
Programming in
VAX RPG II
Order Number: AA-R431 8-TE

November 1985

This manual describes language elements, programming constructs,
and features of the V AX RPG II language.

Revision/Update Information:

Operating System and Version:

Software Version:

digital equipment corporation
maynard, massachusetts

This revised document supersedes
Programming in VAX RPG /I
(Order No. AA R431 A-TEl

VAX/VMS V4.2 or later
MicroVMS V4.2 or later

V AX RPG II V2.0

First Printing, February 1984
Revised, November 1985

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright © 1984, 1985 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this doc
ument requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-1O
DECSYSTEM-20
DECUS
DECwriter

USA & PUERTO RICO·

DIBOL UNIBUS
EduSystem VAX
lAS V AXc1uster
MASSBUS VMS
PDP VT
PDT
RSTS

~D~DD5lD RSX

HOW TO ORDER ADDITIONAL DOCUMENTATION

DIRECT MAIL ORDERS

CANADA INTERNATIONAL

ZK-2787

Digital Equipment Corporation
P.O. Box CS2008

Digital Equipment
of Canada Ltd.

Digital Equipment Corporation
PSG Business Manager

Nashua. New Hampshire
03061

1 00 Herzberg Road
Kanata. Ontario K2K 2A6
Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire. Alaska. and Hawaii call 603-884-6660.
In Canada call 800-267-6215 .

c/o Digital's local subsidiary
or approved distributor

... Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SOC). Digital Equipment Corporation.
Westminster. Massachusetts 01473.

,r
I

~ ..

Contents
Preface xv

Part I
Chapter 1 The VAX RPG II Logic Cycle
1.1 The RPG II General Logic Cycle .. 1-2
1.2 The First Cycle .. 1-2
1.3 The Last Cycle .. 1-3
1.4 A Normal Cycle ... 1-3

1.4.1 Total Time ... 1-4
1.4.2 Detail Time .. 1-5

1.5 RPG II Detail Program Logic Cycle .. 1-16

Chapter 2 Developing Programs
2.1 Compiling Programs ... 2-1

2.1.1 Default Compiler Options .. 2-2
2.1.2 RPG II Compiler Qualifiers .. 2-3

2.1.2.1 CHECK .. 2-4
2.1.2.2 CROSS_REFERENCE .. 2-5
2.1.2.3 DEBUG .. 2-6
2.1.2.4 LIST .. 2-6
2.1.2.5 MACHINE_CODE .. 2-7
2.1.2.6 OBJECT ... 2-7
2.1.2.7 SEQUENCE_CHECK .. 2-8
2.1.2.8 WARNINGS .. 2-8

2.2 Linking and Running Programs .. 2-8
2.3 Interpreting RPG II Compiler Error Messages .. 2-9

Chapter 3 Using the RPG II Editor
3.1 RPG II Editor Qualifiers ... 3-1

3.1.1 COMMAND .. 3-2
3.1.2 CREATE ... 3-3
3.1.3 JOURNAL ... 3-3
3.1.4 OUTPUT .. 3-3
3.1.5 READ_ONLy .. 3-3
3.1.6 RECOVER ... 3-4
3.1.7 START_POSITION ... 3-4

3.2 The RPG II Editor Screen .. 3-5
3.3 The RPG II Editor Cursor .. 3-8
3.4 The RPG II Editor Buffers .. 3-9
3.5 Keys and Functions ... 3-9

3.5.1 The GOLD Function ... 3-12
3.5.2 The HELP -KEYPAD Function .. 3-13
3.5.3 The HELP_SPECIFICATIONS Function 3-14
3.5.4 The FIND.-NEXT Function ' .. 3-16
3.5.5 The FIND Function .. 3-17
3.5.6 The DELETE_LINE Function .. 3-17
3.5.7 The UNDELETE--LINE Function ... 3-17
3.5.8 The PAGE Function .. 3-18
3.5.9 The COMMAND Function .. 3-18
3.5.10 The SECTION Function ... 3-19
3.5.11 The DISPLAY Function ... 3-19
3.5.12 The REVIEW -ERROR Function ... 3-19
3.5.13 The MOVE_TO--RULER Function ... 3-20
3.5.14 The DELETEJIELD Function .. 3-20
3.5.15 The UNDELETE_FIELD Function ... 3-20
3.5.16 The ADVANCE Function .. 3-20
3.5.17 The BOTTOM Function ... 3-21
3.5.18 The BACKUP Function ... 3-21
3.5.19 The TOP Function .. 3-21
3.5.20 The CUT Function .. 3-21
3.5.21 The PASTE Function .. 3-21
3.5.22 The SHIFT--LEFT Function ... 3-22
3.5.23 The SHIFT --RIGHT Function .. 3-22
3.5.24 The FIELD Function .. 3-23
3.5.25 The END_OF --LINE Function ... 3-24
3.5.26 The DELETE_TO-END_OF --LINE Function 3-25
3.5.27 The CHARACTER Function ... 3-26
3.5.28 The COLUMN Function ... 3-26
3.5.29 The ENTER Function ... 3-26
3.5.30 The LINE Function ... 3-27
3.5.31 The OPEN--LINE Function .. 3-27
3.5.32 The SELECT Function .. 3-27
3.5.33 The RESET Function ... 3-27
3.5.34 The UP Function ... 3-27
3.5.35 The DOWN Function , ... 3-28
3.5.36 The RIGHT Function .. 3-28
3.5.37 The LEFT Function ... 3-28
3.5.38 The FIELD_BACKWARD Function .. 3-28
3.5.39 The DELETE_CHARACTER Function 3-28
3.5.40 The NEW --LINE Function ... 3-28
3.5.41 The FIELD_FORWARD Function .. 3-29
3.5.42 The REFRESH_SCREEN Function .. 3-29
3.5.43 The DELETE_TO-BEGINNING_OF --LINE Function 3-29
3.5.44 The EXIT Function ... 3-29

3.6 RPG II Editor Commands ... 3-29
3.6.1 The COMPILE Command ... 3-30
3.6.2 The DEFINE KEY Command ... 3-31
3.6.3 The EXIT Command ... 3-34
3.6.4 The HELP Command ... 3-35
3.6.5 The INCLUDE Command .. 3-37
3.6.6 The QUIT Command ... 3-38
3.6.7 The RESEQUENCE Command .. 3-39

iv

3.6.8 The SET Command .. 3-40
3.6.8.1 The COMMAND Option .. 3-40
3.6.8.2 The DEFAULT Option ... 3-40
3.6.8.3 The HELP Option .. 3-41
3.6.8.4 The RULER Option .. 3-41
3.6.8.5 The SCROLL Option ... 3-43
3.6.8.6 The SECTION Option .. 3-44
3.6.8.7 The STARTCOLUMN Option 3-44
3.6.8.8 The SYNTAX CHECK Option 3-44

3.6.9 The SHOW Command .. 3-45
3.6.10 The SUBSTITUTE Command " 3-46

3.7 Customizing the Editor ... 3-48
3.7.1 U sing Editor Commands .. 3-48
3.7.2 Startup Command Files .. 3-48
3.7.3 Modifying Screen Length ... 3-50

3.8 Creating and Editing Programs .. 3-50
3.8.1 Creating A New Program ... 3-54
3.8.2 Editing An Existing Program ... 3-66

Chapter 4 Using Indicators
4.1 User Defined Indicators .. 4-1

4.1.1 Record-Identifying Indicators .. 4-1
4.1.2 Field Indicators ... 4-4
4.1.3 Resulting Indicators .. 4-6
4.1.4 Control-Level Indicators ... 4-8
4.1.5 Overflow Indicators .. 4-12
4.1.6 K Indicators. 4-12

4.2 Internally Defined Indicators .. 4-14
4.2.1 First-Page Indicator .. 4-14
4.2.2 Last-Record Indicator .. 4-15
4.2.3 Matching-Record Indicator ... 4-16
4.2.4 External Indicators .. 4-16
4.2.5 Halt Indicators .. 4-17

4.3 Using Indicators as Fields ... 4-19
4.3.1 *IN and *IN,n ... 4-19
4.3.2 *INxx ... 4-19

Chapter 5 Using Files
5.1 File Names ... 5-1
5.2 Record Formats ... 5-2
5.3 File Types .. 5-2
5.4 File Organizations .. 5-2

5.4.1 Sequential Organization ... 5-2
5.4.2 Direct Organization ... 5-3
5.4.3 Indexed Organization ... 5-4

5.5 File Access Methods ... 5-5
5.5.1 Sequential Access ... 5-6
5.5.2 Sequential Access By Key ... 5-7

v

5.5.3 Sequential Access Within Limits ... 5-8
5.5.4 Random Access .. 5-11

5.5.4.1 .. 5-11
5.5.4.2 .. 5-13
5.5.4.3 .. 5-14

5.5.5 Sequential Access And/or Random Access By Key 5-18
5.6 Creating Files ... 5-20

5.6.1 Creating Sequential Files ... 5-20
5.6.2 Creating Direct Files ... 5-20
5.6.3 Creating Indexed Files ... 5-21

5.7 Adding Records to Files ; .. 5-22
5.7.1 Adding Records To A Sequential File .. 5-23
5.7.2 Adding Records To A Direct File ... 5-24
5.7.3 Adding Records To An Indexed File .. 5-25

5.8 Updating Records in Files ... 5-26
5.8.1 Updating A File Sequentially Or Randomly By Key 5-28

5.9 Deleting Records from Files ... 5-28
5.10 Processing Files with Matching Records ... 5-29

5.10.1 Checking Record Sequence for One Record Type 5-29
5.10.2 Checking Record Sequence for More Than One Record Type 5-29
5.10.3 Using Matching Fields with Field-Record-Relation Indicators 5-31
5.10.4 Using Matching Fields To Process More Than One File 5-33

5.11 Processing Files with Multiple Keys .. 5-41

Chapter 6 Using Printer Output Files
6.1 Editing Output .. 6--1

6.1.1 Using Edit Codes and Edit Code Modifiers 6--1
6.1.2 Using Constants .. 6--2

6.2 Using Special Words ... 6--3
6.2.1 Printing the Date: UDATE, UDAY, UMONTH, UYEAR 6--3
6.2.2 Numbering Pages: PAGE and PAGEl Through PAGE7 6--4
6.2.3 Saving Time by Repeating Data: *PLACE 6--7

6.3 Conditioning Output Lines ... 6--8
6.3.1 Printing Lines Before Reading the First Record: First-Page Indicator 6--8
6.3.2 Specifying Page Breaks: Overflow Indicator 6--10

6.4 Automatic Overflow .. 6--13
6.5 Defining the Page Size .. 6--14
6.6 Formatting Output ... 6--14

Chapter 7 Using Tables
7.1 Compile-Time Tables .. 7-2
7.2 Pre-Execution-Time Tables ... 7-2
7.3 Creating Table Input Records ... 7-3
7.4 DefiningTables ... 7-4
7.5 Searching Tables .. 7-7
7.6 Referencing Table Entries ... 7-10
7.7 Updating Tables ... 7-11

vi

7.8 Outputting Tables .. 7-12

Chapter 8 Using Arrays
8.1 Types of Arrays ... 8-1

8.1.1 Compile-Time Arrays ... 8-2
8.1.2 Pre-Execution-Time Arrays .. 8-4
8.1.3 Execution-Time Arrays .. 8-4

8.2 Creating Array Input Records .. 8-4
8.3 Defining Arrays ... 8-5

8.3.1 Defining a Compile-Time Array .. 8-6
8.3.2 Defining a Pre-Execution-Time Array ... 8-6
8.3.3 Defining an Execution-Time Array ... 8-7
8.3.4 Defining Related Arrays in Alternating Format 8-8

8.4 Referencing Arrays ... 8-10
8.5 Searching Arrays .. 8-15
8.6 Moving Array Data ... 8-18
8.7 Updating Arrays ... 8-19
8.8 Outputting Arrays ... 8-20

Chapter 9 Calling System Routines from VAX RPG II
9.1 Introduction .. 9-1

9.1.1 Run-Time Library Routines .. 9-2
9.1.2 System Service Routines ... 9-2

9.2 Calling System Routines from VAX RPG II .. 9-3
9.2.1 Determine the Type of Call (Procedure or Function) 9-4
9.2.2 Declare the Arguments .. 9-5

9.2.2.1 Parameter Passing Mechanisms 9-10
9.2.2.2 Parameter Access Types (column 54) 9-12
9.2.2.3 Parameter Data Types (columns 55-57) 9-12

9.2.3 Declare the System Routine ... 9-14
9.2.4 Include Symbol Definitions ... 9-15
9.2.5 Call the Routine or Service ... 9-15

9.2.5.1 Calling a System Routine in a Function Call 9-15
9.2.5.2 Calling a System Routine in a Procedure Call 9-19

9.2.6 Check the Condition Value .. 9-20
9.2.7 Locate the Result " 9-23

9.2.7.1 Function Results " 9-23
9.2.7.2 Procedure Results ... 9-23

9.3 Examples of Calling Run-Time Library Routines 9-24
9.4 Examples of Calling System Services ... 9-28
9.5 Examples of Calling Subprograms ... 9-32
9.6 Screen Handling in VAX RPG II ... 9-33

Chapter 10 Debugging VAX RPG II Programs
10.1 Debugging RPG II Programs ... 10-3
10.2 Debugger Commands and Keywords .. 10-3
10.3 Preparing to Debug a Program ... 10-4

vii

10.3.1 SET LANGUAGE and SHOW LANGUAGE Commands 10-4
10.4 Controlling Program Execution ... 10-5

10.4.1 SET BREAK, SHOW BREAK, and CANCEL BREAK Commands 10-6
10.4.2 SET TRACE, SHOW TRACE, and CANCEL TRACE Commands 100'i
10.4.3 SET WATCH, SHOW WATCH, and CANCEL WATCH Commands 10-9
10.4.4 SHOW CALLS Command ... 10-10
10.4.5 GO and STEP Commands ... 10-10
10.4.6 TYPE Command ... 10-11
10.4.7 EDIT Command .. 10-12
10.4.8 CTRL/Y Command ... 10-12
10.4.9 EXIT Command .. , 10-12

10.5 Examining and Modifying Locations ... 10-13
10.5.1 EXAMINE Command ... 10-13
10.5.2 DEPOSIT Command .. 10-14
10.5.3 EVALUATE Command .. 10-15

Chapter 11 Interpreting a Compiler Listing

Chapter 12 Optimizing Your Programs
12.1 Optimizing with Data Structures ... 12-1
12.2 Optimizing with Adjacent Fields in Records .. 12-2
12.3 Optimizing with Blank Factor 1 .. 12-3
12.4 Optimizing File Performance ... 12-3

Figures
1-1 RPG II Logic Cycle 1-6 (~
1-2 Logic Cycle for the Matching-Fields Routine .. 1-16 _
1-3 Logic Cycle for Chained and Demand Files ... 1-18
1-4 Logic Cycle for Overflow Processing ... 1-19
1-5 Logic Cycle for Look-Ahead Processing .. 1-20
5-1 Sequential File Organization .. 5-3
5-2 Direct File Organization ... 5-3
5-3 Indexed File Organization ... 5-4
5-4 Index Key Value .. 5-4
5-5 Sequential Access Within Limits ... 5-8
5-6 Random Access by ADDROUT File .. 5-15
5-7 ADDROUTFile ... 5-15
5-8 Adding Records to a Sequential File ... 5-23
5-9 Adding Records to a Direct File ... 5-24
5-10 Using Matching Fields to Do Multifile Processing 5-35
7-1 Table Input Record .. 7-3
7-2 Related Tables .. 7-4
8--1 Array Input Record ... 8-4
8--2 Related Arrays ... 8--5

Tables
2-1 RPG II Command Qualifiers ... 2-4
3-1 RPG/EDIT Command Qualifiers .. 3-2
3-2 RPG II Editor Define Key Defaults .. 3-10

('
" viii

3-3 RPG Keynames for Valid Definable Keys ... 3-33
5-1 File Access Methods ... 5-5
5-2 Matching Field Lengths .. 5-31
5-3 Matching Field Values ... 5-34
5-4 Matching Field Values ... 5-39
5-5 Processing Records with Matching Fields .. 5-40
8--1 Array Element Values .. 8--11
8--2 Array Elements in Calculations ... 8--12
9-1 Run-Time Library Facilities ... 9-2
9-2 Groups of System Services ... 9-3
9-3 VMS Data Structures ... 9-7
9-4 Passing Mechanisms ... 9-19
10-1 Debugger Commands and Keywords .. 10-4

Part II

Chapter 1 Language Elements
1.1 RPG II Character Set .. 1-1
1.2 RPG II Data Types ... 1-1

1.2.1 Character .. 1-2
1.2.2 Binary ... 1-3
1.2.3 Packed Decimal ... 1-3
1.2.4 Overpunched Decimal ... 1-4

1.3 User-Defined Names ... 1-6

Chapter 2 Specifications
2.1 Notation Conventions ... 2-2
2.2 Common Fields ... 2-4

2.2.1 Line Number ... 2-4
2.2.2 Specification Type ... 2-5
2.2.3 Comments ... 2-5

2.3 Compiler Directing Statements ... 2-6
2.3.1 Copy ... 2-7
2.3.2 Copy From CDD .. 2-7
2.3.3 Copy Modifiers ... 2-9

2.4 Control Specification ... 2-11
2.4.1 Control Specification Format .. 2-12
2.4.2 Specification Type .. 2-12
2.4.3 Currency Symbol .. 2-12
2.4.4 Inverted Print ... 2-12
2.4.5 Alternate Collating Sequence ... 2-13
2.4.6 Forms Position .. 2-15
2.4.7 Example .. 2-15

2.5 File Description Specification .. 2-16
2.5.1 File Description Specification Format .. 2-16
2.5.2 Specification Type .. 2-16
2.5.3 File Name ... 2-17
2.5.4 File Type .. 2-17
2.5.5 File Designation ... 2-18
2.5.6 End-of-File .. 2-19
2.5.7 Sequence .. 2-20
2.5.8 File Format ... 2-21
2.5.9 Block Length .. 2-21
2.5.10 Record Length .. 2-22
2.5.11 Mode of Processing .. 2-23

. ix

2.5.12 Key Length .. 2-27
2.5.13 Record Address Type .. 2-28
2.5.14 File Organization or Additional 110 Area 2-28
2.5.15 Overflow Indicators ... 2-29
2.5.16 Key Location ... 2-29
2.5.17 Extension Code ... 2-29
2.5.18 Device Code .. 2-30
2.5.19 Symbolic Device .. 2-31
2.5.20 Tape Label ... 2-31
2.5.21 Core Index ... 2-31
2.5.22 File Addition and Unordered Output 2-32
2.5.23 Expansion Factor ... 2-33
2.5.24 File Sharing .. 2-35
2.5.25 Tape Rewind ... 2-37
2.5.26 File Condition .. 2-37
2.5.27 Example ... 2-38

2.6 Extension Specification ... 2-38
2.6.1 Extension Specification Format ... 2-39
2.6.2 Specification Type .. 2-40
2.6.3 From File Name ... 2-40
2.6.4 To File Name .. 2-40
2.6.5 Table or Array Name ... 2-41
2.6.6 Number of Entries in a Record .. 2-42
2.6.7 Number of Entries in a Table or Array 2-42
2.6.8 Length of Entry .. 2-43
2.6.9 Format ... 2-44
2.6.10 Decimal Positions ... 2-44
2.6.11 Sequence ... 2-45
2.6.12 Alternate Table or Array .. 2-45
2.6.13 Comments ... 2-46
2.6.14 Example ... 2-46

2.7 Line Counter Specification .. 2-47
2.7.1 Line Counter Specification Format .. 2-48
2.7.2 Specification Type .. 2-48
2.7.3 File Name ... 2-48
2.7.4 Form Length .. 2-49
2.7.5 FL .. 2-49
2.7.6 Overflow Line Number ... 2-49
2.7.7 OL ... 2-50
2.7.8 Example .. 2-50

2.8 Input Specification ... 2-50
2.8.1 Input Specification Format .. 2-51
2.8.2 Specification Type .. 2-51
2.8.3 File Name ... 2-51
2.8.4 Data Structures ... 2-52

2.8.4.1 Data Structure Statement .. 2-53
2.8.4.2 Data Structure Subfields ... 2-53
2.8.4.3 Local Data Area ... 2-55

2.8.5 Sequence .. 2-55
2.8.6 Number ... 2-56
2.8.7 Option .. 2-56

x

2.8.8 Record-Identifying Indicator .. 2-56
2.8.9 Record Identification Codes ... 2-58

2.8.9.1 Position ... 2-59
2.8.9.2 Not ... 2-59
2.8.9.3 CZD Portion ... 2-59
2.8.9.4 Character ... 2-60

2.8.10 AND/OR ... 2-61
2.8.11 Format .. 2-62
2.8.12 Field Locations From and To ... 2-63
2.8.13 Decimal Positions ... 2-64
2.8.14 Field Name .. 2-64
2.8.15 Examples of Using Data Structures ... 2-65

2.8.15.1 Defining One Area of Storage More Than One Way 2-66
2.8.15.2 Defining Subfields Within a Field or Subfield 2-67
2.8.15.3 Reorganizing Fields in An Input Record 2-67
2.8.15.4 Selecting the Internal Numeric Data Type for Fields 2-68
2.8.15.5 Examples of Using Local Data Area 2-69

2.8.16 Control-Level Indicator ... 2-71
2.8.17 Matching Fields .. 2-73
2.8.18 Field-Record-Relation Indicator .. 2-75
2.8.19 Field Indicators ... 2-78

2.9 Calculation Specification .. 2-79
2.9.1 Calculation Specification Format .. 2-79
2.9.2 Specification Type .. 2-79
2.9.3 Control Level .. 2-80
2.9.4 Indicators ... 2-82
2.9.5 Factors 1 and 2 .. 2-84
2.9.6 Operation Code .. 2-86
2.9.7 Result Field ... 2-86
2.9.8 Field Length .. 2-87
2.9.9 Decimal Positions .. 2-87
2.9.10 Half Adjust .. 2-88
2.9.11 Resulting Indicators .. 2-88
2.9.12 Comments ... 2-90

2.10 Output Specification ... 2-90
2.10.1 Output Specification Format .. 2-90
2.10.2 Specification Type ... 2-90
2.10.3 File Name .. 2-91
2.10.4 AND and OR Lines .. 2-91
2.10.5 Record Type ... 2-93
2.10.6 ADD and DEL Options ... 2-95
2.10.7 Fetch Overflow .. 2-96
2.10.8 Space Before and Space After ... 2-97
2.10.9 Skip Before and Skip After ... 2-98
2.10.10 Example ... 2-99
2.10.11 Indicators ... 2-100
2.10.12 Field Name ... 2-102
2.10.13 EXCPT Name ... 2-103
2.10.14 Edit Codes .. 2-104
2.10.15 Blank After ... 2-106
2.10.16 End Position .. 2-107

Xl

2.10.17 Format ... 2-109
2.10.18 Constant or Edit Word ... 2-109

2.10.18.1 Edit Code Modifiers ... 2-110
2.10.18.2 Constants .. 2-111
2.10.18.3 Edit Words , " , 2-112

Chapter 3 Operation Codes
3.1 Arithmetic Operation Codes .. 3-1

3.1.1 ADD ... 3-2
3.1.2 Z-ADD .. 3-2
3.1.3 SUB ... 3-3
3.1.4 Z-SUB ... 3-3
3.1.5 MULT ... 3-3
3.1.6 DIV ... 3-3
3.1.7 MVR .. 3-3
3.1.8 SQRT .. 3-4
3.1.9 XFOOT .. 3-4
3.1.10 Example .. 3-4

3.2 Move Operation Codes ... 3-5
3.2.1 MOVE ... 3-5
3.2.2 MOVEA ... 3-6
3.2.3 MOVEL .. 3-6
3.2.4 Example ... 3-7

3.3 Set Operation Codes ... 3-9
3.3.1 SETON .. 3-9
3.3.2 SETOF .. 3-9

3.4 Subroutine Operation Codes ... 3-10
3.4.1 BEGSR ... 3-10
3.4.2 ENDSR ... 3-10
3.4.3 EXSR ... 3-10
3.4.4 Example .. 3-10

3.5 Bit Operation Codes .. 3-11
3.5.1 ElTON .. 3-11
3.5.2 ElTOF .. 3-12
3.5.3 TESTB .. 3-12
3.5.4 Example .. 3-12

3.6 Compare Operation Code .. 3-13
3.7 Input and Output Operation Codes ... 3-14

3.7.1 CHAIN ... 3-14
3.7.2 DSPLY ... 3-16
3.7.3 Example .. 3-17
3.7.4 EXCPT ... 3-17
3.7.5 FORCE ... 3-18
3.7.6 READ .. 3-19
3.7.7 SETLL .. 3-19

3.8 Branching Operation Codes ... 3-20
3.8.1 GOTO .. 3-20
3.8.2 TAG .. 3-21
3.8.3 Example .. 3-22

xii

3.9 Lookup Operation Code ... 3-22
3.9.1 Searching Tables .. 3-23
3.9.2 Searching Arrays .. 3-24
3.9.3 Example .. 3-25

3.10 Subprogram Operation Codes .. 3-25
3.10.1 CALL .. 3-25
3.10.2 EXTRN ... 3-26
3.10.3 GIVNG ... 3-26
3.10.4 PARM .. 3-27
3.10.5 PARMD ... 3-28
3.10.6 PARMV ... 3-28
3.10.7 PLIST .. 3-29
3.10.8 Example .. 3-30

Appendix A Character Sets

Appendix B Differences Between VAX RPG II and PDP-11 RPG II

Appendix C PCA Applied to an RPG II Program

Figures
1-1 Character String ... 1-2
1-2 Address of a String. 1-2
1-3 Word Data Type .. 1-3
1-4 Longword Data Type .. 1-3
1-5 Packed Decimal Data Type .. 1-4
1-6 Overpunched Decimal Data Type ... 1-6
1-7 Overpunched Decimal Data Type ... 1-6

Tables
1-1 Overpunched Decimal Representation of Nonleast Significant Digits 1-5
1-2 Overpunched Decimal Representations of Least Significant Digit and Sign 1-5
2-1 Modes of Processing for Primary, Secondary and Demand Files 2-24
2-2 Modes of Processing for Record Address Files 2-25
2-3 Modes of Processing forInput or Update Chained Files 2-26
2-4 Expansion Factor and Block Length Values .. 2-34
2-5 File Sharing ... 2-36
2-6 Edit Codes and Examples .. 2-106
3-1 Summary of Operation Codes .. 3-31

xiii

/
i
\

',-

/
(

Preface

Intended Audience
This manual is intended for use by programmers familiar with the VAX RPG II language.
It is designed to be used both as a reference manual and as a user's guide.

Document Structure
This manual contains 12 chapters in Part I (programming information), 3 chapters in Part
II (language information), and 3 appendixes.

Part I

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Explains the VAX RPG II logic cycle.

Explains how to compile, link, and run programs.

Explains how to use the VAX RPG II editor to create and edit programs.

Explains how to use VAX RPG II indicators.

Explains how to manage files.

Explains those elements that affect printer output files.

Explains how to create and access tables.

Explains how to create and access arrays.

Explains how to use the VAX RPG II CALL interface to access RTL pro
cedures, system services, and subprograms.

Explains how to use the VAX Symbolic Debugger to debug VAX RPG II
programs.

xv

Chapter 11

Chapter 12

Explains the format of a listing file.

Explains how to improve the efficiency of programs.

Part II

Chapter 1 Explains VAX RPG II elements and data types.

Chapter 2 Lists specifications, allowable entries, and their functions.

Chapter 3 Explains how to use VAX RPG II operation codes.

Appendix A Lists the VAX RPG II character sets.

Appendix B Explains the differences between the PDP-11 RPG II and the
VAX RPG II language and editor.

Appendix C Shows PCA applied to an RPG II program.

Conventions Used In This Document
Conventions

•
[]

{}

Definitions

Meaning

The RPG II editor cursor is represented by a box .

Brackets enclose an optional portion of a format.

Braces enclose a mandatory portion of a format.

A vertical ellipsis indicates that not all of the program lines in an
example are shown.

In this manual, the following definitions apply:

Column name

Program module

Subprogram

Subroutine

xvi

The first letter of the first word of a column name is capitalized. For
example, Alternate collating sequence.

A program module is a VAX RPG II main program or a subprogram.

A subprogram isa separately compiled program module that must be
linked with the main program.

A subroutine is a block of code executed by the EXSR operation code.

Important Information

The on-line release notes contain some brief information on the product, last-minute infor
mation that was discovered too late to be printed in the documentation, and any known
restrictions. After you install VAX RPG II, read the release notes interactively by typing
the HELP RPG RELEASE_NOTES command. You can print the release notes by typing
the following DCL commands:

$ HELP/oUTPUT=RPG.LIS RPG RELEASE_NOTES
$ PRINT/DELETE RPG.LIS

Following is a list of some common problems and how to work around them:

• Leave the editor and make sure that the VMS terminal characteristics are set prop
erly for your terminal by typing the SET TERMINAL/INQUIRE command if the fol
lowing error message is displayed:

%TPU-E-NoNANSICRT. SYS$INPUT Must be an ANSI CRT

If you are using a VK100(GIGI) terminal and the terminal screen does not appear to
update correctly, leave the editor and type the SHOW TERMINAL command to make
sure that the device is a VK100. Ifit is not, type the SET TERMINAL/INQUIRE com
mand to make sure that the VMS terminal characteristics are set properly for your"
terminal.

• Use the RPG/CHECK:BLANKS_IN_NUMERICS command to convert blanks in
numeric data to zeros if you run your program and receive the following message:

A nUMeric field contains invalid data

• If the line printer listing of a printer output file is not spacing as you expect, make
sure you are using the INOFEED qualifier with the PRINT command.

• If a source line in the compiler listing contains one or more periods (.) where you have
not entered a period in the program line, it is because the program line contains a
nonprintable character (for example, a TAB character or a null character). It is possi
ble to enter nonprintable characters when using an editor other than the RPG II edi
tor to create or edit a program.

• Make sure you have a BYTLM quota of at least 8192, a PRCLM quota of at least 1, and
the TMPMBX privilege if you receive the following message immediately after invok
ing the RPG II editor COMPILE command:

Subprocess not activated -
leave editor and checK quotas and privileges

xvii

• If you continue to get the above message when using the RPG II COMPILE command,
increase the BYTLM quota.

• Make sure you can run the compiler without problems using the RPG command at the
DCL command level if you receive the following message:

Unexpected error durinl cOMPilation -
leave editor and trY Del RPG COMMand

If you have no problem running the compiler using the RPG command, increase the
BYTLM quota.

The BYTLM and PRCLM quotas and the TMPMBX privilege can be changed by the
system manager using the VAXIVMS AUTHORIZE utility.

xviii

Chapter 1

The VAX RPG II Logic Cycle

VAX RPG II is an extended implementation of the RPG II language that was developed by
IBM as a problem-oriented language for commercial applications and includes DIGITAL
extensions for integration with the VMS architecture. In general, VAX RPG II is a lan
guage processor that provides a convenient means of preparing a wide variety of reports
and other commercial data processing applications. VAX RPG II runs under the VAX/VMS
or MicroVMS operating system and consists of a compiler and editor.

RPG II is a nonprocedural language; every program compiled by the RPG II compiler exe
cutes according to a fixed, predefined logic cycle. Unlike the logic of a procedural language
such as COBOL, the logic is not supplied by the programmer, but is built into the compiler.
This built-in logic is called the RPG II logic cycle. The execution of an RPG II program
consists of a number of iterations of the logic cycle.

The RPG II specifications you code determine what happens within the various phases of
the logic cycle, but cannot change the basic sequence of program execution.

For example, you can code an Input specification to program RPG II to recognize and pro
cess a particular record type, but you cannot program RPG II to read three input records in
a row, print a report heading, load a table, immediately write four different output records,
and then perform some total calculations; this series of steps, while perfectly acceptable in
a COBOL program, does not fit into the predetermined structure of the RPG II logic cycle.

The fixed logic cycle of RPG II was designed specifically to accommodate the sequence of
operations needed to generate most common business reports and file maintenance func
tions. However, the fixed nature of the RPG II logic cycle does not prevent you from control
ling the set of functions performed for each input record, and, to some extent, the sequence
and timing ofthese functions. For example, by setting various indicators (see Part I, Chap
ter 4) on or off when certain conditions occur, you can actually affect the sequence of pro
gram execution within the phases of the general logic cycle. Therefore, to write effective
RPG II specifications, and to take advantage of what flexibility and control RPG II does
provide, you must thoroughly understand the structure and timing characteristics of the
overall RPG II logic cycle, and recognize both RPG II's special capabilities and its
limitations.

1-1

1.1 The RPG II General Logic Cycle

Every RPG II program follows the same basic series of execution steps, which form the
general logic cycle. Some of the programs you write will need to call upon one or more of the
additional operations ofRPG II: matching fields, chaining, overflow processing, and look
ahead processing. Each of these additional operations is executed according to a fixed logic
cycle within the overall logic cycle of the program. These functions are described later in
this chapter.

The RPG II general logic cycle is executed once for each input record of a primary or secon
dary file. The general logic cycle consists of the following three steps, performed in order
for each record:

1. Inputting a record

2. Performing calculations

3. Outputting one or more records

Each logic cycle begins when a new record is input, and ends just before the next record is
input. The RPG II specifications you code determine the range and type of specific func
tions performed during each phase. During the calculation and output steps within each
cycle, there are two distinct timing phases:

• Total time - operations are performed on summary data accumulated from a group of
related records.

• Detail time - operations are performed on individual records.

Sections 1.4.1 and 1.4.2 describe total-time and detail-time characteristics and operations.

The first and last iterations ofthe RPG II logic cycle are somewhat different from all other
iterations. Sections 1.2 and 1.3 describe these differences and explain how you can take
advantage of them.

1.2 The First Cycle

When program execution begins, and before the first input record is read, several one
time-only operations are performed. You can exert control over this process by providing
detail-time output records conditioned by the 1P (first-page) indicator, and by using output
specifications with either no conditioning indicators or with all negative conditioning
indicators. (See Part I, Chapter 4 for more details on conditioning indicators.) During the
first cycle, RPG II performs the following initialization operations:

• Obtains the current date (UDATE, UDAY, UMONTH, and UYEAR - see Part I,
Chapter 6).

• Opens all files (see Part I, Chapter 5).

1-2 The VAX RPG II Logic Cycle

./

(

• Loads pre-execution-time tables and arrays (see Part I, Chapters 7 and 8).

• Initializes page number counters.

• Prints heading and detail lines conditioned by the IP indicator, by all negative indica-
tors other than the IP indicator, and by no indicators.

Although all iterations ofthe logic cycle (other than the first) include a total-time phase,
RPG II bypasses all total-time calculations and total-time steps during the first cycle
unless the LR (last-record) indicator is on. This behavior, like the logic cycle itself, is built
into RPG II.

After initialization tasks are performed, RPG II reads the first record in the primary file, if
used, and then reads the first record in each secondary file, if used, and determines the type
of each record read.

1.3 The Last Cycle
The last cycle is performed after all the records you specified for processing until end-of-file
have been read from all primary and secondary files. When the last record from the last file
has been read, RPG II sets on the LR (last-record) indicator and all the control-level indica
tors tLl through L9). Then, after this last record has been processed, RPG II performs the
following operations:

1. Performs total-time calculations.

2. Writes total-time output.

3. Outputs any tables or arrays that have output files associated with them.

4. Closes all files.

5. Ends program execution.

1.4 A Normal Cycle
A normal cycle in an RPG II program can be defined as any cycle but the first or the last.
During a normal cycle, RPG II performs all operations necessary to process a single input
record. Because of the nature of most RPG II applications, a normal program cycle includes
two special phases - total time and detail time. Total time occurs before detail time. A
normal cycle consists of the following sequence of steps:

1. Outputting heading lines, if specified

2. Outputting detail-time information pertaining to the previous record

3. Reading an input record

The VAX RPG II Logic Cycle 1--3

4. Performing total-time calculations for the previous record, if required

5. Performing total-time output

6. Checking the LR (last-record) indicator; if it is on, terminates the program (see
Section 1.3 above)

7. Processing the record read in Step 3; performs all detail-time calculations

Steps 4 and 5 constitute total time; Steps 1, 2, and 7 constitute detail time.

This list of steps in a normal cycle is an overview only. See Figure 1-1 for a complete
description of a normal RPG II logic cycle.

1.4.1 Total Time
During total time, RPG II checks which control-level indicators (L1 through L9) you have
defined, and the control field you have associated with each. For example, if your applica
tion involves the generation of a monthly sales report, you may have associated indicator
L9 with the grand total of monthly sales, indicator L8 with total sales by region, indicator
L 7 with total sales by district office, and indicator L6 with total sales by salesperson. (See
Part I, Chapter 4 for details on using control-level indicators.)

Contro I I eve I
I
I Indicators
I I
I I Factor
I I 1

CI NxxNxxNxxl

Operation
I
I
I
I

Factor
2
I

Field length
I Decimal positions
I IHaif adjust (H)
I II
I IIResulting

Resu It I I lind i cators
field I 11+ - 0
I I I I> < = +- Comments --+

011 1213 I 4 1516 171
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** *
Cl9
Cl8
Cl7

* MONTH
REGION
DIST

* * MUlT 12
ADD REGION
ADD DIST

* *--*** * * *
GRAND
TOTREG
TOTDIS

~~-----------~ ZK-4329-B5

1-4 The VAX RPG II Logic Cycle

If, during a particular cycle, it is determined that the salesperson identification number in
the record just read is different from the salesperson number in the previous record, a con
trol break has occurred at the salesperson total level. At this point, your program will out
put the accumulated total sales for the salesperson whose number was found in the
previous record.

You might print each person's name and sales total on a separate line. Or, you might choose
to print a page heading (with a date), and then print a salesperson's total sales, thus pro
viding a separate one-page report for each salesperson. The Output and Calculation speci
fications you code determine the contents, order, and appearance of your report.

During another cycle, it might be determined that the region identifier ofthe record just
read is different from the region number in the previous record. Given the control-level
indicators described in the first paragraph in this section, this means that a three-level
control break has occurred. In this situation, you must first output the accumulated total
for an individual salesperson, then the accumulated total for a district office, and, finally,
the accumulated total for the region.

Similarly, after the last input record in the file has been read, a four-level control break has
automatically occurred. At that point, your program must first output the accumulated
total for the last individual salesperson in the last district office; then, the accumulated
total for the last district office; then, the accumulated total for the last region; and, finally,
the accumulated grand total of all sales for the month.

After all control breaks have been taken care of, total time ends and detail time begins.
Detail-time operations deal with the record just read.

1.4.2 Detail Time
During detail time, your program performs operations specific to each individual record.
In the example described in Section 1.4.1, each time a record is read, the detail-time opera
tions might consist ofthe following steps:

1. Printing an output line on your report. For example, each record in your file might
contain a weekly sales figure for a particular salesperson. The report would list the
week's beginning and ending dates, and the sales figure.

2. Adding the sales figure to all active accumulators. Then, when the next control
break occurs, each accumulator will contain the correct amount.

3. Performing any other operations you defined in your specifications. These might
include moving data fields and handling errors.

Figure 1-1 provides a detailed annotated illustration of a complete, normal RPG II pro
gram cycle. Each processing and decision box is numbered; the numbers are keyed to the
annotations that immediately follow the figure.

The VAX RPG II Logic Cycle 1-5

1-6

1. First cycle

Get date if UDAlE, UDAY, UMONTH, or UYEAR used.
Load pre-execution-time tables and arrays.
Open all files.

I
2. Beginning of normal cycle

*DETL
Perform heading, detail, and fetched overflow output.
Set 1 P indicator off.

3.

Overflow
routine.

>-_____ y_e_s_-.j Terminate

4.

5.

Set off control-level and any record-identifying
indicators.
Set off overflow indicators unless they were set on
during detail-time calculation or output operations
of previous cycle.

program.

yes

Figure 1-1: RPG II Logic Cycle

The VAX RPG II Logic Cycle

Key to Figure 1-1

1. This step is executed only during the first cycle. It initializes your program for exe
cution. Initialization consists of retrieving the date (if you specified UDATE,
UDAY, UMONTH, or UYEAR), opening all files, and loading all pre-execution
time tables and arrays.

2. RPG II writes heading and detail lines (identified by H or D in column 15 (Type) of
the Output specification). Heading and detail lines are always executed at the
same time. If conditioning indicators are specified, the conditions for the indicator
must be satisfied. Ifthe fetch overflow logic is specified, and the overflow indicator
is on, RPG II writes the appropriate overflow lines. Ifthe 1P indicator is on (during
the first cycle only), RPG II prints all lines conditioned by it, then sets the 1P indi
cator off. RPG II executes this step at the beginning of the program so that heading
lines can be printed before actual processing begins.

3. RPG II checks whether any halt indicators (H1 through H9) are on; if any are, the
program terminates. If you do not want your program to terminate here, you must
set all halt indicators off previous to this step. You can set halt indicators on, how
ever, at any time during the program.

4. RPG II sets control-level indicators (L1 through L9) and all indicators used as
record-identifying indicators off. RPG II also sets overflow indicators (OA through
OG, OV) off, unless they were set on during detail time (detail-time calculation or
output operations) in the preceding cycle. All other types of indicators that are on
remain on.

5. Here, RPG II determines whether the LR indicator is on. Ifit is, RPG II branches to
step 15 and sets on control-level indicators L1 through L9, if used.

The VAX RPG II Logic Cycle 1-7

6.

7.

8.

9.

yes

Read input record from the last file processed, if
required. (Not required for input files with
look-ahead fields, or on the first cycle).
For the first cycle, read and determine record type
and sequence of the first record in all primary and
secondary files.

no

Determine record type and check sequence.

10.

Determine which file to process.
If a FORCE operation was specified, use unless
the file is at its EOF.
If no FORCE operation was specified, call the
matching field routine.

no

yes

Matching
field routine.

Figure 1-1: RPG II Logic Cycle (Cont.)

1-8 The VAX RPG II Logic Cycle

Key to Figure 1-1: RPG II Logic Cycle (Cont.)

6. RPG II determines whether a primary file was specified by the program. If not,
RPG II proceeds directly to step 16.

7. If required, RPG II reads an input record from the last primary or secondary file
processed. If this was an input file with look-ahead fields, the record is already
available; therefore, no read operation may be necessary at this time. On the first
cycle, a record is read from each primary and secondary file.

8. RPG II tests the file just read for end-of-file. If end-of-file has been encountered, the
program bypasses step 9.

9. If RPG II reads a record from a file, the record type is determined and the record
sequence is checked. If the record type cannot be determined, or the record is out of
sequence, the program terminates.

10. In this step, RPG II determines which file to process. If a FORCE operation was
executed during the previous cycle, the forced file is selected for processing. (All
records processed with a FORCE operation are processed with the MR (matching
records) indicator set off.) However, ifthe forced file is at EOF (end-of-file), the nor
mal multi-file logic selects the next record for processing. Ifno forced file was speci
fied, RPG II determines whether matching fields were specified. If so, the
matching-fields routine is given control (see Figure 1-2). Otherwise, all records in
a primary file are processed first, then the records from each secondary file in ordpl'
of their specification.

The VAX RPG II Logic Cycle 1-9

11.

12.

13.

14.

15.

1-10

Set on the record-identifying indicator
for the selected record.

Save contents of the control fields.

Set on control-level indicators.
as required.

yes

no

Figure 1-1: RPG II Logic Cycle (Cont.)

The VAX RPG II Logic Cycle

Key to Figure 1-1: RPG II Logic Cycle (Cont.)

11. Here, RPG II determines whether the LR indicator should be set on. The LR indi
cator is set on when the program has reached the end of all the files that you have
specified for processing until the end-of-file, and when all the records from secon
dary files that match the last primary record have been processed. If the LR indica
tor should be set on, RPG II branches to step 15 and sets on indicators L1 through
L9.

12. RPG II sets on the record-identifying indicator for the record selected for process
ing.

13. RPG II determines whether the record selected for processing has caused a control
break to occur. A control break occurs when the value in the control field of the
record being processed differs from the previous value of the control field. See Sec
tion 1.4.1. for more information.

14. If a control break has occurred, RPG II saves the contents of all appropriate control
fields.

15. If a control break has occurred, RPG II sets the appropriate control-level indicator
(L1 through L9) on; at the same time, RPG II sets all lower-level control-level
indicators on. The L1 through L9 indicators can be used for conditioning only if
they have been defined as conditioning indicators.

The VAX RPG II Logic Cycle 1-11

1-12

16.

17.

18.

19.

20.

now?

yes

-TOTC
Perform total-time calculations.

-TOTL
Perform total-time output and
fetched overflow output.

no

Overflow
routine.

Perform table and
>-_____ y_e_s_~;array output; close

files; terminate
program.

no

Figure 1-1: RPG II Logic Cycle (Cont.)

The VAX RPG II Logic Cycle

Key to Figure 1-1: RPG II Logic Cycle (Cont.)

16. RPG II determines whether total-time calculation and output operations should be
performed. If control-level indicators are not specified in columns 59 and 60 (Con
trolleveD of the Input specification, RPG II bypasses total-time calculation and
output operations during the first cycle only; after the first cycle, RPG II performs
total-time calculation and output operations for every cycle.

If control-level indicators are specified, RPG II bypasses total-time calculation and
output operations until after the first record with control fields is processed. When
the LR indicator is on, RPG II always performs total-time calculation and output
operations.

17. In this step, RPG II performs all total-time calculations conditioned by a control
level indicator or containing LO in columns 7 and 8 ofthe Calculation specification.
Total-time calculations can include CHAIN operations, in which a record is imme
diately retrieved from an input file (see Figure 1-3), or READ operations, in which
the next record is retrieved from a demand file.

18. Here, RPG II writes all total-time output lines that satisfy the conditions specified
by the indicators. If an overflow indicator (OA through OG, or OV) is on, and Fetch
overflow is specified, RPG II writes the overflow lines as well.

19. RPG II determines whether the LR indicator is on. Ifit is, RPG II performs table
and array output, closes all files, and terminates the program.

20. RPG II checks to determine whether any overflow indicators (OA through OG, and
OV) are on.

The VAX RPG II Logic Cycle 1-13

21. t yes

Perform overflow output. f----- *OFL
Overflow routine.

I
22. I

Set MR indicator on or off, as required.

23. t
Extract data fields from the record to be processed.
Set field-record-relation indicators on or off, as
required.

24.

Look-ahead no
fields

specified?

25. yes

Perform look-ahead operation. ook-ahead routine

l
26. 1

*DETC
Perform detail-time calculations. ,

Return to the beginning of the normal cycle (step 2.).

ZK-1571-84

Figure 1-1: RPG II Logic Cycle (Cont.)

1-14 The VAX RPG II Logic Cycle

Key to Figure 1-1: RPG II Logic Cycle (Cont.)

21. If any overflow indicators are on, the overflow routine is given control (see Figure
1-4). RPG II outputs all lines conditioned by those overflow indicators that are on.
However, RPG II outputs these lines only if they were not output by Fetch overflow
logic (step 2 or step 18).

22. RPG II determines whether the MR (matching-record) indicator should be set on.
If this is a multifile program, and the record being processed is a matching record,
RPG II sets the MR indicator on; it remains on for the duration of the cycle during
which the matching record is processed. If not appropriate, RPG II sets the MR
indicator off.

23. RPG II extracts data fields from the record to be processed, and sets the field indica
tors on or off, as appropriate, for those fields.

24. RPG II then determines whether look-ahead fields are specified in the last file
processed and whether it is an input file.

25. If the last file processed was an input file with look-ahead fields, RPG II passes
control to the RPG II look-ahead routine (see Figure 1-5). In this routine, RPG II
retrieves the look-ahead record and extracts the look-ahead fields. If look-ahead
fields are not specified, RPG II continues with detail-time calculations (step 26).

26. This is the detail-time calculations step. Here, RPG II performs all conditioned
detail-time calculations and subroutines. The calculations may include CHAIN
and READ operations (see Figure 1-3). Detail-time calculations complete the
RPG II logic cycle. Then, the cycle branches to step 2 to begin again.

The VAX RPG II Logic Cycle 1-15

1.5 RPG II Detail Program Logic Cycle

This section consists of annotated flowchart diagrams that illustrate in detail various rou
tines within the predefined RPG II logic cycle. The following figures are provided:

• Figure 1-2 illustrates the RPG II matching-fields routine.

• Figure 1-3 illustrates RPG II file processing for chained and demand files.

• Figure 1-4 illustrates RPG II overflow processing.

• Figure 1-5 illustrates RPG II look-ahead processing.

1.

2.

3.

4.

5.

Determine the file
to be processed.

yes

Move the matching fields
to the temporary buffer.

Return to program.

no

Issue a run-time
error message.

ZK-1458-83

Figure 1-2: Logic Cycle for the Matching-Fields Routine

1-16 The VAX RPG II Logic Cycle

Key to Figure 1-2

1. RPG II determines whether the program uses more than one primary and secon
dary file. Ifmultifile processing is in effect, processing continues with step 2. Oth
erwise, the program branches to step 3.

2. RPG II compares the matching fields to determine which file is to be processed.
RPG II extracts the matching fields and checks their sequence.

3. If the matching fields are not in sequence, a run-time error occurs and the program
terminates.

4. RPG II moves the matching fields into a temporary buffer. The next record is
selected, based on the value of the matching fields.

5. RPG II returns to the program.

The VAX RPG II Logic Cycle 1-17

1.

Issue a run-time error.

yes

Set on resulting indicator.

ZK-1459-83

Figure 1-3: Logic Cycle for Chained and Demand Files

Key to Figure 1-3

1. RPG II retrieves the next record in the file specified by the CHAIN or READ opera
tion code. If the record is not found on a CHAIN operation or an end-of-file occurs
during a READ operation and a resulting indicator is not specified, a run-time
error occurs. If the record is not found on a CHAIN operation or an end-of-file
occurs during a READ operation and a resulting indicator has been specified, the
indicator is set on and control returns to the program.

2. RPG II sets on the record-identifying indicator associated with the chained or
demand file for the record type read.

3. Then, RPG II extracts the fields from the record just retrieved. Also, RPG II sets on
any field indicators associated with the record.

4. RPG II returns to the program.

1-18 The VAX RPG II Logic Cycle

1.

2.

3.

no

Output lines conditioned
by the overflow indicator.

Return to the program.

yes

ZK-1460-83

Figure 1-4: Logic Cycle for Overflow Processing

Key to Figure 1-4

1. RPG II determines whether the overflow lines were written previously, using the
fetch overflow routine. If so, the program branches to the specified return point;
otherwise, it continues with step 2.

2. RPG II evaluates all overflow lines and writes those lines that satisfy the condi
tions of the indicator(s).

3. RPG II returns to the program.

The VAX RPG II Logic Cycle 1-19

1.

2.

Set all look-ahead
fields to 9s.

ZK-1461-83

Figure 1-5: Logic Cycle for Look-Ahead Processing

Key to Figure 1-5

1. RPG II reads the next record for the file being processed. If the end of the file has
been reached, all look-ahead fields are filled with 9s and control is returned to the
program.

2. RPG II extracts the look-ahead fields from the record.

3. RPG II returns to the program.

1-20 The VAX RPG II Logic Cycle

Chapter 2

Developing Programs

You can create a source program using the RPG II editor (See Part I, Chapter 3); then, you
must compile, link and run the program with commands to the VAXNMS operating sys
tem. If your RPG II program does not execute correctly, you must modify it and repeat
these steps until it does.

When you compile an RPG II program, the RPG II compiler creates an object module file.
When you link your program, you use the VAX Linker. The linker reads the object module
file and uses libraries to replace external references with the address of the executable
code that defines it. Then the linker places that code in an executable image file. When you
execute your program, the system executes that image.

2.1 Compiling Programs

To compile a source program, use the RPG command. Its format is:

RPG[/qualifier(s)] file-spec-list[/qualifier(s)]

where:

/qualifier(s) Specifies special actions the compiler is to perform. See Sections 2.1.2.1
through 2.1.2.8 for information on qualifiers.

file-spec-list Specifies the source file(s) to be compiled. Normally, you would specify a sin
gle source file, but if you need to create a single object file from more than
one source file, separate the file specifications with plus (+) signs. RPG II
appends the files in the order you specify. If you separate source file specifi
cations with commas (,), RPG II compiles the programs separately and cre
ates a single object file for each source file.

When you execute the RPG command, RPG II compiles the program and generates an
object module with the specified file name and the default file type OBJ. The compiler can
also generate other output files, depending on the qualifiers you supply.

2-1

When you compile a source file with the RPG command and specify only its file name, the
compiler searches for a source file with the specified name that:

• Is stored on the default device in the default directory

• Has a file type of RPG

If more than one file meets these conditions, the compiler chooses the one with the highest
version number.

For example, assume that your default device is DBAO:, your default directory is [SMITH],
and you give this command:

$ RPG FIRSTTRY
$

The appearance of the second DCL command prompt ($) indicates that the compilation is
finished.

The compiler searches device DBAO: in directory [SMITH], seeking the highest version
of FIRSTTRY.RPG. If you do not specify an output file, the compiler generates the file
FIRSTTRY.OBJ and stores it on device DBAO: in directory [SMITH]; with a version num
ber that is one higher than any existing version number for FIRSTTRY.OBJ.

2.1.1 Default Compiler Options
When you compile a program, you can specify options like ILIST or INOWARNINGS. The
options you get when you do not specify them are called defaults.

You can change these defaults for your own programs by using qualifiers with the RPG
command. The RPG command accepts qualifiers to change the defaults for a single compi
lation, as shown in the following example:

$ RPG/LIST/NOOBJECT MYPROG

This RPG command tells RPG II to compile a single source file (MYPROG.RPG), and over
rides the default compiler settings for

• Listing - The RPG II compiler will produce a compiler listing.

• Object file - The RPG II compiler will not produce an object file.

You can specify other defaults by defining RPG as a symbol, as shown in the following
example:

$ RPG :=="RPG/CHECK/LIST/CROSS"

If you type RPG MYPROG, the ICHECK, ILIST, and ICROSS qualifiers are in effect.

2-2 Developing Programs

2.1.2 RPG II Compiler Qualifiers
This section describes the RPG command itself; Sections 2.1.2.1 through 2.1.2.8 describe
the RPG command qualifiers and list their default values.

You can change defaults by using qualifiers with the RPG command. Qualifiers have the
form:

/qualifier[= value]

Many qualifiers have a corresponding form that negates the action specified by the quali
fier. The negative form is:

/NOqualifier

For example, ILIST tells the compiler to produce a listing file; /NOLIST suppresses the
listing.

You can specify qualifiers so that they affect either all files in the command, or only certain
files. If the qualifier immediately follows the RPG command, it applies to all files, as shown
in the following example:

$ RPG/LIST ABC,XYZ,RST

This command specifies listing files for ABC.RPG, XYZ.RPG, and RST.RPG.

Qualifiers following a file specification (with some exceptions) affect only the associated
file, as shown in the following example:

$ RPG/LIST ABC,XYZ/NOLIST,RST

The above RPG command specifies listing files for ABC.RPG and RST.RPG, but not for
XYZ.RPG. Qualifiers to a single file specification in an appended list of file specifications
are exceptions to this rule. (A list of file specifications separated by plus signs is called an
appended list.) See Example 5 in the following list.

1. $ RPG/LIST AAA ,BBB ,ccc

RPG II compiles source files AAA.RPG, BBB.RPG, and CCC.RPG as separate files,
produces three object files (AAA.OBJ, BBB.OBJ, and CCC.OBJ), and three listing
files (AAA.LIS, BBB.LIS, and CCC.LIS).

2. $ RPG ;OO{+YYY+zzz

RPG II appends source files XXX.RPG, YYY.RPG, and ZZZ.RPG, and compiles
them as a single program. This command produces one object file named
XXX.OBJ, but does not produce a listing file.

3. $ RPG/OBJECT=SQUARE CIRCLE

RPG II compiles source file CIRCLE.RPG and produces object file SQUARE.OBJ.
This command produces no listing file.

Developing Programs 2-3

4. $ RPG AAA+BBB ,CCClLIST

RPG II produces two object files: AAA.OBJ (created from AAA.RPG and
BBB.RPG), and CCC.OBJ (created from CCC.RPG). RPG II also produces the list
ing file CCC.LIS.

5. $ RPG ABC+DEF INDDBJECT+>(YZ

RPG II appends and compiles the source files ABC.RPG, DEF.RPG, and XYZ.RPG.
Because qualifiers in a list of appended files affect all files in the list, this command
suppresses the creation of an object file.

Table 2-1 lists the qualifiers you can use with the RPG command.

Table 2-1: RPG II Command Qualifiers

Qualifier Negative Form

ICHECK= LNOJBOUNDS INOCHECK
[N01RECURSION
[NO]BLANKS_IN_NUMERICS
ALL
NONE

ICROSS_REFERENCE

/DEBUG = [NO]SYMBOLS
[NO]TRACEBACK
ALL
NONE

!LIST[= file-spec]

/MACHINE_CODE

IOBJECT[= file-spec]

ISEQUENCE_CHECK

IWARNINGS = [NO]OTHER
LNO]lNFORMATION
ALL
NONE

INOCROSS..REFERENCE

INODEBUG

INOLIST

INOMACHINE_CODE

INOOBJECT

INOSEQUENCE_CHECK

INOWARNINGS

Default

INOCHECK

INOCROSS_REFERENCE

/DEBUG = (TRACEBACK,NOSYMBOLS)

INOLIST (interactive)
ILIST (batch)

INOMACHINE_CODE

IOBJECT

INOSEQUENCE_CHECK

IWARNINGS = (OTHER,NOINFORMATION)

Sections 2.1.2.1 through 2.1.2.8 describe RPG II command qualifiers in detail.

2.1.2.1 CHECK
The CHECK qualifier causes RPG II to check for errors in array indexes, recursive calls to
subroutines, and blanks in overpunched numeric fields. The CHECK qualifier format is:

ICHECK[= (option[, ...])]

~ Developing Programs

where option can be:

[NOjBOUNDS
[NOjRECURSION
[NOjBLANKS_IN_NUMERICS
ALL
NONE

where:

BOUNDS

RECURSION

ALL

NONE

Checks array indexes to make sure they are within array
boundaries specified by the program.

Verifies that subroutines are not called recursively.

Converts blanks in overpunched numeric fields to zeros.

Indicates that RECURSION, BOUNDS, and
BLANKS_IN_NUMERICS checking will be performed.

Indicates that RECURSION, BOUNDS, and
BLANKS_IN _NUMERICS checking will not be performed.

Specifying CHECK is equivalent to specifying CHECK = ALL; NOCHECK is equivalent
to CHECK = NONE. NOCHECK is the default.

Use CHECK = (RECURSION,BOUNDS) for programs only during initial program debug
ging, because compiling with this qualifier results in additional code and, consequently,
takes more time to process. Using NOCHECK means that the compiler does not signal an
error for an array reference outside the bounds of an array or for a subroutine that has
been called recursively. Therefore, using NOCHECK may result in your program getting a
memory-management or access-violation error at run time.

2.1.2.2 CROSS_REFERENCE
The CROSS_REFERENCE qualifier causes the compiler to include cross-reference infor
mation in the listing file for the compiled source file. Cross-reference information lists
variable names, indicators, and the program lines in which they were referenced. Its for
mat is:

/CROSS_REFERENCE

When you use CROSS_REFERENCE, you must also use LIST, or LIST must be in effect
(default for batch mode) to produce a listing file. NOCROSS_REFERENCE is the default.

Developing Programs 2-5

2.1.2.3 DEBUG
The DEBUG qualifier causes the compiler to provide information for the VAX Symbolic
Debugger and the system run-time error traceback mechanism. Its format is:

IOEBUG[= (option[, ...])]

where option can be:

[N01SYMBOLS
[N01TRACEBACK
ALL
NONE

where:

SYMBOLS Causes the compiler to provide the debugger with local symbol defini
tions for user-defined names (including dimension information for
arrays). If you use SYMBOLS, you can refer to data entities by their
names when you use the debugger.

TRACEBACK Causes the compiler to provide an address correlation table so that the
debugger and the run-time error traceback mechanism can translate
absolute addresses into source program routine names and line numbers.

ALL

NONE

Causes the compiler to provide both local symbol definitions and an
address correlation table.

Prevents the compiler from providing debugging information.

Neither the TRACEBACK qualifier nor the SYMBOLS qualifier affects a program's exe
cutable code.

Specifying DEBUG is equivalent to specifying DEBUG = ALL; NODE BUG is equivalent
to DEBUG = NONE. DEBUG = TRACEBACK is the default. For information on debug
ging, see Part I, Chapter 10.

2.1.2.4 LIST
The LIST qualifier controls whether or not RPG II produces a listing file for the compiled
program. The listing file contains the source program and a compilation summary. If you
also use the MACHINE_CODE qualifier, the listing file will include the compiler-gener
ated object code for the compiled program. If you also use the CROSS_REFERENCE quali
fier, the listing file will include cross-reference information. The format of the LIST
qualifier is:

ILlST[=file-specl

You can include a file specification for the listing file. Otherwise, the output file defaults to
the name of the first source file and the file type LIS.

2-6 Developing Programs

If the RPG command is executed in interactive mode, the default is NOLIST. If the RPG
command is executed in batch mode, the default is LIST.

The listing file uses a listing page length which depends on the logical SYS$LP _LINES.
Any value between 30 and 255 can be used for SYS$LP -LINES. The listing page length
uses 3 line top and bottom margins. If the logical SYS$LP _LINES is not defined, the
default page length will be 66 lines (60 listing lines after the 3 line top and bottom margins
are subtracted).

2.1.2.5 MACHINE-CODE
The MACHINE_CODE qualifier specifies that the listing file include the compiler-gener
ated object code. Its format is:

IMACHINE_CODE

When you use MACHINE_CODE, you must also use LIST, or LIST must be in effect
(default for batch mode) to produce a listing file. NOMACHINE_CODE is the default.

2.1.2.6 OBJECT
The OBJECT qualifier causes RPG II to produce an object module, and optionally specifies
its file name. Its format is:

IOBJECT[= file-spec]

The default is OBJECT.

By default, the compiler generates object files as follows:

• If you specify one source file, RPG II generates one object file.

• If you specify multiple source files separated by plus signs, RPG II appends the files
and generates one object file.

• If you specify multiple source files separated by commas, RPG II compiles and gener-
ates a separate object file for each source file.

You can use both plus signs and commas in the same command line to produce different
combinations of appended and separated object files. See examples in Section 2.1.2.

To produce an object file with an explicit file specification, you must use the OBJECT qual
ifier, in the form OBJECT = file-spec. Otherwise, the object file has the same name as its
corresponding source file, and the default file type OBJ. By default, the object file produced
from appended source files has the name of the first source file specified. All other file speci
fication attributes (node, device, directory, and version number) assume the default
values.

During the early stages of program development, you may find it useful to suppress the
production of object files until your source program compiles without errors. Use the
NOOBJECT qualifier to do this.

Developing Programs 2-7

2.1.2.7 SEQUENCE-CHECK
The SEQUENCE_CHECK qualifier causes the compiler to check the line numbers in col
umns 1 through 5 of every program line to make sure they are in ascending line-number
sequence. If the line numbers are not in sequence, the compiler issues a warning message. "
Its format is:

/SEQUENCE_CHECK

NOSEQUENCE_CHECK is the default.

2.1.2.8 WARNINGS
The WARNINGS qualifier allows you to specify whether RPG II displays information and
warning messages. Its format is:

IWARNINGS[= (option[, ...))]

where option can be:

[NO]OTHER
[NO]INFORMATION
ALL
NONE

where:

OTHER Causes RPG II to display warning messages.

INFORMATION Causes RPG II to display information messages.

ALL Causes RPG II to display both warning and information messages.

NONE Prevents RPG II from displaying warning or information messages.

Specifying WARNINGS is equivalent to Splfcifying WARNINGS = ALL; NOWARNINGS is
equivalent to WARNINGS = NONE. WARNINGS = (NOINFORMATION,OTHER) is the
default.

2.2 Linking and Running Programs
The VAX Linker uses the object module produced by the RPG II compiler as input and
produces an executable image file as output. This file has the same name as your program
and the default file type EXE.

When your program calls other programs ~ that is, when it is made up of more than one
program module - the linker takes multiple object files and creates a single executable
image from them. See Part 1, Chapter 9 for information on subprograms.

2-8 Developing Programs (

You use the LINK command to invoke the VAX Linker. The format of the LINK command
is:

LINK[/command-~ualifier(s)] file-spec-list[/file-~ualifier(s)]

where:

command-qualifier(s)

file-spec-list

file-qualifier(s)

Specifies output file options. Use DEBUG to provide information
for the VAX Symbolic Debugger. See Part I, Chapter 10 for infor
mation on debugging RPG II programs. See the VAX/VMS
Linker Reference Manual for information about other command
qualifiers.

Specifies a file or the files to be linked.

Specifies input file options. See the VAX/VMS Linker Reference
Manual for information on file qualifiers.

When you type LINK, the system prompts with:

_File:

Respond by typing the file specification(s). If multiple file specifications do not fit on a sin
gle line, type a hyphen (-) as the last character on the line and continue on the next line.

For example, to link the object file created from the program FIRSTTRY in Section 2.1,
type:

$ LI NK F I RSTTRY
$

This command tells the linker to accept FIRSTTRY.OBJ as input, and to produce
FIRSTTRY.EXE as output. Once the executable file has been created, you run it with the
RUN command:

$ RUN F I RSTTRY
$

2.3 Interpreting RPG II Compiler Error Messages
The format of an RPG II compiler error message is:

fac-severity-IDENT

where:

fac Represents the facility. The facility is always RPG.

severity Indicates the severity of the error. Severity can be I (information), W (warn
ing), E (error), or F (fatal).

IDENT Represents the IDENT field.

Developing Programs 2-9

The IDENT field of an RPG II compiler error message designates the error recovery action
taken by the RPG II compiler. IDE NT fields can have one ofthe following values:

• SPEC_IGNORED

The current specification is ignored. The resulting program, if nonfatal, acts as if the
specification was not entered.

• ENTRY_IGNORED

The entry in the current field is ignored. The resulting program, if nonfatal, acts as if
the field was blank.

• DEFN_IGNORED

The current definition ofthis field is ignored. The resulting program, if nonfatal, uses
the previous definition.

• CHAR_IGNORED

The current character is ignored. The resulting program, if nonfatal, acts as if the
column was blank.

• FATAL

No error recovery action can be taken. The severity level is always fatal.

• ACCEPTED

The compiler accepts the entry exactly as specified.

• SEE_MESSAGE

The error text contains the recovery action taken by the RPG II compiler.

• O.-ASSUMED

The entry in the current field is ignored. The resulting program, if nonfatal, acts as if
the field contained o.

2-10 Developing Programs

Chapter 3

Using the RPG II Editor

This chapter explains how to use the RPG II editor. You use the RPG II editor to create, edit
and read (or simply view) RPG II programs.

The RPG II editor is available on the VT100 family, VT200 family and VK100 (GIG!)
terminals.

The RPG II editor allows overstriking; that is, you can change a program line by placing
the cursor in the column where you want to make a change and typing a new character,
without affecting any characters to the right of the cursor.

The cursor is represented as a box CI) in the examples throughout this chapter.

All examples in this chapter assume a terminal page size of 24 lines, unless otherwise
noted.

3.1 RPG II Editor Qualifiers

Invoke the RPG II editor by typing the RPG/EDIT command. To create a file, provide a file
specification, as shown in the following example:

$ RPG/EDIT FIRSTTRY

You do not have to supply the file type .RPG, because it is the default.

To edit or read a file, include the name ofthe file you want to edit or read when you invoke
the RPG II editor. See Section 3.8.1 for an example.

When you invoke the editor, if the number of columns (SET TERMINAL/WIDTH = m) is
less than 80 or the number of lines (SET TERMINAL/PAGE = n) is less than 6, the editor
will display the following message, then will exit:

At least G lines and 80 colUMns on the screen are required

See the VAX/VMS DeL Dictionary for information on the SET TERMINAL command.

Note that the SET TERMINAL command must be done before invoking the editor.

3-1

Ifthe file you specify when invoking the RPG II editor is a new file, the RPG II editor dis
plays the following message:

File not found

Ifthe file you specify when invoking the RPG II editor is an existing file, the RPG II editor
displays the message:

n lines read froM file device:[directory]filenaMe.type;version

Finally, the RPG II editor displays the following message:

Press the PF2 key to let help inforMation

Ifthe terminal page size is fewer than 17 lines, the initial help message is not displayed. If
HELP is requested using the HELP key or a SET HELP command in a startup command
file, and the terminal page size is less than 17 lines, the following message is displayed and
the usual HELP action will not be performed:

At least 17 lines on the screen are required by the editor to provide HELP

Table 3-1 lists the qualifiers that you can use with the RPG/EDITcommand. If you precede
a qualifier with NO, that qualifier is not in effect.

Table 3-1: RPG/EDIT Command Qualifiers

Qualifier

ICOMMAND

ICREATE

IJOURNAL

IOUTPUT

IRE AD_ONLY

IRECOVER

ISTART_POSITION

Negative Form

INOCOMMAND

INOCREATE

INOJOURNAL

INOOUTPUT

INOREAD_ONLY

INORECOVER

INOSTARTJ>OSITION

Default

ICOMMAND

ICREATE

IJOURNAL

IOUTPUT

INOREAD_ONLY

INORECOVER

ISTART _POSITION

Sections 3.1.1 through 3.1.7 describe these qualifiers and explain how to use them.

3.1.1 COMMAND
The COMMAND qualifier causes the editor to execute a specified file in the startup com
mand file. Its format is:

ICOMMAND[= file-spec]

The RPG II editor will read commands from any file specified by COMMAND. Each com
mand in the specified file will be treated as ifthe COMMAND function was used.

3-2 Using the RPG II Editor

COMMAND is present by default, with a default value of RPGINI. If NOCOMMAND is
used, then no command file is executed. See Section 3.7.2 for information on startup com
mand files.

3.1.2 CREATE
The CREATE qualifier creates a file for the editing session. If the specified file already
exists, that file is opened. Its format is:

/CREATE[= file-spec]

CREATE is present by default. If NOCREATE is used, the file is not created. However, if
the file already exists, it is opened.

3.1.3 JOURNAL
The JOURNAL qualifier creates a journal file for the current editing session. Its format is:

/JOURNAL[= file-spec]

If you should leave an editing session abnormally, you can use the journal file to re-execute
all the commands you issued during the session. To do this, type the RPG/EDIT/RECOVER
file-spec command.

JOURNAL is present by default. If you do not provide a file specification with JOURNAL,
the RPG II editor creates a journal file with the same name as your input file and the
default file type JOU.

3.1.4 OUTPUT
The OUTPUT qualifier defines the name of the output file. Its format is:

/OUTPUT[= file-spec]

OUTPUT is present by default. If you do not provide a file specification with OUTPUT, the
RPG II editor creates an output file with the same name and type as the input file, whose
version number is one higher than the highest existing version of the input file.

If you use NOOUTPUT, the RPG II editor does not create an output file. In this case, you
must either use the QUIT command or specify a file specification with the EXIT command
to leave the editor.

3.1.5 READ_ONLY
The READ_ONLY qualifier tells the RPG II editor not to create a journal file or an output
file for the file you are currently editing. Its format is:

/READ_ONLY

U sing the RPG II Editor 3-3

You can use READ_ONLY when you want to view a file without changing its contents. In
this case, you must either use the QUIT command or specify a file specification with the
EXIT command to leave the editor.

NO READ_ONLY is the default, and automatically creates ajournal file and output file for
the file you are currently editing (unless you leave the RPG II editor using the QUIT
command).

Using READ_ONLY has the same effect as using both the NOOUTPUT and the
NOJOURNAL qualifiers with the RPG/EDIT command.

3.1.6 RECOVER
The RECOVER qualifier reads the commands from a journal file and re-executes all the
edits you made during an editing session. Its format is:

IRECOVER

Once the recovery is done, the RPG II editor responds with:

Recovery cOMPlete

At this time, you can continue editing your file.

If the name of the recovery journal file is different from the default (the same file name as
the input file with the JOU file type), use JOURNAL = file-spec and RECOVER to specify
another name, as shown in the following example:

$ RPG/EDIT/JOURNAL=FILE1.JOU/RECOVER FILE2.RPG

In this example, the journal file name is FILE1.JOU and the name of both the input and
output files is FILE2.RPG. If you do not use JOURNAL, the journal file name is
FILE2.JOU.

NORECOVER is the default.

3.1. 7 START_POSITION
The START_POSITION qualifier determines where the VAX RPG II editor starts in the
editing buffer. Its format is:

ISTART _POSITION[= (line,column)]

START_POSITION is the default. The setting is line 1, column 1.

NOSTART_POSITION is equivalent to START_POSITION = (1,1)

3-4 Using the RPG II Editor

3.2 The RPG II Editor Screen
The RPG II editor screen consists of the following:

• The help window

• An 80-column ruler

• Tab stops

• The editing window

• The Prompt line

• The Message line

Note that when you use a terminal without scrolling regions (for example, VKIOO (GIG!)),
the RPG II editor must redisplay the information on the screen rather than scrolling new
information onto the screen.

Using the RPG II Editor 3-5

The screen below shows an example of each of the above listed items. Note that all screens
shown are based on a default setting of24 lines with Ii top ruler. If you want to change the
page size, see the SET TERM/PAGE commands in the VAX/VMS DeL Dictionary.

PF1IPF2 - RPG II specification fot'lIIats +-------+-------+-------+-------+
Pt'ess the PFlIKP7 ke!:l and t!:lpe HELP fot' I Gold I Hell' IFnx FndlDIL UdLi

infot'lIIation on cOllllllands and functions. +-------+-------+-------+-------+
Fot' hell' on a specific ke!:l. pt'ess the IPag CllldlSec DsplRev HovlDIF UdFI

PF2 ke!:l followed b!:l the ke!:l fot' which +-------+-------+-------+-------+
!:lou want hell' infot'lIIation. IAdv BotlBck ToplCut PaslShL ShRI

Othet' ke!:ls: BS_KEY DEL_KEY +-------+-------+-------+-------+
TAB_KEY UP.DOWN.LEFT.RIGHT IFld IEol DEIiCht' Coli
CTRL_R_KEY CTRL_W_KEY +-------+-------+-------+Ent
CTRL_U_KEY CTRL_LKEY I Lin OpL I Se I Res I

+---------------+-------+-------+

011 I 2 I 3 I 4 I 5 I 6 I 7

:;;; '. ~ 1234567890123456789012345678901234567890123456789012345678901234567890123456789

H* FUNCTIONAL DESCRIPTION:)
H* This pt'ogt'alll pt'oduces a t'epot't of shiplllents fot' vat'ious
H* pt'oducts bt'oken down b!:l division and depat'tillent using an
H* input file with the shiplllent data fot' the past 4 ,,!uat'tet's.
H*--
H
FSHIPS IP F 41 DISK }

Seat'ch fot': editot'
Stt'in not found }

help window

SO-column
ruler

tab stops

source window

prompt line

message line

~--------------~ ZK-4666-85

When you use the HELP function (default = PF2), the help window appears on the screen.
It includes a diagram of the keypad and other key functions.

When the keypad diagram is displayed and you enter the HELP function again, the follow
ing message appears:

Press the key for which YOU want f~rther help inforMation

You can press the HELP key and any other key listed in the keypad diagram to display
help information on that key in the help window. See Section 3.8.1 for an example.

The HELP_SPECS function (default = PFlIPF2) causes the help window to display the
specification format for the current line. See Section 3.8.1 for an example. See the
DISPLAY function, Section 3.5.11, for information on how to remove HELP from the
screen.

3-6 Using the RPG II Editor

If you do not request help information, the RPG II editor displays the program in the entire
screen except for the ruler and tab stops and the prompt and message lines, as shown in the
following example:

011 I 2 I 3 I 4 1516 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

I
* I I .* .. * ... 1*1 I I" 1 ••••••• 1*1' ••••••••••••••••• II I ••• I I •• I •• I

H*++
H* FUNCTIONAL DESCRIPTION:
H* This progra~ produces a report of ship~ents for various
H* products broken down b~ division and depart~ent using an
H* input file with the ship~ent data for the past 4 ~uarters.
H*--
H
FSHIPS IP F
FSUHREP 0 F
E
LSUHREP 55FL 500L
ISHIPS AA 01
I
I
I
I
c*
C 01

41
98

QTY

XFOOTQTY

DISK
LPRINTER
420

1 5 DIV L2
6 7 DEPT L1
8 16 PROD

17 24 QTY

PROQTY 30

Press the PF2 ke to et he) Information

"-- ~ ----------------------- ZK-4330-85

An 80-column ruler in reverse video is displayed above or below the source window_ See
Section 3.6.8-4 for information on setting the ruler. Below the ruler, a tab stop marks the
beginning of each field for the specification of the current line.

An asterisk (*) indicates a tab stop where you can enter a field value. A dot (.) indicates
that the column must be left blank. A dash (-) after an asterisk indicates that the field
must contain numeric data. Numeric data must be right-justified. Blanks after an asterisk
indicate that the field must contain alphanumeric data. Alphanumeric data must be left
justified.

The RPG II editor marks the line after the last line in the editing buffer with the End-of
Buffer [EOB] symbol. The [EOB] symbol will not appear in the output file.

The last two lines of the screen consist ofthe prompt line and the message line. The prompt
line displays prompts in reverse video for input when you use functions such as FIND and
COMMAND. The message line displays informational and error messages. The following

Using the RPG II Editor 3-7

example shows what the RPG II editor screen looks like with the specification format for
the current line, the prompt for the FIND function, and an informational message.

Currenc!:j s!:jl1lbol
I Inverted print (DIJ)
I I Alternate collating se~uence (SE)
I I I iP forl1ls position (1)
I I I I

H I I I I
011 I 2 I 3 I 4 I 5 161 7

1234567890123456789012345678901234567890123456789012345678901234567890123456
*.,. I.' I., •• * .. * *. I I. ", ••• I.' .* ... I •••••• ,., •••••••••• I •••••• I I.

H*++
H* FUNCTIONAL DESCRIPTION:
H* This progral1l produces a report of shipl1lents for various
H* products broken do~n b!:j division and departl1lent using an
H* input file with the shipl1lent data for the past 4 ~uarters.
H*--
H

r.I!'I!!I.-!IF.SHIPS IP F 41 DISK

• I

~~------------~ ZK-4331-85

3.3 The RPG II Editor Cursor

The RPG II editor cursor is represented as a box (in reverse video) or an underscore,
depending on the cursor setting for your terminal. The cursor is displayed in the current
column on the current line. Note, however, that if the current column is column 81, the
cursor is displayed in column 80 on the current line. If you try to move the cursor to the
right of column 81 or to the left of column 1, the current column remains unchanged and
one of the following messages is displayed in the message line:

AtteMPt to Moue past coluMn 81

AtteMPt to r.IO'Je before colurnn 1

3-8 Using the RPG II Editor

3.4 The RPG II Editor Buffers

The RPG II editor uses the following four buffers:

• Editing

The editing buffer contains the file of source code that is displayed on the RPG II edi
tor screen.

• Deleted-field

The deleted-field buffer contains the field deleted when you use the DELETE_FIELD
function (default = MINUS). See Section 3.5.14 for information on the
DELETE_FIELD function. You can access the contents of the deleted-field buffer by
using the UNDELETE_FIELD function. See Section 3.5.15 for information on the
UNDELETE_FIELD function.

• Deleted-line

The deleted-line buffer contains the line deleted by the DELETE_LINE function
(default = PF4). See Section 3.5.6 for more information on the DELETE_LINE func
tion. You can access the contents of the deleted-line buffer by pressing the
UNDELETE_LINE (default = PFlIPF4). See Section 3.5.7 for more information on
the UNDELETE_LINE function.

• Paste

The paste buffer contains the range of lines delimited by the SELECT (default =

PERIOD) and CUT (default = KP6) functions (see Section 3.5.32). You can access the
contents of the paste buffer by using the PASTE function (default = PFlIKP6). See
Section 3.5.21 for more information on the PASTE function.

3.5 Keys and Functions

To make sure the RPG II editor is using the correct VMS terminal characteristics for your
terminal, type the DCL SET TERM/INQUIRE command before invoking the RPG II edi
tor. The following diagram is a graphic representation of the RPG II editor keypad.

U sing the RPG II Editor 3-9

VT100/VT200/VK100IGIGII Keypad RPG II Editor Keypad

PFI PF2 PF3 PFLI Gold Help Fnx Fnd D1L UdL

7 8 9 - Pag C!Tld Sec Dsp Re\l Mo \) D1F UdF

LI 5 6 , Ad \I Bot : B c ~~ Top lCut Pas ShL ShR

1 2 3 Fld Eol Del Chr Col
Enter E nt

0 . Lin Dpl Sel Res

Chapter 3 refers to those keys with numbers and symbols as KPn, where KP means
keypad and n is the number of the key shown on the VT100 family, VT200 family, and
VK100 (GIG!) keypad. For example, KP6 refers to the keypad key numbered 6. Table 3-2
lists the name and default function of each key.

Note that many keys have alternate functions. An alternate function is enabled when you
press the GOLD key (default = PF1) followed by the key you want to use. This sequence is
referred to in this chapter as PFlI[key_name].

Table 3--2: RPG II Editor Define Key Defaults

Command

DEFINE KEY
DEFINE KEY
DEFINE KEY
DEFINE KEY
DEFINE KEY
DEFINE KEY
DEFINE KEY/GOLD
DEFINE KEY
DEFINE KEY/GOLD
DEFINE KEY
DEFINE KEY/GOLD
DEFINE KEY
DEFINE KEY/GOLD
DEFINE KEY
DEFINE KEY/GOLD
DEFINE KEY
DEFINE KEY/GOLD
DEFINE KEY
DEFINE KEY/GOLD
DEFINE KEY
DEFINE KEY/GOLD
DEFINE KEY
DEFINE KEY/GOLD
DEFINE KEY

Key

PFl
UP
DOWN
LEFT
RIGHT
PF2
PF2
PF3
PF3
PF4
PF4
KP7
KP7
KP8
KP8
KP9
KP9
MINUS
MINUS
KP4
KP4
KP5
KP5
KP6

3-10 Using the RPG II Editor

Default

GOLD
UP
DOWN
LEFT
RIGHT
HELP _KEYPAD
HELP _SPECIFICATIONS
FIND_NEXT
FIND
DELETE_LINE
UNDELETE_LINE
PAGE
COMMAND
SECTION
DISPLAY
REVIEW_ERROR
MOVE_ TO_RULER
DELETE_FIELD
UNDELETE_FIELD
ADVANCE
BOTTOM
BACKUP
TOP
CUT

(continued on next page)

Table 3-2: RPG II Editor Define Key Defaults (Cont.)

Command

DEFINE KEY/GOLD
DEFINE KEY
DEFINE KEY/GOLD
DEFINE KEY
DEFINE KEY
DEFINE KEY/GOLD
DEFINE KEY
DEFINE KEY/GOLD
DEFINE KEY
DEFINE KEY
DEFINE KEY/GOLD
DEFINE KEY
DEFINE KEY/GOLD
DEFINE KEY
DEFINE KEY
DEFINE KEY
DEFINE KEY
DEFINE KEY
DEFINE KEY
DEFINE KEY
DEFINE KEY
DEFINE KEY
DEFINE KEY
DEFINE KEY
DEFINE KEY
DEFINE KEY
DEFINE KEY
DEFINE KEY
DEFINE KEY
DEFINE KEY
DEFINE KEY

Key

KP6
COMMA
COMMA
KPI
KP2
KP2
KP3
KP3
ENTER
KPO
KPO
PERIOD
PERIOD
CTRLJLKEY
CTRL_LKEY
RETURN
CTRL_ILKEY
CTRL_U_KEY
CTRL_W_KEY
CTRLZ_KEY
DEL_KEY
FlO
F12
F15
F16
El
E2
E3
E4
E5
E6

Default

PASTE
SHIFT_LEFT
SHIFT_RIGHT
FIELD
END_OF _LINE
DELETE_TO_END_OF _LINE
CHARACTER
COLUMN
ENTER
LINE
OPEN_LINE
SELECT
RESET
FIELD_BACKWARD
FIELD_FORWARD
NEW_LINE
REFRESH_SCREEN
DELETE_TO_BEGINNING_OF_LINE
REFRESH_SCREEN
EXIT
DELETE_CHARACTER
EXIT
FIELD_BACKWARD
HELP _KEYPAD
ENTER
FIND
PASTE
CUT
SELECT
SECTION_BACKWARD
SECTION_FORWARD

See DEFINE KEY (Section 3.6.2) for a complete list of definable keys. Sections 3.5.1
through 3.5.44 describe these functions and explain how to use them.

Using the RPG II Editor 3-11

3.5.1 The GOLD Function
The GOLD function (default = PF1) enables you to select the alternate function of a key_
In the following diagram ofthe keypad, the alternate key names appear on the right:

Gold Help Fnx Fnd DlL UdL

Pa9 Crnd Sec Dsp Rev Mov DlF UdF

Adv Bot BcK Top Cut Pas ShL ShR

Fld Eol DEI Ch r Col
Ent

Lin OpL Sel Res

3-12 Using the RPG II Editor

3.5.2 The HELP_KEYPAD Function
The HELP_KEYPAD function (default = PF2) displays the keypad diagram in the help
window, as shown in the following example:

PF1/PF2 - RPG II specification formats +-------+-------+-------+-------+
Press the PF1/KP7 ke~ and t~pe HELP for I Gold I Help IFnx FndlDlL UdLI
information on commands and functions. +-------+-------+-------+-------+

For help on a specific ke~, press the IPag CmdlSec DsplRev MovlDlF UdFI
PF2 ke~ followed b~ the ke~ fOI' which +-------+-------+-------+-------+
~ou want help information. IAdv BotlBck ToplCut PaslShL ShRI

Other ke~s: BS_KEY DEL_KEY +-------+-------+-------+-------+
TAB_KEY UP,DOWN,LEFT,RIGHT IFld IEol DEllChr Coli
CTRL_R_KEY CTRL_W_KEY +-------+-------+-------+Ent
CTRL_U_KEY CTRL_Z_KEY I Lin OpL ISel Resl

+---------------+-------+-------+
o I 1 I 2 I 3 I 4 I 5 Ie:; 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
* * .. * * *

I H*++
H* FUNCTIONAL DESCRIPTION:
H* This program produces a report of shipments for various
H* products broken down b~ division and department using an
H* input file with the shipment data for the past 4 quarters.
H*--
H
FSHIPS IP F 41 DISK

~ ~
ZK-4333-85

If HELP is requested while the terminal page size is fewer than 17 lines, the following
message will be displayed and the usual HELP action will not be performed:

At least 17 lines on the screen are required by the editor to provide HELP

HELP cannot be displayed unless there are enough lines on the screen to position the
HELP window and still keep the ruler, prompt line, message line and one line of the edit
ing window visible.

Using the RPG II Editor 3-13

Ifthe keypad diagram is already displayed, you can get help information on any function
(except GOLD) by using HELP_KEYPAD (default = PF2) and the key for which you want
help information. Help information will appear in the help window. The following exam
ple shows help on the CUT (default = KP6) and PASTE (default = PFlIKP6) functions:

KP6

The CUT function ~oves the selected range of lines to the paste buffer. The
selected range of lines consists of the line identified b~ the SELECT
function up to the current line. The line following the selected range of
lines beco~es the current line. The current colu~n re~ains unchanged.

The PASTE function inserts the contents of the paste buffer directl~ in
front of the current line. The current line is ~oved down to acco~~odate
the lines ft'o~ the paste buffet'. The current colu~n and line re~ain

h d
011 1213 I 4 I 5 I 6 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
* "" .* .. * *. II I I ••••••• I .* .. '" I '" "'" I ••••••• I •••• II •• I.

I H*++
H* FUNCTIONAL DESCRIPTION:
H* This progra~ produces a report of ship~ents for various
H* products broken down b~ division and depart~ent using an
H* input file with the ship~ent data for the past 4 quarters.
H*--
H
FSHIPS IP F 41 DISK

~-------------~ ZK-4332-85

3.5.3 The HELP_SPECIFICATIONS Function
The HELP_SPECIFICATIONS function (default = PFlIPF2) displays the specification
format for the current line. In the following example, if the current line is line 100, the
RPG II editor displays the Control specification format when you use
HELP _SPECIFICATIONS.

3-14 Using the RPG II Editor

Cur'r'enc~ s~fllbo I
I Inverted print (DIJI
I I Alternate collating sequence (SEI
I I I IP forflls position (II
I I I I

H I I I I
011 12 I 3 I 4 I 5 16 I 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890
* •........•• * •. * ..•• * .•............ *•..•..••....•....•.•••..•....

I 100H*++
H* FUNCTIONAL DESCRIPTION:
H* This prografll produces a report of shipfllents for various
H* products broken down b~ division and departfllent using an
H* input file with the shipfllent data for the past 4 quarters.
H*--
H
FSHIPS IP F 41 DISK

"'--- ~ ------------------------ ZK-4334-85

To restore the editing buffer to the entire screen, as shown in the following example, use
the DISPLAY function (default = PFlIKP8).

Using the RPG II Editor 3-15

01112131415161071
12345678901234567890123456789012345678901234567890123456789012345678901234567890

I
*. I. I'" I ••• * .. * .. I .* I" I I'" .* .. I I" I" I. I I I" I •••••••••• I I I."

H*++
H* FUNCTIONAL DESCRIPTION:
H* This prograro produces a report of shiproents for various
H* products broken down b~ division and departroent using an
H* input file with the shiproent data for the past 4 quarters.
H*--
H
FSHIPS IP F
FSUHREP 0 F
E
LSUHREP 55FL 500L
ISHIPS AA 01
I
I
I
I
C*
C 01
C 01 PROQTY

41
98

QTY

XFOOTQTY
ADD DEPQTY

DISK
LPRINTER
420

1 5 DIV L2
6 7 DEPT L1
8 16 PROD

17 24 QTY

PROQTY 30
DEPQTY 30

~~------------~ ZK-4335-85

The RPG II editor automatically updates the tab stops and the specification format, if dis
played, for the specification type of the current line after a terminator (such as TAB) is
typed.

3.5.4 The FIND_NEXT Function
The FIND_NEXT function (default = PF3) moves the cursor to the first character position
ofthe next occurrence ofthe search string, depending on the current direction (ADVANCE
or BACKUP). Use the FIND function to enter the search string. Ifthe current direction is
ADVANCE, the RPG II editor will try to locate the next occurrence ofthe search string by
searching forward from the current column and line to the end of the editing buffer. If the
current direction is BACKUP, the RPG II editor will try to locate the next occurrence ofthe
search string by searching backward from the current column and line to the beginning of
the editing buffer. If the RPG II editor cannot locate the search string, the current column
and line remain unchanged and an error message is displayed in the message line. See
Section 3.8.2 for an example of the FIND_NEXT function.

3-16 Using the RPG II Editor

3.5.5 The FIND Function
The FIND function (default = PFlIPF3) locates the search string you specify. The RPG II
editor moves the cursor forward or backward to the beginning of the nearest occurrence of
the search string, depending on the current direction (ADVANCE or BACKUP). If the cur
rent direction is ADVANCE, the RPG II editor will try to locate the search string by
searching forwards from the current column and line towards the end of the editing buffer.
Ifthe current direction is BACKUP, the RPG II editor will try to locate the search string by
searching backwards from the current column and line towards the beginning ofthe edit
ing buffer.

When you use the FIND function, the RPG II editor displays the following prompt in the
prompt line:

Search for:

You can enter up to 63 characters for the search string. Ifno search string is entered, the
RPG II editor will search for the last search string specified. Note that you cannot use con
trol characters (RETURN, FORM FEED, TAB, and so on) in the search string.

If the RPG II editor cannot locate the search string, the current column and line remain
unchanged and the following error message is displayed in the message line:

String not found

Terminate the search string by pressing either the RETURN key or the ENTER key.

See Section 3.8.2 for an example of the FIND function.

3.5.6 The DELETEJ.INE Function
The DELETE_LINE function places the current line in the deleted-line buffer, at the same
time removing it from the screen. The line following the deleted line becomes the current
line. The current column remains unchanged. If there is no line following the deleted line,
the cursor is left in column 1 at the [EOB] mark.

3.5.7 The UNDELETE_LINE function
The UNDELETE_LINE function (default = PFlIPF4) inserts the contents of the deleted
line buffer before the current line. The new line becomes the current line, and the current
column remains unchanged.

Ifthe deleted-line buffer is empty, no action is taken but an error message is displayed in
the message line.

Using the RPG II Editor 3-17

3.5.8 The PAGE Function
The PAGE function (default = KP7) causes the editing buffer to move forward or back
ward, depending on the current direction (ADVANCE or BACKUP), to the next page. A
page is the start or finish of a section with the same kind of specification type (column 6).

In the following example, if the current cursor position is in column 34 on line 120, the
current direction is ADVANCE, the current setting for the SET STARTCOLUMN com
mand is 7, and you use the PAGE function, the RPG II editor moves the cursor to column 7
on line 170.

