9-16
deleting form-feed characters • 9-1
editing

numeric data• 15-138
editing output• 9-2, 15-128
first-page indicators• 7-15
formatting • 15-120, 15-12 1

output • 9-16
output data• 15-132, 15-135

generating report titles• 15-137
last-record indicators• 7-17
NOFEED qualifier• 9-1
overflow indicators

using• 7-12
paging• 9-6
1 P indicators • 7-15
printing

IMPORT ANT INFORMATION• 9-1
printing the date • 9-4
repeating output records • 9-9
resetting page numbers • 9-6
skip entries• 9-16

lndex-19

Printer output files
skip entries (cont'd.)

example • 9-18
space entries • 9-16

example • 9-18
specifying

a negative sign • 15-143
asterisks• 15-140
blank spaces • 15-140
commas• 15-14 f
constant data• 15-137
CR• 15-143
currency symbol • 15-140
decimal points• 15-141
fetch overflow • 15-119
overflow line number• 15-63
page breaks • 9-11
page numbers• 9-6
page size• 15-62
skip after• 15-121
skip before• 15-121
space after • 15-120
space before • 15-120
zero-suppression • 15-139

using
constants • 9-3
edit code modifiers• 9-2

asterisk fill• 9-2
floating dollar sign• 9-2

edit codes • 9-2
first-page indicators • 9-11
indicators to condition output • 15-123
overflow indicators • 9-11, 15-36

example• 9-13
1 P indicators• 9-11
special words• 9-4

Procedure Calling and Condition Handling Standard
• 12-32

Procedure calls• 12-20
Processing

branching• 16-25
files

chained
flowchart• 1-20

demand
flowchart• 1-20

specifying
an ADDROUT file• 15-28

20-lndex

Processing
files

specifying (cont'd.)

random access• 15-28
sequential access• 15-28
sequential within limits access• 15-28

look-ahead fields
flowchart• 1-22

multifiles • 8-40
Processing files

multiple keys• 8-48
example • 8-49

Program conversion
HALT indicators• 7-21

Program development• 3-1
compiling • 3-1
linking • 3-11
running • 3-12

Program development cycle • 6-19
Programs

See also VAX RPG II programs
branching• 16-25
developing • 3-1
logic cycle • 1-1

Prompt line• 2-6
definition• 2-9

0
Qualifiers

debugger• 5-2

R

RPG/EDIT command• 2-3
RPG command• 3-3

Random by ADDROUT file access • 8-17
example• 8-21
rules for specifying • 8-19

Random by key file access• 8-16
example• 8-17
rules for specifying• 8-16

Random file access • 8-14
using

an ADDROUT file• 8-17
keys• 8-16

Random file access
using (cont'd.)

relative record numbers • 8-14
example • 8-15
rules for specifying • 8-14

READ_ONL Y qualifier• 2-5
READ operation code• 16-23

demand files• 16-24
example• 16-24
full-procedural files• 16-23
rules• 16-23

Record-address files
selecting mode of processing• 15-32
specifying

from file name• 15-51
to file name• 15-52

Record address type• 15-35
Record buffer layout • 6-31
Record formats

fixed• 8-3
variable• 8-3

Record identification codes • 15-7 4
identifying record types • 15-7 4
specifying

character• 15-76
CZD portion• 15-76
example • 15-76
not• 15-75
position• 15-75

Record-identifying indicators• 15-72
conditioning input data• 15-72
example• 7-2, 7-3
function• 7-2
identifying record types• 7-2

Record length• 15-28
rules for specifying• 15-25, 15-28

Record-limits files
example• 8-10
function • 8-11
rules for specifying • 8-11
specifying

key length • 15-34
Records

adding• 8-27, 15-118
array input• 11-4
changing processing order• 16-23
deleting• 8-34, 15-118

example• 8-34

Records (cont'd.)

general processing cycle • 1-5
identifying types• 15-72
processing totals • 1-8
record-identifying indicators• 7-2
selecting

