
•
ULTRIX-32 ™

Supplementary Documents
Volume 1 General User

Order Number: AA- MF06A- TE

UL TRIX-32 Supplementary Documents
General User

Order No. AA-MF06A-TE

UL TRIX-32 Operating System, Version 3.0

Digital Equipment Corporation

Copyright © 1984, 1988 by Digital Equipment Corporation.

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip
ment that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC US
MASSBUS
PDP
ULTRIX
ULTRIX-11

ULTRIX-32
UNIBUS
VAX
VMS
VT

~D~DDmD™

UNIX is a trademark of AT&T Bell Laboratories.

Information herein is derived from copyrighted material as permitted under a
license agreement with AT&T Bell Laboratories.

This software and documentation is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California. We acknowledge the Electrical Engineering and Computer Science
Departments at the Berkeley Campus of the University of California for their
role in its development.

iii

This software and documentation is based in part on the Fourth Berkeley Software Distribution under
license from The Regents of the University of California. Digital Equipment Corporation acknowledges
the following individuals and institutions for their role in its development:

"The UNIX Time-Sharing System": Copyright ® 197 4, Association for Computing Machinery, Inc.
reprinted by permission. This is a revised version of an article that appeared in Communications of the
ACM, 17, No. 7 (July 1974), pp. 365-375. That article was a revised version of a paper presnted at the
Fourth ACM Symposium on Operating Systems Principles, IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, October 15-17, 1973. Acknowledgements: for their help and support,
R.H. Canaday, R. Morris, M.D. Mcilroy, and J.F. Ossanna.

"Advanced Editing on UNIX" acknowledgement: Ted Dolotta for his ideas and assistance.

"An Introduction to the UNIX Shell" acknowledgements: Dennis Ritchie, John Mashey and Joe Maran
zano for their help and support.

"LEARN - Computer-Aided Instruction on UNIX" acknowledgements: for their help and support, M.E.
Bittrich, J.L. Blue, S.I. Feldman, P.A. Fox, M.J. McAlpin, E.Z. Rothkopf, Don Jackowski, and Tom
Plum.

"A System for Typesetting Mathematics" acknowledgements: J.F. Ossanna, A.V. Aho, and S.C. Johnson,
for their ideas and assistance.

"A TROFF Tutorial" acknowledgements: J. F. Ossanna, Jim Blinn, Ted Dolotta, Doug Mcilroy, Mike
Lesk and Joel Sturman, for their help and support.

The document "The C Programming Language - Reference Manual" is reprinted, with minor changes,
from "The C Programming Language, by Brian W. Kernighan and Dennis M. Ritchie, Prentice-Hall,
Inc., 1978.

"Make - A Program for Maintaining Computer Programs" ackowledgements: S.C. Johnson, and H.
Gajewska, for their ideas and assistance.

"YACC: Yet Another Compiler-Compiler" acknowledgements: B.W. Kernighan, P.J. Plauger, SJ. Feld
man, C. lmagna, M.E. Lesk, A. Snyder, C.B. Haley, D.M. Ritchie, M.O. Harris and Al Aho, for their
ideas and assistance.

"Lex - A Lexical Analyzer Generator" acknowledgements: S.C. Johnson, A.V. Aho, and Eric Schmidt, for
their help as originators of much of Lex, as well as debuggers of it.

The document "RATFOR - A Preprocessor for a Rational Fortran" is a revised and expanded version of
the one published in Software - Practice and Experience, October 1975. The Ratfor described here is
the one in use on UNIX and GCOS at A T & T Bell Laboratories. Acknowledgements: Dennis Ritchie,
and Stuart Feldman, for their ideas and assistance.

"The M4 Macro Processor" acknowledgements: Rick Becker, John Chambers, Doug Mcllroy, and Jim
Weythman, for the help and support.

"BC - An Arbitrary Precision Desk-Calculator Language" acknowledgement: The compiler is written in
YACC; its original version was written by S.C. Johnson.

"A Dial-Up Network of UNIX TM Systems" acknowledgements: G.L. Chesson, A.S. Cohen, J. Lions,
and P .F. Long, for their suggestions and assistance.

Copyright ® 1979, 1980 Regents of the University of California. Permission to copy these documents or
any portion thereof as necessary for licensed use of the software is granted to licensees of this software,
provided this copyright notice and statement of permission are included.

The document "Writing Tools - The STYLE and DICTION Programs" is copyrighted® 1979 by AT &
T Bell Laboratories. Holders of a UNIX TM/32V software license are permitted to copy this document,
or any portion of it, as necessary for licensed use of the software, provided this copyright notice and
statement of permission are included.

iv

The document "The Programming Language EFL" is copyrighted© 1979 by AT & T Bell Laboratories.
EFL has been approved for general release, so that one may copy it subject only to the restriction of giv
ing proper acknowledgement to A T & T Bell Laboratories.

The documents "A Portable Fortran 77 Compiler" and "Fsck - The UNIX File System Check Program"
are modifications of earlier documents which are copyrighted © 1979 by A T & T Bell Laboratories.
Holders of a UNIX TM/32V software license are permitted to copy these documents, or any portion of
them, as necessary for licensed use of the software, provided this copyright notice and statement of per
mission are included. This manual reflects system enhancements made at Berkeley and sponsored in
part by NSF Grants MCS-7807291, MCS-8005144, and MCS-74-07644-A04; DOE Contract DE-AT03-
76SF00034 and Project Agreement DE-AS03-79ER10358; and by Defense Advanced Research Projects
Agency (DoD) ARPA Order No. 4031, monitored by Naval Electronics Systems Command under Con
tract No. N00039-80-K-0649.

"Ex Reference Manual" acknowledgements: Chuck Haley contributed greatly to the early development
of ex. Bruce Englar encouraged the redesign which led to ex version 1. Bill Joy wrote versions 1 and 2.0
through 2.7, and created the framework that users see in the present editor. Mark Horton added macros
and other features and made the editor work on a large number of terminals and UNIX systems.

"A Guide to the Dungeons of Doom" acknowledgements: Rogue was originally conceived by Glenn Wich
man and Michael Toy. Ken Arnold and Michael Toy then smoothed out the user interface, and added
many new features. We would like to thank Bob Arnold, Michelle Busch, Andy Hatcher, Kipp Hickman,
Mark Horton, Daniel Jensen, Bill Joy, Joe Kalash, Steve Maurer, Marty McNary, Jan Miller, and Scott
Nelson for their ideas and assistance.

The document "The FRANZ LISP Manual" is copyrighted © 1980, 1981, 1983 by the Regents of the
University of California. (exceptions: Chapters 13, 14 (first half), 15 and 16 have separate copyrights, as
indicated. These are reproduced by permission of the copyright holders.) Permission to copy without
fee all or part of this material is granted provided that the copies are not made or ,distributed for direct
commercial advantage, and the copyright notice of the Regents, University of California, is given. All
rights reserved. Work reported herein was supported in part by the U.S. Department of Energy, Con
tract DE-AT03-76SF00034, Project Agreement DE-AS03-79ER10358, and the National Science Founda
tion under Grant No. MCS 7807291. MC68000 is a trademark of Motorola Semiconductor Products, Inc.

"The FRANZ LISP Manual" acknowledgements: Richard Fateman, Mike Curry, John Breedlove, Jeff
Levinsky, Bill Rowan, Tom London, Keith Sklower, Kipp Hickman, Charles Koester, Mitch Marcus,
Don Cohen, John Foderaro, and Kevin Layer.

The document "Berkeley Pascal User's Manual" is copyrighted© 1977, 1979, 1980, 1983 by W.N. Joy,
S.L. Graham, C.B. Haley, M.K. McKusick, P.B. Kessler. The financial support of the first and second
authors' work by the National Science Foundation under grants MCS74-07644-A04, MCS78-07291, and
MCS80-05144, and the first author's work by an IBM Graduate Fellowship are gratefully acknowledged.

"Introduction to the f77 1/0 Library" acknowledgement: Peter J. Weinberger originally wrote the 1/0/
Library at A T & T Bell Laboratories.

"Writing Papers with NROFF Using -ME", and "-ME Reference Manual" acknowledgements: Bob
Epstein, Bill Joy, Larry Rowe, Ricki Blau, Pamela Humphrey, and Jim Joyce, for their ideas and assis
tance. UNIX, NROFF, and TROFF are trademarks of AT & T Bell Laboratories.

"Refer - A Bibliography System" acknowledgements: Mike Lesk of A T & T Bell Laboratories wrote the
original refer software, including the indexing programs. Al Stanberger of the Forestry Department
wrote the first version of addbib, then called bibin. Greg Shenaut of the Linguistics Department wrote
the original versions of sortbib and roffbib.

"Screen Updating and Cursor Movement Optimization: A Library Package" acknowledgements: For
their help and support, Bill Joy, Doug Merritt, Kurt Shoens, Ken Abrams, Alan Char, Mark Horton, and
Joe Kalash.

"Disc Quotas in a UNIX Environment" acknowledgements: Sam LefHer and Kirk McKusick, for their

v

work on the quota code. The current disc quota system is loosely based on a very early scheme imple
mented at the University of New South Wales and Syndey University.

The document, "Fsck - The UNIX File System Check Program", is a rev1s1on by Marshall Kirk
McKusick; T.J. Kowalski wrote the original paper. For their help and support, we thank Bill Joy, Sam
Leffler, Robert Elz, Dennis Ritchie, Robert Henry, Larry A. Wehr, and Rick B. Brandt. Our sponsors
were the National Science Foundation under grant MCSS0-05144, and the Defense Advance Research
Projects Agency (DoD) under Arpa Order No. 4031 monitored by Naval Electronic System Command
under Contract No. N00039-82-C-0235.

"A Fast File System for UNIX" acknowledgements: William N. Joy, Samuel J. Leffler, Robert S. Fabry,
Marshall Kirk McKusick, Robert Elz, Michael Powell, Peter Kessler, Rober Henry, and Dennis Ritchie.
This work was done under grants from the National Science Foundation under grant MCSS0-05144, and
the Defense Advance Research Projects Agency (DoD) under ARPA No. 4031 monitored by Naval Elec
tronic System Command under Contract No. N00039-82-C-0235.

"4.2BSD Networking Implementation Notes" acknowledgements: The internal structure of the system is
patterned after the Xerox PUP architecture [Boggs79]. The use of software interrupts for process invo
cation is based on similar facilities found in the VMS operating system. Many of the ideas are based on
Rob Gurwitz's TCP/IP implementation for the 4.lBSD version of UNIX on the VAX [Gurwitz81]. Greg
Chesson explained his use of trailer encapsulations in Datakit, instigating their use in our system.

"SENDMAIL - An Internetwork Mail Router" acknowledgements: For their ideas and assistance, Kurt
Shoens, Bill Joy, Mark Horton, Erick Schmidt, Kirk McKusick, Marvin Solomon, Mike Stonebraker, and
Bob Epstein. A considerable part of this work was done while under the employ of the INGRES Project
at the University of California at Berkeley.

vii

BEFORE YOU START

This is the first volume of ULTRIX-32 Supplementary Documents, a three volume set that
contains articles describing the ULTRIX-32 system. The authors ~re computer scientiJts and
program developers at Bell Laboratories and the University of California at Berkeley. The
articles explain the software tools and utilities available on your ULTRIX-32 system. They
constitute most of the lore that enriches this operating system; topics range from getting
started procedures to the details of screen updating and cursor movement facilities.

Each volume in this set contains several parts, and each part begins with an introduction.
Each introduction serves as a map that will help you find your way around in the documenta
tion, allowing you to select articles that relate to your interest. Each introduction gives an
overview of the material covered in the part and a description of the articles included. Most
readers will not need to read all articles in any part, since many articles cover parallel topics.
For example, Part 3 in this first volume contains articles describing several text editors. You
should be able to choose one editor after reading the introduction; then you can proceed to
the relevant article.

These articles provide authoritative and accurate information that is unavailable elsewhere.
However, you should be aware that some of the information in some articles is dated. We
include those articles because many of the concepts they develop are still current and impor
tant.

At the end of each volume in this set, you will find a master index identifying topics for all
three volumes.

Topics in Volume I

This first volume contains articles written for general use. You should find many of the arti
cles helpful no matter how you plan to use your UL TRIX-32 system. The two articles in Part
1 introduce the entire three-volume set; however, readers who are unfamiliar with operating
systems and programming and readers new to the UL TRIX-32 and UNIX systems should
begin with Part 2, Getting Started. The articles introduce basic concepts and demonstrate
simple procedures.

You will need to use a text ec,litor if you plan to write (create or modify) files. Part 3, Text
Editors, gives comprehensive information on five editors: ed, edit, vi, ex, and sed.

Articles in Part 4, Command Interpreters, introduce the two shells provided with the
ULTRIX-32 system: the Bourne Shell and the C Shell. Each shell serves as a set of handles
that gives the user access to the ULTRIX-32 utilities.

If you intend to use your ULTRIX-32 system to write and format any kind of document, you
will find the articles on Document Preparation in Part 5 essential. Nroff and troff are text
formatting utilities. In addition, the ULTRIX-32 software includes separate utilities that
cooperate with the formatters to help you typeset mathematical expressions, set up tables, and
create bibliographical references in your text.

Part 6 includes articles that tell about a variety of unsupported software.

BEFORE YOU START

PART 1: OVERVIEW

UNIX/32V - SUMMARY

WHAT'S NEW: HIGHLIGHTS OF THE UNIX/32V SYSTEM
HARDWARE
SOFTWARE

Basic Software .

Operating System .
User Access Control
Terminal Handling
File Manipulation .
Manipulation of Directories and File Nam es
Running of Programs . .
Status Inquiries
Backup and Maintenance
Accounting
Communication
Basic Program Development Tools
UNIX/32V Programmer's Manual.
Computer-Aided Instruction

Languages

The C Language .
Fortran ..•...
Other Algorithmic Languages.
Macroprocessing . .
Compiler-Compilers ..

Text Processing.

Document Preparation .
Document Formatting .

Information Handling
Graphics
Novelties, Games, and Things That Didn't Fit Anywhere Else

THE UNIX TIME-SHARING SYSTEM

INTRODUCTION
HARDWARE AND SOFTWARE ENVIRONMENT .
THE FILE SYSTEM

Ordinary Files
Directories . . .
Special Files . .
Removable File Systems
Protection
I/0 Calls

Table of Contents ix

. 1-3

. 1-4

. 1-4

. 1-4

. 1-4

. 1-5

. 1-5

. 1-5

. 1-6

. 1-6

. 1-7

. 1-8

. 1-9

. 1-9

. 1-9
1-11
1-11

1-11

1-11
1-12
1-12
1-13
1-13

1-13

1-13
1-13

1-15
1-16
1-16

1-19
1-20
1-20

1-20
1-21
1-21
1-22
1-22
1-23

x Table of Contents

THE UNIX TIME-SHARING SYSTEM (continued)

IMPLEMENTATION OF THE FILE SYSTEM.
PROCESSES AND IMAGES

Processes
Pipes
Execution of Programs .
Process Synchronization.
Termination .

THE SHELL ...

Standard I/O .
Filters
Command Separators: Multitasking .
The Shell as a Command: Command Files.
Implementation of the Shell.
Initialization
Other Programs as Shell

TRAPS
PERSPECTIVE .

Influences .

STATISTICS ..
ACKNOWLEDGMENTS

PART 2: GETTING STARTED

UNIX FOR BEGINNERS - SECOND EDITION

GETTING STARTED . .

Logging In
Typing Commands .
Strange Terminal Behavior
Mistakes in Typing .
Read-Ahead
Stopping a Program
Logging Out
Mail
Writing To Other Users.
On-Line Manual
Computer-Aided Instruction.

DAY-TO-DAY USE

Creating Files - The Editor .
What Files Are Out There? .
Printing Files.
Shuffling Files About
What's in a Filename
Using Files Instead of the Terminal
Pipes ..
The Shell

1-24
1-26

1-26
1-26
1-26
1-27
1-27

1-27

1-27
1-28
1-29
1-29
1-29
1-30
1-31

1-31
1-31

1-32

1-32
1-32

. 2-3

. 2-3

. 2-4

. 2-4

. 2-4

. 2-4

. 2-4

. 2-5

. 2-5

. 2-5

. 2-5

. 2-6

. 2-6

. 2-6

. 2-6

. 2-7

. 2-7

. 2-7
2-10
2-11
2-11

DOCUMENT PREPARATION.

Formatting Packages . . .
Supporting Tools
Hints for Preparing Documents

PROGRAMMING

The Shell
Programming the Shell .
Programming in C
Other Languages .

UNIX READING LIST

General
Document Preparation
Programming

MAIL REFERENCE MANUAL

INTRODUCTION
COMMON USAGE
MAINTAINING FOLDERS
MORE ABOUT SENDING MAIL

Tilde Escapes . .
Network Access
Special Recipients . .

ADDITIONAL FEATURES

Message Lists . .
List of Commands ..
Custom Options . . .

COMMAND LINE OPTIONS
FORMAT OF MESSAGES .
GLOSSARY
SUMMARY OF COMMANDS, OPTIONS, AND ESCAPES.
CONCLUSION .

Table of Contents xi

2-12

2-12
2-13
2-13

2-14

2-14
2-14
2-14
2-15

2-15

2-15
2-16
2-16

2-17
2-18
2-23
2-24

2-24
2-26
2-27

2-28

2-28
2-28
2-33

2-36
2-37
2-38
2-39
2-41

BC - AN ARBITRARY PRECISION DESK-CALCULATOR LANGUAGE

INTRODUCTION
SIMPLE COMPUTATIONS WITH INTEGERS
BASES
SCALING
FUNCTIONS
SUBSCRIPTED VARIABLES
CONTROL STATEMENTS.
SOME DETAILS
THREE IMPORTANT THINGS.

2-43
2-43
2-44
2-45
2-45
2-46
2-47
2-48
2-49

xii Table of Contents

BC - AN ARBITRARY PRECISION DESK-CALCULATOR LANGUAGE (continuec

APPENDIX ..

Notation.
Tokens ..

Comments
Identifiers .
Keywords .
Constants.

Expressions . .

Primitive Expressions

Named Expressions .

Identifiers . . .
Array-Name . .
Scale, Ibase and Obase.

Function Calls . . .

Function-Name
Sqrt ..
Length
Scale .

Constants .
Parentheses

Unary Operators.
Exponentiation Operator.
Multiplicative Operators .
Additive Operators. .
Assignment Operators

Relations
Storage Classes
Statements

Expression Statements .
Compound Statements.
Quoted String Statements
If Statements . . .
While Statements .
For Statements .
Break Statements .
Auto Statements. .
Define Statements .
Return Statements.
Quit Statements. .

2-50

2-50
2-50

2-50
2-50
2-50
2-50

2-50

2-51

2-51

2-51
2-51
2-51

2-51

2-51
2-51
2-51
2-51

2-51
2-51

2-52
2-52
2-52
2-53
2-53

2-53
2-53
2-54

2-54
2-54
2-54
2-54
2-54
2-54
2-54
2-55
2-55
2-55
2-55

DC -AN INTERACTIVE DESK CALCULATOR

SYNOPTIC DESCRIPTION
DETAILED DESCRIPTION

Internal Representation of Numbers .
The Allocator.
Internal Arithmetic
Addition and Subtraction .
Multiplication
Division ..
Remainder ..
Square Root .
Exponentiation .
Input Conversion and Base
Output Commands . . .
Output Format and Base
Internal Registers. . . .
Stack Commands
Subroutine Definitions and Calls
Internal Registers Programming DC .
Push-Down Registers and Arrays
Miscellaneous Commands .

DESIGN CHOICES

PART 3: TEXT EDITORS

EDIT: A TUTORIAL

INTRODUCTION
SESSION 1

Making Contact with UNIX.

Directly Linked Terminals .
Dial-Up Terminals .
Logging In

Asking for Edit

The "Command not found" Message .
A Summary ..

Entering Text . . .
Messages from Edit.
Text Input Mode . .
Making Corrections .
Writing Text to Disk .
Signing Off.

Table of Contents xiii

2-57
2-59

2-59
2-59
2-60
2-60
2-61
2-61
2-61
2-61
2-61
2-62
2-62
2-62
2-62
2-62
2-62
2-62
2-63
2-63

2-63

. 3-3

. 3-5

. 3-5

. 3-5

. 3-5

. 3-5

. 3-5

. 3-6

. 3-6

. 3-6

. 3-6

. 3-7

. 3-7

. 3-8

. 3-8

xiv Table of Contents

EDIT: A TUTORIAL (continued)

SESSION 2

Adding More Text to the File .
Interrupt
Making Corrections
Listing What's in the Buffer.
Finding Things in the Buff er
The Current Line. . .
Numbering Lines
Substitute Command
Another Way To List What's in the Buffer.
Saving the Modified Text . . .

SESSION 3

Bringing Text into the Buffer .
Moving Text in the Buffer
Copying Lines
Deleting Lines
A Word or Two of Caution
Undo to the Rescue
Moving Around in the Buffer
Changing Lines.

SESSION 4

Making Commands Global .
More about Searching and Substituting
Special Characters
Issuing UNIX Commands from the Editor .
Filenames and File Manipulation

The File Command
Reading Additional Files . .
Writing Parts of the Buffer.
Recovering Files
Other Recovery Techniques

FURTHER READING AND OTHER INFORMATION

Using Ex

A TUTORIAL INTRODUCTION TO THE UNIX TEXT EDITOR

. 3-9

. 3-9

. 3-9

. 3-9
3-10
3-10
3-11
3-11
3-11
3-12
3-13

3-14

3-14
3-14
3-15
3-15
3-16
3-16
3-17
3-18

3-19

3-19
3-20
3-20
3-21
3-21

3-21
3-22
3-22
3-22
3-22

3-23

3-23

INTRODUCTION . . . 3-25
DISCLAIMER. 3-25
GETTING STARTED . 3-25
CREATING TEXT - THE APPEND COMMAND "A" . 3-25
ERROR MESSAGES - "?" 3-26
WRITING TEXT OUT AS A FILE - THE WRITE COMMAND "W" . 3-26
LEAVING ED - THE QUIT COMMAND "Q" 3-26
READING TEXT FROM A FILE - THE EDIT COMMAND "E" . . . 3-27
READING TEXT FROM A FILE - THE READ COMMAND "R". . . 3-27
PRINTING THE CONTENTS OF THE BUFFER - THE PRINT COMMAND "P" 3-27
THE CURRENT LINE - "DOT" OR".". 3-28
DELETING LINES - THE "D" COMMAND. 3-29
MODIFYING TEXT - THE SUBSTITUTE COMMAND "S". 3-29
CONTEXT SEARCHING - "/ .. ./" 3-30

CHANGE AND INSERT - "C" AND "I".
MOVING TEXT AROUND - THE "M" COMMAND.
THE GLOBAL COMMANDS - "G" AND "V"
SPECIAL CHARACTERS
SUMMARY OF COMMANDS AND LINE NUMBERS .

ADVANCED EDITING ON UNIX

INTRODUCTION
SPECIAL CHARACTERS .

The List Command . .
The Substitute Command.
The Undo Command .
The Metacharacter . .

The Backslash. .
The Dollar Sign .
The Circumflex
The Star

The Brackets

The Ampersand .

Substituting Newlines
Joining Lines.
Rearranging a Line with (...) .

LINE ADDRESSING IN THE EDITOR

Address Arithmetic
Repeated Searches
Default Line Numbers and the Value of Dot .
Semicolon
Interrupting the Editor

GLOBAL COMMANDS

Multi-Line Global Commands.

CUT AND PASTE WITH UNIX COMMANDS.

Changing the Name of a File
Making a Copy of a File
Removing a File
Putting Two or More Files Together .
Adding Something to the End of a File

CUT AND PASTE WITH THE EDITOR.

Filenames
Inserting One File into Another
Writing Out Part of a File
Moving Lines Around .
Marks
Copying Lines
The Temporary Escape .

SUPPORTING TOOLS

Grep
Edi ting Seri pts .
Sed

Table of Contents xv

3-31
3-32
3-32
3-33
3-34

3-37
3-37

3-37
3-37
3-38
3-38

3-39
3-39
3-40
3-40

3-41

3-42

3-42
3-42
3-43

3-43

3-43
3-44
3-44
3-45
3-46

3-46

3-47

3-47

3-47
3-47
3-48
3-48
3-48

3-49

3-49
3-49
3-49
3-50
3-50
3-51
3-51

3-51

3-51
3-51
3-52

xvi Table of Contents

AN INTRODUCTION TO DISPLAY EDITING WITH VI

GETTING STARTED

Specifying Terminal Type .
Editing a File
The Editor's Copy: The Buffer
Notational Conventions
Arrow Keys
Special Characters: ESC, CR and DEL
Getting Out of the Editor. . .

MOVING AROUND IN THE FILE

Scrolling and Paging
Searching, Goto, and Previous Context.
Moving Around on the Screen .
Moving within a Line.
Summary
View

MAKING SIMPLE CHANGES

Inserting
Making Small Corrections.
More Corrections: Operators.
Operating on Lines .
Undoing
Summary

MOVING ABOUT; REARRANGING AND DUPLICATING TEXT

Low Level Character Motions ...
Higher Level Text Objects
Rearranging and Duplicating Text .
Summary

HIGH LEVEL COMMANDS

Writing, Quitting, Editing New Files
Escaping to a Shell. . .
Marking and Returning.

ADJUSTING THE SCREEN
SPECIAL TOPICS

Editing on Slow Terminals
Options, Set, and Editor Startup Files.
Recovering Lost Lines.
Recovering Lost Files
Continuous Text Input
Features for Editing Programs.
Filtering Portions of the Buffer
Commands for Editing LISP
Macros.

WORD ABBREVIATIONS.

Abbreviations

3-53

3-53
3-54
3-54
3-55
3-55
3-55
3-55

3-56

3-56
3-56
3-57
3-57
3-58
3-58

3-58

3-58
3-59
3-59
3-60
3-60
3-60

3-61

3-61
3-61
3-62
3-63

3-63

3-63
3-63
3-64

3-64
3-64

3-64
3-65
3-66
3-66
3-67
3-67
3-68
3-68
3-68

3-69

3-69

NITTY-GRITTY DETAILS

Line Representation in the Display
Counts
More File Manipulation Commands .
More about Searching for Strings
More about Input Mode. . .
Upper Case Only Terminals .. .
Vi and Ex
Open Mode: Vi on Hardcopy Terminals and "Glass TTY's".

APPENDIX: CHARACTER FUNCTIONS

EX REFERENCE MANUAL

STARTING EX
FILE MANIPULATION.

Current File
Alternate File . . .
Filename Expansion
Multiple Files and Named Buffers.
Read Only

EXCEPTIONAL CONDITIONS

Errors and Interrupts
Recovering from Hangups and Crashes.
Edi ting Modes

COMMAND STRUCTURE

Command Parameters
Command Variants ..
Flags After Commands
Comments
Multiple Commands per Line .
Reporting Large Changes

COMMAND ADDRESSING

Addressing Primitives.
Combining Addressing Primitives

COMMAND DESCRIPTIONS

Table of Contents xvii

3-69

3-69
3-70
3-70
3-71
3-72
3-73
3-73
3-73

3-75

3-83
3-84

3-84
3-84
3-84
3-84
3-85

3-85

3-85
3-85
3-85

3-86

3-86
3-86
3-86
3-86
3-86
3-86

3-87

3-87
3-87

REGULAR EXPRESSIONS AND SUBSTITUTE REPLACEMENT PATTERNS.
3-87
3-96

Regular Expressions
Magic and Nomagic
Basic Regular Expression Summary . . .
Combining Regular Expression Primitives
Substitute Replacement Patterns

OPTION DESCRIPTIONS.
LIMITATIONS

3-96
3-96
3-96
3-97
3-97

3-97
. 3-101

xviii Table of Contents

EX REFERENCE MANUAL (continued)

EX CHANGES - VERSION 3.1 TO 3.5

Update to Ex Reference Manual.

Command Line Options
Commands'
Options
Environment Enquiries

Vi Tutorial Update

Deleted Features. . . .
Change in Default Option Settings .
Vi Commands .
Macros

SED - A NONINTERACTIVE TEXT EDITOR

OVERALL OPERATION

Command-Line Fla,gs
Order of Applicatiqn of Editing Commands
Pattern-Space
Examples

ADDRESSES: SELECTING LINES FOR EDITING

Line-Number Addresses.
Context Addresses ..
Number of Addresses ..

FUNCTIONS

Whole-Line Oriented Functions
Substitute Function.
Input-Output Functions. . . .
Multiple Input-Line Functions
Hold and Get Functions . . .
Flow-of-Control Functions. . .

MISCELLANEOUS FUNCTIONS .

PART 4: COMMAND INTERPRETERS

AN INTRODUCTION TO THE UNIX SHELL

INTRODUCTION

Simple Commands . . .
Background Commands .
Input Output Redirection .
Pipelines and Filters .
File Name Generation
Quoting
Prompting
The Shell and Login
Summary

. 3-102

. 3-102

. 3-102

. 3-102

. 3-102

. 3-103

. 3-103

. 3-103

. 3-103

. 3-103

. 3-104

. 3-105

. 3-106

. 3-106

. 3-106

. 3-106

. 3-107

. 3-107

. 3-107

. 3-107

. 3-108

. 3-108

. 3-110

. 3-111

. 3-112

. 3-113

. 3-113

. 3-114

. 4-3

. 4-3

. 4-3

. 4-3

. 4-4

. 4-4

. 4-5

. 4-6

. 4-6

. 4-6

Table of Contents xix

SHELL PROCEDURES . . 4-7

Control Flow - For . . 4-7
Control Flow - Case . 4-8
Here Documents . . . 4-9
Shell Variables . . . 4-10
The Test Command 4-12
Control Flow - While . 4-12
Control Flow - If . . . 4-13
Command Grouping . 4-14
Debugging Shell Procedures . 4-15
The Man Command . . 4-15

KEYWORD PARAMETERS . 4-17

Parameter Transmission 4-17
Parameter Substitution . 4-17
Command Substitution . 4-18
Evaluation and Quoting. 4-19
Error Handling . . . 4-21
Fault Handling. . . 4-21
Command Execution 4-23
Invoking the Shell . 4-24

APPENDIX A: GRAMMAR . 4-26
APPENDIX B: METACHARACTERS AND RESERVED WORDS 4-27

AN INTRODUCTION TO THE C SHELL

TERMINAL USAGE OF THE SHELL .

The Basic Notion of Commands.
Flag Arguments
Output to Files.
Metacharacters in the Shell .
Input from Files: Pipelines
Filenames
Quotation
Terminating Commands
What Now?

DETAILS ON THE SHELL FOR TERMINAL USERS .

Shell Startup and Termination
Shell Variables
The Shell's History List. . . .
Aliases
More Redirection: > > and >&.
Jobs: Background, Foreground, or Suspended
Working Directories. . . .
Useful Built-In Commands
What Else?

4-30

4-30
4-31
4-31
4-32
4-32
4-33
4-35
4-35
4-38

4-39

4-39
4-40
4-41
4-43
4-44
4-45
4-48
4-50
4-52

xx Table of Contents

AN INTRODUCTION TO THE C SHELL (continued)

SHELL CONTROL STRUCTURES AND COMMAND SCRIPTS .

Introduction
Make
Invocation and the Argv Variable
Variable Substitution .
Expressions
Sample Shell Script
Other Control Structures . . .
Supplying Input to Commands
Catching Interrupts.
What Else?

OTHER, LESS COMMONLY USED, SHELL FEATURES .

Loops at the Terminal: Variables as Vectors .
Braces in Argument Expansion .
Command Substitution
Other Details Not Covered Here . .

APPENDIX: SPECIAL CHARACTERS
GLOSSARY

PART 5: DOCUMENT PREPARATION

TYPING DOCUMENTS ON THE UNIX SYSTEM: USING THE -MS
MACROS WITH TROFF AND NROFF

INTRODUCTION .
TEXT
BEGINNING .. .
COVER SHEETS AND FIRST PAGES
PAGE HEADINGS
MULTI-COLUMN FORMATS.
HEADINGS
INDENTED PARAGRAPHS.
EMPHASIS
FOOTNOTES
DISPLAYS AND TABLES ..
BOXING WORDS OR LINES .
KEEPING BLOCKS TOGETHER .
NROFF/TROFF COMMANDS.
DATE
SIGNATURE LINE .
REGISTERS
ACCENTS
USE
REFERENCES AND FURTHER STUDY
ACKNOWLEDGMENT .
APPENDIX A

List of Commands
Register Nam es. .

4-53

4-53
4-53
4-53
4-53
4-55
4-55
4-57
4-58
4-59
4-59

4-60

4-60
4-60
4-61
4-61

4-62
4-63

. 5-5

. 5-5

. 5-5

. 5-5

. 5-6

. 5-6

. 5-6

. 5-7

. 5-8

. 5-8

. 5-8

. 5-8
. . 5-9

. 5-9

. 5-9

. 5-9

. 5-9

. 5-9
. . 5-9

5-10
5-10
5-11

5-11
5-11

A GUIDE TO PREP ARING DOCUMENTS WITH -MS

COMMANDS FOR A TM
A RELEASED PAPER WITH MATHEMATICS
AN INTERNAL MEMORANDUM.
HEADINGS ...
A SIMPLE LIST . . .
DISPLAYS
FOOTNOTES
MULTIPLE INDENTS
KEEPS
DOUBLE COLUMN. .
EQUATIONS
SOME REGISTERS YOU CAN CHANGE .
TABLES
USAGE

A REVISED VERSION OF -MS

WRITING PAPERS WITH NROFF USING -ME

BASICS OF TEXT PROCESSING .
BASIC REQUESTS .

Paragraphs .
Headers and Footers
Double Spacing.
Page Layout .
Underlining

DISPLAYS .

Major Quotes.
Lists.
Keeps .
Fancier Displays

ANNOTATIONS

Footnotes
Delayed Text .
Indexes

FANCIER FEATURES

More Paragraphs .
Section Headings .
Parts of the Basic Paper
Equations and Tables.
Two-Column Output .
Defining Macros
Annotations Inside Keeps .

TROFF AND THE PHOTOSETTER.

Fonts
Point Sizes .
Quotes.

Table of Contents xxi

5-13
5-14
5-14
5-14
5-15
5-15
5-15
5-15
5-15
5-15
5-16
5-16
5-16
5-16

5-22
5-22

5-22
5-23
5-23
5-23
5-25

5-25

5-25
5-25
5-26
5-26

5-28

5-28
5-28
5-28

5-29

5-29
5-31
5-32
5-33
5-35
5-35
5-35

5-36

5-36
5-38
5-38

xxii Table of Contents

-ME REFERENCE MANUAL

PARAGRAPHING
SECTION HEADINGS . . .
HEADERS AND FOOTERS .
DISPLAYS
ANNOTATIONS
COLUMNED OUTPUT .
FONTS AND SIZES . .
ROFF SUPPORT
PREPROCESSOR SUPPORT
MISCELLANEOUS
STANDARD PAPERS
PREDEFINED STRINGS . .
SPECIAL CHARACTERS AND MARKS .

NROFF/TROFF USER'S MANUAL

GENERAL EXPLANATION

Form of Input
Formatter and Device Resolution
Numerical Parameter Input .
Numerical Expressions
Notation

FONT AND CHARACTER SIZE CONTROL .

Character Set .
Fonts
Character Size .

PAGE CONTROL ..
TEXT FILLING, ADJUSTING, AND CENTERING

Filling and Adjusting .
Interrupted Text .

VERTICAL SPACING.

Base-Line Spacing
Extra Line-Space.
Blocks of Vertical Space

LINE LENGTH AND INDENTING
MACROS, STRINGS, DIVERSION, AND POSITION TRAPS.

Copy Mode Input Interpretation.
Arguments.
Diversions
Traps

NUMBER REGISTERS .
TABS, LEADERS, AND FIELDS

5-40
5-40
5-41
5-42
5-43
5-43
5-44
5-44
5-45
5-45
5-45
5-47
5-47

5-56

5-56
5-56
5-56
5-57
5-57

5-57

5-57
5-58
5-58

5-59
5-60

5-60
5-60

5-61

5-61
5-61
5-61

5-62
5-62

5-63
5-63
5-63
5-64

5-65
5-66

Table of Contents xxm

Tabs and Leaders. 5-66
Fields . 5-66

INPUT AND OUTPUT CONVENTIONS AND CHARACTER TRANSLATIONS. 5-66

Input Character Translations 5-66
Ligatures. 5-66
Backspacing, Underlining, Overstriking, Etc.. 5-66
Control Characters 5-67
Output Translation 5-67
Transparent Throughput 5-67
Comments and Concealed Newlines . 5-67

LOCAL HORIZONTAL AND VERTICAL MOTIONS, AND THE WIDTH FUNCTION 5-67

Local Motions 5-67
Width Function . 5-68
Mark Horizontal Place . 5-68

OVERSTRIKE, BRACKET, LINE-DRAWING, AND ZERO-WIDTH FUNCTIONS 5-68

Overstriking 5-68
Zero-Width Characters 5-68
Large Brackets . 5-68
Line Drawing. . . . 5-68

HYPHENATION 5-69
THREE PART TITLES . 5-70
OUTPUT LINE NUMBERING 5-70
CONDITIONAL ACCEPTANCE OF INPUT . 5-71
ENVIRONMENT SWITCHING 5-71
INSERTIONS FROM THE STANDARD INPUT . 5-72
INPUT/OUTPUT FILE SWITCHING 5-72
MISCELLANEOUS 5-72
OUTPUT AND ERROR MESSAGES 5-73
TUTORIAL EXAMPLES 5-74

Introduction 5-74
Page Margins. 5-7 4
Paragraphs and Headings . 5-75
Multiple Column Output . 5-75
Footnote Processing. . . . 5-76
The Last Page 5-77

SUMMARY OF CHANGES TO N/TROFF SINCE OCTOBER 1976 MANUAL. 5-81

A TROFF TUTORIAL

INTRODUCTION
POINT SIZES; LINE SPACING
FONTS AND SPECIAL CHARACTERS .
INDENTS AND LINE LENGTHS
TABS
LOCAL MOTIONS: DRAWING LINES AND CHARACTERS.
STRINGS
INTRODUCTION TO MACROS
TITLES, PAGES AND NUMBERING
NUMBER REGISTERS AND ARITHMETIC.

5-83
5-84
5-85
5-86
5-86
5-87
5-88
5-89
5-90
5-91

xxiv Table of Contents

A TROFF TUTORIAL (continued)

MACROS WITH ARGUMENTS .
CONDITIONALS
ENVIRONMENTS
DIVERSIONS
APPENDIX A: PHOTOTYPESETTER CHARACTER SET .

A SYSTEM FOR TYPESETTING MATHEMATICS

INTRODUCTION
PHOTOCOMPOSITION.
LANGUAGE DESIGN.
THE LANGUAGE. . .
LANGUAGE THEORY
EXPERIENCE .
CONCLUSIONS . . .

TYPESETTING MATHEMATICS - USER'S GUIDE

INTRODUCTION
DISPLAYED EQUATIONS
INPUT SPACES
OUTPUT SPACES
SYMBOLS, SPECIAL NAMES, GREEK.
SPACES, AGAIN
SUBSCRIPTS AND SUPERSCRIPTS
BRACES FOR GROUPING
FRACTIONS
SQUARE ROOTS
SUMMATION, INTEGRAL, ETC ..
SIZE AND FONT CHANGES .
DIACRITICAL MARKS . .
QUOTED TEXT
LINING UP EQUATIONS.
BIG BRACKETS, ETC .. .
PILES
MATRICES
SHORTHAND FOR IN-LINE EQUATIONS
DEFINITIONS
LOCAL MOTIONS
A LARGE EXAMPLE
KEYWORDS, PRECEDENCES, ETC ..
TROUBLESHOOTING
USE ON UNIX

TBL - A PROGRAM TO FORMAT TABLES

INTRODUCTION . . .
INPUT COMMANDS .
USAGE ...
EXAMPLES

5-92
5-93
5-94
5-94
5-96

5-97
5-98
5-98
5-99

. 5-101

. 5-102

. 5-103

. 5-105

. 5-105

. 5-105

. 5-106

. 5-106

. 5-106

. 5-106

. 5-107

. 5-107

. 5-107

. 5-108

. 5-108

. 5-109

. 5-109

. 5-109

. 5-110

. 5-110

. 5-111

. 5-111

. 5-111

. 5-112

. 5-112

. 5-112

. 5-113

. 5-114

. 5-115

. 5-116

. 5-120

. 5-121

REFER - A BIBLIOGRAPHY SYSTEM

INTRODUCTION
DATA ENTRY WITH ADDBIB . .
PRINTING THE BIBLIOGRAPHY.
CITING PAPERS WITH REFER .
REFER'S COMMAND-LINE OPTIONS .
MAKING AN INDEX
REFER BUGS AND SOME SOLUTIONS
INTERNAL DETAILS OF REFER ..
CHANGING THE REFER MACROS. . .

Table of Contents xxv

. 5-133

. 5-134

. 5-135

. 5-136

. 5-137

. 5-137

. 5-138

. 5-139

. 5-141

SOME APPLICATIONS OF INVERTED INDEXES ON THE UNIX SYSTEM

INTRODUCTION .
SEARCHING ...

Make Keys ..
Hash and Invert
Searching and Retrieving .

SELECTING AND FORMATTING REFERENCES FOR TROFF .
REFERENCE FILES .
COLLECTING REFERENCES AND OTHER REFER OPTIONS .

UPDATING PUBLICATION LISTS

INTRODUCTION
PUBLICATION FORMAT.
UPDATING AND RE-INDEXING. .
PRINTING A PUBLICATION LIST .

WRITING TOOLS - THE STYLE AND DICTION PROGRAMS

INTRODUCTION
STYLE

What is a Sentence?
Readability Grades .
Sentence Length and Structure .
Word Usage ...
Sentence Openers.

DICTION.
EXPLAIN ..
RESULTS .

STYLE

DICTION ..
ACCURACY

Sentence Identification .
Sentence Types.
Word Usage

. 5-144

. 5-144

. 5-147

. 5-147

. 5-148

. 5-150

. 5-151

. 5-154

. 5-155

. 5-155

. 5-157

. 5-161

. 5-163

. 5-163

. 5-164

. 5-165

. 5-166

. 5-167

. 5-168

. 5-169

. 5-170

. 5-170

. 5-170

. 5-171

. 5-172

. 5-172

. 5-172

. 5-172

xxvi Table of Contents

WRITING TOOLS - THE STYLE AND DICTION PROGRAMS (continued)

TECHNICAL DETAILS.

Finding Sentences .
Details of DICTION

CONCLUSIONS
APPENDIX 1: STYLE ABBREVIATIONS .
APPENDIX 2: DEFAULT DICTION PATTERNS

PART 6: MISCELLANEOUS

LEARN - COMPUTER-AIDED INSTRUCTION ON UNIX

INTRODUCTION
EDUCATIONAL ASSUMPTIONS AND DESIGN.
SCRIPTS
EXPERIENCE WITH STUDENTS
THE SCRIPT INTERPRETER
CONCLUSIONS
APPENDIX A: HOW TO GET STARTED .

A GUIDE TO THE DUNGEONS OF DOOM

INTRODUCTION
WHAT IS GOING ON HERE?
WHAT DO ALL THOSE THINGS ON THE SCREEN MEAN?.

The Bottom Line
The Top Line
The Rest of the Screen .

COMMANDS
ROOMS
FIGHTING
OBJECTS YOU CAN FIND .

Weapons.
Armor
Scrolls
Potions
Staves and Wands
Rings
Food

OPTIONS

Setting the Options .

Using the 'O' Command .
Using the ROGUEOPTS Variable

Option List.

SCORING

. 5-172

. 5-172

. 5-173

. 5-173

. 5-175

. 5-176

. 6-3

. 6-4

. 6-6

. 6-8

. 6-8
6-12
6-15

6-17
6-17
6-18

6-18
6-18
6-19

6-19
6-21
6-21
6-21

6-22
6-22
6-22
6-22
6-23
6-23
6-23

6-23

6-23

6-23
6-23

6-24

6-24

BERKELEY FONT CATALOGUE

INTRODUCTION .
APL FONT, 10 POINT ONLY
BASKERVILLE FONT, ROMAN, IBOLD, ITALIC, 12 POINT ONLY.
BOCKLIN FONT, 14 AND 28 POINT ONLY.
BODON! FONT, ROMAN, BOLD, ITALIC, 10 POINT ONLY ...
CHESS, 18 POINT ONLY.
CLARENDON, 14 AND 18 POINT ONLY
COMPUTER MODERN FONTS, ROMAN, ITALIC, AND BOLD .
COUNTDOWN, 22 POINT, UPPERCASE LETTERS ONLY
CYRILLIC, 12 POINT ONLY
DELEGATE, ROMAN, ITALIC, AND BOLD
FIX FIXED WIDTH FONT, 6, 9, 10, 12, 14 POINT. . .
GACHAM, ROMAN, BOLD, ITALIC, 10 POINT ONLY
GREEK, 10 POINT ONLY
HEBREW, 16, 24, AND 36 POINT ONLY
10 POINT HERSHEY
HERSHEY FONT.
METEOR, ROMAN, BOLD, ITALIC, 8, 10, 12 POINT .
MICROGRAMMA FONT, 10 POINT ONLY
MONA FONT, 24 POINT ONLY
NONIE, ROMAN, BOLD, ITALIC, 8, 10, 12 POINT
OLD ENGLISH, 8, 14, AND 18 POINT ONLY . .
PIP FONT, 16 POINT ONLY, NO LOWER CASE
PLAYBILL FONT, 18 POINT ONLY
SCRIPT, 18 POINT ONLY
SHADOW, 16 POINT ONLY, NO LOWER CASE
SIGN, 22 POINT ONLY
STARE HERSHEY FONT
TIMES FONTS, ROMAN, ITALIC, AND BOLD. 10 POINT ONLY.

UNIX ASSEMBLER REFERENCE MANUAL

INTRODUCTION
USAGE
LEXICAL CONVENTIONS .

Identifiers
Temporary Symbols
Constants .
Operators .
Blanks ...
Comments .

SEGMENTS ..
THE LOCATION COUNTER .
STATEMENTS .. .

Labels
Null Statements
Expression Statements .
Assignment Statements .
String Statements .
Keyword Statements . .

Table of Contents xxvn

6-27
6-29
6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-35
6-35
6-36
6-38
6-38
6-40
6-41
6-42
6-43
6-44
6-44
6-45
6-47
6-48
6-48
6-48
6-49
6-49
6-50
6-51

6-53
6-53
6-53

6-53
6-54
6-54
6-54
6-54
6-54

6-54
6-55
6-55

6-55
6-55
6-55
6-56
6-56
6-56

xxviii Table of Contents

UNIX ASSEMBLER REFERENCE MANUAL (continued)

EXPRESSIONS.

Expression Operators .
Types
Type Propagation in Expressions

PSEUDO-OPERATIONS

.byte.

.even.

.if . .

.endif

.globl

.text.

.data .

. bss .

.comm.

MACHINE INSTRUCTIONS

Sources and Destinations
Simple Machine Instructions
Branch
Extended Branch Instructions .
Single Operand Instructions .
Double Operand Instructions .
Miscellaneous Instructions . .
Floating-Point Unit Instructions.

OTHER SYMBOLS .

.. Symbol ..
System Calls .

DIAGNOSTICS ..

6-56

6-57
6-57
6-58

6-59

6-59
6-59
6-59
6-59
6-59
6-59
6-59
6-59
6-60

6-60

6-60
6-60
6-61
6-61
6-62
6-62
6-62
6-63

6-63

6-63
6-64

6-64

Introduction 1-1

PART 1: OVERVIEW

The first two articles in this volume introduce the entire three-volume set of ULTRIX Sup
plementary Documents. The article entitled "UNIX/32V - Summary" lists features of the
UNIX system released in March 1979. ULTRIX-32 is based on the Berkeley 4.2BSD distribu
tion, which is in turn based on Bell Laboratories UNIX 32V and the UNIX 7th Edition.

The second article, "The UNIX Time-Sharing System," by Ritchie and Thompson, provides
an overview and history of UNIX. The authors are the original developers of this software
system. This article is suitable for readers who are familiar with computer software and
operating systems. Although it describes UNIX as it was implemented in 197 4, the article
remains an important part of the UNIX documentation. With the exception of some details,
it gives an accurate account of many of the concepts and features of UL TRIX-32. The
authors convey the spirit of UNIX and ULTRIX-32, though the article includes some infor
mation that is no longer current.

"The UNIX Time-Sharing System" explains these notable features of UNIX:

• A pipe enables related processes to pass information between the related processes.

• A filter takes its input from one process and delivers its output to another process.

• A shell serves as a user interface to the system.

• An image is a computer execution environment.

• A process is the execution of an image.

• A process may create another process. The creating process is the parent; the created
process is the child.

The article also tells how to:

• Execute procedures in background, leaving your terminal free to perform other func-
tions while the background procedures run.

• Create user interfaces that serve as alternatives to the shells.

• Set up restricted environments for some users.

• Detect and deal with hardware and software errors.

Be sure to read the last part of "The UNIX Time-Sharing System" if you want to know about
the early stages of UNIX development. Ritchie and Thompson explain their original goals
and design considerations, and they identify important steps in the evolution of the software
system that forms the basis of UL TRIX-32.

UNIX 32/V - Summary 1-3

UNIX/32V - Summary

March 9, 1979

A. What's new: highlights of the UNIXt/32V System

32-bit world. UNIX/32V handles 32-bit addresses and 32-bit data. Devices are addressable
to 231 bytes, files to 230 bytes.

Portability. Code of the operating system and most utilities has been extensively revised to
minimize its dependence on particular hardware. UNIX/32V is highly compatible with UNIX
version 7.

Fortran 77. F77 compiler for the new standard language is compatible with C at the object
level. A Fortran structurer, STRUCT, converts old, ugly Fortran into RATFOR, a structured
dialect usable with F77.

Shell. Completely new SH program supports string variables, trap handling, structured pro
gramming, user profiles, settable search path, multilevel file name generation, etc.

Document preparation. TROFF phototypesetter utility is standard. NROFF (for termi
nals) is 1now highly compatible with TROFF. MS macro package provides canned commands
for many common formatting and layout situations. TBL provides an easy to learn language
for preparing complicated tabular material. REFER fills in bibliographic citations from a data
base.

UNIX-to-UNIX file copy. UUCP performs spooled file transfers between any two
machines.

Data processing. SED stream editor does multiple editing functions in parallel on a data
stream of indefinite length. A WK report generator does free-field pattern selection and arith
metic operations.

Program development. MAKE controls re-creation of complicated software, arranging for
minimal recompilation.

Debugging. ADB does postmortem and breakpoint debugging.

C language. The language now supports definable data types, generalized initialization,
block structure, long integers, unions, explicit type conversions. The LINT verifier does
strong type checking and detection of probable errors and portability problems even across
separately compiled functions.

Lexical analyzer generator. LEX converts specification of regular expressions and
semantic actions into a recognizing subroutine. Analogous to YACC.

Graphics. Simple graph-drawing utility, graphic subroutines, and generalized plotting filters
adapted to various devices are now standard.

Standard input-output package. Highly efficient buffered stream 1/0 is integrated with
formatted input and output.

Other. The operating system and utilities have been enhanced and freed of restrictions in
many other ways too numerous to relate.

t UNIX is a Trademark of Bell Laboratories.

1-4 UNIX 32/V - Summary

B. Hardware

The UNIX/32V operating system runs on a DEC VAX-11/780* with at least the following
equipment:

memory: 256K bytes or more.

disk: RP06, RM03, or equivalent.

tape: any 9-track MASSBUS-compatible tape drive.

The following equipment is strongly recommended:

communications controller such as DZll or DLll.

full duplex 96-character ASCII terminals.

extra disk for system backup.

The system is normally distributed on 9-track tape. The minimum memory and disk space
specified is enough to run and maintain UNIX/32V, and to keep all source on line. More
memory will be needed to handle a large number of users, big data bases, diversified comple
ments of devices, or large programs. The resident code occupies 40-55K bytes depending on
configuration; system data also occupies 30-55K bytes.

C. Software

Most of the programs available as UNIX/32V commands are listed. Source code and
printed manuals are distributed for all of the listed software except games. Almost all of the
code is written in C. Commands are self-contained and do not require extra setup informa
tion, unless specifically noted as "interactive." Interactive programs can be made to run from
a prepared script simply by redirecting input. Most programs intended for interactive use
(e.g., the editor) allow for an escape to command level (the Shell). Most file processing com
mands can also go from standard input to standard output ("filters"). The piping facility of
the Shell may be used to connect such filters directly to the input or output of other pro
grams.

1. Basic Software

This includes the time-sharing operating system with utilities, and a compiler for the
programming language C-enough software to write and run new applications and to maintain
or modify UNIX/32V itself.

1.1. Operating System

D UNIX The basic resident code on which everything else depends. Supports the sys
tem calls, and maintains the file system. A general description of UNIX design
philosophy and system facilities appeared in the Communications of the ACM,
July, 1974. A more extensive survey is in the Bell System Technical Journal
for July-August 1978. Capabilities include:
0 Reentrant code for user processes.
0 "Group" access permissions for cooperative projects, with overlapping

memberships.
0 Alarm-clock timeouts.
0 Timer-interrupt sampling and interprocess monitoring for debugging and

measurement.
0 Multiplexed I/0 for machine-to-machine communication.

D DEVICES All I/O is logically synchronous. 1/0 devices are simply files in the file system.
Normally, invisible buffering makes all physical record structure and device
characteristics transparent and exploits the hardware's ability to do

*VAX is a Trademark of Digital Equipment Corporation.

DBOOT

UNIX 32/V - Summary 1-5

overlapped l/0. Unbuffered physical record 1/0 is available for unusual appli
cations. Drivers for these devices are available:
0 Asynchronous interfaces: DZll, DLl 1. Support for most common ASCII

terminals.
0 Automatic calling unit interface: DNll.
0 Printer /plotter: Versatek.
0 Magnetic tape: TE16.
0 Pack type disk: RP06, RM03; minimum-latency seek scheduling.
0 Physical memory of VAX-11, or mapped memory in resident system.
0 Null device.
0 Recipies are supplied to aid the construction of drivers for:

Asynchronous interface: DHl 1.
Synchronous interface: DUll.
DECtape: TCll.
Fixed head disk: RSll, RS03 and RS04.
Cartridge-type disk: RK05.
Phototypesetter: Graphic Systems System/1 through DRllC.

Procedures to get UNIX/32V started.

1.2. User Access Control

D LOGIN Sign on as a new user.
0 Verify password and establish user's individual and group (project) identity.
0 Adapt to characteristics of terminal.
0 Establish working directory.
0 Announce presence of mail (from MAIL).
0 Publish message of the day.
0 Execute user-specified profile.
0 Start command interprete.li or other initial program.

D P ASSWD Change a password.
0 User can change his own password.
0 Passwords are kept encrypted for security.

D NEWGRP Change working group (project). Protects against unauthorized changes to
projects.

1.3. Terminal Handling

DTABS

DSTTY

Set tab stops appropriately for specified terminal type.

Set up options for optimal control of a terminal. In so far as they are deduci
ble from the input, these options are set automatically by LOGIN.
0 Half vs. full duplex.
0 Carriage return+line feed vs. newline.
0 Interpretation of tabs.
0 Parity.
0 Mapping of upper case to lower.
0 Raw vs. edited input.
0 Delays for tabs, newlines and carriage returns.

1.4. File Manipulation

DCAT Concatenate one or more files onto standard output. Particularly used for
unadorned printing, for inserting data into a pipeline, and for buffering output
that comes in dribs and drabs. Works on any file regardless of contents.

1-6 UNIX 32/V - Summary

OCP

OPR

OLPR

OCMP

OTAIL

0 SPLIT

ODD

OSUM

Copy one file to another, or a set of files to a directory. Works on any file
regardless of contents.

Print files with title, date, and page number on every page.
0 Multicolumn output.
0 Parallel column merge of several files.

Off-line print. Spools arbitrary files to the line printer.

Compare two files and report if different.

Print last n lines of input
0 May print last n characters, or from n lines or characters to end.

Split a large file into more manageable pieces. Occasionally necessary for edit
ing (ED).

Physical file format translator, for exchanging data with foreign systems, espe
cially IBM 370's.

Sum the words of a file.

1.5. Manipulation of Directories and File Nam es

ORM

OLN

OMV

OCHMOD

OCHOWN

OCHGRP

OMKDIR

ORMDIR

OCD

OFIND

Remove a file. Only the name goes away if any other names are linked to the
file.
0 Step through a directory deleting files interactively.
0 Delete entire directory hierarchies.

"Link" another name (alias) to an existing file.

Move a file or files. Used for renaming files.

Change permissions on one or more files. Executable by files' owner.

Change owner of one or more files.

Change group (project) to which a file belongs.

Make a new directory.

Remove a directory.

Change working directory.

Prowl the directory hierarchy finding every file that meets specified criteria.
0 Criteria include:

name matches a given pattern,
creation date in given range,
date of last use in given range,
given permissions,
given owner,
given special file characteristics,
boolean combinations of above.

0 Any directory may be considered to be the root.
0 Perform specified command on each file found.

1.6. Running of Programs

OSH The Shell, or command language interpreter.
0 Supply arguments to and run any executable program.
0 Redirect standard input, standard output, and standard error files.

DTEST

DEXPR

DWAIT

DREAD

DECHO

DSLEEP

DNOHUP

DNICE

DKILL

DCRON

DAT

DTEE

UNIX 32/V - Summary 1-7

0 Pipes: simultaneous execution with output of one process connected to the
input of another.

0 Compose compound commands using:
if ... then ... else,
case switches,
while loops,
for loops over lists,
break, continue and exit,
parentheses for grouping.

0 Initiate background processes.
0 Perform Shell programs, i.e., command scripts with substitutable arguments.
0 Construct argument lists from all file names satisfying specified patterns.
0 Take special action on traps and interrupts.
0 User-settable search path for finding commands.
0 Executes user-settable profile upon login.
0 Optionally announces presence of mail as it arrives.
0 Provides variables and parameters with default setting.

Tests for use in Shell conditionals.
0 String comparison.
0 File nature and accessibility.
0 Boolean combinations of the above.

String computations for calculating command arguments.
0 Integer arithmetic
0 Pattern matching

Wait for termination of asynchronously running processes.

Read a line from terminal, for interactive Shell procedure.

Print remainder of command line. Useful for diagnostics or prompts in Shell
programs, or for inserting data into a pipeline.

Suspend execution for a specified time.

Run a command immune to hanging up the terminal.

Run a command in low (or high) priority.

Terminate named processes.

Schedule regular actions at specified times.
0 Actions are arbitrary programs.
0 Times are conjunctions of month, day of month, day of week, hour and

minute. Ranges are specifiable for each.

Schedule a one-shot action for an arbitrary time.

Pass data between processes and divert a copy into one or more files.

1.7. Status Inquiries

DLS

DFILE

List the names of one, several, or all files in one or more directories.
0 Alphabetic or temporal sorting, up or down.
0 Optional information: size, owner, group, date last modified, date last

accessed, permissions, i-node number.

Try to determine what kind of information is in a file by consulting the file
system index and by reading the file itself.

1-8 UNIX 32/V - Summary

DDATE

DDF

DDU

DQUOT

DWHO

DPS

DIOSTAT

DTTY

DPWD

Print today's date and time. Has considerable knowledge of calendric and
horological peculiarities.
0 May set UNIX/32V's idea of date and time.

Report amount of free space on file system devices.

Print a summary of total space occupied by all files in a hierarchy.

Print summary of file space usage by user id.

Tell who's on the system.
0 List of presently logged in users, ports and times on.
0 Optional history of all logins and logouts.

Report on active processes.
0 List your own or everybody's processes.
0 Tell what commands are being executed.
0 Optional status information: state and scheduling info, priority, attached

terminal, what it's waiting for, size.

Print statistics about system 1/0 activity.

Print name of your terminal.

Print name of your working directory.

1.8. Backup and Maintenance

DMOUNT

DUMOUNT

DMKFS

DMKNOD

DTP

OTAR

DDUMP

DRESTOR

osu

DDCHECK

DICHECK

Attach a device containing a file system to the tree of directories. Protects
against nonsense arrangements.

Remove the file system contained on a device from the tree of directories.
Protects against removing a busy device.

Make a new file system on a device.

Make an i-node (file system entry) for a special file. Special files are physical
devices, virtual devices, physical memory, etc.

Manage file archives on magnetic tape or DECtape. TAR is newer.
0 Collect files into an archive.
0 Update DECtape archive by date.
0 Replace or delete DECtape files.
0 Print table of contents.
0 Retrieve from archive.

Dump the file system stored on a specified device, selectively by date, or
indiscriminately.

Restore a dumped file system, or selectively retrieve parts thereof.

Temporarily become the super user with all the rights and privileges thereof.
Requires a password.

D NCHECK Check consistency of file system.
0 Print gross statistics: number of files, number of directories, number of spe

cial files, space used, space free.

DCLRI

OSYNC

0 Report duplicate use of space.
0 Retrieve lost space.
0 Report inaccessible files.
0 Check consistency of directories.
0 List names of all files.

UNIX 32/V - Summary 1-9

Peremptorily expunge a file and its space from a file system. Used to repair
damaged file systems.

Force all outstanding 1/0 on the system to completion. Used to shut down
gracefully.

1.9. Accounting

The timing information on which the reports are based can be manually cleared or shut off
completely.

DAC

DSA

Publish cumulative connect time report.
0 Connect time by user or by day.
0 For all users or for selected users.

Publish Shell accounting report. Gives usage information on each command
executed.
0 Number of times used.
0 Total system time, user time and elapsed time.
0 Optional averages and percentages.
0 Sorting on various fields.

1.10. Communication

DMAIL Mail a message to one or more users. Also used to read and dispose of incom
ing mail. The presence of mail is announced by LOG IN and optionally by SH.
0 Each message can be disposed of individually.
0 Messages can be saved in files or forwarded.

D CALENDAR Automatic reminder service for events of today and tomorrow.

DWRITE

DWALL

DMESG

ocu

OUUCP

Establish direct terminal communication with another user.

Write to all users.

Inhibit receipt of messages from WRITE and WALL.

Call up another time-sharing system.
0 Transparent interface to remote machine.
0 File transmission.
0 Take remote input from local file or put remote output into local file.
0 Remote system need not be UNIX/32V.

UNIX to UNIX copy.
0 Automatic queuing until line becomes available and remote machine is up.
0 Copy between two remote machines.
0 Differences, mail, etc., between two machines.

1.11. Basic Program Development Tools

Some of these utilities are used as integral parts of the higher level languages described in sec
tion 2.

DAR Maintain archives and libraries. Combines several files into one for house
keeping efficiency.

1-10 UNIX 32/V - Summary

DAS

D Library

0 Create new archive.
0 Update archive by date.
0 Replace or delete files.
0 Print table of contents.
0 Retrieve from archive.

Assembler.
0 Creates object program consisting of

code, normally read-only and sharable,
initialized data or read-write code,
uninitialized data.

0 Relocatable object code is directly executable without further transforma
tion.

0 Object code normally includes a symbol table.
0 "Conditional jump" instructions become branches or branches plus jumps

depending on distance.

The basic run-time library. These routines are used freely by all software.
0 Buffered character-by-character I/0.
0 Formatted input and output conversion (SCANF and PRINTF) for stan-

dard input and output, files, in-memory conversion.
0 Storage allocator.
0 Time conversions.
0 Number conversions.
0 Password encryption.
0 Quicksort.
0 Random number generator.
0 Mathematical function library, including trigonometric functions and

inverses, exponential, logarithm, square root, bessel functions.

D ADB Interactive debugger.
0 Postmortem dumping.
0 Examination of arbitrary files, with no limit on size.
0 Interactive breakpoint debugging with the debugger as a separate process.
0 Symbolic reference to local and global variables.
0 Stack trace for C programs.
0 Output formats:

1-, 2-, or 4-byte integers in octal, decimal, or hex
single and double floating point
character and string
disassembled machine instructions

0 Patching.
0 Searching for integer, character, or floating patterns.

D OD Dump any file. Output options include any combination of octal or decimal or
hex by words, octal by bytes, ASCII, opcodes, hexadecimal.
0 Range of dumping is controllable.

D LD Link edit. Combine relocatable object files. Insert required routines from
specified libraries.
0 Resulting code is sharable by default.

D LORDER Places object file names in proper order for loading, so that files depending on
others come after them.

D NM Print the namelist (symbol table) of an object program. Provides control over
the style and order of names that are printed.

OSIZE

OSTRIP

OTIME

OPROF

OMAKE

UNIX 32/V - Summary 1-11

Report the memory requirements of one or more object files.

Remove the relocation and symbol table information from an object file to
save space.

Run a command and report timing information on it.

Construct a profile of time spent per routine from statistics gathered by time
sampling the execution of a program.
0 Subroutine call frequency and average times for C programs.

Controls creation of large programs. Uses a control file specifying source file
dependencies to make new version; uses time last changed to deduce minimum
amount of work necessary.
0 Knows about CC, YACC, LEX, etc.

1.12. UNIX/32V Programmer's Manual

D Manual

OMAN

Machine-readable version of the UNIX/32V Programmer's Manual.
0 System overview.
0 AU commands.
0 All system calls.
0 All subroutines in C and assembler libraries.
0 All devices and other special files.
0 Formats of file system and kinds of files known to system software.
0 Boot and maintenance procedures.

Print specified manual section on your terminal.

1.13. Computer-Aided Instruction

OLEARN A program for interpreting CAI scripts, plus scripts for learning about
UNIX/32V by using it.
0 Scripts for basic files and commands, editor, advanced files and commands,

EQN, MS macros, C programming language.

2. Languages

2.1. The C Language

DCC Compile and/or link edit programs in the C language. The UN1X/32V operat
ing system, most of the subsystems and C itself are written in C. For a full
description of C, read The C Programming Language, Brian W. Kernighan
and Dennis M. Ritchie, Prentice-Hall, 1978.
0 General purpose language designed for structured programming.
0 Data types include character, integer, float, double, pointers to all types,

functions returning above types, arrays of all types, structures and unions of
all types.

0 Operations intended to give machine-independent control of full machine
facility, including to-memory operations and pointer arithmetic.

0 Macro preprocessor for parameterized code and inclusion of standard files.
0 All procedures recursive, with parameters by value.
0 Machine-independent pointer manipulation.
0 Object code uses full addressing capability of the VAX-11.
0 Runtime library gives access to all system facilities.
0 Definable data types.

1-12 UNIX 32/V - Summary

DLINT

DCB

2.2. Fortran

DF77

DRATFOR

DSTRUCT

0 Block structure

Verifier for C programs. Reports questionable or nonportable usage such as:
Mismatched data declarations and procedure interfaces.
Nonportable type conversions.
Unused variables, unreachable code, no-effect operations.
Mistyped pointers.
Obsolete syntax.

0 Full cross-module checking of separately compiled programs.

A beautifier for C programs. Does proper indentation and placement of
braces.

A full compiler for ANSI Standard Fortran 77.
0 Compatible with C and supporting tools at object level.
0 Optional source compatibility with Fortran 66.
0 Free format source.
0 Optional subscript-range checking, detection of uninitialized variables.
0 All widths of arithmetic: 2- and 4-byte integer; 4- and 8-byte real; 8- and

16-byte complex.

Ratfor adds rational control structure a la C to Fortran.
0 Compound statements.
0 If-else, do, for, while, repeat-until, break, next statements.
0 Symbolic constants.
0 File insertion.
0 Free format source
0 Translation of relationals like >, > =.
0 Produces genuine Fortran to carry away.
0 May be used with F77.

Converts ordinary ugly Fortran into structured Fortran (i.e., Ratfor), using
statement grouping, if-else, while, for, repeat-until.

2.3. Other Algorithmic Languages

DDC

DBC

Interactive programmable desk calculator. Has named storage locations as
well as conventional stack for holding integers or programs.
0 Unlimited precision decimal arithmetic.
0 Appropriate treatment of decimal fractions.
0 Arbitrary input and output radices, in particular binary, octal, decimal and

hexadecimal.
0 Reverse Polish operators:

+ - *I
remainder, power, square root,
load, store, duplicate, clear,
print, enter program text, execute.

AC-like interactive interface to the desk calculator DC.
0 All the capabilities of DC with a high-level syntax.
0 Arrays and recursive functions.
0 Immediate evaluation of expressions and evaluation of functions upon call.
0 Arbitrary precision elementary functions: exp, sin, cos, atan.
0 Go-to-less programming.

UNIX 32/V - Summary 1-13

2.4. Macroprocessing

OM4 A general purpose macroprocessor.
0 Stream-oriented, recognizes macros anywhere in text.
0 Syntax fits with functional syntax of most higher-level languages.
0 Can evaluate integer arithmetic expressions.

2.5. Compiler-compilers

OYACC

OLEX

An LR(l)-based compiler writing system. During execution of resulting
parsers, arbitrary C functions may be called to do code generation or semantic
actions.
0 BNF syntax specifications.
0 Precedence relations.
0 Accepts formally ambiguous grammars with non-BNF resolution rules.

Generator of lexical analyzers. Arbitrary C functions may be called upon iso
lation of each lexical token.
0 Full regular expression, plus left and right context dependence.
0 Resulting lexical analysers interface cleanly with YACC parsers.

3. Text Processing

3.1. Document Preparation

OED

OPTX

D SPELL

OLOOK

OCRYPT

Interactive context editor. Random access to all lines of a file.
0 Find lines by number or pattern. Patterns may include: specified charac

ters, don't care characters, choices among characters, repetitions of these
constructs, beginning of line, end of line.

0 Add, delete, change, copy, move or join lines.
0 Permute or split contents of a line.
0 Replace one or all instances of a pattern within a line.
0 Combine or split files.
0 Escape to Shell (command language) during editing.
0 Do any of above operations on every pattern-selected line in a given range.
0 Optional encryption for extra security.

Make a permuted (key word in context) index.

Look for spelling errors by comparing each word in a document against a word
list.
0 25,000-word list includes proper names.
0 Handles common prefixes and suffixes.
0 Collects words to help tailor local spelling lists.

Search for words in dictionary that begin with specified prefix.

Encrypt and decrypt files for security.

3.2. Document Formatting

OTROFF

ONROFF Advanced typesetting. TROFF drives a Graphic Systems phototypesetter;
NROFF drives ascii terminals of all types. This summary was typeset using
TROFF. TROFF and NROFF are capable of elaborate feats of formatting,
when appropriately programmed. TROFF and NROFF accept the same input
language.

1-14 UNIX 32/V - Summary

0 Completely definable page format keyed to dynamically planted "inter
rupts" at specified lines.

0 Maintains several separately definable typesetting environments (e.g., one
for body text, one for footnotes, and one for unusually elaborate headings).

0 Arbitrary m~mber of output pools can be combined at will.
0 Macros with substitutable arguments, and macros invocable in mid-line.
0 Computation and printing of numerical quantities.
0 Conditioµal execution of macros.
0 Tabtihu layout facility.
0 Positions e~pressible in inches, centimeters, ems, points, machine units or

arithmetic combinations thereof.
0 Ac~ess to character-width computation for unusually difficult layout prob

lems.
0 Oyerstrikes, built-up brackets, horizontal and vertical line drawing.
0 Dynamic relative or absolute positioning and size selection, globally or at

the character level.
0 Can exploit the characteristics of the terminal being used, for approximating

special characters, reverse motions, proportional spacing, etc.

The Graphic Systems typesetter has a vocabulary of several 102-character fonts (4 simultane
ously) in 15 sizes. TROFF provides terminal output for rough sampling of the product.

NROFF will produce multicolumn output on terminals capable of reverse line feed, or through
the postprocessor COL.

High programming skill is required to exploit the formatting capabilities of TROFF and
NROFF, although unskilled personnel can easily be trained to enter documents according to
canned formats such as those provided by MS, below. TROFF and EQN are essentially ident
ical to NROFF and NEQN so it is usually possible to define interchangeable formats to pro
duce approximate proof copy on terminals before actual typesetting. The preprocessors MS,
TBL, and REFER are fully compatible with TROFF and NROFF.

OMS

DEQN

A standardized manuscript layout package for use with NROFF/TROFF.
This document was formatted with MS.
0 Page numbers and draft dates.
0 Automatically numbered subheads.
0 Footnotes.
0 Single or double column.
0 Paragraphing, display and indentation.
0 Numbered equations.

A mathematical typesetting preprocessor for TROFF. Translates easily read
able formulas, either in-line or displayed, into detailed typesetting instruc
tions. Formulas are written in a style like this:

sigma sup 2 -=- 1 over N sum from i=l to N (x sub i - x bar) sup 2

which produces:

a2 = - 1-f (x.-x ;2
N i-1 z

0 Automatic calculation of size changes for subscripts, sub-subscripts, etc.
0 Full vocabulary of Greek letters and special symbols, such as 'gamma',

'GAMMA', 'integral'.
0 Automatic calculation of large bracket sizes.
0 Vertical "piling" of formulae for matrices, conditional alternatives, etc.
0 Integrals, sums, etc., with arbitrarily complex limits.

ONEQN

OTBL

OREFER

OTC

OCOL

UNIX 32/V - Summary 1-15

0 Diacriticals: dots, double dots, hats, bars, etc.
0 Easily learned by nonprogrammers and mathematical typists.

A version of EQN for NROFF; accepts the same input language. Prepares for
mulas for display on any terminal that NROFF knows about, for example,
those based on Diablo printing mechanism.
0 Same facilities as EQN within graphical capability of terminal.

A preprocessor for NROFF /TROFF that translates simple descriptions of
table layouts and contents into detailed typesetting instructions.
0 Computes column widths.
0 Handles left- and right-justified columns, centered columns and decimal-

point alignment.
0 Places column titles.
0 Table entries can be text, which is adjusted to fit.
0 Can box all or parts of table.

Fills in bibliographic citations in a document from a data base (not supplied).
0 References may be printed in any style, as they occur or collected at the

end.
0 May be numbered sequentially, by name of author, etc.

Simulate Graphic Systems typesetter on Tektronix 4014 scope. Useful for
checking TROFF page layout before typesetting.

Canonicalize files with reverse line feeds for one-pass printing.

D DEROFF Remove all TROFF commands from input.