011 12 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** *
10H*++ * *
20H* FUNCTIONAL DESCRIPTION:

* *
30H* This program produces a report of shipments for various
40H* products broken down b!:j division and department using an
50H* input file with the shipment data for the past 4 quarters.
60H*--
70H
80FSHIPS IP F
90FSUt1REP 0 F

100E
110LSUt1REP 55FL 500L
120lSHIPS AA 01
1301
1401
1501
1601
170C,
180C 01
190C 01 PROQTY

41
98

QTY

XFOOTQTY
ADD DEPQTY

DISK
LPRINTER
420

1 5 DIV L2
6 7 DEPT L1
8 16 PROD

17 24 QTY

PROQTY 30
DEPQTY 30

~~-------------~ ZK-4336-85

3.5.9 The COMMAND Function
The COMMAND function (default = PFlIKP7) allows you to execute an RPG II editor
command. The RPG II editor displays the following prompt:

COfrllrland:

3-18 Using the RPG II Editor

The following commands can be entered:

• COMPILE

• DEFINE KEY

• EXIT

• HELP

• INCLUDE

• QUIT

• RESEQUENCE

• SET

• SHOW

• SUBSTITUTE

Sections 3.6.1 through 3.6.10 describe these RPG II editor commands and explain how to
use them.

3.5.10 The SECTION Function
The SECTION function (default = KP8) causes the editing buffer to move forward or back
ward the number oflines specified by the current setting of the SET SECTION command.
The direction of the movement depends on the current direction (ADVANCE or BACKUP).
The current column remains unchanged. See Section 3.6.8 for information on changing the
SECTION value. See Sections 3.5.16 and 3.5.18 for information on setting the current
direction.

3.5.11 The DISPLAY Function
The DISPLAY function (default
screen.

PFlIKP8) removes any help information from the

3.5.12 The REVIEW_ERROR Function
If you use the RPG II editor COMPILE command to compile your program, and your pro
gram contains errors, the RPG II editor moves the cursor to the column and line where the
first error occurs, and displays the error text in the message line. The REVIEW _ERROR
function (default = KP9) moves the cursor to the column and line where the next error
occurs, and displays the error message for that error in the message line. You can edit the
line to correct the error and use the REVIEW _ERROR function again to move the cursor to
the next error.

Using the RPG II Editor 3-19

If you use REVIEW _ERROR and there are no more errors, the RPG II editor displays the
following message in the message line:

No More errors found

If you added or deleted a line in the program while correcting errors, the RPG II editor will
display the following message when REVIEW _ERROR is used again:

Reissue the editor COMPILE cOMMand

3.5.13 The MOVE_TO_RULER Function
The MOVE_ TO-RULER function (default = PFlIKP9) places the cursor as close as possi
ble to the top of the ruler (ifthe editing window is above it) or towards the bottom of the
ruler (if the editing window is below it). The current column remains unchanged. Move
ment is restricted to the boundaries of the SET SCROLL offsets. If the ruler is positioned
above the editing window and the last line of the buffer appears, movement is stopped. If
the ruler is positioned below the editing window and the first line of the buffer appears,
movement is stopped. The MOVE_TO_RULER function will have no effect ifno ruler is
visible.

3.5.14 The DELETE_FIELD Function
The DELETEYIELD function (default = MINUS) places all the characters between the
cursor and the next field (forward or backward, depending on the current direction) into
the deleted-field buffer and replaces the characters with spaces.

3.5.15 The UNDELETE_FIELD Function
The UNDELETE_FIELD function (default = PFlIMINUS) replaces the current field with
the contents ofthe deleted-field buffer. Ifthe contents ofthe deleted-field buffer are longer
than the current field, the RPG II editor just copies to the current field untill it is filled.

If the contents of the deleted-field buffer are shorter than the current field, the RPG II
editor fills the current field to the right with spaces. Also, the cursor moves to the next
field, depending on the current direction (ADVANCE or BACKUP).

3.5.16 The ADVANCE Function
The ADVANCE function (default = KP4) sets the current direction to forward, that is, to
the right and down, toward the end ofthe editing buffer. ADVANCE sets the direction for
the following functions:

• CHARACTER

• DELETE_FIELD

3-20 Using the RPG II Editor

• UNDELETE_FIELD

• FIELD

• END_OF _LINE

• FIND

• FIND_NEXT

• LINE

• PAGE

• SECTION

3.5.17 The BOTTOM Function
The BOTTOM function (default = PFlIKP4) moves the cursor to the last line in the edit
ing buffer. The current column remains unchanged.

3.5.18 The BACKUP Function
The BACKUP function (default = KP5) sets the current direction to backward, that is, to
the left and up, toward the beginning of the editing buffer. BACKUP sets the direction for
the same functions that ADVANCE sets direction for.

3.5.19 The TOP Function
The TOP function (default = PFlIKP5) moves the cursor to the first line in the editing
buffer. The current column remains unchanged.

3.5.20 The CUT Function
The CUT function (default = KP6) moves the selected range of lines to the paste buffer.
The selected range oflines consists of the line identified by the SELECT function (default
= PERIOD) to the current line. The line following the selected range oflines becomes the
current line. The current column remains unchanged. If there is no line following the
selected range, the cursor is left in column 1 at the [EOB] mark. See Section 3.8.2 for an
example using CUT.

3.5.21 The PASTE Function
The PASTE function (default = PFlIKP6) inserts the contents of the paste buffer directly
in front of the current line. The current line is moved down to accommodate the lines from
the paste buffer. The current column and line remain unchanged. See Section 3.8.2 for an
example using PASTE.

Using the RPG II Editor 3--21

3.5.22 The'SHIFTJ,EFT Function
The SHIFT.-LEFT function (default = COMMA) causes the following events to occur:

• The character in the current column is deleted.

• All characters to the right ofthe current column are moved one column to the left.

• The cursor position remains the same.

In the following example, if the cursor is in column 45 on line 350, and SHIFT-LEFT is
used, the RPG II editor deletes the blank in column 45, moves all the characters to the
right of the cursor one column to the left, and inserts a blank in column 80.

Before using SHIFT_LEFT:

011 12 I 3 1415 I 6 171
12345678901234567890123456789012345678901234567890123456789012345678901234567890

**
3500

***** * *

After using SHIFT_LEFT:

* ***---**
48 I'Qt Q2 Q3 Q4 TOTAL'

ZK-4337-85

011 12 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

**
3500

***** * * *

3.5.23 The SHIFT_RIGHT Function

***---**
48 MQt Q2 Q3 Q4 TOTAL'

t
cursor

ZK-4338-85

The SHIFT_RIGHT function (default = PFlICOMMA) causes the following events:

• All characters in the current column through the end of the line are moved one col
umn to the right.

• A space is placed in the current column.

• The current column remains unchanged.

In the following example, if the cursor is in column 44 on line 350, and SHIFT-RIGHT is
used, the RPG II editor moves all characters one column to the right of the cursor and
inserts a blank in column 44. The blank in column 80 is lost.

3-22 Using the RPG II Editor

\
'-.

Before using SHIFT_RIGHT:

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

**
3500

***** * *

After using SHIFT_RIGHT:

* ***---**
481Ql Q2 Q3 Q4 TOTAL'

t
cursor

ZK-4339-85

o I 1 I 2 I 3 I 4 I 5 161 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

u
3500

***** * *

3.5.24 The FIELD Function

* ***---u
481'Ql Q2 Q3 Q4 TOTAL'

t
cursor

ZK-4340-85

The FIELD function (default = KP1) moves the cursor to the nearest character in the next
nonblank field. If the current direction is ADVANCE, using FIELD moves the cursor to the
beginning ofthe next nonblank field following the current column. If the current direction
is BACKUP, FIELD moves the cursor to the end of the next nonblank field preceding the
current column.

In the following example, if the cursor is in column 16 and the current direction is
ADVANCE, FIELD moves the cursor to column 21. '

011 12 I 3 I 4 I 5 I 6 17 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * *** *--- *--- *--- .**---*---**
IINPUT A~ I 35 CA

t !ursor after
cursor before

* * * * * *

ZK-4341-85

Using the RPG II Editor 3-23

In the following example, if the cursor is in column 21 and the current direction is
BACKUP, FIELD moves the cursor to column 16.

o I 1 121 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** * *** *--- *--- *--- .**---*---**
IINPUT A~ I 35 CA

t !ursor before
cursor after

* * * * * *

ZK-4342-85

Note that you cannot use FIELD to move from one program line to another.

3.5.25 The END_OF _LINE Function

The END_OF -LINE function (default = KP2) moves the cursor one column to the right of
the end ofthe current line (the last nonblank character) if ADVANCE is the current direc
tion. If the current direction is BACKUP, END_OF _LINE moves the cursor one column to
the right of the end of the preceding line.

If the cursor is already at the end of the current line and the current direction is
ADVANCE, END_OF -LINE moves the current column one column to the right of the next
line.

In the following example, if the cursor is in column 45 and the current direction is,,_
ADVANCE, and if you use END_OF _LINE, the RPG II editor moves the cursor to column
68.

011 12 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

**
3500

3-24

***** * * *

Using the RPG II Editor

***---**
48 MQ1 Q2 Q3 Q4 TOTAL'.

t t
cursor before cursor after

ZK-4343-85

(
i

"-

In the following example, if the cursor is in column 68 ofline 350 and the current direction
is BACKUP, and if you use END_OF _LINE, the RPG II editor moves the cursor to column
54 in line 340.

o I 1 I 2 I 3 I 4 I 5 161 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** 3400
3500

***** * * * ***---**
24 'PRODUCT'.
48 'Q1 Q2 Q3 Q4 TOTAL'.

t t
cursor before

cursor' after

ZK·4344·85

3.5.26 The DELETE_TO_END_OF _LINE Function
The DELETE_TO_END_OF_LINE function (default = PFlIKP2) deletes the characters
from the current column to the end ofthe line. The cursor position remains unchanged.

In the following example, if the cursor is in column 46 and you use
DELETE_TO_END_OF _LINE, the RPG II editor deletes the characters in column 46
through 67.

Before using DELETE_TO_END_OF_LINE:

011 I 2 I 3 I 4 I 5 161 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** 3500
***** * * * ***---**

48 '~1 Q2 Q3 Q4 TOTAL'

t
CUt'SOI'

ZK-4345-85

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

**
3500

***** * * * ***---**
48 '1

t
cursol'

ZK-4346-85

Using the RPG II Editor 3-25

3.5.27 The CHARACTER Function
The CHARACTER function (default = KP3) moves the cursor position to the right or left, /
depending on the current direction (ADVANCE or BACKUP). If you attempt to move the \
cursor to the right of column 81 or to the left of column 1, no action is taken and an error
message is displayed in the message line.

In the following example, if the cursor is in column 47 and the current direction is
ADVANCE, and if you use CHARACTER, the RPG II editor moves the cursor to column
48. If the cursor is in column 47 and the current direction is BACKUP, and if you use
CHARACTER, the RPG II editor moves the cursor to column 46.

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

** 3500 ***** * *

3.5.28 The COLUMN Function

* ***---**
48 limB Q2 Q3 Q4 TOTAL'

tt!ursor after (ADVANCE) I cursor before
cursor after (BACKUP)

ZK-4347-85

The COLUMN function (default = PFlIKP3) highlights the number of the current column
by causing the column number in the 80-column ruler to blink. The column function takes
no action if no ruler is visible.

On a terminal without AVO, the COLUMN function performs no action.

On the VK100 (GIGI) terminal, the blinking for the COLUMN function is sometimes
wider than the width of one character.

3.5.29 The ENTER Function
The ENTER function (default = ENTER) terminates the following entries:

• The FIND function (see Section 3.5.5)

• RPG II editor commands (see Section 3.5.9)

The ENTER function also clears any information in the message line.

3-26 Using the RPG II Editor

3.5.30 The LINE Function
The LINE function (default = KPO) causes the cursor to move one line up or down, depend
ing on the current direction (ADVANCE or BACKUP). The cursor is moved to the current
setting for the SET STARTCOLUMN command.

3.5.31 The OPEN_LINE Function
The OPEN_LINE function (default = PFlIKPO) creates a new line above the current line.
The new line becomes the current line, and the cursor is moved to the current setting for
the SET STARTCOLUMN command. If the current setting for the SET STARTCOLUMN
command is greater than 6, the new line will have the same specification format as the
previous line. See Section 3.8.2 for an example of the OPEN_LINE function.

3.5.32 The SELECT Function
The SELECT function (default = PERIOD) marks the current line as the beginning of the
range oflines you are selecting (select range). The SELECT function highlights column 1
of the current line in reverse video. You can use SELECT to select a range of lines to be
deleted or moved. You can then use CUT to move the selected lines from the editing buffer
to the paste buffer (see Section 3.5.20); and you can use PASTE to reinsert them into the
editing buffer at another location (see Section 3.5.21). The cursor position in the line does
not matter - the entire line will be moved into the paste buffer when CUT is used.

If you select a line as the beginning of a select range and then delete that line, the select
range will no longer be in effect and a message will be displayed in the message line.

You cannot select the line where [EOB] appears. If you select a range oflines that includes
[EOB], [EOB] will not be placed in the paste buffer.

See Section 3.8.2 for an example ofthe SELECT function.

3.5.33 The RESET Function
You can clear the current setting for the SELECT function by using the RESET function
(default = PFlIPERIOD).

3.5.34 The UP Function
The UP function (default = UP) causes the cursor to move up one line. The current column
remains unchanged. If the current line is the first line in the editing buffer, the cursor will
not be moved and an error message will be displayed.

Using the RPG II Editor 3-27

3.5.35 The DOWN Function
The DOWN function (default = DOWN) causes the cursor to move down one line. The cur
rent column remains unchanged. Ifthe current line is the last line in the editing buffer, the
cursor will not be moved and an error message will be displayed.

3.5.36 The RIGHT Function
The RIGHT function (default = RIGHT) moves the cursor to the right one column. If the
current column is 80, the cursor is not moved and column 81 becomes the current column.
If the current column is 81, the cursor will not be moved and an error message will be
displayed.

3.5.37 The LEFT Function
The LEFT function (default = LEFT) moves the cursor to the left one column. If the cur
rent column is column 1, the cursor will not be moved and an error message will be
displayed.

3.5.38 The FIELD_BACKWARD Function
The FIELD_BACKWARD function (default = BS_KEY) moves the cursor to the tab stop
preceding the current column, or, if the cursor is before the first tab stop, moves the cursor
to column 1. If the current column is 1, the cursor will not be moved and an error message
will be displayed.

3.5.39 The DELETE_CHARACTER Function
The DELETE_CHARACTER function (default = DEL_KEY) replaces the character to
the left ofthe cursor with a space and moves the cursor one column to the left. If you try to
delete a character to the left of column 1, the cursor will not be moved and an error message
will be displayed.

3.5.40 The NEW_LINE Function
The NEW_LINE function (default = RET_KEY) creates a new line following the current
line. The lines following the current line are moved down to accommodate the new line. If
the current line is the last line in the current buffer, a new last line is created. The cursor is
moved to the current setting for the SET STARTCOLUMN command. Ifthe current set
ting for the SET STARTCOLUMN command is greater than 6, the new line will have the
same specification format as the previous line.

3-28 Using the RPG II Editor

3.5.41 The FIELD_FORWARD Function
The FIELD_FORWARD function (default = TAB_KEY) moves the cursor to the next tab
stop after the current column. If the cursor has already passed the last tab stop,
FIELD_FORWARD moves the cursor to column 81. Ifthe current column is column 81, the
cursor will not be moved and an error message will be displayed.

3.5.42 The REFRESH_SCREEN Function
The REFRESH_SCREEN function (default = CTRL_R_KEY and CTRL_W_KEY)
rewrites the screen display. The cursor location remains unchanged.

3.5.43 The DELETE_TO_BEGINNING_OF _LINE Function
The DELETE_TO_BEGINNING_OF _LINE function (default = CTRL_U_KEY)
replaces the characters from the current column to column 1 with spaces. The cursor loca
tion remains unchanged.

3.5.44 The EXIT Function
The EXIT function (default = CTRL--Z_KEY) writes the editing buffer to an output file as
described in Section 3.1.2. If a journal file was created, it is not saved.

If you have issued the RPG II editor COMPILE command, and then leave the RPG II editor
using EXIT, the following message will be displayed:

Subprocess terMinated

If you invoked the RPG II editor with the NOOUTPUT or the READ_ONLY qualifier, the
following message will be displayed:

Use EXIT with an output file specification or QUIT

EXIT performs the same function as the EXIT/NOSAVE command.

3.6 RPG II Editor Commands

This section describes the RPG II editor commands and explains how to use them. You
must issue the COMMAND function before executing an RPG II editor command. Section
3.5.9 discusses the COMMAND function.

The following conditions exist when executing RPG II editor commands:

• If you type a command with a missing required parameter, you will get a prompt to
supply the missing parameter.

Using the RPG II Editor 3-29

• Qualifiers can appear anywhere on the line; they do not have to immediately follow
the command and can appear in any order.

• Qualifiers can be negated.

• Command line input can be in uppercase, lowercase, or mixed case.

• Abbreviations are allowed. You must type enough information to resolve any
ambiguity.

• You can enter full line comments, end ofline comments, and blank lines in a command
line.

• You can continue a command line by entering a hyphen (-) at the end of the line. You
will get a prompt for more input.

• Terminate a command by pressing either the RETURN key or the ENTER key.

3.6.1 The COMPILE Command
The COMPILE command compiles the source code in the editing buffer, and displays both
of the following messages:

Subprocess activated
Be.innin. cOMPilation

The message "Subprocess activated" appears only when the COMPILE command is issued
for the first time during an editing session.

The format ofthe COMPILE command is:

COMPILE [/LlST]

The following message is displayed indicating how many errors were found:

COMPilation cOMPlete--n errors found

Ifn is 0, no errors were found and you can leave the editor, then link and run your program.

If the compilation encounters errors, the error text associated with the first error is dis
played in the message line and the cursor is moved to the column and line where the first
error occurs. If there is more than one error, use the REVIEW _ERROR function to move
the cursor to the column and line causing the next error. See Section 3.5.12 for more infor
mation on the REVIEW _ERROR function.

You can use only the LIST qualifier with the COMPILE command to create a listing file for
the compiled source code. The default is NOLIST. OBJECT is always in effect. However, if
the compilation encounters fatal errors, an object module will not be produced.

3-30 Using the RPG II Editor

You can specify a symbol definition at the DCL command level to change the defaults for a
compilation. When you issue the RPG II editor COMPILE command, the compiler will use
these settings. In the following example, the symbol RPG is defined to compile a program
and generate a listing file with machine-generated code. The compiler will also generate
code in the program to check for blanks in numerics.

$ RPG :== RPG/lIST/MAC/CHECK:5lANKS_IN_NUMERICS

To use the debugger after you enter the COMPILE command, you must first define the
following command before invoking the editor:

$ RPG := RPG/DE5UG

See Part I, Chapter 10 for information on how to set the appropriate source file.

The COMPILE command requires each line in the editing buffer to be 140 characters or
less.

If you define RPG to invoke something other than the RPG II compiler, or if the RPG II
compiler encounters an unexpected error, the following message is displayed in the mes
sage line:

Unexpected error during compilation - leave editor and trY DCl RPG command

3.6.2 The DEFINE KEY Command
The DEFINE KEY command allows you to bind specific keys to specific RPG editor func
tions. These functions are listed with their default key definitions in Table 3-2 at the
beginning of Section 3.5.

The following keys are bindable in the RPG editor:

• Control keys

• Cursor keys

• Editing keys (LK201 except Rainbow)

• Function keys (LK201 except Rainbow)

• Keypad keys

• Gold versions of all these keys

exceptions

The following list contains seven control key restrictions. These are special functions of
the VMS operating system.

CTRL_C_KEY
CTRL_O_KEY
CTRL_Q_KEY
CTRL_S_KEY

CTRL_T_KEY
CTRL_X_KEY
CTRLY_KEY

Using the RPG II Editor 3-31

Note that key redefinition does not cause automatic update to the editor keypad diagram
and key-specific help text.

The format of the DEFINE KEY command is:

DEFINE KEY[/GOLD] key_name function

In this command, /GOLD indicates that you must press GOLD followed by key_name to
execute the chosen function. For example:

DEFINE KEY/GDLD KP5 CUT

When you enter this command and then press the GOLD key, followed by the KP5 key, the
CUT function is executed.

If "key_name" is not a valid definable key, or if "function" is not a valid RPG editor func
tion that is bindable to a key, a message is displayed.

To redefine the GOLD key, enter the following line at the command prompt:

DEFINE KEY KeY_naMe GDLD

To remove the GOLD key completely, enter the following line at the command prompt:

DEFINE KEY/GOLD PFl GOLD

Note that if you use a key name other than PF1 with this command, it will be treated as if
PF1 had been entered.

Note also that you must redefine the GOLD key (default = PF1) before you can define the
PF1 key to a function other than GOLD.

See Table 3-2 for a list of default key definitions. This table provides a list of definitions
that are bindable to keys. Note that in some cases, more than one key is bound to the same
procedure. Note also that TAB_KEY and CTRL_LKEY (the default settings for
FIELD.-FORWARD), and the RETURN_KEY and CTRL_M_KEY (default settings for
RETURN), can only be bound to the same function, while the FlO key and CTRL-Z_KEY
(the default settings for EXIT) may be bound to separate functions.

The SECTION_FORWARD and the SECTION_BACKWARD functions are not bound by
default to any key on the VT100 family and VK100 (GIG!) terminal keyboards. However,
you can bind any of the valid definable keys to those functions.

3-32 Using the RPG II Editor

Table 3-3 contains additional keys that are bindable to the functions listed in Table 3-2.

Table 3-3: RPG KEYNAMES FOR VALID DEFINABLE KEYS

RPGKeyname

PF1
PF2
PF3
PF4
KPO,KP1, ... ,KP9
PERIOD
COMMA
MINUS
ENTER
UP
DOWN
LEFT
RIGHT
E1
E2
E3
E4
E5
E6
HELP
DO
F7, ... ,F20
TAB_KEY
RET_KEY
DEL_KEY
LF_KEY
BS_KEY
CTRL.-A_KEY
CTRLjLKEY

LK201

PFI
PF2
PF3
PF4
0,1, ... ,9

Enter
Up-arrow
Down-arrow
Left-arrow
Right-arrow
Find/E1
Insert-here/E2
Remove/E3
Select/E4
Prev-screen/E5
N ext-screen/E6
Help/F15
Do/F16
F7, ... ,F20
Tab
Return
GJ

Ctrl/A
CtrllB

CtrllZ

VT100 Family
VKI00 (GIGl)

PFI
PF2
PF3
PF4
0,1, ... ,9

Enter
Up-arrow
Down-arrow
Left-arrow
Right-arrow

Tab
Return
Delete
Line-feed
Back-space
CTRL/A
CTRL/B

CTRLlZ

Note the list of exceptions at the beginning ofthis section.

You can modify the key bindings shown in Table 3-2 at editor startup by creating a startup
command file with the desired DEFINE KEY commands. See Section 3.7.2, Startup Com
mand Files, for more information on using DEFINE KEY.

Using the RPG II Editor 3-33

3.6.3 The EXIT Command

The EXIT command writes the editing buffer to the output file and leaves the RPG II edi
tor, returning to the DeL command prompt ($), as shown in the following example:

011 1213 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

**
10H*++

* *** *---

20H* FUNCTIONAL DESCRIPTION:

* * * * * *

30H* This program produces a report of shipments for various
40H* products broken down b~ division and department using an
50H* input file with the shipment data for the past 4 C\uat'tet's,
60H*--
70H
80FSHIPS IP F
90FSUMREP 0 F

100E
110LSUMREP 55FL 500L
120lSHIPS AA 01
1301
1401
1501
1601
170C*
180C 01
190C 01 PROQTY

41
98

QTY

XFOOTQTY
ADD DEPQTY

DISK
LPRINTER
420

1 5 DIV L2
6 7 DEPT L1
8 16 PROD

17 24 QTY

PROQTY 30
DEPQTY 30

53 records written to file MYDISK:[MYDIRECTORYJMYFILE,RPG;2

$ I

The format of the EXIT command is:

EXIT [/SAVE] [file-spec]

The output file is one of the following:

• The file name you supplied with the EXIT command

ZK-434B-B5

• The file name you supplied with the OUTPUT qualifier to the RPG/EDIT command

• The same file name as the input file you specified when you invoked the RPG II editor,
ifthe READ_ONLY or the NOOUTPUT qualifiers were not used with the RPG/EDIT
command

The RPG II editor will write the editing buffer to the output file even if no changes have
been made.

3-34 Using the RPG II Editor

You can use the SAVE qualifier with the EXIT command to save the journal file, if one was
created. The file name ofthe journal file is the name of the output file, if specified, with the
JOU file type. If a journal file name was not specified, the RPG II editor uses the same file
name as the input file. See Section 3.1.3 for information on journal files.

If an error occurs during the execution of an EXIT/SAVE command and you resume edit
ing, the journaling facility will still be in effect.

If you have issued the RPG II editor COMPILE command and then leave the RPG II editor
by typing the EXIT command, the following message will be displayed in the message line:

Subprocess terminated

3.6.4 The HELP Command
The HELP command displays information on RPG II editor functions and commands in
the help window of the RPG II editor screen. The following example shows what the screen
looks like after you issue the COMMAND function, type the HELP command, and press
either the RETURN key or the ENTER key:

read this help infor~ation while using the editor b~ t~ping the HELP
co~~and.

Additional infor~ation available:

Co~~ands Cursor Functions Help Journal Ke~pad Specs

o I 1 121 3 I 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

* * .. * * *
I 10H*++

20H* FUNCTIONAL DESCRIPTION:
30H* This progra~ produces a report of ship~ents for various
40H* products broken down b~ division and depart~ent using an
50H* input file with the ship~ent data for the past 4 quarters.
60H*--
70H
80FSHIPS IP F 41 DISK

~~------------~ ZK-4349-85

Using the RPG II Editor 3-35

The format ofthe HELP command is:

HELP [/FULLj [/PAGEj [/PROMPTjlist-of-topics

The PAGE qualifier is similar to the DCL HELP command PAGE qualifier. If the help text
does not fit in a logical page (in this case, the help window), the text is displayed a page at a
time and you must enter a RETURN to advance to the next page. The default is NOPAGE.

The PROMPT qualifier is similar to the DCL HELP command PROMPT qualifier. Once
help for the given list of topics is displayed, you are prompted for additional topics, which
are then linked to the current list oftopics. Press RETURN repeatedly to back up through
the levels of help text. CTRLlZ terminates the HELP command. The default is
NOPROMPT.

The FULL qualifier uses the entire screen, except for the prompt and message lines, to
display help text. When the requested help has been displayed, the previous screen layout
is restored. You are prompted to enter a RETURN before the screen is repainted. If the
previous screen contained help text, it is not restored. Instead, the last 11 lines of text from
the current HELP is left in the help window. The default is NOFULL.

Note that FULL, PAGE and PROMPT are positional qualifiers. If they occur after a topic
or subtopic, they are interpreted as subtopics on which help is desired.

There is no fixed number on the list of topics. Whatever can fit on the command line is
valid. If you use the PROMPT mode, you can extend the depth indefinitely.

By default, the RPG II editor searches its own help library (SYS$HELP:RPGEDIHLP) for
the given list oftopics.

You can access other libraries in the following ways:

• Ifthe first topic has the form @filespec, that library is searched instead .

• If you define logical names of the form HLP$LIBRARY, HLP$LIBRARY_l, ... ,
HLP$LIBRARY _999, the LIBRARIAN searches them in the following order: root
library, main library, process libraries, group libraries, and system libraries.

3-36 Using the RPG II Editor

The following example shows what the screen looks like after you issue the COMMAND
function, type HELP COMMANDS, and press either the RETURN key or the ENTER key:

r-::ANDS ~
Editor co~~ands are executed b~ pressing the COMMAND function (PFI/KP7 - see
infor~ation for FUNCTIONS). An~ co~~and, parallleter or 'tualifier can be
abbl'eviated so that the infOl'lIIation t~ped is una~biguous. The prolllpt
"Colllllland: " is displa~ed in reverse video on the prolllpt line. An~
characters that can norlllall~ be t~ped in the editor lIIa~ be t~ped at the
Pt'O~pt.

Qualifiers can be negated and can also appear in an~ order on a cOIII~and line
after the nallle of the cOIII~and.

Blank cO~lIIand lines are ignored. Also an~ text on a cOlllllland line after an
excla~ation point ("I") is ignored.

Additional infor~ation available:

COMPILE
SET

DEFINE
SHOW

EXIT HELP
SUBSTITUTE

INCLUDE QUIT RESEQUENCE

011 1213 I 4 I 5 I 6 17 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

* •...•...•.. * .• * *•..•.•••.• *•.....•.•........••.•....
I 10H*++

20H* FUNCTIONAL DESCRIPTION:
30H* This progralll produces a report of shiplllents for various
40H* products broken down b~ division and departlllent using an
50H* input file with the ship~ent data for the past 4 quarters.
60H*--

~~~SHIPS IP F 41 DISK .---/ 

~---------------------- ZK-4350-85 

After you press either the RETURN key or the ENTER key to execute a HELP command 
and help information is displayed, the RPG II editor returns the cursor to its current col
umn and line so you can resume editing. 

3.6.5 The INCLUDE Command 
The INCLUDE command copies a text file into the source buffer using the VAX RPG II 
editor. The format of the INCLUDE command is: 

INCLUDE file-spec 

The file is copied into the editing buffer, immediately before the current line. The cursor 
position remains unchanged. Note that the lines read in are not syntax checked. 

U sing the RPG II Editor 3-37 



Ifthe INCLUDE is successful, the number of records read in is displayed on the message 
line. 

3.6.6 The QUIT Command 
The QUIT command allows you to leave the RPG II editor and return to DCL command 
level, without writing the editing buffer to the output file, as shown in the following 
example: 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** 

10H*++ 
* *** *---

20H* FUNCTIONAL DESCRIPTION: 

* * * * * * 

30H* This progra~ produces a report of ship~ents for various 
40H* products broken down b~ division and depart~ent using an 
50H* input file with the ship~ent data for the past 4 ~uarters. 
60H*--
70H 
80FSHIPS IP F 
90FSUMREP 0 F 

100E 
110LSUMREP 55FL 500L 
120ISHIPS AA 01 
1301 
1401 
1501 
1601 
170C* 
180C 01 
190C 01 

Co~~and: QUIT 
PROQTY 

41 
98 

QTY 

XFOOTQTY 
ADD DEPQTY 

DISK 
LPRINTER 
420 

1 5 DIV L2 
6 7 DEPT L1 
8 16 PROD 

17 24 QTY 

PROQTY 30 
DEPQTY 30 

~ ~ 
~---------------------- ZK-4351-85 

The format ofthe QUIT command is: 

QUIT [/SAVE] 

Use the QUIT command if you have made no changes to the editing buffer or if you have 
decided not to save the changes you made. If you have made changes, or if you have pressed 

3-38 Using the RPG II Editor 



keys to move the cursor past the last nonblank character in any line, the RPG II editor 
displays the following message: 

The current buffer MaY have been Modified, do YOU really want to quit? 

You can respond with Y, YE, or YES. Any other response will continue the editing session. 
If you resume editing, ajournal file for your edits will not be created. To resumejournaling, 
you must leave the RPG II editor, and invoke the RPG II editor again. 

You can use the SAVE qualifier with the QUIT command to save the journal file, if one was 
created. 

If you have issued the RPG II editor COMPILE command and then leave the RPG II editor 
by typing the QUIT command, the following message will be displayed in the message line: 

Subprocess terMinated 

3.6.7 The RESEQUENCE Command 
The RESEQUENCE command either generates a new line number for each program 
line in the editing buffer or resequences existing line numbers. The format of the 
RESEQUENCE command is: 

RESEQUENCE [/REMOVE] [initial-value [increment]] 

The RESEQUENCE command renumbers program lines up to the first line containing the 
delimiter /lblank or **blank in columns one through three. Lines are numbered beginning 
at initial-value (default = 10) and incrementing by the increment value (default = 10). 

The maximum line number is 99,999. If, during resequencing, a line number plus the 
increment exceeds 99,999, that line and all remaining lines are numbered 99,999. In this 
case, reissue the RESEQUENCE command with smaller values for initial-value and 
increment. 

The RESEQUENCE/REMOVE command will remove all line numbers in the editing 
buffer. 

The following command will renumber the line numbers in the editing buffer beginning 
with 100 and increment each number by 20: 

RESEQUENCE 100 20 

See Section 3.8.2 for another example ofthe RESEQUENCE command. 

Using the RPG II Editor 3-39 



3.6.8 The SET Command 
The SET command controls RPG II editor options. Once set, these options are in effect 
until you leave the RPG II editor or reissue the SET command. 

You can include SET commands in a startup command file. See Section 3.7.2 for 
information. 

The format of the SET command is: 

SET option 

RPG II editor options include: 

• COMMAND 

• DEFAULT 

• HELP 

• RULER 

• SCROLL 

• SECTION 

• STARTCOLUMN 

• SYNTAXCHECK 

3.6.8.1 The COMMAND option 
The COMMAND option allows you to process additional startup command files at the 
beginning of the RPG II session. The format of the COMMAND option is: 

SET COMMAND file-spec 

See Section 3.7.2, Startup Command Files, for information on the SET COMMAND 
option. 

3.6.8.2 The DEFAULT option 
The DEFAULT option allows you to determine the default value of qualifiers used in other 
editor commands. The format of the DEFAULT option is: 

SET DEFAULT option 

For example, the command: 

SET DEFAULT PAGE,PRDMPT 

means that any later HELP command uses the PAGE and PROMPT options by default. 
You can turn defaults off by using the negated form of a qualifier. (For example, SET 
DEFAULT NOPROMPT.) 

3-40 Using the RPG II Editor 



3.6.8.3 The HELP option 
The HELP option allows you to choose a variety of settings. The format ofthe HELP option 
is: 

SET HELP {KEYPAD I NONE I SPECIFICATIONS} 

The HELP KEYPAD option acts as if you used the HELP_KEYPAD function (default = 
PF2). See Section 3.5.2 for information on HELP_KEYPAD. 

The HELP NONE option allows you to start up as if you have used the DISPLAY function. 
See Section 3.5.11 for information on DISPLAY. 

The HELP SPECIFICATIONS option acts as if you used the HELP_SPECIFICATIONS 
function (default = PFI/PF2). See Section 3.5.3 for information on 
HELP _SPECIFICATIONS. 

3.6.8.4 The RULER option 
The RULER option moves the three-line 80-column ruler with tab stops as a unit, to either 
the top or bottom of the current window. SET RULER NONE removes the ruler from the 
screen. 

The format of the RULER option is: 

SET RULER {TOP I BOnOM I NONE} 

Using the RPG II Editor ~1 



The example below shows an editor screen as it appears after a SET RULER BOTTOM 
command, with an I8-line terminal page size. The next example shows the same screen 
followed by a help request. 

r---
FSHIPS IP F 41 DISK 
FSUMREP 0 F 98 LPRINTER 
E QTY 4 2 0 
LSUMREP 55FL 500L 
ISHIPS AA 01 
I 1 5 DIV L2 

I I 6 7 DEPT L1 
I 8 16 PROD 
I 17 24 QTY 
C* 
C 01 XFOOTQTY PROQTY 30 
C 01 PROQTY ADD DEPQTY DEPQTY 30 
c* 

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 
12345678901234567890123456789012345678901234567890123456789012345678901234567 

** ****** .... 

~-------------~ ZK-4352-85 

3-42 Using the RPG II Editor 



PF1/PF2 - RPG II specification for~ats +-------+-------+-------+-------+ 
Press the PF1/KP7 ke~ and t~pe HELP for I Gold I Help IFnx FndlDIL UdLI 
infor~ation on co~~ands and functions. +-------+-------+-------+-------+ 

For help on a specific ke~, press the IPag C~dlSec DsplRev HovlDIF UdFI 
PF2 ke~ folloNed b~ the ke~ for Nhich +-------+-------+-------+-------+ 
~ou Nant help infor~ation. IAdv BotlBck ToplCut PaslShL ShRI 

Other keMs: BS_KEY DEL_KEY +-------+-------+-------+-------+ 
TAB_KEY UP, DOWN, LEFT, RIGHT IFld IEol DEIIChr Coil 
CTRL_R_KEY CTRL_W_KEY +-------+-------+-------+Ent 
CTRL_U_KEY CTRL_Z_KEY I Lin OpL ISel Resl 

+---------------+-------+-------+ 
I I 6 7 DEPT L1 

I 8 16 PROD 
011 12 1314 1516 I 7 

12345678901234567890123456789012345678901234567890123456789012345678901234567 
** * *** *--- *--- *--- .**---*---** * * * * * * .... 

~ ~ 
-~--------- ZK-4353-85 

3.6.8.5 The SCROLL option 
The SCROLL option specifies the region within the editing window where the cursor will 
stay. 

The format of the SCROLL option is: 

SET SCROLL [top-offset [bottom-offset]) 

Top-offset is the number oflines from the top of the editing window to the top of the scrol
ling region. Bottom-offset is the number oflines from the bottom ofthe scrolling region to 
the bottom of the editing window. If bottom-offset is omitted, the current offset from the 
bottom is not changed. If the top and bottom offsets are omitted, both offsets are set to the 
initial editor defaults of zero. 

Using the RPG II Editor 3-43 



If you enter SET SCROLL 01, then the cursor will move from the line next to the ruler on 
the top, to within one line above the bottom ofthe editing window. If you want to keep the 
cursor from hitting the top line, enter a number greater than zero for top-offset. The higher 
the number, the greater the number of source code lines that will remain on the screen 
between the cursor and the top or bottom of the editing window. 

3.6.8.6 The SECTION option 
The SECTION option specifies the number oflines the RPG II editor will move the cursor 
(forward or backward) when the SECTION function (default = KP8) is used and there is 
no help information displayed. You can specify any value between one, and five less than 
the terminal page length. By default, the bottom line of the editing window moves to the 
top (just under the tab stops), regardless ofthe size ofthe window. 

The format of the SECTION option is: 

SET SECTION lines 

If you specify a SECTION value other than the default, the SECTION value, when help is 
displayed, is proportional to the visible number oflines in the editing window. 

3.6.8.7 The STARTCOLUMN option 
The STARTCOLUMN option specifies the current column for the following functions: 

• NEW_LINE 

• OPEN_LINE 

• LINE 

• PAGE 

The format of the STARTCOLUMN option is: 

SET STARTCOLUMN column 

The default value is column 7. When the setting for the STARTCOLUMN qualifier is 
greater than 6, the RETURN key and OPEN_LINE (default = PFlIKPO) function supply 
the same specification type in column 6 as is present in the current line. 

3.6.8.8 The SYNTAXCHECK option 
The SYNTAXCHECK option specifies that syntax checking and automatic rightjustifica
tion of numeric fields will occur. 

The format of the SYNTAXCHECK option is: 

SET SYNTAXCHECK {ON I OFF I PROMPT} 

3-44 Using the RPG II Editor 



By default, the RPG II editor starts up with the SYNTAXCHECK option on. This setting 
can be changed in a startup command file, or interactively. 

If you modify a line when syntax checking is on, and then attempt to move off the line, one 
of the following will occur: 

• If there are no errors on the line, and all numeric entries are properly justified, the 
requested action takes place. 

• If there are no errors on the line, but one or more numeric entries are not properly 
justified, the numeric entries are justified, the justified fields are highlighted, and the 
requested action takes place. The highlighting is removed from the field(s) when the 
next line is syntax checked. 

• If a syntax error is detected, the requested action does not take place. The cursor is 
positioned at the column of the error, and the error message is displayed on the mes
sage line. You can either correct the error, or ignore the error by immediately moving 
off the line. Another syntax check will take place on that line only if you modify it 
again. 

If you enter table and array data while SYNTAXCHECK is on, there is a risk that the data 
will be right-justified as ifit were part ofthe source program, yielding unexpected results. 
Therefore, it is recommended that SYNTAXCHECK be set off while entering table and 
array data, or that you use the PROMPT option. When PROMPT is in effect, the editor will 
highlight any proposed numeric right justification before the justification is actually done, 
and will prompt you to see if you want it done. 

3.6.9 The SHOW Command 
The SHOW command displays the current settings for the following options: 

• DEFAULT 

• SCROLL 

• SECTION 

• STARTCOLUMN 

• SYNTAX CHECK 

• VERSION 

The format ofthe SHOW command is: 

SHOW option 

Using the RPG II Editor 3-45 



The current settings appear in the message line, as shown in the following examples: 

COMMAND: SHOW DEFAULT PAGE,PROMPT 
Current defaults are NOPAGE,NOPROMPT 

COMMand: SHOW SCROLL 
Scroll offset froM top is 0, froM bOttoM is ° 
COMMand: SHOW SECTION 
Section length is: 18 or when HELP is displayed: 7 

COMMand: SHOW STARTCOLUMN 
STARTCOLUMN value is; 7 

COMMand: SHOW SYNTAXCHECK 
SYNTAXCHECK is ON 

The VERSION qualifier displays the current version of the RPG II editor and a VAX 
RPG II copyright statement, as shown in the following example: 

COMMand: SHOW VERSION 
VAX RPG II V2.0 editor COPYRIGHT (C) DIGITAL EQUIPMENT CORPORATION 1885 

3.6.10 The SUBSTITUTE Command 
The SUBSTITUTE command allows you to substitute text using the VAX RPG II editor. 
The format of the SUBSTITUTE command is: 

SUBSTITUTE search-argument replace-argument [/SELECTl [/QUERYl 

The SUBSTITUTE command replaces all occurrences of the search-argument with the 
replace-argument in the specified range. If SELECT is specified, the command applies to 
all lines in the select range. Otherwise, it applies to all lines in the buffer. 

Only exact matches of the search-argument with text in the editing buffer are performed. 

Only equal length substitutions are performed. If one argument is shorter than the other, 
it is padded on the right with spaces before searching and replacing begins. 

If you specify QUERY, then at each occurrence of the string to be substituted the following 
occurs: 

• The string to be substituted is highlighted. 

• A "Substitute this occurrence (YES, NO, ALL, or QUIT)? "prompt is displayed on the 
prompt line. 

• You may answer YES, NO, ALL, or QUIT. 

• If you answer YES, the text is replaced and the editor finds the next occurrence. 

• If you answer NO, the text is not replaced and the editor finds the next occurrence. 

3-46 Using the RPG II Editor 



• If you answer ALL, the current text is replaced as well as any further occurrences of 
the text, without additional prompting. 

• If you answer QUIT, the text is not replaced and the SUBSTITUTE command 
terminates. 

• If you make any other response, the above sequence is repeated from the point where 
the prompt message is displayed. 

IfSYNTAXCHECK is on, the current line is syntax checked after each change is made. If a 
syntax error is found, the substitution is terminated. 

The command does not display the lines in which substitutions are made (except in 
QUERY mode). 

Upon completion of this command, the message "Substitutions: n" is displayed in the 
message area, where 'n' indicates the number of substitutions performed. 

Upon completion of this command when SELECT was specified, the select range is 
removed. 

The SUBSTITUTE command ignores the current editing direction. It always proceeds 
from the beginning ofthe range to the end. The current editing direction is not changed, it 
is just ignored for the duration of the command. 

The cursor is returned to where it was before the command was issued. 

Rules for specification of search-argument and replace-argument 

• The search-argument must contain at least one non-blank character. Ifit does not, the 
message "The search string must contain at least one non-blank character" is dis
played in the message area. 

• If lowercase characters are desired in the substitution, the argument must be 
enclosed within double quotation marks (for example, "string"). Otherwise, lowercase 
characters are converted to uppercase. 

• If the argument contains a terminator, such as a blank space or a slash (I), the argu
ment must be enclosed within double quotation marks (for example, " " and "I"). 

• If the argument contains a double quotation mark, two double quotation marks must 
be entered. 

• Single quotation marks are not treated like double quotation marks. 

• Control characters cannot be entered in arguments. 

Using the RPG II Editor 3-47 



3.7 Customizing the Editor 

This section discusses several RPG II editor commands that are available to you. These 
commands enable you to customize your editing environment. 

3.7.1 Using Editor Commands 
For the purpose ofthis example, assume that you want the ruler to lie on the bottom of the 
screen and the keypad help to show in the help window. Because you are entering a pro
gram with a compile-time table or array, you would like to be prompted before any numeric 
fields are right-justified. Because you have chosen a small scrolling region, you would like 
the SECTION function to give you 10 lines. Finally, you would like to use CTRLlP to 
review errors. 

You would use the COMMAND function (default = PFlIKP7) to enter each ofthe follow
ing commands: 

SET RULER BOTTOM 
SET SCROLL 2 2 
SET SECTION 10 
SET ~lELP KEYPAD 
SET SYNTAXCHECK PROMPT 
DEFINE KEY CTRL_P_KEY REVIEW_ERROR 

See Section 3.6.8 for an example of a screen with the ruler on the bottom and the keypad 
help displayed. 

3.7.2 Startup Command Files 
Startup command files allow you to specify a set of commands to be executed automatically 
each time you begin an editing session. A startup command file can contain any ofthe VAX 
RPG II editor commands. It can also contain comment and blank lines to improve readabil
ity. Each command is executed as if the COMMAND function were used. 

The editor uses the COMMAND qualifier to find a startup file. This qualifier is present by 
default, with a default value of RPGINI. 

The uses of the COMMAND qualifier and their effects are: 

• If COMMAND = filespec is used, the specified file is executed. 

• If just COMMAND or if no COMMAND qualifier is used, the editor looks for the file 
RPGINI. Iffound, it is executed. 

• If INOCOMMAND is used, no command file is executed. 

All startup files are opened with a default file type of RPG. The value for the COMMAND 
qualifier can be a full or partial filespec, or a logical name that translates to a filespec. 

3-48 Using the RPG II Editor 



Control can be passed from one startup file to another by using the COMMAND option of 
the SET command. When the editor is executing commands from a startup command file 
and encounters a SET COMMAND command, it tries to find the associated file, translat
ing logical names if necessary. If a file is found, the contents ofthat file are then executed in 
the same way as the original startup file. The rest ofthe commands in the startup file are 
not executed. If the file is not found, the rest of the commands in the startup file are 
executed. 

Following are several ways of using these options to customize your editing environment. 

If you do not want to execute any startup file, your command line should look like this: 

RPG/EDIT/NOCDMMAND file-spec 

To execute your own startup commands, create a file of editor commands and define the 
logical name RPGINI to reference it. For example, if you create the file MYSTARTUP.RPG 
to contain: 

SET DEFAULT PAGE.PROMPT 
SET HELP KEYPAD 
SET RULER NONE 
DEFINE KEY CTRL N KEY REVIEW ERROR 

and add to your LOGIN.COM the following: 

S DEFINE RPGINI MYDISK:[MYDIRECTORYJMYSTARTUP.RPG 

then, whenever you invoke the editor, your commands will be executed. 

One way to establish a customized environment for many users at once is described here. A 
system-wide startup command file can be established by defining the logical name 
RPGINI in the system logical name table. Suppose that the following file exists with the 
filename SYSRPGINI.RPG in the directory addressed by SYS$PUBLIC: 

! System-wide startup commands 
SET HELP SPECIFICATIONS 
SET RULER BOTTOM 
SET COMMAND RPGINI.RPG 

If RPGINI was defined by: 

S DEFINE/SYSTEM RPGINI SYSSPUBLIC:SYSRPGINI.RPG 

then by default, all users on the system would have that set of commands executed auto
matically. The last command shown would mean that after executing the system-wide 
commands, the editor would also execute any commands found in the file RPGINI.RPG in 
the default directory. 

Using the RPG II Editor 3-49 



3.7.3 Modifying Screen Length 
You can determine the number oflines on the terminal screen that are used by the RPG II 
editor. This is a useful option for a variety of reasons. If you have a terminal in the VT100 
family that does not have Advanced Video Option, you have only 14 lines when in 132 
column mode. It is also useful if you have a terminal with more than 24 lines. Also, if you 
have a terminal that runs at a slow baud rate, you can control the number of lines dis
played on the editor screen. This would improve performance over a slow communication 
line by decreasing the number of lines on the screen that must be kept updated during an 
editing session. 

Use the DeL command SET TERMINAL/PAGE = n to set the length of the page on your 
terminal screen. You can also set the width of the page with SET TERMINAL/WIDTH = n. 
If you set the width to 132 columns, you will get the full text of the editor error messages. 

Note that there must be at least six lines on the screen, to allow for the two line ruler, tab 
stop line, prompt line, message line, and one line in the source editing window. 

3.8 Creating and Editing Programs 
This section contains a sample RPG II program and some of the output it might produce. 
Section 3.8.1 shows you how to create a program using the RPG II editor, and Section 3.8.2 
shows you how to use the RPG II editor to edit a program. Both sections use the sample 
program shown here. 

3-50 Using the RPG II Editor 



Note that this example assumes a 24-line screen and no startup file. 

011 I 2 I 3 I 4 I 5 I 6 17 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

H*++ 
H* FUNCTIONAL DESCRIPTION: 
H* This progra~ produces a report of ship~ents for various 
H* products broken dONn b~ division and depart~ent using an 
H* input file Nith the ship~ent data for the past 4 quarters. 
H*--
H 
FSHIPS IP F 
FSUHREP 0 F 
E 
lSUHREP 55Fl 500l 
ISHIPS AA 01 
I 
I 
I 
I 
C* 
C 01 
C 01 
C* 

PROQTY 

41 
98 

QTY 

XFOOTQTY 
ADD DEPQTY 

DISK 
lPRINTER 
420 

1 5 DIV l2 
6 7 DEPT L1 
8 16 PROD 

17 24 (UY 

PROQTY 30 
DEPQTY 30 

Cll DEPQTY ADD DIVQTY DIVQTY 30 
Cll Z-ADDO DEPQTY 
~ DIVQTY ADD FINQTY FINQTY 40 ~ 

---------------------- ZK-4354-85 

Using the RPG II Editor 3--51 



12345678901234567890123456789012345678901234567890123456789012345678901234567890 

OSUMREP H 001 1P 
0 48 'PRODUCT SHIPMENT REPORT' 
0 H 02 1P 
0 UDATE Y 12 
0 -48 'PRODUCT SHIPMENT REPORT' 
0 H 1P 
0 42 'SHIPMENTS' 
0 H 2 1P 
0 15 'DIVISION DEPT' 
0 24 'PRODUCT' 
0 48 'IU Q2 Q3 Q4 TOTAL' 
0 D 1 01 
0 L2 DIV 8 
0 L1 DEPT 14 
0 PROD 25 
0 IHY Z 41 
0 PROQTYZ 48 
0 T 1 L1 
0 T 0 L2 
0 DIV 69 
0 T 0 L2 
0 DIV 69 
0 T 02 L2 
0 DIVQTYZB 48 
0 63 '<== Total for' 
0 DIV 69 

"'---J 
T 0 LR 

~ fINQTY1 48 
65 '<== GRAND TOTAL' 

ZK-4355-85 

3-52 Using the RPG II Editor 



A sample of the output from this program might appear as follows: 

0 1 2 3 1I 5 6 7 
123115678S0123115678S0123115678S0123115678S0123115678S0123115678S0123115678S0123115678S 
0 

S/OS/85 PRODUCT SHIPMENT REPORT 

SHIPMENTS 
DIVISION DEPT PRODUCT 01 02 03 Oll TOTAL 

East 12 CPU-1S 12 13 111 15 511 
CPU-20 11 11 11 10 1I3 

13 TERM-12 12 311 311 35 115 
TERM-13 23 211 25 26 S8 
TERM-20 11 12 13 111 50 

360 {== Total for East 

No rt h 23 oISK-1I5 18 17 15 ill 611 
DISK-1I8 12 111 20 35 81 
DISK-60 10 10 10 11 1I1 

211 TAPE-12 8 7 6 3 211 
TAPE-13 1 2 1I 11 18 
TAPE-32 10 10 10 11 1I1 
TAPE-33 1I 1I 1I 5 17 

286 <== Total for No rt h 

South 25 MEMORY-ll lS 20 21 21 81 
MEMORY-16 lS 18 17 16 70 
MEMORY-17 12 13 13 12 50 

201 (== Total for South 

West 3S SoFT-12 11 13 13 12 liS 
SoFT-lli 6 7 8 8 2S 
SoFT-23 13 111 20 lS 66 

1I0 SoFT-211 15 111 111 13 56 
SoFT-25 3 3 1I 7 17 

217 <== Total fa r West 

1,0611 (== GRAND TOTAL 

Using the RPG II Editor 3-53 



3.8.1 Creating a New Program 
Invoke the RPG II editor by typing the following command: 

$ RPG/EDIT MYFILE 

The RPG II editor displays the following message: 

File not found 

The following screen is displayed: 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** DEOBl 

Press the PF2 ke to et hel information 

~--------------~ ZK-4356-85 

Although RPG II does not require a Control specification, it is useful to place an asterisk in 
column 7 of a Control specification to include a comment describing what your program 
does_ Press either the TAB key or the RIGHT key repeatedly to move the cursor to column 
6_ Enter H in column 6. Use the HELP_SPECS function (default = PFlIPF2) to display 
the specification format for the Control specification. Because the current line is a Control 

3-54 U sing the RPG II Editor 



specification, the RPG II editor automatically displays the tab stops for the Control specifi
cation. Help information will be displayed in the help window ofthe RPG II editor screen, 
as shown in the following example: 

Currenc~ s~lIIbol 
I Inverted print (DIJ) 
I I Alternate collating sequence (SE) 
I I I IP forllls position (1) 
I I I I 

H I I I I 
011 12 13 I 4 I 5 I 6 17 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
* ... I • I I , I • I *. I *. I •• *. I • I •••••••••• * ....... t •• I • I t I • I I ••••••• I •• I I ••• 

[EOB1 HI 

~~----------~~ ZK-4357-85 

Enter an asterisk (*) in column 7. Type the description ofthe program. Press the RETURN 
key at the end of each line. After the RETURN key is pressed, the RPG II editor moves the 
current line on the screen one line up, if necessary; automatically enters H in column 6; 
and moves the cursor to column 7. (Column 7 is the default setting for the SET 
STARTCOLUMN command.) To display the current default for the SET STARTCOLUMN 

Using the RPG II Editor 3-55 



command, issue the COMMAND function (default = PFlIKP7), type SHOW 
STARTCOLUMN, and press the RETURN key, as shown in the following example: 

Currenc!:j s!:jlllbol 
I Inverted print (DIJ) 
I I Alternate collating sequence (SE) 
I I I 1P forllls position (1) 
I I I I 

H I I I I 
011 12 13 I 4 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
* ....... I I I .*. 1*1" .1 .. It •••••••••• * .... I. 1.1 •••••• II. I II I •• I I. I. I ••• 

H*++ 
H* FUNCTIONAL DESCRIPTION: 
H* This progralll produces a report of shiplllents for various 
H* products broken down b!:j division and departlllent using an 
H* input file with the shiplllent data for the past 4 quarters. 
H*--
HI 

[EOBl 

<PFlIKP7) 
Command: SHOW STARTCOLUMN 
START COLUMN value is: 7 

"--- ~ 
--------------~ ZK-435B-B5 

The specification type for the current line will be duplicated until you enter a new specifi
cation type in column 6. H is automatically entered in column 6 and the cursor is moved to 
column 7. The next specification needed is the File Description specification. To replace H, 
move the cursor to column 6 by using the FIELD_BACKWARD function (default = 

BS-KEY), and enter F (File description). 

Enter the name of the file, beginning in column 7, and then use the FIELDJ'ORWARD 
function, hereafter referred to by its default setting, TAB-KEY. Since help information is 

3-56 Using the RPG II Editor 



displayed in the help window of the RPG II editor screen, once TAB_KEY or any termina
tor is pressed, the RPG II editor displays the specification format and tab stops for the File 
Description specification, as shown in the following example: 

File 
nal1le 
I 

FI 

Mode (LR) 
IKe!:f length 

T!:fpe (lOUD) I I Record address t!:fpe (API) 
IDes (PSRCTD) I I IOt'ganization (IT,i-9) 
IIEOF (E) II IIOvet'flow indicatot' 
I I I SeC! (AD) I I I I I KeH I ocat i on 
1IIIFI1lt (FV) II III I Extension (EU 
1IIIIBIk Rec II III I IDevice S!:fl1lb Tape 
I I I I II en I en I I I I I I I code dev 1 abe I 
""" I ""I I" I I 

Core 
index 
I 

Addtn(AU) 
I Expand 
IIShare 
III Rewnd 
"I I 
III IFile 
III Icond 

"I " o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** ******---*---**-*** *---** * * .••... *-----***.** 
HH+ 
H* FUNCTIONAL DESCRIPTION: 
H* This progral1l produces a report of shipl1lents for various 
H* products broken down bH division and departl1lent using an 
H* input file with the shipl1lent data for the past 4 C!uarters. 
H*--
H 
FSHIPS I 

[EOBl 

~~-------------~ ZK-4359-85 

Using the RPG II Editor 3-57 



Remember, you can press TAB-KEY to move the cursor to the next tab stop. Enter the rest 
of the File Description specifications as shown in the following example: 

File 
naJlle 
I 

FI 

Mode (LR) 
IKe~ length 

T~pe (lOUD) I I Record address t~pe (API) 
IDes (PSRCTD)I I IOrganization (IT,i-9) 
IIEOF (E) I I IIOverflow indicator 
I I ISe~ (AD) I I I II Ke~ location 
1IIIFJllt (FV) II III I Extension (El) 
I I I I IBlk Rec II I I I I IDevice S~Jllb Tape 
1IIIIIen len II III I Icode dey label 
IIIIII I II III I II I I 

Core 
index 
I 

Addtn(AU) 
I Expand 
I I Share 
III Rewnd 
III I 
III IFile 
III Icond 
III II 

011 12 I 3 I 4 I 5 1617 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

[EOB] 

** ******---*---**-*** *---** * * .. 1 ••• *-----***,*. 
H* FUNCTIONAL DESCRIPTION: 
H* 
H* 

This prograJII produces a report of shipJllents for various 
products broken down b~ division and departJllent using an 
input file with the shipJllent data for the past 4 ~uarters. H* 

H*-
FSHIPS 
FSUMREP 
FI 

IP F 
o F 

41 
98 

DISK 
LPRINTER 

~~------------~ ZK-4360-85 

3-58 U sing the RPG II Editor 



Replace F in column 6 with E (Extension). Press TAB_KEY. The RPG II editor displays the 
specification format and tab stops for the Extension specification. Then, enter the rest of 
the entries for the Extension specification, as shown in the following example: 

------F = For~at (PB) 
I -----D = Deci~al positions 
I I ----S = Sequence (AD) 
III 
III Alternating table 01' al'I'a~ 

Fro~ To Table EntEnt Lenillna~e Len 
file file 01' perin of Fill of F 
na~e na~e al'ra~ RecTbl Ent I D II EntlD 
I I na~e I I I II S I I liS 

E I I I I I I 1111 I I I I +-- Co~~ents ---+ 
011 I 2 I 3 I 4 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 

[EOBl 

* .... * * * *--*---*--**** *--**** 
H* This progra~ produces a report of ship~ents for various 
H* products broken down b~ division and depart~ent using an 
H* input file with the ship~ent data for the past 4 quarters. 
H*-
FSHIPS 
FSUHREP 
E 
E. 

IP F 
o F 

41 
98 
(HY 

DISK 
LPRINTER 
420 

~ ~ ------------------------- ZK-4361-85 

Using theRPG II Editor 3-59 



Enter L (Line Counter) in column 6. Then, enter the rest of the entries for the Line Counter 
specification, as shown in the following example: 

File 
nallle 
I 

LI 

Forlll length (1-112) 
I FL (if Forlll length used) 
I I Overflow line nUlllber (1-112) 
I I I OL (if Overflow line used) 
I I I I 

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

[EOB] 

** *--* *--* . I ••• I I I I •• I I I •••• I ••• I •••• I •• I •••••• I I I •• I ••••••• 

H* products broken down b~ division and departlllent using an 
input file with the shiPlllent data for the past 4 ~uarters. H* 

H*-
FSHIPS 
FSUMREP 
E 
LSUMREP 
LI 

IP F 
o F 

55FL 500L 

41 
98 

tlTY 

DISK 
LPRINTER 
420 

~~------------~ ZK-4362-85 

3-60 Using the RPG II Editor 



Enter the Input specifications, as shown in the following example: 

Sequence (AA-ZZ, 01-99) 
I NUPlber (i-N) 
I 10ptionai (0) DeciPlal positions 
I I I Record identif~ing indicator I Contro I I eve I 
I III I I Hatch field 
I III + Identif~ing codes + ForPlat I I I Fld rec rei 

File I III I I I (PB) IFieid I I I 
naPle I III I C C CI IFieid InaPle I I I Field 
I I III I Z Z ZI Ilocationil I I I indicatrs 

I I I III Pos NDcPos NDcPos NDc IFr To II I I I + - 0 
o I 1 I 2 131 4 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** * *** *--- *---
E QTY 
LSUHREP 55FL 500L 
ISHIPS AA 01 
I 
I 
I 
I 

[EOB]II 

*--- .**---*---** 
420 

* * * * * * 

1 5 DIV L2 
6 7 DEPT L1 
8 16 PROD 

17 24 QTY 

~~------------~ ZK-4363-85 

Using the RPG II Editor 3-61 



Use the DISPLAY function (default = PFlIKP8) to display the program on the entire 
screen (except lines 1 through 3, 23, and 24), as shown in the following example: 

011 12 I 3 I 4 15 I 5 171 
12345578901234557890123455789012345578901234557890123455789012345578901234557890 

[EOB] 

** 
H*++ 

* *** *---
H* FUNCTIONAL DESCRIPTION: 

* * * * * * 

H* This progra~ produces a report of ship~ents for various 
H* products broken down b~ division and depart~ent using an 
H* input file Nith the ship~ent data for the past 4 quarters. 
H*--
FSHIPS IP F 
FSUMREP 0 F 
E 
LSUMREP 55FL 500L 
ISHIPS AA 01 
I 
I 
I 
I 
II 

41 
98 

QTY 

DISK 
LPRINTER 
420 

1 5 DIV L2 
6 7 DEPT L1 
8 16 PROD 

17 24 QTY 

~~------------~~ ZK-4364-85 

3-62 Using the RPG II Editor 

,/ 
/ 



Enter the Calculation specifications without displaying the specification format in the 
help window, as shown in the following example: 

011 12 I 3 I 4 1516 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * * * * * *--*** * * * 
H*--
FSHIPS IP F 41 DISK 
FSUMREP 0 F 98 LPRINTER 
E QTY 4 2 0 
LSUMREP 55FL 500L 
ISHIPS AA 01 
I 1 5 DIV L2 
I 6 7 DEPT L~ 
I 8 16 PROD 
I 17 24 QTY 
C* 
C 01 XFOOTQTY PROQTY 30 
C 01 PROQTY ADD DEPQTY DEPQTY 30 
C* 
CLi DEPQTY ADD DIVQTY DIVQTY 30 
CLi Z-ADDO DEPQTY 
CL2 DIVQTY ADD FINQTY FINQTY 40 
C* 
CI 

[EOB] 

~- ~ 
ZK-4365-85 

U sing the RPG II Editor 3-63 



Enter the Output specifications. Note that the RPG II editor screen can display only 19 
source lines at a time, when the terminal has 24 lines and when the ruler is displayed. 
Once you enter more than 19 lines, the RPG II editor moves the editing window up. 

o I 1 121 3 I 4 I 5 I 6 171 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** ***** * * * ***---** 
OSUMREP H 001 1P 
0 48 'PRODUCT SHIPMENT REPORT' 
0 H 02 1P 
0 UDATE Y 12 
0 48 'PRODUCT SHIPMENT REPORT' 
0 H 1 1P 
0 42 'SHIPMENTS' 
0 H 2 1P 
0 15 'DIVISION DEPT' 
0 24 'PRODUCT' 
0 48 'Q1 Q2 Q3 Q4 TOTAL' 
0 D 1 01 
0 DIV 8 
0 L1 DEPT 14 
0 PROD 25 
0 QTY Z 41 
0 PROQTYZ 48 
0 T 1 L1 
OJ 

~ ---------------~ ZK-4366-85 

3-64 Using the RPG II Editor 



Enter the rest of the Output specifications. Use the EXIT function (default = 
CTRL_Z_KEY) to save the contents of the editing buffer and leave the RPG II editor. 
When EXIT is used, the RPG II editor displays the following message: 

45 records written to file MYDISK:[MYDIRECTORYlMYFILE.RPG;l 

This is shown in the following example: 

011 12 I 3 I 4 1516 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** ***** * * * ***---** 
0 H 02 lP 
0 UDATE Y 12 
0 48 'PRODUCT SHIPMENT REPORT' 
0 H lP 
0 42 'SHIPMENTS' 
0 H 2 1P 
0 15 'DIVISION DEPT' 
0 24 'PRODUCT' 
0 48 'Q1 Q2 Q3 Q4 TOTAL' 
0 D 1 01 
0 DIV 8 
0 L1 DEPT 14 
0 PROD 25 
0 QTY Z 41 
0 PROQTYZ 48 
0 T 1 L1 
0 T 0 LR 
0 FINQTY1 48 
0 65 '(== GRAND TOTAL' 

45 records written to file MYDISK:[MYDIRECTORY1MYFILE,RPG;1 

~ ~ 
~--------------------- ZK-4367-85 

Using the RPG II Editor 3-65 



3.8.2 Editing an Existing Program 
When you invoke the RPG II editor to edit the program created in Section 3.8.1, the RPG II 
editor displays the following message: 

45 records read froM file MYDISK:[MYDIRECTORYlMYFILE.RPG;l 

And the following screen is displayed: 

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

* ..... I I" I .* .. * .. I .*. I. 1'1 •• ' I •••• * ....... I I.' I. I. I I •••••••••••••••• 

II H*++ 
H* FUNCTIONAL DESCRIPTION: 
H* This program produces a report of shipments for various 
H* products broken down b~ division and department using an 
H* input file with the shipment data for the past 4 quarters. 
H*--
H 
FSHIPS IP F 41 DISK 
FSUMREP 0 F 98 LPRINTER 
E QTY 4 2 0 
LSUMREP 55FL 500L 
ISHIPS AA 01 
I 1 5 DIV L2 
I 6 7 DEPT L1 
I 8 16 PROD 
I 17 24 QTY 
C* 
C 01 XFOOTQTY PROQTY 30 
C 01 PROQTY ADD DEPQTY DEPQTY 30 

Press the PF2 v.e to et hel information 

~~-----------~ ZK-4368-85 

3-66 Using the RPG II Editor 



In this session, the control-level indicator L2 needs to condition the DIV field in the detail 
record Output specification. Use the FIND function (default = PFlIPF3) to locate DIY. 
The RPG II editor displays the command prompt "Search for: ". Enter the search string 
DIV and press the ENTER key, as shown in the following example: 

011 12 I 3 I 4 I 5 16 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

*1 •••••• I I • 1*' • * .... * ... I ••• I •••••• *. I ••• I. I •• t ••• , ••• I ••••••• I •••••• 

H*++ 
H* FUNCTIONAL DESCRIPTION: 
H* This progra~ produces a report of ship~ents for various 
H* products broken down b~ division and depart~ent using an 
H* i npu t file '" i th the sh i p~ent data f or the past 4 quarters. 
H*--
H 
FSHIPS IP F 
FSUHREP 0 F 
E 
LSUHREP 55FL 500L 
ISHIPS AA 01 
I 
I 
I 
I 
C* 
C 01 
C 01 

Search for: DIV 
PRO&lTY 

41 
98 

&ITY 

XFOOT&lTY 
ADD DEP&lTY 

DISK 
LPRINTER 
420 

1 5 DIV L2 
6 7 DEPT L1 
8 16 PROD 

17 24 &ITY 

PRO&lTY 30 
DEP&lTY 30 

~~------------~ ZK·4369-85 

Using the RPG II Editor 3-67 



The RPG II editor responds by moving the cursor to the first character of the first occur
rence of the search string DIV (see the comment line), as shown in the following example: 

011 1213 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

* .......... '*1'*'" .1 ... 1111111" •• * .. 111 •••• 1 ••• 1"'1 III ••••••• II." 

H*++ 
H* FUNCTIONAL DESCRIPTION: 
H* This program produces a report of shiproents for various 
H* products broken dONn b~ ~ivision and departroent using an 
H* input file Nith the shiproent data for the past 4 quarters. 
H*--
H 
FSHIPS IP F 41 DISK 
FSUHREP 0 F 98 LPRINTER 
E QTY 4 2 0 
LSUHREP 55FL 500L 
ISH IPS AA 01 
I 1 5 DIV L2 
I 6 7 DEPT L1 
I 8 16 PROD 
I 17 24 QTY 
C* 

\. 

C 01 XFOOTQTY PROQTY 30 /' 
C 01 PROQTY ADD DEPQTY DEPQTY 30 

ZK-4370-85 

Using the RPG II Editor 



Because this is not the correct string, use the FIND_NEXT function (default = PF3). The 
RPG II editor moves the cursor to the first character of the next occurrence of the string 
DIV, as shown in the following example: 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** 
H*++ 

* *** *---

H* FUNCTIONAL DESCRIPTION: 

* * * * * * 

H* This progra~ produces a report of ship~ents for various 
H* products broken down b~ division and derart~ent using an 
H* input file with the ship~ent data for the past 4 quarters. 
H*--
H 
FSHIPS IP F 
FSUMREP 0 F 
E 
LSUMREP 55FL 500L 
ISHIPS AA 01 
I 
I 
I 
I 
C* 
C 01 
C 01 PROQTY 

41 
98 

QTY 

XFOOTQTY 
ADD DEPQTY 

DISK 
LPRINTER 
420 

1 5 iillV L2 
6 7 DEPT L1 
8 16 PROD 

17 24 QTY 

PROQTY 30 
DEPQTY 30 

~--------------~ ZK-4371-85 

Using the RPG II Editor 3-69 



Again, this occurrence of the string DIV is not correct, so issue the FIND_NEXT function 
five more times to move the cursor to the correct occurrence. You could have specified DIV 
and a blank as the search string to avoid duplicating key strokes. L2 must be entered in 
columns 24 and 25. To do this, move the cursor to column 24 by pressing the BS_KEY to 
column 23, then use the RIGHT function (default = RIGHT) once. Enter the string L2 in 
columns 24 and 25, as shown in the following example: 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** 
C 01 
C* 
CLi 
CLi 
CL2 
C* 
OSUMREP 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

***** * * 
PROIHY 

DEPIHY 

DIVIHY 

H 001 1P 

H 02 1P 

H 1 1P 

H 2 lP 

D 1 01 
L21 

* ***---** 
ADD DEPQTY DEPQTY 30 

ADD DIVQTY 
Z-ADDO 
ADD FINQTY 

DIVQTY 30 
DEPQTY 
FINQTY 40 

48 'PRODUCT SHIPMENT REPORT' 

UDATE Y 12 
48 'PRODUCT SHIPMENT REPORT' 

42 'SHIPMENTS' 

15 'DIVISION DEPT' 
24 'PRODUCT' 
48 'Q1 Q2 Q3 Q4 TOTAL' 

DIV 8 

~ ~ 
~---------------------- ZK-4372-85 

3-70 Using the RPG II Editor 



Number the program lines for reference by issuing the COMMAND function (default = 

PFlIKP7) and typing the RESEQUENCE command, as shown in the following example: 

011 I 2 I 3 I 4 I 5 16 171 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** 
190C 01 
200C* 
210CL1 
220CL1 
230CL2 
240C* 
2500SUMREP 
2600 

***** * * 
PROIHY 

DEPQTY 

DIVQTY 

H 001 

2700 H 02 
2800 
2900 
3000 H 1 
3100 
3200 H 2 
3300 
3400 
3500 
3600 D 1 
3700 

Command: RESEQUENCE 

lP 

1P 

1P 

1P 

01 
L2t1 

* ***---** 
ADD DEPQTY DEPQTY 30 

ADD DIVQTY DIVQTY 30 
Z-ADDO DEPQTY 
ADD FlNQTY FlNQTY 40 

48 'PRODUCT SHIPMENT REPORT' 

UDATE Y 12 
48 'PRODUCT SHIPMENT REPORT' 

42 'SHIPMENTS' 

15 'DIVISION DEPT' 
24 'PRODUCT' 
48 'Q1 Q2 Q3 Q4 TOTAL' 

DIV 8 

~-------------~ ZK-4373-85 

Using the RPG II Editor 3-71 



Use the SECTION function (default = KP8) to move the cursor the number oflines set by 
the SET SECTION command, as shown in the following example: 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** ***** * * * ***---** 
2800 UDATE Y 12 
2900 48 'PRODUCT SHIPMENT REPORT' 
3000 H 1 1P 
3100 42 'SHIPMENTS' 
3200 H 2 1P 
3300 15 'DIVISION DEPT' 
3400 24 'PRODUCT' 
3500 48 'I;!! Q2 Q3 Q4 TOTAL' 
3600 D 1 01 
3700 L2 DIV 8 
3800 L1 DEPT 14 
3900 PROD 25 
4000 QTY Z 41 
4100 PROQTYZ 48 
4200 T 1 L1 
4300 T 0 LR 
4400 FINQTY1 48 
4500 I 65 '(== GRAND TOTAL' 

[EOB] 

Attem t to move ast end of buffer 

~-----------~~ ZK-4374-85 

3-72 Using the RPG II Editor 



Enter two Output specifications between lines 420 and 430 by using the following 
functions: 

1. UP (default = UP) to line 430 

2. OPEN_LINE (default = PFlIKPO) to create a new line 

Use the OPEN_LINE function to create a line preceding the current line. The RPG II edi
tor automatically places the specification type of the current line in column 6 and moves 
the cursor to column 7. Enter the new specifications, as shown in the following example: 

011 1213 I 4 1516 I 7 I 
1234567890123456789012345678901234567890123456789012345678901234567890123456789 

** ***** * * 
2900 
3000 H 1 
3100 
3200 H 2 
3300 
3400 
3500 
3600 D 1 
3700 
3800 
3900 
4000 
4100 
4200 T 1 

0 T 0 
0 

4300 T 0 
4400 
4500 

1P 

1P 

01 
L2 
L1 

L1 
L2 

LR 

* ***---** 
48 'PRODUCT SHIPMENT REPORT' 

42 'SHIPMENTS' 

15 'DIVISION DEPT' 
24 'PRODUCT' 
48 'Q1 Q2 Q3 Q4 TOTAL' 

DIV 8 
DEPT 14 
PROD 25 
QTY Z 41 
PROQTYZ 48 

DIV 69. 

FINQTYi 48 
65 '(== GRAND TOTAL' 

~ ---------------~ ZK-4375-85 

U sing the RPG II Editor 3-73 



Enter another two specifications (identical to the two specifications just entered), by using 
the following functions: 

1. SELECT (default = PERIOD) to mark the beginning of the selected region ~ 

2. UP (default = UP) once 

3. CUT (default = KP6) to place the selected region into the paste buffer 

4. PASTE (default = PFlIKP6) twice 

The following example shows the effects of the procedure described above: 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** ***** * * * ***---** 
2900 48 'PRODUCT SHIPMENT REPORT' 
3000 H 1 1P 
3100 42 'SHIPMENTS' 
3200 H 2 1P 
3300 15 'DIVISION DEPT' 
3400 24 'PRODUCT' 
3500 48 'IU Q2 Q3 Q4 TOTAL' 
3600 D 1 01 
3700 L2 DIV 8 
3800 L1 DEPT 14 
3900 PROD 25 
4000 QTY Z 41 
4100 PROQTYZ 48 
4200 T 1 L1 

0 T 0 L2 
0 DIV 69 
0 T 0 L2 
0 DIV 69 

4300 T 0 LR I 

~ ~ 
ZK-4376-85 

3-74 Using the RPG II Editor 



Enter another four specifications. Then, remove the line numbers, as shown in the follow
ing example: 

011 I 2 I 3 14 1516 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** ***** * * * 0 H 2 1P 
0 15 ' DIVISION DEPT' 
0 24 'PRODUCT' 
0 48 'Q1 Q2 Q3 Q4 TOTAL' 
0 D 1 01 
0 L2 DIV 8 
0 L1 DEPT 14 
0 PROD 25 
0 QTY Z 41 
0 PROQTYZ 48 
0 T 1 L1 
0 T 0 L2 
0 DIV 69 
0 T 0 L2 
0 DIV 69 
0 T 02 L2 
0 DIVQTYZB 48 
0 63 '<== Total fot" 
0 DIV 691 

Command: RESEQUENCE/REMOVE 

~--------------~ ZK-4377-85 

U sing the RPG II Editor 3-75 



Use the COMMAND function and type the EXIT command to save the modified program, 
as shown in the following example: 

1234567890123456789012345678901234567890123456789012345678901234567890123 
** 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

***** * * 
H 2 lP 

D 1 01 
L2 
L1 

T 1 L1 
T 0 L2 

T 0 L2 

T 02 L2 

* ***---** 

15 'DIVISION DEPT' 
24 'PRODUCT' 
48 'GIl Gl2 Gl3 Gl4 TOTAL' 

DIV 8 
DEPT 14 
PROD 25 
QTY Z 41 
PROGlTYZ 48 

DIV 69 

DIV 69 

DIVGlTYZB 48 
63 '(== Total for' 

DIV 691 

~ ~ 
----------~----------~ ZK-4378-85 

3-76 Using the RPG II Editor 



Chapter 4 

Using Indicators 

Indicators are two-character alphabetic, numeric, or alphanumeric entries that condition 
the steps of a program cycle. 

Each indicator has a specific function; however, some indicators can be used for more than 
one purpose. Generally, you use indicators to control the following program decisions: 

• Under what conditions RPG II uses a file during program execution 

• When and under what conditions RPG II performs calculations 

• When RPG II can access a field for input 

• Under what conditions RPG II writes a field or record to an output file 

To use an indicator to control program operations, you first define the conditions under 
which it is set on or off. Then, you check the status (on or oro of the indicator to determine 
what steps your program should perform. 

This chapter discusses types of indicators and explains how to use them. 

4.1 User Defined Indicators 
You can define certain groups of indicators in your program; others are defined internally. 
Sections 4.1 through 4.1.5 discuss those indicators you can define. Section 4.2 describes 
internally defined indicators. 

4.1.1 Record-Identifying Indicators 
Record-identifying indicators, as their name implies, identify record types. Define each 
record type by specifying an identification code in columns 21 through 41 ofthe Input spec
ification. Then, associate an indicator in columns 19 and 20 with that record type. 

In the following example, RPG II associates the record-identifying indicator 01 with a 
record type. 

4-1 



Sequence (AA-ZZ, 01-99) 
I NUlllber (i-N) 
I I Optiona I (0) Decilllal positions 
I IIRecord identifying indicator I Contro I I eve I 
I III I I Hatch/chain field 
I III + Identifying codes + Forlllat I I I Field rec rei 

File I III I I I IFieid I I I 
nallle I III I C C CI IFieid Inallle I I I Field 
I I III I Z Z ZI Ilocationil I I I indicators 

I I I III Pos NDcPos NDcPos NDc IFr To II I I I + - 0 
011 12 I 3 I 4 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** * *** *--- *--- *--- .**---*---** * * * * * * 
IINPUT AA 01 20 Cl 

ZK-4387-85 

In this example, if the character in the twentieth position is the number 1, the indicator 01 
is set on. Then, you can use the indicator to condition operations for that particular record 
type. 

You can use any of the following indicators as record-identifying indicators: 

• 01 through 99 

• L1 through L9 

• LR 

• H1 through H9 

By assigning a different record-identifying indicator for each record type in a file, you can 
condition calculation and output operations for specific record types. 

The record-identifying indicator for a particular record type is set on when RPG II 
processes a record of that type. For a primary or secondary file, the record-identifying indi
cator is set on before total-time calculations. For a chained or demand file, the record-iden
tifying indicator is set on immediately after the record is read. In either case, it is set off 
when the program reaches the end of the current program cycle (after detail-time output). 

4-2 Using Indicators 

'" 



You can use record-identifying indicators to condition both detail-time and total-time 
operations in that cycle and indicate which operation(s) to perform for each record type. 
The following example shows how record-identifying indicators can be used to condition 
program operations: 

o I 1 121 3 I 4 I 5 I 6 171 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

, 
11 ISALES AA 01 1 CJ 
12 I 2 50 ITEM 
13 I 10 16 DESCR 
14 I 20 242SALES 
15 I 30 342COST 
16 I 40 432PROFIT 
17 C 01 SALES SUB COST NET 52 
18 C 01 TSALES ADD SALES TSALES 62 
19 C 01 TCOST ADD COST TCOST 62 
20 C TPROFI ADD NET TPROFI 62 
21 OREPORT H 201 1P 
22 0 OR OF 
23 0 UDATE Y 8 
24 0 44 'JANUARY SALES REPORT' 
25 0 PAGE 72 
26 0 68 'PAGE' 
27 0 H 22 1P 
28 0 OR OF 
29 0 5 ' ITEM' 
30 0 23 'DESCRIPTION' 
31 0 41 'SALES' 
32 0 56 'COST' 
33 0 72 'PROFIT' 
34 0 D 01 
35 0 ITEM 3 5 
36 0 DESCR 25 
37 0 SALES 1 41 
38 0 COST 1 57 
39 0 PROFITi 72 
40 0 T 1 LR 
41 0 30 'TOTALS' 
42 0 TSALES1 41 '$' 
43 0 TCOST 1 57 '$' 
44 0 TPROFI1 72 '$' 

ZK-4388-85 

In this example: 

• Line 11 causes RPG II to begin reading records from the file SALES. The identifica
tion code (columns 21 through 41) groups these records according to a code that repre
sents the month. If the code for the month is J, the record-identifying indicator 01 is 
set on. 

Using Indicators 4-3 



• Lines 17 through 19 use the same record-identifying indicator 01 to condition detail
time calculations. RPG II performs the calculation each time a record is read of the 
type described on line II. 

• Line 34 uses the same record-identifying indicator to condition detail-time output. 
RPG II performs the output operation each time a record is read ofthe type described 
on line 11. 

The output file produced by this program might appear as follows: 

o 1 234 567 
1234567880123456788012345678801234567880123456788012345678801234567880123456788C 

2/4/83 JANUARY SALES REPORT PAGE 

ITEM DESCRIPTION SALES COST PROF IT 

10005 AMMONIA 60.30 50.00 10.30 
10882 MATCHES 285.00 205.00 80.00 
22650 NUTMEG 208.00 170.00 38.00 

TOTALS $564.30 $425.00 $138.30 

If you use the CHAIN or READ operation to retrieve records, the program does not set the 
record-identifying indicators off until the beginning of the next program cycle. Be careful 
when performing more than one CHAIN or READ operation for a file with multiple record 
types, because more than one indicator can be set on during a single cycle. 

4.1.2 Field Indicators 
Field indicators test a field in an input record for a positive, negative, zero, or blank value. 
The following lists ways to test for these values: 

• For a positive value, specify a field indicator in columns 65 and 66 of the Input 
specification. 

• For a negative value, specify a field indicator in columns 67 and 68 of the Input 
specification. 

• For a zero or blank value, specify a field indicator in columns 69 and 70 of the Input 
specification. 

You can use any of the following indicators as field indicators: 

• 01 through 99 

• HI through H9 

4-4 Using Indicators 



Field indicators are set when the data in the field is extracted from the record. Once a field 
indicator is set, it remains set until the next time the field is extracted, unless it is set offby 
another use ofthe same indicator in the program. A field indicator can be used to condition 
any detail-time or total-time operations. However, at total time, the field indicators 
assigned to fields from a primary or secondary file retain the setting from the previous 
detail-time cycle. 

The following example shows how field indicators can be used to condition a calculation: 

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

24 IPARTLIS AA 01 1 CF 
25 I 

41 C 11 
42 C 22 
43'C 33 

ITEM 
ITEM 
ITEM 

In the above example: 

MUL T FACTi 
MULT FACT2 
MUll FACT3 

2 100INVCDE 

ORDER 62H 
ORDER 62H 
ORDER 62H 

112233 

ZK-43B9-B5 

• Line 25 tests the value of the field INVCDE to see if it contains a positive value, a 
negative value, or a zero value. The following lists which indicator is set on for each 
value: 

- If the field contains a positive value, indicator 11 is set on and indicators 22 and 33 
are set off. 

- If the field contains a negative value, indicator 22 is set on and indicators 11 and 33 
are set off. 

- Ifthe field contains a zero value, indicator 33 is set on and indicators 11 and 22 are 
set off . 

• Lines 41 through 43 calculate the number of parts to order according to the status of 
the field indicators. 

Using Indicators 4-5 



4.1.3 Resulting Indicators 
Resulting indicators condition operations that depend on the result of a calculation. These 
indicators specify the test (>, <, or =) and indicate the result of the calculation. If the 
result matches the test, the indicators are set on. The following lists when these indicators 
are set off: 

• The next time the calculation is performed and the result of the calculation does not 
satisfy the test the indicator specifies 

• By another use of the same indicator in the program 

You specify resulting indicators in columns 54 through 59 ofthe Calculation specification. 
You can use any ofthe following indicators as resulting indicators: 

• 01 through 99 

• Ll through L9 

• LR 

• HI through H9 

• OA through OG, and OV 

• UI-U8 

• KA through KZ 

• KO through K9 

Resulting indicators in columns 54 and 55 test for the following conditions: 

• The Result field contains a positive value after an arithmetic operation. 

• The value in Factor 1 is higher than the value in Factor 2 in a COMP operation. 

• The value of the element found in Factor 2 is higher than the value in Factor 1 in a 
LOKUP operation. 

• The record is not found in a CHAIN operation. 

• Each bit defined in Factor 2 is off in the Result field for a TESTB operation. 

Resulting indicators in columns 56 and 57 test for the following conditions: 

• The Result field contains a negative value after an arithmetic operation. 

• The value in Factor 1 is lower than the value in Factor 2 in a COMP operation. 

• The value of the element found in Factor 2 is lower than the value in Factor 1 in a 
LOKUP operation. 

4-6 U sing Indicators 



• The defined bits in Factor 2 are of mixed status (some on, some off) in the Result field 
for a TESTB operation. 

• A subprogram returns with an error status from a CALL operation. 

Resulting indicators in columns 58 and 59 test for the following conditions: 

• The Result field contains a zero after an arithmetic operation. 

• The value in Factor 1 is equal to the value in Factor 2 in a COMP operation. 

• The value of the element found in Factor 2 is equal to the value in Factor 1 in a 
LOKUP operation. 

• An end-of-file condition occurs for the demand file in a READ operation. 

• Each bit defined in Factor 2 is on in the Result field for a TESTB operation. 

Resulting indicators are also used with the SETON and SETOF operation codes to specify 
that the indicator(s) be set on or off. 

The following example shows how resulting indicators can be used to control program 
operations: 

Field length 
Conkol level I Deci~al positions 
I I IHaif adjust (H) 
I Indicators Operation I II 
I I I I II Resu Iting 
I I Factor I Factor' Resultl I I indicators 
1 I 1 1 2 field 1 11+ - 0 

CI NxxNxxNxxl 1 1 1 1 II> < = +- Co~~ents --+ 
o I 1 I 2 1 3 1 4 151 6 1 7 1 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
1111 II 

10 C 
20 C 
30 C 
40 C 
50 C 
60 C 
70 C 

II 

SEARCH 
FLDl 
KEY 

FLDl 

In the above example: 

II II 

LOKUPTABl 
COMP 100 
CHAINFILEl 
TESTB'123' 
READ FILEl 
SETOF 
SUB FLD2 

II 11--11l1li II II II 

10 11 
222324 
32 

TEST 404142 
50 

1011 
RES 606162 

ZK-4390-85 

• Line 10 causes RPG II to search for the field SEARCH in the table TABl. IfRPG II can 
find an entry that is equal to the search word, indicator 11 is set on. IfRPG II can find 
an entry that is nearest to and higher in sequence than the search word, indicator 10 
is set on. 

Using Indicators 4-7 



• Line 20 causes RPG II to compare the contents of the field FLD1 with the numeric 
literal 100. If the contents of FLD1 are greater than 100, indicator 22 is set on and 
indicators 23 and 24 are set off. If the contents ofFLD1 are less than 100, indicator 23 
;" "at nn <Inri ;nri;"<ltn"" 99 <Inri 9.<1 <I"a "at nff Tftha "nntant" nfFT .n1 ann <I 1100 ;nri;"<1_ 
-- --- -------------------- ------ ---- --- ---. -- ---- ---------- --- -- - -"'1----- -- -1--------
tor 24 is set on and indicators 22 and 23 are set off. 

• Because the input file is an indexed file, line 30tells RPG II to retrieve a record using 
the key KEY from the indexed file FILEl. Ifthe record is not found, indicator 32 is set 
on. Otherwise, indicator 32 is set off. 

• Line 40 causes RPG II to test the bits 1, 2, and 3 in the field TEST. Ifthe bits are all off, 
indicator 40 is set on and indicators 41 and 42 are set off. If some bits are on and some 
are off, indicator 41 is set on and indicators 40 and 42 are set off. If the bits are all on, 
indicator 42 is set on and indicators 40 and 41 are set off. 

• Line 50 causes RPG II to read the next record from FILEl. If an end-of-file condition 
occurs, indicator 50 is set on. Otherwise, indicator 50 is set off. 

• Line 60 sets indicators 10 and 11 off. 

• Line 70 causes RPG II to evaluate the contents of the Result field after the SUB opera
tion. If the Result field contains a positive value, indicator 60 is set on and indicators 
61 and 62 are set off. If the Result field contains a negative value, indicator 61 is set on 
and indicators 60 and 62 are set off. If the Result field contains a zero value, indicator 
62 is set on and indicators 60 and 61 are set off. 

4.1.4 Control·Levellndicators 
You use control-level indicators to indicate that a particular field in the input record is a 
control field. Each time RPG II reads a record that contains the control field, it compares 
the data in the control field with the current value of the control field. If the contents 
change, a control break occurs, the control-level indicator is set on, and the value in the 
control field becomes the new current value. 

You associate a control-level indicator with an input field by specifying the indicator in 
columns 59 and 60 of the Input specification. 

You can use L9, LB, L7, L6, L5, L4, L3, L2, and L1 as control-level indicators. The lowest 
control level is L1 and the highest is L9. When you use more than one control-level indica
tor and a higher level control-level indicator is set on because of a control break, RPG II 
automatically sets on all lower level control-level indicators. When you use a control-level 
indicator as another type of indicator (for example, as a record-identifying indicator), and 
that indicator is set on, lower level control-level indicators are not automatically set on. 

4-8 Using Indicators 



A control break is likely to occur after the first record with a control field is read. RPG II 
compares the data in the control field with hexadecimal zeros. Therefore, RPG II bypasses 
total-time calculation and output operations for the first record containing control fields. 

All control-level indicators are set on before total-time calculations when the LR (last
record) indicator is on. All control-level indicators are set off after detail-time output. 

The following example shows how to use three different control-level indicators to condi
tion calculation and output operations. 

U sing Indicators 4-9 



011 12 I 3 1415 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

1 H 
2 FSLSCAR IP F 14 DISK 
3 FSLSREP 0 F 132 OF PRINTERTMP 
~ !SLSC~R AA '" nn V~ 

5 I 1 20BRANCHL3 
6 I 3 40SLSPERL2 
7 I 5 90CUSTNOLi 
8 I 10 142SLSAMT 
9 C 01 SLSAMT ADD CUSTOT CUSTOT 62 

10 CLi CUSTOT ADD SPTOT SPTOT 72 
11 CL2 SPTOT ADD BRTOT BRTOT 72 
12 CL3 BRTOT ADD FINTOT FINTOT 82 
13 OSLSREP H 201 1P 
140 OR OF 
15 0 UDATE Y 9 
16 0 25 'SALES REPORT' 
17 0 38 'PAGE' 
18 0 PAGE 43 
19 0 H 1 1P 
20 0 OR OF 
21 0 6 'BRANCH' 
22 0 22 'SALESPERSON' 
23 0 35 'CUSTOMER' 
24 0 46 'SALES' 
25 0 H 2 1P 
26 0 OR OF 
27 0 4 'NO' 
28 0 19 'NO' 
29 0 32 'NO' 
30 0 46 'AMOUNT' 
31 0 D 1 01 
32 0 BRANCHZ 4 
33 0 SLSPERZ 16 
34 0 CUSTNOZ 30 
35 0 SLSAMTt 45 
36 0 T 2 L1 
37 0 CUSTOTtB 45 
380 46 ' *' 
39 0 T 12 L2 
40 0 42 'TOTAL SALESPERSON' 
41 0 SLSPERZ 45 
42 0 SPTOT 1B 54 
43 0 56 '**' 
44 0 T 3 L3 
45 0 46 'TOTAL BRANCH NO' 
46 0 BRANCHZ 49 
47 0 BRTOT 1B 61 
48 0 65 '***' 
49 0 T 1 LR 
50 0 46 'FINAL TOTAL' 
51 0 FINTOTt 59 '$' 
52 0 64 '****' 

ZK-4391-85 

4-10 Using Indicators 



/ 

In this example: 

• Lines 5 through 7 assign three control-level indicators, one each to three different 
control fields. The specification associates the highest control-level indicator (L3) to 
the most significant input field BRANCH. The specification associates the next high
est control-level indicator to SLSPER and the lowest control-level indicator to 
CUSTNO. 

If the value of BRANCH changes from the previous record, indicator L3 is set on. 
Also, when indicator L3 is set on, indicators L2 and L1 are automatically set on. These 
three indicators can be used to condition calculation and output operations. 

• In line 10, when indicator L1 is on, RPG II adds the amount of the customer sale to the 
total sales for a particular salesperson. In line 11, when indicator L2 is on, RPG II 
adds the total sales for the salesperson to the total sales for each branch. In line 12 
when indicator L3 is on, RPG II adds the total sales for each branch to compute the 
final total. 

• Line 36 causes RPG II to output the total sales for each customer number when L1 is 
on. 

• Line 39 causes RPG II to output the total sales for each salesperson when L2 is on. 

• Line 44 causes RPG II to output total sales for each branch when L3 is on. 

You can assign the same control-level indicator to more than one control field. These fields 
are called split-control fields. The following example shows how to use split-control fields: 

Sequence (AA-ZZ, 01-99) 
I NUlllber (1-N) 
I 10ptionai (0) Decilllal positions 
I I I Record identif~ing indicator I Control level 
I III I I Hatch field 
I III + Identif~ing codes + forlllat I I I fld rec rei 

file I III I I I (PB) lfield I I I 
nallle I III I C C CI lfield Inallle I I I field 
I I III I Z Z ZI Ilocationll I I I indicatrs 

I I I III Pos NDcPos NDcPos NDc Ifr To II I I I + - 0 
011 12 I 3 I 4 I 5 16 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** * *** *--- *--- *--- .**---*---** * * * * * * 

5 I 1 20BRANCHL1 
6 I 3 40SLSPERL1 
7 I 5 90CUSTNOL1 

ZK-4392-85 

In this example, the fields BRANCH, SLSPER, and CUSTNO combine to form the control 
field. When RPG II compares the data in these fields with the same fields in a previous 
record, indicator L1 is set on when the data changes. 

Using Indicators 4-11 



4.1.5 Overflow Indicators 
When the printer reaches the overflow line that signals the end ofthe page, RPG II sets on 
the overflow indicator assigned to that printer output file. 

You can use OA, OB, OC, OD, OE, OF, OG, and OV as overflow indicators. Define overflow 
indicators in columns 33 and 34 of the File Description specification. 

In the following example, after reaching the overflow line, RPG II sets on the overflow indi
cator OF. Then, the printer moves to the top of the next page and outputs the heading lines. 

T~pe (HDTE) Edit codes , o No CR -
IFetch overfloN (n I X -------------
I I Space I Y date edit Y Y 1 A J 
III Skip· I Z zero suppress Y N 2 B K 
III I I N Y 3 C L 
III I Indicators IBlank-after (B) N N 4 D H 

File III I I Field II End position 
naPle III I I naPle III ForPlat (PB) 
I III I I I III I 

01 I IBAB A NxxNxxNxxl III 1+ Constant or edit Nord + 
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** ***** * * 

14 OSLSREP H 201 OF 
15 0 
16 0 
17 0 
18 0 

UDATE Y 9 
25 'SALES REPORT' 
38 'PAGE' 

PAGE 43 
ZK-4393-85 

See Part I, Chapter 6 for a full description of the overflow routine and overflow indicators. 

4.1.6 K Indicators 
K indicators can be used to condition calculations, output records and output fields. They 
can also be used as resulting indicators. 

4-12 Using Indicators 



In the following program, the K indicator turned on is displayed when its associated cursor 
control key is typed. CTRLlZ is typed to end the program. 

o I 1 I 2 I 3 I 4 I 5 161 7 I 
1234567890123456789012345678901234567890123456 7890 123456 7890 123456 7890 123456 7890 

.EL 

FH 
F* File: READ_CURSOR.RPG 
F* 
F* This RPG II prog,'a. de.onst,'ates the use of the RTL ,'outine 
F* SMGSREAD_KEYSTROKE to ,'ead a ke~st,'oke f,'o. the ter.inal. 
F* 
F* The p,'ogra. takes input f,'o. the te".inal until CTRLIZ is t~ped. 
F* If an~ of the fou,' cursor positioning ke~s is t~ped, a string 
F* is displa~ed co,','esponding to the ke~. 
F* 
F* Bui Id this prog,'a. using the following co •• ands: 
F* 
F* $ RPG READ_CURSOR 
F* S CREATE SMGDEF. MAR 
F* • TITLE SMGDEF - Define SMGS constants 
F* .Ident 11-0001 
F * SSMGDEF GLOBAL 
F* .END 
F* S MACRO SMGDEF 
F* S LINt: READ_CURSOR, SMGDEF 
F*-
FTTY D V 5 TTY 
C CALL REAKEY 
C* Externa I def ini tions fo,' SMG ,'outines. 
C CRE~:B EXTRN' SMGSCREATE_ VIRTUAL_KEYBOARD' 
C DELKB EXTRN'SMGSDELETLVIRTUALI:EYBOARD' 
C REAKEY EXTRN' SMGSREAD_KEYSTROKE' 
C* Exte,'nal definitions fo,' SMG ter.inators. 
C LUP EXTRN' SMGSL TRM_UP' 
C LDOWN EXTRN' SMGSI::_ TRM_DOWN' 
C LLEFT EXTRN' SMGSL TRM_LEFT' 
C LRIGHT EXTRN'SMGSLTRM_RIGHT' 
C LCTRLZ EXTRN'SMGSL TRM_CTRLZ' 
c* Create the virtual ~.e~boa,'d. 
C N99 CALL CREI:B 
C PARM KB_ID 90 WL 
C SETON 99 
C* Read a ke~st,'oke. 
C CALL REAKEY 
C PARM KB_ID 90 RL 
C PARM LCODE 50 WW 
C* Tut'n on an indicator if a CU"SOl' positioning ke~ was t~ped. 
C LCODE COMP LUP KA 
C LCODE COMP LDOWN I:B 
C LCODE COMP LLEFT KC 
C LCODE COMP LRIGHT KD 
C* Tut'n on LR to <tuit if CTRL/Z was t~ped. 
C LCODE COMP LCTRLZ LR 
C* Displa~ a .essage if a curso,' positioning ke~ was t~ped. 
C KA 'UP' DSPL YTTY 
C KB 'DOWN' DSPL YTTY 
C KC 'LEFT' DSPL YTTY 
C KD 'RIGHT' DSPLYTTY 
C* Delete the virtual ke~board. 
CLR CALL DELKB 
CLR PARM KB_ ID 90 RL 

Using Indicators 4-13 



4.2 Internally Defined Indicators 

There are some indicators that you need not define; RPG II defines them for you. This sec
tion describes internally defined indicatorR :mn p.x!llHinR how t.o llRP t.hprrI 

4.2.1 First-Page Indicator 
When you specify a first-page (lP) indicator, it is set on at the start of the program and set 
off after detail-time output but before the first record is read. Therefore, you can use the 1P 
indicator to condition those heading lines you want printed before RPG II processes the 
first record. 

You specify the 1P indicator, which is always represented by 1P, in columns 24 and 25,27 
and 28, or 30 and 31 of the Output specification. 

The following example shows how to use the 1P indicator to print a header on the first page 
ofa report: 

T~pe (HDTE> Edit codes o No (;I'( -
I Fetch over'f I Olrl (F) I X -------------
IISpace I Y date edit Y Y 1 A J 
III Skip I Z zero suppress Y N 2 B K 
III I I N Y 3 C L 
III I Indicator's IBlank-after' (B) N N 4 D M 

File III I I Field II End position 
naPle III I I nal1le III F OI'l1lat (PB) 
I III I I I III I 

01 I IBAB A NxxNxxNxxl III 1+ Constant or edit lrIord + 
o I 1 I 2 131 4 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** ***** * * 
OOUTPUT H 201 1P 
o OR OF 
o 
o 
o 
o 
o H 22 1P 
o OR OF 
o 
o 
o 
o 
o 

4-14 Using Indicators 

* ***---** 

UDATE Y 8 
43 'SALES REPORT' 

PAGE 72 
67 'PAGE' 

5 'ITEM' 
23 'DESCRIPTION' 
41 'SALES' 
56 'COST' 
72 'PROFIT' 

ZK-4385-85 



The following heading lines are printed on the first page: 

o 234 567 
12345678801234567880123456788012345678801234567880123456788012345678801234567880 

5/18/83 SALES REPORT PAGE 

ITEM OESCR I PTI ON SALES COST PROFIT 

You can use the IP indicator to condition only detail or heading output lines. If you have a 
detail or heading output line conditioned by no indicators or all negative indicators, use a 
negative IP (NIP) indicator to prevent this line from being output on the first cycle before 
the first record is read. 

4.2.2 Last-Record Indicator 
Like the first cycle in an RPG II program, the last cycle differs from all other program 
cycles. Once RPG II processes the last record in all primary and secondary files for which 
you specified processing until the end-of-file, the last-record (LR) indicator is set, along 
with all the other control-level indicators you specified. The LR indicator causes RPG II to 
perform all total-time calculation and output operations conditioned by any control-level 
indicators and by the LR indicator. 

The LR indicator is always represented by LR, as shown in the following example: 

THpe (HDTE) Edit codes o No CR -
I Fetch oYet'f I Olrl (F) I X -------------
IISpace I Y date edit Y Y 1 A J 
III Skip I Z zero suppress Y N 2 B K 
III I I N Y 3 C L 
III I Indicatot's IBlank-aftet' (B) N N 4 D M 

File III I I Field II End position 
name III I I name III F ot'mat (PB) 
I III I I I III I 

01 IIBAB A NxxNxxNxxl III 1+ Constant Ot' edit lrIot'd + 
011 12 I 3 I 4 I 5 16 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** 
o 
o 
o 
o 
o 

***** * * 
T 1 LR 

TSALES1 
TCOST 1 
TPROFIl 

30 'TOTALS' 
41 '$' 
57 '$' 
72 '$' 

ZK-4384-85 

The following information is printed only after processing the last record. 

I) 2 3 5 7 
12345678801234567880123456788012345678801234567880123456788012345678801234567880 

TOTALS $564.30 $425+00 $138.30 

Using Indicators 4-15 



If your program does not contain a primary input file, you must set on the LR indicator to 
end the execution of the program. If your program sets on the LR indicator, RPG II auto
matically sets on all control-level indicators just before total-time calculations. If the LR 
illdicutG~ is ::;~t~!i d~!"i~b t~t21-ti!'!!e ~~I!:l..!1~ti0!!~7 RPG II d0~~ not. ~l1tom~t:ir.::Il1y ~p-t on all 
control-level indicators. 

4.2.3 Matching-Record Indicator 
When you use more than one primary and secondary file, RPG II multifile logic supplies 
you with a method of selecting the next record to process. You can designate one or more 
fields in each record to be the matching fields (columns 61 and 62 of the Input specifica
tion). When the fields from a primary file and one or more ofthe secondary files m' .~ch, the 
matching-record (MR) indicator is set on. The MR indicator remains set on whil' ?rocess
ing the records from the primary and secondary file that match. See Part I, Chapter 5 for a 
complete discussion of multifile processing. 

At the beginning of detail time, the MR indicator is set on or off, as determined by the 
matching status of the record to be processed. Therefore, at total time, the MR indicator 
reflects the matching status ofthe previous record with the record to be processed. See Part 
I, Chapter 5 for examples of using the matching-record indicator. 

4.2.4 External Indicators 
You can use external indicators to condition any operation in your program. External 
indicators, which are always represented by Ul through US, can also appear in columns 71 
and 72 of the File Description specification, and in columns 54 through 59 ofthe Calcula
tion specification. To use the external indicator, you must also assign the logical name 
RPG$EXT_INDS to an external indicator using the DEFINE or ASSIGN command, as 
shown in the following example: 

$ DEFINE RPG$EXT_INDS "external-indicator-list" 

An external indicator is set on by specifying it in the external-indicator-list. An external 
indicator is set offby not specifying it in the external-indicator-list. 

The following example sets on external indicators Ul, U5, and U4 and sets off external 
indicators U2, U3, U6, U7, and US. 

$ DEFINE RPG$E}(T INDS "54" 

When you use an external indicator to condition a file, the file is opened only when the 
external indicator is on. If the external indicator is off, input files being processed sequen
tially are treated as if the end-of-file was reached. Use the same external indicator as a 
conditioning indicator to control calculation and output operations for those files being 
processed by methods other than sequential processing. Otherwise, a run-time error will 
occur when you attempt input or output operations to a file that was not opened because 
the external indicator was off. 

4-16 Using Indicators 



External indicators can also be used as resulting indicators. 

4.2.5 Halt Indicators 
You can use halt indicators (HI through H9) as record-identifying indicators, field indica
tors, or resulting indicators to stop a program when a specific condition occurs. When you 
use a halt indicator as a record-identifying indicator, a specific type of record causes the 
halt. 

The following example causes the program to check the character in position 80 of records 
read from the input file FILEIN. If the eightieth character is not a S, the halt indicator HI 
is set on and the program will halt execution. A run-time message is displayed saying that 
this indicator is on. 

Sequence (AA-ZZ, 01-99) 
I Numbet' (I-N) 
I 10ptional (0) Decimal positions 
I I IRecord identif~ing indicator I Contt'ol level 
I III I I Match field 
I III + Identif~ing codes + Fot'mat I I I F I d t'ec re I 

File I III I I I (PB) IField I I I 
name I III I C C CI IField Iname I I I Field 
I I III I Z Z ZI Ilocationil I I I indicatrs 

II I III Pos NDcPos NDcPos NDc 1Ft' To II I I I + - 0 
011 12 I 3 I 4 I 5 I 6 171 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** * *** *--- *--- *--- .**---*---** * * * * * * .... 
IFILEIN AA HI 80NCS 
I 02 80 CS 
I 1 10 FIELDI 

ZK-4383-85 

When a halt indicator is used as a field indicator, a halt occurs because of erroneous input 
data. 

Using Indicators 4-17 



The following program uses a halt indicator as a field indicator. When a record is read from 
the input file FILEIN, FIELD1 is checked for a negative value. IfFIELD1 contains a nega
tive value, H2 is set on. After this record has been processed, the program will halt. 

0'1 , 2 , 3 , 4 , 5 , 6 , 7 , 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * * 

. 
IFILEIN AA 01 
I 
C NH2 

* * 

SQRT FIELD1 

* 

1 50FIELD1 H2 
FDL2 95 

ZK-4382-85 

When a halt indicator is used as a resulting indicator, a halt occurs when calculations pro
duce erroneous results during either detail time or total time. 

In the following example, if the field FIELD1 is equal to zero, the halt indicator H4 is set 
on. After the current record has been processed, the program halts. 

Field length 
Contt'ol level , Deci~al positions , , 'Half' adjust (H) , Indicatot's Operation , II , I I I IIResulting 
I I Factor I Factot' Resultl I I indicators 
I I 1 I 2 field I 11+ - 0 

C' NxxNxxNxx' , , I I II> < = +- Co~~ents --+ 
0'1 , 2 , 3 , 4 , 5 , 6 , 7 , 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** * 
C 
C NH4 

* FIELD1 
FIELD2 

* * * *--*** * * * 
SUB 59.0 FIELD1 H4 
DIV FIELD1 FIELD1 

ZK-4381-85 

When a halt indicator is set on, a halt does not occur immediately. Before the program 
halts, it completes the current cycle and processes the record that caused the error 
condition. 

If any halt indicators are on after detail-time output, a run-time error occurs. 

Halt indicators can also be used as field-record-relation indicators and to condition calcu
lation and output operations. See Part II, Chapter 2 for more information on using halt 
indicators as field-record-relation indicators. 

4-18 Using Indicators 



4.3 Using Indicators As Fields 

The *IN, *IN,n and *INxx special words refer to predefined indicators and allow you to use 
those indicators in your program. Sections 4.3.1 and 4.3.2 describe each type of special 
word. 

4.3.1 *IN and *IN,n 
*IN is a predefined array with 99 one-position character elements. The elements in this 
array represent indicators 01 through 99. Use *IN,n, where n is the array index, to refer
ence an indicator. For example, *IN,54 refers to indicator 54. 

The elements in this array can assume only two character values - 1 and o. If you refer
ence an indicator using *IN,n and the contents of the element are 0, the indicator is off. If 
the contents of the element are 1, the indicator is on. 

You can use either the array or the array element to reference an indicator anywhere any 
other one-character array or array element can be used. You cannot, however, specify the 
entire array *IN as the Result field of a PARM operation. To prevent unpredictable results 
when modifying an element in *IN, assign the character literal 0 or 1 to *IN. 

In the following example, the program tests whether the setting for indicator 15 is equal to 
the setting for indicator 20. In the next line, indicator 20 is set on. Using the MOVE opera
tion to transfer 1 to *IN,20 produces the same result as using the SETON operation code to 
set on indicator 20. 

Contl'o I I eve I 
I 
I Indicatol's 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Opel'ation 
I 
I 
I 
I 

Factol' 
2 
I 

Fie I d length 
I Decimal positions 
I IHaif adjust (HI 
I II 
I II Resulting 

Resul t I I I indicators 
field I 11+ - 0 
I I I I> < = +- Comments --+ 

o I 1 121 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C 
C 

4.3.2 *INxx 

* *IN,20 * * COMP *IN,15 
MOVE '1' 

* *--*** * * * 
99 

*IN,20 
ZK-4380-85 

*INxx is a predefined one-position character field where xx represents any indicator except 
the IP (first-page), overflow, or external indicators. Like *IN, it can contain only the char
acter 0 or l. 

You can use *INxx anywhere any other one-character field can be used, except as the 
Result field of a PARM operation. 

Using Indicators 4-19 



In the following example, the value of the MR indicator is compared to the value of M. If 
they are the same, indicator 99 is set on. The MR indicator is represented as *INMR. 

o I 1 I 2 I 3 I 4 I 5 I fj I 7 I 

IFIlE1 01 
I 1 20 TEXT 
I 19 20 HATCH H1 
IFIlE2 02 
I 2 21 TEXT 
I 20 21 HATCH H1 
C *INHR COHP H 99 

ZK-4379-85 

4-20 U sing Indicators 



Chapter 5 

Using Files 

A file is a collection of information, organized into groups or sections, called records. Each 
record is made up of one or more blocks of characters or numbers, called fields. 

This chapter explains the RPG II file organizations and record operations that are imple
mented through VAX Record Management Services. For additional information on file 
organization and file and record operations, see the VAX/VMS Record Management 
Services Reference Manual. 

5.1 File Names 

Columns 7 through 14 (File name) of the File Description specification define the file 
name. RPG II uses the entry in columns 7 through 14 (File name) and the entry in columns 
47 through 52 (Symbolic device) to associate the file name with the VAXNMS file specifi
cation. The default type for an RPG II file is DAT. 

You can use a logical name for the entry in columns 47 through 52 (Symbolic device), and 
then assign a VAXNMS file specification to the logical name. If you assign a full file speci
fication to the logical name, RPG II ignores the entry in columns 7 through 14 when deter
mining the file specification. If you do not assign the file-name part of the file specification 
to the logical name, RPG II uses the entry in columns 7 through 14 when determining the 
file specification. If you do not assign a file type to the logical name, RPG II uses DAT. 

If you do not specify an entry in columns 47 through 52, you can use a logical name as the 
entry in columns 7 through 14 for the VAXNMS file specification. If you do not specify a 
logical name as the entry in columns 7 through 14, the file specification will consist of the 
file name in columns 7 through 14 and the file type DAT. 

The entry in columns 7 through 14 is used as the RMS default file name string. The entry 
in columns 47 through 52 (Symbolic device) is used as the RMS file name string. See the 
VAX/VMS Record Management Services Reference Manual for information about file
name strings and default file-name strings. 

~1 



5.2 Record Formats 
The records in a file can be all the same length (fixed) or of different lengths (variable). 
Vs:lrls:lhlo:>_lo:>nat.h rO:>f'nrnQ nft.o:>n llQO:> nld~ Qt.nrs:lCl'O:> Qn<lf'O:> Tnnro:> o:>ffif'lo:>nth, Th., ph<lr"pt.,riQtipQ 

. ------.--- ----0--- - - --- ---- ------ --._- -_._-- ------0- -r---- ----- - -----------0/- ---- ------------ .... ---
and requirements of individual applications should be carefully considered when you 
decide whether to use fixed-length or variable-length records. 

5.3 File Types 
You can use files in three ways: 

• As input to an RPG II program 

• As output from an RPG II program 

• As an update file where the records in the file are changed by the program 

5.4 File Organizations 
The organization of a file determines how the records in it are arranged. RPG II allows 
three different file organizations: 

• Sequential 

• Direct 

• Indexed 

Sections 5.4.1 through 5.4.3 describe these file organizations. 

5.4.1 Sequential Organization 
Sequential file organization is available on all types of devices. Sequential files contain 
records in the order that they were written. The first logical record in the file is always in 

5-2 Using Files 

\. 

( 



the first physical record position, the second logical record in the file is always in the sec
ond physical record position, and so on. If you need to access the fourth logical record, you 
can find it between the third and fifth physical records, as shown in Figure 5-1: 

2 3 4 5 

t fou,th mco,d 

ZK-1462-83 

Figure 5-1: Sequential File Organization 

You can retrieve records from a sequential file either sequentially, by reading through the 
entire file from beginning to end, or randomly, by using relative record numbers or an 
ADDROUT file. 

5.4.2 Direct Organization 
Direct file organization is available on disk devices only. RMS handles RPG II direct files 
as files with relative file organization. A direct file consists of a series of fixed-length posi
tions (or cells) that are numbered consecutively from 1 to n. This number is the relative 
record number; it indicates the record's position relative to the beginning of the file. (The 
relative record number of the first cell is always 1.) Each record you write is assigned to a 
specific cell within the file. For example, you can assign the second record to the fourth cell; 
its relative record number would be 4. This assignment can result in empty cells; there
fore, you must specify a record's relative record number to access it. Figure 5-2 shows that 
cell number 2 and 5 are empty cells. 

cell no. ~ 2 3 4 5 6 

records ~ 2 3 4 

t t 
empty cell empty cell 

ZK-1463-83 

Figure 5-2: Direct File Organization 

Using Files 5-3 



Direct files can be accessed sequentially or randomly by using the CHAIN operation code 
or by using an ADDROuT file. When you access a direct file sequentially, empty cells are 
skipped. When you access a direct file randomly using the CHAIN operation, the indicator 
specified in columns 54 and 55 of the Calculation specification will be set on for an empty 
cell. 

5.4.3 Indexed Organization 
Indexed file organization is available on disk devices only. Each record in an indexed file 
contains an index key value, as shown in Figure 5-3: 

index key value I data 

\'------- record _____ J 

ZK-1464-83 

Figure 5-3: Indexed File Organization 

An index key is a field within each record that is defined by its relative location within the 
record, and by its length. The index key is the primary means of locating records within 
the file. For example, you could use an employee's badge number as the index key value for 
an employee record. The index key value in Figure 5-4 is the first six characters in the 
record, 768979. 

768979Henry Alberts 

record 

ZK-1465-83 

Figure 5-4: Index Key Value 

You can retrieve a record from an indexed file by specifying its index key value. In fact, you 
can retrieve records in an indexed file either sequentially or randomly by using index key 
values, or randomly by using an ADDROUT file. 

Using Files 



Another way to access records from an indexed file is sequentially within limits. See Sec
tion 5.5 for more information on accessing records from indexed files. 

5.5 File Access Methods 
There are several ways you can access the records in a file, depending on its organization. 
Table 5-1 lists file organizations and the methods you can use to retrieve records. 

File Designation 

Primary 
Secondary 
Demand 
Full-procedural 

Chained 
Full-procedural 

Table 5-1: File Access Methods 

Organization 

Sequential 

Direct 

Indexed 

Sequential 
Direct 
Indexed 

Access Method 

Sequentially 
Randomly by ADDROUT file! 
Sequentially 
Randomly by ADDROUT file! 
Sequentially 
Sequentially by key 
Sequentially within limits 
Randomly by ADDROUT file! 

Randomly by relative record number2 
Randomly by relative record number 
Randomly by key 

! You cannot process demand or full-procedural files using an ADDROUT file. 

2 You can access the records in a sequential file randomly by relative record number only 
if the records are fixed-length and the file resides on disk. 

Although you cannot change the organization of a file after you have created it, you can 
change the file access method each time you use the file. The method you use depends on 
how many records your file contains and how often you need to access a record . Use the 
following guidelines in selecting a file organization and access method: 

• If you always process all the records in a file from beginning to end (as in a payroll 
application), use a sequential file and access the records sequentially. 

• If you need to access some or all records under changing or unpredictable conditions 
(as in a transaction processing system), use an indexed or direct file and access the 
records randomly. 

Sections 5.5.1 through 5.5.7 describe each file access method and provide programming 
guidelines for each. 

Using Files 5-5 



5.5.1 Sequential Access 
When you access a file sequentially, each input operation retrieves the next record in the 
file, regardless of the file organization, until either the end of the file is reached or the 
program terminates. For an indexed file, records are retrieved in primary key order. 

To specify sequential access, you must make the following entries in its File Description 
specification: 

• Column 15 (File type) - Specify I or U to indicate whether the file is to be open for 
input or for update. 

• Column 16 (File designation) - Specify P, S, D, or F to indicate whether the input file is 
primary, secondary, demand, or full-procedural. 

• Column 19 (Record format) - Specify F or V to describe the record format. 

• Columns 24 through 27 (Record length) - Specify the length of fixed-length records or 
the maximum length of variable-length records. 

The following example specifies the name of a file, INPUT, designated as an input primary 
file with fixed-length records and a record length of60 bytes: 

rile 
name 
I 

FI 

Mode (LR) 
IKe~ length 

T~pe (lOUD) I I Record address t~pe (API) 
IDes (PSRCTD)I I IOrganization (IT,i-9) 
IIEOF (E) I I IIOverflow indicator 
I I ISeq (AD) I I II I Ke~ location 
1111F",t (FV) II III I Extension (EU 
1IIIIBIk Rec II III I IDevice S~",b Tape 
I I I I II en I en I I II I I I code dev I abe I 
IIIIII I II III I II I I 

Core 
index 
I 

Addtn(AU) 
I Expand 
I I Share 
III Rewnd 
III I 
III IFile 
III Icond 
III II 

011 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** ******---*---**-*** *---** * 
FINPUT IP F 60 DISK 

ZK-4394-85 

Using Files 



5.5.2 Sequential Access by Key 
You can process only indexed primary, secondary, demand, and full-procedural files 
sequentially by key. VAX RMS reads records in ascending key sequence until it reaches 
the end of the file or until the program terminates. 

To specify sequential access by key for a file, you must make the following entries in its 
File Description specification: 

• Column 15 (File type)-Specify I or U to indicate whether the file is to be open for input 
or for update. 

• Column 16 (File designation)-Specify P, S, D, or F to indicate whether the input file is 
primary, secondary, demand, or full-procedural. 

• Column 19 (Record format)-Specify F or V to describe the record format. 

• Columns 24 through 27 (Record length)-Specify the length of fixed-length records or 
the maximum length of variable-length records. 

• Columns 29 and 30 (Key length)-Specify the length ofthe key field. 

• Column 31 (Record address type)-Specify either A or P to tell RPG II that the index 
keys are in character (A) or packed decimal (P) data format. 

• Column 32 (File organization)-Specify I to indicate that the file is an indexed file. 

• Columns 35 through 38 (Key location)-Specify the starting character position of the 
key field. 

The following example specifies a primary input file, INPUT, with fixed-length records 60 
bytes long. The file organization is indexed with its index keys in packed decimal data 
format. 

File 
nallle 
I 

FI 

Mode (LR) 
IKe~ length 

T~pe (lOUD) II Recot'd addt'ess t~pe (API) 
I Des (PSRCTD) I I IOt'ganization (IT, 1-9) 
IIEOF (E) II IIOvet'flow indicator 
IllSect (AD) II III Ke~ location 
1IIIFlllt (FV) II III I Extension (EU 
1IIIIBIk Rec II III I IDevice S~IIIb Tape 
I I I I I I en I en I I I I I I I code dev I abe I 
IIIIII I II III I II I I 

COt'e 
index 
I 

Addtn(AU) 
IExpand 
IIShare 
III Rewnd 
III I 
III IFi Ie 
III Icond 
III II 

o I 1. I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** ******---*---**-*** *---** * 
FINPUT IP F 60 3PI 1 DISK 

ZK-4395-85 

Using Files 5-7 



5.5.3 Sequential Access Within Limits 
You can process indexed files sequentially within limits by creating a record-limits file 
that specifies a range of index keys in each record. 

/ 
record record-limits file 

\ 
A data ~ - ... ..-- first record 

B data ~ - ... ..--second record 

C data 

0 data t th key file 

low key 

E data 

F data 

key 

ZK·1466·83 

Figure 5-5: Sequential Access Within Limits 

In Figure 5-5, the first record in the record-limits file causes RPG II to retrieve those 
records whose keys are greater than or equal to the low key (C) and less than or equal to 
the high key (E). When the program reaches a record with a key value greater than E or 
reaches the end-of-file, it reads the next record from the record-limits file to get a new high 
and low range. The second record in the record-limits file causes the program to retrieve 
those records whose keys are greater than or equal to the low key (E) and less than or equal 
to the high key (G). The indexed file is processed until it reaches the end of the record
limits file or the program terminates. 

When using a record-limits file to process indexed files, observe the following rules: 

• In the record-limits file, specify only one set oflimits per record. 

• The record length must be at least twice the length of the record key. 

• The low key must begin in character position 1, and the high key must immediately 
follow the low key. 

5-8 U sing Files 



• The length ofthe high and low keys must be the same, and must be equal to the length 
of the key field in the file to be processed. 

• Numeric keys can contain leading zeros. 

• Alphanumeric keys can contain blanks. 

To access a file sequentially within limits, you must make the following entries in its File 
Description specifications: 

• Column 15 (File type) - Specify I or V to indicate whether the file is to be open for 
input or for update. 

• Column 16 (File designation) - Specify P, S, D, or F to indicate whether the input file is 
primary, secondary, demand, or full-procedural. 

• Column 19 (Record format) - Specify F or V to describe the record format. 

• Columns 24 through 27 (Record length) - Specify the length of fixed-length records or 
the maximum length of variable-length records. 

• Column 28 (Access mode) - Specify L to indicate that the indexed file is to be processed 
sequentially within limits. 

• Columns 29 and 30 (Key length) - Specify the length of the key field. 

• Column 31 (Record address type) - Specify either A or P to indicate that the index 
keys are in character (A) or packed decimal (P) data format. 

• Column 32 (File organization) - Specify I to indicate that the file is an indexed file. 

• Columns 35 through 38 (Key location) - Specify the starting character position ofthe 
key field. 

V sing Files 5-9 



The following example specifies an input secondary file, INPUT, with fixed-length records 
60 bytes long. This file is to be processed sequentially within limits. The file organization is 
indexed, the key field is three bytes long beginning in character position 1, and the keys 
are in character format. \ 

file 
nallle 
I 

fl 

Hode (LR) 
IKe~ length 

T~pe (lOUD) I I Record address t~pe (API) 
IDes (PSRCTD)I I IOrganization (IT,i-9) 
IIEOf (E) I I IIOverflow indicator 
I I ISe~ (AD) I I I I I Ke~ location 
1IIIfPlt (fV) II III I Extension (El) 
I I I I IBlk Rec I I III I IDevice S~Plb Tape 
I I I I lien len I I III I I code dev label 
111111 I II III I III I 

Core 
index 
I 

Addtn(AU) 
I Expand 
I I Share 
III Rewnd 
III I 
III Ifile 
III Icond 
III II 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** ******---*---**-*** *---** * * .. '11.*-----***.** 
fINPUT IS f 60L 3AI 1 DISK 

ZK-4396-85 

To access a file sequentially within limits, you must make the following entries for the 
record-limits file in its File Description specification: 

• Column 15 (File type) - Specify I to indicate that the file is to be open for input. 

• Column 16 (File designation) - Specify R to indicate that the file named in columns 7 
through 14 is a record-limits file. 

• Column 19 (Record format) - Specify F or V to describe the record format. 

• Columns 24-27 (Record length) - Specify the length of fixed-length records or the 
maximum length of variable-length records. 

• Columns 29 and 30 (Key length) - Specify the length of the key field. 

• Column 31 (Record address type) - Specify either A, P, or blank to indicate that the 
index keys are in character (A), packed decimal (P), or the same data format as the file 
being processed by the record-address file (blank). 

• Column 39 (Extension) - Specify E to cause the system to look for an Extension 
specification. 

You must also make the following entries for the record-limits file in its Extension 
specification: 

• Columns 11 through 18 (From file name) - Specify the name of the record-limits file. 

• Columns 19 through 26 (To file name) - Specify the name ofthe file to be processed by 
the record-limits file. 

5-10 Using Files 
( 
\ 



The following example specifies the File Description and Extension specifications for 
processing a file sequentially within limits: 

o I 1 I 2 I 3 I 4 151 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

FIDXA12 IR F 6 3A 
FIDXI12 IP F 60L 3AI 
E IDXA12 IDXI12 

EDISK 
1 DISK 

ZK-4397-85 

An indexed demand or full-procedural file can also be processed sequentially within limits 
using the SETLL operation. See Part II, Chapter 3 for information on the SETLL operation 
code. 

5.5.4 Random Access 
Accessing records randomly allows you to retrieve or write a record anywhere in the file. 
To do this, you must specify the record location using: 

• Relative record numbers 

• Keys 

• ADDROUT file 

The method you use depends on the organization of the file. Sections 5.5.4.1 through 
5.5.4.3 explain these methods. 

5.5.4.1 Random Access by Relative Record Number 
You can randomly access records in sequential and direct files by specifying relative record 
numbers that identify records relative to the beginning ofthe file. For example, the rela
tive record number for the fifth record is 5. Accessing a sequential file using this method 
requires that the records be of fixed length and that the file reside on disk. 

To access a file randomly by relative record number, you must make the following entries 
in its File Description specification: 

• Column 15 (File type) - Specify I or U to indicate whether the file is to be open for 
input or for update. 

• Column 16 (File designation) - Specify C or F to indicate whether the file named in 
columns 7 through 14 is a chained or full-procedural file. 

• Column 19 (Record format) - Specify F or V to describe the record format. 

U sing Files 5--11 



• Columns 24 through 27 (Record length) - Specify the length of fixed-length records or 
the maximum length of variable-length records. 

• Column 28 (Mode) - Specify R to cause RPG II to access the file randomly, using a 
relative record number. 

You must also make the following entries for the file in its Calculation specification: 

• Columns 18 through 27 (Factor 1) - Specify the relative record number of the record 
you want to retrieve. 

• Columns 28 through 32 (Operation code) - Specify the CHAIN operation code. Use an 
indicator in columns 54 and 55 to signal an empty cell condition for a direct file. Oth
erwise, attempting to CHAIN to an empty cell will cause a run-time error. 

• Columns 33 through 42 (Factor 2) - Specify the name of the file that contains the 
record you want to retrieve. 

The following example randomly accesses the direct file RAN07 A by relative record num
ber. The primary input file RANI07 provides the record numbers in the field ITEM#. 

011 I 2 I 3 I 4 I 5 I 6 171 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

FRANI07 IP F 13 DISK 
FRAN07A UC F lOR DISK 
FRAN07B 0 F 30 PRINTER 
IRANI07 AA 01 
I 1 11 STORE 
I 13 130ITEMII 
IRAN07A AB 02 
I 1 10RECII 
I 3 50ACCESS 
I 7 10 VALUE 
C ITEMII CHAINRAN07A 50 
C 50 GOTO HANDLR 
C 1 ADD ACCESS ACCESS 
C SETON 40 
C EXCPT 
C SET OF 40 
C HANDLR TAG 
C 50 SETON LR 
ORAN07A E 02 40 
0 RECII 1 
0 ACCESS 5 
0 VALUE 10 
ORAN07B H 22 lPN40 
0 22 'STORE PURCHASES' 
0 D 01N40 
0 STORE 14 
0 ACCESS 20 
0 VALUE 27 

ZK-4398-85 

5-12 Using Files 



5.5.4.2 Random Access by Key 
You can randomly retrieve records from an indexed file by specifying their index keys. 

To access a file randomly by key, you must make the following entries in its File Descrip
tion specification: 

• Column 15 (File type) - Specify I or U to indicate whether the file is to be open for 
input or for update. 

• Column 16 (File designation) - Specify Cor F to indicate whether the file named in 
columns 7 through 14 is a chained or full-procedural file. 

• Column 19 (Record format) - Specify F or V to describe the record format. 

• Columns 24 through 27 (Record length) - Specify the length of fixed-length records or 
the maximum length of variable-length records. 

• Column 28 (Mode) - Specify R to tell RPG II to access records randomly, using index 
key values. 

• Columns 29 and 30 (Key length) - Specify the length of the key field. 

• Column 31 (Record address type) - Specify either A or P to indicate that the index 
keys are in character (A) or packed decimal (P) data format. 

• Column 32 (File organization) - Specify I to indicate that the file is an indexed file. 

• Columns 35 through 38 (Key location) - Specify the starting character position of the 
key field. 

You must also make the following entries for the file in its Calculation specification: 

• Columns 18 through 27 (Factor 1) - Specify the index key of the record you want to 
retrieve. 

• Columns 28 through 32 (Operation code) - Use the CHAIN operation code. The record 
you specify can be read from the file either during detail-time or total-time calcula
tions. Specify an indicator in columns 54 and 55 to signal a record-not-found condi
tion. Otherwise, a record-not-found condition will cause a run-time error. 

• Columns 33 through 42 (Factor 2) - Specify the name of the file to be processed. 

Using Files 5-13 



The following example randomly accesses the indexed file GROCER using keys. The 
primary input file STORES provides the keys in the field ITEM#. 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

rSTORES 
rGROCER 
rREPORT 
ISTORES 
I 
I 
IGROCER 
I 
I 
I 
C 
C 50 
OREPORT 
o 
o 
o 
o 
o 

IP r 
IC r 
o r 
AA 01 

AB 02 

ITEMti 

H 22 

D 

13 
lOR lAI 
30 

DISK 
1 DISK 

PRINTER 

1 11 STORE 
13 130ITEMti 

CHAINGROCER 
SETON 

lPN40 

1 10RECti 
3 50COUNT 
7 10 VALUE 

50 
LR 

22 'STORE PURCHASES' 
01N40 

STORE 14 
COUNT 20 
VALUE 27 

5.5.4.3 Random Access by ADDROUT File 

ZK-4399-85 

Another way to process files is by using an ADDROUT file. You can use a record-limits file 
to process only indexed files. You can use an ADDROUT file to process sequential, direct, or 
indexed files. 

5-14 Using Files 



ADDROUT files are created by the VAX SORT/MERGE Utility when you use the 
PROCESS = ADDRESS qualifier. You specify a field or fields in the record by which the 
utility sorts the records, as shown in Figure 5-6: 

/ 
record 

\ 
A data 

0 data 

C data 

B data 

t 
field to sort 

ZK-1467-83 

Figure 5--6: Random Access by ADDROUT File 

The utility sorts the records and places the disk addresses of the sorted records in an 
ADDROUT file, as shown in Figure 5-7: 

000 1 43 -.. __ -- address of A 

948567 -........ -- address of B 

76234 1 -... __ -- address of C 

098745 ....... __ -- address of 0 

ADDROUT file 

ZK-1468-83 

Figure 5-7: ADDROUT File 

Using Files 5-15 



The program reads the records (addresses) in the ADDROUT file sequentially. Each record 
in the ADDROUT file corresponds to a record in the original file. The addresses of the 
records are referred to as Record File Addresses (RFAs) by RMS. For additional informa-
tion on RFAs. see the VAX/VMS Record ManaRement Services Reference Manual. '-, 

To access a file using an ADDROUT file, you must make the following entries in the File 
Description specification for the file to access: 

• Column 15 (File type) - Specify I or U to indicate whether the file is to be open for 
input or for update. 

• Column 16 (File designation) - Specify P or S to indicate that the file named in col
umns 7 through 14 is primary or secondary. 

• Column 19 (Record format) - Specify F or V to describe the record format. 

• Columns 24 through 27 (Record length) - Specify the length of fixed-length records or 
the maximum length of variable-length records. 

• Column 28 (Mode) - Specify R to cause RPG II to access records randomly. 

• Columns 29 and 30 (Key length) - Specify the length of the key field if you plan to 
access an indexed file. 

• Column 31 (Record address type) - Specify I to cause the program to access the file 
according to the ADDROUT file. 

• Column 32 (File organization) - Specify I if you plan to access an indexed file. 

• Columns 35 through 38 (Key location) - Specify the starting character position ofthe 
key field if you plan to access an indexed file. 

To access a file using an ADDROUT file, you must make the following entries for the 
ADDROUT file in its File Description specification: 

• Column 15 (File type) - Specify I to indicate that the file is to be open for input. 

• Column 16 (File designation) - Specify R to indicate that the file named in columns 
7 through 14 is an ADDROUT file. 

• Column 19 (Record format) - Specify F to describe the record format. 

• Columns 24 through 27 (Record length) - Specify 6, because record addresses are 
always 6 bytes in length. 

• Columns 29 and 30 (Key length) - Specify 6, because record addresses are always 
6 bytes in length. 

• Column 31 (Record address type) - Specify I to indicate that this is an ADDROUT file. 

5-16 Using Files 



• Column 32 (File organization) - Specify T to indicate an ADDROUT file. 

• Column 39 (Extension) - Specify E to cause RPG II to look for an Extension 
specification. 

You must also make the following entries for the ADDROUT file in the Extension 
specification: 

• Columns 11 through 18 (From file name) - Specify the name of the ADDROUT file. 

• Columns 19 through 26 (To file name) - Specify the name ofthe file to be processed by 
the ADDROUT file. 

The following example specifies the ADDROUT file IDXA13 and the file IDXI13 to be 
accessed by the ADDROUT file: 

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

rIDXA13 IR 
FIDXI13 IP 
FIDX13A 0 
E IDXA13 
IIDXI13 AA 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
OIDX13A H 
o OR 
o 
o 
o 
o D 1 
o 
o 
o 
o 
o 
o 
o 
o 
o 

r 6 6IT 
r 60R 311 
r 80 or 
IDXI13 
02 

202 1P 
or 

EDISK 
1 DISK 

PRINTER 

1 3 KEY 
1 12 TOWN 

13 14 STATE 
15 25 COUNTY 
26 30 ZIP 
31 350CEN30 
36 400CEN40 
41 450CEN50 
46 500CEN60 
51 550CEN70 
56 600CEN80 

UDATE Y 10 
49 'NEW HAMPSHIRE TOWNS' 

02 
PAGE 77 

TOWN 13 
COUNTY 26 
STATE 30 
CEN80 J 38 
CEN70 J 46 
CEN60 J 54 
CEN50 J 62 
CEN40 J 70 
CEN30 J 78 

ZK-4400-85 

Using Files 5-17 



5.5.5 Sequential Access and/or Random Access by Key 
A full-procedural file allows you to read a file both randomly and sequentially. If the full
procedural file is an indexed file, then you can read the file randomly by key using the 
CHAIN or ~.I£'l'LL operation, and you can read the hle sequentIally. 

To specify an indexed full-procedural file, make the following entries for the file in its File 
Description specification: 

• Columns 7 through 14 must contain the file name. 

• Column 15 (File type) - Specify I or U to indicate that the file is open for input or 
update. 

• Column 16 (File designation) - Specify F to indicate a full-procedural file. 

• Column 32 (File organization) - Specify I to indicate an indexed file. 

• Columns 40 through 43 (Device code) - Specify DISK. 

5-18 Using Files 



The following example specifies the full-procedural file FPF JOI to be accessed by a CHAIN 