SETLL operation code• 16-24
specifying

detail • 15-116
exception • 15-116
format• 15-25
heading • 15-116
length

fixed• 15-25
variable• 15-25

record identification codes • 15-7 4
total • 15-116

types • 15-116
defining the ordering sequence • 15-71

updating • 8-31
example• 8-33

using record-identifying indicators• 7-2
writing during calculations• 16-21

Record types • 15-116
defining the ordering sequence• 15-71
detail • 15-116
example• 15-116
exception • 15-116
heading• 15-116
identifying • 15-72
rules for specifying• 15-116
specifying

record identification codes • 1 5-7 4
total • 15-116
using record-identifying indicators• 7-2

RECOVER qualifier• 2-5
REFRESH_SCREEN • 2-35
Related arrays• 11-5

alternate format • 11-10
creating• 11-5, 11-10

Related tables
alternate format

example • 10-12
creating • 10-4

example • 10-7
input records• 10-4

entries
example• 10-4

lndex-21

Related tables (cont'd.)

LOKUP operation code
rules• 16-28

updating • 10-13
RESET function• 2-33
Result field • 15-107

rounding data • 15-109
rules for specifying• 15-107

Resulting indicators• 7-6, 15-110
arrays• 11-18
example • 7-8
function • 7-6
rules for specifying • 15-111
specifying

result of search~ 16-28
type of search• 16-28

testing calculation results• 7-6
types of tests • 7-6
using half adjust• 16-32

RETURN key
example. 2-67

REVIEW_ERROR function• 2-23
RIGHT function• 2-34

example• 2-66
RPG/DEBUG• 5-1
RPG/EDIT command• 2-1

qualifiers
/COMMAND• 2-3
/CREATE• 2-4
fJOURNAL • 2-4
/OUTPUT• 2-4
/READ_ONL Y • 2-5
/RECOVER• 2-5
/ST ARLPOSITION • 2-6
table• 2-3

RPG command
appended list• 3-4
defining as a symbol• 3-3
format• 3-1
plus list • 3-4
qualifiers• 3-3
. CHECK• 3-6

CROSS_REFERENCE • 3-7
DEBUG•3-7
example • 3-3, 3-4
format• 3-3
LIST• 3-8
MACHINE_CODE • 3-9

22-lndex

RPG command
qualifiers (cont'd.)

negating • 3-3
OBJECT•3-9
SEQUENCE_CHECK • 3-10
table• 3-4
WARNINGS• 3-10

RPG II programs
arrays• 11-1
calling

subprograms• 12-32
system services• 12-28

call interface• 12-1
documenting• 15-5
logic cycle • 1-1

RPG II specifications • 15-1
Ruler• 2-6
RULER option• 2-51
RUN command • 3-12

example• 3-12
format • 3-12

Running programs • 3-12
Run-Time Library routines• 12-2

example of calling• 12-25
facilities• 12-2
how to call• 12-4

s
Screen handling• 6-1, 12-33

SMG$ • 12-36
example• 12-37

TOMS
example• 12-34, 12-35

VAX FMS • 12-33, 12-36
example• 12-36

VAX SMG$ • 12-33
VAX TOMS• 12-33

SCROLL option• 2-53
Secondary files

selecting mode of processing• 15-29
SECTION function• 2-23
SECTION option• 2-54
SELECT function• 2-33

example• 2-85
SEQUENCE_CHECK qualifier• 3-10

checking line number sequence• 3-1 ~

SEQUENCE_CHECK qualifier (cont'd.)