D CHECKEQ Check document for possible errors in EQN usage.

4. Information Handling

OSORT

OTSORT

OUNIQ

OTR

ODIFF

OCOMM

OJOIN

OGREP

Sort or merge ASCII files line-by-line. No limit on in1;mt size.
0 Sort up or down.
0 Sort lexicographically or on numeric key.
0 Multiple keys located by delimiters or by character position.
0 May sort upper case together with lower into dictionary order.
0 Optionally suppress duplicate data.

Topological sort - converts a partial order into a total order.

Collapse successive duplicate lines in a file into one line.
0 Publish lines that were originally unique, duplicated, or both.
0 May give redundancy count for each line.

Do one-to-one character translation according to an arbitrary code.
0 May coalesce selected repeated characters.
0 May delete selected characters.

Report line changes, additions and deletions necessary to bring two files into
agreement.
0 May produce an editor script to convert one file into another.
0 A variant compares two new versions against one old one.

Identify common lines in two sorted files. Output in up to 3 columns shows
lines present in first file only, present in both, and/or present in second only.

Combine two files by joining records that have identical keys.

Print all lines in a file that satisfy a pattern as used in the editor ED.

1-16 UNIX 32/V - Summary

OLOOK

owe
OSED

OAWK

5. Graphics

0 May print all lines that fail to match.
0 May print count of hits.
0 May print first hit in each file.

Binary search in sorted file for lines with specified prefix.

Count the lines, "words" (blank-separated strings) and characters in a file.

Stream-oriented version of ED. Can perform a sequence of editing operations
on each line of an input stream of unbounded length.
0 Lines may be selected by address or range of addresses.
0 Control flow and conditional testing.
0 Multiple output streams.
O Multi-line capability.

Pattern scanning and processing language. Searches input for patterns, and
performs actions on each line of input that satisfies the pattern.
0 Patterns include regular expressions, arithmetic and lexicographic condi-

tions, boolean combinations and ranges of these.
0 Data treated as string or numeric as appropriate.
0 Can break input into fields; fields are variables.
0 Variables and arrays (with non-numeric subscripts).
0 Full set of arithmetic operators and control flow.
0 Multiple output streams to files and pipes.
0 Output can be formatted as desired.
0 Multi-line capabilities.

The programs in this section are predominantly intended for use with Tektronix 4014 storage
scopes.

OGRAPH

OSPLINE

OPLOT

Prepares a graph of a set of input numbers.
0 Input scaled to fit standard plotting area.
0 Abscissae may be supplied automatically.
0 Graph may be labeled.
0 Control over grid style, line style, graph orientation, etc.

Provides a smooth curve through a set of points intended for GRAPH.

A set of filters for printing graphs produced by GRAPH and other programs
on various terminals. Filters provided for 4014, DASI terminals, Versatec
printer /plotter.

6. Novelties, Games, and Things That Didn't Fit Anywhere Else

D BACKGAMMON

OBCD

OCAL

A player of modest accomplishment.

Converts ascii to card-image form.

Print a calendar of specified month and year.

D CHING The I Ching. Place your own interpretation on the output.

D FORTUNE Presents a random fortune cookie on each invocation. Limited jar of cookies
included.

OUNITS Convert amounts between different scales of measurement. Knows hundreds
of units. For example, how many km/sec is a parsec/megayear?

UNIX 32/V - Summary 1-17

D ARITHMETIC

OQUIZ

OWUMP

Speed and accuracy test for number facts.

Test your knowledge of Shakespeare, Presidents, capitals, etc.

Hunt the wumpus, thrilling search in a dangerous cave.

D HANGMAN Word-guessing game. Uses a dictionary supplied with SPELL.

OFISH Children's card-guessing game.

UNIX Time-Sharing System 1-19

The UNIX Time-Sharing System*

D. M. Ritchie and K. Thompson

ABSTRACT

UNIXt is a general-purpose, multi-user, interactive operating system for
the larger Digital Equipment Corporation PDP-11 and the Interdata 8/32 com
puters. It offers a number of features seldom found even in larger operating
systems, including

A hierarchical file system incorporating demountable volumes,

ii Compatible file, device, and inter-process 1/0,

iii The ability to initiate asynchronous processes,

iv System command language selectable on a per-user basis,

v Over 100 subsystems including a dozen languages,

vi High degree of portability.

This paper discusses the nature and implementation of the file system and of
the user command interface.

1. INTRODUCTION

There have been four versions of the UNIX time-sharing system. The earliest (circa
1969-70) ran on the Digital Equipment Corporation PDP-7 and -9 computers. The second ver
sion ran on the unprotected PDP-11/20 computer. The third incorporated multiprogramming
and ran on the PDP-11/34, /40, /45, /60, and /70 computers; it is the one described in the pre
viously published version of this paper, and is also the most widely used today. This paper
describes only the fourth, current system that runs on the PDP-11/70 and the Interdata 8/32
computers. In fact, the differences among the various systems is rather small; most of the
revisions made to the originally published version of this paper, aside from those concerned
with style, had to do with details of the implementation of the file system.

Since PDP-11 UNIX became operational in February, 1971, over 600 installations have
been put into service. Most of them are engaged in applications such as computer science
education, the preparation and formatting of documents and other textual material, the collec
tion and processing of trouble data from various switching machines within the Bell System,
and recording and checking telephone service orders. Our own installation is used mainly for
research in operating systems, languages, computer networks, and other topics in computer
science, and also for document preparation.

Perhaps the most important achievement of UNIX is to demonstrate that a powerful
operating system for interactive use need not be expensive either in equipment or in human
effort: it can run on hardware costing as little as $40,000, and less than two man-years were
spent on the main system software. We hope, however, that users find that the most

* Copyright 1974, Association for Computing Machinery, Inc., reprinted by permission. This is a revised
version of an article that appeared in Communications of the ACM, 17, No. 7 (July 1974), pp. 365-375. That
article was a revised version of a paper presented at the Fourth ACM Symposium on Operating Systems Prin
ciples, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, October 15-17, 1973.
t UNIX is a trademark of Bell Laboratories.

1-20 UNIX Time-Sharing System

important characteristics of the system are its simplicity, elegance, and ease of use.

Besides the operating system proper, some major programs available under UNIX are

C compiler
Text editor based on QED1

Assembler, linking loader, symbolic debugger
Phototypesetting and equation setting programs2, 3

Dozens of languages including Fortran 77, Basic, Snobol, APL, Algol 68, M6, TMG,
Pascal

There is a host of maintenance, utility, recreation and novelty programs, all written locally.
The UNIX user community, which numbers in the thousands, has contributed many more pro
grams and languages. It is worth noting that the system is totally self-supporting. All UNIX
software is maintained on the system; likewise, this paper and all other documents in this
issue were generated and formatted by the UNIX editor and text formatting programs.

II. HARDWARE AND SOFTWARE ENVIRONMENT

The PDP-11/70 on which the Research UNIX system is installed is a 16-bit word (8-bit
byte) computer with 768K bytes of core memory; the system kernel occupies 90K bytes about
equally divided between code and data tables. This system, however, includes a very large
number of device drivers and enjoys a generous allotment of space for 1/0 buffers and system
tables; a minimal system capable of running the software mentioned above can require as little
as 96K bytes of core altogether. There are even larger installations; see the description of the
PWB/UNIX systems,4•3 for example. There are also much smaller, though somewhat restricted,
versions of the system. 3

Our own PDP-11 has two 200-Mb moving-head disks for file system storage and swap
ping. There are 20 variable-speed communications interfaces attached to 300- and 1200-baud
data sets, and an additional 12 communication lines hard-wired to 9600-baud terminals and
satellite computers. There are also several 2400- and 4800-baud synchronous communication
interfaces used for machine-to-machine file transfer. Finally, there is a variety of miscellane
ous devices including nine-track magnetic tape, a line printer, a voice synthesizer, a photo
typesetter, a digital switching network, and a chess machine.

The preponderance of UNIX software is written in the abovementioned C language. 5

Early versions of the operating system were written in assembly language, but during the sum
mer of 1973, it was rewritten in C. The size of the new system was about one-third greater
than that of the old. Since the new system not only became much easier to understand and to
modify but also included many functional improvements, including multiprogramming and the
ability to share reentrant code among several user programs, we consider this increase in size
quite acceptable.

III. THE FILE SYSTEM

The most important role of the system is to provide a file system. From the point of
view of the user, there are three kinds of files: ordinary disk files, directories, and special files.

3.1 Ordinary files

A file contains whatever information the user places on it, for example, symbolic or
binary (object) programs. No particular structuring is expected by the system. A file of text
consists simply of a string of characters, with lines demarcated by the newline character.
Binary programs are sequences of words as they will appear in core memory when the pro
gram starts executing. A few user programs manipulate files with more structure; for example,
the assembler generates, and the loader expects, an object file in a particular format. How
ever, the structure of files is controlled by the programs that use them, not by the system.

UNIX Time-Sharing System 1-21

3.2 Directories

Directories provide the mapping between the names of files and the files themselves, and
thus induce a structure on the file system as a whole. Each user has a directory of his own
files; he may also create subdirectories to contain groups of files conveniently treated together.
A directory behaves exactly like an ordinary file except that it cannot be written on by
unprivileged programs, so that the system controls the contents of directories. However, any
one with appropriate permission may read a directory just like any other file.

The system maintains several directories for its own use. One of these is the root direc
tory. All files in the system can be found by tradng a path through a chain of directories
until the desired file is reached. The starting point for such searches is often the root. Other
system directories contain all the programs provided for general use; that is, all the
commands. As will be seen, however, it is by no means necessary that a program reside in one
of these directories for it to be executed.

Files are named by sequences of 14 or fewer characters. When the name of a file is
specified to the system, it may be in the form of a path name, which is a sequence of directory
names separated by slashes, "/", and ending in a file name. If the sequence begins with a
slash, the search begins in the root directory. The name /alpha/beta/gamma causes the
system to search the root for directory alpha, then to search alpha for beta, finally to find
gamma in beta. gamma may be an ordinary file, a directory, or a special file. As a limit
ing case, the name "/" refers to the root itself.

A path name not starting with "/" causes the syste:µi to begin the search in the user's
current directory. Thus, the name alpha/beta specifies the file named beta in subdirectory
alpha of the current directory. The simplest kind of name, for example, alpha, refers to a
file that itself is found in the current directory. As another limiting case, the null file name
refers to the current directory.

The same non-directory file may appear in several directories under possibly different
names. This feature is called linking; a directory entry for a file is sometimes called a link.
The UNIX system differs from other systems in which linking is permitted in that all links to
a file have equal status. That is, a file does not exist within a particular directory; the direc
tory entry for a file consists merely of its name and a pointer to the information actually
describing the file. Thus a file exists independently of any directory entry, although in prac
tice a file is made to disappear along with the last link to it.

Each directory always has at least two entries. The name "." in each directory refers to
the directory itself. Thus a program may read the current directory under the name "."
without knowing its complete path name. The name " •• " by convention refers to the parent
of the directory in which it appears, that is, to the directory in which it was created.

The directory structure is constrained to have the form of a rooted tree. Except for the
special entries " . " and " •• ", each directory must appear as an entry in exactly one other
directory, which is its parent. The reason for this is to simplify the writing of programs that
visit subtrees of the directory structure, and more important, to avoid the separation of por
tions of the hierarchy. If arbitrary links to directories were permitted, it would be quite
difficult to detect when the last connection from the root to a directory was severed.

3.3 Special files

Special files constitute the most unusual feature of the UNIX file system. Each sup
ported 1/0 device is associated with at least one such file. Special files are read and written
just like ordinary disk files, but requests to read or write result in activation of the associated
device. An entry for each special file resides in directory /dev, although a link may be made
to one of these files just as it may to an ordinary file. Thus, for example, to write on a mag
netic tape one may write on the file /dev/mt. Special files exist for each communication line,
each disk, each tape drive, and for physical main memory. Of course, the active disks and the
memory special file are protected from indiscriminate access.

1-22 UNIX Time-Sharing System

There is a threefold advantage in treating I/0 devices this way: file and device I/0 are as
similar as possible; file and device names have the same syntax and meaning, so that a pro
gram expecting a file name as a parameter can be passed a device name; finally, special files
are subject to the same protection mechanism as regular files.

3.4 Removable file systems

Although the root of the file system is always stored on the same device, it is not neces
sary that the entire file system hierarchy reside on this device. There is a mount system
request with two arguments: the name of an existing ordinary file, and the name of a special
file whose associated storage volume (e.g., a disk pack) should have the structure of an
independent file system containing its own directory hierarchy. The effect of mount is to
cause references to the he:retofore ordinary file to ref er instead to the root directory of the file
system on the removable vo1ume. In effect, mount replaces a leaf of the hierarchy tree (the
ordinary file) by a whole new subtree (the hierarchy stored on the removable volume). After
the mount, there is virtually no distinction between files on the removable volume and those
in the permanent file system. In our installation, for example, the root directory resides on a
small partition of one of our disk drives, while the other drive, which contains the user's files,
is mounted by the system initialization sequence. A mountable file system is generated by
writing on its corresponding special file. A utility program is available to create an empty file
system, or one may simply copy an existing file system.

There is only one exception to the rule of identical treatment of files on different dev
ices: no link may exist between one file system hierarchy and another. This restriction is
enforced so as to avoid the elaborate bookkeeping that would otherwise be required to assure
removal of the links whenever the removable volume is dismounted.

3.5 Protection

Although the access control scheme is quite simple, it has some unusual features. Each
user of the system is assigned a unique user identification number. When a file is created, it
is marked with the user ID of its owner. Also given for new files is ~set of ten protection bits.
Nine of these specify independently read, write, and execute permission for the owner of the
file, for other members of his group, and for all remaining users.

If the tenth bit is on, the system will temporarily change the user idep.tification
(hereafter, user IQ) of the current user to that of the creator of the file whenever the file is
executed as a program. This change in user ID is effective only during the execution of the
program that calls for it. The set-user-ID feature provides for privileged programs that may
use files inaccessible to other users. For example, a program may keep an accounting file that
should neither be read nor changed except by the program itself. If the set-user-ID bit is on
for the program, it may access the file although this access might be forbidden to other pro
grams invoked by the given program's user. Since the actual user ID of the invoker of any pro
gram is always available, set-user-ID programs may take any measures desired to satisfy them
selves as to their invoker's credentials. This mechanism is used to allow users to execute the
carefully written commands that call privileged system entries. For example, there is a system
entry invokable only by the "super-user" (below) that creates an empty directory. As indi
cated above, directories are expected to have entries for "." and " .. ". The command which
creates a directory is owned by the super-user and has the set-user-ID bit set. After it checks
its invoker's authorization to create the specified directory, it creates it and makes the en'.tries
for "." and " .. ".

Because anyone may set the set-use:r-ID bit on one of his own files, this mechanism is
generally available without administrative interventio:µ. For example, this protection scheme
easily solves the MOO accounting problem posed by "A}eph-null."6

The system recognizes one particular user ID (that of the "super-user") as exempt from
the usual constraints on file access; thus (for example), programs may be written to dump and
reload the file system without unwanted interference from the protection system.

UNIX Time-Sharing System 1-23

3.6 1/0 calls

The system calls to do l/0 are designed to eliminate the differences between the various
devices and styles of access. There is no distinction between "random" and "sequential" l/0,
nor is any logical record size imposed by the system. The size of an ordinary file is deter
mined by the number of bytes written on it; no predetermination of the size of a file is neces
sary or possible.

To illustrate the essentials of 1/0, some of the basic calls are summarized below in an
anonymous language that will indicate the required parameters without getting into the
underlying complexities. Each call to the system may potentially result in an error return,
which for simplicity is not represented in the calling sequence.

To read or write a file assumed to exist already, it must be opened by the following call:

filep = open (name, flag)

where name indicates the name of the file. An arbitrary !_)ath name may be given. The flag
argument indicates whether the file is to be read, written, or "updated," that is, read and writ
ten simultaneously.

The returned value filep is called a file descriptor. It is a small integer used to identify
the file in subsequent calls to read, write, or otherwise manipulate the file.

To create a new file or completely rewrite an old one, there is a create system call that
creates the given file if it does not exist, or truncates it to zero length if it does exist; create
also opens the new file for writing and, like open, returns a file descriptor.

The file system maintains no locks visible to the user, nor is there any restriction on the
number of users who may have a file open for reading or writing. Although it is possible for
the contents of a file to become scrambled when two users write on it simultaneously, in prac
tice difficulties do not arise. We take the view that locks are neither necessary nor sufficient,
in our environment, to prevent interference between users of the same file. They are unneces
sary because we are not faced with large, single-file data bases maintained by independent
processes. They are insufficient because locks in the ordinary sense, whereby one user is
prevented from writing on a file that another user is reading, cannot prevent confusion when,
for example, both users are editing a file with an editor that makes a copy of the file being
edited.

There are, however, sufficient internal interlocks to maintain the logical consistency of
the file system when two users engage simultaneously in activities such as writing on the same
file, creating files in the same directory, or deleting each other's open files.

Except as indicated below, reading and writing are sequential. This means that if a par
ticular byte in the file was the last byte written (or read), the next 1/0 call implicitly refers to
the immediately following byte. For each open file there is a pointer, maintained inside the
system, that indicates the next byte to be read or written. If n bytes are read or written, the
pointer advances by n bytes.

Once a file is open, the following calls may be used:

n = read (filep, buffer, count)
n = write (filep, buff er, count)

Up to count bytes are transmitted between the file specified by filep and the byte array
specified by buffer. The returned value n is the number of bytes actually transmitted. In
the write case, n is the same as count except under exceptional conditions, such as 1/0
errors or end of physical medium on special files; in a read, however, n may without error be
less than count. If the read pointer is so near the end of the file that reading count charac
ters would cause reading beyond the end, only sufficient bytes are transmitted to reach the
end of the file; also, typewriter-like terminals never return more than one line of input. When
a read call returns with n equal to zero, the end of the file has been reached. For disk files
this occurs when the read pointer becomes equal to the current size of the file. It is possible

1-24 UNIX Time-Sharing System

to generate an end-of-file from a terminal by use of an escape sequence that depends on the
device used.

Bytes written affect only those parts of a file implied by the position of the write pointer
and the count; no other part of the file is changed. If the last byte lies beyond the end of the
file, the file is made to grow as needed.

To do random (direct-access) 1/0 it is only necessary to move the read or write pointer
to the appropriate location in the file.

location = lseek (filep, offset, base)

The pointer associated with filep is moved to a position offset bytes from the beginning of
the file, from the current position of the pointer, or from the end of the file, depending on
base. offset may be negative. For some devices (e.g., paper tape and terminals) seek calls
are ignored. The actual offset from the beginning of the file to which the pointer was moved
is returned in location.

There are several additional system entries having to do with 1/0 and with the file sys
tem that will not be discussed. For example: close a file, get the status of a file, change the
protection mode or the owner of a file, create a directory, make a link to an existing file, delete
a file.

IV. IMPLEMENTATION OF THE FILE SYSTEM

As mentioned in Section 3.2 above, a directory entry contains only a name for the associ
ated file and a pointer to the file itself. This pointer is an integer called the i-number (for
index number) of the file. When the file is accessed, its i-number is used as an index into a
system table (the i-list) stored in a known part of the device on which the directory resides.
The entry found thereby (the file's i-node) contains the description of the file:

the user and group-ID of its owner

ii its protection bits

iii the physical disk or tape addresses for the file contents

iv its size

v time of creation, last use, and last modification

vi the number of links to the file, that is, the number of times it appears in a directory

vii a code indicating whether the file is a directory, an ordinary file, or a special file.

The purpose of an open or create system call is to turn the path name given by the user
into an i-number by searching the explicitly or implicitly named directories. Once a file is
open, its device, i-number, and read/write pointer are stored in a system table indexed by the
file descriptor returned by the open or create. Thus, during a subsequent call to read or
write the file, the descriptor may be easily related to the information necessary to access the
file.

When a new file is created, an i-node is allocated for it and a directory entry is made
that contains the name of the file and the i-node number. Making a link to an existing file
involves creating a directory entry with the new name, copying the i-number from the original
file entry, and incrementing the link-count field of the i-node. Removing (deleting) a file is
done by decrementing the link-count of the i-node specified by its directory entry and erasing
the directory entry. If the link-count drops to 0, any disk blocks in the file are freed and the
i-node is de-allocated.

The space on all disks that contain a file system is divided into a number of 512-byte
blocks logically addressed from 0 up to a limit that depends on the device. There is space in
the i-node of each file for 13 device addresses. For nonspecial files, the first 10 device
addresses point at the first 10 blocks of the file. If the file is larger than 10 blocks, the 11 dev
ice address points to an indirect block containing up to 128 addresses of additional blocks in
the file. Still larger files use the twelfth device address of the i-node to point to a double-

UNIX Time-Sharing System 1-25

indirect block naming 128 indirect blocks, each pointing to 128 blocks of the file. If required,
the thirteenth device address is a triple-indirect block. Thus files may conceptually grow to
[(10+ 128+ 1282+ 1283)·512] bytes. Once opened, bytes numbered below 5120 can be read with
a single disk access; bytes in the range 5120 to 70,656 require two accesses; bytes in the range
70,656 to 8,459,264 require three accesses; bytes from there to the largest file (1,082,201,088)
require four accesses. In practice, a device cache mechanism (see below) proves effective in
eliminating most of the indirect fetches.

The foregoing discussion applies to ordinary files. When an 1/0 request is made to a file
whose i-node indicates that it is special, the last 12 device address words are immaterial, and
the first specifies an internal device name, which is interpreted as a pair of numbers
representing, respectively, a device type and subdevice number. The device type indicates
which system routine will deal with I/0 on that device; the subdevice number selects, for
example, a disk drive attached to a particular controller or one of several similar terminal
interfaces.

In this environment, the implementation of the mount system call (Section 3.4) is quite
straightforward. mount maintains a system table whose argument is the i-number and device
name of the ordinary file specified during the mount, and whose corresponding value is the
device name of the indicated special file. This table is searched for each i-number/device pair
that turns up while a path name is being scanned during an open or create; if a match is
found, the i-number is replaced by the i-number of the root directory and the device name is
replaced by the table value.

To the user, both reading and writing of files appear to be synchronous and unbuffered.
That is, immediately after return from a read call the data are available; conversely, after a
write the user's workspace may be reused. In fact, the system maintains a rather compli
cated buffering mechanism that reduces greatly the number of I/0 operations required to
access a file. Suppose a write call is made specifying transmission of a single byte. The sys
tem will search its buffers to see whether the affected disk block currently resides in main
memory; if not, it will be read in from the device. Then the affected byte is replaced in the
buffer and an entry is made in a list of blocks to be written. The return from the write call
may then take place, although the actual 1/0 may not be completed until a later time. Con
versely, if a single byte is read, the system determines whether the secondary storage block in
which the byte is located is already in one of the system's buffers; if so, the byte can be
returned immediately. If not, the block is read into a buffer and the byte picked out.

The system recognizes when a program has made accesses to sequential blocks of a file,
and asynchronously pre-reads the next block. This significantly reduces the running time of
most programs while adding little to system overhead.

A program that reads or writes files in units of 512 bytes has an advantage over a pro
gram that reads or writes a single byte at a time, but the gain is not immense; it comes mainly
from the avoidance of system overhead. If a program is used rarely or does no great volume
of I/0, it may quite reasonably read and write in units as small as it wishes.

The notion of the i-list is an unusual feature of UNIX. In practice, this method of organ
izing the file system has proved quite reliable and easy to deal with. To the system itself, one
of its strengths is the fact that each file has a short, unambiguous name related in a simple
way to the protection, addressing, and other information needed to access the file. It also per
mits a quite simple and rapid algorithm for checking the consistency of a file system, for
example, verification that the portions of each device containing useful information and those
free to be allocated are disjoint and together exhaust the space on the device. This algorithm
is independent of the directory hierarchy, because it need only scan the linearly organized i
list. At the same time the notion of the i-list induces certain peculiarities not found in other
file system organizations. For example, there is the question of who is to be charged for the
space a file occupies, because all directory entries for a file have equal status. Charging the
owner of a file is unfair in general, for one user may create a file, another may link to it, and
the first user may delete the file. The first user is still the owner of the file, but it should be

1-26 UNIX Time-Sharing System

charged to the second user. The simplest reasonably fair algorithm seems to be to spread the
charges equally among users who have links to a file. Many installations avoid the issue by
not charging any fees at all.

V. PROCESSES AND IMAGES

An image is a computer execution environment. It includes a memory image, general
register values, status of open files, current directory and the like. An image is the current
state of a pseudo-computer.

A process is the execution of an image. While the processor is executing on behalf of a
process, the image must reside in main memory; during the execution of other processes it
remains in main memory unless the appearance of an active, higher-priority process forces it
to be swapped out to the disk.

The user-memory part of an image is divided into three logical segments. The program
text segment begins at location 0 in the virtual address space. During execution, this segment
is write-protected and a single copy of it is shared among all processes executing the same
program. At the first hardware protection byte boundary above the program text segment in
the virtual address space begins a non-shared, writable data segment, the size of which may be
extended by a system call. Starting at the highest address in the virtual address space is a
stack segment, which automatically grows downward as the stack pointer fluctuates.

5.1 Processes

Except while the system is bootstrapping itself into operation, a new process can come
into existence only-by use of the fork system call:

processid = fork ()

When fork is executed, the process splits into two independently executing processes. The
two processes have independent copies of the original memory image, and share all open files.
The new processes differ only in that one is considered the parent process: in the parent, the
returned processid actually identifies the child process and is never 0, while in the child, the
returned value is always 0.

Because the values returned by fork in the parent and child process are distinguishable,
each process may determine whether it is the parent or child.

5.2 Pipes

Processes may communicate with related processes using the same system read and
write calls that are used for file-system I/0. The call:

filep = pipe ()

returns a file descriptor filep and creates an inter-process channel called a pipe. This chan
nel, like other open files, is passed from parent to child process in the image by the fork call.
A read using a pipe file descriptor waits until another process writes using the file descriptor
for the same pipe. At this point, data are passed between the images of the two processes.
Neither process need know that a pipe, rather than an ordinary file, is involved.

Although inter-process communication via pipes is a quite valuable tool (see Section 6.2),
it is not a completely general mechanism, because the pipe must be set up by a common
ancestor of the processes involved.

5.3 Execution of programs

Another major system primitive is invoked by

execute(file, arg1, arg2, ..• , argn)

which requests the system to read in and execute the program named by file, passing it string

UNIX Time-Sharing System 1-29

transliteration, selection of lines according to a pattern, sorting of the input, and encryption
and decryption.

6.3 Command separators; multitasking

Another feature provided by the shell is relatively straightforward. Commands need not
be on different lines; instead they may be separated by semicolons:

ls; ed

will first list the contents of the current directory, then enter the editor.

A related feature is more interesting. If a command is followed by "&," the shell will
not wait for the command to finish before prompting again; instead, it is ready immediately to
accept a new command. For example:

as source >output &

causes source to be assembled, with diagnostic output going to output; no matter how long
the assembly takes, the shell returns immediately. When the shell does not wait for the com
pletion of a command, the identification number of the process running that command is
printed. This identification may be used to wait for the completion of the command or to ter
minate it. The"&" may be used several times in a line:

as source >output & ls >files &

does both the assembly and the listing in the background. In these examples, an output file
other than the terminal was provided; if this had not been done, the outputs of the various
commands would have been intermingled.

The shell also allows parentheses in the above operations. For example:

(date; ls) >x &

writes the current date and time followed by a list of the current directory onto the file x.
The shell also returns immediately for another request.

6.4 The shell as a command; command files

The shell is itself a command, and may be called recursively. Suppose file tryout con
tains the lines:

as source
mv a.out testprog
testprog

The mv command causes the file a.out to be renamed testprog. a.out is the (binary) output
of the assembler, ready to be executed. Thus if the three lines above were typed on the key
board, source would be assembled, the resulting program renamed testprog, and testprog
executed. When the lines are in tryout, the command:

sh <tryout

would cause the shell sh to execute the commands sequentially.

The shell has further capabilities, including the ability to substitute parameters and to
construct argument lists from a specified subset of the file names in a directory. It also pro
vides general conditional and looping constructions.

6.5 Implementation of the shell

The outline of the operation of the shell can now be understood. Most of the time, the
shell is waiting for the user to type a command. When· the newline character ending the line
is typed, the shell's read call returns. The shell analyzes the command line, putting the argu
ments in a form appropriate for execute. Then fork is called. The child process, whose

1-30 UNIX Time-Sharing System

code of course is still that of the shell, attempts to perform an execute with the appropriate
arguments. If successful, this will bring in and start execution of the program whose name
was given. Meanwhile, the other process resulting from the fork, which is the parent process,
waits for the child process to die. When this happens, the shell knows the command is
finished, so it types its prompt and reads the keyboard to obtain another command.

Given this framework, the implementation of background processes is trivial; whenever a
command line contains "&," the shell merely refrains from waiting for the process that it
created to execute the command.

Happily, all of this mechanism meshes very nicely with the notion of standard input and
output files. When a process is created by the fork primitive, it inherits not only the memory
image of its parent but also all the files currently open in its parent, including those with file
descriptors 0, 1, and 2. The shell, of course, uses these files to read command lines and to
write its prompts and diagnostics, and in the ordinary case its children-the command
programs-inherit them automatically. When an argument with"<" or">" is given, however,
the offspring process, just before it performs execute, makes the standard 1/0 file descriptor
(O or 1, respectively) refer to the named file. This is easy because, by agreement, the smallest
unused file descriptor is assigned when a new file is opened (or created); it is only necessary
to close file 0 (or 1) and open the named file. Because the process in which the command pro
gram runs simply terminates when it is through, the association between a file specified after
"<" or ">" and file descriptor 0 or 1 is ended automatically when the process dies. Therefore
the shell need not know the actual names of the files that are its own standard input and out
put, because it need never reopen them.

Filters are straightforward extensions of standard I/0 redirection with pipes used instead
of files.

In ordinary circumstances, the main loop of the shell never terminates. (The main loop
includes the branch of the return from fork belonging to the parent process; that is, the
branch that does a wait, then reads another command line.) The one thing that causes the
shell to terminate is discovering an end-of-file condition on its input file. Thus, when the
shell is executed as a command with a given input file, as in:

sh <comfile

the commands in comfile will be executed until the end of comfile is reached; then the
instance of the shell invoked by sh will terminate. Because this shell process is the child of
another instance of the shell, the wait executed in the latter will return, and another com
mand may then be processed.

6.6 Initialization

The instances of the shell to which users type commands are themselves children of
another process. The last step in the initialization of the system is the creation of a single
process and the invocation (via execute) of a program called init. The role of init is to
create one process for each terminal channel. The various subinstances of init open the
appropriate terminals for input and output on files 0, 1, and 2, waiting, if necessary, for carrier
to be established on dial-up lines. Then a message is typed out requesting that the user log
in. When the user types a name or other identification, the appropriate instance of init wakes
up, receives the log-in line, and reads a password file. If the user's name is found, and if he is
able to supply the correct password, init changes to the user's default current directory, sets
the process's user ID to that of the person logging in, and performs an execute of the shell.
At this point, the shell is ready to receive commands and the logging-in protocol is complete.

Meanwhile, the mainstream path of init (the parent of all the subinstances of itself that
will later become shells) does a wait. If one of the child processes terminates, either because
a shell found an end of file or because a user typed an incorrect name or password, this path
of init simply recreates the defunct process, which in turn reopens the appropriate input and
output files and types another log-in message. Thus a user may log out simply by typing the

UNIX Time-Sharing System 1-27

arguments arg1 , arg2 , ••• , argn. All the code and data in the process invoking execute is
replaced from the file, but open files, current directory, and inter-process relationships are
unaltered. Only if the call fails, for example because file could not be found or because its
execute-permission bit was not set, does a return take place from the execute primitive; it
resembles a "jump" machine instruction rather than a subroutine call.

5.4 Process synchronization

Another process control system call:

processid = wait (status)

causes its caller to suspend execution until one of its children has completed execution. Then
wait returns the processid of the terminated process. An error return is taken if the calling
process has no descendants. Certain status from the child process is also available.

5.5 Termination

Lastly:

exit (status)

terminates a process, destroys its image, closes its open files, and generally obliterates it. The
parent is notified through the wait primitive, and status is made available to it. Processes
may also terminate as a result of various illegal actions or user-generated signals (Section VII
below).

VI. THE SHELL

For most users, communication with the system is carried on with the aid of a program
called the shell. The shell is a command-line interpreter: it reads lines typed by the user and
interprets them as requests to execute other programs. (The shell is described fully else
where, 3 so this section will discuss only the theory of its operation.) In simplest form, a com
mand line consists of the command name followed by arguments to the command, all
separated by spaces:

command arg1 arg2 .•. argn

The shell splits up the command name and the arguments into ~parate strings. Then a file
with name command is sought; command may be a path name including the "/"character
to specify any file in the system. If command is found, it is brought into memory and exe
cuted. The arguments collected by the shell are accessible to the command. When the com
mand is finished, the shell resumes its own execution, and indicates its readiness to accept
another command by typing a prompt character.

If file command cannot be found, the shell generally prefixes a string such as /bin/ to
command and attempts again to find the file. Directory I bin contains commands intended
to be generally used. (The sequence of directories to be searched may be changed by user
request.)

6.1 Standard I/O

The discussion of 1/0 in Section III above seems to imply that every file used by a pro
gram must be opened or created by the program in order to get a file descriptor for the file.
Programs executed by the shell, however, start off with three open files with file descriptors 0,
1, and 2. As such a program begins execution, file 1 is open for writing, and is best under
stood as the standard output file. Except under circumstances indicated below, this file is the
user's terminal. Thus programs that wish to write informative information ordinarily use file
descriptor 1. Conversely, file 0 starts off open for reading, and programs that wish to read
messages typed by the user read this file.

1-28 UNIX Time-Sharing System

The shell is able to change the standard assignments of these file descriptors from the
user's terminal printer and keyboard. If one of the arguments to a command is prefixed by
">", file descriptor 1 will, for the duration of the command, refer to the file named after the
">". For example:

ls

ordinarily lists, on the typewriter, the names of the files in the current directory. The com
mand:

ls >there

creates a file called there and places the listing there. Thus the argument >there means
"place output on there." On the other hand:

ed

ordinarily enters the editor, which takes requests from the user via his keyboard. The com
mand

ed <script

interprets script as a file of editor commands; thus <script means "take input from script."

Although the file name following "<" or ">" appears to be an argument to the com
mand, in fact it is interpreted completely by the shell and is not passed to the command at
all. Thus no special coding to handle 1/0 redirection is needed within each command; the
command need merely use the standard file descriptors 0 and 1 where appropriate.

File descriptor 2 is, like 1file 1, ordinarily associated with the terminal output stream.
When an output-diversion request with ">" is specified, file 2 remains attached to the termi
nal, so that commands may produce diagnostic messages that do not silently end up in the
output file.

6.2 Filters

An extension of the standard 1/0 notion is used to direct output from one command to
the input of another. A sequence of commands separated by vertical bars causes the shell to
execute all the commands simultaneously and to arrange that the standard output of each
command be delivered to the standard input of the next command in the sequence. Thus in
the command line:

ls I pr -2 I opr

ls lists the names of the files in the current directory; its output is passed to pr, which
paginates its input with dated headings. (The argument "-2" requests double-column output.)
Likewise, the output from pr is input to opr; this command spools its input onto a file for
off-line printing.

This procedure could have been carried out more clumsily by:

ls >templ
pr -2 <templ >temp2
opr <temp2

followed by removal of the temporary files. In the absence of the ability to redirect output
and input, a still clumsier method would have been to require the ls command to accept user
requests to paginate its output, to print in multi-column format, and to arrange that its out
put be delivered off-line. Actually it would be surprising, and in fact unwise for efficiency rea
sons, to expect authors of commands such as ls to provide such a wide variety of output
options.

A program such as pr which copies its standard input to its standard output (with pro
cessing) is called a filter. Some filters that we have found useful perform character

UNIX Time-Sharing System 1-31

end-of-file sequence to the shell.

6. 7 Other programs as shell

The shell as described above is designed to allow users full access to the facilities of the
system, because it will invoke the execution of any program with appropriate protection mode.
Sometimes, however, a different interface to the system is desirable, and this feature is easily
arranged for.

Recall that after a user has successfully logged in by supplying a name and password,
init ordinarily invokes the shell to interpret command lines. The user's entry in the password
file may contain the name of a program to be invoked after log-in instead of the shell. This
program is free to interpret the user's messages in any way it wishes.

For example, the password file entries for users of a secretarial editing system might
specify that the editor ed is to be used instead of the shell. Thus when users of the editing
system log in, they are inside the editor and can begin work immediately; also, they can be
prevented from invoking programs not intended for their use. In practice, it has proved desir
able to allow a temporary escape from the editor to execute the formatting program and other
utilities.

Several of the games (e.g., chess, blackjack, 3D tic-tac-toe) available on the system illus
trate a much more severely restricted environment. For each of these, an entry exists in the
password file specifying that the appropriate game-playing program is to be invoked instead of
the shell. People who log in as a player of one of these games find themselves limited to the
game and unable to investigate the (presumably more interesting) offerings of the UNIX sys
tem as a whole.

VII. TRAPS

The PDP-11 hardware detects a number of program faults, such as references to non
existent memory, unimplemented instructions, and odd addresses used where an even address
is required. Such faults cause the processor to trap to a system routine. Unless other
arrangements have been made, an illegal action causes the system to terminate the process
and to write its image on file core in the current directory. A debugger can be used to deter
mine the state of the program at the time of the fault.

Programs that are looping, that produce unwanted output, or about which the user has
second thoughts may be halted by the use of the interrupt signal, which is generated by typ
ing the "delete" character. Unless special action has been taken, this signal simply causes the
program to cease execution without producing a core file. There is also a quit signal used to
force an image file to be produced. Thus programs that loop unexpectedly may be halted and
the remains inspected without prearrangement.

The hardware-generated faults and the interrupt and quit signals can, by request, be
either ignored or caught by a process. For example, the shell ignores quits to prevent a quit
from logging the user out. The editor catches interrupts and returns to its command level.
This is useful for stopping long printouts without losing work in progress (the editor manipu
lates a copy of the file it is editing). In systems without floating-point hardware, unimple
mented instructions are caught and floating-point instructions are interpreted.

VIII. PERSPECTIVE

Perhaps paradoxically, the success of the UNIX system is largely due to the fact that it
was not designed to meet any predefined objectives. The first version was written when one of
us (Thompson), dissatisfied with the available computer facilities, discovered a little-used
PDP-7 and set out to create a more hospitable environment. This (essentially personal) effort
was sufficiently successful to gain the interest of the other author and several colleagues, and
later to justify the acquisition of the PDP-11/20, specifically to support a text editing and for
matting system. When in turn the 11/20 was outgrown, the system had proved useful enough

1-32 UNIX Time-Sharing System

to persuade management to invest in the PDP-11/45, and later in the PDP-11/70 and Interdata
8/32 machines, upon which it developed to its present form. Our goals throughout the effort,
when articulated at all, have always been to build a comfortable relationship with the machine
and to explore ideas and inventions in operating systems and other software. We have not
been faced with the need to satisfy someone else's requirements, and for this freedom we are
grateful.

Three considerations that influenced the design of UNIX are visible in retrospect.

First: because we are programmers, we naturally designed the system to make it easy to
write, test, and run programs. The most important expression of our desire for programming
convenience was that the system was arranged for interactive use, even though the original
version only supported one user. We believe that a properly designed interactive system is
much more productive and satisfying to use than a "batch" system. Moreover, such a system
is rather easily adaptable to noninteractive use, while the converse is not true.

Second: there have always been fairly severe size constraints on the system and its
software. Given the partially antagonistic desires for reasonable efficiency and expressive
power, the size constraint has encouraged not only economy, but also a certain elegance of
design. This may be a thinly disguised version of the "salvation through suffering" philoso
phy, but in our case it worked.

Third: nearly from the start, the system was able to, and did, maintain itself. This fact
is more important than it might seem. If designers of a system are forced to use that system,
they quickly become aware of its functional and superficial deficiencies and are strongly
motivated to correct them before it is too late. Because all source programs were always avail
able and easily modified on-line, we were willing to revise and rewrite the system and its
software when new ideas were invented, discovered, or suggested by others.

The aspects of UNIX discussed in this paper exhibit clearly at least the first two of these
design considerations. The interface to the file system, for example, is extremely convenient
from a programming standpoint. The lowest possible interface level is designed to eliminate
distinctions between the various devices and files and between direct and sequential access.
No large "access method" routines are required to insulate the programmer from the system
calls; in fact, all user programs either call the system directly or use a small library program,
less than a page long, that buffers a number of characters and reads or writes them all at once.

Another important aspect of programming convenience is that there are no "control
blocks" with a complicated structure partially maintained by and depended on by the file sys
tem or other system calls. Generally speaking, the contents of a program's address space are
the property of the program, and we have tried to avoid placing restrictions on the data struc
tures within that address space.

Given the requirement that all programs should be usable with any file or device as
input or output, it is also desirable to push device-dependent considerations into the operating
system itself. The only alternatives seem to be to load, with all programs, routines for dealing
with each device, which is expensive in space, or to depend on some means of dynamically
linking to the routine appropriate to each device when it is actually needed, which is expen
sive either in overhead or in hardware.

Likewise, the process-control scheme and the command interface have proved both con
venient and efficient. Because the shell operates as an ordinary, swappable user program, it
consumes no "wired-down" space in the system proper, and it may be made as powerful as
desired at little cost. In particular, given the framework in which the shell executes as a pro
cess that spawns other processes to perform commands, the notions of I/0 redirection, back
ground processes, command files, and user-selectable system interfaces all become essentially
trivial to implement.

UNIX Time-Sharing System 1-33

In:fluences

The success of UNIX lies not so much in new inventions but rather in the full exploita
tion of a carefully selected set of fertile ideas, and especially in showing that they can be keys
to the implementation of a small yet powerful operating system.

The fork operation, essentially as we implemented it, was present in the GENIE time
sharing system. 7 On a number of points we were influenced by Multics, which suggested the
particular form of the 1/0 system calls8 and both the name of the shell and its general func
tions. The notion that the shell should create a process for each command was also suggested
to us by the early design of Multics, although in that system it was later dropped for efficiency
reasons. A similar scheme is used by TENEX. 9

IX. STATISTICS

The following numbers are presented to suggest the scale of the Research UNIX opera
tion. Those of our users not involved in document preparation tend to use the system for pro
gram development, especially language work. There are few important "applications" pro
grams.

Overall, we have today:

125
33

1,630
28,300

301,700

user population
maximum simultaneous users
directories
files
512-byte secondary storage blocks used

There is a "background" process that runs at the lowest possible priority; it is used to soak up
any idle CPU time. It has been used to produce a million-digit approximation to the constant
e, and other semi-infinite problems. Not counting this background work, we average daily:

X. ACKNOWLEDGMENTS

13,500
9.6
230
62

240

commands
CPU hours
connect hours
different users
log-ins

The contributors to UNIX are, in the traditional but here especially apposite phrase, too
numerous to mention. Certainly, collective salutes are due to our colleagues in the Computing
Science Research Center. R. H. Canaday contributed much to the basic design of the file sys
tem. We are particularly appreciative of the inventiveness, thoughtful criticism, and constant
support of R. Morris, M. D. Mcilroy, and J. F. Ossanna.

References

1. L. P. Deutsch and B. W. Lampson, "An online editor," Comm. Assoc. Comp. Mach., vol.
10, no. 12, pp. 793-799, 803, December 1967.

2. B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm.
Assoc. Comp. Mach., vol. 18, pp. 151-157, Bell Laboratories, Murray Hill, New Jersey,
March 1975.

3. This issue, B. W. Kernighan, M. E. Lesk, and J. F. Ossanna, "UNIX Time-Sharing Sys
tem: Document Preparation," Bell Sys. Tech. J., vol. 57, no. 6, pp. 2115-2135, 1978.

1-34 UNIX Time-Sharing System

4. T. A. Dolotta and J. R. Mashey, "An Introduction to the Programmer's Workbench,"
Proc. 2nd Int. Conf. on Software Engineering, pp. 164-168, October 13-15, 1976.

5. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall,
Englewood Cliffs, New Jersey, 1978.

6. Aleph-null, "Computer Recreations," Software Practice and Experience, vol. 1, no. 2,
pp. 201-204, April-June 1971.

7. L. P. Deutsch and B. W. Lampson, "SDS 930 time-sharing system preliminary reference
manual," Doc. 30.10.10, Project GENIE, Univ. Cal. at Berkeley, April 1965.

8. R. J. Feiertag and E. I. Organick, "The Multics input-output system," Proc. Third Sym
posium on Operating Systems Principles, pp. 35-41, October 18-20, 1971..

9. D. G. Bobrow, J. D. Burchfiel, D. L. Murphy, and R. S. Tomlinson, "TENEX, a Paged
Time Sharing System for the PDP-10," Comm. Assoc. Comp. Mach., vol. 15, no. 3, pp.
135-143, March 1972.

Introduction 2-1

PART 2: GETTING STARTED

The following four articles will help you begin using the ULTRIX-32 system quickly and pro
ductively. "UNIX for Beginners," by Kernighan, is for all beginners; it's essential. Be sure
to read this article before going on to anything else in the UL TRIX-32 system. The article on
mail comes next in importance, since the mail utility lets you exchange messages with other
people using the system. And the articles on the be and de desk calculator utilities will get
you started using some of the interactive math capabilities of the ULTRIX-32 system.

UNIX for Beginners

This article explains UL TRIX-32 system concepts and tells how to use the major features of
the software system. If you want to get going fast, log in to an UL TRIX-32 system, and
experiment with the commands shown in the examples as you read along. The article intro
duces:

• Using dial-up and hard-wired terminals to communicate with ULTRIX-32 (UNIX)

• Logging in

• Using simple commands and command options

• Creating, printing, and displaying files

• Listing directory contents

• Finding your way through directory hierarchies

• Using scripts to automate command sequences

• Redirecting process output to files instead of to a terminal

• Using pipes to coordinate and combine tasks

• Using the text formatting packages

• Preparing a bibliography

• Searching files for a character string

• Programming in C and other languages: guidelines

While not up-to-date, the UNIX reading list supplied at the end of the article is useful; many
of the items referenced are included in this document set.

NOTE
UL TRIX-32 implements some commands differently from the ways
explained in the article. Specifically:

CTRL/C
CTRL/U
<delete character>

The default interrupt command.
The default delete line command.
The default delete command.

2-2 Introduction

The "Mail Reference Manual," by Shoens, offers a tutorial format, like "UNIX for
Beginners." It tells you how to use each feature of the mail utility, including:

• Sending and receiving messages

• Saving or disposing of old messages

• Maintaining message folders

• Leaving and reentering the mail utility in the middle of a job

• Sending mail across a network

• Using aliases to simplify message distribution

In addition, the article on mail is a complete reference manual. It defines all mail commands,
custom options, command-line options, and the standard message format. Mail is the default
mailer for C Shell users.

Desk Calculator Utilities

ULTRIX-32 offers two desk calculator utilities: be and de. Both utilities can take input from
the keyboard and from program files, and both perform mathematical functions. Be is easier
to use than de, however, because it operates at a higher programming level than de.

BC allows you to enter data and commands in a conventional format similar to the formats of
BASIC and C. The article entitled "BC - An Arbitrary Precision Desk-Calculator Language,"
by Cherry and Morris, gives rules for using be and some good examples. It explains be:

Math capabilities
Precision capabilities
Function definition and use
One dimensional arrays
Flow control
Operator symbols consistent with C
Library functions for trigonometry, logarithms, exponentiation, and Bessel functions

"DC - An Interactive Desk Calculator," also by Cherry and Morris, lists the rules and func
tions of the de utility, but examples are few. The article explains the use of a push-down stack
for calculations and data manipulation. Only data stored on the stack is a\\ailable for opera
tions. The authors list commands and programming features and explain the internal
representation and manipulation of numbers.

The be utility is layered on de: de interprets the output of the be compiler. This relationship
is transparent to users, but significant if you are choosing between the two utilities. Be is the
practical choice for most users, because it really does resemble a desk calculator; de is closer to
an assembly language than a calculator, and as such it is a tool for sophisticated users.

UNIX For Beginners 2-3

UNIX For Beginners - Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill. New Jersey 079i-'

INTRODUCTION
From the user"s point of view. the U~lX

operatina system is e:isy to learn Jnd use. and
presentS few of the usual impedimencs co jettini
:he job done. It is hard. however. for the
beginner to know where to swt. and how to
make the best use of the facilities available. The
purpose or this introduction is to nef p new 1.1sers
1et used co the main ide:is of the UNIX system
and start making eff'ective 1.lSe of it quic1dy.

You should have a couple of other docu
mentS with you ror easy reference as you read
this one. The most impor~nt · is The Ii.VIX
ProgramtMr ·s Manual~ it" s often e:isier to u:U you
co read about something in the manual than to
repeat itS contents here. The other uaeful doc:u·
ment is A Tc11orial lnmJdu~t1011 ro rh' UNI.'(Tt.'ft

!diror. which will teU you how to use the edhor
to set text - programs .. data. documentS - into
the computer.

A word of warning: the UNIX system has
become quite popular. and there ~re several
major variancs in widespre:id use. Of course
details also change with time. So although the
basic structure of UNIX ~nd !tow to use it is com·
mon to all versions. there will certainly be a few
thinas which are ditf erent on your sYStem from
what is described ltere. We have tried to minim·
ize the problem. but be ~ware of iL ln QSes of
doubt. this paper describes Version 1 UNIX.

This paper ltas five sections:

l. Oe=tting Started: How to log in. how to cype.
what to do about mistakes in typina. how to
log out. Some of this is dependent on which
system you log into (phone numbers. for
example) and what terminal you use~ so this
sei:tion must necessarily be supplemented by
local information.

2. Day-to-day U~e: Things you need every day
to use the system elf ectiveiy: generally use·
ful commands~ the file system.

J. Document Preparation: Preparing manu·
script! is one of the most common uses for
UNIX systems. This s~tion contains a.dvic::~
but not extensive instrUc:tions on any of the
rormatting cools.

4. Writing Programs: UNIX is ln e~ceflent sys
tem ror developing programs. This se~:ion
talks about some of the tools. but J.gain is
not a tutorial in any of the progr:imming
lan1uages provided by the system.

S. A UNIX Re:iding List. An annotated
bibliography of ctocumentS chat new users
should be aware of.

I. GETTING STARTED

Loeainc In
You must have a UNIX login name. which

you on get from whoever administers y.our sys
tem. You also need to !<now the phone number.
unless your system uses permanently connected
terminals. The UNIX system is c:ipable of deal
ing with a wide variety of terminals: Terminet
Joo·s: Execuport. TI and similar portables: video
<CRT> terminals like the HP2640. etc.~ i1ign·
pric:d gra?hics terminals like the Tektroni:<
40l4: plotting terminals like those from OSI and
DASI: and even the venerable Tete:ype in ics
various forms. But note: UNIX is strongly
oriented towards devices with lowf'r ':ase. If your
terminal produces only upper ~ase (e.~.. model
33 Teietype. some video and portable terminals).
life will be so difficult that you shoutd look for
another terminaJ.

Be sure to set the switches appro~riate!y on
your device. Switches that might need to be
adjusted inc!ude the speed. upper/lower .:ase
mode. full duple~. even parity, and any others
that loc:::it wisdom advises. Establish a connec
tion using whatever magic is needed for your ter
minaJ: this may invoive diaJing J telephone cail
or merely flipping a swiu:h. In either ~~se. L:NIX
shouJd type ··t~in:·· at you. If it types garbage.
you may be at the wrong speed~ checK the
switches. If that fails. push the .. bre:ik.. or

2-4 UNIX For Beginners

"interrupt .. key a few times. slowly. If that fails
to produce a login message. consult a guru.

When you get a loaln: message. type your
login name in Iowa ca-. Follow it by a
ilETUR.N; the system will not do anythina until
you type a RETURN. IC a password is required.
you will be asked for it. and (if possible) printing
wili be turned off while you type it. Don't forget
RETURN.

The culmination of your login efforts is a
"prompt character ... a sinale character that indi
cates that the system is ready to accept com
mands from you. The promp\ c!1aracter is usu
ally a dollar sign S or a percent sign ~. CY ou
may also get a message of the day just before the
prompt character, or a notification that you have
mail.) •

Typlna Commands

Once you've seen the prompt character. you
can type commands. which are requests that the
system do something. Try typing

date

followed by RETURN. You should get back
something like

Mon Jan 16 14:17:10 EST 1'78

Don't forget the RETURN after the command. or
nothing will happen. If you think you're being
i1nored. type a RETURN; something should hap
pen. RETURN won•t be mentioned again, but
don't forget it - it has to be there at the end of
each line.

Another command you might try is who.
which tells you everyone who is currently logged
in:

who

gives something like

mb ttJ01
ski tty05
cam ttrll

Jan 16
Jan 16
Jan 16

09:11
09:33
13:07

The time is when the user logged in; 0 ttyxx .. is
the system's idea of what terminal the user is on.

If you make a mistake typing the command
name. and ref er to a non-existent command, you
will be told. For example, if you type

whom

you will be told

whom: not found

Of course. if you inadvertently type the name of
some other command. it will run. with more or
less mysterious results.

Strance Terminal BehaYIOr

Sometimes you can get into a state where
your terminal acts strangely. For example. each
letter may be typed twice, or the RETtJRN may
not cause a line reed or a return to

1
the left mar·

gin. You can often fix this by logging out and
logging back in. Or you can read the description
of. the command stty in section I of the manual.
To 1et intelligent treatment of tab characters
(which are much used in UNIX) if your terminal
doesn't have tabs, type the command

stty -tabs

and the system will convert each tab into the
right number of blanks for you. If your terminal
does have computer-settable tabs. the command
tabs will set the stops correctly for you.

Mistakes In Typinc

If you make a typing mistake, and see it
before RETURN has been typed. there are two
ways to recover. The sharp-character # erases
the last character typed; in fact successive uses of
erase characters back to the beginning of the
line (but not beyond). So if you type badly, you
can correct as you go:

dd#atte##e

is the same as elate.

The at-sign @ erases all of the characters
typed so far on the current input line. so if the
line is irretrievably fouled up, type an @ and
start the line over.

What if you must enter a sharp or at-sign as
part of the text? Ir you precede either # or @

by a backslash \. it loses its erase meaning. So
to enter a sharp or at-sign in something. type \#
or \@. The system will always echo a newline at
you after your at-sign. even if preceded by a
backslash. Don· t worry - the at-sign has been
recorded.

To erase a backslash. you have to type two
sharps or two at-signs, as in \##. The backslash
is used extensively in UNIX to indicate that the
following character is in some way special.

Read-ahead

UNIX has full read·ahead. which means that
you can type as fast as you want. whenever you
want. even when some command is typing at
you. If you type during output, your input char·
acters will appear intermixed with the output
characters. but they will be stored away and
interpreted in the correct order. So you can type
several commands one after another without
waiting for the first to finish or even begin.

Stopptn1 a Proeram
You can stop most programs by typin1 the

character "OEL.. {perhaC'S called .. delete•• or
••rubout,. on your terminal). The .. interrupt'• or
.. breu·· key found on most terminals can also
be used. In a few programs. like the text editor.
DEL stops whatever the proaram is doing but
leaves you in that program. Hanging up the
phone will stop most proarams.

Lauinl Out
The easiest way to 101 out is to hang up the

phone. You an also type

loein

and let someone e!se use the terminal you were
on. It is usually not sufficient just to tum otr the
terminal. Most UNIX systems do not use a
time·out mechanism. so you'll be there forever
unless you hang up.

Mail
When you log in. you may somedmes get

the message

You haYe mail.

UNIX provides a postal system so you cm com·
municate with other users of the system. To
read your mail. tY"4! the command

mail

Your mail will be printed. one messa1e at a time.
mast recent message first. After each message.
mail waits for you t0 say what to do with iL The
two basic: responses are cl. which deletes the mes
sage. and RETUL~. which does not (so it will
still be there the next time you rad your mail·
box). Other responses are described in the
manuai. (Earlier versions of mail do not procas
one messa1e at a time. but are otherwise simi·
lat.>

How do you send mail to someone else?
Suppose i' is to go to "joe.. (assuming ••joe •• is
someone's login name). The easiest way is this:

mail joe
now tYT# itr rh• te:a ol rh• letr.r
on cu many lines as you like .••
Airer m. ltUt line of the lemr
lYfHI tJw characrer "conrrol-d",
chat is. hold dawn ··control" and tYfHI
a lettD' •• d ...

And that,s it. The .. control-<!" sequence. often
called "'Eor· ror end·of ·file. is used throughou~
the system to mark the end of inc>ut from a ter·
minal. so you might as weil get used to it.

For practice. send mail to yourseif. (This
isn't as strange as it might sound - mail to one·

UNIX For Beginners 2-5

sei(is a handy reminder mechanism.>

There are other ways to send mail - you
can send a previously pre;>ared letter, and you
can mail to a number of people ail at onc:e. For
more details se: mail(l>. (The notation mailt 1)
means the command, mail in section l of the
UNIX Programmtr's Jfanual.)

Wrttiai to other usen

At some point. out of the blue will com~ a
message like

Messa3e from Joe tty07 •••

accompanied by a startling bee?. ft me:ins that
Joe wantS to talk to you. but unless :cou taice
explicit action you won't be able to c:iik back. To
respond. type the command

write joe

This establishes a two-way communiation path.
Now whatever Joe types on his terminal will
apl'ear on yours and vice versa. The path is
stow. rather like talking to the moon. {If you are
in the middle of something. you have to :1et to a
state where you can type a command. ~onnally,

whatever program you are running has to ter·
minate or be terminated. If you· re ~diting. you
Qn esc:al)e temporarily Crom the editor - read
the editor tutorial.)

A protocol is needed to keep what you type
from getting garbled up with what Joe types.
Typic:aily it's like this: '

Joe types .. rite smith and waits.
Smith types write joe ana waits.
Joe now types his message (as many lines
as he likes). When he's re:idy for a reply.
he signals it by typing (o). which stands
for ••over··.
Now Smith types a repiy, also terminated
by (o).

This cyc:le repeats until someone gets
tired: he then signals his intent :o quit
with (oo), Jor .. over and out ...
To terminate the conversation. =.ch side
must ty'Pe a .. control·d .. character llone
on a line. (••Oe!ete .. a.iso works.) When
the other person types his '"controt .. d ...
you wm get the message EOF on your
terminal.

If you write to someone who isn't logged in.
or who doesn · t want to be disturbed. you· 11 be
told. If the target is logged in but doesn ·: lnswer
after a decent interval. simply type ··controt·d ...

2-6 UNIX For Beginners

On-line Manual

The UNIX Programmer's Manual is typically
kept on-line. If you get stuck on something, and
can't find an expert to assist you. you can print
on your terminal some manual section that
might help. This is also useful for getting the
most up-to-date information on a command. To
print a manual section, type "man command-
name". Thus to read up on the who command.
type

min who

and. of course,

man man

tells all about the man command.

Computer Aided Instruction

Your UNIX system may have available a pro
gram called learn. which provides computer
aided instruction on the file system and basic
commands, the editor, docum nt preparation,
and even C programming. Try typing the com
mand

le am

If learn exists on your system, it will tell you
what to do from there.

II. DAY-TO-DAY USE

Creatln1 Files - The Editor

If you have to type a paper or a letter or a
program, how do you get the information stored
in the machine? Most of these tasks are done
with the UNIX .. text editor" ed. Since ed is
thoroughly documented in ed(l) and explained
in A Tutorial lnvoduction ro the UNIX Text Editor,
we won't spend any time here describing how to
use it. All we want it for right now is to make
some files. (A file is just a collection of informa
tion stored in the machine, a simplistic but ade·
quatc definition.>

To create a file called junk with some text in
it, do the following:

ed junk (invokes the text editor)
I (command to ucd", to add text)
now type in
whatever tut you want ..•

(signals the end of adding text)

The ... •• that signals the end of adding text must
be at the beginning of a line by itself. Don't for·
get it, for until it is typed, no other ed com·
mands will be recognized - everything you type
will be treated as text to be added

At this point you can do various editing
operations on the text you typed in. such as

correcting spelling mistakes. rearranging para·
graphs and the like. Finally, you must write the
information you have typed into a tile with the
editor command w:

w

ed will respond with the number of characters it
wrote into the file Junk.

Until the w command. nothing is stored per·
manently, so if you hang up and go home the
information is lost. t But after w the information
is there permanently; you can re-access it any
time by typing

edjunk

Type a q command to quit the editor. (If you try
to quit without writing. ed will print a ? to rem
ind you. A second q gets you out regardless.>

Now create a second file called temp in the
same manner. You should now have two tiles.
junk and temp.

What flies are out there?

The Is (for .. list") command lists the names
(not contents) of any of the files that UNIX
knows about. If you type

ls

the response will be

Junk
temp

which arc indeed the two files just created The
names arc sorted into alphabetical order
automatically, but other variations are possible.
For example, the command

ls -t

causes the files to be listed in the order in which
they were last changed, most recent first. The
-1 option gives a '"long" listing:

ls -1

will produce something like

-rw-rw-rw- 1 bwk 41 Jul 22 2:56 junk
-rw-rw-rw- 1 bwk 78 Jul 22 2:57 temp

The date and time are of the last change to the
file. The 41 and 78 are the number of characters
(which should agree with the numbers you got
fr~m ed). bwk is the owner of the file, that is,
the person who created it. The -rw-rw-rw
tells who has permission to read and write the
file, in this case everyone.

t This is not strictly true - ir you han1 up while editing.
the data you were working on is sa,·ed in a file called
ed.hup. which you can continue with at your next session.

Options can be combined; ls -lt gives the
same thing as ls -l. but sorted into time order.
You can also name the files you're interested in.
and ls will list the information about them only.
More details can be found in ls(l>.

The use of optional argumencs that begin
with a minus si&n. like - t and - lt. is a com·
mon convention for CNIX ?rograms. In general.
it a program accepts such optional arguments.
they precede any filename araumencs. It is also
vital that you separate the various arguments
with spaces: ls-I is not the same as ls -L

Printlnc Files
Now that you've got a file of text. how do

you print it so people an look at it? There are a
host of procrams that do that. probably more
than are ne:ded.

One simple thing is to use the editor, since
printing is often done just before making
changes anyway. You can gy

ed Junk
1.Sp

ed wm reply with the count of the c:harac::ers in
Junk and then print all the lines in the at~
After you learn how t0 use the editor. you can
be selective about the pans you print.

There are times when it's not feasible to uu
the edit0r for printing. For example. there is a
limit on now bi1 a nle ed an handle (several
thousand lines). Seccnclly. it will only print one
ftle at a time. and sometimes you want to print
several. one after another. So here are a couple
o(alternatives.

First is cat, the simplest of a.11 the printing
programs. est simply prints on the terminal the
contents of all the files named in a list. Thus

cat junk

prints one file, and

cat junk temp

prints two. The files are simply concatenated
(hence the name "cat'') onto the terminal.

pr produces formatted printouts of files. As
with est.. pr prints all the ftles named in a lisL
The dilference is that it produces headings with
date, time. page number and file name at the top
oC each page. and extra lines to skip over the
fold in the paper. Th~

pr Junk temp

will print junk neatly, then skip to the top of a
new page and print temp neatly.

pr can also produce mu!ti<alumn output:

UNIX For Beginners 2-7

pr -3 junk

printS junk in j-column format You c~n use
anv reasonable number in place of ··r· lnd pr
wiil do its best. pr has other capabiiities lS we!t
see pr{U.

[t shouid be noted that pr is nor il formatting
program in the sense of shuffling lines around
and justifying margins. The true formatters are
nroff and troff. which we will get to in the sec·
tion on document preparation.

There are illso programs that print files on l

nigh .. speed printer. Look in your manual under
opr and lpr. Which to use depends on what
equit>ment is arn1ched to your machine.

Shuftlln& Files About

Now that you have some files in the file sys
tem and some experience in printini them. you
can cry bigger things. For example. you c~n
move a file rrom one place to another (which
amounts to giving it a new name). like this:

mv junk precious

This means that what used to be ·•junk .. is now
.. precious··. tr you do an ls command now. you
will get

precious
temp

Beware that if you move l file to another one
that already exists, the already existing cor.tentS
are lost forever.

If you want to make a copy of a tile (that is.
to have two versions of something). you can use
the cp command:

cp preaous tempi

makes a dupiic:ate copy of precious in templ.

Finally. when you get tired of creating and
moving files. there is a command to remove files
rrom the file system .. called rm.

rm temp tempi

will remove both of the files named.

You will get a warning message if one of the
named files wasn't there. but otherwise rm. like
most UNtX commands. does itS,... work silently.
There is no prompting or chatter. :ind error mes·
sages are occasionaily curt. This terseness is
sometimes disconcerting to newcomers. but
ex~rienc:d users find it desirable.

What's in a Fllename

So far we have used filen1mes without ever
saying what's a le3al name. so it's time for a
coupte of rules. First., filen::mes :ire limited to
14 characters. which is enour,h to be descriptive.

2-8 UNIX For Beginners

Second. although you can use almost any charac·
ter in a filename. common sense says you should
stick to ones that are visible. and that you should
probably avoid characters that might be used
with other meanings. We have already seen. for
example. that in the ls command. ls - t means
to list in time order. So if you had a file whose
name was -t. you would have a tough time list
ing it by name. Besides the minus sign. there
are other characters which have special meaning.
To avoid pitfalls. you would do well to use only
letters. numbers and the period until you·re fam·
iliar with the situation.

On to some more positive suggestions. Sup
pose you·re typing a large document like a book.
Logically this divides into many small pieces. like
chapters and perhaps sections. Physically it must
be divided too. for ed will not handle really big
files. Thus you should type the document as a
number of files. You might have a separate file
for each chapter. called

cha pl
cha pl
etc ...

Or. if each chapter were broken into several files.
you might have

chapl.1
chapl.2
chapl.3

chap2.1
chap2.2

You can now tell at a glance where a particular
file fits into the whole.

There arc advantages to a systematic naming
convention which are not obvious to the novice
UNIX user. What if you wanted to print the
whole book? You could say

pr chapl.1 chapl.2 chapl.3 ••••••

but you would get tired pretty fast, and would
probably eve'n make mistakes. Fortunately,
there is a shortcut. You can say

pr chap•

The • means .. anything at all." so this translates
into ••print all files whose names begin with
chap .. , listed in alphabetical order.

This shorthand notation is not a property of
the pr command. by the way. It is system-wide,
a service of the program that interprets com
mands (the .. shell:· sh(l)). Using that fact.
you can see how to list the names of the files in
the book:

ls chap•

produces

cbapl.1
cbapl.2
chapl.3

The • is not limited to the last position in a
filename - it can· be anywhere and can occur
several times. Thus

rm •Junk• •temp•

removes all files that contain junk or temp as
any part of their name. As a special case, • by
itself matches every filename. so

pr•

prints all your files (alphabetical order), and

rm•

removes all files. (You had better be very sure
that's what you wanted to say!)

The • is not the only pattern- matching
feature available. Suppose you want to print
only chapters 1 through 4 and 9. Then you can
say

pr chap(12349I•

The (••• I means to match any of the characters
inside the brackets. A range of consecutive
letters or digits can be abbreviated. so you can
also do this with

pr chap(t-491*

Letters can also be used within brackets: (a-zl
matches any character in the range a through L

The ? pattern matches any single character,
so

ls ?

lists all files which have single-character names,
and

ls -I chap?.1

lists information about the first file of each
chapter (chapl.1, chap2.1, etc.>.

Of these niceties. • is certainly the most use·
ful. and you should get used to it. The others
are frills, but worth knowing.

If you should ever have to turn off the spe·
cial meaning of •, ?, etc., enclose the entire
argument in single quotes, as in

ls'?'

We'll see some more examples of this shortly.

What's ln 1 FUeaame, Continued

When you drst made that file called Junk.
how did the system know that there wasn't
another junk somewhere else. espeeiaily since
the person in the next office is also readin& this
tutorial? The answer is that .1enerally each user
has a private dir«t"'Y. which contains only the
files that belong to him. When you 101 in. you
are ••tn•• your directory. Unless you ta!ce special
action. when you ~eate a new file. it is made in
the directory that you are currendy in~ this is
most often your own directory, and thus the tile~
is unrelated to any other file of the same name
that miaht exist in someone else's directory.

The set of all tiles is organized into a (usu·
ally big) tree. with yout files located seve~
branches into the ere~ It is possible for you to
uwaik n around this tree. and to find any file in
the system. by starting at the rooc of the tree and
wallcin; along the proper set of branches. Con·
versely. you can start where you are and wallc
toward the root.

Let's try the latter first. The basic tools is
the command pwci (.. print working direaory"),
which prints the name or the directory you are
currently in.

A1tbou1h the details will vary according to
the system you are on. if you give the command
pwd. it will print somethinl like

/usr/yov-name

This says that you are currently in the directory
you-name. which is in tum in the directory
/usr •. which is in tum in the root directory called
by convention just /. (Even if it's not called
/.Sr on your system. you will get something
analogous. Make the corresponding changes and
read on.)

If you aow type

Is /usr/your-aame

you should get exactly the same list of file names
as you 1et from a plain ls: with no arguments. ls
lists the contents of the current directory~ given
the name of a direct0ry, it lists the contents of
that diteetory.

Next. trY

ls /usr

This should print a long series of names. among
which is your own login name your-name. On
many systems. usr is a directory that contains
the directories of ail the normai users of the sys
tem. like you.

The next step is co ttY

ls I

UNIX For Beginners 2-9

You should get a response something like this
(although again the details may be differenti:

bin
deY
etc
Uh
tmp
usr

This.is a coilection of the basic dir~tortes of files
that the !ystem know! about; we are at the root
of the tr=e.

Now trY

cat /usr/your-name/junk

(it junk is stilt around in your dire:tory). The
name

/usr/your-name/junk

is called the pathname of the file that you nor·
mally think of as ••junk... ~·P3thname·· has an
obvious me:ining: it represents the full name of
the path you have to follow from the root
through the tree of directories to get to a particu·
tar file. It is a universal rule in the UNIX system
that anywhere you can use ln ordinary filename.
you can use a pathname.

Here is a picture whic:h may rnake this
clearer:

bin
II\

(root>

II\ I \
etc usr
I I\ I I\ I \

I \

dev trnP
I I\ I I\

adam eve mary
I ·· I \ \

I \ junk
junk temp

Notice that Mary's junk is unrelated to Eve·s.

ThiS isn't too exciting if ail the files of
interest are in your own directory. but if you
work with someone else or ·on several projectS
conc:Urrently, it becomes handy indeed. For
example, your friends c:in print your book by
saying

pr /usr/your·n2me/chap•

Similarly, you can find out what tiles your :ie1gn·
bor has by saying

ls /11st/neilhbor-name

or make your own copy of one of his files by

c;a /usr/your·neiihbor/his·file yourfile

If your neighbor doesn·: want you poking
around in his files. or vice versa .. privacy c~n oe

2-10 UNIX For Beginners

arranaed. Each file and directory has read-write·
execute permissions ror the owner. a group, and
everyone else. which can be set to control access.
See ls(l) and chmod(l) for details. As a matter
of observed fact, most users most of the time
find openness of more benefit than privacy.

As a final experiment with pathnames. try

Is /bin /usr/bln

Do some of the names look familiar? When you
run a program. by typing its name after the
prompt character, the system simply looks for a
file of that name. It normally looks first in your
directory (where it typically doesn't find it). then
in /bin and finally in /usr/bln. There is nothing
magic about commands like at or ls. except that
they have been collected into a couple of places
to be easy to find and administer.

What if you work regularly with someone
else on common information in his directory?
You could just 101 in as your friend each time
you want to. but you can also say "I want to
work on his files instead of my own". This is
done by changing the directory that you are
currently in:

cd /usr/your-friencl

(On some systems. cd is spelled chdlr.) Now
when you use a filename in something like cat or
pr, it refers to the file in your friend·s directory.
Changing directories doesn't atf ect any permis·
sions associated with a file - if you couldn't
access a file from your own directory, changing
to another directory won't alter that fact. Of
course, if you forget what directory you're in.
type

pwd

to find out.

It is usually convenient to arrange your own
files so that all the files related to one thing are
in a directory separate. from other projects. For
example, when you write your book, you might
want to keep all the text in a directory called
book. So make one with

mkdlr book

then go to it with

cd book

then start typing chapters. The book is now
found in (presumably)

/usr/your-narne/book

To remove the directory book. type

rm book/*
rmdlr book

The first command removes all files from the
directory; the second removes the empty direc·
tory.

You can go up one level in the tree of files
by saying

cd ••
0

.... is the name of the parent of whatever direc·
tory you are currently in. For completeness. H."
is an alternate name for the directory you are in.

Usin1 Files instead of the Terminal

Most of the commands we have seen so far
produce output on the terminal; some. like the
editor. also take their input from the terminal. It
is universal in UNIX systems that the terminal
can be replaced by a file for either or both of
input and output. As one example.

ls

makes a list of files on your terminal. But if you
say

ls >filelist

a list of your files will be placed in the file filelist
(which will be created if it doesn't already exist.
or overwritten if it does). The symbol > means
0 put the output on the following file. rather than
on the terminal.•• Nothing is produced on the
terminal. As another example, you could com
bine several files into one by capturing the out·
put of cat in a file:

cat n f2 f3 >temp

The symbol > > operates very much like >
does, except that it means .. add to the end of.••
That is,

cat n f2 f3 >>temp

means to concatenate n. f2 and f3 to the end of
whatever is already in temp. instead of overwrit·
ing the existing contents. As with >, if temp
doesn't exist, it will be created for you.

In a similar way, the symbol < means to
take the input for a program from the following
file, instead of from the terminal. Thus. you
could make up a script of commonly used editing
commands and put them into a file called script.
Then you can run the script on a file by saying

ed file <script

As another example. you can use ed to prepare a
letter in file let. then send it to several people
with

mail adam en mary joe < let

Pipes

One of the novel contributions of the t.:!lnX
system is the idea oi a pipe. A pipe is simply a
way to connect the output of one program to the
input of another program. so the two run as a
sequence of processes - a pipeline.