operation with the key specified in FPFIOI. The file FPFJOI is then processed sequentially 
from that point on. 

011 I 2 I 3 141 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

FTTY 
FFPFI01 
FFPFJ01 
FFPF01A 
LFPF01A 
IFPFI01 
I 
IFPFJ01 
I 
I 
I 
I 
C 
C 
C 
C 98 
C 98 
C 
C 
C NLR 
C NLR 
C 
OFPF01A 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

D F 80 
ID F 04 

TTY 
DIst:: 

IF V 47R04AI 1 DISK 
LPRINTER o V 73 

55FL 500L 

READ FPFI01 
PARTNO CHAINFPFJ01 

EXCPT 
'BAD' DSPLYTTY 

GOTO END 
LOOP TAG 

READ FPFJ01 
EXCPT 
GO TO LOOP 

END TAG 
H 201 1P 

H 10 1P 

H 00 1P 

H 01 1P 

E 01 
PARTNO 
DESCR 

1 4 PARTNO 

1 4 PARTNO 
5 39 DESCR 

40 43 PRICE 
44 47 AMOUNT 

98 

LR 

32 'PARTS SUMMARY INVENTORY' 

11 'PART NO' 
30 'DESCRIPTION' 
30 ' __________ _ 

11 ' ______ _ 

9 
47 

ZK-4662-85 

Using Files 5-19 



5.6 Creating Files 

There are a variety of ways to create files with sequential, direct, and indexed organiza
tion::;. SecLiuIHS [j.o.l tllruugll [;.G.3 J~6(;iit~ lluvv tv c:tcCit6 fil.ss l.iSiiig (iii RPG II p:LVg7~~. 

You can create sequential files by writing records, one after another, to an output file. Once 
a sequential file is created, you can use it as an input file, an update file, or an output file 
with the ADD option. 

5.6.1 Creating Sequential Files 
To create a sequential file, you must make the following entries in the File Description 
specification: 

• Column 15 (File type) - Specify 0 to indicate the creation of an output file. 

• Column 19 (Record format) - Specify F or V to describe the record format. 

• Columns 24 through 27 (Record length) - Specify the length of fixed-length records or 
the maximum length of variable-length records. 

The following program creates a sequential file OUT60A: 

011 12 1314 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

FOUTI24 IP F 24 DISK 
FOUT60A 0 F 24 DISK 
IOUTI24 AA 
I 1 3 PN 
I 4 10 PNAME 
I 11 12 WHOUSE 
I 13 17 COLOR 
I 18 20 WEIGHT 
I 21 24 QTY 
OOUT60A D N1P 
0 PN 3 
0 PNAME 10 
0 4 '1' 
0 WHOUSE 12 
0 COLOR 17 
0 WEIGHT 20 
0 QTY 24 

ZK-4401-85 

5.6.2 Creating Direct Files 
You can create a direct file by specifying a chained output file. To do this, you must make 
the following entries in its File Description specification: 

• Column 15 (File type) - Specify 0 to indicate the creation of an output file. 

5-20 Using Files 



• Column 16 (File designation) - Specify C to indicate that the file named in columns 
7 through 14 is a chained file. 

• Column 19 (Record format) - Specify F or V to describe the record format. 

• Columns 24 through 27 (Record length) - Specify the length of fixed-length records or 
the maximum length of variable-length records. 

• Column 28 (Mode) - Specify R to cause RPG II to load a direct file. 

The following program creates a direct file OUT60B with variable-length records: 

o I 1 I 2 I 3 I 4 I 5 I 6 171 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

FOUTI24 IP F 24 DISK 
FOUT60B OC V 24R DISK 
IOUTI24 AA 
I 1 3 PN 
I 4 10 PNAME 
I 11 12 WHOUSE 
I 13 17 COLOR 
I 18 20 WEIGHT 
I 21 24 QTY 
C COUNT ADD 1 COUNT 10 
C COUNT CHAINOUT60B 99 
OOUT60B D N1P 25 
0 PN 3 
0 PNAME 10 
0 4 '3' 
0 WHO USE 12 
0 COLOR 17 
0 WEIGHT 20 
0 QTY 24 

ZK-4402-85 

5.6.3 Creating Indexed Files 
You can create an indexed file either in ordered key sequence or in unordered key 
sequence. If you specify unordered, you can write records to an indexed file in any order, 
regardless ofthe key sequence. If you specify ordered, you must write records in the order 
of their key; the order must be ascending. Once the file is created, VAX RMS sorts the 
index keys in ascending order, regardless of the way they were written. 

To create an indexed file in ordered sequence, you must make the following entries in its 
File Description specification: 

• Column 15 (File type) - Specify 0 to indicate the creation of an output file. 

• Column 19 (Record format) - Specify F or V to describe the record format. 

• Columns 24 through 27 (Record length) - Specify the length of fixed-length records or 
the maximum length of variable-length records. 

Using Files 5--21 



• Columns 29 and 30 (Key length) - Specify the length of the key field. 

• Column 31 (Record address type) - Specify either A or P to indicate that the index 
keys are in character (A) or packed decimal (P) data format. \, 

• Column 32 (File organization) - Specify I to indicate an indexed file. 

• Columns 35 through 38 (Key location) - Specify the starting character position of the 
key field. 

The following program creates an indexed file OUT60A with an alphanumeric key that is 
three bytes long. The key begins in character position 1 of each record. 

011 I 2 I 3 I 4 I 5 I 6 171 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

FOUTI24 IP F 24 DISK 
FOUT60A 0 V 24 3AI 1 DISK 
IOUTI24 AA 01 
I 1 3 PN 
I 4 10 PNAHE 
I 11 12 WHOUSE 
I 13 17 COLOR 
I 18 20 WEIGHT 
I 21 24 tHY. 
OOUT60A D 01 
0 PN 3 
0 PNAHE 10 
0 4 ' 1 ' 
0 WHOUSE 12 
0 COLOR 17 
0 WEIGHT 20 
0 QTY 24 

ZK-4403-85 

To create an indexed file in unordered sequence, make the same entries as for an ordered 
sequence and specify U in column 66 (Unordered). 

5.7 Adding Records to Files 
After you create a file, it may be necessary to add new records to the file. You can add 
records to a file at detail-time or total-time output, or by using exception output. Sections 
5.7.1 through 5.7.3 explain how to add records to files on the basis of their file organization. 

5-22 Using Files 

/ 



5.7.1 Adding Records to a Sequential File 
Because the location of each record in a sequential file is fixed in relation to all others, 
there is no unused space where a new record might be inserted. Therefore, you can add 
records to a sequential file only at the end of the file, as shown in Figure 5-8: 

2 3 4 5 

Or--------t 
ZK-1469-83 

Figure 5-8: Adding Records to a Sequential File 

To add a record to the end of a sequential file, you must make the following entries in its 
File Description specification: 

• Column 15 (File type) - Specify 0 to indicate the creation of a new record. 

• Column 19 (Record format) - Specify F or V to describe the record format. 

• Columns 24 through 27 (Record length) - Specify the length of fixed-length records or 
the maximum length ofvariable-le~h records. 

• Column 66 (File addition) - Specify A to cause RPG II to add new records to the file. 

You must also make the following entries in the file's Output specification: 

• Columns 7 through 14 (File name) - Define the output file name. 

• Columns 16 through 18 - Specify ADD to identify the record to be added. 

The following example accepts input from the terminal and writes records to the end of the 
file LOG: 

o I 1 121 3 I 4 151 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

FINPUT IP F 80 TTY 
FLOG 0 F 80 DISK A 
IINPUT 01 
I 1 80 DATA 
OLOG DADD 01 
0 DATA 80 

ZK-4404-85 

U sing Files 5-23 



5.7.2 Adding Records to a Direct File 
To add a new record to a direct file, you can either specify the relative record number of an 
empty cell or add the record at the end of the file, as shown in Figure 5-9: 

4 

8----,----t 0' _-----'t 
ZK-1470-83 

Figure 5-9: Adding Records to a Direct File 

To add records to empty cells in a direct file, you must make the following entries for the 
file in its File Description specification: 

• Column 15 (File type) - Specify I or U to indicate that the file is open for input or 
update. 

• Column 16 (File designation) - Specify C or F to indicate a chained or full-procedural 
file. 

• Column 19 (Record format) - Specify F or V to describe the record format. 

• Columns 24 through 27 (Record length) - Specify the length of fixed-length records or 
the maximum length of variable-length records. 

• Column 28 (Mode) - Specify R to access records randomly, using a relative record 
number. 

• Column 66 (Addition) - Specify A to add records to the file. 

You must also make the following entries in the Calculation specification: 

• Columns 18 through 27 (Factor 1) - Specify the relative record number of the empty 
cell. 

• Columns 28 through 32 (Operation code) - Specify the CHAIN operation code. Use an 
indicator in columns 54 and 55 to see whether the cell is empty. The indicator will be 
set on if it is. If the cell is empty and an indicator is not specified, a run-time error 
occurs. 

• Columns 33 through 42 (Factor 2) - Specify the name of the file to which you want to 
add the record. 

5-24 Using Files 



Finally, you must make the following entry in the Output specification: 

• Columns 7 through 14 (File name) - Define the output file name. 

• Columns 16 through 18 - Specify ADD to identify the record to add. 

The output operation must follow the CHAIN operation, but before the next CHAIN opera
tion. If not, the output will be to the cell specified by the second CHAIN operation. 

The following example reads a primary input file and adds records to the direct file 
DIRECT. The input field RECNO specifies the record cell to which the field is written. 

011 12 I 3 I 4 1516 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

FINPUT 
FDIRECT 
FTTY 
I1NPUT 
I 
I 
IDIRECT 
C 
C N99 
ODIRECT 
o 

IP F 
IC F 
D F 

RECNO 
'EXISTS' 

DADD 99 

35 DISK 
30R DISK 
30 TTY 

CHAINDIRECT 
DSPLYTTY 

DATA 30 

5.7.3 Adding Records to an Indexed File 

A 

1 30 DATA 
31 350RECNO 

99 

ZK-4405-85 

If the file is an indexed file, you can add records at any location. The key values for the new 
records are placed in the index and the entire index is sorted in ascending sequence. 

NOTE 

When adding records to an indexed file, you cannot specify A in column 66 
(File addition) of the File Description specification for indexed files processed 
sequentially within limits or processed by an ADD ROUT file. 

You can add new records to an indexed file while processing the file by specifying an A in 
column 66 (File addition) of the File Description specification. The file can be an input or 
update file that is processed sequentially or randomly. If you want only to add records, you 
can specify an output file. 

You must also make the following entry in the Output specification: 

• Columns 7 through 14 (File name) - Define the output file name. 

• Columns 16 through 18 - Specify ADD to identify the records to be added. 

Using Files 5-25 



The following program adds records to an indexed file using the ADD option on the Output 
specification: 

o I 1 I 2 I 3 I 
• : .. t . : ... . : ... . : ... • : .. t • : I' • 

FIDXIOl IP F 2-4 DISK 
FOUH3A 0 F 2-4 3AI 1 DISK A 
IIDXIOI AA 
I 1 2-4 PN 
OOUT-43A DADD NIP 
0 PN 2-4 

ZK-4406-85 

5.8 Updating Records in Files 
RPG II allows you to update the records in a primary, secondary, demand, full-procedural 
or chained file. RPG II allows you to update the records in a sequential file only if the 
records are of fixed length. You can update a record in a primary or secondary file only once 
during the program cycle at detail time. Unlike other types of update files, records in a 
chained, full-procedural or demand file can be updated at detail time or at total time. 

To update a record, you must retrieve the record you want to change, change the contents, 
and then write the record back to the file. You need only specify the fields to be changed in a 
record. The remainder of the record is rewritten, using the data that was read into the 
input buffer. 

You can use a data structure to update a record. See Part I, Chapter 12 for an example of 
updating files with data structures. 

RPG II allows you to change the length of a variable-length record being updated. RPG II 
determines the length ofthe record by using the highest End position (columns 40 through 
43 of the Output specification) of any field in the record. If you need to change the contents 
of a field in the middle of a variable-length record, but do not want to change the length of 
the record, you must define the length of the record by defining a one-character field in the 
last character position ofthe record. 

The following example updates records in the master file MASTER. MASTER contains 
two different record types of different lengths. Both records contain the field that must be 
updated EMP# in different character positions. The fields LNGTH1 and LNGTH2 ensure 
that the records are updated using the correct length. The records of type 01 are 80 charac
ters long. The records oftype 02 are 60 characters long. 

5-26 Using Files 



o I 1 I 2 I 3 I 4 151 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

FTRANSACTIP F 25 DISK 
FMASTER UC V 80R21AI 1 DISK 
ITRANSACT 
I 
I 
IMASTER 01 1 CA 
I 
I 
I 02 1 CB 
I 
I 
C* Update record t~pe 01 
C MOVEL'A' 
C MOVE NAME 
C KEY CHAINMASTER 
C EXCPT 
C SETOF 
C* Update record t~pe 02 

KEY 
KEY 

1 
21 

36 
80 

46 
60 

C MOVEL'B' KEY 
C KEY CHAINMASTER 
C EXCPT 
OMASTER E 01 
o NEW" 40 
o LNGTH1 80 
OMASTER E 02 
o NEW" 50 
o LNGTH2 60 

20 NAME 
25 NEW" 

40 EMP" 
80 LNGTH1 

50 EMP" 
60 LNGTH2 

21 

01 

21 

ZK-4407-85 

To update the records in a direct or indexed file and simultaneously add new records, com
plete the following entries for the file in its File Description specification: 

• Column 15 (File type) - Specify U to indicate that the file is open for update . 

• Column 66 (File addition) - Specify A to add new records to the file. 

You must also define both Input and Output specifications for the file to be updated. Enter 
ADD in columns 16 through 18 of those Output specifications that identify the records to 
be added. The output records without ADD in columns 16 through 18 identify those records 
to be updated. 

U sing Files 5--27 



5.8.1 Updating a File Sequentially or Randomly by Key 
You can update records in an indexed file randomly by key, sequentially, or both randomly 
and sequentially if the file is defined as a full-procedural file. To specify an indexed full
procedural file to be processed in the update mode, make the following entries for the file in 
its File Description specification: 

• Column 15 (File type) - Specify U to indicate that the file is open for update. 

• Column 16 (File designation) - Specify F to indicate a full-procedural file. 

• Column 32 (File organization) - Specify I to indicate an indexed file. 

5.9 Deleting Records From Files 
You can delete records only from update direct and indexed files. To prevent the deletion of 
needed records, perform the following steps: 

• Retrieve the record. 

• Evaluate its contents. 

• Based on the results of the evaluation, set an indicator to control deletion of the 
record. 

The last record retrieved from the file is the one that is deleted when you specify DEL in 
columns 16 through 18 of the Output specification. You do not need to describe any fields in 
the output record, because the operation deletes the entire record. 

The following example deletes a record in the master file MASTER, depending on the keys 
read from the file DELETE: 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

F'DELETE IP F' 4 DISK 
F'MASTER UC F' 50R 4AI 47 DISK A 
F'TTY D F' 80 TTY 
!DELETE 
I 1 4 KEY 
IMASTER 
C KEY CHAINMASTER 99 
C 99 'NOTF'OUND'DSPLYTTY 
OMASTER DDEL N99N1P 

ZK-4408-85 

5-28 Using Files 



5.10 Processing Files With Matching Records 

Matching fields can be used with primary and secondary files to check the sequence of 
records and to define the order in which records are selected from multiple files. 

To use matching fields to verify that the records in the file are in sequence (either ascend
ing or descending), you define one or more fields to be checked by specifying a matching 
field value (M1 through M9) in columns 61 and 62 in the Input specification. Then, your 
program checks the sequence by comparing the matching field of one record with the 
matching field ofthe previous record. If the field is out of order, a run-time error occurs. 

5.10.1 Checking Record Sequence for One Record Type 
You designate a record sequence by specifying A or D (ascending or descending) in column 
18 of the File Description specification. Assign a matching field value (M1 through M9) to 
one or more fields you want to use as matching fields in columns 61 and 62 (Matching field) 
ofthe Input specification. When you specify more than one matching field, assign M9 to the 
most important field. Your program considers all matching fields as one contiguous field 
with the M9 field in the leftmost position, next to the M8 field, and so on, until you reach 
M1, even though the fields may not be adjacent in the record or in numeric (M9 to M1) 
order. 

5.10.2 Checking Record Sequence for More Than One Record Type 
The fields in a record of one type can be in a different order from the fields in other record 
types in the same file. Suppose a payroll file consists of two different record types, one type 
representing commission payment and the other type representing salary. All employee 
records are to be in ascending sequence according to district (DSTRCT). Records in a dis
trict are to be in ascending sequence according to department and employee number. 
Therefore, three fields (DSTRCT, DEPT, and EMPNUM) must be checked in each record. 
M3 is assigned to DSTRCT, the most important field; M2 is assigned to DEPT, the next 

U sing Files 5-29 



most important field; and Ml is assigned to EMPNUM, the least important field. Refer to 
the following example: 

Se~uence (AA-ZZ, 01-99) 
I NUlllber (i-N) 
I IOptional (0) Decilllal positions 
I I I Record identif~ing indicator I Contro I I eve 1 
I III I I Hatch field 
I III + Identif~ing codes + rorlllat I I I rid rec rei 

rile I III I I I (PB) lrield I I I 
nallle I III I C C CI lrield Inallle I I I rield 
I I III I Z Z ZI Ilocationil I I I indicatrs 

I I I III Pos NDcPos NDcPos NDc Irr To II I I I + - 0 
011 12 1314 I 5 I 6 171 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** * *** *--- *--- *--- .**---*---** * * * * * * 
IPAYROLL AA 01 80 CC 

. I 1 3 DEPT H2 
I 6 7 DSTRCT H3 
I 14 152COHH 
I 25 27 EHPNUH H1 
I BB 02 80 CS 
I 1 3 DEPT H2 
I 8 9 DSTRCT H3 
I 13 172SALARY 
I 25 27 EHPNUH H1 

ZK-4409-85 

First, the program determines the record type. Then, it looks at the matching fields for the 
same record type. 

In the example above, the same three matching fields (DSTRCT, DEPT, and EMPNUM) 
appear in both record types and are the same length. 

The length of matching fields assigned to the same match code must be the same length for 
each record type. Table 5-2 shows that this is true for the following example: 

IPAYROLL AA 
I 
I 

01 80 CC ~ first record t~pe 

I 
I 
I 
I 

BB 02 

1 3 DEPT H2 
6 7 DSTRCT H3 

25 27 EHPNUH H1 
80 CS ~ second record t~pe 

I 

5-30 Using Files 

1 3 DEPT H2 
8 9 DSTRCT H3 

25 27 EHPNUH H1 
ZK-441 0-85 



Table 5-2: Matching Field Lengths 

Record Matching Field Field 
Type Field Location Length 

first DSTRCT 6to 7 2 
DEPT lto3 3 
EMPNUM 25 to 27 3 

8 total 

second DSTRCT 8 to 9 2 
DEPT lto3 3 
EMPNUM 25 to 27 3 

8 total 

Matching fields need not be specified for all the record types in a file. 

5.10.3 Using Matching Fields With Field·Record·Relation Indicators 
Although there may be different record types in a file, very often the fields for each record 
type are the same. Many fields have the same name, contain the same data, and are in the 
same character positions for all the record types in a file. When only a few fields differ, you 
can describe more than one record type in an OR relationship. Refer to the following 
example: 

Sequence (AA-ZZ, 01-99) 
I NUPlbet' (1-N) 
I 10ptionai (0) DeciPlal positions 
I IIRecord identifHing indicator I Contro I I eve I 
I III I I Hatch/chain field 
I III + IdentifHing codes + ForPlat I I I Fie Id rec t'e I 

File I III I I I IField I I I 
naPle I III I C C CI IField InaPle I I I Field 
I I III I Z Z ZI Ilocationll I I I indicatot's 

I I I III Pos NDcPos NDcPos NDc 1Ft' To II I I I + - 0 
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** * *** *--- *--- *--- .**---*---** * * * * * * 
IPAYROLL AA 01 80 CS 
I OR 02 80 CH 

ZK-4411-85 

Using Files 5-31 



You specify common fields only once, because they apply to both record types. The field
record-relation indicators specified in columns 63 and 64 of the Input specification identify 
the fields unique to a particular record type. Therefore, the COMM field in the following 
example is associated with record type 01 and the SALARY field is associated with record \~, 

type 02. Because DSTRCT, DEPT, and EMPNUM are matching fields used in checking the 
sequence ofthe records in the PAYROLL file and because Ml, M2, and M3 are described 
only once in columns 61 and 62 without any field-record-relation indicators in columns 63 
and 64, they apply to both record types (01 and 02) as shown in the following example: 

Sequence (AA-ZZ, 01-99) 
I NUPlber (l-N) 
I 10ptionai (0) DeciPlal positions 
I IIRecord identifHing indicator I Contro I I eve I 
I III I I Match/chain field 
I III + IdentifHing codes + ForPlat I I I Field rec reI 

File I III I I I IFieid I I I 
naPle I III I C C CI IFieid InaPle I I I Field 
I I III I Z Z ZI Ilocationll I I I indicators 

I I I III Pos NDcPos NDcPos NDc IFr To II I I I + - 0 
011 I 2 I 3 I 4 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** * *** *--- *---
IPAYROLLAA 01 80 CS 
I OR 02 80 CM 
I 
I 
I 
I 
I 

5-32 Using Files 

1 3 DEPT 
8 9 DSTRCT 

25 27 EMPNUM 
14 152COMM 
13 172SALARY 

* * * * * * 

M2 
M3 
M1 

01 
02 

ZK-4412-85 



If one of the matching fields is in a different record position for each record type, you must 
assign matching field entries, as shown in the following example: 

Sequence (AA-ZZ, 01-99) 
I NUl1Iber (1-N) 
I I Opt i ona I ( 0 ) Decil1lal positions 
I I I Record identifHing indicator I Contro 1 1 eve 1 
I III I I Match/chain field 
I III + IdentifHing codes + Forl1lat I I I Field I'ec rei 

Fi Ie I III I I I IFieid I I I 
nal1le I III I C C CI IFieid Inal1le I I I Field 
I I III I Z Z ZI I location II I I I indicators 

I I I III Pos NDcPos NDcPos NDc IFr To II I I I + - 0 
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** * *** *--- *---
IPAYROLL AA 01 80 CS 
I OR 02 80 CM 
I 
I 
I 
I 
I 
I 

1 3 EMPNUM 
20 21 DSTRCT 
6 72COMM 

10 12 DEPT 
5 7 DEPT 

10 142SALARY 

* * * * * * 

M1 
M3 

01 
M201 
M202 

02 
ZK-4413-85 

For a 01 record type, matching field DEPT is in Field location 10 through 12. For a 02 
record type, matching field DEPT is in Field location 5 through 7. 

5.10.4 Using Matching Fields to Process More Than One File 
The processing of a primary file with one or more secondary files is called multifile process
ing. In multifile processing without matching fields, RPG II first reads all the records from 
the primary file, then reads all the records from each secondary file in the same order in 
which they are specified in the File Description specification. By using matching fields, 
your program can select the records from the secondary file before selecting the records 
from the primary file, based on the value oftheir matching fields. 

When you use matching fields to process more than one file, the program selects records 
according to the contents ofthe matching fields, as follows: 

• One record is read from every file and the matching fields are compared. If the records 
are in ascending order, the record with the lowest matching field value is selected for 
processing. If the records are in descending order, the record with the highest match
ing field value is selected for processing . 

• When a record is selected from a file and processing of that file takes place, the next 
record from the file is read. The new record is then compared with the other records 
not selected in the previous cycle. 

U sing Files 5-33 



You can combine records with and without matching fields in the same file. Records with
out matching fields are processed before records with matching fields. If two or more of the 
records being compared have no matching fields, selection of those records is determined 
by the priority of their files, as follows: 

• The records in primary files are processed before the records in secondary files . 

• The records in secondary files are processed in order of appearance in the File Descrip-
tion specifications. 

In the following example, the matching fields from a primary file are compared with the 
matching fields from a secondary file to select records in ascending sequence. The letters 
represent the data in the matching fields. 

Table 5-3: Matching Field Values 

Matching Field Values 

Record Number Primary File Secondary File 

1 
2 
3 
4 

Key to Figure 5-10 

A 
C 
D1 
F 

B 
D2 
X 
Z 

1. The first record from the primary file is read and the matching field (A) is located. 

2. The first record from the secondary file is read and the matching field (B) is located. 

3. The contents ofthe matching field (A) from the first record in the primary file are 
compared with the contents of the matching field (B) from the first record in the 
secondary file. A is selected. 

4. The second record from the primary file is read and the matching field (C) is 
located. 

5. The contents ofthe matching field (B) from the first record in the secondary file are 
compared with the contents ofthe matching field (C) from the second record in the 
primary file. B is selected. 

6. The second record from the secondary file is read and the matching field (D2) is 
located. 

7. The contents of the matching field (D2) from the second record in the secondary file 
are compared with the contents ofthe matching field (C) from the second record in 
the primary file. C is selected. 

5-34 Using Files 



Primary File Secondary File 

1. [A] Record 1 2. B Record 1 

Process A. 

Cycle n 

4. 
C Record 2 

Process B. 

Cycle n + 1 

6. 
D2 Record 1 

Process C. 

Cycle n + 2 

Figure 5-10: Using Matching Fields to Do Multifile Processing 

Using Files 5-35 



Key to Figure 5-10 (Cont.) 

8. The third record from the primary file is read and the matching field (D1) .. ". 
located. . 

'''. 
9. The contents of the matching field (D2) from the second record in the secondary filE: 

are compared to the contents of the matching field (D1) from the third record in thE 
primary file. D1 is selected. 

10. The fourth record from the primary file is read and the matching field (F) iE 
located. 

11. The contents of the matching field (D2) from the second record in the secondary file 
are compared to the contents ofthe matching field (F) from the fourth record in the 
primary file. D2 is selected. 

12. The third record from the secondary file is read and the matching field (X) is 
located. 

13. The contents of the matching field (F) from the fourth record in the primary file are 
compared to the contents of the matching field (X) from the third record in the sec
ondary file. F is selected. Because the primary file is now at its end, the remaining 
records in the secondary file (X and Z) are processed in order of appearance. 

5-36 V sing Files 



8. r:::::IO 1 I ~ I I Record 3 

Process 01. 

Cycle n + 3 

10. 
F Record 4 

Process 02. 

Cycle n + 4 

12. IvIx I ~ I Record 3 

Process F. 

Cycle n + 5 

ZK-1475-83 

Figure 5-10: Using Matching Fields to Do Multifile Processing (Cont.) 

When the matching fields from a primary file match one or more of the secondary files, 
RPG II sets the matching-record (MR) indicator on before detail-time calculations. You can 
use the MR indicator to condition calculation and output operations for the record just 

Using Files 5-37 



selected. The indicator remains on for one complete program cycle. It is set off if the record 
selected for processing contains no matching fields. A record selected using the FORCF 
operation code causes the MR indicator to remain offfor one program cycle while the fom 
record is processed. '" 

RPG II processes matching records for two or more files in the following ways: 

• When a record from the primary file matches a record from the secondary file, the 
record from the primary file is processed before the record from the secondary file is 
processed. The record-identifying indicator that identifies the record type just 
selected is on at the time the record is processed. 

• When records from ascending files do not match, your program processes the record 
with the lowest matching field content first. 

• When records from descending files do not match, your program processes the record 
with the highest matching field content first. 

• A record type that has no matching field specification is processed immediately after 
the previous record is processed, In this case, the MR indicator is set off. If this record 
type is the first in the file, your program processes this record first, even when it is not 
in the primary file. 

• The matching of records makes it possible to enter data from primary records into 
their secondary records because your program processes the record from the primary 
file before matching the record from the secondary file. However, the transfer of datI'!. 
from the secondary record to matching primary records can be done only when loo( 
ahead fields are specified. ,,,-

In the following example, matching fields are used to combine a primary file with two sec
ondary files in ascending sequence. Record-identifying indicators are assigned in the fol
lowing way: 

• o I-Records from the primary file with matching fields 

• 02-Records from the primary file without matching fields 

• 03-Records from the first secondary file with matching fields 

• 04-Records from the first secondary file without matching fields 

• 05-Records from the second secondary file with matching fields 

• OS-Records from the second secondary file without matching fields 

5-38 Using Files 



011 12 I 3 1415 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

FRECI99A IP AF 80 DISK 
FRECI99B IS F 80 DISK 
FRECI99C IS F 80 DISK 
FOUTPUT 0 F 80 DISK 
IRECI99A 01 80 C1 
I 1 80 TEXT 
I 1 2 MATCH M1 
I 02 80 C2 
I 1 80 TEXT 
IRECI99B 03 80 C3 
I 1 80 TEXT 
I 1 2 MATCH M1 
I 04 80 C4 
I 1 80 TEXT 
IRECI99C 05 80 C5 
I 1 80 TEXT 
I 1 2 MATCH M1 
I 06 80 C6 
I 1 80 TEXT 
OOUTPUT D N1P 
0 TEXT 80 

ZK-4414-85 

Table 5--4 lists the contents of the matching fields for all three files: primary, first secon
dary, and second secondary. Field values with A after the value represent values from the 
nrimary file. Field values with B after the value represent values from the first secondary 

\. Field values with C after the value represent values from the second secondary file. 

Table 5-4: Matching Field Values 

Record Primary First Secondary Second Secondary 
Number File File File 

I none none IOC 
2 none 20B 30C 
3 20A 30B 50C 
4 20A 30B 50C 
5 40A 60B none 
6 50A none 60C 
7 none 70B 80C 
8 60A 80B 80C 
9 80A 80B none 

U sing Files 5-39 



Table 5-5 lists the steps involved in processing these files and those indicators that must 
be set on for the operation to occur. 

Table 5-5: Processing Records with Matching Fields 

Step Record Type Matching Field Value Indicators for Processing 

1 02 none Not MR and 02 
2 02 none Not MR and 02 
3 04 none Not MR and 04 
4 05 10C NotMRand05 
5 01 20A MR and 01 
6 01 20A MR and 01 
7 03 20B MRand03 
8 03 30B Not MR and 03 
9 03 30B Not MR and 03 

10 05 30C Not MR and 05 
11 01 40A Not MR and 01 
12 01 50A MR and 01 
13 02 none Not MR and 02 
14 05 50C MRand05 
15 05 50C MR and 05 
16 06 none Not MR and 06 
17 01 60A MR and 01 
18 03 60B MRand03 
19 04 none Not MR and 04 
20 05 60C MRand05 
21 03 70B Not MR and 03 
22 01 80A MRand01 
23 03 80B MRand03 
24 03 80B MR and 03 
25 05 80C MR and 05 
26 05 80C MRand05 
27 06 none Not MR and 06 

5-40 U sing Files 



5.11 Processing Files With Multiple Keys 

he following program reads one input file with three keys. It uses three different file spec
Ifications to pick up the three keys. Note that the three filenames use identical fields, and 
that each filename uses a different key to point to the same file. Also note the use of the 
same fields by a data structure. 

o I 1 I 2 I 3 I 4 I 5 161 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

FIDXI01 IP F 24 4AI 21 DISK 
FIDXJ01 IS F 24 3AI 1 DISK IDXI01 
FIDXt::01 IS F 24 2AI 11 DISK IDXI01 
FIDX03A 0 F 24 DISK 
IIDXI01 AA 
I 1 3 PN 
I 4 10 PNAME 
I 11 12 WHOUSE 
I 13 17 COLOR 
I 18 20 WEIGHT 
I 21 24 QTY 
IIDXJ01 BB 
I 1 3 PN 
I 4 10 PNAME 
I 11 12 WHOUSE 
I 13 17 COLOR 
I 18 20 WEIGHT 
I 21 24 QTY 
IIDXK01 CC 
I 24 FIELDS 
IFIELDS DS 
I 1 3 PN 
I 4 10 PNAME 
I 11 12 WHOUSE 
I 13 17 COLOR 
I 18 20 WEIGHT 
I 21 24 QTY 
OIDX03A D N1P 
0 FIELDS 24 

ZK-4667-85 

U sing Files 5-41 





Chapter 6 

Using Printer Output Files 

If you want to create a formatted report by printing an output file, you must decide what 
the report will look like before you write your program. You must know what information 
is to be printed on each heading, detail, and total line, and where the individual fields are 
to appear. 

Designing the physical layout of your report is an important part of the work necessary to 
produce a formatted report. RPG II provides several features you can use to print certain 
information automatically and to control the printing of other information. Sections 6.1 
and 6.2 describe these features and explain how to use them. 

Printer output files cause a file to be in VAXNMS print-file format. The default PRINT 
command causes the insertion of a form-feed character when the form nears the end of a 
page. To suppress the insertion ofform-feed characters, use the NOFEED qualifier to the 
PRINT command when printing printer output files created by RPG II programs. 

6.1 Editing Output 

You can use predefined Edit codes and Edit words to format numeric data for your report. 
Edit codes and words supply additional information about the output, thus increasing your 
report's usefulness to the end user. Section 6.1.1 describes Edit codes and explains how to 
use them. See Part II, Chapter 2 for information on Edit words. 

6.1.1 Using Edit Codes and Edit Code Modifiers 
You can specify specialized editing for numeric data by entering one of the one-character 
Edit codes in column 38 of the Output specification. Edit codes consist of (1) simple Edit 
codes (X, Y, and Z) that perform one predefined function, and (2) combined Edit codes (1, 2, 
3, 4, A, B, C, D, J, K, L, and M) that perform a combination of predefined functions. See 
Part II, Chapter 2 for information on Edit codes. 

6-1 



In most cases, using one or more Edit codes to format numeric data is sufficient. However, 
there are some cases where you might want to use an Edit code modifier to perform the 
following special formatting: 

• Replace leading zeros with asterisks. 

• Put a dollar sign immediately to the left of the leftmost character. 

See Part II, Chapter 2 for information on Edit code modifiers. 

6.1.2 Using Constants 
Constants are usually used to specify headings that describe the contents of a particular 
column. To specify a constant, enter the constant string, enclosed in apostrophes, in col
umns 45 through 70 (Constant or edit word). In the following example, SALES REPORT 
appears in character positions 24 through 35 of the printed output file: 

THpe (HDTE) Edit codes o No CR -
I Fetch ove/'f I ow (F) I X -------------
IISpace I Y date edit Y Y 1 A J 
III Skip I Z zero suppress Y N 2 B K 
III I I N Y 3 C L 
III I IndicatOl's IBlank-after (B) N N 4 D M 

File III I I Field II End position 
name III I I name III Format (PB) 
I III I I I III I 

01 I IBAB A NxxNxxNxxl III I + Constant 0/' edit word + 
011 12 I 3 I 4 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** o ***** * * * ***---** 

35 'SALES REPORT' 

When using constants, consider the following rules: 

• Constants can contain from 1 to 24 characters. 

ZK-4415-85 

• Enclose constants in apostrophes (for example, 'EMPLOYEE NAME'). The apostro
phes are not printed. 

• When using constants, leave columns 32 through 39 and column 44 blank. 

See Part II, Chapter 2 for information on Edit words. 

6-2 Using Printer Output Files 

\, 



6.2 Using Special Words 

RPG II provides special words that enable you to perform the following kinds of 
formatting: 

• Printing the date 

• Printing a page number and incrementing the page number by one for each new page 

• Repeating data fields in an output record 

This section describes special words and explains how to use them. 

6.2.1 Printing the Date: UDATE, UDAY, UMONTH, UYEAR 
UDATE automatically prints the date in the format month, day, year. To put slashes (I) 
between the month, day, and year (for example, 5117/85), specify Y in column 38 of the 
Output specification. 

The default date is the system date. To change the default date, define the logical name 
RPG$UDATE to the date you want. The format ofthe date is dd-mmm-yyyy. The following 
example changes the date to November 2, 1985. 

S DEFINE RPGSUDATE "2-NOV-1985" 

You can change the UDATE output format by specifying D, I, orJ in column 21 of the Con
trol specification. Specifying D changes the UDATE format to day/month/year. Specifying 
lor J changes the UDATE format to day.month.year. 

U sing Printer Output Files 6-3 



You can use UDAY, UMONTH, and UYEAR to print each component of the date in the 
format you need, as shown in the following example: 

T!:tpe (HDTE> Edit codes , o No CR -
I retch ovet'f I 0111 (F) I X -------------
I I Space I Y date edit Y Y 1 A J 
III Skip I Z zero suppress Y N 2 B K 
III I I N Y 3 C L 
III I Indicators IBlank-after (B) N N 4 D M 

rile III I I Field IIEnd position 
name III I I name III rOt'mat (PB) 
I III I I I III I 

01 I IBAB A NxxNxxNxxl III 1+ Constant or edit word + 
011 I 2 I 3 I 4 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** ***** * * * ***---** 
0 H 1P 
0 UYEAR 8 
0 9 ' , -
0 UMONTH 11 
0 12 '-' 
0 UDAY 14 

ZK-4416-85 

In this example, the special words UYEAR, UMONTH, and UDAY in the Output specifica
tion change the date format to year-month-day. The output might look like this: 

85-05-16 

When using special words, observe the following rules: 

• You cannot specify Y in column 38 (Edit code) of the Output specification for UDAY, 
UMONTH, or UYEAR. Instead, specify a constant in columns 45 through 70 (Con
stant or edit word) to separate the day, month, and year. 

• You can use these special words in Factor 1 or 2 of the Calculation specification. 

• You cannot use these special words in the Result field ofthe Calculation specification. 

• You cannot use the Blank after option (column 39 of the Output specification) with 
these special words. 

6.2.2 Numbering Pages: PAGE and PAGE1 through PAGE7 
RPG II provides eight special words, PAGE and PAGEl through PAGE7, for numbering 
pages in printed output files. RPG II automatically increments the page number by one for 
each new page. You can use more than one paging special word to number several different 
output files. 

6-4 Using Printer Output Files 



To use one of the paging special words, specify it as a field in the Input, Calculation, or 
Output specifications. When you use a paging special word as an input field or as the 
Result field of a calculation, you can use any Field length up to 15 digits, but you must 
specify zero Decimal positions. RPG II suppresses leading zeros and signs on output unless 
you use an Edit word, use an Edit code, or specify a packed decimal or binary data format. 

If you do not define the length of a paging special word elsewhere (for example, defining a 
field to represent the page number as a result of a calculation), the page number is output 
as a four-digit numeric field with zero decimal positions. Page numbering begins with 1. 

To change the beginning page number, enter the page number you want to use as an input 
record and name the field PAGE or use a PAGE field as the result of a calculation. Enter the 
field in columns 53 through 58 of the Input specification, as shown in the following 
example: 

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

IINPUT AA 99 
I 

OOUTPUT H 2 
o OR 
o 
o 
o 
o 
o 

1P 
OF 

1 40PAGE 

UDATE Y 8 
36 'D E P 0 SIT ' 
49 ' REP 0 R T' 
68 'PAGE' 

PAGE 72 
ZK-4417-85 

In this example, the contents of the field PAGE appear in character positions 69 through 
72. If the value of the field is 0032, the page numbering begins with 33, because RPG II 
adds 1 to the number. The output appears as follows: 

023 4 5 6 7 
1234567880123456788012345678801234567880123456788012345678801234567880123456788 

5/16/85 D E P 0 5 I T REP 0 R T PAGE 33 

Using Printer Output Files 6--5 



Another way to change the page number is to assign the page number you want minus one 
to a PAGE field in the Result field, as shown in the following example: 

011 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

. 
C N99 
C 

. 
OOUTPUT H 2 
o OR 
o 
o 
o 
o 
o 

lP 
or 

The output appears as follows: 

Z-ADD89 
SETON 

PAGE 
99 

UDATE Y 8 
36 'D E P 0 SIT ' 
49 ' REP 0 R T' 
68 'PAGE' 

PAGE 72 
ZK-4418-85 

o 1 2 3 4 5 6 7 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

5/16/85 D E P 051 T REP 0 R T PAGE 90 

In this example, Z-ADD assigns 89 to PAGE. RPG II adds 1 to this number and begins 
numbering pages with 90. The assignment occurs when indicator 99 is set off. That way, 
RPG II makes the initial page number assignment only once and not every time a record is 
read. 

You can restart page numbering at any point in the program. Use anyone ofthese methods 
to reset the value of a PAGE field: 

• Specify the Blank after option (column 39 ofthe Output specification) for a PAGE field 
to reset the page number to 1 after the current record is output. 

• Use a PAGE field as the result of an operation in the Calculation specification or as an 
input field. 

• Use output indicators in the Output specification to condition the value of a PAGE 
field. When the indicator is on, the value of the page field is reset to 1 before the cur
rent record is output. You cannot use these indicators to control the printing of a 
PAGE field, because a PAGE field is always printed. 

6-6 Using Printer Output Files 



6.2.3 Saving Time by Repeating Data: *PLACE 
You can use the special word *PLACE to repeat data in an output record. The fields or 
constants you want to repeat must have been previously defined. Then, you can use the 
same fields or constants without having to specify their Field names (columns 32 through 
37 of the Output specification) and End positions (columns 40 through 43 of the Output 
specification). When you specify *PLACE in columns 32 through 37, RPG II repeats all the 
data between the beginning position and the highest End position for any previously 
defined field in the output record. To prevent overlapping, the End position on the same 
specification as *PLACE must be at least twice the highest End position of the group of 
fields you want to repeat. 

When using *PLACE, the following columns in the Output specification that contain 
*PLACE must be left blank: 

• Column 38 (Edit code) 

• Column 39 (Blank after) 

• Column 44 (Data format) 

• Columns 45 through 70 (Constant or edit word) 

In the following example, *PLACE specifies the following fields again: 

• LIST# 

• DESCR 

• STOCK# 

.ONHAND 

• PRICE 

Using Printer Output Files 6-7 



011 I 2 I 3 I 4 I 5 I 6 171 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

FOUTI91 
FOUT91A 
1* 
IOUTI91 
I 
I 
I 
I 
C* 
C 01 
0* 
00UT91A 
o 
o 
o 
o 
o 
o 

IP 
0 

AA 

D 

F 26 
F 80 

01 

USTIt ADD 

NiP 

DISK 
PRINTER 

1 6 STOCKIt 
7 18 DESCR 

19 2100NHAND 
22 262PRICE 

1 USTII 30 

USTII Z 4 
DESCR 18 
STOCK It 26 
ONHANDZ 31 
PRICE K 39 '$' 
*PLACE 79 

Sample output from this example might look like the following: 

PARSNIPS IjEG 1 PO 17 $.88 PARSNIPS 
2 SKIM MILK DAROSK 134 $1.70 2 SKIM MILK 
3 POTATO CHIPS SNK845 100 $1.18 3 POTATO CHIPS 

4 2 ORT PEPSI DRNK1A 87 $1.28 4 2 ORT PEPSI 
5 BAKED BEANS CANFOD 80 $.65 5 BAKED BEANS 

6.3 Conditioning Output Lines 

ZK-4419-85 

IJEG 1 PO 17 $.88 
DAROSK 134 $1.70 
SNK845 100 $1.18 

DRNK1A 87 $1. 28 
CANFOD 80 $.65 

Although you can use any type of indicator to condition output, the 1P (first-page) and 
overflow indicators specifically affect output. Sections 6.3.1 and 6.3.2 describe how these 
indicators affect output. 

6.3.1 Printing Lines Before Reading the First Record: First-Page Indicator 
When you specify the 1P (first-page) indicator, the indicator is set on at the start of the 
program and set off after detail-time output but before the first record is read. Therefore, 
you can use this indicator to condition those heading lines you want printed before RPG II 
processes the first record. 

You specify the 1P (first-page) indicator, which is always represented by 1P, in columns 24 
and 25, 27 and 28, or 30 and 31 of the Output specification. 

6--8 Using Printer Output Files 



The following example shows how to use the lP (first-page) indicator to print a header on 
the first page of a report: 

T!:Ipe (HDTE> Edit codes o No CR -
IFetch overflow (F) I X -------------
I I Space I Y date edit Y Y 1 A J 
III Skip I Z zero suppress Y N 2 B K 
III I I N Y 3 C L 
III I Indicators IBlank-after (B) N N 4 D H 

File III I I Field II End position 
naflle III I I naflle III Forfllat (PB) 
I III I I I III I 

01 IIBAB A NxxNxxNxxl III 1+ Constant or edit word + 
011 12 I 3 I 4 I 5 16 171 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** 
OOUTPUT 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

***** * * 
H 201 1P 

OR OF 

H 22 1P 
OR OF 

* ***---** 

UDATE Y 8 
43 'SALES REPORT' 

PAGE 72 
67 'PAGE' 

5 'ITEM' 
23 'DESCRIPTION' 
41 'SALES' 
56 'COST' 
72 'PROFIT' 

ZK-4420-85 

The following lines are printed on the first page: 

0234567 
1234567890123456789012345678901234567890123456789012345678901234567890123456789 

5/19/85 SALES REPORT PAGE 

ITEM DESCRIPTION SALES COST PROFIT 

You can use the lP (first-page) indicator to condition only detail-time output. If you have a 
detail line that is not conditioned by any indicators or by all negative indicators, you can 
specify N1P as an indicator to prevent the line from being output before the first input 
record is read. 

Using Printer Output Files 6--9 



6.3.2 Specifying Page Breaks: Overflow Indicator 
You use overflow indicators to specify when a page break should occur before certain lines 
are printed. These indicators are used primarily to condition the printing of heading lines, 
but can also be used to condition calculation operations and other types of output lines. 

You can use only overflow indicators for output files going to the printer. You define the 
indicator in columns 33 and 34 of the File Description specification. The same overflow 
indicator must be used to condition the overflow lines for that same file. If no indicator is 
specified for that file, RPG II automatically handles overflow. See Section 6.4 for informa
tion on automatic overflow. 

RPG II sets on an overflow indicator only the first time an overflow condition occurs for the 
current page. An overflow condition exists whenever one of the following circumstances 
occurs: 

• A line is printed on the overflow line. 

• A line is printed past the overflow line. 

• The overflow line is passed during a space operation. 

• The overflow line is passed during a skip operation. 

When using overflow indicators on an Output specification, observe the following rules: 

• Spacing past the overflow line sets the overflow indicator on. 

• Skipping past the overflow line to any line on the same page sets the overflow indica
tor on. 

• Skipping past the overflow line to any line on the new page does not set the overflow 
indicator on unless the skip is specified past the overflow line on the new page. 

• A skip to a new page specified on a line not conditioned by an overflow indicator sets 
the overflow indicator off before the form advances to a new page. 

• If you specify a skip to a new line and the printer is currently on that line, a skip does 
not occur. 

• When an OR line is specified for an output print record, the Space and Skip entries of 
the preceding line are used. If space and skip requirements differ from the preceding 
line, enter Space and Skip entries on the OR line. 

• An overflow indicator can appear in either line of an AND or an OR relationship. In an 
AND relationship, the overflow indicator must appear on the main specification line 
for that line to be considered an overflow line. In an OR relationship, the overflow 
indicator can be specified on either the main specification line or the OR line. How
ever, only one overflow indicator can be associated with one group of output 
indicators. 

6-10 Using Printer Output Files 



• If an overflow indicator is used on an AND line, the line is not an overflow line. In this 
case, the overflow indicator is treated like any other output indicator. 

• An overflow indicator cannot condition an exception line (E in column 15 of the Out-
put specification), but can condition fields within the exception record. 

During a normal program cycle, RPG II checks the overflow indicator only once (immedi
ately after total-time output) to see if it is set on. The overflow routine performs the follow
ing operations: 

1. RPG II prints all total lines conditioned by an overflow indicator when the indica
tor is on. 

2. RPG II prints those heading and detail lines conditioned by an overflow indicator 
when the indicator is on. 

3. Advancement to a new page does not happen automatically. Normally, one of the 
overflow lines specifies a skip to the top of a new page. 

If the overflow indicator is on, you can fetch the overflow routine before printing any total 
or detail line by specifying F in column 16 (Fetch overflow) of the Output specification. 
Fetch overflow lets you alter the RPG II logic cycle to prevent printing detail, total, and 
exception lines on or over the perforation between pages. When you fetch the overflow rou
tine, RPG II performs the following operations: 

• When an output line specifies Fetch overflow, RPG II finds out if the overflow indica
tor for that file is on. If it is, RPG II calls the overflow routine and prints only those 
overflow lines associated with the file described on the Output specification. 

• After RPG II prints the overflow lines, it prints the line that specified the Fetch 
overflow. 

• RPG II prints any detail-time and total-time lines left for that program cycle. 

When fetching the overflow routine, observe the following rules: 

• If you want to fetch the overflow line for each record in an OR relationship, you must 
specify F in column 16 (Fetch overflow) for each line. 

• You cannot specify an overflow indicator in columns 23 through 31 on the same line 
with F in column 16 (Fetch overflow). 

To decide when to fetch the overflow routine, study all possible overflow situations and 
count lines, spaces, and skips to determine what happens when an overflow occurs. 

In the following example, the length of a page is 15 lines. The overflow line is line 12. When 
the overflow line is reached, the overflow indicator OG is set on, which conditions the head
ing line that prints the date, report title, and page number at the top of each page. 

Using Printer Output Files 6-11 



o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

FOUTI93 IP F 74 DISK 
FOUT93A 0 F 80 OC LPRINTER 
LOUT93A 15FL 120L 
IOUTI93 AA 01 
I 1 5 ZIP 
I 10 150CEN30 
I 16 210CEN40 
I 22 270CEN50 
I 28 330CEN60 
I 34 390CEN70 
I 40 450CEN80 
I 46 47 STATE 
I 48 59 COUNTY 
I 63 74 TOWN 
OOUT93A H 102 1P 
0 OR OG 
0 UDATE Y 10 
0 47 'SOUTHERN NEW HAMPSHIRE' 
0 53 'TOWNS' 
0 PAGE 77 
0 D 1 01 
0 TOWN 13 
0 COUNTY 26 
0 STATE 30 
0 CEN80 J 38 
0 CEN70 J 46 
0 CEN60 J 54 
0 CEN40 J 62 
0 CEN40 J 70 
0 CEN30 J 78 

ZK-4421-85 

A sample ofthe output from this example might look like the following: 

° 2 3 4 5 6 7 
12345678801234567880123456788012345678801234567880123456788012345678801234567880 

12/14/85 SOUTHERN NEW HAMPSHIRE TOWNS 

HafrlPstead Rockingham NH 3.785 2.401 1 .261 823 823 775 
Kingston Rocf(ingharTl NH 4 .111 2.882 1 .672 1 .002 1.002 1 .017 
Litchfield Hillsborough NH 4 .150 1 .420 721 341 341 286 
NelAlfTlarf(et RocfU n gharT! NH 4.280 3.361 3.153 2.640 2.640 2.511 
Atkinson RocKinghafTl NH 4.387 2.281 1 .017 434 434 407 
R;' e Rocfdngham NH 4.508 4.083 3.244 1 .246 1.246 1 .081 
Hollis Hillsborough NH 4.678 2.616 1.720 886 886 878 
Pete rbo rough Hillsborough NH 4.885 3.807 2.863 2.470 2.470 2t521 
Ra;'rTlond RocfU n ghafTl NH 5.453 3.003 1.867 1 .340 1 .340 1 .165 

6-12 Using Printer Output Files 



12/111/85 SOUTHERN NEW HAMPSHIRE TOWNS 2 

Plaisto'", RocKin!lha~l NH 5.608 1I.712 2.815 1 .1I111 1 .1I111 1.366 
Windhafn RocKin!lhaM NH 5.6611 3.008 1 .317 630 630 538 
SeabrooK RocKin!lhaM NH 5.817 3.053 2.208 1.782 1.782 1.666 
PelhaM Hillsborou!lh NH 8.080 5.1I08 2.605 878 878 8111 
AMherst Hillsborou!lh NH 8.2113 1I.605 2.051 1 .1 711 1 .1711 1 .115 
Milford Hillsborou!lh NH 8.685 6.622 1I.863 3.827 3.827 1I.068 
Bedford Hillsborou!lh NH 8.1I81 5.858 3.636 1 .561 1 .561 1.326 
HaMPton RocKin!lhahl NH 10.1I83 8.011 5.378 2.137 2.137 1 .507 
Exeter RocKin!lhaM NH 11 .0211 8.882 7.2113 5.388 5.388 1I.872 

12/111/85 SOUTHERN NEW HAMPSHIRE TOWNS 3 

Goffsto'",n Hi 11 sbo rou!lh NH 11.315 8.2811 7.230 1I.2117 1I.2117 3.838 
Londonde r n' RocKin!lhaM NH 13.588 5.3116 2.1I57 1 .1I28 1.1I28 1 .373 
Hudson Hillsborou!lh NH 111.022 10.638 5.876 3.1I08 3.1I08 2.702 
MerriMacK Hillsborou!lh NH 15.1I06 8.585 2.888 1.253 1.253 1 .0811 
Oe r ry RocKin!lhafTl NH 18.875 11.712 6.887 5.1I00 5.1I00 5.131 
SaleM RocKin!lhaM NH 211.1211 20.1112 8.210 3.267 3.267 2.751 
PortsMouth Rocf\in!lhaM NH 26.2511 25.717 26.800 111.821 111.821 111.1I85 
Nashua Hillsborou!lh NH 67.865 55.820 38.086 32.827 32.827 31.1I63 
Manchester Hi 11 sbo rou!lh NH 80.836 87.7511 88.282 77.685 77.685 76.8311 

6.4 Automatic Overflow 
When an overflow indicator is not assigned to an output file going to the printer, the com
piler assigns the first unused indicator to the file. This causes a skip to line 1 whenever an 
overflow occurs, and the overflow routine executes for this file. 

You can override the printing of overflow lines by specifying an overflow indicator on the 
File Description specification. However, do not use the same indicator to condition any out
put line. This causes continuous printing oflines, regardless of page boundaries. 

Using Printer Output Files ~13 



6.5 Defining the Page Size 

The Line Counter specification allows you to alter the default format of a printed output 
file. You can use this specification to change the number of lines on a page and to change 
the overflow line. 

To define the page size, you must make the following entries in the Line Counter 
specification: 

• Columns 7 through 14 (File name) - Specify the name of the output file. This file must 
have been previously defined on the File Description specification with PRINTER in 
columns 40 through 46 (Device code) and L in column 39 (Extension). 

• Columns 15 through 17 (Form length) - Specify the number oflines printed in a page. 

• Columns 18 and 19 (FL) - If you specify an entry in columns 15 through 17 (Form 
length), you must enter FL in columns 18 and 19. This entry indicates to the compiler 
that columns 15 through 17 define the Form length. 

If you do not specify an entry for Form length, the default is 66 lines. 

To define the overflow line, you must make the following entries in the Line Counter 
specification: 

• Columns 20 through 22 (Overflow line number) - Specify the line number where an 
overflow occurs. 

• Columns 23 and 24 (OL) - If you specify an overflow line number in columns 20 
through 22, you must enter OL in columns 23 and 24. This entry indicates to the com
piler that columns 20 through 22 define the Overflow line number. 

If you do not specify an entry for the Overflow line, the default is line 60. 

6.6 Formatting Output 

You can define how your printed output file will look by specifying the number of lines to 
space or skip. Spacing is relative to the line currently being printed; therefore, use spacing 
between detail lines in a report. Skipping repositions the printer to an absolute line num
ber; therefore, specify skipping for the column headers of a report. For example, if you 
specify skip to line number 2, the output line associated with that specification will be 
printed only on the second line of each page. 

6-14 Using Printer Output Files 



To specify the number oflines to space, you must make the following entries in the Output 
specification: 

• Column 17 (Space before) - Specifies the number oflines to be spaced before printing 
a line. 

• Column 18 (Space after) - Specifies the number oflines to be spaced after printing a 
line. 

To specify the number oflines to skip, you must make the following entries in the Output 
specification: 

• Columns 19 and 20 (Skip before) - Specifies the line number to skip to before printing 
a line. 

• Columns 21 and 22 (Skip after) - Specifies the line number to skip to after printing a 
line. 

If you make entries in both spacing and skipping columns for the same line, RPG II for
mats the output in the following order: 

1. Skip before 

2. Space before 

3. Print the output line 

4. Skip after 

5. Space after 

You can specify entries in columns 17 through 22 (Space and Skip) for the second line in an 
OR relationship; otherwise, the preceding line specifies the entries for spacing and 
skipping. 

Using Printer Output Files 6-15 



The following example prints TOP on line 1, TEST LINE on line 7, PRINT TWICE FOR 
BOLDING on line 13, and the fields beginning on line 16: 

File 
naPie 
I 

01 

T!:lpe (HDTE> 
IFetch overflow (F) 
I I Space 
II I Skip 
II I I 
III I Indicators 
III I I Field 
III I I naPie 
II I I I I 
I IBAB A NxxNxxNxxl 

Edit codes 
I X 
I Y date edit 
I Z zero suppress 
I 
IBlank-after (B) 
IIEnd position 
I I I ForPiat (PB) 
II I I 

, 0 No CR -

Y Y 1 A J 
Y N 2 B K 
N Y 3 C L 
N N 4 D M 

III I + Constant or edit wOI'd + 
o I 1 I 2 I 3 I 4 151 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** ***** * * * ***---** 
00UT92A H 1P 
0 41 'TOP' 
0 H 320411 1P 
0 404- 'TEST LINE' 
0 H 0 1P 
0 30 'PRINT TWICE FOR BOLDING' 
0 H 15 1P 
0 30 'PRINT TWICE FOR BOLDING' 
0 D 1 N1P 
0 DESCR 18 
0 STOCK!! 26 
0 ONHANDZ 31 
0 PRICE K 39 '$' 

ZK-4422-85 

6-16 Using Printer Output Files 



Sample output from this example might look like the following: 

o 1 2 3 4 567 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

PRINT TWICE 

1 LB CARROTS 
6 PACK SOOA 
1 LB BUTTER 
STEAK 
HEAD LETTUCE 

TOP 

TEST LINE 

FOR BOLOING 

'.IEG1MQ 47 $.79 
DRNK2A 40 $1.48 
DAROBT 38 $1. 59 

METO L~ $3.15 
'.lEG 1 WQ 63 $.35 

Using Printer Output Files 6--17 





Chapter 7 

Using Tables 

A table is a collection of similar items arranged in a specific order. Each entry in a table 
must have the same length and the same data type (either character or numeric). In 
RPG II, you use tables to locate a specific item quickly and easily. 

There are single tables and related tables. Single tables consist of just one group of similar 
entries. When you search this type of table, the result of the operation lets you know 
whether the item you are searching for is present in the table. If the search is successful, 
that entry becomes the current entry. 

Related tables are two associated tables (like a Table of Contents) that can be entered in 
alternating format. For an example of alternating format using arrays, see Part I, Section 
8.3.4. You search the first table to find out if the entry is present. If the entry is found, 
RPG II retrieves the corresponding entry from the second table. Related tables need not 
have the same number of entries unless they are described in alternating format in the 
same Extension specification. 

If you describe a table in alternating format, the first entry from the first table is read first; 
then, the first entry from the second table is read. This alternate reading continues until 
all entries from both tables are read. Together, the corresponding entries from each table 
form one record. 

Any table can be loaded at either compile time or pre-execution time. Loading is the pro
cess by which the program assigns the data you supply to the entries in the table. 

The following characteristics help determine when a table should be loaded: 

• Its contents 

• The frequency with which its entries require changing 

• The way it is to be used 

Sections 7.1 and 7.2 describe compile-time tables and pre-execution-time tables. 

7-1 



7 .1 Compile-Time Tables 

Compile-time tables are part of the source program. They are compiled with the source 
program and become a permanent part of the object program. The following example 
shows a source program and a compile-time table: 

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

rINPUT IPE F 30 DISK 
FREPORT 0 40 DISK 
E TABA 10 50 5 
II NPUT AA 01 
I 1 5 ITEM 
I 6 102FLD1 
I 15 30 FLD2 
C 01 ITEM LOKUPTABA 
C N11 SETON 
C 11 100 ADD FLD1 NEW 
OREPORT D 01 11 
0 NEW B 20 

II 
10001100021000310004100051000610007100081000910010 
20001200022000320004100052000610007200082000920010 
30001300023000330004100053000610007300083000930010 
40001400024000340004100054000610007400084000940010 
50001500025000350004100055000610007500085000950010 
1* 

H1 
62 

11 

ZK-4431·85 

One advantage of compile-time tables is that they do not need to be loaded separately each 
time the program is run. However, if you need to change any of the entries in a compile
time table, you must revise the table, and then recompile the program with the revised 
table. You can, however, make temporary changes in the table during calculations. To 
make these temporary changes permanent, you would have to output the table. See Sec
tion 7.8 for information about outputting tables. 

The data in a compile-time table must follow the source program and alternate sequence 
records, if any. 

7.2 Pre-Execution-Time Tables 

Pre-execution-time tables are not part of the object program. Rather, each table is loaded 
separately from an input data file. One advantage of pre-exec uti on-time tables is that you 
can make frequent changes to the table without recompiling the program. 

Pre-execution-time tables are loaded before the first program cycle begins. 

7-2 Using Tables 



7.3 Creating Table Input Records 

Table input records are the values for the entries in a table. When creating table input 
records, observe the following rules: 

• The first entry must begin in character position 1; all entries must be contiguous, with 
no space between entries, as shown in Figure 7-1: 

/
,....------------ record 

entry entry entry entry entry \ 
/ \/ \/ \/ \/ \ 
1 234 567 890 1 2 3 4 567 8 9 0 1 2 3 4 5 6 7 890 1 2 3 4 5 6 7 890 1 234 567 8 9 0 ... table 

ZK-1471-83 

Figure 7-1: Table Input Record 

This table consists of five entries in a record, each entry being ten characters long. 

• You cannot span an entry across two records. Therefore, the length of a record is lim
ited to the device's maximum record length. If you use related tables in alternating 
format, corresponding records cannot exceed the maximum record length. 

• Each input record must have the same number of entries except the last. This record 
can be shorter to accommodate an uneven number of entries. 

When creating compile-time table input records, observe the following rules: 

• The first record must be preceded by a record containing either double slashes (II) and 
a blank or double asterisks (**) and a blank in character positions 1 through 3. Since 
these strings are delimiters, records in a compile-time table cannot contain either of 
these three characters in positions 1 through 3. 

• The last record of the last table or array can be followed with a record containing a 
slash and an asterisk (1*) in the first two character positions. This record is optional. 

When creating table input records for related pre-execution-time and compile-time tables 
in alternating format, you must enter an entry from the first table and then follow with the 
corresponding entry from the second table. 

Using Tables 7-3 



If you define each entry from the first table to be one character long and each entry from 
the second table to be three characters long, your table input record might appear as in 
Figure 7-2: 

entry , , 
13331333133313331333 ......... _._--- one record 

t y,y Imm ,eoood .able 

entry from first table 

ZK-1474-83 

Figure 7-2: Related Tables 

In this example, each record contains five entries. Each entry consists of two related 
entries. The first entry is one character long. The second entry is three characters long. 

7.4 Defining Tables 
To define a single table, you must make the following entries in the Extension specifica
tion: 

• Columns 27 through 32 (Table name) - Specify the name of the table. Table names 
can be up to six characters long, but the first three characters must always be TAB. 

• Columns 33 through 35 (Entries per record) - Specify the number of entries in a 
record. Because tables can have one or more entries per record, calculate the maxi
mum number of entries in a record by dividing the record length by the length of an 
entry. 

• Columns 36 through 39 (Number of entries per table) - Specify the number of entries 
in the table. 

• Columns 40 through 42 (Length of entry) - Specify the length of each entry. 

7-4 Using Tables 



• Column 43 (Data format) - If the table contains numeric data, you must specify its 
format. Specify P (packed decimal format), B (binary format), or leave blank 
(overpunched decimal format). When you specify packed decimal format, make sure 
the Length of entry represents the length of the numeric data in unpacked form. 
When you specify binary format, the Length of entry you specify must indicate the 
number of bytes required to store the binary field. (Use 4 for two-byte signed binary 
numbers or 9 for four-byte signed binary numbers.) 

This column must be blank for a compile-time table. 

• Column 44 (Decimal positions) - For numeric data, specify the number of positions to 
the right ofthe decimal point. You must specify 0 for no Decimal positions. 

• Column 45 (Sequence) - Specify A (ascending) or D (descending) to indicate that the 
entries in a table are in the specified sequence, or leave this column blank to specify 
an unsequenced table. 

In the following example, the table name is TABLEl. There are 10 entries in the table, 
with one entry in each record. The length of each entry is 5 digits, with 2 decimal positions. 
The data type ofthe entry in each record is overpunched numeric by default. 

E 

Frolll 
file 
nallle 
I 
I 

To 
file 
nallle 
I 
I 

------F = Forlllat (PB) 
I -----D = Decilllal positions 
I I ----S = Sequence (AD) 
III 
IllAlternating table or arra~ 

Table En tEnt Lenll Inallle Len 
or perin of Fill of F 
arra~ RecTbl EntlDl1 EntlD 
nallle I I I IISI I liS 
I I I I IIII I 111+-- COllllllents ---+ 

011 12 I 3 I 4 I 5 16 I 7 I 
1234567890123456789012345678901234567890123456789012345678901234567890123456789 

* * *--*---*--**** 
E TABLE1 1 10 5 2 

ZK-4423-85 

You can define one or two tables either individually, or as a table with an alternate table 
defined in alternating format. To define an alternate table, you must make the following 
entries for the alternate table in the same Extension specification you used to describe the 
main table: 

• Columns 46 through 51 (Table name) - Specify the name ofthe alternate table. Table 
names can be up to six characters long. The first three characters must be TAB. 

• Columns 52 through 54 (Length of entry) - Specify the length of each entry in the 
alternate table. 

Using Tables 7-5 



• Column 55 (Data format) - If the alternate table contains numeric data, you must 
specify its format. Specify P (packed decimal format), B (binary format), or leave 
blank (overpunched decimal format). When you specify packed decimal format, make 
sure the Length of entry represents the length of the numeric data in unpacked form. 
When you specify binary format, the Length of entry you specify must indicate the 
number of bytes required to store the binary field. (Use 4 for two-byte signed binary 
numbers or 9 for four-byte signed binary numbers.) 

This column must be blank for a compile-time table. 

• Column 56 (Decimal positions) - For numeric data, specify the number of positions to 
the right of the decimal point. You must specify 0 for no Decimal positions. 

• Column 57 (Sequence) - You can specify A (ascending) or D (descending) to indicate 
that the entries in a table are in the specified sequence, or leave this column blank to 
specify an un sequenced table. 

The main table's values for Entries per table (columns 36 through 39), From file name (col
umns 11 through 18), and Entries per record (columns 33 through 35) are also used for the 
alternate table. 

In the following example, two related tables are loaded from the input file INPUT. The 
second table, TAB2, is the alternate table. 

E 

Frolll 
file 
nallle 
I 
I 

To 
file 
nallle 
I 
I 

------F = Forlllat (PB) 
I -----D = Decilllal positions 
I I ----S = Sequence (AD) 
III 
II IAlternating table or arra~ 

Table En tEnt Lenll Inallle Len 
or perin of Fill of F 
arra~ RecTbl EntlDI I EntlD 
nallle I I I liS I I I IS 
I I I I I111 I 111+-- COllllllents ---+ 

011 12 I 3 I 4 I 5 I 6 171 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

* .... * * * *--*---*--***** *--**** 
E INPUT TAB1 2 4 5 OATAB2 5 OA 

ZK·4424·85 

When defining compile-time tables, observe the following rules: 

• If the compile-time table contains numeric data, it must be in overpunched format. 
Therefore, leave column 43 (Data format) blank or leave column 55 (Data format) 
blank, if you are using related tables in alternating format. 

• The input records for compile-time tables must be in the same order in which the 
tables appear in the Extension specification. 

7-6 Using Tables 



To define a pre-execution-time table, make the same entries you made for a single table. 
Also, in columns 11 through 18 (From file name), enter the name of the input file that 
contains the data for the table, as shown in the following example: 

E 

Frolll 
file 
nallle 
I 
I 

To 
file 
nallle 
I 
I 

------F = Forlllat (PB) 
I -----D = Decilllal positions 
I I ----5 = Sequence (AD) 
III 
I I IAlternating table or arra~ 

Table EntEnt Lenl I Inallle Len 
or perin of Fill of F 
arra~ RecTbl EntlDl1 EntlD 
nallle I I I I I S I I I I S 
I I I I IIII I 111+-- COllllllents ---+ 

011 12 I 3 I 4 1516 I 7 I 
12345678Q01234567890123456789012345678901234567890123456789012345678901234567890 

* .... * * * *--*---*--***** 
E INPUTFIL TABLEA 10 50 5 

ZK-442S-8S 

The table input file must be defined in a File Description specification with T in column 16 
(File designation). 

When using pre-execution-time tables, observe the following rules: 

• The input file cannot contain more entries than are defined for the table. If it does, a 
run-time error occurs_ 

• The input file can contain fewer entries than are defined for the table, only if you do 
not specify a sequence. When you do not specify a sequence and the table contains 
fewer entries than are defined, the remaining entries are automatically filled with 
blanks for character data or zeros for numeric data. 

7.5 Searching Tables 

The LOKUP operation code searches for an entry in a table. This operation starts with the 
first entry, and searches each element for a match with the search argument. Specifying a 
table sequence is not necessary when performing LOKUP operations for an equal match. 
However, if you specify a sequence, the table can be searched faster. To save time searching 
an unsequenced table, place the more frequently referenced entries at the beginning of the 
table_ 

Using Tables 7-7 



To search a table for an entry, you must make the following entries in the Calculation spec
ification: 

• Columns 18 through 27 (Factor 1) - Specify a field or literal representing the entry 
you want to locate. Make sure the search argument has the same length and data 
format as the entries of the table being searched. 

• Columns 28 through 32 (Operation code) - Specify the LOKUP operation code. 

• Columns 33 through 42 (Factor 2) - Specify the name ofthe table to be searched. 

• Columns 54 through 59 (Resulting indicator) - Specify one or more indicators to con
dition the search and to indicate whether the search has been successful. You can use 
this indicator to condition subsequent calculation and output operations. 

In the following example, the program tries to match the search argument, ITEM, with an 
entry in the table, TABA. If a matching entry is found, indicator 11 is set on. If no matching 
entry is found, the halt indicator, H1, is set on and the program terminates. 

011 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

rINPUT IPE F 30 DISK 
FREPORT 0 40 DISK 
E TABA 10 50 5 
IINPUT AA 01 
I 1 5 ITEM 
I 6 102FLDI 
I 15 30 FLD2 
C 01 ITEM LOKUPTABA 
C N11 SETON 
C 11 100 ADD FLDI NEW 
OREPORT D 01 11 
0 NEW B 20 

II 
10001100021000310004100051000610007100081000910010 
20001200022000320004100052000610007200082000920010 
30001300023000330004100053000610007300083000930010 
40001400024000340004100054000610007400084000940010 
50001500025000350004100055000610007500085000950010 
1* 

HI 
62 

11 

ZK·4431·85 

In this compile-time table, there are ten entries in a record and fifty entries in a table. Each 
entry is five characters long. 

7-8 Using Tables 



When you specify a sequence (either ascending or descending), you can use resulting 
indicators (EQUAL, HIGH, and LOW) in the Calculation specification to indicate the con
dition to search for and the result ofthe search. You can specify one of the following search 
conditions: 

• Columns 54 and 55 (HIGH) - Nearest to but greater than value only 

• Columns 56 and 57 (LOW) - Nearest to but less than value only 

• Columns 54 and 55, and 58 and 59 (EQUAL or HIGH) - Equal or nearest to but 
greater than value 

• Columns 56 and 57, and 58 and 59 (EQUAL or LOW) - Equal or nearest to but less 
than value 

The following program searches the unsequenced table TABLE2 for the value LENGTH, 
and searches the sequenced table TABLEl to check for a value greater than or equal to 
COST. If both conditions are satisfied, the subroutine PROCES is called to process the 
entry. 

o I 1 I 2 I 3 141 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 
· ... . **. * .... I ••• *. I ••••••• * .... * ......... *. I ••• *--*** I *. * 1*' ••••••• I • I I • I I I •••• 

FrILE1 IT F 80 80 EDISK 
FrILE2 IT F 80 80 EDISK 
rINrILE IP F 80 80 DISK 
E FILE1 TABLE1 1 6 3 2A 
E FILE2 TABLE2 1 6 3 0 
II NrILE AA 11 
I 1 32COST 
I 04- 60LENGTH 
I 7 100NUHBER 
C 11 LENGTH LOKUPTABLE2 20 
C N20 11 GOTO NOPROC 
G 11 COST LOKUPTABLEl 26 26 
C N26 GO TO NOPROC 
C EXSR PROCES 
C NOPROC TAG 

ZK·4430·85 

You can also specify a table in the Result field to retrieve the entry that corresponds to the 
entry located in a LOKUP operation. (See the example in Section 7.6.) 

Using Tables 7-9 



7.6 Referencing Table Entries 

When you use a table name as an operand in an operation other than as Factor 2 or other 
than as the Result field in a LOKUP operation, the table name refers to the data retrieved 
by the last successful search. You can then use the entry as an operand in a calculation or 
modify the contents of the entry when the table name is used as the Result field in a 
calculation. 

In the following example, FLDI is the search argument in the LOKUP operation. If the 
program can locate FLDI in TAB1, indicator 10 is set on. Then, the result of the calcula
tion on the next line replaces the current contents of the located entry in TAB 1 because the 
table entry is used as the Result field. 

Contro I I eve I 
I 
I Indicators 
I I 
I I Factor 
I I 1 

CI N)()(N)()(Nx)(1 

Operation 
I 
I 
I 
I 

Factor 
2 
I 

Field length 
I Deci~al positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resultl llindicators 
field I II + - 0 
I I II> < = +- Co~~ents --+ 

011 12 I 3 I 4 I 5 I 6 I 7 I 
1?34Rh78901234567890123456789012345678901234567890123456789012345678901234567890 
. ~ .. . **. *. I •••••• * .. I • I ••• 1*' I •• * ......... * .. I ••• --***. *. * I * I •••••• I •• I I •••••••• 

C 
C 10 

FLD1 
TAB1 

LOKUPTAB1 
HULT 100 

10 
TAB1 

ZK-4426-85 

You can specify which entry is the current entry for related tables, and then reference the 
current entry in subsequent calculations. In the following example, FLDI is the search 
argument in the LOKUP operation. If the program locates FLDI in TAB1, that entry 
becomes the current entry. Then, RPG II locates the corresponding entry in TAB2 and it 
then becomes the current entry for TAB2. When you reference these entries in subsequent 
calculations, RPG II uses the current entry in both tables. 

7-10 Using Tables 



Control level 
I 
I Indicators 
I I 
I I Factor 
I I 1 

CI N)()(N)()(N)()(I 

Operation 
I 
I 
I 
I 

Factor 
2 
I 

Field length 
I Deci~al positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resu I t I I I indicators 
field I 11+-0 
I I II> < = +- Co~~ents --+ 

0111213 I 4 1 5 I 6 I 7 I 
12~456789012~4567890123456789012345678901234567890123456789012345678901234567890 

..... **.* ........ *.,. I ••••• * .... * ......... * ..... *--***.*.*.* ...... I •• I •••••••• I. 

C FLD1 LOKUPTAB1 TAB2 10 
ZK-4427-85 

7.7 Updating Tables 

To change the contents of an entry in or add new entries to a pre-execution table, edit the 
input file that contains the table. You can also use a program to modify a table and output 
the new entries. 

The following example searches related tables in alternating format. The first table TABA 
consists of a list of numbers of items in stock. The second table TABB consists of a list of 
unit prices corresponding to the item numbers. We want to raise the unit price of each item 
by 5% and output the updated table. 

01112 I 3 1 4 1 516171 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** ***** * * * ***---** 
FMASTER IPE F 30 DISK 
HABLEt IT F 22 EDISK 
HABLE2 0 F 22 DISK 
FREPORT 0 F 60 DISK 
E TABLEt TABLE2 TAB A 2 10 5 TABB 6 2 
IMASTER AA 01 
I 1 5 ITEM 
C 01 ITEM LOKUPTABA TABB 11 
C Nl1 SETON H1 
C 11 1.05 MULT TABB TABB 62H 
OREPORT D 11 
0 TABB 20 

ZK-4428-85 

The related tables TABA and TABB are pre-execution-time tables. They are loaded from 
the input table file TABLEl. In the Extension specification, the output file TABLE2 is 
automatically created. (Automatic creation means that the output file does not require an 
Output specification.) 

Using Tables 7-11 



When the program executes, it reads the first record from the primary input file MASTER. 
ITEM is the search argument. If the search argument is matched, indicator 11 is set on and 
the corresponding entry from TABB is made available for processing. Ifno match is found, 
the halt indicator HI is set on and the program terminates without creating the output file 
TABLE2. 

When the program ends, the tables TABA and TABB are written to file TABLE2 with the 
same number of Entries per record as the table input file TABLEl. 

7.8 Outputting Tables 
When you specify the name of an output file in columns 19 through 26 (To file name) of the 
Extension specification, your program creates the file automatically, as shown in the 
example in Section 7.7. 

When you specify a table as a field on an Output specification, you can output only the 
entry found by the last LOKUP operation. 

In the following example, the table TABSH is read from the file TABFILE. For this exam
ple, the table is short, meaning not all 80 entries contain data. The LOKUP operation 
searches the table for the first entry containing zeros. This entry is replaced with a field 
read from the input file IFILE. The EXCPT operation code outputs the entry TABSH with 
the new data. Remember, the entry that is updated and then output by the Output specifi
cation is the entry found by the last LOKUP operation. When the last cycle occurs, the 
entire updated table will be written to the file TABFILE2. 

011 1213 14 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** ***** * * * FIFILE IP F 80 
FTABFILE IT F 80 
FTABFILE20 F 80 
FOFILE 0 F 80 
E TABFILE TABFILE2TABSH 10 
IIrILE AA 01 
I 
C 01 
C 01 20 
C 01 20 
OOrILE E 
o 

0000 

7-12 Using Tables 

LOKUPTABSH 
Z-ADDENTRY 
EXCPT 

TABSH 

***---** 
DISK 

EDISK 
DISK 
DISK 

80 4 0 

1 

TABSH 

10 

40ENTRY 
20 

ZK-4429-85 



Chapter 8 

Usi ng Arrays 

An array, like a table, is a collection of similar items arranged in a specific order. You can 
reference individual array elements by specifying an array index, or process an entire 
array by specifying the array name during calculation operations. 

You use an array instead of a table when you want to affect all the elements in the array 
with a single reference or to reference a number of separate entries at the same time. For 
example, when you want to compute a 5% sales tax for each element in an array, you use a 
single specification to perform the operation for every element. 

8.1 Types of Arrays 

Array types are differentiated at the time they are loaded. An array can be loaded at any 
one ofthe following times: 

• Compile time 

• Pre-execution time 

• Execution time 

Loading is the process by which the program assigns the data you specify to the elements 
in an array. 

The following characteristics determine when an array should be loaded: 

• The contents of an array 

• The frequency with which the elements in the array require changing 

• The way the array is to be used 

8-1 



8. 1.1 Compile-Time Arrays 
Compile-time arrays are part of the source program; they are compiled with the source 
program and become a permanent part of the object program. One advantage of compile
time arrays is that they do not need to be loaded separately each time the program is run. 
However, if you need to change any ofthe entries in a compile-time array, you must revise 
the array, and then recompile the program with the revised array. You can, however, make 
temporary changes in the array during calculation operations. To make these temporary 
changes permanent, you would have to output the array and then, using the output file as 
input, recompile the program. See Section 8.8 for information about outputting arrays. 

When you use a compile-time array, the array input data must follow the source program 
and any alternate sequence (ALTSEQ) records. If you use more than one array, the data for 
each array must follow in the same sequence as is specified on the Extension specifications. 

8-2 Using Arrays 



The following example shows a source program with the input data for two compile-time 
arrays and their alternate compile-time arrays: 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

F 80 
01010H 
01040FPROCD IP 
01050FINLIST 0 F 132 OF 
02010E 
02020E 
03010IPROCD AA 
030201 
030301 
04010C 
04020C 
04030C 
04040C 
04050C 21 
050100INLIST H 
050200 OR 
020300 
050400 
050500 

01 

PRODNO 

PROD NO 
QUAN 
201 1P 

OF 

050600 H 1 1P 
050700 OR OF 
050800 
050900 
051000 H 2 1P 
051100 OR OF 
051200 
051300 
051400 
060100 D 1 
060200 
060300 
060400 
060450 
060500 
060700 
060800 
060900 T 1 
061000 
** 
17526BOLT 
18171SCREW 
19226NAIL 
25116NUT 
29258MAGNESIUM COVER 

01 

20 
N20 

21 

N21 
21 
LR 

AR1 1 
AR2 4 

Z-ADD1 
LOKUPAR1,I 
Z-ADD1 
LOKUPAR2,T 
MULT ALT2,T 

UDATE 

PAGE 

PRODNO 
ALTi, I 

ALT2,T 
QUAN 

AMT 

** 
175260126181710059192260173292585843 
1* 

5 
4 

DISK NOPDAT 
PRINTER 

5 OAALT 20 
5 OAALT 4 2 

1 50PRODNO 
6 80QUAN 

I 20 
20 

T 20 
21 

AMT 72 

18 ' 1 1 
, 

47 'INVENTORY PARTS LIST' 
65 , o ' 

32 'PRODUCT 
53 'UNIT' 

17 'NUMBER' 

PRODUCT' 

45 'DESCRIPTION QTY' 
64 'PRICE AMOUNT' 

16' 0' 
39 
39 '***NO DESCRIPTION***' 
53 ' O. ' 
45 ' 0 ' 
53 '*NONE' 
65' , O. 

27 'END OF PRICE LIST' 

co~pile-ti~e arra~ AR1 

NOPRIN 
NOPRIN 
NOPRIN 
NOPRIN 

} and the alternate co~pile-ti~e 
arra~ ALTi 

} co~pile-ti~e arra~ AR2 and 
the alternate co~pile-ti~e 
at·t·a~ AL T2 

ZK-4448-85 

U sing Arrays 8-3 



8.1.2 Pre-Execution-Time Arrays 
Pre-execution-time arrays are not part of the object program. Rather, each array is loaded 
separately (before the first program cycle begins) and is used like an input data file. One 
advantage of pre-execution-time arrays is that you can make frequent changes to the 
array without recompiling the program. 

8.1.3 Execution-Time Arrays 
Execution-time arrays are created by using Input or Calculation specifications. These 
arrays are loaded either from input data or as the result of calculation operations after 
program execution begins. 

8.2 Creating Array Input Records 

When creating array input records for compile-time and pre-execution-time arrays, 
observe the following rules: 

• The first entry must begin in character position 1; all entries must be contiguous, with 
no space between entries, as shown in Figure 8-1: 

I entry \ 

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 a 1 2 3 4 5 6 7 8 9 a 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0... array 

ZK-1473-83 

Figure 8-1: Array Input Record 

This array can be defined to consist of five entries. Each entry is ten characters long. 

• Each array input record must have the same number of entries except the last. This 
record can be shorter to accommodate an uneven number of entries. 

• You cannot span an entry across two records. Therefore, the length of a record is lim
ited to the device's maximum record length. If you use related arrays in alternating 
format, corresponding entries cannot exceed the maximum record length. 

When creating compile-time array input records, observe the following rules: 

• The first record must be preceded by a record containing either double slashes (II) and 
a blank or double asterisks (**) and a blank in character positions 1 through 3. 
Because these strings are delimiters, compile-time array records cannot contain these 
characters in positions 1 through 3. 

8-4 Using Arrays 



• The last record of the last compile-time table or array can be followed by a record con
taining /* in the first two character positions. This must be the last record in the 
source program, if used. 

When creating array input records for related pre-execution-time and compile-time arrays 
in alternating format, you must enter an entry from the first array and then follow with 
the corresponding entry from the second array. 

If you define each entry from the first array to be one character long and each entry from 
the second array to be three characters long, your array input record might appear as in 
Figure 8-2: 

entry 

A 
1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 -___ -- one record 

t YIc' '<om second ",m, 
entry from first array 

ZK-1472-83 

Figure 8-2: Related Arrays 

In this example, each record contains five entries. Each entry consists of two related 
entries. The first entry is one character long. The second entry is three characters long. 

8.3 Defining Arrays 

To define any array, you must make the following entries in the Extension specification: 

• Columns 27 through 32 (Array name)-Specify the name ofthe array. You cannot use 
TAB as the first three letters of an array name. 

• Columns 36 through 39 (Number of entries per array)~Specify the number of entries 
in the array. 

• Columns 40 through 42 (Length of entry)-Specify the length of each entry. 

• Column 44 (Decimal positions)-For numeric data, specify the number of positions to 
the right of the decimal point. You must specify 0 for no decimal positions. 

You can indicate an order to the records in an array by specifying either A (ascending) or D 
(descending) in column 45 (Sequence) of the Extension specification. 

U sing Arrays 8-5 



8.3.1 Defining a Compile-Time Array 
To define a compile-time array, you must make the following entry in the Extension speci
fication in addition to the entries required for all arrays: 

• Columns 33 through 35 (Entries per record)-Arrays can have one or more entries per 
record. The length of all entries in a compile-time array cannot exceed 96 characters. 
All records, except the last, must contain the same number of entries; each entry must 
be the same length. 

The following example describes the compile-time array AI. The array has eight entries 
with four entries in each record. Each entry is a character field that is six bytes long. The 
array records are located at the end ofthe program. 

E 

Frolll 
file 
nallle 
I 
I 

To 
file 
nallle 
I 
I 

------F = Forlllat (PB) 
I -----D = Decilllal positions 
I I ----S = Sequence (AD) 
III 
I IIAlternating table or arra~ 

Table EntEnt lenl I Inallle len 
or perin of FIll of F 
arra~ RecTbl EntlDl1 EntlD 
nallle I I I I I S I I I I S 
I I I I I I I I I I II +-- COllllllents ---+ 

011 1213 I 4 I 5 I 6 I 7 I 
12345&78901234567890123456789012345678901234567890123456789012345678901234567890 

* .. 1'* * E 

** 
KAUNISKAUPPANAINENKAIKKI 
MUKAVAPAlJONJUUSTOOSOITE 
1* 

* Ai 
*--*---*--***** 
486 

8.3.2 Defining a Pre-Execution-Time Array 

ZK-4434-85 

To define a pre-execution-time array, you must make the following entries in the Exten
sion specification in addition to the entries required for all arrays: 

• Columns 11 through 18 (From file name)-Specify the name ofthe input file that con
tains the data for the array. This input file is called a table input file. It must be 
defined in a File Description specification with T in column 16 (File designation); the 
T associates the file with the array. 

8-6 U sing Arrays 



• Columns 33 through 35 (Entries per record)-Arrays can have one or more entries per 
record. The length of all entries in a pre-execution-time array cannot exceed the max
imum number of characters for the device from which the array is loaded. All records 
except the last must contain the same number of entries; each entry must be the same 
length. 

If your pre-execution-time array contains numeric data, you can indicate the data format 
by specifying P (packed decimal format) or B (binary format), or by leaving the column 
blank (overpunched decimal format). When you specify packed decimal format, make sure 
the Length of entry represents the length of the numeric data in unpacked form. When you 
specify binary format, the Length of entry you specify must indicate the number of bytes 
required to store the binary field. (Use 4 for two-byte signed binary numbers or 9 for four
byte signed binary numbers.) 

When using pre-execution-time arrays, observe the following rules: 

• The input file cannot contain more entries than are defined for the array. If it does, a 
run-time error occurs. 

• The input file can contain fewer entries than are defined for the array, only if you do 
not specify a sequence. When you do not specify a sequence and the array contains 
fewer entries than are defined, the remaining entries are automatically filled, either 
with blanks for alphanumeric data or with zeros for numeric data. 

8.3.3 Defining an Execution-Time Array 
To define an execution-time array, no additional entries need be made in the Extension 
specification over those that are required for all arrays. 

If you want to load an execution-time array from an input file, you must make the follow
ing entries for the array input file in its Input specification: 

• Column 43 (Data format)-When using arrays containing numeric data, indicate the 
data format by specifying P (packed decimal format) or B (binary format), or by leav
ing the entry blank (overpunched decimal format). 

• Columns 44 through 51 (Field location)-Specify the beginning and ending character 
positions of the entire array, partial array, or array element being loaded. If the data 
format is packed decimal or binary, the field location must represent the actual size of 
an array element in bytes. 

The following example shows how to use the Input specification to load an entire execu
tion-time array containing packed decimal numbers as a single field. The array, ARR, con
tains seven elements; each element is four bytes long. The execution-time array is loaded 
from the input file ARRIN as a single field in packed decimal format. 

Using Arrays 8--7 



011 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

E 
IARRIN AA 03 
I 

ARR 770 

P 1 280ARR 
ZK-4435-85 

You can load part of an execution-time array using one input field. The length ofthe field 
must be a multiple ofthe length of one entry. The array is loaded beginning with the first 
element and continues loading elements until it reaches the end ofthe input field. 

011 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

E 
IARRIN AA 03 
I 

ARR 25 1 

1 100ARR 
ZK-4436-85 

In this example, ARR contains 25 entries. Each entry is one character long. RPG II loads 
the first ten elements ofthe array ARR. 

8.3.4 Defining Related Arrays in Alternating Format 
You can define related arrays either individually or in alternating format. To define arrays 
in alternating format, you must make the following entries for the second (alternate) 
array in the same Extension specification you used to describe the first (main) array: 

• Columns 46 through 51 (Array name)-Specify the name of the alternate array. 

• Columns 52 through 54 (Length of entry)-Specify the length of an entry in the alter
nate array. 

• Column 55 (Data format)-You need only specify the data format for alternate pre
execution-time arrays that contain numeric data. Specify P (packed decimal format) 
or B (binary format), or leave the entry blank (overpunched decimal format). When 
you specify packed decimal format, make sure the Length of entry represents the 
length of the numeric data in unpacked form. When you specify binary format, the 
Length of entry you specify indicates the number of bytes required to store the binary 
field. (Use 4 for two-byte signed binary numbers or 9 for four-byte signed binary 
numbers.) 

8-8 Using Arrays 



• Column 56 (Decimal positions)-For numeric data, specify the number of positions to 
the right of the decimal point. You must specify 0 for no decimal positions. 

• Column 57 (Sequence)-You can indicate the order of entries in an alternate array by 
specifying either A (ascending) or D (descending). 

The entries made in the following columns for the main array also apply to the alternate 
array: 

• Columns 11 through 18 (From file name) 

• Columns 33 through 35 (Entries per record) 

• Columns 36 through 39 (Entries in array) 

The following example describes the pre-execution-time array A1 with six entries in each 
record and 24 entries in the array. The entries for array A1 are alternated with entries for 
array Bl. A1 contains overpunched numeric data that is six digits long with no decimal 
places. B1 contains overpunched numeric data that is four digits long with two decimal 
places. Each record in the data file contains 6 entries for A1 and 6 entries for Bl. The 
arrays are loaded from the file ARRFIL. 

A sample record from ARRFIL might look like this: 

000001245000000216240000034520000004799000000577770000066550 
\ /\ /\ /\ / 

t t t t 
Aid Bid Al.2 Bl.2 

Frolll 
file 
nallle 
I 

To 
file 
nallle 
I 

Table 
or 
arra~ 

nallle 

------F = Forlllat (PB) 
I -----D = Decilllal positions 
II ----5 = Sequence (AD) 
III 
I IIAlternating table or arra~ 

EntEnt Lenl I Inallle Len 
per in of Fli I of F 
RecTbl EntlDl1 EntlD 
I I I 1151 I liS 

E I I I I I I 1111 I 111+-- COllllllents ---+ 
o I 1 I 2 I 3 I 4 151 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
* 

E ARRFIL * A1 
*--*---*--***** 

6 24 6 0 B1 

ZK-4437-85 

U sing Arrays 8-9 



8.4 Referencing Arrays 

With tables, you can reference only the entry retrieved by the last LOKUP operation. With 
arrays, you can refer to either an entire array or to an individual array element. One 
advantage of referring to an entire array is that a single operation can affect all the ele
ments in the array. 

You can specify an array name, a comma, and an index that is up to ten characters for 
Factor 1 or Factor 2 in a Calculation specification. You can specify an array element that is 
up to six characters for the Result field. 

You can use an entire array as Factor 1, Factor 2, or the Result field in the following opera
tions: 

• ADD 

• Z-ADD 

• SUB 

• Z-SUB 

• MULT 

• DIV 

• SQRT 

• MOVE 

• MOVEL 

• MOVEA 

• XFOOT 

• LOKUP 

• PARM 

When you specify an array name in the following calculations, RPG II repeats the opera
tion for each element in the array: 

• ADD 

• Z-ADD 

• SUB 

• Z-SUB 

• MULT 

8-10 Using Arrays 



• DIV 

• SQRT 

• MOVE 

• MOVEL 

• PARM 

When using entire arrays (non indexed) in any ofthe above calculations, observe the fol
lowing rules: 

• When you specify arrays with the same number of elements for Factor 1, Factor 2, and 
the Result field, RPG II performs the operation on the first element, then on the sec
ond element, and so on, until all the elements in the array have been processed. 

If the arrays do not have the same number of elements, RPG II ends the operation 
when the last element of the array with the fewest elements is processed. 

• When one Factor is a field or constant and the other Factor or Result field is an entire 
array, RPG II performs the operation once for every element in the array. 

• If the operation requires Factor 2 only and the Result field is an array, RPG II per
forms the operation once for every element in the array. 

• You must specify an array for the Result field. 

• You cannot use resulting indicators to condition calculations with arrays. 

If you use an array for the Result field and an element as one ofthe Factors in a calculation, 
RPG II alters the value of the element as a result of the calculation. When this occurs, 
RPG II uses the new value in all subsequent operations that reference that element. 
Suppose two numeric arrays have the data in Table 8-1: 

Table 8-1: Array Element Values 

Array Element 

ARRl,1 
ARRl,2 
ARRl,3 
ARRl,4 

ARR2,1 
ARR2,2 
ARR2,3 
ARR2,4 

Value 

4 
3 
1 
5 

2 
7 
5 
9 

U sing Arrays 8-11 



If every element of ARR1 is added to element ARR2,3 and the result is placed in ARR2, the 
elements of the resulting array are in Table 8-2: 

Table 8-2: Array Elements in Calculations 

Array Element Expression Resulting Value 

ARR2,1 (4 + 5) 9 
ARR2,2 (3 + 5) 8 
ARR2,3 (1 + 5) 6 
ARR2,4 (5 + 6) 11 

You can specify an array element in most operations that take a character or numeric field 
as Factor 1, Factor 2, or the Result field. To specify an individual array element, code the 
array name, a comma, and the index. For example, ARR,12 specifies the twelfth element of 
array ARR. You can also use a field name to represent the index. For example, if you spec
ify ARR,FLD, the index value is determined by the value of the field FLD. 

An array index, whether it be a literal or a field, must always be greater than or equal to 1 
and less than or equal to the number of elements in the array. If it is not, and you specify 
the CHECK = (BOUNDS) qualifier to the RPG command, a run-time error will occur. If 
not, and you do not specify the CHECK = (BOUNDS) qualifier to the RPG command, 
unpredictable results will occur. 

If you plan to use the same array element in a calculation for every program cycle, use a 
constant number as the index. If, however, you want to reference different array elements, 
use a field name as the index. '", 

When array elements are scattered throughout an input record, each field must be 
described individually on the Input specification. A field description indicates the position 
of an element in the array. In such cases, there are two ways to load the data into the array: 

• Assign a unique field name to each field of array data on the input record, and then 
code calculations to move each data field individually into the appropriate array 
element . 

• Assign the array name with the proper index to each field of array data in the input 
record. The array is loaded automatically as the data is read. 

8-12 Using Arrays 



The following example shows you how to load each element of an execution-time array 
individually: 

011 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

E ARR 7 7 0 
IARRIN AA 03 
I P 1 40ARR,1 
I P 5 80ARR,2 
I P 9 120ARR,3 
I P 13 160ARR,4 
I P 17 200ARR,5 
I P 21 240ARR,6 
I P 25 280ARR,7 

ZK-4438-85 

In the following example, a company employs eight salespeople whose weekly sales 
amounts are recorded in an input file. Each record of the file contains the weekly sales 
amounts; one new record is recorded in the file each week. At the end ofthe year, the com
pany likes to have a report listing the sales totals for each week and the grand total for the 
entire year. 

011 12 I 3 I 4 I 5 I 6 171 
1?34567RqOt?34~67890t23456789012345678901234567890123456789012345678901234567890 

fINPUTl IPE r 60 DISK 
rREPORT 0 r 60 DISK 
E WEEK 8 6 2 
E YEAR 8 8 2 
II NPUTl AA 01 
I 1 482WEEK 
C 01 XrOOTWEEK TOTAL 82 
C 01 WEEK ADD YEAR YEAR 
CLR XrOOTYEAR GRAND 102 
OREPORT D -01 
0 20 'WEEKLY TOTAL=' 
0 TOTAL 35 '$ , 
0 T LR 
0 20 'YEARLY TOTAL=' 
0 GRAND 35 '$ , 

ZK-4439-85 

Using Arrays 8-13 



Two execution-time arrays, WEEK and YEAR, are defined in the Extension specification. 
The Input specification tells the program to load the array WEEK after reading each sales 
record from the input file INPUTl. 

The input file for the execution-time array is not like a table input file with a correspond
ing File Description specification. Therefore, data is not automatically loaded into the 
array at the beginning of execution. Instead, you must describe the input data to be loaded 
into the array on Input specifications. 

The array elements are in consecutive positions in the input record. Therefore, when the 
name of the array is specified as the field name, the data is automatically loaded into the 
appropriate elements of the array as the input record is read. In this case, only one Input 
specification is necessary to describe an input record of array data. 

The XFOOT operation calculates the sum of all the elements in the array WEEK and puts 
the sum in the Result field TOTAL. The next calculation adds one array to the other. 
Adding arrays involves adding each element of one array to the corresponding element of 
the other array. Normally, when you use an array name in a calculation, the operation is 
performed on each element ofthe array; then, an array of the results is created. Therefore, 
you cannot use resulting indicators to indicate the result ofthe operation. 

These arrays have the same number of elements; therefore, any specified operation is per
formed until all elements have been processed. In the case oftwo arrays containing differ
ent numbers of elements, the specified operation would be performed only until the last 
element in the shorter array was processed. 

In the following example, the program produces results identical to those of the previous 
example. However, here the array elements are scattered throughout the input record. 

S-14 Using Arrays 



o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
t?345678901234567890123456789012345678901234567890123456789012345678901234567890 

FINPUT2 IPE F 60 DISK 
FREPORT 0 F 60 DISK 
E WEEK 8 6 2 
E YEAR 8 8 2 
IINPUT AA 01 
I 1 62WEEK,1 
I 8 132WEEK,2 
I 15 202WEEK,3 
I 22 272WEEK,4 
I 29 342WEEK,5 
I 36 412WEEK,6 
I 43 482WEEK,7 
I 50 552WEEK,8 
C 01 XFOOTWEEK TOTAL 82 
C 01 WEEK ADD YEAR YEAR 
CLR XFOOTYEAR GRAND 102 
OREPORT D 01 
0 20 'WEEKLY TOTAL=' 
0 TOTAL 35 '$ , 
0 T LR 
0 20 'YEARLY TOTAL=' 
0 GRAND 35 '$ , 

ZK-4440-85 

8.5 Searching Arrays 

The LOKUP operation code can search for an element in an array. To determine whether a 
particular element exists, you specify a search argument and define the conditions under 
which the LOKUP operation will succeed. You must also use a resulting indicator that 
specifies the condition and that will indicate the result of the LOKUP operation. The indi
cator is set on only if the search is successful; otherwise, the indicator is set off. When 
searching for a HIGH or LOW condition, you must specify a sequence for the array in col
umn 45 (Sequence) of the Extension specification. Enter an indicator in these columns to 
test for the following conditions: 

• Columns 58 and 59 (EQUAL)-Equal 

• Columns 54 and 55 (HIGH)-Nearest to but greater than value 

• Columns 56 and 57 (LOW)-Nearest to but less than value 

• Columns 54 and 55, and 58 and 59 (EQUAL or HIGH)-Equal or nearest to but greater 
than value 