format • 3-10
Sequence codes• 15-24, 15-58, 15-71

assigning a numeric code• 15-71
number• 15-71
rules for specifying• 15-25, 15-58
specifying

alphabetic• 15-71
continued processing • 15-7 2
numeric• 15-71

Sequential by key file access
example • 8-10
rules for specifying • 8-9

Sequential file access • 8-8
example • 8-8
rules for specifying• 8-8

Sequential file organization • 8-4
example • 8-4

Sequential files
adding records• 8-28

example• 8-29
figure• 8-28
rules for specifying• 8-28

creating• 8-24
example• 8-24
rules for specifying• 8-24

Sequential within limits file access
example • 8-12
record-limits file • 8-10

SET command• 2-50
COMMAND option• 2-50
DEFAULT option• 2-51
HELP option• 2-51
RULER option• 2-51
SCROLL option• 2-53
SECTION option• 2-54
STARTCOLUMN option• 2-54
SYNTAX CHECK option• 2-55

SET COMMAND option• 2-50
SETLL operation code• 16-24

example• 16-25
rules• 16-24
selecting the next record• 16-24

SETOF operation code• 16-11
example• 16-11
rules • 16-11

SETON operation code • 16-10
example• 16-11

SETON operation code (cont'd.)

rules• 16-10
SET operation codes • 16-10

SETON • 16-10
example e 16-11

SHIFT_LEFT function• 2-26
example• 2-26

SHIFT_RIGHT function• 2-27
example• 2-27

Skip after• 15-12 1
example • 15-123
rules for specifying • 15-122

Skip before • 15-121
example • 15-123
rules for specifying • 15-122

SMG$ • 12-33, 12-36 to 12-37
SOURCE • 5-12
Space after• 15-120

rules for specifying • 15-121
Space before • 15-120

rules for specifying• 15-121
Special words • 9-4

PAGE• 9-6
PAGE1•9-6
PAGE2 • 9-6
PAGE3•9-6
PAGE4•9-6
PAGE5 • 9-6
PAGE6 • 9-6
PAGE7 e 9-6
paging• 9-6
*PLACE• 9-9
rules for specifying• 9-5
UDATE•9-4
UDAY

example • 9-5
UMONTH

example• 9-5
UY EAR

example• 9-5
Specification format

asterisks• 15-2
column numbers• 15-2
comments• 15-5
dashes • 15-3
dots• 15-2
line number• 15-4

lndex-23

Specification format (cont'd.)

notational conventions• 15-2
Specifications

c• 6-16
Calculation • 15-98
Control • 15-13
D• 6-29
Extension • 15-50
F • 6-15
File Description • 15-19
format• 15-2
H•S-4
i. 6-15
Input• 15-65
Line Counter• 15-61
Output • 15-113
RPG 11• 15-1
s• 6~21
Sand D• 6-25

conversion utility. 6-25
types• 15-4

Split-control fields
example• 7-12

SQRT bperation code • 16-4
example • 16-5

Square root operation • 16-4
S specification• 6-25, 6-27
ST ARLPOSITION qualifier• 2-6
ST ARTCOLUMN option• 2-54
Start-up command file• 2-59
Subfields• 6-18
SUB operation code• 16-3

example• 16-5
Subprogram operation codes • 16-31

CALL• 16-32
EXTRN • 16-32
GIVNG • 16-33
PARM• 16-33
PARMD • 16-34
PARMV • 16-35
PUST• 16-35

Subprograms• 12-32
calling • 16-32

example• 12-32
parameter list• 16-35
PARM• 16-33
passing parameters• 16-33, 16-34, 16-35
PUST• 16-35

24-lndex

Subroutines
executing • 16-12
marking the beginning • 16-12
marking the ending • 16-12
names• 14-8
operation codes • 16-11

BEGSR• 16-12
ENDSR • 16-12
example• 16-13
EXSR• 16-12

Subtraction operation • .16-3
Symbolic device• 15-39
SYNT AXCHECK option• 2-55
SYSTEM • 5-12
System routines• 12-1

determining the type of call
function• 12-6
procedure• 12-6

examples of calling• 12-25
function calls• 12-17
function results• 12-24
how to call• 12-4
passing mechanisms• 12-13
procedure calls• 12-20
procedure results• 12-25