For example.

pr f I h

will print the files r. 1. and h. beginning each on
a new page. Suppose you want them run
to1ether instead. You could say

cat f 1 h >temp
pr <temp
rm temp

but this is more work than necessary. Cle3rly
what we want is to take the output or est and
connect it to the input of pr. So let us use a
pipe:

cat f I h I pr

The vertical bat I means to take the output from
cat. which would normally have gone to the ter·
minal. and put it int0 pr to be neatly formatted..

There are many other examples of pipeso
For example.

ls I pr -3

printS a list of your files in three columns. The
procram we: CQuncs the number of lines. words
and characters in itS input. and as we saw earlier.
who printS a list of currentty.togged on people.
one per line. Thus

who I we:

tells how many people are togaed on. And of
course

ls lwc
councs your files.

Any program that reads from the terminal
can read from a pipe instead; any program that
writeS on the terminal can drive a pipe. You can
have as many eiementS in a pipeline as you wish.

Many UNtX programs are written so that
they will take their input from one or more files
if file ariumencs are aiven; if no argumencs are
given they will read rrom the terminal. and thus
can be used in p!i>eiines. pr is one example:

pr -3 ab c

printS files a. b and c in order in three columns.
But in

cat a b c I pr - 3

pr printS the information coming down the pipe·
line. still in three columns.

UNIX For Beginners 2-11

The Shell

We have alre:idy mentioned once or twice
the mysterious '"sheu:· which is in fact sh (1).
The sllell is the pro~r:im thoit interpretS ~hat you
type as commands and lrgumencs. It also looks
after tr:inslating •. etc •• into liscs of filenames.
and <. >. and I into changes of input :1.nd out·
put streams.

The sheU has other c:ipabilities too. For
e~ample, you can run two programs with one
command line by separating the commands with
a semicolon; the sheU recognizes the semicolon
and bre:iks the line into two commands. Thus

date; who

does both commands before returning with l

prompt character.

You can also have more than one program
running s1mu/taireous(v if you wish. For example.
if' you are doing something time..:onsuming. like
the editor script of an earlier section. and you
don't want to wait uound ror the results before
Startin& something else. you an say

ed file <script 3'

The ampersand at the end of a command line
says b•scan this command running, then take
rurther commands from the terminal immedi·
acety:~ that is. don't wait Cor it to complete.
Thus the sc:ipt will begin. but you can ~o some ..
thine else at the same time. Of course. to lcee~
the output from interfering with what you're
doing on the terminal. it would be better to say

ed file <script >script.out 3'

which saves the output lines in a file C3lled
script.our.

When you initiate a command with &. the
system replies with a number called the process
riumber. which identilles the command in case
you later want to stop it. If you do. you can say

ldll process-number

If you rorget the process number. the command
ps wm teil you about everything you nave run·
ning. (If you are desperate. kill 0 will kill lU
your processes.) And if you're curious about
other people. ps a wm teil you about ail pro·
arams that are currently running.

You can say

(command·l; command·Z; command-3) &

1o start three commands in the background. or
you can swt a background pipeline with

command·l I c::omm2nd·Z &

Just as you an tell the editor or some simi·

2-12 UNIX For Beginners

lar program to take its input from a file instead
of from the terminal. you can tell the shell to
read a file to get commands. (Why not? The
shell, after all. is just a program. albeit a clever
one.) For instance. suppose you want to set tabs
on your terminal. and find out the date and
who"s on the system every time you log in.
Then you can put the three necessary commands
Ctabs. date. who) into a file. leCs call it startup.
and then run it with

sh startup

This says to run the shell with the file startup as
input. The effect is as if you had typed the con·
tents of startup on the terminal.

If this is to be a regular thing. you can etim·
inate the need to type sh: simply type, once only.
the command

cbmod + x startup

and thereafter you need only say

~tartup

to run the sequence of commands. The
chmod(l) command marks the file executable;
the shell recognizes this and runs it as a
sequence of commands.

If you want startup to run automatically
every time you log in, create a file in your login
directory called .profile. and place in it the line
startup. When the shell first gains control when
you log in. it looks for the .profile file and does
whatever commands it finds in it. We'll get back
to the shefl in the section on programming.

III. DOCUMENT PREPARATION

UNIX systems are used extensively for docu
ment preparation. There are two major format·
ting programs, that is, programs that produce a
text with justified right margins. automatic page
numbering and titling, automatic hypt1enation,
and the like. nroff is designed to produce output
on terminals and line-printers. troff (pr~
nounced ·•tee-roff") instead drives a photo·
typesetter. which produces very high quality out
put on photographic paper. This paper was fot·
matted with troff.

Formatting Packages

The basic idea of nroff and troff is that the
text to be formatted contains within it .. format·
dng commands" that indicate in detail how the
formatted text is to look. For e~ample. there
might be commands that specify now long lines
are. whether to use single or double spacing, and
what running titles to t,Jse on ea~h page.

Because nroff and troff are relatively hard to
learn to use effectively, several 0 packages'' of
canned formatting requests are available to let
you specify paragraphs. running titles. footnotes.
multi-column output. and so on, with little effort
and without having to learn nroff and troff.
These packages take a modest effort to learn. but
the rewards for using them are so great that it is
time well spenL

In this section, we will provide a hasty look
at the "manuscript" package known as - ms.
Formatting requests typically consist of a period
and two upper-case letters. such as • TL, which is
used to introduce a title, or .PP to begin a new
paragraph.

A document is typed so it looks something
like this:

.TL
title of document
.AU
author name
.SH
section headlna
.PP
paracraph •••
.PP
another paragraph •••
.SH
another section headlna
.PP
etc.

The lines that begin with a period are the for
matting requests. For example, .PP calls for
starting a new paragraph. The precise meaning
of .PP depends on what output device is being
used (typesetter or terminal, for instance). and
on what publication the document will appear in.
For example, - ms normally assumes that a
paragraph is preceded by a space (one line in
nroff, 1h line in troff), and the first word is
indented. These rules can be changed if you
like, but they are changed by changing the
interpretation of .PP. not by re-typing the docu
ment.

To actually produce a document in standard
format using -ms, use the command

troff - ms files •••

for the typesetter, and

nroff - ms files •••

for a terminal. The - ms argument tells troff
and nroff to use the manuscript package of for
matting requests.

There are several similar packages~ check
with a local expert to determine which ones arc
in common use on your machine.

Supportin1 Tools

In addition to the basic formatters. there is a
host of supporting programs that help with docu·
ment preparation. The list in the next few para
graphs is far from complete. so browse through
the manual and check with people around you
ror other possibilities.

eqn and neqn let you integrate mathematics
into the text of a document. in an ea.sy·to-leun
language that closely resembles the way you
:'ould speak it aloud. For example. the eqn
input

sum from 1~@ to a x sub i ·-·pi onr %

,roduces the output

" I 1t
JC, - -

1-'l 2

The program tbl provides an analogous ser·
vice for preparing tabular material; it does ail the
computations necessary t0 a.lian complicated
columns with elemencs of varying widths.

refer prepares biblio1raphic citations from a
data base. in whatever style is defined by the for·
mattina package. It looks after ail the details of
11umbering references in sequence .. filling in page
and volume numbers. gettina the author's initials
and the journal aame righr. and so on.

spell and t'fpo detect possible speiling mis·
takes in a document. spell work.s by comparin1
the words in your document to a dictionary,
printing those that are not in the dictionary. It
knows enough about Engiish spelling to detect
plurals and the like.. so , it does a very good job.
t1'PO looks ror words whic:h are "unusual'\ J.nd
printS those. Speiling mistakes tend to be more
unusual. and thus show up early when the most
unusua! words are printed first.

ifeP looks through a set of tileS ror lines
that contain a. particular text pattern (rather like
the editor's context search does. but on a bunch
of files). For example ..

'"" 'tn1r chap•

will find all lines that end with the letters in1 in
the files chap•. (It is almost always a good prac:·
tice to put single quotes around the pattern
you're searching for. in ase it contains charac:·
ten like • or S that have a special me:ining to the
shetl.) grep is often useful for finding out in
which of a set of files the misspelled words
detected by spell are actually located.

diff princs a list of the differences between
two tiles. so :--ou can compare two versiom of
something automaticlly (which certainty beats
proofr:ading by hand).

UNIX For Beginners 2-13

we counts the words .. lines and characters in
a set of files. tr translates characters into ocher
characters~ ror example it will convert upper to
lower case and vice versa. This translates upper
into lower~

tr A-Z a-z <input >output

so" sons files in a variety of ways: ere(
makes cross-referenc:s; prx makes a permuted
index (keyword·in-context listing). sed provides
many of the editing facilities of ed.. but can apply
them to arbitrarily long inputs. awk provides the
abilitY to do both pattern matching and numeric:
computations ... and to conveniently process fields
within lines. These programs are r or more
advanced users. :ind they :ire not limited to
document preparation. Put them on your list of
things to learn abouL

Most of these programs are either indepen·
den tty documented (like eqn and tbO. or lre
sufficiently simple that the ctesc:-iption in the
UNIX p,.ogram~r 's Manual is adequate explana·
tion.

Hints tor Preparina 004:umenu

Most documents go through several versions
(always more than you expected) before they are
finally finished. Accordingly. you should do
whatever possible to make the job of changing
them easy.

Flrst. when you do the purely m~hanial
operations of typing. type so that subsequent
editing will be easy. Start e3C:h sentence on a
new line. Make lines short. and ~reak lines at
naturaJ places. such as lfter commas lnd semi·
colons. rather than randomly. Since most people
change documentS. by rewriting phr3ses lnd
adding. deleting and re:irranging sentenc:s. ~hese
prec:iutions simplify any editing you have to do
later.

Kee;J the individual tiles of a document
down to modest size. perhaps ten ~o tif teen
thousand characters. Larger tiles edit more
slowly. and of course if you make a dumb mis·
take it's better to have clobbered a smaH file
than a big one. Split into files u natural boun·
daries in the document. for the same re:isons
that you start e:ic:h sentence on a new line.

The second aspect of making change ~::isy is
to not commit yourself to formatting details too
early. One of the advantages of formatting pack·
ages like -ms is that they permit you to de!ay
d~isions to the last possible moment. Indeed.
until a document is printed. it is not even
decided w~ether it will be typeset or ;:lUt on :i line
printer.

2-14 UNIX For Beginners

As a rule of thumb. for all but the most
trivial jobs, you should type a document in terms
of a set of requests like .PP, and then define
them appropriately, either by using one of the
canned packages (the better way) or by defining
your own nroff and troff commands. As long as
you have entered the text in some systematic
way, it can always be cleaned up and re·
formatted by a judicious combination of editing
commands and request definitions.

IV. PROGRAMMING

There will be no attempt made to teach any
of the programming languages available but a
few words of advice arc in order. One of the
reasons why the UNIX system is a productive
programming environment is that there is
already a rich set of tools available, and facilities
like pipes, 1/0 redirection, and the capabilities of
the shell often make it possible to do a job by
pasting together programs that already exist
instead of writing from saatch.

The Shell

The pipe mechanism lets you fabricate quite
complicated operations out of spare parts that
already exist. For example, the first draft of the
spell program was Croughly)

cat •••
I tr •••
I tr •••
I sort
I 11nlq
I comm

collect the flits
put each word on a MW lint
dtltte punctuation. ete.
into dictionary ordtr
discard duplicates
print ·words in teXt

but not in dictionary

More pieces have been added subsequently, but
this goes a long way for such a small eft"ort.

The editor can be made to do things that
would normally require special programs on
other systems. For example, to list the first and
last lines of each of a set of files, such as a book.
you could laboriously type

eel
e chapl.l
lp
Sp
e chapl.l
Ip
Sp
etc.

But you can do the job much more easily. One
way is to type

ls chap• >temp

to get the list of filenames into a file. Then edit
this file to make the necessary series of editing

commands (using the global commands of ed).
and write it into script. Now the command

ed <script

will produce the same output as the laborious
hand typing. Alternately (and more easily). you
can use the fact that the shell will perform loops.
repeating a set of commands over and over again
for a set of arguments:

for l In chap•
do

eel SI <script
done

This sets the shell variable l to each file name in
turn, then does the command. You can type this
command at the terminal. or put it in a file for
later execution.

Proeramminc the Shell

An option often overlooked by newcomers is
that the shell is itself a programming language.
with variables, control flow (If-else. w bile. for.
case), subroutines, and interrupt handling. Since
there are many building-block programs, you can
sometimes avoid writing a new program merely
by piecing together some of the building blocks
with shell command files.

We will not go into any details here; exam
ples and rules can be found in An Introduction to
iM UNIX Shelt by S. R. Bourne.

Procnmmi111 In C

If you arc undertaking anything substantial,
C is the only reasonable choice of programming
language: everything in the UNIX system is tuned
to it. The system itself is written in C, as are
most of the programs that run on it. It is also a
easy language to use once you get started. C is
introduced and fully described in The C Program·
ming language by B. W. Kernighan and D. M.
Ritchie (Prentice-Hall, 1978). Several sections
of the manual describe the system interfaces.
that is. how you do 110 and similar functions.
Read UNIX Programming for more complicated
things.

Most input and output in C is best handled
with the standard 1/0 library, which provides a
set of 1/0 functions that exist in compatible
form on most machines that have C compilers.
In general. it's wisest to confine the system
interactions in a program to the facilities pro
vided by this library.

C programs that don't depend too much on
special features of UNIX (such as pipes) can be
moved to other computers that have C com·
pilers. The list of such machines grows daily~ in
addition to the original PDP·l l, it currently

inc:iudes at least Honeywe!l 6000. IBM 370,
Interdata 8/32. Data General Nova and Eclipse.
HP 2100. Harris 17, VAX 11/780. SEL 86. and
Zilog ZSO. Calls to the standard I/O library will
work on all of these machines.

There are a number of supporting programs
that 10 with C. lint checks C programs for
potential portability problems, and detec:ts errors
such as mismatched argument ty-pes and unini·
tialized variables.

For larger programs (anything whose source
is on more than one file) make allows you to
st>f!Ci{y the dependencies among the source files
and the processing neps needed to make a new
version: it then checks the times that the pieces
were last changed and does the minimal amount
of recompilin1 to create a consistent updated ver·
sion.

The debugger adb is useful !or digging
thrcuah the dead bodies of C programs, but is
rather hard to learn to use effectively. The most
effective debuaing tool is still careful thought.
coupled wich judiciously placed print statements.

The C compiler provides a limited instru·
mentalion service. so you can ftnd out where
proarams SiMnd their time and whac puts are
worth optimizing. Compile the routines with the
-p option: aCtet the test run. use prof to print
an execution profile. The command time will
live you the aross run-time statistics of a pro
aram. but they are not super accurate or ret'rO·
ducible.

Other La111ua1es
Ir you haw to use Fortran. there are two

possibilities. You mi1ht consider Ratfor. which
&jves you the decent control suuctures and free·
form input that characterize c9 yet lets you write
code that is still portable to other environments.
Bear in mind that UNIX Foruaa tends to produc:
laqe and relatively stow-running programs.
Funhermore, supportina software like adb. prof.
etc.. ue aJl virtually useless with Fortran pro
grams. There may.also be a Fortran 77 compiler
on your system. If so, this is a viable alternative
to Ratfor, and nas the non·triviai advantage that
it is compatible with C and related programs.
(The Ratfor processor and C tools can be used
with Fortran 77 tco.)

Ir your application requites you to translate a
language into a set of actions or another
language.. you are in effect building a compiler.
though probably a small one. In that case .. you
should be using the yacc compiler-compiler,
which nelps you deve!op a compiler quickly. The
lex lexicai ana!yzer generator does the same joo
ror the simpler languages that can be expressed

UNIX For Beginners 2-15

as regular expressions. rt can be used by itself.
or as a front end to recognize inputs for a
yacc-based program. Both yacc lnd lex require
some sophistication to use. but the initial ~ffort
of learning them can be repaid many times over
in programs that are euy to change later on.

Most UNIX systems also make available
other languages. such as Algol 68. .-1.PL. Basic.
Lis?.. Pascal.. and Snobol. Whether these are
useful depends largely on the Ioc:al environment:
if someone ares about the language and has
worked oa i~ it may be in good shape. If not.
the odds are strong that it will be more trouble
than it's worth.

V. UNIX READING LIST

General:

K.. L. Thompson and D. M. Ritchie. Th~ UNIX
Programme's Manual. Bell Laboratories.. l 9iS.
Lisu commands. system routines and interfaces ..
file rormatS. and some of the maintenance pro
cedures. You can· t live w;thout this. although
you will probably only need ti? re:id section t.
Docu~nu fo' Us11 with th~ UNIX Ti~·sharing
Sysi.m. Volume 2 of the Programmer's Manual.
This contains more extensive desc:riptions of
major commands. and tutorials and reference
manuals. All of the papers listed below are in it.
as are descriptions of most of the programs men·
tioned above.
D. M. Ritchie and K.. L Thompson. ··The UNIX
iune•sharing System:· CAC~. July t 97.t. An
overview oi the system. ror people interested in
oi>eracina systems. Worth reading by anyone
who programs. Contains a remarkable number
of one·sentenc: observations on how to do
thinss riaht.

The Beil Syscem Technic:ai Journai (BSTJ) Spe·
cia1 Issue on UNIX. July/ August.., 1978. contains
many pal)ers describing recent devetopments.
and some retrospective material.

The lnd Intemationai Conference on Software
Engineering (October. t 976) contains sever:ii
pape1'3 describing the use of the Progr:immer · s
Workbench (PWB) version of UNIX.

Document Preparation:

B. W. Kernighan. .. A T~torial Introduction to
the UNIX Text Editor" and ·•Advanced Editing
on UNIX... Bell uboratories. 1973. Beginners
need the introduction: the advanced material will
help you get the most out of the editor.

M. E. Leslc. ··Tyl'ing Documenu on UNtX. •• Beu
laboratories. 1978. Describes the -ms macro
pac:tcage.. which isolates the nov1c:e from the
vagaries of nroff lnd trofr.. and takes care of

2-16 UNIX For Beginners

most formatting situations. If this specific pack
age isn't available on your system. something
similar probably is. The most likely alternative is
the PWB/UNIX macro package -mm; see your
local guru if you use PWB/UNIX.

B. W. Kernighan and L. L. Cherry, "A System
for Typesetting Mathematics," Bell Laboratories
Computing Science Tech. Rep. 17.

M. E. Lesk, "Tbl - A Program to Format
Tables," Bell Laboratories CSTR 49, 1976.

J. F. Ossanna, Jr., "NROFF/TROFF User's
Manual... Bell Laboratories CSTR 54, 1976.
troff is the basic formatter used by - ms. eqn
and tbl The reference manual is indispensable
if you are going to write or maintain these or
similar programs. But start with:

8. W. Kernighan, "A TROFF Tutorial," Bell
Laboratories, 1976. An attempt to unravel the
intricacies of troff.

Proiramminc:

8. W. Kernighan and D. M. Ritchie, The C Pro
gramming Language, Prentice-Hall., 1978. Con
tains a tutorial introduction, complete discussions
of all language features. and the reference
manual.

B. W. Kernighan and D. M. Ritchie, "UN~X Pro
gramming," Bell Laboratories, 1978. Describes
how to interface with the system from C pro
grams: 1/0 calls, signals, processes.

S. R. Bourne, .. An Introduction to the UNIX
Shell." Bell Laboratories, 1978. An introduction
and reference manual for the Version 7 shell.
Mandatory reading if you intend to make
effective use of the programming power of this
shell.

S. C. Johnson, "Yacc - Yet Another Compiler
Compiler," Bell Laboratories CSTR 32, 1978.

M. E. Lesk, "Lex - A Lexical Analyzer Gen
erator," Bell Laboratories CSTR 39, 1975.

S. C. Johnson. ..Lint, a C Program Checker."
Bell Laboratories CSTR "65. 1977.

S. I. Feldman, "MAKE - A Program for Main·
taining Computer Programs," Bell Laboratories
CSTR 57, 1977.

J. F. Maranzano and S. R. Bourne, "A Tutorial
Introduction to ADB." Bell Laboratories CSTR
62. 1977. An introduction to a powerful but
complex debugging tool.

S. I. Feldman and P. J. Weinberger, "A Portable
Fortran 77 Compiler," Bell Laborato1ries, 1978.
A full Fortran 77 for UNIX systems.

Mail Reference Manual 2-17

MAIL REFERENCE MANUAL

Kurt Shoens

Revised by

Craig Leres

Version 2.18

1. Introduction

Mail provides a simple and friendly environment for sending and receivmg mail. It
divides incoming mail into its constituent messages and allows the user to deal with them in
any order. In addition, it provides a set of ed-like commands for manipulating messages and
sending mail. Mail offers the user simple editing capabilities to ease the composition of out
going messages, as well as providing the ability to define and send to names which address
groups of users. Finally, Mail is able to send and receive messages across such networks as
the ARPANET, UUCP, and Berkeley network.

This document describes how to use the Mail program to send and receive messages.
The reader is not assumed to be familiar with other message handling systems, but should be
familiar with the UNIX 1 shell, the text editor, and some of the common UNIX commands. "The
UNIX Programmer's Manual," "An Introduction to Csh," and "Text Editing with Ex and Vi"
can be consulted for more information on these topics.

Here is how messages are handled: the mail system accepts incoming messages for you
from other people and collects them in a file, called your system mailbox. When you login,
the system notifies you if there are any messages waiting in your system mailbox. If you are a
csh user, you will be notified when new mail arrives if you inform the shell of the location of
your mailbox. On version 7 systems, your system mailbox is located in the directory
/usr/spool/mail in a file with your login name. If your login name is "sam," then you can
make csh notify you of new mail by including the following line in your .cshrc file:

set mail=/usr/spool/mail/sam

When you read your mail using Mail, it reads your system mailbox and separates that file into
the individual messages that have been sent to you. You can then read, reply to, delete, or
save these messages. Each message is marked with its author and the date they sent it.

1 UNIX is a trademark of Bell Laboratories.

2-18 Mail Reference Manual

2. Common usage

The Mail command has two distinct usages, according to whether one wants to send or
receive mail. Sending mail is simple: to send a message to a user whose login name is, say,
"root," use the shell command:

3 Mail root

then type your message. When you reach the end of the message, type an EOT (control-cl) at
the beginning of a line, which will cause Mail to echo "EOT" and return you to the Shell.
When the user you sent mail to next logs in, he will receive the message:

You have mail.

to alert him to the existence of your message.

If, while you are composing the message you decide that you do not wish to send it after
all, you can abort the letter with a RUBOUT. Typing a single RUBOUT causes Mail to print

(Interrupt -- one more to kill letter)

Typing a second RUBOUT causes Mail to save your partial letter on the file "dead.letter" in
your home directory and abort the letter. Once you have sent mail to someone, there is no
way to undo the act, so be careful.

The message your recipient reads will consist of the message you typed, preceded by a
line telling who sent the message (your login name) and the date and time it was sent.

If you want to send the same message to several other people, you can list their login
names on the command line. Thus,

3 Mail sam bob john
Tuition fees are due next Friday. Don't forget!!
<Control-cl>
EOT
3

will send the reminder to sam, bob, and john.

If, when you log in, you see the message,

You have mail.

you can read the mail by typing simply:

% Mail

Mail will respond by typing its version number and date and then listing the messages you
have waiting. Then it will type a prompt and await your command. The messages are
assigned numbers starting with 1 - you refer to the messages with these numbers. Mail keeps
tack of which messages are new (have been sent since you last read your mail) and read (have
been read by you). New messages have an N next to them in the header listing and old, but
unread messages have a U next to them. Mail keeps track of new/old and read/unread mes
sages by putting a header field called "Status" into your messages.

To look at a specific message, use the type command, which may be abbreviated to sim
ply t. For example, if you had the following messages:

N 1 root Wed Sep 21 09:21 "Tuition fees"
N 2 sam Tue Sep 20 22:55

you could examine the first message by giving the command:

type 1

which might cause Mail to respond with, for example:

Message 1:

From root Wed Sep 21 09:21:45 1978
Subject: Tuition fees
Status: R

Tuition fees are due next Wednesday. Don't forget!!

Mail Reference Manual 2-19

Many Mail commands that operate on messages take a message number as an argument like
the type command. For these commands, there is a notion of a current message. When you
enter the Mail program, the current message is initially the first one. Thus, you can often
omit the message number and use, for example,

t

to type the current message. As a further shorthand, you can type a message by simply giving
its message number. Hence,

1

would type the first message.

Frequently, it is useful to read the messages in your mailbox in order, one after another.
You can read the next message in Mail by simply typing a newline. As a special case, you can
type a newline as your first command to Mail to type the first message.

If, after typing a message, you wish to immediately send a reply, you can do so with the
reply command. Reply, like type, takes a message number as an argument. Mail then
begins a message addressed to the user who sent you the message. You may then type in your
letter in reply, followed by a <control-d> at the beginning of a line, as before. Mail will type
EOT, then type the ampersand prompt to indicate its readiness to accept another command.
In our example, if, after typing the first message, you wished to reply to it, you might give the
command:

reply

Mail responds by typing:

To: root
Subject: Re: Tuition fees

and waiting for you to enter your letter. You are now in the message collection mode
described at the beginning of this section and Mail will gather up your message up to a
control-cl. Note that it copies the subject header from the original message. This is useful in
that correspondence about a particular matter will tend to retain the same subject heading,
making it easy to recognize. If there are other header fields in the message, the information
found will also be used. For example, if the letter had a "To:" header listing several reci
pients, Mail would arrange to send your replay to the same people as well. Similarly, if the
original message contained a "Cc:" (carbon copies to) field, Mail would send your reply to
those users, too. Mail is careful, though, not too send the message to you, even if you appear
in the "To:" or "Cc:" field, unless you ask to be included explicitly. See section 4 for more
details.

After typing in your letter, the dialog with Mail might look like the following:

reply
To: root
Subject: Tuition fees

Thanks for the reminder
EOT
&

2-20 Mail Reference Manual

The reply command is especially useful for sustaining extended conversations over the
message system, witp. other "listening" users receiving copies of the conversation. The reply
command can be abbreviated tor.

Sometimes you will receive a message that has been sent to several people and wish to
reply only to the person who sent it. Reply with a capital R replies to a message, but sends a
copy to the sender only.

If you wish, while reading your mail, to send a message to someone, but not as a reply to
one of your messages, you can send the message directly with the mail command, which takes
as arguments the names of the recipients you wish to send to. For example, to send a message
to "frank," you wouJd do:

mail frank
This is to confirm our meeting next Friday at 4.
EOT
&

The mail command can be abbreviated tom.

Normally, each message you receive is saved in the file mbox in your login directory at
the time you leave Mail. Often, however, you will not want to save a particular message you
have received because it is only of passing interest. To avoid saving a message in mbox you
can delete it using the delete command. In our example,

delete 1

will prevent Mail from saving message 1 (from root) in mbox. In addition to not saving
deleted messages, Mail will not let you type them, either. The effect is to make the message
disappear altogether, along with its number. The delete command can be abbreviated to
simply d.

Many features of Mail can be tailored to your liking with the set command. The set
command has two forms, depending on whether you are setting a binary option or a valued
option. Binary options are either on or off. For example, the "ask" option informs Mail that
each time you send a message, you want it to prompt you for a subject header, to be included
in the message. To set the "ask" option, you would type

set ask

Another useful Mail option is "hold." Unless told otherwise, Mail moves the messages
from your system mailbox to the file mbox in your home directory when you leave Mail. If
you want Mail to keep your letters in the system mailbox instead, you. can set the "hold"
option.

Valued options are values which Mail 4ses to adapt to your tastes. For example, the
"SHELL" option tells Mail which shell you li~e to use, and is specified by

set SHELL=/bin/csh

for example. Note that no spaces are allowed in "SHELL=/bin/csh." A complete list of the
Mail options appears in section 5.

Another important valued option is "crt." If you use a fast video terminal, you will find
that when you print long :rµessages, they fly by too quickly for you to read them. With the
"crt" option, you can rµake Mail print any message larger than a given number of lines by
sending it through the paging program more. :for example, most CRT users sqould do:

set crt=24

to paginate messages th~t will not fit on their s~reens. More prints a screenful of information,
then types --MORE--. 'fy:pe a space to see the next screenful.

Mail Reference Manual 2-21

Another adaptation to user needs that Mail provides is that of aliases. An alias is sim
ply a name which stands for one or more real user names. Mail sent to an alias is really sent
to the list of real users associated with it. For example, an alias can be defined for the
members of a project, so that you can send mail to the whole project by sending mail to just a
single name. The alias command in Mail defines an alias. Suppose that the users in a pro
ject are named Sam, Sally, Steve, and Susan. To define an alias called "project" for them, you
would use the Mail command:

alias project sam sally steve susan

The alias command can also be used to provide a convenient name for someone whose user
name is inconvenient. For example, if a user named "Bob Anderson" had the login name
"anderson, "" you might want to use:

alias bob anderson

so that you could send mail to the shorter name, "bob."

While the alias and set commands allow you to customize Mail, they have the draw
back that they must be retyped each time you enter Mail. To make them more convenient to
use, Mail always looks for two files when it is invoked. It fil'St reads a system wide file
"/usr/lib/Mail.rc," then a user specific file, ".mailrc," which is faund in the user's home direc
tory. The system wide file is maintained by the system administrator and contains set com
mands that are applicable to all users of the system. The ".mailrc" file is usually used by each
user to set options the way he likes and define individual aliases. For example, my .mailrc file
looks like this:

set ask nosave SHELL=/bin/csh

As you can see, it is possible to set many options in the same set command. The "nosave"
option is described in section 5.

Mail aliasing is implemented at the system-wide level by the mail delivery system send
mail. These aliases are stored in the file /usr/lib/aliases and are accessible to all users of the
system. The lines in /usr /lib/ aliases are of the form:

alias: name
1

, name
2

, name
3

where alias is the mailing list name and the name. are the members of the list. Long lists can
i

be continued onto the next line by starting the next line with a space or tab. Remember that
you must execute the shell command newaliases after editing /usr/lib/aliases since the
delivery system uses an indexed file created by newaliases.

We have seen that Mail can be invoked with command line arguments which are people
to send the message to, or with no arguments to read mail. Specifying the -f flag on the com
mand line causes Mail to read messages from a file other than your system mailbox. For
example, if you have a collection of messages in the file "letters" you can use Mail to read
them with:

% Mail -f letters

You can use all the Mail commands described in this document to examine, modify, or delete
messages from your "letters" file, which will be rewritten when you leave Mail with the quit
command described below.

Since mail that you read is saved in the file mbox in your home directory by default, you
can read mbox in your home directory by using simply

% Mail -f

Normally, messages that you examine using the type command are saved in the file
"mbox" in your home directory if you leave Mail with the quit command described below. If
you wish to retain a message in your system mailbox you can use the preserve command to

2-22 Mail Reference Manual

tell Mail to leave it there. The preserve command accepts a list of message numbers, just
like type and may be abbreviated to pre.

Messages in your system mailbox that you do not examine are normally retained in your
system mailbox automatically. If you wish to have such a message saved in mbox without
reading it, you may use the mbox command to have them so saved. For example,

mbox 2

in our example would cause the second message (from sam) to be saved in mbox when the
quit command is executed. Mbox is also the way to direct messages to your mbox file if you
have set the "hold" option described above. Mbox can be abbreviated to mb.

When you have perused all the messages of interest, you can leave Mail with the quit
command, which saves the messages you have typed but not deleted in the file mbox in your
login directory. Deleted messages are discarded irretrievably, and messages left untouched are
preserved in your system mailbox so that you will see them the next time you type:

3 Mail

The quit command can be abbreviated to simply q.

If you wish for some reason to leave Mail quickly without altering either your system
mailbox or mbox, you can type the x command (short for exit), which will immediately
return you to the Shell without changing anything.

If, instead, you want to execute a Shell command without leaving Mail, you can type the
command preceded by an exclamation point, just as in the text editor. Thus, for instance:

!date

will print the current date without leaving Mail.

Finally, the help command is available to print out a brief summary of the Mail com
mands, using only the single character command abbreviations.

Mail Reference Manual 2-23

3. Maintaining folders

Mail includes a simple facility for maintaining groups of messages together in folders.
This section describes this facility.

To use the folder facility, you must tell Mail where you wish to keep your folders. Each
folder of messages will be a single file. For convenience, all of your folders are kept in a single
directory of your choosing. To tell Mail where your folder directory is, put a line of the form

set folder= letters

in your .mailrc file. If, as in the example above, your folder directory does not begin with a
'/,'Mail will assume that your folder directory is to be found starting from your home direc
tory. Thus, if your home directory is /usr/person the above example told Mail to find your
folder directory in /usr/person/letters.

Anywhere a file name is expected, you can use a folder name, preceded with '+.' For
example, to put a message into a folder with the save command, you can use:

save +classwork

to save the current message in the classwork folder. If the classwork folder does not yet exist,
it will be created. Note that messages which are saved with the save command are automati
cally removed from your system mailbox.

In order to make a copy of a message in a folder without causing that message to be
removed from your system mailbox, use the copy command, which is identical in all other
respects to the save command. For example,

copy +classwork

copies the current message into the classwork folder and leaves a copy in your system mail
box.

The folder command can be used to direct Mail to the contents of a different folder.
For example,

folder +classwork

directs Mail to read the contents of the classwork folder. All of the commands that you can
use on your system mailbox are also applicable to folders, including type, delete, and reply.
To inquire which folder you are currently editing, use simply:

folder

To list your current set of folders, use the folders command.

To start Mail reading one of your folders, you can use the -f option described in section
2. For example:

% Mail -f +classwork

will cause Mail to read your classwork folder without looking at your system mailbox.

2-24 Mail Reference Manual

4. More about sending mail

4.1. Tilde escapes

While typing in a message to be sent to others, it is often useful to be able to invoke the
text editor on the partial message, print the message, execute a shell command, or do some
other auxiliary function. Mail provides these capabilities through tilde escapes, which consist
of a tilde n at the beginning of a line, followed by a single character which indicates the func
tion to be performed. For example, to print the text of the message so far, use:

-p

which will print a line of dashes, the recipients of your message, and the text of the message
so far. Since Mail requires two consecutive RUBOUT's to abort a letter, you can use a single
RUBOUT to abort the output of -p or any other - escape without killing your letter.

If you are dissatisfied with the message as it stands, you can invoke the text editor on it
using the escape

-e

which causes the message to be copied into a temporary file and an instance of the editor to
be spawned. After modifying the message to your satisfaction, write it out and quit the editor.
Mail will re~pond by typing

(continue)

after which you may continue typing text which will be appended to your message, or type
<control-cl> to end the message. A standard text editor is provided by Mail. You can over
ride this default by setting the valued option "EDITOR" to something else. For example, you
might prefer1:

set EDITOR=/usr/ucb/ex

Many systems offer a screen editor as an alternative to the standard text editor, such as
the vi edito:rr from UC Berkeley. To use the screen, or visual editor, on your current message,
you can use the escape,

-v

-v works like -e, except that the screen editor is invoked instead. A default screen editor is
defined by Mail. If it does not suit you, you can set the valued option "VISUAL" to the path
name of a different editor.

It is often useful to be able to include the contents of some file in your message; the
escape

-r filename

is provided for this purpose, and causes the named file to be appended· to your current mes
sage. Mail complains if the file doesn't exist or can't be read. If the read is successful, the
number of lines and characters appended to your message is printed, after which you may
continue appending text. The filename may contain shell metacharacters like * and ? which
are expanded according to the conventions of your shell.

As a special case of -r, the escape

-d

reads in the file "dead.letter" in your home directory. This is often useful since Mail copies
the text of your message there when you abort a message with RUBOUT.

To save the current text of your message on a file you may use the

-w filename

escape. Mail will print out the number of lines and characters written to the file, after which

Mail Reference Manual 2-25

you may continue appending text to your message. Shell metacharacters may be used in the
filename, as in -r and are expanded with the conventions of your shell.

If you are sending mail from within Mail's command mode you can read a message sent
to you into the message you are constructing with the escape:

-m 4

which will read message 4 into the current message, shifted right by one tab stop. You can
name any non-deleted message, or list of messages. Messages can also be forwarded without
shifting by a tab stop with -f. This is the usual way to forward a message.

If, in the process of composing a message, you decide to add additional people to the list
of message recipients, you can do so with the escape

-t namel name2 ...

You may name as few or many additional recipients as you wish. Note that the users origi
nally on the recipient list will still receive the message; you cannot remove someone from the
recipient list with -t.

If you wish, you can associate a subject with your message by using the escape

-s Arbitrary string of text

which replaces any previous subject with "Arbitrary string of text." The subject, if given, is
sent near the top of the message prefixed with "Subject:" You can see what the message will
look like by using -p.

For political reasons, one occasionally prefers to list certain people as recipients of car
bon copies of a message rather than direct recipients. The escape

-c namel name2 ...

adds the named people to the "Cc:" list, similar to -t. Again, you can execute -p to see what
the message will look like.

The recipients of the message together constitute the "To:" field, the subject the "Sub
ject:" field, and the carbon copies the "Cc:" field. If you wish to edit these in ways impossible
with the -t, -s, and -c escapes, you can use the escape

-h

which prints "To:" followed by the current list of recipients and leaves the cursor (or print
head) at the end of the line. If you type in ordinary characters, they are appended to the end
of the current list of recipients. You can also use your erase character to erase back into the
list of recipients, or your kill character to erase them altogether. Thus, for example, if your
erase and kill characters are the standard # and @ symbols,

-h
To: root kurt####bill

would change the initial recipients "root kurt" to "root bill." When you type a newline, Mail
advances to the "Subject:" field, where the same rules apply. Another newline brings you to
the "Cc:" field, which may be edited in the same fashion. Another newline leaves you append
ing text to the end of your message. You can use "'p to print the current text of the header
fields and the body of the message.

To effect a temporary escape to the shell, the escape

-!command

is used, which executes command and returns you to mailing mode without altering the text of
your message. If you wish, instead, to filter the body of your message through a shell com
mand, then you can use

icommand

2-26 Mail Reference Manual

which pipes your message through the command and uses the output as the new text of your
message. If the command produces no output, Mail assumes that something is amiss and
retains the old version Qf your message. A frequently-used filter is the command fmt,
designed to format outgoing mail.

To effect a temporary escape to Mail command mode instead, you can use the

-:Mail command

escape. This is especially useful for retyping the message you are replying to, using, for exam
ple:

-:t

It is also useful for setting options and modifying aliases.

If you wish (for some reason) to send a message that contains a line beginning with a
tilde, you must double it. Thus, for example,

--This line begins with a tilde.

sends the line

-This line begins with a tilde.

Finally, the escape

-?

prints out a brief summary of the available tilde escapes.

On some terminals (particularly ones with no lower case) tilde's are difficult to type.
Mail allows you to change the escape character with the "escape" option. For example, I set

set escape=]

and use a right bracket instead of a tilde. If I ever need to send a line beginning with right
bracket, I double it, just as for -. Changing the escape character removes the special meaning
of-.

4.2. Net work access

This section describes how to send mail to people on other machines. Recall that send
ing to a plain login name sends mail to that person on your machine. If your machine is
directly (or sometimes, even, indirectly) connected to the Arpanet, you can send messages to
people on the Arpanet using a name of the form

name@host

where name is the login name of the person you're trying to reach and host is the name of the
machine where he logs in on the Arpanet.

If your recipient logs in on a machine connected to yours by UUCP (the Bell Labora
tories supplied network that communicates over telephone lines), sending mail to him is a bit
more complicated. You must know the list of machines through which your message must
travel to arrive at his site. So, if his machine is directly connected to yours, you can send mail
to him using the syntax:

host!name

where, again, host is the name of his machine and name is his login name. If your message
must go through an intermediate machine first, you must use the syntax:

intermediate!host!name

and so on. It is actually a feature of UUCP that the map of all the systems in the network is
not known anywhere (except where people decide to write it down for convenience). Talk to
your system administrator about the machines connected to your site.

Mail Reference Manual 2-27

If you want to send a message to a recipient on the Berkeley network (Berknet), you use
the syntax:

host: name

where host is his machine name and name is his login name. Unlike UUCP, you need not
know the names of the intermediate machines.

When you use the reply command to respond to a letter, there is a problem of figuring
out the names of the users in the "To:" and "Cc:" lists relative to the current machine. If the
original letter was sent to you by someone on the local machine, then this problem does not
exist, but if the message came from a remote machine, the problem must be dealt with. Mail
uses a heuristic to build the correct name for each user relative to the local machine. So,
when you reply to remote mail, the names in the "To:" and "Cc:" lists may change some
what.

4.3. Special recipients

As described previously, you can send mail to either user names or alias names. It is
also possible to send messages directly to files or to programs, using special conventions. If a
recipient name has a '/' in it or begins with a '+', it is assumed to be the path name of a file
into which to send the message. If the file already exists, the message is appended to the end
of the file. If you want to name a file in your current directory (ie, one for which a '/' would
not usually be needed) you can precede the name with './' So, to send mail to the file "memo"
in the current directory, you can give the command:

3 Mail ./memo

If the name begins with a '+,' it is expanded into the full path name of the folder name in
your folder directory. This ability to send mail to files can be used for a variety of purposes,
such as maintaining a journal and keeping a record of mail sent to a certain group of users.
The second example can be done automatically by including the full pathname of the record
file in the alias command for the group. Using our previous alias example, you might give
the command:

alias project sam sally steve susan /usr/project/mail record

Then, all mail sent to "project" would be saved on the file "/usr/project/mail record" as well
as being sent to the members of the project. This file can be examined using Mail -{.

It is sometimes useful to send mail directly to a program, for example one might write a
project billboard program and want to access it using Mail. To send messages to the billboard
program, one can send mail to the special name 'lbillboard' for example. Mail treats recipient
names that begin with a 'I' as a program to send the mail to. An alias can be set up to refer
ence a 'I' prefaced name if desired. Caveats: the shell treats 'I' specially, so it must be quoted
on the command line. Also, the 'I program' must be presented as a single argument to mail.
The safest course is to surround the entire name with double quotes. This also applies to
usage in the alias command. For example, if we wanted to alias 'rmsgs' to 'rmsgs -s' we
would need to say:

alias rmsgs "I rmsgs -s"

2-28 Mail Reference Manual

5. Additional features

This section describes some additional commands of use for reading your mail, setting
options, and handling lists of messages.

5.1. Message lists

Several Mail commands accept a list of messages as an argument. Along with type and
delete, described in section 2, there is the from command, which ,prints the message headers
associated with the message list passed to it. The from command is particularly useful in
conjunction with some of the message list features described below.

A message list consists of a list of message numbers, ranges, and names, separated by
spaces or tabs. Message numbers may be either decimal numbers, which directly specify mes
sages, or one of the special characters "ft" "." or "$" to specify the first relevant, current, or
last relevant message, respectively. Relevant here means, for most commands "not deleted"
and "deleted" for the undelete command.

A range of messages consists of two message numbers (of the form described in the pre
vious paragraph) separated by a dash. Thus, to print the first four messages, use

type 1-4

and to print all the messages from the current message to the last message, use

type.-$

A name is a user name. The user names given in the message list are collected together
and each message selected by other means is checked to make sure it was sent by one of the
named users. If the message consists entirely of user names, then every message sent by one
those users that is relevant (in the sense described earlier) is selected. Thus, to print every
message sent to you by "root," do

type root

As a shorthand notation, you can specify simply "*" to get every relevant (same sense)
message. Thus,

type*

prints all undeleted messages,

delete *

deletes all undeleted messages, and

undelete*

undeletes all deleted messages.

You can search for the presence of a word in subject lines with /. For example, to print
the headers of all messages that contain the word "PASCAL," do:

from /pascal

Note that subject searching ignores upper/lower case differences.

5.2. List of commands

This section describes all the Mail commands available when receiving mail.

Used to preface a command to be executed by the shell.

The - command goes to the previous message and prints it. The - command may be
given a decimal number n as an argument, in which case the nth previous message is
gone to and printed.

Mail Reference Manual 2-29

Print
Like print, but also print out ignored header fields. See also print and ignore.

Reply
Note the capital R in the name. Frame a reply to a one or more messages. The reply
(or replies if you are using this on multiple messages) will be sent ONLY to the person
who sent you the message (respectively, the set of people who sent the messages you are
replying to). You can add people using the -t and -c tilde escapes. The subject in your
reply is formed by prefacing the subject in the original message with "Re:" unless it
already began thus. If the original message included a "reply-to" header field, the reply
will go only to the recipient named by "reply-to." You type in your message using the
same conventions available to you through the mail command. The Reply command is
especially useful for replying to messages that were sent to enormous distribution groups
when you really just want to send a message to the originator. Use it often.

Type
Identical to the Print command.

alias
Define a name to stand for a set of other names. This is used when you want to send
messages to a certain group of people and want to avoid retyping their names. For
example

alias project john sue willie kathryn

creates an alias project which expands to the four people John, Sue, Willie, and
Kathryn.

alternates
If you have accounts on several machines, you may find it convenient to use the
/usr/lib/aliases on all the machines except one to direct your mail to a single account.
The alternates command is used to inform Mail that each of these other addresses is
really you. Alternates takes a list of user names and remembers that they are all actu
ally you. When you reply to messages that were sent to one of these alternate names,
Mail will not bother to send a copy of the message to this other address (which would
simply be directed back to you by the alias mechanism). If alternates is given no argu
ment, it lists the current set of alternate names. Alternates is usually used in the
.mailrc file.

chdir
The chdir command allows you to change your current directory. Chdir takes a single
argument, which is taken to be the pathname of the directory to change to. If no argu
ment is given, chdir changes to your home directory.

copyThe copy command does the same thing that save does, except that it does not mark
the messages it is used on for deletion when you quit.

delete
Deletes a list of messages. Deleted messages can be reclaimed with the undelete com
mand.

dt The dt command deletes the current message and prints the next message. It is useful
for quickly reading and disposing of mail.

edit To edit individual messages using the text editor, the edit command is provided. The
edit command takes a list of messages as described under the type command and
processes each by writing it into the file Messagex where x is the message number being
edited and executing the text editor on it. When you have edited the message to your
satisfaction, write the message out and quit, upon which Mail will read the message back
and remove the file. Edit may be abbreviated toe.

2-30 Mail Reference Manual

else Marks the end of the then-part of an if statement and the beginning of the part to take
effect if the condition of the if statement is false.

endif
Marks the end of an if statement.

exit Leave Mail without updating the system mailbox or the file your were reading. Thus, if
you accidentally delete several messages, you can use exit to avoid scrambling your
mailbox.

file The same as folder.

folders
List the names of the folders in your folder directory.

folder

from

The folder command switches to a new mail file or folder. With no arguments, it tells
you which file you are currently reading. If you give it an argument, it will write out
changes (such as deletions) you have made in the current file and read the new file.
Some special conventions are recognized for the name:

__ Name. _____________________ M_ea_nin_g _________________ _

Previous file read
%
%name
&
+folder

Your system mailbox
Name's system mailbox
Your -1m box file
A file in your folder directory

The from command takes a list of messages and prints out the header lines for each
one; hence

from joe

is the easy way to display all the message headers from "joe."

headers
When you start up Mail to read your mail, it lists the message headers that you have.
These headers tell you who each message is from, when they were sent, how many lines
and characters each message is, and the "Subject:" header field of each message, if
present. In addition, Mail tags the message header of each message that has been the
object of the preserve command with a "P." Messages that have been saved or writ
ten are flagged with a"*." Finally, deleted messages are not printed at all. If you wish
to reprint the current list of message headers, you can do so with the headers com
mand. The headers command (and thus the initial header listing) only lists the first so
many message headers. The number of headers listed depends on the speed of your ter
minal. This can be overridden by specifying the number of headers you want with the
window option. Mail maintains a notion of the current "window" into your messages for
the purposes of printing headers. Use the z command to move forward and back a win
dow. You can move Mail's notion of the current window directly to a particular message
by using, for example,

headers 40

to move Mail's attention to the messages around message 40. The headers command
can be abbreviated to h.

help Print a brief and usually out of date help message about the commands in Mail. Refer
to this manual instead.

Mail Reference Manual 2-31

hold Arrange to hold a list of messages in the system mailbox, instead of moving them to the
file mbox in your home directory. If you set the binary option hold, this will happen by
default.

if Commands in your ".mailrc" file can be executed conditionally depending on whether
you are sending or receiving mail with the if command. For example, you can do:

if receive
commands ...

endif

An else form is also available:

if send
commands ...

else
commands ...

endif

Note that the only allowed conditions are receive and send.

ignore
Add the list of header fields named to the ignore list. Header fields in the ignore list are
not printed on your terminal when you print a message. This allows you to suppress
printing of certain machine-generated header fields, such as Via which are not usually of
interest. The Type and Print commands can be used to print a message in its entirety,
including ignored fields. If ignore is executed with no arguments, it lists the current set
of ignored fields.

list List the vaild Mail commands.

mail Send mail to one or more people. If you have the ask option set, Mail will prompt you
for a subject to your message. Then you can type in your message, using tilde escapes as
described in section 4 to edit, print, or modify your message. To signal your satisfaction
with the message and send it, type control-cl at the beginning of a line, or a . alone on a
line if you set the option dot. To abort the message, type two interrupt characters
(RUBOUT by default) in a row or use the -q escape.

mbox
Indicate that a list of messages be sent to mbox in your home directory when you quit.
This is the default action for messages if you do not have the hold option set.

next The next command goes to the next message and types it. If given a message list, next
goes to the first such message and types it. Thus,

next root

goes to the next message sent by "root" and types it. The next command can be abbre
viated to simply a newline, which means that one can go to and type a message by sim
ply giving its message number or one of the magic characters "fi" "."or "$". Thus,

prints the current message and

4

prints message 4, as described previously.

preserve
Same as hold. Cause a list of messages to be held in your system mailbox when you
quit.

quit Leave Mail and update the file, folder, or system mailbox your were reading. Messages
that you have examined are marked as "read" and messages that existed when you

2-32 Mail Reference Manual

started are marked as "old." If you were editing your system mailbox and if you have set
the binary option hold, all messages which have not been deleted, saved, or mboxed will
be retained in your system mailbox. If you were editing your system mailbox and you
did not have hold set, all messages which have not been deleted, saved, or preserved will
be moved to the file mbox in ycur home directory.

reply
Frame a reply to a single message. The reply will be sent to the person who sent you the
message to which you are replying, plus all the people who received the original message,
except you. You can add people using the -t and -c tilde escapes. The subject in your
reply is formed by prefacing the subject in the original message with "Re:" unless it
already began thus. If the original message included a "reply-to" header field, the reply
will go only to the recipient named by "reply-to." You type in your message using the
same conventions available to you through the mail command.

savelt is often useful to be able to save messages on related topics in a file. The save com
mand gives you ability to do this. The save command takes as argument a lit of mes
sage numbers, followed by the name of the file on which to save the messages. The mes
sages are appended to the named file, thus allowing one to keep several messages in the
file, stored in the order they were put there. The save command can be abbreviated to
s. An example of the save command relative to our running example is:

s 1 2 tuitionmail

Saved messages are not automatically saved in mbox at quit time, nor are they selected
by the next command described above, unless explicitly specified.

set Set an option or give an option a value. Used to customize Mail. Section 5.3 contains a
list of the options. Options can be binary, in which case they are on or off, or valued.
To set a binary option option on, do

set option

To give the valued option option the value value, do

set option =value

Several options can be specified in a single set command.

shell
The shell command allows you to escape to the shell. Shell invokes an interacti~e shell
and allows you to type commands to it. When you leave the shell, you will return to
Mail. The shell used is a default assumed by Mail; you can override this default by set
ting the valued option "SHELL," eg:

set SHELL=/bin/csh

source
The source command reads Mail commands from a file. It is useful when you are try
ing to fix your ".mailrc" file and you need to re-read it.

top The top command takes a message list and prints the first five lines of each addressed
message. It may be abbreviated to to. If you wish, you can change the number of lines
that top prints out by setting the valued option "toplines." On a CRT terminal,

set top lines= 10

might be preferred.

type Print a list of messages on your terminal. If you have set the option crt to a number and
the total number of lines in the messages you are printing exceed that specified by crt,
the messages will be printed by a terminal paging program such as more.

Mail Reference Manual 2-33

undelete
The undelete command causes a message that had been deleted previously to regain its
initial status. Only messages that have been deleted may be undeleted. This command
may be abbreviated to u.

unset
Reverse the action of setting a binary or valued option.

visual
It is often useful to be able to invoke one of two editors, based on the type of terminal
one is using. To invoke a display oriented editor, you can use the visual command.
The operation of the visual command is otherwise identical to that of the edit com
mand.

Both the edit and visual commands assume some default text editors. These default
editors can be overridden by the valued options "EDITOR" and "VISUAL" for the stan
dard and screen editors. You might want to do:

set EDITOR=/usr/ucb/ex VISUAL=/usr/ucb/vi

write
The save command always writes the entire message, including the headers, into the
file. If you want to write just the message itself, you can use the write command. The
write command has the same syntax as the save command, and can be abbreviated to
simply w. Thus, we could write the second message by doing:

w 2 file.c

As suggested by this example, the write command is useful for such tasks as sending
and receiving source program text over the message system.

z Mail presents message headers in windowfuls as described under the headers com
mand. You can move Mail's attention forward to the next window by giving the

z+
command. Analogously, you can move to the previous window with:

z-

5.3. Custom options

Throughout this manual, we have seen examples of binary and valued options. This sec
tion describes each of the options in alphabetical order, including some that you have not seen
yet. To avoid confusion, please note that the options are either all lower case letters or all
upper case letters. When I start a sentence such as: "Ask" causes Mail to prompt you for a
subject header, I am only capitalizing "ask" as a courtesy to English.

EDITOR
The valued option "EDITOR" defines the pathname of the text editor to be used in the
edit command and -e. If not defined, a standard editor is used.

SHELL
The valued option "SHELL" gives the path name of your shell. This shell is used for
the ! command and -1 escape. In addition, this shell expands file names with shell meta
characters like * and ? in them.

VISUAL
The valued option "VISUAL" defines the pathname of your screen editor for use in the
visual command and -v escape. A standard screen editor is used if you do not define
one.

2-34 Mail Reference Manual

append
The "append" option is binary and causes messages saved in mbox to be appended to
the end rather than prepended. Normally, Mailwill mbox in the same order that the
system puts messages in your system mailbox. By setting "append," you are requesting
that mbox be appended to regardless. It is in any event quicker to append.

ask "Ask" is a binary option which causes Mail to prompt you for the subject of each mes
sage you send. If you respond with simply a newline, no subject field will be sent.

askcc
"Askcc" is a binary option which causes you to be prompted for additional carbon copy
recipients at the end of each message. Responding with a newline shows your satisfac
tion with the current list.

autoprint
"Autoprint" is a binary option which causes the delete command to behave like dp -
thus, after deleting a message, the next one will be typed automatically. This is useful
to quickly scanning and deleting messages in your mailbox.

debug
The binary option "debug" causes debugging information to be displayed. Use of this
option is the same as useing the -d command line flag.

dot "Dot" is a binary option which, if set, causes Mail to interpret a period alone on a line as
the terminator of a message you are sending.

escape
To allow you to change the escape character used when sending mail, you can set the
valued option "escape." Only the first character of the "escape" option is used, and it
must be doubled if it is to appear as the first character of a line of your message. If you
change your escape character, then -ioses all its special meaning, and need no longer be
doubled at the beginning of a line.

folder
The name of the directory to use for storing folders of messages. If this name begins
with a '/' Mail considers it to be an absolute pathname; otherwise, the folder directory is
found relative to your home directory.

hold The binary option "hold" causes messages that have been read but not manually dealt
with to be held in the system mailbox. This prevents such messages from being automat
ically swept into your mbox.

ignore
The binary option "ignore" causes RUBOUT characters from your terminal to be ignored
and echoed as @'s while you are sending mail. RUBOUT characters retain their original
meaning in Mail command mode. Setting the "ignore" option is equivalent to supplying
the -i flag on the command line as described in section 6.

ignoreeof
An option related to "dot" is "ignoreeof" which makes Mail refuse to accept a control-cl
as the end of a message. "lgnoreeof' also applies to Mail command ~ode.

keep
The "keep" option causes Mail to truncate your system mailbox instead of deleting it
when it is empty. This is useful if you elect to protect your mailbox, which you would
do with the shell command:

chmod 600 /usr/spool/mail/yourname

where yourname is your login name. If you do not do this, anyone can probably read

your mail, although people usually don't.

keeps ave

Mail Reference Manual 2-35

When you save a message, Mail usually discards it when you quit. To retain all saved
messages, set the "keepsave" option.

me too
When sending mail to an alias, Mail makes sure that if you are included in the alias,
that mail will not be sent to you. This is useful if a single alias is being used by all
members of the group. If however, you wish to receive a copy of all the messages you
send to the alias, you can set the binary option "metoo."

noheader
The binary option "noheader" suppresses the printing of the version and headers when
Mail is first invoked. Setting this option is the same as using-Non the command line.

nos ave
Normally, when you abort a message with two RUBOUTs, Mail copies the partial letter to
the file "dead.letter" in your home directory. Setting the binary option "nosave"
prevents this.

quiet
The binary option "quiet" suppresses the printing of the version when Mail is first
invoked, as well as printing the for example "Message 4:" from the type command.

record
If you love to keep records, then the valued option "record" can be set to the name of a
file to save your outgoing mail. Each new message you send is appended to the end of
the file.

screen
When Mail initially prints the message headers, it determines the number to print by
looking at the speed of your terminal. The faster your terminal, the more it prints. The
valued option "screen" overrides this calculation and specifies how many message
headers you want printed. This number is also used for scrolling with the z command.

sendmail
To alternate delivery system, set the "sendmail" option to the full pathname of the pro
gram to use. Note: this is not for everyone! Most people should use the default
delivery system.

toplines
The valued option "toplines" defines the number of lines that the "top" command will
print out instead of the default five lines.

verbose
The binary option "verbose" causes Mail to invoke sendmail with the -v flag, which
causes it to go into versbose mode and announce expansion of aliases, etc. Setting the
"verbose" option is equivalent to invoking Mail with the -v flag as described in section
6.

2-36 Mail Reference Manual

6. Command line options

This section describes command line options for Mail and what they are used for.

- N Suppress the initial printing of headers.

-d Turn on debugging information. Not of general interest.

-f file
Show the messages in file instead of your system mailbox. If file is omitted, Mail reads
mbox in your home directory.

-i Ignore tty interrupt signals. Useful on noisy phone lines, which generate spurious
RUBOUT or DELETE characters. It's usually more effective to change your interrupt
character to control-c, for which see the stty shell command.

-n Inhibit reading of /usr/lib/Mail.rc. Not generally useful, since /usr/lib/Mail.rc is usually
empty.

-s string
Used for sending mail. String is used as the subject of the message being cornposed. If
string contains blanks, you must surround it with quote marks.

-u name
Read names's mail instead of your own. Unwitting others often neglect to protect their
mailboxes; but discretion is advised. Essentially, -u user is a shorthand way of doing
-f /usr/spool/user.

-v Use the -v flag when invoking sendmail. This feature may also be enabled by setting
the the option "verbose".

The following command line flags are also recognized, but are intended for use by pro
grams invoking Mail and not for people.

-T file
Arrange to print on file the contents of the article-id fields of all messages that were
either read or deleted. -T is for the readnews program and should NOT be used for
reading your mail.

-h number
Pass on hop count information. Mail will take the number, increment it, and pass it
with --h to the mail delivery system. - h only has effect when sending mail and is used
for network mail forwarding.

-r name
Used for network mail forwarding: interpret name as the sender of the message. The
name and -rare simply sent along to the mail delivery system. Also, Mail will wait for
the message to be sent and return the exit status. Also restricts formatting of message.

Note that -h and -r, which are for network mail forwarding, are not used in practice
since mail forwarding is now handled separately. They may disappear soon.

Mail Reference Manual 2-37

7. Format of messages

This section describes the format of messages. Messages begin with a from line, which
consists of the word "From" followed by a user name, followed by anything, followed by a
date in the format returned by the ctime library routine described in section 3 of the Unix
Programmer's Manual. A possible ctime format date is:

Tue Dec 1 10:58:23 1981

The ctime date may be optionally followed by a single space and a time zone indication, which
should be three capital letters, such as PDT.

Following the from line are zero or more header field lines. Each header field line is of
the form:

name: information

Name can be anything, but only certain header fields are recognized as having any meaning.
The recognized header fields are: article-id, bee, cc, from, reply-to, sender, subject, and to.
Other header fields are also significant to other systems; see, for example, the current Arpanet
message standard for much more on this topic. A header field can be continued onto follow
ing lines by making the first character on the following line a space or tab character.

If any headers are present, they must be followed by a blank line. The part that follows
is called the body of the message, and must be ASCII text, not containing null characters.
Each line in the message body must be terminated with an ASCII newline character and no
line may be longer than 512 characters. If binary data must be passed through the mail sys
tem, it is suggested that this data be encoded in a system which encodes six bits into a print
able character. For example, one could use the upper and lower case letters, the digits, and
the characters comma and period to make up the 64 characters. Then, one can send a 16-bit
binary number as three characters. These characters should be packed into lines, preferably
lines about 70 characters long as long lines are transmitted more efficiently.

The message delivery system always adds a blank line to the end of each message. This
blank line must not be deleted.

The UUCP message delivery system sometimes adds a blank line to the end of a message
each time it is forwarded through a machine.

It should be noted that some network transport protocols enforce limits to the lengths of
messages.

2-38 Mail Reference Manual

8. Glossary

This section contains the definitions of a few phrases peculiar to Mail.

alias An alternative name for a person or list of people.

fiag An option, given on the command line of Mail, prefaced with a-. For example, -f is a
flag.

header field

mail

At the beginning of a message, a line which contains information that is part of the
structure of the message. Popular header fields include to, cc, and subject.

A collection of messages. Often used in the phrase, "Have you read your mail?"

mailbox
The place where your mail is stored, typically in the directory /usr/spool/mail.

message
A single letter from someone, initially stored in your mailbox.

message list
A string used in Mail command mode to describe a sequence of messages.

option
A piece of special purpose information used to tailor Mail to your taste. Options are
specified with the set command.

Mail Reference Manual 2-39

9. Summary of commands, options, and escapes

This section gives a quick summary of the Mail commands, binary and valued options,
and tilde escapes.

The following table describes the commands:

_Command. __ . ______ ---· __ . ______ .. Des_criptian ____ . ___________ _ _

Print
Reply
Type
alias
alternates
chdir
copy
delete
dt
endif
edit
else
exit
file
folder
folders
from
headers
help
hold
if
ignore
list
local
mail
mbox
next
preserve
quit
reply
save
set
shell
top
type
undelete
unset
visual
write
z

Single command escape to shell
Back up to previous message
Type message with ignored fields
Reply to author of message only
Type message with ignored fields
Define an alias as a set of user names
List other names you are known by
Change working directory, home by default
Copy a message to a file or folder
Delete a list of messages
Delete current message, type next message
End of conditional statement; see if
Edit a list of messages
Start of else part of conditional; see if
Leave mail without changing anything
Interrogate/change current mail file
Same as file
List the folders in your folder directory
List headers of a list of messages
List current window of messages
Print brief summary of Mail commands
Same as preserve
Conditional execution of Mail commands
Set/examine list of ignored header fields
List valid Mail commands
List other names for the local host
Send mail to specified names
Arrange to save a list of messages in mbox
Go to next message and type it
Arrange to leave list of messages in system mailbox
Leave Mail; update system mailbox, mbox as appropriate
Compose a reply to a message
Append messages, headers included, on a file
Set binary or valued options
Invoke an interactive shell
Print first so many (5 by default) lines of list of messages
Print messages
Undelete list of messages
Undo the operation of a set
Invoke visual editor on a list of messages
Append messages to a file, don't include headers
Scroll to next/previous screenful of headers

2-40 Mail Reference Manual

The following table describes the options. Each option is shown as being either a
binary or valued option.

_Qption _______ _Typ__e ______________________________ _Desaiptiaa_ ___________ _________________ _

EDITOR valued Pathname of editor for -e and edit
SHELL valued Pathname of shell for shell, -1 and!
VISUAL valued Pathname of screen editor for -v, visual
append
ask
ask cc
autoprint
crt
debug
dot
escape
folder
hold
ignore
ignoreeof
keep
keepsave
me too
noheader
nosave
quiet
record
screen
sendmail
top lines
verbose

binary
binary
binary
binary
valued
binary
binary
valued
valued
binary
binary
binary
binary
binary
binary
binary
binary
binary
valued
valued
valued
valued
binary

Always append messages to end of mbox
Prompt user for Subject: field when sending
Prompt user for additional Cc's at end of message
Print next message after delete
Minimum number of lines before using more
Print out debugging information
Accept . alone on line to terminate message input
Escape character to be used instead of -
Directory to store folders in
Hold messages in system mailbox by default
Ignore RUBOUT while sending mail
Don't terminate letters/command input with fiD
Don't unlink system mailbox when empty
Don't delete saved messages by default
Include sending user in aliases
Suppress initial printing of version and headers
Don't save partial letter in dead.letter
Suppress printing of Mail version and message numbers
File to save all outgoing mail in
Size of window of message headers for z, etc.
Choose alternate mail delivery system
Number of lines to print in top
Invoke sendmail with the -v flag

The following table summarizes the tilde escapes available while sending mail.

Es.cape Arguments De.scriptian_
-1 command Execute shell command
-c name ... Add names to Cc: field
-d Read dead. letter into message
-e Invoke text editor on partial message
-f messages Read named messages
-h Edit the header fields
-m messages Read named messages, right shift by tab
-p Print message entered so far -q Abort entry of letter; like RUBOUT -r filename Read file into message -s string Set Subject: field to string
-t name ... Add names to To: field
-v Invoke screen editor on message
-w filename Write message on file
i command Pipe message through command

string Quote a - in front of string

Mail Reference Manual 2-41

The following table shows the command line flags that Mail accepts:

Flag Description
- N Suppress the initial printing of headers
-T file Article-id's of read/deleted messages to file
-d Turn on debugging
-f file Show messages in file or ~/mbox
-h number Pass on hop count for mail forwarding
-i Ignore tty interrupt signals
-n Inhibit reading of /usr/lib/Mail.rc
-r name Pass on name for mail forwarding
-s string Use string as subject in outgoing mail
-u name Read name's mail instead of your own
-v Invoke sendmail with the -v flag

Notes: -T, -d, -h, and -r are not for human use.

10. Conclusion

Mail is an attempt to provide a simple user interface to a variety of underlying message
systems. Thanks are due to the many users who contributed ideas and testing to Mail.

BC 2-43

BC - An Arbitrary Precision Desk-Calculator Language

Introduction

Lorinda Cherry

Robert Morris

Bell Laboratories
Murray Hill, New Jersey 07974

BC is a language and a compiler for doing arbitrary precision arithmetic on the UNIXt
time-sharing system [1]. The compiler was written to make conveniently available a collection
of routines (called DC [5]) which are capable of doing arithmetic on integers of arbitrary size.
The compiler is by no means intended to provide a complete programming language. It is a
minimal language facility.

There is a scaling provision that permits the use of decimal point notation. Provision is
made for input and output in bases other than decimal. Numbers can be converted from
decimal to octal by simply setting the output base to equal 8.

The actual limit on the number of digits that can be handled depends on the amount of
storage available on the machine. Manipulation of numbers with many hundreds of digits is
possible even on the smallest versions of UNIX.

The syntax of BC has been deliberately selected to agree substantially with the C
language [2]. Those who are familiar with C will find few surprises in this language.

Simple Computations with Integers

The simplest kind of statement is an arithmetic expression on a line by itself. For
instance, if you type in the line:

142857 + 285714

the program responds immediately with the line

428571

The operators - , *, /, % , and " can also be used; they indicate subtraction, multiplication,
division, remaindering, and exponentiation, respectively. Division of integers produces an
integer result truncated toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it is to be
negated (the 'unary' minus sign). The expression

7+-3

is interpreted to mean that -3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted
just as in Fortran, with" having the greatest binding power, then* and % and/, and finally+
and - . Contents of parentheses are evaluated before material outside the parentheses.
Exponentiations are performed from right to left and the other operators from left to right.
The two expressions

t UNIX is a trademark of Bell Laboratories.

2-44 B~

a'"'b'"'c and a'"'(b'"'c)

are equivalent, as ;:ire tpe two expressions

a*b*c and (a*b)*c

BC shares with Fortran and C the undesirable convention tqat

a/b*c is equivalent to (a/b)*c

Internal storage registers to hold numbers have single lower-case letter names. The
value of an expression can be assigned to a register in the usual way. The statement

. '

x=x+3

has the effect of incr.easing by three the value of the contents of t}ie registe:r named x. When,
as in this case, the outer1I1o~t operator is an =, the assjgnment is performed but the result is
not printed. Only 2f), of thes~ named storage registers are available.

There is a built-in squ~re root function whose result is trunc&teq to an integer (but see
scaling below). The lines , ·

x = sqrt(191)
x

produce the printed result

13

Bases

There are special internal quantities, called 'ibase' and 'obase'. The contents of 'ibase',
initially set to 10, determines the base used for h1terpreting numbers read in. For example,
the lines

ibase = 8
11

will produce the output line

9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change
the input base· back to decimal by typing

ibase = 10

Because the number 10 is interpreted as octal, this statement will have no effect. For those
who qeal in hexadecimal notation, the characters A-F are permitted in numbers (no matter
what base is in effect) and are interpreted as digits having values 10-15 respectively. The
statement

ibase =A

will change you back to decimal input base no matter wpat the current input base is. Nega
tive and large positive input bases are permitted put useless. No ·mechanism has been pro
vided for the input of arbitrary numbers in bases less than 1 and ~reater than 16.

The contents of 'obase', initially set to 10, are usep as the base for output numbers. The
lines ,

obase = 16
1000

will produce the outp4t line

BC 2-45

3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are per
mitted, and they are sometimes useful. For example, large numbers can be output in groups
of five digits by setting 'obase' to 100000. Strange (i.e. 1, 0, or negative) output bases are han
dled appropriately.

Very large numbers are split across lines with 70 characters per line. Lines which are
continued end with \. Decimal output conversion is practically instantaneous, but output of
very large numbers (i.e., more than 100 digits) with other bases is rather slow. Non-decimal
output conversion of a one hundred digit number takes about three seconds.

It is best to remember that 'ibase' and 'obase' have no effect whatever on the course of
internal computation or on the evaluation of expressions, but only affect input and output
conversion, respectively.

Scaling

A third special internal quantity called 'scale' is used to determine the scale of calculated
quantities. Numbers may have up to 99 decimal digits after the decimal point. This frac
tional part is retained in further computations. We refer to the number of digits after the
decimal point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations,
the result has a scale determined by the following rules. For addition and subtraction, the
scale of the result is the larger of the scales of the two operands. In this case, there is never
any truncation of the result. For multiplications, the scale of the result is never less than the
maximum of the two scales of the operands, never more than the sum of the scales of the
operands and, subject to those two restrictions, the scale of the result is set equal to the con
tents of the internal quantity 'scale'. The scale of a quotient is the contents of the internal
quantity 'scale'. The scale of a remainder is the sum of the scales of the quotient and the
divisor. The result of an exponentiation is scaled as if the implied multiplications were per
formed. An exponent must be an integer. The scale of a square root is set to the maximum
of the scale of the argument and the contents of 'scale'.

All of the internal operations are actually carried out in terms of integers, with digits
being discarded when necessary. In every case where digits are discarded, truncation and not
rounding is performed.

The contents of 'scale' must be no greater than 99 and no less than 0. It is initially set
to 0. In case you need more than 99 fraction digits, you may arrange your own scaling.

The internal quantities 'scale', 'ibase', and 'obase' can be used in expressions just like
other variables. The line

scale = scale + 1

increases the value of 'scale' by one, and the line

scale

causes the current value of 'scale' to be printed.

The value of 'scale' retains its meaning as a number of decimal digits to be retained in
internal computation even when 'ibase' or 'obase' are not equal to 10. The internal computa
tions (which are still conducted in decimal, regardless of the bases) are performed to the
specified number of decimal digits, never hexadecimal or octal or any other kind of digits.

Functions

The name of a function is a single lower-case letter. Function names are permitted to
collide with simple variable names. Twenty-six different defined functions are permitted in
addition to the twenty-six variable names. The line

2-46 BC

define a(x) {

begins the definition of a function with one argument. This line must be followed by one or
more statements, which make up the body of the function, ending with a right brace } .
Return of control from a function occurs when a return statement is executed or when the end
of the function is reached. The return statement can take either of the two forms

return
return(x)

In the first case, the value of the function is 0, and in the second, the value of the expression
in parentheses.

Variables used in the function can be declared as automatic by a statement of the form

auto x,y,z

There can be only one 'auto' statement in a function and it must be the first statement in the
definition. These automatic variables are allocated space and initialized to zero on entry to
the function and thrown away on return. The values of any variables with the same names
outside the function are not disturbed. Functions may be called recursively and the automatic
variables at each level of call are protected. The parameters named in a function definition
are treated in the same way as the automatic variables of that function with the single excep
tion that they are given a value on entry to the function. An example of a function definition
is

define a(x,y){
auto z

}

z = x*y
return(z)

The value of this function, when called, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of arguments
enclosed in parentheses and separated by commas. The result is unpredictable if the wrong
number of arguments is used.

Functions with no arguments are defined and called using parentheses with nothing
between them: b().

If the function a above has been defined, then the line

a(7,3.14)

would cause the result 21.98 to be printed and the line

x = a(a(3,4),5)

would cause the value of x to become 60.

Subscripted Variables

A single lower-case letter variable name followed by an expression in brackets is called a
subscripted variable (an array element). The variable name is called the array name and the
expression in brackets is called the subscript. Only one-dimensional arrays are permitted.
The names of arrays are permitted to collide with the names of simple variables and function
names. Any fractional part of a subscript is discarded before use. Subscripts must be greater
than or equal to zero and less than or equal to 2047.

Subscripted variables may be freely used in expressions, in function calls, and in return
statements.

An array name may be used as an argument to a function, or may be declared as
automatic in a function definition by the use of empty brackets:

f(a[])
define f(a[])
auto a[]

BC 2-47

When an array name is so used, the whole contents of the array are copied for the use of the
function, and thrown away on exit from the function. Array names which refer to whole
arrays cannot be used in any other contexts.