• Columns 56 and 57, and 58 and 59 (EQUAL or LOW)-Equal or nearest to but less 
than value 

Using Arrays 8-15 



If you specify both EQUAL and HIGH or EQUAL and LOW, the EQUAL condition takes 
precedence if entries satisfy both conditions. 

To search an array for an element, you must make the following entries in the Calculation 
specification: 

• Columns 18 through 27 (Factor I)-Specify a field, literal, array element, or table rep
resenting the element you want to locate. Make sure the search argument has the 
same length and data format as the elements in the array being searched. 

• Columns 28 through 32 (Operation code)-Specify the LOKUP operation code. 

• Columns 33 through 42 (Factor 2)-Specify the name of the array to be searched. 

• Columns 54 through 59 (Resulting indicator)-Specify one or more indicators to test 
for a condition and to indicate whether the search has been successful. You can use 
these indicators to condition subsequent calculation and output operations. 

In the following example, the program tries to match the search argument QTY with an 
entry in the array ARR. If a matching entry is found, indicator 11 is set on. If the entry is 
not found, indicator 11 is set off. 

Control level 
I 
I Indicators 
I I 
I I Factor 
I I 1 

CI N)()(N)()(N)()(I 

Operation 
I 
I 
I 
I 

Factor 
2 
I 

Field length 
I Deci~al positions 
I IHaif adjust (H) 
I II 
I II Resul ting 

Resu I t I II indicators 
field I 11+ - 0 
I I II) < = +- Co~~ents --+ 

011 1213 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C 01 * GlTV 

8-16 Using Arrays 

* * * LOKUPARR 
*--fl* * * * 

11 
ZK-4441-85 



If you want to start searching an array at some point other than at the beginning, specify 
the array and its index where you want to begin the search. The index can be a literal or a 
field name. In the following example, the search begins with the seventh element of array 
ARR: 

Contro I I eve I 
I 
I Indicators 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Operation 
I 
I 
I 
I 

Factor 
2 
I 

Field length 
I Deci~al positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resultl II indicators 
field I 11+-0 
I I II> < = +- Co~~ents --+ 

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * C 01 * QTY * * LOKUPARR,7 * 
ZK·4442-85 

If you want to reference the element found in the last LOKUP operation, specify the array 
name and an index field in Factor 2 ofthe LOKUP operation. If the search is successful, the 
index value ofthe array element that satisfied the condition is stored in the index field and 
the resulting indicator is set on. If the search is unsuccessful, the value 1 is placed in the 
index field and the resulting indicator is set off. If you do not specify the index field, a suc
cessful LOKUP operation indicates whether an element contains the data for which you 
are searching, but does not return the element's index value. 

If you want to begin the search with the first element, you must initialize the index field to 
1 before the LOKUP operation. 

You can also search for more than one array element by locating all the elements in an 
array that satisfy a certain condition. When the condition is satisfied, the program adds 1 
to the value in the index field to continue the search with the next element. 

In the following example: 

• The program loads a pre-execution-time array from the file INPUTl. 

• The search argument SEARCH contains the value of 50000; the LOKUP operation 
searches for any array element containing a value lower than the search argument. 

• If the search is successful, indicator 56 is set on. This indicator causes the EXCPT 
operation to print the contents of each array element (with its index) that satisfies the 
search condition. 

• After the program prints the array element, it sets indicator 56 off and adds 1 to the 
field containing the array index. As long as the index field remains below 11, the 
search continues by setting indicator 54 on; this causes the program to loop back to 
line 01090. This process continues until all 10 elements are searched. 

Using Arrays 8-17 



011 12 I 3 I 4 I 5 I 6 171 
1234567890123456789012345678901234567890123456789012345678901234567890123456789 

01020FINPUTl IT F 
01030FINPUT2 IPE F 
02040FOUTPUT 0 F 
01050E INPUTi 
010601lNPUT2 AA 01 
010701 
01080C 01 
01090C LOOP 
01100C 01 SEARCH 
01105C 56 
01107C 
01110C 01 1 
01120C 01 11 
01130C 01 54 
0114000UTPUT E 56 
011500 
011600 
011700 
011800 

50 EDISK 
10 DISK 
60 DISK 

ARYl 10 10 5 OD 

Z-ADDl 
1 50SEARCH 

I 20 
TAG 
LOKUPARYl, I 
EXCPT 
SHOF 
ADD I 
COMP I 
GO TO LOOP 

I 

ARYl, I 

I 

7 'INDEX=' 
9 

18 'VALUE=' 
23 

56 

54 

56 

An example of the output file might appear as follows: 

ZK-4443-85 

0234567 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

INDEX=06 VALUE=40000 
INDEX=07 VALUE=30000 
INDEX=08 VALUE=20000 
INDEX=09 VALUE=10000 
INDEX=10 VALUE=OOOOO 

The column numbers in this example are for reference and do not appear in the output. 

8.6 Moving Array Data 
You can use the MOVE A operation code to move: 

• Contiguous array elements to a field 

• A field or literal to contiguous array elements 

• Contiguous elements of one array to contiguous elements of another array 

8-18 Using Arrays 



Ifthe array is not indexed, data movement starts with the first element of an array or field. 
Ifthe array is indexed, the move starts with the element you specify. Data movement stops 
when either ofthe following conditions is met: 

• The last array element is moved or filled . 

• The number of characters moved equals the length of the shorter field, as specified 
either in columns 33 through 42 (Factor 2) or in columns 43 through 48 (Result field) 
of the Calculation specification. 

See Part II, Chapter 3 for more information on the MOVEA operation code. 

The following example shows a pre-exec uti on-time array ARR20 being loaded from the file 
ARRFILE. A copy of ARR20 is moved into the execution-time array ARR15 using the 
MOVEA operation code. 

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

FARRFILE IT F 80 EDISK 
E ARRFILE ARR20 5 50 -4 
E ARR15 50-4 
C HOVEAARR20 ARR15 

ZK-4444-85 

8.7 Updating Arrays 

To change the contents of an element in a compile-time array, or to add new elements to 
such an array, edit the source program containing the array data, and then recompile the 
program. 

To change the contents of an element in a pre-execution-time array, or to add new elements 
to such an array, edit the table input file that contains the array. 

You can make temporary changes in arrays during program execution by using the array 
name as a Result field. You can make these temporary changes permanent by writing the 
array to an output file that you can use later as an input file. 

The following example describes the array COSTL, which is made up of six-digit 
overpunched numeric data with two decimal places. This array is read from the file 
ARRAYIN. During program execution, changes can be made to this array. At the comple
tion ofthe program the array will be written to the output file ARRAYOUT. The format in 
which it is written is the same as that in which it was read; that is, eight entries in each 
record with each entry being a six-digit overpunched numeric with two decimal positions. 
The files ARRAYIN and ARRAYOUT must also be described on File Description specifica
tions as an input table file (ARRAYIN) and an output file (ARRAYOUT). 

Using Arrays 8-19 



Frolll 
file 
nallle 
I 

To 
file 
nallle 
I 

------F = Forlllat (PB) 
I -----D = Decilllal positions 
I I ----5 = Se~uence (AD) 
III 
I I IAlternating table or arra~ 

Table EntEnt Lenl I Inallle Len 
or perin of Fill of F 
arra~ RecTbl EntlDl1 EntlD 
nallle I I I 1151 I 115 

E I I I I I I IIII I 111+-- COllllllents ---+ 
011 I 2 I 3 I 4 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
* .... * * * *--*---*--**** 
E ARRAYIN ARRAYOUTCOSTL 8 100 6 2 

ZK-4445-85 

8.8 Outputting Arrays 

You can output either an entire array or individual array elements_ To output entire 
arrays, you can make entries either in an Extension specification or in an Output 
specification. 

To write a compile-time or pre-execution-time array using an Extension specification, you 
must make the following entry: 

• Columns 19 through 26 (To file name)-Specify the name of a sequential output file_ 
This file must have been previously defined in a File Description specification_ The 
program automatically writes the compile-time or pre-execution-time array you spec
ified in the Extension specification to this output file after reaching the end of the 
program_ 

To write a compile-time, pre-execution-time, or execution-time array using an Output 
specification, you must make the following entries: 

• Columns 32 through 37 (Field name)-Specify the name ofthe array you want to write_ 
The array is written every time the program processes a record unless you specify 
indicators in columns 23 through 31 of the Output specification_ 

• Columns 40 through 43 (End position)-Specify the character position where the last 
entry of the array ends_ 

8-20 Using Arrays 



In the following example, for each record read from FILEA, the execution-time array 
DISCNT is written out to the file FILEB using Output specifications: 

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

E COSTLIST PRICE 5 10 5 2 
E DISCNT 10 5 2 
IFILEA AA 01 
I 1 22PERCNT 
C 01 PRICE MULT PERCNT DISCNT 
OFILEB D 1 01 
0 60 'COST WITH DISCOUNT OF ' 
0 PERCNT3 72 
0 74 'X' 
0 D 1 01 
0 DISCNT 120 , $0. 

ZK-4446-85 

To output an individual array element, specify the array and the index of the desired ele
ment (in the form ARR,n where n is either a constant or a field name) in columns 32 
through 37 (Field name). 

The following example outputs only the first and second element of the array DSCT: 

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

E COSTLIST PRICE 5 10 5 2 
E DSCT 10 5 2 
IFILEA AA 01 
I 1 22PERCNT 
C 01 PRICE MULT PERCNT DSCT 
OFILEB D 1 01 
0 20 'ITEM 1 COST: ' 
0 DSCT,1 32 ' $0. 
0 50 'ITEM 2 COST: ' 
0 DSCT,2 62 ' $0. 

ZK-4447-85 

If you want to output numeric array elements, you can use Edit codes or Edit words to add 
commas or dollar signs, or to suppress leading zeros. Do not use Edit codes or Edit words to 
modify array data if you are going to use the data as input to subsequent programs. 

When you specify an Edit code with an entire array (nonindexed), RPG II automatically 
inserts two spaces between elements of the array in the output record. 

Using Arrays S-21 



/ 



Chapter 9 

Calling System Routines from VAX RPG II 

9.1 Introduction 

This chapter describes the use of RPG II operation codes to access VAXIVMS Run-Time 
Library (RTL) procedures, VAXIVMS system services, utilities (such as FMS and TDMS), 
and subprograms written in languages other than RPG II. You can access these routines by 
using the following RPG II operation codes: 

• The CALL operation code, which invokes the routine. 

• The PLIST operation code, which defines the parameter list, if used. 

• The PARM, PARMD, and PARMV operation codes, which determine the parameter 
passing mechanism. 

• The GIVNG operation code, which receives a function value or return status. 

See Part II, Chapter 3 for more information on these operation codes. 

Although calling RTL procedures, system services, and subprograms can provide many 
advantages, keep the following suggestions in mind: 

• Do not call these routines if you can perform the same task using RPG II. 

• Do not mix RTL and RPG II output routines. 

• If an RTL procedure and a system service perform the same task, use the RTL 
procedure. 

System routines are prewritten subroutines and functions provided by VAXIVMS. Each 
system routine has an entry point (the routine or service name) and an argument list. It 
may also return a function value or condition value to the program that calls it. 

System routines perform common tasks, such as finding the square root of a number or 
allocating virtual memory. If you use system routines, you will not have to rewrite code 
every time you want to perform a common task. Using system routines allows you to con
centrate on application specific tasks, not utility tasks. Some system routines even help 
independent parts of programs to allocate resources cooperatively. 

9-1 



A system routine can be called from any VAX language providing that language supports 
the data structures required by the particular routine. The results of a system routine will 
be the same, no matter what language you use. 

The system routines that are most commonly called from user programs are Run-Time 
Library routines and system services. These system routines are documented in the 
VAX/VMS Run-Time Library Routines Reference Manual and the VAXIVMS System 
Services Reference Manual. 

9.1.1 . Run-Time Library Routines 
Run-Time Library routines are grouped in facilities that represent specific types of com
mon tasks. These facilities and the types of tasks they perform are shown in Table 9-1. 

Facility 

LIB $ 

MTH$ 

OTS$ 

SMG$ 

STR$ 

Table 9-1: Run-Time Library Facilities 

Types of Tasks the Routines Perform 

General purpose procedures. Obtain records from devices, manipulate strings, con
vert data types for 110, allocate resources, obtain the system date or time, signal 
exceptions, establish condition handlers, enable detection of hardware exceptions, 
and process cross-reference data. 

Mathematics procedures. Perform arithmetic, algebraic, and trigonometric calcu
lations. 

Language-independent support procedures. Perform tasks such as data type con
versions as part of a compiler's generated code. 

Screen management procedures. Assist you in designing, composing, and keeping 
track of complex images on a video screen; provide terminal-independent tasks. 

String manipulation procedures. Perform tasks such as searching for substrings, 
concatenating strings, and prefixing and appending strings. 

9.1.2 System Service Routines 
System service routines perform various tasks, such as controlling processes, communicat
ing among processes, and coordinating 110. 

Unlike Run-Time Library routines which are divided into facilities, all system services 
share the same facility prefix (SYS$). However, these services are logically divided into 
groups of services which perform similar tasks. Table 9-2 describes these groups. 

9-2 Calling System Routines from VAX RPG II 



Table 9-2: Groups of System Services 

Group 

AST 

Change Mode 

Condition Handling 

Event Flag 

Information 

Input/Output 

Lock Management 

Logical Names 

Memory Management 

Process Control 

Security 

Timer and Time 
Conversion 

Types of Tasks the Services Perform 

Allow processes to control the handling of ASTs. 

Change the access mode of particular routines. 

Designate condition handlers for special purposes. 

Clear, set, read, and wait for event flags, and associate with event flag 
clusters. 

Return information about the system, queues, jobs, processes, locks, 
and devices. 

Perform 110 directly, without going through VAX RMS. 

Enable processes to coordinate access to shareable system resources. 

Provide methods of accessing and maintaining pairs of character 
string logical names and equivalence names. 

Increase or decrease available virtual memory, control paging and 
swapping, and create and access shareable files of code or data. 

Create, delete, and control execution of processes. 

Enhance the security ofVAXNMS systems. 

Schedule events, obtain and format binary time values. 

9.2 Calling System Routines from VAX RPG II 

There are seven steps required to call any system routine. 

1. Determine the type of call (procedure or function). 

2. Declare the arguments. 

3. Declare the system routine. 

4. Include symbol definitions (if applicable). 

5. Call the routine or service. 

6. Check the condition value (if applicable). 

7. Locate the result. 

As an example, you can follow these steps in writing a program to call LIB$STAT_TIMER. 
LIB$STAT_TIMER returns to its caller one of five statistics: (1) elapsed time, (2) CPU 
time, (3) buffered I/O count, (4) direct I/O count, or (5) page fault count. 

Calling System Routines from VAX RPG II 9-3 



9.2.1 Determine the Type of Call (Procedure or Function) 
Before you can set up a call to a system routine, you must determine whether the call to the 
routine or service should be a procedure call or a function call. 

A system routine must be called as a function if: 

• it returns a function value, or 

• it returns a condition value. 

NOTE 
To call a system routine as a function in RPG II, you must use the GIVNG 
opcode. A system routine should be called as a procedure only if it does not 
return a function value or a condition value. 

Although it is possible to call most ofthe system routines as procedures, it is recommended 
that you do so only when the text in the RETURNS section says: 

RETURNS 
None 

You may call a system routine as a procedure if you are not interested in the condition code. 
However, this is highly discouraged because not checking the condition code can lead to 
many undiscovered errors. (Checking condition values is described in Section 9.2.6.) 

To determine whether a routine returns a function value or a condition value, look at the 
description provided in the RETURNS section of the system routine description. For 
example, the RETURNS section of the LIB$STAT_TIMER documentation contains the 
following description: 

RETURNS 
VMS Usage: 
type: 
access: 
mechanism: 

cond_value 
longword (unsigned) 
write only 
by value 

If this text appears in the RETURNS section, the system routine returns a condition value 
and must be called as a function. In routines which return function values, the function 
value is described in the RETURNS section. 

Because LIB$STAT_TIMER does return condition values, you must call it as a function. 

9-4 Calling System Routines from VAX RPG II 



9.2.2 Declare the Arguments 
Most system routines have one or more arguments. These arguments are used to pass 
information to the system routine and to obtain information from the system routine. 
Arguments can be required or optional. 

For example, consider the arguments for the Run-Time Library routine 
LIB$STAT_TIMER. This routine had three arguments: two are required and one is 
optional. You can tell which arguments are required by looking at the FORMAT section in 
the documentation ofthe system routine. In the case ofLIB$STAT_TIMER, the format is: 

LlB$STAT _TIMER code ,value [,handle-adr] 

The handle-adr argument appears in brackets ([ ]) indicating that it is an optional argu
ment. Only optional arguments to a system routine appear in brackets in that routine's 
FORMAT section. For this example, you only want to use the two required arguments, so 
you need declare only the first two arguments. 

To declare an argument for a system routine, first look at that argument's description. The 
argument description provided for the code argument is as follows: 

code 

VMS Usage: 
type: 
access: 
mechanism: 

function_code 
longword integer (signed) 
read only 
by reference 

Code specifies the statistic to be returned. The code argument contains the address of a 
signed longword integer that is this code. It must be an integer from one to five. 

Next, look at the VMS Usage entry, function_code. Table 9-3 lists the VAX RPG II 
equivalent for each of the VMS Usages. You can declare the argument using the code pro
vided in Table 9-3. 

When your program passes a parameter by reference, the parameter list contains the 
address ofthe location that contains the value of the parameter. Most languages pass sca
lar data by reference. 

When passing a parameter by reference, you may specify an access type and a data type in 
columns 54 through 57 ofthe Calculation specification for numeric data. Character data is 
always passed as a fixed-length string. Numeric data, by default, is passed as a packed 
decimal string. See Sections 9.2.2.2 and 9.2.2.3 for information on access type and data 
type. 

Calling System Routines from VAX RPG II 9-5 



In the following example, the parameter contained in the field CODE is passed by 
reference. 

Contt'o I I eve I 
I 
I Indicators 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Opet'ation 
I 
I 
I 
I 

Factor 
2 
I 

Field length 
I Decimal positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resul t I II indicatot's 
field I 11+ - 0 
I I II) < = +- Comments --+ 

011 12 I 3 I 4 1516 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C * * * PARM 

* *--*** * * * 
CODE 90 RL 

ZK·4630·85 

The procedure used in declaring an argument is also used in declaring the value argu
ment. First, check the description of the value argument. 

value 

VMS Usage: 
type: 
access: 
mechanism: 

varying_arg 
unspecified 
write only 
by reference 

The value argument contains the address of a longword or quadword, and that is the statis
tic returned by LIB$STAT_TIMER. All statistics are longword integers except elapsed 
time, which is a quadword. 

The VMS Usage varying_arg indicates that the data type returned by the routine is 
dependent on other factors. In this case, the data type returned is dependent on the statis
tic you want to return. For this example, the statistic that you want to return is code 5, 
page fault count. This statistic is returned in a signed longword integer. Therefore, you 
need to check Table 9-3 to find the VAX RPG II statements that are used to declare a 
longword_signed. 

9-6 Calling System Routines from VAX RPG II 



Conko I I eve I 
I 
I Indicatot's 
I I 
I I Factot' 
I I 1 

CI NxxNxxNxxl 

Operation 
I 
I 
I 
I 

Factor 
2 
I 

Field length 
I Decimal positions 
I IHaif adjust (H) 
I II 
IllResulting 

Resu I t I I I indicators 
field I 11+ - 0 
I I I 1>- < = +- Comments --+ 

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C 
C 

* * * PARM 
PARM 

* CODE 
VALUE 

*--*** * * * 
90 RL 
90 WL 

ZK-463185 

Regardless of which Run-Time Library routine or system service you are calling, the decla
ration statements for the arguments can be found by looking up the VMS Usage in Table 
9-3. 

VMS Data Structure 

address 

addressJange 

arg_list 

ast_procedure 

Boolean 

byte_signed 

byte_unsigned 

channel 

char_string 

complex_number 

Table 9-3: VMS Data Structures 

VAX RPG II Implementation 

NA 

Declare as text string of one byte. When using this data struc
ture, you must interpret the ASCII contents ofthe string to 
determine the access_mode. 

L' 

Q' 
NA 

L' 

NA 

Declare as text string of one byte. When using this data struc
ture, you must interpret the ASCII contents ofthe string. 

Same as for byte_signed. I 

WI 

TEXT STRING 

DATA STRUCTURE 

1 Technically, RPG II does not support unsigned data structures. However, unsigned information may be passed 
using the signed equivalent as long as the contents do not exceed the range ofthe signed data structure. 

(continued on next page) 

Calling System Routines from VAX RPG II 9-7 



VMS Data Structure 

cond_value 

context 

date_time 

eLcluster _name 

eLnumber 

exiLhandlecblock 

fab 

file_protection 

floating_point 

function_code 

io_status_block 

item_list~ 

item_lisL3 

item_Quota_list 

lock_id 

lock_statuB-block 

lock_ value_block 

logicaLname 

longword_signed 

longword_unsigned 

mask_byte 

mask_longword 

mask_quad word 

mask_word 

Table 9-3: VMS Data Structures (Cont.) 

VAX RPG II Implementation 

condvalue GIVNG OPCODE 
Columns 43 through 58 

V 

Q' 
TEXT STRING 

TEXT STRING 

V 

DATA STRUCTURE 

Implicitly generated by the compiler on your behalf It is not pos
sible for a user to access the fab data structure from an RPG II 
program. 

W' 

ForD 
Column 55 

F 

Q 
DATA STRUCTURE 

DATA STRUCTURE 

NA 

V 

DATA STRUCTURE 

DATA STRUCTURE 

TEXT STRING 

L 

V 

NA 

V 

I Technically, RPG II does not support unsigned data structures. However, unsigned information may be passed 
using the signed equivalent as long as the contents do not exceed the range of the signed data structure. 

(continued on next page) 

9-8 Calling System Routines from VAX RPG II 



Table 9-3: VMS Data Structures (Cont.) 

VMS Data Structure 

nulLarg 

octaword_signed 

octaword_unsigned 

page_protection 

procedure 

procesLid 

process_name 

quadword_signed 

quad word_unsigned 

rightLholder 

rights_id 

rab 

section_id 

system_access_id 

time_name 

uic 

user_arg 

varying_arg 

vector _byte_signed 

vector _byte_unsigned 

vector_longword_signed 

vector _longword_ unsigned 

vector _quadword_signed 

vector _quadword_unsigned 

vector _word_signed 

vector _word_unsigned 

word_signed 

word_unsigned 

VAX RPG II Implementation 

NA 

DATA STRUCTURE 

DATA STRUCTURE 

v 
V 

V 

TEXT STRING 

Q 

NA 

Ql 

TEXT STRING 

Ql 

TEXT STRING 

V 

Ll 

Dependent upon application. 

ARRAY OF CHARACTER STRING 

ARRAY OF CHARACTER STRINGI 

ARRAY OF LONGWORD INTEGER (SIGNED) L 

ARRAY OF LONGWORD INTEGER Ll 

NA 

NA 

ARRAY OF WORD INTEGER (SIGNED) W 

ARRAY OF WORD INTEGER WI 

W 

WI 

I Technically, RPG II does not support unsigned data structures. However, unsigned information may be passed 
using the signed equivalent as long as the contents do not exceed the range of the signed data structure. 

Calling System Routines from VAX RPG II 9-9 



9.2.2.1 Parameter Passing Mechanisms 
This section describes conventions for passing arguments in RPG II programs. 

A calling program can pass a parameter in one ofthree ways: 

• By value 

The PARMV operation code passes a parameter by value. 

• By reference 

The PARM operation code passes a parameter by reference. 

• By descriptor 

The PARMD operation code passes a parameter by descriptor. 

When your program passes a parameter by value, the parameter list contains the actual, 
un interpreted 32-bit value of the parameter. 

In the following example, the constant 0 is passed by value. 

Field length 
Contr'ol level I Decimal positions 
I I IHaif adjust (H) 
I Indicators Oper'ation I " I I I I II Resu I ting 
I I Factor' I Factor Resultl I I indicators 
I I 1 I 2 field I 11+ - 0 

CI NxxNxxNxxl I I I I II> < = +- Comments --+ 
011 121 3 I 4 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * C * * * PARMV * o 
ZK-4632-85 

When your program passes a parameter by reference, the parameter list contains the 
address ofthe location that contains the value of the parameter. Most languages pass sca
lar data by reference. 

When passing a parameter by reference, you may specify an access type and a data type in 
columns 54 through 57 of the Calculation specification for numeric data. Character data is 
always passed as a fixed-length string. Numeric data, by default, is passed as a packed 
decimal string. 

9-10 Calling System Routines from VAX RPG II 



In the following example, the parameter contained in the field TIMLEN is passed by 
reference. 

Conko I I eve I 
I 
I Indicatot's 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Opet'ation 
I 
I 
I 
I 

FactOt' 
2 
I 

Field length 
I Deci~al positions 
I IHaif adjust (H) 
I II 
I II Resulting 

Resultl I I indicators 
field I 11+-0 
I I II} < = +- Co~~ents --+ 

011 I 2 I 3 I 4 15 16 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C * * * PARM 

* *--*** * * * 
TIMLEN 90 WL 

ZK-4633-85 

When your program passes a parameter by descriptor, the parameter list entry contains 
the address of a descriptor for the parameter. 

In the following example, the field TIMBUF containing the parameter (fixed-length 
string) is passed by descriptor. 

Contt'o I I eve 1 
I 
I Indicatot'S 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Opet'ation 
I 
I 
I 
I 

Factor 
2 
I 

Field length 
I Deci~al positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resu I t I II indicatot's 
field I II + - 0 
I I II} < = +- Co~~ents --+ 

011 1213 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C * * * PARMD 

* *--*** * * * 
TIMBUF 23 

ZK-4634-85 

Calling System Routines from VAX RPG II 9-11 



9.2.2.2 Parameter Access Types (column 54) 
The parameter access type indicates the actions that the RTL procedure is permitted to 
perform on the parameter. Access types that you can use in RPG II are: 

• Read-only-R 

The parameter can only be read. 

• Write-only- W 

The parameter can only be written. 

• Modify-M 

The parameter can be modified (read and written). 

You can specify only the parameter access type and data type of a parameter with the 
PARM operation code. If you specify a parameter access type, you must also specify its data 
type. 

In the following example, the TIM LEN field is a longword integer (column 55) with write
only access (column 54). 

Field length 
Contr'ol level I Decimal positions 
I I IHaif adjust (HI 
I Indicator's Oper'ation I " I I I I II Resu I ting 
I I Factor' I Factor' Resultl II indicator's 
I I 1 I 2 field I 11+ - 0 

CI NxxNxxNxxl I I I I II> < = +- Comments --+ 
011 I 2 I 3 I 4 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** * 
C * * * PARM 

9.2.2.3 Parameter Data Types (column 55-57) 

* *--*** * * * 
TIMLEN 90 WL 

If you specify a parameter access type, you must also specify its data type. When a program 
passes a parameter to an RTL procedure, the RTL procedure expects the parameter to be of 
a particular data type. The parameter data types that can be passed from an RPG II pro
gram are: 

• Word integer (signed) - W 

• Longword integer (signed)-L 

• Quadword integer (signed)-Q 

• F_fioating single-precision-F 

9-12 Calling System Routines from VAX RPG II 



• D_floating double precision-D 

• Numeric string, right overpunched sign-NRO 

• Packed decimal string (default data type for numeric data) 

• Character string (default data type for character data) 

Define the parameter data type in columns 55 through 57 ofthe Calculation specification. 
You can specify a data type only for numeric fields passed by reference. 

In the following example, the data type of the numeric field TIMLEN is a right 
overpunched sign. 

Field length 
Control level I Deci~al positions 
I I IHaif adjust (H) 
I Indicators Opel'ation I II 
I I I I IIResulting 
I I Factot' I Factot' Resultl II indicatot's 
I I 1 I 2 field I 11+ - 0 

CI NxxNxxNxxl I I I I II> < = +- Co~~ents --+ 
011 1213 1415 1617 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** * 
C * * * PARM 

* *--*** * * * 
TIMLEN MNRO 

ZK·4637·85 

Calling System Routines from VAX RPG II 9-13 



9.2.3 Declare the System Routine 
Declare a system routine in your program as you declare any other external routine. The 
declaration statement will vary depending on whether the system routine is being called 
as a procedure or function. 

The routine declaration statement for calling LIB$STAT_TIMER as a function should 
appear as follows: 

Contl'o I I eve I 
I 
I Indicatol's 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Opel'ation 
I 
I 
I 
I 

Factol' 
2 
I 

Field length 
I Decimal positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resu I t I II indicatol's 
field I 11+ - 0 
I I I I) < = +- Comments --+ 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C 
C 
C 
C 
C 

* STATIM 
* * * *--*** * * * 
EXTRN'LIB$STAT_TIMER' 
CALL STATIM 
PARM 
PARM 
GIVNG 

CODE 
VALUE 
RETVAL 

90 RL 
90 WL 

ZK-4638-85 

The routine declaration statement for calling LIB$STAT_TIMER as a procedure should 
appear as follows: 

Contl'o I I eve I 
I 
I IndicatOl's 
I I 
I I Factol' 
I I 1 

CI NxxNxxNxxl 

Operation 
I 
I 
I 
I 

Factol' 
2 
I 

Field length 
I Decimal positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resu I t I II indicatol's 
field I 11+ - 0 
I I I I) < = +- Comments --+ 

011 121 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C 
C 
C 
C 

* STATIM 
* * * *--*** * * * 
EXTRN'LIB$STAT_TIMER' 
CALL STATIM 
PARM CODE 90 RL 
PARM VALUE 90 WL 

9-14 Calling System Routines from VAX RPG II 

ZK-4639-85 



9.2.4 Include Symbol Definitions 
Many system routines depend on values that are defined in separate symbol definition 
files. For example, when you call any Run-Time Library routine in the SMG$ facility, you 
must include SMGDEF. 

For Run-Time Library routines, you need to include symbol definitions such as when you 
are calling an SMG$ routine, or when you are calling a routine that is ajacket to a system 
service. (A jacket routine in the Run-Time Library is a routine that provides a simpler, 
more easily used interface to a system service.) 

All system services, however, require that you include SSDEF to check status. Many other 
system services require other symbol definitions as well. To determine whether or not you 
need to include other symbol definitions for the system service you wish to call, refer to the 
documentation for that service. If the documentation states that values are defined in the 
XXXXX macro, you must include those symbol definitions in your program. 

In VAX RPG II a definition macro is included as follows: 

$ CREATE SMGDEF.MAR 
.TITLE SMGDEF - Define SMG$ constants 
$SMGDEF GLOBAL 
.END 

$MACRD SMGDEF 
$LINK RPGPRDG.SMGDEF 

As you can see from the documentation for LIB$STAT_TIMER, it does not use any 
included definition files, so this step is not applicable for this example. 

9.2.5 Call the Routine or Service 
The call to the routine or service is set up as an external call in VAX RPG II. The syntax of 
the call statement will depend on whether the call is a function call or a procedure call. 

9.2.5.1 Calling a System Routine in a Function Call 
In this example, LIB$STAT_TIMER returns a condition value called reLstatus. To call a 
system routine, set up the function call in the same order as the FORMAT in the routine or 
service description. In this case, the format is as follows: 

LlB$STAL TIMER code ,value [,handle-adrj 

As stated earlier, you are not using the optional handle-arg argument. In a format state
ment, an optional argument can appear in one of two ways: 

• [,optional-argument] 

• ,[optional-argument] 

Calling System Routines from VAX RPG II 9-15 



If the comma appears outside of the brackets (,[optional-argument]) you must pass a zero 
by value. In the following example, the constant 0 is passed by value. 

Control level 
I 
I Indicators 
I I 
I I Factor 
I I 1 

Operation 

Factor 
2 

Field length 
I Deci~al positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resultl I I indicators 
field I 11+ - 0 

CI NxxNxxNxxl 

I 
I 
I 
I I I I II} < = +- Co~~ents --+ 

011 12 1314 I 5 16 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C * * * PARMV * o 

ZK·4636-B5 

If the comma appears inside the brackets ([,optional-argument)) you can omit the argu
ment, as long as it is the last argument(s) in the list. For example, look at the optional 
arguments of an imaginary routine, LIB$EXAMPLE-ROUTINE: 

L1B$EXAMPLE_ROUTINE arg1 [,arg2] [,arg3] [,arg4] 

You can omit all of the optional arguments without using a placeholder: 

Contro I I eve I 
I 
I Indicators 
I I 
I I Factor 
I I 1 

Operation 

Factor 
2 

Field length 
I Deci~al positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resu I t I II indicators 
field I 11+ - 0 

CI NxxNxxNxxl 

I 
I 
I 
I I I I II} < = +- Co~~ents --+ 

011 I 2 131 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

9-16 

** * 
C 
C 
C 
C 

* LIBEXA 
* * * *--*** * * * 
EXTRN'LIB$EXAMPLE_ROUTINE' 
CALL LIBEXA 
PARM ARG1 
GIVNG RETSTA 

Calling System Routines from VAX RPG II 

ZK-4640-85 

,/ 



However, if you omit an optional argument in the middle of the argument list, you must 
insert a placeholder: 

Control level 
I 
I Indicator's 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Oper'ation 
I 
I 
I 
I 

Factor' 
2 
I 

Field length 
I Decimal positions 
I IHalf adjust (H) 
I II 
I IIResulting 

Resu I t I II indicator's 
field I 11+ - 0 
I I II} < = +- Comments --+ 

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C 
C 
C 
C 
C 
C 

* LlBEXA 
* * * *--*** * * * 
EXTRN'LIBSEXAHPLE_ROUTINE' 
CALL LlBEXA 
PARH 
PARHV 
PARH 
GIVNG 

ARG1 
o 
ARG3 
RETSTA 

In general, Run-Time Library routines use the format: 

[,optional-argument] 

while system services use the format: 

,[ optional-argument] 

ZK-4641-85 

Calling System Routines from VAX RPG II 9-17 



Therefore, taking into account the optional argument (ARG2), the function call 
LIB$EXAMPLE_ROUTINE routine would appear as follows: 

Contro I I eve I 
I 
I Indicatol's 
I I 
I I Factor 
I I 1 

Opel'ation 

Factol' 
2 

Field length 
I Deci~al positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resu I t I II indicatol's 
field I 11+ - 0 

CI NxxNxxNxxl 

I 
I 
I 
I I I I II} < = +- Co~~ents --+ 

011 I 2 I 3 I 4 151 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C 
C 
C 
C 
C 
C 

* LlBEXA 
* * * *--*** * * * 
EXTRN'LIB$EXAMPLE_ROUTINE' 
CALL LlBEXA 
PARM ARG1 
PARM ARG2 
PARM ARG3 
GIVNG RETSTA 

ZK-4642-85 

In passing the arguments to the procedure, you must declare the passing mechanism. 
When passing parameters by descriptor (using the PARMD operation code), RPG II uses: 

• An array descriptor for entire arrays 

• A scalar decimal descriptor for numeric data with positions to the right of the decimal 
point 

• A scalar descriptor for all other data types 

RPG II passes parameters using a scalar form, unless the parameter is an entire array. See 
Section 9.2.2.1 for information on parameter passing mechanisms. 

The passing mechanism required for a system routine argument is indicated in the argu
ment description. This is shown in the following description ofthe one-char-str argument 
to LIB$CHAR: 

one-char-str 

VMS Usage: 
type: 
access: 
mechanism: 

char -string 
character string 
write only 
by descriptor 

In this case, the passing mechanism required is "by descriptor." The passing mechanisms 
allowed in system routines are those listed in the VAX Procedure Calling and Condition 
Handling Standard section of the Introduction to VAX!VMS System Routines. 

9-18 Calling System Routines from VAX RPG II 



To pass an argument using a specific passing mechanism, use the specifiers listed in Table 
9-4. 

Table 9-4: Passing Mechanisms 

Passing Mechanism Desired 

By value 
By reference 
By descriptor 

NOTE 

Specifier Required 

PARMV 
PARM 
PARMD 

Any passing mechanisms not listed in this table are unsupported in 
VAX RPG II. If a system routine requires a passing mechanism not listed in this 
table, it is not possible to call that routine directly from VAX RPG II. 

You are required to specify the passing mechanism, as shown in the following example 
where the PARM opcodes indicate that both CODE and VALUE are being passed by 
reference: 

Contt'o I I eve I 
I 
I Indicators 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Operation 
I 
I 
I 
I 

Factor 
2 
I 

Field length 
I Deci~al positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resultl I I indicators 
field I 11+ - 0 
I I II> { = +- Co~~ents --+ 

011 I 2 I 3 I 4 I 5 1617 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C 
C 
C 
C 
C 

* STATIM 
* * * *--*** * * * 
EXTRN'LIB$STAT_TIMER' 
CALL STATIM 
PARM CODE 90 RL 
PARM VALUE 90 WL 
GIVNG RETSTA 

ZK-4643-85 

9.2.5.2 Calling a System Routine in a Procedure Call 
If the routine or service you are calling does not return a function value or condition value, 
you may call the system routine as a procedure. The same rules apply to optional argu
ments, and you still follow the calling sequence presented in the FORMAT section. 

Calling System Routines from VAX RPG II 9-19 



One system routine that does not return a condition value or function value is the Run
Time Library routine LIB$SIGNAL. LIB$SIGNAL should always be called as a procedure, 
as shown in the following code: 

Conko I I eve I 
I 
I Indicator's 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Oper'ation 
I 
I 
I 
I 

FactoI' 
2 
I 

Field length 
I Decimal positions 
I IHalf adjust (H) 
I II 
I IIResulting 

Resu I t I II indicator's 
field I 11+ - 0 
I I II} < = +- Comments --+ 

011 121 3 I 4 151 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C 
C 
C 

* SIGNAL 
* * * *--*** * * * 
EXTRN'LIB$SIGNAL' 
CALL SIGNAL 
PARMV CODE 90 

9.2.6 Check the Condition Value 

ZK-4644-85 

After you call the system routine and control is returned to your program, you should 
check the condition value returned, ifthere is one. In general, all system routines return a 
condition value with the following exceptions: 

• The system routine returns a function value. (Ifthe routine returns a function value 
this is described in the RETURNS section.) 

• The CONDITION VALUES RETURNED section states "None." 

• There is no CONDITION VALUES RETURNED section but rather a CONDITION 
VALUES SIGNALED section. (Success conditions are not signaled.) 

• The call to the routine was made as a procedure call. (In this case, no condition values 
are returned.) 

If any ofthe conditions listed above apply, there is no condition value to check. 

If there is a condition value, you must check this value to make sure that it indicates suc
cess. All success condition values are listed in the CONDITION VALUES RETURNED 
section of the system routine description. Success condition values always appear first in 
this list. 

9-20 Calling System Routines from VAX RPG II 



Many system routines return the condition value SS$_NORMAL as a success value. If this 
is the only possible success condition, you can test for its presence, as shown in the follow
ing example: 

Contr'o I I eve I 
I 
I Indicator's 
I I 
I I Factor' 
I I 1 

CI NxxNxxNxxl 

Oper'ation 
I 
I 
I 
I 

Factor' 
2 
I 

Field length 
I Decimal positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resu I t I II indicator's 
field I 11+ - 0 
I I II> < = +- Comments --+ 

011 I 2 I 3 I 4 I 5 1617 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C 
C 
C 
C 
C 
C 
C 
C 
C N01 
C 

* SSNORM 
STATIM 

SSNORM 
STOP 

* * * 
EXTRN'SS$_NORMAL' 
EXTRN'LIB$STAT_TIMER' 
CALL STATIM 
PARM 
PARM 
GIVNG 
COMP RETSTA 
EXTRN' LIB$STOP' 

CODE 
VALUE 
RETSTA 

90 RL 
90 WL 

CALL STOP 
PARMV RETSTA 90 RL 

01 

ZK-4645-85 

It is also possible to check for any success code because all success codes are odd. The fol
lowing code will continue execution if any success code is returned. The call to STATIM is 
conditioned by an indicator which will be set off if any success code is returned. 

Contr'o I I eve I 
I 
I Indicators 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Operation 
I 
I 
I 
I 

Factor 
2 
I 

Fie I d length 
I Decimal positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resu I t I II indicator's 
field I 11+ - 0 
I I II> < = +- Comments --+ 

o I 1 I 2 I 3 I 4 I 5 161 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C 
C 
C 
C 
C 
C 
C 01 
C 

* STATIM 

STOP 

* * * *--*** * * * 
EXTRN'LIB$STAT_TIMER' 
CALL STATIM 
PARM CODE 
PARM VALUE 
GIVNG RETSTA 
EXTRN'LIB$STOP' 

01 
90 RL 
90 WL 

CALL STOP 
PARMV RETSTA 90 RL 

ZK-4646-85 

Calling System Routines from VAX RPG II 9-21 



When several success condition values are possible, you can continue execution on specific 
success codes. For example, the system service $SETEF returns one of two success values, 
SS$_WASSET or SS$_WASCLR. If you want to continue when the sucess code 
SS$_ WASSET is returned, you can check for this condition value as follows: 

Contro I I eve I 
I 
I Indicators 
I I 
I I Factor 
I I 1 

Operation 

Factor 
2 

Field length 
I Decimal positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resultl I I indicators 
field I 11+ - 0 

CI NxxNxxNxxl 

I 
I 
I 
I I I I II> < = +- Comments --+ 

011 12 1314 1516 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C 
C 
C 
C 
C 
C 

* SETEF 

WASSET 
WASSET 

* * * *--*** * * * 
EXTRN'SYS$SETEF' 
CALL SETEF 
PARM EFN RL 
GIVNG RETSTA 
EXTRN'SS$_WASSET' 
COMP RETSTA 01 

If indicator 01 is on, then SS$_ WASSET was returned by the calL 

ZK-4647-85 

If the condition value returned is not a success condition, then the routine did not complete \. 
normally and the information it was supposed to return may be missing, incomplete, or 
incorrect. 

If the condition value returned was not a success code, you can check for a particular error 
condition, as shown in the following example: 

011 1213 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C 
C 
C 
C 
C 
C 
C 
C 
C 02 
C 02 
C 03 

* 
RMSEOF 
GETINP 

'Error' 
RMSEOF 
, EOF' 

* * * *--*** * * * 
MOVE 'Input: ' PRMSTR 7 
EXTRN'RMS$_EOF' 
EXTRN'LIB$GET_INPUT' 
CALL GETINP 
PARMD 
PARMD 
PARM 
GIVNG 
DSPLYTTY 
COMP RETVAl 
DSPLYTTY 

INPSTR255 
PRMSTR 
INPLEN 
RETVAL 

02 

WW 

03 

9-22 Calling System Routines from VAX RPG II 

ZK-4648-85 



9.2.7 Locate the Result 
Once you have declared the arguments, called the procedure, and checked the condition 
value, you are ready to use the result. To find out where the result is returned, look at the 
description of the system routine you are calling. 

9.2.7.1 Function Results 
Ifthe routine is a function, the result is written into the variable in Factor 2 of the GIVNG 
opcode. 

For example, in this call to MTH$ACOS the result is written into the variable RESULT: 

011 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C 
C 
C 
C 

* ACOS 
* * * *--*** * * * 
EXTRN'MTH$ACOS' 
CALL ACOS 
PARM COS RF 
GIVNG RESULT 

ZK-4649-85 

This result is described in the RETURNS section of the system routine description. 

9.2.7.2 Procedure Results 
If the system routine is called as a procedure, the result is written into one or more of the 
arguments. To determine which argument holds the result, examine the "access" entry in 
the argument descriptions. If the access entry in an argument description says "write 
only" or "modify", that argument contains output information written by the procedure. 

For example, LIB$CURRENCY returns the default system currency symbol. Looking at 
the argument descriptions, you know that the currency string is returned in the 
currency _str argument. 

currency-str 

VMS Usage: 
type: 
access: 
mechanism: 

char_string 
character string 
write only 
by descriptor 

In all system routines, the output information returned by the routine or service has an 
access of "write only" or "modify". 

Calling System Routines from VAX RPG II 9-23 



9.3 Examples of Calling Run-Time Library Routines 
The following examples demonstrate calls to system routines in VAX RPG II programs. 

You will not be able to call all Run-Time Library procedures because RPG II cannot supply 
some types of parameters, such as addresses. See the VAX/VMS Run-Time Library 
Routines Reference Manual for information on all RTL procedures and the parameters 
they require. 

The following example shows a call to the STR$UPCASE procedure to change the lower
case string to uppercase letters. This procedure requires two parameters: 1) the source 
string, and 2) the destination string. Both the source string HEAD and the destination 
string RESULT must be passed by descriptor, so the PARMD operation code is used. 

Because the name ofthis RTL procedure is longer than eight characters, the EXTRN oper
ation code is used to refer to STR$UPCASE as UPCASE. 

Contro I I eve I 
I 
I Indicatol's 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Operation 
I 
I 
I 
I 

FactOl' 
2 
I 

Field length 
I Decimal positions 
I IHalf adjust (H) 
I II 
IllResulting 

Resu It I II indicatOl's 
field I 11+-0 
I I I I> < = +- Comments --+ 

011 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C 
C 
C 
C 
C 

* 
UPCASE 

* * * *--*** * * * 
MOVE 'rep head'HEAD 8 
EXTRN'STR$UPCASE' 
CALL UPCASE 
PARMD RESULT 8 
PARMD HEAD 

9-24 Calling System Routines from VAX RPG II 

ZK-4650-85 



The following example calls the LIB$SET_SYMBOL procedure to redefine 
MY _PARAMETER, the Command Language Interpreter (CLl) symbol, to be the string 
OFF. This procedure requires two parameters to be passed by descriptor: 1) the symbol to 
be defined, and 2) the value to be given to the symbol. Line 220 moves the string OFF (the 
value to be given to the symbol) to the field SETVAL. Line 230 assigns a five-character 
name, STSYM, to this procedure name. Lines 240 and 250 assign the 12-character string 
MY _PARAMETER to the field SYMBL, the symbol to be defined. Line 260 invokes this 
procedure. Lines 270 and 280 pass the two parameters to the procedure. 

Conko I I eve I 
I 
I IndicatOl's 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Opel'ation 
I 
I 
I 
I 

Factol' 
2 
I 

Field length 
I Deci~al positions 
I IHalf adjust (H) 
I II 
I IIResulting 

Result I II indicatOl's 
field I 11+-0 
I I I I> < = +- Co~~ents --+ 

o I 1 I 2 I 3 I 4 I 5 I 6 171 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
220C 
230C 
240C 
250C 
260C 
270C 
280C 

* 
STSYM 

* * * *--*** * * * 
MOVE 'OFF' SETVAL 3 
EXTRN'LIB$SET_SYMBOL' 
MOVE 'METER' SYMBL 12 
MOVEL'MY_PARA' SYMBL 
CALL STSYM 
PARMD SYMBL 
PARMD SETVAL 

ZK-4651-85 

Calling System Routines from VAX RPG II 9-25 



The following example calls the LIB$GETjNPUT procedure to ask the user for input 
from the terminal screen. This procedure requires three parameters: 1) the input text 
INPSTR (passed by descriptor) from the screen, 2) the prompt string PRMSTR (passed by 
descriptor) that is displayed before accepting input, and 3) the number of characters 
INPLEN (passed by reference) that are written to the input text. Also, this example sup
plies the field RETVAL to accept the return status (RMS$_EOF is the RTL symbolic con
stant representing one possible return status) of the operation. Actually, the program uses 
the EXTRN operation code to retrieve the value of the symbolic constant representing a 
return status. If the operation is unsuccessful, indicator 02 is set on and the string Error is 
displayed on the terminal screen. If the operation is unsuccessful because the file is at its 
EOF, the string EOF is displayed along with Error. 

Contt'o I I eve I 
I 
I Indicatot's 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Operation 
I 
I 
I 
I 

Factot' 
2 
I 

Field length 
I Decimal positions 
I IHaif adjust (HI 
I II 
IllResulting 

Resu 1 t I II indicators 
field I 11+-0 
I I II) < = +- Comments --+ 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * * * * * *--*** * * * 
C MOVE 'Input: ' PRMSTR 7 
C RMSEOF EXTRN'RMS$_EOF' 
C GETINP EXTRN'LIB$GET_INPUT' 
C CALL GETINP 02 
C PARMD INPSTR255 
C PARMD PRMSTR 
C PARM INPLEN WW 
C GIVNG RETVAL 
C 02 ' Ert'ot" DSPLYTTY 
C 02 RMSEOF COMP RETVAL 03 
C 03 ' EOF' DSPLYTTY 

ZK-4652-85 

9-26 Calling System Routines from VAX RPG II 



The following example executes TIME, a subroutine, that calls two procedures: 
COB$ACC_TIME and RPG$UDATE, to return the system date and time as a 12-digit 
field. The time format is hhmmssmmddyy (hours,minutes,seconds,month,day,year). Note 
that RPG will automatically call the RPG$UDATE RTL routine whenever UDATE, 
UDAY, UMONTH or UYEAR is referenced in the RPG program. 

o I 1 121 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

FTTY D F 80 TTY 
C*++ 
C* Execute the TIME subroutine 
C*--
C EXSR TIME 
C*++ 
C* Displa~ the time 
C*--
C TIMBUF DSPLYTTY 
C*++ 
C* Set on an 
C*--
C 
C* 
C 

indicator to end the program 

SETON 

TIME BEGSR 
C*++ 
C* Ca II 
C*--

COB$ACC_TIME to get the current time 

C 
C 
C 
C* 
C 
C*++ 
C* Call 
C*--
C 
C 
C 
C 
C 
C* 
C 
C 
C 
C* 
C 
C 
C 

GTIME EXTRN'COB$ACC_TIME' 
CALL GTIME 
PARMD TEMP8 8 

MOVELTEMP8 HHMMSS 6 

RPG$UDATE to get the date 

GDATE EXTRN'RPG$UDATE' 
CALL GDATE 
PARM DAY 2 
PARM MMDDYY 6 
PARM YEAR 2 

MOVELDAY 
MOVE YEAR 
MOVE TEMP4 

MOVE MMDDYV 
MOVELHHMMSS 
ENDSR 

TEMP4 4 
TEMP4 
MMDDYY 

TIMBUF 12 
TIMBUF 

LR 

ZK-4653-85 

Calling System Routines from VAX RPG II 9-27 



The information provided in this chapter is general to all system services and Run-Time 
Library routines. For specific information on these routines, refer to the following manu
als: 

• The VAXIVMS Run-Time Library Routines Reference Manual 

• The VAX/VMS System Services Reference Manual 

9.4 Examples of Calling System Services 
Most system services are used primarily by the VAX!VMS operating system on behalf of 
users. However, many system services are useful for application programming. 

The use of some system services is restricted to protect system performance and the integ
rity of user processes. The privileges and quotas assigned in the User Authorization File 
determine whether you can use a restricted system service. These privileges and quotas 
apply to every image that your process executes. 

The following example calls the SYS$ASCTIM system service to obtain the time. The time 
is converted from 64-bit system time format to an ASCII string. This service requires three 
parameters: 1) the length ofthe returned output string TIMLEN, passed by reference, 2) 
the character string TIMBUF, to receive the converted time passed by descriptor, and 3) 
the conversion value 0, passed by value. A conversion value of1 causes only the hour, min
ute, second, and hundredth of second fields to be returned. A value of 0 causes the full date 
and time to be returned. Remember, the length ofthe returned output string must be long 
enough to accommodate the data to be returned. Because the TIMLEN parameter must be 
a longword, the access type (write-only) and data type Oongword integer) are specified in 
columns 54 and 55. 

If the operation is successful, the date and time (TIMBUF) are displayed on the terminal. If 
the operation is unsuccessful, indicator 02 is set on. 

9-28 Calling System Routines from VAX RPG II 



Conko I I eve I 
I 
I Indicatol's 
I 1 
1 1 Factor 
I 1 1 

CI NxxNxxNxxl 

Opel'ation 
I 
1 
I 
1 

Factor 
2 
I 

Field length 
1 Deci~al positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resu I till indicatol's 
field I 11+ - 0 
I I I I:> -( = +- Co~~ents --+ 

o I 1 121 3 I 4 I 5 I 6 171 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * C 
C 
C 
C 
C 
C N02 

* ASCTIM 

TIMBUF 

* * * EXTRN'SYS$ASCTIM' 
CAll ASCTIM 
PARM 
PARMD 
PARMV 
DSPlYTTY 

TIMlEN loll 
TIMBUF 23 
o 

02 

ZK-4654-85 

The following example calls two system services - SYS$CRELOG and SYS$GETMSG. 
SYS$CRELOG sets on the external indicators 3 and 7 to control the opening of files in a 
RPG II program by calling SYS$CRELOG to define the logical name RPG$EXT_INDS. If 
the operation is not successful, BUFFER receives the error message which SYS$GETMSG 
returns, and the program displays the error message. 

Calling System Routines from VAX RPG II 9-29 



This example also demonstrates a method for modifying the external indicators logical. 
The effect is that subsequent program runs will have the appropriate external indicators 
turned on, depending on the value ofthe RPG$EXT_INDS logical. The external indicators 
in the program example below are not modified in the currently running program. See 
Part I, Chapter 4 for information on modifying the external indicators in a currently run
ning program. 

011 I 2 I 3 141 5 I 6 171 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

FERROR D F 
C*++ 

80 TTY 

C* Call SYS$CRELOG to set on the external indicators 3 and 7. 
C*--
C 
C 
C 
C* 
C 
C 
C 
C 
C 
C 
C 
C*++ 

CRELOG 

MOVEL'RPG$EXT_'LOGNAM 12 
MOVE 'INDS' LOGNAM 
MOVE '3,7' STRING 3 

EXTRN'SYS$CRELOG' 
CALL CRELOG 
PARMV 1 

LOGNAM 
STRING 
o 
RETVAL 

PARMD 
PARMD 
PARMV 
GIVNG 

C* If the call was not successful, 
C* call SYS$GETMSG to get the error text 
C*--
C 99 
C 
C 
C 
C 
C 
C 
C*++ 

GETMSG 

CALL GETMSG 
PARMV RETVAL 100 
PARM LENGTH 90 WL 
PARMD BUFFER 80 
PARMV 0 
PARMV 0 
EXTRN'SYS$GETMSG' 

C* Displa~ the error text 
C*--
C 99 BUFFER DSPLYERROR 
C*++ 
C* Set on an indicator to end the program 
C*--
C SETON LR 

9-30 Calling System Routines from VAX RPG II 

99 

ZK-4655-85 



The following example calls an RTL procedure and a system service. The RTL routine 
LIB$CVT_HTB accepts as input an eight digit hexadecimal value. The program calls the 
system service SYS$GETMSG to get the error message text associated with the condition. 

o I 1 121 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

FERROR D F 
C*++ 
C* Prompt message 
C*-
C 
C 
C 
C*++ 

MESSAG 

80 TTY 

MOVE 'x va!ue:'MESSAG 16 
MOVEL'Enter' MESSAG 
DSPLYERROR HEX 8 

C* Call LIB$CVT_HTB to convert to binar~ 
C*--
C 
C 
C 
C 
C 
C*++ 

CVTHTB 

CALL CVTHTB 
PARMV 8 
PARM HEX 
PARM VALUE 
EXTRN'LIB$CVT_HTB' 

C* Call SYS$GETMSG to get the error text 
C*--
C CALL GETMSG 
C PARMV VALUE 90 

WL 

C PARM LENGTH 90 WL 
C 
C 
C 
C 
C*++ 

GETMSG 

PARMD BUFFER 80 
PARMV 0 
PARMV 0 
EXTRN'SYS$GETMSG' 

C* Displa~ the error text 
C*-
C 
C*++ 

BUFFER DSPLYERROR 

C* Set on an indicator to end the program 
C*--
C SETON LR 

ZK·4656·85 

Calling System Routines from VAX RPG II 9-31 



For additional information on coding considerations when using external routines, refer to 
the following manuals: 

• The Introduction to VAX/VMS System Routines 

• The Guide to Creating Modular Procedures on VAXIVMS 

Section 2 of the Introduction to VAX/VMS System Routines contains the VAX Procedure 
Calling and Condition Handling Standard. The VAX!VMS Modular Programming Stan
dard can be found in Appendix A of the Guide to Creating Modular Procedures on 
VAX/VMS. 

9.5 Examples of Calling Subprograms 
Just as they call RTL procedures and system services, RPG II programs can call sub
programs written in other languages. 

The following program calls a VAX COBOL subprogram and a VAX BASIC subprogram. 

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * * * * * *--*** * * * 
C*--
C*++ 
C* The same parameter list is used b~ both calls 
C*--
C PARAM PLIST 
C PARM MESSAG 16 
C*++ 
C* Ca II 
C*--
C 
C 
C 
C*++ 
C* Call 
c*--
C 
C 
C*++ 

the VAX COBOL program 

MOVEL'RPG caII'MESSAG 
MOVE 'ed COBOL'MESSAG 
CALL 'COBOL1' PARAM 

the VAX BASIC program 

MOVE 'BASIC' MESSAG 
CALL 'BASIC!' PARAM 

C* Set on an indicator to end the program 
C*--
C SETON LR 

9-32 Calling System Routines from VAX RPG II 

ZK-4657-85 



The following example is the VAX COBOL subprogram. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. COBOL1. 
DATA DII.JISION. 
LINKAGE SECTION. 
01 MESSAGE-l PIC X(16). 
PROCEDURE DIVISION USING MESSAGE-l. 
PO. 

DISPLAY MESSAGE-l. 
E)<I T PROGRAM. 

The following example is the VAX BASIC subprogram. 

100 SUB BASICl (STRING MESSAGE = 16 BY REF) 
200 PRINT MESSAGE 
300 END SUB 

9.6 Screen Handling in VAX RPG II 

This section provides examples of RPG II program fragments that perform screen han
dling using TDMS, FMS and SMG. 

VAX TDMS (Terminal Data Management System), VAX FMS (Form Management Sys
tem), and SMG (Screen Management) are designed to make it easier to develop interactive 
applications. Both TDMS and FMS provide utilities that let you define all the screen forms 
outside the RPG II program. They also let you design forms by typing them directly onto 
the terminal screen. An example of a TDMS program is provided in 
SYS$EXAMPLES:RPGTDMS.COM. 

The following TDMS examples are part of the complete program example provided in 
SYS$EXAMPLES. 

The following example demonstrates the use of data structures and COpy from CDD in an 
RPG II program that calls TDMS. See Part II, Chapter 2 for more information on data 
structures and COPY from CDD. 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

IEMPLOY 
I 
IEMPREC DS 
I/COPY_CDD 'EMPLOYEE_RECORD' 

1 91 EMPREC 

ZK-4669-85 

Calling System Routines from VAX RPG II 9-33 



The following· example demonstrates the use of long character literals in an RPG II pro
gram which calls TDMS. See Part II, Chapter 2 for more information on long character 
literals. 

Control level 
I 
I Indicators 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Operation 
I 
I 
I 
I 

Factor 
2 
I 

Field length 
I Deci~al positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resu I t I II indicators 
field I 11+ - 0 
I I II> < = +- Co~~ents --+ 

011 I 2 131 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C 
C 
C 
C 
C 

* REQUES 
* * * 
EXTRN'TSSSREQUEST' 
CALL REQUES 
PARM 
PARM 
PARMD 

CHAN 
UBID 
" 

99 
90 LlL 
90 LlL 

C" 'EMPLOYEE_INITIAL_REQUEST' 

For further information on VAX TDMS, see the following related documents: 

• VAX TDMS Forms Manual 

• VAXTDMSRequestManual 

• VAX TDMS Application Programming Manual 

• VAX TDMS Sample Application Manual 

ZK-4658.a5 

The following fragment is from an RPG II program that calls FMS to display a form. 

Contro I I eve I 
I 
I Indicators 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Operation 
I 
I 
I 
I 

Factor 
2 
I 

Field length 
I Deci~al positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resu I t I II indicators 
field I 11+ - 0 
I I II> < = +- Co~~ents --+ 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C 
C 
C 
C 

* FCLRSH 
* * * *--*** * * * 
EXTRN'FDVSCLRSH' 
MOVE 'FIRST' FORM1 6 
CALL FCLRSH 
PARMD FORM1 

9-34 Calling System Routines from VAX RPG II 

ZK·4659·85 



For further information on VAX FMS, see the following related document: 

• VAX FMS Reference Manual 

Following is an RPG II program calling SMG$ routines. This program displays the word 
'Menu' beginning at line 2, column 5. 

See the VAXIVMS Run-Time Library Routines Reference Manual for information on SMG 
routines. 

Contl'o I I eve I 
I 
I Indicators 
I I 
I I Factor 
I I 1 

Operation 

Factor 
2 

Field length 
I Deci~al positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resultl I I indicators 
field I 11+ - 0 

CI NxxNxxNxxl 

I 
I 
I 
I I I I II> < = +- Co~~ents --+ 

011 12 1314 I 5 I 6.17 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * * * * * *--*** * * * 
C CREPAS EXTRN'SMG$CREATE_PASTEBOARD' 
C CREDIS EXTRN'SMG$CREATE_VIRTUAl_DISPlAY' 
C PUTCHA EXTRN'SMG$PUT_CHARS' 
C PASDIS EXTRN'SMG$PASTE_VIRTUAl_DISPlAY' 
C Z-ADDO ZERO 90 
C Z-ADD1 lINCOl 90 
C Z-ADD2 lINE 90 
C Z-ADD5 COLUMN 90 
C MOVE 'Menu' OUT 4 
C* Create the pasteboard. 
C CAll CREPAS 
C PARM 
C PARMV 
C PARM 
C PARM 
C* Create the virtual displa~. 
C CAll CREDIS 
C PARM 
C PARM 
C PARM 
C* Output the 'Menu'. 
C 
C 
C 
C 
C 
C* Paste the virtual 
C 
C 
C 
C 
C 
C 

CAll PUTCHA 
PARM 
PARMD 
PARM 
PARM 

displa!:j. 
CAll PASDIS 
PARM 
PARM 
PARM 
PARM 
SETON 

PASTID 90 Wl 
ZERO 
HEIGHT 90 Wl 
WIDTH 90 Wl 

HEIGHT Rl 
WIDTH Rl 
DISPID 90 Wl 

DISPID 
OUT 
LINE 
COLUMN 

DISPID 
PASTID 
LINCOl 
LINCOl 

Rl 

Rl 
Rl 

Rl 
Rl 
Rl 
Rl 
lR 

ZK-4668·85 

Calling System Routines from VAX RPG II 9-35 





Chapter 10 

Debugging VAX RPG II Programs 

The VAXIVMS Symbolic Debugger enables you to debug RPG II programs by monitoring 
the flow of program execution and logic. For a complete description of debugger capabili
ties, see the VAX/VMS Symbolic Debugger Reference Manual. 

The debugger lets you: 

• Set breakpoints. (Breakpoints stop program execution just before a specified line is 
executed.) 

• Set tracepoints. (Tracepoints cause the debugger to pause and display a message 
whenever a specified line is executed.) 

• Set watchpoints. (Watchpoints cause the debugger to stop and display a message 
whenever a specified variable is modified.) 

• Examine and modify source code. 

• Examine and modify data. 

• Evaluate arithmetic expressions. 

• Step through a program (Single STEP commands cause the debugger to execute one 
or more lines and then stop program execution.) 

The debugger needs information generated by both the RPG II compiler and the VAXIVMS 
Linker. Specifying the DEBUG qualifier with the RPG command creates the symbolic 
information for the debugger. Specifying the DEBUG qualifier with the LINK command 
makes the information available to the debugger. 

RPG II supports the following options at compile time for the DEBUG = options qualifier. 

• ALL 

• NONE 

• [NO]TRACEBACK 

• [NO]SYMBOLS 

10-1 



Specifying the DEBUG = SYMBOLS qualifier for the RPG command allows you to 
examine and change the contents of variables throughout your program. However, file 
names from File Description specifications are not available as variables. 

If you omit the DEBUG qualifier from the RPG and LINK commands, you can specify the 
DEBUG qualifier with the RUN command. In this case, no symbolic information is availa
ble to the debugger; you must make every reference to a program variable in terms of its 
absolute address. 

If you do not specify the DEBUG qualifier with any of the RPG, LINK, or RUN commands, 
and an error occurs, you receive a traceback list (a description of the logic flow up to the 
point where the error was detected). However, you cannot invoke the debugger. If you com
pile your program with the DEBUG = NOTRACEBACK qualifier or link your program 
with the NOTRACE qualifier, you do not receive the traceback list. The default options for 
the DEBUG qualifier are TRACEBACK and NOSYMBOLS. 

If you want to use the source line display while using the COMPILE command, you must 
inform the debugger where the source file resides. To do this, complete the following steps: 

1. Define the symbol RPG to include symbols for the VAXIVMS Symbolic Debugger 
(for example, RPG : = = RPGIDEBUG). 

2. Execute the RPG II editor COMPILE command during the editing session. 

3. Execute the LINKIDEBUG command after exiting from the editor. 

4. Execute the RUN command. 

5. Enter the debugger command: SET SOURCE source-file-spec. 

See Part I, Chapter 2 for information on compiling and linking RPG II programs and their 
respective command qualifiers. 

If you are using the VAXIVMS Performance and Coverage Analyzer, you must specify the 
following: 

IDEBUG=SYS$LIBRARY:PCA$DBJ.OBJ MYPROGRAM.OBJ 

The VAXIVMS Performance and Coverage Analyzer consists of a collector and an ana
lyzer. The collector gathers information (such as execution counts) on your program while 
it is executing. The analyzer makes it possible to interpret the data gathered by the collec
tor. The analyzer is used to track a performance problem in a whole program down to a 
certain module, or even down to a certain line of code. See Appendix C for an example of the 
VAXIVMS Performance and Coverage Analyzer applied to an RPG II program. 

10-2 Debugging VAX RPG II Programs 



10.1 Debugging RPG II Programs 

Debugging RPG II programs is somewhat different from debugging programs in other lan
guages. The RPG II program cycle determines the order in which the program lines are 
processed. See Part I, Chapter 1 for a complete discussion of the RPG II program cycle. 

You can reference those line numbers RPG II assigns to your program in the listing file. 
The line numbers you specify in columns 1 through 5 of a specification are not used. The 
compiler assigns line numbers only to certain specifications at specific points in the logic 
cycle; therefore, you can specify a breakpoint or tracepoint at these points in the program: 

• A break at a File Description specification occurs just before an input or update file is 
opened or just before an output file is created. The line number of this break corre
sponds to the File Description specification for this file. 

• A break at an Input specification occurs before the fields are loaded with data from a 
record. The line number ofthis break corresponds to the record definition in an Input 
specification. 

• You can set two breaks for each Calculation specification. The first break occurs just 
after testing control-level indicators, if used, and just before testing conditioning 
indicators. The second break occurs just before executing the operation code. For 
example, if a Calculation specification begins with line number 25, you can specify 
the line and statement number SET BREAK 25.1 to test indicators. SET BREAK 25.2 
breaks just before executing the operation code. If a particular Calculation specifica
tion has no indicators, SET BREAK 25 breaks just before executing the operation 
code. 

• A break at an Output specification occurs after the output buffer has been built but 
before the record is output. The line number of the break corresponds to the record 
definition in an Output specification. 

10.2 Debugger Commands and Keywords 

There are many debugger commands, but not all debugger commands are appropriate for 
use in debugging RPG II programs. Table 10-1 lists some debugger commands and 
keywords (and their abbreviations) that are helpful in debugging RPG II programs. 

Debugging VAX RPG II Programs 10-3 



Table 10--1: Debugger Commands and Keywords 

Command Names 

SET (SE) 
SHOW (SH) 
CANCEL (CAN) 
EXAMINE (E) 
EVALUATE (EV) 
DEPOSIT(D) 
EXIT (EXI) 
STEP(S) 
GO (G) 
EDIT (ED) 

Keywords 

LANGUAGE (LA) 
MODULE (MODU) 
SCOPE (SC) 
BREAK (B) 
TRACE (T) 
WATCH(W) 

The rest ofthis chapter describes these debugger commands and explains how to use them. 

10.3 Preparing to Debug a Program 

This section describes the SET LANGUAGE and SHOW LANGUAGE commands. These 
commands are used to establish the proper environment for debugging an RPG II program. 

10.3.1 SET LANGUAGE and SHOW LANGUAGE Commands 
The SET LANGUAGE command causes the debugger to conduct the debugging dialog 
according to the conventions of the specified language. If your program does not call any 
subprograms written in languages other than RPG II, you do not need to use the SET LAN
GuAGE command. If your program calls a subprogram written in another language, you 
can cause the debugger to execute the subprogram by specifying the STEP/INTO com
mand. See Section 10.4.5 for information about the INTO qualifier. Once the debugger is in 
the subprogram, you must use the SET LANGUAGE command to specify the language of 
the subprogram. After you have finished executing the subprogram and you have returned 
to the main program, you must use the SET LANGUAGE command to specify the lan
guage of the main program. 

The format of the SET LANGUAGE command is: 

SET LANGUAGE language 

where: 

language Specifies the language to be used. 

10-4 Debugging VAX RPG II Programs 



To determine the language ofthe program currently being executed, use the SHOW 
LANGUAGE command. The format of the SHOW LANGUAGE command is: 

SHOW LANGUAGE 

The debugger responds by displaying the program's language, as shown in the following 
example: 

DBG>SHOW LANGUAGE 
language: RPG 

10.4 Controlling Program Execution 
To see what is happening during execution of your program, you must be able to suspend 
and resume the program at specific points. The following commands are available for these 
purposes: 

SET BREAK 
SHOW BREAK 
CANCEL BREAK 
SET TRACE 
SHOW TRACE 
CANCEL TRACE 
SET WATCH 
SHOW WATCH 
CANCEL WATCH 
SHOW CALLS 
GO 
STEP 
TYPE 
CTRLlY 
EXIT 

You can specify an RPG II label as a breakpoint or a tracepoint. These labels correspond to 
specific points in the logic cycle. The following list describes RPG II labels: 

• *DETL - Breaks just before outputting heading and detail lines 

• *GETIN - Breaks just before reading the next record from the primary or secondary 
file 

• *TOTC - Breaks just before performing total-time calculations 

• *TOTL - Breaks just before performing total-time output 

• *OFL - Breaks just before performing overflow output 

• *DETC - Breaks just before performing detail-time calculations 

Debugging VAX RPG II Programs 10-5 



10.4.1 SET BREAK, SHOW BREAK, and CANCEL BREAK Commands 
The BREAK commands allow you to select specific locations for program suspension, so 
that you can examine or modify the following data: 

• Variables 

• Table entries 

• Array elements 

When you specify a table name, you can examine or modify the entry retrieved from the 
last LOKUP operation. 

You can also set a breakpoint at any place listed in Section 10.l. 

The BREAK commands perform the following functions: 

• SET BREAK defines the line number that will suspend execution. 

• SHOW BREAK displays all breakpoints currently set in the program. 

• CANCEL BREAK removes selected breakpoints. 

The format of the SET BREAK command is: 

SET BREAK %LlNE lin-num[.stmnt-num] [DO(command(s))] 

where: 

lin-num 

stmnt-num 

DO(command(s)) 

Specifies the line number where the breakpoint will occur. You can 
also specify a logic cycle label, a TAG name, or a subroutine label. 

Specifies the statement number where the breakpoint will occur. 
You can use statement numbers only with Calculation specifica-
tions that have conditioning indicators. 

Requests the debugger to perform the specified debugger com
mands, if specified, when the breakpoint is reached. 

In the following example, SET BREAK examines variables TOTAL and AREA when the 
breakpoint at line 100 is reached: 

DBG)SET BREAK %LINE 100 DOIEXAMINE TOTAL; EXAMINE AREAl 

The format of the SHOW BREAK command is: 

SHOW BREAK 

10-6 Debugging VAX RPG II Programs 



SHOW BREAK takes no arguments. The debugger responds by displaying the current 
breakpoints, as shown in the following example: 

DBG>SET BREAK LOOP 
DBG>SET BREAK ZLINE 50 
DBG>SHOW BREAK 
breakpoint at ARRX37\LOOP 
breakpoint at ARRX37\ZLINE 50 

The format of the CANCEL BREAK command is: 

CANCEL BREAK %LlNE lin-num[.stmnt-num] 
fAll 

where: 

lin-num[.stmnt-num] Removes the breakpoint at the specified line and statement num
ber, logic cycle label, TAG name, or subroutine label 

fAll Removes all breakpoints in the program 

Normally, the debugger displays the line number when it suspends execution because of a 
breakpoint or step. There are two exceptions to this behavior: 

• When stepping through a subroutine, the debugger displays the subroutine label. 

DBG>STEP 
stepped to PROG1\SUB1 

• When stepping through a TAG, the debugger displays the TAG name. 

DBG>STEP 
stepped to PROG1\TAG1 

·10.4.2 SET TRACE, SHOW TRACE, and CANCEL TRACE Commands 
The TRACE commands let you set, examine, and remove tracepoints in your program. A 
tracepoint is similar to a breakpoint in that it suspends program execution; however, after 
displaying the trace variables, program execution resumes immediately. Thus, trace
points let you follow the sequence of program execution to ensure that execution is being 
carried out in the proper order. 

Tracepoints and breakpoints are mutually exclusive. If you set a tracepoint at a current 
breakpoint, the breakpoint will be canceled. If you set a breakpoint at a current tracepoint, 
the tracepoint will be canceled. 

Debugging VAX RPG II Programs 10-7 



The TRACE commands perform the following functions: 

• SET TRACE establishes points within the program where execution is momentarily 
suspended. 

• SHOW TRACE displays the points in the program where tracepoints are currently 
set. 

• CANCEL TRACE removes one or more tracepoints currently set in the program. 

The format of the SET TRACE command is: 

SET TRACE %LlNE lin-num[.stmnt-numJ 

where: 

lin-num[.stmnt-num] Specifies the line and statement number, logic cycle label, TAG 
name, or subroutine label where the tracepoint will occur. 

The format ofthe SHOW TRACE command is: 

SHOW TRACE 

SHOW TRACE takes no arguments. The debugger responds by displaying the current 
tracepoints, as shown in the following example: 

DBG)SET TRACE LOOP2 
DBG)SET TRACE ZLINE 100 
DBG)SHOW TRACE 
tracepoint at ARRX37\LOOP2 
tracepoint at ARRX37\ZLINE 100 

The format of the CANCEL TRACE command is: 

CANCEL TRACE %LlNE lin-num[.stmnt-num] 
fAll 

where: 

lin-num[.stmnt-num] Removes the tracepoint at the specified line and statement num
ber, logic cycle label, TAG name, or subroutine label 

fAll Removes all tracepoints in the program 

10-8 Debugging VAX RPG II Programs 



10.4.3 SET WATCH, SHOW WATCH, and CANCEL WATCH Commands 
The WATCH commands let you monitor the contents of variables. Watchpoints determine 
when an attempt is made to modify variables. When an attempt is made, the debugger 
halts program execution, and prompts for a debugger command. Watchpoints are moni
tored continually. Thus, you can determine whether a particular variable is being modified 
inadvertently during program execution. Watchpoints, tracepoints, and breakpoints are 
mutually exclusive. The WATCH commands perform the following functions: 

• SET WATCH defines the variable(s) to be monitored. 

• SHOW WATCH displays the variable currently being monitored. 

• CANCEL WATCH disables monitoring of specified variables. 

The format of the SET WATCH command is: 

SET WATCH vbl 

where: 

vbl Specifies the variable to be monitored. You can monitor variables and array ele
ments. 

In the following example, SET WATCH sets a watchpoint for the variable AREA: 

DBG>SET WATCH AREA 

The format of the SHOW WATCH command is: 

SHOW WATCH 

SHOW WATCH takes no arguments. The debugger responds by displaying the current 
watchpoints, as shown in the following example: 

DBG)SET WATCH INDEX2 
DBG)SHDW WATCH 
watchpoint of ARRX37\INDEX2 

The format of the CANCEL WATCH command is: 

CANCEL WATCH vbl 
fAll 

where: 

vbl Specifies the variable that disables monitoring. 

fAll Removes all watchpoints from the program. 

The following command cancels the watch point for the variable AREA: 

DBG)CANCEL WATCH AREA 

Debugging VAX RPG II Programs 10-9 



10.4.4 SHOW CALLS Command 
SHOW CALLS can be used to produce a traceback of calls to program modules. It is partic
ularly useful when you have returned to the debugger following a CTRLlY command. The 
format of the SHOW CALLS command is: 

SHOW CALLS [n] 

The debugger displays a traceback list, showing the sequence of calls to program modules 
leading to the current module. 

If you include a value for n, the n most recent calls are displayed. 

10.4.5 GO and STEP Commands 
GO and STEP let you initiate and resume program execution. GO initiates execution from 
the current line or at a specified point in the program, and continues to the end of the pro
gram or to the next breakpoint. STEP initiates execution from the current line; and contin
ues for a specified number of lines. 

The format of the GO command is: 

GO [%LlNE lin-num[.stmnt-numlJ 

where: 

lin-num[.stmnt-num] Specifies the line and statement number, TAG name, or subrou
tine label where execution will begin. 

The normal use of GO is to continue execution after a breakpoint or at program initiation. 
Resuming execution at a point other than the current line can cause unpredictable results 
because of the nature of the RPG II logic cycle. 

Use the STEP command to execute one or more RPG II program lines and immediately 
return to the debugger. The format of the STEP command is: 

STEP [/qualifiers] [n] 

The value specified for n determines the number of statements to be executed. If you spec
ify 0, or omit a value for n, a value of 1 is assumed. 

You can specify the following qualifiers with the STEP command: 

SYSTEM 
[NO]SYSTEM 

OVER 

Causes the debugger to count steps wherever they occur. The NOSYS
TEM qualifier is the default. 

Causes the debugger to ignore calls to subprograms as it steps through 
the program. That is, to step over each call to a subprogram. The 
OVER qualifier is the default. 

10-10 Debugging VAX RPG II Programs 



INTO 

LINE 

SOURCE 

Causes the debugger to recognize calls to subprograms as it steps 
through the program. That is, to step into each subprogram. The 
NOINTO qualifier is the default. 

Causes the debugger to step through the program on a line-by-line 
basis. The LINE qualifier is the default. 

Causes the debugger to display the line(s) of source code that corre
sponds to the line(s) being executed with each step. Source lines are 
also displayed when a breakpoint or watchpoint occurs. When step
ping through Input and Output specifications, the debugger displays 
the first line of a record definition. 

You can specify one or more qualifiers each time you issue a STEP command, or you can 
use a SET STEP command to override the defaults. 

The following command specifies that the defaults for the LINE, INTO, and SYSTEM 
qualifiers are overridden: 

DBG)SET STEP NDLINE,INTD,SYSTEM 

When you subsequently issue a STEP command with no qualifiers, the debugger assumes 
these qualifiers (NOLINE, INTO, and SYSTEM) are in effect. You can, however, supersede 
the current qualifiers by including a qualifier with a STEP command. 

The following command executes ten lines, regardless of the SET STEP command: 

DBG)STEP/LINE 10 

It is advisable to use STEP to execute only one or a few lines at a time. To execute many 
lines and then stop, use a SET BREAK command to set a breakpoint, then issue a GO 
command. 

10.4.6 TYPE Command 
The TYPE command displays the line of source code you specify. The format of the TYPE 
command is: 

TYPE [lin-num[:line-num]L ... ll 

where: 

lin-num[:lin-num] Specifies the number of lines of source code to be displayed. 

The following command displays lines 1 through 30: 

DBG>TYPE 1:30 

Debugging VAX RPG II Programs 10-11 



The following command displays lines 1 and 30: 

DBG>TYPE 1 .30 

You can display the line after the current line by typing TYPE and by pressing the 
RETURN key. 

10.4.7 EDIT Command 
The EDIT command allows you to edit the file you are debugging. Before entering the 
debugger, you must define the symbol LSEDIT as follows: 

$ LSEDIT :== RPG/EDIT 

The editing session begins at the current debugging line. 

EDIT/EXIT specifies that you want to end the debugging session and begin an editing 
session. 

EDIT/NOEXIT specifies that you want to return to the debugging session after you make 
your edits. The NOEXIT qualifier is the default. 

10.4.8 CTRLlY Command 
You can use the CTRLlY command at any time to return to the system command level. You 
issue this command when you press the CTRL key and the Y key at the same time. The 
dollar sign ($) prompt will be displayed on the terminal. To return to the debugger, type 
DEBUG. Use the CTRLlY command if your program goes into an infinite loop or, for some 
reason, fails to stop at a breakpoint. To find out where you were at the instant CTRL/Y was 
executed, use the SHOW CALLS command after you have returned to the debugger. 

10.4.9 EXIT Command 
The EXIT command lets you exit from the debugger when you are ready to terminate a 
debugging session. The format ofthe EXIT command is: 

EXIT 

EXIT takes no arguments. To return to system command level, after your program has 
terminated, use the EXIT command. 

10-12 Debugging VAX RPG II Programs 



10.5 Examining and Modifying Locations 

Once you have set breakpoints and begun execution, the next step is to see whether correct 
values are being generated and, if necessary, to change the contents of variables as execu
tion proceeds. You may also want to calculate the value of an expression that appears in 
your program. The debugger provides the following commands for these purposes: 
EXAMINE, DEPOSIT, and EVALUATE. 

10.5.1 EXAMINE Command 
The EXAMINE command lets you look at the contents of: 

• A variable 

• The current table entry 

• An array element 

• The I/O buffer 

The format ofthe EXAMINE command is: 

EXAMINE vbl [,vbl) 

where: 

vbl Specifies a simple or subscripted variable. 

The following command displays the contents of the variable SALES: 

DBG>EXAMINE SALES 

The following command displays the contents ofthe ninth element in array ARRAY: 

DBG>EXAMINE ARRAY(S) 

The following command displays the contents ofthe first through the tenth elements ofthe 
array ARRAY. 

DBG>EXAMINE ARRAY(1:10) 

You can examine indicators to see whether they are set on or off. Precede the indicator you 
want to examine with the string *IN. If an indicator is set on, 1 is displayed. If an indicator 
is set off, 0 is displayed. 

The following command displays the current setting for indicator 56: 

DBG>EXAMINE *IN56 

The debugger responds by displaying: 

*IN5G: 11<)11 

Debugging VAX RPG II Programs 10-13 



You cannot examine external indicators this way, but you can do the following. To deter
mine the current value ofU5, for example, enter 

DBG> CALL RPG$EXTINDS(S) 

The debugger responds by displaying: 

value returned is 0 

The program must have been linked with the NOSEYSSHARE qualifier to do this. 

You can also display the current contents ofthe 110 buffer. To display the I/O buffer, specify 
the name of the input file, update file, or output file, a dollar sign ($), and the string BUF. 

The following command displays the contents of the I/O buffer for the input file INPUT: 

DBG>EXAMINE INPUT$BUF 

10.5.2 DEPOSIT Command 
The DEPOSIT command lets you change the contents of specified variables. The format of 
the DEPOSIT command is: 

DEPOSIT vbl = value 

where: 

vbl Specifies the variable that the value is deposited into. 

value Specifies the value to be deposited. 

You can change the contents of a specific variable or of several consecutive variables, as 
shown in the examples in this section. 

-
Values deposited into numeric fields are aligned on the decimal point. Shorter fields are 
padded with zeros to the left and right of the d~cimal point. 

The following command places the decimal value 100 into the variable BONUS: 

DBG)DEPOSIT BONUS=IOO 

The following command places the decimal values 100, 150, and 200 into elements 1, 2, 
and 3 of array ARRAY: 

DBG)DEPOSIT ARRAY(I)=IOO, ISO, 200 

The delimiters used to enclose ASCII strings in the DEPOSIT command can be either sin
gle (') or double (") quotation marks. Use the keyboard apostrophe for the single quotation 
mark. 

Values deposited into character fields are left justified. If the value contains fewer charac
ters than the character field, the field is padded on the right with spaces. 

10--14 Debugging VAX RPG II Programs 



The following command places the string ACTIVE in the variable STATUS: 

DBG)DEPOSIT STATUS="ACTIVE" 

You can also use DEPOSIT to set indicators on or off. Precede the indicator you want to set 
with the string *IN. To set an indicator on, specify 1 as the variable value. To set an indica
tor off, specify 0 as the variable value. 

The following command sets indicator 56 on: 

DBG)DEPOSIT *IN56 = "1" 

10.5.3 EVALUATE Command 
The EVALUATE command lets you use the debugger as a calculator to determine the 
value of arithmetic expressions. The format ofthe EVALUATE command is: 

EVALUATE expression 

where: 

expression Specifies the expression whose value is to be determined. 

The following command displays the value of the expression ARRAY(FLDl) * FLD2: 

DBG)EVALUATE ARRAYIFLD1) * FLD2 

Debugging VAX RPG II Programs 10-15 





Chapter 11 

Interpreting a Compiler Listing 

This chapter explains the parts of a full compiler listing. This sample listing is for the pro
gram shown under the Source Listing title. The circled numbers on the program listing 
correspond to the following numbered text. 

1. The program name. 

2. The date and time of compilation. 

3. The name and version number ofthe compiler. 

4. The creation date and time of the source file. 

5. The complete file specification (device:[directory]filename.type;version) for the 
source file. The number in parentheses is a text editor page number. 

Items 1 through 5 appear at the top of each page in the listing file. 

6. The 80-column ruler. 

7. Source line numbers assigned by the compiler. The VAX!VMS Symbolic Debugger 
uses these line numbers as location specifications. 

A 'c' after the line number indicates that the line was generated by a copy 
directive. 

8. Source Listing - Source code. 

9. Machine Code Listing - The compiler-generated object code for the program you 
compiled. 

10. Cross Reference in Alphabetical Order - The user-defined names in alphabetical 
order and the line numbers in which they are referenced. The first column with the 
pound sign (#) after the number lists the line number where the data name is 
defined. For example, DEPQTY is defined in line 19 and referenced in lines 19, 21, 
and 22. 

DEPOT',' 19# 19 21 

11-1 



11. Indicator Cross Reference - The indicators and the line numbers in which they are 
referenced. For example, indicator 01 is referenced in lines 12, 18, 19, and 36. 

01 12 18 19 36 

12. PROGRAM SECTIONS - Names the PSECT numbers and names. 

13. The bytes allocated for each PSECT. 

14. The PSECT attributes. See the VAX/VMS Linker Reference Manual for informa
tion on PSECT attributes. 

15. COMMAND QUALIFIERS - Lists the command line you entered and names the 
compiler defaults that were in effect when the program was compiled. 

16. The actual CPU time it took to compile the program. 

17. The elapsed time it took to compile the program. 

18. The number of page faults. 

19. The number of virtual memory pages used to compile the program. 

11-2 Interpreting a Compiler Listing 



>-< ::s ..... 
('D .a .... 
('D ..... 
5' 

crq 
Pl 
(') 
o ,g 
..... -('D .... 
t""' ..... 
UJ. ..... ..... 
::s 

crq 

~ 
~ 

~ 

SHIPS 8 
SOlJrce Listing' 

@ 

CD 
@ 

28-Jun-1885 15:58:45 

28-Jun-188S 15:56:12 

2 3 4 5 6 8 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

® ® H*++ 
Z H* FUNCTIONAL DESCRIPTIDN: 

9 

10 
11 
12 

13 
14 
15 
16 
17 
18 
19 
20 
21 

23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

H* This prograM produces a report of shiPMents far various 
H* products broKen down by division and department using an 
H* input file with the shipment data for the past a ~uarters. 
H*--
H 
FSHIPS 
FSUMREP 
E 
LSUMREP 
ISHIPS 
I 

C* 
C 01 
C 01 

C* 
ell 
CLl 
CL2 
C* 
OSUMREP 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 

IP F 

55FL 500L 

AA 01 

PRDon 

DEPOT'( 

OII!OT'( 

H 001 1 P 

H 02 1 P 

H 1 P 

H 2 1 P 

41 
98 

OTY 

)(FODTOTY 
ADD DEPOTY 

ADO 01 l)QTY 

2-ADDO 
ADO FINOTY 

UDATE Y 

DISK 
LPRINTER 
4 2 0 

6 
8 

17 

PROOTY 
DEPOT\' 

o I von 
DEPOT\' 
FINOTY 

OIl) L2 
DEPT Ll 

16 PROD 
24 ory 

30 
30 

30 

40 

48 'PRODUCT SHIPMENT REPORT' 

12 
48 'PRODUCT SHIPMENT REPORT' 

42 'SHIPMENTS' 

15 'OJ\JISION DEPT' 
24 'PRODUCT' 
48 '01 02 03 04 TOTAL' 

l.lAX RPG II l.J2.0 CD Pa se 

RPG$:ETSAKERES.RPGlSHIPS.RPG;1 (II 

@ 



I-' 
I-' 

l 

...... 
::l 
M-
(1) 

'" "C 

'" (1) 
M-..... 
::l 

crq 
Pl 
(1 
0 

i3 
"C ..... -(1) 

'" t-< 
00' 
M-..... 
::l 

crq 

36 0 D 01 
37 0 L2 

38 L1 
38 0 

4(1 D 
41 
42 D T L1 
43 0 T 0 L2 
44 
45 a T L2 
46 0 

47 D 02 L2 

48 0 

49 0 
50 0 

51 0 T LR 
52 0 

53 0 

54 

SHIPS 
Machine Code Listing ® 

DIl.! 8 
DEPT 14 
PROD 25 
OTY Z 41 
PRDOTYZ 48 

DI\' 69 

o I I) 69 

D I \'OTYZB 48 
63 

OIl,! 69 

FINOT'I1 48 
65 

Total for' 

.>= GRAND TOTAL' 

28-Jun-1885 15:58:45 
2B-Jun-1885 15:56:12 

VAX RPG II V2.0 Page 
RPG$:[TSAKERES,RPGlSHIPS,RPG;l (1) 

.POOOOOOOO ,BYTE ". X53 t .". )<48 t .". X48 t'" >~50 t" X53 

00000008 
00000010 
00000020 
00000028 
00000030 
0000003C 
00000040 
00000044 
00000048 
0000004C 
00000050 
00000054 
00000058 
OOOD005C 
00000060 

00000084 
00000068 

.BYTE 

.BYTE 
• BYTE 
.BYTE 
.BYTE 
.BYTE 
.LONG 
.ADDRESS 
.ADDRESS 
.ADDRESS 
.LDNG 
.ADDRESS 
.LDNG 
.LDNG 
,ADDRESS 
,LONG 
,ADDRESS 

";';53 t' >~55, "'}{4D, '"j{52 , '-'><45,"' X50 
;'{47 t·· XOG ,-'}W2, X40, '}{20 ,"}{81, )<03, i{81 ,"X44, ){2F ,"'X82 ,"){44 ,"')<2F ,···X92 ,···){OO 

hX47,hX02,'X02,'X40,'X20,~X82,'XOO 

X47,'X03r~X02,'X40,ftX20,'X93t'XOO 

hXll7 ,h}<Oll ,···\02 ,·'~{llO ,··}(20 ,·'\91, ><llll, '}<2C ,'·X82 ,·'}<O3 ,·'}<81 ,·'XOO 

XQO, XOO,~XOO,'XOC 

, ><00000003 

UDAY 
UMONTH 
UYEAR 

.' ><0000000 1 

SHIPS+6B 
hX00000002 

X00000002 

SHIPS 
~<OOOOOOO 1 

SHIPS 

"SUMREP" 
"G,,@ ",D/,O/,," 
"G, ,@ 

"G, ,@ 

"G •• @ .0, •••• " 

2 

;"SHIPS" 



0000006C 
00000070 
00000074 
00000078 
0000007C 
00000080 
00000084 
00000088 
0000008C 
00000090 
00000094 
00000098 
0000009C 
OOOOOOAO 
OOOOOOBO 
000000B8 
OOOOOOClI 
00000004 
000000E4 
OOOOOOEC 
OOOOOOFO 
000000F4 
000000F8 
00000108 

00000000 
00000002 
00000009 
00000010 
00000013 
OOOOOOIA .... 00000021 ::s 00000028 

~ .a ., 
(!) 
c+ ..... 
::s 

(Jq 
;+ 

III 
0 
0 
S 
'0 ..... -(!) ., 
t'"I ..... 
Ul 
c+ ..... 
::s 

(Jq 

~ 
~ 

& 

.LDNG 'XOOOOOO02 

.LDNG 'XOOOOOOOI 

.ADDRESS SHIPS 

.LONG 'XOOOOOOOI 

.ADDRESS SUMREP+G8 

.LONG 'XOOOOOOO2 

.LONG 'XOOOOOOOZ 

.ADDRESS SUMREP 

.LDNG 'XOOOOOOOI 

.ADDRESS SUMREP 

.LONG 'X00000002 

.LONG 'XOOOOOOOI 

.ADDRESS SUMREP 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.BYTE 

.LONG 

'X50,'X52,'X4F,'X411,'X55,'X43,'X511,'X20,'X53,'X48,'X4S,'X50,'XlID,'X1I5,'X4E,'X511 
'X20 ,'X52 ,'X45 ,'X50 ,'X4F ,'X52 ,'X511 
'X53 ,'X1I8 ,'X4S ,'X50 ,'X4D ,'X45 ,'X4E ,'X54,'X53 
'X1I4,'X4S,'X56,'XlIS,'X53,'X4S,'XlIF,'XlIE,'X20,'X20,'X44,'X45,'X50,'X54 
'X51 ,'X31 ,'X20 ,'X20 ,'X51 ,'X32, 'X20 ,'X20 ,'X51 ,'X33 ,'X20, 'X20 ,'X51 ,'X311 ,'X20 ,'X20 
'X54,'XlIF ,'X54,'X41 ,'X4C 
'X00000002 

.LONG 'X00000003 

.ADDRESS SHIPS 
• BYTE 'X3C, 'X3D, 'X3D, 'X20, 'XS4, 'X6F, 'X74,'X61 ,'X6C, 'X20, 'X6G, 'XGF,' X72 
.BYTE 'X3C ,'X3D ,'X3D ,'XZO ,'X1I7 ,'X52 ,'X41,'X4E ,'X44,'X20 ,'X54,'X4F ,'X54,'X41 ,'X4C 
.PSECT $CDDE 
• ENTRY SH I PS, 'XOFFC 
MOVAB G'RPG$HANDLER, (FP) 
MOVAB $LOCAL+'X2G, -(SP) 
SUBLZ #'XOC, SP 
MOVAB $LOCAL+'X80, Rll 
MOVAB $POATA+'X80, RIO 
MOVAB G'RPG$IOEXCEPTION, RS' 
MOVAB G'RPG$PRINT, R8 

Program epilogue code 

"PRODUCT SHIPMENT" 
" REPORT" 
'SHIPMENTS" 
"DIVISION DEPT" 
"Ql Q2 Q3 Q4 
"TOTAL" 

"(== Total for" 
"(== GRAND TOTAL" 



.... .... 
~ 

00000S39 CALLG $PDATA+-XBC(RIO). G-RPGHERM.PRINT 

1-4 00000S41 OLOS RO. 72$ 
::s 00000S411 CALLG $PDATA+·X94(RIO). G-RPG$lOEXCEPTION(R9) 
c+ 
(1) 00000548 ORO 73$ .a 00000:;4A 72$: 
I-j 00000:;4A 73$: 
(1) 
c+ 0000054A MDVL "-XOI. RO ..... 
::s 00000S4D RET 

aq 
~ SHIPS 2B-Jun-18BS IS:SB:45 VAX RPG II V2.0 Pa~@ II 
0 Cross Reference in Alphabetical Order 0 ZB-Jun-18B5 15:56:IZ RPG$:[TSAKERES.RPGlSHIPS.RPG;1 (I) 
0 ,g DEPQTY 18" 19 21 22 ..... DEPT 14" 38 -(1) DIV 13- 37 411 1I6 SO 
I-j 

t"' DIVQTY 21_ ZI 23 48 
..... FINQTY 23- 23 52 
Ul PROD IS .. 3S c+ ..... 

IB" IS al ::s PROQTY 
aq QTY 10_ 16 18 ao 

SHIPS 8_ lZ 
SUMREP S" 11 25 
UDATE 28 

SHIPS 

8 
28-Jun-198S IS:SB:4:; VAX RPG II V2.0 Pase 12 

Indicator Cross Reference 28-Jun-19B5 IS:56:12 RPG$:[TSAKERES.RPGlSHIPS.RPG;1 (1) 

01 12 18 19 38 
L1 14 21 22 38 4Z 
LZ 13 23 37 1I3 45 47 
LR SI 
IP 25 27 30 32 

SHIPS 28-Jun-1985 15:5B:45 VAX RPG II V2.0 PaS'e 13 
COMPilation SUMMary -2B,ju·n-1985 15:56:12 RPG$:[TSAKERES.RPGlSHIPS.RPG;1 (1) 

I -" 
/-- --', -~\ 



I 
5' 

(JQ 

$\) 

n 

~ ..... -(t) 
'1 

~ ..... 
~ 
~. 

~ 
~ 

1.:. 

PROGRAM SECTIONS 

Name (0 @ Bytes Attributes 9 
o $CODE 1358 PIC CON REL LCL SHR EXE RD NOWRT Ali<n(Z) 
1 $LOCAL lZ80 PIC CON REL LCL NOSHR NOEXE RD WRT Ali<n(Z) 
Z $PDATA 279 PIC CON REL LCL SHR NOEXE RD NOWRT Ali<n(Z) 
3 RPG$UDATE 6 PIC OVR REL G6L NOSHR NOEXE RD WRT Ali<n(2) 
4 RPG$HALTS 9 PIC OVR REL G6L NOSHR NOEXE RD WRT Ali<n(Z) 

COMMAND QUALIFIERS (0 
RPG ILIST/MACHINE_CODE/CROSS_REFERENCE/CHECK=ALL/DE6UG/06JECT/SEQUENCE_CHECK/WARNINGS=ALL SHIPS,RPG 

ICRDSS_REFERENCE IMACHINE_CODE ISEQUENCE_CHECK 
ICHECK=(RECURSIDN,60UNDS,6LANKS_IN_NUMERICS) 
IDE6UG=(SYM60LS,TRACEBACK) 
IWARNINGS=(OTHER,INFORMATIDN) 

STATISTICS 

e Run Time: 5.28 seconds 

~ Elapsed TiMe: 6.58 seconds 

~ Page Faults: 270 

~ Dynamic Memory: 348 pa!fes 





Chapter 12 

Optimizing Your Programs 

The word optimization, as used in this chapter, refers to the process of improving the effi
ciency of programs. The objective of optimization is to produce programs that achieve the 
greatest amount of processing with the least amount of time, memory and secondary 
storage. 

12.1 Optimizing with Data Structures 

U sing data structures to update files can improve the run-time performance of your pro
grams. This example updates a file with a data structure defined in an Input specification 
and used in an Output specification. 

12-1 



011 I 2 I 3 I 4 151 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

FOUT94A UD F 24 DISK 
FOUT94B UD F 24 DISK 
IOUT94A AA 
I 1 3 PN 
I 4 10 PNAME 
I 11 12 WHOUSE 
I 13 17 COLOR 
I 18 20 WEIGHT 
I 22 240QTY 
IOUT94B AA 
I 1 24 DS94B 
IDS94B DS 
I 1 3 PN2 
I 4 10 PNAME2 
I 11 12 WHOUS2 
I 13 17 COLOR2 
I 18 20 WEIGH2 
I 22 240QTY2 

OOUT94A E 
0 PN 3 
0 PNAME 10 
0 WHOUSE 12 
0 COLOR 17 
0 WEIGHT 20 
0 QTY 24 
OOUT94B E 
0 DS94B 24 

ZK-4432-85 

Notice in the above program example that the fields to be updated in the Output specifica
tions for file OUT94B are not listed for a second time, as they would have to be without use 
of a data structure. This results in less written code and a program less prone to error, 
because the layout ofthe fields is described only once in the data structure. Without a data 
structure, the fields must be described on both the Input and Output specifications. 

12.2 Optimizing With Adjacent Fields in Records 

Note that RPG II extracts adjacent fields from the record buffer with a single VAX MOVE 
instruction and writes them back the same way, which saves time_ This optimization is 
performed provided no data conversion is necessary. Therefore, it is a good idea to keep the 
fields contiguous, to avoid requiring multiple MOVE instructions. 

12-2 Optimizing Your Programs 



12.3 Optimizing with Blank Factor 1 

If you use blank Factor 1, you will have less to write and your program will be less prone to 
error because you are not writing the same factor twice. The following example, which is 
part of the above program, demonstrates this technique: 

011 1213 I 4 I 5 I 6 17 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

I 22 240QTY2 
C* Read records fro~ update files. 
C READ OUT94A LR 
C NLR READ OUT94B 
C* Update ~uantit~ to reflect the fact that 100 of each part ca~e in. 
C NLR ADD 100 QTY 
C NLR ADD 100 QTY2 
C* Write the updated records. 
C NLR EXCPT 

ZK-4433-85 

12.4 Optimizing File Performance 

You can control file access and improve file performance through optimizing techniques 
discussed in this manual and in the Guide to VAXIYMS File Applications manual. The 
·following optimizing techniques are discussed in Part II of this manual: 

• For information on the use of Expansion factors to prevent bucket splitting and to 
improve search efficiency, see Section 2.5.23. 

• For information on file sharing, see Section 2.5.24. 

• For information about multibuffer count, see Section 2.5.2l. 

• For information on longer block length for decreasing I/O processing time, see Section 
2.5.9. 

• For information on multiblock count, see Section 2.5.14. 

All ofthe sections mentioned above point to the Guide to VAX/VMS File Applications man
ual, which provides pertinent information on tuning sequential, relative, and indexed 
files. That manual also discusses optimizing file performance and processing in a 
VAXcluster, and offers performance recommendations. 

Optimizing Your Programs 12-3 





Chapter 1 

Language Elements 

This chapter describes the following elements ofthe RPG II language: 

• Character set 

• Data types 

• User-defined names 

1.1 RPG II Character Set 

RPG II uses the full ASCII character set. This includes: 

• A through Z, uppercase except for character literals and comment fields 

• The digits 0 through 9 

• Special characters 

Appendix A contains the full ASCII character set and character values. 

1.2 RPG II Data Types 

All data in RPG II input and output operations has a specific data type that determines 
how many bits of storage should be considered as a unit and how the unit is to be inter
preted and manipulated. 

RPG II supports five different data types for data in input and output operations. Follow
ing sections describe each data type. 

• Character 

• Word binary numeric 

• Longword binary numeric 

1-1 



• Packed decimal 

• Overpunched decimal 

1.2.1 Character 
Character data is a string of bytes containing ASCII codes as binary data. The length can 
be from 1 to 9999 bytes. The format of a character string is illustrated in Figure 1-1. 

NOTE 

In all subsequent diagrams, A represents the address of the first byte of the 
string and L represents the length of the string in bytes. 

7 0 

.... A 

• 
• 
• 

.... A + L - 1 

7 0 

ZK-14S2-83 

Figure 1-1: Character String 

The address of a string specifies the first character of a string. XYZ is represented in Fig
ure 1-2. 

7 o 

x A 

y A + 1 

z .... A+2 

ZK-14S1-83 

Figure 1-2: Address of a String 

1-2 Language Elements 



1.2.2 Binary 
Binary data is stored as binary values in a word or a longword. A word is two contiguous 
bytes, starting on an arbitrary byte boundary. The bits are numbered from the right (0 
through 15). When interpreted as a signed quantity, a word is a two's complement number 
with bits increasing in significance from bit 0 through bit 14, and with bit 15 designating 
the sign. A two byte word supports up to four decimal digits. The largest number that can 
be represented by a word in RPG II is 9,999. A word is represented in Figure 1-3. 

15 o 

~ A 

ZK-1453-83 

Figure 1-3: Word Data Type 

A longword is four bytes, starting on an arbitrary byte boundary. The bits are numbered 
from the right 0 through 31. When interpreted as a signed quantity, a word is a two's com
plement number with bits increasing in significance from bit 0 through bit 30, and with bit 
31 designating the sign. A four byte longword supports up to 11 decimal digits. The largest 
number that can be represented by a longword in RPG II is 99,999,999,999. A longword is 
represented in Figure 1-4. 

31 o 

_A 

ZK-14S4-83 

Figure 1-4: Longword Data Type 

1.2.3 Packed Decimal 
Packed decimal data is stored as a string of bytes. Each byte is divided into two 4-bit half 
bytes (nibbles), with one decimal digit stored in each half byte. The first, or most signifi
cant, digit is stored in the high-order half byte ofthe first byte, the second is stored in the 
low-order half byte of the first byte, the third digit is stored in the high-order half byte of 
the second byte, and so on. The sign of the number is stored in the low-order halfbyte of the 
last byte of the string. The number + 123, in packed decimal format, is represented in 
Figure 1-5. 

Language Elements 1-3 



7 4 3 o 

2 A 

3 12 A + 1 

ZK-1455-83 

Figure 1-5: Packed Decimal Data Type 

A decimal 10, 12, 14, or 15 represents a plus sign, with 12 used when the number is created 
as a result of a VAX arithmetic instruction. A decimal 11 or 13 represents a minus sign, 
with 13 used when the number is created as a result of a VAX arithmetic instruction. 

The following formula can be used to determine the length in digits of a packed decimal 
field: 

number of digits = 2n-1 
where n = number of bytes used 

See Part II, Section 2.8.15 for examples of selecting numeric data types in an RPG II 
program. 

1.2.4 Overpunched Decimal 
Overpunched decimal data is a contiguous sequence of bytes in memory, with one decimal 
digit in a byte. Digits of decreasing significance are assigned to increasing addresses. The 
sign is superimposed on the last digit (trailing numeric string). 

All bytes of overpunched decimal data, except the least significant digit, must contain 
ASCII decimal digit characters (0 through 9). Table 1-1 lists the representation for these 
nonleast significant digits. 

1-4 Language Elements 
( 



Table 1-1: Overpunched Decimal Representation of Nonleast Significant Digits 

Sign Decimal Hexadecimal ASCII Character 

0 48 30 0 
1 49 31 1 
2 50 32 2 
3 51 33 3 
4 52 34 4 
5 53 35 5 
6 54 36 6 
7 55 37 7 
8 56 38 8 
9 57 39 9 

There are several variations of overpunched decimal format. Alternate forms of 
overpunched decimal format are accepted on input. The normal form of overpunched deci
mal format is generated on output. Valid representations of the digit and sign in each of 
the latter two formats (input and output) are shown in Table 1-2. 

Table 1-2: Overpunched Decimal Representations of Least Significant 
Digit and Sign 

Overpunched Decimal Format ASCII Characters 
Digit Decimal Hexadecimal Normal Alternate 

0 48 30 0 {[? 
1 49 31 1 A 
2 50 32 2 B 
3 51 33 3 C 
4 52 34 4 D 
5 53 35 5 E 
6 54 36 6 F 
7 55 37 7 G 
8 56 38 8 H 
9 57 39 9 I 
-0 125 7D } 1 : ! 
-1 74 4A J 
-2 75 4B K 
-3 76 4C L 
-4 77 4D M 
-5 78 4E N 
-6 79 4F 0 
-7 80 50 P 
-8 81 51 Q 
-9 82 52 R 

Language Elements 1-5 



The following diagrams illustrate the representation of 123 and -123 in trailing numeric 
string format. Figure 1-6 represents 123 and Figure 1-7 represents -123. 

7 4 3 o 

3 1 ... ·A 

3 2 ... A + 1 

3 3 ~ A+2 

ZK-1456-83 

Figure 1-6: Overpunched Decimal Data Type 

7 4 3 o 

3 1 ~ A 

3 2 

4 C 

ZK-1457-83 

Figure 1-7: Overpunched Decimal Data Type 

1.3 USER-DEFINED NAMES 

A user-defined name is a named quantity that identifies an entity in an RPG II program. 
The name you define specifies the following entities: 

• Files 

A file name is assigned to a file . 

• Fields 

A field name is assigned to a field in a program. You can use a field name in more than 
one field definition if each definition using that name has the same data type, the 
same length, and the same number of decimal positions. 

1-6 Language Elements 



• Arrays 