System services• 12-28
calling • 16-32

T

example• 12-29, 12-30, 12-31
determining the type of call

function• 12-6
procedure• 12-6

groups• 12-3
how to call• 12-4
passing parameters• 16-33, 16-34, 16-35
routines• 12-3
symbolic constants

example• 12-24

TAB function
example• 2-68 to 2-70

Table or array name• 15'-53
rules for specifying • 15-53

Tables • 10-1
alternate format• 15-59
compile-time• 10-2

Tables
compile-time (cont'd.)

rules for defining • 10-7
creating

input records • 10-3
definition • 10-1
entries • 10-3
input records• 10-3

creating • 10-3
example• 10-4
rules for specifying • 10-3

loading time
selecting • 10-1

LOKUP operation code• 10-10, 16-28
names• 14-8
outputting

example • 10-14
preexecution-time • 10-3

rules for defining • 10-8
referencing entries • 10-9

example • 10-9
related • 10-1, 10-4

creating • 10-4
example• 10-7

example • 10-12
updating • 10-12

searching• 10-10, 16-28
example • 16-30
rules for specifying • 10-10

single • 10-1
defining • 10-5

compile-time• 10-6
example • 10-6, 10-7
preexecution-time • 10-8

specifying• 15-22
alternate format• 15-59
current entry • 10-9

example • 10-10
data format• 15-56
decimal positions• 15-5 7
from file name • 15-51
length of entry• 15-55
names • 15-53
number of entries per record • 15-54
number of entries per table or array•

15-55
sequence• 10-11 , 15-58

ascending • 1 0-11

Tables
specifying

sequence (cont'd.)

descending • 10-11
example• 10-12

to file name • 15-52
updating • 10-12
writing • 10-14

Tab stops• 2"6
definition• 2-9

TAG operation code• 16-26
example• 16-27
rules• 16-26

Tapes
rewinding • 15-4 7
specifying

labels • 15-40
ANSI• 15-40

TDMS• 12-33
Terminal device

specifying • 15-38
TESTB operation code• 16-14

example• 16-15
rules• 16-14, 16-15

Time
printing • 9-6

TIME operation code • 16-36
To file name

outputting
arrays • 15-52
tables• 15-52

record-address files • 15-52
rules for specifying• 15-52
writing

arrays• 15-52
tables• 15-52

TOP function• 2-25
Total time • 1-8
Total-time characteristics or operations • 1-5
Type• 15-113

u
UAR

function key• 6-13
linking • 6-14
object file • 6-14

lndex-25

UDA TE special word• 9-4
defining• 9-4
editi_ng • 9-4
specifying notation • 15-14

UNDELETE_FIELD function• 2-24
UNDELETE_LINE function• 2-21
Unordered output • 15-42

rules for specifying • 15-43
Update files

selecting mode of processing• 15-29
specifying

file addition • 15-42
unordered output• 15-42

Updating
files• 8-31

randomly by key• 8-34
sequentially• 8-34

records • 8-31
example • 8-32

UP function• 2-33
example• 2-85

User-defined command keys• 6-12
User-defined names• 14-8

rules• 14-9

v
VAX/VMS 10 Usages.

VAX RPG II equivalents• 12-9
VAX/VMS Modular Programming Standard•

12-32
VAX/VMS Run-Time Library parameter access

types
modify• 12-15
read only• 12-15
write only• 12-15

example• 12-15
VAX/VMS Run-Time Library parameter data types

double precision floating point• 12-15
longword integer• 1.2-15
numeric string• 12-16

example• 12-16
packed decimal string• 12-16
quadword integer• 12-15
single precision floating point• 12-15
text string• 12-15
word integer • 12-15