Control Statements
The 'if, the 'while', and the 'for' statements may be used to alter the flow within pro

grams or to cause iteration. The range of each of them is a statement or a compound state
ment consisting of a collection of statements enclosed in braces. They are written in the fol
lowing way

or

if(relation) statement
while(relation) statement
for(expressionl; relation; expression2) statement

if(relation) {statements}
while(relation) {statements}
for(expressionl; relation; expression2) {statements}

A relation in one of the control statements is an expression of the form

x>y

where two expressions are related by one of the six relational operators<, >, <=, >=, ==,or
!=. The relation == stands for 'equal to' and != stands for 'not equal to'. The meaning of
the remaining relational operators is clear.

BEW ARE of using = instead of = = in a relational. Unfortunately, both of them are
legal, so you will not get a diagnostic message, but = really will not do a comparison.

The 'if statement causes execution of its range if and only if the relation is true. Then
control passes to the next statement in sequence.

The 'while' statement causes execution of its range repeatedly as long as the relation is
true. The relation is tested before each execution of its range and if the relation is false, con
trol passes to the next statement beyond the range of the while.

The 'for' statement begins by executing 'expression!'. Then the relation is tested and, if
true, the statements in the range of the 'for' are executed. Then 'expression2' is executed.
The relation is tested, and so on. The typical use of the 'for' statement is for a controlled
iteration, as in the statement

for(i=l; i<=lO; i=i+l) i

which will print the integers from 1 to 10. Here are some examples of the use of the control
statements.

define f(n) {
auto i, x
x=l
for(i=l; i<=n; i=i+l) x=x*i
return(x)
}

The line

2-48 BC

f(a)

will print a factorial if a is a positive integer. Here is the definition of a function which will
compute values of the binomial coefficient (m and n are assumed to be positive integers).

define b(n,m) {
auto x, j
x=l
for(j=l; j<=m; j=j+l) x=x*(n-j+l)/j
return(x)
}

The following function computes values of the exponential function by summing the appropri
ate series without regard for possible truncation errors:

scale = 20
define e(x) {

}

auto a, b, c, d, n
a= 1
b = 1
c = 1
d=O
n = 1
while(l==l){

}

a = a*x
b = b*n
c = c + a/b
n=n+l
if(c= =d) return(c)
d=c

Some Details
There are some language features that every user should know about even if he will not

use them.

Normally statements are typed one to a line. It is also permissible to type several state
ments on a line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used any
where that an expression can. For example, the line

(x=y+17)

not only makes the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an assignment statement even when it is not
parenthesized.

x = a[i=i+l]

causes a value to be assigned to x and also increments i before it is used as a subscript.

The following constructs work in BC in exactly the same manner as they do in the C
language. Consult the appendix or the C manuals [2] for their exact workings.

x=y=z is the same as
x =+ y
x =-y
x =* y
x =/y
x =% y
x =" y
x++
x--
++x
--x

x=(y=z)
x = x+y
x = x-y
x = x*y
x = x/y
x = x3y
x = x"y
(x=x+l)-1
(x=x-1)+1
x = x+l
x = ~-1

BC 2-49

Even if you don't intend to use the constructs, if you type one inadvertently, something
correct but unexpected may happen.

WARNING! In some of these constructions, spaces are significant. There is a real
difference between x=-y and x= -y. The first replaces x by x-y and the second by -y.

Three Important Things

1. To exit a BC program, type 'quit'.

2. There is a comment convention identical to that of C and of PL/I. Comments begin
with'/*' and end with '* /'.

3. There is a library of math functions which may be obtained by typing at command
level

be -1

This command will load a set of library functions which, at the time of writing, com1ists of
sine (named 's'), cosine ('c'), arctangent ('a'), natural logarithm ('l'), exponential ('e') and
Bessel functions of integer order ('j(n,x)'). Doubtless more functio:qs wil~ be added in time.
The library sets the scale to 20. You can reset it to something else if you like. The design of
these mathematical library routines is discussed elsewhere [3].

If you type

be file ...

BC will read and execute the named file or files before accepting commands from the key
board. In this way, you may load your favorite programs and function definitions.

Acknowledgement

The compiler is written in YACC [4]; its original version was written by S. C. Johnson.

References

[1] K. Thompson and D. M. Ritchie, UNIX Programmer's Manual, Bell Laboratories, 1978.

[2] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

[3] R. Morris, A Library of Reference Standard Mathematical Subroutines, Bell Labora-
tories internal memorandum, 1975.

[4] S. C. Johnson, YACC - Yet Another Compiler-Compiler. Bell Laboratories Computing
Science Technical Report #32, 1978.

[5] R. Morris and L. L. Cherry, DC - An Interactive Desk Calculator.

2-50 BC

Appendix

1. Notation

In the following pages syntactic categories are in italics; literals are in bold; material in
brackets [] is optional.

2. Tokens

Tokens consist of keywords, identifiers, constants, operators, and separators. Token
separators may be blanks, tabs or comments. Newline characters or semicolons separate state
ments.

2.1. Comments

Comments are introduced by the characters /* and terminated by * /.

2.2. Identifiers

There are· three kinds of identifiers - ordinary identifiers, array identifiers and function
identifiers. All three types consist of single lower-case letters. Array identifiers are followed
by square brackets, possibly enclosing an expression describing a subscript. Arrays are singly
dimensioned and may contain up to 2048 elements. Indexing begins at zero so an array may
be indexed from 0 to 2047. Subscripts are truncated to integers. Function identifiers are fol
lowed by parentheses, possibly enclosing arguments. The three types of identifiers do not
conflict; a program can have a variable named x, an array named x and a function named x,
all of which are separate and distinct.

2.3. Keywords

The following are reserved keywords:
ibase if
obase break
scale define
sqrt auto
length return
while quit
for

2.4. Constants

Constants consist of arbitrarily long numbers with an optional decimal point. The hexa
decimal digits A-F are also recognized as digits with values 10-15, respectively.

3. Expressions

The value of an expression is printed unless the main operator is an assignment. Pre
cedence is the same as the order of presentation here, with highest appearing first. Left or
right associativity, where applicable, is discussed with each operator.

BC 2-51

3.1. Primitive expressions

3.1.1. Named expressions

Named expressions are places where values are stored. Simply stated, named expres
sions are legal on the left side of an assignment. The value of a named expression is the value
stored in the place named.

3.1.1.1. identifiers

Simple identifiers are named expressions. They have an initial value of zero.

3.1.1.2. array-name [expression]

Array elements are named expressions. They have an initial value of zero.

3.1.1.3. scale, ibase and obase

The internal registers scale, ibase and obase are all named expressions. scale is the
number of digits after the decimal point to be retained in arithmetic operations. scale has an
initial value of zero. ibase and obase are the input and output number radix respectively.
Both ibase and obase have initial values of 10.

3.1.2. Function calls

3.1.2.1. function-name ([expression [,expression ...]])

A function call consists of a function name followed by parentheses containing a
comma-separated list of expressions, which are the function arguments. A whole array passed
as an argument . is specified by the array name followed by empty square brackets. All func
tion arguments are passed by value. As a result, changes made to the formal parameters have
no effect on the actual arguments. If the function terminates by executing a return statement,
the value of the function is the value of the expression in the parentheses of the return state
ment or is zero if no expression is provided or if there is no return statement.

3.1.2.2. sqrt (expression)

The result is the square root of the expression. The result is truncated in the least
significant decimal place. The scale of the result is the scale of the expression or the value of
scale, whichever is larger.

3.1.2.3. length (expression)

The result is the total number of significant decimal digits in the expression. The scale
of the result is zero.

3.1.2.4. scale (expression)

The result is the scale of the expression. The scale of the result is zero.

3.1.3. Constants

Constants are primitive expressions.

3.1.4. Parentheses

An expression surrounded by parentheses is a primitive expression. The parentheses are
used to alter the normal precedence.

2-52 BC

3.2. Unary operatQrs

The unary operators bind right to left.

3.2.1. - expression

The result is the negative of the expr~ssion.

3.2.2. ++named-expression

The named expression is incremented by one. The result is the value of the named
expression after incrementing.

3.2.3. -- named-expression

The named expression is decremented by one. The result is the value of the named
expression after decrementing.

3.2.4. named-expression++

The named expression is incremented by one. The result is the value of the named
expression before incrementing.

3.2.5. named-expression--

The named expression is decremented by one. The result is the value of the named
expression before decrementing.

3.3. Exponentiation operator

The exponentiation operator binds right to left.

3.3.1. expression" expression

The result is the first expression raised to the power of the second expression. Tpe
second expression must be an integer. If a is the scale of the left expression and b is the abso
lute value of the right expression, then the scale of the result is:

min (aXb, max (scale, a))

3.4. Multiplicative operators

The operators *, /, % bind left to right.

3.4.1. expression * expression

The result is the product of the two expressions. If a and b are the scales of the two
expressions, then the scale of the result is:

min (a+b,max (scale, a, b))

3.4.2. expression I expression

The result is the quotient of the two expressions. The scale of the result is the value of
scale.

3.4.3. expression % expression

The 3 operator produces the remainder of the division of the two expressions. More
precisely, a% b is a-a/b*b.

The scale of the result is the sum of the scale of the divisor and the value of scale

BC 2-53

3.5. Additive operators

The additive operators bind left to right.

3.5.1. expression +expression

The result is the sum of the two expressions. The scale of the result is the maximun of
the scales of the expressions.

3.5.2. expression - expression

The result is the difference of the two expressions. The scale of the result is the max
imum of the scales of the expressions.

3.6. assignment operators

The assignment operators bind right to left.

3.6.1. named-expression = expression

This expression results in assigning the value of the expression on the right to the named
expression on the left.

3.6.2. named-expression =+ expression

3.6.3. named-expression =- expression

3.6.4. named-expression =*expression

3.6.5. named-expression =I expression

3.6.6. named-expression = % expression

3.6.7. named-expression ="expression

The result of the above expressions is equivalent to "named expression = named expres
sion OP expression", where OP is the operator after the = sign.

4. Relations

Unlike all other operators, the relational operators are only valid as the object of an if,
while, or inside a for statement.

4.1. expression< expression

4.2. expression > expression

4.3. expression<= expression

4.4. expression>= expression

4.5. expression = = expression

4.6. expression!= expression

5. Storage classes

·There are only two storage classes in BC, global and automatic (local). Only identifiers
that are to be local to a function need be declared with the auto command. The arguments
to a function are local to the function. All other identifiers are assumed to be global and

2-54 BC

available to all functions. All identifiers, global and local, have initial values of zero.
Identifiers declared as auto are allocated on entry to the function and released on returning
from the function. They therefore do not retain values between function calls. auto arrays
are a_pecified by the array name followed by empty square brackets.

Automatic variables in BC do not work in exactly the same way as in either C or PL/I.
On entry to a function, the old values of the names that appear as parameters and as
automatic variables are pushed onto a stack. Until return is made from the function, reference
to these names refers only to the new values.

6. Statements

Statements must be separated by semicolon or newline. Except where altered by control
statements, execution is sequential.

6.1. Expression statements

When a statement is an expression, unless the main operator is an assignment, the value
of the expression is printed, followed by a newline character.

6.2. Compound statements

Statements may be grouped together and used when one statement is expected by sur
rounding them with { } .

6.3. Quoted string statements

"any string"

This statement prints the string inside the quotes.

6.4. If statements

if (relation) statement

The substatement is executed if the relation is true.

6.5. While statements

while (relation) statement

The statement is executed while the relation is true. The test occurs before each execu
tion of the statement.

6.6. For statements

for (expression; relation; expression) statement

The for statement is the same as
first-expression
while (relation) {

}

statement
last-expression

All three expressions must be present.

6. 7. Break statements

break

break causes termination of a for or while statement.

6.8. Auto statements

auto identifier [,identifier]

BC 2-55

The auto statement causes the values of the identifiers to be pushed down. The
identifiers can be ordinary identifiers or array identifiers. Array identifiers are specified by
following the array name by empty square brackets. The auto statement must be the first
statement in a function definition.

6.9. Define statements

define([parameter [,parameter . ..]]) {
statements }

The define statement defines a function. The parameters may be ordinary identifiers or
array names. Array names must be followed by empty square brackets.

6.10. Return statements

return

return(expression)

The return statement causes termination of a function, popping of its auto variables, and
specifies the result of the function. The first form is equivalent to return(O). The result of
the function is the result of the expression in parentheses.

6.11. Quit

The quit statement stops execution of a BC program and returns control to UNIX when
it is first encountered. Because it is not treated as an executable statement, it cannot be used
in a function definition or in an if, for, or while statement.

DC - An Interactive Desk Calculator

Robert Morris

Lorinda Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

DC 2-57

DC is an arbitrary precision arithmetic package implemented on the UNIXt time-sharing
system in the form of an interactive desk calculator. It works like a stacking calculator using
reverse Polish notation. Ordinarily DC operates on decimal integers, but one may specify an
input base, output base, and a number of fractional digits to be maintained.

A language called BC [1] has been developed which accepts programs written in the fam
iliar style of higher-level programming languages and compiles output which is interpreted by
DC. Some of the commands described below were designed for the compiler interface and are
not easy for a human user to manipulate.

Numbers that are typed into DC are put on a push-down stack. DC commands work by
taking the top number or two off the stack, performing the desired operation, and pushing the
result on the stack. If an argument is given, input is taken from that file until its end, then
from the standard input.

SYNOPTIC DESCRIPTION
Here we describe the DC commands that are intended for use by people. The additional

commands that are intended to be invoked by compiled output are described in the detailed
description.

Any number of commands are permitted on a line. Blanks and new-line characters are
ignored except within numbers and in places where a r~gister name is expected.

The following constructions are recognized:

number
The value of the number is pushed onto the main stack. A number is an unbroken
string of the digits 0-9 and the capital letters A-F which are treated as digits with
values 10-15 respectively. The number may be preceded by an underscore to input a
negative number. Numbers may contain decimal points.

+ - * % "

The top two values on the stack are added (+), subtracted (-), multiplied (*), divided
(/),remaindered (%),or exponentiated ("). The two entries are popped off the stack; the
result is pushed on the stack in their place. The result of a division is an integer trun
cated toward zero. See the detailed description below for the treatment of numbers with
decimal points. An exponent must not have any digits after the decimal point.

t UNIX is a trademark of Bell Laboratories.

2-58 DC

sx

lx

The top of the main stack is popped and stored into a register named x, where x may be
any character. If the s is capitalized, x is treated as a stack and the value is pushed onto
it. Any character, even blank or new-line, is a valid register name.

The value in register x is pushed onto the stack. The register x is not altered. If the I is
capitalized, register x is treated as a stack and its top value is popped onto the main
stack.

All registers start with empty value which is treated as a zero by the command I and is treated
as an error by the command L.

d

p

f

x

[...]

q

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged.

All values on the stack and in registers are printed.

treats the top element of the stack as a character string, removes it from the stack, and
executes it as a string of DC commands.

puts the bracketed character string onto the top of the stack.

exits the program. If executing a string, the recursion level is popped by two. If q is
capitalized, the top value on the stack is popped and the string execution level is popped
by that value.

<x >x =x !<x !>x !=x

v

c

The top two elements of the stack are popped and compared. Register x is executed if
they obey the stated relation. Exclamation point is negation.

replaces the top element on the stack by its square root. The square root of an integer is
truncated to an integer. For the treatment of numbers with decimal points, see the
detailed description below.

interprets the rest of the line as a UNIX command. Control returns to DC when the
UNIX command terminates.

All values on the stack are popped; the stack becomes empty.

i

0

k

z

?

DC 2-59

The top value on the stack is popped and used as the number radix for further input. If
i is capitalized, the value of the input base is pushed onto the stack. No mechanism has
been provided for the input of arbitrary numbers in bases less than 1 or greater than 16.

The top value on the stack is popped and used as the number radix for further output.
If o is capitalized, the value of the output base is pushed onto the stack.

The top of the stack is popped, and that value is used as a scale factor that influences
the number of decimal places that are maintained during multiplication, division, and
exponentiation. The scale factor must be greater than or equal to zero and less than
100. If k is capitalized, the value of the scale factor is pushed onto the stack.

The value of the stack level is pushed onto the stack.

A line of input is taken from the input source (usually the console) and executed.

DETAILED DESCRIPTION

Internal Representation of Numbers

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in
the form of a string of digits to the base 100 stored one digit per byte (centennial digits). The
string is stored with the low-order digit at the beginning of the string. For example, the
representation of 157 is 57,1. After any arithmetic operation on a number, care is taken that
all digits are in the range 0-99 and that the number has no leading zeros. The number zero is
represented by the empty string.

Negative numbers are represented in the lOO's complement notation, which is analogous
to two's complement notation for binary numbers. The high order digit of a negative number
is always -1 and all other digits are in the range 0-99. The digit preceding the high order -1
digit is never a 99. The representation of -157 is 43,98, -1. We shall call this the canonical
form of a number. The advantage of this kind of representation of negative numbers is ease
of addition. When addition is performed digit by digit, the result is formally correct. The
result need only be modified, if necessary, to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large,
addition can be carried out and the handling of carries done later when that is convenient, as
it sometimes is.

An additional byte is stored with each number beyond the high order digit to indicate
the number of assumed decimal digits after the decimal point. The representation of .001 is
1,3 where the scale has been italicized to emphasize the fact that it is not the high order digit.
The value of this extra byte is called the scale factor of the number.

The Allocator

DC uses a dynamic string storage allocator for all of its internal storage. All reading and
writing of numbers internally is done through the allocator. Associated with each string in the
allocator is a four-word header containing pointers to the beginning of the string, the end of
the string, the next place to write, and the next place to read. Communication between the
allocator and DC is done via pointers to these headers.

2-60 DC

The allocator initially has one large string on a list of free strings. All headers except
the one pointing to this string are on a list of free headers. Requests for strings are made by
size. The size of the string actually supplied is the next higher power of 2. When a request
for a string is made, the allocator first checks the free list to see if there is a string of the
desired size. If none is found, the allocator finds the next larger free string and splits it
repeatedly until it has a string of the right size. Left-over strings are put on the free list. If
there are no larger strings, the allocator tries to coalesce smaller free strings into larger ones.
Since all strings are the result of splitting large strings, each string has a neighbor that is next
to it in core and, if free, can be combined with it to make a string twice as long. This is an
implementation of the 'buddy system' of allocation described in [2].

Failing to find a string of the proper length after coalescing, the allocator asks the sys
tem for more space. The amount of space on the system is the only limitation on the size and
number of strings in DC. If at any time in the process of trying to allocate a string, the allo
cator runs out of headers, it also asks the system for more space.

There are routines in the allocator for reading, writing, copying, rewinding, forward
spacing, and backspacing strings. All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or write pointer so that the
characters of a string are read or written in succession by a series of read or write calls. The
write pointer is interpreted as the end of the information-containing portion of a string and a
call to read beyond that point returns an end-of-string indication. An attempt to write
beyond the end of a string causes the allocator to allocate a larger space and then copy the old
string into the larger block.

Internal Arithmetic

All arithmetic operations are done on integers. The operands (or operand) needed for
the operation are popped from the main stack and their scale factors stripped off. Zeros are
added or digits removed as necessary to get a properly scaled result from the internal arith
metic routine. For example, if the scale of the operands is different and decimal alignment is
required, as it is for addition, zeros are appended to the operand with the smaller scale. After
performing the required arithmetic operation, the proper scale factor is appended to the end
of the number before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic operations. scale
is the bound on the number of decimal places retained in arithmetic computations. scale
may be set to the number on the top of the stack truncated to an integer with the k com
mand. K may be used to push the value of scale on the stack. scale must be greater than
or equal to 0 and less than 100. The descriptions of the individual arithmetic operations will
include the exact effect of scale on the computations.

Addition and Subtraction

The scales of the two numbers are compared and trailing zeros are supplied to the
number with the lower scale to give both numbers the same scale. The number with the
smaller scale is multiplied by 10 if the difference of the scales is odd. The scale of the result
is then set to the larger of the scales of the two operands.

Subtraction is performed by negating the number to be subtracted and proceeding as in
addition.

Finally, the addition is performed digit by digit from the low order end of the number.
The carries are propagated in the usual way. The resulting number is brought into canonical
form, which may require stripping of leading zeros, or for negative numbers replacing the
high-order configuration 99,-1 by the digit -1. In any case, digits which are not in the range
0-99 must be brought into that range, propagating any carries or borrows that result.

DC 2-61

M ultiplica ti on

The scales are removed from the two operands and saved. The operands are both made
positive. Then multiplication is performed in a digit by digit manner that exactly mimics the
hand method of multiplying. The first number is multiplied by each digit of ~the second
number, beginning with its low order digit. The intermediate products are accumulated into a
partial sum which becomes the final product. The product is put into the canonical form and
its sign is computed from the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two operands. If that
scale is larger than the internal register scale and also larger than both of the scales of the
two operands, then the scale of the result is set equal to the largest of these three last quanti
ties.

Division

The scales are removed from the two operands. Zeros are appended or digits removed
from the dividend to make the scale of the result of the integer division equal to the internal
quantity scale. The signs are removed and saved.

Division is performed much as it would be done by hand. The difference of the lengths
of the two numbers is computed. If the divisor is longer than the dividend, zero is returned.
Otherwise the top digit of the divisor is divided into the top two digits of the dividend. The
result is used as the first (high-order) digit of the quotient. It may turn out be one unit too
low, but if it is, the next trial quotient will be larger than 99 and this will be adjusted at the
end of the process. The trial digit is multiplied by the divisor and the result subtracted from
the dividend and the process is repeated to get additional quotient digits until the remaining
dividend is smaller than the divisor. At the end, the digits of the quotient are put into the
canonical form, with propagation of carry as needed. The sign is set from the sign of the
operands.

Remainder

The division routine is called and division is performed exactly as described. The quan
tity returned is the remains of the dividend at the end of the divide process. Since division
truncates toward zero, remainders have the same sign as the dividend. The scale of the
remainder is set to the maximum of the scale of the dividend and the scale of the quotient
plus the scale of the divisor.

Square Root

The scale is stripped from the operand. Zeros are added if necessary to make the integer
result have a scale that is the larger of the internal quantity scale and the scale of the
operand. ·

The method used to compute sqrt(y) is Newton's method with successive approximations
by the rule

The initial guess is found by taking the integer square root of the top two digits.

Exponentiation

Only exponents with zero scale factor are handled. If the exponent is zero, then the
result is 1. If the exponent is negative, then it is made positive and the base is divided into
one. The scale of the base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared and
the result is obtained as a product of those powers of the base that correspond to the positions
of the one-bits in the binary representation of the exponent. Enough digits of the result are

2-62 DC

removed to make the scale of the result the same as if the indicated multiplication had been
performed.

Input Conversion and Base

Numbers are converted to the internal representation as they are read in. The scale
stored with a number is simply the number of fractional digits input. Negative numbers are
indicated by preceding the number with a The hexadecimal digits A-F correspond to the
numbers 10-15 regardless of input base. The i command can be used to change the base of
the input numbers. This command pops the stack, truncates the resulting number to an
integer, and uses it as the input base for all further input. The input base is initialized to 10
but may, for example be changed to 8 or 16 to do octal or hexadecimal to decimal conversions.
The command I will push the value of the input base on the stack.

Output Commands

The command p causes the top of the stack to be printed. It does not remove the top of
the stack. All of the stack and internal registers can be output by typing the command f.
The o command can be used to change the output base. This command uses the top of the
stack, truncated to an integer as the base for all further output. The output base in initialized
to 10. It will work correctly for any base. The command 0 pushes the value of the output
base on the stack.

Output Format and Base

The input and output bases only affect the interpretation of numbers on input and out
put; they have no effect on arithmetic computations. Large numbers are output with 70 char
acters per line; a\ indicates a continued line. All choices of input and output bases work
correctly, although not all are useful. A particularly useful output base is 100000, which has
the effect of grouping digits in fives. Bases of 8 and 16 can be used for decimal-octal or
decimal-hexadecimal conversions.

Internal Registers

Numbers or strings may be stored in internal registers or loaded on the stack from regis
ters with the commands s and 1. The command sx pops the top of the stack and stores the
result in register x. x can be any character. Ix puts the contents of register x on the top of
the stack. The I command has no effect on the contents of register x. The s command, how
ever, is destructive.

Stack Commands

The command c clears the stack. The command d pushes a duplicate of the number on
the top of the stack on the stack. The command z pushes the stack size on the stack. The
command X replaces the number on the top of the stack with its scale factor. The command
Z replaces the top of the stack with its length.

Subroutine Definitions and Calls

Enclosing a string in [] pushes the ascii string on the stack. The q command quits or in
executing a string, pops the recursion levels by two.

Internal Registers - Programming DC

The load and store commands together with [] to store strings, x to execute and the
testing commands '<', '>', '=', '!<', '!>', '!=' can be used to program DC. The x command
assumes the top of the stack is an string of DC commands and executes it. The testing com
mands compare the top two elements on the stack and if the relation holds, execute the regis
ter that follows the relation. For example, to print the numbers 0-9,

[lipl + si lilO>a]sa
Osi lax

Push-Down Registers and Arrays

DC 2-63

These commands were designed for used by a compiler, not by people. They involve
push-down registers and arrays. In addition to the stack that commands work on, DC can be
thought of as having individual stacks for each register. These registers are operated on by
the commands S and L. Sx pushes the top value of the main stack onto the stack for the
register x. Lx pops the stack for register x and puts the result on the main stack. The com
mands s and I also work on registers but not as push-down stacks. I doesn't effect the top of
the register stack, and s destroys what was there before.

The commands to work on arrays are: and;. :x pops the stack and uses this value as an
index into the array x. The next element on the stack is stored at this index in x. An index
must be greater than or equal to 0 and less than 2048. ;x is the command to load the main
stack from the array x. The value on the top of the stack is the index into the array x of the
value to be loaded.

Miscellaneous Commands

The command ! interprets the rest of the line as a UNIX
command and passes it to UNIX to execute. One other compiler command is Q. This com

mand uses the top of the stack as the number of levels of recursion to skip.

DESIGN CHOICES

The real reason for the use of a dynamic storage allocator was that a general purpose
program could be (and in fact has been) used for a variety of other tasks. The allocator has
some value for input and for compiling (i.e. the bracket [...] commands) where it cannot be
known in advance how long a string will be. The result was that at a modest cost in execution
time, all considerations of string allocation and sizes of strings were removed from the
remainder of the program and debugging was made easier. The allocation method used wastes
approximately 25 % of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compelling advan
tage. Yet the base cannot exceed 127 because of hardware limitations and at the cost of 5 3
in space, debugging was made a great deal easier and decimal output was made much faster.

The reason for a stack-type arithmetic design was to permit all DC commands from
addition to subroutine execution to be implemented in essentially the same way. The result
was a considerable degree of logical separation of the final program into modules with very lit
tle communication between modules.

The rationale for the lack of interaction between the scale and the bases was to provide
an understandable means of proceeding after a change of base or scale when numbers had
already been entered. An earlier implementation which had global notions of scale and base
did not work out well. If the value of scale were to be interpreted in the current input or
output base, then a change of base or scale in the midst of a computation would cause great
confusion in the interpretation of the results. The current scheme has the advantage that the
value of the input and output bases are only used for input and output, respectively, and they
are ignored in all other operations. The value of scale is not used for any essential purpose by
any part of the program and it is used only to prevent the number of decimal places resulting
from the arithmetic operations from growing beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that
in no case should any significant digits be thrown away if, on appearances, the user actually
wanted them. Thus, if the user wants to add the numbers 1.5 and 3.517, it seemed reasonable
to give him the result 5.017 without requiring him to unnecessarily specify his rather obvious

2-64 DC

requirements for precision.

On the other hand, multiplication and exponentiation produce results with many more
digits than their operands and it seemed reasonable to give as a minimum the number of
decimal places in the operands but not to give more than that number of digits unless the user
asked for them by specifying a value for scale. Square root can be handled in just the same
way as multiplication. The operation of division gives arbitrarily many decimal places and
there is simply no way to guess how many places the user wants. In this case only, the user
must specify a scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to recreate the dividend from the
quotient and remainder. This is easy to implement; no digits are thrown away.

References

[1] L. L. Cherry, R. Morris, BC - An Arbitrary Precision Desk-Calculator Language.

[2] K. C. Knowlton, A Fast Storage Allocator, Comm. ACM 8, pp. 623-625 (Oct. 1965).

Introduction 3-1

PART 3: TEXT EDITORS

ULTRIX-32 offers five editors that you can use to create new files and modify existing files.
Two of the six articles ih this part describe the editor, ed. The remaining four articles
describe edit, vi, ex, and sed. This introduction will help you compare the merits and features
of the different editors and select an appropriate article.

Type of
Editor Editor Article

edit Line Edit: A Tutorial

ed Line A Tutorial Introduction to the UNIX Text Editor
Advanced Editing on UNIX

vi Screen An Introduction to Display
Editing with Vi

ex Line Ex Reference Manual

sed Stream Sed - A Non-interactive Text Editor

Edit and ei:l, were developed for use on hard-copy terminals and video terminals connected to
phone links slow~r than 1200 baud. If you have access to a video terminal on a medium or
high-speed line (1200 baud or faster), vi is more appropriate. Ex is a general purpose line edi
tor (often the editor of choice), and sed is suitable for sophisticated users concerned with
batch editing.

edit

"Edit: A Tutorial" introduces the edit editor at a basic level. This editor is suitable for peo
ple new to t~e ULTRIX-32 system. Tutorials for four complete editing sessions make up the
article on edit. These sessions advance from simple tasks to searching, substitution, and file
recovery.

ed

"A Tutorial Introduction to the UNIX Text Editor" demonstrates the basic commands in ed.
This editor is easy to use, but error messages provided with ed are not as helpful as error mes
sages for the other editors. The article includes examples and abundant explanations.
"Advanced Editing on UNIX" covers those features of ed not explained in the first article,
including using metacharacters, cutting and pasting;, and making global changes.

3-2 Introduction

vi

Vi is the ULTRIX-32 system screen editor, and "An Introduction to Display Editing with Vi"
offers a complete description. Vi is more efficient and easier to use than ed and edit, because
it shows you as many as 24 lines of text at once. The screen display provides a context for the
line you are entering or changing. You can move the cursor around on the screen with arrows
and with address commands. The command set available to you in vi is large and flexible,
and a set of options allows you to tailor the editor to suit your needs. The article on vi is
appropriate for beginners as well as expert ULTRIX-32 system users; it progresses from sim
ple cursor positioning functions to sophisticated buffer filtering and macro facilities.

ex

Ex is a line editor, like edit and ed. However, ex offers a very large set of commands, options,
and modes. In fact, edit and vi are modes (subsets) of ex. Ex is appropriate for novices as
well as experienced users. However, the description of ex included here in the "Ex Reference
Manual" is not a tutorial; it presents the rules that govern use of the editor and lists the com
mands and options alphabetically. Since edit is similar to but simpler than ex, you should
find it helpful to read the article on edit first. The power and flexibility of ex make it the
best editor for many applications.

sed

Sed, the stream editor, is an ULTRIX-32 system filter instead of an interactive editor. Sed
can take its input either from the command line or from a script file (a file containing sed
commands to be applied to the text file to be edited). It is most appropriate when used for
editing functions that are repeated frequently as steps in a longer process, such as converting
a list of users into a distribution list. The article "Sed - A Non-interactive Text Editor" pro
vides a reference with explanations and examples of sed commands. If you already know ed,
you have a head start on learning sed, since sed commands resemble ed commands. How
ever, the interactive editors are easier to use and more practical in most cases than sed.

Summary

Most users choose vi to create and modify files. Ex, edit, anded are good on slow phone lines
and hard-copy terminals. Sed is best for experienced users with batch editing requirements.

Edit: A Tutorial

Ricki Blau

James Joyce

Computing Services
University of California

Berkeley, California 94720

Introduction

Edit - A Tutorial 3-3

Text editing using a terminal connected to a computer allows you to create, modify, and
print text easily. A text editor is a program that assists you as you create and modify text.
The text editor you will learn here is named edit. Creating text using edit is as easy as typing
it on an electric typewriter. Modifying text involves telling the text editor what you want to
add, change, or delete. You can review your text by typing a command to print the file con
tents as they were entered by you. Another program, a text formatter, rearranges your text
for you into "finished form." This document does not discuss the use of a text formatter.

These lessons assume no prior familiarity with computers or with text editing. They
consist of a series of text editing sessions which lead you through the fundamental steps of
cr,eating and revising text. After scanning each lesson and before beginning the next, you
should practice the examples at a terminal to get a feeling for the actual process of text edit
ing. If you set aside some time for experimentation, you will soon become familiar with using
the computer to write and modify text. In addition to the actual use of the text editor, other
features of UNIX will be very important to your work. You can begin to learn about these
other features by reading "Communicating with UNIX" or one of the other tutorials that pro
vide a general introduction to the system. You will be ready to proceed with this lesson as
soon as you are familiar with (1) your terminal and its special keys, (2) the login procedure,
(3) and the ways of correcting typing errors. Let's first define some terms:

program

UNIX

edit

file

A set of instructions, given to the computer, describing the sequence of steps the
computer performs in order to accomplish a specific task. The tasks must be
specific, such as balancing your checkbook or editing your text. A general task,
such as working for world peace, is something we can do, but not something we
can write programs to do.

UNIX is a special type of program, called an operating system, that supervises the
machinery and all other programs comprising the total computer system.

edit is the name of the UNIX text editor you will be learning to use, and is a pro
gram that aids you in writing or revising text. Edit was designed for beginning
users, and is a simplified version of an editor named ex.

Each UNIX account is allotted space for the permanent storage of information,
such as programs, data or text. A file is a logical unit of data, for example, an
essay, a program, or a chapter from a book, which is stored on a computer sys
tem. Once you create a file, it is kept until you instruct the system to remove it.
You may create a file during one UNIX session, end the session, and return to use
it at a later time. Files contain anything you choose to write and store in them.
The sizes of files vary to suit your needs; one file might hold only a single
number, yet another might contain a very long document or program. The only
way to save information from one session to the next is to store it in a file, which
you will learn in Session 1.

3-4 Edit - A Tutorial

filename

disk

buffer

Filenames are used to distinguish one file from another, serving the same purpose
as the labels of manila folders in a file cabinet. In order to write or access infor
mation in a file, you use the name of that file in a UNIX command, and the sys
tem will automatically locate the file.

Files are stored on an input/output device called a disk, which looks something
like a stack of phonograph records. Each surface is coated with a material simi
lar to the coating on magnetic recording tape, and information is recorded on it.

A temporary work space, made available to the user for the duration of a session
of text editing and used for creating and modifying the text file. We can think of
the buffer as a blackboard that is erased after each class, where each session with
the editor is a class.

Edit - A Tutorial 3-5

Session 1

Making contact with UNIX

To use the editor you must first make contact with the computer by logging in to UNIX.
We'll quickly review the standard UNIX login procedure for the two ways you can make con
tact: on a terminal that is directly linked to the computer, or over a telephone line where the
computer answers your call.

Directly-linked terminals

Turn on your terminal and press the RETURN key. You are now ready to login.

Dial-up terminals

If your terminal connects with the computer over a telephone line, turn on the terminal,
dial the system access number, and, when you hear a high-pitched tone, place the receiver of
the telephone in the acoustic coupler. You are now ready to login.

Logging in

The message inviting you to login is:

:login:

Type your login name, which identifies you to UNIX, on the same line as the login message,
and press RETURN. If the terminal you are using has both upper and lower case, be sure
you enter your login name in lower case; otherwise UNIX assumes your terminal has
only upper case and will not recognize lower case letters you may type. UNIX types ":login:"
and you reply with your login name, for example "susan":

:login: susan (and press the RETURN key)

(In the examples, input you would type appears in bold face to distinguish it from the
responses from UNIX.)

UNIX will next respond with a request for a password as an additional precaution to
prevent unauthorized people from using your account. The password will not appear when
you type it, to prevent others from seeing it. The message is:

Password: (type your password and press RETURN)

If any of the information you gave during the login sequence was mistyped or incorrect, UNIX
will respond with

Login incorrect.

:login:

in which case you should start the login process anew. Assuming that you have successfully
logged in, UNIX will print the message of the day and eventually will present you with a % at
the beginning of a fresh line. The % is the UNIX prompt symbol which tells you that UNIX is
ready to accept a command.

Asking for edit

You are ready to tell UNIX that you want to work with edit, the text editor. Now is a
convenient time to choose a name for the file of text you are about to create. To begin your
editing session, type edit followed by a space and then the filename you have selected; for
example, "text". When you have completed the command, press the RETURN key and wait for
edit's response:

3-6 Edit - A Tutorial

3 edit text (followed by a RETURN)
"text" No such file or directory

If you typed the command correctly, you will now be in communication with edit. Edit has
set aside a buffer for use as a temporary working space during your current editing session. It
also checked to see if the file you named, "text", already existed. It was unable to find such a
file, since "text" is a new file we are about to create. Edit confirms this with the line:

"text" No such file or directory

On the next line appears edit's prompt ":", announcing that you are in command mode and
edit expects a command from you. You may now begin to create the new file.

The "Command not found" message

If you misspelled edit by typing, say, "editor", your request would be handled as follows:

3 editor
editor: Command not found
3

Your mistake in calling edit "editor" was treated by UNIX as a request for a program named
"editor". Since there is no program named "editor", UNIX reported that the program was "not
found". A new 3 indicates that UNIX is ready for another command, and you may then enter
the correct command.

A summary

Your exchange with UNIX as you logged in and made contact with edit should look some
thing like this:

Entering text

:login: susan
Password:
... A Message of General Interest ...
3 edit text
"text" No such file or directory

You may now begin entering text into the buffer. This is done by appending (or adding)
text to whatever is currently in the buffer. Since there is nothing in the buffer at the moment,
you are appending text to nothing; in effect, since you are adding text to nothing you are
creating text. Most edit commands have two forms: a word that suggests what the command
does, and a shorter abbreviation of that word. Either form may be used. Many beginners find
the full command names easier to remember at first, but once you are familiar with editing
you may prefer to type the shorter abbreviations. The command to input text is "append",
and it may be abbreviated "a". Type append and press the RETURN key.

3 edit text
:append

Messages from edit
If you make a mistake in entering a command and type something that edit does not

recognize, edit will respond with a message intended to help you diagnose your error. For
example, if you misspell the command to input text by typing, perhaps, "add" instead of
"append" or "a", you will receive this message:

Edit - A Tutorial 3-7

:add
add: Not an editor command

When you receive a diagnostic message, check what you typed in order to determine what part
of your command confused edit. The message above means that edit was unable to recognize
your mistyped command and, therefore, did not execute it. Instead, a new":" appeared to let
you know that edit is again ready to execute a command.

Text input mode

By giving the command "append" (or using the abbreviation "a"), you entered text
input mode, also known as append mode. When you enter text input mode, edit stops send
ing you a prompt. You will not receive any prompts or error messages while in text input
mode. You can enter pretty much anything you want on the lines. The lines are transmitted
one by one to the buff er and held there during the editing session. You may append as much
text as you want, and when you wish to stop entering text lines you should type a period as
the only character on the line and press the RETURN key. When you type the period and
press RETURN, you signal that you want to stop appending text, and edit responds by allowing
you to exit text input mode and reenter command mode. Edit will again prompt you for a
command by printing":".

Leaving append mode does not destroy the text in the buffer. You have to leave append
mode to do any of the other kinds of editing, such as changing, adding, or printing text. If
you type a period as the first character and type any other character on the same line, edit
will believe you want to remain in append mode and will not let you out. As this can be very
frustrating, be sure to type only the period and the RETURN key.

This is a good place to learn an important lesson about computers and text: a blank
space is a character as far as a computer is concerned. If you so much as type a period fol
lowed by a blank (that is, type a period and then the space bar on the keyboard), you will
remain in append mode with the last line of text being:

Let's say that the lines of text you enter are (try to type exactly what you see, including
"thiss"):

This is some sample text.
And thiss is some more text.
Text editing is strange, but nice.

The last line is the period followed by a RETURN that gets you out of append mode.

Making corrections

If you have read a general introduction to UNIX, such as "Communicating with UNIX",
you will recall that it is possible to erase individual letters that you have typed. This is done
by typing the designated erase character as many times as there are characters you want to
erase.

The usual erase character is the backspace (control-H), and you can correct typing errors
in the line you are typing by holding down the CTRL key and typing the "H" key. If you try
typing control-H you will notice that the terminal backspaces in the line you are on. You can
backspace over your error, and then type what you want to be the rest of the line.

If you make a bad start in a line and would like to begin again, you can either backspace
to the beginning of the line or you can use the at-sign "@" to erase everything on the line:

3-8 Edit - A Tutorial

Text edtiing is strange, but@
Text editing is strange, but nice.

When you type the at-sign (@), you erase the entire line typed so far and are given a fresh
line to type on. You may immediately begin to retype the line. This, unfortunately, does not
help after you type the line and press RETURN. To make corrections in lines that have been
completed, it is necessary to use the editing commands covered in the next session and those
that follow.

Writing text to disk

You are now ready to edit the text. The simplest kind of editing is to write it to disk as
a file for safekeeping after the session is over. This is the only way to save information from
one session to the next, since the editor's buffer is temporary and will last only until the end
of the editing session. Learning how to write a file to disk is second in importance only to
entering the text. To write the contents of the buffer to a disk file, use the command "write"
(or its abbreviation "w"):

:write

Edit will copy the contents of the buff er to a disk file. If the file does not yet exist, a new file
will be created automatically and the presence of a "[New file]" will be noted. The newly
created file will be given the name specified when you entered the editor, in this case "text".
To confirm that the disk file has been successfully written, edit will repeat the filename and
give the number of lines and the total number of characters in the file. The buffer remains
unchanged by the "write" command. All of the lines that were written to disk will still be in
the buffer, should you want to modify or add to them.

Edit must have a filename to use before it can write a file. If you forgot to indicate the
name of the file when you began the editing session, edit will print

No current filename

in response to your write command. If this happens, you can specify the filename in a new
write command:

:write text

After the "write" (or "w"), type a space and then the name of the file.

Signing off

We have done enough for this first lesson on using the UNIX text editor, and are ready to
quit the session with edit. To do this we type "quit" (or "q") and press RETURN:

:write
"text" [New file] 3 lines, 90 characters
:quit
3

The 3 is from UNIX to tell you that your session with edit is over and you may command
UNIX further. Since we want to end the entire session at the terminal, we also need to exit
from UNIX. In response to the UNIX prompt of" 3" type the command

3 logout

This will end your session with UNIX, and will ready the terminal for the next user. It is
always important to type logout at the end of a session to make absolutely sure no one could
accidentally stumble into your abandoned session and thus gain access to your files, tempting
even the most honest of souls.

This is the end of the first session on UNIX text editing.

Session 2

Login with UNIX as in the first session:

:login: susan (carriage return)
Password: (give password and carriage return)

... A Message of General Interest ...
3

Edit - A Tutorial 3-9

When you indicate you want to edit, you can specify the name of the file you worked on last
time. This will start edit working, and it will fetch the contents of the file into the buffer, so
that you can resume editing the same file. When edit has copied the file into the buffer, it
will repeat its name and tell you the number of lines and characters it contains. Thus,

% edit text
"text" 3 lines, 90 characters

means you asked edit to fetch the file named "text" for editing, causing it to copy the 90 char
acters of text into the buffer. Edit awaits your further instructions, and indicates this by its
prompt character, the colon (:). In this session, we will append more text to our file, print the
contents of the buffer, and learn to change the text of a line.

Adding more text to the file

If you want to add more to the end of your text you may do so by using the append
command to enter text input mode. When "append" is the first command of your editing ses
sion, the lines you enter are placed at the end of the buffer. Here we'll use the abbreviation
for the append command, "a":

:a
This is text added in Session 2.
It doesn't mean much here, but
it does illustrate the editor.

You may recall that once you enter append mode using the "a" (or "append") command, you
need to type a line containing only a period (.) to exit append mode.

Interrupt

Should you press the RUB key (sometimes labelled DELETE) while working with edit, it
will send this message to you:

Interrupt

Any command that edit might be executing is terminated by rub or delete, causing edit to
prompt you for a new command. If you are appending text at the time, you will exit from
append mode and be expected to give another command. The line of text you were typing
when the append command was interrupted will not be entered into the buffer.

Making corrections

If while typing the line you hit an incorrect key, recall that you may delete the incorrect
character or cancel the entire line of input by erasing in the usual way. Refer either to the
last few pages of Session 1 or to "Communicating with UNIX" if you need to review the pro
cedures for making a correction. The most important idea to remember is that erasing a char
acter or cancelling a line must be done before you press the RETURN key.

3-10 Edit - A Tutorial

Listing what's in the buffer (p)

Having appended text to what you wrote in Session 1, you might want to see all the lines
in the buff er. To print the contents of the buff er, type the command:

:l,$p

The "l"t stands for line 1 of the buffer, the "$" is a special symbol designating the last line of
the buffer, and "p" (or print) is the command to print from line 1 to the end of the buffer.
The command "1,$p" gives you:

This is some sample text.
And thiss is some more text.
Text editing is strange, but nice.
This is text added in Session 2.
It doesn't mean much here, but
it does illustrate the editor.

Occasionally, you may accidentally type a character that can't be printed, which can be done
by striking a key while the CTRL key is pressed. In printing lines, edit uses a special notation
to show the existence of non-printing characters. Suppose you had introduced the non
printing character "control-A" into the word "illustrate" by accidently pressing the CTRL key
while typing "a". This can happen on many terminals because the CTRL key and the "A" key
are beside each other. If your finger presses between the two keys, control-A results. When
asked to print the contents of the buffer, edit would display

it does illustr"Ate the editor.

To represent the control-A, edit shows ""A". The sequence """ followed by a capital letter
stands for the one character entered by holding down the CTRL key and typing the letter
which appears after the """. We'll soon discuss the commands that can be used to correct this
typing error.

In looking over the text we see that "this" is typed as "thiss" in the second line, a deli
berate error so we can learn to make corrections. Let's correct the spelling.

Finding things in the buff er

In order to change something in the buffer we first need to find it. We can find "thiss"
in the text we have entered by looking at a listing of the lines. Physically speaking, we search
the lines of text looking for "thiss" and stop searching when we have found it. The way to tell
edit to search for something is to type it inside slash marks:

:/thiss/

By typing /thiss/ and pressing RETURN, you instruct edit to search for "thiss". If you ask
edit to look for a pattern of characters which it cannot find in the buffer, it will respond "Pat
tern not found". When edit finds the characters "thiss", it will print the line of text for your
inspection:

And thiss is some more text.

Edit is now positioned in the buffer at the line it just printed, ready to make a change in the
line.

tThe numeral "one" is the top left-most key, and should not be confused with the letter "el".

Edit - A Tutorial 3-11

The current line

Edit keeps track of the line in the buffer where it is located at all times during an edit
ing session. In general, the line that has been most recently printed, entered, or changed is
the current location in the buffer. The editor is prepared to make changes at the current loca
tion in the buff er, unless you direct it to another location.

In particular, when you bring a file into the buffer, you will be located at the last line in
the file, where the editor left off copying the lines from the file to the buffer. If your first
editing command is "append", the lines you enter are added to the end of the file, after the
current line - the last line in the file.

You can refer to your current location in the buffer by the symbol period (.) usually
known by the name "dot". If you type "." and carriage return you will be instructing edit to
print the current line:

And thiss is some more text.

If you want to know the number of the current line, you can type.= and press RETURN,
and edit will respond with the line number:

.. -
2

If you type the number of any line and press RETURN, edit will position you at that line and
print its contents:

:2
And thiss is some more text.

You should experiment with these commands to gain experience in using them to make
changes.

Numbering lines (nu)

The number (nu) command is similar to print, giving both the number and the text of
each printed line. To see the number and the text of the current line type

:nu
2 And thiss is some more text.

Note that the shortest abbreviation for the number command is "nu" (and not "n", which is
used for a different command). You may specify a range of lines to be listed by the number
command in the same way that lines are specified for print. For example, 1,$nu lists all lines
in the buffer with their corresponding line numbers.

Substitute command (s)

Now that you have found the misspelled word, you can change it from "thiss" to "this".
As far as edit is concerned, changing things is a matter of substituting one thing for another.
As a stood for append, so s stands for substitute. We will use the abbreviation "s" to reduce
the chance of mistyping the substitute command. This command will instruct edit to make
the change:

2s/thiss/this/

We first indicate the line to be changed, line 2, and then type an "s" to indicate we want edit
to make a substitution. Inside the first set of slashes are the characters that we want to
change, followed by the characters to replace them, and then a closing slash mark. To sum
marize:

3-12 Edit - A Tutorial

2s/ what is to be changed I what to change it to I

If edit finds an exact match of the characters to be changed it will make the change only in
the first occurrence of the characters. If it does not find the characters to be changed, it will
respond:

Substitute pattern match failed

indicating that your instructions could not be carried out. When edit does find the characters
that you want to change, it will make the substitution and automatically print the changed
line, so that you can check that the correct substitution was made. In the example,

: 2s/thiss/this/
And this is some more text.

line 2 (and line 2 only) will be searched for the characters "thiss", and when the first exact
match is found, "thiss" will be changed to "this"; Strictly speaking, it was not necessary
above to specify the number qf the line to be changed. In

: s/this$1this/

edit will &ssume that we mean to change the line where we are currently located (". "). In this
case, the command without a line number would have produced the same result because we
were alr~ady loca~ed at the line we wished to change.

For ¬her illustration of the substitute command, let us choose the line:

Text editing is strange, but nice.

You can make this line a bit more positive by taking out the characters "strange, but " so the
line reads:

Text editing is nice.

A command that will first position edit at the desired line and then make the substitution is:

:/stra:qge/s/strange, but//

What we have done here is combine our search with our substitution. Such combinations are
perfectly legal, and speed up editing quite a bit once you get used to them. That is, you do
not necessarily have to use line numbers to identify a line to edit. Instead, you may identify
the line you want to change by asking edit to search for a specified pattern of letters that
occurs in that line. The parts of the above command are: · ·

/strange/
s
/strange, but //

tells edit to find the characters "strange" in the text
tells edit to make a substitution
substitutes nothing at all for the characters "strange, but "

You should note the spac~ after "but" in "/strange, but /". If you do not indicate that
the space is to be taken out, your line will read:

Text editing is nice.

which looks a little funny because of the extra space between "is" and "nice". Again, we real
ize from this that a blank space is a real character to a computer, and in editing text we need
to be aware of spaces within a line just as we would be aware of an "a" or a "4".

Another way to list what's in the buffer (z)

Although the print command is useful for looking at specific lines in the buffer, other
commands may be more convenient for viewing large sections of text. You can ask to see a
screen full of text at a time by using the command z. If you type

Edit - A Tutorial 3-13

:lz

edit will start with line 1 and continue printing lines, stopping either when the screen of your
terminal is full or when the last line in the buff er has been printed. If you want to read the
next segment of text, type the command

:z

If no starting line number is given for the z command, printing will start at the "current" line,
in this case the last line printed. Viewing lines in the buffer one screen full at a time is known
as paging. Paging can also be used to print a section of text on a hard-copy terminal.

Saving the modified text

This seems to be a good place to pause in our work, and so we should end the second
session. If you (in haste) type "q" to quit the session your dialogue with edit will be:

:q
No write since last change (:quit! overrides)

This is edit's warning that you have not written the modified contents of the buffer to disk.
You run the risk of losing the work you did during the editing session since you typed the
latest write command. Because in this lesson we have not written to disk at all, everything we
have done would have been lost if edit had obeyed the q command. If you did not want to
save the work done during this editing session, you would have to type "q!" or ("quit!") to
confirm that you indeed wanted to end the session immediately, leaving the file as it was after
the most recent "write" command. However, since you want to save what you have edited,
you need to type:

:w
"text" 6 lines, 171 characters

and then follow with the commands to quit and logout:

:q
% logout

and hang up the phone or turn off the terminal when UNIX asks for a name. Terminals con
nected to the port selector will stop after the logout command, and pressing keys on the key
board will do nothing.

This is the end of the second session on UNIX text editing.

3-14 Edit - A Tutorial

Session 3

Bringing text into the buff er (e)

Login to UNIX and make contact with edit. You should try to login without looking at
the notes, but if you must then by all means do.

Did you remember to give the name of the file you wanted to edit? That is, did you
type

% edit text

or simply

% edit

Both ways get you in contact with edit, but the first way will bring a copy of the file named
"text" into the buffer. If you did forget to tell edit the name of your file, you can get it into
the buff er by typing:

:e text
"text" 6 lines, 171 characters

The command edit, which may be abbreviated e, tells edit that you want to erase anything
that might already be in the buffer and bring a copy of the file "text" into the buffer for edit
ing. You may also use the edit (e) command to change files in the middle of an editing ses
sion, or to give edit the name of a new file that you want to create. Because the edit com
mand clears the buffer, you will receive a warning if you try to edit a new file without having
saved a copy of the old file. This gives you a chance to write the contents of the buffer to disk
before editing the next file.

Moving text in the buffer (m)

Edit allows you to move lines of text from one location in the buffer to another by means
of the move (m) command. The first two examples are for illustration only, though after you
have read this Session you are welcome to return to them for practice. The command

:2,4m$

directs edit to move lines 2, 3, and 4 to the end of the buffer ($). The format for the move
command is that you specify the first line to be moved, the last line to be moved, the move
command "m", and the line after which the moved text is to be placed. So,

:1,3m6

would instruct edit to move lines 1 through 3 (inclusive) to a location after line 6 in the buffer.
To move only one line, say, line 4, to a location in the buffer after line 5, the command would
be "4m5".

Let's move some text using the command:

:5,$ml
2 lines moved
it does illustrate the editor.

After executing a command that moves more than one line of the buffer, edit tells how many
lines were affected by the move and prints the last moved line for your inspection. If you
want to see more than just the last line, you can then use the print (p), z, or number (nu)
command to view more text. The buff er should now contain:

This is some sample text.
It doesn't mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.
This is text added in Session 2.

You can restore the original order by typing:

:4,$ml

or, combining context searching and the move command:

Edit - A Tutorial 3-15

:/And this is some/,/This is text/m/This is some sample/

(Do not type both examples here!) The problem with combining context searching with the
move command is that your chance of making a typing error in such a long command is
greater than if you type line numbers.

Copying lines (copy)

The copy command is used to make a second copy of specified lines, leaving the original
lines where they were. Copy has the same format as the move command, for example:

:2,5copy $

makes a copy of lines 2 through 5, placing the added lines after the buffer's end ($). Experi
ment with the copy command so that you can become familiar with how it works. Note that
the shortest abbreviation for copy is co (and not the letter "c", which has another meaning).

Deleting lines (d)

Suppose you want to delete the line

This is text added in Session 2.

from the buffer. If you know the number of the line to be deleted, you can type that number
followed by delete or d. This example deletes line 4, which is "This is text added in Session
2." if you typed the commands suggested so far.

:4d
It doesn't mean much here, but

Here "4" is the number of the line to be deleted, and "delete" or "d" is the command to
delete the line. After executing the delete command, edit prints the line that has become the
current line (".").

If you do not happen to know the line number you can search for the line and then
delete it using this sequence of commands:

:/added in Session 2./
This is text added in Session 2.
:d
It doesn't mean much here, but

The "/added in Session 2./" asks edit to locate and print the line containing the indicated
text, starting its search at the current line and moving line by line until it finds the text.
Once you are sure that you have correctly specified the line you want to delete, you can enter
the delete (d) command. In this case it is not necessary to specify a line number before the
"d". If no line number is given, edit deletes the current line ("."), that is, the line found by
our search. After the deletion, your buff er should contain:

3-16 Edit - A Tutorial

This is some sample text.
And this is some more text.
Text editing is nice.
It doesn't mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.
This is text added in Session 2.
It doesn't mean much here, but

To delete both lines 2 and 3:

you type

And this is some more text.
Text editing is nice.

:2,3d
2 lines deleted

which specifies the range of lines from 2 to 3, and the operation on those lines - "d" for
delete. If you delete more than one line you will receive a message telling you the number of
lines deleted, as indicated in the example above.

The previous example assumes that you know the line numbers for the lines to be
deleted. If you do not you might combine the search command with the delete command:

: I And this is some/,/Text editing is nice.Id

A word or two of caution

In using the search function to locate lines to be deleted you should be absolutely
sure the characters you give as the basis for the search will take edit to the line you want
deleted. Edit will search for the first occurrence of the characters starting from where you last
edited - that is, from the line you see printed if you type dot (.).

A search based on too few characters may result in the wrong lines being deleted, which
edit will do as easily as if you had meant it. For this reason, it is usually safer to specify the
search and then delete in two separate steps, at least until you become familiar enough with
using the editor that you understand how best to specify searches. For a beginner it is not a
bad idea to double-check each command before pressing RETURN to send the command on its
way.

Undo (u) to the rescue

The undo (u) command has the ability to reverse the effects of the last command that
changed the buffer. To undo the previous command, type "u" or "undo". Undo can rescue
the contents of the buffer from many an unfortunate mistake. However, its powers are not
unlimited, so it is still wise to be reasonably careful about the commands you give.

It is possible to undo only commands which have the power to change the buffer - for
example, delete, append, move, copy, substitute, and even undo itself. The commands write
(w) and edit (e), which interact with disk files, cannot be undone, nor can commands that do
not change the buffer, such as print. Most importantly, the only command that can be
reversed by undo is the last "undo-able" command you typed. You can use control-Hand@
to change commands while you are typing them, and undo to reverse the effect of the com
mands after you have typed them and pressed RETURN.

To illustrate, let's issue an undo command. Recall that the last buffer-changing com
mand we gave deleted the lines formerly numbered 2 and 3. Typing undo at this moment will
reverse the effects of the deletion, causing those two lines to be replaced in the buff er.

:u
2 more lines in file after undo
And this is some more text.

Edit - A Tutorial 3-17

Here again, edit informs you if the command affects more than one line, and prints the text of
the line which is now "dot" (the current line).

More about the dot (.) and buffer end ($)

The function assumed by the symbol dot depends on its context. It can be used:

1. to exit from append mode; we type dot (and only a dot) on a line and press RETURN;

2. to refer to the line we are at in the buffer.

Dot can also be combined with the equal sign to get the number of the line currently being
edited:

:.=

. If we type ".=" we are asking for the number of the line, and if we type "." we are asking for
the text of the line.

In this editing session and the last, we used the dollar sign to indicate the end of the
buffer in commands such as print, copy, and move. The dollar sign as a command asks edit to
print the last line in the buffer. If the dollar sign is combined with the equal sign ($=) edit
will print the line number corresponding to the last line in the buffer.

"." and "$", then, represent line numbers. Whenever appropriate, these symbols can be
used in place of line numbers in commands. For example

:.,$d

instructs edit to delete all lines from the current line (.) to the end of the buffer.

Moving around in the buffer (+ and -)

When you are editing you often want to go back and re-read a previous line. You could
specify a context search for a line you want to read if you remember some of its text, but if
you simply want to see what was written a few, say 3, lines ago, you can type

-3p

This tells edit to move back to a position 3 lines before the current line (.) and print that line.
You can move forward in the buff er similarly: ·

+2p

instructs edit to print the line that is 2 ahead of your current position.

You may use "+" and "-" in any command where edit accepts line numbers. Line
numbers specified with"+" or"-" can be combined to print a range of lines. The command

:-l,+2copy$

makes a copy of 4 lines: the current line, the line before it, and the two after it. The copied
lines will be placed after the last line in the buffer ($), and the original lines referred to by
"-1" and "+2" remain where they are. '

Try typing only"-"; you will move back one line just as if you had typed "-lp". Typ
ing the command "+" works similarly. You might also try typing a few plus or minus signs in
a row (such as "+++") to see edit's response. Typing RETUI~.N alone on a line is the
equivalent of typing"+ lp"; it will move you one line ahead in the ~uffer and print that line.

If you are at the last line of the buffer and try to move further ahead, perhaps by typing
a "+" or a carriage return alone on the line, edit will remind .you that you are at the end of
the buffer:

3-18 Edit - A Tutorial

At end-of-file
or

Not that many lines in buffer

Similarly, if you try to move to a position before the first line, edit will print one of these mes
sages:

Nonzero address required on this command
or

Negative address - first buff er line is 1

The number associated with a buffer line is the line's "address", in that it can be used to
locate the line.

Changing lines (c)

You can also delete certain lines and insert new text in their place. This can be accom
plished easily with the change (c) command. The change command instructs edit to delete
specified lines and then switch to text input mode to accept the text that will replace them.
Let's say you want to change the first two lines in the buffer:

to read

This is some sample text.
And this is some more text.

This text was created with the UNIX text editor.

To do so, you type:

: 1,2c
2 lines changed
This text was created with the UNIX text editor.

In the command 1,2c we specify that we want to change the range of lines beginning with 1
and ending with 2 by giving line numbers as with the print command. These lines will be
deleted. After you type RETURN to end the change command, edit notifies you if more than
one line will be changed and places you in text input mode. Any text typed on the following
lines will be inserted into the position where lines were deleted by the change command. You
will remain in text input mode until you exit in the usual way, by typing a period
alone on a line. Note that the number of lines added to the buffer need not be the same as
the number of lines deleted.

This is the end of the third session on text editing with UNIX.

Edit - A Tutorial 3-19

Session 4

This lesson covers several topics, starting with commands that apply throughout the
buffer, characters with special meanings, and how to issue UNIX commands while in the editor.
The next topics deal with files: more on reading and writing, and methods of recovering files
lost in a crash. The final section suggests sources of further information.

Making commands global (g)

One disadvantage to the commands we have used for searching or substituting is that if
you have a number of instances of a word to change it appears that you have to type the com
mand repeatedly, once for each time the change needs to be made. Edit, however, provides a
way to make commands apply to the entire contents of the buffer - the global (g) com
mand.

To print all lines containing a certain sequence of characters (say, "text") the command
is:

:g/text/p

The "g" instructs edit to make a global search for all lines in the buffer containing the charac
ters "text". The "p" prints the lines found.

To issue a global command, start by typing a "g" and then a search pattern identifying
the lines to be affected. Then, on the same line, type the command to be executed for the
identified lines. Global substitutions are frequently useful. For example, to change all
instances of the word "text" to the word "material" the command would be a combination of
the global search and the substitute command:

: g/text/s/text/material/g

Note the "g" at the end of the global command, which instructs edit to change each and every
instance of "text" to "material". If you do not type the "g" at the end of the command only
the first instance of "text" in each line will be changed (the normal result of the substitute
command). The "g" at the end of the command is independent of the "g" at the beginning.
You may give a command such as:

: 5s/text/material/g

to change every instance of "text" in line 5 alone. Further, neither command will change
"text" to "material" if "Text" begins with a capital rather than a lower-case t.

Edit does not automatically print the lines modified by a global command. If you want
the lines to be printed, type a "p" at the end of the global command:

: g/text/s/text/material/gp

You should be careful about using the global command in combination with any other - in
essence, be sure of what you are telling edit to do to the entire buffer. For example,

:g/ /d
72 less lines in file after global

will delete every line containing a blank anywhere in it. This could adversely affect your
document, since most lines have spaces between words and thus would be deleted. After exe
cuting the global command, edit will print a warning if the command added or deleted more
than one line. Fortunately, the undo command can reverse the effects of a global command.
You should experiment with the global command on a small file of text to see what it can do
for you.

3-20 Edit - A Tutorial

More about searching and substituting

In using slashes to identify a character string that we want to search for or change, we
have always specified the exact characters. There is a less tedious way to repeat the same
string of characters. To change "text" to "texts" we may type either

: /text/s/text/texts/

as we have done in the past, or a somewhat abbreviated command:

: /text/s//texts/

In this example, the characters to be changed are not specified - there are no characters, not
even a space, between the two slash marks that indicate what is to be changed. This lack of
characters between the slashes is taken by the editor to mean "use the characters we last
searched for as the characters to be changed."

Similarly, the last context search may be repeated by typing a pair of slashes with noth-
ing between them:

:/does/
It doesn't mean much here, but
://
it does illustrate the editor.

(You should note that the search command found the characters "does" in the word "doesn't"
in the first search request.) Because no characters are specified for the second search, the edi
tor scans the buffer for the next occurrence of the characters "does".

Edit normally searches forward through the buffer, wrapping around from the end of the
buffer to the beginning, until the specified character string is found. If you want to search in
the reverse direction, use question marks (?) instead of slashes to surround the characters you
are searching for.

It is also possible to repeat the last substitution without having to retype the entire com
mand. An ampersand (&) used as a command repeats the most recent substitute command,
using the same search and replacement patterns. After altering the current line by typing

: s/text/texts/

you type

:/text/&

or simply

://&

to make the same change on the next line in the buffer containing the characters "text".

Special characters

Two characters have special meanings when used in specifying searches: "$" and """.
"$" is taken by the editor to mean "end of the line" and is used to identify strings that occur
at the end of a line.

: g/text.$/ s//ma terial./p

tells the editor to search for all lines ending in "text." (and nothing else, not even a blank
space), to change each final "text." to "material.", and print the changed lines.

The symbol """ indicates the beginning of a line. Thus,

: s/"/1. I

instructs the editor to insert "l." and a space at the beginning of the current line.

Edit - A Tutorial 3-21

The characters "$" and W'" have special meanings only in the context of searching. At
other times, they are ordinary characters. If you ever need to search for a character that has a
special meaning, you must indicate that the character is to lose temporarily its special
significance by typing another special character, the backslash (\), before it.

: s/\$/dollar/

looks for the character "$" in the current line and replaces it by the word "dollar". Were it
not for the backslash, the "$" would have represented "the end of the line" in your search
rather than the character "$". The backslash retains its special significance unless it is pre
ceded by another backslash.

Issuing UNIX commands from the editor

After creating several files with the editor, you may want to delete files no longer useful
to you or ask for a list of your files. Removing and listing files are not functions of the editor,
and so they require the use of UNIX system commands (also referred to as "shell" commands,
as "shell" is the name of the program that processes UNIX commands). You do not need to
quit the editor to execute a UNIX command as long as you indicate that it is to be sent to the
shell for execution. To use the UNIX command rm to remove the file named "junk" type:

:!rm junk
!

The exclamation mark (!) indicates that the rest of the line is to be processed as a shell com
mand. If the buffer contents have not been written since the last change, a warning will be
printed before the command is executed:

[No write since last change]

The editor prints a "!" when the command is completed. The tutorial "Communicating with
UNIX" describes useful features of the system, of which the editor is only one part.

Filenames and file manipulation

Throughout each editing session, edit keeps track of the name of the file being edited as
the current filename. Edit remembers as the current filename the name given when you
entered the editor. The current filename changes whenever the edit (e) command is used to
specify a new file. Once edit has recorded a current filename, it inserts that name into any
command where a filename has been omitted. If a write command does not specify a file, edit,
as we have seen, supplies the current filename. If you are editing a file named "draft3" having
283 lines in it, you can have the editor write onto a different file by including its name in the
write command:

:w chapter3
"chapter3" [new file] 283 lines, 8698 characters

The current filename remembered by the editor will not be changed as a result of the write
command. Thus, if the next write command does not specify a name, edit will write onto the
current file ("draft3") and not onto the file "chapter3".

The file (f) command

To ask for the current filename, type file (or f). In response, the editor provides current
information about the buffer, including the filename, your current position, the number of
lines in the buffer, and the percent of the distance through the file your current location is.

:f
"text" [Modified] line 3 of 4 --75%--

If the contents of the buffer have changed since the last time the file was written, the editor

3-22 Edit - A Tutorial

will tell you that the file has been "[Modified]". After you save the changes by writing onto a
disk file, the buff er will no longer be considered modified:

:w
"text" 4 lines, 88 characters
:f
"text" line 3 of 4 --75 %--

Reading additional files (r)

The read (r) command allows you to add the contents of a file to the buffer at a
specified location, essentially copying new lines between two existing lines. To use it, specify
the line after which the new text will be placed, the read (r) command, and then the name of
the file. If you have a file named "example", the command

:$r example
"example" 18 lines, 473 characters

reads the file "example" and adds it to the buffer after the last line. The current filename is
not changed by the read command.

Writing parts of the buffer

The write (w) command can write all or part of the buffer to a file you specify. We are
already familiar with writing the entire contents of the buffer to a disk file. To write only
part of the buffer onto a file, indicate the beginning and ending lines before the write com
mand, for example

:45,$w ending

Here all lines from 45 through the end of the buffer are written onto the file named ending.
The lines remain in the buffer as part of the document you are editing, and you may continue
to edit the entire buffer. Your original file is unaffected by your command to write part of the
buffer to another file. Edit still remembers whether you have saved changes to the buffer in
your original file or not.

Recovering files

Although it does not happen very often, there are times UNIX stops working because of
some malfunction. This situation is known as a crash. Under most circumstances, edit's
crash recovery feature is able to save work to within a few lines of changes before a crash (or
an accidental phone hang up). If you lose the contents of an editing buffer in a system crash,
you will normally receive mail when you login that gives the name of the recovered file. To
recover the file, enter the editor and type the command recover (rec), followed by the name
of the lost file. For example, to recover the buffer for an edit session involving the file
"chap6", the command is:

: recover chap6

Recover is sometimes unable to save the entire buff er successfully, so always check the con
tents of the saved buffer carefully before writing it back onto the original file. For best
results, write the buffer to a new file temporarily so you can examine it without risk to the ori
ginal file. Unfortunately, you cannot use the recover command to retrieve a file you removed
using the shell command rm.

Other recovery techniques

If something goes wrong when you are using the editor, it may be possible to save your
work by using the command preserve (pre), which saves the buffer as if the system had
crashed. If you are writing a file and you get the message "Quota exceeded", you have tried to
use more disk storage than is allotted to your account. Proceed with caution because it is

Edit - A Tutorial 3-23

likely that only a part of the editor's buffer is now present in the file you tried to write. In
this case you should use the shell escape from the editor (!) to remove some files you don't
need and try to write the file again. If this is not possible and you cannot find someone to
help you, enter the command

:preserve

and wait for the reply,

File preserved.

If you do not receive this reply, seek help immediately. Do not simply leave the editor. If you
do, the buffer will be lost, and you may not be able to save your file. If the reply is "File
preserved." you can leave the editor (or logout) to remedy the situation. After a preserve, you
can use the recover command once the problem has been corrected, or the -r option of the
edit command if you leave the editor and want to return.

If you make an undesirable change to the buffer and type a write command before dis
covering your mistake, the modified version will replace any previous version of the file.
Should you ever lose a good version of a document in this way, do not panic and leave the edi
tor. As long as you stay in the editor, the contents of the buffer temain accessible. Depend
ing on the nature of the problem, it may be possible to restore the buff er to a more complete
state with the undo command. After fixing the damaged buffer, you can again write the file to
disk.

Further reading and other information

Edit is an editor designed for beginning and casual users. It is actually a version of a
more powerful editor called ex. These lessons are intended to introduce you to the editor and
its more commonly-used commands. We have not covered all of the editor's commands, but a
selection of commands that should be sufficient to accomplish most of your editing tasks. You
can find out more about the editor in the Ex Reference Manual, which is applicable to both
ex and edit. The manual is available from the Computing Services Library, 218 Evans Hall.
One way to become familiar with the manual is to begin by reading the description of com
mands that you already know.

Using ex

As you become more experienced with using the editor, you may still find that edit con
tinues to meet your needs. However, should you become interested in using ex, it is easy to
switch. To begin an editing session with ex, use the name ex in your command instead of
edit.

Edit commands work the same way in ex, but the editing environment is somewhat
different. You should be aware of a few differences that exist between the two versions of the
editor. In edit, only the characters """, "$", and "\" have special meanings in searching the
buffer or indicating characters to be changed by a substitute command. Several additional
characters have special meanings in ex, as described in the Ex Reference Manual. Another
feature of the edit environment prevents users from accidently entering two alternative modes.
of editing, open and visual, in which the editor behaves quite differently from normal com
mand mode. If you are using ex and the editor behaves strangely, you may have accidently
entered open mode by typing "o". Type the ESC key and then a "Q" to get out of open or·
visual mode and back into the regular editor command mode. The document An Introduction
to Display Editing with Vi provides a full discussion of visual mode.

A Tutorial Introduction to the UNIX Text Editor 3-25

A Tutorial Introduction to the UNIX Text Editor

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

Ed is a "text editor", that is, an interactive
program for creating and modifying "text", using
directions provided by a user at a terminal. The
text is often a document like this one, or a pro
gram or perhaps data for a program.

This introduction is meant to simplify learn
ing ed. The recommended way to learn ed is to
read this document, simultaneously using ed to
follow the examples, then to read the description
in section I of the UNIX Programmer's Manual,
all the while experimenting with ed. (Solicita
tion of advice from experienced users is also use
ful.)

Do the exercises! They cover material not
completely discussed in the actual text. An
appendix summarizes the commands.

Disclaimer

This is an introduction and a tutorial. For
this reason, no attempt is made to cover more
than a part of the facilities that ed offers
(although this fraction includes the most useful
and frequently used parts). When you have
mastered the Tutorial, try Advanced Editing on
UNIX. Also, there is not enough space to
explain basic UNIX procedures. We will assume
that you know how to log on to UNIX, and that
you have at least a vague understanding of what
a file is. For more on that, read UNIX for
Beginners.

You must also know what character to type
as the end-of-line on your particular terminal.
This character is the RETURN key on most ter
minals. Throughout, we will refer to this charac
ter, whatever it is, as RETURN.

Getting Started

We'll assume that you have logged in to your
system and it has just printed the prompt char
acter, usually either a $ or a % . The easiest way
to get ed is to type

ed (followed by a return)

You are now ready to go - ed is waiting for you
to tell it what to do.

Creating Text - the Append command "a"

As your first problem, suppose you want to
create some text starting from scratch. Perhaps
you are typing the very first draft of a paper;
clearly it will have to start somewhere, and
undergo modifications later. This section will
show how to get some text in, just to get started.
Later we'll talk about how to change it.

When ed is first started, it is rather like
working with a blank piece of paper - there is
no text or information present. This must be
supplied by the person using ed; it is usually
done by typing in the text, or by reading it into
ed from a file. We will start by typing in some
text, and return shortly to how to read files.