An array name is assigned to an array. The first three characters cannot be TAB. 

• Tables 

A table name is assigned to a table. The first three characters must be TAB. 

• Labels 

A label identifies the destination point for a GOTO operation code. 

• Subroutines 

A subroutine name is assigned to a subroutine. 

• PLIST 

A PLIST name is assigned to a list of parameters to be passed to a subprogram. 

• EXCPT 

An EXCPT name can be used in Factor 2 of the EXCPT operation code and in the 
Field name field of exception record 0 specifications. 

When defining a name, observe the following rules: 

• The first character of a name must be one ofthe following: 

- A letter A through Z 

- An underscore C) 

- A pound sign (#) 

• The remaining characters of a name can be the letters A through Z, the numbers 0 
through 9, an underscore C), or a pound sign (#). 

• You must left-justify names. 

• You cannot embed blanks in a name. 

• You cannot use an RPG II special word as a name. See Part I, Chapter 6 for informa
tion on special words. 

• The maximum length of a name is six characters, except for a file name, which can be 
up to eight characters. 

• Every user-defined name must be unique. For example, a name assigned to a file can
not be used as a field name. 

Language Elements 1-7 





Chapter 2 

Specifications 

This chapter describes the following RPG II specifications: 

• Control 

• File Description 

• Extension 

• Line Counter 

• Input 

• Calculation 

• Output 

Each specification description includes the following information: 

• A brief explanation of the purpose of the specification 

• The specification's format 

• A detailed explanation of each column: 

- A brief explanation of the column's purpose 

- A table listing valid entries for the column 

- An example of a typical use 

Use the information in this chapter for quick reference. Consult the Table of Contents or 
Index for information on topics requiring a more detailed explanation. 

2-1 



2.1 Notation Conventions 
This section describes the notational conventions of the specifications described in this 
chapter. 

Two rows of digits identify column numbers, as shown in the following example: 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

ZK-4454-85 

The arrow in the following example points to column 43. 

ZK-4530-85 

In the previous example, the vertical line above the first zero separates columns 30 
through 39 from columns 40 through 49; the vertical line above the second zero separates 
columns 40 through 49 from columns 50 through 59. 

011 I 2 I 3 I 4 I 5 I 6 171 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

*. I ••••••••••• It. I.""', I.' I ••••••• III. I ••• I' •••• I. til ••••• t •• I •••••• I •••• 

ZK-4455-85 

2-2 Specifications 



Asterisks (*) in the dotted line below the two rows of column numbers indicate the begin
nings of fields that can have values for the specification being described. Each field is ter
minated by another asterisk, by a dot, or by column 75. 

The positions ofthe asterisks are different for each specification. 

The asterisk in the example above indicates that you can enter a value in column 6. 

The dots in the line below the two rows of column numbers identify fields that must be 
blank. 

o I 1 I 2 I 3 I 4 151 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
ZK-4456-85 

Dashes after an asterisk indicate a field that must contain numeric data. Numeric data, if 
entered, must be right-justified in the field. Blanks after an asterisk indicate a field that 
must contain alphanumeric data. Alphanumeric data, if entered, must be left-justified in 
the field. 

Specifications 2-3 



In the following example, the value 32 has been entered in columns 20 through 23; the 
value 41 has been entered in columns 24 through 27; no value has been entered in column 
28; the value 9 has been entered in columns 29 and 30; and no value has been entered in 
column 31. 

2.2 Common Fields 

*---*---**-* 
32 41 9 

ZK-4457-85 

This section describes fields that are common to all specifications. 

2.2.1 Line Number 
You can associate a line number with each line in your program. Line numbers are 
optional, but can be used to check the sequence oflines. To check line numbers, you must 
specify the SEQUENCE_CHECK qualifier to the RPG command. If you do not, RPG II will 
ignore all line numbers. The absence of line numbers does not affect your program. 

Column 
Number 

1-5 

Allowable 
Values 

Any number 

Additional Information 

Explanation 

Associates a line number with the program line 

If you specify the SEQUENCE_CHECK qualifier to the RPG command and the line num
bers are out of sequence, RPG II will issue a warning compile-time error. 

2-4 Specifications 



2.2.2 Specification Type 
You must identify the type of specification on every program line. Use column 6 to specify 
the type of specification. 

Column 
Number 

6 

Allowable 
Values 

H 

F 

E 

L 

I 

C 

o 

2.2.3 Comments 

Explanation 

Specifies that the program line is a Control specification 

Specifies that the program line is a File Description 
specification 

Specifies that the program line IS an Extension 
specification 

Specifies that the program line is a Line Counter 
specification 

Specifies that the program line is an Input specification 

Specifies that the program line is a Calculation 
specification 

Specifies that the program line is an Output specification 

Use columns 75 through 80 to write comments about the program line. RPG II ignores 
entries in columns 75 through 80. In other implementations ofRPG II, these columns are 
used for a program name. RPG II uses the source file name as the name ofthe program. 

Column 
Number 

75-80 

Rules 

Allowable 
Values 

Any character 

Explanation 

Documents the program line 

• Blank lines can appear between any two specifications. RPG II ignores blank lines . 

• A specification containing only a form feed can appear between any two specifica
tions. Specifications containing only a form feed are treated like blank lines except in 
the listing file, where they cause the listing to skip to the top of the next page. 

Additional Information 

You can also use an entire specification to write a comment when you precede the comment 
with an asterisk in column 7. You can do this with any type of specification. However, col
umn 6 must contain an entry for a specification type. 

Specifications 2-5 



2.3 Compiler Directing Statements 

A copy directive allows you to copy one or more source files into the main source file during 
compilation. This feature can be used for copying in common subroutines, record defini
tions, or other useful information. 

Rules 

• A copy directive may appear anywhere within the source file before the first double 
slash (II) or double asterisk (**) line. It cannot appear after that, because the remain
ing lines do not contain a specification type. 

• A copy directive cannot appear within a long character literal. 

• There is no limit on the number of copy directives in a program. 

• Copy directives cannot be nested. A file copied in cannot contain a copy directive or a 
COPY_CDD. 

Copy directives can be followed by modifier statements, which supply additional informa
tion on preceding Input specification fields. See Section 2.3.3 for the syntax and rules of 
modifier statements. 

If you specify the SEQUENCE qualifier, then the copied lines are sequence checked sepa
rately from the main source file. 

Copy and copy from CDD lines are always listed in the listing file. The copied lines imme
diately follow the copy directive line in the listing. Each line is given a unique listing line 
number. A "c" is placed after the line number in the listing record to indicate that the line 
was generated by a copy directive. There is still a single set of line numbers to mark the 
entire source file, after allowing for text that has been copied into the main source file. 

Ifa COMPILE command is issued from the editor and an error is flagged within the compi
lation of a COpy or COPY _CDD directive, the cursor is placed at the copy directive, and 
the message is displayed on the message line. You must leave the editor if you want to see 
the compiler source listing. 

2-6 Specifications 



2.3.1 Copy 
Copy directives adhere to the following rules: 

• A copy directive must appear on a line of its own, and have the following syntax: 

- Column 6 - Any valid specification type (not checked for sequence) 

- Columns 7 through 12 - Must contain "/COPY "(note the blank space in 
column 12) 

- Columns 13 through 74 - Contain the file specification enclosed in single quotes; 
the file specification does not have to start in column 13 

• A default file type of RPG is used 

Following is an example that copies in the file, 
SO_MUCH_TIME--AND_SO_LITTLE_TO_DO.RPG 

011 1213 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

**.* * * * * *--*** * * * 
C/COPY 'SO_HUCH_TIHE_AND_SO_LITTLE_TO_DO' 

ZK-44S8-8S 

2.3.2 Copy from COO 
Record definitions can be stored in the Common Data Dictionary (CDD) and shared among 
RPG programs. You can extract these data definitions from the CDD and use them as field 
definitions on Input or Output specifications. If you change a definition in the CDD, you do 
not have to rewrite the program using it; however, you must recompile the program to 
obtain the latest definition in the CDD. 

The following example shows how to copy field information from the CDD, on an Input 
specification. 

o I 1 I 2 I 3 I 4 151 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * *** *--- *--- *--- .**---*---** * * * * * * I/COPY_CDD 'RECORD. IN' 
ZK-44S9-8S 

RECORD.IN is the CDD path name for a record description stored in the CDD. A path 
name must be enclosed in single quotation marks; note that the pathname does not have to 
start in column 17. 

For information on CDD pathnames, see the VAX Common Data Dictionary Users Guide. 

Specifications 2-7 



The CDD provides RPG-specific features. These are: NAME FOR RPG, EDIT_WORD 
FOR RPG, and EDIT_CODE FOR RPG. These attributes are discussed in the VAX Com
mon Data Dictionary Reference Manual. 

The two examples below show field definitions entered in the CDD, and the Input specifica
tions that must be entered to extract the information. 

Using the CDDL utility, these field definitions are entered: 

DEFINE RECORD CDD$TOP.EXAMPLE.AODRESS_RECORD 
ADDR STRUCTURE. 

STREET DATATYPE IS TEXT 

CITY 

STATE 

PHONE STRUCTURE. 
AREA 

NUMBER 

END PHONE STRUCTURE. 
END ADDR STRUCTURE. 

END ADDRESS_RECORD. 

SIZE IS 30 CHARACTERS 
DATATYPE IS TEn 
SIZE IS 30 CHARACTERS 
DATATYPE IS TEXT 
SIZE IS 2 CHARACTERS 

DATATYPE I S NUMERIC RIGHT OVER PUNCHED 
SIZE IS 3 DIGITS 
DATATYPE IS NUMERIC RIGHT OVER PUNCHED 
SIZE IS 7 DIGITS 

NA ME FOR RPG IS p# 

In the RPG II program, these Input specifications are entered: 

o I 1 I 2 I 3 I 4 I 5 I 6 171 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * *** *--- *--- *--- .**---*---** ****** .... 
!INfO AA 
I/COPY_CDD 'EXAMPLE. ADDRESS_RECORD' 

ZK-4460-85 

2-8 Specifications 



The information is extracted from the CDD and parsed as though the user had entered the 
following: 

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
1?34-'678901?3456789012345678901234567890123456789012345678901234567890123456789 

** 
IINrO 
I 

* *** *--- *--- *--- .**---*---** * * * * * * .... 
AA 

I 
I 
I 
I 
I 

2.3.3 Copy Modifiers 

1 30 STREET 
31 60 CITY 
61 62 STATE 
63 72 PHONE 
63 650AREA 
66 720PIt 

ZK-4461-85 

To include indicators on Input fields copied from the CDD you must enter a modifier state
ment after the COPY _CDD statement. You can modify any field in the current record 
including those copied from the CDD. The following fields can be modified: 

• Control-level indicator 

• Matching fields 

• Field-record-relation 

• Field indicators 

Rules 

• A modifying statement is distinguished from other specifications by an ampersand 
(&) in column 7. 

• Only specifications that define fields can be modified. 

• As many modifiers as desired can be specified on one modifier specification. 

• The same field can be modified by multiple modifiers. 

• A field specification must be syntactically valid before and after a modifier is applied. 

Specifications 2-9 



A modifier can be used to add an indicator where there was none in the original specifica
tion. The following example shows a level indicator set on the AREA field in the above 
program. 

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * *** *--- *--- *---
IINFO AA 
I/COPY_CDD 'EXAMPLE. ADDRESS_RECORD' 
1& 

* * * * * * 

AREA L1 
ZK-44S2-85 

The field AREA is treated as if it had been specified with L1 in the control level indicator 
field, that is, as if the specification had been as follows: 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

I 63 650AREA L1 
ZK-44S3-85 

A modifier can be used to supersede a previously specified value. You can also blank a field 
by entering the an ampersand (&) as the first character ofthe desired field, and leaving the 
rest of the field blank, as in the following example. 

This example assumes that the file to be copied (MSL27 A.RPG) contains the following 
specification: 

011 12 1314 I 5 I 6 171 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * *** *--- *--- *--- .**---*---** * * * * * * 
I 6 6 FLDA 01 

ZK-44S4-85 

011 1213 1415 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * *** *--- *--- *--- .**---*---** * * * * * * 
IMSLI27 01 1 CA 
I1COPY 'MSL27A' 
1& FLDA & 

ZK-44S5-85 

2-10 Specifications 



In the above example, FLDA is treated as ifno field-record-relation indicator is given, for 
example, as ifthe Input specification is: 

011 12 I 3 14 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * *** *--- *--- *--- .**---*---** * * * * * * 
I 6 6 FLDA 

ZK-4466-85 

Modifiers can apply to all field definitions that follow the record containing the last COpy 
or COPY _CDD directive. In the above example, if FLDA occurred several times in the 
copied file, each occurrence would be modified. 

If the source program looked like the example below, then only the occurrences of the 
FLDA field associated with the second copy directive would be modified. 

o I 1 I 2 131 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * *** *--- *--- *--- .**---*---** * * * * * * .... 
IMSLl27 AA 01 
I1COPY 'MSL27A' 
I BB 02 
I1COPY 'MSL27A' 
1& FLDA & 

ZK-4467-85 

When a modifier specification is not preceded by a copy directive, all previous input fields 
can be modified. 

2.4 Control Specification 
The Control specification allows you to do the following: 

• Assign a character other than the default (a dollar sign ($)) as the currency symbol 

• Specify the notation for numeric fields, Edit codes, and UDATE 

• Define an alternate collating sequence 

• Check the alignment of printed forms 

A Control specification is not required. Complete the specification only when you need to 
define the use of one or more items described in the list above. Use only one Control specifi
cation in a program. 

Specifications 2-11 



2.4.1 Control Specification Format 
The format of the Control specification is: 

Currenc~ s~lIIbol 
I Inverted print (DIJ) 
I I Alternate collating sequence (SE) 
I I I 1P f'orllls posi tion (1) 
I I I I 

H I I I I 
011 I 2 I 3 I 4 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
* ........... * .. * .... * .............. * ................................ . 

ZK-4468-85 

2.4.2 Specification Type 
Use column 6 to identify the type of specification for every program line. 

Column 
Number 

6 

Allowable 
Values 

H 

2.4.3 Currency Symbol 

Explanation 

Indicates that this program line is a Control specification 

Use column 18 to specify a character other than the dollar sign ($) to represent the cur
rency symbol. 

Column 
Number 

18 

Allowable 
Values 

Blank 

Character 

Explanation 

Uses the dollar sign ($) as the currency symbol. The dollar 
sign is the default. 

Uses the character you specify instead ofthe dollar sign ($) 
for the currency symbol. 

You can use any character for the currency symbol except zero (0), asterisk (*), comma (,), 
ampersand (&), decimal point (.), minus sign (-), C (C), and R (R). 

2.4.4 Inverted Print 
Use column 21 to specify the notation the printer uses for numeric fields, Edit codes, and 
UDATE. 

2-12 Specifications 



Column 
Number 

21 

Allowable 
Values 

Blank 

D 

I 

J 

Explanation 

Uses a period as the decimal notation and a comma as the 
thousands separator in numeric literals and Edit codes 
(for example, 1,234.56 and .56). Uses a slash (I) as the 
separator for the Y Edit code; uses the month/day/year for
mat for UDATE (for example, 03/24/85). See Section 
2.10.14 for information on Edit codes. See Part I, Chapter 6 
for information on UDATE. 

Uses the same format as the Blank option for numeric 
literals and Edit codes. Uses a slash (I) as the separator for 
the Y Edit code; uses the day, month, and year (ddmmyy) 
format for UDATE. 

Uses a comma as the decimal notation and a period as the 
thousands separator in numeric literals (for example, 
1.234,56) and Edit codes. Uses the day, month, and year 
(ddmmyy) format for UDATE; decimal points separate the 
day, month, and year elements (for example, 24.03.85). 

Uses the same format as the I option for UDATE, numeric 
literals, and Edit codes with the following exception: 
writes a zero to the left of the comma when the field con
tains only a fraction (for example, 0,56). 

2.4.5 Alternate Collating Sequence 
Use column 26 to specify the collating sequence you want RPG II to use when comparing 
character fields using the COMP operation code and when checking the sequence of match
ing fields. 

Column 
Number 

26 

Allowable 
Values 

Blank 

E 

S 

Explanation 

Uses the ASCII collating sequence. See Appendix A for the 
ASCII character set. 

Uses the EBCDIC collating sequence. See Appendix A for 
the EBCDIC character set. 

Uses a user-defined collating sequence. See Appendix A 
for the ASCII characters and their hexadecimal values. 

Specifications 2--13 



To define a collating sequence that is different from the standard ASCII or EBCDIC 
sequences, you must specify the hexadecimal value of each character whose position in the 
sequence you want to change. To do this you must 

• Specify S in column 26 of the Control specification. 

• Include the specification for ALTSEQ records after the Output specification, but 
before any compile-time table and-arrays, ifused. 

• Precede the ALTSEQ records with double slashes (1/) and a blank or double asterisks 
(**) and a blank in columns 1 through 3. 

• Specify the following entries: 

Column 
Number 

1-8 

9,10 

11,12 

Allowable 
Values 

ALTSEQbb 

Hexadecimal 
value 

Hexadecimal 
value 

Explanation 

Indicates that you are specifying an alternate collating 
sequence. Note that bb represents two blanks. 

Specifies the hexadecimal value of the character you want 
to change. 

Specifies the new hexadecimal value of the character 
whose position in the collating sequence you want to 
change. 

Repeat this sequence of hexadecimal numbers up to column 80 for additional changes. The 
first blank space in an ALTSEQ record terminates the ALTSEQ entries for that record. 
The rest of the line can be used for comments. 

In the following example, columns 9 and 10 and 13 and 14 contain the hexadecimal value 
of the character to be changed, and columns 11 and 12 and 15 and 16 contain the new hex
adecimal value of the character. In the following collating sequence, RPG II changes the 
uppercase Z (5A) to an uppercase A (41) and the lowercase w (77) to an uppercase J (4A). 

011 I 2 I 3 I 4 I 5 I 6 I 7 I 
t2345678QOt?34567890123456789012345678901234567890123456789012345678901234567890 

** II 
ALTSEQ 5A41774A 

ZK-4469-85 

2-14 Specifications 
( 
I 



2.4.6 Forms Position 
Use column 41 to check the alignment of printed output on a nonstandard form. 

Column 
Number 

Allowable 
Values 

Explanation 

41 Blank Specifies no forms-positioning check 

1 Checks the forms positioning by printing the first output 
line 

This entry is optional and valid only for a nonspooled device. 

Additional Information 

When you specify Forms positioning, the printer outputs the first line. Then, RPG II asks 
the following question for each printer output file in the order that the first lines are 
output: 

Is forms positioning correct? 
Yes. type Continue. No. type RetrY: 

If you type Continue, the program will print the second output line, and so on, until all 
lines are output. If the forms are not correctly positioned, realign the form, and then type 
Retry. RPG II will print the first line again so that you can determine whether the form is 
positioned correctly. 

2.4.7 Example 
In the following example, the following control characteristics are defined: 

• Program line is a Control specification. 

• Currency symbol is a pound sign (#). 

• RPG II uses: 

- A comma (,) as the decimal notation for numeric literals and Edit codes 

- A period (.) as the thousands separator for numeric literals and Edit codes 

- The ddmmyy format for UDATE with a period (.) separating the day, month, and 
year elements 

• Collating sequence is EBCDIC. 

• Forms-positioning check is not required. 

Specifications 2-15 



Currencll Slllllbol 
I Inverted print (DIJ) 
I I Alternate collating sequence (SE) 
I I I 1P forllls position (1) 
I I I I 

H I I I I 
011 12 1314 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
* .......... 1*' 1*," .* ............. I-, .•... I. I .... I I •.... I ....•..•.... 
H It I E 

ZK-4470-85 

2.5 File Description Specification 

The File Description specification describes the attributes of each file you use in your 
program. 

2.5.1 File Description Specification Format 
The format ofthe File Description specification is: 

File 
nallle 
I 

FI 

Mode (LR) 
IKell length 

Tllpe (lOUD) I I Record address tllpe (API) 
I Des (PSRCTD) II IOrganization (IT, 1-9) 
IIEOF (E) I I IIOverflow indicator 
I I ISeq (AD) I I I I I Kell location 
1IIIFlllt (FV) II III I Extension (EU 
I I I I IBlk Rec I I I I I I IDevice S~lIIb Tape 
I I I I lien len I I I I I I Icode dev label 
111111 I II III I II I I 

COt'e 
index 
I 

Addtn(AU) 
IExpand 
IIShat'e 
III Rewnd 
III I 
III IFile 
III Icond 
III II 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
ZK-4471-85 

2.5.2 Specification Type 
Use column 6 to identify the type of specification for every program line. 

Column Allowable 
Number Values 

6 F 

2-16 Specifications 

Explanation 

Indicates that this program line is a File Description 
specification 



2.5.3 File Name 
Use columns 7 through 14 to identify the files you use in an RPG II program. 

Column 
Number 

Allowable 
Values 

Explanation 

7-14 File name Identifies the file 

Rules 

• The number of files you can open depends on the Open File Quota set by your system 
manager. To determine the number of files you can open in an RPG II program, type 
the SHOW PROCESS/QUOTA command and look for the number to the right of Open 
File Quota:. 

• The specification options explained in Sections 2.5.4 through 2.5.26 all apply to the 
file you identify in columns 7 through 14. 

• VAX RMS uses the file name as the default file specification string. See Part I, Chap
ter 5 for information about how RPG II uses the File name field and the Symbolic 
device field to generate the VAXIVMS file specification. 

2.5.4 File Type 
Use column 15 to specify the File type that defines how RPG II processes the records in the 
file. 

Column 
Number 

15 

Allowable 
Values 

I 

o 

U 

Explanation 

Designates an input file. RPG II reads the records from an 
input file and uses these records as data. These records 
must be defined in Input specifications unless column 16 
contains R or T. Input files can reside on disk or tape, or 
can be read from a terminal or from cards. 

Designates an output file. The program writes or prints 
the records of an output file. These records must be defined 
in Output specifications unless this is a table output file. 
Output files can be written to a printer, disk, tape, or ter
minal. 

Designates an update file. Update files must reside on 
disk. RPG II can read, change, and write records in an 
update file. The records in these files must be defined in 
the Input and Output specifications. 

Specifications 2-17 



Column 
Number 

Allowable 
Values 

D 

2.5.5 File Designation 

Explanation 

Designates a display input or output file. Use display files 
to accept input from a terminal or to display output on a 
terminal. You must complete a Calculation specification to 
define the fields you want to display using the DSPLY 
operation code. See Part II, Chapter 3 for information on 
the DSPLY operation code. 

Use column 16 to specify File designation that defines the order of processing files. See 
Part I, Chapter 5 for information on processing files. 

Column 
Number 

16 

Allowable 
Values 

Blank 

P 

S 

R 

2-18. Specifications 

Explanation 

Specifies a nonchained output file or a display file. 

Specifies a primary file. You can use only one file as the pri
mary file. It can be an input or an update file. In multifile 
processing, the primary file determines the order of record 
selection; in single file processing, the primary file pro
vides all input records. If a primary file is not specified and 
one or more secondary files are specified, the first secon
dary file is assigned as the primary file. If no primary or 
secondary files are specified, you must provide an exit for 
your program by setting on the LR indicator. 

Specifies a secondary file. A secondary file can be an input 
or an update file. See Part I, Chapter 5 for information on 
processing secondary files. 

Specifies a record-address file. A record-address file indi
cates which records to process and the order in which they 
are to be processed. This file must be associated with a file 
defined in an Extension specification. See Part I, Chapter 5 
for information on record-address files. 



Column 
Number 

Allowable 
Values 

C 

T 

D 

F 

2.5.6 End-ol-File 

Explanation 

Specifies a chained file. A chained file resides on disk and 
can be used as an input, output, or update file. You use the 
CHAIN operation code in the Calculation specification to 
randomly read records from a chained file. You use an out
put chained file to add records to a direct file. The CHAIN 
operation positions the file before RPG II writes each 
record. See Part II, Chapter 3 for more information on 
chained files. 

Specifies a pre-execution-time table or array. You must 
enter, in columns 11 through 18 of the Extension specifica
tion, the name of the file that contains the data from which 
you want to load the table or array. See Part I, Chapter 7 
for information on tables. See Part I, Chapter 8 for infor
mation on arrays. 

Specifies a demand input or update file. You can use the 
READ operation code in the Calculation specification to 
sequentially access the records in a demand file. See Part 
II, Chapter 3 for more information on using the READ 
operation code to access records from demand files. 

Specifies a full-procedural input or update file. You can use 
the READ and/or CHAIN operation code in the Calcula
tion specification to sequentially and/or randomly access 
the records. 

Use column 17 to specify end-of-file that indicates whether or not the program can end 
before RPG II processes all the records in the file. 

Column 
Number 

17 

Allowable 
Values 

Blank 

Explanation 

Causes the program to finish reading all the records from 
every primary and secondary file before ending, if column 
17 is blank for all primary and secondary files. If column 
17 is not blank for all primary and secondary files, RPG II 
mayor may not process all the records in this file (the file 
described in this specification). If column 17 is blank for all 
primary and secondary files, RPG II processes all the 
records in this file (the file described in this specification). 

Specifications 2-19 



Column 
Number 

Allowable 
Values 

E 

2.5.7 Sequence 

Explanation 

Causes the program to finish reading the records in the file 
before ending the program, regardless of the presence of 
other files. You can use this option for input or update files 
as primary, secondary, or record-address files. You cannot 
use this option on a file being processed by a record
address file. 

When you specify E in column 17 for the primary file, and 
there are matching records in the primary and secondary 
files, RPG II reads and processes any records in the secon
dary file that match the last record of the primary file 
before ending the program. 

Use column 18 to specify the sequence to check matching fields, either ascending or 
descending. See Part I, Chapter 5 for information on matching fields. 

Column 
Number 

18 

Rules 

Allowable 
Values 

Blank 

A 

D 

Explanation 

Indicates that the program contains no matching fields or, 
ifit does, assumes the same value as specified for a previ
ous primary or secondary file. If the program contains 
matching fields and you do not specify a sequence for any 
file containing matching fields, RPG II assumes an ascend
ing order. 

Checks matching records for ascending order. 

Checks matching records for descending order. 

• This entry applies only to primary or secondary files with matching fields. See Part I, 
Chapter 5 for more information . 

• This entry must be the same for each file you process with matching fields. 

2-20 Specifications 



2.5.8 File Format 
Use column 19 to specify File format. File format specifies whether the records in the file 
are all the same length, or whether they can be of different lengths. You can save process
ing time if all the records are the same length and each record is completely filled with 
data. If the records are not completely filled with data, you waste space. Variable-length 
records use space more efficiently, but take longer to process. 

Column 
Number 

19 

Rules 

Allowable 
Values 

F 

V 

Explanation 

Indicates that all records are the same (fixed) length 

Indicates that records can be of different (variable) lengths 

• If you specify variable-length records, RPG II uses the highest value in columns 40 
through 43 in the Output specification as the length for that record . 

• You must specify fixed-length records for sequential files being processed as update 
files. 

Additional Information 

When a variable-length record is read, RPG II fills the unused portion of the input buffer 
with spaces. Character fields with characters beyond the end of the record will be filled 
with spaces. Numeric fields with digits beyond the record will be filled with spaces. This 
condition will cause a run-time error, unless you use the 
CHECK:BLANKS_IN_NUMERICS qualifier with the RPG command. A numeric field in 
packed decimal or binary format cannot extend beyond the end of the input record. If it 
does not, unpredictable results will occur. 

2.5.9 Block Length 
Use columns 20 through 23 to specify the length of a block. Data is stored in physical 
records called blocks. A block is the smallest number of bytes RPG II transfers in a physi
cal read or write operation. 

In general, by specifying a longer block length, you decrease lIO processing time because 
more records will be available at any given time. For example, a program that loads a 
single key indexed file with approximately 1700 80-byte records could see a decrease in 
direct lias of about 60% and a decrease in elapsed time of 40-50%. This would occur when 
the block length is increased from 512 (RMS bucket size of 1) to 4096 (RMS bucket size of 
8). However, do not specify a block length that exceeds the Working Set Quota. To display 
the Working Set Quota, type the following: 

$ SHOW WORKING_SET 

For more information on quotas see the VAX/VMS Guide to File Applications. 

Specifications 2-21 



Column 
Number 

20-23 

. Rules 

Allowable 
Values 

Blank 

1-9999 

Explanation 

Uses the same entry for Block length as the Record length 
(columns 24 through 27) 

Specifies the bucket size (in bytes) for those direct and 
indexed files being created on disk, or specifies the Block 
length (in bytes) for files on tape 

• For disk files, the block length you specify sets the VAX RMS bucket size parameter. 
RPG II divides the block length you specify by 512 and rounds the result to the next 
highest integer, if necessary. For example, if you specify a block length of2048 bytes, 
the VAX RMS bucket size is 4. 

• For disk files, the minimum block length is 512 bytes. 

• For tape files, the block length you specify sets the VAX RMS block size parameter. 
The block length must be either (1) equal to the entry in columns 24 through 27 
(Record length) of the File Description specification, or (2) an integer multiple of the 
record length. In either case, the block length cannot be greater than the maximum 
record length for the device. See your system manager for the maximum record 
length. 

To make your tape compatible with non-DIGITAL systems, use the ANSI standard 
block length: less than or equal to 2048 bytes. 

• Right-justify this entry. 

• Leading zeros can be omitted. 

2.5.10 Record Length 
Record length specifies the length of each fixed-length record in a file, or the maximum 
length for variable-length records. 

Column Allowable Explanation 
Number Values 

24-27 1-9999 Specifies the number of characters in each record 

Rules 

• The record length for fixed-length records in an update file must be the same value 
you used to write the records. 

• Right-justify this entry. 

• Leading zeros can be omitted. 

2-22 Specifications 



2.5.11 Mode of Processing 
Use column 28 to specify the method RPG II uses to access records in a file. Your choice of 
processing method depends on the entries for File designation and File organization. Your 
choice of processing method for input and update files depends on the entries for the File 
type, the Mode of processing, the Record address type, and File organization. Refer to 
Tables 2-1 through 2-3 to select the correct value. 

Column 
Number 

Allowable 
Values 

Explanation 

28 Blank 

L 

R 

Accesses records sequentially, or accesses records sequen
tially by key 

Accesses records sequentially within limits 

Accesses records randomly, using a relative record num
ber or an index key, or using an ADDROUT file, or tells the 
program to load a direct file 

Additional Information 

• Sequential processing reads the records in the order in which they were written. 

• Sequential by key processing reads records from indexed files that are used as pri
mary, secondary, or demand files. The key refers to the index, which is read in ascend
ing order. 

• Sequential-within-limits processing reads records in one of two ways: 

- Specifying a range of records to be read. 

- Using the SETLL operation code in the Calculation specification to set the lowest 
key for the records in a demand file. The program reads records with keys equal to 
or higher than the key you specify. 

• Random processing reads records from chained files in one of the following two ways: 

- For sequential or direct files, records are accessed by their relative record number. 
A relative record number identifies the position of a record relative to the begin
ning of the file. 

- For indexed files, records are accessed by their index key values. 

• ADDROUT file processing uses the ADDROUT file generated by the VAX!VMS 
SORT/MERGE utility. The ADDROUT file contains binary record numbers that cor
respond to the addresses of records, therefore, the records to be read are located by 
their addresses. 

• Files on devices other than disk can be accessed only sequentially. 

Specifications 2-23 



Legend for Tables 2-1 through 2-3 

Symbol 

P 
S 
I 
C 
T 
F 
b 
R 
L 
AlP 
(1-9) 

Meaning 

Primary file 
Secondary file 
Indexed file 
Chained file 
Table 
Full-Procedural file 
Blank 
Random 
Sequential within limits 
Alphabetic or Packed keys 
Additional areas 

For input or update primary, secondary, or demand files that reside on disk, you can use the 
entries listed in the following table: 

Table 2-1: Modes of Processing for Primary, Secondary and Demand Files 

File Allowable Allowable 
Organization Acccess Modes Entries 

Column: 
16 28 31 32 

Sequential Sequential P b b b (b or 1-9) 
S b b b (b or 1-9) 
D b b b (b or 1-9) 
F b b b (b or 1-9) 

or 
Direct ByADDRODT P R I b (b or 1-9) 

file S R I b (b or 1-9) 

(continued on next page) 

2-24 Specifications 



Table 2-1: Modes of Processing for Primary, Secondary and Demand Files 
(Cont.) 

File Allowable Allowable 
Organization Acccess Modes Entries 

Column: 
16 28 31 32 

Indexed Sequential P b b b 
S b b b 
D b b b 
F b b b 

ByADDROUT P R I I 
file S R I I 

Sequential P b AlP I 
by key S b AlP I 

D b AlP I 
F b AlP I 

Sequential P L AlP I 
within S L AlP I 
limits D L AlP I 

F L AlP I 

For record-address files, you can use the entries listed in Table 2-2. 

Table 2-2: Modes of Processing for Record Address Files 

File Allowable Allowable 
Organization Access Modes Entries 

Column: 
16 28 31 32 

Sequential Sequential' R b b b 
or 
Direct Sequential' R b I T 

1 Indicates a record-limits file 
2 Indicates an ADDROUT file 

For input or update chained files, you can use the entries listed in Table 2-3. 

Specifications 2-25 



Table 2-3: Modes of Processing for Input or Update Chained Files 

File Allowable Allowable 
Organization Access Modes Entries 

Column: 
16 28 31 32 

Sequential Random, by C R b b 
or Direct relative record F R b b 

number 

Indexed Random, C R AlP I 
by key F R AlP I 

In the following example, the program accesses an indexed file as a demand file and three 
update chained files. 

File 
nallle 
I 

FI 

Mode (LR) 
IKe!:l length 

T!:lpe (lOUD) I I Record address t!:lpe (API) 
IDes (PSRCTD) II IOrganization (IT,1-9) 
IIEOF (E) I I IIOverflow indicator 
I I ISeq (AD) I I I I I Ke!:l location 
1IIIFlllt (FV) II III I Extension (Ell 
1IIIIBIk Rec II III I IDevice S!:llllb Tape 
I I I I II en I en I I I I I I I code dev I abe I 
IIIIII I II III I II I I 

Core 
index 
I 

Addtn(AU) 
I Expand 
I I Share 
III Rewnd 
III I 
III IFile 
III Icond 
III II 

011 12 I 3 I 4 I 5 I 6 171 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

2-26 

** 
FINDEX1 
FCHAIN1 
FINDEX2 
FCHAIN2 

******---*---**-*** *---** 
ID F 18 5AI 5 DISK 
UC F 24R DISK 
UC F 24R 3AI 1 DISK 
UC F 24R DISK 

Specifications 

* * ...... *-----***.** 

ZK-4472-85 



2.5.12 Key Length 
Use columns 29 and 30 to specify Key length. Key length indicates one of the following: 

• The length in bytes of the index keys in an indexed file 

• The length in bytes of the index keys in a record-limits file 

• The length in bytes of the addresses in an ADDROUT file 

Column Allowable Explanation 
Number Values 

29,30 Blank Indicates a sequential, direct, or display file 

1-99 

Rules 

Specifies the length of the record key for an indexed file or 
a record-address file 

• You must use a value of6 for the length ofthe record addresses in an ADDROUT file. 

• Right-justify this entry. 

• Leading zeros can be omitted. 

In the following example, the program reads a chained indexed file. The length of the 
record key is 3. 

F'ile 
nallle 
I 

F'I 

Hode (LR) 
IKe~ length 

T~pe (lOUD) II Record address t~pe (API) 
IDes (PSRCTD) I I IOrganization (IT,i-9) 
IIEOF' (E) I I IIOverflow indicator 
I IISeq (AD) II II I Key location 
I II 1F'lIIt (F'V) I I I I I I Extension (EU 
I I IIIBlk Rec I I I I I I IDevice S~lIIb Tape 
I I I I I I en I en I I I I I I I code dev I abe I 
IIIIII I II III I II I I 

Core 
index 
I 

Addtn(AU) 
I Expand 
IIShare 
III Rewnd 
III I 
III IF'ile 
III Icond 
III II 

011 12 13 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** ******---*---**-*** *---** * 
F'INDEX IC F' 24R 3AI i DISK 

ZK-4473-85 

Specifications 2-27 



2.5.13 Record Address Type 
Use column 31 to specify Record address type. Record address type helps define the mode of 
processing. Refer to Tables 2-1 through 2-3 to select the correct value. 

Column Allowable Explanation 
Number Values 

31 Blank 

A 

P 

I 

Uses relative record numbers to process sequential and 
direct chained files, or reads records sequentially from an 
input or update file, or creates or adds records to a sequen
tial output file 

Processes or loads indexed files according to the record 
keys in alphanumeric format 

Processes or loads indexed files according to record keys in 
packed format 

Processes the file according to an ADDROUT file, or iden
tifies an ADDROUT file 

2.5.14 File Organization or Additional 1/0 Area 
File organization specifies how records are arranged in a file. Additional I/O allows you to 
specify the number of I/O areas. Both attributes work in conjunction with the Mode of 
processing. Refer to Tables 2-1 through 2-3 to select the correct value. 

Column Allowable Explanation 
Number Values 

32 Blank 

I 

T 

1-9 

Indicates a sequential or direct file, using one I/O area 

Indicates an indexed file 

Indicates an ADDROUT file 

Indicates the number ofI/O areas for a sequential or direct 
file 

For sequential files, RPG II adds 1 to the Additional I/O area value you specify in column 
32. RPG II uses the value for Additional I/O to set the VAX RMS multiblock count in the 
Record Access Block (RAB). 

See the Guide to VAX/VMS File Applications for information about multiblock count and 
for optimizing file performance. 

2-28 Specifications 



2.5.15 Overflow Indicators 
Use columns 33 and 34 to specify an Overflow indicator. You can use an overflow indicator 
to specify a page break before or after certain lines are printed. See Part I, Chapter 6 for 
information on overflow indicators. 

Column 
Number 

33,34 

Rules 

Allowable 
Values 

Blank 

OA-OG,OV 

Explanation 

Specifies no overflow indicator 

Specifies an overflow indicator to condition output lines 
when an overflow occurs 

• You can use an overflow indicator to condition only printer output files. 

• You can assign only one overflow indicator to a file. If you have more than one printer 
output file and you want to use an overflow indicator to condition each file, you must 
specify a unique overflow indicator for each file. 

2.5.16 Key Location 
Use columns 35 through 38 to specify Key location. Each record in an indexed file has a key 
field that VAX RMS uses to locate records. This key field can be anywhere in the record, 
but must be in the same location for each record in the file. Key location specifies where to 
find the key field in the record. 

Column Allowable Explanation 
Number 

35-38 

Rules 

Values 

Blank 

1-9999 

• Right-justify this entry. 

Indicates that the file is not indexed 

Specifies the location ofthe key field 

• Leading zeros can be omitted. 

2.5.17 Extension Code 
Use column 39 to specify the Extension code that causes RPG II to read either the Exten
sion or the Line Counter specification for more information about the file. You must com
plete an Extension specification for tables, arrays, and record-address files. You can 
complete a Line Counter specification for a printer output file. The Line Counter specifica
tion specifies the length of the printed page and defines the overflow line number. 

Specifications 2-29 



Column 
Number 

39 

Allowable 
Values 

Blank 

E 

L 

2.5.18 Device Code 

Explanation 

Specifies no Extension or Line Counter specification 

Causes RPG II to read the Extension specification for the 
file 

Causes RPG II to read the Line Counter specification for 
the file 

Use columns 40 through 46 to specify the Device code that indicates on what type of device 
the file is stored. Left justify this entry. 

Column Allowable Explanation 
Number Values 

40-46 Blank 

DISKXXX 

TAPE XXX 

PRINTXX 

TTYXXXX 

READ XXX 

Specifies the default disk device. 

Specifies a disk device where X is any character. Disk can 
be specified for sequential files but is required for indexed 
and direct files. Disk is the default device. 

Specifies a tape device for sequential files only. X can be 
any character. 

Specifies a print device for an output file. X can be any 
character. 

Specifies a terminal device for a display file or a sequen
tially processed input or update file. X can be any charac
ter. 

Specifies a card reader for sequentially processed input 
files. X can be any character. 

To use a card reader, you must specify I in column 15 and P, 
S, T, or D in column 16. Also, leave columns 28 through 38 
blank. 

If you specify a device name other than one of the allowable values, RPG II accepts it, but 
issues a warning message at compile time. RPG II assumes a disk device, unless you spec
ify D in column 15, in which case RPG II assumes a terminal (TTY) device. 

2-30 Specifications 



2.5.19 Symbolic Device 
Use columns 47 through 52 to specify the Symbolic device. The Symbolic device can be a 
logical name for any device. RPG II uses the Symbolic device as the file name string. VAX 
RMS uses the file name string and the default file name string (the file name that appears 
in columns 7 through 14) as the default name of a file being processed for input or output 
operations. See Part I, Chapter 5 for information on how RPG II uses the Symbolic device 
field (columns 47 through 52) and the File name field (columns 7 through 14) to generate 
the VAXNMS file specification. 

Column 
Number 

47-52 

Allowable 
Values 

Any 
character 

Explanation 

Represents the symbolic device 

The symbolic device name can contain up to six characters. 

2.5.20 Tape Label 
Use column 53 to identify the label for a magnetic tape. 

Column 
Number 

53 

Allowable 
Values 

Blank 

S 

Explanation 

Indicates that the magnetic tape has a standard 
VAXNMS ANSI label 

Indicates that the magnetic tape has a standard 
VAXNMS ANSI label 

VAXNMS can process only magnetic tapes with VAXNMS ANSI labels. 

2.5.21 Core Index 
Use columns 60 through 65 to set the VAX RMS multibuffer count in the Record Access 
Block (RAB). See the Guide to VAX/VMS File Applications manual for information about 
multibuffer count and for optimizing file performance. 

Column 
Number 

60-65 

Allowable 
Values 

Blank 

1-9999 

Explanation 

Specifies that the file is not indexed or that an indexed file 
has no Core index 

Specifies the number of bytes to reserve for the Core index 

Specifications 2-31 



Rules 

• RPG II divides the Core index value by 512 and rounds the value to the next highest 
integer, if necessary. For example, ifthe Core index is 513, the VAX RMS multibuffer 
count is 2. 

If the operation results in an integer that is greater than 127, RPG II uses 127 as the 
VAX RMS multibuffer count. . 

• Right-justify this entry. 

• Leading zeros can be omitted. 

2.5.22 File Addition and Unordered Output 
Use column 66 to specify File addition and Unordered output. File addition and Unordered 
output determine how new records are added to a file. You can add records to sequential, 
direct, and indexed files that reside on disk. On tape, you must go to the logical end of the 
tape before adding records to a file; otherwise, new records would overwrite existing 
records. 

Column 
Number 

66 

Allowable 
Values 

Blank,A, U 

For output files, you can choose one ofthe following entries: 

Entry 

Blank 

A 

U 

Explanation 

Creates an indexed file and adds records by primary key, or creates a sequen
tial or direct file. 

Adds records to an existing indexed or direct file or to the end of an existing 
sequential file. When you use this option, you must also specify ADD in col
umns 16 through 18 of the Output specification. 

Creates an indexed file and adds records in an unordered sequence. 

For input files, you can choose one ofthe following entries: 

Entry 

Blank 

A 

2-32 

Explanation 

Reads records from a file without adding new records or changing existing 
records. 

Reads records from an indexed or direct file and allows you to add new 
records. When you use this option, you must also specify ADD in columns 16 
through 18 ofthe Output specification. 

Specifications 



For update files, you can choose one ofthe following entries: 

Entry 

Blank 

A 

Explanation 

Allows you to update the records in a file. 

Allows you to update the records in, and add records to, an indexed or direct 
file. When you use this option, you must also specify ADD in columns 16 
through 18 of the Output specification. 

You cannot add records to an indexed file that is being processed by a record-address file. 

2.5.23 Expansion Factor 
When records are added to indexed files, they are placed in buckets. (Buckets hold the con
tents of records.) If you attempt to randomly add a record into a full bucket, VAX RMS 
causes the bucket to split. VAX RMS tries to keep half ofthe records in the original bucket 
and moves the other records to a newly created bucket. Each split record leaves behind a 
pointer to the new bucket. When the system searches for one of the records in the newly 
created bucket, it must first go to the bucket where the record previously resided, read the 
pointer, and then move to the bucket pointed to by the pointer. This pointer manipulation 
overhead can add up, taking time and wasting disk space. 

To prevent bucket splitting and improve search efficiency, use an Expansion factor when 
creating an indexed file to reserve bucket space for the records you write to an indexed file. 
Also, specify a bucket size that is a multiple ofthe disk cluster size. To show the disk clus
ter size, type the following: 

$ SHOW DEVICE device/FULL 

Use column 67 to specify the Expansion factor. 

Column 
Number 

67 

Allowable 
Values 

Blank or 0 

1 (minimum) 

2 (average) 

3 (above avg) 

4 (maximum) 

Explanation 

Completely fills a bucket 

Sets index bucket fill size to 50% and sets data fill size to 
100% 

Sets index bucket fill size to 50% and sets data fill size to 
75% 

Sets index bucket fill size to 50% and sets data fill size to 
60% 

Sets index bucket fill size to 50% and sets data fill size to 
50% 

Specifications 2-33 



Additional Information 

• If the records you want to add are distributed unevenly by their key values, then RMS 
must split the buckets. In this case, use an Expansion factor of zero. 

• Records having key values that are close in sequence, and records added to the end of 
the file, cause VAX RMS to split the buckets anyway. For these kinds of records, use 
an Expansion factor of zero. 

• For output or update indexed files that are being created, RMS uses the Expansion 
factor to set the data bucket fill size and index bucket fill size in the key Extended 
Attribute Block (XAB). RPG II multiplies the bucket size value by 512 and adjusts the 
result based on the percentages listed above. 

Table 2-4 shows how the values for Expansion factor and Block length set the values 
for the following VAX RMS parameters: 

- FAB$B_BKS (bucket size) 

- XAB$W _IFL (indexed bucket fill size) 

- XAB$W _DFL (data bucket fill size) 

See the VAX Record Management Services Reference Manual for information on these 
parameters. See the Guide to VAX/VMS File Applications for information on indexed 
bucket fill size (index_fill) and data bucket fill size (data_fill). 

Table 2-4: Expansion Factor and Block Length Values 

File Block FAB$B_BKS XAB$W_IFL XAB$W_DFL 
Expansion Length 

1 (minimal) 1536 3 768 1536 
2 (average) 2048 4 1024 1536 
3 (above average) 1024 2 512 614 
3 (above average) 2048 4 1024 1228 
4 (maximum) 2000 4 1024 1024 

2-34 Specifications 



2.5.24 File Sharing 
Use column 68 to specify the file sharing requirements ofthe file. File sharing allows more 
than one program to access the records in a file at the same time. If more than one program 
tries to access the same record, the first program that accessed the record will be allowed to 
change it and 

• (S option) the record will be locked preventing access from other programs until the 
first program is finished with the record; 

• (R option) the record will be locked preventing update access from other programs, 
but will not be locked from programs attempting to read the record. 

However, on a CHAIN operation code, you can specify an indicator to be set on when a 
record is locked, allowing the program to proceed while the record is still locked. See Sec
tion II 3.7.1 for information on CHAIN indicators for locked records. 

Column 
Number 

Allowable 
Values 

Explanation 

68 Blank 

S 

R 

Uses RMS default file sharing 

Specifies file sharing 

Specifies file sharing with the lock for writing option 

Rules 

• Column 68 must be blank for a display file (D in column 15 of the File Description 
specification) and for an ADDROUT file (T in column 32 of the File Description 
specification) . 

• Specifying S or R in column 68 is valid for a sequential file only if the sequential file 
has fixed-format records (F in column 19 of the File Description specification) and 
with a record length of 512. 

Additional Information 

• Table 2-5 illustrates file sharing that is inherently specified as a result of the combi
nation of the entries in columns 15, 66, and 68 of the File Description specification. 
The File Description specification that specifies these entries is assumed to be the first 
to open the file. 

Specifications 2-35 



Table 2-5: File Sharing 
LEGEND: 

Symbol Meaning 

b Blank 

Columns 

15 66 68 

File File Share Explanation 
Type Addition 

I b b Any number of programs with the same entries in these three columns 
can read the file simultaneously. Any program with a c\ifferent entry in 
File Type or File Addition for this file will receive a file-locked error. 

I A b No other program is allowed simultaneous access to the file. Any other 
program will receive a file-locked error. 

0 b,A,U b 

U b,A b 

I, b,A,U S, Any other program with an S or R in Share can access the file simulta-
0, R neously, unless the file is for output and the file does not specify A for 
U File addition, in which case a new version of the file is created. Any 

other program with a blank in Share will receive a file-locked error . 

• RPG II does not set the SHR field of the FAB (File Access Block) for the file when 
Share is left blank. When you specify S in column 68, RPG II sets the SHR field to 
allow GET, PUT, DEL, and UPD access. When you specify R in column 68, RPG II also 
sets the RLK option. See the Guide to VAX/VMS File Applications for more informa
tion on file sharing. 

2-36 Specifications 



2.5.25 Tape Rewind 
Use column 70 to specify Tape rewind that positions a tape according to the current 
conditions. 

Column 
Number 

70 

Allowable 
Values 

Blank 

UorR 

N 

K 

L 

2.5.26 File Condition 

Explanation 

Indicates either that the file does not reside on tape, or, if 
the file does reside on tape, that the tape will rewind when 
the file is opened and closed 

Rewinds the tape when the file is opened and when the file 
is closed 

Does not rewind the tape 

Rewinds the tape when the file is opened 

Rewinds the tape when the file is closed 

Use columns 71 and 72 to specify the File condition. File condition associates an external 
indicator with a file. External indicators control file access at run time. When you condi
tion the file with an external indicator, RPG II opens the file only when the external indica
tor is set on. You can use external indicators to condition primary and secondary input and 
update files, record-address files, and output files. You can condition a record-address file 
by using an external indicator only if the following conditions are met: 

• The record-address file is associated with a primary or secondary input or update file . 

• The same indicator (or no indicator) is used to condition the associated file. 

See Part I, Chapter 4 for more information on external indicators. 

Column 
Number 

71,72 

Allowable 
Values 

Blank 

UI-US 

Explanation 

Indicates no external indicator for this file 

N ames the external indicator that controls file access at 
run time 

When you condition a file with an external indicator, use the same indicator to condition 
calculations and output operations for the same file. 

Specifications 2-37 



2.5.27 Example 
In the following example, 

• Line 1020 describes a primary input file with fixed-record format. Each record is 96 
bytes. The file CICWMS resides on disk with a symbolic device ofXXl. 

• Line 1030 describes a demand file for input with fixed-record format. Each record is 96 
bytes. The file CARD58 resides on disk with a symbolic device of XX2. The external 
indicator U1 must be set on if the file is to be opened. 

• Line 1040 describes a demand file for update with fixed-record format. Each record is 
190 bytes. The file ICM resides on disk with a symbolic device ofXX4. 

• Line 1110 describes an output file with fixed-length records. Each record is 132 bytes. 
The output file CONTRL will be written to the printer whose symbolic device is X11. 
The overflow indicator is specified to condition output lines when an overflow occurs. 

rile 
nalile 
I 

FI 

Mode (LR) 
IKe!:t length 

T!:tpe (lOUD) II Record address t!:tpe (API) 
IDes (PSRCTD) I I IOrganization (IT,1-9) 
IIEOr (E) II IIOyerflow indicator 
IIISeq (AD) II II I Ke!:t location 
I I Ilrlllt (rV) II II I I Extension (EL> 
1IIIIBIk Rec II II I I IDeyice S!:tlllb Tape 
IllIllen len II III I Icode dey label 
111111 I ""I I II I I 

Core 
index 
I 

Addtn(AU) 
I Expand 
I I Share 
III Rewnd 
"I I 
"I Irile 
I I I Icond 
"I " 011 1213 I 4 I 5 16 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** 

01020rCICWMS 
01030rCARD58 
01040FICM 
01110rCONTRL 

******---*---**-*** *---** * 
IP r 96 DISK XXl 
ID r 96 DISK XX2 
UD r 190 DISK XX4 
o r 132 or PRINTR Xll 

2.6 Extension Specification 

*.111 •• *-----***.** II 

Ul 

ZK-4474-85 

The Extension specification allows you to give RPG II additional information about record
address files, tables, and arrays. See Part I, Chapter 5 for information about record-address 
files. See Part I, Chapter 7 for information about tables. See Part I, Chapter 8 for informa
tion about arrays. 

2-38 Specifications 
( 
"-. 



In general, use the Extension specification to describe the following information about a 
table or array: 

• Name of the table or array 

• Number of entries per record 

• Number of entries per table or array 

• Length of each table entry or array element 

• Format of numeric data 

• Decimal position 

• Sequence of entries 

• Related tables or related arrays in alternating format 

If your program uses a record-address file, complete columns 11 through 26 to provide the 
following information: 

• Name ofthe record-address file 

• Data file associated with the record-address file 

If your program uses tables or arrays, the time you load the tables or arrays determines the 
columns you must complete. For compile-time tables and arrays, you must complete col
umns 19 through 57; for pre-execution-time tables and arrays, columns 11 through 57; and 
for execution-time arrays, columns 27 through 32 and columns 36 through 45. 

2.6.1 Extension Specification Format 
The format of the Extension specification is: 

E 

Frolll 
file 
nallle 
I 
I 

To 
file 
nallle 
I 
I 

------F = Forlllat (PB) 
I -----D = Decilllal positions 
I I ----5 = Sequence (AD) 
III 
IllAlternating table or arra~ 

Table EntEnt Lenilinallle Len 
or perin of Fill of F 
arra~ RecTbl EntlDI EntlD 
nallle I I I I I 5 I I I I 5 
I I I I IIII I 111+-- COllllllents ---+ 

011 1213 I 4 1516 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

* * 
ZK-4475-85 

Specifications 2-39 



2.6.2 Specification Type 
Use column 6 to identify the type of specification for every program line. 

Column 
Number 

6 

Allowable 
Values 

E 

2.6.3 From File Name 

Explanation 

Indicates that this program line is an Extension specifica
tion 

Use columns 11 through 18 to specify the From file name that identifies the name of the 
record-address file or the input file used to load a pre-execution-time table or array. 

Column 
Number 

11-18 

Rules 

Allowable 
Values 

Blank 

Name 

Explanation 

Loads the table or array named in columns 27 through 32 
(Table or array name) at compile time, if columns 33 
through 35 (Entry per record) are completed. 

Loads the array at execution time if specified by the Input 
and/or Calculation specification and if columns 33 through 
35 are left blank. 

Names a record-address file, if specified. Otherwise, 
names the table or array input file. RPG II uses this file to 
load the table or array at pre-execution time. 

• This file name must be the same file name you used in a File Description specification. 

• Left-justify this entry. 

2.6.4 To File Name 
Use columns 19 through 26 in connection with your entry in columns 11 through 18 (From 
file name). If you name a record-address file in columns 11 through 18, specify the name of 
the input or update file it processes in columns 19 through 26. 

2-40 Specifications 



Column 
Number 

19-26 

Rules 

Allowable 
Values 

Blank 

File name 

Explanation 

Does not write the table or array file at the end of the pro
gram. 

Identifies the data file associated with the record-address 
file, if you use a record-address file. If you do not use a 
record-address file, this entry names the output file that 
receives the data from the table or array at the end of the 
program. 

• This file name must be the same file name you used in the File Description 
specification. 

• If you want to write a table or an array to an output file at the end of the program, 
enter the file name in columns 19 through 26. 

• You cannot write an execution-time array to an output file. 

• Left-justify this entry. 

2.6.5 Table or Array Name 
Use columns 27 through 32 to name the table or array you want to use. 

Column 
Number 

27-32 

Rules 

Allowable 
Values 

Blank 

Name 

Explanation 

Indicates that the file named in columns 11 through 18 
(From file name) is a record-address file 

Identifies the name of the table or array 

• A table name can be any string of three to six alphanumeric characters, beginning 
with TAB. Table names cannot contain embedded blanks. 

• An array name can be any string of one to six alphanumeric characters, beginning 
with an alphabetic character. Array names cannot begin with TAB and cannot con
tain embedded blanks. 

• If you use tables or arrays in alternating format, this entry describes the name ofthe 
main table or array. Identify the alternate table or array name in columns 46 through 
51. 

• Left-justify this entry. 

Specifications 2-41 



2.6.6 Number of Entries in a Record 
Use columns 33 through 35 to specify the number of entries in a table or array input 
record. Complete this entry for compile-time and pre-execution-time tables and arrays. 

Column 
Number 

33-35 

Rules 

Allowable 
Values 

Blank 

1-999 

Explanation 

Indicates a record-address file or an execution-time array 

Specifies the number of entries in a table or array input 
record 

• All records except the last must have the same number of entries. The last record can 
have fewer entries to accommodate a number of entries that is not an even multiple of 
the defined number of entries in the record. 

• The first entry must begin in the first position of the record. 

• Leave no spaces between entries in a record. 

• Entries cannot span two records. 

• If you use tables or arrays in alternating format, each record must contain a corre
sponding entry. The entries from the main table or array and the corresponding 
entries from an alternate table or array are treated as one entry. 

• Right-justify this entry. 

• Leading zeros can be omitted. 

2.6.7 Number of Entries in a Table or Array 
Use columns 36 through 39 to specify the number of entries in a table or array and in an 
alternate table or array, if an alternate table or array is used. 

Column 
Number 

36-39 

Allowable 
Values 

Blank 

1-9999 

2-42 Specifications 

Explanation 

Indicates that the file named in columns 11 through 18 
(From file name) is a record-address file 

Specifies the number of entries in a table or array 



Rules 

• If a compile-time or pre-execution-time table or array is not completely full, RPG II 
fills the unused entries with blanks for alphanumeric data or zeros for numeric data. 
If you specify an entry in column 45 (Sequence) of the Extension specification, pre
execution-time and compile-time tables and arrays must be full (RPG II does not fill 
the short entries). 

• Right-justify this entry. 

• Leading zeros can be omitted. 

2.6.8 Length of Entry 
Use columns 40 through 42 to specify the Length of entry that defines the number of char
acter (alphanumeric or numeric) positions in each table or array entry. 

Column 
Number 

40-42 

Rules 

Allowable 
Values 

Blank 

1-999 

Explanation 

Indicates that the file named in columns 11 through 18 
(From file name) is a record-address file 

Specifies the number of character positions (both alphanu
meric and numeric) in each table or array entry 

• For an alphanumeric entry, the maximum number of characters is 999. 

• For a numeric entry, the maximum number of digits is 15. 

• For numeric data, the maximum number of digits in binary format is 9. 

• For compile-time arrays, the maximum length of an entry is 96, because this is the 
largest record that can be entered in the source program. 

• When you use table and arrays in alternating format, this entry specifies the length of 
the entry in the main table or array. 

• Because all entries in a table or array must be the same length, fill unused alphanu
meric character positions with blanks and fill numeric entries with zeros. 

• Right justify this entry. 

• Leading zeros can be omitted. 

Specifications 2-43 



2.6.9 Format 
Use column 43 to specify how numeric data is stored. Data format can be one of the follow- ,/ 
ing three formats: \,,----

• Overpunched decimal 

• Packed decimal 

• Binary 

Base your selection offormat on the storage space available and the frequency of use. See 
Part II, Chapter 1 for more information on data formats. 

Column 
Number 

43 

Allowable 
Values 

Blank 

P 

B 

2.6.10 Decimal Positions 

Explanation 

Specifies that numeric data is in overpunched decimal for
mat, or that the table or array contains alphanumeric 
data. Jfyou do not specify a table or an array, a blank indi
cates that the file named in columns 11 through 18 (From 
file name) is a record-address file. 

Specifies that numeric data is in packed decimal format. 
This format is valid only for pre-execution-time tables or 
arrays. 

Specifies that numeric data is in binary format. This for
mat is valid only for pre-execution-time tables or arrays. 

Use column 44 to specify Decimal positions that defines the number of positions to the 
right of the decimal point for numeric data in a table or array. 

Column 
Number 

44 

Allowable 
Values 

Blank 

0-9 

Explanation 

Specifies a record-address file or indicates that the table or 
array, if used, contains alphanumeric data 

Specifies the number of positions to the right of the deci
mal point for numeric data in a table or array 

You must specify zero for numeric data with no Decimal positions. 

2-44 Specifications ( 
"-



2.6.11 Sequence 
Use column 45 to specify the Sequence that defines the order of entries in a table or array. 
RPG II checks each entry for the order you specify. 

Column Allowable Explanation 
Number Values 

45 Blank 

A 

D 

Specifies a record-address file, or indicates that the entries 
in a table or an array are unordered 

Specifies that the entries in a table or array are in ascend
ing order 

Specifies that the entries in a table or array are in descend
ing order 

Rules 

• Consecutive entries that are equal in value are considered to be in sequence. 

• When you use tables or arrays in alternating format, this entry specifies the sequence 
of the main table or array. 

• When you specify a sequence for a compile-time or pre-execution-time table or array, 
RPG II checks the sequence of the entries in a table or an array. If an entry in a com
pile-time table or array is out of sequence, RPG II reports a fatal error at compilation. 
If a pre-execution-time table or array is out of sequence, a run-time error occurs. 

• You must specify a sequence if you use an indicator to test for a HIGH or LOW condi
tion in a LOKUP operation associated with the table or array. See Part II, Chapter 3 
for information on LOKUP. 

• You can specify a sequence for an execution-time array, but RPG II does not check the 
sequence. However, if the execution-time array is not in correct sequence and you 
specify a LOKUP operation with a HIGH or LOW condition, unpredictable results 
will occur. 

2.6.12 Alternate Table or Array 
Use columns 46 through 57 to define the name, entry length, data format, number of deci
mal positions, and sequence for an alternate table or array. If you specify a table, you must 
use another table as its alternate. If you specify an array, you must use another array as its 
alternate. The same rules for columns 27 through 45 apply to the entries in columns 46 
through 57. 

Specifications 



2.6.13 Comments 
Use columns 58 through 74 to document the program line. 

Column 
Number 

58-74 

Allowable 
Values 

Any 
character 

2.6.14 Example 

Explanation 

Documents the program line 

The following example specifies 

• A pre-execution-time array to be loaded from the file TABLEF at start of program 
execution (line 40) 

• A compile-time table with an alternate table (line 50) 

• A compile-time array (line 60) 

• An execution-time array (line 70) 

rrolll 
file 
nallle 
I 

To 
file 
nallle 
I 

------r = rorlllat (PB) 
I -----D = Decimal positions 
II ----5 = Sequence (AD) 
III 
IllAlternating table or arra~ 

Table EntEnt Leniliname Len 
or perin of rll I of r 
arra~ RecTbl EntlDl1 EntlD 
name I I I 1151 I 115 

E I I I I I I 1111 I 111+-- Comments ---+ 
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 

t2345678901234567890123456789012345678901234567890123456789012345678901234567890 
* .... * * * *--*---*--**** *--**** 

40E TABLE1 ARRAY1 4 8 5 0 
50E TABLE2 4 8 1 TABLE3 3 0 
60E ARRAY2 30 100 1 
70E ARRAY3 30 1 

ZK·4476-85 

2.7 Line Counter Specification 
The default length for a page of printer output is 66 lines; the default overflow line is at line 
60. When the printer reaches the overflow line, RPG II sets the overflow indicator on. 

The Line Counter specification allows you to alter the default page format of a printer out
put file. You can use this specification to change both the number oflines on a page and the 
overflow line. 

2-46 Specifications 



2.7.1 Line Counter Specification Format 
The format of the Line Counter specification is: 

For~ length (1-112) 
File I FL (if For~ length used) 
na~e I I Overflo~ line nu~ber (1-112) 
I I I I OL (if Overflo~ line used) 

LI I I I I 
011 12 I 3 I 4 1516 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** 
ZK-4477-85 

2.7.2 Specification Type 
Use column 6 to identify the type of specification for every program line. 

Column 
Number 

6 

Allowable 
Values 

L 

2.7.3 File Name 

Explanation 

Indicates that this program line is a Line Counter specifi
cation 

Use columns 7 through 14 to name the output file. 

Column 
Number 

7-14 

Rules 

Allowable 
Values 

File name 

Explanation 

Identifies the name ofthe output file 

• The output file must be described on the File Description specification with PRINTER 
in columns 40 through 46 (Device code) and L in column 39 (Extension) . 

• Left-justify this entry. 

See Part II, Chapter 1 for information on naming files. 

Specifications 2-47 



2.7.4 Form Length 
Use columns 15 through 17 to define the number of lines printed on a page. Once the 
printer reaches the last specified line, it skips to the next page and resumes printing. 

Column 
Number 

15-17 

Rules 

Allowable 
Values 

1-112 

Explanation 

Defines the maximum number oflines that can be printed 
on a page 

• This entry must be a numeric value. 

• Right-justify this entry. 

• Leading zeros can be omitted. 

2.7.5 FL 
If you specify an entry in columns 15 through 17 (Form length), you must enter FL in col
umns 18 and 19. This entry specifies that columns 15 through 17 define the Form length. 

Column 
Number 

18,19 

Allowable 
Values 

FL 

2.7.6 Overflow Line Number 

Explanation 

Causes RPG II to use the Form length defined in columns 
15 through 17 

Use columns 20 through 22 to specify the Overflow line number. When the page reaches 
the overflow line, RPG II sets the overflow indicator on. 

Column 
Number 

20-22 

Rules 

Allowable 
Values 

1-112 

Explanation 

Specifies the Overflow line number 

• This entry must be equal to or less than the entry in columns 15 through 17 (Form 
length). 

• This entry must be a numeric value. 

• Right-justify this entry. 

• Leading zeros can be omitted. 

2-48 Specifications 



2.7.7 OL 
If you specify an Overflow line number in columns 20 through 22 (Overflow line number), 
you must enter OL in columns 23 and 24. This entry specifies that columns 20 through 22 
define the Overflow line number. 

Column 
Number 

Allowable 
Values 

Explanation 

23,24 OL Causes RPG II to use the Overflow line number defined in 
columns 20 through 22. 

2.7.8 Example 
In the following example, the Form length is 100 lines and the Overflow line number is 
line 96. 

Form length (1-112) 
File I FL (if Form length used) 
name I I Overflow line number (1-112) 
I I I I OL (if Overflow I ine used) 

LI I I I I 
011 1213 I 4 1516 171 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** 
LINPUT 

*--* *--* ..... I •••• I •• I •• I •••••• I •••••••• , ••••• I ••••••••••• 

100FL 960L 
ZK-4478-85 

2.8 Input Specification 
The Input specification describes the records in input and update files. Each record is fur
ther divided into fields. Columns 7 through 42 describe the file and its records. Columns 43 
through 74 describe the fields in each record. 

The Input specification also describes data structure statements and data structure sub
fields. See Section 2.8.4 for information on data structures. 

You must use an Input specification to describe each input or update file except for table 
input files and record-address files. 

Specifications 2-49 



2.8.1 Input Specification Format 
The format of the Input specification is: 

File 
naPle 
I 

I I 

Se~uence (AA-ZZ, 01-99) 
I NUPlber (1-N) 
I 10ptional (0) DeciPlal positions 
I I I Record identifHing indicator I Control level 
I III I I Match field 
I I I I + IdentifHing codes + For Plat I I I Fld rec reI 
I III I I I (PB) IField I I I 
I III ICC CI IField InaPle I I I Field 
I III I Z Z ZI I location I I I I I indicatrs 
I III Pos NDcPos NDcPos NDc IFr To II I I 1+- 0 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * * * * * * 
ZK-4479-85 

2.8.2 Specification Type 
Use column 6 to identify the type of specification for every program line. 

Column 
Number 

6 

Allowable 
Values 

I 

2.8.3 File Name 

Explanation 

Indicates that this program line is an Input specification 

Use columns 7 through 14 to name the input or update file. 

Column 
Number 

7-14 

Rules 

Allowable 
Values 

File name 

Explanation 

Identifies the name of the input or update file 

• Use the same name you specified in the File Description specification. 

• If this column is blank, RPG II assumes that the information in this program line 
describes a field or record from the file named last. 

• Describe all the records and fields for one file before describing another file. 

• Left-justify this entry. 

2-50 Specifications 



In the following example, EMPLOYEE is the name ofthe input file, and the fields NAME 
and ADDRES, each containing 20 characters, belong to each record in the file. 

Sequence (AA-ZZ, 01-99) 
I NUlllber (1-N) 
I 10ptionai (0) Decilllal positions 
I I I Record identif~ing indicator I Contro I I eve I 
I III I I Match field 
I III + Identif~ing codes + Forlllat I I I Fld rec rei 

File I III I I I (PB) IFieid I I I 
nallle I III I C C CI IField Inallle I I I Field 
I I III I Z Z ZI II ocation I I I I I indicatrs 

I I I III Pos NDcPos NDcPos NDc IFr To II I I I + - 0 
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** * *** *--- *--- *--- .**---*---** * * * * * * 
IEMPLOYEEAA 
I 1 20 NAME 
I 21 41 ADDRES 

ZK-44BO-B5 

2.8.4 Data Structures 
Data structures consist of a data structure statement and 0 or more data structure sub
fields. You must describe data structures on Input specifications. Data structures follow all 
Input specifications (including all modifier specifications) for records. 

You can use data structures to do the following: 

• Define one area of storage more than one way 

• Define subfields within a field or subfield 

• Reorganize fields in an Input record 

• Select the internal numeric data type for fields 

• Communicate information between programs with a local data area 

Specifications 2-51 



2.8.4.1 Data Structure Statement 

Column Allowable Explanation 
Number Values 

7-12 Data Identifies the data structure. The data structure name, 
which is not required, can be a field defined on Input speci
fications or Calculation specifications or defined nowhere 
else in the program. 

Structure 
Name 

18 U Optional. Identifies this data structure as the local data 
area. 

19-20 DS Specifies a data structure. 

48-51 1-9999 Columns 48 through 51 may optionally contain the data 
structure length. 

Rules 

• The data structure name can appear on only one data structure specification, cannot 
be a look-ahead field, and can be specified anywhere a character field is allowed. 

• The length of the data structure is one ofthe following: 

1. The length specified in the Input specification, if the data structure name is an 
Input field 

2. The length specified in positions 48 through 51 ofthe data structure statement 

3. The highest To position (end position) of a subfield within a data structure, if the 
data structure name is not an Input field 

• The length computed by the To position must be less than or equal to the length speci
fied in 1 or 2 above. 

• Any length on a Calculation specification must match the largest value specified in 1 
or 2 above. 

• Because it is possible to specify the length of a single data structure in all three ofthe 
above ways in a single RPG II program, a compiler diagnostic will be given for any 
length conflicts. This will not occur if the length in columns 48 through 51 exceeds the 
highest To position for any subfield in the data structure. 

2.8.4.2 Data Structure Subfields 
Data structure subfields are described in columns 43 to 58. They are defined as on any 
other Input field specification. See Section 2.8.11 through 2.8.14 for those field specifica
tion requirements. 

2-52 Specifications 



The field location start and end positions are relative to the beginning of the data struc
ture, not to the beginning of the data record. 

Rules 

• All columns except columns 43 through 58 must be left blank. 

• The subfield name can be the same as a field defined on an Input specification or a 
Calculation specification. 

• Subfields can be used as factor 1, factor 2, or the result field of a Calculation specifica
tion or as Output fields. 

• The same subfield name cannot be used in more than one data structure. 

• A data structure name cannot be used as a subfield name in another data structure. 

• Numeric subfields must contain numeric data when used in CHAIN, LOKUP, COMP, 
editing operations, or arithmetic operations. 

• If arrays are specified as subfields, the length specified must equal the amount of stor
age required to store the entire array. 

• A data structure subfield can not be an indicator (*IN field) or a UDATE field. 

• Overlapping subfields cannot be used in the same calculation in such a way that the 
result field overlaps either factor 1 or factor 2. If either factor 1, factor 2, or the result 
field references a subfield in a data structure that is an entire array or an array with a 
variable index, then that array is used to determine whether overlap exists. The same 
array name can be referenced in the appropriate factors of a Calculation specification 
without violating the overlap rule. 

• Any subfield previously defined in an Input record must agree in length (in digits), 
and in decimal positions. If the numeric datatype is different from what was specified 
in an Input record, the length (in digits) must still agree. 

• Any subfield defined more than once in the same data structure must be defined with 
the same datatype and start position, the same length, and the same decimal posi
tions, in the data structure. 

• Neither data structures nor data structure subfields can be individual array 
elements. 

• All entries for a data structure statement and its data structure subfields must appear 
together; they cannot be mixed with entries for other data structures. 

• A data structure statement and a data structure subfield cannot have the same name. 

See Section 2.8.15 for examples of using data structures. 

Specifications 2-53 



2.8.4.3 Local Data Area 
The RPG II local data area is a data structure of up to 512 bytes used as a means of commu
nicating information from one RPG II program to another. In addition, the RPG II local 
data area can be manipulated (read or written) at DCL command level or from a program 
written in another language. 

To specify a local data area, a data structure must have a U in column 18 on the I specs. The 
data structure need not have a name. Only the first 512 bytes of the data structure are 
loaded at program start and written out at program exit. At most, one data structure may 
have a U in column 18. 

The RPG II local data area is implemented with VMS DCL symbols (see the VAXIVMS 
DCL Dictionary for examples of manipulating DCL symbols). The following 4 symbols are 
used and correspond to the indicated bytes within a data structure with U in column 18: 

RPG$LDA1 

RPG$LDA2 

RPG$LDA3 

RPG$LDM 

2.8.5 Sequence 

1-128 

129-256 

257-384 

385-512 

Use columns 15 and 16 to specify the Sequence that defines the ordering sequence of the 
record types in a file (for example, distinguishing employee name records from employee 
badge number records). RPG II does not order records according to sequence; rather, it 
checks the sequence of records in the input or update file. 

Column 
Number 

15,16 

Allowable 
Values 

Any two 
alphabetic 
characters 

Blanks 

Any 
two-digit 
number 

Explanation 

Performs no sequence checking for this record. You can use 
any two letters from AA through ZZ, for example, BB, ZA, 
or DE. You must specify an alphabetic sequence for 
chained and demand files and look-ahead fields. 

Specifies no sequence checking for this record. 

Assigns a sequence number to a record. You can use any 
two numbers from 01 to 99; however, you must use 
sequence codes in ascending order, beginning with 01. 

RPG II does not require that all Input specifications in alphabetic sequence appear before 
those Input specifications in numeric sequence. 

2-54 Specifications 



2.8.6 Number 
If you assigned a numeric sequence code in columns 15 and 16, use column 17 to indicate 
the number of records in a record type. 

Column 
Number 

17 

Allowable 
Values 

1 

N 

Explanation 

Specifies that there is only one record of this type 

Specifies that there can be more than one record of this 
type 

Leave this column blank if you specified an alphabetic sequence in columns 15 and 16. 

2.8.7 Option 
If you assigned a numeric sequence code in columns 15 and 16, you can use column 18 to 
specify whether a record of that type must be present to continue processing records. 

Column Allowable Explanation 
Number 

18 

Values 

Blank 

o 
Specifies that a record of that type must be present 

Specifies that a record of that type is optional 

Leave this column blank, if you specified an alphabetic sequence in columns 15 and 16. 

2.8.8 Record-Identifying Indicator 
Specifying an indicator in columns 19 and 20 associates the indicator with a particular 
record type. When RPG II processes a record of the type you specify for this program line, it 
also sets on the indicator, which remains on until after detail-time output. Then, RPG II 
sets off all indicators used as record-identifying indicators. See Part I, Chapter 4 for more 
information. 

Specifications 2-55 



Column 
Number 

19,20 

Allowable 
Values 

Blank 

01-99 

L1-L9 

H1-H9 

LR 

** 

DS 

Explanation 

Specifies not to set on an indicator when RPG II processes 
a record of the type you specify. 

Specifies a record-identifying indicator. 

Specifies a control-level indicator. When RPG II sets on 
this type of indicator, it does not automatically set on 
lower-level control-level indicators. 

Specifies a halt indicator. 

Specifies a last-record indicator. 

Specifies that the fields described on the subsequent pro
gram lines are look-ahead fields. 

Specifies a data structure. 

Look-ahead fields allow you to 

• Determine when the last record of a control group is processed 

• Extend the matching-field processing capability 

Normally, RPG II processes one record at a time. The data from the record currently being 
processed is available. With look-ahead fields, you can evaluate the data from the next / 
record to be processed and then determine which operation to perform. 

Any or all of the fields in a file can be specified as look-ahead fields. The description applies 
to all records regardless of their record type. 

To specify a field as a look-ahead field, you must enter ** in columns 19 and 20 of the Input 
specification. Also, you must specify an alphabetic sequence in columns 15 and 16 of the 
Input specification. All other columns must be blank. Then, on the next program line, 
enter the field name, as shown in the following example: 

Sequence (AA-ZZ, 01-99) 
I NUlllber (1-N) 
I 10ptionai (0) Deci~al positions 
I I I Record identifying indicator I Contro I I eve I 
I III I I Hatch field 
I III + Identifying codes + Forlllat I I I rId rec rei 

File I III I I I (PB) IFieid I I I 
nallle I III I C C CI IFieid Inallle I I I Field 
I I III I Z Z ZI Ilocationil I I I indicatrs 

I I I III Pos NDcPos NDcPos NDc IFr To II I I I + - 0 
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** * *** *--- *--- *--- .**---*---** * * * * * * 
IEHPLOYEEAA 01 
I 20 NAHE 
I BB ** 
I 21 25 BADGE 

ZK-4481-85 

2-56 Specifications 



When using look-ahead fields, observe the following rules: 

• Look-ahead fields can be used only with input or update primary or secondary files. 

• For input files, look-ahead fields apply to the next record in the file. 

• For update files, look-ahead fields apply only to the next record in the file if the cur
rent record being processed was read from another file. Therefore, if you are using 
only one file, the look-ahead field is the current record being processed. 

• Look-ahead fields can be specified only once in a file. 

• Look-ahead fields cannot be the only record in the file. 

• As RPG II processes the last record, it fills any look-ahead fields with 9s. In this case, if 
the field is ten characters long, it will contain the data 9999999999. 

• Columns 59 through 70 must be blank on Input specifications describing look-ahead 
fields. 

• You cannot specify Blank after (B in column 39 ofthe Output specification) for look
ahead fields. 

• A look-ahead field cannot be used as a Result field in a Calculation specification. 

2.8.9 Record Identification Codes 
Use columns 21 through 41 to define a record type and to specify the code that indicates 
how to identify it. You can subdivide these columns into three subsets (columns 21 through 
27,28 through 34, and 35 through 41), each defining a different code. 

If you use more than one subset, the record must satisfy all record identification codes. 
Used in this way, the codes form an AND relationship. IfRPG II cannot identify a record 
according to the identification codes of all the records in a file, it issues a run-time error. 

If there is only one record type for a file, you can leave these columns blank. Also, you can 
leave these columns blank when describing the last record type in a file. This defines a 
record type to catch all records that do not fall into any of the record types you previously 
described. 

RPG II checks records for a record type in the order in which you specify them on the Input 
specification. 

Specifications 2-57 



2.8.9.1 Position 
Use columns 21 though 24,28 through 31, and 35 through 38 to define the Position that 
specifies where to look for the identification code in the input record. 

Column 
Number 

21-24 
28-31 
35-38 

Rules 

Allowable 
Values 

Blank 

1-9999 

• Right-justify this entry . 

Explanation 

Indicates that there is no record identification code. In this 
case, make sure that the corresponding Not, character (C), 
zone (Z) or digit (D) portion, and the character columns are 
blank. 

Defines the position of the character you specify in col
umns 27, 34, and 41. For example, the number in columns 
28 through 31 specifies the position of the character in col
umn34. 

• Leading zeros can be omitted. 

2.8.9.2 Not 
Use columns 25, 32, and 39 to specify whether an identification code must be present in the 
input record. 

Column 
Number 

25,32,39 

Allowable 
Values 

Blank 

N 

2.8.9.3 CZD Portion 

Explanation 

Indicates that the identification code you specify in the 
next two columns (26 and 27, 33 and 34, and 40 and 41) 
must be present to identify a record type. For example, if 
column 32 is left blank, the identification code in columns 
33 and 34 must be present. 

Indicates that the identification code must not be present 
to identify a record type. For example, if you specify N in 
column 39, the identification code in columns 40 and 41 
must not be present. 

Use columns 26,33, and 40 to specify what portion of the character to use when identifying 
a record code. You can use the character (C), zone (Z), or digit (D) portion of the character. 
Many characters have either the same zone or digit portion. To distinguish between zone 
and digit portions, you must use their EBCDIC equivalent. See Appendix A for the ASCII 
character set and their corresponding EBCDIC zone and digit codes. 

2-58 Specifications 



Column 
Number 

26,33,40 

Allowable 
Values 

Blank 

C 

z 

D 

2.8.9.4 Character 

Explanation 

Indicates that there is no record identification code. Its cor
responding Position, Not, and Character columns must be 
left blank. 

Causes RPG II to use the entire character to identify the 
record. 

Causes RPG II to use the EBCDIC zone portion to identify 
the record. 

Causes RPG II to use the EBCDIC digit portion to identify 
the record. 

Use columns 27, 34, and 41 to specify the identification character for the input record. 

Column 
Number 

Allowable 
Values 

Explanation 

27,34,41 Any 
character 

Specifies the character part of the identification code 

In the following example: 

• I in column 6 specifies that this program line is an Input specification. 

• EMPLOYEE in columns 7 through 14 names the input file. This file contains the 
name, address, and telephone number for each employee. 

• The characters AA in columns 15 and 16 specify no sequence checking. 

• RPG II sets on the indicator you specified in columns 19 and 20 (05) after it reads a 
record that matches the identification codes defined in columns 21 through 4l. 

There are three parts to the code that identifies this record type: 

1. Position 1 must contain the character A. 

2. Position 31 must contain the character C. 

3. Position 123 must not contain a character with an EBCDIC digit portion of the 
number 6. This includes the characters F, 0, W, 6, f, 0, and w. 

Specifications 2-59 



Sequence (AA-ZZ, 01-99) 
I NUJllber (1-N) 
I I Optional (0) Decilllal positions 
I IIRecord identif~ing indicator I Contro I I eye I 
I III I I Hatch field 
I III + Identif~ing codes + Forlllat I I I Fld rec I'el 

File I II I I I I (PB) IField I I I 
nallle I III I C C CI IField Inallle I I I Field 
I I II I I Z Z ZI Ilocationil I I I indicatrs 

I I I III Pos NDcPos NDcPos NDc IFr To II I I I + - 0 
o I 1 121 3 I 4 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** * *** *--- *--- *--- .**---*---** * * * * * * IEHPLOYEEAA 05 1 CA 31 CC 123ND6 

ZK-4482-85 

2.8.10 AND/OR 
Use columns 14 through 16 to enter AND or columns 14 and 15 to enter OR that associates 
two program lines to specify an identification code. 

AND specifies that the identification codes in two program lines must be matched in order 
to identify the record and to set on the record-identifying indicator, if one is specified. 

OR specifies that the identification code in either program line must be matched in order to 
identify the record and to set on the record-identifying indicator, if one is specified. 

Column 
Number 

14-16 

14,15 

Rules 

Allowable 
Values 

AND 

OR 

Explanation 

Specifies an AND relationship between the identification 
codes on this program line and the previous program line 

Specifies an OR relationship between the record identifi
cation codes on this program line and the previous pro
gram line 

• If you use AND, columns 7 through 13 and 17 through 20 must be left blank. 

• If you use OR, columns 7 through 13 and 16 through 18 must be left blank. 

• You can enter a record-identifying indicator in columns 19 and 20 in an OR line. If you 
leave columns 19 and 20 blank, the record-identifying indicator in the preceding pro
gram line also applies to this program line. 

2-60 Specifications 

\ , 



In the following example, there are four characters that identify a record type in 
EMPLOYEE: 

1. Position 1 must contain the character A. 

2. Position 31 must contain the character C. 

3. Position 1111 must contain the character zero. 

4. Position 123 must not contain the character 6. 

The record must meet all the conditions in both program lines before RPG II sets on the 
indicator (05). 

RPG II identifies a record type in the file RETIRED if position 1 contains the character I 
and position 31 contains the character D, or if position 123 does not contain the character 
6. The record must meet the conditions defined in either program line before RPG II sets on 
the indicator (06). 

Se~uence (AA-ZZ, 01-99) 
I NUPlber (l-N) 
I 10ptionai (0) DeciPlal positions 
I I I Record identif~ing indicator I Conkol'level 
I III I I Match field 
I III + Identif~ing codes + ForPlat I I I Fld I'ec reI 

File I III I I I (PB) IField I I I 
naPle I III I C C CI IField InaPle I I I Field 
I I III I Z Z ZI II ocation II I I I indicaks 

I I I III Pos NDcPos NDcPos NDc IFr To II I I I + - 0 
o I 1 I 2 I 3 I 4 151 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** * *** *--- *--- *--- .**---*---** ****** .... 
IEMPLOYEEAA 05 1 CA 31 CC 123NC6 
I AND 1111 CO 
IRETIRED AA 06 1 CI 31 CD 
I OR 123NC6 

ZK-4483-85 

2.8.11 Format 
Use columns 7 through 41 to describe the file and the records in the file. Use columns 43 
through 75 to describe the fields of each record. Field descriptions must begin one line 
below the file and record description. Use a separate line to describe each field you plan to 
use. 

If a field contains numeric data, use column 43 to specify its format. You can specify 
overpunched decimal, packed decimal, or binary format. See Part II, Chapter 1 for infor
mation on data formats. 

Specifications 2 __ 61 



Column 
Number 

43 

Allowable 
Values 

Blank 

P 

B 

Explanation 

Indicates that the field contains either alphanumeric 
characters or numeric data in overpunched decimal for
mat 

Indicates that numeric data is in packed decimal format 

Indicates that numeric data is in binary format 

See Part II, Chapter 1 for information on numeric data types. 

2.8.12 Field Locations From and To 
You define the fields of a record by specifying their location. Use columns 44 through 47 to 
specify the beginning character position ofthe field. Use columns 48 through 51 to specify 
the ending character position of the field. 

Column 
Number 

44-47 

48-51 

Rules 

Allowable 
Values 

1-9999 

1-9999 

Explanation 

Specifies the beginning character position of the field 

Specifies the ending character position of the field 

• The maximum length of a field depends on the type of data it contains. The maximum 
field length of over punched decimal data is 15. The field length of binary data can be 2 
or 4. The maximum field length of packed decimal data is 8. To determine the field 
length of packed decimal data, divide the number of digits by 2 and add 1, ignoring the 
remainder. For example, if the number of digits in packed decimal data is 9, th~ 
length is 5. The maximum field length of alphanumeric data is 9999. 

• Fields can overlap if you give each field a different name. 

• Right-justify this entry. 

• Leading zeros can be omitted. 

2-62 Specifications 



2.8.13 Decimal Positions 
If a field contains numeric data, use column 52 to specify the number of digits to the right of 
the decimal point. 

Column 
Number 

Allowable 
Values 

Explanation 

52 Blank 

0-9 

Indicates that this field contains alphanumeric data 

Specifies the number of positions to the right of the deci
mal point 

Rules 

• You must specify a value in this column even if the numeric data has no decimal 
points. In this case, use zero. 

• The number of decimal positions must be less than or equal to the number of digits in 
the numeric field. 

If you specify 2 in this column and the field contains the data 12345, the field's value is 
interpreted as 123.45. If you specify 4 in this column and the field contains the data 12345, 
the field's value is interpreted as 1.2345. 

2.8.14 Field Name 
Use columns 53 through 58 to assign a name to the field you defined in columns 43 through 
52, or to specify the page number for PAGE. 

Column Allowable Explanation 
Number Values 

53-58 Name 

PAGE 
PAGE I-PAGE 7 

Rules 

Specifies the name of the field. The name can be a field 
name, array name, or array element. 

Specifies a page number. See Chapter 6 for information on 
paging special words. 

Sets the specified indicator. See Chapter 4 for information. 

• The field name can be any combination of six characters except for blanks or special 
characters, as long as the first character is a letter. See Part II, Chapter 1 for more 
information on user-defined names. 

• You cannot use the reserved words UDATE, UDAY, UMONTH, and UYEAR as a field 
name. 

Specifications 2-63 



• Use a unique name for each field. If you use the same name to describe more than one 
field in the same record type, RPG II uses the field described last. 

• You can use the same name for fields of different record types as long as both fields are 
numeric with the same number of digits, or both fields are alphanumeric with the 
same length. 

• You can load an entire array from an input record by entering the array name in col
umns 53 through 58. If you do, columns 59 through 62 and 65 through 70 must be 
blank. 

• You can load an array element by entering the array name followed by a comma and 
an array index. 

To eliminate duplicate coding, use OR in columns 15 and 16 to define the same field names 
for different record types, as shown in the following example: 

Sequence (AA-ZZ, 01-99) 
I NUlllber (1-N) 
I 10ptionai (0) Decilllal positions 
I IIRecord identif~ing indicator I Control level 
I III I I Match field 
I III + Identif~ing codes + Forlllat I I I Fld rec rei 

rile I III I I I (PB) IFieid I I I 
nallle I III I C C CI IFieid Inallle I I I Field 
I I III I Z Z ZI Ilocationil I I I indicatrs 

I I I III Pos NDcPos NDcPos NDc IF" To II I I I + - 0 
011 12 I 3 I 4 1516 171 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** * *** *--- *--- *---
IEMPLOYEEAA 05 1 CA 
I OR 06 51 D6 
I 
I 
I 

1 30 NAME 
31 50 ADD RES 
51 600PHONE 

ZK-4484·85 

In this example, there are the same three fields (NAME, ADDRES, and PHONE) in two 
different types of records. In the first record type, there is the character A in position 1. In 
the second record type, there is the number 6 in position 51. The NAME field contains 
alphanumeric data: it begins in position 1 and ends in position 30. The ADDRES field con
tains alphanumeric data: it begins in position 31 and ends in position 50. The PHONE field 
contains numeric data with no decimal positions: it begins in position 51 and ends in posi
tion 60. 

2.8.15 Examples of Using Data Structures 
This section provides examples of using data structures in an RPG II program. 

2-64 Specifications 



2.8.15.1 Defining One Area of Storage More Than One Way 
The following example shows two fields that would normally require 1550 and 2400 bytes 
of storage without data structures. With data structures, however, these two fields are allo
cated using the same 2400 bytes of storage. In addition, several subfields within these 
fields are defined. The byte locations for each data structure subfield identify the locations, 
in a single data structure, where each data structure subfield is allocated. 

This example also demonstrates the optional length specification of the data structure on 
the data structure statement. If you omit the length of the data structure, RPG II computes 
it as described in Section 2.8.4.1. 

Se~uence (AA-Zl, 01-99) 
I NUlllber (i-N) 
I 10ptional (0) Decilllal positions 
I I I Record identif~ing indicator I Control level 
I III I I Hatch field 
I III + Identif~ing codes + Forlllat I I I Fld rec reI 

File I III I I I (PB) IField I I I 
nallle I III ICC CI IField Inallle I I I Field 
I I III I Z 1 11 Ilocationil I I I indicatrs 

II I III Pos NDcPos NDcPos NDc IFr To II I I I + - 0 
011 12 1314 1516 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** * *** *--- *--- *---
IPERSNELL 01 
I 
IHEDICAL 02 
I 
I DS 
I*PERSONNEL RECORDS FIELDS 
I 
I 
I 
I 
I 
I 
I*HEDICAL RECORDS FIELDS 
I 
I 
I 
I 
I 
I 

11550 PREC 

12400 HREC 
2400 

11550 PREC 
1 50 CTGRYA 

50 100 CTGRYB 
100 150 CTGRYC 
150 800 BKGRND 
8001500 HRUSE 

12400 HREC 
1 550 IHNLGY 

550 950 HHTLGY 
9501550 RADLGY 

15501950 XRAY 
19502400 OPROOH 

ZK-4485-85 

Specifications 2-65 



2.8.15.2 Defining Subfields Within a Field or Subfield 
The following example shows how to divide a field into subfields. To do this, you must spec
ify the name of the field to be divided on the Input specification data structure statement. 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * *** *--- *--- *--- .u---*---u * * * * * * .... ISURPLUS 01 
I 1 12 ITEM 
lITEM DS 
I 1 4 WHOSEI! 
I 5 8 AREAl! 
I 9 12 YEAR 
I 11 11 DECADE 

ZK-4486-85 

2.8.15.3 Reorganizing Fields in an Input Record 
In the following example, a data structure is used to reorganize fields from an Input record. 
The first collection of fields describes the Input record field layout. The second collection of 
fields (in the data structure) describes how the fields are actually organized in memory 
when the program runs. 

011 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

u * *** *--- *--- *--- .**---*---** * * * * * * IPART AA 
I 1 3 PN 
I 4 10 PNAME 
I 11 12 WHOUSE 
I 13 20 COLWEI 
I 13 17 COLOR 
I 18 20 WEIGHT 
I 19 200NWEIGH 
I 21 24 QTY 
IREGROP DS 
I 19 21 PN 
I 4 10 PNAME 
I 11 17 WHO COL 
I 11 12 WHOUSE 
I 13 17 COLOR 
I 1 3 WEIGHT 
I 23 26 QTY 

ZK-4487-85 

Specifications 

c 
! 
[ 

',,--



This example shows the difference between an Input field (the PART record) and a data 
structure subfield (the REGROP data structure). If either of the fields COLOR or WEIGHT 
is changed in a Calculation specification, no change will be reflected in the field COLWEI 
because COLOR and WEIGHT are not redefinitions of that field. In contrast, if either 
COLOR or WHOUSE is changed, WHOCOL will also change because COLOR is a redefini
tion of one portion of that field, and WHO USE is a redefinition of another portion of that 
field. Changing WHOCOL changes COLOR and WHOUSE. Changing the value of 
COLWEI in a Calculation specification will not change COLOR or WEIGHT. 

2.8.15.4 Selecting the Internal Numeric Data Type for Fields 
The following example shows how to use a data structure to select a numeric data type that 
will be used internally. Choosing specific numeric data types can improve performance 