26-lndex

VAX/VMS Run-Time Library parameter passing
mechanisms

by descriptor
example• 12-13

by reference
example• 12-8, 12-13

by value• 12-12, 12:-19
example• 12-12, 12-19

VAX/VMS Run-Time Library procedures
assigning names • 16-32
calling• 16-32

example• 12-5, 12-6, 12-18, 12-19,
12-26, 12-27 I 12-28

GIVNG operation code• 16-33
parameter characteristics

access types• 12-15
data types• 12-15
passing mechanisms• 12-12

parameter passing mechanisms
by descriptor• 12-1.2

P ARMD operation code • 12-12
by reference• 12-12

PARM operation code • 12-12
by value• 12-12

example• 12-12, 12-19
PARMV operation code• 12-12

passing parameters• 16-33, 16-34, 16-35
VAX/VMS Run-Time Library routines

arguments
optional• 12-7
required. 12-7

v AX/VMS Usages. 12-9
VAX FMS• 12-33, 12-36

editor•6-2
form creation • 6-2
form libraries • 6-3
multiple forms• 6-3
WORKSTN file interface• 6-1

VAX Procedure Calling and Condition Handling
Standard• 12-32

VAX RPG 11
differences between PDP-11 RPG II • B-1

different support• 8-2
editor

non-supported functionality • B-7
new functionality • B-5
non-supported functionality • B-1

VAX RPG II (cont'd.)

new functionality• 8-5
VAX RPG II editor• 2-1

auto right justification of numeric fields• 2-55
blinking the current column• 2-32
buffers• 2-11

current• 2-11
deleted-field• 2-11
deleted-line• 2-11
paste• 2-11

compiling programs• 2-36
creating

a new program line• 2-32, 2-34
programs

example• 2-62 to 2-63
creating files• 2..:4
cursor• 2-10
customizing• 2-59

editor commands• 2-59
example• 2-60

start-up command file• 2-59
SET COMMAND option• 2-59

deleting
a character and shifting the program line

left• 2-26
a character and shifting the program line

right• 2-27
characters from the cursor to the end of

the line• 2-30
fields• 2-24

determining where the editor starts• 2-6
displaying

current column setting• 2-56
current DEFAULT setting• 2-56
current SCROLL setting• 2-56
current SECTION setting• 2-56
current SYNT AXCHECK setting• 2-56
HELP information• 2-43
program• 2-23
version number and copyright• 2-57

editing an existing program
example• 2-77

finding the next error• 2-23
functions

displaying HELP information• 2-15
inserting the contents of the paste buffer• 2-26
invoking• 2-1, 2-64, 2-77

example•2-65, 2-77

VAX RPG II editor (cont'd.)

keypad• 2-12
displaying

keypad diagram• 2-15
example• 2-12
naming conventions• 2-12

leaving the editor• 2-41, 2-47
moving

current line• 2-32
current line to the ruler. 2-24
sections of the editing buffer• 2-23

moving cursor
backward• 2-25
down•2-33
left• 2-34
right• 2-34
to end of a program line• 2-29
to first line• 2-25
to last li-ne • 2-25
to next character• 2-31
to next field• 2-28
to next tab stop• 2..:35
to p,receding tab stop• 2-34
up•2-33

naming the output file. 2-4, 2-5
numbering program lines• 2-49
overstriking• 2-1
placing. selected text into the paste buffer•

2-26
qualifiers• 2-1 to 2-6
recovering edits• 2-5
renumbering ~xisting program lines• 2-49
replacing

the preceding character with a space •
2-34

the program line with spaces• 2-35
resetting the select range• 2-33
rewriting the screen display• 2-35
saving edits• 2-4
screen• 2-6
selecting a range of lines for the paste buffer•

2-33
setting

terminal characters• 2-12
the current direction forward• 2-25
the location of the ruler. 2-51
the number of display lines• 2-54
the scroll region• 2-53

lndex-27

VAX RPG II editor (cont'd.)
single line syntax check• 2-55
specifying the current column• 2-54
start-up command• 2-3
terminating VAX RPG II editor command entries

•2-32
undeleting fields• 2-24
viewing programs• 2-5
VK 100 (GIGI) terminal• 2-6
writing the editing buffer to an output file• 2-35