First a bit of terminology. In ed jargon, the
text being worked on is said to be "kept in a
buffer." Think of the buffer as a work space, if
you like, or simply as the information that you
are going to be editing. In effect the buffer is
like the piece of paper, on which we will write
things, then change some of them, and finally
file the whole thing away for another day.

The user tells ed what to do to his text by
typing instructions called "commands." Most
commands consist of a single letter, which must
be typed in lower case. Each command is typed
on a separate line. (Sometimes the command is
preceded by information about what line or lines
of text are to be affected - we will discuss these
shortly.) Ed makes no response to most com
mands - there is no prompting or typing of
messages like "ready". (This silence is preferred
by experienced users, but sometimes a hangup
for beginners.)

The first command is append, written as the
letter

3-26 A Tutorial Introduction to the UNIX Text Editor

a

all by itself. It means "append (or add) text
lines to the buffer, as I type them in." Append
ing is rather like writing fresh material on a
piece of paper.

So to enter lines of text into the buff er, just
type an a followed by a RETURN, followed by
the lines of text you want, like this:

a
Now is the time
for all good men
to come to the aid of their party.

The only way to stop appending is to type a
line that contains only a period. The "." is used
to tell ed that you have finished appending.
(Even experienced users forget that terminating
"." sometimes. If ed seems to be ignoring you,
type an extra line with just "." on it. You may
then find you've added some garbage lines to
your text, which you'll have to take out later.)

After the append command has been done,
the buff er will contain the three lines

Now is the time
for all good men
to come to the aid of their party.

The "a" and "." aren't there, because they are
not text.

To add more text to what you already have,
just issue another a command, and continue typ
ing.

Error Messages - "?"

If at any time you make an error in the com
mands you type to ed, it will tell you by typing

?

This is about as cryptic as it can be, but with
practice, you can usually figure out how you
goofed.

Writing text out as a file - the Write com
mand "w"

It's likely that you'll want to save your text
for later use. To write out the contents of the
buff er onto a file, use the write command

w

followed by the filename you want to write on.
This will copy the buffer's contents onto the
specified file (destroying any previous informa
tion on the file). To save the text on a file
named junk, for example, type

w junk

Leave a space between w and the file name. Ed
will respond by printing the number of charac
ters it wrote out. In this case, ed would respond
with

68

(Remember that blanks and the return character
at the end of each line are included in the char
acter count.) Writing a file just makes a copy of
the text - the buffer's contents are not dis
turbed, so you can go on adding lines to it. This
is an important point. Ed at all times works on
a copy of a file, not the file itself. No change in
the contents of a file takes place until you give a
w command. (Writing out the text onto a file
from time to time as it is being created is a good
idea, since if the system crashes or if you make
some horrible mistake, you will lose all the text
in the buff er but any text that was written onto
a file is relatively safe.)

Leaving ed - the Quit command "q"

To terminate a session withed, save the text
you're working on by writing it onto a file using
the w command, and then type the command

q

which stands for quit. The system will respond
with the prompt character ($ or %). At this
point your buff er vanishes, with all its text,
which is why you want to write it out before
quitting.t

Exercise 1:

Enter ed and create some text using

a
... text ...

Write it out using w. Then leave ed with the q
command, and print the file, to see that every
thing worked. (To print a file, say

pr filename

or

cat filename

in response to the prompt character. Try both.)

t Actually, ed will print? if you try to quit without writ
ing. At that point, write if you want; if not, another q
will get you out regardless.

A Tutorial Introduction to the UNIX Text Editor 3-27

Reading text from a file - the Edit com
mand "e"

A common way to get text into the buff er is
to read it from a file in the file system. This is
,what you do to edit text that you saved with the
w command in a previous session. The edit
command e fetches the entire contents of a file
into the buffer. So if you had saved the three
lines "Now is the time", etc., with aw command
in an earlier session, the ed command

ejunk

would fetch the entire contents of the file junk
into the buffer, and respond

68

which is the number of characters in junk. If
anything was already in the buffer, it is deleted
first.

If you use the e command to read a file into
the buffer, then you need not use a file name
after a subsequent w command; ed remembers
the last file name used in an e command, and w
will write on this file. Thus a good way to
operate is

ed
e file
[editing session]
w
q

This way, you can simply say w from time to
time, and be secure in the knowledge that if you
got the file name right at the beginning, you are
writing into the proper file each time.

You can find out at any time what file name
ed is remembering by typing the file command f.
In this example, if you typed

f

ed would reply

junk

Reading text from a file - the Read com
mand "r"

Sometimes you want to read a file into the
buff er without destroying anything that is
already there. This is done by the read com
mand r. The command

rjunk

will read the file junk into the buffer; it adds it
to the end of whatever is already in the buffer.
So if you do a read after an edit:

ejunk
rjunk

the buffer will contain two copies of the text (six
lines).

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the w and e commands, r prints the
number of characters read in, after the reading
operation is complete.

Generally speaking, r is much less used than
e.

Exercise 2:

Experiment with thee command - try read
ing and printing various files. You may get an
error ?name, where name is the name of a file;
this means that the file doesn't exist, typically
because you spelled the file name wrong, or
perhaps that you are not allowed to read or
write it. Try alternately reading and appending
to see that they work similarly. Verify that

ed filename

is exactly equivalent to

ed
e filename

What does

f filename

do?

Printing the contents of the buffer - the
Print command "p"

To print or list the contents of the buff er (or
parts of it) on the terminal, use the print com
mand

p

The way this is done is as follows. Specify the
lines where you want printing to begin and
where you want it to end, separated by a
comma, and followed by the letter p. Thus to
print the first two lines of the buffer, for exam
ple, (that is, lines 1 through 2) say

1,2p (starting line=l, ending line=2 p)

Ed will respond with

Now is the time
for all good men

3-28 A Tutorial Introduction to the UNIX Text Editor

Suppose you want to print all the lines in
the buffer. You could use 1,3p as above if you
knew there were exactly 3 lines in the buffer.
But in general, you don't know how many there
are, so what do you use for the ending line
number? Ed provides a shorthand symbol for
"line number of last line in buff er" - the dollar
sign$. Use it this way:

1,$p

This will print all the lines in the buff er (line 1
to last line.) If you want to stop the printing
before it is finished, push the DEL or Delete key;
ed will type

?

and wait for the next command.

To print the last line of the buffer, you could
use

$,$p

but ed lets you abbreviate this to

$p

You can print any single line by typing the line
number followed by a p. Thus

lp

produces the response

Now is the time

which is the first line of the buffer.

In fact, ed lets you abbreviate even further:
you can print any single line by typing just the
line number - no need to type the letter p. So
if you say

$

ed will print the last line of the buffer.

You can also use $ in combinations like

$-1,$p

which prints the last two lines of the buff er.
This helps when you want to see how far you got
in typing.

Exercise 3:

As before, create some text using the a com
mand and experiment with the p command.
You will find, for example, that you can't print
line 0 or a line beyond the end of the buff er, and
that attempts to print a buffer in reverse order
by saying

3,lp

don't work.

The current line - "Dot" or"."

Suppose your buff er still contains the six
lines as above, that you have just typed

1,3p

and ed has printed the three lines for you. Try
typing just

p (no line numbers)

This will print

to come to the aid of their party.

which is the third line of the buffer. In fact it is
the last (most recent) line that you have done
anything with. (You just printed it!) You can
repeat this p command without line numbers,
and it will continue to print line 3.

The reason is that ed maintains a record of
the last line that you did anything to (in this
case, line 3, which you just printed) so that it
can be used instead of an explicit line number.
This most recent line is referred to by the short
hand symbol

(pronounced "dot").

Dot is a line number in the same way that $ is;
it means exactly "the current line", or loosely,
"the line you most recently did something to."
You can use it in several ways - one possibility
is to say

.,$p

This will print all the lines from (including) the
current line to the end of the buffer. In our
example these are lines 3 through 6.

Some commands change the value of dot,
while others do not. The p command sets dot to
the number of the last line printed; the last com
mand will set both . and $ to 6.

Dot is most useful when used in combina
tions like this one:

.+1 (or equivalently, .+lp)

This means "print the next line" and is a handy
way to step slowly through a buffer. You can
also say

.-1 (or .-lp)

which means "print the line before the current
line." This enables you to go backwards if . you
wish. Another useful one is something like

.-3,.-lp

which prints the previous three lines.

Don't forget that all of these change the
value of dot. You can find out what dot is at
any time by typing

A Tutorial Introduction to the UNIX Text Editor 3-29

Ed will respond by printing the value of dot.

Let's summarize some things about the p
command and dot. Essentially p can be pre
ceded by 0, 1, or 2 line numbers. If there is no
line number given, it prints the "current line",
the line that dot refers to. If there is one line
number given (with or without the letter p), it
prints that line (and dot is set there); and if
there are two line numbers, it prints all the lines
in that range (and sets dot to the last line
printed.) If two line numbers are specified the
first can't be bigger than the second (see Exer
cise 2.)

Typing a single return will cause printing of
the next line - it's equivalent to .+Ip. Try it.
Try typing a -; you will find that it's equivalent
to .-Ip.

Deleting lines: the "d" command

Suppose you want to get rid of the three
extra lines in the buffer. This is done by the
delete command

d

Except that d deletes lines instead of printing
them, its action is similar to that of p. The lines
to be deleted are specified for d exactly as they
are for p:

starting line, ending line d

Thus the command

4,$d

deletes lines 4 through the end. The-re are now
three lines left, as you can check by using

1,$p

And notice that $! now is line 3! Dot is set to
the next line after the last line deleted, unless
the last line deleted is the last Hne in the buffer.
In that case, dot is set to $.

Exercise 4:

Experiment with a, e, r, w, p and d until
you are· sure that you know what they do, and
until you understand how dot, $, and line
numbers are used.

I.f you are adventurous, try using line
numbers with a, r and w as well. You will find
that a will append lines after the line number
that you specify (rather than after dot); that r
reads a file in after the line number you specify
(not necessarily at the end of the buffer); and
that w will write out exactly the lines you
specify, not necessarily the whole buffer. These
variations are sometimes handy. For instance

you can insert a file at the beginning of a buff er
by saying

Or filename

and you can enter lines at the beginning of the
buff er by saying

Oa
... text ...

Notice that .w is very different from

w

Modifying text: the Substitute command
"s"

We are now ready to try one of the most
important of all commands - the substitute
command

s

This is the command that is used to change indi
vidual words or letters within a line or group of
lines. It is what you use, for example, for
correcting spelling mistakes and typing errors.

Suppose that by a typing error, line 1 says

Now is th time

- the e has been left off the. You can use s to
fix this up as follows:

ls/th/the/

This says: "in line 1, substitute for the charac
ters th the characters the." To verify that it
works (ed will not print the result automatically)
say

p

and get

Now is the time

which is what you wanted. Notice that dot must
have been set to the line where the substitution
took place, since the p command printed that
line. Dot is always set this way with the s com
mand.

The general way to use the substitute com
mand is

starting-line, ending-line s/change this/to this/

Whatever string of characters is between the
first pair of slashes is replaced by whatever is
between the second pair, in all the lines between
starting-line and ending-line. Only the first
occurrence on each line is changed, however. If
you want to change every occurrence, see Exer
cise 5. The rules for line numbers are the same

3-30 A Tutorial Introduction to the UNIX Text Editor

as those for p, except that dot is set to the last
line changed. (But there is a trap for the
unwary: if no substitution took place, dot is not
changed. This causes an error? as a warning.)

Thus you can say

1,$s/speling/spelling/

and correct the first spelling mistake on each
line in the text. (This is useful for people who
are consistent misspellers!)

If no line numbers are given, the s command
assumes we mean "make the substitution on line
dot", so it changes things only on the current
line. This leads to the very common sequence

s/something/something else/p

which makes some correction on the current line,
and then prints it, to make sure it worked out
right. If it didn't, you can try again. (Notice
that there is a p on the same line as the s com
mand. With few exceptions, p can follow any
command; no other multi-command lines are
legal.)

It's also legal to say

s/ ... II

which means "change the first string of charac
ters to "nothing", i.e., remove them. This is use
ful for deleting extra words in a line or removing
extra letters from words. For instance, if you
had

N owxx is the time

you can say

s/xx//p

to get

Now is the time

Notice that// (two adjacent slashes) means "no
characters", not a blank. There is a difference!
(See below for another meaning of//.)

Exercise 5:

Experiment with the substitute command.
See what happens if you substitute for some
word on a line with several occurrences of that
word. For example, do this:

a
the other side of the coin

s/the/~n the/p

You will get

on the other side of the coin

A substitute command changes only the first
occurrence of the first string. You can change

all occurrences by adding a g (for "global") to
the s command, like this:

s/ ... I ... /gp

Try other characters instead of slashes to delimit
the two sets of characters in the s command -
anything should work except blanks or tabs.

(If you get funny results using any of the
characters

$ * \ &

read the section on "Special Characters".)

Context searching - "/ ... /"

With the substitute command mastered, you
can move on to another highly important idea of
ed - context searching.

Suppose you have the original three line text
in the buff er:

Now is the time
for all good men
to come to the aid of their party.

Suppose you want to find the line that contains
their so you can change it to the. Now with
only three lines in the buffer, it's pretty easy to
keep track of what line the word their is on.
But if the buffer contained several hundred
lines, and you'd been making changes, deleting
and rearranging lines, and so on, you would no
longer really know what this line number would
be. Context searching is simply a method of
specifying the desired line, regardless of what its
number is, by specifying some context on it.

The way to say "search for a line that con
tains this particular string of characters" is to
type

/string of characters we want to find/

For example, the ed command

/their/

is a context search which is sufficient to find the
desired line - it will locate the next occurrence
of the characters between slashes ("their"). It
also sets dot to that line and prints the line for
verification:

to come to the aid of their party.

"Next occurrence" means that ed starts looking
for the string at line • + 1, searches to the end of
the buffer, then continues at line 1 and searches
to line dot. (That is, the search "wraps around"
from $ to 1.) It scans all the lines in the buffer
until it either finds the desired line or gets back
to dot again. If the given string of characters
can't be found in any line, ed types the error
message

A Tutorial Introduction to the UNIX Text Editor 3-31

?

Otherwise it prints the line it found.

You can do both the search for the desired
line and a substitution all at once, like this:

/their ls/their /the/p

which will yield

to come to the aid of the party.

There were three parts to that last command:
context search for the desired line, make the
substitution, print the line.

The expression /their/ is a context search
expression. In their simplest form, all context
search expressions are like this - a string of
characters surrounded by slashes. Context
searches are interchangeable with line numbers,
so they can be used by themselves to find and
print a desired line, or as line numbers for some
other command, like s. They were used both
ways in the examples above.

Suppose the buffer contains the three fami-
liar lines

Now is the time
for all good men
to come to the aid of their party.

Then theed line numbers

/Now/+1
/good/
/party/-1

are all context search expressions, and they all
refer to the same line (line 2). To make a
change in line 2, you could say

/Now I+ ls/good/bad/

or

/good/s/good/bad/

or

/party/- ls/good/bad/

The choice is dictated only by convenience. You
could print all three lines by, for instance

/Now/,/party/p

or

/Now/,/Now/+2p

or by any number of similar combinations. The
first one of these might be better if you don't
know how many lines are involved. (Of course,
if there were only three lines in the buffer, you'd
use

1,$p

but not if there were several hundred.)

The basic rule is: a context search expression
is the same as a line number, so it can be used
wherever a line number is needed.

Exercise 6:

Experiment with context searching. Try a
body of text with several occurrences of the
same string of characters, and scan through it
using the same context search.

Try using context searches as line numbers
for the substitute, print and delete commands.
(They can also be used with r, w, and a.)

Try context searching using ?text? instead
of /text/. This scans lines in the buffer in
reverse order rather than normal. This is some
times useful if you go too far while looking for
some string of characters - it's an easy way to
back up.

(If you get funny results with any of the
characters

$ * \ &

read the section on "Special Characters".)

Ed provides a shorthand for repeating a con
text search for the same string. For example,
the ed line number

/string/

will find the next occurrence of string. It often
happens that this is not the desired line, so the
search must be repeated. This can be done by
typing merely

II

This shorthand stands for "the most recently
used context search expression." It can also be
used as the first string of the substitute com
mand, as in

/stringl/s//string2/

which will find the next occurrence of stringl
and replace it by string2. This can save a lot
of typing. Similarly

??

means "scan backwards for the same expres
sion."

Change and Insert - "c" and "i"

This section discusses the change command

c

which is used, to change or replace a group of
one or more lines, and the insert command

3-32 A Tutorial Introduction to the UNIX Text Editor

which is used for inserting a group of one or
more lines.

"Change", written as

c

is used to replace a number of lines with
different lines, which are typed in at the termi
nal. For example, to change lines • + 1 through $
to something else, type

. +1,$c

... type the lines of text you want here ...

The lines you type between the c command and
the • will take the place of the original lines
between start line and end line. This is most
useful in replacing a line or several lines which
have errors in them.

If only one line is specified in the c com
mand, then just that line is replaced. (You can
type in as many replacement lines as you like.)
Notice the use of • to end the input - this
works just like the . in the append command
and must appear by itself on a new line. If no
line number is given, line dot is replaced. The
value of dot is set to the last line you typed in.

"Insert" is similar to append - for instance

/string/i
... type the lines to be inserted here ...

will insert the given text before the next line
that contains "string". The text between i and .
is inserted before the specified line. If no line
number is specified dot is used. Dot is set to the
last line inserted.

Exercise 7:

"Change" is rather like a combination of
delete followed by insert. Experiment to verify
that

start, end d
i
... text ...

is almost the same as

start, end c
... text ...

These are not precisely the same if line $ gets
deleted. Check this out. What is dot?

Experiment with a and i, to see that they are
similar, but not the same. You will observe that

line-number a
... text ...

appends after the given line, while

line-number i
... text ...

inserts before it. Observe that if no line number
is given, i inserts before line dot, while a
appends after line dot .

Moving text around: the "m" command

The move command m is used for cutting
and pasting - it lets you move a group of lines
from one place to another in the buffer. Sup
pose you want to put the first three lines of the
buff er at the end instead. You could do it by
saying:

1,3w temp
$r temp
1,3d

(Do you see why?) but you can do it a lot easier
with the m command:

1,3m$

The general case is

start line, end line m after this line

Notice that there is a third line to be specified -
the place where the moved stuff gets put. Of
course the lines to be moved can be specified by
context searches; if you had

First paragraph

end of first paragraph.
Second paragraph

end of second paragraph.

you could reverse the two paragraphs like this:

/Second/,/end of second/m/First/-1

Notice the -1: the moved text goes after the
line mentioned. Dot gets set to the last line
moved.

The global commands "g" and "v"

The global command g is used to execute
one or more ed commands on all those lines in
the buff er that match some specified string. For
example

g/peling/p

prints all lines that contain peling. More use
fully,

A Tutorial Introduction to the UNIX Text Editor 3-33

g/peling/s//pelling/gp

makes the substitution everywhere on the line,
then prints each corrected line. Compare this to

1,$s/peling/pelling/ gp

which only prints the last line substituted.
Another subtie difference is that the g command
does not give a ? if peling is not found where
the s command will.

There may be several commands (including
a, c, i, r, w, but not g); in that case, every line
except the last must end with a backslash x

g/xxx/.-ls/abc/def/n
. +2s/ghi/jkl/n
.-2,.p

makes changes in the lines before and after each
line that contains xxx, then prints all three
lines.

The v command is the same as g, except
that the commands are executed on every line
that does not match the string following v:

v//d

deletes every line that does not contain a blank.

Special Characters

You may have noticed that things just don't
work right when you used some characters like .,
*, $, and others in context searches and the sub
stitute command. The reason is rather complex,
although the cure is simple. Basically, ed treats
these characters as special, with special mean
ings. For instance, in a context search or the
first string of the substitute command only, .
means "any character," not a period, so

/x.y/

means "a line with an x, any character, and a
y ," not just "a line with an x, a period, and a
y." A complete list of the special characters that
can cause trouble is the following:

$ * \
Warning: The backslash character \ is special to
ed. For safety's sake, avoid it where possible. If
you have to use one of the special characters in a
substitute command, you can turn off its magic
meaning temporarily by preceding it with the
backslash. Thus

s/\\\.\•/backslash dot star/

will change \.• int.o "backslash dot star".
Here is a hurried synopsis of the other spe

cial characters. First, the circumflex " signifies
the beginning of a line. Thus

/'string/

finds string only if it is at the beginning of a
line: it will find

string

but not

the string ...

The dollar-sign $ is just the opposite of the
circumflex; it means the end of a line:

/string$/

will only find an occurrence of string that is at
the end of some line. This implies, of course,
that

/'string$/

will find only a line that contains just strjng,
and

/".$/

finds a line containing exactly one character.

The character ., as we mentioned above,
matches anything;

/x.y/

matches any of

x+y
x-y
xy
x.y

This is useful in conjunction with *, which is a
repetition character; a* is a shorthand for "any
number of a's," so .* matches any number of
anythings. This is used like this:

s/. */stuff/

which changes an entire line, or

s/. * ,//
which deletes all characters in the line up to and
including the last comma. (Since . * finds the
longest possible match, this goes up to the last
comma.)

[is used with] to form "character classes";
for example,

/[0123456789)/

matches any single digit - any one of the char
acters inside the braces will cause a match. This
can be abbreviated to [0-9].

Finally, the & is another shorthand character
- it is used only on the right-hand part of a
substitute command where it means "whatever
was matched on the left-hand side". It is used
to save typing. Suppose the current line con-

3-34 A Tutorial Introduction to the UNIX Text Editor

tained

Now is the time

and you wanted to put parentheses around it.
You could just retype the line, but this is tedi
ous. Or you could say

s/"/(/
s/$/)/

using your knowledge of " and $. But the easiest
way uses the &:

s/. * /(&)/

This says "match the whole line, and replace it
by itself surrounded by parentheses." The & can
be used several times in a line; consider using

s/.*/&? &!!/

to produce

Now is the time? Now is the time!!

You don't have to match the whole line, of
course: if the buff er contains

the end of the world

you could type

/world/s//& is at hand/

to produce

the end of the world is at hand

Observe this expressit carefully, for it illus
trates how to take adva tage of ed to save typ
ing. The string /worl I found the desired line;
the shorthand // found the same word in the
line; and the & saves you from typing it again.

The & is a special character only within the
replacement text of a substitute command, and
has no special meaning elsewhere. You can turn
off the special meaning of & by preceding it with
a \

s/ampersand/\&/ ..
will convert the word "ampersand" into the
literal symbol & in the current line.

Summary of Commands and Line
Numbers

The general form of ed commands is the
command name, perhaps preceded by one or two
line numbers, and, in the case of e, r, and w,
followed by a file name. Only one command is
allowed per line, but a p command may follow
any other command (except fore, r, wand q).

a: Append, that is, add lines to the buffer (at
line dot, unless a different line is specified).
Appending continues until . is typed on a new
line. Dot is set to the last line appended.

c: Change the specified lines to the new text
which follows. The new lines are terminated by
a ., as with a. If no lines are specified, replace
line dot. Dot is set to last line changed.

d: Delete the lines specified. If none are
specified, delete line dot. Dot is set to the first
undeleted line, unless $ is deleted, in which case
dot is set to $.

e: Edit new file. Any previous contents of the
buff er are thrown away, so issue a w before
hand.

f: Print remembered filename. If a name follows
f the remembered name will be set to it.

g: The command

g/---/commands

will execute the commands on those lines that
contain ---, which can be any context search
expression.

i: Insert lines before specified line (or dot) until
a . is typed on a new line. Dot is set to last line
inserted.

m: Move lines specified to after the line named
after m. Dot is set to the last line moved.

p: Print specified lines. If none specified, print
line dot. A single line number is equivalent to
line-number p. A single return prints .+ 1, the
next line.

q: Quit ed. Wipes out all text in buffer if you
give it twice in a row without first giving a w
command.

r: Read a file into buffer (at end unless specified
elsewhere.) Dot set to last line read.

s: The command

s/stringl/string2/

substitutes the characters stringl into string2
in the specified lines. If no lines are specified,
make the substitution in line dot. Dot is set to
last line in which a substitution took place,
which means that if no substitution took place,
dot is not changed. s changes only the first
occurrence of stringl on a line; to change all of
them, type a g after the final slash.

v: The command

v/---/commands

executes commands on those lines that do not
contain ---.

w: Write out buffer onto a file. Dot is not
changed.

A Tutorial Introduction to the UNIX Text Editor 3-35

.=: Print value of dot. (= by itself prints the
value of$.)

!: The line

!command-line

causes command-line to be executed as a
UNIX command.

/-----/: Context search. Search for next line
which contains this string of characters. Print
it. Dot is set to the line where string was found.
Search starts at .+ 1, wraps around from $ to 1,
and continues to dot, if necessary.

?-----?: Context search in reverse direction.
Start search at .-1, scan to 1, wrap around to $.

Advanced Editing on UNIX 3-37

Advanced Editing on UNIX

Brian W. Kerni~han

Bell Laboratories
Murray Hill, New Jersey 07974

t. INTRODUCTION

Although UNtxt provides remarkably
effective tools for text editing. that by itself is no
guarantee that everyone will automatically make
the most effective use of them. In particular,
people who are not computer specialists - typ
ists. secretaries. casual users - often use the
system less effectively than they might.

This document is intended as a sequel to A
Tutoriai /111roduction to the UN IX Text Editor [l l.
providing explanations and examples of how to
edit with less effort. (You should also be fami
liar ;,.vith the material in UNIX For Beginners [2].)
Further information on all commands discussed
here can be found in The UNIX Programmer's
Manual (3].

Examples are based on observations of
users and the difficulties they encounter. Topics
covered include special characters in searches
and substitute commands. line addressing. the
global commands. and line moving and copying.
There are also brief discussions of effective use
of related tools. like those for file manipulation.
and those based on ed. like grep and sed.

A word of caution. There is only one way
to learn to use something. and that is to use it.
Reading a description is no substitute for trying
something. A paper like this one should give
you ideas about what to try. but until you actu
ally try something. you will not learn it.

2. SPECIAL CHARACTERS

The editor ed is the primary interface to
the system for many people. so it is worthwhile
to know how to get the most out of ed for the
least etf ort.

The next few sections will discuss
shortcuts and labor-saving devices. Not all of
these will be instantly useful to any one person,
of course, but a few will be. and the others
should give you ideas to store away for future
use. And as always, until you try these things.

tUNlX is a Trademark of Bell Laboratories.

they will remain theoretical knowledge, not
something you have confidence in.

The List command •1•

ed provides two commands for printing the
contents of the lines you're editing. Most people
are familiar with p, in combinations like

I.Sp

to print all the lines you're editing. or

s/abc/def/p

to change •abc' to ·def on the current line. Less
familiar is the list command I (the letter ·n.
which gives slightly more information than p. In
particular, I makes visible characters that are
normally invisible. such as tabs and backspaces.
If you list a line that contains some of these. I
will print each tab as ~ and ~ach backspace as
....;: . This makes it much easier to correct the sort
of typing mistake that inserts extra spaces adja
cent to tabs. or inserts a backspace followed by a
space.

The I command also 'folds' long lines for
printing - any fine that exceeds 72 characters is
printed on multiple lines~ each printed line
except the last is terminated by a backslash \. so
you can tell it was folded. This is useful for
printing long lines on short terminals.

Occasionally the I command will print in a
line a string of numbers preceded by a backslash.
such as \07 or\ 16. These combinations are used
to make visible characters that normally don't
print. like form feed or vertical tab or bell. Each
such combination is a single character. When
you see such characters, be wary - they may
have surprising meanings when printed on some
terminals. Often their presence means that your
finger slipped while you were typing~ you almost
never want them.

The Substitute Command 's'

Most of the next few sections will be taken
up with a discussion of the substitute command
s. Since this is the command for changing the

3-38 Advanced Editing on UNIX

contents of individual lines. it probably has the
most complexity of any ed command. and the
most potential for effective use.

As the simplest place to begin. recall the
meaning of a trailing & after a substitute com
mand. With

s/th isl that/

and

s/this/that/g

the first one replaces the first •this' on the line
with 'that•. If there is more than one 'this' on
the line. the second form with the trailing g
changes all of them.

Either form of the s command can be fol
lowed by p or I to 'print' or 'list' (as described in
the previous section) the contents of the line:

s/this/that/p
s/this/that/I
s/this/that/gp
s/this/that/gl

are all legal. and mean slightly different things.
Make sure you know what the differences are.

Of course, any s command can be pre
ceded by one or two 'line numbers' to specify
that the substitution is to take place on a group
of lines. Thus

l ,Ss/mispell/misspell/

changes the first occurrence of 'mispell' to
'misspell' on every line of the file. But

l ,Ss/mispell/misspell/g

changes every occurrence in every line (and this
is more likely to be what you wanted in this par
ticular case).

You should also notice that if you add a p
or l to the end of any of these substitute com
mands, only the last line that got changed will be
printed. not all the lines. We will talk later about
how to print all the lines that were modified.

The Undo Command 'u'

Occasionally you will make a substitution
in a line. only to realize too late that it was a
ghastly mistake. The 'undo' command u lets
y~u •undo' the· last substitution: the last line that
was substituted can be restored to its previous
state by typing the command

u

The Metacharacter •.'

As you have undoubtedly noticed when
you use ed. certain characters have unexpected
meanings when they occur in the left side of a
substitute command. or in a search for a particu
lar line. In the next several sections. we will talk
about these special characters. which are often
called •metacharacters·.

The first one is the period •. •. On the left
side of a substitute command. or in a search with
'/ .. ./'. ': stands for any single character. Thus
the search

/x.y/

finds any line where 'x • and •y• occur separated
by a single character. as in

x+y
x-y
Xoy
x.y

and so on. (We will use o to stand for a space
whenever we need to make it visible.)

Since •: matches a single character. that
gives you a way to deal with funny characters
printed by l Suppose you have a line that. when
printed with the I command. appears as

.... th\07is

and you want to get rid of the \07 (which
represents the bell character, by the way).

The most obvious solution~is to try

sl\0111

but this will fail. (Try it.) The brute force solu
tion. which most people would now take. is to
re-type the entire line. This is guaranteed. and is
actually quite a reasonable tactic if the .line in·
question isn't too big, but for a very long line,
re-typing is a bore. This is where the metachar
acter ': comes in handy. Since '\OT really
represents a single character, if we say

s/th .is/this/

the job is done. The •.' matches the mysterious
character between the 'h' and the 'i', whatever i1

is.

Bear in mind that since '.' matches any
single character. the command

s/ ./,I

converts the first character on a line into a ','.
which very often is not what you intended.

As is true of many characters in ed. the '. ·
has several meanings, depending on its context.
This line shows all three:

.sl ./ ./

The first ': is a line number, the number of the
line we are editing, which is called 'line dot'.
(We will discuss line dot more in Section 3.) The
second '.· is a metacharacter that matches any
single character on that line. The third •.' is the
only one that really is an honest literal period.
On the right side of a substitution, ': is not spe
cial. If you apply this command to the line

Now is the time.

the result will be

.ow is the time.

which is probably not what you intended.

The Backslash •\'

Since a period means 'any character', the
question naturally arises of what to do when you
really want a period. For example, how do you
convert the line

Now is the time.

into

Now is the time?

The backslash '\' does the job. A backslash
turns off any special meaning that the next char
acter might have~ in particular, '\: converts the
• .' from a· 'match anything' into a period, so you
can use it to replace the period in

Now is the time.

like this:

sf\./?/

The pair of characters '\.' is considered by ed to
be a single real period.

The backslash can also be used when
searching for lines that contain a special charac
ter. Suppose you are looking for a line that con
tains

.PP

The search

/.PP/

isn't adequate. for it will find a line like

THE APPLICATION OF ...

because the • .' matches the letter •A'. But if you
say

/\.PP/

you will find only lines that contain '.PP'.

The backslash can also be used to turn off
special meanings for characters other than ·.'.
For example, consider finding a line that con-

Advanced Editing on UNIX 3-39

tains a backslash. The search

!\/

won't work. because the '\' isn't a literal '\ ', but
instead means that the second • /' no longer
delimits the search. But by preceding a backslash
with another one. you can search for a literal
backslash. Th us

1\\1

does work. Similarly, you can search for a for
ward slash '/' with

!\II

The backslash turns off the meaning of the
immediately following '/' so that it doesn't ter
minate the / .. ./ construction prematurely.

As an exercise, before reading further,
find two substitute commands each of which will
convert the line

\x\.\y

into the line

\x\y

Here are several solutions: verify that each
works as advertised.

sl\\\.11
s/x •• /x/
s/ •• y/y/

A couple of miscellaneous notes about
backslashes and special characters. First. you
can use any character to delimit the pieces of an
s command: there is nothing sacred about
slashes. (But you must use slashes for context
searching.) For instance. in a line that contains a
lot Qf slashes already, like

//exec I /sys.fort.go II etc ...

you could use a colon as the delimiter - to
delete all the slashes, type

s:/::g

Second. if # and @ are your character
erase and line kill characters, you have to type
\#and\@~ this is true whether you're talking to
ed or any other program.

~n you arc adding text with a or i or ~
backslash is not special. and you should only put
in one backslash for each one you really want.

The Dollar Sign ·s·
The next metacharacter, the 'S', stands for

'the end of the line'. As its most obvious use.
suppose you have the line

3-40 Advanced Editing on UNIX

Now is the

and you wish to add the word 'time· to the end.
Use the $ like this:

s/$1 ::time/

to get

Now is the time

Notice !hat a space is needed before 'time' in the
substitute command. or you will get

Now is thetime

As another example. replace the second
comma in the following line with a period
withol!t altering the firsl:

Now is the time. for all good men.

The command needed is

sl.$1 ./

The $ sign here provides context to make specific
which comma we mean. Without it. of course.
the s command would operate on the first
comma to produce

in co

Now is the time. for all good men.

As another example, to convert

Now is !he time.

Now is the time?

as we did earlier. we can use

s/ .SI? I

Like ·:. the '$' has multiple meanings
depending on context. ln the line

Ss/$/'51

the first '$' refers to the last line of the file. the
second refers to the end of that line. and the
third is a literal dollar sign, to be added to that
line.

The Circumflex •••

The circumflex (or hat or caret) ••• stands
for the beginning of the line. For example, sup
pose you are looking for a line that begins with
'the·. lf you simply say

/the/

you will in all likelihood find several lines that
contain 'the' in the middle before arriving at the
one you want. But with

I .the/

you narrow the context. and thus Jrrive at the
desired one more easily.

The other use of ••• is of course to enable
you to insert something at the beginning of a
line:

srlol

places a space at the beginning of the current
line.

Metacharacters can be combined. To
search for a line that contains 0111~· the characters

.PP

you can use the command

r\.PPS/

The Star···

Suppose you have a line that looks like
this:

text x y IC'.\"I

where t<.>x1 stands for lots of text. and there are
some indeterminate number of spaces between
the x and the y. Suppose the job is to replace all
the spaces between x and y by a single space.
The line is too long to retype, and there are too
many spaces to count. What now?

This is where the metacharacter ••• comes
in handy. A character followed by a star stands
for as many consecutive occurrences of that
character as possible. To ref er to all the spaces
at once, say

s/xo •y/x oy/

The construction • o • • means 'as many spaces as
possible·. Thus 'x o •y' means 'an x. as many
spaces as possible. then a y'.

The star can be used with any character,
not just space. If the original example was
instead

t<.>xt x - - - - - - - -y text

then all • - • signs can be replaced by a single
space with the command

s/x-•y/xcy/

Finally. suppose that the line was

1exr x •••••••••••••••••• y rex1

Can you see what trap lies in wait for the
unwary'? lf you blindly type

slx.•ylx-:Jyl

what will happen? The answer. naturally. is that
it depends. lf there are no other x's or y's on
the line. then everything works, but it's blind
luck. not good management. Remember that '. ·
matches anr single character? Then ' ... · matches
as many single characters as possible. and unless

you 're careful, it can eat up a lot more of the
line than you expected. If the line was, for
example, like this:

text x t<?xt x •••••••••••••••• y rc>xt y 1ext

then saying

six .•y/xay/

will take everything from the /irsr 'x' to the last
'y', which, in this example. is undoubtedly more
than you wanted.

The solution. of course. is to turn off the
special meaning of•.' with '\.':

s/x\.•y/xay/

Now everything works, for '\.•' means 'as many
p<?riod.'i as possible'.

There are times when the pattern • .•, is
exactly what you want. For example. to change

Now is the time for all good men

into

Now is the time.

use • •• • to eat up everything after the 'for':

sl a for .•I .I

There are a couple of additional pitfalls
associated with • • • that you should be aware of.
Most notable is the fact that 'as many as possi
ble' means :ero or more. The fact that zero is a
legitimate possibility is sometimes rather surpris
ing. For example, if our line contained

tc>x1 xy text x

and we said

s/xa •y/xay/

y text

the first 'xy' matches this pattern, for it consists
of an •x ', zero spaces, and a •y'. The result is
that the substitute acts on the first 'xy'. and does
not touch the later one that actually contains
some intervening spaces.

The way around this. if it matters. is to
specify a pattern like

/xa c •y/

which says ·an x. a space. then as many more
spaces as possible, then a y'. in other words. one
or more spaces.

The other startling behavior of • .. • is again
related to the fact that zero is a legitimate
number of occurrences of something followed by
a star. The command

s/x•/y/g

when applied to the line

Advanced Editing on UNIX 3-41

abcdef

produces

yaybycydyeyf y

which is almost certainly not what was intended.
The reason for this behavior is that zero is a
legal number of matches. and there are no x 's at
the beginning of the line (so that gets converted
into a •y'), nor between the •a' and the 'b' (so
that gets converted into a 'y'), nor ... and so on.
Make sure you really want zero matches~ if not,
in this case write

s/xx•ly/g

·xx•' is one or more x 's.

The Brackets 'I I'
Suppose that you want to delete any

numbers that appear at the beginning of all lines
of a file. You might first think of trying a series
of commands like

l,$srt •II
i.ssr2•1 I
1,Ssr3.f I

and so on, but this is clearly going to take for·
ever if the numbers are at all long. Unless you
want to repeat the commands over and over until
finally all numbers are gone. you must get all the
digits on one pass. This is the purpose of the
brackets [and] .

The construction

(0123456 789]

matches any single digit - the whole thing is
called a 'character class'. With a character class,
the job is easy. The pattern '[01234567891•'
matches zero or more digits (an entire number).
so

1,Ssr ro1234567&9J·11

deletes all digits from the beginning of all lines.

Any characters can appear within a charac
ter class. and just to confuse the issue there are
essentially no special characters inside the brack
etS~ even the backslash doesn't have a special
meaning. To search for special characters. for
exam pie. you can say

Within [. .. !. the · (' is not special. To get a ']'
into a character class. make it the first character.

It's a nuisance co have to spell out the
digits. so you can abbreviate them as [0-9):
similarly. [a - zl stands for the lower case letters.
and [A - Zl for upper case.

As a final frill on character classes. you can

3-42 Advanced Editing on UNIX

specify a class that means ·none of the following
characters'. This is done by beginning the class
with a ···:

ro-9J
stands for ·any character excefJt a digit'. Thus
you might find the first line that doesn't begin
with a tab or space by a search like

IT (space) (tab)]/

Within a character class. the circumflex has
a special meaning only if it occurs at the begin
ning. Just to convince yourself, verify that

rr··]/
finds a line that doesn't begin with a circumflex.

The Ampersand •&'

The ampersand •&' is used primarily to
save typing. Suppose you have the line

Now is the time

and you want to make it

Now is the best time

Of course you can always say

s/the/the best/

but it seems silly to have to repeat the •the'.
The •&' is used to eliminate the repetition. On
the right side of a substitute. the ampersand
means 'whatever was just matched', so you can
say

s/the/ & best/

and the • & ' will stand for 'the'. Of course this
isn't much of a saving if the thing matched is
just •the·. but if it is something truly long or
awful, or if it is something like • .•' which
matches a lot of text, you can save some tedious
typing. There is also much less chance of mak
ing a typing error in the replacement text. For
example, to. parenthesize a line, regardless of its
length,

sf.•/(&)/

The ampersand can occur more than once
on the right side:

s/the/ &. best and & worst/

makes

Now is the best and the worst time

and

sf.•!&'?&!!/

converts the original line into

Now is the time? Now is the time!!

To get a literal ampersand, naturally the
backslash is used to turn off the special meaning:

s/ ampersand/\&/

converts the word into the symbol. Notice that
•&' is not special on the left side of a substitute.
only on the right side.

Substituting Newlines

ed provides a facility for splitting a single
line into two or more shorter lines by 'substitut
ing in a newline'. As the simplest example, sup
pose a line has gotten unmanageably long
because of editing (or merely because it was
unwisely typed). If it looks like

text xy text

you can break it between the 'x' and the 'y' like
this:

s/xy/x\
y/

This is actually a single command. although it is
typed on two lines. Bearing in mind that '\'
turns off special meanings. it seems relatively
intuitive that a •\' at the end of a line would
make the newline there no longer special.

You can in fact make a single line into
several lines with this same mechanism. As a
large example. consider underlining the word
'very' in a long line by splitting 'very' onto a
separate line, and preceding it by the roff or nroff
formatting command • .ul'.

text a very big tex.t

The command

sf overyo/\
.ul\
very\
I

converts the line into four shorter lines, preced
ing the word 'very' by the line •.ul', and elim
inating the spaces around the 'very', all at the
same time.

When a newline is substituted in, dot is
left pointing at the last line created.

Joining Lines

Lines may also be joined together, but this
is done with the j command instead of s. Given
the lines

Now is
::;the time

and supposing that dot is set to the first of them.

then the command

joins them together. No blanks are added, which
is why we carefully showed a blank at the begin
ning of the second line.

All by itself, a j command joins line dot to
line dot+ 1, but any contiguous set of lines can
be joined. Just specify the starting and ending
line numbers. For example,

l,Sjp

joins all the lines into one big one and prints it.
(More on line numbers in Section J.}

Rearranging a Line with\ (•.• \)

(This section should be skipped on first
reading.) Recall that • & • is a shorthand that
stands for whatever was matched by the left side
of an s command. In much the same way you
can capture separate pieces of what was matched~
the only difference is that you have to specify on
the left side just what pieces you're interested in.

Suppose, for instance, that you have a file
of lines that consist of names in the form

Smith, A. B.
Jones. C.

and so on, and you want the initials to precede
the name. as in

A. B. Smith
C. Jones

It is possible to do this with a series of editing
commands. but it is tedious and error-prone. (It
is instructive to figure out how it is done,
though.)

The alternative is to 'tag' the pieces of the
pattern (in this case. the last name, and the ini
tials). and then rearrange the pieces. On the left
side of a substitution. if part of the pattern is
enclosed between \ (and \), whatever matched
that part is remembered, and available for use on
the right side. On the right side, the symbol •\ l'
refers to whatever matched the first \ (. .. \) pair,
'\2' to the second\(...\), and so on.

The command

l.Ssr\ <r ,]•\),a•\ (.•\)/\2a \ l/

although hard to read, does the job. The first
\(...\) matches the last name, which is any string
up to the comma~ this is referred to on the right
side with '\ l '. The second \ (...\) is whatever
follows the comma and any spaces, and is
referred to as '\2'

Of course. with any editing sequence this
complicated, it's foolhardy to simply run it and

Advanced Editing on UNIX 3-43

hope. The gJobal commands g and v discussed
in section 4 provide a way for you to print
exactly those lines which were affected by the
substitute command, and thus verify that it did
what you wanted in all cases.

3. LINE ADDRESSING IN THE EDITOR

The next general area we will discuss is
that of line addressing in ed, that is, how you
specify what lines are to be affected by editing
commands. We have already used constructions
like

l,Ss/x/y/

to specify a change on all lines. And most users
are long since familiar with using a single new
line (or return) to print the next line, and with

/thing/

to find a line that contains 'thing'. Less familiar.
surprisingly enough, is the use of

?thing?

to scan backward.'i for the previous occurrence of
'thing'. This is especially handy when you real
ize that the thing you want to operate on is back
up the page from where you are currently edit
ing.

The slash and question mark are the only
characters you can use to delimit a context
search, though you can use essentially any char
acter in a substitute command.

Address Arithmetic

The next step is to combine the line
numbers like·;, ·s·. '/ .. ./'and'? ... ?' with·+·
and·-·. Thus

S-1

is a command to print the next to last line of the
current file (that is, one line before line '$').
For example, to recall how far you got in a previ
ous editing session,

S-5,Sp

prints the last six lines. <Be sure you understand
why it's six, not five.) If there aren't six. of
course. you '11 get an error message.

As another example,

.-3,.+3p

prints from three lines before where you are now
(at line dot) to three lines after, thus giving you
a bit of context. By the way. the · + · can be
omitted:

.-3,.Jp

is absolutely identical in meaning.

3-44 Advanced Editing on UN~X

Another area in which you can save typing
effort in specifying lines is to use • ~ • and • + · as
line numbers by themselves.

by itself is a comm~pq to move back up one line
in the file. I~ fact, you can string several minus
signs together tQ moye back up that many lines:

, . ,.. . .

moves up three lines. as does '-3'. Thus

-3,+3p

is also id~ntical to the examples above.

Since • - ' is shorter than •• - l ', construc
tions like

- •• s/bad/good/

are useful. This changes 'bad' to 'good' on the
previous line and on the current line.

• +' and • - ' can be used in combination
with searches using •I .. ./' and •? ... ?'. and with
'$'. The search

/thing/- -

finds the line containing 'thing', and positions
you two lines before it.

Repeated Searches

Suppose you ask for the search

/horrible thing/

and when the line is printed you discover that it
isn't the horrible thing that you wanted, so it is
necessary to repeat the search again. You don't
have to re-type the search. for the construction

II

is a shorthand for 'the previous thing that was
searched for', whatever it was. This can be
repeated as many times as necessary. You can
also go backwards:

??

searches for the same thing, but in the reverse
direction.

Not only can you repeat the search. but
you can use ·I/' as the left side of a substitute
commancl, to mean 'the most recent pattern'.

/horriple thing/
: ." .. · ed prims line with 'horrible 1h111g · ...

s//good/p

To go backwards and change a line, say

??s//good/

Of course, you can still use the •&' on the right
hand side of a substitute to stand for whatever

got matched:

//s//&o&/p

finds the next occurrence of whatever you
searched for last, replaces it by two copies of
itself, then prints the line just to verify that it
worked.

Default Line Numbers and the Value of Dot

One of the most effective ways to speed up
your editing is always to know what lines will be
affected by a co!llmand if you don't specify the
lines it is to act on, and on what line you will be
positioned (i.e., the value of dot) when a com
mand finishes. If you can edit without specifying
unnecessary line numbers, you can save a lot of
typing.

As the most obvious example, if you issue
a search command like

/thing/

you are left pointing at the next line that con
tains 'thing'. Then no address is required with
commands like s to make a substituti.on on that
line, or p to print it, or I to lis~ it, or d to delete
it, or a to append t~xt after it, or c to change it,
or i to insert text before it.

What happens if there was no 'thing'?
Then you are left right where you were - dot is
unchanged. This is also true if you were sitting
on the only 'thing' when you issued the com
mand. The same rules hold for ~earches that use
'? ... ?'~ the only difference is the direction in
which you search.

The delete command d leaves dot pointing
at the line that followed the last deleted line.
When line '$' gets deleted, however, dot points
at the new line '$'.

The line-changing commands a, c and i by
default all affect the current line - if you give
no line number with them. a appends text after
the current line, c changes the current line, and i
inserts text before the current line.

a, c, and i behave identically in one
respect - when you stop appending, changing or
inserting, dot points at the last line entered.
This is exactly what you want for typing and edit
ing on the fly. For example, you can say

a
... text ...
... botch ...

s/ botch/ correct/
a
... more text ...

(minor error)

(fix botched line)

without specifying any line number for the sub-

stitute command or for the second append com
mand. Or you can say

a
... text ...
·- horrible botch ... (major error>

c (replace entire line)
... fixed up line ...

You should experiment to determine what
happens if you add 110 lines with a. c or i.

The r command will read a file into the
text being edited. either at the end if you give no
address. or after the specified line if you do. In
either case. dot points at the last line read in.
Remember that you can even say Or to read a
file in at the beginning of the text. (You can
also say Oa or 1 i to start adding text at the begin
ning.)

The w command writes out the entire file.
If you precede the command by one line
number. that line is written. while if you precede
it by two line numbers. that range of lines is
written. The w command does 1101 change dot:
the current line remains the same. regardless of
what lines are written. This is true even if you
say something like

r\.ABI .r\.AE/w abstract

which involves a context search.

Since the w command is so easy to use.
you should save what you are editing regularly as
you go along just in case the system crashes. or
in case you do something foolish, like clobbering
what you're editing.

The least intuitive behavior, in a sense, is
that of the s command. The rule is simple -
you are left sitting on the last line that got
changed. If there were no changes, then dot is
unchanged.

To illustrate. suppose that there are three
lines in the buffer. and you are sitting on the
middle one:

xl
x2
x3

Then the command

-, +s/x/y/p

prints the third line. which is the last one
changed. But if the three lines had been

xl
y2
y3

and the same command had been issued while

Advanced Editing on UNIX 3-45

dot pointed at the second line. then the result
would be to change and print only the.Jim line,
and that is where dot would be set.

Semicolon ';'

Searches with '/ .. ./'and'? ... ?' start at the
current line and move forward or backward
respectively until they either find the pattern or
get back to the current line. Sometimes this is
not what is wanted. Suppose. for example. that
the buffer contains lines like this:

ab

be

Starting at tine l, one would expect that the
command

/a/ ,/b/p

prints all the lines from the 'ab' to the 'be'
inclusive. Actually this is not what happens.
Both searches (for •a' and for 'b') start from the
same point, and thus they both find the line that
contains 'ab'. The result is to print a single line.
Worse. if there had been a line with a 'b' in it
before the 'ab' line. then the print command
would be in error. since the second line number
would be less than the first. and it is illegal to try
to print lines in reverse order.

This is because the comma separator for
line numbers doesn't set dot as each address is
processed~ each search starts from the same
place. In ed, the semicolon ':' can be used just
like comma, with the single difference that use
of a semicolon forces dot to be set at that point
as the line numbers are being evaluated. In
effect, the semicolon 'moves' dot. Thus in our
example above, the command

I al ~I bl p

prints the range of lines from 'ab' to 'be',
because after the 'a· is found. dot is set to that
line, and then 'b' is searched for. starting beyond
that line.

This property is most often useful in a
very simple situation. Suppose you want to find
the second occurrence of •thing'. You could say

/thing/
II

but this prints the first occurrence as well as the

3-46 Advanced Editing on UNIX

second. and is a nuisance when you know very
well that it is only the second one you're
interested in. The solution is to say

/thing/~//

This says to find the first occurrence of •thing'.
set dot to that line. then find the second and
print only that.

Closely related is searching for the second
previous occurrence of something. as in

?something?~??

Printing the third or fourth or ... in either direc
tion is left as an exercise.

Finally~ bear in mind that if you want to
find the first occurrence of something in a file,
starting at an arbitrary place within the file. it is
not sufficient to say

l ~/thing/

because this fails if •thing' occurs on line l. But
it is possible to say

O~/thing/

(one of the few places where 0 is a legal line
number). for this starts the search at line l.

Interrupting the Editor

As a final note on what dot gets set to. you
should be aware that if you hit the interrupt or
delete or rubout or break key while ed is doing a
command. things are put back together again and
your state is restored as much as possible to what
it was before the command began. Naturally,
some changes are irrevocable - if you are read
ing or writing a file or making substitutions or
deleting lines. these will be stopped in some
clean but unpredictable state in the middle
(which is why it is not usually wise to stop
them). Dot may or may not be changed.

Printing is more clear cut. Dot is not
changed until the printing is done. Thus if you
print until you see an interesting line. then hit
delete, you are 1101 sitting on that line or even
near it. Dot is left where it was when the p com
mand was started.

4. GLOBAL COMMANDS

The global commands g and v are used to
perform one or more editing commands on all
lines that either contain (g) or don't contain (v)
a specified pattern.

As the simplest example, the command

g/UNIX/p

prints all lines that contain the word 'CNIX'.
The pactern that goes between the slashes can be

anything that could be used in a line search or in
a substitute command~ exactly the same rules
and limitations apply.

As another example. then.

gr\.tp

prints all the formatting commands in a file
(lines that begin with • .').

The v command is identical to g, except
that it operates on those line that do 1101 contain
an occurrence of the pattern. (Don't look too
hard for mnemonic significance to the letter ·v' .)
So

vr\./p

prints all the lines that don't begin with •.' - the
actual text lines.

The command that follows g or v can be
anything:

gr\.td

deletes all lines that begin with '.', and

gr Sid

deletes all empty lines.

Probably the most useful command that
can follow a global is the substitute command,
for this can be used to make a change and print
each affected line for verification. For example.
we could change the word 'Unix' to 'UNIX'
everywhere. and verify that it really worked. with

g/Unix/s/ /UNIX/gp

Notice that we used '/ /' in the substitute com
mand to mean 'the previous pattern', in this
case. 'Unix'. The p command is done on every
line that matches the pattern, not just those on
which a substitution took place.

The global command operates by making
two passes over the file. On the first pass, all
lines that match the pattern are marked. On the
second pass, each marked line in turn is exam
ined, dot is set to that line, and the command
executed. This means that it is possible for the
command that follows a g or v to use addresses,
set dot, and so on, quite freely.

gr\.PP/ +
prints the line that follows each •.PP' command
(the signal for a new paragraph in some format
ting packages). Remember that '+' means 'one
line past dot'. And

g/ topic/·)'\ .SH? l

searches for each line that contains 'topic·. scans
backwards until it nnds a line that begins ·.SH'
(a section heading) and prints the line that fol
lows that. thus showing the section headings

under which •topic' is mentioned. Finally,

gr\.EQ/ +.r\.EN/-p

prints all the lines that lie between lines begin
ning with ·.EQ' and ·.EN' formatting commands.

The g and v commands can also be pre
ceded by line numbers, in which case the lines
searched are only those in the range specified.

Multi-line Global Commands

It is possible to do more than one com
mand under the control of a global command,
although the syntax for expressing the operation
is not especially natural or pleasant. As an
example. suppose the task is to change ·x' to •y'
and •a• to •b' on all lines that contain •thing'.
Then

g/thing/s/x/y/\
s/a/b/

is sufficient. The •\' signals the g command that
the set of commands continues on the next line~
it terminates on the first tine that does not end
with •\ •. (As a minor blemish, you can't use a
substitute command to insert a newline within a
a command.)

You should watch out for this problem:
the command

g/x/s/ lyl\
s/a/b/

does 1101 work as you expect. The remembered
pattern is the last pattern that was actually exe
cuted, so sometimes it will be ·x' (as expected),
and sometimes it will be •a' (not expected). You
must spell it out, like this:

g/ x/ s/ x/ y I\
s/a/b/

It is also possible to execute a, c and i
commands under a global command~ as with
other multi-line constructions. all that is needed
is to add a •\' at the end of each line except the
last. Thus to add a • .nr and ·.sp' command
before each ·.EQ' line, type

g/A\.EQ/i\
.nt\
.sp

There is no need for a final line containing a •:
to terminate the i command, unless there are
further commands being done under the global.
On the other hand, it docs no harm to puc it in
either.

Advanced Editing on UNIX 3-47

5. CUT AND PASTE WITH UNIX COM
MANDS

One editing area in which non-
programmers seem not very confident is in what
might be called ·cut and paste' operations -
changing the name of a file, making a copy of a
file somewhere else, moving a few lines from
one place to another in a file. inserting one file in
the middle of another, splitting a file into pieces.
and splicing two or more files together.

Yet most of these operations are actually
quite easy, if you keep your wits about you and
go cautiously. The next several sections talk
about cut and paste. We will begin with the UNIX

commands for moving entire files around, then
discuss ed commands for operating on pieces of
files.

Changing the Name of a File

You have a tile named •memo' and you
want it to be called 'paper' instead. How is it
done?

The UNIX program that renames files is
called mv (for ·move')~ it 'moves' the file from
one name to another, like this:

m v memo paper

That's all there is to it: mv from the old name to
the new name.

mv oldname newname

Warning: if there is already a file around with the
new name, its present contents will be silently
clobbered by the information from the other file.
The one exception is that you can't move a file
to itself -

mv x x

is illegal.

Making a Copy of a File

Sometimes what you want is a copy of a
file - an entirely fresh version. This might be
because you want to work on a file, and yet save
a copy in case something gets fouled up, or just
because you're paranoid.

In any case, the way to do it is with the cp
command. (cp stands for •copy'~ the system is
big on short command names, which are appreci
ated by heavy users, but sometimes a strain for
novices.) Suppose you have a file called •good'
and you want to save a copy before you make
some dramatic editing changes. Choose a name

'savegood' might be acceptable - then type

cp good sa vegood

This copies 'good' onto 'savegood'. and you now

3-48 Advanced Editing on UNIX

have two identical copies of the file 'good'. (If
'savegood' previously contained something, it
gets' overwritten.)

Now if you decide at some time that you
want to get back to the original state of 'good'.
you can say

m v sa vegood good

(if you're not interested in 'savegood' any
more), or

cp sa vegood good

if you still want to retain a safe copy.

In summary. mv just renames a file~ cp
makes a duplicate copy. Both of them clobber
the 'target' file if it already exists. so you had
better be sure that's what you want to do he/Ore
you do it.

Removing a File

If you decide you are really done with a
file forever, you can remove it with the rm com
mand:

rm savegood

throws away (irrevocably) the file called
'savegood'.

Putting Two or More Files Together

The next step is the familiar one of collect
ing two or more files into one big one. This will
be needed. for example. when the author of a
paper decides that several sections need to be
combined into one. There are several ways to do
it. of which the cleanest, once you get used to it,
is a program called cat. (Not all programs have
two-letter names.) cat is short for 'concatenate'.
which is exactly what we want to do.

Suppose the job is to combine the files
'file I' and 'file2' into a single file called 'bigfile •.
If you say

cat file

the contents of 'file' will get printed on your ter
minal. If you say

cat file l file2

the contents of 'file l' and then the contents of
'file2' will. both be printed on your terminal, in
that order. So cat combines the files, all right,
but it's not much help to print them on the ter
minal - we want them in 'bigfile'.

Fortunately, there is a way. You can tell
the system that instead of printing on your ter
minal. you want the same information put in a
file. The way to do it is to add to the command
line the character > and the name of the file

where you want the output to go. Then you can
say

cat file l file2 > bigfile

and the job is done. (As with cp and mv. you're
putting something into 'bigfile', and anything
that was already there is destroyed.)

This ability to 'capture' the output of a
program is one of the most useful aspects of the
system. Fortunately it's not limited to the cat
program - you can use it with any program that
prints on your terminal. We'll see some more
uses for it in a moment.

Naturally, you can combine several files,
not just two:

cat file I file2 fileJ ... > bigfile

collects a whole bunch.

Question: is there any difference between

cp good sa vegood

and

cat good >savegood

Answer: for most purposes, no. You might rea
sonably ask why there are two programs in that
case, since cat is obviously all you need. The
answer is that cp will do some other things as
well. which you can investigate for yourself by
reading the manual. For now we'll stick to sim
ple usages.

Adding Something to the End of a File

Sometimes you want to add one file to the
end of another. We have enough building blocks
now that you can do it~ in fact before reading
further it would be valuable if you figured out
how. To be specific, how would you use cp, mv
and/ or cat to add the file 'good I' to the end of
the file 'good'?

You could try

cat good good 1 >tern p
mv temp good

which is probably most direct. You should also
understand why

cat good good I >good

doesn't work. (Don't practice with a good
'good'D

The easy way is to use a variant of >.
called > >. In fact, > > is identical to > except
that instead of clobbering the old file, it simply
tacks stuff on at the end. Thus you could say

cat good 1 >>good

and ·good I' is added to the end of 'good'. (And

if •good· didn•t exist. this makes a copy of
•good r called 'good •. }

6. CUT AND PASTE WITH THE EDITOR

Now we move on to manipulating pieces
of files - individual lines or groups of lines.
This is another area where new users seem
unsure of themselves.

Filenames

The first step is to ensure that you know
the ed commands for reading and writing files.
Of course you can't go very far without knowing
r and w. Equally useful. but less well known. is
the 'edit' command e. Within ed. the command

e newftle

says ·1 want to edit a new file called newfi/e.
without leaving the editor.• The e command dis
cards whatever you·re currently working on and
starts over on new./ile. Ifs exactly the same as if
you had quit with the q command. then re·
entered ed with a new file name. except that if
you have a pattern remembered. then a com
mand like // will still work.

If you enter ed with the command

ed file

ed remembers the name of the file. and any sub
sequent e. r or w commands that don't contain a
filename will refer to this remembered file. Thus

ed filel
... (editing) ...

w (writes back in file 1}
e file2 (edit new file. without leaving editor)
... (editing on file2) ...

w (writes back on file2)

(and so on) does a series of edits on various files
without ever leaving ed and without typing the
name of any file more than once. (As an aside.
if you examine the sequence of commands here.
you can see why many UNIX systems use e as a
synonym for ed.)

You can find out the remembered file
name at .any time with the r command~ just type
r without a file name. You can also ch;rnge the
name of the remembered file name with f; a use·
ful sequence is

ed precious
f junk
... (editing) ...

which gets a copy of a precious file, then uses f
to guarantee that a careless w command won't
clobber the original.

Advanced Editing on UNIX 3-49

Inserting One File into Another

Suppose you have a file called 'memo',
and you want the file called 'table' to be inserted
just after the reference to Table I. That is. in
'memo' somewhere is a line that says

Table I shows that ...

and the data contained in 'table' has to go there.
probably so it will be formatted properly by nroff
or troff. Now what?

This one is easy. Edit ·memo', find •Table
1 •• and add the file 'table· right there:

ed memo
/Table l/
Table I 'ihnws that ... freo;pnme from ed/
.r table

The critical line is the last one. As we said ear
lier. the r command reads a file; here you asked
for it to be read in right after line dot. An r
command without any address adds lines at the
end. so it is the same as Sr.

Writing out Part or a file

The other side of the coin is writing out
part of the document you're editing. For exam
ple. maybe. you want to split out into a separate
file that table from the previous example. so it
c~n be formatted and tested separately. Suppose
that in the file being edited we have

.TS
... [lots of stuff)
.TE

which is the way a table is set up for the tbl pro
gram. To isolate the table in a separate file
called 'table·, first find the start of the table (the
'.TS" line). then write out tre interesting part:

r\.TS/
• TS fed prims rhe line it /01111d/
..r\ .T~/w t~pl~

and the job is done. If you are confident, you
can do it all at once with

I

r\.TS/F\.TE/w table

The point is that t~e w command can write
out a group of lines, instead of the whole file. In
fact. you can write out a single line if you like;
just give pne tin~ number instead of two. For
examl-?le. if you have just typed a horribly com
plicated line ;rnq you know that it (or something
like it) is going to be needed later. then save it
- qon't re-(yp~ it. !n the editor. say

3-50 Advanced Editing on UNIX

a
.. .lots of stuff .. .
... horrible line .. .

.w temp
a
.••• more stuff •••

.r temp
a
••• more stuff •••

This last example is worth studying. to be sure
you appreciate what's going on.

Moving Lines Around

Suppose you want to move a paragraph
from its present position in a paper to the end.
How would you do it? As a concrete example.
suppose each paragraph in the paper begins with
the formatting command •.PP'. Think about it
and write down the details before reading on.

The brute force way (not necessarily bad)
is to write the paragraph onto a temporary file.
delete it from its current position. then read in
the temporary file at the end. Assuming that
you are sitting on the ·.PP' command that begins
the paragraph. this is the sequence of commands:

. .r\ .PP/-w temp

.Jl-d
Sr temp

That is. from where you are now ('. ') until one
line before the next •.PP' (' r\.PP/ - ') write
onto •temp'. Then delete the same lines.
Finally. read •temp' at the end.

As we said, that's the brute force way.
The easier way (often) is to use the move com
mand m that ed provides - it lets you do the
whole set of operations at one crack, without any
temporary file.

The m command is like many other ed
commands in that it takes up to two line
numbers in front that tell what lines are to be
affected. It is also followed by a line number that
tells where the lines are to go. Thus

line 1. line2 m line3

says to move all the lines between 'line l' and
•tine2' after •tine3'. Naturally, any of 'line l'
etc., can be patterns between slashes. $ signs. or
other ways to specify lines.

Suppose again that you 're sitting at the
first line of the paragraph. Then you can say

.f\.PP/-m$

That's all.

As another example of a frequent opera
tion. you can reverse the order of two adjacent
lines by moving the first one to after the second .
Suppose that you are positioned at the first.
Then

m+
does it. It says to move line dot to after one line
after line dot. If you are positioned on the
second line.

m--

does the interchange.

As you can see. the m command is more
succinct and direct than writing, deleting and re
reading. When is brute force better anyway?
This is a matter of personal taste - do what you
have most confidence in. The main difficulty
with the m command is that if you use patterns
to specify both the lines you are moving and the
target, you have to take care that you specify
them properly, or you may well not move the
lines you thought you did. The result of a
botched m command can be a ghastly mess.
Doing the job a step at a time makes it easier for
you to verify at each step that you accomplished
what you wanted to. It's also a good idea to
issue a w command before doing anything com
plicated~ then if you goof, it's easy to back up to
where you were .

Marks

ed provides a facility for marking a line
with a particular name so you can later reference
it by name regardless of its actual line number.
This can be handy for moving lines, and for
keeping track of them as they move. The mark
command is k~ the command

kx

marks the current line with the name 'x'. If a
line number precedes the k. that line is marked.
(The mark name must be a single lower case
letter.) Now you can refer to the marked line
with the address

'x

Marks are most useful for moving things
around. Find the first line of the block to be
moved. and mark it with 'a. Then find the last
line and mark it with 'b. Now position yourself
at the place where the stuff is to go and say

'a,'bm.

Bear in mind that only one line can have a
particular mark name associated with it dt any
given time.

Copying Lines

We mentioned earlier the idea of saving a
line that was hard to type or used often. so as to
cut down on typing time. Of course this could
be more than one line: then the saving is
presumably even greater.

ed provides another command. called t
(for •transfer') for making a copy of a group of
one or more lines at any point. This is often
easier than writing and reading.

The t command is identical to the m com
mand. except that instead of moving lines it sim
ply duplicates them at the place you named.
Thus

l.StS

duplicates the entire contents that you are edit
ing. A more common use for t is for creating a
series of lines that differ only slightly. For
example. you can say

t.
s/x/y/
t.
sly/z/

and so on.

x (long line)

(make a copy)
(change it a bit)
(make third copy)
(change it a bit)

The Temporary Escape'!'

Sometimes it is convenient to be able to
temporarily escape from the editor to do some
other UNIX command. perhaps one of the file
copy or move commands discussed in section 5.
without leaving the editor. The 'escape' com
mand ! provides a way to do this.

If you say

!any UNIX command

your current editing state is suspended. and the
UNIX command you asked for is executed. When
the command finishes. ed will signal you by
printing another !: at that point you can resume
editing.

You can really do any UNIX command.
including another ed. (This is quite common. in
fact.) In this case. you can even do another !.

7. SUPPORTING TOOLS

There are several tools and techniques that
go along with the editor, all of which are rela
tively easy once you know how ed works.
because they are all based on the editor. In this
section we will give some fairly cursory examples
of these tools. more to indic:He their existence
than to provide a complete tutorial. .\fore infor-

Advanced Editing on UNIX 3-51

mation on each can be found in [3 l.

Grep

Sometimes you want to find all
occurrences of some word or pattern in a set of
files. to edit them or perhaps just to verify their
presence or absence. It may be possible to edit
each file separately and look for the pattern of
interest. but if there are many files this can get
very tedious. and if the files are really big. it may
be impossible because of limits in ed.

The program grep was invented to get
around these limitations. The search patterns
that we have described in the paper are often
called 'regular expressions·, and 'grep' stands for

g/re/p

That describes exactly what grep does - it prints
every line in a set of files that contains a particu
lar pattern. Thus

grep 'thing' file I file2 file3 ...

finds 'thing' wherever it occurs in any of the files
'file l ', 'file2'. etc. grep also indicates the file in
which the line was found, so you can later edit it
if you like.

The pattern represented by 'thing' can be
any pattern you can use in the editor. since grep
and ed use exactly the same mechanism for pat
tern searching. It is wisest always to enclose the
pattern in the single quotes · .. : if it contains any
non-alphabetic characters. since many such char
acters also mean something special to the UNIX

command interpreter (the 'shell'). If you don't
quote them. the command interpreter will try to
interpret them before grep gets a chance.

There is also a way to find lines that don '1

contain a pattern:

grep -v 'thing' file l file2

finds all lines that don't contains 'thing'. The
- v must occur in the position shown. Given
grep and grep -v. it is possible to do things like
selecting all lines that contain some combination
of patterns. For example. to get all lines that
contain •x' but not 'y':

grep x file... I grep - v y

(The notation I is a 'pipe', which causes the out
put of the first command to be used as input to
the second command~ see [2] .)

Editing Scripts

If a fairly complicated set of editing opera
tions is to be done on a whole set of files. the
easiest thing to do is to make up a ·script·. i.~ .. J

file that contains the operations vou want to per·
form. then apply this script to each A.ie 1n turn.

3-52 Advanced Editing on UNIX

For example, suppose you want to change
every 'Unix' to 'UNIX' and every 'Gcos' to
'GCOS' in a large number of files. Then put
into the file ·script' the lines

g/Unix/s//UNIX/g
g/Gcos/s//GCOS/g
w

q

Now you can say

ed file I <script
ed file2 <script

This causes ed to take its commands from the
prepared script. Nottce that the whole job has to
be planned in advance.

And of course by using the UNIX command
interpreter. you can cycle through a set of files
automatically, with varying degrees of ease.

Sed

sed ('stream editor') is a version of the
editor with restricted capabilities but which is
capable of processing unlimited amounts of
input. Basically sed copies its input to its output,
applying one or more editing commands to each
line of input.

As an example, suppose that we want to
do the 'Unix' to 'UNIX' part of the example
given above. but without rewriting the files.
Then the command

sect 's/Unix/UNIX/g' file! file2

applies the command 's/Unix/UNIX/g' to all
lines from 'file I'. 'file2'. etc .• and copies all lines
to the output. The advantage of using sed in
such a case is that it can be used with input too
large for ed to handle. All the output can be col
lected in one place. either in a file or perhaps
piped into another program.

If the editing transformation is so compli
cated that more than one editing command is
needed, commands can be supplied from a file.
or on the command line. with a slightly more
complex syntax. To take commands from a file.
for example.

sed -f cmdfile input -files ...

sed has further capabilities. including con
ditional testing and branching, which we cannot
go into here.

Ack nowled~ement

I am grateful to Ted Dolotta for his careful
reading and valuJblc suggestions.

References

[I] Brian W. Kernighan, A Tlll<>rial l111rotlm·1im1
10 1'1<' UNIX Text Editor. Bell Laboratories
internal memorandum.

(2) Brian W. Kernighan, UNIX For Beginners.
Bell Laboratories internal memorandum.

(3) Ken L. Thompson and Dennis M. Ritchie.
Tit<' UNIX Programmer's Ma1111al. Bell
Laboratories.

An Introduction to Display Editing with Vi 3-53

An Introduction to Display Editing with Vi

William Joy

Revised for versions J.512.JJ by

Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca 94 720

1. Getting started
This document provides a quick introduction to vi. (Pronounced vee-eye.) You should be

running vi on a file you are familiar with while you are reading this. The first part of this docu
ment (sections 1 through 5) describes the basics of using vi. Some topics of special interest are
presented in section 6, and some nitty-gritty details of how the editor functions are saved for
section 7 to avoid cluttering the presentation here.

There is also a short appendix here, which gives for each character the special meanings
which this character has in vi. Attached to this document should be a quick reference card.
This card summarizes the commands of vi in a very compact format. You should have the card
handy while you are learning vi.

1.1. Specifying terminal type
Before you can start vi you must tell the system what kind of terminal you are using.

Here is a (necessarily incomplete) list of terminal type codes. If your terminal does not appear
here, you should consult with one of the staff members on your system to find out the code for
your terminal. If your terminal does not have a code, one can be assigned and a description for
the terminal can be created.

Code Full name Type
2621 Hewlett-Packard 2621 A/P Intelligent
2645 Hewlett-Packard 264x Intelligent
act4 Microterm ACT-IV Dumb
acts Micro term ACT-V Dumb
adm3a Lear Siegler ADM-3a Dumb
adm31 Lear Siegler ADM-31 Intelligent
clOO Human Design Concept 100 Intelligent
dml520 Datamedia 1S20 Dumb
dm2500 Datamedia 2500 Intelligent
dm3025 Datamedia 3025 Intelligent
fox Perkin-Elmer Fox Dumb
hlSOO Hazeltine 1500 Intelligent
hl9 Heathkit hl 9 Intelligent
ilOO Infoton 100 Intelligent
mime Imitating a smart act4 Intelligent

The financial support of an IBM Graduate Fellowship and the National Science Foundation under grants
MCS74-07644-A03 and MCS78-07291 is gratefully acknowledged.

3-54 An Introduction to Display Editing with Vi

t1061
vt52

Teleray 1061
Dec VT-52

Intelligent
Dumb

Suppose for example that you have a Hewlett-Packard HP2621A terminal. The code used
by the system for this terminal is '2621 '. In this case you can use one of the following com
mands to tell the system the type of your terminal:

% setenv TERM 2621

This command works with the shell csh on both version 6 and 7 systems. If you are using the
standard version 7 shell then you should give the commands

S TERM=2621
$export TERM

If you want to arrange to have your terminal type set up automatically when you log in.
you can use the tset program. If you dial in on a mime, but often use hardwired ports. a typical
line for your .login file (if you use csh) would be

setenv TERM 'tset - -d mime'

or for your .profile file (if you use sh)

TERM='tset - -d mime·

Tset knows which terminals are hardwired to each port and needs only to be told that when you
dial in you are probably on a mime. Tset is usually used to change the erase and kill characters,
too.

1.2. Editing a file
After telling the system which kind of terminal you have, you should make a copy of a

file you are familiar with, and run vi on this file, giving the command

% vi name

replacing name with the name of the copy file you just created. The screen should clear and the
text of your file should appear on the screen. If something else happens refer to the footnote.;

1.3. The editor's copy: the buffer
The editor does not directly modify the file which you are editing. Rather, the editor

makes a copy of this file, in a place called the buffer, and remembers the file's name. You do
not affect the contents of the file unless and until you write the changes you make back into the
original file.