where numeric fields are passed as parameters in a CALL, because numeric data type con
version is then not needed at run time. In this example, the numeric data type is as indi
cated by the field name. 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * *** *--- *--- *--- .**---*---** * * * * * * .... 
I DS 
I P 1 30PACKED 
I B 4 50WORD 
I B 6 90LONGWO 
I 10 1400VERPU 

ZK·4488-85 

If you specify a numeric data type for a data structure subfield, RPG II does not automati
cally convert numerics to packed decimal. A numeric conversion is performed if you define 
a subfield with a numeric data type that is different from the Input field declaration. Arith
metic comparisons are done with the field maintaining the declared data type. Note that 
arithmetic (ADD/SUB/MULTIDIV) is still performed in packed decimal, and a conversion 
is done before performing any of the arithmetic operations. 

Where RTL routines are called with various numeric data types, you can use data struc
tures to declare the numeric data type so a conversion is not needed for the CALL. 

Note that data structures do not support floating point numeric data. 

Specifications 2-67 



The example below shows several numeric fields defined in an input record, then redefined 
with different numeric data types in a data structure. Each field redefinition must agree in 
number of digits with any previous field definition. 

011 I 2 I 3 I 4 I 5 161 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * *** *--- *--- *--- .**---*---** * * * * * * 
IFILE BB 
I B 1 20IWORD4 
I B 11 HOILONG9 
I P 21 250IPACK9 
I 31 340IOVER4 
I 41 470IOVER7 
I 51 590IOVER9 
I DS 
I 1 40IWORD4 
I P 11 150ILONG9 
I B 21 240IPACK9 
I B 31 320IOVER4 
I P 41 440IOVER7 
I B 51 540IOVER9 

ZK-4489-85 

Each field is named to highlight the number of digits assigned to them, as defined in the 
input record. For example, PACK9 is defined to be a 5 byte (9 digit) field in the input record. 
The data structure indicates that PACK9 will be stored internally in the data structure as 
a longword (4 bytes). OVER7 is defined to be a 7 byte (7 digit) field in the input record. The 
data structure indicates that OVER7 will be stored internally in the data structure as a 
packed field (4 bytes). In all cases, the number of digits for the field as defined on the input 
record must agree with the number of digits in any subsequent field redefinition. 

2.8.15.5 Examples of Using Local Data Area 
The following example demonstrates use of a local data area. The program LDA is as 
follows: 

011 1213 I 4 I 5 1617 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

FTTY D V 80 TTY 
I UDS 
I 1 15 NAME 
I 16 170AGE 
C NAME DSPLYTTY 
C AGE DSPLYTTY 
C MOVEL'S. Jones'NAME 
C Z-ADD29 AGE 
C SETON LR 

ZK-4665-85 

2-68 Specifications 



The following commands load the local data area with a name and age. The name and age 
are modified in the program, and this information is written back to the local data area on 
exit. 

$ RPG$LOAI = "K. SMith 
$ RPG$LOA1[lS,2J := "as" 
$ RUN LOA 
K. SrTlith 
as 
$ SHOW SYMBOL RPG$LOAI 
RPG$LOAI = uS. Jones 28" 
$ RUN LOA 
S. Jones 
28 

The following example demonstrates use of a local data area which contains binary data. 
The program LDA-BINARY is as follows: 

o I 1 121 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

FTTY D V 80 TTY 
I UDS 
I 1 15 NAHE 
I B 16 170AGE 
C NAHE DSPLYTTY 
C AGE DSPLYTTY 
C HOVEL'S. Jones'NAHE 
C Z-ADD29 AGE 
C SETON LR 

ZK-4664-85 

The following commands load the local data area with a name and age. The name and age 
are modified in the program, and this information is written back to the local data area on 
exit. 

$ RPG$LOAI = "K. SMith 
$ RPG$LOA1[lS*8,lGJ = as 
$ RUN LOA_BINARY 
K. SrTlith 
LIS 
$ RUN LOA_BINARY 
S. Jones 
28 

Specifications 2-69 



The following example demonstrates use of a local data area with 386 bytes of information. 
The program LDA_386 is as follows: 

o I 1 I 2 I 3 141 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

IDS386 
I 
I 
C 
C 

UDS 

MOVE 'abc' 
SETON 

1 383 DATAl 
384 386 DATA2 

DATA2 
LR 

ZK-4663-85 

The following commands display the information written to the local data area by the 
program: 

$ RUN LDA_3aG 
$ CHAR_3811 = F$E)<TRACT (127.1 .RPG$LDA3) 
$ SHOW SYMBOL CHAR_3811 
CHAR_3811 = "a" 
$ SHOW SYMBOL RPG$LDAll 
RPG$LDAll = "be" 

Note that in this example, the field DATAl is spread over RPG$LDAl, RPG$LDA2 and 
RPG$LDA3. The field DATA2 is written to the last byte ofRPG$LDA3 and the first 2 bytes 
ofRPG$LDA4. 

2.8.16 Control-Level Indicator 
Use columns 59 and 60 to specify control-level indicators. Control-level indicators cause 
RPG II to compare the contents of a field with the contents ofthe same field from a previous 
record. If the fields are not equal, a control break occurs and RPG II sets on the control
level indicator assigned to that field. 

You can use this type of indicator to condition input, calculation, and output operations. 

Column 
Number 

59,60 

Allowable 
Values 

Blank 

Ll-L9 

2-70 Specifications 

Explanation 

Indicates that this field is not a control field 

Associates a control-level indicator with the field you spec
ify in columns 53 through 58 



Rules 

• You can specify control-level indicators for primary and secondary files only. 

• You can assign control-level indicators in any order. 

• Control-level indicators are ranked from highest (L9) to lowest (L1). When a control 
break causes RPG II to set on a control-level indicator, all lower control-level indica
tors are set on. All control-level indicators are set off after detail-time output. 

• When you assign the same control-level indicator to more than one field, the fields are 
referred to as a split-control field. In this case, fields must be either all numeric or all 
alphanumeric and described on adjacent lines. Split-control fields do not have to be 
the same length. 

• Fields with different control-level indicators can overlap in a record. 

• You do not need to specify the same number of control fields for all record types. 

• RPG II initializes control fields to hexadecimal zeros. This usually causes a control 
break to occur on the first record with a control field. Because ofthis, RPG II bypasses 
total-time calculation and output operations for this cycle. 

• You cannot specify control-level indicators for binary data or look-ahead fields. Also, 
you cannot specify a control-level indicator when you specify an array name in col
umns 53 through 58. 

• RPG II ignores decimal positions and signs (positive and negative) when determining 
a control break. 

• Because field names are ignored, you can assign the same control level indicator to 
multiple fields with the same name. 

• If you assign the same control-level indicator to more than one field in different types 
of records, the fields must be either all numeric with the same number of digits or all 
alphanumeric with the same number of characters. 

• The total length of a split-control field must be the same length as other uses of the 
same control-level indicator. 

• If a control field contains packed decimal data, the zoned decimal length, which is two 
times the packed decimal length minus one, is considered the length ofthe field. 

See Section 2.8.18 for information about using a field-record-relation indicator with con
trol fields. 

Specifications 2-71 



In the following example, each record in the file EMPLOYEE contains the same three 
fields: NAME, ADDRES, and DEPTNO. The length of NAME is 30 characters; the blank 
in column 52 indicates that the contents of the field are alphanumeric. The length of 
ADDRES is 20 characters. Both fields are assigned the same control-level indicator (L8), 
so they are split-control fields. DEPTNO contains more significant data and as such, is 
assigned a higher-level control-level indicator. When the contents of DEPTNO changes, 
RPG II sets on both control-level indicators (L9 and L8). 

Sequence (AA-ZZ, 01-99) 
I NUlllbe,' (1-N) 
I IOptional (0) Decilllal positions 
I I I Record identif~ing indicator I Contro I I eve I 
I III I I Match field 
I III + Identif~ing codes + Fot'Plat I I I F I d ,'ec ,'e I 

File I III I I I (PB) IFieid I I I 
nallle I III I C C CI IFieid InaPle I I I Field 
I I III I Z Z ZI II ocation II I I I indicat"s 

I I I III Pos NDcPos NDcPos NDc IFr To II I I I + - 0 
011 121 3 I 4 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** * *** *--- *--- *--- * * * * * * .... 
IEMPLOYEEAA 05 1 CA 31 CC 
I OR 99 123ND6 
I 
I 
I 

2.8.17 Matching Fields 

1 30 NAME L8 
31 51 ADDRESL8 

123 1230DEPTNOL9 
ZK·4490·85 

Use columns 61 and 62 to specify matching fields. Matching fields tell RPG II to compare 
the fields in records from one or more files. When the contents of a field from a primary file 
match the contents of a field from a secondary file, RPG II sets on the matching-record 
indicator (MR). 

You can use the matching-record indicator to condition calculation and output operations. 

Column 
Number 

61,62 

Rules 

Allowable 
Values 

Blank 

M1-M9 

Explanation 

Indicates that this field is not a matching field. 

Identifies a matching field. See Part I, Chapter 5 for infor
mation about matching fields and multifile processing. 

• You can use matching fields with one file to perform sequence checking or with multi
ple files to control the order of processing records. See Part I, Chapter 5 for informa
tion on multifile processing. 

2-72 Specifications 



• You can compare only those fields from records in primary and secondary input and 
update files. 

• You can compare up to nine different fields in a single record. 

• If you specify more than one matching field for a record type, all the fields are logically 
concatenated and treated as one continuous field. The fields are combined according 
to descending sequence (M9 to Ml) of matching field values. 

• The program performs sequence checking for all record types with matching field 
specifications. An error in sequence causes a run-time error and terminates the 
program. 

• You must define the same number of matching fields and the same matching field val
ues (MI-M9) for all those records that contain matching fields. 

• You can overlap matching fields in a single record. 

• Whenever you use more than one matching code, all matching fields must match 
before RPG II sets on the matching-record indicator (MR). 

• Matching fields assigned the same matching code (MI-M9) must be either both 
numeric with the same number of digits, or both alphanumeric with the same length. 

• Not all files or all record types within one program must have matching fields. How
ever, at least one record type from each of two files must have matching fields if the 
files are to be matched. 

• If the matching field contains packed data, the zoned decimal length, which is two 
times the packed length minus one, is considered the length ofthe matching field. It is 
valid to match a packed field in one record against a zoned decimal field in another if 
the digit lengths are identical. The length must always be odd, because the length of a 
packed field is always odd. 

• The file sequence you specify in column 18 of the File Description specification must 
be the same for the files you compare - all ascending or descending. 

• You can check the sequence of a single sequential file using MI-M9 codes to designate 
the order of sequence. If the file is out of sequence, a run-time error occurs. 

• You cannot specify matching values for binary data and look-ahead fields. You cannot 
specify matching values when you specify an array name in columns 53 through 58. 

• If you specify an alternate collating sequence, RPG II uses the alternate sequence 
when comparing the values in matching fields containing alphanumeric data. 

• RPG II ignores field names, so fields from different record types can have the same 
name and match code. 

Specifications 2-73 



• When you specify an ascending sequence check, RPG II initializes the matching value 
to hexadecimal zeros. When you specify a descending sequence check, RPG II initial
izes the matching value to hexadecimal FFs. RPG II initializes the matching value of 
a numeric field to zero. 

• RPG II compares matching fields containing numeric data based on their absolute 
values because decimal positions and signs are ignored. 

• Matching fields cannot be split: the same matching field value cannot be used more 
than once for one type of record. 

• When you specify a matching field value for a field without a field-record-relation 
indicator, you must specify all matching field values once without a field-record-rela
tion indicator. If all matching fields are not common to all records, use a dummy 
matching field. See Section 2.8.18 for information on using a field-record-relation 
indicator with matching fields. 

• Matching fields are independent of control-level indicators. 

See Part I, Chapter 5 for examples of matching fields. 

2.8.18 Field-Record-Relation Indicator 
Use columns 63 and 64 to specify Field-record-relation indicators that control the condi
tions under which RPG II extracts data from the input buffer into a field. These conditions 
include control breaks, matching records, halts, and external indicators. . 

The most common use of a field-record-relation indicator is as a record-identifying indica
tor to group several different record types in an OR relationship and associate fields with a 
particular record type. You can also use field-record-relation indicators to extract data if a 
particular external indicator is on. 

2-74 Specifications 



Column Allowable 
Number Values 

63,64 Blank 

01-99 

LI-L9 

MR 

UI-US 

HI-H9 

Rules 

Explanation 

Indicates no field-record-relation indicator 

Indicates that the field-record-relation indicator is a 
record-identifying indicator 

Indicates that the field-record-relation indicator is a con
trol-level indicator 

Indicates that the field-record-relation indicator is the 
matching-record indicator 

Indicates that the field-record-relation indicator is an 
external indicator 

Indicates that the field-record-relation indicator is a halt 
indicator 

The following rules apply to field-record-relation indicators used with control and match
ing fields: 

• You must specify control fields and matching fields without field-record-relation 
indicators before those fields with them. 

• When the field-record-relation indicator associated with a matching or control field is 
on, RPG II uses that field as the control or matching field for the record rather than 
the same control or matching field specified without a field-record-relation indicator. 
Otherwise, RPG II uses the control or matching field without the field-record-relation 
indicator. 

• When you have not defined an entire set of matching fields without a field-record
relation indicator, a full set of matching fields must be assigned to each field-record
relation indicator used with a matching field. 

• You must use the same field-record-relation indicator for split-control fields. You must 
describe the split-control fields on consecutive lines. 

• You must group control and matching fields that use field-record-relation indicators 
according to indicator. 

• Field-record-relation indicators for control and matching fields can be only 01 
through 99 or HI through H9 indicators. Also, the field-record-relation indicator for 
control and matching fields must be a record-identifying indicator specified on either 
the preceding record definition line, or in one of the lines in an OR relationship. 

Specifications 2-75 



If you have two records of eight fields each, and the first seven fields are the same but the 
last field is different, you can use the record-identifying indicator as the field-record-rela
tion indicator to condition the field that is different, rather than defining all eight fields for 
both records. 

In the following example, the last two fields were conditioned with the same record-identi
fying indicators in lines 1 and 2. If the job code is 2, RPG II uses the bonus amount from 
positions 72 through 74. Ifthejob code is not 2, RPG II uses the bonus amount from posi
tions 75 through 77. 

Se~uence (AA-ZZ, 01-99) 
I Number (i-N) 
I I Optional (0) Decimal positions 
I I IRecord identif~ing indicator I Contro I I eve I 
I III I I Match field 
I III + Identif~ing codes + Format I I I Fld rec rei 

File I III I I I (PB) IFieid I I I 
name I III I C C CI IFieid Iname I I I Field 
I I III I Z Z ZI Ilocationil I I I indicatl's 

I I I III Pos NDcPos NDcPos NDc I FI' To II I I I + - 0 
011 12 I 3 I 4 1516 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** * *** *--- *--- *--- .**---*---** * * * * * * 
IEMPLOYEEAA 01 71 C2 
I OR 02 71NC2 
I 1 10 FNAME 
I 11 12 MINIT 
I 13 33 LNAME 
I 34 54 ADDRES 
I 55 60 STATE 
I 61 700PHONE 
I 71 710JOBCDE 
I 72 742BONUS 01 
I 75 772BONUS 02 

ZK·4491-85 

2-76 Specifications 



2.8.19 Field Indicators 
Use columns 65 through 70 to specify Field indicators. Field indicators check the condition 
of numeric or alphanumeric fields when they are extracted from the input record. Once 
checked, the field can be in one of three conditions: 

1. If the numeric field in columns 53 through 58 is greater than zero, the condition is 
positive and RPG II sets on the field indicator in columns 65 and 66. Otherwise, 
RPG II sets offthe indicator. 

2. If the numeric field in columns 53 through 58 is less than zero, the condition is 
negative and RPG II sets on the field indicator in columns 67 and 68. Otherwise, 
RPG II sets offthe indicator. 

3. If the numeric field in columns 53 through 58 is equal to zero, or if the alphanu
meric field in columns 53 through 58 contains blanks, the condition is null and 
RPG II sets on the field indicator in columns 69 and 70. Otherwise, RPG II sets off 
the indicator. 

Column 
Number 

65-70 

Rules 

Allowable 
Values 

Blank 

01-99 

H1-H9 

Explanation 

Indicates no field indicators. 

Associates a field indicator with a field. 

Indicates that the field indicator is a halt indicator. Halt 
indicators check for errors in data. For example, you can 
specify a halt indicator to check for zeros in a numeric 
field. If RPG II processes the record and finds a zero in the 
field, it sets on the halt indicator that results in a run-time 
error. 

• Use columns 65 through 70 to check numeric fields. 

• Use columns 69 and 70 to check alphanumeric fields. 

• You can use the same field indicator for more than one field in different record types. 
The status of the indicator depends on the record type last read. 

• Columns 65 through 70 must be blank when columns 53 through 58 contain an array 
without an index or look-ahead fields. 

• You can assign one or more field indicators to a numeric field. 

Specifications 2-77 



2.9 Calculation Specification 

The Calculation specification allows you to describe the calculations you want to perform 
and to define their order in the following ways: 

• Entries in columns 7 through 17 control when a calculation is performed. 

• Entries in columns 18 through 53 describe the kind of calculation. 

• Entries in columns 54 through 59 specify which indicators the program sets on or off 
as a result of the calculation. 

There are two general rules: 

1. Specify each calculation on a single line; arrange the calculations in the order 
you want them executed. 

2. Specify detail-time calculations first, then total-time calculations, and, finally, 
calculations in subroutines. 

2.9.1 Calculation Specification Format 
The format ofthe Calculation specification is: 

Contro I I eve I 
I 
I Indicators 
I I 
I I factor 
I I 1 

CI NxxNxxNxxl 

Operation 
I 
I 
I 
I 

factor 
2 
I 

Field length 
I Deci~al positions 
I IHaif adjust (H) 

I " I IIResulting 
Resultl II indicators 
field I 11+ - 0 
I I II> < = +- Co~~ents --+ 

011 12 I 3 I 4 I 5 I 6 171 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * * * * * 
ZK-4492-85 

2.9.2 Specification Type 
Use column 6 to identify the type of specification for every program line. 

Column Allowable Explanation 
Number Values 

6 C 

2-78 Specifications 

Indicates that this program line is a Calculation specifica
tion. 



2.9.3 Control Level 
Use columns 7 and 8 to indicate whether the calculation is performed at detail time, is 
performed at total time, or is part of a subroutine. 

Column 
Number 

7,8 

Allowable 
Values 

Blank 

LO 

LI-L9 

LR 

SR 

ANorOR 

Explanation 

Performs the calculation at detail time, or indicates that 
the program line is part of a subroutine. 

Performs the calculation at total time for each program 
cycle. 

Performs the calculation at total time after a control break 
occurs, or when you use the SETON operation to set on the 
control-level indicator, or when the indicator is set on as a 
record-identifying indicator, or when the indicator is set 
on as a resulting indicator in a calculation. 

Performs the calculation at total time after the program 
processes the last record, or when you use the SETON 
operation to set on the LR (last-record) indicator, or when 
the indicator is set on as a record-identifying indicator, or 
when the indicator is set on as a resulting indicator in a 
calculation. 

Indicates that the calculation is part of a subroutine. 

Establishes a relationship between two program lines. If 
you use AN, the conditions for the indicators in both pro-
gram lines must be satisfied before RPG II executes the 
calculation. If you use OR, the conditions for the indicators 
in one program line or the other must be satisfied before 
RPG II executes the calculation. 

You can use an unlimited number of AN or OR program lines with up to three indicators on 
each line to condition a single calculation. The last line in an AN or OR relationship speci
fies the calculation. 

Additional Information 

You can specify the following declarative statements in total-time calculations and option
ally leave columns 7 and 8 blank: 

• EXTRN 

• GIVNG 

Specifications 2-79 



• PARM 

• PARMD 

• PARMV 

• PLIST 

• TAG 

In the following example, the Ll, L2, L3, and LR control-level indicators perform calcula
tions at total time after a control break occurs or when the SETON operation code sets on 
the indicator. 

Control level 
I 
I Indicators 
I I 
I I ractor 
I I 1 

CI NxxNxxNxxl 

Operation 
I 
I 
I 
I 

ractor 
2 
I 

Held length 
I Deci~al positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resultl I I indicators 
field I 11+ - 0 
I I II> < = +- Co~~ents --+ 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * * * * * *--*** * * * 
C* Total calculations: 
C* 
CL1 SETor LRL9LB 
CLl SETor L7L6L5 
CL1 SETor L4L3L2 
CLi 'L l' DSPLYS 
CL1 SETor L2L3LR 
C* 
CL1 EXSR HILLS 
CL1 PELHAM TAG 
C* 
CL1 'L 2' DSPLYS 
CL3 'L 3' DSPLYS 
C* 
CL3 EXSR CARROL 
CL1 GOTO PETERB 
C* 
CL1 'L 4' DSPLYS 
CL2 6 COMP BERRY 313233 
CLR SETor 24 

ZK-4493-85 

2-80 Specifications 



2.9.4 Indicators 
Use indicators in columns 10, 11, 13, 14, 16, and 17 to condition the calculations you spec
ify in columns 28 and 32. You can specify up to three indicators per program line; precede 
the indicator with N to cause RPG II to perform the calculation only when the indicator is 
not on. Use columns 9 through 11 to describe the first indicator, columns 12 through 14 to 
describe the second, and columns 15 through 17 to describe the third. Using the indicators 
this way forms an AND relationship. 

Column Allowable 
Number Values 

10-11 Blank 
13-14 
16-17 

Indicator 

9,12,15 N 

Additional Information 

Explanation 

Performs the calculation whenever the conditions speci
fied in columns 7 and 8 are satisfied. 

Performs the calculation when the conditions for the indi
cator are met. 

Causes RPG II to perform the calculation only when the 
indicators associated with N are not set on. N in column 9 
conditions the indicator in columns 10 and 11. N in column 
12 conditions the indicator in columns 13 and 14. N in col
umn 15 conditions the indicator in columns 16 and 17. 

• You can use one of the following indicators in columns 10 and 11, 13 and 14, and 16 
and 17: 

- Record-identifying (01-99) 

- Control-level (L1-L9) 

- Last-record (LR) 

- Matching-record (MR) 

- Halt indicator (H1-H9) 

- External (U1-U8) 

- Overflow (OA-OG, and OV) 

- K indicators (KA-KZ, and KO-K9) 

• RPG II performs total calculations for a control break before performing detail-time 
calculations for the record that causes the control break. 

Specifications 2-81 



• Halt indicators in columns 10, 11, 13, 14, 16, and 17 cause RPG II to bypass the opera
tion when it finds an error in the input data or in a previous calculation. RPG II 
processes the record that causes the error before stopping your program. In this case, 
the record in error could cause an error in calculation before your program 
terminated . 

• Depending on the relationship between indicators in columns 7 and 8 and columns 9 
through 17, the actions RPG II takes will vary as follows: 

- When you specify a control-level indicator in columns 7 and 8 and a matching
record indicator in columns 9 through 17, MR indicates the result of matching the 
previous record rather than the record just read that caused a control break. RPG II 
executes all the operations conditioned by control-level indicators before determin
ing the matching condition of the record just read. 

- When you use a control-level indicator in columns 10, 11, 13, 14, 16, and 17 instead 
of columns 7 and 8 of the Calculation specification, RPG II performs the calculation 
on the first record of a new control group at detail time. 

- In a single program cycle, RPG II performs all operations conditioned by the con
trol-level indicators in columns 7 and 8 before it performs the operations condi
tioned by the control-level indicators in columns 9 through 17. 

- If you condition a calculation with a last-record indicator in columns 9 through 17 
when columns 7 and 8 are blank, the calculation is performed only if the last-record 
indicator is set on during detail-time calculations. Ifthe last-record indicator is set 
on when RPG II reaches the end of a file or during total-time calculations, RPG II 
does not perform detail-time calculations. 

In the following example, the record-identifying indicators 01, 02, and 03 must be on to 
perform the calculation SALARY * BONUS1 = GROSS. In the second program line, the 
indicator 04 must be off and indicator 05 must be on to perform the calculation 
SALARY * BONUS2 = GROSS. 

Contr'o I I eve I 
I 
I Indicators 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Operation 
I 
I 
I 
I 

Factor 
2 
I 

Field length 
I Deci~al positions 
I IHalf adjust (H) 
I II 
I IIResulting 

Resul t I II indicators 
field I 11+ - 0 
I I II> < = +- Co~~ents --+ 

011 I 2 13 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * * * * * *--*** * * * 
C 01 02 03SALARY MULT BONUS1 GROSS 
C N04 05 SALARY MULT BONUS2 GROSS 

ZK·4494-85 

2-82 Specifications 



2.9.5 Factors 1 and 2 
Use columns 18 through 27 and 33 through 42 to provide the operands for the calculation 
you specify in columns 28 through 32. Use columns 18 through 27 for Factor 1 and columns 
33 through 42 for Factor 2. The operands you use depend on the operation you specify. See 
Part II, Chapter 3 for information on operations and the operands they require. 

Column 
Number 

18-27 or 
33-42 

18-27 or 
33-42 

8-74 

Allowable 
Values 

Field name 

Literal 

Long 
Character 
Literal 

Explanation 

Names the field that contains data. These are the same 
fields you defined in columns 53 through 58 of the Input 
specification or in columns 43 through 48 of the Calcula
tion specification. 

Specifies an alphanumeric or numeric constant. Numeric 
literals can consist of the digits 0 through 9, one decimal 
point, and one arithmetic sign. Numeric literals cannot 
exceed ten characters and cannot contain blanks. You 
must specify the sign in the leftmost character position. 

Alphanumeric literals can be up to eight characters 
including blanks. You must enclose alphanumeric literals 
in single quotation marks (for example: 'NH'). Use the 
keyboard apostrophe mark for the single quotation mark. 
If you want to use an apostrophe in a literal, you must 
enter two consecutive apostrophes (for example: it' 's). 

Specifies an alphanumeric constant that contains 1 to 460 
characters. A double quotation mark (") is placed in the 
first character of the field on the specification. The rest of 
the field is left blank. On the next line, a double quotation 
mark is placed in column 7. Columns 8 through 74 contain 
the character literal, which must be enclosed within single 
quotation marks. The character literal can be anywhere 
on the line. 

If you wish the character literal to continue on the next 
line, follow the ending single quotation mark with a plus 
sign ( + ), and continue the literal in the same manner on 
the next specification. All the rules for "normal" character 
literals apply to the long character literal placed in col
umns 8 through 74. 

Specifications 2-83 



Column 
Number 

Allowable 
Values 

Table or 
Array 

Subroutine 
Name 

Special 
words 

Label 

File name 

Explanation 

If more than one long character literal is entered on a cal
culation specification, the character literal for the first 
(leftmost) entry is on the next specification, followed by 
the character literal for the second entry, on the specifica
tion after that. 

Specifies the table name, array name, or array element 
you have previously specified in an Extension specifica
tion. 

Specifies one ofthe following components of a subroutine: 
BEGSR (marks the beginning of a subroutine) and EXSR 
(executes a subroutine). 

Specifies one of the following special words: UDATE, 
UMONTH, UDAY, UYEAR, PAGE, PAGEl through 
PAGE 7 , *IN, and *IN xx. See Part I, Chapter 6 for informa
tion on special words. See Part I, Chapter 4 for information 
on *IN and *INxx. 

Specifies the label for a TAG, GOTO, and ENDSR opera
tion. See Part II, Chapter 3 for information on TAG, 
GOTO, and ENDSR operation codes. 

Specifies the file name for CHAIN, DSPLY, READ, 
SETLL, or FORCE operations. See Part II, Chapter 3 for 
information on specifying files for these operations. 

Note that you must left-justify the entries in Factors 1 and 2, unless they are numeric 
literals, which must be right-justified. 

In the following example, the literal 'All work and no play make Jack a dull boy.' is moved 
to the field SHINE. 

011 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * * * * * *--*** * * * 
C MOVE " SHINE 80 
C" 'All work and no pla~ Plake Jack a dull bo~.' 

ZK·4495·85 

2-84 Specifications 



This example shows a long character literal continuing on another line. 

o I 1 I 2 I 3 I 4 151 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * * * * * *--*** * * * 
C MOVE " SHINE 80 
COl 'All ~ork and no pla~ ~ake Jack '+ 
COl 'a dull bo~.' 

ZK·4496-B5 

2.9.6 Operation Code 
Use columns 28 through 32 to specify the Operation code that indicates what calculation to 
perform on the operands you specified in columns 18 through 27 and 33 through 42. See 
Part II, Chapter 3 for more information on operation codes. 

Column 
Number 

28-32 

Allowable 
Values 

Operation 
Code 

2.9.7 Result Field 

Explanation 

Performs the action specified by the operation code. See 
Part II, Chapter 3 for information on operation codes. 

Use columns 43 through 48 to provide the Result field that will contain the outcome of the 
calculation you specified in columns 18 through 42. You can use a field you have previously 
specified in an Input, Calculation, or Extension specification or use columns 49 through 52 
to define its length and decimal positions. 

Column 
Number 

43-48 

Rules 

Allowable 
Values 

Name 

Explanation 

Identifies the Result field. The Result field can contain a 
field name, table or array name, array element, or one of 
the following special words: PAGE, PAGEI-7, *IN, or 
*INxx. 

• The Result field name can be any combination of alphanumeric characters; the first 
character must be alphabetic. Embedded blanks are not allowed . 

• You cannot use a look-ahead field, a field defined by an EXTRN operation, UDATE, 
UDAY, UMONTH, or UYEAR as a Result field. 

Specifications 2-85 



2.9.8 Field Length 
If you use the Calculation specification to define a Result field, use columns 49 through 51 
to define the length of the Result field you specified in columns 43 through 48. Otherwise, 
you can leave columns 49 through 51 blank. To prevent undefined or truncated results, 
make sure the length ofthe Result field is long enough to hold the largest possible result. 

Column 
Number 

Allowable 
Values 

Explanation 

49-51 1-999 Specifies the length ofthe Result field 

Rules 

• The maximum length for numeric data is 15 digits. 

• The maximum length for alphanumeric data is 999 characters. 

• If the field is described elsewhere in the program and an entry is made in columns 49 
through 51, both entries must specify the same length. 

• Leading zeros can be omitted. 

• Right-justify this entry. 

2.9.9 Decimal Positions 
If you use the Calculation specification to define the Result field and the Result field con
tains numeric data, use column 52 to specify the number of positions to the right of the 
decimal point. 

Column 
Number 

Allowable 
Values 

Explanation 

52 Blank 

0-9 

Indicates that this field contains alphanumeric data or 
that the Result field has been defined elsewhere 

Specifies the number of positions to the right of the 
implied decimal point 

Rules 

• If the field has been previously described in the program, and an entry is made in 
column 52, both entries for Decimal positions must be the same. 

• The number you specify in this column must be smaller than the number in columns 
49 through 51. 

• If the Result field contains alphanumeric data, leave this column blank. 

• When the result is numeric, but has no decimal positions, you must specify zero. 

2-86 Specifications 



2.9.10 Half Adjust 
Use column 53 to specify whether RPG II is to round the numeric data in the Result field. 
RPG II adds 5 to the position immediately to the right of the last digit and puts the new 
value in the Result field. RPG II performs the addition on the absolute value ofthe number. 
For example, if the result of an arithmetic operation is 123.456 and the Result field speci
fies two decimal positions, RPG II half-adjusts the value in the Result field to 123.46. 

Column Allowable Explanation 
Number Values 

Blank 

H 

53 Performs no half-adjusting 

Half-adjusts the numeric data in the Result field 

Rules 

• You cannot half-adjust the Result field of an MVR operation, or of a DIV operation 
immediately followed by an MVR operation. 

• You cannot half-adjust alphanumeric data. 

Additional Information 

• RPG II sets resulting indicators according to the value of the Result field after half
adjusting. 

• See Table 3-1 in Part II, Chapter 3 for a list of operation codes that allow you to specify 
Half adjust. 

2.9.11 Resulting Indicators 
Use columns 54 through 59 to enter Resulting indicators that test the outcome of a calcula
tion. You can use these resulting indicators to conditiop other calculation or output opera
tions, or to establish field-record relations. 

Specifications 2-87 



Column 
Number 

54-59 

Rules 

Allowable 
Values 

01-99 

HI-H9 

KO-K9 
KA-KZ 

LI-L9 

LR 

OA-OG,OV 

UI-US 

Explanation 

Uses a record-identifying indicator as the resulting indi
cator. 

Uses a halt indicator as the resulting indicator. 

Used to condition calculations, output records and output 
fields. They can also be used as resulting indicators. 

Uses a control-level indicator as the resulting indicator. 

Uses a last-record indicator as the resulting indicator. 

Uses an overflow indicator as the resulting indicator. 

Uses an external indicator as the resulting indicator. 

• A resulting indicator is set on if the condition specified is satisfied. If the specified 
condition is not satisfied, the resulting indicator is set off. See Part II, Chapter 3 for 
information on how resulting indicators are used with each operation code. 

• If you use the same indicator to test the results of more than one operation, the last 
operation determines the indicator setting. 

• You cannot use resulting indicators when the Result field contains a nonindexed 
array. 

Additional Information 

• Once a resulting indicator is on, it remains on until one of the following occurs: 

- The operation is repeated and the result resets the indicator 

- The conditions the indicator specifies are not met 

- The indicator is set off by another method (such as the SETOF operation) 

• Using a control-level indicator as a resulting indicator does not automatically set on 
lower-level indicators. 

• Using an external indicator as a resulting indicator allows you to set the indicator, 
then to test the indicator value after the program exits. 

2-88 Specifications 



2.9.12 Comments 
Use columns 60 through 74 for comments. 

Column Allowable Explanation 
Number Values 

60-74 Any Documents the program line 
character 

2.10 Output Specification 

This specification describes the records and fields in an output, update, or input (with the 
ADD option) file. Columns 7 through 37 describe the record and columns 23 through 70 
describe the position and format of each field in the record. 

2.10.1 Output Specification Format 
The format of the Output specification is: 

T!:Ipe (HDTE) Edit codes , o No CR -
IFetch overflow (F) I X -------------
I I Space I Y date edit y y 1 A J 
III Skip I Z zero suppress Y N 2 B K 
III I I N Y 3 C L 
III I Indicators IBlank-after (B) N N 4 D M 

File III I I Field II End position 
nallle III I I nallle III Forlllat (PB) 
I III I I I III I 

01 I IBAB A NxxNxxNxxl III 1+ Constant or edit word + 
011 12 I 3 I 4 1516 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** ***** * * * 

ZK-4497-85 

2.10.2 Specification Type 
Use column 6 to identify the type of specification for every program line. 

Column Allowable Explanation 
Number Values 

6 o Indicates that this program line is an Output specification 

Specifications 2-89 



2.10.3 File Name 
Use columns 7 through 14 to name the output, update, or input (with the ADD option) file. 

Column Allowable Explanation 
Number Values 

7-14 Filename Identifies the name of the output file 

Rules 

• Use the same file name you specified in the File Description specification. An output 
file can be a file you specified as an output file, as an update file, or as an input file with 
A in column 66 of the File Description specification. 

• Left-justify this entry. 

• If columns 7 through 14 are blank, RPG II assumes that the information in this pro
gram line describes a field or record from the file last named. 

All the records for a single file need not be described together. 

2.10.4 AND and OR Lines 
If you need more than three indicators to condition record output, or if you want to output a 
record under a number of conditions, use columns 14 through 16 to enter AND or columns 
14 through 15 to enter OR. 

Column 
Number 

14,15 

14-16 

Rules 

Allowable 
Values 

OR 

AND 

Explanation 

Performs the output operation when the conditions for all 
indicators in columns 23 through 31 in either program line 
are met 

Performs the output operation when the conditions for all 
indicators in columns 23 through 31 in both program lines 
are met 

• You must use at least one indicator per program line in an OR or AND relationship. 

• If you use AND, columns 17 through 22 must be blank. 

• If you use AND or OR, columns 7 through 13 must be blank. 

• You can use AND and OR lines only with record description entries, not with field 
description entries. 

You can specify an unlimited number of AND or OR lines. 

2-90 Specifications 

I 

~ 

( 
\ 

"'-



In the following example, ifthe following conditions are satisfied, RPG II writes the speci
fied fields and constants: 

• Indicator 01 is off 

• Or, indicator 01 is on 

• And, indicator 23 is off 

File 
nallle 
I 

01 

T~pe (HDTE> 
IFetch overflow (F) 
II Space 
I II Skip 
III I 
I I I I Indicators 
III I I Field 
III I I nallle 
III I I I 
I IBAB A NxxNxxNxxl 

Edit codes 
I X 
I Y date edit 
I Z zero suppress 
I 
IBlank-after (B) 
II End position 
III Forlllat (PB) 
III I 

, 0 No CR -

Y Y 1 A J 
Y N 2 B K 
N Y 3 C L 
N N 4 D M 

I I I 1+ Constant or edit word + 
011 1213 I 4 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** ***** * * * ***---** 
0 OR NOl 
0 OR 01 
0 AND N23 
0 PN 3 
0 01 28 '01' 
0 PNAME 10 
0 WHOUSE 12 
0 COLOR 17 
0 WEIGHT 20 
0 QTY 24 

ZK-4498-85 

Specifications 2-91 



2.10.5 Record Type 
Use column 15 to specify the point in the RPG II program cycle at which a record is output. 
Heading records are normally used to describe the heading information in the output 
report, such as column names, page numbers, and the date. Detail records contain the data 
from input and calculation operations at detail time. Total records usually contain the 
data from the result of calculations on several detail records at total time. Exception 
records are written as a result of using the EXCPT operation in a Calculation specification. 

Column 
Number 

15 

Rules 

Allowable 
Values 

Blank 

H 

D 

T 

E 

Explanation 

Indicates that this program line describes a field 

Indicates that this program line describes a heading 
record 

Indicates that this program line describes a detail record 

Indicates that this program line describes a total record 

Indicates that this program line describes an exception 
record 

• You must specify a Record type for every output record . 

• Records of the same type are tested for output and written in the order in which you 
specify them in the Output specifications. 

There is no difference between a heading record and a detail record. The different entries 
are for documentation purposes only. 

The following example defines heading, detail, total, and exception records. 

2-92 Specifications 



THpe (HDTE> Edit codes , o No CR -
IFetch overflow (F) I X -------------
IISpace I Y date edit Y Y 1 A J 
III Skip I Z zero suppress Y N 2 B K 
III I I N Y 3 C L 
III I Indicators IBlank-after (B) N N 4 D M 

File III I I Field II End position 
naPle III I I naPle III ForPlat (PB) 
I III I I I III I 

01 I IBAB A NxxNxxNxxl III 1+ Constant or edit word + 
011 1213 I 4 I 5 1617 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** ***** * * * ***---** 
00UT44A E 12 
0 OR 16 
0 OR LR 
0 N 3 
0 PNAME 10 
0 WHOUSE 12 
0 COLOR 17 
0 WEIGHT 20 
0 QTY 24 
0 26 'E' 
0 N12 16 28 '16' 
0 12 01 28 '12' 
0 LR 28 'LR' 
0 H 
0 N 3 
0 PNAME 10 
0 WHOUSE 12 
0 COLOR 17 
0 WEIGHT 20 
0 QTY 24 
0 26 'H' 
0 01 28 '01' 
0 D 17 
0 OR NOl 
0 OR 01 01 
0 AND N23 
0 N 3 
0 01 28 '01' 
0 PNAME 10 
0 WHOUSE 12 
0 COLOR 17 
0 WEIGHT 20 
0 QTY 24 
0 26 'D' 
0 T 
0 N 3 
0 PNAME 10 
0 WHOUSE 12 
0 COLOR 17 
0 01 28 '01' 
0 WEIGHT 20 
0 QTY 24 
0 26 'T' ZK-4499-85 

Specifications 2-93 



2.10.6 ADD and DEL Options 
Use columns 16 through 18 to add and delete records. See Part I, Chapter 5 for information 
on adding and deleting records. 

Column 
Number 

16-18 

Rules 

Allowable 
Values 

ADD 

DEL 

Explanation 

Adds a record to an input, output, or update file with an 
indexed, direct, or sequential file organization 

Deletes the last record read in the update file with an 
indexed or direct file organization 

• You can add records to input, output, and update files that reside on disk. Therefore, 
the File Description specification must contain DISK in columns 40 through 46 and A 
in column 66. 

• You can delete records only from update files that reside on disk. 

• ADD or DEL must appear on the same line that defines the Record type for the record 
you want to add or delete. 

• If a line in an OR relationship follows an ADD or DEL entry, the ADD or DEL entry 
applies to both lines. 

The following example adds records to the file. 

011 12 I 3 I 4 I 5 I 6 17 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

U 
o 
o 
o 
o 
o 
o 

I 

2-94 Specifications 

N 
N 
PNAME 
WHOUSE 
COLOR 
WEIGHT 
IHY 

3 
10 
12 
17 
20 
24 

ZK-4500-85 



The following example deletes the last record read from the update file. 

T!:lpe (HDTE> Edit codes o No CR -
IFetch overflow (F) I X -------------
I I Space I Y date edit Y Y 1 A J 
III Skip I Z zero suppress Y N 2 B K 
III I I N Y 3 C L 
III I Indicators IBlank-after (B) N N 4 D M 

File III I I Field II End position 
nallle III I I nallle III Forlllat (PB) 
I III I I I III I 

01 I IBAB A NxxNxxNxxl III 1+ Constant or edit word + 
011 12 1314 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** ***** * • * 00UT45B EDEL N25 
00UT45C EDEL N25 

ZK-4501-85 

2.10.7 Fetch Overflow 
Use column 16 to specify Fetch overflow. Fetch overflow causes RPG II to check whether 
the overflow indicator assigned to the printer output file is on before printing total, detail, 
or exception records. See Part I, Chapter 6 for information on overflow. 

Column 
Number 

Allowable 
Values 

Explanation 

16 F Executes the overflow routine if overflow has occurred 

Rules 

• An entry in this column is valid only for printer-output files with overflow lines. 

• Do not specify an overflow indicator on the same line as Fetch overflow. 

• If you specify an OR relationship between two lines, you must specify Fetch overflow 
for each record type that requires it in both lines of the OR relationship. 

Additional Information 

• RPG II fetches an overflow routine when overflow occurs and all conditions specified 
by the indicators in columns 23 through 31 are met. 

• When you specify Fetch overflow, only overflow output associated with the file con
taining the executed fetch is output. 

• The overflow routine does not automatically advance to the next page. 

Specifications 2-95 



The following example specifies Fetch overflow. 

T~pe (HDTE) Edit codes o No CR -
Ifetch ollerflolll (f") I X -------------
I I Space I Y date edit Y Y 1 A J 
I II Skip I Z zero suppress Y N 2 B K 
III I I N Y 3 C L 
III I Indicator's IBlank-after (B) N N 4 D M 

file III I I field II End position 
naflle III I I naflle III forfllat (PB) 
I III I I I III I 

01 I IBAB A NxxNxxNxxl III 1+ Constant 01' edit word + 
011 12 I 3 I 4 I 5 I 6 17 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** ***** * * * 
00UT66A Ef 1 01 
o AND 02 03 

ZK-4502-85 

2.10.8 Space Before and Space After 
Use columns 17 and 18 to define the physical format ofa printer output file. Use column 17 
to specify the number of lines to advance before printing the next line of output. Use col
umn 18 to specify the number of lines to advance after printing a line of output. 

Column 
Number 

Allowable 
Values 

Explanation 

17 

18 

Blank 

0-3 

Blank 

0-3 

Does not advance before printing a line of output. 

Specifies the number of lines the printer will advance 
before printing a line of output. A value of zero allows 
overprinting. 

Does not advance after printing a line of output. 

Specifies the number oflines the printer will advance after 
printing a line of output. A value of zero allows overprint
ing. 

Rules 

• If you leave columns 17 through 20 blank for a record specification line, RPG II auto
matically spaces one line after printing the output line. 

• If there are no entries in columns 17 through 20 of an OR line, RPG II uses the entries 
in a preceding line. 

• You cannot define the spacing and skipping for an AND line. 

2-96 Specifications 



Additional Information 

• Because you can space up to only three lines before and after a line of output, you 
cannot specify more than five blank lines between output lines using entries in col
umns 17 and 18 . 

• Spacing to or past the overflow line causes RPG II to set on the overflow indicator. 

2.10.9 Skip Before and Skip After 
Like the Space before and Space after columns, columns 19 through 22 help define the 
physical format of a printer output file. Unlike the entries in columns 17 and 18, the 
entries in columns 19 and 20 can be used to specify more than five lines between lines and 
to specify a move to the next page. 

Use column 19 to specify the line number the printer must move to before printing a line of 
output. Use column 20 to specify the line number the printer must move to after printing a 
line of output. 

Column 
Number 

19,20 

21,22 

Allowable 
Values 

Blank 

01-99 

AO-A9 

BO-B2 

Blank 

01-99 

AO-A9 

BO-B2 

Explanation 

Specifies no skipping before printing a line of output 

Causes the printer to move to the line number you specify 
before printing a line of output 

Causes the printer to move to the line number you specify 
100 (AO) to 109 (A9) before printing a line of output 

Causes the printer to move to the line number you specify 
110 (BO) to 112 (B2) before printing a line of output 

Specifies no skipping after printing a line of output 

Causes the printer to move to the line number you specify 
after printing a line of output 

Causes the printer to move to the line number you specify 
100 (AO) to 109 (A9) after printing a line of output 

Causes the printer to move to the line number you specify 
110 (BO) to 112 (B2) after printing a line of output 

Specifications 2-97 



Rules 

• Follow the same rules in Section 2.8.10 for AND and OR lines. 

• You can specify entries in all Space and Skip columns for a single program line. When 
you do, RPG II executes the entries in the following order: Skip before, Space before, 
print the output line, Skip after, and then Space after. 

• Specifying a Skip entry past the overflow line causes RPG II to set on the overflow 
indicator. See Part I, Chapter 6 for more information. 

• If you specify a Skip entry to the same line number that the printer is currently on, no 
skipping takes place. 

• If you specify a Skip entry to a line number less than the current line number, the 
printer advances to that line number on the next page. 

• The Skip entry cannot exceed the entry for Forms Length (columns 18 and 19 of the 
Line Counter specification). If there is no Line Counter specification, the Skip entry 
cannot exceed the default, line 66. 

2.10.10 Example 
The following example Causes RPG II to 

• Skip to line 27 and space two lines before printing the output line. 

• Skip to line 30 and space three lines after printing the output line. 

T~pe (HDTE> Edit codes , o No CR -
IFetch overflow (F) I X -------------
I I Space I Y date edit Y Y 1 A J 
II I Skip I Z zero suppress Y N 2 B K 
III I I N Y 3 C L 
III I Indicators IBlank-after (B) N N 4 D M 

File III I I Field II End posi tion 
name III I I name III Format (PB) 
I III I I I III I 

01 I IBAB A NxxNxxNxxl III 1+ Constant or edit word + 
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** ***** * * * ***---** 
0 D 232730N1P 18 
0 N 3 
0 PNAME 10 
0 WHOUSE 12 
0 COLOR 17 
0 WEIGHT 20 
0 QTY 24 

ZK-4503-85 

2-98 Specifications 



2.10.11 Indicators 
Use columns 24 and 25, 27 and 28, and 30 and 31 to enter previously assigned indicators to 
condition a line of output. 

Column 
Number 

24-25 
27-28 
30-31 

23,26,29 

Rules 

Allowable 
Values 

Blank 

Indicator 

N 

Explanation 

Outputs the record or field. 

Outputs the record or field when the indicator you specify 
is on. 

Outputs the record or field when the indicator is off. N in 
column 23 conditions the indicator in columns 24 and 25. 
N in column 26 conditions the indicator in columns 27 and 
28. N in column 29 conditions the indicator in columns 30 
and 31. 

• When you want an indicator to condition an entire record, enter the indicator on the 
line that specifies the type of record. When you want an indicator to condition a field, 
enter the indicator on the same line as the field name (columns 32 through 37). 

• If you specify more than one indicator on a line, the indicators form an AND 
relationship. 

• You can use overflow indicators in AND or OR lines; however, you can associate only 
one overflow indicator with a group of output indicators. If a line is to be considered an 
overflow line, the overflow indicator must appear on the main specification line or on 
an OR line. 

• If you use an overflow indicator, it must be the same one assigned to the file on the File 
Description specification. 

• You cannot use overflow indicators to condition exception output lines, but you can 
use them to condition fields in an exception record. 

Specifications 2-99 



Additional Information 

• You can use one of the following indicators in columns 24-25, 27-28, and 30-31: 

- Record-identifying (01-99) 

- Control-level (LI-L9) 

- Last-record (LR) 

- Matching-record (MR) 

- Halt CHI-H9) 

- External (UI-U8) 

- Overflow (OA-OG, and OV) 

- K (KA-KZ, and KO-K9) 

- First-page (IP) 

• Keep in mind that RPG II outputs those detail and heading lines conditioned by the 
IP (first-page) indicator, no indicator, or all negative indicators (N in columns 23, 26, 
or 29) before reading the first record from a file. Therefore, use the IP (first-page) indi
cator to condition only heading and detail output lines that do not depend on data 
from an input record. For a line with no indicators or all negative indicators that 
depends on data from an input record, use a negative first-page indicator (NIP in col
umns 23 through 31) to prevent the line from being outputted before reading the first 
record. 

• Because the IP (first-page) indicator is set off after the first detail-time output, it can 
be used only to condition heading and detail lines. 

• If you use a control-level indicator with a total record and no overflow indicator, 
RPG II writes the record when a control break occurs and after RPG II processes the 
last record of a control group. 

• If you use a control-level indicator with a detail record and no overflow indicator, 
RPG II writes the record when a control break occurs and after it processes the first 
record of a new control group. 

• If you use a control-level indicator with an overflow indicator, RPG II writes the 
record when a control break occurs and passes the overflow line. 

2-100 Specifications 



The following example causes RPG II to print the specified fields in the detail record if the 
IP (first-page) indicator is off. 

T~pe (HDTE> Edit codes , o No CR -
'Fetch overfloll (F) , X -------------
"Space , Y date edit Y Y 1 A J 
, " Skip , Z zero suppress Y N 2 B K 

"' 
, , N Y 3 C L 

"' , Indicators 'Blank-after (B) N N -4 D H 
File "' 

, , Field "End position 
naPle "' 

, , naPle "' ForPlat (PB) , 
"' 

, , , "' 
, 

0' "BAB A NxxNxxNxx' "' ,+ Constant or edit word + 
0'1 12' 3' 4 15' 6' 7' 

1234567890123456789012345678901234567890123456789012345678901234567890123456789 
** ***** * * 
00UT50A D N1P 
o N 3 
o PNAHE 10 
o WHOUSE 12 
o COLOR 17 
o WEIGHT 20 
o QTY 2-4 
o PAGE 30 

ZK-4504-85 

2.10.12 Field Name 
Use columns 32 through 37 to specify the Field name that identifies the item to be written 
to the output file. 

Column Allowable Explanation 
Number 

32-37 

Rules 

Values 

Blank 

Name 

Indicates the presence of a constant in columns 45 through 
70. 

Specifies the name of the item to print. The item can be a 
field name, table or array name, array element, or one of 
the following special words (PAGE, PAGEI-7, UDAY, 
UMONTH, UYEAR, UDATE, *IN, *INxx, and *PLACE). 
See Part I, Chapter 6 for information on special words. 

• All field names must have been previously defined in an Input, a Calculation, or an 
Extension specification. 

• Left-justify this entry. 

• You cannot enter a field name if you enter a constant in columns 45 through 70. 

Specifications 2-101 



• If you enter a field name in columns 32 through 37, columns 7 through 22 must be 
blank . 

• If you specify a nonindexed array name, the entire array is output. 

The following example specifies fields in the detail record. 

T~pe (HDTE> Edit codes , o No CR -
IFetch overflow (F) I X -------------
I I Space I Y date edit Y Y 1 A J 
III Skip I Z zero suppress Y N 2 B K 
III I I N Y 3 C L 
III I Indicators IBlank-after (B) N N 4 D M 

File III I I Field I lEnd position 
nallle III I I nallle III Forlllat (PB) 
I III I I I III I 

01 IIBAB A NxxNxxNxxl III 1+ Constant or edit word + 
0'1 I 2 I 3 , 4 , 5 , 6 I 7 , 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** ***** * * 
00UT50A D NiP 
o N 3 
o PNAME 10 
o "IHOUSE 12 
o COLOR 17 
o WEIGHT 20 
o 'HY 24 
o PAGE 30 

ZK·4505·85 

2.10.13 EXCPT Name 
When the record type is an exception record (indicated by an E in column 15), a name can 
be placed in columns 32 through 37 of the record line. The EXCPT operation can specify 
the name assigned to a group of records to be written. The name is called an EXCPT name. 

Column 
Number 

32-37 

2-102 

Allowable 
Values 

Blank 

Name 

Specifications 

Explanation 

Identifies exception output records to be written when an 
EXCPT opcode with a blank Factor 2 is executed. 

Identifies exception output records to be written when an 
EXCPT opcode with the same name in Factor 2 is exe
cuted. 



Rules 

• An EXCPT name must follow the rules for field names. 

• An EXCPT name cannot be the same as a file name, field name, data structure name, 
array name, table name, label, or subroutine name. 

• A group of any number of output records can use the same EXCPT name, and the 
records do not have to be consecutive records. 

2.10.14 Edit Codes 

Use column 38 to specify an Edit code. Edit codes allow you to perform a variety of editing 
functions on the data in a numeric output field. 

Column 
Number 

38 

Allowable 
Values 

1 

2 

3 

4 

A 

B 

C 

D 

Explanation 

Prints a number with commas before every third digit to 
the left ofthe decimal point, prints a zero balance, and sup
presses signs and leading zeros. 

Prints a number with commas before every third digit to 
the left of the decimal point, suppresses a zero balance, 
suppresses signs, and suppresses leading zeros. 

Prints a number without commas, prints a zero balance, 
and suppresses signs and leading zeros. 

Prints a number without commas, suppresses a zero bal
ance, suppresses signs, and suppresses leading zeros. 

Prints a number with commas before every third digit to 
the left of the decimal point, prints a zero balance, uses CR 
to represent a negative sign, and suppresses leading zeros. 

Prints a number with commas before every third digit to 
the left of the decimal point, suppresses a zero balance, 
uses CR to represent a negative sign, and suppresses lead
ing zeros. 

Prints a number without commas, prints a zero balance, 
uses CR to represent a negative sign, and suppresses lead
ing zeros. 

Prints a number without commas, suppresses a zero bal
ance, uses CR to represent a negative sign, and suppresses 
leading zeros. 

Specifications 2-103 



Column 
Number 

Rules 

Allowable 
Values 

J 

K 

L 

M 

x 
y 

z 

Explanation 

Prints a number with commas before every third digit to 
the left ofthe decimal point, prints a zero balance, prints a 
negative sign and suppresses leading zeros. 

Prints a number with commas before every third digit to 
the left of the decimal point, suppresses a zero balance, 
prints a negative sign, and suppresses leading zeros. 

Prints a number without commas, prints a zero balance, 
prints a negative sign, and suppresses leading zeros. 

Prints a number without commas, suppresses a zero bal
ance, prints a negative sign, and suppresses leading zeros. 

Performs no editing. 

Edits a date field using the format month/day/year or the 
format day/month/year, if you specify Inverted print. If the 
first digit of a date field is zero, it is suppressed. 

Suppresses signs and leading zeros. 

• If you use an Edit code in column 38, columns 45 though 70 must be blank unless you 
specify an Edit code modifier. 

• If you use an Edit code to edit an array, RPG II leaves two spaces to the left between 
the elements of the array. 

• You cannot use Edit codes on numeric data in packed or binary format. 

Additional Information 

• To prevent overlapping of the output fields, leave enough space for the characters that 
the Edit code will insert into the output field. 

• Unedited numeric output fields with negative values are output with the 
overpunched representation of the sign. For example, -1 will be output as J, -2 as K, 
and so on. (See Part II, Chapter 1 for information on overpunched format.) Therefore, 
use an Edit code or Edit word to prevent the output of an overpunched representation 
ofa sign. 

Table 2-6 shows the results of several Edit code examples. 

2-104 Specifications 



Table 2-6: Edit Codes and Examples 

Edit +12345.67 + 1234567 -1234.567 -1234567 Print Zero 
Code Balance 

none 1234567 1234567 123456P 123456P yes 
1 12,345.67 1,234,567 1,234.567 1,234,567 yes 
2 12,345.67 1,234,567 1,234.567 1,234,567 no 
3 12345.67 1234567 1234.567 1234567 yes 
4 12345.67 1234567 1234.567 1234567 no 
A 12,345.67 1,234,567 1,234.567CR 1,234,567CR yes 
B 12,345.67 1,234,567 1,234.567CR 1,234,567CR no 
C 12345.67 1234567 1234.567CR 1234567CR yes 
D 12345.67 1234567 1234.567CR 1234567CR no 
J 12,345.67 1,234,567 1,234.567 - 1,234,567- yes 
K 12,345.67 1,234,567 1,234.567 - 1,234,567- no 
L 12345.67 1234567 1234.567 - 1234567- yes 
M 12345.67 1234567 1234.567 - 1234567- no 

2.10.15 Blank After 
Use column 39 to specify Blank after that causes RPG II to reset the contents of the output 
field after writing it. RPG II resets alphanumeric data with blanks and numeric data with 
zeros. Specifying Blank after is especially useful when accumulating totals for each con
trol group. 
Column Allowable Explanation 
Number Values 

39 B Causes RPG II to reset the field after writing it 

Rules 

• This column must be blank for look-ahead fields, fields defined by an EXTRN opera
tion, constants, and the following special words: UDATE, UDAY, UMONTH, 
UYEAR, and *PLACE. 

• Ifindicators condition the field you want to reset, the same indicators condition Blank 
after. 

• If you specify Blank after for a field that you want to write more than once, enter Bin 
this column on the last line specifying output for that field. Otherwise, the field will be 
reset before being output again. 

Specifications 2-105 



The following example specifies Blank after for PAGE3. 

Tl:!pe (HDTE> Edit codes I o No CR -
I retch ovel'f I 0111 (F) I X -------------
I I Space I Y date edit Y Y 1 A J 
II I Skip I Z zero suppress Y N 2 B K 
III I I N Y 3 C L 
III I Indicatol's IBlank-after (B) N N 4 D H 

rile III I I Field IIEnd position 
nallle III I I nallle III rorlllat (PB) 
I III I I I III I 

01 I IBAB A NxxNxxNxxl III 1+ Constant or edit word + 
011 12 I 3 I 4 I 5 I 6 I 7 I 

1234567890123456789012345678901234567890123456789012345678901234567890123456789 
** ***** * * * 00UT50A D N1P 

o PAGE3 ZB 50 
ZK-4506-85 

2.10.16 End Position 
Use columns 40 through 43 to indicate the location of an output field or constant. Enter the 
number ofthe position for the rightmost character. For example, if a field contains 20 char
acters and you specify 40 as the End position, the output might appear as follows: 

023 4 
12345678901234567890123456789012345678901234567890 

South LvndeboroughNH 

The numbers above this example are for reference only; they do not appear in the output. 

Column 
Number 

40-43 

Rules 

Allowable 
Values 

1-9999 

• Right-justify this entry. 

Explanation 

Indicates the position of the rightmost character in an out
put field or constant 

• Leading zeros can be omitted. 

• If fields overlap, the last field you specify on the Output specification is the only field 
that is completely written. 

2-106 Specifications 



• When specifying the End position for an array, use the rightmost position of the last 
element in the array. 

• The End position must be less than or equal to the Record length (columns 24 through 
27 of the File Description specification) ofthe file to which the record belongs. 

Be sure to allow enough room for the number of characters in each output field and for the 
editing characters you specified using an Edit code or Edit word. 

THpe (HDTEl Edit codes o No CR -
IFetch overflow (F) I X -------------
IISpace I Y date edit Y Y 1 A J 
III Skip I Z zero suppress Y N 2 B K 
III I I N Y 3 C L 
III I Indicatol's IBlank-after (B) N N -4 D M 

File III I I Field II End position 
nallle III I I nallle III Forlllat (PB) 
I III I I I III I 

01 I IBAB A NxxNxxNxxl III I + Constant 01' edit word + 
011 12 I 3 I 4 I 5 16 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** o ***** * * * ***---** 
o 
o 
o 

22 'EMPLOYEE NUMBER' 
40 'EMPLOYEE NAME' 
57 'REG EARNINGS' 
75 'OVER EARNINGS' 

In the above example, the rightmost character in the 

• First field is in character position 22 

• Second field is in character position 40 

• Third field is in character position 57 

• Fourth field is in character position 75 

The output appears as follows: 

ZK·4507·85 

o 1 2 3 4 5 6 7 
123456788012345678801234567880123456788012345678801234567880123456788012345678E 

EMPLOYEE NUMBER EMPLOYEE NAME REG EARNINGS OI)ER EARN I NGS 

The numbers above this example are for reference only; they do not appear in the output. 

Specifications 2-107 



2.10.17 Format 
If an output field contains numeric data, use column 44 to specify its data format. You can 
specify overpunched decimal, packed decimal, or binary. Packed decimal and binary for
mat conserve disk space. 

Column 
Number 

Allowable 
Values 

Explanation 

44 Blank 

P 

B 

Indicates that the field contains either alphanumeric 
characters or numeric data and is in overpunched decimal 
format 

Indicates that numeric data is in packed format 

Indicates that numeric data is in binary format 

Leave this entry blank for the output field if you specify an Edit code, Edit word, or the 
special word *PLACE. 

The following example specifies packed decimal format for the field QTYP and binary for
mat for the field QTYB. 

T~pe(HDTE> Edit codes , o No CR -
IFetch overflow (F) I X -------------
I I Space I Y date edit Y Y 1 A J 
II I Skip I Z zero suppress Y N 2 B K 
III I I N Y 3 C L 
III I Indicator's IBlank-after (B) N N 4- D H 

File III I I Field IIEnd position 
nallle III I I nallle III Forlllat (PB) 
I III I I I III I 

01 IIBAB A NxxNxxNxxl III 1+ Constant or edit word + 
o I 1 I 2 I 3 I 4- I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** o 
o 

***** * * 

2.10.18 Constant or Edit Word 

* tlTYP 
tlTYB 

***---** 
32P 
38B 

ZK-4508-85 

Use columns mentioned below for Edit code modifiers, Constants, and Edit words. This 
section describes the options. 

2-108 Specifications 



2.10.18.1 Edit Code Modifiers 
Use columns 45 through 47 to specify Edit code modifiers. Edit code modifiers can replace 
suppressed zeros to the left ofthe decimal point with asterisks (asterisk fill) or put a dollar 
sign before the leftmost character (floating currency symbol). To specify these modifiers, 
enter the appropriate value described below. 

Column 
Number 

45-47 

Rules 

Allowable 
Values 

'*' 

'Symbol' 

Explanation 

Replaces suppressed zeros to the left of the decimal point 
wi th asterisks (*). 

Places the currency symbol before the first significant 
digit in a numeric field. The currency symbol is the same 
symbol you define in column 18 of the Control specifica
tion. 

• Enclose Edit code modifiers in apostrophes. 

• The floating currency symbol will not be printed for a zero balance when you use an 
Edit code that suppresses a zero balance. 

• You cannot use the floating currency symbol or asterisk fill with simple (X, Y, and Z) 
Edit codes. 

• You can specify a currency symbol before an asterisk fill by making the following 
entries: 

- Column 38 (Edit code) - Specify one of the combined Edit codes. 

- Place a currency symbol constant one space before the beginning of the edited field 
on the Output specification. 

- Place an asterisk enclosed in apostrophes C*') in columns 45 through 47 on the same 
line as the Edit code. 

Specifications 2-109 



T!:lpe (HDTE> Edit codes o No CR -
'Fetch overflow (F) , X -------------
"Space , Y date edit Y Y 1 A J 
"' Skip , Z zero suppress Y N 2 B K 

"' , , N Y 3 C L 

"' 
, Indicators 'Blank-after (B) N N 4 D M 

Fi Ie "' 
, , Field "End position 

nallle "' 
, , nallle "' Forlllat (PB) , 

"' 
, , , 

"' 
, 

0' "BAB A NxxNxxNxx' "' ,+ Constant or edit wOl'd + 
011 12 I 3 I 4 I 5' 6 I 7' 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** o 
o 

***** * * * ***---** 
56 '$' 

OTEARN1 61 '*' 
ZK-4509-85 

In the above example, if the field OTEARN, which is four digits long with two decimal 
positions, contains a zero balance, RPG II prints a dollar sign before the asterisk filL The 
output might appear as follows: 

o 234 5 8 7 
12345878801234587880123458788012345878801234587880123458788012345878801234587880 

$**.** 

RPG II uses a dollar sign ($) as the currency symbol unless you specify another symbol in 
column 18 (Currency symbol) ofthe Control specification_ 

2.10.18.2 Constants 
Use columns 45 through 70 to specify Constants_ Place a double quotation mark (") in col
umn 45 to specify a long character literal as a constant_ Constants are used to describe 
constant data in an output file. 

Column 
Number 

45 

45-70 

2-110 

Allowable 
Values 

Double 
quotation 
(") 

Any 
character 

Specifications 

Explanation 

Causes RPG II to print the characters within single quota
tion marks on the line(s) that follow. All the rules for long 
character literals on Calculation specifications apply 
when used on Output specifications. See Factors 1 and 2, 
this chapter, for information on long character literals. 

Causes RPG II to print the characters in columns 45 
through 70. 



Rules 

• Constants can contain up to 24 characters. 

• You must enclose constants within single quotation marks. Use the keyboard apostro
phe mark as the single quotation mark (for example, 'Subroutine'). The single quota
tion marks are not printed. 

• When using constants, leave columns 32 through 39 and column 44 blank. 

• To include an apostrophe in a constant, you must use two consecutive apostrophes to 
represent one apostrophe (for example, 'Subroutine' 's calculations'). 

2.10.18.3 Edit Words 
Use columns 45 through 70 to specify Edit words. Edit words can be used to edit a numeric 
field. Edit words consist ofthree parts: the body, sign status, and expansion. The body is the 
portion of the Edit word that provides space for the digits from the field to be edited. The 
body begins at the leftmost character position of the Edit word and ends at the rightmost 
character position that is to contain a digit from the field to be edited. 

The sign status is the portion of the Edit word that is used to specify whether the field is 
positive or negative and to specify a constant, if needed. The sign status begins at the first 
character position to the right of the body and ends with CR or a negative sign (-). If you 
specify one ofthese symbols and the field is positive, blank spaces will be substituted in the 
edited field. If you use CR or a negative sign and the field is negative, that symbol will be 
substituted in the edited field. 

If an Edit word contains no CR or a negative sign to the right of the rightmost character 
that is to contain a digit, the Edit word contains no sign status portion. 

The expansion consists of characters that will be printed regardless ofthe field's sign sta
tus. The expansion begins immediately after the sign status (or body, if no sign status is 
used) and continues to the end of the Edit word. 

The following table describes those characters you can use in the body of the Edit word. 

Specifications 2-111 



Column 
Number 

45-70 

2-112 

Allowable 
Values 

Blank 

o 

* 

& 

Specifications 

Explanation 

Indicates that the position in the edited field is to contain 
the digit from the same position in the numeric field. 

Indicates that the field is to be zero suppressed. Place the 
zero in the rightmost position where zero suppression is to 
stop. Each leading zero that appears to the left of and 
including the stop position of the numeric field is replaced 
with a blank space in the edited field. The first zero RPG II 
encounters is the zero suppression character. Any zero 
appearing after the first zero is treated like any other 
character. Zero suppression begins at the leftmost position 
in the data and continues up through the stop position 
unless a nonzero digit is encountered to the left of the stop 
position. IfRPG II encounters a nonzero digit to the left of 
the stop position, zero suppression stops at the position 
where the nonzero digit is encountered; that-digit and all 
following digits to the right of the nonzero digit are 
printed. 

Indicates that the field is to be edited using asterisk pro
tection. Place the asterisk in the rightmost position where 
asterisk protection is to stop. Each leading zero that 
appears in the data to the left of and including the stop 
position is replaced with an asterisk. The first asterisk 
RPG II encounters is the asterisk protection character. 
Any asterisk appearing after the first asterisk is treated 
like any other character. 

Indicates that the position in the edited field is to be a 
blank space. 



Column 
Number 

file 
nallle 
I 

01 

Allowable 
Values 

Symbol 

T~pe (HDTE> 

Explanation 

Prints the currency symbol. If the currency symbol 
appears in the body of the Edit word immediately to the 
left of the zero suppression, it is printed immediately to 
the left of the first significant digit in the edited field. This 
type of currency symbol is called a floating currency sym
bol. A floating currency symbol cannot be used with aster
isk protection. 

The currency symbol in the leftmost position of the Edit 
word indicates that the dollar sign is to be printed in that 
exact position in the edited field. This type of currency 
symbol is called a fixed currency symbol. The following 
example shows both types of currency symbols. 

Edit codes o No CR -
Ifetch overflow (f) I X -------------
IISpace I Y date edit Y Y 1 A J 
III Skip I Z zero suppress Y N 2 B K 
III I I N Y 3 C l 
III I Indicators IBlank-after (B) N N 4 D H 
III I I field II End position 
III I I nallle III forlllat (PB) 
III I I I III I 
I IBAB A NxxNxxNxxl III 1+ Constant or edit word + 

o I 1 I 2 1 3 I· 4 ·1 5 I 6 1 7 1 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** o 
o 

***** * * * flOAT 
fIXED 

***---** 
45 '$0 
45 '$ 

ZK-4510-85 

In the example above, if FLOAT and FIXED contain the characters 1234, the output 
appears as follows: 

o 2 3 4 5 6 7 
1234567890123456789012345678901234567890123456789012345678901234567890123456789 

$1234 
$ 1234 

Specifications 2-113 



Column 
Number 

File 
name 
I 

01 

Allowable 
Values 

Decimal point 
or comma 

THpe (HDTE> 

Explanation 

Indicates the exact position in the edited field where it is to 
be printed. If a decimal point or comma appears to the left 
of the most significant digit, RPG II will replace it with a 
blank space or, if asterisk protection is specified, with an 
asterisk. 

In the following example, RPG II prints a comma before 
the fifth digit from the right and a decimal point before the 
rightmost two digits. 

Edit codes o No CR -
IFetch overflow (f) I X -------------
I I Space I Y date edit Y Y 1 A J 
III Skip I Z zero suppress Y N 2 B K 
III I I N Y 3 C L 
III I Indicators IBlank-after (B) N N 4 D H 
III I I Field II End position 
III I I name III Format (PB) 
III I I I III I 
I IBAB A NxxNxxNxxl III 1+ Constant or edit word + 

011 12 I 3 I 4 I 5 I 6 171 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** o ***** * * * ***---** 
FLD 45 '$ 

ZK-4511-85 

In the above example, ifFLD contains the data 123456, the output appears as follows: 

o 2 3 4 5 6 7 
12345678801234567880123456788012345678801234567880123456788012345678801234567880 

$1,234.56 

In the above example, if FLD contains the data 56, the output appears as follows: 

023 a 5 6 7 
12345678801234567880123456788012345678801234567880123456788012345678801234567880 

$ 56 

2-114 Specifications 



Column 
Number 

File 
nallle 
I 

01 

Allowable 
Values 

Any other 
character 

T~pe (HDTE> 

Explanation 

Prints the character(s) in the edited field provided that the 
position is to the right of the most significant digit in the 
edited field. Any character to the left of the most signifi
cant digit in the edited field is replaced with a blank space 
or an asterisk if asterisk protection is specified. 

Edit codes , o No CR -
IFetch overflow (n I X -------------
I I Space I Y date edit Y Y 1 A J 
III Skip I Z zero suppress Y N 2 B K 
III I I N Y 3 C L 
III I Indicators IBlank-after (B) N N 4 D H 
III I I Field IIEnd position 
III I I nallle III Forlllat (PB) 
III I I I III I 
IIBAB A NxxNxxNxxl III 1+ Constant or edit word + 

o I 1 I 2 131 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** o ***** * * * ***---** 
FLD 45 ' $, • &BALANCE ' 

ZK-4512-B5 

In the above example, if FLD contains the data 123456, the output appears as follows: 

o 1 234 5 6 7 
1234567880123456788012345678801234567880123456788012345678801234567880123456788 

$1.234.56 BALANCE 

The following table describes those characters you can use in the status portion of the Edit 
word. 

Column 
Number 

45-70 

Allowable 
Values 

CRor -

Any 
character 

Explanation 

Indicates that the specified symbol (CR or a negative sign 
( - )) is to be printed in the edited field if the data is nega
tive. If the edited field is positive, the specified symbol is 
replaced by blanks. 

Prints the specified character(s) in the edited field if the 
data is negative; otherwise the character is replaced by a 
blank. If an ampersand is specified, it will be replaced by a 
blank space. 

Specifications 2-115 



T~pe (HDTE> Edit codes o No CR -
Ifetch overfloN (f) I X -------------
I I Space I Y date edit Y Y 1 A J 
III Skip I Z zero suppress Y N 2 B K 
III I I N Y 3 C L 
III I Indicators IBlank-after (B) N N 4 D H 

file III I I field I lEnd position 
nallle III I I nallle III forlllat (PB) 
I III I I I III I 

01 IIBAB A NxxNxxNxxl III 1+ Constant or edit Nord + 
o I 1 I 2 I 3 I 4 I 5 I 6 171 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** o ***** * * * ***---** 

fLD 45 '$ , &CR&BALANCE' 
ZK-4513-85 

In the above example, ifFLD contains the data -123456, the output appears as follows: 

o 1 2 3 4 5 6 7 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

$1.234.56 CR BALANCE 

Rules 

• Leave column 38 (Edit code) blank. 

• You must complete columns 32 through 37 (Field name) and columns 40 through 43 
(End position). 

• Edit words can be used only with overpunched numeric data. (Column 44 (Data for-
mat) must be blank.) 

• Edit words can consist of up to 24 characters. 

• Enclose Edit words in apostrophes. 

• The number of replaceable characters in an Edit word must be greater than or equal 
to the number of digits in the numeric field. 

• If you want all leading zeros to be printed, increase the Edit word by one position to 
the left of the leftmost digit and place a zero in that position. 

• When the floating currency symbol is used, the sum of the number of blanks and the 
zero suppression in the Edit word must be equal to or greater than the number of dig
its in the edited field. A floating currency symbol is not counted as a digit position. 

• Any zeros or asterisks following the leftmost zero suppression code or asterisk protec
tion are treated as constants and are not replaced with digits. 

2-116 Specifications 

',,_ 

/ 
( 
~-



Chapter 3 

Operation Codes 

Operation codes perform calculations on the operands you specify in Calculation specifica
tions. The following sections group operation codes by function and discuss each operation 
cod~ in detail. See Table 3-1 at the end of this chapter for a summary of the options you can 
use with each operation code. 

3.1 Arithmetic Operation Codes 

Arithmetic operation codes perform a variety of functions ranging from adding two oper
ands to taking the square root of an operand. 

When using arithmetic operation codes, consider the following restrictions and default 
characteristics: 

• You can use arithmetic operation codes only with numeric fields and numeric literals. 

• RPG II aligns the operands according to their decimal points before performing any 
arithmetic operation. Also, RPG II aligns the result on the decimal point in the Result 
field which could cause truncation. 

• The contents of Factor 1 and Factor 2 do not change during an arithmetic operation 
unless the same field is used as the Result field. 

• Any existing data in the Result field is replaced with the result of the current 
operation. 

• Make sure the Field length ofthe Result field is large enough to hold the result of the 
operation. Otherwise, the result of the operation is truncated before being placed in 
the Result field. 

• You can specify Half adjust (column 53 of the Calculation specification) for any arith
metic operation except for an MVR operation and the DIV operation immediately pre
ceding it. 

• You can specify the same field for Factor 1 and Factor 2 and/or the Result field, if 
desired. 

3-1 



• You can leave Factor 1 blank. If you do, the statement is treated as if the Result field 
were specified in Factor 1. 

• You can specify an entire array as an operand of the ADD, SUB, Z-ADD, Z-SUB, 
MULT, DIV, and SQRT operation codes. See Part I, Chapter 8 for information on using 
arrays in calculations. 

• No field in an arithmetic operation can be longer than 15 digits. 

• RPG II performs all arithmetic operations algebraically. 

• The result of all arithmetic operations is signed. The sign ofthe result of an arithme
tic operation depends on the operation. 

Addition: 

- If Factor 1 and Factor 2 have like signs, the Result field has the same sign. 

- If Factor 1 and Factor 2 have unlike signs, the Result field uses the sign of the factor 
with the largest absolute value. 

Subtraction: 

- Change the sign of Factor 2 (positive to negative or negative to positive) and use the 
same rules as for addition. 

Multiplication: 

- If Factor 1 and Factor 2 have like signs, the sign of the Result field is positive. 

- If Factor 1 and Factor 2 have unlike signs, the sign ofthe Result field is negative. 

Division: 

- If Factor 1 and Factor 2 have like signs, the sign ofthe Result field is positive. 

- If Factor 1 and Factor 2 have unlike signs, the sign ofthe Result field is negative. 

- The sign of the remainder is the same as the sign of Factor 1. 

3.1.1 ADD 
ADD adds the contents of Factor 1 to Factor 2 and puts the sum in the Result field. If 
you leave Factor 1 blank, the statement is treated as if the Result field were specified in 
Factor 1. 

3.1.2 Z-ADD 
Z-ADD assigns the value of Factor 2 to the Result field. 

3-2 Operation Codes 



3.1.3 SUB 
SUB subtracts the contents of Factor 2 from the contents of Factor 1 and puts the differ
ence in the Result field. If you leave Factor 1 blank, the statement is treated as if the Result 
field were specified in Factor 1. 

3.1.4 Z-SUB 
Z-SUB multiplies the contents of Factor 2 by -1 and puts the result in the Result field. 

3.1.5 MULT 
MULT multiplies Factor 1 by Factor 2 and puts the product in the Result field. If you leave 
Factor 1 blank, the statement is treated as if the Result field were specified in Factor 1. 

The Field length of the Result field for a MULT operation should equal the sum ofthe Field 
lengths of Factor 1 and Factor 2. This procedure makes sure the Result field can contain 
the maximum value. 

3.1.6 DlV 
DIV divides Factor 1 by Factor 2 and puts the quotient in the Result field. If you leave 
Factor 1 blank, the statement is treated as ifthe Result field were specified in Factor 1. 

Factor 2 cannot be zero. Ifit is, a run-time error occurs. The remainder is lost unless you 
use the MVR operation immediately following the DIV operation. 

3.1.7 MVR 
MVR moves the remainder from the division operation on the preceding line to the Result 
field. The Decimal position of the remainder is the greater of either of the following: 

1. The number of Decimal positions specified for Factor 1 

2. The sum of the number of Decimal positions specified for Factor 2 and the Result 
field ofthe preceding DIV operation 

The sign ofthe remainder is the same as the sign of Factor 1 in the DIV operation. 

Because DIV and MVR operation codes work together, use the same indicators to condition 
both operations. 

You cannot specify Half adjust (column 53 of the Calculation specification) for a DIVopera
tion immediately followed by an MVR operation. 

You cannot use the MVR operation if in the immediately preceding DIV operation you 
specified an entire array (nonindexed) in the Result field. 

Operation Codes 3-3 



3.1.8 SQRT 
SQRT calculates the square root of Factor 2, half adjusts the value, and puts the result into 
the Result field. The result of a SQRT operation is always half adjusted. Factor 2 cannot be 
a negative number. If the field contains a negative number, a run-time error occurs. If you 
use a negative numeric literal, a compile-time error occurs. 

3.1.9 XFOOT 
XFOOT puts the sum of all the array elements into the Result field. Factor 2 contains the 
name of the array. If the Result field contains an array element ofthe array you specify in 
Factor 2, the original value of the element is used during the operation. 

You can half adjust the contents of the Result field. 

3.1.10 Example 
The following example demonstrates the use of arithmetic operation codes: 

Contro I I eve I 
I 
I Indicato,'s 
I I 
I I Factor 
I I 1 

Operation 
I 
I 
I 
I 

Factor 
2 
I 

Field length 
I Deci~al positions 
I IHaif adjust (H) 
I II 
I II Resul ting 

Resultl II indicators 
field I 11+ - 0 
I I II> < = +- Co~~ents --+ CI NxxNxxNxxl 

011 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
12 C 
13 C 
HC 
15 C 
16 C 
17 C 
18 C 

30 C 
31 C 

46 C 

* PURCH 
AMTFIN 
FINCHG 
AMTDUE 

* * SUB DWNPAY 
MULT .18 
ADD AMTFIN 
DIV 13 
MVR 
Z-ADD5.00 
ADD AMTDUE 

Z-SUB10.00 
Z-ADD6.99 

SQRT FINCHG 

* *--*** * * * 
AMTFIN 62H 
FINCHG 62H 
AMTDUE 62H 
MTHPAY 52 
REMAIN 42 
TOTDUE 62 
TOTDUE 

EAR PAY 42H 
LATCHG 32H 

TAX 42H 
ZK-4514-85 

For the example above, the following table lists the data in each operand before and after 
the operation. 

3-4 Operation Codes 



Program Factor 1 Operation Factor 2 Result 
line Field 

12 122.99 100.00 22.99 

13 1200.00 * .18 216.00 

14 216.00 + 1200.00 1416.00 

15 1416.00 13 108.92 

16 MVR 0.04 

18 ADD 1416.00 1421.00 

30 Z-SUB 10.00 -10.00 

31 Z-ADD 6.99 6.99 

46 SQRT 216.00 14.70 

3.2 Move Operation Codes 

Move operation codes transfer data from a field in Factor 2 to the Result field. Although the 
contents of Factor 2 remain unchanged, you can move all or part of the field in Factor 2, 
and either retain or change the format ofthe data as you move it. 

In move operations, RPG II ignores the Decimal positions of numeric fields. You cannot use 
resulting indicators with any move operation. 

3.2.1 MOVE 
MOVE transfers the contents of Factor 2 to the Result field. The transfer begins with the 
rightmost character of Factor 2 to the rightmost character of the Result field. Ifthe Result 
field is not large enough to accommodate Factor 2, RPG II moves only enough characters 
(beginning with the rightmost character) to fill the Result field. If the Field length of the 
Result field is longer than Factor 2, the leftmost characters of the Result field are not 
changed. If RPG II transfers numeric data, the sign of the Result field is the same as the 
sign of Factor 2. 

When you move an alphanumeric field to a numeric field, RPG II converts the digit portion 
of each character to its corresponding numeric character and then moves the numeric 
character to the Result field. RPG II converts the zone portion of the rightmost character to 
its corresponding sign and then moves the sign to the rightmost character position ofthe 
numeric Result field, where it becomes the sign ofthat field. 

Operation Codes 3-5 



3.2.2 MOVEA 
MOVEA transfers data from Factor 2 to the Result field. Either Factor 2 or the Result field 
must contain an array or array element. If you specify an array element, it specifies the 
beginning position of the transfer. Both Factor 2 and the Result field must be character 
fields or arrays. 

You can move several contiguous array elements to a single field or move a single field to 
several contiguous array elements. 

Movement of data from Factor 2 to the Result field begins with one of the following: 

• The leftmost character of the first element in the array, if you specify an entire array 
(nonindexed) 

• The leftmost character of the element you specify, if you specify an array element 
(indexed) 

• The leftmost character of the field, if you specify a field 

The length of Factor 2 and the Result field is determined by the length of one ofthe follow
ing: 

• Entire array, if you specify an entire array (nonindexed) 

• Array from the specified array element to the end ofthe array, if you specify an array 
element (indexed) 

• Field, if you specify a field 

If the Field length of Factor 2 is greater than the Field length of the Result field, RPG II 
does not move the excess rightmost characters. If the Field length of the Result field is 
greater than the Field length of Factor 2, the rightmost characters in the Result field 
remain unchanged. 

Array element boundaries are ignored in a MOVEA operation. Therefore, movement of 
data into the Result field can end in the middle of an array element. 

3.2.3 MOVEL 
MOVEL transfers the contents of Factor 2 to the Result field. The transfer begins with the 
leftmost character of Factor 2 to the leftmost character of the Result field. 

When the Field length of Factor 2 is equal to the Field length ofthe Result field, the follow
ing rules apply: 

• If Factor 2 contains alphanumeric data and the Result field is alphanumeric, RPG II 
moves characters without changing them. 

• If Factor 2 contains numeric data and the Result field is numeric, the sign of Factor 2 
becomes the sign ofthe Result field. 

3-6 Operation Codes 



• If Factor 2 contains numeric data and the Result field is alphanumeric, RPG II moves 
the sign with the rightmost character position. 

• If Factor 2 contains alphanumeric data and the Result field is numeric, each character 
is converted to its corresponding numeric digit and moved to the Result field. The zone 
portion of the rightmost character in Factor 2 is used to determine the sign of the 
Result field. 

When the Field length of Factor 2 is longer than the Field length of the Result field, the 
following rules apply: 

• If Factor 2 contains alphanumeric data and the Result field is alphanumeric, RPG II 
moves only the number of characters needed to fill the Result field. 

• If Factor 2 contains numeric data and the Result field is numeric, the sign of Factor 2 
becomes the sign of the Result field. 

• If Factor 2 contains numeric data and the Result field is alphanumeric, the Result 
field contains only numeric data; that is, the sign of Factor 2 is not used. 

• If Factor 2 contains alphanumeric data and the Result field is numeric, the leftmost 
character(s) of Factor 2 are converted to the corresponding numeric digit(s) and 
moved to the Result field. The zone portion of the rightmost character in Factor 2 is 
used to determine the sign of the Result field. 

When the Field length of Factor 2 is shorter than the Field length of the Result field, the 
following rules apply: 

• If Factor 2 contains either numeric data or alphanumeric data and the Result field is 
numeric, RPG II moves the digits of numeric fields or the corresponding numeric dig
its, if alphanumeric, of Factor 2 into the leftmost character positions of the Result 
field. The sign ofthe Result field remains unchanged. 

• If Factor 2 contains either numeric or alphanumeric data and the Result field is 
alphanumeric, RPG II moves the data into the Result field beginning with the 
leftmost character position. The rightmost character positions in the Result field 
remain unchanged. 

3.2.4 Example 
In the following example, the pre-execution-time array ARRl is read from the input file 
ARRFILE and is copied to the execution-time array DUPARR. The array is modified by 
moving the input field INPFLD to the second and third elements of the array. Additionally, 
the field MYREC consists ofthe first element in ARRl and the last three characters of the 
third element in ARR1. 

Operation Codes 3-7 



011 1213 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

E ARRFIlE 
E 
IARRFIlE AA 01 
I 
C 
C 
C 
C 

ARRl 6 
DUPARR 

HOVEAARRl 
HOVEAINPF'lD 
HOVE ARR1,3 
HOVELARR1,1 

6 5 
6 5 

1 10 INPF'LD 
DUPARR 
ARR1,2 
HYREC B 
HYREC 

For this example, the input file (ARR1) contains the following data: 

Field 

ARRl,1 
ARR1,2 
ARR1,3 
ARR1,4 
ARR1,5 
ARR1,6 
INPFLD 

Data 

12345 
67890 
ZZZZZ 
ZZZZZ 
ZZZZZ 
ZZZZZ 
ABCDEFGHIJ 

After executing the program, the fields would contain the following data: 

MYREC = 12345HIJ 
ARR1,1 = 12345 
ARR1,2 = ABCDE 
ARR1,3 = FGHIJ 
ARR1,4 = ZZZZZ 
ARR1,5 = ZZZZZ 
ARR1,6 = ZZZZZ 
DUPARR = 1234567890ZZZZZZZZZZZZZZZZZZZZ 

3-8 Operation Codes 

ZK-4515-85 



3.3 Set Operation Codes 

Set operation codes (SETON and SETOF) set indicators on and off. They affect only those 
indicators in columns 54 through 59. 

If you use set operation codes to set control-level indicators on and off, they do not affect 
lower control-level indicators. 

3.3.1 SETON 
SETON sets on the indicators you specify in columns 54 and 55,56 and 57, and 58 and 59. 
You cannot set the first-page (IP) or matching-record (MR) indicators on. 

If you use SETON to set the LR indicator on at total time, processing stops after RPG II 
finishes total-time output operations. 

If you use SETON to set the LR indicator on at detail time, processing stops after RPG II 
finishes the next total-time output operation. 

If you use SETON to set halt indicators on and they are not set off before RPG II finishes 
detail-time output operations, processing stops. 

3.3.2 SETOF 
SETOF sets offthe indicators you specify in columns 54 and 55, 56 and 57, and 58 and 59. 
You cannot set the first page (lP) or matching-record (MR) indicators off. 

In the following example 

• The SETON operation sets indicators 11 and 22 on . 

• The SETOF operation sets indicator 33 off. 

Contro I I eve I 
I 
I Indicators 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Operation 
I 
I 
I 
I 

Factor 
2 
I 

Field length 
I Deci~al positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resu I t I I I indicators 
field I 11+ - 0 
I I II> < = +- Co~~ents --+ 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * * C 
C 

* * SETON 
SETOF 

* *--*** * * * 
1122 
33 

ZK-4516-85 

Operation Codes 3-9 



3.4 Subroutine Operation Codes 

Subroutine operation codes are used to identify and execute subroutines. A subroutine is a 
group of Calculation specifications that you can execute more than once in a single pro
gram cycle. 

You can use SR in columns 7 and 8 to indicate that the specification is part ofa subroutine, 
although this is optional. You cannot use control-level indicators in columns 7 and 8 of a 
subroutine. However, you can use any indicator in columns 9 through 17. Also, you can use 
AN and OR in columns 7 and 8 to set up a relationship between two program lines. 

You can use up to 254 subroutines in a program. Subroutines must be placed after all other 
calculations. Subroutines cannot be nested or recursive. However, you can use EXSR to 
call one subroutine from another. 

3.4.1 BEGSR 
BEGSR indicates the beginning of a subroutine and must be the first specification in a 
subroutine. Factor 1 contains the name of the subroutine. All other columns in the same 
specification must be left blank except for an optional SR in columns 7 and 8. 

3.4.2 ENDSR 
ENDSR indicates the end of a subroutine and must be the last specification in a subrou
tine. Factor 1 can contain a label for a GOTO operation within the subroutine. All other 
columns in this specification must be blank, except for an optional SR in columns 7 and 8. 

Once the program reaches the ENDSR operation, it returns program control to the specifi
cation immediately following the EXSR operation code that invoked the subroutine. 

3.4.3 EXSR 
EXSR executes a subroutine. Factor 2 contains the name of the subroutine. It must be the 
same name you used in Factor 1 of the BEGSR operation. You can use control-level and 
conditioning indicators to condition EXSR. 

After the program performs the operations in the subroutine, control branches to the speci
fication immediately following EXSR. 

3.4.4 Example 
In the following example, line 11 causes RPG II to execute the subroutine SUBl. The sub
routine consists oflines 22 through 24. 

3-10 Operation Codes 



Contt'o I I eve I 
I 
I Indicators 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Operation 
I 
I 
I 
I 

Factot' 
2 
I 

Field length 
I Decimal positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resu I t I II indicators 
field I 11+-0 
I I II> < = +- Comments --+ 

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 11 C 02 

22 CSR 
23 CSR 02 
24 CSR 

* 

SUB1 
HOURS 

3.5 Bit Operation Codes 

* * EXSR SUB1 

BEGSR 
HULT RATE 
ENDSR 

* 

DAYPAY 52H 

ZK-4517-85 

Bit operation codes set and test bits. You must use one-character alphanumeric fields in 
Factor 2 and the Result field. 

3.5.1 BITON 

ElTON sets on the bits you specify in Factor 2 in the Result field, replacing the value in the 
Result field. Factor 2 contains the source of bits in bit numbers or a field name. 

You can set on bit numbers 0 through 7. Zero is the leftmost bit. You must enclose the bit 
number in apostrophes. For example, to set bits 1, 2, and 3 on, enter '123' in Factor 2. You 
cannot specify a bit number more than once. 

The field name is a one-character alphanumeric field, table, or array element. The bits that 
are on in the field name are set on in the Result field. If you specify an array element, each 
array element must be a one-character field. 

You can use indicators in columns 7 through 17, but the following columns must be left 
blank: 

• Columns 18 through 27 (Factor 1) 

• Column 52 (Decimal positions) 

• Column 53 (Half adjust) 

• Columns 54 through 59 (Resulting indicators) 

Operation Codes 3-11 



3.5.2 BITOF 
BIT OF sets offthe bits you specify in Factor 2 in the Result field, replacing the value in the 
Result field. To specify operands for BITOF, follow the same guidelines as for BITON. 

3.5.3 TESTB 
TESTB compares the bits in Factor 2 with the corresponding bits in the Result field. Factor 
2 can contain bit numbers or a one-character alphanumeric field. Bit numbers and one
character alphanumeric fields follow the same rules as those for BITON and BITOF. 

Indicators in columns 54 through 59 reflect the status of the bits in the Result field; there
fore, you must assign at least one resulting indicator. You can set up to three resulting 
indicators but no more than two resulting indicators can be identical. 

If Factor 2 is a field in which all bits are off, no resulting indicator is set on; otherwise, 
indicators in columns 54 through 59 indicate the result of the comparison as follows: 

• RPG II sets the indicator in columns 54 and 55 on, if all bits specified in Factor 2 are off 
in the Result field. 

• RPG II sets the indicator in columns 56 and 57 on, if some bits specified in Factor 2 are 
on in the Result field and some are off. 

• RPG II sets the indicator in columns 58 and 59 on, if all bits specified in Factor 2 are on 
in the Result field. 

You can use indicators in columns 7 through 17, but the following columns must be left 
blank: 

• Columns 18 through 27 (Factor 1) 

• Column 52 (Decimal positions) 

• Column 53 (Half adjust) 

3.5.4 Example 
In the following example 

• Line 34 sets the bits 1,2, and 3 on in the Result field FLDl. 

• Line 35 tests the bits 1,2, and 3 in the Result field FLDl. If all the bits are on, indica
tor 11 is set on. If one or more of the bits are off, indicator 11 is set off. 

• Line 36 sets the bits 4,5, and 6 off in the Result field FLD2. 

• Line 37 tests the bits 4, 5, and 6 in the Result field FLD2. If all the bits are off, indica
tor 22 is set on. Ifone or more of the bits are on, indicator 22 is set off. 

3-12 Operation Codes 



Contt'o I I eve I 
I 
I Indicators 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Operation 
I 
I 
I 
I 

Factor 
2 
I 

Field length 
I Deci~al positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resu I t I II indicatot's 
field I 11+ - 0 
I I II) < = +- Co~~ents --+ 

011 I 2 I 3 I 4 151 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * * * * * *--*** * * * 
34 C BITON' 123' FLDl 
35 C TESTB'123' FLD1 11 
36 C BITOF'456' FLD2 
37 C TESTB'456' FLD2 22 

ZK-4518-85 

3.6 Compare Operation Code 
COMP tests fields for certain conditions. Based on the result of the comparison, you can 
assign resulting indicators to condition calculation and output operations. 

COMP compares the contents of Factor 1 to the contents of Factor 2. An indicator in col
umns 54 through 59 indicates the result ofthe comparison as follows: 

• If Factor 1 is greater than Factor 2, RPG II sets the indicator in columns 54 and 55 on. 

• If Factor 1 is less than Factor 2, RPG II sets the indicator in columns 56 and 57 on. 

• If Factor 1 is equal to Factor 2, RPG II sets the indicator in columns 58 and 59 on. 

You must specify at least one resulting indicator. The Result field must be left blank. 

When using the COMP operation code, consider the following restrictions and default 
characteristics: 

• If you compare numeric fields, the fields are aligned at their implied decimal point. 
Fields are filled with zeros to the left and right of the decimal point until both fields 
are equal in length. For example, if you compare 1234.56 to 1.2, RPG II fills the second 
field (1.2) with zeros (0001.20) until both fields are equal in length. 

• If you compare alphanumeric fields of unequal lengths, the fields are aligned at the 
leftmost character. Shorter fields are filled with blanks until the two fields are equal 
in length. 

• RPG II compares numeric fields algebraically. 

• Positive numeric fields are greater than negative numeric fields. 

Operation Codes 3-13 



• If you have specified an alternate collating sequence, RPG II translates character 
fields to the alternate collating sequence before comparing them. 

• You cannot compare an alphanumeric field to a numeric field. 

• You cannot compare entire arrays (nonindexed). 

In the following example, ifthe contents of the field CODE are greater than 1, RPG II sets 
indicator 11 on and sets indicators 22 and 33 off. If the contents of CODE are less than 1, 
RPG II sets indicator 22 on and sets indicators 11 and 33 off. If CODE is equal to 1, RPG II 
sets indicator 33 on and sets indicators 11 and 22 off. 

Field length 
Control level I Deci~al positions 
I I IHalf adjust (H) 
I Indicatot's Operation I II 
I I I I II Resu I ting 
I I Factor I Factor Resultl I I indicators 
I I 1 I 2 field I 11+ - 0 

CI NxxNxxNxxl I I I I II> < = +- Co~~ents --+ 
011 I 2 131 4 I 5 I 6 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 
** * 
C * CODE * * COMP '1' * 

3.7 Input and Output Operation Codes 

*--*** * * * 
112233 

ZK-4519-85 

You can use the following operation codes to alter the normal input and output sequence, 
enabling the program to read and write records during calculations. 

3.7.1 CHAIN 
CHAIN reads a record from a file during calculations and places the contents of the record 
into the fields you specify on the Input specification. You can read records randomly from a 
sequential, a direct, or an indexed file. 

If you want to read a record from a sequential or a direct file, Factor 1 must contain the 
relative record number of that record. If you want to read a record from an indexed file, 
Factor 1 must contain a field name or a literal that is the key of that record. The Field 
length of the field or literal specified in Factor 1 must be the same as the Field length of the 
key. 

Factor 2 contains the name of the file from which the record is read. This file must be the 
same file you describe in the File Description specification with a C or an F in column 16 
(Type). 

3-14 Operation Codes 