VAX RPG II editor commands
COMPiLE • 2-36
DEFINE KEY• 2-38
EXIT• 2-41

example• 2-42
SAVE qualifier• 2-42

HELP• 2-43
example• 2-44

INCLUDE• 2-4 7
QUIT• 2-47

example• 2-48
SA VE qualifier• 2-49

RESEQUENCE• 2-49
example• 2-82
options• 2-49

REMOVE• 2-48
SET• 2-50

format• 2-50
options

COMMAND• 2-50
HELP KEYPAD• 2-51
HELP NONE• 2-51
HELP SPECIFICATIONS• 2-51
RULER• 2-51
SCROLL• 2-53
SECTION• 2-54
ST ARTCOLUMN • 2-54
SYNTAX CHECK• 2-55

SHOW•2-56
options

DEFAUL.T • 2-56
SCROLL• 2-56
SECTION• 2-56
ST ARTCOLUMN • 2-56
SYNTAX CHECK• 2-56
VERSION• 2-57

SUBSTITUTE• 2-57
Rules for specification• 2-58

28-lndex

VAX RPG II editor screen
80-column ruler• 2-6

definition• 2-9
example• 2-6, 2-8

displaying HELP information• 2-7
editing window• 2-6

example• 2-8
EOB mark• 2-9
HELP window• 2-6

displaying HELP information• 2-7
example• 2-6

message line• 2-6
definition • 2-9
example• 2-6, 2-8, 2-10

prompt line• 2-6
definition• 2-9
example•2-6, 2-10

source window
example• 2-6

specification format
example• 2-10

tab stops• 2-6
definition• 2-9
example• 2-6, 2-8

VAX RPG II indicators
S and Display specification • 6-31

VAX RPG II programs
compiling • 3-1
creating• 2-1
debugging • 5-1
developing • 3-1
editing• 2-1
linking• 3-11
optimizing • 13-1
running • 3-12
viewing• 2-1

VAX SMG$ • 12-33
VAX TOMS• 12-33

w
WARNINGS qualifier

displaying
error messages • 3-10
information messages• 3-11

format • 3-10
options • 3-10

WARNINGS qualifier
options (cont'd.)

INFORMATION • 3-10
OTHER• 3-10

Word binary data type
example• 14-4

WORKSTN

x

calculation specifications• 6-5
EOF detection• 6-6
file• 6-1 , 6-3

designation • 6-5
operation status code• 6-17
specifications• 6-4

input specifications • 6-5
output specifications • 6-7
primary file• 6-6
run-time support

current workspace• 6-9
form display • 6-8
form read • 6-9
initialization • 6-8
termination • 6-9

VAX FMS forms interface• 6-1
VAX FMS run-time support• 6-7

XFOOT operation code • 16-5
arrays• 11-16
example • 11-17
referencing array elements• 11-17

z
Z-ADD operation code• 16-3

example • 16-5
Zero-suppression • 15-139
Z-SUB operation code• 16-3

example• 16-5

lndex-29

Guide to VAX RPG II
AA-JA05A-TE

EADER'S
OMMENTS

Note: This form is for document comments only.
DIGIT AL will use comments submitted on this form
at the company's discretion. If you require a written
reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your
comments on an SPR form.

you find this manual understandable, usable, and well organized? Please make
1gestions for improvement.

you find errors in this manual? If so, specify the error and the page number.

ase indicate the type of user /reader that you most nearly represent:

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)

ne _________________ Date-----------

1anization ---------------------------

eet ----------------------------~
_______________ State _____ Zip Code __ _

or Country

- - Do Not Tear- Fold Here and Tape -

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03062-2698

111 11.11 •••• 11 1.11.1 •• 1.1 .. 1.1 •• 11 1.11

- DoNotTear-FoldHere - - - - - - - - - - - - - -

No Postage
Necessary

if Mailed in the
United States

;
1'-'