* If you gave the system an incorrect terminal type code then the editor may have just made a mess out of
your screen. This happens when it sends control codes for one kind of terminal to some other kind of termi
nal. In this case hit the keys :q (colon and the q key) and then hit the RETURN key. This should get you back
to the command level interpreter. Figure out what you did wrong (ask someone else if necessary) and try
again.

Another thing which can go wrong is that you typed the wrong file name and the editor just printed an
error diagnostic. In this case you should follow the above procedure for getting out of the editor. and try
again this time spelling the file name correctly.

If the editor doesn't seem to respond to the commands which you type here. try sending an interrupt to it
by hitting the DEL or RUB key on your terminal. and then hitting the :q command again followed by a carriage
re tum.

An Introduction to Display Editing with Vi 3-55

1.4. Notational conventions
In our examples, input which must be typed as is will be presented in bold face. Text

which should be replaced with appropriate input will be given in italics. We will represent spe
cial characters in SMALL CAPITALS.

1.S. Arrow keys

The editor command set is independent of the terminal you are using. On most terminals
with cursor positioning keys, these keys will also work within the editor. If you don't have cur
sor positioning keys, or even if you do, you can use the h j k and I keys as cursor positioning
keys (these are labelled with arrows on an adm3a). •

(Particular note for the HP2621: on this terminal the function keys must be shifted (ick)
to send to the machine, otherwise they only act locally. Unshifted use will leave the cursor
positioned incorrectly.)

1.6. Special characters: ESC, CR and DEL

Several of these special characters are very important, so be sure to find them right now.
Look on your keyboard for a key labelled ESC or ALT. It should be near the upper left corner of
your terminal. Try hitting this key a few times. The editor will ring the bell to indicate that it
is in a quiescent state.* Partially formed commands are cancelled by ESC, and when you insert
text in the file you end the text insertion with ESC. This key is a fairly harmless one to hit, so
you can just hit it if you don't know what is going on until the editor rings the bell.

The CR or RETURN key is important because it is used to terminate certain commands. It
is usually at the right side of the keyboard, and is the same command used at the end of each
shell command.

Another very useful key is the DEL or RUB key, which generates an interrupt, telling the
editor to stop what it is doing. It is a forceful way of making the editor listen to you, or to
return it to the quiescent state if you don't know or don't like what is going on. Try hitting the
41' key on your terminal. This key is used when you want to specify a string to be searched for.
The cursor should now be positioned at the bottom line of the terminal after a 4 r printed as a
prompt. You can get the cursor back to the current position by hitting the DEL or RUB key~ try
this now.• From now on we will simply refer to hitting the DEL or RUB key as Hsending an
interrupt."••

The editor often echoes your commands on the last line of the terminal. If the cursor is
on the first position of this last line, then the editor is performing a computation, such as com
puting a new position in the file after a search or running a command to reformat part of the
buffer. When this is happening you can stop the editor by sending an interrupt.

1. 7. Getting out of the editor
After you have worked with this introduction for a while, and you wish to do something

else, you can give the command ZZ to the editor. This will write the contents of the editor's
buffer back into the file you are editing, if you made any changes. and then quit from the edi
tor. You can also end an editor session by giving the command :q!CR~t this is a dangerous but
occasionally essential command which ends the editor session and discards all your changes.
You need to know about this command in case you change the editor's copy of a file you wish

• As we will see later. h moves back to the left Oike control-h which is a backspace). J moves down (in the
same column). k moves up (in the same column). and I moves to the right.
* On smart terminals where it is possible. the editor will quietly flash the screen rather than ringing the bell.
• Backspacing over the • /' will also cancel the search.
•• On some systems. this interruptibility comes at a price: you cannot type ahead when the editor is comput
ing with the cursor on the bottom line.
t All commands which read from the last display line can also be terminated with a ESC as well as an CR.

3-56 An Introduction to Display Editing with Vi

only to look at. Be very careful not to give this command when you really want to save the
changes you have made.

2. Moving around in the file

2.1. Scrolling and paging
The editor has a number of commands for moving around in the file. The most useful of

these is generated by hitting the control and D keys at the same time, a control-D or '·o'. We
will use this two character notation for referring to these control keys from now on. You may
have a key labelled , .. , on your terminal. This key will be represented as T in this document~
, .. , is exclusively used as part of the ''"x' notation for control characters.;

As you know now if you tried hitting '"D, this command scrolls down in the file. The D
thus stands for down. Many editor commands are mnemonic and this makes them much easier
to remember. For instance the command to scroll up is ·u. Many dumb terminals can't scroll
up at all .. in which case hitting '"U clears the screen and refreshes it with a line which is farther
back in the file at the top.

If you want to see more of the file below where you are, you can hit '"E to expose one
more line at the bottom of the screen, leaving the cursor where it is. ** The command '"Y
(which is hopelessly non-mnemonic, but next to ·u on the keyboard) exposes one more line at
the top of the screen.

There are other ways to move around in the file~ the keys "F and "B ; move forward and
backward a page, keeping a couple of lines of continuity between screens so that it is possible to
read through a file using these rather than '"D and "U if you wish.

Notice the difference between scrolling and paging. If you are trying to read the text in a
file, hitting "F to move forward a page will leave you only a little context to look back at.
Scrolling on the other hand leaves more context, and happens more smoothly. You can con
tinue to read the text as scrolling is taking place.

2.2. Searching, goto, and previous context

Another way to position yourself in the file is by giving the editor a string to search for.
Type the character I followed by a string of characters terminated by CR. The editor will posi
tion the cursor at the next occurrence of this string. Try hitting n to then go to the next
occurrence of this string. The character ? will search backwards from where you are, and is
otherwise like /. t

If the search string you give the editor is not present in the file the editor will print a diag
nostic on the last line of the screen, and the cursor will be returned to its initial position.

If you wish the search to match only at the beginning of a line, begin the search string
with an T. To match only at the end of a line, end the search string with a S. Thus /f searchCR
will search for the word 'search' at the beginning of a line, and /lastScR searches for the word
'last' at the end of a line.•

* If you don't have a key on your terminal then there is probably a key labelled T: in any case these
characters are one and the same.
** Version 3 only.
; Not available in all v2 editors due to memory constraints.
t These searches will normally wrap around the end of the file. and thus find the string even if it is not on a
line in the dire1:tion you search provided it is anywhere else in the file. You can disable this wraparound in
scans by giving the command :se nowrapsancR. or more briefly :se nowscR.
•Actually. the string you give to search for here can be a regular expression in the sense of the editors ex(i)
and ed<l). If you don't wish to learn about this yet. you can disable this more general facility by doing
:se nomagiccR~ by putting this command in EXINIT in your environment. you can have this always be in
effect tmore about EX/NIT later.)

An Introduction to Display Editing with Vi 3-57

The command G, when preceded by a number will position the cursor at that line in the
file. Thus lG will move the cursor to the first line of the file. If you give G no count. then it
moves to the end of the file.

If you are near the end of the file, and the last line is not at the bottom of the screen. the
editor will place only the character ,_, on each remaining line. This indicates that the last line
in the file is on the screen; that is, the ,_, lines are past the end of the file.

You can find out the state of the file you are editing by typing a "G. The editor will show
you the name of the file you are editing, the number of the current line, the number of lines in
the buffer, and the percentage of the way through the buffer which you are. Try doing this
now, and remember the number of the line you are on. Give a G command to get to the end
and then another G command to get back where you were.

You can also get back to a previous position by using the command .. (two back quotes).
This is often more convenient than G because it requires no advance preparation. Try giving a
G or a search with I or ? and then a •• to get back to where you were. If you accidentally hit n
or any command which moves you far away from a context of interest, you can quickly get
back by hitting ...

2.3. Moving around on the screen

Now try just moving the cursor around on the screen. If your terminal has arrow keys (4
or S keys with arrows going in each direction) try them and convince yourself that they work.
(On certain terminals using v2 editors, they won't.) If you don't have working arrow keys. you
can always use h, j., k., and 1. Experienced users of vi prefer these keys to arrow keys, because
they are usually right underneath their fingers.

Hit the + key. Each time you do, notice that the cursor advances to the next line in the
file, at the first non-white position on the line. The - key is like + but goes the other way.

These are very common keys for moving up and down lines in the file. Notice that if you
go off the bottom or top with these keys then the screen will scroll down (and up if possible) to
bring a line at a time into view. The RETURN key has the same effect .as the + key.

Vi also has commands to take you to the top, middle and bottom of the screen. H will
take you to the top (home) line on the screen. Try preceding it with a number as in 3H. This
will take you to the third line on the screen. Many vi commands take preceding numbers and
do interesting things with them. Try M., which takes you to the middle line on the screen, and
L, which takes you to the last line on the screen. L also takes counts, thus SL will take you to
the fifth line from the bottom.

2.4. Moving within a line

Now try picking a word on some line on the screen, not the first word on the line. move
the cursor using RETURN and - to be on the line where the word is. Try hitting the w key.
This will advance the cursor to the next word on the line. Try hitting the b key to back up
words in the line. Also try the e key which advances you to the end of the current word rather
than to the beginning of the next word. Also try SPACE (the space bar) which moves right one
character and the BS (backspace or "H) key which moves left one character. The key h works
as "H does and is useful if you don't have a BS key. (Also, as noted just above, I will move to
the right.)

If the line had punctuation in it you may have noticed that that the w and b keys stopped
at each group of punctuation. You can also go back and forwards words without stopping at
punctuation by using W and B rather than the lower case equivalents. Think of these as bigger
words. Try these on a few lines with punctuation to see how they di ff er from the lower case w
and b.

The word keys wrap around the end. of line, rather than stopping at the end. Try moving
to a word on a line below where you are by repeatedly hitting w.

3-58 An Introduction to Display Editing with Vi

2.5. Summary

SPACE advance the cursor one position
"B backwards to previous page
"D scrolls down in the file
'"E exposes another line at the bottom (v3)
"F forward to next page
'"G tell what is going on
'"H backspace the cursor
'"N next line, same column
·p previous line, same column
'"U scrolls up in the file
·y exposes another line at the top (v3)
+ next line, at the beginning

previous line, at the beginning
I scan for a following string forwards
? scan backwards
B back a word, ignoring punctuation
G go to specified line, last default
H home screen line
M middle screen line
L last screen line
w forward a word, ignoring punctuation
b back a word
e end of current word
n scan for next instance of I or ? pattern
w word after this word

2.6. View*
If you want to use the editor to look at a file, rather than to make changes, invoke it as

view instead of vi. This will set the readonly option which will prevent you from accidently
overwriting the file.

3. Making simple changes

3.1. Inserting

One of the most useful commands is the i (insert) command. After you type i, every
thing you type until you hit ESC is inserted into the file. Try this now~ position yourself to
some word in the file and try inserting text before this word. If you are on an dumb terminal it
will seem, for a minute, that some of the characters in your line have been overwritten, but
they will reappear when you hit ESC.

Now try finding a word which can, but does not, end in an 's'. Position yourself at this
word and type e (move to end of word), then a for append and then 'sESc' to terminate the
textual insert. This sequence of commands can be used to easily pluralize a word.

Try inserting and appending a few times to make sure you understand how this works~ i
placing text to the left of the cursor, a to the right.

It is often the case that you want to add new lines to the file you are editing, before or
after some specific line in the file. Find a line where this makes sense and then give the com
mand o to create a new line after the line you are on, or the command 0 to create a new line
before the line you are on. After you create a new line in this way, text you type up to an ESC

; Not available in all v2 editors due to memory constraints.

An Introduction to Display Editing with Vi 3-59

is inserted on the new line.

Many related editor commands are invoked by the same letter key and differ only in that
one is given by a lower case key and the other is given by an upper case key. In these cases.
the upper case key often differs from the lower case key in its sense of direction, with the
upper case key working backward and/or up, while the lower case key moves forward and/or
down.

Whenever you are typing in text, you can give many lines of input or just a few charac
ters. To type in more than one line of text, hit a RfTURN at the middle of your input. A new
line will be created for text, and you can continue to type. If you are on a slow and dumb ter
minal the editor may choose to wait to redraw the tail of the screen, and will let you type over
the existing screen lines. This avoids the lengthy delay which would occur if the editor
attempted to keep the tail of the screen always up to date. The tail of the screen will be fixed
up, and the missing lines will reappear, when you hit ESC.

While you are inserting new text, you can use the characters you normally use at the sys
tem command level (usually "'H or #) to backspace over the last character which you typed,
and the character which you use to kill input lines (usually @, "'X, or "U) to erase the input
you have typed on the current line. t The character "W will erase a whole word and leave you
after the space after the previous word~ it is useful for quickly backing up in an insert.

Notice that when you backspace during an insertion the characters you backspace over are
not erased; the cursor moves backwards, and the characters remain on the display. This is
often useful if you are planning to type in something similar. In any case the characters disap
pear when when you hit ESC; if you want to get rid of them immediately, hit an ESC and then a
again.

Notice also that you can't erase characters which you didn't insert, and that you can't
backspace around the end of a line. If you need to back up to the previous line to make a
correction, just hit ESC and move the cursor back to the previous line. After making the
correction you can return to where you were and use the insert or append command again.

3 .2. Making small correcUons

You can make small corrections in existing text quite easily. Find a single character
which is wrong or just pick any character. Use the arrow keys to find the character, or get near
the character with the word motion keys and then either backspace (hit the BS key or "'H or
even just h) or SPACE (using the space bar) until the cursor is on the character which is wrong.
If the character is not needed then hit the x key~ this deletes the character from the file. It is
analogous to the way you x out characters' when you make mistakes on a typewriter (except it's
not as messy) .

If the character is incorrect, you can replace it with the correct character by giving the
command re, where c is replaced by the correct character. Finally if the character which is
incorrect should be replaced by more than one character, give the commands which substitutes
a string of characters, ending with ESC, for it. If there are a small number of characters which
are wrong you can precede s with a count of the number of characters to be replaced. Counts
are also useful with x to specify the number of characters to be deleted.

3.3. More corrections: operators

You already know almost enough to make changes at a higher level. All you need to
know now is that the d key acts as a delete operator. Try the command dw to delete a word~
Try hitting . a few times. Notice that this repeats the effect of the dw. The command . repeats
the last command which made a change. You can remember it by analogy with an ellipsis • .. .'.

t In fact. the character "H (backspace) always works to erase the last input character here. regardless of what
your erase character is.

3-60 An Introduction to Display Editing with Vi

Now try db. This deletes a word backwards, namely the preceding word. Try dSPACE.

This deletes a single character, and is equivalent to the x command.

Another very useful operator is c or change. The command cw thus changes the text of a
single word. You follow it by the replacement text ending with an ESC. Find a word which you
can change to another, and try this now. Notice that the end of the text to be changed was
marked with the character 'S' so that you can see this as you are typing in the new material.

3.4. Operating on lines
It is often the case that you want to operate on lines. Find a line which you want to

delete, and type dd, the d operator twice. This will delete the line. If you are on a dumb ter
minal, the editor may just erase the line on the screen, replacing it with a line with only an @
on it. This line does not correspond to any line in your file, but only acts as a place holder. It
helps to avoid a lengthy redraw of the rest of the screen which would be necessary to close up
the hole created by the deletion on a terminal without a delete line capability.

Try repeating the c operator twice; this will change a whole line, erasing its previous con
tents and replacing them with text you type up to an ESC. t

You can delete or change more than one line by preceding the dd or cc with a count, i.e.
5dd deletes S lines. You can also give a command like dL to delete all the lines up to and
including the last line on the screen, or d3L to delete through the third from the bottom line.
Try some commands like this now.• Notice that the editor lets you know when you change a
large number of lines so that you can see the extent of the change. The editor will also always
tell you when a change you make affects text which you cannot see.

3.S. Undoing

Now suppose that the last change which you made was incorrect; you could use the insert,
delete and append commands to put the correct material back. However, since it is often the
case that we regret a change or make a change incorrectly, the editor provides au (undo) com
mand to reverse the last change which you made. Try this a few times, and give it twice in a
row to notice that an u also undoes au.

The undo command lets you reverse only a single change. After you make a number of
changes to a line, you may decide that you would rather have the original state of the line back.
The U command restores the current line to the state before you started changing it.

You can recover text which you delete, even if undo will not bring it back~ see the section
on recovering lost text below.

3.6. Summary

SPACE
"'H
.. w
erase
kill

0
u
a
c

advance the cursor one position
backspace the cursor
erase a word during an insert
your erase (usually "H or #), erases a character during an insert
your kill (usually @, "'X, or "U), kills the insert on this line
repeats the changing command
opens and inputs new lines, above the current
undoes the changes you made to the current line
appends text after the cursor
changes the object you specify to the following text

t The command S is a convenient synonym for for cc. by analogy with s. Think of S as a substitute on
lines. while s is a substitute on characters.
• One subtle point here involves using the I search after a d. This will normaJly delete characters from the
current position to the point of the match. If what is desired is to delete whole lines including the two points.
give the pattern as /pat/ +o. a line address.

d

0

u

An Introduction to Display Editing with Vi 3-61

deletes the object you specify
inserts text before the cursor
opens and inputs new lines, below the current
undoes the last change

4. Moving about; rearranging and duplicating text

4.1. Low level character motions
Now move the cursor to a line where there is a punctuation or a bracketing character such

as a parenthesis or a comma or period. Try the command fx where xis this character. This
command finds the next x character to the right of the cursor in the current line. Try then hit
ting a ;. which finds the next instance of the same character. By using the f command and then
a sequence of ;'s you can often get to a particular place in a line much faster than with a
sequence of word motions or SPACES. There is also a F command, which is like f. but searches
backward. The ; command repeats F also.

When you are operating on the text in a line it is often desirable to deal with the charac
ters up to. but not including, the first instance of a character. Try dfx for some x now and
notice that the x character is deleted. Undo this with u and then try dt~ the t here stands for
to, i.e. delete up to the next x., but not the x. The command T is the reverse of t.

When working with the text of a single line, an T moves the cursor to the first non-white
position on the line, and a S moves it to the end of the line. Thus Sa will append new text at
the end of the current line.

Your file may have tab ('"I) characters in it. These characters are represented as a number
of spaces expanding to a tab stop, where tab stops are every 8 positions.• When the cursor is at
a tab, it sits on the last of the several spaces which represent that tab. Try moving the cursor
back and forth over tabs so you understand how this works.

On rare occasions, your file may have nonprinting characters in it. These characters are
displayed in the same way they are represented in this document, that is with a two character
code, the first character of which is , .. ., . On the screen non-printing characters resemble a •"'
character adjacent to another, but spacing or backspacing over the character will reveal that the
two characters are, like the spaces representing a tab character, a single character.

The editor sometimes discards control characters, depending on the character and the set
ting of the beautify option, if you attempt to insert them in your file. You can get a control
character in the file by beginning an insert and then typing a "V before the control character.
The "V quotes the following character, causing it to be inserted directly into the file.

4.2. Higher level text objects

In working with a document it is often advantageous to work in terms of sentences, para
graphs~ and sections. The operations (and) move to the beginning of the previous and next
sentences respectively. Thus the command d) will delete the rest of the current sentence~ like
wise d(will delete the previous sentence if you are at the beginning of the current sentence. or
the current sentence up to where you are if you are not at the beginning of the current sen
tence.

A sentence is defined to end at a '.', '!' or '?' which is followed by either the end of a
line, or by two spaces. Any number of closing ') ', '] ', '"' and •'' characters may appear after
the ".'. "!' or •?' before the spaces or end of line.

The operations { and } move over paragraphs and the operations [~ and)J move over sec
tions. t

• This is settable by a command of the form :se ts•xcR. where xis 4 to set tabstops every four columns.
This has effect on the screen representation within the editor.
t The II and II operations require the operation character to be doubled because they can move the cursor far

3-62 An Introduction to Display Editing with Vi

A paragraph begins after each empty line, and also at each of a set of paragraph macros,
specified by the pairs of characters in the definition of the string valued option paragraphs. The
default setting for this option defines the paragraph macros of the - ms and - mm macro pack·
ages, i.e. the •.IP', •.LP', '.PP' and • .QP', '.P' and '.Lr macros.* Each paragraph boundary is
also a sentence boundary. The sentence and paragraph commands can be given counts to
operate over groups of sentences and paragraphs.

Sections in the editor begin after each macro in the sections option, normally '.NH'. '.SH',
• .H' and •.HU', and each line with a f ormfeed .. L in the first column. Section boundaries are
always line and paragraph boundaries also.

Try experimenting with the sentence and paragraph commands until you are sure how
they work. If you have a large document, try looking through it using the section commands.
The section commands interpret a preceding count as a different window size in which to
redraw the screen at the new location, and this window size is the base size for newly drawn
windows until another size is specified. This is very useful if you are on a slow terminal and
are looking for a particular section. You can give the first section command a small count to
then see each successive section heading in a small window.

4.3. Rearranging and duplicating text

The editor has a single unnamed buffer where the last deleted or changed away text is
saved, and a set of named buffers a-z which you can use to save copies of text and to move
text around in your file and between files.

The operator y yanks a copy of the object which follows into the unnamed buffer. If pre
ceded by a buffer name, "xy, where x here is replaced by a letter a-z, it places the text in the
named buffer. The text can then be put back in the file with the commands p and P; p puts
the text after or below the cursor, while P puts the text before or above the cursor.

If the text which you yank forms a part of a line, or is an object such as a sentence which
partially spans more than one line, then when you put the text back, it will be placed after the
cursor (or before if you use P). If the yanked text forms whole lines, they will be put back as
whole lines, without changing the current line. In this case, the put acts much like a o or 0
command.

Try the command YP. This makes a copy of the current line and leaves you on this copy,
which is placed before the current line. The command Y is a convenient abbreviation for yy.
The command Yp will alsQ make a copy of the current line, and place it after the current line.
You can give Y a count of lines to yank, and thus duplicate several lines; try 3YP.

To move text within the buffer, you need to delete it in one place, and put it back in
another. You can precede a delete operation by the name of a buffer in which the text is to be
stored as in "a5dd deleting 5 lines into the named buffer a. You can then move the cursor to
the eventual resting place of the these lines and do a "ap or "aP to put them back. In fact, you
can switch and edit another file before you put the lines back, by giving a command of the form
:e namecR where name is the name of the other file you want to edit. You will have to write
back the contents of the current editor buff er (or discard them) if you have made changes
before the editor will let you switch to the other file. An ordinary delete command saves the
text in the unnamed buffer, so that an ordinary put can move it elsewhere. However, the
unnamed buffer is lost when you change files, so to move text from one file to another you
should use an unnamed buffer.

from where it currently is. While it is easy to get back with the command ••. these commands would still be
frustrating if they were easy to hit accidentally.
* You can easily change or extend this set of macros by assigning a different string to the para~raphs option
in your EXINIT. See section 6.2 for details. The '.bp' directive is also considered to start a paragraph.

An Introduction to Display Editing with Vi 3-63

4.4. Summary.

T first non-white on line
S end of line
) forward sentence
} forward paragraph
11 forward section
(backward sentence
{ backward paragraph
((backward section
fx find x forward in line
p put text back, after cursor or below current line
y yank operator, for copies and moves
tx up to x forward, for operators
F x f backward in line
P put text back, before cursor or above current line
T x t backward in line

S. High level commands

5.1. Writing, quitting, editing new files

So far we have seen how to enter vi and to write out our file using either ZZ or :wcR.
The first exits from the editor, (writing if changes were made). the second writes and stays in
the editor.

If you have changed the editor's copy of the file but do not wish to save your changes,
either because you messed up the file or decided that the changes are not an improvement to
the file, then you can give the command :q!CR to quit from the editor without writing the
changes. You can also reedit the same file (starting over) by giving the command :e!CR. These
commands should be used only rarely, and with caution, as it is not possible to recover the
changes you have made after you discard them in this manner.

You can edit a different file without leaving the editor by giving the command :e namecR.
If you have not written out your file before you try to do this, then the editor will tell you this.
and delay editing the other file. You can then give the command :wCR to save your work and
then the :e namecR command again, or carefully give the command :e! namecR. which edits
the other file discarding the changes you have made to the current file. To have the editor
automatically save changes, include sec autowrite in your EXINIT, and use :n instead of :e.

5.2. Escaping to a shell

You can get to a shell to execute a single command by giving a vi command of the form
:!cmct:R. The system will run the single command cmd and when the command finishes. the
editor will ask you to hit a RETURN to continue. When you have finished looking at the output
on the screen, you should hit RETURN and the editor will clear the screen and redraw it. You
can then continue editing. You can also give another : command when it asks you for a
RETURN~ in this case the screen will not be redrawn.

If you wish to execute more than one command in the shell, then you can give the com
mand :shCR. This will give you a new shell, and when you finish with the shell, ending it by
typing a '"D, the editor will clear the screen and continue.

On systems which support it, "Z will suspend the editor and return to the (top level)
shell. When the editor is resumed, the screen will be redrawn.

3-64 An Introduction to Display Editing with Vi

S.3. Marking and returning

The command " returned to the previous place after a motion of the cursor by a com
mand such as /, ? or G. You can also mark lines in the file with single letter tags and return to
these marks later by naming the tags. Try marking the current line with the command mx,
where you should pick some letter for x., say ~a'. Then move the cursor to a different line (any
way you like) and hit ·a. The cursor will return to the place which you marked. Marks last
only un·til you edit another file.

When using operators such as d and ref erring to marked lines. it is often desirable to
delete whole lines rather than deleting to the exact position in the line marked by m. In this
case you can use the form 'x rather than 'x. Used without an operator, • x will move to the first
non-white character of the marked line~ similarly " moves to the first non-white character of
the line containing the previous context mark ".

S.4. Adjusting the screen

If the screen image is messed up because of a transmission error to your terminal., or
because some program other than the editor wrote output to your terminal., you can hit a "L,
the ASCII form-feed character, to cause the screen to be refreshed.

On a dumb terminal, if there are @ lines in the middle of the screen as a result of line
deletion., you may get rid of these lines by typing '"R to cause the editor to retype the screen,
closing up these holes.

Finally, if you wish to place a certain line on the screen at the top middle or bottom of
the screen., you can position the cursor to that line., and then give a z command. You should
follow the z command with a RETURN if you want the line to appear at the top of the window, a
. if you want it at the center, or a - if you want it at the bottom. (z • ., z .. , and z+ are not avail
able on all v2 editors.)

6. Special topics

6.1. Editing on slow terminals

When you are on a slow terminal, it is important to limit the amount of output which is
generated to your screen so that you will not suffer long delays, waiting for the screen to be
refreshed. We have already pointed out how the editor optimizes the updating of the screen
during insertions on dumb terminals to limit the delays, and how the editor erases lines to @
when they are deleted on dumb terminals.

The use of the slow terminal insertion mode is controlled by the slowopen option. You
can force the editor to use this mode even on faster terminals by giving the command :se
slowCR. If your system is sluggish this helps lessen the amount of output coming to your ter
minal. You can disable this option by :se noslowCR.

The editor can simulate an intelligent terminal on a dumb one. Try giving the command
:se redrawCR. This simulation generates a great deal of output and is generally tolerable only
on lightly loaded systems and fast terminals. You can disable this by giving the command
:se noredrawCR.

The editor also makes editing more pleasant at low speed by starting editing in a small
window, and letting the window expand as you edit. This works particularly well on intelligent
terminals. The editor can expand the window easily when you insert in the middle of the
screen on these terminals. If possible., try the editor on an intelligent terminal to see how this
works.

You can control the size of the window which is redrawn each time the screen is cleared
by giving window sizes as argument to the commands which cause large screen motions:

:/?[())''

Thus if you are searching for a particular instance of a common string in a file you can precede

An Introduction to Display Editing with Vi 3-65

the first search command by a small number. say 3. and the editor will draw three line windows
around each instance of the string which it locates.

You can easily expand or contract the window, placing the current line as you choose. by
giving a number on a z command, after the z and before the following RETURN •. or - . Thus
the command zS. redraws the screen with the current line in the center of a five line window. t

If the editor is redrawing or otherwise updating large portions of the display. you can
interrupt this updating by hitting a DEL or RUB as usual. If you do this you may partially con
fuse the editor about what is displayed on the screen. You can still edit the text on the screen
if you wish; clear up the confusion by hitting a '"L; or move or search again, ignoring the
current state of the display.

See section 7.8 on open mode for another way to use the vi command set on slow termi
nals.

6.2. Options, set, and editor startup files

. The editor has a set of options, some of which have been mentioned above. The most
useful options are given in the following table.

Name Default Description
autoindent ttoai Supply indentation automatically
autowrite noaw Automatic write before :n, :ta ... T, !
ignorecase noic Ignore case in searching
lisp nolisp ({) } commands deal with S-expressions
list nolist Tabs print as "I; end of lines marked with S
magic nomagic The characters . [and • are special in scans
number nonu Lines are displayed prefixed with line numbers
paragraphs para-IPLPPPQPbpP LI Macro names which start paragraphs
redraw nore Simulate a smart terminal on a dumb one
sections sect-NHSHH HU Macro names which start new sections
shiftwidth sw-8 Shift distance for <, > and input "D and .. T
showmatch nosm Show matching (or { as) or } is typed
slowopen slow Postpone display updates during inserts
term dumb The kind of terminal you are using.

The options are of three kinds: numeric options, string options, and toggle options. You
can set numeric and string options by a statement of the form

set opt== val

and toggle options can be set or unset by statements of one of the forms

set opt
set noopt

These statements can be placed in your EXINIT in your environment, or given while you are
running vi by preceding them with a : and following them with a CR.

You can get a list of all options which you have changed by the command :setcR, or the
value of a single option by the command :set opt?CR. A list of all possible options and their
values is generated by :set allCR. Set can be abbreviated se. Multiple options can be placed on
one line, e.g. :se ai aw nuCR.

Options set by the set command only last while you stay in the editor. It is common to
want to have certain options set whenever you use the editor. This can be accomplished by
creating a list of ex commandst which are to be run every time you start up ex, edit, or vi. A

t Note that the command Sz. has an entirety different effect. placing line 5 in the center of a new window.
t All comm;\nds which start with : are ex commands.

3-66 An Introduction to Display Editing with Vi

typical list includes a set command .. and possibly a few map commands (on v3 editors). Since
it is advisable to get these commands on one line, they can be separated with the I character. for
example:

set ai aw terselmap @ dcJlmap # x

which sets the options autoindent, autowrite, terse, (the set command), makes .@ delete a line.
(the first map), and makes # delete a character, (the second map). (See section 6.9 for a
description of the map command, which only works in version 3.) This string should be placed
in the variable EXINIT in your environment. If you use csh, put this line in the file . login in
your home directory:

setenv EXINIT ·set ai aw terselmap @ dcJlmap # x·

If you use the standard v7 shell, put these lines in the file .profile in your home directory:

EXINIT-·set ai aw tersefmap @ ddjmap # x·
export EXINIT

On a version 6 system, the concept of environments is not present. In this case, put. the line in
the file . exrc in your home directory.

set ai aw tersejmap @ dcilmap # x

Of course, the particulars of the line would depend on which options you wanted to set.

6.3. Recovering lost lines

You might have a serious problem if you delete a number of lines and then regret that
they were deleted. Despair not, the editor saves the last 9 deleted blocks of text in a set of
numbered registers 1-9. You can get the n'th previous deleted text back in your file by the
command "np. The " here says that a buffer name is to follow, n is the number of the buffer
you wish to try (use the number 1 for now), and p is the put command. which puts text in the
buff er after the cursor. If this doesn't bring back the text you wanted, hit u to undo this and
then . (period) to repeat the put command. In general the • command will repeat the last
change you made. As a special case, when the last command refers to a numbered text buff er,
the . command increments the number of the buff er before repeating the command. Thus a
sequence of the form

"lpu.u.u.

will, if repeated long enough, show you all the deleted text which has been saved for you. You
can omit the u commands here to gather up all this text in the buffer, or stop after any . com
mand to keep just the then recovered text. The command P can also be used rather than p to
put the recovered text before rather than after the cursor.

6.4. Recovering lost files
If the system crashes, you can recover the work you were doing to within a few changes.

You will normally receive mail when you next login giving you the name of the file which has
been saved for you. You should then change to the directory where you were when the system
crashed and give a command of the form:

% vi -r name

replacing name with the name of the file which you were editing. This will recover your work
to a point near where you left off. t

+ In rare cases. some of the lines of the file may be lost. The editor wiJI give you the numbers of these lines
and the text of the lines will be replaced by the string 'LOST'. These lines will almost always be among the
last few which you changed. You can either choose to discard the changes which you made (if they are usy
to remake) or to replace the f cw lost lines by hand.

An Introduction to Display Editing with Vi 3-67

You can get a listing of the files which are saved for you by giving the command:

O/o vi -r

If there is more than one instance of a particular file saved. the editor gives you the newest
instance each time you recover it. You can thus get an older saved copy back by first recover
ing the newer copies.

For this feature to work, vi must be correctly installed by a super user on your system.
and the mail program must exist to receive mail. The invocation "vi -r" will not always list all
saved files, but they can be recovered even if they are not listed.

6.S. Continuous text input

When you are typing in large amounts of text it is convenient to have lines broken near
the right margin automatically. You can cause this to happen by giving the command :se
wm=lOCR. This causes all lines to be broken at a space at least 10 columns from the right
hand edge of the screen.•

If the editor breaks an input line and you wish to put it back together you can tell it to
join the lines with J. You can give J a count of the number of lines to be joined as in 3J to
join 3 lines. The editor supplies white space, if appropriate, at the juncture of the joined lines.
and leaves the cursor at this white space. You can kill the white space with x if you don't want
it.

6.6. Features for editing programs

The editor has a number of commands for editing programs. The thing that most distin
guishes editing of programs from editing of text is the desirability of maintaining an indented
structure to the body of the program. The editor has a autoindent facility for helping you gen
erate correctly indented programs.

To enable this facility you can give the command :s~ aiCR. Now try opening a new line
with o and type some characters on the line after a few tabs. If you now start another line.
notice that the editor supplies white space at the beginning of the line to line it up with the pre
vious line. You cannot backspace over this indentation, but you can use '"D key to backtab
over the supplied indentation.

Each time you type '"D you back up one position, normally to an 8 column boundary.
This amount is settable; the editor has an option called shijtwidth which you can set to change
this value. Try giving the command :se sw=4CR and then experimenting with autoindent
again.

For shifting lines in the program left and right, there are operators < and >. These shift
the lines you specify right or left by one shiftwidth. Try < < and > > which shift one line left
or right, and < L and > L shifting the rest of the display left and right.

If you have a complicated expression and wish to see how the parentheses match. put the
cursor at a left or right parenthesis and hit %. This will show you the matching parenthesis.
This works also for braces { and } , and brackets [and] .

If you are editing C programs, you can use the ((and 11 keys to advance or retreat to a
line starting with a {. i.e. a function declaration at a time. When JI is used with an operator it
stops after a line which starts with }; this is sometimes useful with y)J.

• This feature is not available on some v2 editors. In v2 editors where it is available. the break can only oc
cur to the right of the specified boundary instead of to the left.

3-68 An Introduction to Display Editing with Vi

6. 7. Filtering portions of the buffer

You can run system commands over portions of the buff er using the operator !. You can
use this to sort lines in the buffer, or to reformat portions of the buffer with a pretty-printer.
Try typing in a list of random words, one per line and ending them with a blank line. Back up
to the beginning of the list., and then give the command !}sortCR. This s~ys to sort the next
paragraph of material, and the blank line ends a paragraph. ·

6.8. Commands for editing LlSPt

If you are editing a LISP program you should set the option lisp by doing :se lispCR. This
changes the (and) commands to move backward and forward over s-expressions. The { and l
commands are like (and) but don't stop at atoms. These can be used to skip to the next list.
or through a comment quickly.

The autoindent option works differently for LISP, supplying indent to align at the first argu
ment to the last open list. If there is no such argument then the indent is two spaces more
than the last level.

There is another option which is useful for typing in LISP, the showmatch option. Try set
ting it with :se smCR and then try typing a • (' some words and then a •) '. Notice that the cur
sor shows the position of the • (' which matches the ')' briefly. This happens only if the match·
ing • (' is on the screen, and the cursor stays there for at most one second.

The editor also has an operator to realign existing lines as though they had been typed in
with lisp and autoindent set. This is the == operator. Try the command ==O/o at the beginning of
a function. This will realign all the lines of the function declaration.

When you are editing LISP,, the II and]] advance and retreat to lines beginning with a (,
and are useful for dealing with entire function definitions.

6.9. Macrosi
Vi has a parameterless macro facility, which lets you set it up ·so that when you hit a single

keystroke., the editor will act as though you had hit some longer sequence of keys. You can set
this up if you find yourself typing the same sequence of commands repeatedly.

Briefly, there are two flavors of macros:

a) Ones where you put the macro body in a buffer register, say x. You can then type @x to
invoke the macro. The @ may be followed by another @ to repeat the last macro.

b) You can use the map command from vi (typically in your EXIN/1) with a command of the
form:

:map lhs rh!CR.

mapping lhs into rhs. There are restrictions: lhs should be one keystroke (either 1 charac
ter or one furiction key) since it must be entered within one second (unless notimeout is
set, in which case you can type it as slowly as you wish, and vi will wait for you to finish it
before it echoes anything). The lhs can be no longer than 10 characters, the rhs no longer
than 100. To get a space, tab or newline into lhs or rhs you should escape them with a ·v.
(It may be necessary to double the "'V if the map command is given inside vi, rather than
in ex.) Spaces and tabs inside the rhs need not be escaped.

Thus to make the q key write and exit the editor, you can give the command

:map q :wq"'V"'V CR CR

which means that whenever you type q, it will be as though you had typed the four characters
:wqCR. A ·v's is needed because without it the CR would end the : command, rather than

t The LISP features are not available on some v2 editors. due lo memory constraints.
* The macro feature is available only in version 3 editors.

An Introduction to Display Editing with Vi 3-69

becoming part of the map definition. There are two ·v's because from within vi, two ·v's must
be typed to get one. The first CR is part of the rhs, the second terminates the : command.

Macros can be deleted with

unmap lhs

If the lhs of a macro is "#0" through .. #9", this maps the particular function key instead
of the 2 character .. #" sequence. So that terminals without function keys can access such
definitions. the form "#x" will mean function key x on all terminals (and need not be typed
within one second.) The character"#" can be changed by using a macro in the usual way:

:map ·y"V'"I #

to use tab, for example. (This won't affect the map command. which still uses #, but just the
invocation from visual mode.

The undo command reverses an entire macro call as a unit, if it made any changes.

Placing a 4 !' after the word map causes the mapping to apply to input mode, rather than
command mode. Thus, to arrange for "'T to be the same as 4 spaces in input mode. you can
type:

:map "'T ·vinnsts
where H is a blank. The "'V is necessary to prevent the blanks from being taken as white space
between the lhs and rhs.

7. Word Abbreviations **
A feature similar to macros in input mode is word abbreviation. This allows you to type a

short word and have it expanded into .a longer word or words. The commands are :abbreviate
and :unabbreviate (:ab and :una) and have the same syntax as :map. For example:

:ab eecs Electrical Engineering and Computer Sciences

causes the word 4eecs' to always be changed into the phrase 4Electrical Engineering and Com
puter Sciences'. Word abbreviation is different from macros in that only whole words are
affected. If 4eecs' were typed as part of a larger word, it would be left alone. Also, the partial
word is echoed as it is typed. There is no need for an abbreviation to be a single keystroke. as
it should be with a macro.

7 .1. Abbreviations

The editor has a number of short commands which abbreviate longer commands which we
have introduced here. Y.ou can find these commands easily on the quick reference card. They
often save a bit of typing and you can learn them as convenient.

8. Nitty-gritty details

8.1. Line representation in the display

The editor folds long logical lines onto many physical lines in the display. Commands
which advance lines advance logical lines and will skip over all the segments of a line in one
motion. The command I moves the cursor to a specific column, and may be useful for getting
near the middle of a long line to split it in half. Try 801 on a line which is more than 80
columns long. t

The editor only puts full lines on the display~ if there is not enough room on the display
to fit a logical line, the editor leaves the physical line empty, placing only an @ on the line as a

u Version 3 only.
t You can make long lines very easily by using J to join together short lines.

3-70 An Introduction to Display Editing with Vi

place holder. When you delete lines on a dumb terminal, the editor will often just clear the
lines to @ to save time (rather than rewriting the rest of the screen.) You can always maximize
the information on the screen by giving the "R command.

If you wish, you can have the editor place line numbers before each line on the display.
Give the command :se nuCR to enable this. and the command :se nonuCR to turn it off. You
can have tabs represented as "I and the ends of lines indicated with ~$' by giving the command
:se llstCR~ :se nolistCR turns this off.

Finally, lines consisting of only the character ·-' are displayed when the last line in the file
is in the middle of the screen. These represent physical lines which are past the logical end of
file.

8.2. Counts

Most vi commands will use a preceding count to affect their behavior in some way. The
following table gives the common ways in which the counts are used:

new window size
scroll amount
line/column number
repeat effect

:/?((JI
'"D '"U
z G I
most of the rest

The editor maintains a notion of the current default window size. On terminals which run
at speeds greater than 1200 baud the editor uses the full terminal screen. On terminals which
are slower than 1200 baud (most dialup lines are in this group) the editor uses 8 lines as the
default window size. At 1200 baud the default is 16 lines.

This size is the size used when the editor clears and refills the screen after a search or
other motion moves far from the edge of the current window. The commands which take a
new window size as count all often cause the screen to be redrawn. If you anticipate this. but
do not need as large a window a5 you are currently using, you may wish to change the screen
size by specifying the new size before these commands. In any case, the number of lines used
on the screen will expand if you move off the top with a - or similar command or off the bot·
tom with a command such as RETURN or '"D. The window will revert to the last specified size
the next time it is cleared and refilled. t

The scroll commands '"D and "U likewise remember the amount of scroll last specified.
using half the basic window size initially. The simple insert commands use a count to specify a
repetition of the inserted text. Thus lOa.+ - - - -ESC will insert a grid-like string of text. A
few commands also use a preceding count as a line or column number.

Except for a few commands which ignore any counts (such as "R). the rest of the editor
commands use a count to indicate a simple repetition of their effect. Thus 5w advances five
words on the current line, while 5RETURN advances five lines. A very useful instance of a
count as a repetition is a count given to the . command, which repeats the last changing com
mand. If you do dw and then 3., you will delete first one and then three words. You can then
delete two more words with 2 •.

8.3. More file manipulation commands
The following table lists the file manipulation commands which you can use when you are

in vi. All of these commands are followed by a CR or ESC. The most basic commands are :w
and :e. A normal editing session on a single file will end with a ZZ command. If you are edit·
ing for a long period of time you can give :w commands occasionally after major amounts of
editing, and then finish with a ZZ. When you edit more than one file, you can finish with one

t But not by a ·L which just redraws the screen as it is.

:w
:wq
:x
:e name
:e!
:e +name
:e +n
:e #
:w name
:w! name
:x,)'W name
:r name
:r !cmd
:n
:n!
:n args
:ta tag

write back changes
write and quit

An Introduction to Display Editing with Vi 3-71

write (if necessary) and quit (same as ZZ).
edit tile name
reedit, discarding changes
edit, starting at end
edit, starting at line n
edit alternate file
write file name
overwrite file name
write lines x through y to name
read file name into buffer
read output of cmd into buff er
edit next file in argument list
edit next file, discarding changes to current
specify new argument list
edit file containing tag tag, at tag

with a :w and start editing a new file by giving a :e command, or set autowrite and use :n
<file>.

If you make changes to the editor's copy of a file, but do not wish to write them back.
then you must give an ! after the command you would otherwise use; this forces the editor to
discard any changes you have made. Use this carefully.

The :e command can be given a + argument to start at the end of the file, or a + n argu
ment to start at line n. In actuality, n may be any editor command not containing a space, use
fully a scan like +I pat or +?pat. In forming new names to the e command, you can use the
character o/o which is replaced by the current file name, or the character # which is replaced by
the alternate file name. The alternate file name is generally the last name you typed other than
the current file. Thus if you try to do a :e and get a diagnostic that you haven't written the file.
you can give a :w command and then a :e #command to redo the previous :e.

You can write part of the buff er to a file by finding out the lines that bound the range to
be written using '"G, and giving these numbers after the : and before the w, separated by ,'s.
You can also mark these lines with m and then use an address of the form 'x,'y on thew com
mand here.

You can read another file into the buff er after the current line by using the :r command.
You can similarly read in the output from a command, just use !cmd instead of a file name.

If you wish to edit a set of files in succession, you can give all the names on the command
line, and then edit each one in tum using the command :n. It is also possible to respecify the
list of files to be edited by giving the :n command a list of file names, or a pattern to be
expanded as you would have given it on the initial vi command.

If you are editing large programs, you will find the :ta command very useful. It utilizes a
data base of function names and their locations, which can be created by programs such as
ctags, to quickly find a function whose name you give. If the :ta command will require the edi
tor to switch files, then you must :w or abandon any changes before switching. You can repeat
the :ta command without any arguments to look for the same tag again. (The tag feature is not
available in some v2 editors.)

8.4. More about searching for strings

When you are searching for strings in the file with I and ? , the editor normally places you
at the next or previous occurrence of the string. If you are using an operator such as d. c or y,
then you may well wish to affect lines up to the line before the line containing the pattern.

3-72 An Introduction to Display Editing with Vi

You can give a search of the form I pat/- n to ref er to the n'th line before the next line con
taining pat. or you can use + instead of - to refer to the lines after the one containing pat. If
you don't give a line offset, then the editor will affect characters up to the match place. rather
than whole lines~ thus use H +O" to affect to the line which matches.

You can have the editor ignore the case of words in the searches it does by giving the
command :se iCCR. The command :se noicCR turns this off.

Strings given to searches may actually be regular expressions. If you do not want or need
this facility, you should

set nomagic

in your EXINlT. In this case, only the characters T and S are special in patterns. The character
\ is also then special (as it is most everywhere in the system), and may be used to get at the an
extended pattern matching facility. It is also necessary to use a \ before a I in a forward scan
or a ? in a backward scan, in any case. The following table gives the extended forms when
magic is set.

T
$

\<
\>
[str]
[T srr]
[x-y]
•

at beginning of pattern, matches beginning of line
at end of pattern, matches end of line
matches any character
matches the beginning of a word
matches the end of a word
matches any single character in str
matches any single character not in str
matches any character between x and y
matches any number of the preceding pattern

If you use nomagic mode. then the • I and •primitives are given with a preceding\.

8.5. More about input mode

There are a number of characters which you can use to make corrections during input
mode. These are summarized in the following table .

.. H deletes the last input character

.. W deletes the last input word, defined as by b
erase your erase character, same as .. H
kill your kill character, deletes the input on this line
\ escapes a following .. H and your ·erase and kill
ESC ends an insertion
DEL interrupts an insertion, terminating it abnormally
CR starts a new line
.. D backtabs over autoindent
O"'D kills all the autoindent
rn same as O"'D, but restores indent next line
.. V quotes the next non-printing character into the file

The most usual way of making corrections to input is by typing "'H to correct a single
character. or by typing one or more .. W's to back over incorrect words. If you use # as your
erase character in the normal system, it will work like ... H.

Your system kill character, normally @, .. X or '"U, will erase all the input you have given
on the current line. In general, you can neither erase input back around a line boundary nor
can you erase characters which you did not insert with this insertion command. To make
corrections on the previous line after a new line has been started you can hit ESC to end the
insertion. move over and make the correction, and then return to where you were to continue.

An Introduction to Display Editing with Vi 3-73

The command A which appends at the end of the current line is often useful for continuing.

If you wish to type in your erase or kill character (say # or @) then you must precede it
with a \, just as you would do at the normal system command level. A more general way of
typing non-printing characters into the file is to precede them with a ·v. The "V echoes as a T

character on which the cursor rests. This indicates that the editor expects you to type a control
character. In fact you may type any character and it will be inserted into the file at that point.•

If you are using autoindent you can backtab over the indent which it supplies by typing a
·n. This backs up to a shiftwidth boundary. This only works immediately after the supplied
autoindent.

When you are using autoindent you may wish to place a label at the left margin of a line.
The way to do this easily is to type T and then ·n. The editor will move the cursor to the left
margin for one line, and restore the previous indent on the next. You can also type a 0 fol·
lowed immediately by a '"D if you wish to kill all the indent and not have it come back on the
next line.

8.6. Upper case only terminals

If your terminal has only upper case, you can still use vi by using the normal system con
vention for typing on such a terminal. Characters which you normally type are converted to
lower case, and you can type upper case letters by preceding them with a \. The characters { - }
I ' are not available on such terminals., but you can escape them as \ (\ T \) \! \'. These charac·
ters are represented on the display in the same way they are typed.* ;

8.7. Vi and ex

Vi is actually one mode of editing within the editor ex. When you are running vi you can
escape to the line oriented editor of ex by giving the command Q. All of the : commands
which were introduced above are available in ex. Likewise, most ex commands can be invoked
from vi using :. Just give them without the : and follow them with a CR.

In rare instances, an internal error may occur in vi. In this case you will get a diagnostic
and be left in the command mode of ex. You can then save your work and quit if you wish by
giving a command x after the : which ex prompts you with, or you can reenter vi by giving ex a
vi command.

There are a number of things which you can do more easily in ex than in vi. Systematic
changes in line oriented material are particularly easy. You can reaq the advanced editing docu
ments for the editor ed to find out a lot more about this style of editing. Experienced users
often mix their use of ex command mode and vi command mode to speed the work they are
doing.

8.8. Open mode: vi on hardcopy terminals and "glass tty's" ;

If you are on a hardcopy terminal or a terminal which does not have a cursor which can
move off the bottom line, you can still use the command set of vi, but in a different mode.
When you give a vi command, the editor will tell you that it is using operl mode. This name
comes from the open command in ex, which is used to get into the same mode.

The only difference between visual mode and open mode is the way in which the text is

•This is not quite true. The implementation of the editor does not allow the NULL r@) character to appear
in files. Also the LF (linefeed or A J) character is used by the editor to separate lines in the file. so it cannot
appear in the middle of a line. You can insert any other character. however. if you wait for the editor to
echo the T before you type the character. In fact. the editor will treat a following letter as a request for the
corresponding control character. This is the only way to type AS or AQ. since the system normally uses them
to suspend and resume output and never gives them to the editor to process.
* The \ character you give will not echo until you type another key.
* Not available in all v2 editors due to memory constraints.

3-74 An Introduction to Display Editing with Vi

displayed.

In open mode the editor uses a single line window into the file. and moving backward and
forward in the file causes new lines to be displayed, always below the current line. Two com
mands of vi work differently in open: z and '"R. The z command does not take parameters. but
rather draws a window of context around the current line and then returns you to the current
line.

If you are on a hardcopy terminal, the "'R command will retype the current line. On such
terminals, the editor normally uses two lines to represent the current line. The first line is a
copy of the line as you started to edit it. and you work on the line below this line. When you
delete characters, the editor types a number of\ 's to show you the characters which are deleted.
The editor also reprints the current line soon after such changes so that you can see what the
line looks like again.

It is sometimes useful to use this mode on very slow terminals which can support vi in the
full screen mode. You can do this by entering ex and using an open command.

Acknowledgements

Bruce Englar encouraged the early development of this display editor. Peter Kessler
helped bring sanity to version 2's command layout. Bill Joy wrote versions 1 and 2.0 through
2. 7, and created the framework that users see in the present editor. Mark Horton added macros
and other features and made the editor work on a large number of terminals and Unix systems.

An Introduction to Display Editing with Vi 3-75

Appendix: character functions

This appendix gives the uses the editor makes of each character. The characters are
presented in their order in the ASCII character set: Control characters come first, then most
special characters, then the digits, upper and then lower case characters.

For each character we tell a meaning it has as a command and any meaning it has during
an insert. If it has only meaning as a command, then only this is discussed. Section numbers
in parentheses indicate where the character is discussed; a ·r after the section number means
that the character is mentioned in a footnote.
'"@ Not a command character. If typed as the first character of an insertion it is

replaced with the last text inserted, and the insert terminates. Only 128 char
acters are saved from the last insert~ if more characters were inserted the
mechanism is not available. A "@ cannot be part of the file due to the editor
implementation (7 .Sf).

"A Unused.
'"B Backward window. A count specifies repetition. Two lines of continuity are

kept if possible (2.1, 6.1, 7.2).

"E

.. ,
"G

"'H (BS)

"l (TAB)

.. J (LF)

'"K
'"L

'"M (CR)

'"N

'"O

Unused.
As a command, scrolls down a half-window of text. A count gives the number
of {logical) lines to scroll, and is remembered for future "'D and ·u commands
(2.1, 7 .2). During an insert, backtabs over autoindent white space at the begin
ning of a line (6.6, 7.5); this white space cannot be backspaced over.
Exposes one more line below the current screen in the file, leaving the cursor
where it is if possible. (Version 3 only.)
Forward window. A count specifies repetition. Two lines of continuity are
kept if possible (2.1, 6.1, 7 .2).

Equivalent to :fCR, printing the current file, whether it has been modified, the
current line number and the number of lines in the file, and the percentage of
the way through the file that you are.
Same as left arrow. (See h). During an insert, eliminates the last input char
acter, backing over it but not erasing it; it remains so you can see what you
typed if you wish to type something only slightly different (3.1, 7.5).

Not a command character. When inserted it prints as some number of spaces.
When the cursor is at a tab character it rests at the last of the spaces which
represent the tab. The spacing of tabstops is controlled by the tabsrop option
(4.1, 6.6) .

Same as down arrow (see j).
Unused.
The ASCII formfeed character, this causes the screen to be cleared and redrawn.
This is useful after a transmission error, if characters typed by a program other
than the editor scramble the screen, or after output is stopped by an interrupt
(5 .4, 7 .2f).

A carriage return advances to the next line, at the first non-white position in
the line. Given a count, it advances that many lines (2.3). During an insert~ a
CR causes the insert to continue onto another line (3.1).

Same as down arrow (see j).

Unused.

3-76 An Introduction to Display Editing with Vi

"R

"S

"T

·u

·w

"'X
·y

"f (ESC)

"\
·1

SPACE

Same as up arrow (see k).

Not a command character. In input mode. "Q quotes the next character. the
same as "V, except that some teletype drivers will eat the "Q so that the editor
never sees it.

Redraws the current screen, eliminating logical lines not corresponding to phy
sical lines Oines with only a single @ character on them). On hardcopy termi
nals in open mode., retypes the current line (5.4, 7.2, 7.8).

Unused. Some teletype drivers use .. S to suspend output until "Qis

Not a command character. During an insert., with autoindent set and at the
beginning of the line, inserts shiftwidth white space.

Scroll$ the screen up, inverting "D which scrolls down. Counts work as they
clo for ·o, and the previous scroll amount is common to both. On a dumb ter
minal, "'U will often necessitate clearing and redrawing the screen further back
ip the file (2.1, 7 .2).

Not a command character. In input mode, quotes the next character so that it
is possible to insert non-printing and special characters into the file (4.2, 7.5).

Not a command character. During an insert, backs up as b would in command
mode; the deleted characters remain on the display (see .. H) (7.5).

(

Unused.

Exposes one more line above the current screen. leaving the cursor where it is
if possible. (No mnemonic value for this key; however, it is next to .. U which
scrolls up a bunch.) (Version 3 only.)

If supported by tpe Unix system, stops the editor, exiting to the top level shell.
Same as :stopCR. Otherwise, unused.

Cancels a partially formed command. such as a z when no fallowing character
has yet been given; terminates inputs on the last line (read by commands such
as : I and ?)~ ends insertions of new text into the buffer. If an ESC is given
when quiescent in command state, the editor rings the bell or flashes the
screen. You can thus hit ESC if you don't know what is happening till the edi
tor rings the bell. If you don't know if you are in insert mode you can type
ESCa, and then material to be input~ the material will be inserted correctly
whether or n()t you were in insert mode when you started (1.5, 3.1, 7.5).

Unused.

Searches for the word which is after the cursor as a tag. Equivalent to typing
:ta, this worq, and then a CR. Mnemonically, this command is ''go right to''
(7.3).

Equivalent to :e #CR1 returning to the previous position in the last edited file.
or editing a file which you specified if you got a 'No write since last change
diagnostic' and do not want to have to type the file name again (7.3). (You
have to do a :w befo~e "'T will work in this case. If you do not wish to write
the file you should do :e! #CR instead.)

Unused. Reserved as the command character for the Tektronix 4025 and 4027
terminal.

Same as right arrow (see I).

An operator, which processes lines from the buffer with reformatting com
mands. Follow ! with the object to be processed, and then the command name
terminated by CR. Doubling ! and preceding it by a count causes count lines to
be filtered~ otherwise the count is passed on to the object after the !. Thus
2! }/mlCR reformats the next two paragraphs by running them through the pro
gram /mt. If you are working on LISP, the command !%grinatR: given at the

"

$

(

)

•
+

An Introduction to Display Editing with Vi 3-77

beginning of a function, will run the text of the function through the LISP
grinder (6.7, 7.3). To read a file or the output of a command into the buffer
use :r (7.3). To simply execute a command use :! (7.3).

Precedes a named buffer specification. There are named buffers 1-9 used for
saving deleted text and named buffers a-z into which you can place text (4.3.
6.3)

The macro character which, when followed by a number, will substitute for a
function key on terminals without function keys (6.9). In input mode, if this
is your erase character, it will delete the last character you typed in input
mode, and must be preceded with a\ to insert it, since it normally backs over
the last input character you gave.

Moves to the end of the current line. If you :se listCR. then the end of each
line will be shown by printing a S after the end of the displayed text in the
line. Given a count, advances to the count'th following end of line~ thus 2S
advances to the end of the following line.

Moves to the parenthesis or brace { } which balances the parenthesis or brace
at the current cursor position.

A synonym for :&CR, by analogy with the ex & command.

When followed by a ' returns to the previous context at the beginning of a
line. Tlie previous context is set whenever the current line is moved in a
non-relative way. When followed by a letter a - z, returns to the line which
was marked with this letter with a m command, at the first non-white character
in the line. (2.2, 5.3). When used with an operator such as d, the operation
takes place over complete lines; if you use ·, the operation takes place from the
exact marked place to the current cursor position within the line.

Retreats to the beginning of a sentence, or to the beginning of a LISP s
expression if the lisp option is set. A sentence ends at a • ! or ? which is fol
lowed by either the end of a line or by two spaces. Any number of closing) I
" and ' characters may appear after the . ! or ? , and before the spaces or end of
line. Sentences also begin at paragraph and section boundaries (see { and II
below). A count advances that many sentences (4.2, 6.8).

Advances to the beginning of a sentence. A count repeats the effect. See (
above for the definition of a sentence (4.2, 6.8).

Unused .

Same as CR when used as a command.

Reverse of the last f F t or T command, looking the other way in the current
line. Especially useful after hitting too many ; characters. A count repeats the
search.

Retreats to the previous line at the first non-white character. This is the
inverse of + and RETURN. If the line moved to is not on the screen, the
screen is scrolled, or cleared and redrawn if this is not possible. If a large
amount of scrolling would be required the screen is also cleared and redrawn,
with the current line at the center (2.3).

Repeats the last command which changed the buffer. Especially useful when
deleting words or lines; you can delete some words/lines and then hit . tb
delete more and more words/lines. Given a count, it passes it on to the com
mand being repeated. Thus after a 2dw, 3. deletes three words (3.3, 6.3, 7.2.
7.4).

3-78 An Introduction to Display Editing with Vi

I

0

1-9

<

=

>

.,

@

A

B

c
D

Reads a string from the last line on the screen, and scans forward for the next
occurrence of this string. The normal input editing sequences may be used
during the input on the bottom line~ an returns to command state without ever
searching. The search begins when you hit CR to terminate the pattern~ the
cursor moves to the beginning of the last line to indicate that the search is in
progress; the search may then be terminated with a DEL or RUB, or by back
spacing when at the beginning of the bottom line, returning the cursor to its
initial position. Searches normally wrap end-around to find a string anywhere
in the buffer.

When used with an operator the enclosed region is normally affected. By men
tioning an offset from the line matched by the pattern you can force whole
lines to be affected. To do this give a pattern with a closing a closing I and
then an offset + n or - n.
To include the character I in the search string, you must escape it with a
preceding \. A T at the beginning of the pattern forces the match to occur at
the beginning of a line only~ this speeds the search. A $ at the end of the pat
tern forces the match to occur at the end of a line only. More extended pat
tern matching is available, see section 7.4~ unless you set nomagic in your
.exrc file you will have to preceed the characters . (* and - in the search pat
tern with a\ to get them to work as you would naively expect (1.5, 2,2 .. 6.L
7.2., 7.4).

Moves to the first character on the current line. Also used, in forming
numbers, after an initial 1-9.

Used to form numeric arguments to commands (2.3, 7.2).

A prefix to a set of commands for file and option manipulation and escapes to
the system. Input is given on the bottom line and terminated with an CR, and
the command then executed. You can return to where you were by hitting
DEL or RUB if you hit : accidentally (see primarily 6.2 and 7 .3).
Repeats the last single character find which used f F t or T. A count iterates
the basic scan (4.1).

An operator which shifts lines left one shiftwidth, normally 8 spaces. Like all
operators, affects lines when repeated, as in < <. Counts are passed through
to the basic object., thus 3<< shifts three lines (6.6, 7.2).

Reindents line for LISP, as though they were typed in with lisp and autoindent
set (6.8).

An operator which shifts lines right one shiftwidth, normally 8 spaces. Affects
lines when repeated as in > >. Counts repeat the basic object (6.6. 7.2).

Scans backwards, the opposite of I. See the I description above for details on
scanning (2.2, 6.1, 7.4) .

A macro character (6.9). If this is your kill character, you must escape it with
a \ to type it in during input mode, as it normally backs over the input you
have given on the current line (3.1, 3.4, 7.5).

Appends at the end of line., a synonym for Sa (7.2).

Backs up a word~ where words are composed of non-blank sequences, placing
the cursor at the beginning of the word. A count repeats the effect (2.4).

Changes the rest of the text on the current line; a synonym for cS.

Deletes the rest of the text on the current line; a synonym for dS.

E

F

G

H

I

J

K
L

M

N

0

p

Q

R

s

T

u
v

An Introduction to Display Editing with Vi 3-79

Moves forward to the end of a word, defined as blanks and non-blanks. like B
and W. A count repeats the effect.
Finds a single following character. backwards in the current line. A count
repeats this search that many times (4.1).
Goes to the line number given as preceding argument, or the end of the file if
no preceding count is given. The screen is redrawn with the new current line
in the center if necessary (7 .2).
Home arrow. Homes the cursor to the top line on the screen. If a count is
given, then the cursor is moved to the count'th line on the screen. In any case
the cursor is moved to the first non-white character on the line. If used as the
target of an operator, full lines are affected (2.3. 3.2).
Inserts at the beginning of a line; a synonym for Ti.
Joins together lines, supplying appropriate white space: one space between
words, two spaces after a ., and no spaces at all if the first character of the
joined on line is) . A count causes that many lines to be joined rather than the
default two (6.5, 7.lf).

Unused.
Moves the cursor to the first non-white character of the last line on the screen.
With a count, to the first non-white of the count'th line from the bottom.
Operators affect whole lines when used with L (2.3).
Moves the cursor to the middle line on the screen, at the first non-white posi
tion on the line (2.3).
Scans for the next match of the last pattern given to I or ? , but in the reverse
direction; this is the reverse of n.
Opens a new line above the current line and inputs text there up to an ESC. A
count can be used on dumb terminals to specify a number of lines to be
opened; this is generally obsolete, as the slowopen option works better (3 .1).
Puts the last deleted text back before/above the cursor. The text goes back as
whole lines above the cursor if it was deleted as whole lines. Otherwise the
text is inserted between the characters before and at the cursor. May be pree
ceded by a named buffer specification "x to retrieve the contents of the buffer:
buffers 1-9 contain deleted material. buffers a-z are available for general use
(6.3).

Quits from vi to ex command mode. In this mode. whole lines form com
mands, ending with a RETURN. You can give all the : commands~ the editor
supplies the : as a prompt (7.7).
Replaces characters on the screen with characters you type (overlay fashion).
Terminates with an ESC.

Changes whole lines, a synonym for cs:. A count substitutes for that many
lines. The lines are saved in the numeric buffers, and erased on the screen
before the substitution begins.
Takes a single following character, locates the character before the cursor in
the current line, and places the cursor just after that character. A count
repeats the effect. Most useful with operators such as d (4.1).
Restores the current line to its state before you started changing it (3.5).
Unused.

3-80 An Introduction to Display Editing with Vi

w

x

y

zz

((

\
11
T

a

b

c

d

e

f

g

Moves forward to the beginning of a word in the current Jine, where words are
defined as sequences of blank/non-blank characters. A count repeats the effect
(2.4).

Deletes the character before the cursor. A count repeats the effect, but only
characters on the current line are deleted.

Yanks a copy of the current line into the unnamed buffer, to be put back by a
later p or P; a very useful synonym for yy. A count yanks that many lines.
May be preceded by a buffer name to put lines in that buffer (7.4).

Exits the editor. (Same as :xcR.) If any changes have been made, the buff er is
written out to the current file. Then the editor quits.

Backs up to the previous section boundary. A section begins at each macro in
the sections option, normally a •.NH' or •.SH' and also at lines which which
start with a formf eed "'L. Lines beginning with { also stop II~ this makes it
useful for looking backwards, a function at · a time, · in C programs. If the
option lisp is set, stops at each (at the beginning of a line, and is thus useful
for moving backwards at the top level LISP objects. (4.2,. 6.1, 6.6, 7 .2).

Unused.

Forward to a section boundary, see ((for a definition (4.2, 6.1, 6.6, 7.2).

Moves to the first non-white position on the current line (4.4).

Unused.

When fallowed by a • returns to the previous context. The previous context is
set whenever the current line is moved in a non-relative way. When followed
by a letter a-z, returns to the position which was marked with this letter with
a m command. When used with an operator such as d, the operation takes
place from the exact marked place to the current position within the line~ if
you use·, the operation takes place over complete lines (2.2, 5.3).

Appends arbitrary text after the current cursor position; the insert can continue
onto multiple lines by using RETURN within the insert. A count causes the
inserted text to be replicated, but only if the inserted text is all on one line.
The insertion terminates with an ESC (3.1, 7 .2).

Backs up to the beginning of a word in the current line. A ·Word is a sequence
of alphanumerics, or a sequence of special characters. A count repeats the
effect (2.4).

An operator which changes the following object, replacing it with the following
input text up to an ESC. If more than part of a single line is affected, the text
which is changed away is saved in the numeric named buffers~ If only part of
the current line is affected, then the last character to be changed away is·
marked with a $. A count causes that many objects to be affected, thus both
Jc) and c3) change the following three sentences (7.4). ·

An operator which deletes the following object. If more than part of a line is
atf ected, the text is saved in the numeric buffers. A count causes that many
objects to be affected; thus 3dw is the same as d3w (3.3, 3.4, 4.1, 7.4).

Advances to the end of the next word., defined as for b and w. A count
repeats the effect (2.4, 3.1).

Finds the first instance of the next character following the cursor on the
current line. A count repeats the find (4.1).

Unused.

Arrow keys h, j, k, 1, and H.

h

i

j

k

m

n

0

p

q

r

s

u

v

. w

x

y

z

An Introduction to Display Editing with Vi 3-81

Left arrow. Moves the cursor one character to the left. Like the other arrow
keys, either h, the left arrow key, or one of the synonyms ('"H) has the same
effect. On v2 editors, arrow keys on certain kinds of terminals (those which
send escape sequences, such as vt52, clOO, or hp) cannot be used. A count
repeats the effect (3.1, 7.S).

Inserts text before the cursor, otherwise like a (7 .2).

Down arrow. Moves the cursor one line down in the same column. If the
position does not exist, vi comes as close as possible to ~he same column.
Synonyms include .. J Oinef eed) and '"N.
Up arrow. Moves the cursor one line up. ·pis a synonym.

Right arrow. ·Moves the cursor one character to the right. SPACE is a
·synonym.

Marks t~e curre~ t position of the cursor in the mark register which is specified
by the next character a-z. Return to this position or use with an operator
using • or' (5.3).

Repeats the last I or ? scanning commands (2.2).

Opens new lines below the current line~ otherwise like 0 (3.1).

Puts text after/below the cursor; otherwise like P (6.3).

Unused.

Replaces the single character at the cursor with a single character you type.
• The new character ·may be a RETURN; this is the easiest way to split lines. A

count replaces each of the following count characters with the single character
. given; see R above which is the more usually useful iteration of r (3.2).

Changes the single character under the cursor to the text which follows up to
an ESC; given a count, that many characters from the current line are changed.
The last character to be changed is marked with Sas inc (3.2).

Advances the cursor upto the character before the next character typed. Most
useful with operators such as d and c to delete the characters up to a following
character. You can use . to delete more if this doesn't delete enough the first

· time (4.1).

Undoes the last change made to the current buffer. If repeated., will alternate
between these two states, thus is its own inverse. When used after an insert
which inserted text on more than one line, the lines are saved in the numeric
named buffers (3.5).

Unus~d.

.·Advances to the beginning of the next word., as defined by b (2.4) .

Delet~s the single character under the cursor. With a count deletes deletes
that many characters forward from the cursor position., b4t pnly on the current
line:; (6.5).

An operator, yanks the following object into the upnamed temporary buffer. If
preceded by a named buffer specification, "x, the texi is pla~ed in that buff er
also. Text can be recovered by a later p or P (7 .4).

Redraws the screen with the current line placed as specified by the following
eharacter: RETURN specifies the top of the screen., . the center of the screen.
and - at the bottom of the screen. A count may pe given after the z and
before the following character to specify the new screen size for the redraw. A
count before the z gives the number of the line to place in the center of the
screen instead of the default current line. {5.4)

3-82 An Introduction to Display Editing with Vi

'"? (DEL)

Retreats to the beginning of the beginning of the preceding paragraph. A para·
graph begins at each macro in the paragraphs option. normally •.IP'. ~.LP'.
'.PP', ·.QP' and '.bp'. A paragraph also begins after a completely empty line.
and at each section boundary (see [(above) (4.2, 6.8, 7.6).

Places the cursor on the character in the column specified by the count (7.1.
7.2).

Advances to the beginning of the next paragraph. See { for the definition of
paragraph (4.2, 6.8, 7.6).

Unused.

Interrupts the editor, returning it to command accepting state (1.5. 7.5)

Ex Reference Manual 3-83

Ex Reference Manual

Version 3.5/2.13 - September, 1980

1. Starting ex

William Joy

Revised for versions 3.5/2.13 by
Mark Horton

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94720

Each instance of the editor has a set of options, which can be set to tailor it to your lik
ing. The command edit invokes a version of ex designed for more casual or beginning users
by changing the default settings of some of these options. To simplify the description which
follows we assume the default settings of the options.

When invoked, ex determines the terminal type from the TERM variable in the environ
ment. It there is a TERMCAP variable in the environment, and the type of the terminal
described there matches the TERM variable, then that description is used. Also if the
TERMCAP variable contains a pathname (beginning with a /) then the editor will seek the
description of the terminal in that file (ratlier than the default /etc/termcap.) If there is a
variable EXINIT in the environment, then the editor will execute the commands in that vari
able, otherwise if there is a file .exrc in your HOME directory ex reads commands from that
file, simulating a source command. Option setting commands placed in EXINIT or .exrc will
be executed before each editor session.

A command to enter ex has the following prototype:t

ex [-] [-v] [-t tag] [-r] [- I] [-wn] [-x] [- R] [+command] name ...

The most common case edits a single file with no options, i.e.:

ex name

The - command line option option suppresses all interactive-user feedback and is useful in
processing editor scripts in command files. The -v option is equivalent to using vi rather
than ex. The -t option is equivalent to an initial tag command, editing the file containing the
tag and positioning the editor at its definition. The -r option is used in recovering after an
editor or system crash, retrieving the last saved version of the named file or, if no file is
specified, typing a list of saved files. The -I option sets up for editing LISP, setting the
showmatch and lisp options. The -w option sets the default window size ton, and is useful
on dialups to start in small windows. The -x option causes ex to prompt for a key, which is
used to encrypt and decrypt the contents of the file, which should already be encrypted using

The financial support of an IHM Graduate Fellowship and the National Science Foundation under grants
MCS74-07644-A03 and MCS78-07291 is gratefully acknowledged.
t Brackets '[' ']' surround optional parameters here.

3-84 Ex Reference Manual

the same key, see crypt (1). The - R option sets the readonly option at the start. :I: Name
arguments indicate files to pe edited. An argument of the form +command indicates that the
editor should begin by executing the specified command. If command is omitted, then it
defaults to "$", positioning the editor at the last line of the first file initially. Other useful
commands here are scanning patterns of the fo:rm "/pat" or line numbers, e.g. "+ 100" starting
at line 100.

2. File manipulation

2.1. Current file

Ex is normally editing the contents of a single file, whose name is recorded in the
current file name. Ex performs all editing actions in a buffer (actually a temporary file) into
which the text of the file is initially read. Changes made to the buffer have no effect on the
file being edited unless and until the buffer contents are written out to the file with a write
command. After the btdfer contents are written, the previous contents of the written file are
no longer accessible. When a file is edited, ifa' name becomes the current file name, and its
contents are read into the buffer.

The current file is almost always considered to be edited. This means that the contents
of the buffer are logically connected with the current file name, so that writing the current
buffer contents onto that file, even if it exists, is a reasonable action. If the current file is not
edited then ex will not normally write on it if it already exists.*

2.2. Alternate file

Each time a new value is given to the current file name, the previous current file name is
saved as the alternate file name. Similarly if a file is mentioned but does not become the
current file, it is saved as the alternate file name.

2.3. Filename expansion

Filenames within the editor may be specified using the normal shell expansion conven
tions. In addition, the character '3' in filenames is replaced by the current file name and the
character '#' by the alternate file name. t

2.4. Multiple files an4 named buffers

If more than one file is given on the command line, then the first file is edited as
described above. The remaining arguments are placed with the first file in the argument list.
The current argument list may be displayed with the args command. The next file in the
argument list may be edited with the next command. The argument list may also be
respecified by specifying a list of names to the next command. These names are expanded,
the resulting list of names becomes the new argument list, and ex edits the first file on the
list.