You can use any indicator in columns 7 through 17, but columns 43 through 53, and 56 and 
57 must be left blank. If you condition the chained or full-procedural file with an external 
indicator, use the same indicator to condition the CHAIN operation. 

You can specify an indicator in columns 54 and 55 to verify the CHAIN operation. IfRPG II 
cannot locate the record, it sets the indicator in these columns on. If you do not use an 
indicator in columns 54 and 55, and RPG II cannot locate the record, a run-time error 
occurs. If RPG II cannot locate the record, you can add a record to the chained file (if you 
use a resulting indicator to indicate that a record has not been found), but you cannot 
attempt to update the record. 

You can specify on a CHAIN operation that if a record is locked, to set on an indicator. 
Enter the indicator for a locked record in columns 58 and 59 of a Calculation specification. 
If you specify an indicator in columns 58 and 59, the program will not wait for the record to 
become unlocked before proceeding, and will turn on the indicator to show that the 
requested record was locked. If you do not specify the indicator, the program will wait until 
any record lock is released before proceding. This indicator is only allowed on CHAINs to 
files that are marked as SHARE (S or R in column 68 on File specifications). The file cannot 
be an output file. Note that if another program has locked a record for update, but uses the 
file sharing option R, then a CHAIN operation that accesses that record will be successful; 
no lock will be seen and an indicator in columns 58 and 59 will be turned off. 

If you chain to a file with packed keys, the field in Factor 1 ofthe CHAIN operation must be 
numeric and have the same number of digits as the key in the chained or full-procedural 
file. Packed key fields can be up to 8 bytes long. 

If you use one or more chained or full-procedural files during the same program cycle, and 
the previous CHAIN operation was successful, then any record-identifying indicators you 
use remain on throughout the cycle. If you use a chained file more than once during the 
same program cycle, only the last record processed can be updated during output, unless 
you specify exception output for each CHAIN operation. 

The CHAIN operation is also used to load a direct file (a chained output file). Use the 
CHAIN operation to position the file to the record you want to add to the file. 

See Part I, Chapter 5 for information on processing files. 

In the following example 

• Line 33 retrieves the record from the input file FILEI with the relative record number 
specified in the field RECNO. If the record is not found, RPG II sets indicator 11 on. If 
the record is found, RPG II sets indicator 11 off. 

• Line 34 branches to a TAG operation to terminate the program ifthe previous CHAIN 
operation causes a record-not-found error. 

• Line 55 retrieves the record with the key 761 from the indexed file FILE2. If a record 
with a key of 761 does not exist, RPG II sets indicator 22 on. If a record with a key of 
761 does exist, RPG II sets indicator 22 off. 

Operation Codes 3-15 



011 12 I 3 I 4 1516 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

FTILE1 IC r 
rFILE2 IC r 

33 C RECNO 
34 C 11 

55 C 761 

3.7.2 DSPLY 

80 
80 5AI 

DISK 
10 DISK 

CHAINFILE1 
GO TO END 

CHAINFILE2 

11 

22 
ZK-4520-85 

DSPLY allows you to display, on line, up to 511 characters at run time. RPG II can 

• Display up to 511 characters from a field without suspending program execution. Fac
tor 1 names the field to display. 

• Display the number of characters up to one less than your screen width from the 
Result field. The program suspends execution after displaying the Result field. The 
cursor is positioned at the next line where you can enter a new value for the Result 
field from the terminal. 

When entering a new value for the Result field, terminate the input by pressing either a 
RETURN key or a TAB key. If you press only a RETURN key or a TAB key for the new 
value of the Result field, the data in the Result field remains the same. 

When using DSPLY, observe the following restrictions and default characteristics: 

• You cannot change the contents of a literal; therefore, do not specify a literal in the 
Result field. 

• The maximum length of the Result field is one character less than the screen width. 

When entering data for the Result field, consider the following characteristics: 

• You do not need to fill numeric data with leading zeros. 

• Numeric data is aligned on the decimal point when entered into the Result field. 

• Alphanumeric data is left-justified when entered into the Result field. 

• If you enter no characters and press either the RETURN key or the TAB key, the value 
in the Result field remains unchanged. 

3-16 Operation Codes 



3.7.3 Example 
In the following example, if the data in NUMBER is greater than 100.0, the number will 
be displayed on the terminal followed on the next line by the current value of RESNO. 
Then, you can enter a new value for RESNO followed by pressing the RETURN key. 

011 I 2 I 3 I 4 151 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

FTTYFILE D F 81 TTY 
IINFILE AA 01 
I 1 50NUMBER 
C 01 NUMBER COMP 100.0 10 
C 10 NUMBER DSPLYTTYFILE RESNO 50 

ZK-4521-85 

3.7.4 EXCPT 
EXCPT allows you to write a variable number of records during detail-time or total-time 
calculations. To do this you must specify the following entries: 

• On the Calculation specification: 

- EXCPT as the operation code 

- blanks or an EXCPT name in Factor 2 

• On the Output specification: 

- E in column 15 (Type) for the record you want to write 

- blanks or an EXCPT name in columns 32 through 37 (Field name) 

The EXCPT operation writes those records that have an E in column 15 of the Output 
specification and that satisfy the conditions specified by the conditioning indicators. In 
addition, if the EXCPT operation has a blank Factor 2, only exception records with blanks 
in columns 32 through 37 ofthe 0 specification will be written; ifthe EXCPT operation has 
an EXCPT name in Factor 2, only exception records with the same name in columns 32 
through 37 of the 0 specification will be written. 

You can use indicators in columns 7 through 17 of the Calculation specification. Factor 2 
can contain blanks or an EXCPT name. All other columns must be blank. 

An EXCPT name can be used on multiple EXCPT output record lines. Only exception 
records, not heading, detail, or total records, can contain an EXCPT name. 

In the following example, line 22 tells RPG II to write the record described in line 89 dur
ing calculations if indicators 01, 02, and 03 are on. Line 34 tells RPG II to write the record 
described in line 95 if indicator 04 is on. 

Operation Codes 3-17 



o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

22 C 

34 C 

77 OOUTFIL 

89 0 

95 0 

3.7.5 FORCE 

E 

E 

EXCPT 

EXCPTHDG 

01 02 03 

04 HDG 

ZK-4660-85 

FORCE allows you to select the next file from which a record is read when doing multifile 
processing. You can select primary or secondary input and update files. Factor 2 contains 
the name of the file. 

You can use conditioning indicators, but all other columns must be left blank. 

When RPG II executes a FORCE operation, it reads, at the next program cycle, a record 
from the file you specify. If you specify more than one FORCE operation during the same 
program cycle, RPG II ignores all FORCE operations except the last. 

Although FORCE operations override normal multifile processing, they cannot override 
the first record selected by the program. Reading the first record occurs in the first cycle 
before the first pass through calculations. 

If a FORCE operation is issued for a file that is at its end-of-file, the file is not selected for 
processing. In this case, normal multifile processing logic selects the next record. 

In the following example, RPG II reads the next record from the file SPECFIL at the next 
program cycle if indicators 01,02, and 03 are on. 

Contt'o I I eve I 
I 
I Indicators 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Operation 
I 
I 
I 
I 

Factot' 
2 
I 

Field length 
I Decimal positions 
I IHalf adjust (H) 
I II 
IllResulting 

Resultl Ilindicatot's 
field I II + - 0 
I I II> < = +- Comments --+ 

011 12 I 3 I 4 I 5 1617 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * * * * * 33 C 01 02 03 FORCESPECFIL 
ZK-4523-85 

3-18 Operation Codes 



3.7.6 READ 
READ causes RPG II to read a record from a demand or full-procedural file. Factor 2 con
tains the name ofthe file from which a record is read. You can read a record from the follow
ing types of input and update files: 

• Sequential and direct disk files processed consecutively 

• Indexed disk files processed sequentially by key or by limits 

You can use any indicators in columns 7 through 17 and in columns 58 and 59. RPG II sets 
the indicator in columns 58 and 59 on when an end-of-file condition occurs, or for each 
READ operation following an end-of-file condition. If there is no indicator in columns 58 
and 59, a run-time error occurs. Columns 18 through 27 and 43 through 57 must be left 
blank. 

IfRPG II does not open a file because an external indicator is off, a READ operation on the 
file causes an end-of-file condition to occur. 

In the following example, RPG II reads the next record from the file SPECFIL if indicator 
99 is off. If an end-of-file condition occurs, RPG II sets indicator 99 on. If an end-of-file con
dition does not occur, RPG II sets indicator 99 off. 

Field length 
Contl'ol level I Deci~al positions 
I I IHalf adjust (H) 
I Indicatol's Operation I II 
I I I I IIResulting 
I I Factor' I Factor Resultl I I indicators 
I I 1 I 2 field I 11+ - 0 

CI NxxNxxNxxl I I I I II> < = +- Co~~ents --+ 
011 12 I 3 I 4 I 5 16 I 7 I 

12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 22 C N99 

3.7.7 SETLL 

* * * * READ SPECFIL 
ZK-4524-85 

SETLL positions a file at the next record with a key that is greater than or equal to the key 
you specify in Factor 1. Factor 2 contains the name of the file for which the lower limit is 
set. Factor 2 must be an indexed demand or full-procedural file being processed sequen
tially within limits. 

Factor 1 can be a field name or a literal, and must be the same size as the key specified in 
the File Description specification. If the keys in the file are in packed decimal format, Fac
tor 1 must be numeric. 

You cannot use a record address file and the SETLL operation on the same file. 

Operation Codes 3-19 



If the program issues a READ operation before issuing a SETLL operation, processing 
begins with the first record in the file. 

When RPG II reaches the end of a file, you can use another SETLL operation to reposition 
the file. If the SETLL operation is not successful, you must reposition the file with a suc
cessful SETLL operation. 

When a SETLL operation is performed on a record whose key is greater than the highest 
key in the file, the subsequent READ operation will be as ifthe current record pointer had 
not changed from the previous READ operation. If a successful SETLL operation is done 
followed by a SETLL operation for a record whose key is greater than the highest key in 
the file, with no intervening READ operation, the next READ operation will be as if the 
current record pointer had not changed from the previous READ operation. In the latter 
case, it appears as if the successful SETLL operation never occurred, because it was fol
lowed by a failing SETLL operation. 

In the following example, KEYl contains the lower key limit for the file FILEl. The READ 
operation retrieves the first record with a key that is greater than or equal to the field 
KEYl. 

Contro I I eve I 
I 
I Indicators 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Operation 
I 
I 
I 
I 

Factor 
2 
I 

Field length 
I Deci~al positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resultl I I indicators 
field I 11+ - 0 
I I II) < = +- Co~~ents --+ 

011 12 13 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * C 
C 

* KEY1 * * SETLLFILE1 
READ FILE1 

3.8 Branching Operation Codes 

* 

ZK·4525·85 

RPG II performs operations in the order they appear in your program. However, you can 
use branching operation codes to skip or repeat operations under certain conditions. 

3.8.1 GOlD 
GOTO transfers program control to the label you specify in Factor 2. 

3-20 Operation Codes 

\ 



GOTO is especially useful in the following situations: 

• Skipping calculations when certain conditions occur 

• Performing certain calculations for certain record types 

• Repeating calculations 

You can transfer control in the following cases: 

• To a previous line 

• From one detail-time calculation line to another 

• From one total-time calculation line to another 

• From one subroutine calculation to another inside the same subroutine 

You cannot transfer control from the following lines: 

• Detail-time calculation line to a total-time calculation line 

• Total-time calculation line to a detail-time calculation line 

• Line inside a subroutine to a line outside that subroutine 

• Line outside a subroutine to a line inside a subroutine 

When using GOTO, the following columns must be left blank: 

• Columns 18 through 27 (Factor 1) 

• Columns 43 through 48 (Result field) 

• Columns 49 through 51 (Field length) 

• Column 52 (Decimal positions) 

• Column 53 (Half adjust) 

• Columns 54 through 59 (Resulting indicators) 

3.8.2 TAG 
TAG identifies the line to which program control from a GOTO operation branches. Factor 
1 contains the same label you used in Factor 2 of the GOTO operation. 

You cannot use conditioning indicators (columns 9 through 17) to condition a TAG opera
tion; however, you can use a control-level indicator ifthe TAG is in total-time calculations. 

Operation Codes 3-21 



3.8.3 Example 
In the following example, RPG II branches to line 66 if indicators 67, 68, and 69 are on. 

Contro I I eve I 
I 
I Indicators 
I I 
I I Factor 
I I 1 

Opet'ation 

Factot' 
2 

Field length 
I Decimal positions 
I IHaif adjust (H) 
I 1/ 
IllResulting 

Resultl I I indicators 
field I 1/+ - 0 

CI NxxNxxNxxl 

I 
I 
I 
I I I I II> < = +- Comments --+ 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * * 
56 C 67 68 69 

66 C BRCH1 

* * 
GOTO BRCH1 

TAG 

3.9 LOKUP Operation Code 

* 

ZK-4526-85 

LOKUP searches for an entry in a table or an array. Factor 1 contains the search argument 
and Factor 2 contains the name ofthe table or array. The search argument can be an alpha
numeric or a numeric constant, a field name, an array element, or a table name. Search 
arguments must be the same length and format as the entries in the table or array. For 
example, both fields must be numeric with the same number of digits, or both must be 
alphanumeric with the same number of characters. 

You must use at least one, but not more than two, resulting indicators to specify: 

• The type of search (high, low, or equal) 

• The result ofthe search (successful or not successful) 

The following list describes the three types of searches: 

• A resulting indicator in columns 54 and 55 causes RPG II to search the table or array 
for the entry that is nearest to but higher in sequence than the search argument. You 
can specify this search only for sequenced tables and arrays. 

• A resulting indicator in columns 56 and 57 causes RPG II to search the table or array 
for the entry that is nearest to but lower in sequence than the search argument. You 
can specify this search only for sequenced tables and arrays. 

• A resulting indicator in columns 58 and 59 causes RPG II to search the table or array 
for the entry that is equal to the search argument. 

3-22 Operation Codes 



You can use two indicators to test for HIGH and EQUAL or LOW and EQUAL conditions. 
RPG II searches for an entry that satisfies either condition, with EQUAL given prece
dence. You cannot specify both HIGH and LOW conditions at the same time. 

If the search is successful, RPG II sets on the resulting indicator(s). If the search is not 
successful, RPG II sets off the resulting indicator(s). 

3.9.1 Searching Tables 
LOKUP can search one table or two related tables. When searching a single table, you 
must specify the following: 

• Factor 1 

• Factor 2 

• At least one resulting indicator 

You can specify conditioning indicators in columns 7 through 17. 

When RPG II finds a table entry that satisfies the type of search, it places a copy of the 
entry in a special storage area. If you repeat the search, the new entry replaces the previ
ous entry in the storage area. 

When searching for an entry in two related tables, RPG II searches only the table specified 
in Factor 2. When the search condition is satisfied, RPG II places the corresponding entries 
in their respective storage areas. 

To program a search for an entry in related tables, you must make the following entries: 

• Specify the search argument in columns 18 through 27 (Factor 1). 

• Specify the name of the table to be searched in columns 33 through 42 (Factor 2). 

• Specify the name of the related table in columns 43 through 48 (Result field). 

• Specify at least one resulting indicator in columns 54 through 59 (Resulting 
indicators). 

You can specify conditioning indicators in columns 9 through 17. 

Both tables should have the same number of entries. The related table must have as many 
entries as or more entries than the table to be searched. 

Whenever you use a table name in an operation other than a LOKUP operation, the table 
name refers to the data placed in storage by the last successful LOKUP operation. Then, 
you can use the table entry in subsequent calculations. If you specify a table name in an 
operation other than a LOKUP operation but before a successful LOKUP operation occurs, 
unpredictable results can happen. 

Operation Codes 3-23 



If you specify the table name as Factor 1 in a LOKUP operation, the contents ofthe storage 
area are used as the search argument. 

You can also use a table as the Result field in operations other than LOKUP. In this case, 
the contents of the storage area are replaced by the result of the calculation you specify. 
The corresponding entry in the table is also changed. In this way, you can use calculations 
to change the contents of tables. 

In the following example, TABLIS has been previously defined as a table. RPG II searches 
for the entry that has the same value as the field PARTNO and, if successful, sets indicator 
33 on. 

Contro I I eve I 
I 
I Indicators 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Operation 
I 
I 
I 
I 

Factor' 
2 
I 

Field length 
I Decimal positions 
I IHalf adjust (H) 
I II 
I IIResulting 

Resultl I I indicators 
field I 11+ - 0 
I I II> < = +- Comments --+ 

o I 1 I 2 I 3 I 4 I 5 I 6 I 7. I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 56 C * PARTNO 

3.9.2 Searching Arrays 

* * LOKUPTABLIS * 
ZK-4527-85 

LOKUP operations for arrays are the same as those for tables, except that you cannot use 
the Result field. If the element searched for is found, its contents are not moved to a storage 
area. Indicators reflect whether the element is present. 

To program a search for an element in an array, you must specify the name of the array to 
be searched in columns 33 through 42 (Factor 2). Follow the same rules for specifying 
indicators for arrays as for tables. 

You can specify the element to begin searching by adding an index. The index can be a 
numeric literal or a field. RPG II begins searching at the specified element and continues 
the search until it finds the element or it reaches the end of the array. If you use a numeric 
literal to specify the index, RPG II does not change its value to reflect the result of the 
search. If you use a field to specify the index and the search is not successful, RPG II places 
the value of 1 in the field. If you use a field to specify the index and the search is successful, 
RPG II places the number of that array element that satisfied the search (counting from 
the first element) in the field. Then, you can use the index field to reference that array 
element in subsequent operations. 

3-24 Operation Codes 



If you use an index that is less than or equal to zero, or greater than the number of ele
ments in the array, and you compile the program with the RPG/CHECK = BOUNDS com
mand, RPG II issues a run-time error. If you use an index that is less than or equal to zero, 
or greater than the number of elements in the array, and you do not compile the program 
with the RPG/CHECK = BOUNDS command, unpredictable results can occur. 

3.9.3 Example 
In the following example, MNTH has been previously defined as a sequenced array and E 
as a numeric field. RPG II begins searching with the first element ofthe array, because 1 is 
assigned to E, and searches for the first entry with a value that is greater than and equal to 
1000. If an entry is found, E will contain the index number ofthe entry and the indicator 99 
will be set on. If an entry is not found, E will contain 1 and the indicator 99 will be set off. 

Contro I I eve I 
I 
I Indicators 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Operation 
I 
I 
I 
I 

Factor 
2 
I 

Field length 
I Deci~al positions 
I IHaif adjust (H) 
I II 
I IIResulting 

Resultl I I indicators 
field I II + - 0 
I I II> < = +- Co~~ents --+ 

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C 
C 

* 
1000 

* * Z-ADD1 
LOKUPHNTH,E 

3.10 Subprogram Operation Codes 

* E 
*--*** * * * 

30 
99 99 

ZK-4528-85 

RPG II programs can call subprograms written in other languages and can pass and 
receive parameters between the main program and the subprogram. See Part I, Chapter 9 
for examples of subprogram operation codes. 

3.10.1 CALL 
CALL transfers control to a subprogram. Factor 2 contains a character literal or a field 
defined by the EXTRN operation code that names the entry point in the subprogram. 

The Result field can contain the name of the parameter list associated with the PLIST 
operation code. This way, you can share parameters between the main program and the 
subprogram. You can also specify the individual parameters immediately following the 
CALL operation code. 

Operation Codes 3-25 



Factor 1, Half adjust, and the resulting indicators in columns 54 and 55, and 58 and 59, 
must be blank. However, you can specify a resulting indicator in columns 56 and 57. 
RPG II sets this indicator on when the subprogram returns with an error status. 

3.10.2 EXTRN 
EXTRN initializes the value of a numeric unscaled field to a link-time constant. You can 
use EXTRN to perform the following operations: 

• Extend the subprogram name to more than eight characters. 

• Allow your program to access link-time constants, including status codes. 

You define link-time constants using external names. Use Factor 1 to name the field 
RPG II initializes, using the value of the link-time constant. Use Factor 2 to name the 
external constant. You can use up to 31 characters to name the constant. You must enclose 
the constant in apostrophes. 

The external name must be defined as a global symbol in an object module available to the 
program at link time. Otherwise, an error will occur at link time. 

Factor 1 of the EXTRN operation is defined as a nine-digit numeric field with zero Decimal 
positions. The field cannot be defined elsewhere in the program. Fields defined by an 
EXTRN operation cannot be used as a Result field in a calculation or have Blank after 
specified when used on an Output specification. 

Conditioning indicators must be left blank. 

3.10.3 GIVNG 
GIVNG allows you to define a parameter that receives the return status from the sub
program. (See the VAX/VMS Run-Time Library Routines Reference Manual for informa
tion on the definition of return status.) GIVNG must follow the last PARM, PARMV, and 
PARMD operation following a CALL operation. The Result field contains the name of a 
unscaled numeric field, table, or array element. 

Entries in Decimal positions and Field length are optional. If you specify a Field length, 
the entry for Decimal positions must be zero. The following columns must be left blank: 

• Columns 9 through 17 (Conditioning indicators) 

• Columns 18 through 27 (Factor 1) 

• Columns 33 through 42 (Factor 2) 

• Column 53 (Half adjust) 

• Columns 54 through 59 (Resulting indicators) 

3-26 Operation Codes 



3.10.4 PARM 
PARM passes parameters by reference to a subprogram. The Result field identifies the 
parameter. The parameter can be a field, a table, an array element, or an array. Factor 2 
can contain a field, a table, an array element, an array, or a literal. The contents of Factor 2 
are copied into the Result field before the subprogram is called. If the Result field is 
numeric, Factor 2 must be numeric. In this case, the value in Factor 2 is copied into the 
Result field in the same manner as a Z-ADD operation. If the Result field is alphanumeric, 
Factor 2 must be alphanumeric. In this case, the value is left-justified in the Result field 
and trailing characters are filled with blanks. 

The subprogram can change the contents of the Result field but cannot change the contents 
of Factor 2. Using Factor 2 allows you to pass the values from Factor 2 knowing that the 
subprogram cannot modify the field. 

After a successful CALL operation, RPG II copies the contents of the parameter into Factor 
1. Factor 1 can contain a field, a table, an array, or an array element. The copying is done in 
the same manner as for Factor 2. Entries for Factor 1 and Factor 2 are optional. 

Entries in Decimal positions and Field length are optional. Conditioning indicators must 
be left blank. RPG II, by default, passes numeric data by reference in packed decimal 
format. 

You can also use PARM to convert to the numeric data type needed by the subprogram 
being called. Use columns 54 through 59 (Resulting indicators) to specify the notation for 
the parameter. See Part I, Chapter 9 for information on specifying parameters. 

You can use one of the following access types: 

• R (Read only) 

The parameter is read by the subprogram(s), but not modified. 

• W (Write only) 

The parameter is not read by the subprogram(s), but a new value is supplied by the 
subprogram. 

• M (Modify) 

The parameter is read by the subprogram(s) and a new value is supplied by the 
subprogram. 

Operation Codes 3-27 



You can use one of the following data types: 

• W (Word integer (signed» 

• L (Longword integer (signed» 

• Q (Quadword integer (signed» 

• F (F Jioating single-precision) 

• D (D_floating double-precision) 

• NRO (Numeric string, right overpunched sign) 

See Part II, Chapter 1 for information on data types. 

You cannot specify an access type or data type if the Result field is an entire array 
(nonindexed) . 

3.10.5 PARMD 
PARMD passes parameters by descriptor to a subprogram. The Result field contains the 
name of the field, the name of an array element, the name of the array, or a literal that 
identifies the parameter. Long character literals can be used effectively in the PARMD 
result field. See Part II, Section 2.9.5 for information on long character literals. 

Entries in Decimal positions and Field length are optional. The following columns must be 
left blank: 

• Columns 9 through 17 (Conditioning indicators) 

• Columns 18 through 27 (Factor 1) 

• Columns 33 through 42 (Factor 2) 

• Column 53 (Half adjust) 

• Columns 54 through 59 (Resulting indicators) 

See the VAX/VMS Run-Time Library Routines Reference Manual for information on argu
ment descriptor format. 

3.10.6 PARMV 
PARMV passes parameters by value to a subprogram. The Result field contains the name 
of an unscaled numeric field, table, array, or an un scaled numeric literal that identifies the 
parameter. 

3-28 Operation Codes 



Entries in Decimal positions and Field length are optional. If you specify a Field length, 
the entry for Decimal positions must be O. The following columns must be left blank: 

• Columns 9 through 17 (Conditioning indicators) 

• Columns 18 through 27 (Factor 1) 

• Columns 33 through 42 (Factor 2) 

• Column 53 (Half adjust) 

• Columns 54 through 59 (Resulting indicators) 

3.10.7 PLiST 
PLIST identifies the name ofthe parameter list for a subprogram. Use this operation code 
with the CALL operation code to access parameters in the subprogram. You can pass up to 
255 parameters. 

Factor 1 contains the name of the parameter list. The following columns must be left 
blank: 

• Columns 9 through 17 (Conditioning indicators) 

• Columns 33 through 42 (Factor 2) 

• Columns 43 through 48 (Result field) 

• Columns 49 through 51 (Field length) 

• Column 52 (Decimal positions) 

• Column 53 (Half adjust) 

• Columns 54 through 59 (Resulting indicators) 

If you want to pass parameters, you must use one ofthe parameter operation codes (PARM, 
PARMD, PARMV) to specify how you want to pass the parameters. Parameter operation 
codes must immediately follow the CALL or PLIST operation. And, parameter operation 
codes must be in the order expected by the subprogram. 

Operation Codes 3-29 



3.10.8 Example 
The following example makes a call to the STR$UPCASE RTL routine. The call places 
REP HEAD in the Result field RESULT. 

Contl'o I I eve I 
I 
I Indicator's 
I I 
I I Factor 
I I 1 

CI NxxNxxNxxl 

Operation 
I 
I 
I 
I 

Factor 
2 
I 

Field length 
I Deci~al positions 
I IHalf adjust (H) 
I II 
I IIResulting 

Resultl I I indicators 
field I 11+ - 0 
I I II> < = +- Co~~ents --+ 

011 12 I 3 I 4 I 5 I 6 I 7 I 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

** * 
C 
C 
C 
C 
C 

* 
UPCASE 

3-30 Operation Codes 

* * * *--*** * * * 
HOVE 'rep head'HEAD 8 
EXTRN'STR$UPCASE' 
CALL UPCASE 
PARHD RESULT 8 
PARHD HEAD 

ZK-4529-85 



Table 3-1: Summary of Operation Codes 

Indicators 

Operation Factor 1 Factor 2 Result Control Conditioning Resulting 
Code Field Level +> -< 0= 

28-32 18-27 33-42 43-48 7-8 9-17 54-55 56-57 58-59 

ADDIHI 0 R R 0 0 0+ 0- 00 
BEGSR R 
BITOF R R 0 0 
BITON R R 0 0 
CALL R 0 0 0 OE 
CHAIN R R 0 0 ONR ORL 
COMP' R R 0 0 OH OL OEQ 
DIVrHI 0 R R 0 0 0+ 0- OZ 
DSPLY 0 R 0 0 0 
ENDSR 0 
EXCPT 0 0 0 
EXSR R 0 0 
EXTRN R R 0 
FORCE R 0 0 
GIVNG R 0 
GOTO R 0 0 
LOKUP lA R R 0 0 OH OL OEQ 
LOKUPF R R 0 0 0 OH OL OEQ 
MOVE R R 0 0 
MOVEA R R 0 0 
MOVEL R R 0 0 

0 
MULT,HI 0 R R 0 0 0+ 0- OZ 

"C MVR R 0 0 0+ 0- OZ 
ro 

PARM 0 0 R 0 l-j 

III 
PARMD R 0 c-t-...... 

0 PARMV R 0 ;:s 
(1 PLIST R 0 
0 READ R 0 0 OEOF 0-ro SETLL R R 0 0 Ul 

(continued on next page) 

Cr:I 
I 

Cr:I 
~ 



~ 

~ 
~ 

0 
't:$ 
~ 
>oj 
$ll 
c+ ..... 
0 
::I 
(1 
0 
~ 
~ 
00 

Table 3-1: Summary of Operation Codes (Cont.) 

Indicators 

Operation Factor 1 Factor 2 Result Control Conditioning 
Code Field Level 

28-32 18-27 33-42 43-48 7-8 9-17 

SETOF' 0 0 
SETON' 0 0 
SQRTIH) R R 0 0 
SUB IH) 0 R R 0 0 
TAG R 0 
TESTB' R R 0 0 
XFOOTIH) R R 0 0 
Z-ADDIH) R R 0 0 
Z-SUBIH) R R 0 0 

IH) You can specify Half adjust for this operation. 

, Specify at least one resulting indicator for this operation. 
Conditioning indicators are valid only for executable operation codes. 
Fields without entries in this table must be blank. 

IA) Factor 2 is an array. 

IT) Factor 2 is a table. 

Legend 

+ = positive 
E = error 
NR = no record 
ZB = zero or blank 

- = negative 
EQ = equal 
R = required 
RL = record locked 

j'/ 

EOF = end of file 
0= optional 
Z = zero 

+> 

54-55 

0 
0 

0+ 

0 
0+ 
0+ 
0+ 

Resulting 
-< 0= 

56-57 58-59 

0 0 
0 0 

0- OZ 

0 0 
0- OZ 
0- OZ 
0- OZ 



Appendix A 

Character Sets 

Character Sets 

ASCII EBCDIC 
Character Decimal Hexadecimal Decimal Hexadecimal 

NUL 000 00 000 00 
SOH 001 01 001 01 
STX 002 02 002 02 
ETX 003 03 003 03 
EOT 004 04 055 37 
ENQ 005 05 045 2D 
ACK 006 06 046 2E 
BEL 007 07 047 2F 
BS 008 08 022 16 
HT 009 09 005 05 
LF 010 OA 037 25 
VT 011 OB 011 OB 
FF 012 OC 012 OC 
CR 013 OD 013 OD 
SO 014 OE 014 OE 
SI 015 OF 015 OF 
DLE 016 10 016 10 
DC1 017 11 017 11 
DC2 018 12 018 12 
DC3 019 13 019 13 
DC4 020 14 060 3C 
NAK 021 15 061 3D 
SYN 022 16 050 32 
ETB 023 17 038 26 
CAN 024 18 024 18 

(continued on next page) 

A-I 



Character Sets 

ASCII EBCDIC 
Character Decimal Hexadecimal Decimal Hexadecimal 

EM 025 19 025 19 
SUB 026 1A 063 3F 
ESC 027 1B 039 27 
FS 028 1C 028 1C 
GS 029 1D 029 1D 
RS 030 IE 030 IE 
US 031 IF 031 IF 
space 032 20 064 40 
! 033 21 079 4F 

034 22 127 7F 
# 035 23 123 7B 
$ 036 24 091 5B 
% 037 25 108 6C 
& 038 26 080 50 , 

039 27 125 7D 
( 040 28 077 4D 
) 041 29 093 5D 
* 042 2A 092 5C 
+ 043 2B 078 4E 

044 2C 107 6B 
045 2D 096 60 
046 2E 075 4D 

/ 047 2F 097 61 
0 048 30 240 FO 
1 049 31 241 Fl 
2 050 32 242 F2 
3 051 33 243 F3 
4 052 34 244 F4 
5 053 35 245 F5 
6 054 36 246 F6 
7 055 37 247 F7 
8 056 38 248 F8 
9 057 39 249 F9 

058 3A 122 7A 
, 059 3B 094 6E 
< 060 3C 076 4C 

061 3D 126 7E 
> 062 3E 110 6E 
? 063 3F 111 6F 
@ 064 40 124 7C 

(continued on next page) 

A-2 Character Sets 



Character Sets 

ASCII EBCDIC 
Character Decimal Hexadecimal Decimal Hexadecimal 

A 065 41 193 C1 
B 066 42 194 C2 
C 067 43 195 C3 
D 068 44 196 C4 
E 069 45 197 C5 
F 070 46 198 C6 
G 071 47 199 C7 
H 072 48 200 C8 
I 073 49 201 C9 
J 074 4A 209 D1 
K 075 4B 210 D2 
L 076 4C 211 D3 
M 077 4D 212 D4 
N 078 4E 213 D5 
0 079 4F 214 D6 
P 080 50 215 D7 
Q 081 51 216 D8 
R 082 52 217 D9 
S 083 53 226 E2 
T 084 54 227 E3 
U 085 55 228 E4 
V 086 56 229 E5 
W 087 57 230 E6 
X 088 58 231 E7 
Y 089 59 232 E8 
Z 090 5A 233 E9 
[ 091 5B 074 4A 
\ 092 5C 224 EO 
] 093 5D 090 5A 
A 094 5E 095 5F 
- 095 5F 109 6D , 

096 60 121 79 
a 097 61 129 81 
b 098 62 130 82 
c 099 63 131 83 
d 100 64 132 84 
e 101 65 133 85 
f 102 66 134 86 
g 103 67 135 87 
h 104 68 136 88 

105 69 137 89 

(continued on next page) 

Character Sets A-3 



Character Sets 

ASCII EBCDIC 
Character Decimal Hexadecimal Decimal Hexadecimal 

j 106 6A 145 91 
k 107 6B 146 92 
I 108 6C 147 93 
m 109 6D 148 94 
n 110 6E 149 95 
0 111 6F 150 96 
p 112 70 151 97 
q 113 71 152 98 
r 114 72 153 99 
s 115 73 162 A2 
t 116 74 163 A3 
u 117 75 164 A4 
v 118 76 165 A5 
w 119 77 166 A6 
x 120 78 167 A7 
y 121 79 168 A8 
z 122 7A 169 A9 
{ 123 7B 192 CO 
I 124 7C 106 6A 

} 125 7D 208 DO 
126 7E 161 Al 

DEL 127 7F 007 07 

A-4 Character Sets 



Appendix B 

Differences Between VAX RPG II and PDP-11 RPG II 

This appendix describes the following: 

• PDP-11 RPG II functionality that is not supported by VAX RPG II 

• VAX RPG II functionality that is supported in a different manner from PDP-11 
RPGII 

• Additional functionality that is supported only by VAX RPG II Version 1 and later 
versions. 

This appendix does not list these new features which have been added to VAX RPG II Ver
sion 2. See the on-line release notes for details of these new features. 

VAX RPG II does not support the following PDP-11 RPG II functionality: 

• Control specification (H) 

- Column 11 (Listing options) - The equivalent functionality is implemented using 
the LIST qualifier to the DCL RPG command. 

- Column 15 (Debug) - The DEBUG operation code is not supported. Instead, use the 
VAXNMS Symbolic Debugger. 

- Column 25 (Source listing) - A single page size for the listing is supported. 

• Extension specification (E) 

- Columns 11 through 18 (From file name) - PDP-11 RPG II allows the same table 
input file to be specified for more than one pre-execution-time table or array. VAX 
RPG II requires a different file for each pre-execution-time table or array. 

• Calculation specification (C) 

- Columns 28 through 32 (Operation) - The DEBUG operation code is not supported. 

• Output specification (0) 

- Column 39 (Blank after) - Specifying Blank after for a constant field is not sup
ported. 

B-1 



• General 

- VAX RPG II uses PRN format files for printer output files. This format requires that 
you use the NOFEED qualifier with the PRINT command when printing printer 
output files. 

- PDP-ll RPG II handles both zoned numeric and overpunched decimal data for
mats for input transparently. VAX RPG II supports only overpunched decimal data 
format. 

- All user-defined names must be unique in VAX RPG II. 

- VAX RPG II does not support the HO indicator. Errors detected by VAX RPG II 
result in run-time errors. 

- VAX RPG II does not recognize LO as an indicator. While LO can be used as a control 
level in columns 7 and 8 of the Calculation specification, it cannot be used in an 
Output specification. 

VAX RPG II supports the following functionality differently from PDP-ll RPG II: 

• File specification (F) 

- Column 15 (File type) - When 0 (output) is entered in column 15 and column 66 
(File addition) does not contain A, VAX RPG II always creates a new version ofthe 
file, even if the file is an indexed or direct file. PDP-ll RPG II accesses an existing 
indexed or direct file if the specified file is found. 

- Columns 40 through 46 (Device code) - VAX RPG II uses the device code to define 
the functions that can be performed on the associated file. It does not refer to a spe
cific device. 

- Columns 47 through 52 (Symbolic device) - VAX RPG II uses the symbolic device in 
conjunction with the file name specified in columns 7 through 14 (File name) to 
associate the VAX RPG II file name with the VAXIVMS file specification. 

If you specify a symbolic device on the File Description specification and no VMS 
logical name translation exists for that symbolic device, then RPG II will have RMS 
use the symbolic device as the file name. 

If a symbolic device consists of all blanks, then RMS will act as if the symbolic 
device did not exist (for example, an attempt will be made to translate the file name 
as a logical name). The symbolic device may consist of any characters and will be 
passed to RMS when the file is opened. 

B-2 Differences Between VAX RPG II and PDP-ll RPG II 



In general, the file name will be translated as a logical name, if possible, if a sym
bolic device is not supplied. The hierarchy by which the file name is constructed by 
RMS is as follows: 

1. File name (symbolic device) 

2. Default File name (VAX RPG II file name) 

3. Related file name (DAT file type) 

The related file name can be overridden by supplying a different file type for the 
symbolic device. 

- Column 68 (Share) - VAX RPG II requires you to specify S to open a file for shared 
access. PDP-ll RPG II requires you to use the MULTIUSER qualifier with 
RPGASN. 

• Input specification CD 

- Column 43 (Data format)-When loading an execution-time array from an Input 
specification that is in packed decimal or binary format, VAX RPG II requires P 
(packed decimal) or B (binary) in column 43 of the Input specification. PDP-ll RPG 
II requires P (packed decimal) or B (binary) in column 43 on the Extension specifi
cation . 

• Calculation specification (C) 

- A READ operation code on a file that has not been opened because it was condi
tioned by an external indicator that was off sets on the end-of-file indicator if one is 
specified. In this case, PDP-ll RPG II does not set on the end-of-file indicator. 

- VAX RPG II MOVE and MOVEL semantics are not exactly the same as those of 
PDP-ll RPG II, when the Result field is numeric. The differences are the following: 

• VAX RPG II does not perform the "spurious sign" and "sign ignored" cases of 
PDP-ll RPG II. 

• When the sending field is a character field, VAX RPG II converts the characters in 
the sending field in the following manner: 

- All valid overpunched decimal characters are converted to the sign and digit 
they represent. 

- All other characters are converted to a positive zero (+ 0). 

• If a READ operation is done before a SETLL operation, VAX RPG II will read the 
record with the lowest key. PDP-ll RPG II reads a record containing blanks in 
this case. 

Differences Between VAX RPG II and PDP-ll RPG II B-3 



• PDP-ll RPG II does not issue any error when the DSPLY operation code is used 
with a field that is larger than the File record length. VAX RPG II issues an error 
in this case . 

• VAX RPG II will display (DSPLY operation code) the sign of a negative numeric . 

• Output Specification (0) 

- Columns 17 and 18 (Space) - PDP-ll RPG II assumes a single Space after if the 
entries in columns 17 and 18 are left blank or are zero. VAX RPG II assumes a sin
gle Space after only if all entries in columns 17 through 22 are left blank. Making 
an entry of zero in columns 17 and 18 allows overprinting . 

• General 

- ALTSEQ records - VAX RPG II uses hexadecimal representation to specify the 
entries in ALTSEQ records. PDP-ll RPG II uses octal representation. 

- Tables - For VAX RPG II, a reference to a table before the first LOKUP operation 
will locate the first element in the table. PDP-ll RPG II returns a blank. 

- VAX RPG II and PDP-ll RPG II support two-word (4-byte) binary data. PDP-ll 
RPG II places the words in reverse order to what is required by VAX architecture. 
PDP-ll RPG II data files that include two-word (4-byte) binary data will require 
conversion to be used by VAX RPG II. 

- VAX RPG II uses the logical name RPG$UDATE to specify UDATE and uses the 
logical name RPG$EXT _INDS to specify the settings for external indicators. 

- PDP-ll RPG II treats blanks in a numeric field in overpunched decimal format 
as zeros. VAX RPG II does the same when you use the 
CHECK = BLANKS-.lN_NUMERICS qualifier with the RPG command. 

- VAX architecture reports a reserved operand fault when invalid data is found in a 
numeric field. In VAX RPG II, this causes a run-time error. PDP-ll RPG II 
processes invalid numeric data without halting program execution. 

- PDP-ll RPG II's run-time system changes the name ofthe process to the program 
name while the program is running. VAX RPG II will not do this. 

B-4 Differences Between VAX RPG II and PDP-ll RPG II 



- When compiling with RPG [FOO]TEST.RPG, PDP-ll RPG II places the .OBJ, 
. LST, .CMD, and .ODL files in the [FOO] directory, no matter what the current 
default directory is. 

VAX RPG II places the .OBJ and .LIS files into the default directory in a manner 
similar to other VAX languages. This VAX RPG II operation is similar to the follow
ing PDP-ll command lines: 

$ MCR PDPRPG 
RPG>TEST=[FOOlTEST.RPG 
RPG>CTRL/Z 

The above commands cause PDP-ll RPG II to place the files in the current default 
directory. 

Use the following command to simulate the PDP-ll RPG II operation: 

$ RPG [FOOlTEST/LIS/OBJ 

- NOLIST is the default for invoking the VAX RPG II compiler interactively. PDP-II 
RPG II produces a listing file by default. 

Note that RPGDMP is not provided with VAX RPG II. A similar functionality is provided 
with the VMS utilities DUMP and SORT/MERGE. See the VAXIVMS DeL Dictionary for 
information on DUMP and SORT/MERGE. See the VAXIVMS Utilities Reference Volume 
for information on the three SORT qualifiers CONDITION, FIELD, and INCLUDE. 

VAX RPG II supports the following additional functionality: 

• Control Specification (H) 

- A Control specification (H) is not required. 

- Column 18 (Currency symbol) - You can specify the character to represent the cur-
rency symbol. 

- Column 21 (Inverted print) - An entry ofI, D, or J switches the function of decimal 
point and comma notation in numeric literals and edited formats, and changes the 
format ofUDATE to day, month, and year (ddmmyy) . 

• File Specification (F) 

- Columns 7 through 14 (File name) - File names can be up to eight characters. 

- Column 16 (File designation) - VAX RPG II does not require a primary file. 

- Column 19 (File format) - You can specify V to indicate that the file contains varia-
ble-length records. 

- Columns 24 through 27 (Record length) - VAX RPG II allows all files, with the 
exception of display files, to have a record length of up to 9999 characters. 

Differences Between VAX RPG II and PDP-ll RPG II B-5 



• Extension Specification (E) 

- The definition of compile-time tables and arrays can be mixed with the definition of 
execution-time and pre-execution-time tables and arrays. 

• Input Specification (I) 

- Columns 15 and 16 (Sequence) - You can specify input records with an alphabetic 
sequence before or after input records with a numeric sequence. 

- Columns 19 and 20 (Record-identifying indicator) - You do not have to specify look
ahead fields as the last record in a file. 

• Calculation Specification (C) 

- Columns 28 through 32 (Operation) - The following operations have been added to 
allow VAX RPG II programs to call subprograms written in other languages, rou
tines in the VAX Common Run-Time Library, and system services: 

• CALL - Calls a subprogram with optional parameters 

• PARM - Passes a parameter by reference 

• PARMD - Passes a parameter by descriptor 

• PARMV - Passes a parameter by value 

• GIVNG - Returns the status of a subprogram 

• EXTRN -Equates a VAX RPG II name with an external link-time constant 

• PLIST - Defines a parameter list 

- Columns 28 through 32 (Operation) - VAX RPG II allows Factor 2 and the Result 
field to reference the same array on a MOVEA operation. 

- Columns 49 through 52 (Field definition) - You do not have to define fields before 
they are used, as long as they are defined within the program. 

• Output Specification (0) 

- Columns 16 through 18 (ADD/DEL) - You can specify the DEL option to identify 
the record to be deleted. You can delete records from indexed or direct files. 

- Columns 45 through 70 (Edit word) - The number of replaceable characters in the 
Edit word can be greater than or equal to the number of digits in the numeric field. 

~ Differences Between VAX RPG II and PDP-ll RPG II 



• General 

- The string containing double slashes (1/) and a blank and the string containing a 
double asterisk (**) and a blank are accepted as delimiters between specifications 
and any ALTSEQ records, and between compile-time tables and arrays. 

- The special words, *IN and *INxx, can be used to reference indicators as one-posi
tion character fields. 

- A user-defined name can contain a pound sign (#) and an underscore (_). 

- A character field can have a length of up to 9999 characters. 

The VAX RPG II editor does not support the following PDP-ll RPG II features: 

• Editing ofSORT-ll specifications 

• VT05 or VT52 terminals 

• Hardcopy terminals 

• The following qualifiers: 

-IDENT 

- PAGE and NOPAGE 

- SAVE and NOSAVE 

- TERMINAL 

• CTRLID 

• SET SKIP command 

• Automatically advancing the cursor to the next tab stop if the current field is full 

• Displaying a tab stop as data from an input file as the TAB character 

• Renaming the input file with a BAK file type 

Differences Between VAX RPG II and PDP-ll RPG II B-7 





Appendix C 

peA Applied to an RPG II Program 

The following command procedure produces execution information by source line: 

$ rpg/debug/nolist ships 
$ link/debug=sys$library:pca$obJ.obJ/noMap ships 
$ run ships 
set datafile ships 
set counters prograM_address by line 
go 
$ pca ships 
tabulate/counters/source Module ships by line 
file pcaolis 
exit 
$ t}'pe pca.lis 

VAX PerforMance and Coverage Analyzer 

Exact Execution Counts (164 data points total) 

Percent 
SHIPS\ 

Count Line 

1: H*++ 
2: H* FUNCTIONAL DESCRIPTION: 

Page 1 

3: 
4: 
5: 
6 : 
7: 
8: 
8 : 

H* This prograM produces a report of shiPMents f 

0.6'X, 
0.61., 

12.2'X. 

24.41., 
24.4'X, 

4.3% 
4.3% 
2.41., 

20 

40 
40 

7 
7 
4 

H* products broken down by division and departMe 
H* input file with the shiPMent data for the pas 

10: 
11 : 
12 : 
13 : 
14: 
15 : 
16: 

H*--
H 
FSHIPS 
FSUMREP 
E 
LSUMREP 
ISHIPS 
I 

17: C* 
18: C 01 
18: C 01 
20: C* (Ll 
21: CLl 
22: CLl 
23: CL2 
24: C* 

IP F 
0 F 

55FL 500L 
AA 01 

PROOTY 
b re aI, on DEPT 

DEPOTY 

DIVOTY 

C-I 

41 DISK 
88 LPRINTER 

OTY 4 2 0 

1 5 DIV 
6 7 DEPT 
8 16 PROD 

17 24 OTY 

XFOOTOTY PROOTY 30 
ADD DEPOTY DEPOTY 30 

/ L2 break on DIV) 
ADD DIVOTY D I I,lOTY 30 
Z-ADDO DEPOTY 
ADD FINOTY FINOTY 40 



0.6i:'. 25: OSUMREP H 001 1P 
26: 0 liB 'PRODUCT SHI 

o .6i:'. 27: 0 H 02 1P 
2B: 0 UDATE Y 12 
29: 0 liB 'PRODUCT SHI 

0.6i:'. 30: 0 H 1P 
31: 0 1I2 'SHIPMENTS' 

0.6·X, 32: 0 H 2 1P 
33: 0 15 'DIVISION D 
311: 0 211 'PRODUCT' 
35: 0 liB '01 02 03 

12.2% 20 36: 0 D 01 
37: 0 L2 DIV B 
3B: 0 L1 DEPT 111 
39: 0 PROD 25 
1I0: 0 OTY Z 1I1 
1I1: 0 PROOTYZ liB 

1I.3i:'. 7 1I2: 0 T L1 
2.1Ii:'. 1I 1I3: 0 T 0 L2 

1I11: 0 DIV 69 
2.1Ii:'. 1I liS: 0 T 0 L2 

1I6: 0 DIV 69 
2.1Ii:'. 1I 1I7: 0 T 02 L2 

liB: 0 DIVOTYZB liB 
1I9: 0 63 / < = = Total f 
50: 0 DIV 69 

0.6i:'. 51: 0 T 0 LR 
52: 0 FINOTY1 liB 
53: 0 65 1<: = = GRAND T 

C-2 peA Applied to an RPG II Program 



Master Index 

The Programming in VAX RPG II manual is comprised of two parts. References to Part I, 
which contains programming information, are preceded by a I. References to Part II, which 
contains language reference information, are preceded by a II. 

A 

Access mechanism, I 9-23 
ADD operation code, II 3-2 

example, II 3-4 
ADD option, II 2-95 

example, II 2-95 
rules for specifying, II 2-95 

Adding records, I 5-22 
Addition operation, II 3-2 
Additional 110 area, II 2-28 

rules for specifying, II 2-28 
ADDROUT files 

creating, I 5-14 
example, I 5-15,5-17 
function, I 5-14 
rules for specifying, I 5-16 
specifying 

Key length, II 2-27 
ADVANCE function, I 3-20 
Alternate array, II 2-45 
Alternate collating sequence, II 2-13 to 2-14 

specifying 
example, II 2-14 

Alternate format 
arrays, I 8-8 

compile-time, I 8-8 
example, I 8-9 
pre-execution-time, I 8-8 
related, I 8-8 

Alternate table, II 2-45 
AND, II 2-61,2-91 

example, II 2-62 
Output specification 

example, II 2-92 
rules for specifying, II 2-61,2-91 

Arguments 
optional, I 9-15 

Arithmetic operation codes, II 3-1 
ADD,II3-2 

blank Factor 1, II 3-2 
DlV, II 3-3 

blank Factor 1, II 3-3 
example, II 3-4 

Arithmetic operation codes, (Cont.) 
MULT, II 3-3 

blank Factor 1, II 3-3 
MVR, II 3-3 
rules, II 3-1 

signs, II 3-2 
SQRT, II 3-4 
SUB, II 3-3 

blank Factor 1, II 3-3 
XFOOT, II 3-4 
Z-ADD, II 3-2 
Z-SUB, II 3-3 

Array elements 
outputting, I 8-21 
referencing, I 8-15 
searching, I 8-17 
XFOOT operation code, I 8-15 

Arrays, I 8-1 
addition operation, II 3-4 
alternate format, I 8-8, II 2-45 
compile-time, I 8-2 

example, I 8-3 
creating, I 8-4 

array input records, I 8-4 
definition, I 8-1 
execution-time, I 8-4 
in calculations, I 8-10 

example, I 8-11 
*IN indicators, I 4-19 
*IN,n indicators, 14-19 
input records 

example, I 8-4 
loading time 

selecting, I 8-1 
LOKUP operation code, I 8-15, II 3-24 

example, I 8-16 
MOVEA operation code, I 8-18 

example, I 8-19 
moving data, I 8-18, II 3-6 

example, I 8-19 
names, II 1-7 
outputting 

array elements, I 8-21 
example, I 8-21 



Arrays, outputting (Cont.) 
entire arrays, I 8-20 

pre-execution-time, I 8--4 
referencing, 18-10 

array elements, I 8-10 
example, I 8-15 

entire arrays, I 8-10 
related, I 8-5 
resulting indicators, I 8-16 
searching, I 8-15, II 3-24 

example, I 8-16, II 3-25 
searching for elements, I 8-17 
specifying, I 8-5, II 2-18 

alternate format, II 2--45 
Data format, II 2--44 
Decimal positions, II 2--44 
elements, I 8-12 
From file name, II 2--40 
Length of entry, II 2--43 
names, II 2-41 
Number of entries per record, II 2--42 
Number of entries per table or array, II 

2--42 
Sequence, II 2--45 
To file name, II 2--40 

transferring data, II 3-6 
types 

compile-time, I 8-2 
execution-time, I 8--4 
pre-execution-time, I 8--4 

updating, I 8-19 
example, I 8-20 

using, 18-1 
writing 

array elements, I 8-21 
example,l8-21 

entire arrays, I 8-20 
XFOOT operation code, II 3--4 

example, I 8-14 
ASCII character set, II A-I 
Asterisk protection, II 2-113 
Automatic overflow, I 6-13 

B 

BACKUP function, I 3-21 
BEGSR operation code, II 3-10 

example, II 3-10 
rules, II 3-10 

Binary data types 
longword, II 1-3 
specifying, II 2-44 
word,III-3 

Bit operation codes, II 3-11 
BITOF, II 3-12 
BITON,lI3-11 
example, II 3-12 

2 Master Index 

Bit operation codes, (Cont.) 
TESTB, II 3-12 

BITOF operation code, II 3-12 
example, II 3-12 
rules, II 3-12 

BITON operation code, II 3-11 
example, II 3-12 
rules, II 3-11 

Bits 
setting off, II 3-12 
setting on, II 3-11 
testing, II 3-12 

Blank after, II 2-106 
example, II 2-107 
rules for specifying, II 2-106 

blank Factor 1 
example, II 3--4 

Block length, II 2-21 
rules for specifying, II 2-22 

BOTTOM function, I 3-21 
Branching operation codes, II 

3-20 
example, II 3-22 
GOTO, II 3-20 
TAG,II3-21 

BS_KEY 
example, I 3-56 

Buffers, I 3-9 

c 
Calculation specification, II 2-79 

Comments, II 2-90 
Control-level indicators, II 2-80 
Decimal positions, II 2-87 
Factor 1, II 2-84 
Factor 2, II 2-84 
Field length, II 2-87 
format, II 2-79 
Half adjust, II 2-88 
Indicators, II 2-82 
long character literal, II 2-84 
operation codes, II 2-86,3-1 
Result field, II 2-86 
Resulting indicators, II 2-88 
Type,lI2-79 

Calculations 
arrays,l8-10 
documenting, II 2-90 
operations 

addition, II 3-2 
division, II 3-3 
multiplication, II 3-3 
square root, II 3--4 
subtraction, II 3-3 

referencing 
array elements, I 8-10 



Calculations, referencing (Cont.) 
entire arrays, I 8-10 

Result field, II 2-86 
rounding data, II 2-88 
saving the remainder, II 3-3 
specifying 

Decimal positions, II 2-87 
Factor 1, II 2-84 
Factor 2, II 2-84 
Field length, II 2-87 
operation codes, II 2-86 
Resulting indicators, II 2-88 

totalling data, I 4-15 
using indicators, II 2-82 

control-level, I 4-9 
resulting, I 4-6 

Call interface, I 9-1 
subprograms, I 9-32 
system services, I 9-28 

CALL operation code, II 3-25 
example, II 3-30 
rules, II 3-25 

Calling 
RTL procedures, II 3-25 
subprograms, II 3-25 
system services, II 3-25 

Card reader device 
specifying, II 2-30 

CHAIN operation code, II 3-14 
example, II 3-15 
indicator for locked record, II 3-14 
reading records, II 3-14 
rules, II 3-14 

Chained files 
input 

selecting Mode of processing, II 2-25 
logic cycle, 11-18 

flowchart, I 1-18 
update 

selecting Mode of processing, II 2-25 
Character 

see record identification codes 
Character data type 

example, II 1-2 
CHARACTER function, I 3-26 
Character sets 

ASCII, II A-I 
Decimal, II A-I 
EBCDIC, II A-I 
Hexadecimal, II A-I 

CHECK qualifier, I 2-4 
checking 

array boundaries, I 2-5 
blanks in numeric fields, I 2-5 
recursive calls to subroutines, I 2-5 

format, I 2-4 
options, I 2-4 
BLANKSjN~UMERICS, I 2-5 

CHECK qualifier, options (Cont.) 
BOUNDS, I 2-5 
RECURSION, I 2-5 

Collating sequences, II 2-14 
Alternate, II 2-13 
ASCII, II 2-13 
EBCDIC, II 2-13 
specifying 

example, II 2-14 
COLUMN function, I 3-26 
80-column ruler, I 3-5 

definition, I 3-7 
COMMAND function, I 3-18 

example, I 3-71 
Command line 

conditions, I 3-29 
COMMAND qualifier, I 3-2 
Commands 

DCL, I 2-1 
debugger, I 10-3 
RPG II editor, I 3-18 

commands 
RUN,I2-9 

Comments, II 2-5, 2-90 
rules for specifying, II 2-5 

COMP operation code, II 3-13 
example, II 3-14 
rules, II 3-13 

Compare operation codes 
COMP,II3-13 

Compile-time arrays, I 8-2 
advantages, I 8-2 
creating, I 8-4, 8-6 

example, I 8-6 
rules for specifying, I 8-4 

example, I 8-3 
outputting, I 8-20 
updating, I 8-19 
writing, I 8-20 

Compile-time tables, I 7-2 
advantage, I 7-2 
example, I 7-2 
input records 

creating,I 7-3 
rules for specifying, I 7-3 

outputting, I 7-12 
rules for defining, I 7-6 
searching 

example, I 7-8 
writing,I 7-12 

Compiler error messages, I 2-9 
format, I 2-9 
IDENT field, I 2-9 
interpreting, I 2-9 

Compiler listing, I 11-1 
command qualifiers, I 11-2 
copy directive,I 11-1 

Master Index 3 



Compiler listing, (Cont.) 
cross-reference information 

CROSS-REFERENCE qualifier, 111-1 
indicators, 111-2 
user-defined names, 111-1 

example,I11-3 
identification, 111-1 
interpreting, 111-1 
machine-generated code, 111-1 

MACHINE_CODE qualifier, 111-1 
PSECTs,111-2 
source code, I 11-1 
statistical information, 111-2 

Compiler options 
default,12-2 
example, 12-2 

Compiling programs, I 2-1 
example, 12-2 
generating an object module, 12-1 
specifying more than one 

program, 12-1 
Condition values 

returned, 19-20 
signaled, 19-20 

Constants, II 2-111 
rules for specifying, ll2-112 

Control breaks 
identifying, 14-8 
split-control fields, I 4-11 

Control specification, ll2-11 
Alternate collating sequence, ll2-13 
Currency symbol, 112-12 
example, 112-15 
format, ll2-12 
Forms position, ll2-15 
Inverted print, ll2-12 
Type,!12-12 

Control-level indicators, I 4-8, ll2-71, 2-80 
conditioning data, ll2-71 
control breaks, I 4-9 
example, 14-10, ll2-73, 2-81 
function, I 4-8 
hierarchy, I 4-8 
identifying control breaks, I 4-8 
rules for specifying, ll2-72 
signaling changes in control fields, I 4-8 
split-control fields, I 4-11 

Copy from CDD,ll2-7 
COPY qualifier, II 2-7 
Core index, ll2-31 

rules for specifying, ll2-32 
CREATE qualifier, I 3-3 
CROSS-REFERENCE qualifier, I 2-5 

cross referencing 
indicators, 12-5 
user-defined fields, I 2-5 

format, I 2-5 

4 Master Index 

CROSS-REFERENCE qualifier, (Cont.) 
generating cross-reference information, 

111-1 
CTRL~J(EY 

example, I 3-65 
Currency symbol, ll2-12 

rules for specifying, ll2-12 
Cursor, 13-8 
CUT function, I 3-21 

example, 13-74 
CZDportion 

see record identification codes 

D 

Data 
comparing contents, ll3-13 
displaying, ll3-16 
moving, ll3-5 
moving from the left, ll3-6 
repeating,! 6-7 
transferring, ll3-5 

Data formats 
binary, ll2-44 
Extension specification, ll2-44 
Input specification, ll2-62 
Output specification, ll2-109 

example, ll2-109 
overpunched decimal, ll2-44 
packed decimal, II 2-44 

Data structure, ll2-50 
Data structure subfield, ll2-53 
Data structures, II 2-52 

examples of using, ll2-66 to 2-68 
local data area, ll2-55 

examples, II 2-69 
updating files, I 5-26 

Data types, lll-l 
binary, lll-3 
character, lll-2 
overpunched decimal, lll-4 
packed decimal, lll-3 
specifying, ll2-44 

Date 
formatting, I 6-3 
printing, I 6-3 

DCL commands 
RPG,I2-1 

DCL RPG command, I 2-1 
default compiler options, I 2-2 
qualifiers 

example, I 2-3 to 2-4 
DEBUG qualifier, I 2-6, 10-1 

format, I 2-6 
options, 12-6 

SYMBOLS, I 2-6 
TRACEBACK, I 2-6 

/ 

~. 



DEBUG qualifier, (Cont.) 
providing 

an address correlation table, I 2-6 
information for the VAX Symbolic 

Debugger, I 2-6 
local symbol definitions, I 2-6 

DEBUG qualifiers 
ALL,110-1 
NONE,I10-1 
SYMBOLS, I 10-1 
TRACEBACK, I 10-1 

Debugger commands 
CANCEL BREAK, I 10-6 
CANCEL TRACE, 110-7 
CANCEL WATCH, 110-9 
CTRLIY, 110-12 
DEPOSIT, 110-14 
EDIT, 110-12 
EVALUATE, 110-15 
EXAMINE, I 10-13 
EXIT, 110-12 
GO,I1O-1O 
SET,110-7 

stepping through a TAG, I 10-7 
stepping through subroutines, I 10-7 

SET BREAK, I 10-6 
SET LANGUAGE, 110-4 
SET STEP, 110-11 
SET TRACE, I 10-7 
SET WATCH, 110-9 
SHOW BREAK, I 10-6 
SHOW CALLS, 110-10 
SHOW LANGUAGE, I 10-4 
SHOW TRACE, 110-7 
SHOW WATCH, 110-9 
STEP, I 10-10 

qualifiers 
INTO, I 10-10 
LINE, I 10-10 
OVER,I10-1O 
SOURCE,I10-1O 
SYSTEM,I1O-1O 

TYPE, I 10-11 
Debugging RPG II programs, 110-1 

debugger commands 
table, I 10-3 

*DETC logic cycle label, I 10-5 
*DETL logic cycle label, I 10-5 
displaying source code, I 10-11 
edit the file you are debugging, 110-12 
evaluating expressions, I 10-15 
examining 

array elements, I 10-6 
contents of 

array elements, I 10-13 
I/O buffers, I 10-13 
table entries, I 10-13 
variables, 110-13 

Debugging RPG II programs, 
examining (Cont.) 

data, I 10-6 
locations, 110-13 
table entries, I 10-6 

executing program lines, 110-10 
*GETIN logic cycle label, I 10-5 
leaving the debugger, 110-12 
modifying 

array elements, 110-6,10-14 
data, I 10-6 
locations, I 10-13 
table entries, I 10-6 
variables, 110-14 

*OFL logic cycle label, I 10-5 
referencing 

array elements, I 10-6 
data, I 10-6 
line numbers, I 10-3 
logic cycle labels, I 10-5 
table entries, I 10-6 

resuming program execution, I 10-10 
returning to system command level, 

110-12 
setting 

breakpoints, I 10-6 
indicators, 110-14 
tracepoints, I 10-7 
watchpoints, I 10-9 

subprograms, I 10-10 
suspending program execution, I 10-7 
table entries, I 10-14 
*TOTC logic cycle label, I 10-5 
*TOTL logic cycle label, I 10-5 
tracing calls, I 10-10 

Decimal character set, II A-I 
Decimal positions, II 2-44, 2-64, 2-87 

rules for specifying, II 2-44,2-64,2-87 
Default compiler options, I 2-2 
DEL option, II 2-95 

example, II 2-96 
rules for specifying, II 2-95 

DELETE TO END OF LINE function, I 3-25 
DELETE_CHARACTER Function, I 3-28 
DELETEJ'IELD function, I 3-20 
DELETEJ.INE function, I 3-17 
DELETE_TOjJEGINNING_OF J.INE 

function, I 3-29 
DELETE_TOJ;ND_OF _LINE function 

example, I 3-25 
Deleted-field buffer, I 3-9 
Deleted-line buffer, I 3-9 
Demand files 

logic cycle, I 1-18 
flowchart, I 1-18 

READ operation code, II 3-19 
selecting Mode of processing, II 2-24 

Master Index 5 



Detail time, I 1-2 
processing individual records, I 1-5 

Developing programs 
creating 

example, I 3-54 
generating a listing file, I 11-1 

Device codes, II 2-30 
rules for specifying, II 2-30 
specifying 

card reader, II 2-30 
disk, II 2-30 
magnetic tape, II 2-30 
printer, II 2-30 
terminal, II 2-30 

Direct file organization, I 5-3 
example, I 5-3 

Direct files 
adding records, I 5-24 

example, I 5-24 to 5-25 
rules for specifying, I 5-24 

creating, I 5-20 
example, I 5-21 
rules for specifying, I 5-20 

updating records 
rules for specifying, I 5-27 

Disk device 
specifying, II 2-30 

DISPLAY function, I 3-19 
example, I 3-62 

DIV operation code, II 3-3 
example, II 3-4 

Division operation, II 3-3 
saving the remainder, II 3-3 

DOWN function, I 3-28 
DSPLY operation code, II 3-16 

displaying data, II 3-16 
example, II 3-17 
rules, II 3-16 

E 

EBCDIC character set, II A-I 
Edit code modifiers, II 2-110 

asterisk fill, I 6-2 
example, II 2-111 
floating dollar sign, I 6-2 
rules for specifying, II 2-110 

Edit codes, II 2-104 
combined, I 6-1 
constants 

example, I 6-2 
rules for specifying, I 6-2 

example, II 2-106 
modifiers, I 6-2 
printer output files, I 6-1 
rules for specifying, II 2-105 
simple, I 6-1 

6 Master Index 

Edit codes, (Cont.) 
specifying 

notation, II 2-12 
Edit words, II 2-112 

body, II 2-112 
example, II 2-114 
expansion, II 2-112 
rules for specifying, II 2-117 
sign status, II 2-112 
specifying 

asterisk protection, II 2-113 
blank spaces, II 2-114 
commas, II 2-115 
CR,1I2-116 
currency symbol, II 2-114 
decimal points, II 2-115 
negative signs, II 2-116 
zero suppression, II 2-113 

editing buffer, I 3-9 
editing window, I 3-5 
Editor 

seeRPG II 
End position, II 2-107 

example, II 2-108 
rules for specifying, II 2-107 

End-of-file, II 2-19 
rules for specifying, II 2-20 

END_OF .-LINE function, I 3-24 
example, I 3-24 

ENDSR operation code, II 3-10 
example, II 3-10 
rules, II 3-10 

ENTER function, I 3-26 
ENTER key 

example, I 3-67 
EOB mark, I 3-7 
Error messages 

compiler, I 2-9 
IDENT field values, I 2-10 

Errors 
handling, I 4-17 

halt indicators, I 4-17 
EXCPT 

names, II 1-7 
EXCPT name, II 2-103 
EXCPT operation code, II 3-17 

writing records during 
calculations, II 3-17 

Execution-time arrays, I 8-4 
creating, I 8-4,8-7 

example, I 8-8 
rules for specifying, I 8-4 

loading 
example, I 8-8, 8-13 

outputting, I 8-20 
example, I 8-21 



Execution-time arrays, (Cont.) 
specifying 

array elements 
example, I 8-13 

entire arrays 
example, I 8-13 to 8-14 

writing, I 8-20 
example, I 8-21 

EXIT function, I 3-29 
Expansion factor, II 2--33 

improving search efficiency, II 2-33 
preventing bucket splitting, II 2--33 
table, II 2-34 

EXSR operation code, II 3-10 
example, II 3-10 
rules, II 3-10 

Extension code, II 2-29 
Extension specification 

Comments, II 2-46 
Data format, II 2-44 
Decimal positions, II 2-44 
defining 

arrays, II 2--38 
record-address files, II 2-38 
tables, II 2--38 

example, II 2-46 
format, II 2--39 
From file name, II 2-40 
Length of entry, II 2-43 
name of record-address file, II 2-40 
name of table input file, II 2-40 
Number of entries per record, II 2-42 
Number of entries per table or array, 

II 2-42 
Sequence, II 2-45 
Table or array name, II 2-41 
To file name, II 2-40 
Type, II 2-40 

External indicators, I 4-16 
controlling the opening of files, I 4-16 
example, I 4-16,9--30 
function, I 4-16 
setting, I 4-16 
specifying,l4-16 

EXTRN operation code, II 3-26 . 
accessing 

F 

link-time constants, II 3-26 
RTL status codes, 113-26 

example, II 3--30 
RTL procedures, II 3-26 
rules, II 3-26 

Factor 1, II 2--84 
Factor 2, II 2--84 
Fetch overflow, I 6-11, II 2-96 

Fetch overflow, (Cont.) 
example, I 6-12, II 2-97 
rules for specifying, I 6-11, II 2-96 

FIELD function, I 3-23 
example, I 3-23 

Field indicators, I 4-4 
checking the condition of data 

fields, II 2-78 
conditioning input data, II 2-78 
example, I 4-5 
function, 14-4 
rules for specifying, II 2-78 

Field length, II 2--87 
rules for specifying, II 2-87 

Field locations, II 2-63 
rules for specifying, II 2-63 

Field name, II 2-64, 2-102 
Input specification, II 2-64 

example, II 2-65 
rules for specifying, II 2-64 

Output specification, II 2-102 
example, II 2-103 
rules for specifying, II 2-102 

Field names, II 1-6 
Field-record-relation indicators, II 2-75 

conditioning input data, II 2-75 
controlling data extraction, II 2-75 
example, II 2-77 
rules for specifying, II 2-76 
using matching fields, I 5--31 

example, I 5--31 to 5-33 
FIELDj3ACKWARD function, I 3-28 

example, I 3-56 
FLELDYORWARD function, I 3-29 
Fields 

common, II 2-4 
defining locations, II 2-63 
indicators, 14-4 
input 

specifying 
Decimal positions, II 2-64 

look-ahead, II 2-57 
matching, I 5-29, II 2-73 

checking sequence, II 2-20 
naming, II 2-64 
repeating, I 6-7 
specifying 

Data format, II 2-62 
IN,II2-64 
IN ,xx, II 2-64 
length, II 2--87 
PAGE special word, II 2-64 

split-control, I 4-11 
testing values, 14-4 
that require 

blanks, II 2--3 
character values, II 2-3 
numeric values, II 2-3 

Master Index 7 



Fields (Cont.) 
using indicators to compare 

contents, 112-71 
File access methods 

random, 15-11 
sequential, I 5--6 
sequential by key, I 5-7 
sequential within limits, I 5-8 
table, 15-5 

File addition, II 2-32 
rules for specifying, II 2-33 

File condition, 112-37 
File Description specification, II 2-16 

Additional 110 area, II 2-28 
Block length, II 2-21 
Core index, II 2-31 
Device code, II 2-30 
End-of-file, II 2-19 
example, II 2-38 
Expansion factor, II 2-33 
Extension code, II 2-29 
File addition, II 2-32 
File condition, II 2-37 
File designation, II 2-18 
File format, II 2-21 
File name, II 2-17 
File organization, II 2-28 
File sharing, II 2-35 
File type, II 2-17 
format,II 2-16 
Key length, II 2-27 
Key location, II 2-29 
Mode of processing, II 2-23 
Overflow indicators, II 2-29 
Record address type, II 2-28 
Record length, II 2-22 
Sequence, II 2-20 
Symbolic device, II 2-31 
Tape label, II 2-31 
Tape rewind, II 2-37 
Type, II 2-16 
Unordered output, II 2-32 

File designations, II 2-18 
array, II 2-18 
chained, II 2-18 
demand, II 2-18 
full-procedural, II 2-18 
primary, II 2-18 
record-address, II 2-18 
secondary, II 2-18 
table,I12-18 

File format, II 2-21 
rules for specifying, II 2-21 

File names, II 1--6 

8 

File Description specification, II 2-17 
rules for specifying, II 2-17 

Input specification, II 2-51 
rules for specifying, II 2-51 

Master Index 

File names, (Cont.) 
Line Counter specification, II 2-48 

rules for specifying, II 2-48 
Output specification, II 2-91 

rules for specifying, II 2-91 
rules for specifying, 15-1 

File organizations, II 2-28 
direct, I 5-3 
indexed, I 5-4 
sequential, I 5-2 

File sharing, II 2-35 
rules for specifying, II 2-35 

File types, II 2-17 
display, II 2-17 
input, 15-2, II 2-17 
output, I 5-2, II 2-17 
update, 15-2, II 2-17 

Files 
adding records, I 5-23 
ADDROUT,15-14 

specifying 
Key length, II 2-27 

CHAIN operation code, II 3-14 
changing processing order, 

II 3-18 
compiler listing, 111-1 
conditioning with an external 

indicator, II 2-37 
creating, I 5-20 

ADDROUT,15-15 
direct, I 5-20 
indexed,I5-21 
output, 16-1 
printer output, 16-1 
record-limits, 15-8 
sequential,15-20 

definition, 15-1 
deleting records, I 5-28 
DSPLY operation code, II 3-16 
EXCPT operation code, 113-17 
external indicators, 14-16 
file access methods, I 5-5 
file names, 15-1 
file types, I 5-2 
FORCE operation code, II 3-18 
full-procedural,15-18 

example, 15-19 
improving search efficiency, II 2-33 
indexed 

specifying 
Key length, II 2-27 

input 
specifying 

File addition, II 2-32 
Unordered output, II 2-32 

input/output operation codes, II 3-14 
matching-record indicators, 14-16 
multifile processing, I 5-29 

/ 
I 
I 

',,-



Files (Cont.) 
organization, 1 5-2 
output, 1 6-1 

controlling overflow, II 2-29 
using overflow indicators, II 2-29 

preventing bucket splitting, II 2-33 
printer output, 1 6-1 

controlling overflow, II 2-29 
using overflow indicators, II 2-29 

processing using matching 
fields, II 2-73 

random access, 1 5-11 
random access by key, 1 5-18 
READ operation code, II 3-19 
reading record during 

calculations, II 3-14 
record formats, 1 5-2 
record-limits, 1 5-8 

specifying 
Key length, II 2-27 

sequential access, 1 5-6,5-18 
sequential by key access, 1 5-7 
sequential within limits access, 1 5-8 
SETLL operation code, II 3-19 
specifying 

chained, II 2-18 
demand, II 2-18 
display, II 2-17 
full-procedural, II 2-18 
input, II 2-17 
Mode of processing, II 2-23 
output, II 2-17 
primary, II 2-18 
record-address, II 2-18 
secondary, II 2-18 
update, II 2-17 

update 
specifying 

File addition, II 2-33 
Unordered output, II 2-33 

updating records, 1 5-26 
FIND function, 1 3-17 

example, 1 3-67 
FIND_NEXT function, 1 3-16 

example, 1 3-69 
First-page indicators, 1 4-14,6-8 

conditioning output data, 1 4-14 
example, 14-14,6-9 
function, 14-14 
specifying, 1 4-14 

FL,II2-49 
FMS, 1 9-33 to 9-34 
FORCE operation code, II 3-18 

changing file processing order, II 3-18 
example, II 3-18 
rules, II 3-18 
selecting files, II 3-18 

Form length, II 2-49 
FL,II2-49 

Form length, (Cont.) 
rules for specifying, II 2-49 

Forms alignment 
changing, II 2-15 

Forms position, II 2-15 
From file name, II 2-40 

arrays, II 2-40 
record-address files, II 2-40 
rules for specifying, II 2-40 
tables, II 2-40 

Function 
SHIFLRIGHT, 1 3-22 

Function calls 
for system routines, 1 9-15 

Functions, 1 3-9 to 3-10 
see RPG II editor 
ADVANCE, 1 3-20 
BACKUP, 1 3-21 
BOTTOM, 1 3-21 
CHARACTER, 1 3-26 
COLUMN, 1 3-26 
COMMAND, 1 3-18 
CUT,! 3-21 
DELETE_CHARACTER,/3-28 
DELETE_FIELD, 1 3-20 
DELETE_LINE, 1 3-17 
DELETE_TO_BEGINNING_OF _LINE, 

13-29 
DELETE_TO_END_OF _LINE, 1 3-25 
DISPLAY, 1 3-19 
displaying specification 

formats, 1 3-14 
DOWN,/3-28 
END_OF _LINE, 1 3-24 
ENTER, 1 3-26 
executing editor commands, 1 3-18 
EXIT, 1 3-29 
FIELD,! 3-23 
FIELD_BACKWARD, 1 3-28 
FIELD_FORWARD, 1 3-29 
FIND,! 3-17 

specifying the search string, 13-17 
FIND_NEXT,/3-16 
finding the next occurrence of the search 

string,! 3-16 
GOLD,! 3-12 
HELP _KEYPAD,/3-13 
HELP _SPECIFICATIONS, 1 3-14 
LEFT,/3-28 
LINE,! 3-27 
MOVE_TO~ULER, 1 3-20 
NEW J,INE, 1 3-28 
OPEN_LINE, 1 3-27 
PAGE,/3-18 
paging through the source file, 1 3-18 
PASTE, 1 3-21 
REFRESH_SCREEN,/3-29 
RESET, 1 3-27 

Master Index 9 



Functions, (Cont.) 
REVIEW_ERROR, I 3-19 
RIGHT, I 3-28 
SECTION,! 3-19 
SELECT, I 3-27 

G 

selecting alternate functions, I 3-12 
SHIFT_LEFT, I 3-22 
table, I 3-10 
TOP, I 3-21 
UNDELETEJ'IELD, I 3-20 
UNDELETE_LINE, I 3-17 
UP, I 3-27 

GIVNG operation code, II 3-26 
retrieving RTL return status, II 3-26 
rules, II 3-26 

GOLD function, I 3-12 
GOTO operation code, II 3-20 

example, II 3-22 
rules, II 3-21 

H 

Half adjust, II 2-88 
rules for specifying, II 2-88 
using resulting indicators, II 3-26 

Halt indicators, I 4-17 
controlling program execution, I 4-17 
example, 14-17 to 4-18 
function, I 4-17 
handling errors, I 4-17 

Help window, I 3-5 
definition, I 3-6 
displaying help information, I 3-6 

HELP j{EYPAD function, I 3-13 
displaying help information on 

key functions, I 3-14 
example, I 3-14 

HELP_SPECIFICATIONS function, I 3-14 
displaying specification formats 

example, I 3-15 
HELP_SPECS function 

example, I 3-54 
Hexadecimal character set, II A-I 

I/O areas 
specifying 

additional areas, II 2-28 
IDENT field 

values, I 2-10 
*IN indicators, I 4-19 

example, I 4-19 

10 Master Index 

*IN indicators, (Cont.) 
function, 14-19 
specifying arrays, I 4-19 

*IN,n indicators, I 4-19 
example,! 4-19 
function, I 4-19 
specifying array elements, I 4-19 

Indexed file organization, I 5-4 
example, I 5-4 
index key, I 5-4 

example, I 5-4 
Indexed files 

adding records, I 5-25 
example, I 5-26 
rules for specifying, I 5-25 

creating, I 5-21 
example, I 5-22 
rules for specifyin~ I 5-21 

specifying 
addition of records, II 2-32 
Key length, II 2-27 
Key location, II 2-29 

updating records 
rules for specifying, I 5-27 

Indicators,! 4-1 
Calculation specification, II 2-82 

example, II 2-83 
conditioning 

calculations, II 2-82 
output, II 2-100 

control-level, I 4-8, II 2-71,2-80 
external, 14-16 
field, 14-4, II 2-78 
field-record-relation, II 2-75 
first-page, I 4-14,6-8 
function, I 4-1 
halt, I 4-17 to 4-18 
*IN,I4-19 
*IN,n,! 4-19 
internally defined, I 4-14 
*INxx, 14-19 
last-record, I 4-15 
matching-record, 14-16 
negating, II 2-82 
Output specification 

example,!I2-102 
rules for specifying, II 2-100 

overflow, 14-12,6-10, II 2-29 
IP, I 4-14,6--8 
printer output files, I 6-8 
record-identifying, I 4-1, II 2-56 
resulting, 14--6, II 2-88 
setting off, II 3-9 
setting on, II 3-9 
usage,! 4-1 
user-defined, I 4-1 
using as fields, I 4-19 



Input files 
selecting Mode of processing, II 2-24 
specifying 

File addition, II 2-32 
Unordered output, II 2-32 

Input specification, II 2-50 
AND,II2-61 
Character, II 2-60 
Control-level indicators, II 2-71 
copy from CDD, II 2-7 

copy modifiers, II 2-9 
CZD portion, II 2-59 
Data format, II 2-62 
Data structure, II 2-50 
Data structures, II 2-52 
data structures 

examples, II 2-66 to 2-68 
Decimal positions, II 2-64 
Field indicators, II 2-78 
Field locations, II 2-63 
Field name, II 2-64 
Field-record-relation indicators, II 2-75 
File name, II 2-51 
format, II 2-51 
identifying record types, II 2-56 
Matching fields, II 2-73 
Not, II 2-59 
Number, II 2-56 
Optional, II 2-56 
OR,II2-61 
Position, II 2-59 
Record identification codes, II 2-58 
Record-identifying indicators, II 2-56 
Sequence, II 2-55 
specifying 

alphabetic sequence code, II 2-55 
data formats, II 2-62 
data structure statement, II 2-53 
data structure subfield, II 2-53 
filenames 

example, II 2-52 
input file names, II 2-51 
look-ahead fields, II 2-57 
numeric sequence code, II 2-55 
record identification codes, II 2-58 
sequence code, II 2-55 
update file names, II 2-51 

Type, II 2-51 
Input/output operation codes, II 3-14 

CHAIN, II 3-14 
DSPLY, II 3-16 
EXCPT, II 3-17 
FORCE, II 3-18 
READ, II 3-19 
SETLL, II 3-19 

Inverted print, II 2-12 
*INxx indicators, I 4-19 

example, I 4-20 

*INxx indicators, (Cont.) 
function, I 4-19 
representing indicators, I 4--19 

J 

JOURNAL qualifier, I 3-3 

K 

K indicators, I 4-12 
example,l4-12 

Key length 
ADDROUT files, II 2-27 
example, II 2-27 
Indexed files, II 2-27 
Record-limits files, II 2-27 
rules for specifying, II 2-27 

Key location, II 2-29 
rules for specifying, II 2-29 

Keypad, I 3-9 

L 

Label names, II 1-7 
Language elements, II 1-1 
Last-record indicators, I 4-15 

example, I 4-15 
function,l4-15 
totalling data, I 4-15 

LEFT function, I 3-28 
Length of entry, II 2-43 

arrays, II 2-43 
rules for specifying, II 2-43 
tables, II 2-43 

Line Counter specification, II 2-47 
example, II 2-50 
File name, II 2-48 
FL,II2-49 
Form length, II 2-49 
format, II 2-48 
naming the output file, II 2-48 
OL,II2-50 
Overflow line number, II 2-49 
Type, II 2-48 

LINE function, I 3-27 
example, I 3-73 

Line numbers, II 2-4 
checking, I 2--8, II 2-4 

Line relationships 
AND,II2-61 
OR,II2-61 

LINK command, I 2--8 
example, I 2-9 
format, I 2-9 

Linking programs, I 2-8 

MasterIndex 11 



LIST qualifier, 12-6 
format, I 2-6 
generating a listing file, I 2-6, 11-1 
including cross-reference 

information, I 2-6 
including machine code, I 2-6 

Listing file 
generating, I 2-6 

Local data area, II 2-55 
examples, II 2-69 

Logic cycle, 11-1 
detail time, 11-2,1-5 
flowchart, 11-6 
general,l1-2 
look -ahead processing, I 1-20 
matching-fields routine, I 1-16 
normal cycle,l1-3 
overflow processing, I 1-19 
processing chained and demand files, 

11-18 
steps of 

a normal cycle, I 1-3 
the first cycle, 11-2 
the last cycle, I 1-3 

the first cycle, I 1-2 
the last cycle,l1-3 
total time,l1-2, 1--4 

LOKUP operation code, II 3-22 
arrays,l8-15 

example, I 8-16 
example, II 3-24 to 3-25 
referencing entries, I 7-10 
searching 

arrays, II 3-24 
related tables, II 3-23 
tables, I 7-7, II 3-23 

specifying array elements, II 3-24 
Long character literals, II 2-111 
Longword binary data type example, II 1-3 
Look-ahead fields, II 2-57 

example, II 2-57 
function, II 2-57 
logic cycle, 11-20 

flowchart, I 1-20 
rules for specifying, II 2-58 

LR indicators, I 4-15 

M 

MACHINE_CODE qualifier, I 2-7 
format, I 2-7 
generating machine code, I 2-7,11-1 

Magnetic tape device 
specifying, II 2-30 

Magnetic tapes 
rewinding, II 2-37 

12 Master Index 

Matching fields, II 2-73 
checking record sequence, I 5-29, II 2-20 

example,l5-30 
for more than one record type, I 5-29 

example, I 5-30 
logic cycle, I 1-16 

flowchart,l1-16 
multifile processing, I 5-29, 5-33 

example, I 5-34, 5-38 
record selection, I 5-33 
rules for specifying, I 5-34 

rules for specifying, II 2-73 
using as field-record-relation indicators, 

15-31 
example, I 5-31 to 5-33 

Matching-record indicators, I 4-16 
function, I 4-16 
multifile processing, 14-16 

Message line, I 3-5 
definition, I 3-7 
example, I 3-7 

Mode of processing, II 2-23 
example, II 2-26 
loading a direct file, II 2-23 
rules for specifying, II 2-23 
selecting, II 2-24 
specifying 

access 
random, II 2-23 
sequential, II 2-23 
sequential within limits, II 2-23 

an ADDROUT file, II 2-23 
Record address type, II 2-28 

Modular Programming Standard, I 9-32 
MOVE operation code, II 3-5 

example, II 3-7 
rules, II 3-5 

Move operation codes, II 3-5 
example, II 3-7 
MOVE, II 3-5 
MOVEA, II 3-6 
MOVEL, II 3-6 

MOVE_TO~ULER function, I 3-20 
MOVEA operation code, II 3-6 

arrays, I 8-18 
example, I 8-19, II 3-7 
rules, II 3-6 

MOVEL operation code, II 3-6 
example, II 3-7 
rules, II 3-6 

MULT operation code, II 3-3 
example, II 3--4 

Multifile processing, I 5-29 
checking record sequence, I 5-29 

example, I 5-30 
for more than one record types, I 5-29 

matching fields, I 5-30 



Multifile processing, (CO NT.) 
using 

matching fields, I 5--29 
matching-record indicators, I 4-16,5-29 
MR indicators, I 5-29 

mUltiple keys, I 5-41 
Multiplication operation, II 3-3 
MVR operation code, II 3-3 

example, II 3-4 
saving the remainder, II 3-3 

N 

Names 
arrays, II 1-7 

specifying, II 2-41 
EXCPT, II 1-7 
fields, II 1-6 
files,IIl-6 
labels, II 1-7 
PLIST, II 1-7 
subroutines, II 1-7 
tables, II 1-7 

specifying, II 2-41 
user-defined, II 1-6 

NEW -LINE function, I 3-28 
Not 

see record identification codes 
Notations 

Edit codes, II 2-12 
numeric fields, II 2-12 
UDATE, II 2-12 

Number, II 2-56 
rules for specifying, II 2-56 

Number of entries per record, II 2-42 
arrays, II 2-42 
rules for specifying, II 2-42 
tables, II 2-42 

Number of entries per table or array, II 2-42 
rules for specifying, II 2-43 

Numeric data 
specifying 

format, II 2-109 
Numeric fields 

editing, II 2-112 
example, II 2-4 
rounding, II 2-88 
specifying 

notation, II 2-12 
Numeric sequence code, II 2-56 

o 
OBJECT qualifier, I 2-7 

format, I 2-7 
generating an object module, I 2-7 

OBJECT qualifier, (Cont.) rules, I 2-7 
specifying an output file, I 2-7 

OL, II 2-50 
OPEN-LINE function, I 3-27 
Operation codes, II 3-1 

arithmetic, II 3-1 
ADD, II 3-2 
DIV, II 3-3 
MULT, II 3-3 
MVR,II3-3 
SQRT, II 3-4 
SUB, II 3-3 
XFOOT, II 3-4 
Z-ADD, II 3-2 
Z-SUB, II 3-3 

bit, II 3-11 
BITOF, II 3-12 
BITON, II 3-11 
TESTB, II 3-12 

branching, II 3-20 
example, II 3-22 
GOTO, II 3-20 
TAG, II 3-21 

compare, II 3-13 
COMP, II 3-13 

input/output, II 3-14 
CHAIN, II 3-14 
DSPLY, II 3-16 
EXCPT, II 2-103,3-17 
FORCE, II 3-18 
READ, II 3-19 
SETLL, II 3-19 

LOKUP, II 3-22 
move, II 3-5 

MOVE, II 3-5 
MOVEA, II 3-6 
MOVEL, II 3-6 

set, II 3-9 
SETOF, II 3-9 
SETON, II 3-9 

specifying, II 2-86 
subprogram, II 3-25 

CALL, II 3-25 
EXTRN, II 3-26 
GIVNG, II 3-26 
PARM, II 3-27 
PARMD, II 3-28 
PARMV, II 3-28 
PLIST, II 3-29 

subroutine, II 3-10 
BEGSR, II 3-10 
ENDSR, II 3-10 
EXSR, II 3-10 

summary 
table, II 3-31 

Optimizing 
file performance, II 2-31 

Master Index 13 



Optimizing programs, I 12-1 
Expansion factor, I 12-3 
file applications, I 12-3 
file performance, I 12-3 
file sharing, 112-3 
1/0 processing, I 12-3 
multiblock count, I 12-3 
multi buffer count, I 12-3 
with adjacent fields, I 12-2 
with blank Factor 1, 112-3 
with data structures, 112-1 

Optional, II 2-56 
rules for specifying, II 2-56 

OR, II 2-61,2-91 
example, II 2-62 
Output specification 

example, II 2-92 
rules for specifying, II 2-61,2-91 

Output files 
controlling overflow, II 2-29 
specifying 

File addition, II 2-32 
File name, II 2--48 
Unordered Output, II 2-32 

using overflow indicators, II 2-29 
OUTPUT qualifier, I 3-3 
Output specification, II 2-90 

AND,II2-91 
Blank after, II 2-106 
Constants 

long character literals, II 2-111 
copy from CDD, II 2-7 
Data format, II 2-109 
Edit code modifiers, II 2-110 
Edit codes, II 2-104 
Edit words, II 2-112 
End position, II 2-107 
Fetch overflow, II 2-96 
Field name, II 2-102 
File name, II 2-91 
format, II 2-90 
function, II 2-90 
Indicators, II 2-100 
OR,II2-91 
Record type, II 2-93 
Skip after, II 2-98 
Skip before, II 2-98 
Space after, II 2-97 
Space before, II 2-97 
specifying 

ADD option, II 2-95 
DEL option, II 2-95 

Type, II 2-90 
Overflow 

automatic, I 6-13 
Overflow indicators, I 4-12,6-10, II 2-29 

causing page breaks, I 4-12 
example, I 4-12,6-12 

14 MasterIndex 

Overflow indicators, (Cont.) 
function, I 4-12 
rules for specifying, I 6-10, II 2-29 
specifying,! 4-12 

Fetch overflow, II 2-96 
Overflow line number, II 2--49 

OL,II2-50 
rules for specifying, II 2--49 

Overflow processing 
logic cycle, 11-19 

flowchart, 11-19 
Overpunched decimal 

specifying, II 2--44 
Overpunched decimal data type 

example, II 1-6 

p 

representation ofleast significant digit and 
sign,II 1-5 

representation of non least 
significant digits, II 1-5 

trailing numeric string, II 1-4 

1P indicators, I 4-14,6-8 
conditioning output data, I 4-14 
example, I 4-14,6-9 
function, 14-14 
specifying, 14-14 

Packed decimal data type 
example, II 1--4 
specifying, II 2--44 

PAGE function, I 3-18 
example, I 3-18 

Page size 
defining, I 6-14 

PAGE special word, I 6--4 
changing the page number, I 6-5 

example, I 6-5 to 6-6 
resetting the page number, I 6-6 

PAGEl special word, I 6--4 
PAGE2 special word, I 6--4 
PAGE3 special word, I 6--4 
PAGE4 special word, I 6--4 
PAGE5 special word, I 6--4 
PAGE6 special word, I 6--4 
PAGE7 special word, I 6--4 
Paging special words 

rules for specifying, I 6-4 
Parameters 

list, II 3-29 
passing 

access types, II 3-27 
data types, II 3-28 
mechanisms, II 3-27 

by descriptor, II 3-28 
by reference, II 3-27 
by value, II 3-28 



PARM operation code, II 3-27 
example, 19-6, 9-11 
rules, II 3-27 

PARMD operation code, II 3-28 
example, 19-11, II 3-30 
rules, II 3-28 

PARMV operation code, II 3-28 
example, 19-10,9-16 
rules, II 3-29 

Passing mechanisms, 19-18 
Paste buffer, 1 3-9 
PASTE function, 13-21 

example, 13-74 
PDP-11 RPG II 

comparison with VAX RPG II, II B-1 
See VAX RPG II, II B-1 

*PLACE special word, 16-7 
example,l~ 
rules for specifying, 16--7 

PLIST 
names,111-7 
operation code, II 3-29 

rules, II 3-29 
Position 

see record identification codes 
rules for specifying, II 2-59 

Pre-execution-time arrays, 18-4 
creating, 18-4,8-6 

rules for specifying, 18-4 
outputting, 18-20 
searching 

example, 18-17 
updating, 18-19 
writing, 18-20 

Pre-execution-time tables, 17-2 
creating 

example, 17-7 
outputting, 17-12 
rules for defining, 17-7 
updating, 17-11 

example, 17-11 
writing,17-12 

Primary files 
selecting Mode of processing, II 2-24 

Printer device 
specifying,II2-30 

Printer output files, 1 6--1 
automatic overflow, 16--13 
changing page numbers, 1 6-4 
checking the alignment, II 2-15 
conditioning output, 16--8 
constants 

example, 16-2 
controlling overflow, 112-29 
creating, 16--1 
defining 

page numbers, 16-4 

Printer output files, defining (Cont.) 
page size, 16--14 

rules for specifying, 16--14 
deleting form-feed characters, 16--1 
editing 

numeric data, II 2-112 
editing output, 16--1, II 2-104 
first-page indicators, 1 4-14 
formatting, II 2-97 to 2-98 

output, 16--14 
output data, II 2-107,2-110 

generating report titles, II 2-111 
last-record indicators, 14-15 
NOFEED qualifier, 16-1 
overflow indicators 

using, 1 4-12 
IP indicators, 1 4-14 
paging, 16-4 
printing 

IMPORTANT INFORMATION, 16-1 
printing the date, 1 6--3 
repeating output records, 16-7 
resetting page numbers, 16-4 
Skip entries, 16-14 

example, 16-16 
Space entries, 16--14 

example, 16-16 
specifying 

a negative sign, II 2-116 
asterisks, 112-113 
blank spaces, 112-114 
commas, II 2-115 
constant data, II 2-111 
CR, II 2-116 
currency symbol, II 2-114 
decimal points, II 2-115 
Fetch overflow, II 2-96 
Overflow line number, II 2-49 
page breaks, 16--10 
page numbers, 16-4 
page size, 112-49 
Skip after, II 2-98 
Skip before, II 2-98 
Space after, II 2-97 
Space before, II 2-97 
zero suppression, II 2-113 

using 
constants, 1 6--2 
Edit code modifiers, 16--2 

asterisk fill, 16-2 
floating dollar sign, 16-2 

Edit codes, 16--1 
first-page indicators, 16-8 
indicators to condition output, II 2-100 
overflow indicators, 16--10, II 2-29 

example, 16--12 
1P indicators, 1 ~ 
special words, 1 6-3 

Master Index 15 



Procedure Calling and Condition 
Handling Standard, I 9-32 

. Procedure calls, I 9-19 
Processing 

branching, II 3-20 
files 

chained 
flowchart, I 1-18 

demand 
flowchart, I 1-18 

specifying 
an ADDROUT file, II 2-23 
random access, II 2-23 
sequential access, II 2-23 
sequential within limits access, II 2-23 

look-ahead fields 
flowchart, I 1-20 

multifiles, I 5-29 
processing files 

multiple keys, I 5-41 
example, I 5-41 

Program development, I 2-1 
compiling, 12-1 
linking, I 2-8 
running, I 2-9 

Programs 
see RPG II programs 
branching, II 3-21 
developing, I 2-1 
logic cycle, I 1-1 

Prompt line, I 3-5 
definition, I 3-7 

Q 

Qualifiers 

R 

see specific entries 
debugger, I 10-1 
RPG command, I 2-3 
RPG/EDIT command, I 3-2 

Random by ADDROUT file access, I 5-14 
example, I 5-17 
rules for specifying, I 5-16 

Random by key file access, I 5-13 
example, I 5-14 
rules for specifying, I 5-13 

Random file access, I 5-11 
using 

16 

an ADDROUT file, I 5-14 
keys, I 5-13 
relative record numbers, I 5-11 

example, I 5-12 
rules for specifying, I 5-11 

Master Index 

READ operation code, II 3-19 
demand files, II 3-19 
example, II 3-19 
full-procedural files, II 3-19 
rules, II 3-19 

READ_ONLY qualifier, I 3-3 
Record address type, II 2-28 
Record formats 

fixed,I5-2 
variable, I 5-2 

Record identification codes, II 2-58 
identifying record types, II 2-58 
specifying 

Character, II 2-60 
CZD portion, II 2-59 
example, II 2-60 
Not, II 2-59 
Position, II 2-59 

Record length, II 2-22 
rules for specifying, II 2-21 to 2-22 

Record types, II 2-93 
defining the ordering sequence, II 2-55 
detail, II 2-93 
example, II 2-94 
exception, II 2-93 
heading, II 2-93 
identifying, II 2-56 
rules for specifying, II 2-93 
specifying 

record identification codes, II 2-58 
total, II 2-93 
using record-identifying 

indicators, I 4-2 
Record-address files 

selecting Mode of processing, II 2-25 
specifying 

From file name, II 2-40 
To file name, II 2-40 

Record-identifying indicators, II 2-56 
conditioning input data, II 2-56 
example, I 4-1,4-3 
function, I 4-1 
identifying record types, I 4-1 

Record-limits files 
example, I 5-8 
function, I 5-8 
rules for specifying, I 5-8 
specifying 

Key length, II 2-27 
Records 

adding, I 5-22, II 2-95 
array inpu1/; I 8-4 
changing processing order, II 3-19 
deleting, I 5-28, II 2-95 

example, I 5-28 
general processing cycle, 11-2 
identifying types, II 2-56 
processing totals, I 1-4 



Records (Cont.) 
record-identifying indicators, 1 4-1 
selecting 

SETLL operation code, II 3-19 
specifying 

detail, II 2-93 
exception, II 2-93 
format, II 2-21 
heading, II 2-93 
length 

fixed, II 2-21 
variable, II 2-21 

record identification codes, II 2-58 
total, II 2-93 

types, II 2-93 
defining the ordering sequence, II 2-55 

updating, 1 5-26 
example, 1 5-27 

using record-identifying indicators, 1 4-1 
writing during calculations, II 3-17 

RECOVER qualifier, 1 3-4 
REFRESH_SCREEN, 1 3-29 
Related arrays, 1 8-5 

alternate format, 1 8-8 
creating, 1 8-5,8-8 

Related tables 
alternate format 

example, 1 7-11 
creating, 1 7-5 

example, 1 7-6 
input records, 1 7-3 

entries 
example, 1 7-4 

LOKUP operation code 
rules, II 3-23 

updating,! 7-11 
RESET function, 1 3-27 
Result field, II 2-86 

rounding data, II 2-88 
rules for specifying, II 2-86 

Resulting indicators, 1 4-6, II 2-88 
arrays, 1 8-16 
example, 1 4-7 
function, 1 4-6 
rules for specifying, II 2-89 
specifying 

result of search, II 3-23 
type of search, II 3-22 

testing calculation results, 1 4-6 
types of tests, 1 4-6 
using Half adjust, II 3-26 

RETURN key 
example, 1 3-55 

REVIEW J;RROR function, 1 3-19 
RIGHT function, 1 3-28 

example, 1 3-54 

RPGcommand 
defining as a symbol, 1 2-2 
format, 1 2-1 
qualifiers, 1 2-3 

CHECK,12-4 
CROSS..REFERENCE, 1 2-5 
DEBUG,12-6 
example, 1 2-3 to 2-4 
format, 1 2-3 
LIST,I2-6 
MACHINE_CODE, 1 2-7 
negating, 1 2-3 
OBJECT, 1 2-7 
SEQUENCE_CHECK, 1 2-8 
table, 1 2·-4 
WARNINGS, 1 2-8 

RPG II editor, 1 3-1 
auto right justification of numeric fields, 

13-44 
blinking the current column, 1 3-26 
buffers, 1 3-9 

current, 1 3-9 
deleted-field, 1 3-9 
deleted-line, 1 3-9 
paste, 1 3-9 

compiling programs, 1 3-30 
creating 

a new program line, 1 3-27 to 3-28 
programs 

example, 1 3-54 
creating files, 1 3-3 
cursor, 1 3-8 
customizing, 1 3-48 

editor commands, 1 3-48 
example, 1 3-48 

startup command file, 1 3-48 
SET COMMAND option, 1 3-48 

deleting 
a character and shifting the program line 

left, 1 3-22 
a character and shifting the program line 

right, 1 3-22 
characters from the cursor to the end of 

the line, 1 3-25 
fields, 1 3-20 

determining where the editor starts, 1 3-4 
displaying 

current column setting, 1 3-46 
current DEFAULT setting, 1 3-46 
current SCROLL setting, 1 3-46 
current SECTION setting, 1 3-46 
current SYNTAXCHECK setting, 1 3-46 
help information, 1 3-35 
program, 1 3-19 
version number and copyright, 1 3-46 

editing an existing program 
example, 1 3-66 

finding the next error, 1 3-19 

Master Index 17 



RPG II editor, (Cont.) 
functions 

displaying help information, I 3-13 
inserting the contents of the 

paste buffer, I 3-21 
invoking, I 3-1 

example, 13-54 
keypad, I 3-9 

displaying 
keypad diagram, I 3-13 

example, 13-9 
naming conventions, I 3-10 

leaving the editor, I 3-34, 3-38 
moving 

current line, I 3-27 
current line to the ruler, I 3-20 
sections of the editing buffer, I 3-19 

moving cursor 
backward, I 3-21 
down, 13-28 
left, 13-28 
right,I 3-28 
to end of a program line, I 3-24 
to first line, I 3-21 
to last line, I 3-21 
to next character, I 3-26 
to next field, I 3-23 
to next tab stop, I 3-29 
to preceding tab stop, I 3-28 
up, 13-27 

naming the output file, I 3-3 to 3-4 
numbering program lines, I 3-39 
overstriking, I 3-1 
placing selected text into the paste buffer, 

13-21 
recovering edits, I 3-4 
renumbering existing program lines, 

13-39 
replacing 

the preceding character with a space, 
13-28 

the program line with spaces, I 3-29 
resetting the select range, I 3-27 
rewriting the screen display, I 3-29 
saving edits, I 3-3 
screen, I 3-5 
selecting a range oflines for the paste 

buffer, I 3-27 
setting 

terminal characters, I 3-9 
the current direction forward, I 3-20 
the location of the ruler, I 3-41 
the number of display lines, 13-44 
the scroll region, I 3-43 

single line syntax check, I 3-44 
specifying the current column, I 3-44 
startup command, I 3-2 

18 Master Index 

RPG II editor, (Cont.) 
terminating RPG II editor command 

entries, I 3-26 
undeleting fields, I 3-20 
viewing programs, I 3-3 
VKI00 (GIGI) terminal, I 3-5 
writing the editing buffer to an output file, 

13-29 
RPG II editor commands 

COMPILE, I 3-30 
DEFINE KEY, I 3-31 
EXIT, 13-34 

example, I 3-34 
SAVE qualifier, I 3-35 

HELP, 13-35 
example, I 3-35, 3-37 

INCLUDE, I 3-37 
QUIT, 13-38 

example, I 3-38 
SAVE qualifier, I 3-39 

RESEQUENCE, I 3-39 
options, I 3-39 

REMOVE, I 3-39 
SEQUENCE 

example, I 3-39 
SET,I3-40 

format, I 3-40 
options 

COMMAND, I 3-40 
HELP KEYPAD, I 3-41 
HELP NONE, I 3-41 
HELP SPECIFICATIONS, I 3-41 
RULER, 13-41 
SCROLL, I 3-43 
SECTION, I 3-44 
STARTCOLUMN, I 3-44 
SYNTAXCHECK, I 3-44 

SHOW,13-45 
options 

DEFAULT, I 3-46 
SCROLL, I 3-46 
SECTION, I 3-46 
STARTCOLUMN,I3-46 
SYNTAXCHECK, I 3-46 
VERSION, I 3-46 

SUBSTITUTE, I 3-46 
RPG II editor EXIT command 

example, I 3-76 
RPG II editor RESEQUENCE command 

example, 13-71, 3-75 
RPG II editor screen 

80-column ruler, I 3-5 
definition, I 3-7 
example, I 3-6 to 3-7 

displaying help information, I 3-6 
editing window, I 3-5 

example, I 3-7 
EOB mark, I 3-7 

/ 
\ 

'-

/' 

\,,-



RPG II editor screen (Cont.) 
help window, I 3-5 

displaying help information, I 3-6 
example, I 3-6 

message line, I 3-5 
definition, I 3-7 
example, I 3-6 to 3-8 

prompt line, I 3-5 
definition, I 3-7 
example, I 3-6, 3--8 

source window 
example, I 3-6 

specification format 
example, I 3--8 

tab stops, I 3-5 
definition, I 3-7 
example, I 3--6 to 3-7 

RPG II editor SECTION function 
example, I 3-72 

RPG II editor SHOW command, I 3--45 
RPG II editor SHOW STARTCOLUMN 

command 
example, I 3-55 

RPG II programs 
arrays, I 8-1 
call interface, I9-1 
calling 

subprograms, I 9-32 
system services, I 9-28 

compiling, I2-l 
creating, I3-1 
debugging,! 10-1 
developing, I2-l 
documenting, II 2-5 
editing, I3-1 
linking, I 2-8 
logic cycle, I 1-1 
optimizing, I 12-1 
running, I 2-9 
viewing, I 3-1 

RPG II specifications, II 2-1 
RPG/DEBUG, I 10-1 
RPG/EDIT command, I3-1 

qualifiers 
COMMAND,I3-2 
CREATE,I3-3 
JOURNAL, I 3-3 
OUTPUT, I 3-3 
READ_ONLY, I 3-3 
RECOVER, I 3--4 
STARLPOSITION, I 3--4 
table, I 3-2 

RTL parameter access types 
modify, I 9-12 
read only, I 9-12 
write only, I 9-12 

example, I 9-12 

RTL parameter data types 
double precision floating point, I 9-12 
longword integer,l9-12 
numeric string, I 9-12 

example, I 9-13 
packed decimal string, I 9-12 
quad word integer, I 9-12 
single precision floating point, I 9-12 
text string, I 9-12 
word integer, I 9-12 

RTL parameter passing mechanisms 
by descriptor 

example,! 9-11 
by reference 

example,! 9-6, 9-11 
by value, I 9-10,9-16 

example, I 9-10,9-16 
RTL procedures 

assigning names, II 3-26 
calling, II 3-25 

example, I 9-14,9-16 to 9-18, 9-24 to 
9-27 

GIVNG operation code, II 3-26 
parameter characteristics 

access types, I9-12 
data types,! 9-12 
passing mechanisms, I 9-10, 9-18 

parameter passing mechanisms 
by descriptor, I 9-10 

PARMD operation code, I 9-10 
by reference, I 9-10 

PARM operation code, I9-10 
by value, I 9-10 

example,l9-10,9-16 
PARMV operation code, I 9-10 

passing parameters, II 3-27 to 3-28 
RTL routines 

Arguments 
optional, I 9-5 
required, I 9-5 

Ruler, I 3-5 
RUN command, I 2-9 

example, I 2-9 
format, I 2-9 

Run-Time Library routines, T 9-2 
example of calling, I 9-24 
facilities, I 9-2 
how to call, I 9-3 

Running programs, I 2-9 

s 
Screen handling, I 9-33 

FMS, I 9-33 to 9-34 
example, I 9-34 

SMG, I 9-33,9-35 
example, I 9-35 

Master Index 19 



Screen handling, (Cont.) 
TDMS, I 9-33 

example, 19-33 to 9-34 
Secondary files 

selecting Mode of processing, II 2-24 
SECTION function, I 3-19 
SELECT function, I 3-27 

example, I 3-74 
Sequence codes, II 2-20, 2-45, 2-55 

assigning a numeric code, II 2-56 
Number, II 2-56 
rules for specifying, II 2-20, 2-45 
specifying 

alphabetic, II 2-55 
continued processing, II 2-56 
numeric, II 2-55 to 2-56 

SEQUENCE_CHECK qualifier, I 2-8 
checking line number sequence, I 2-8 
format, I 2-8 

Sequential by key file access 
example, I 5-7 
rules for specifying, I 5-7 

Sequential file access, I 5-6 
example, I 5-S 
rules for specifying, I 5-S 

Sequential file organization, I 5-2 
example, I 5-3 

Sequential files 
adding records, I 5-23 

example, 15-23 
rules for specifying, I 5--23 

creating, I 5-20 
example, 15--20 
rules for specifying, I 5--20 

Sequential within limits file access 
example, I 5-10 
record-limits file, I 5-8 

SET COMMAND option, I 3-48 
Set operation codes, II 3-9 

example, II 3-9 
SETON, II 3-9 

SETLL operation code, II 3-19 
example, II 3-20 
rules, II 3-19 
selecting the next record, II 3-19 

SETOF operation code, II 3-9 
example, II 3-9 
rules, II 3-9 

SETON operation code, II 3-9 
example, II 3-9 
rules, II 3-9 

SHIFT -LEFT function, I 3-22 
example, I 3-22 

SHIFT ~IGHT function, I 3-22 
example, I 3-23 

Skip after, II 2-98 
example, II 2-99 
rules for specifying, II 2-99 

20 Master Index 

Skip before, II 2-98 
example, II 2-99 
rules for specifying, II 2-99 

SMG,I9-33,9-35 
Space after, II 2-97 

rules for specifying, II 2-97 
Space before, II 2-97 

rules for specifying, II 2-97 
Special words, I 6-3 

PAGE, I 6-4 
PAGEl, 16-4 
PAGE2,I6-4 
PAGE3,I6-4 
PAGE4,I6-4 
PAGE5, I 6-4 
PAGE6, I 6-4 
PAGE7,I6-4 
paging, I 6-4 
*PLACE, I 6-7 
rules for specifying, I 6-4 
UDATE,I6-3 
UDAY 

example, I 6-4 
UMONTH 

example, I 6-4 
UYEAR 

example, I 6-4 
Specification format 

asterisks, II 2-3 
column numbers, II 2-2 
comments, II 2-5 
dashes, II 2-3 
dots, II 2-3 
line number, II 2-4 
notational conventions, II 2-2 

Specifications 
Calculation, II 2-79 
Control, II 2-11 
Extension, II 2-38 
File Description, II 2-16 
format, II 2-2 
Input, II 2-50 
Line Counter, II 2-47 
Output, II 2-90 
RPG II, II 2-1 
types, II 2-5 

Split-control fields 
example, 14-11 

SQRT operation code, II 3-4 
example, II 3-4 

Square root operation, II 3-4 
STARTJ>OSITION qualifier, I 3-4 
Startup command file, I 3-48 
SUB operation code, II 3-3 

example, II 3-4 
Subprogram operation codes, II 3-25 

CALL, II 3-25 
EXTRN, II 3-26 

/ 
i 
\. 



Subprogram operation codes, (Cont.) 
GIVNG, II 3-26 
PARM, II 3-27 
PARMD, II 3-28 
PARMV, II 3-28 
PLIST, II 3-29 

Subprograms, I 9-32 
calling, II 3-25 

example, I 9-32 
parameter list, II 3-29 
passing parameters, II 3-27 to 3-28 
PLIST, II 3-29 

Subroutines 
executing, II 3-10 
marking the beginning, II 3-10 
marking the ending, II 3-10 
names, II 1-7 
operation codes, II 3-10 

BEGSR, II 3-10 
ENDSR, II 3-10 
example, II 3-10 
EXSR,lI3-10 

Subtraction operation, Il3-3 
Symbolic device, II 2-31 
System routines, I 9-1 

determining the type of call 
function, I 9-4 
procedure, I 9-4 

examples of calling, I 9-24 
function calls, I 9-15 
function results, I 9-23 
how to call, I 9-3 
passing mechanisms, I 9-18 
procedure calls, I 9-19 
procedure results, I 9-23 

System services, I 9-28 
calling, II 3-25 

T 

example, I 9-29 to 9-31 
determining the type of call 

function, I 9-4 
procedure, I 9-4 

groups, I 9-3 
how to call, I 9-3 
passing parameters, II 3-27 to 3-28 
routines, I 9-2 
symbolic constants 

example, I 9-22 

TAB function 
example, I 3-54 

Tab stops, I 3-5 
definition, I 3-7 

Table or array name, II 2-41 
rules for specifying, II 2-41 

Tables,l7-1 
alternate format, II 2-45 
compile-time, I 7-2 

rules for defining, I 7-6 
creating 

input records, I 7-3 
definition, I 7-1 
entries, I 7-3 
input records, I 7-3 

creating, I 7-3 
example, I 7-3 
rules for specifying, I 7-3 

loading time 
selecting, I 7-1 

LOKUP operation code, I 7-7, II 3-23 
names, II 1-7 
outputting 

example, I 7-12 
rules for specifying, I 7-12 

pre-execution-time, I 7-2 
rules for defining, I 7-7 

referencing entries, I 7-10 
example,l7-10 

related,l7-1,7-3 
creating, I 7-5 

example, I 7-6 
example, I 7-11 
updating, I 7-11 

searching, I 7-7, II 3-23 
example, II 3-24 
rules for specifying, I 7-8 

single, I 7-1 
creating, I 7-4 

example, I 7-5 
specifying, II 2-18 

alternate format, II 2-45 
current entry, I 7-10 

example, I 7-11 
Data format, II 2-44 
Decimal positions, II 2-44 
From file name, II 2-40 
Length of entry, II 2-43 
names, II 2-41 
Number of entries per record, II 2-42 
Number of entries per table or array, 

II 2-42 
sequence, I 7-9, II 2-45 

ascending, I 7-9 
descending, I 7-9 
example, I 7-9 

To file name, II 2-40 
updating, I 7-11 
writing,l7-12 

TAG operation code, II 3-21 
example, II 3-22 
rules, II 3-21 

Tapes 
rewinding, II 2-37 

Master Index 21 



Tapes (Cont.) 
specifying 

labels, II 2-31 
ANSI, II 2-31 

TDMS,I9-33 
Terminal device 

specifying, II 2-30 
TESTB operation code, II 3-12 

example, II 3-12 
rules, II 3-12 

To file name 
outputting 

arrays, II 2-40 
tables, II 2-40 

record-address files, II 2-40 
rules for specifying, II 2-41 
writing 

arrays, II 2-40 
tables, II 2-40 

TOP function, I 3-21 
Total time,! 1-2,1-4 
Type, II 2-90 

u 

UDATE special word, I 6-3 
defining, I 6-3 
editing, I 6-3 
specifying notation, II 2-12 

UNDELETE_FIELD function, I 3-20 
UNDELETE_LINE function, I 3-17 
Unordered output, II 2-32 

rules for specifying, II 2-33 
UP function, I 3-27 

example, I 3-73 
Update files 

selecting Mode of processing, II 2-24 
specifying 

File addition, II 2-33 
Unordered output, II 2-33 

Updating 
files, I 5-26 

randomly by key, I 5-28 
sequentially, I 5-28 

records, I 5-26 
example, I 5-27 

User-defined names, II 1-6 
rules, IIl-7 

22 Master Index 

v 
VAX Procedure Calling and 

Condition Handling Standard, I 9-32 
VAX RPG II 

differences between PDP-11 RPG II, II B-1 
different support, II B-2 
editor 

nonsupported functionality, II B-7 
new functionality, II B-5 
nonsupported functionality, II B-1 

new functionality, II B-5 
VAXNMS Modluar Programming Standard, 

19-32 
VMS Usages, I 9-7 

VAX RPG II equivalents, I 9-7 

w 
WARNINGS qualifier, I 2-8 

displaying 
error messages, I 2-8 
information messages, I 2-8 

format, I 2-8 
options, I 2-8 

INFORMATION, I 2-8 
OTHER, I 2-8 

Word binary data type 
example, II 1-3 

x 
XFOOT operation code, II 3-4 

arrays, I 8-14 
example,! 8-15 
referencing array elements, I 8-15 

z 
Z-ADD operation code, II 3-2 

example, II 3-4 
Z-SUB operation code, II 3-3 

example, II 3-4 
Zero suppression, II 2-113 



Programming in 
VAX RPG II 

AA-R431B-TE 

READER'S 
COMMENTS 

Note: This form is for document comments only. 
DIGIT AL will use comments submitted on this form at the 
company's discretion. If you require a written reply and are 
eligible to receive one under Software Performance Report 
(SPR) service, submit your comments on an SPR form. 

Did you find this manual understandable, usable, and well organized? Please make 
suggestions for improvement. 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of user/reader that you most nearly represent: 

o Assembly language programmer 
o Higher-level language programmer 
o Occasional programmer (experienced) 
o User with little programming experience 
o Student programmer 
o Other (please specify) 

Name __________________ Date __________ _ 

Organization __________________________ _ 

Street _____________________________ _ 

City _______________ State _____ Zip Code --
or Country 



- - Do Not Tear - Fold Here and Tape - - - - - - - - - -

~DmDDmD IIIIII 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SSG PUBLICATIONS ZKl-3/J35 
DIGITAL EQUIPMENT CORPORATION 
110 SPIT BROOK ROAD 
NASHUA. NEW HAMPSHIRE 03062-2698 

I 
- - --I 

No Postage 
Necessary 

if Mailed in the 

United States 

1 

1 

1 

1 

1 

1 

1 

I 
- - - - DoNotTear-FoldHere - - - - - - - - - - - - - - - - - - - - - -I 

1 

1 

1 

1 

I~ 
I~ 

o 

I':, 
" o 

I~ 
1
8 