For saving blocks of text while editing, and especially when editing more than one file,
ex has a group of named buffers. These are similar to the normal buffer, except that only a
limited number of operations are available on them. The buffers have names a through z. :t

+ Not available in all v2 editors due to memory constraints.
* The file command will say "[Not edited]" if the current file is not considered edited.
t This makes it easy to deal alternately with two files and eliminates the need for retyping the name sup
plied on an edit command after a No write since last change diagnostic is received.
+ It is also possible to refer to A through Z; the upper case buffers are the same as the lower but commands
append to named buffers rather than replacing if upper case names are used.

Ex Reference Manual 3-85

2.5. Read only

It is possible to use ex in read only mode to look at files that you have no intention of
modifying. This mode protects you from accidently overwriting the file. Read only mode is
on when the readonly option is set. It can be turned on with the - R command line option,
by the view command line invocation, or by setting the readonly option. It can be cleared by
setting noreadonly. It is possible to write, even while in read only mode, by indicating that
you really know what you are doing. You can write to a different file, or can use the ! form of
write, even while in read only mode.

3. Exceptional Conditions

3.1. Errors and interrupts

When errors occur ex (optionally) rings the terminal bell and, in any case, prints an
error diagnostic. If the primary input is from a file, editor processing will terminate. If an
interrupt signal is received, ex prints "Interrupt" and returns to its command level. If the
primary input is a file, then ex will exit when this occurs.

3.2. Recovering from hangups and crashes

If a hangup signal is received and the buffer has been modified since it was last written
out, or if the system crashes, either the editor (in the first case) or the system (after it reboots
in the second) will attempt to preserve the buffer. The next time you log in you should be
able to recover the work you were doing, losing at most a few lines of changes from the last
point before the hangup or editor crash. To recover a file you can use the -r option. If you
were editing the file resume, then you should change to the directory where you were when
the crash occurred, giving the command

ex -r resume

After checking that the retrieved file is indeed ok, you can write it over the previous contents
of that file.

You will normally get mail from the system telling you when a file has been saved after a
crash. The command

ex -r

will print a list of the files which have been saved for you. (In the case of a hangup, the file
will not appear in the list, although it can be recovered.)

4. Editing modes

Ex has five distinct modes. The primary mode is command mode. Commands are
entered in command mode when a':' prompt is present, and are executed each time a com
plete line is sent. In text input mode ex gathers input lines and places them in the file. The
append, insert, and change commands use text input mode. No prompt is printed when you
are in text input mode. This mode is left by typing a'.' alone at the beginning of a line, and
command mode resumes.

The last three modes are open and visual modes, entered by the commands of the same
name, and, within open and visual modes text insertion mode. Open and visual modes allow
local editing operations to be performed on the text in the file. The open command displays
one line at a time on any terminal while visual works on CRT terminals with random position
ing cursors, using the screen as a (single) window for file editing changes. These modes are
described (only) in An Introduction to Display Editing with Vi.

3-86 Ex Reference Manual

5. Command structure

Most command names are English words, and initial prefixes of the words are acceptable
abbreviations. The ambiguity of abbreviations is resolved in favor of the more commonly used
commands.*

5.1. Command parameters

Most commands accept prefix addresses specifying the lines in the file upon which they
are to have effect. The forms of these addresses will be discussed below. A number of com
mands also may take a trailing count specifying the number of lines to be involved in the
command. t Thus the command "lOp" will print the tenth line in the buffer while "delete 5"
will delete five lines from the buffer, starting with the current line.

Some commands take other information or parameters, this information always being
given after the command name.+

5.2. Command variants

A number of commands have two distinct variants. The variant form of the command is
invoked by placing an'!' immediately after the command name. Some of the default variants
may be controlled by options; in this case, the'!' serves to toggle the default.

5.3. Flags after commands

The characters '#', 'p' and 'l' may be placed after many commands.** In this case, the
command abbreviated by these characters is executed after the command completes. Since ex
normally prints the new current line after each change, 'p' is rarely necessary. Any number of
'+' or '-' characters may also be given with these flags. If they appear, the specified offset is
applied to the current line value before the printing command is executed.

5.4. Comments

It is possible to give editor commands which are ignored. This is useful when making
complex editor scripts for which comments are desired. The comment character is the double
quote: ". Any command line beginning with " is ignored. Comments beginning with " may
also be placed at the ends of commands, except in cases where they could be confused as part
of text (shell escapes and the substitute and map commands).

5.5. Multiple commands per line

More than one command may be placed on a line by separating each pair of commands
by a 'I' character. However the global commands, comments, and the shell escape'!' must be
the last command on a line, as they are not terminated by a 'I'.

5.6. Reporting large changes

Most commands which change the contents of the editor buffer give feedback if the
scope of the change exceeds a threshold given by the report option. This feedback helps to
detect undesirably large changes so that they may be quickly and easily reversed with an
undo. After commands with more global effect such as global or visual, you will be informed
if the net change in the. number of lines in the bµffer during this command exceeds this thres
hold.

* As an example, the command substitute can be abbreviated 's' while the shortest available abbreviation
for the set command is 'se'.
t Counts are rounded down if necessary.
:j: Examples would be option names in a set command i.e. "set number", a file name in an edit command, a
regular expression in a substitute command, or a target address for a copy command, i.e. "1,5 copy 25".
** A 'p' or 'l' must be preceded by a blank or tab except in the single special case 'dp'.

Ex Reference Manual 3-87

6. Command addressing

6.1. Addressing primitives

n

$
%

The current line. Most commands leave the current line as the last line
which they affect. The default address for most commands is the
current line, thus '.' is rarely used alone as an address.

The nth line in the editor's buffer, lines being numbered sequentially
from 1.

The last line in the buff er.

+n -n

/pat/ ?pat?

An abbreviation for "1,$", the entire buffer.

An offset relative to the current buff er line. t
Scan forward and backward respectively for a line containing pat, a reg
ular expression (as defined below). The scans normally wrap around the
end of the buffer. If all that is desired is to print the next line contain
ing pat, then the trailing I or ? may be omitted. If pat is omitted or
explicitly empty, then the last regular expression specified is located.:j:

,, , x Before each non-relative motion of the current line '.', the previous
current line is marked with a tag, subsequently referred to as "''. This
makes it easy to refer or return to this previous context. Marks may
also be established by the mark command, using single lower case
letters x and the marked lines referred to as '' x '.

6.2. Combining addressing primitives

Addresses to commands consist of a series of addressing primitives, separated by',' or';'.
Such address lists are evaluated left-to-right. When addresses are separated by ';' the current
line '.' is set to the value of the previous addressing expression before the next address is
interpreted. If more addresses are given than the command requires, then all but the last one
or two are ignored. If the command takes two addresses, the first addressed line must precede
the second in the buff er. t

7. Command descriptions

The following form is a prototype for all ex commands:

address command ! parameters count /fogs

All parts are optional; the degenerate case is the empty command which prints the next line in
the file. For sanity with use from within visual mode, ex ignores a ":" preceding any com
mand.

In the following command descriptions, the default addresses are shown in parentheses,
which are not, however, part of the command.

abbreviate word rhs abbr: ab

Add the named abbreviation to the current list. When in input mode in visual, if word
is typed as a complete word, it will be changed to rhs.

t The forms '.+3' '+3' and'+++' are all equivalent; if the current line is line 100 they all address line 103.
:j: The forms\/ and\? scan using the last regular expression used in a scan; after a substitute II and?? would
scan using the substitute's regular expression.
t Null address specifications are permitted in a list of addresses, the default in this case is the current line
'.'; thus ',100' is equivalent to '.,100'. It is an error to give a prefix address to a command which expects
none.

3-88 Ex Reference Manual

(.)append
text

abbr: a

a!
text

args

Reads the input text and places it after the specified line. After the command, '.'
addresses the last line input or the specified line if no lines were input. If address 'O' is
given, text is placed at the beginning of the buffer.

The variant flag to append toggles the setting for the autoindent option during the
input of text.

The members of the argument list are printed, with the current argument delimited by
'[' and ']'.

(. , .) change count
text

abbr: c

c!
text

Replaces the specified lines with the input text. The current line becomes the last line
input; if no lines were input it is left as for a delete.

The variant toggles autoindent during the change.

(. , •) copy addr {fogs abbr: co

A copy of the specified lines is placed after addr, which may be '0'. The current line '.'
addresses the last line of the copy. The command t is a synonym for copy.

(. , .) delete buff er count {fogs abbr: d

Removes the specified lines from the buff er. The line after the last line deleted becomes
the current line; if the lines deleted were originally at the end, the new last line becomes
the current line. If a named buffer is specified by giving a letter, then the specified lines
are saved in that buffer, or appended to it if an upper case letter is used.

edit file
ex file

abbr: e

Used to begin an editing session on a new file. The editor first checks to see if the buffer
has been modified since the last write command was issued. If it has been, a warning is
issued and the command is aborted. The command otherwise deletes the entire contents
of the editor buffer, makes the named file the current file and prints the new filename.
After insuring that this file is sensiblet the editor reads the file into its buffer.

If the read of the file completes without error, the number of lines and characters read is
typed. If there were any non-ASCII characters in the file they are stripped of their non
ASCII high bits, and any null characters in the file are discarded. If none of these errors
occurred, the file is considered edited. If the last line of the input file is missing the

t I.e., that it is not a binary file such as a directory, a block or character special file other than /dev/tty, a
terminal, or a binary or executable file (as indicated by the first word).

Ex Reference Manual 3-89

trailing newline character, it will be supplied and a complaint will be issued. This com
mand leaves the current line'.' at the last line read.:j:

e! file

The variant form suppresses the complaint about modifications having been made and
not written from the editor buffer, thus discarding all changes which have been made
before editing the new file.

e +n file

file

Causes the editor to begin at line n rather than at the last line; n may 1 also be an editor
command containing no spaces, e.g.: "+/pat". '

abbr: f

Prints the current file name, whether it has been '[Modified]' since the last write com
mand, whether it is read only, the current line, the number of lines in the buffer, and
the percentage of the way through the buffer of the current line.*

file file

The current file name is changed to file which is considered '[Not edited]'.

(1 , $) global /pat/ cmds abbr: g

First marks each line among those specified which matches the given regular expression.
Then the given command list is executed with'.' initially set to each marked line.

The command list consists of the remaining commands on the current input line and
may continue to multiple lines by ending all but the last such line with a '\. If cmds
(and possibly the trailing I delimiter) is omitted, each line matching pat is printed.
Append, insert, and change commands and associated input are permitted; the '.' ter
minating input may be omitted if it would be on the last line of the command list.
Open and visual commands are permitted in the command list and take input from the
terminal.

The global command itself may not appear in cmds. The undo command is also not per
mitted there, as undo instead can be used to reverse the entire global command. The
options autoprint and autoindent are inhibited during a global, (and possibly the trail
ing I delimiter) and the value of the report option is temporarily infinite, in deference to
a report for the entire global. Finally, the context mark "'' is set to the value of '.'
before the global command begins and is not changed during a global command, except
perhaps by an open or visual within the global.

g! /pat/ cmds abbr: v

The variant form of global runs cmds at each line not matching pat.

(.)insert
text

abbr: i

Places the given text before the specified line. The current line is left at the last line
input; if there were none input it is left at the line before the addressed line. This com
mand differs from append only in the placement of text.

t If executed from within open or visual, the current line is initially the first line of the file.
* In the rare case that the current file is '[Not edited]' this is noted also; in this case you have to use the
form w! to write to the file, since the editor is not sure that a write will not destroy a file unrelated to the
current contents of the buffer.

3-90 Ex Reference Manual

.,
I.

text

The variant toggles autoindent during the insert.

(. , . + 1) join count {fogs abbr: j

. ,
J·

Places the text from a specified range of lines together on one line. White space is
adjusted at each junction to provide at least one blank character, two if there was a'.' at
the end of the line, or none if the first following character is a ')'. If there is already
white space at the end of the line, then the white space at the start of the next line will
be discarded .

The variant causes a simpler join with no white space processing; the characters in the
lines are simply concatenated.

(.) k x

The k command is a synonym for mark. It does not require a blank or tab before the
following letter.

(. , .) list count fiags

Prints the specified lines in a more unambiguous way: tabs are printed as '"I' and the
end of each line is marked with a trailing '$'. The current line is left at the last line
printed.

map lhs rhs

The map command is used to define macros for use in visual mode. Lhs should be a
single character, or the sequence "#n", for n a digit, referring to function key n. When
this character or function. key is typed in visual mode, it will be as though the
corresponding rhs had been typed. On terminals without function keys, you can type
"#n". See section 6.9 of the "Introduction to Display Editing with Vi" for more details.

(.)mark x

Gives the specified line mark x, a single lower case letter. The x must be preceded by a
blank or a tab. The addressing form ''x' then addresses this line. The current line is not
affected by this command.

(. , .) move addr abbr: m

The move command repositions the specified lines to be after addr. The first of the
moved lines becomes the current line.

next abbr: n

n!

The next file from the command line argument list is edited.

The variant suppresses warnings about the modifications to the buff er not having been
written out, discarding (irretrievably) any changes which may have been made.

Ex Reference Manual 3-91

n filelist
n +command filelist

The specified filelist is expanded and the resulting list replaces the current argument
list; the first file in the new list is then edited. If command is given (it must contain no
spaces), then it is executed after editing the first such file.

(.,.) number count fiags abbr:# or nu

Prints each specified line preceded by its buffer line number. The current line is left at
the last line printed.

(.) open fiags abbr: o
(.) open /pat I fiags

Enters intraline editing open mode at each addressed line. If pat is given, then the cur
sor will be placed initially at the beginning of the string matched by the pattern. To exit
this mode use Q. See An Introduction to Display Editing with Vi for more details.

+
preserve

The current editor buffer is saved as though the system had just crashed. This com
mand is for use only in emergencies when a write command has resulted in an error and
you don't know how to save your work. After a preserve you should seek help.

(. , .) print count abbr: p or P

Prints the specified lines with non-printing characters printed as control characters '"x ';
delete (octal 177) is represented as'"'?'. The current line is left at the last line printed.

(.) put buffer abbr: pu

quit

q!

Puts back previously deleted or yanked lines. Normally used with delete to effect
movement of lines, or with yank to effect duplication of lines. If no buff er is specified,
then the last deleted or yanked text is restored.* By using a named buffer, text may be
restored that was saved there at any previous time.

abbr: q

Causes ex to terminate. No automatic write of the editor buffer to a file is performed.
However, ex issues a warning message if the file has changed since the last write com
mand was issued, and does not quit. t Normally, you will wish to save your changes, and
you should give a write command; if you wish to discard them, use the q! command vari
ant.

Quits from the editor, discarding changes to the buffer without complaint.

(.) read file abbr: r

Places a copy of the text of the given file in the editing buffer after the specified line. If
no file is given the current file name is used. The current file name is not changed
unless there is none in which case file becomes the current name. The sensibility res
trictions for the edit command apply here also. If the file buff er is empty and there is
no current name then ex treats this as an edit command.

t Not available in all v2 editors due to memory constraints.
* But no modifying commands may intervene between the delete or yank and the put, nor may lines be
moved between files without using a named buffer.
t Ex will also issue a diagnostic if there are more files in the argument list.

3-92 Ex Reference Manual

Address 'O' is legal for this command and causes the file to be read at the beginning of
the buffer. Statistics are given as for the edit command when the read successfully ter
minates. After a read the current line is the last line read.:j:

(.) read !command

Reads the output of the command command into the buffer after the specified line.
This is not a variant form of the command, rather a read specifying a command rather
than a filename; a blank or tab before the! is mandatory.

recover file

Recovers file from the system save area. Used after a accidental hangup of the phone**
or a system crash** or preserve command. Except when you use preserve you will be
notified by mail when a file is saved.

rewind abbr: rew

The argument list is rewound, and the first file in the list is edited.

rew!

Rewinds the argument list discarding any changes made to the current buffer.

set parameter

With no arguments, prints those options whose values have been changed from theii
defaults; with parameter all it prints all of the option values.

Giving an option name followed by a '?' causes the current value of that option to be
printed. The'?' is unnecessary unless the option is Boolean valued. Boolean options are
given values either by the form 'set option' to turn them on or 'set nooption' to turn
them off; string and numeric options are assigned via the form 'set option=value'.

More than one parameter may be given to set; they are interpreted left-to-right.

shell abbr: sh

A new shell is created. When it terminates, editing resumes.

source file abbr: so

Reads and executes commands from the specified file. Source commands may be nested.

(• , .) substitute /pat /re pl I options count flags abbr: s

On each specified line, the first instance of pattern pat is replaced by replacement pat
tern repl. If the global indicator option character 'g' appears, then all instances are sub
stituted; if the confirm indication character 'c' appears, then before each substitution the
line to be substituted is typed with the string to be substituted marked with 'ft' charac
ters. By typing an 'y' one can cause the substitution to be performed, any other input
causes no change to take place. After a substitute the current line is the last line substi
tuted.

Lines may be split by substituting new-line characters into them. The newline in repl
must be escaped by preceding it with a ''\. Other metacharacters available in pat and
repl are described below.

* Within open and visual the current line is set to the first line read rather than the last.
** The system saves a copy of the file you were editing only if you have made changes to the file.

stop

Ex Reference Manual 3-93

Suspends the editor, returning control to the top level shell. If autowrite is set and
there are unsaved changes, a write is done first unless the form stop! is used. This
commands is only available where supported by the teletype driver and operating sys
tem.

(. , .) substitute options count fiags abbr: s

If pat and repl are omitted, then the last substitution is repeated. This is a synonym
for the & command.

(. , .) t addr fiags

The t command is a synonym for copy.

ta tag

The focus of editing switches to the location of tag, switching to a different line in the
current file where it is defined, or if necessary to another file.:j:

The tags file is normally created by a program such as ctags, and consists of a number of
lines with three fields separated by blanks or tabs. The first field gives the name of the
tag, the second the name of the file where the tag resides, and the third gives an address
ing form which can be used by the editor to find the tag; this field is usually a contextual
scan using '/pat/' to be immune to minor changes in the file. Such scans are always per
formed as if nomagic was set.

The tag names in the tags file must be sorted alphabetically. :j:

unabbreviate word abbr: una

Delete word from the list of abbreviations.

undo abbr: u

Reverses the changes made in the buff er by the last buff er editing command. Note that
global commands are considered a single command for the purpose of undo (as are open
and visual.) Also, the commands write and edit which interact with the file system can
not be undone. Undo is its own inverse.

Undo always marks the previous value of the current line '.' as "''. After an undo the
current line is the first line restored or the line before the first line deleted if no lines
were restored. For commands with more global effect such as global and visual the
current line regains it's pre-command value after an undo.

unmap lhs

The macro expansion associated by map for lhs is removed.

(1,$)v/pat/cmds

A synonym for the global command variant g!, running the specified cmds on each line
which does not match pat.

t If you have modified the current file before giving a tag command, you must write it out; giving another
tag command, specifying no tag will reuse the previous tag.
t Not available in all v2 editors due to memory constraints.

3-94 Ex Reference Manual

version abbr: ve

Prints the current version number of the editor as well as the date the editor was last
changed.

(.) visual type count {fogs abbr: vi

Enters visual mode at the specified line. Type is optional and may be'-', 'fi' or'.' as in
the z command to specify the placement of the specified line on the screen. By default,
if type is omitted, the specified line is placed as the first on the screen. A count
specifies an initial window size; the default is the value of the option window. See the
document An Introduction to Display Editing with Vi for more details. To exit this
mode, type Q.

visual file
visual +n file

From visual mode, this command is the same as edit.

(1 , $) write file abbr: w

Writes changes made back to file, printing the number of lines and characters written.
Normally file is omitted and the text goes back where it came from. If a file is specified,
then text will be written to that file.* If the file does not exist it is created. The current
file name is changed only if there is no current file name; the current line is never
changed.

If an error occurs while writing the current and edited file, the editor considers that
there has been "No write since last change" even if the buffer had not previously been
modified.

(1 , $) write>> file abbr: w>>

Writes the buffer contents at the end of an existing file.

w! name

Overrides the checking of the normal write command, and will write to any file which
the system permits.

(1 , $) w !command

Writes the specified lines into command. Note the difference between w! which over
rides checks and w ! which writes to a command.

wq name

Like a write and then a quit command.

wq! name

The variant overrides checking on the sensibility of the write command, as w! does.

xit name

If any changes have been made and not written, writes the buffer out. Then, in any
case, quits.

* The editor writes to a file only if it is the current file and is edited, if the file does not exist, or if the file
is actually a teletype, /dev/tty, /dev/null. Otherwise, you must give the variant form w! to force the write.

Ex Reference Manual 3-95

(. , .) yank buffer count abbr: ya

Places the specified lines in the named buff er, for later retrieval via put. If no buffer
name is specified, the lines go to a more volatile place; see the put command description.

(.+1) z count

Print the next count lines, default window.

(.) z type count

Prints a window of text with the specified line at the top. If type is '-'the line is placed
at the bottom; a'.' causes the line to be placed in the center.* A count gives the number
of lines to be displayed rather than double the number specified by the scroll option.
On a CRT the screen is cleared before display begins unless a count which is less than the
screen size is given. The current line is left at the last line printed.

! command

The remainder of the line after the'!' character is sent to a shell to be executed. Within
the text of command the characters '%' and '#' are expanded as in filenames and the
character '!' is replaced with the text of the previous command. Thus, in particular, '!!'
repeats the last such shell escape. If any such expansion is performed, the expanded line
will be echoed. The current line is unchanged by this command.

If there has been "[No write]" of the buffer contents since the last change to the editing
buffer, then a diagnostic will be printed before the command is executed as a warning.
A single '!' is printed when the command completes.

(addr , addr) ! command

Takes the specified address range and supplies it as standard input to command; the
resulting output then replaces the input lines.

($) =

Prints the line number of the addressed line. The current line is unchanged.

(. , .) > count fiags
(. , .) < count fiags

"D

Perform intelligent shifting on the specified lines; < shifts left and > shift right. The
quantity of shift is determined by the shiftwidth option and the repetition of the
specification character. Only white space (blanks and tabs) is shifted; no non-white
characters are discarded in a left-shift. The current line becomes the last line which
changed due to the shifting.

An end-of-file from a terminal input scrolls through the file. The scroll option specifies
the size of the scroll, normally a half screen of text.

(.+1,.+1)
< .+1, .+1 >I

An address alone causes the addressed lines to be printed. A blank line prints the next
line in the file.

* Forms 'z=' and 'zf also exist; 'z=' places the current line in the center, surrounds it with lines of'-' char
acters and leaves the current line at this line. The form 'zft' prints the window before 'z-' would. The char
acters '+', 'ft' and '-' may be repeated for cumulative effect. On some v2 editors, no type may be given.

3-96 Ex Reference Manual

(. , .) & options count fiags

Repeats the previous substitute command.

(• , .) - options count fiags

Replaces the previous regular expression with the previous replacement pattern from a
substitution.

8. Regular expressions and substitute replacement patterns

8.1. Regular expressions

A regular expression specifies a set of strings of characters. A member of this set of
strings is said to be matched by the regular expression. Ex remembers two previous regular
expressions: the previous regular expression used in a substitute command and the previous
regular expression used elsewhere (referred to as the previous scanning regular expression.)
The previous regular expression can always be referred to by a null re, e.g. '//' or'??'.

8.2. Magic and nomagic

The regular expressions allowed by ex are constructed in one of two ways depending on
the setting of the magic option. The ex and vi default setting of magic gives quick access to
a powerful set of regular expression metacharacters. The disadvantage of magic is that the
user must remember that these metacharacters are magic and precede them with the charac
ter ''! to use them as "ordinary" characters. With nomagic, the default for edit, regular
expressions are much simpler, there being only two metacharacters. The power of the other
metacharacters is still available by preceding the (now) ordinary character with a '"\. Note
that''\ is thus always a metacharacter.

The remainder of the discussion of regular expressions assumes that that the setting of
this option is magic. f

8.3. Basic regular expression summary

The following basic constructs are used to construct magic mode regular expressions.

char An ordinary character matches itself. The characters 'fi' at the beginning of a
line, '$' at the end of line, '*' as any character other than the first, '.', '~, '[',
and ,-, are not ordinary characters and must be escaped (preceded) by '~to
be treated as such.

fi At the beginning of a pattern forces the match to succeed only at the begin
ning of a line.

$ At the end of a regular expression forces the match to succeed only at the end
of the line.

\<
Matches any single character except the new-line character.

Forces the match to occur only at the beginning of a "variable" or "word";
that is, either at the beginning of a line, or just before a letter, digit, or under
line and after a character not one of these.

Similar to '\<', but matching the end of a "variable" or "word", i.e. either the
end of the line or before character which is neither a letter, nor a digit, nor
the underline character.

t To discern what is true with nomagic it suffices to remember that the only special characters in this case
will be '~' at the beginning of a regular expression, '$' at the end of a regular expression, and \. With
nomagic the characters ,-, and '&' also lose their special meanings related to the replacement pattern of a
substitute.

[string]

Ex Reference Manual 3-97

Matches any (single) character in the class defined by string. Most characters
in string define themselves. A pair of characters separated by ' - ' in string
defines the set of characters collating between the specified lower and upper
bounds, thus '[a-z]' as a regular expression matches any (single) lower-case
letter. If the first character of string is an 'ft' then the construct matches
those characters which it otherwise would not; thus '[fta-z]' matches anything
but a lower-case letter (and of course a newline). To place any of the charac
ters 'ft', '[', or'-' in string you must escape them with a preceding ''\.

8.4. Combining regular expression primitives

The concatenation of two regular expressions matches the leftm0st and then longest
string which can be divided with the first piece matching the first regular expression and the
second piece matching the second. Any of the (single character matching) regular expressions
mentioned above may be followed by the character '*' to form a regular expression which
matches any number of adjacent occurrences (including O) of characters matched by the regu
lar expression it follows.

The character ,-, may be used in a regular expression, and matches the text which
defined the replacement part of the last substitute command. A regular expression may be
enclosed between the sequences ''' and '~' with side effects in the substitute replacement
patterns.

8.5. Substitute replacement patterns

The basic metacharacters for the replacement pattern are '&' and M; these are given as
''&'and 'X' when nomagic is set. Each instance of'&' is replaced by the characters which the
regular expression matched. The metacharacter M stands, in the replacement pattern, for the
defining text of the previous replacement pattern.

Other metasequences possible in the replacement pattern are always introduced by the
escaping character ''\. The sequence '~' is replaced by the text matched by the n-th regular
subexpression enclosed between''(' and '~'.t The sequences '\u' and ''J.' cause the immediately
following character in the replacement to be converted to upper- or lower-case respectively if
this character is a letter. The sequences '\V' and ''iL' turn such conversion on, either until '\E'
or '~' is encountered, or until the end of the replacement pattern.

9. Option descriptions

autoindent, ai default: noai

Can be used to ease the preparation of structured program text. At the beginning of
each append, change or insert command or when a new line is opened or created by an
append, change, insert, or substitute operation within open or visual mode, ex looks at
the line being appended after, the first line changed or the line inserted before and cal
culates the amount of white space at the start of the line. It then aligns the cursor at
the level of indentation so determined.

If the user then types lines of text in, they will continue to be justified at the displayed
indenting level. If more white space is typed at the beginning of a line, the following
line will start aligned with the first non-white character of the previous line. To back
the cursor up to the preceding tab stop one can hit "D. The tab stops going backwards
are defined at multiples of the shiftwidth option. You cannot backspace over the
indent, except by sending an end-of-file with a "D.

t When nested, parenthesized subexpressions are present, n is determined by counting occurrences of \(
starting from the left.

3-98 Ex Reference Manual

Specially processed in this mode is a line with no characters added to it, which turns
into a completely blank line (the white space provided for the autoindent is discarded.)
Also specially processed in this mode are lines beginning with an 'ft' and immediately fol
lowed by a "D. This causes the input to be repositioned at the beginning of the line, but
retaining the previous indent for the next line. Similarly, a 'O' followed by a "D reposi
tions at the beginning but without retaining the previous indent.

Autoindent doesn't happen in global commands or when the input is not a terminal.

autoprint, ap default: ap

Causes the current line to be printed after each delete, copy, join, move, substitute, t,
undo or shift command. This has the same effect as supplying a trailing 'p' to each such
command. Autoprint is suppressed in globals, and only applies to the last of many com
mands on a line.

autowrite, aw default: noaw

Causes the contents of the buff er to be written to the current file if you have modified it
and give a next, rewind, stop, tag, or ! command, or a "ft (switch files) or "] (tag goto)
command in visual. Note, that the edit and ex commands do not autowrite. In each
case, there is an equivalent way of switching when autowrite is set to avoid the
autowrite (edit for next, rewind! for .I rewind , stop! for stop, tag! for tag, shell for ! ,
and :e #and a :ta! command from within visual).

beautify, bf default: nobeautify

Causes all control characters except tab, newline and form-feed to be discarded from the
input. A complaint is registered the first time a backspace character is discarded. Beau
tify does not apply to command input.

directory, dir default: dir=/tmp

Specifies the directory in which ex places its buffer file. If this directory in not writable,
then the editor will exit abruptly when it fails to be able to create its buffer there.

edcompatible default: noedcompatible

Causes the presence of absence of g and c suffixes on substitute commands to be remem
bered, and to be toggled by repeating the suffices. The suffix r makes the substitution
be as in the N command, instead of like &. ++

errorbells, eh default: noeb

Error messages are preceded by a bell.* If possible the editor always places the error
message in a standout mode of the terminal (such as inverse video) instead of ringing the
bell.

hardtabs, ht default: ht=8

Gives the boundaries on which terminal hardware tabs are set (or on which the system
expands tabs).

ignorecase, ic default: noic

All upper case characters in the text are mapped to lower case in regular expression
matching. In addition, all upper case characters in regular expressions are mapped to
lower- case except in character class specifications.

tt Version 3 only.
* Bell ringing in open and visual on errors is not suppressed by setting noeb.

Ex Reference Manual 3-99

lisp default: nolisp

Autoindent indents appropriately for lisp code, and the () { } [[and]] commands in
open and visual are modified to have meaning for lisp.

list default: nolist

All printed lines will be displayed (more) unambiguously, showing tabs and end-of-lines
as in the list command.

magic default: magic for ex and vit

If nomagic is set, the number of regular expression metacharacters is greatly reduced,
with only 'ft' and '$' having special effects. In addition the metacharacters ,_,and '&' of
the replacement pattern are treated as normal characters. All the normal metacharac
ters may be made magic when nomagic is set by preceding them with a '~-

mesg default: mesg

Causes write permission to be turned off to the terminal while you are in visual mode, if
nomesg is set. :j::j:

number, nu default: nonumber

Causes all output lines to be printed with their line numbers. In addition each input
line will be prompted for by supplying the line number it will have.

open default: open

If noopen, the commands open and visual are not permitted. This is set for edit to
prevent confusion resulting from accidental entry to open or visual mode.

optimize, opt default: optimize

Throughput of text is expedited by setting the terminal to not do automatic carriage
returns when printing more than one (logical) line of output, greatly speeding output on
terminals without addressable cursors when text with leading white space is printed.

paragraphs, para default: para=IPLPPPQPP Llbp

Specifies the paragraphs for the { and } operations in open and visual. The pairs of
characters in the option's value are the names of the macros which start paragraphs.

prompt default: prompt

Command mode input is prompted for with a':'.

redraw default: noredraw

The editor simulates (using great amounts of output), an intelligent terminal on a dumb
terminal (e.g. during insertions in visual the characters to the right of the cursor posi
tion are refreshed as each input character is typed.) Useful only at very high speed.

remap default: remap

If on, macros are repeatedly tried until they are unchanged. :j::j: For example, if o is
mapped to 0, and 0 is mapped to I, then if remap is set, o will map to I, but if
noremap is set, it will map to 0.

t Nomagic for edit.
:j::j: Version 3 only.
:j::j: Version 3 only.

3-100 Ex Reference Manual

report default: report=5t

Specifies a threshold for feedback from commands. Any command which modifies more
than the specified number of lines will provide feedback as to. the scope of its changes.
For commands such as global, open, undo, and visual which have potentially more far
reaching scope, the net change in the number of lines in the buffer is presented at the
end of the command, subject to this same threshold. Thus notification is suppressed
during a global command on the individual commands performed.

scroll default: scroll= 1/2 window

Determines the number of logical lines scrolled when an end-of-file is received from a
terminal input in command mode, and the number of lines printed by a command mode
z command (double the value of scroll).

sections default: sections=SHNHH HU

Specifies the section macros for the [[and]] operations in open and visual. The pairs of
characters in the options's value are the names of the macros which start paragraphs.

shell, sh default: sh=/bin/sh

Gives the path name of the shell forked for the shell escape command '!', and by the
shell command. The default is taken from SHELL in the environment, if present.

shiftwidth, SW default: sw=8

Gives the width a software tab stop, used in reverse tabbing with "D when using autoin
dent to append text, and by the shift commands.

showmatch, sm default: nosm

In open and visual mode, when a) or } is typed, move the cursor to the matching (or {
for one second if this matching character is on the screen. Extremely useful with lisp.

slowopen, slow terminal dependent

Affects the display algorithm used ih visual mode, holding off display updating during
input of new text to improve throughput when the terminal in use is both slow and unin
telligent. See An Introduction to Display Editing with Vi for more details.

tabstop, ts default: ts=8

The editor expands tabs in the input file to be on tabstop boundaries for the purposes of
display.

taglength, ti default: tl=O

tags

Tags are not significant beyond this many characters. A value of zero (the default)
means that all characters are significant.

default: tags=tags /usr/lib/tags

A path of files to be used as tag files for the tag command. :j::I: A requested tag is
searched for in the specified files, sequentially. By default (even in version 2) files called
tags are searched for in the current directory and in /usr/lib (a master file for the entire
system.)

t 2 for edit.
:j::j: Version 3 only.

Ex Reference Manual 3-101

term from environment TERM

The terminal type of the output device.

terse default: noterse

Shorter error diagnostics are produced for the experienced user.

warn default: warn

Warn if there has been '[No write since last change]' before a'!' command escape.

window default: window=speed dependent

The number of lines in a text window in the visual command. The default is 8 at slow
speeds (600 baud or less), 16 at medium speed (1200 baud), and the full screen (minus
one line) at higher speeds.

w300, w1200, w9600

These are not true options but set window only if the speed is slow (300), medium
(1200), or high (9600), respectively. They are suitable for an EXINIT and make it easy
to change the 8/16/full screen rule.

wrapscan, ws default: ws

Searches using the regular expressions in addressing will wrap around past the end of
the file.

wrapmargin, wm default: wm=O

Defines a margin for automatic wrapover of text during input in open and visual modes.
See An Introduction to Text Editing with Vi for details.

writeany, wa default: nowa

Inhibit the checks normally made before write commands, allowing a write to any file
which the system protection mechanism will allow.

10. Limitations

Editor limits that the user is likely to encounter are as follows: 1024 characters per line,
256 characters per global command list, 128 characters per file name, 128 characters in the
previous inserted and deleted text in open or visual, 100 characters in a shell escape com
mand, 63 characters in a string valued option, and 30 characters in a tag name, and a limit of
250000 lines in the file is silently enforced.

The visual implementation limits the number of macros defined with map to 32, and the
total number of characters in macros to be less than 512.

Acknowledgments. Chuck Haley contributed greatly to the early development of ex. Bruce
Englar encouraged the redesign which led to ex version 1. Bill Joy wrote versions 1 and 2.0
through 2.7, and created the framework that users see in the present editor. Mark Horton
added macros and other features and made the editor work on a large number of terminals
and Unix systems.

3-102 Ex Reference Manual

Ex changes - Version 3.1 to 3.5
This update describes the new features and changes which have been made in converting

from version 3.1 to 3.5 of ex. Each change is marked with the first version where it appeared.

Update to Ex Reference Manual

Command line options

3.4 A new command called view has been created. View is just like vi but it sets readonly.

3.4 The encryption code from the v7 editor is now part of ex. You can invoke ex with the
-x option and it will ask for a key, as ed. The ed x command (to enter encryption
mode from within the editor) is not available. This feature may not be available in all
instances of ex due to memory limitations.

Commands

3.4 Provisions to handle the new process stopping features of the Berkeley TTY driver have
been added. A new command, stop, takes you out of the editor cleanly and efficiently,
returning you to the shell. Resuming the editor puts you back in command or visual
mode, as appropriate. If autowrite is set and there are outstanding changes, a write is
done first unless you say "stop!".

3.4 A

:vi <file>

command from visual mode is now treated the same as a

:edit <file> or :ex <file>

command. The meaning of the vi command from ex command mode is not affected.

3.3 A new command mode command xit (abbreviated x) has been added. This is the same
as wq but will not bother to write if there have been no changes to the file.

Options

3.4 A read only mode now lets you guarantee you won't clobber your file by accident. You
can set the on/off option readonly (ro), and writes will fail unless you use an ! after the
write. Commands such as x, ZZ, the autowrite option, and in general anything that
writes is affected. This option is turned on if you invoke ex with the - R flag.

3.4 The wrapmargin option is now usable. The way it works has been completely
revamped. Now if you go past the margin (even in the middle of a word) the entire word
is erased and rewritten on the next line. This changes the semantics of the number
given to wrapmargin. 0 still means off. Any other number is still a distance from the
right edge of the screen, but this location is now the right edge of the area where wraps
can take place, instead of the left edge. Wrapmargin now behaves much like
fill/nojustify mode in nroff.

3.3 The options w300, w1200, and w9600 can be set. They are synonyms for window, but
only apply at 300, 1200, or 9600 baud, respectively. Thus you can specify you want a 12
line window at 300 baud and a 23 line window at 1200 baud in your EXINIT with

:set w300=12 w1200=23

3.3 The new option timeout (default on) causes macros to time out after one second. Turn
it off and they will wait forever. This is useful if you want multi character macros, but if
your terminal sends escape sequences for arrow keys, it will be necessary to hit escape
twice to get a beep.

Ex Reference Manual 3-103

3.3 The new option remap (default on) causes the editor to attempt to map the result of a
macro mapping again until the mapping fails. This makes it possible, say, to map q to#
and #1 to something else and get q 1 mapped to something else. Turning it off makes it
possible to map "L to 1 and map "R to "L without having "R map to 1.

3.3 The new (string) valued option tags allows you to specify a list of tag files, similar to the
"path" variable of csh. The files are separated by spaces (which are entered preceded by
a backslash) and are searched left to right. The default value is "tags /usr/lib/tags",
which has the same effect as before. It is recommended that "tags" always be the first
entry. On Ernie Co Vax, /usr/lib/tags contains entries for the system defined library pro
cedures from section 3 of the manual.

Environment enquiries

3.4 The editor now adopts the convention that a null string in the environment is the same
as not being set. This applies to TERM, TERMCAP, and EXINIT.

Vi Tutorial Update

Deleted features

3.3 The "q" command from visual no longer works at all. You must use "Q" to get to ex
command mode. The "q" command was deleted because of user complaints about hit
ting it by accident too often.

3.5 The provisions for changing the window size with a numeric prefix argument to certain
visual commands have been deleted. The correct way to change the window size is to
use the z command, for example z5<cr> to change the window to 5 lines.

3.3 The option "mapinput" is dead. It has been replaced by a much more powerful mechan
ism: ":map!".

Change in def a ult option settings

3.3 The default window sizes have been changed. At 300 baud the window is now 8 lines (it
was 1/2 the screen size). At 1200 baud the window is now 16 lines (it was 2/3 the screen
size, which was usually also 16 for a typical 24 line CRT). At 9600 baud the window is
still the full screen size. Any baud rate less than 1200 behaves like 300, any over 1200
like 9600. This change makes vi more usable on a large screen at slow speeds.

Vi commands

3.3 The command "ZZ" from vi is the same as ":x<cr>". This is the recommended way to
leave the editor. Z must be typed twice to avoid hitting it accidently.

3.4 The command "Z is the same as ":stop<cr>". Note that if you have an arrow key that
sends "Z the stop function will take priority over the arrow function. If you have your
"susp" character set to something besides "Z, that key will be honored as well.

3.3 It is now possible from visual to string several search expressions together separated by
semicolons the same as command mode. For example, you can say

/foo/;/bar

from visual and it will move to the first "bar" after the next "foo". This also works
within one line.

3.3 "R is now the same as "L on terminals where the right arrow key sends "L (This includes
the Televideo 912/920 and the ADM 31 terminals.)

3.4 The visual page motion commands "F and "B now treat any preceding counts as number
of pages to move, instead of changes to the window size. That is, 2"F moves forward 2
pages.

3-104 Ex Reference Manual

Macros

3.3 The "mapinput" mechanism of version 3.1 has been replaced by a more powerful
mechanism. An"!" can follow the word "map" in the map command. Map!'ed macros
only apply during input mode, while map'ed macros only apply during command mode.
Using "map" or "map!" by itself produces a listing of macros in the corresponding
mode.

3.4 A word abbreviation mode is now available. You can define abbreviations with the
abbreviate command

:abbr foo find outer otter

which maps "foo" to "find outer otter". Abbreviations can be turned off with the unab
breviate command. The syntax of these commands is identical to the map and unmap
commands, except that the ! forms do not exist. Abbreviations are considered when in
visual input mode only, and only affect whole words typed in, using the conservative
definition. (Thus "foobar" will not be mapped as it would using "map!") Abbreviate and
unabbreviate can be abbreviated to "ab" and "una", respectively.

Introduction

SED - A Non-Interactive Text Editor

Lee E. McMahon

Bell Laboratories
Murray Hill, New Jersey 07974

Sed 3-105

Sed is a non-interactive context editor designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing;
2) To edit any size file when the sequence of editing commands is too complicated to

be comfortably typed in interactive mode;
3) To perform multiple 'global' editing functions efficiently in one pass through the

input.

Since only a few lines of the input reside in core at one time, and ho temporary files are used,
the effective size of file that can be edited is limited only by the requirement that the input
and output fit simultaneously into available secondary storage.

Complicated editing scripts can be created separately and given to sed as a command file. For
complex edits, this saves considerable typing, and its attendant errors. Sed running from a
command file is much more efficient than any interactive editor known to the author, even if
that editor can be driven by a pre-written script.

The principal loss of functions compared to an interactive editor are lack of relative address
ing (because of the line-at-a-time operation), and lack of immediate verification that a com
mand has done what was intended.

Sed is a lineal descendant of the UNIX editor, ed. Because of the differences between
interactive and non-interactive operation, considerable changes have been made between ed
and sed; even confirmed users of ed will frequently be surprised (and probably chagrined), if
they rashly use sed without reading Sections 2 and 3 of this document. The most striking
family resemblance between the two editors is in the class of patterns ('regular expressions')
they recognize; the code for matching patterns is copied almost verbatim from the code for ed,
and the description of regulai: expressions in Section 2 is copied almost verbatim from the
UNIX Programmer's Manual[l]. (Both code and description were written by Dennis M.
Ritchie.)

1. Overall Operation

Sed by default copies the standard input to the standard output, perhaps performing one or
more editing commands on each line before writing it to the output. This behavior may be
modified by flags on the command line; see Section 1.1 below.

The general format of an editing command is:

[address 1,address2] [function] [arguments]

One or both addresses may be omitted; the format of addresses is given in Section 2. Any
number of blanks or tabs may separate the addresses from the function. The function must
be present; the available commands are discussed in Section 3. The arguments may be

UNIX is a Trademark of Bell Laboratories

3-106 Sed

required or optional, according to which function is given; again, they are discussed in Section
3 under each individual function.

Tab characters and spaces at the beginning of lines are ignored.

1.1. Command-line Flags

Three flags are recognized on the command line:
-n: tells sed not to copy all lines, but only those specified by p functions or p flags

afters functions (see .Section 3.3);
-e: tells sed to take the next argument as an editing command;
-f: tells sed to take the next argument as a file name; the file should contain editing

commands, one to a line.

1.2. Order of Application of Editing Commands

Before any editing is done (in fact, before any input file is even opened), all the editing com
mands are compiled into a form which will be moderately efficient during the execution phase
(when the commands are actually applied to lines of the input file). The commands are com
piled in the order in which they are encountered; this is generally the order in which they will
be attempted at execution time. The commands are applied one at a time; the input to each
command is the output of all preceding commands.

The default linear order of application of editing commands can be changed by the flow-of
control commands, t and b (see Section 3). Even when the order of application is changed by
these commands, it is still true that the input line to any command is the output of any previ
ously applied command.

1.3. Pattern-space

The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one
line of the input text, but more than one line can be read into the pattern space by using the
N command (Section 3.6.).

1.4. Examples

Examples are scattered throughout the text. Except where otherwise noted, the examples all
assume the following input text:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

(In no case is the output of the sed commands to be considered an improvement on
Coleridge.)

Example:

The command

2q

will quit after copying the first two lines of the input. The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

Sed 3-107

2. ADDRESSES: Selecting lines for editing

Lines in the input file(s) to which editing commands are to be applied can be selected by
addresses. Addresses may be either line numbers or context addresses.

The application of a group of commands can be controlled by one address (or address-pair) by
grouping the commands with curly braces (' { }')(Sec. 3.6.).

2.1. Line-number Addresses

A line number is a decimal integer. As each line is read from the input, a line-number
counter is incremented; a line-number address matches (selects) the input line which causes
the internal counter to equal the address line-number. The counter runs cumulatively
through multiple input files; it is not reset when a new input file is opened.

As a special case, the character $ matches the last line of the last input file.

2.2. Context Addresses

A context address is a pattern ('regular expression') enclosed in slashes ('/'). The regular
expressions recognized by sed are constructed as follows:

1) An ordinary character (not one of those discussed below) is a regular expression,
and matches that character.

2) A circumflex '"' at the beginning of a regular expression matches the null character
at the beginning of a line.

3) A dollar-sign '$' at the end of a regular expression matches the null character at the
end of a line.

4) The characters '\n' match an imbedded newline character, but not the newline at
the end of the pattern space.

5) A period'.' matches any character except the terminal newline of the pattern space.
6) A regular expression followed by an asterisk '*' matches any number (including O)

of adjacent occurrences of the regular expression it follows.
7) A string of characters in square brackets ' [] ' matches any character in the string,

and no others. If, however, the first character of the string is circumflex '"',
the regular expression matches any character except the characters in the
string and the terminal newline of the pattern space.

8) A concatenation of regular expressions is a regular expression which matches the·
concatenation of strings matched by the components of the regular expression.

9) A regular expression between the sequences '\(' and '\)' is identical in effect to the
unadorned regular expression, but has side-effects which are described under
the s command below and specification 10) immediately below.

10) The expression '\d' means the same string of characters matched by an expression
enclosed in '\('and '\)' earlier in the same pattern. Here d is a single digit; the
string specified is that beginning with the dth occurrence of'\(' counting from
the left. For example, the expression '"\(.*\)\1' matches a line beginning with
two repeated occurrences of the same string.

11) The null regular expression standing alone (e.g., '//') is equivalent to the last regu-
lar expression compiled.

To use one of the special characters (" $. * [] \ /) as a literal (to match an occurrence of itself
in the input), precede the special character by a backslash'\'.

For a context address to 'match' the input requires that the whole pattern within the address
match some portion of the pattern space.

2.3. Number of Addresses

The commands in the next section can have 0, 1, or 2 addresses. Under each command the
maximum number of allowed addresses is given. For a command to have more addresses than
the maximum allowed is considered an error.

3-108 Sed

If a command has no addresses, it is applied to every line in the input.

If a command has one address, it is applied to all lines which match that address.

If a command has two addresses, it is applied to the first line which matches the first address,
and to all subsequent lines until (and including) the first subsequent line which matches the
second address. Then an attempt is made on subsequent lines to again match the first
address, and the process is repeated.

Two addresses are separated by a comma.

Examples:

/an/
/an.*an/
/"an/

matches lines 1, 3, 4 in our sample text
matches line 1
matches no lines

/./ matches all lines
I\./ matches line 5
/r*an/
/\(an\).* \1/

matches lines 1,3, 4 (number = zero!)
matches line 1

3. FUNCTIONS
All functions are named by a single character. In the following summary, the maximum
number of allowable addresses is given enclosed in parentheses, then the single character func
tion name, possible arguments enclosed in angles (< >), an expanded English translation of
the single-character name, and finally a description of what each function does. The angles
around the arguments are not part of the argument, and should not be typed in actual editing
commands.

3.1. Whole-line Oriented Functions

(2)d -- delete lines

The d function deletes from the file (does not write to the output) all those
lines matched by its address(es).

It also has the side effect that no further commands are attempted on the
corpse of a deleted line; as soon as the d function is executed, a new line is
read from the input, and the list of editing commands is re-started from the
beginning on the new line.

(2)n -- next line

(l)a\

The n function reads the next line from the input, replacing the current line.
The current line is written to the output if it should be. The list of editing
commands is continued following the n command.

<text> -- append lines

The a function causes the argument <text> to be written to the output after
the line matched by its address. The a command is inherently multi-line; a
must appear at the end of a line, and <text> may contain any number of
lines. To preserve the one-command-to-a-line fiction, the interior newlines
must be hidden by a backslash character ('\') immediately preceding the new
line. The <text> argument is terminated by the first unhidden newline (the
first one not immediately preceded by backslash). ··

Once an a function is successfully executed, <text> will be written to the out
put regardless of what later commands do to the line which triggered it. The
triggering line may be deleted entirely; <text> will stiH be written to the

(l)i \

Sed 3-109

output.

The <text> is not scanned for address matches, and no editing commands are
attempted on it. It does not cause any change in the line-number counter.

<text> -- insert lines

(2)c\

The i function behaves identically to the a function, except that <text> is
written to the output before the matched line. All other comments about the
a function apply to the i function as well.

<text> -- change lines

The c function deletes the lines selected by its address(es), and replaces them
with the lines in <text>. Like a and i, c must be followed by a newline hid
den by a backslash; and interior new lines in <text> must be hidden by
backslashes.

The c command may have two addresses, and therefore select a range of lines.
If it does, all the lines in the range are deleted, but only one copy of <text> is
written to the output, not one copy per line deleted. As with a and i, <text>
is not scanned for address matches, and no editing commands are attempted
on it. It does not change the line-number counter.

After a line has been deleted by a c function, no further commands are
attempted on the corpse.

If text is appended after a line by a or r functions, and the line is subse
quently changed, the text inserted by the c function will be placed before the
text of the a or r functions. (The r function is described in Section 3.4.)

Note: Within the text put in the output by these functions, leading blanks and tabs will disap
pear, as always in sed commands. To get leading blanks and tabs into the output, precede the
first desired blank or tab by a backslash; the backslash will not appear in the output.

Example:

The list of editing commands:

n
a\
xx xx
d

applied to our standard input, produces:

In Xanadu did Kubhla Khan
xxxx
Where Alph, the sacred river, ran
xxxx
Down to a sunless sea.

In this particular case, the same effect would be produced by either of the two following com
mand lists:

n

i\
xx xx
d

n
c\
xx xx

3-110 Sed

3.2. Substitute Function

One very important function changes parts of lines selected by a context search within the
line.

(2)s<pattern><replacement><flags> -- substitute

The s function replaces part of a line (selected by <pattern>) with <replace
ment>. It can best be read:

Substitute for <pattern>, <replacement>

The <pattern> argument contains a pattern, exactly like the patterns in
addresses (see 2.2 above). The only difference between <pattern> and a con
text address is that the context address must be delimited by slash ('/') char
acters; <pattern> may be delimited by any character other than space or new
line.

By default, only the first string matched by <pattern> is replaced, but see the
g flag below.

The <replacement> argument begins immediately after the second delimiting
character of <pattern>, and must be followed immediately by another
instance of the delimiting character. (Thus there are exactly three instances
of the delimiting character.)

The <replacement> is not a pattern, and the characters which are special in
patterns do not have special meaning in <replacement>. Instead, other char
acters are special:

& is replaced by the string matched by <pattern>

\d (where d is a single digit) is replaced by the dth substring matched
by parts of <pattern> enclosed in '\(' and '\)'. If nested sub
strings occur in <pattern>, the dth is determined by counting
opening delimiters ('\(').

As in patterns, special characters may be made literal by
preceding them with backslash (' \').

The <flags> argument may contain the following flags:

g -- substitute <replacement> for all (non-overlapping) instances of
<pattern> in the line. After a successful substitution, the
scan for the next instance of <pattern> begins just after the
end of the inserted characters; characters put into the line
from <replacement> are not rescanned.

p -- print the line if a successful replacement was done. The p flag
causes the line to be written to the output if and only if a sub
stitution was actually made by the s function. Notice that if
several s functions, each followed by a p flag, successfully sub
stitute in the same input line, multiple copies of the line will
be written to the output: one for each successful substitution.

w <filename> -- write the line to a file if a successful replacement was
done. The w flag causes lines which are actually substituted
by the s function to be written to a file named by <filename>.
If <filename> exists before sed is run, it is overwritten; if not,
it is created.

A single space must separate w and <filename>.

Sed 3-111

The possibilities of multiple, somewhat different copies of one
input line being written are the same as for p.

Examples:

A maximum of 10 different file names may be mentioned after
w flags and w functions (see below), combined.

The following command, applied to our standard input,

s/to/by /w changes

produces, on the standard output:

In Xanadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and, on the file 'changes':

Through caverns measureless by man
Down by a sunless sea.

If the nocopy option is in effect, the command:

s/[.,;?:]/*P&* /gp

produces:

A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*

Finally, to illustrate the effect of the g flag, the command:

/X/s/an/AN/p

produces (assuming nocopy mode):

In XANadu did Kubhla Khan

and the command:

/Xis/ an/ AN/gp

produces:

In XANadu did Kubhla KhAN

3.3. Input-output Functions

(2)p -- print

The print function writes the addressed lines to the standard output file.
They are written at the time the p function is encountered, regardless of what
succeeding editing commands may do to the lines.

(2)w <filename> -- write on <filename>

The write function writes the addressed lines to the file named by <filename>.
If the file previously existed, it is overwritten; if not, it is created. The lines
are written exactly as they exist when the write function is encountered for
each line, regardless of what subsequent editing commands may do to them.

Exactly one space must separate thew and <filename>.

A maximum of ten different files may be mentioned in write functions and w
flags after s functions, combined.

3-112 Sed

(l)r <filename> -- read the contents of a file

The read function reads the contents of <filename>, and appends them after
the line matched by the address. The file is read and appended regardless of
what subsequent editing commands do to the line which matched its address.
If r and a functions are executed on the same line, the text from the a func
tions and the r functions is written to the output in the order that the func
tions are executed.

Exactly one space must separate the r and <filename>. If a file mentioned by
a r function cannot be opened, it is considered a null file, not an error, and no
diagnostic is given.

NOTE: Since there is a limit to the number of files that can be opened simultaneously, care
should be taken that no more than ten files be mentioned in w functions or flags; that number
is reduced by one if any r functions are present. (Only one read file is open at one time.)

Examples

Assume that the file 'notel' has the following contents:

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

Then the following command:

/Kubla/r notel

produces:

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

3.4. Multiple Input-line Functions

Three functions, all spelled with capital letters, deal specially with pattern spaces containing
imbedded newlines; they are intended principally to provide pattern matches across lines in
the input.

(2)N -- Next line

The next input line is appended to the current line in the pattern space; the
two input lines are separated by an imbedded newline. Pattern matches may
extend across the imbedded newline(s).

(2)D -- Delete first part of the pattern space

Delete up to and including the first newline character in the current pattern
space. If the pattern space becomes empty (the o:rily newline was the terminal
newline), read another line from the input. In any case, begin the list of edit
ing commands again from its beginning.

(2)P -- Print first part of the pattern space

Print up to and including the first newline in the pattern space.

The P and D functions are equivalent to their lower-case counterparts if there are no

Sed 3-113

imbedded newlines in the pattern space.

3.5. Hold and Get Functions

Four functions save and retrieve part of the input for possible later use.

(2)h -- hold pattern space

The h functions copies the contents of the pattern space into a hold area (des
troying the previous contents of the hold area).

(2)H -- Hold pattern space

The H function appends the contents of the pattern space to the contents of
the hold area; the former and new contents are separated by a newline.

(2)g -- get contents of hold area

The g function copies the contents of the hold area into the pattern space
(destroying the previous contents of the pattern space).

(2)G -- Get contents of hold area

The G function appends the contents of the hold area to the contents of the
pattern space; the former and new contents are separated by a newline.

(2)x -- exchange

The exchange command interchanges the contents of the pattern space and
the hold area.

Example

The commands

lh
ls/ did.*//
lx
G
s/\n/ :/

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

3.6. Flow-of-Control Functions

These functions do no editing on the input lines, but control the application of functions to
the lines selected by the address part.

(2)! -- Don't

The Don't command causes the next command (written on the same line), to
be applied to all and only those input lines not selected by the adress part.

(2) { -- Grouping

The grouping command ' {' causes the next set of commands to be applied (or
not applied) as a block to the input lines selected by the addresses of the
grouping command. The first of the commands under control of the grouping
may appear on the same line as the ' {' or on the next line.

3-114 Sed

The group of commands is terminated by a matching '}' standing on a line by
itself.

Groups can be nested.

(O):<label> -- place a label

The label function marks a place in the list of editing commands which may
be referred to by b and t functions. The <label> may be any sequence of
eight or fewer characters; if two different colon functions have identical labels,
a compile time diagnostic will be generated, and no execution attempted.

(2) b<label> -- branch to label

The branch function causes the sequence of editing commands being applied
to the current input line to be restarted immediately after the place where a
colon function with the same <label> was encountered. If no colon function
with the same label can be found after all the editing commands have been
compiled, a compile time diagnostic is produced, and no execution is
attempted.

A b function with no <label> is taken to be a branch to the end of the list of
editing commands; whatever should be done with the current input line is
done, and another input line is read; the list of editing commands is restarted
from the beginning on the new line.

(2)t<label> -- test substitutions

The t function tests whether any successful substitutions have been made on
the current input line; if so, it branches to <label>; if not, it does nothing.
The flag which indicates that a successful substitution has been executed is
reset by:

1) reading a new input line, or
2) executing a t function.

3. 7. Miscellaneous Functions

(1) = -- equals

The = function writes to the standard output the line number of the line
matched by its address.

(l)q -- quit

Reference

The q function causes the current line to be written to the output (if it should
be), any appended or read text to be written, and execution to be terminated.

[1] Ken Thompson and Dennis M. Ritchie, The UNIX Programmer's Manual. Bell Labora
tories, 1978.

Introduction 4-1

PART 4: COMMAND INTERPRETERS

A shell is a command interpreter, an interface between a user and the operating system. The
ULTRIX-32 system provides two shells: the Bourne Shell (the UNIX System 7 shell) and the
C Shell (the Berkeley shell). Each shell allows users to communicate with the ULTRIX-32
system to call editors, compilers, and other utilities, and to manipulate files. Figure 1-1 shows
how the shells relate to the UL TRIX-32 system utilities.

Program Development Tools
File Manipulation Tools
Communication Tools
System Administration Tools
Text Formatters
Compilers
Editors
Mail

Figure 1-1 Shells in the ULTRIX-32 System

C Shell

When yc>u-tlse a shell interactively, it serves as a command language; when you write and exe
cute a sequence of shell commands, the shell serves as a programming language. Both shells
offer features for flow control, parameter substitution, shell variables, fault trapping, and
debugging. The Bourne Shell was written first. The C Shell was developed to provide addi
tional interactive features. It is called the C Shell because its command language, syntax, and

4-2 Introduction

control flow are similar to the C programming language. The two shells are, in general, not
compatible; programs written for the Bourne Shell will not run on the C Shell without altera
tion. You can set up your login file to perman~ntly establish one of these shells as your
default shell.

This part includes an article describing each shell. If you choose to use the C Shell, you will
find both articles useful. If you use the Bourne Shell, skip the "Introduction to the C Shell."

The first article, "An Introduction to the UNIX Shell," by S. R. ~ourne, explains the Bourne
Shell concepts, commands, and command formats, and it demonstrates all major features with
examples and explanation~. The two appendixes at the end of the article make a handy refer
ence: "Grammar" and "Metacharacters and Reserved Words."

The "Introduction to the C Shell," by William Joy, is more expansive in its examples and
explanations than the Bourne article, and it concentrates more on interactive use of the shell.
The article documents all features unique to the C Shell, including history, aliases, argument
expansion, C language-type arithmetic operations, and job control. A handy glossary at the
end of the article defines C Shell commands and concepts.

As you read these articles, refer to the ULTRIX-32 Programmers Manual, Binder 1. It gives
detailed specifications for each command. The shell articles in this volume provide a back
ground for those specifications. Bourne and Joy show how to coordinate the commands to
produce useful results.

An Introduction to the UNIX Shell 4-3

An Introduction to the UNIX Shell

1.0 Introduction

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

The shell is both a command language and a programming· language that provides an interface
to the UNIX operating system. This memorandum describes, with examples, the UNIX shell.
The first section covers most of the everyday requirements of terminal users. Some familiar
ity with UNIX is an advantage when reading this section; see, for example, "UNIX for
beginners".1 Section 2 describes those features of the shell primarily intended for use within
shell procedures. These include the control-flow primitives and string-valued variables pro
vided by the shell. A knowledge of a programming language would be a help when reading
this section. The last section describes the more advanced features of the shell. References of
the form "see pipe (2)" are to a section of the UNIX manual. 2

1.1 Simple commands

Simple commands consist of one or more words separated by blanks. The first word is the
name of the command to be executed; any remaining words are passed as arguments to the
command. For example,

who

is a command that prints the names of users logged in. The command

ls-I

prints a list of files in the current directory. The argument -l, tells ls to print status informa
tion, size and the creation date for each file.

1.2 Background commands

To execute a command the shell normally creates a new process and waits for it to finish. A
command may be run without waiting for it to finish. For example,

cc pgm.c &

calls the C compiler to compile the file pgm.c. The trailing & is an operator that instructs the
shell not to wait for the command to finish. To help keep track of such a process the shell
reports its process number following its creation. A list of currently active processes may be
obtained using the ps command.

1.3 Input output redirection

Most commands produce output on the standard output that is initially connected to the ter
minal. This output may be sent to a file by writing, for example,

UNIX is a Trademark of Bell Laboratories

4-4 An Introduction to the UNIX Shell

ls-l >file

The notation >file is interpreted by the shell and is not passed as an argument to ls. If file
does not exist then the shell creates it; otherwise the original contents of file are replaced with
the output from ls. Output may be appended to a file using the notation

ls -1 >>file

In this case file is also created if it does not already exist.

The standard input of a command may be taken from a file instead of the terminal by writing,
for example,

WC <file

The command we reads its standard input (in this case redirected from file) and prints the
number of characters, words and lines found. If only the number of lines is required then

wc-1 <file

could be used.

1.4 Pipelines and filters

The standard output of one command may be connected to the standard input of another by
writing the 'pipe' operator, indicated by I, as in,

ls-1 I wc

Two commands connected in this way constitute a pipeline and the overall effect is the same
as

ls -l >file; wc <file

except that no file is used. Instead the two processes are connected by a pipe (see pipe (2))
and are run in parallel. Pipes are unidirectional and synchronization is achieved by halting we
when there is nothing to read and halting ls when the pipe is full.

A filter is a command that reads its standard input, transforms it in some way, and prints the
result as output. One such filter, grep, selects from its input those lines that contain some
specified string. For example,

ls I grep old

prints those lines, if any, of the output from ls that contain the string old. Another useful
filter is sort. For example,

who I sort

will print an alphabetically sorted list of logged in users.

A pipeline may consist of more than two commands, for example,

ls I grep old I wcJ.

prints the number of file names in the current directory containing the string old.

1.5 File name generation

Many commands accept arguments which are file names. For example,

ls-1 main.c

prints information relating to the file main.c.

The shell provides a mechanism for generating a list of file names that match a pattern. For
example,

An Introduction to the UNIX Shell 4-5

ls-l *.C

generates, as arguments to ls, all file names in the current directory that end in .c. The char
acter * is a pattern that will match any string including the null string. In general patterns
are specified as follows.

* Matches any string of characters including the null string.

? Matches any single character.

[...] Matches any one of the characters enclosed. A pair of characters separated by a
minus will match any character lexically between the pair.

For example,

[a~]*

matches all names in the current directory beginning with one of the letters a through z.

/usr /fred/test/?

matches all names in the directory /usr/fred/test that consist of a single character. If no file
name is found that matches the pattern then the pattern is passed, unchanged, as an argu
ment.

This mechanism is useful both to save typing and to select names according to some pattern~
It may also be used to find files. For example,

echo /usr/fred/*/core

finds and prints the names of all core files in sub-directories of /usr/fred. (echo is a stan
dard UNIX command that prints its arguments, separated by blanks.) This last feature can be
expensive, requiring a scan of all sub-directories of /usr/fred.

There is one exception to the general rules given for patterns. The character '.' at the start of
a file name must be explicitly matched.

echo*

will therefore echo all file names in the current directory not beginning with'.'.

echo·*

will echo all those file names that begin with '.'. This avoids inadvertent matching of the
names '.' and ' .. ' which mean 'the current directory' and 'the parent directory' respectively.
(Notice that ls suppresses information for the files'.' and' .. '.)

1.6 Quoting

Characters that have a special meaning to the shell, such as < > * ? I & , are called metachar
acters. A complete list of metacharacters is given in appendix B. Any character preceded by
a \is quoted and loses its special meaning, if any. The \is elided so that

echo\?

will echo a single ? , and

echo\\

will echo a single \. To allow long strings to be continued over more than one line the
sequence new line is ignored.

\ is convenient for quoting single characters. When more than one character needs quoting
the above mechanism is clumsy and error prone. A string of characters may be quoted by
enclosing the string between single quotes. For example,

echo xx'****'xx

4-6 An Introduction to the UNIX Shell

will echo

XX****XX

The quoted string may not contain a single quote but may contain newlines, which are
preserved. This quoting mechanism is the most simple and is recommended for casual use.

A third quoting mechanism using double quotes is also available that prevents interpretation
of some but not all metacharacters. Discussion of the details is deferred to section 3.4.

1.7 Prompting

When the shell is used from a terminal it will issue a prompt before reading a command. By
default this prompt is '$ '. It may be changed by saying, for example,

PSl=yesdear

that sets the prompt to be the string yesdear. If a newline is typed and further input is
needed then the shell will issue the prompt'> '. Sometimes this can be caused by mistyping
a quote mark. If it is unexpected then an interrupt (DEL) will return the shell to read
another command. This prompt may be changed by saying, for example,

PS2=more

1.8 The shell and login

Following login (1) the shell is called to read and execute commands typed at the terminal. If
the user's login directory contains the file .profile then it is assumed to contain commands
and is read by the shell before reading any commands from the terminal.

1.9 Summary

ls
Print the names of files in the current directory.

• ls >file
Put the output from ls into file.

• ls I we-I
Print the number of files in the current directory.

• ls I grep old
Print those file names containing the string old.

• ls I grep old I we -I
Print the number of files whose name contains the string old.

• cc pgm.c &
Run cc in the background.

An Introduction to the UNIX Shell 4-7

2.0 Shell procedures

The shell may be used to read and execute commands contained in a file. For example,

sh file [args . . .]

calls the shell to read commands from file. Such a file is called a command procedure or shell
procedure. Arguments may be supplied with the call and are referred to in file using the posi
tional parameters $1, $2, For example, if the file wg contains

who I grep $1

then

sh wg fred

is equivalent to

who I grep fred

UNIX files have three independent attributes, read, write and execute. The UNIX command
chmod (1) may be used to make a file executable. For example,

chmod +x wg

will ensure that the file wg has execute status. Following this, the command

wg fred

is equivalent to

sh wg fred

This allows shell procedures and programs to be used interchangeably. In either case a new
process is created to run the command.

As well as providing names for the positional parameters, the number of positional parameters
in the call is available as $#. The name of the file being executed is available as $0.

A special shell parameter $* is used to substitute for all positional parameters except $0. A
typical use of this is to provide some default arguments, as in,

nroff -T450-ms $*

which simply prepends some arguments to those already given.

2.1 Control flow - for

A frequent use of shell procedures is to loop through the arguments ($1, $2, ...) executing
commands once for each argument. An example of such a procedure is tel that searches the
file /usr/lib/telnos that contains lines of the form

fred mh0123
bert mh0789

The text of tel is

for i
do grep $i /usr/lib/telnos; done

The command

tel fred

prints those lines in /usr/lib/telnos that contain the string fred.

4-8 An Introduction to the UNIX Shell

tel fred bert

prints those lines containing fred followed by those for bert.

The for loop notation is recognized by the shell and has the general form

for name in wl w2 •••
do command-list
done

A command-list is a sequence of one or more simple commands separated or terminated by a
newline or semicolon. Furthermore, reserved words like do and done are only recognized fol
lowing a newline or semicolon. name is a shell variable that is set to the words wl w2 ••. in
turn each time the command-list following do is executed. If in wl w2 ... is omitted then
the loop is executed once for each positional parameter; that is, in $ * is assumed.

Another example of the use of the for loop is the create command whose text is

for i do >$i; done

The command

create alpha beta

ensures that two empty files alpha and beta exist and are empty. The notation >file may be
used on its own to create or clear the contents of a file. Notice also that a semicolon (or new
line) is required before done.

2.2 Control flow - case

A multiple way branch is provided for by the case notation. For example,

case$# in
1) cat >>$1 ;;
2) cat >>$2 <$1 ;;
*) echo 'usage: append [from] to' ;;

esac

is an append command. When called with one argument as

append file

$# is the string 1 and the standard input is copied onto the end of file using the cat com
mand.

append file 1 file2

appends the contents of filel onto file2. If the number of arguments supplied to append is
other than 1 or 2 then a message is printed indicating proper usage.

The general form of the case command is

case word in
pattern) command-list;;

esac

The shell attempts to match word with each pattern, in the order in which the patterns
appear. If a match is found the associated command-list is executed and execution of the
case is complete. Since * is the pattern that matches any string it can be used for the
default case.

A word of caution: no check is made to ensure that only one pattern matches the case argu
ment. The first match found defines the set of commands to be executed. In the example
below the commands following the second * will never be executed.

case$# in
*) .•• ;;
*) .•• ;;'

esac

An Introduction to the UNIX Shell 4-9

Another example of the use of the case construction is to distinguish between different forms
of an argument. The following example is a fragment of a cc command.

for i
do case $i in

-[ocs]) •.• ,,
-*) echo 'unknown flag $i' ;;
*.c) /lib/co $i ... ;;
*)echo 'unexpected argument $i' ;;
esac

done

To allow the same commands to be associated with more than one pattern the case command
provides for alternative patterns separated by a I. For example,

case $i in
-xl...y) •••

esac

is equivalent to

case $i in
-[xy]) ...

esac

The usual quoting conventions apply so that

case $i in
\?)

will match the character ? .

2.3 Here documents

The shell procedure tel in section 2.1 uses the file /usr/lib/telnos to supply the data for grep.
An alternative is to include this data within the shell procedure as a here document, as in,

for i
do grep $i <<!

fred mh0123
bert mh0789

done

In this example the shell takes the lines between <<! and ! as the standard input for grep.
The string ! is arbitrary, the document being terminated by a line that consists of the string
following <<.

Parameters are substituted in the document before it is made available to grep as illustrated
by the following procedure called edg.

4-10 An Introduction to the UNIX Shell

The call

ed $3 <<%
g/$1/s//$2/g
w
3

edg stringl string2 file

is then equivalent to the command

ed file<<%
g/stringl/s//string2/g
w
3

and changes all occurrences of string 1 in file to string2. Substitution can be prevented Using \
to quote the special character $ as in

ed $3 <<+
1,\$s/$1/$2/g
w

+
(This version of edg is equivalent to the first except that ed will print a ? if there are no
occurrences of the string $1.) Substitution within a here document may be prevented entirely
by quoting the terminating string, for example,

grep $i <<\#

The document is presented without modification to grep. If parameter substitution is not
required in a here document this latter form is more efficient.

2.4 Shell variables

The shell provides string-valued variables. Variable names begin with a letter and consist of
letters, digits and underscores. Variables may be given values by writing, for example,

user=fred box=mOOO acct=mhOOOO

which assighs values to the variables user, box and acct. A variable may be set to the null
string by saying, for example,

null=

The value of a variable is substituted by preceding its name with $; for example,

echo $user

will echo f red.

Variables may be used interactively to provide abbreviations for frequently used strings. For
example,

b= /usr/fred/bin
mv pgm $b

will move the file pgm from the current directory to the directory /usr/fred/bin. A more
general notation is available for parameter (or variable) substitution, as in,

echo $ {user}

which is equivalent to

An Intraduction to the UNIX Shell 4-11

echo $user

and is used when the parameter name is followed by a letter or digit. For example,

tmp=/tmp/ps
ps a >${tmp}a

will direct the output of ps to the file /tmp/psa, whereas,

ps a >$tmpa

would cause the value of the variable tmpa to be substituted.

Except for $? the following are set initially by the shell. $? is set after executing each com
mand.

$? The exit status (return code) of the last command executed as a decimal string.
Most commands return a zero exit status if they complete successfully, other
wise a non-zero exit status is returned. Testing the value of return codes is
dealt with later under if and while commands.

$# The number of positional parameters (in decimal). Used, for example, in the
append command to check the number of parameters.

$$ The process number of this shell (in decimal). Since process numbers are
unique among all existing processes, this string is frequently used to generate
unique temporary file names. For example,

ps a >/tmp/ps$$

rm /tmp/ps$$

$! The process number of the last process run in the background (in decimal).

$- The current shell flags, such as -x and -v.

Some variables have a special meaning to the shell and should be avoided for general use.

$MAIL When used interactively the shell looks at the file specified by this variable
before it issues a prompt. If the specified file has been modified since it was
last looked at the shell prints the message you have mail before prompting for
the next command. This variable is typically set in the file .profile, in the
user's login directory. For example,

MAIL= /usr /mail/fred

$HOME The default argument for the cd command. The current directory is used to
resolve file name references that do not begin with a I, and is changed using the
cd command. For example,

cd /usr/fred/bin

makes the current directory /usr/fred/bin.

cat wn

will print on the terminal the file wn in this directory. The command cd with
no argument is equivalent to

cd $HOME

This variable is also typically set in the the user's login profile.

$PATH A list of directories that contain commands (the search path). Each time a
command is executed by the shell a list of directories is searched for an execut-

4-12 An Introduction to the UNIX Shell

able file. If $PATH is not set then the current directory, /bin, and /usr/bin
are searched by default. Otherwise $PA TH consists of directory names
separated by : . For example,

PATH= :/usr /fred/bin:/bin:/usr /bin

specifies that the current directory (the null string before the first :),
/usr/fred/bin, /bin and /usr/bin are to be searched in that order. In this way
individual users can have their own 'private' commands that are accessible
independently of the current directory. If the command name contains a I then

' this directory search is not used; a single attempt is made to execute the com-
mand.

$PSI The primary shell prompt string, by default,'$ '.

$PS2 The shell prompt when further input is needed, by default,'> '.

$IFS The set of characters used by blank interpretation (see section 3.4).

2.5 The test command

The test command, although not part of the shell, is intended for use by shell programs. For
example,

test f file

returns zero exit status if file exists and non-zero exit status otherwise. In general test evalu
ates a predicate and returns the result as its exit status. Some of the more frequently used
test arguments are given here, see test (1) for a complete specification.

test s true if the argument s is not the null string
test -f file true if file exists
test -r file true if file is readable
test -w file true if file is writable
test-d file true if file is a directory

2.6 Control flow - while

The actions of the for loop and the case branch are determined by data available to the
shell. A while or until loop and an if then else branch are also provided whose actions are
determined by the exit status returned by commands. A w bile loop has the general form

while command-list1

do command-list2

done

The value tested by the while command is the exit status of the last simple command follow
ing while. Each time round the loop command-list1 is executed; if a zero exit status is
returned then command-lis,t2 is executed; otherwise, the loop terminates. For example,

while test $1
do ••.

shift
done

is equivalent to

for i
do ..•
done

shift is a shell command that renames the positional parameters $2, $3, ..• as $1, $2, •.. and
loses $1.

An Introduction to the UNIX Shell 4-13

Another kind of use for the while/until loop is to wait until some external event occurs and
then run some commands. In an until loop the termination condition is reversed. For exam
ple,

until test -f file
do sleep 300; done
commands

will loop until file exists. Each time round the loop it waits for 5 minutes before trying again.
(Presumably another process will eventually create the file.)

2.7 Control flow - if

Also available is a general conditional branch of the form,

if command-list
then command-list
else command-list
fi

that tests the value returned by the last simple command following if.

The if command may be used in conjunction with the test command to test for the existence
of a file as in

if test -f file
then process file
else do something else
fi

An example of the use of if, case and for constructions is given in section 2.10.

A multiple test if command of the form

if ...
then •.•
else if ••.

then .•.
else if •.•

fi
fi

fi

may be written using an extension of the if notation as,

if •..
then .•.
elif .•.
then •••
elif

fi

The following example is the touch command which changes the 'last modified' time for a list
of files. The command may be used in conjunction with make (1) to force recompilation of a
list of files.

4-14 An Introduction to the UNIX Shell

flag=
for i
do case $i in

-e) flag=N ;;
*)if test -f $i

then ln $i junk$$; rm junk$$
elif test $flag
then echo file \'$i \' does not exist
else >$i
fi

esac
done

The -c flag is used in this command to force subsequent files to be created if they do not
already exist. Otherwise, if the file does not exist, an error message is printed. The shell vari
able fiag is set to some non-null string if the -c argument is encountered. The commands

ln ... ;rm ..•

make a link to the file and then remove it thus causing the last modified date to be updated.

The sequence

if commandl
then command2
fi

may be written

commandl && command2

Conversely,

commandl 11 command2

executes command2 only if commandl fails. In each case the value returned is that of the last
simple command executed.

2.8 Command grouping

Commands may be grouped in two ways,

{ command-list ; }

and

(command-list)

In the first command-list is simply executed. The second form executes command-list as a
separate process. For example,

(cd x; rm junk)

executes rm junk in the directory x without changing the current directory of the invoking
shell.

The commands

cd x; rm junk

have the same effect but leave the invoking shell in the directory x.

An Introduction to the UNIX Shell 4-15

2.9 Debugging shell procedures

The shell provides two tracing mechanisms to help when debugging shell procedures. The
first is invoked within the procedure as

set-v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to
help isolate syntax errors. It may be invoked without modifying the procedure by saying

sh-v proc ...

where proc is the name of the shell procedure. This flag may be used in conjunction with the
-n flag which prevents execution of subsequent commands. (Note that saying set -n at a ter
minal will render the terminal useless until an end-of-file is typed.)

The command

set-x

will produce an execution trace. Following parameter substitution each command is printed
as it is executed. (Try these at the terminal to see what effect they have.) Both flags may be
turned off by saying

set-

and the current setting of the shell flags is available as $-.

2.10 The man command

The following is the man command which is used to print sections of the UNIX manual. It is
called, for example, as

man sh
man-t ed
man 2 fork

In the first the manual section for sh is printed. Since no section is specified, section 1 is
used. The second example will typeset (-t option) the manual section for ed. The last prints
the fork manual page from section 2.

4-16 An Introduction to the UNIX Shell

cd /usr/man

: 'colon is the comment command'
: 'default is nroff ($N), section 1 ($s)'
N=n s=l

for i
do case $i in

[1-9] *) s=$i ;;

-t) N=t ;;

-n) N=n ;;

-*) echo unknown flag \'$i\' ;;

*)if test--f man$s/$i.$s
then ${N}roff man0/${N}aa man$s/$i.$s
else : 'look through all manual sections'

found=no

fi
esac

done

for j in 1 2 3 4 5 6 7 8 9
do if test -f man$j/$i.$j

then man $j $i
found=yes

fi
done
case $found in

no) echo '$i: manual page not found'
esac

Figure 1. A version of the man command

An Introduction to the UNIX Shell 4-17

3.0 Keyword parameters

Shell variables may be given values by assignment or when a shell procedure is invoked. An
argument to a shell procedure of the form name=value that precedes the command name
causes value to be assigned to name before execution of the procedure begins. The value of
name in the invoking shell is not affected. For example,

user=fred command

will execute command with user set to fred. The -k flag causes arguments of the form
name=value to be interpreted in this way anywhere in the argument list. Such names are
sometimes called keyword parameters. If any arguments remain they are available as posi
tional parameters $1, $2,

The set command may also be used to set positional parameters from within a procedure. For
example,

set-*

will set $1 to the first file name in the current directory, $2 to the next, and so on. Note that
the first argument,-, ensures correct treatment when the first file name begins with a -.

3.1 Parameter transmission

When a shell procedure is invoked both positional and keyword parameters may be supplied
with the call. Keyword parameters are also made available implicitly to a shell procedure by
specifying in advance that such parameters are to be exported. For example,

export user box

marks the variables user and box for export. When a shell procedure is invoked copies are
made of all exportable variables for use within the invoked procedure. Modification of such
variables within the procedure does not affect the values in the invoking shell. It is generally
true of a shell procedure that it may not modify the state of its caller without explicit request
on the part of the caller. (Shared file descriptors are an exception to this rule.)

Names whose value is intended to remain constant may be declared readonly. The form of
this command is the same as that of the export command,

read only name ..•

Subsequent attempts to set readonly variables are illegal.

3.2 Parameter substitution

If a shell parameter is not set then the null string is substituted for it. For example, if the
variable d is not set

echo $d

or

echo ${d}

will echo nothing. A default string may be given as in

echo${ d-.}

which will echo the value of the variable d if it is set and '.' otherwise. The default string is
evaluated using the usual quoting conventions so that

echo${ d~*'}

will echo * if the variable d is not set. Similarly

4-18 An Introduction to the UNIX Shell

echo ${ d--$1}

will echo the value of d if it is set and the value (if any) of $1 otherwise. A variable may be
assigned a default value using the notation

echo ${d=.}

which substitutes the same string as

echo ${d-.}

and if d were not previously set then it will be set to the string'.'. (The notation${ .•. = •.. } is
not available for positional parameters.)

If there is no sensible default then the notation

echo${ d?message}

will echo the value of the variable d if it has one, otherwise message is printed by the shell
and execution of the shell procedure is abandoned. If message is absent then a standard mes
sage is printed. A shell procedure that requires some parameters to be set might start as fol
lows.

: ${user?} ${acct?} ${bin?}

Colon (:) is a command that is built in to the shell and does nothing once its arguments have
been evaluated. If any of the variables user, acct or bin are not set then the shell will aban
don execution of the procedure.

3.3 Command substitution

The standard output from a command can be substituted in a similar way to parameters. The
command pwd prints on its standard output the name of the current directory. For example,
if the current directory is /usr/fred/bin then the command

d='pwd'

is equivalent to

d = /usr /fred/bin

The entire string between grave accents (' ... ') is taken as the command to be executed and is
replaced with the output from the command. The command is written using the usual quot
ing conventions except that a' must be escaped using a\. For example,

ls 'echo "$1"'

is equivalent to

ls $1

Command substitution occurs in all contexts where parameter substitution occurs (including
here documents) and the treatment of the resulting text is the same in both cases. This
mechanism allows string processing commands to be used within shell procedures. An exam
ple of such a command is basename which removes a specified suffix from a string. For exam
ple,

basename main.c .c

will print the string main. Its use is illustrated by the following fragment from a cc com
mand.

An Introduction to the UNIX Shell 4-19

case $A in

* .c) B = 'basename $A .c'

esac

that sets B to the part of $A with the suffix .c stripped.

Here are some composite examples.

• for i in 'ls -t'; do ...
The variable i is set to the names of files in time order, most recent first.

• set 'date'; echo $6 $2 $3, $4
will print, e.g., 1977 Nov 1, 23:59:59

3.4 Evaluation and quoting

The shell is a macro processor that provides parameter substitution, command substitution
and file name generation for the arguments to commands. This section discusses the order in
which these evaluations occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in appendix A. Before a com
mand is executed the following substitutions occur.

• parameter substitution, e.g. $user

• command substitution, e.g. 'pwd'

Only one evaluation occurs so that if, for example, the value of the variable X is
the string $y then

echo $X

will echo $y.

• blank interpretation

Following the above substitutions the resulting characters are broken into non
blank words (blank interpretation). For this purpose 'blanks' are the characters of
the string $IFS. By default, this string consists of blank, tab and newline. The
null string is not regarded as a word unless it is quoted. For example,

echo"

will pass on the null string as the first argument to echo, whereas

echo $null

will call echo with no arguments if the variable null is not set or set to the null
string.

• file name generation

Each word is then scanned for the file pattern characters *, ? and [...] and an
alphabetical list of file names is generated to replace the word. Each such file
name is a separate argument.

The evaluations just described also occur in the list of words associated with a for loop. Only
substitution occurs in the word used for a case branch.

As well as the quoting mechanisms described earlier using \and ' ... ' a third quoting mechan
ism is provided using double quotes. Within double quotes parameter and command substitu
tion occurs but file name generation and the interpretation of blanks does not. The following
characters have a special meaning within double quotes and may be quoted using\.

4-20 An Introduction to the UNIX Shell

For example,

$

"
\

parameter substitution
command substitution
ends the quoted string
quotes the special characters $'" \

echo "$x"

will pass the value of the variable x as a single argument to echo. Similarly,

echo"$*"

will pass the positional parameters as a single argument and is equivalent to

echo "$1 $2 •.. "

The notation $@ is the same as $* except when it is quoted.

echo"$@"

will pass the positional parameters, unevaluated, to echo and is equivalent to

echo "$1" "$2" .••

The following table gives, for each quoting mechanism, the shell metacharacters that are
evaluated.

metacharacter
\ $ * "
n n n n n t
y n n t n n

" y y n y t n

t terminator
y interpreted
n not interpreted

Figure 2. Quoting mechanisms

In cases where more than one evaluation of a string is required the built-in command eval
may be used. For example, if the variable X has the value $y, and if y has the value pqr then

eval echo $X

will echo the string pqr.

In general the eval command evaluates its arguments (as do all commands) and treats the
result as input to the shell. The input is read and the resulting command(s) executed. For
example,

wg=' eval wholgrep'
$wg fred

is equivalent to

wholgrep fred

In this example, eval is required since there is no interpretation of metacharacters, such as I ,
following substitution.

An Introduction to the UNIX Shell 4-21

3.5 Error handling

The treatment of errors detected by the shell depends on the type of error and on whether the
shell is being used interactively. An interactive shell is one whose input and output are con
nected to a terminal (as determined by gtty (2)). A shell invoked with the -i flag is also
interactive.

Execution of a command (see also 3. 7) may fail for any of the following reasons.

• Input output redirection may fail. For example, if a file does not exist or cannot be
created.

• The command itself does not exist or cannot be executed.

• The command terminates abnormally, for example, with a "bus error" or "memory
fault". See Figure 2 below for a complete list of UNIX signals.

• The command terminates normally but returns a non-zero exit status.

In all of these cases the shell will go on to execute the next command. Except for the last case
an error message will be printed by the shell. All remaining errors cause the shell to exit from
a command procedure. An interactive shell will return to read another command from the
terminal. Such errors include the following.

• Syntax errors. e.g., if ... then ..• done

• A signal such as interrupt. The shell waits for the current command, if any, to finish
execution and then either exits or returns to the terminal.

• Failure of any of the built-in commands such as ed.

The shell flag --e causes the shell to terminate if any error is detected.

1 hangup
2 interrupt
3* quit
4 * illegal instruction
5* trace trap
6* IOT instruction
7* EMT instruction
8* floating point exception
9 kill (cannot be caught or ignored)
10* bus error
11 * segmentation violation
12* bad argument to system call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination (from kill (1))

Figure 3. UNIX signals

Those signals marked with an asterisk produce a core dump if not caught. However, the shell
itself ignores quit which is the only external signal that can cause a dump. The signals in this
list of potential interest to shell programs are 1, 2, 3, 14 and 15.

3.6 Fault handling

Shell procedures normally terminate when an interrupt is received from the terminal. The
trap command is used if some cleaning up is required, such as removing temporary files. For
example,

trap 'rm /tmp/ps$$; exit' 2

sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the

4-22 An Introduction to the UNIX Shell

commands

rm /tmp/ps$$; exit

exit is another built-in command that terminates execution of a shell procedure. The exit is
required; otherwise, after the trap has been taken, the shell will resume executing the pro
cedure at the place where it was interrupted.

UNIX signals can be handled in one of three ways. They can be ignored, in which case the
signal is never sent to the process. They can be caught, in which case the process must decide
what action to take when the signal is received. Lastly, they can be left to cause termination
of the process without it having to take any further action. If a signal is being ignored on
entry to the shell procedure, for example, by invoking it in the background (see 3. 7) then trap
commands (and the signal) are ignored.

The use of trap is illustrated by this modified version of the touch command (Figure 4). The
cleanup action is to remove the file junk$$.

flag=
trap 'rm-f junk$$; exit' 1 2 3 15
for i
do case $i in

-e) flag=N ;;
*)if test -f $i

then In $i junk$$; rm junk$$
elif test $flag
then echo file \'$i\ does not exist
else >$i
fi

esac
done

Figure 4. The touch command

The trap command appears before the creation of the temporary file; otherwise it would be
possible for the process to die without removing the file.

Since there is no signal 0 in UNIX it is used by the shell to indicate the commands to be exe
cuted on exit from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to
trap. The following fragment is taken from the nohup command.

trap " 1 2 3 15

which cause~ hangup, interrupt, quit and kill to be ignored both by the procedure and by
invoked commands.

Traps may be reset by saying

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current values
of traps may be obtained by writing

trap

The procedure scan (Figure 5) is an example of the use of trap where there is no exit in the
trap command. scan takes each directory in the current directory, prompts with its name,
and then executes commands typed at the terminal until an end of file or an interrupt is
received. Interrupts are ignored while executing the requested commands but cause termina
tion when scan is waiting for input.

d='pwd'
for i in *
do if testd $d/$i

then cd $d/$i

fi
done

while echo "$i:"
trap exit 2
read x

do trap : 2; eval $x; done

An Introduction to the UNIX Shell 4-23

Figure 5. The scan command

read xis a built-in command that reads one line from the standard input and places the result
in the variable x. It returns a non-zero exit status if either an end-of-file is read or an inter
rupt is received.

3.7 Command execution

To run a command (other than a built-in) the shell first creates a new process using the sys
tem call fork. The execution environment for the command includes input, output and the
states of signals, and is established in the child process before the command is executed. The
built-in command exec is used in the rare cases when no fork is required and simply replaces
the shell with a new command. For example, a simple version of the nohup command looks
like

trap " 1 2 3 15
exec$*

The trap turns off the signals specified so that they are ignored by subsequently created com
mands and exec replaces the shell by the command specified.

Most forms of input output redirection have already .been described. In the following word is
only subject to parameter and command substitution. No file name generation or blank
interpretation takes place so that, for example,

echo ..• >*.c

will write its output into a file whose name is *.c. Input output specifications are evaluated
left to right as they appear in the command.

>word

>>word

<word

<<word

>&digit

<&digit

<&-

The standard output (file descriptor 1) is sent to the file word which is created if
it does not already exist.

The standard output is sent to file word. If the file exists then output is
appended (by seeking to the end); otherwise the file is created.

The standard input (file descriptor O) is taken from the file word.

The standard input is taken from the lines of shell input that follow up to but
not including a line consisting only of word; If word is quoted then no interpre
tation of the document occurs. If word is not quoted then parameter and com
mand substitution occur and \ is used to quote the characters \ $ ' and the first
character of word. In the latter case \newline is ignored (c.f. quoted strings).·

The file descriptor digit is duplicated using the system call dup (2) and the
result is used as the standard output.

The standard input is duplicated from file descriptor digit.

The standard input is closed.

4-24 An Introduction to the UNIX Shell

>&- The standard output is closed.

Any of the above may be preceded by a digit in which case the file descriptor created is that
specified by the digit instead of the default 0 or 1. For example,

... 2>file

runs a command with message output (file descriptor 2) directed to file .

••. 2>&1

runs a command with its standard output and message output merged. (Strictly speaking file
descriptor 2 is created by duplicating file descriptor 1 but the effect is usually to merge the
two streams.)

The environment for a command run in the background such as

list *.c I lpr &

is modified in two ways. Firstly, the default standard input for such a command is the empty
file /dev/null. This prevents two processes (the shell and the command), which are running
in parallel, from trying to read the same input. Chaos would ensue if this were not the case.
For example,

ed file &

would allow both the editor and the shell to read from the same input at the same time.

The other modification to the environment of a background command is to turn off the QUIT
and INTERRUPT signals so that they are ignored by the command. This allows these signals
to be used at the terminal without causing background commands to terminate. For this rea
son the UNIX convention for a signal is that if it is set to 1 (ignored) then it is never changed
even for a short time. Note that the shell command trap has no effect for an ignored signal.

3.8 Invoking the shell

The following flags are interpreted by the shell when it is invoked. If the first character of
argument zero is a minus, then commands are read from the file .profile.

-c string
If the -e flag is present then commands are read from string.

-s If the -s flag is present or if no arguments remain then commands are read from the
standard input. Shell output is written to file descriptor 2.

-i If the -i flag is present or if the shell input and output are attached to a terminal (as
told by gtty) then this shell is interactive. In this case TERMINATE is ignored (so that
kill 0 does not kill an interactive shell) and INTERRUPT is caught and ignored (so
that wait is interruptable). In all cases QUIT is ignored by the shell.

Acknowledgements

The design of the shell is based in part on the original UNIX shell3 and the PWB/UNIX
shell,4 some features having been taken from both. Similarities also exist with the command
interpreters of the Cambridge Multiple Access System5 and of CTSS.6

I would like to thank Dennis Ritchie and John Mashey for many discussions during the design
of the shell. I am also grateful to the members of the Computing Science Research Center
and to Joe Maranzano for their comments on drafts of this document.

References

1. B. W. Kernighan, UNIX for Beginners, 1978.

An Introduction to the UNIX Shell 4-25

2. K. Thompson and D. M. Ritchie, UNIX Programmer's Manual, Bell Laboratories, 1978.
Seventh Edition.

3. K. Thompson, "The UNIX Command Language," in Structured Programming-lnfotech
State of the Art Report, pp. 375-384, Infotech International Ltd., Nicholson House,
Maidenhead, Berkshire, England, March 1975.

4. J. R. Mashey, PWB/UNIX Shell Tutorial, September 30, 1977.

5. D. F. Hartley (Ed.), The Cambridge Multiple Access System - Users Reference
Manual, University Mathematical Laboratory, Cambridge, England, 1968.

6. P. A. Crisman (Ed.), The Compatible Time-Sharing System, M.l.T. Press, Cambridge,
Mass., 1965.

4-26 An Introduction to the UNIX Shell

Appendix A - Grammar

item: word
input-output
name= value

simple-command: item
simple-command item

command: simple-command
(command-list)
{ command-list }
for name do command-list done
for name in word •.. do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part ... esac
if command-list then command-list else-part fi

pipeline: command
pipeline I command

andor: pipeline
andor && pipeline
andor I I pipeline

command-list: andor
command-list ;
command-list &
command-list ; andor
command-list & andor

input-output: > file
<file
>>word
<<word

file: word
& digit
&-

case-part: pattern) command-list ;;

pattern: word
pattern I word

else-part: elif command-list then command-list else-part
else command-list
empty

empty:

word: a sequence of non-blank characters

name: a sequence of letters, digits or underscores starting with a letter

digit: 0123456789

An Introduction to the UNIX Shell 4-27

Appendix B - Meta-characters and Reserved Words

a) syntactic

I pipe symbol

&& 'andf' symbol

I\ 'orf' symbol

command separator

"
case delimiter

& background commands

() command grouping

< input redirection

<< input from a here document

> output creation

>> output append

b) patterns

* match any character(s) including none

? match any single character

[...] match any of the enclosed characters

c) substitution

$ { ... } substitute shell variable

substitute command output

d) quoting

\

" "

quote the next character

quote the enclosed characters except for'

quote the enclosed characters except for $' \"

e) reserved words

if then else elif fi
case in esac
for while until do done
{ }

Introduction

Introduction to the C Shell 4-29

An introduction to the C shell

William Joy

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

A shell is a command language interpreter. Csh is the name of one particular command
interpreter on UNIX. The primary purpose of csh is to translate command lines typed at a
terminal into system actions, such as invocation of other programs. Csh is a user program
just like any you might write. Hopefully, csh will be a very useful program for you in
interacting with the UNIX system.

In addition to this document, you will want to refer to a copy of the UNIX programmer's
manual. The csh documentation in the manual provides a full description of all features of
the shell and is a final reference for questions about the shell.

Many words in this document are shown in italics. These are important words; names of
commands, and words which have special meaning in discussing the shell and UNIX. Many of
the words are defined in a glossary at the end of this document. If you don't know what is
meant by a word, you should look for it in the glossary.

Acknowledgements
Numerous people have provided good input about previous versions of csh and aided in

its debugging and in the debugging of its documentation. I would especially like to thank
Michael Ubell who made the crucial observation that history commands could be done well
over the word structure of input text, and implemented a prototype history mechanism in an
older version of the shell. Eric Allman has also provided a large number of useful comments
on the shell, ·helping to unify those concepts which are present and to identify and eliminate
useless and marginally useful features. Mike O'Brien suggested the pathname hashing
mechanism which speeds command execution. Jim Kulp added the job control and directory
stack primitives and added their documentation to this introduction.

4-30 Introduction to the C Shell

1. Terminal usage of the shell

1.1. The basic notion of commands

A shell in UNIX acts mostly as a medium through which other programs are invoked.
While it has a set of builtin functions which it performs directly, most commands cause exe
cution of programs that are, in fact, external to the shell. The shell is thus distinguished from
the command interpreters of other systems both by the fact that it is just a user program, and
by the fact that it is used almost exclusively as a mechanism for invoking other programs.

Commands in the UNIX system consist of a list of strings or words interpreted as a com
mand name followed by arguments. Thus the command

mail bill

consists of two words. The first word mail names the command to be executed, in this case
the mail program which sends messages to other users. The shell uses the name of the com
mand in attempting to execute it for you. It will look in a number of directories for a file
with the name mail which is expected to contain the mail program.

The rest of the words of the command are given as arguments to the command itself
when it is executed. In this case we specified also the argument bill which is interpreted by
the mail program to be the name of a user to whom mail is to be sent. In normal terminal
usage we might use the mail command as follows.

% mail bill --
1 have a question about the csh documentation.
My document seems to be missing page 5.
Does a page five exist?

Bill
EOT
%

Here we typed a message to send to bill and ended this message with a t D which sent
an end-of-file, to the mail program. (Here and throughout this document, the notation "tx" is
to be read "control-x" and represents the striking of the x key while the control key is held
down.) The mail program then echoed the characters 'EOT' and transmitted our message.
The characters '% ' were printed before and after the mail command by the shell to indicate
that input was needed.

After typing the '% ' prompt the shell was reading command input from our terminal.
We typed a complete command 'mail bill'. The shell then executed the mail program with
argument bill and went dormant waiting for it to complete. The mt:ti,l _program th~n. read
input from our terminal until we signalled an end-of-file via typing~ tD aft~-;hiCh .. the,_she11
noticed that mail had completed and signaled us that it was ready to read from the terminal
again by printing another '% ' prompt.

This is the essential pattern of all interaction with UNIX through the shell. A complete
command is typed at the terminal, the shell executes the command and when this execution
completes, it prompts for a new command. If you run the editor for an hour, the shell will
patiently wait for you to finish editing and obediently prompt you again whenever you finish
editing.

An example of a useful command you can execute now is the tset command, which sets
the default erase and kill characters on your terminal - the erase character erases the last
character you typed and the kill character erases the entire line you have entered so far. By
dE:lfault, the erase character is '#' and the kill character is '@'. Most people who use CRT

displays prefer tq use the backspace (tH) character as their erase character since it is then
easier to see what you have typed so far. You can make this be true by typing

Introduction to the C Shell 4-31

tset -e

which tells the program tset to set the erase character, and its default setting for this charac
ter is a backspace.

1.2. Flag arguments

A useful notion in UNIX is that of a fiag argument. While many arguments to commands
specify file names or user names some arguments rather specify an optional capability of the
command which you wish to invoke. By convention, such arguments begin with the character
'-' (hyphen). Thus the command

ls

will produce a list of the files in the current working directory. The option -s is the size
option, and

ls -s

causes ls to also give, for each file the size of the file in blocks of 512 characters. The manual
section for each command in the UNIX reference manual gives the available options for each
command. The ls command has a large number of useful and interesting options. Most other
commands have either no options or only one or two options. It is hard to remember options
of commands which are not used very frequently, so most UNIX utilities perform only one or
two functions rather than having a large number of hard to remember options.

1.3. Output to files

Commands that normally read input or write output on the terminal can also be exe
cuted with this input and/or output done to a file.

Thus suppose we wish to save the current date in a file called 'now'. The command

date

will print the current date on our terminal. This is because our terminal is the default stan
dard output for the date command and the date command prints the date on its standard
output. The shell lets us redirect the standard output of a command through a notation
using the metacharacter '>' and the name of the file where output is to be placed. Thus the
command

date> now

runs the date command such that its standard output is the file 'now' rather than the termi
nal. Thus this command places the current date and time into the file 'now'. It is important
to know that the date command was unaware that its output was going to a file rather than to
the terminal. The shell performed this redirection before the command began executing.

One other thing to note here is that the file 'now' need not have existed before the date
command was executed; the shell would have created the file if it did not exist. And if the file
did exist? If it had existed previously these previous contents would have been discarded! A
shell option noclobber exists to prevent this from happening accidentally; it is discussed in
section 2. 2.

The system normally keeps files which you create with '>' and all other files. Thus the
default is for files to be permanent. If you wish to create a file which will be removed
automatically, you can begin its name with a'#' character, this 'scratch' character denotes the
fact that the file will be a scratch file.* The system will remove such files after a couple of

*Note that if your erase character is a '#', you will have to precede the '#' with a 'x. The fact that the '#'
character is the old (pre-CRT) standard erase character means that it seldom appears in a file name, and al
lows this convention to be used for scratch files. If you are using a CRT, your erase character should be a
fiH, as we demonstrated in section 1.1 how this could be set up.

4-32 Introduction to the C Shell

days, or sooner if file space becomes very tight. Thus, in running the date command above,
we don't really want to save the output forever, so we would more likely do

date> #now

1.4. Metacharacters in the shell

The shell has a large number of special characters (like '> ') which indicate special func
tions. We say that these notations have syntactic and semantic meaning to the shell. In gen
eral, most characters which are neither letters nor digits have special meaning to the shell.
We shall shortly learn a means of quotation which allows us to use metacharacters without
the shell treating them in any special way.

Metacharacters normally have effect only when the shell is reading our input. We need
not worry about placing shell metacharacters in a letter we are sending via mail, or when we
are typing in text or data to some other program. Note that the shell is only reading input
when it has prompted with'% '.

1.5. Input from files; pipelines

We learned above how to redirect the standard output of a command to a file. It is also
possible to redirect the standard input of a command from a file. This is not often necessary
since most commands will read from a file whose name is given as an argument. We can give
the command

sort< data

to run the sort command with standard input, where the command normally reads its input,
from the file 'data'. We would more likely say

sort data

letting the sort command open the file 'data' for input itself since this is less to type.

We should note that if we just typed

sort

then the sort program would sort lines from its standard input. Since we did not redirect the
standard input, it would sort lines as we typed them on the terminal until we typed a tD to
indicate an end-of-file.

A most useful capability is the ability to combine the standard output of one command
with the standard input of another, i.e. to run the commands in a sequence known as a pipe
line. For instance the command

ls -s

normally produces a list of the files in our directory with the size of each in blocks of 512
characters. If we are interested in learning which of our files is largest we may wish to have
this sorted by size rather than by name, which is the default way in which ls sorts. We could
look at the many options of ls to see if there was an option to do this but would eventually
discover that there is not. Instead we can use a couple of simple options of the sort com
mand, combining it with ls to get what we want.

The -n option of sort specifies a numeric sort rather than an alphabetic sort. Thus

ls -s I sort -n

specifies that the output of the ls command run with the option -s is to be piped to the com
mand sort 'run with the numeric sort option. This would give us a sorted list of our files by
size, but with the smallest first. We could then use the -r reverse sort option and the head
command in combination with the previous command doing

Introduction to the C Shell 4-33

ls -s I sort -n -r I head -5

Here we have taken a list of our files sorted alphabetically, each with the size in blocks. We
have run this to the standard input of the sort command asking it to sort numerically in
reverse order (largest first). This output has then been run into the command head which
gives us the first few lines. In this case we have asked head for the first 5 lines. Thus this
command gives us the names and sizes of our 5 largest files.

The notation introduced above is called the pipe mechanism. Commands separated by
'I' characters are connected together by the shell and the standard output of each is run into
the standard input of the next. The leftmost command in a pipeline will normally take its
standard input from the terminal and the rightmost will place its standard output on the ter
minal. Other examples of pipelines will be given later when we discuss the history mechan
ism; one important use of pipes which is illustrated there is in the routing of information to
the line printer.

1.6. Filenames

Many commands to be executed will need the names of files as arguments. UNIX path
names consist of a number of components separated by'/'. Each component except the last
names a directory in which the next component resides, in effect specifying the path of direc
tories to follow to reach the file. Thus the pathname

/etc/motd

specifies a file in the directory 'etc' which is a subdirectory of the root directory '/'. Within
this directory the file named is 'motd' which stands for 'message of the day'. A pathname
that begins with a slash is said to be an absolute pathname since it is specified from the abso
lute top of the entire directory hierarchy of the system (the root). Pathnames which do not
begin with'/' are interpreted as starting in the current working directory, which is, by default,
your home directory and can be changed dynamically by the cd change directory command.
Such pathnames are said to be relative to the working directory since they are found by start
ing in the working ·directory and descending to lower levels of directories for each component
of the pathname. If the pathname contains no slashes at all then the file is contained in the
working directory itself and the pathname is merely the name of the file in this directory.
Absolute pathnames have no relation to the working directory.

MQ.st filenames consist of a number of alphanumeric characters and '.'s (periods). In
fact, 'aJl printing characters except '/'_(slash) may appear in filenames. Jt is inconvenient to
have most non-alphabetic characters in filenames because many of these have special meaning
to the shell. The character '.' (period) is not a shell-metacharacter and is often used to
separate the extension of a file name from the base of the name. Thus

prog.c prog.o prog.errs prog.output

are four related files. They share a base portion of a name (a base portion being that part of
the name that is left when a trailing'.' and following characters which are not'.' are stripped
off). The file 'prog.c' might be the source for a C program, the file 'prog.o' the corresponding
object file, the file 'prog.errs' the errors resulting from a compilation of the program and the
file 'prog.output' the output of a run of the program.

If we wished to refer to all four of these files in a command, we could use the notation

prog.*

This word is expanded by the shell, before the command to which it is an argument is exe
cuted, into a list of names which begin with 'prog.'. The character '*' here matches any
sequence (including the empty sequence) of characters in a file name. The names which
match are alphabetically sorted and placed in the argument list of the command. Thus the
command

4-34 Introduction to the C Shell

echo prog.*

will echo the names

prog.c prog.errs. prog.o prog.output

Note that the names are in sorted order here, and a different order than we listed them above.
The echo comµiand receives four words as arguments, even though we only typed one word as
as argument directly. The four words were generated by filename expansion of the one input
word.

Other notations for filename expansion are also available. The character '?' matches
any single character in a filename. Thus

echo? ?? ???

will echo a line of filenames.; first those with one character names, then those with two charac
ter names, anq finally those with three character names. The names of each length will be
independently sorted.

Another mechanism consists of a sequence of characters between '[' and ']'. This
metasequence mlltcpeE; any~ character from the enclosed set. Thus

prog.[co]

will match

prog.c prog.o

in the example a~ove. We can also place two characters around a
denote a range. Thus

chap.[1-5]

might match files

chap.1 chap.2 chap.3 chap.4 chap.5

if they existed. This is shorthand for

chap.[12345]

and otherwise equivalent.

' ' in this notation to

An important point to note is that if a list of argument words to a command (an argu
ment list) contains filename expansion syntax, and if this filename expansion syntax fails to
match any existing file names, then the shell considers this to be an error and prints a diag
nostic

No match.

and does not execute the command.

Another very important point is that files with the character '.' at the beginning are
treated specially. Neither '*' or '?' or the '[' ']' mechanism will match it. This prevents
accidental matching of the filenames '.' and ' .. ' in the working directory which have special
meaning to the system, as well as other files such as .cshrc which are not normally visible. We
will discuss the special role of the file .cshrc later.

Another filename expansion mechanism gives access to the pathname of the home direc
tory of other users. This notation consists the character M (tilde) followed by another
users' login name. For instance the wor 'liill' ould map to the pathname '/usr/bill' if the
home directory for 'bill' was '/usr/bill'. Since, on large systems, users may have login direc
tories scattered over many different disk volumes with different prefix directory names, this
notation provides a reliable way of accessing the files of other users.

Introduction to the C Shell 4-35

A special case of this notation consists of a M alone, e.g. ,_/mbox'. This notation is
expanded by the shell into the file 'mbox' in your home directory, i.e. into '/usr/bill/mbox' for
me on Ernie Co-vax, the UCB Computer Science Department VAX machine, where this docu
ment was prepared. This can be very useful if you have used cd to change to another direc
tory and have found a file you wish to copy using cp. If I give the command

cp thatfile -

the shell will expand this command to

cp thatfile /usr/bill

since my home directory is /usr /bill.

There also exists a mechanism using the characters ' {' and '}' for abbreviating a set of
words which have common parts but cannot be abbreviated by the above mechanisms because
they are not files, are the names of files which do not yet exist, are not thus conveniently
described. This mechanism will be described much later, in section 4.2, as it is used less fre
quently.

1.7. Quotation

We have already seen a number of metacharacters used by the shell. These metacharac
ters pose a problem in that we cannot use them directly as parts of words. Thus the com
mand

echo*

will not echo the character '*'. It will either echo an sorted list of filenames in the current
working directory, or print the message 'No match' if there are no files in the working direc
tory.

The recommended mechanism for placing characters which are neither numbers, digits,
'/', '.' or '-' in an argument word to a command is to enclose it with single quotation charac
ters ''', i.e.

echo'*'

There is one special character '!' which is used by the history mechanism of the shell and
which cannot be escaped by placing it within ''' characters. It and the character ''' itself can
be preceded by a single ''\to prevent their special meaning. Thus

echo\'\!

prints

'!

These two mechanisms suffice to place any printing character into a word which is an argu
ment to a shell command. They can be combined, as in

echo\''*'

which prints

'*
since the first'\' escaped the first''' and the '*'was enclosed between ''' characters.

1.8. Terminating commands

When you are executing a command and the shell is waiting for it to complete there are
several ways to force it to stop. For instance if you type the command

cat /etc/passwd

the system will print a copy of a list of all users of the system on your terminal. This is likely

4-36 Introduction to the C Shell

to continue for several minutes unless you stop it. You can send an INTERRUPT signal to the
cat command by typing the DEL or RUBOUT key on your terminal.* Since cat does not take
any precautions to avoid or otherwise handle this signal the INTERRUPT will cause it to ter
minate. The shell notices that cat has terminated and prompts you again with '3 '. If you
hit INTERRUPT again, the shell will just repeat its prompt since it handles INTERRUPT signals
and chooses to continue to execute commands rather than terminating like cat did, which
would have the effect of logging you out.

Another way in which many programs terminate is when they get an end-of-file from
their standard input. Thus the mail program in the first example above was terminated when
we typed a tD which generates an end-of-file from the standard input. The shell also ter
minates when it gets an end-of-file printing 'logout'; UNIX then logs you off the system. Since
this means that typing too many t D's can accidentally log us off, the shell has a mechanism
for preventing this. This ignoreeof option will be discussed in section 2.2.

If a command has its standard input redirected from a file, then it will normally ter
minate when it reaches the end of this file. Thus if we execute

mail bill < prepared. text

the mail command will terminate without our typing a tD. This is because it read to the
end-of-file of our file 'prepared.text' in which we placed a message for 'bill' with an editor pro
gram. We could also have done

cat prepared.text I mail bill

since the cat command would then have written the text through the pipe to the standard
input of the mail command. When the cat command completed it would have terminated,
closing down the pipeline and the mail command would have received an end-of-file from it
and terminated. Using a pipe here is more complicated than redirecting input so we would
more likely use the first form. These commands could also have been stopped by sending an
INTERRUPT.

Another possibility for stopping a command is to suspend its execution temporarily, with
the possibility of continuing execution later. This is done by sending a STOP signal via typing
a t Z. This signal causes all commands running on the terminal (usually one but more if a
pipeline is executing) to become suspended. The shell notices that the command(s) have been
suspended, types 'Stopped' and then prompts for a new command. The previously executing
command has been suspended, but otherwise unaffected by the STOP signal. Any other com
mands can be executed while the original command remains suspended. The suspended com
mand can be continued using the f g command with no arguments. The shell will then retype
the command to remind you which command is being continued, and cause the command to
resume execution. Unless any input files in use by the suspended command have been
changed in the meantime, the suspension has no effect whatsoever on the execution of the
command. This feature can be very useful during editing, when you need to look at another
file before continuing. An example of command suspension follows.

*Many users use stty (1) to change the interrupt character to tc.

Introduction to the C Shell 4-37

3 mail harold
Someone just copied a big file into my directory and its name is
tz
Stopped
3 ls
funnyfile
prog.c
prog.o
3 jobs
[1] + Stopped mail harold
3 fg
mail harold
funnyfile. Do you know who did it?
EOT
3

In this example someone was sending a message to Harold and forgot the name of the file he
wanted to mention. The mail command was suspended by typing t Z. When the shell noticed
that the mail program was suspended, it typed 'Stopped' and prompted for a new command.
Then the ls command was typed to find out the name of the file. The jobs command was run
to find out which command was suspended. At this time the fg command was typed to con
tinue execution of the mail program. Input to the mail program was then continued and
ended with a t D which indicated the end of the message at which time the mail program
typed EOT. The jobs command will show which commands are suspended. The tz should
only be typed at the beginning of a line since everything typed on the current line is discarded
when a signal is sent from the keyboard. This also happens on INTERRUPT, and QUIT signals.
More information on suspending jobs and controlling them is given in section 2.6.

If you write or run programs which are not fully debugged then it may be necessary to
stop them somewhat ungracefully. This can be done by sending them a QUIT signal, sent by
typing at\ This will usually provoke the shell to produce a message like:

Quit (Core dumped)

indicating that a file 'core' has been created containing information about the program 'a.out's
state when it terminated due to the QUIT signal. You can examine this file yourself, or for
ward information to the maintainer of the program telling him/her where the core file is.

If you run background commands (as explained in section 2.6) then these commands will
ignore INTERRUPT and QUIT signals at the terminal. To stop them you must use the kill com
mand. See section 2.6 for an example.

If you want to examine the output of a command without having it move off the screen
as the output of the

cat /etc/passwd

command will, you can use the command

more /etc/passwd

The more program pauses after each complete screenful and types '--More--' at which
point you can hit a space to get another screenful, a return to get another line, or a 'q' to end
the more program. You can also use more as a filter, i.e.

cat /etc/passwd I more

works just like the more simple more command above.

For stopping output of commands not involving more you can use the t S key to stop the
typeout. The typeout will resume when you hit tQ or any other key, but tQ is normally used
because it only restarts the output and does not become input to the program which is

4-38 Introduction to the C Shell

running. This works well on low-speed terminals, but at 9600 baud it is hard to type ftS and
tQ fast enough to paginate the output nicely, and a program like more is usually used.

An additional possibility is to use the to flush output character; when this character is
typed, all output from the current command is thrown away (quickly) until the next input
read occurs or until the next shell prompt. This can be used to allow a command to complete
without having to suffer through the output on a slow terminal; tO is a toggle, so flushing can
be turned off by typing t 0 again while output is being flushed.

1.9. What now?

We have so far seen a number of mechanisms of the shell and learned a lot about the
way in which it operates. The remaining sections will go yet further into the internals of the
shell, but you will surely want to try using the shell before you go any further. To try it you
can log in to UNIX and type the following command to the system:

chsh myname /bin/csh

Here 'myname' should be replaced by the name you typed to the system prompt of 'login:' to
get onto the system. Thus I would use 'chsh bill /bin/csh'. You only have to do this
once; it takes effect at next login. You are now ready to try using csh.

Before you do the 'chsh' command, the shell you are using when you log into the system
is '/bin/sh'. In fact, much of the above discussion is applicable to '/bin/sh'. The next section
will introduce many features particular to csh so you should change your shell to csh before
you begin reading it.

Introduction to the C Shell 4-39

2. Details on the shell for terminal users

2.1. Shell startup and termination

When you login, the shell is started by the system in your home directory and begins by
reading commands from a file .cshrc in this directory. All shells which you may start during
your terminal session will read from this file. We will later see what kinds of commands are
usefully placed there. For now we need not have this file and the shell does not complain
about its absence.

A login shell, executed after you login to the system, will, after it reads commands from
.cshrc, read commands from a file .login also in your horn~ directory. This file contains com
mands which you wish to do each time you login to the UNIX system. My . login file looks
something like:

set ignoreeof
set mail=(/usr/spool/mail/bill)
echo "${prompt }users" ; users
alias ts\

'set noglob ; eval 'tset -s -m dialup:c100rv4pna -m plugboard:?hp2621nl *";
ts; stty intr t C kill t U crt
set time=lS-history=lO
msgs -f
if (-e $mail) then

endif

echo "${prompt}mail"
mail

This file contains several commands to be executed by UNIX each time I login. The first
is a set command which is interpreted directly by the shell. It sets the shell variable
ignoreeof which causes the shell to not log me off if I hit D. Rather, I use the logout com
mand to log off of the system. By setting the mail variable, I ask the shell to watch for
incoming mail to me. Every 5 minutes the shell looks for this file and tells me if more mail
has arrived there. An alternative to this is to put the command

biff y

in place of this set; this will cause me to be notified immediately when mail arrives, and to be
shown the first few lines of the new message.

Next I set the shell variable 'time' to '15' causing the shell to automatically print out
statistics lines for commands which execute for at least 15 seconds of CPU time. The variable
'history' is set to 10 indicating that I want the shell to remember the last 10 commands I type
in its history list, (described later).

I create an alias "ts" which executes a tset (1) command setting up the modes of the ter
minal. The parameters to tset indicate the kinds of terminal which I usually use when not on
a hardwired port. I then execute "ts" and also use the stty command to change the interrupt
character to t C and the line kill character tot U.

I then run the 'msgs' program, which provides me with any system messages which I
have not seen before; the '-f' option here prevents it from telling me anything if there are no
new messages. Finally, if my mailbox file exists, then I run the 'mail' program to process my
mail.

When the 'mail' and 'msgs' programs finish, the shell will finish processing my .login file
and begin reading commands from the terminal, prompting for each with '3 '. When I log off
(by giving the logout command) the shell will print 'logout' and execute commands from the
file '.logout' if it exists in my home directory. After that the shell will terminate and UNIX will
log me off the system. If the system is not going down, I will receive a new login message. In
any case, after the 'logout' message the shell is committed to terminating and will take no

4-40 Introduction to the C Shell

further input from my terminal.

2.2. Shell variables

The shell maintains a set of variables. We saw above the variables history and time
which had values '10' and '15'. In fact, each shell variable has as value an array of zero or
more strings. Shell variables may be assigned values by the set command. It has several
forms, the most useful of which was given above and is

set name=value

Shell variables may be used to store values which are to be used in commands later
through a substitution mechanism. The shell variables most commonly referenced are, how
ever, those which the shell itself refers to. By changing the values of these variables one can
directly affect the behavior of the shell.

One of the most important variables is the variable path. This variable contains a
sequence of directory names where the shell searches for commands. The set command with
no arguments shows the value of all variables currently defined (we usually say set) in the
shell. The default value for path will be shown by set to be

% set
argv
cwd
home
path
prompt
shell
status
term
user
%

()
/usr/bill
/usr/bill
(. /usr/ucb /bin /usr/bin)
%
/bin/csh
0
c100rv4pna
bill

This output indicates that the variable path points to the current directory '.' and then
'/usr/ucb', '/bin' and '/usr/bin'. Commands which you may write might be in'.' (usually one of
your directories). Commands developed at Berkeley, live in '/usr/ucb' while commands
developed at Bell Laboratories live in '/bin' and '/usr/bin'.

A number of locally developed programs on the system live in the directory '/usr/local'.
If we wish that all shells which we invoke to have access to these new programs we can place
the command

set path=(. /usr/ucb /bin /usr/bin /usr/local)

in our file .cshrc in our home directory. Try doing this and then logging out and back in and
do

set

again to see that the value assigned to path has changed.

One thing you should be aware of is that the shell examines each directory which you
insert into your path and determines which commands are contained there. Except for the
current directory'.', which the shell treats specially, this means that if commands are added to
a directory in your search path after you have started the shell, they will not necessarily be
found by the shell. If you wish to use a command which has been added in this way, you
should give the command

rehash

to the shell, which will cause it to recompute its internal table of command locations, so that
it will find the newly added command. Since the shell has to look in the current directory '.'

Introduction to the C Shell 4-41

on each command, placing it at the end of the path specification usually works equivalently
and reduces overhead.

Other useful built in variables are the variable home which shows your home directory,
cwd which contains your current working directory, the variable ignoreeof which can be set in
your .login file to tell the shell not to exit when it receives an end-of-file from a terminal (as
described above). The variable 'ignoreeof' is one of several variables which the shell does not
care about the value of, only whether they are set or unset. Thus to set this variable you sim
ply do

set ignoreeof

and to unset it do

unset ignoreeof

These give the variable 'ignoreeof' no value, but none is desired or required.

Finally, some other built-in shell variables of use are the variables noclobber and mail.
The metasyntax

>filename

which redirects the standard output of a command will overwrite and destroy the previous
contents of the named file. In this way you may accidentally overwrite a file which is valu
able. If you would prefer that the shell not overwrite files in this way you can

set noclobber

in your .login file. Then trying to do

date> now

would cause a diagnostic if 'now' existed already. You could type

date>! now
I

if you really wanted to overwrite the contents of 'now'. The '>!' is a special metasyntax indi
cating that clobbering the file is ok.t

2.3. The shell's history list

The shell can maintain a history list into which it places the words of previous com
mands. It is possible to use a notation to reuse commands or words from commands in form
ing new commands. This mechanism can be used to repeat previous commands or to correct
minor typing mistakes in commands.

The following figure gives a sample session involving typical usage of the history
mechanism of the shell. In this example we have a very simple C program which has a bug
(or two) in it in the file 'bug.c', which we 'cat' out on our terminal. We then try to run the C
compiler on it, referring to the file again as '!$', meaning the last argument to the previous
command. Here the '!' is the history mechanism invocation metacharacter, and the '$' stands
for the last argument, by analogy to'$' in the editor which stands for the end of the line. The
shell echoed the command, as it would have been typed without use of the history mechanism,
and then executed it. The compilation yielded error diagnostics so we now run the editor on
the file we were trying to compile, fix the bug, and run the C compiler again, this time refer
ring to this command simply as '!c', which repeats the last command which started with the
letter 'c'. If there were other commands starting with 'c' done recently we could have said '!cc'
or even '!cc:p' which would have printed the last command starting with 'cc' without executing
it.

tThe space between the'!' and the word 'now' is critical here, as '!now' would be an invocation of the histo
ry mechanism, and have a totally different effect.

4-42 Introduction to the C Shell

% cat bug.c
main()

{
printf("hello);

}
% cc !$
cc bug.c
"bug.c", line 4: newline in string or char constant
"bug.c", line 5: syntax error
% ed !$
ed bug.c
29
4s/);/"&/p

w
30
q
% !c

printf("hello");

cc bug.c
% a.out
hello% !e
ed bug.c
30
4s/lo/lo \ \n/p

printf("hello .~1");
w
32
q
% !c -o bug
cc bug.c -o bug
% size a.out bug
a.out: 2784+364+ 1028 = 4176b = Ox1050b
bug: 2784+364+ 1028 = 4176b = Ox1050b
% ls -1 !*
ls -1 a.out bug
-rwxr-xr-x 1 bill
-rwxr-xr-x 1 bill
% bug
hello
% num bug.c I spp

3932 Dec 19 09:41 a.out
3932 Dec 19 09:42 bug

spp: Command not found.
% tspptssp
num bug.c I ssp

1 main()
3 {
4
5 }

% !! llpr

printf("hello\n");

num bug.c I ssp I lpr
%

Introduction to the C Shell 4-43

After this recompilation, we ran the resulting 'a.out' file, and then noting that there still
was a bug, ran the editor again. After fixing the program we ran the C compiler again, but
tacked onto the command an extra '-o bug' telling the compiler to place the resultant binary
in the file 'bug' rather than 'a.out'. In general, the history mechanisms may be used anywhere
in the formation of new commands and other characters may be placed before and after the
substituted commands.

We then ran the 'size' command to see how large the binary program images we have
created were, and then an 'ls -1' command with the same argument list, denoting the argu
ment list'*'. Finally we ran the program 'bug' to see that its output is indeed correct.

To make a numbered listing of the program we ran the 'num' command on the file
'bug.c'. In order to compress out blank lines in the output of 'num' we ran the output through
the filter 'ssp', but misspelled it as spp. To correct this we used a shell substitute, placing the
old text and new text between 'f' characters. This is similar to the substitute command in the
editor. Finally, we repeated the same command with '!!', but sent its output to the line
printer.

There are other mechanisms available for repeating commands. The history command
prints out a number of previous commands with numbers by which they can be referenced.
There is a way to refer to a previous command by searching for a string which appeared in it,
and there are other, less useful, ways to select arguments to include in a new command. A
complete description of all these mechanisms is given in the C shell manual pages in the UNIX
Programmers Manual.

2.4. Aliases

The shell has an alias mechanism which can be used to make transformations on input
commands. This mechanism can be used to simplify the commands you type, to supply
default arguments to commands, or to perform transformations on commands and their argu
ments. The alias facility is similar to a macro facility. Some of the features obtained by alias
ing can be obtained also using shell command files, but these take place in another instance of
the shell and cannot directly affect the current shells environment or involve commands such
as cd which must be done in the current shell.

As an example, suppose that there is a new version of the mail program on the system
called 'newmail' you wish to use, rather than the standard mail program which is called 'mail'.
If you place the shell command

alias mail newmail

in your .cshrc file, the shell will transform an input line of the form

mail bill

into a call on 'newmail'. More generally, suppose we wish the command 'ls' to always show
sizes of files, that is to always do '-s'. We can do

alias ls ls -s

or even

alias dir ls -s

creating a new command syntax 'dir' which does an 'ls -s'. If we say

dir -bill

then the shell will translate this to

ls -s /mnt/bill

Thus the alias mechanism can be used to provide short names for commands, to provide
default arguments, and to define new short commands in terms of other commands. It is also

4-44 Introduction to the C Shell

possible to define aliases which contain multiple commands or pipelines, showing where the
arguments to the original command are to be substituted using the facilities of the history
mechanism. Thus the definition

alias cd 'cd \!* ; ls'

would do an ls command after each change directory cd command. We enclosed the entire
alias definition in ''' characters to prevent most substitutions from occurring and the character
';' from being recognized as a metacharacter. The '!' here is escaped with a 'x to prevent it
from being interpreted when the alias command is typed in. The 'x*' here substitutes the
entire argument list to the pre-aliasing cd command, without giving an error if there were no
arguments. The ';' separating commands is used here to indicate that one command is to be
done and then the next. Similarly the definition

alias whois 'grep \! t /etc/passwd'

defines a command which looks up its first argument in the password file.

Warning: The shell currently reads the .cshrc file each time it starts up. If you place a
large number of commands there, shells will tend to start slowly. A mechanism for saving the
shell environment after reading the .cshrc file and quickly restoring it is under development,
but for now you should try to limit the number of aliases you have to a reasonable number ...
10 or 15 is reasonable, 50 or 60 will cause a noticeable delay in starting up shells, and make
the system seem sluggish when you execute commands from within the editor and other pro
grams.

2.5. More redirection; > > and >&

There are a few more notations useful to the terminal user which have not been intro
duced yet.

In addition to the standard output, commands also have a diagnostic output which is
normally directed to the terminal even when the standard output is redirected to a file or a
pipe. It is occasionally desirable to direct the diagnostic output along with the standard out
put. For instance if you want to redirect the output of a long running command into a file
and wish to have a record of any error diagnostic it produces you can do

command>& file

The'>&' here tells the shell to route both the diagnostic output and the standard output into
'file'. Similarly you can give the command

command I & lpr

to route both standard and diagnostic output through the pipe to the line printer daemon
lpr.#

Finally, it is possible to use the form

command > > file

to place output at the end of an existing file. t

#A command form

command >&! file

exists, and is used when noclobber is set and file already exists.
tlf noclobber is set, then an error will result if file does not exist, otherwise the shell will create file if it
doesn't exist. A form

command>>! file

makes it not be an error for file to not exist when noclobber is set.

Introduction to the C Shell 4-45

2.6. Jobs; Background, Foreground, or Suspended
When one or more commands are typed together as a pipeline or as a sequence of com

mands separated by semicolons, a single job is created by the shell consisting of these com
mands together as a unit. Single commands without pipes or semicolons create the simplest
jobs. Usually, every line typed to the shell creates a job. Some lines that create jobs (one per
line) are

sort< data
ls -s I sort -n I head -5
mail harold

If the metacharacter '&' is typed at the end of the commands, then the job is started as
a background job. This means that the shell does not wait for it to complete but immediately
prompts and is ready for another command. The job runs in the background at the same
time that normal jobs, called foreground jobs, continue to be read and executed by the shell
one at a time. Thus

du> usage &

would run the du program, which reports on the disk usage of your working directory (as well
as any directories below it), put the output into the file 'usage' and return immediately with a
prompt for the next command without out waiting for du to finish. The du program would
continue executing in the background until it finished, even though you can type and execute
more commands in the mean time. When a background job terminates, a message is typed by
the shell just before the next prompt telling you that the job has completed. In the following
example the du job finishes sometime during the execution of the mail command and its com
pletion is reported just before the prompt after the mail job is finished.

3 du> usage &
[1] 503
3 mail bill
How do you know when a background job is finished?
EOT
[1] - Done
%

du> usage

If the job did not terminate normally the 'Done' message might say something else like
'Killed'. If you want the terminations of background jobs to be reported at the time they
occur (possibly interrupting the output of other foreground jobs), you can set the notify vari
able. In the previous example this would mean that the 'Done' message might have come
right in the middle of the message to Bill. Background jobs are unaffected by any signals
from the keyboard like the STOP, INTERRUPT, or QUIT signals mentioned earlier.

Jobs are recorded in a table inside the shell until they terminate. In this table, the shell
remembers the command names, arguments and the process numbers of all commands in the
job as well as the working directory where the job was started. Each job in the table is either
running in the foreground with the shell waiting for it to terminate, running in the back
ground, or suspended. Only one job can be running in the foreground at one time, but several
jobs can be suspended or running in the background at once. As each job is started, it is
assigned a small identifying number called the job number which can be used later to refer to
the job in the commands described below. Job numbers remain the same until the job ter
minates and then are re-used.

When a job is started in the backgound using '&', its number, as well as the process
numbers of all its (top level) commands, is typed by the shell before prompting you for
another command. For example,

4-46 Introduction to the C Shell

% ls -s I sort -n > usage &
[2] 2034 2035
%

runs the 'ls' program with the '-s' options, pipes this output into the 'sort' program with the
'-n' option which puts its output into the file 'usage'. Since the'&' was at the end of the line,
these two programs were started together as a background job. After starting the job, the
shell prints the job number in brackets (2 in this case) followed by the process number of each
program started in the job. Then the shell immediates prompts for a new command, leaving
the job running simultaneously.

As mentioned in section 1.8, foreground jobs become suspended by typing t Z which
sends a STOP signal to the currently running foreground job. A background job can become
suspended by using the stop command described below. When jobs are suspended they
merely stop any further progress until started again, either in the foreground or the back
gound. The shell notices when a job becomes stopped and reports this fact, much like it
reports the termination of background jobs. For foreground jobs this looks like

% du> usage
tz
Stopped
%

'Stopped' message is typed by the shell when it notices that the du program stopped. For
background jobs, using the stop command, it is

% sort usage &
[1] 2345
% stop %1
[1] + Stopped (signal) sort usage
%

Suspending foreground jobs can be very useful when you need to temporarily change what you
are doing (execute other commands) and then return to the suspended job. Also, foreground
jobs can be suspended and then continued as background jobs using the bg command, allow
ing you to continue other work and stop waiting for the foreground job to finish. Thus

% du> usage
tz
Stopped
% bg
[1] du> usage &
%

starts 'du' in the foreground, stops it before it finishes, then continues it in the background
allowing more foreground commands to be executed. This is especially helpful when a fore
ground job ends up taking longer than you expected and you wish you had started it in the
backgound in the beginning.

All job control commands can take an argument that identifies a particular job. All job
name arguments begin with the character '% ', since some of the job control commands also
accept process numbers (printed by the ps command.) The default job (when no argument is
given) is called the current job and is identified by a '+' in the output of the jobs command,
which shows you which jobs you have. When only one job is stopped or running in the back
ground (the usual case) it is always the current job thus no argument is needed. If a job is
stopped while running in the foreground it becomes the current job and the existing current
job becomes the previous job - identified by a '-' in the output of jobs. When the current
job terminates, the previous job becomes the current job. When given, the argument is either
'%-' (indicating the previous job); '%#', where # is the job number; '%pref' where pref is

Introduction to the C Shell 4-47

some unique prefix of the command name and arguments of one of the jobs; or'%?' followed
by some string found in only one of the jobs.

The jobs command types the table of jobs, giving the job number, commands and status
('Stopped' or 'Running~) of each backgound or suspended job. With the '-1' option the pro
cess numbers are also typed.

% du> usage &
[1] 3398
% ls -s I sort -n > myfile &
[2] 3405
% mail bill
tz
Stopped
% jobs
[1] Running
[2] Running
[3] s Stopped
% fg %ls
ls -s I sort -n > myfile
% more myfile

du> usage
ls -s I sort -n > myfile
mail bill

The f g command runs a suspended or background job in the foreground. It is used to
restart a previously suspended job or change a background job to run in the foreground
(allowing signals or input from the terminal). In the above example we used fg to change the
'ls' job from the background to the foreground since we wanted to wait for it to finish before
looking at its output file. The bg command runs a suspended job in the background. It is
usually used after stopping the currently running foreground job with the STOP signal. The
combination of the STOP signal and the bg command changes a foreground job into a back
ground job. The stop command suspends a background job.

The kill command terminates a background or suspended job immediately. In addition
to jobs, it may be given process numbers as arguments, as printed by ps. Thus, in the example
above, the running du command could have been terminated by the command

% kill % 1
[1] Terminated
%

du> usage

The notify command (not the variable mentioned earlier) indicates that the termination
of a specific job should be reported at the time it finishes instead of waiting for the next
prompt.

If a job running in the background tries to read input from the terminal it is automati
cally stopped. When such a job is then run in the foreground, input can be given to the job.
If desired, the job can be run in the background again until it requests input again. This is
illustrated in the following sequence where the 's' command in the text editor might take a
long time.

% ed bigfile
120000
1,$s/thisword/thatword/
tz
Stopped
% bg
[1] ed bigfile &
%
. . . some foreground commands

[1] Stopped (tty input) ed bigfile

4-48 Introduction to the C Shell

% fg
ed bigfile
w
120000
q
%

So after the 's' command was issued, the 'ed' job was stopped with fiZ and then put in the
background using bg. Some time later when the 's' command was finished, ed tried to read
another command and was stopped because jobs in the backgound cannot read from the ter
minal. The fg command returned the 'ed' job to the foreground where it could once again
accept commands from the terminal.

The command

stty tostop

causes all background jobs run on your terminal to stop when they are about to write output
to the terminal. This prevents messages from background jobs from interrupting foreground
job output and allows you to run a job in the background without losing terminal output. It
also can be used for interactive programs that sometimes have long periods without interac
tion. Thus each time it outputs a prompt for more input it will stop before the prompt. It
can then be run in the foreground using f g, more input can be given and, if necessary stopped
and returned to the background. This stty command might be a good thing to put in your
.login file if you do not like output from background jobs interrupting your work. It also can
reduce the need for redirecting the output of background jobs if the output is not very big:

% stty tostop
% wc hugefile &
[1] 10387
% ed text
. . . some time later
q
[1] Stopped (tty output) wc hugefile
% fg WC

wc hugefile
13371 30123 302577

% stty -tostop

Thus after some time the 'we' command, which counts the lines, words and characters in a
file, had one line of output. When it tried to write this to the terminal it stopped. By restart
ing it in the foreground we allowed it to write on the terminal exactly when we were ready to
look at its output. Programs which attempt to change the mode of the terminal will also
block, whether or not tostop is set, when they are not in the foreground, as it would be very
unpleasant to have a background job change the state of the terminal.

Since the jobs command only prints jobs started in the currently executing shell, it
knows nothing about background jobs started in other login sessions or within shell files. The
ps can be used in this case to find out about background jobs not started in the current shell.

2.7. Working Directories

As mentioned in section 1.6, the shell is always in a particular working directory. The
'change directory' command chdir (its short form cd may also be used) changes the working
directory of the shell, that is, changes the directory you are located in.

It is useful to make a directory for each project you wish to work on and to place all files
related to that project in that directory. The 'make directory' command, mkdir, creates a new
directory. The pwd ('print working directory') command reports the absolute pathname of
the working directory of the shell, that is, the directory you are located in. Thus in the

example below:

% pwd
/usr/bill
% mkdir newpaper
% chdir newpaper
% pwd
/usr /bill/newpaper
%

Introduction to the C Shell 4-49

the user has created and moved to the directory newpaper. where, for example, he might
place a group of related files.

No matter where you have moved to in a directory hierarchy, you can return to your
'home' login directory by doing just

cd

with no arguments. The name ' .. ' always means the directory above the current one in the
hierarchy, thus

cd ..

changes the shell's working directory to the one directly above the current one. The name ' .. '
can be used in any pathname, thus,

cd . ./programs

means change to the directory 'programs' contained in the directory above the current one. If
you have several directories for different projects under, say, your home directory, this short
hand notation permits you to switch easily between them.

The shell always remembers the pathname of its current working directory in the vari
able cwd. The shell can also be requested to remember the previous directory when you
change to a new working directory. If the 'push directory' command pushd is used in place of
the cd command, the shell saves the name of the current working directory on a directory
stack before changing to the new one. You can see this list at any time by typing the 'direc
tories' command dirs.

% pushd newpaper /references
-;newpaper/references -
% pushd /usr/lib/tmac
/usr/lib/tmac -;newpaper/references -
% dirs
/usr/lib/tmac -;newpaper/references -
% popd
-;newpaper/references -
% popd

%

The list is printed in a horizontal line, reading left to right, with a tilde c-) as shorthand for
your home' directory-in this case '/usr/bill'. The directory stack is printed whenever there is
more than one entry on it and it changes. It is also printed by a dirs command. Dirs is usu
ally faster and more informative than pwd since it shows the current working directory as well
as any other directories remembered in the stack.

The pushd command with no argument alternates the current directory with the first
directory in the list. The 'pop directory' popd command without an argument returns you to
the directory you were in prior to the current one, . discarding the previous current directory
from the stack (forgetting it). Typing popd several times in a series takes you backward
through the directories you had been in (changed to) by pushd command. There are other

4-50 Introduction to the C Shell

options to pushd and popd to manipulate the contents of the directory stack and to change to
directories not at the top of the stack; see the csh manual page for details.

Since the shell remembers the working directory in which each job was started, it warns
you when you might be confused by restarting a job in the foreground which has a different
working directory than the current working directory of the shell. Thus if you start a back
ground job, then change the shell's working directory and then cause the background job to
run in the foreground, the shell warns you that the working directory of the currently running
foreground job is different from that of the shell.

% dirs -1
/mnt/bill
% cd myproject
3 dirs
-;myproject
3 ed prog.c
1143
tz
Stopped
3 cd ..
3 ls
myproject
textfile
3 fg
ed prog.c (wd: -;myproject)

This way the shell warns you when there is an implied change of working directory, even
though no cd command was issued. In the above example the 'ed' job was still in
'/mnt/bill/project' even though the shell had changed to '/mnt/bill'. A similar warning is given
when such a foreground job terminates or is suspended (using the STOP signal) since the
return to the shell again implies a change of working directory.

3 fg
ed prog.c (wd: -;myproject)
... after some editing

q
(wd now:-)
3

These messages are sometimes confusing if you use programs that change their own working
directories, since the shell only remembers which directory a job is started in, and assumes it
stays there. The '-1' option of jobs will type the working directory of suspended or back
ground jobs when it is different from the current working directory of the shell.

2.8. Useful built-in commands

We now give a few of the useful built-in commands of the shell describing how they are
used.

The alias command described above is used to assign new aliases and to show the exist
ing aliases. With no arguments it prints the current aliases. It may also be given only one
argument such as

alias ls

to show the current alias for, e.g., 'ls'.

The echo command prints its arguments. It is often used in shell scripts or as an
interactive command to see what filename expansions will produce.

Introduction to the C Shell 4-51

The history command will show the contents of the history list. The numbers given
with the history events can be used to reference previous events which are difficult to refer
ence using the contextual mechanisms introduced above. There is also a shell variable called
prompt. By placing a'!' character in its value the shell will there substitute the number of the
current command in the history list. You can use this number to refer to this command in a
history substitution. Thus you could

set prompt='\! 3

Note that the'!' character had to be escaped here even within''' characters.

The limit command is used to restrict use of resources. With no arguments it prints the
current limitations:

cputime
filesize
datasize
stacksize
coredumpsize

Limits can be set, e.g.:

unlimited
unlimited
5616 kbytes
512 kbytes
unlimited

limit coredumpsize 128k

Most reasonable units abbreviations will work; see the csh manual page for more details.

The logout command can be used to terminate a login shell which has ignoreeof set.

The rehash command causes the shell to recompute a table of where commands are
located. This is necessary if you add a command to a directory in the current shell's search
path and wish the shell to find it, since otherwise the hashing algorithm may tell the shell that
the command wasn't in that directory when the hash table was computed.

The repeat command can be used to repeat a command several times. Thus to make 5
copies of the file one in the file five you could do

repeat 5 cat one > > five

The setenv command can be used to set variables in the environment. Thus

setenv TERM adm3a

will set the value of the environment variable TERM to 'adm3a'. A user program printenv
exists which will print out the environment. It might then show:

% printenv
HOME=/usr/bill
SHELL= /bin/ csh
PA TH= :/usr /uc b:/bin:/usr /bin:/usr /local
TERM=adm3a
USER= bill
%

The source command can be used to force the current shell to read commands from a
file. Thus

source .cshrc

can be used after editing in a change to the .cshrc file which you wish to take effect before the
next time you login.

The time command can be used to cause a command to be timed no matter how much
CPU time it takes. Thus

4-52 Introduction to the C Shell

% time cp /etc/re /usr/bill/rc
O.Ou 0.ls 0:01 8% 2+1k 3+2io lpf+Ow
% time we /etc/re /usr/bill/rc

52 178 1347 /etc/re
52 178 134 7 /usr/bill/rc

104 356 2694 total
O.lu O.ls 0:00 13% 3+3k 5+3io 7pf+Ow
%

indicates that the cp command used a negligible amount of user time (u) and about l/lOth of
a system time (s); the elapsed time was 1 second (0:01), there was an average memory usage of
2k bytes of program space and lk bytes of data space over the cpu time involved (2+ lk); the
program did three disk reads and two disk writes (3+2io), and took one page fault and was
not swapped (lpf+Ow). The word count command we on the other hand used 0.1 seconds of
user time and 0.1 seconds of system time in less than a second of elapsed time. The percen
tage '13%' indicates that over the period when it was active the command 'we' used an aver
age of 13 percent of the available CPU cycles of the machine.

The unalias and unset commands can be used to remove aliases and variable definitions
from the shell, and unsetenv removes variables from the environment.

2.9. What else?
This concludes the basic discussion of the shell for terminal users. There are more

features of the shell to be discussed here, and all features of the shell are discussed in its
manual pages. One useful feature which is discussed later is the foreach built-in command
which can be used to run the same command sequence with a number of different arguments.

If you intend to use UNIX a lot you ~hould look through the rest of this document
and the shell manual pages to become familiar with the other facilities which are available to
you.

Introduction to the C Shell 4-53

3. Shell control structures and command scripts

3.1. Introduction

It is possible to place commands in files and to cause shells to be invoked to read and
execute commands from these files, which are called shell scripts. We here detail those
features of the shell useful to the writers of such scripts.

3.2. Make

It is important to first note what shell scripts are not useful for. There is a program
called make which is very useful for maintaining a group of related files or performing sets of
operations on related files. For instance a large program consisting of one or more files can
have its dependencies described in a makefile which contains definitions of the commands
used to create these different files when changes occur. Definitions of the means for printing
listings, cleaning up the directory in which the files reside, and installing the resultant pro
grams are easily, and most appropriately placed in this makefile. This format is superior and
preferable to maintaining a group of shell procedures to maintain these files.

Similarly when working on a document a makefile may be created which defines how
different versions of the document are to be created and which options of nroff or troff are
appropriate.

3.3. Invocation and the argv variable

A csh command script may be interpreted by saying

% csh script ...

where script is the name of the file containing a group of csh commands and ' ... ' is replaced
by a sequence of arguments. The shell places these arguments in the variable argv and then
begins to read commands from the script. These parameters are then available through the
same mechanisms which are used to reference any other shell variables.

If you make the file 'script' executable by doing

chmod 755 script

and place a shell comment at the beginning of the shell script (i.e. begin the file with a '#'
character) then a '/bin/csh' will automatically be invoked to execute 'script' when you type

script

If the file does not begin with a '#' then the standard shell '/bin/sh' will be used to execute it.
This allows you to convert your older shell scripts to use csh at your convenience.

3.4. Variable substitution

After each input line is broken into words and history substitutions are done on it, the
input line is parsed into distinct commands. Before each command is executed a mechanism
know as variable substitution is done on these words. Keyed by the character '$' this substi
tution replaces the names of variables by their values. Thus

echo $argv

when placed in a command script would cause the current value of the variable argv to be
echoed to the output of the shell script. It is an error for argv to be unset at this point.

A number of notations are provided for accessing components and attributes of variables.
The notation

$?name

expands to '1' if name .is set or to 'O' if name is not set. It is the fundamental mechanism used
for checking whether particular variables have been assigned values. All other forms of

4-54 Introduction to the C Shell

reference to undefined variables cause errors.

The notation

$#name

expands to the number of elements in the variable name. Thus

% set argv=(a b c)
% echo $?argv
1
% echo $#argv
3
3 unset argv
% echo $?argv
0
% echo $argv
Undefined variable: argv.
3

It is also possible to access the components of a variable which has several values. Thus

$argv[l]

gives the first component of argv or in the example above 'a'. Similarly

$argv[$#argv]

would give 'c', and

$argv[l-2]

would give 'ab'. Other notations useful in shell scripts are

$n

where n is an integer as a shorthand for

$argv[n]

the nth parameter and

$*

which is a shorthand for

$argv

The form

$$

expands to the process number of the current shell. Since this process number is unique in
the system it can be used in generation of unique temporary file names. The form

$<.

is quite special and is replaced by the next line of input read from the shell's standard input
(not the script it is reading). This is useful for writing shell scripts that are interactive, read
ing commands from the terminal, or even writing a shell script that acts as a filter, reading
lines from its input file. Thus the sequence

echo 'yes or no?\c'
set a=($<)

would write out the prompt 'yes or no?' without a newline and then read the answer into the
variable 'a'. In this case '$#a' would be 'O' if either a blank line or end-of-file (tD) was typed.

Introduction to the C Shell 4-55

One minor difference between '$n' and '$argv[n]' should be noted here. The form
'$argv[n]' will yield an error if n is not in the range 'l-$#argv' while '$n' will never yield an
out of range subscript error. This is for compatibility with the way older shells handled
parameters.

Another important point is that it is never an error to give a subrange of the form 'n- ';
if there are less than n components of the given variable then no words are substituted. A
range of the form 'm-n' likewise returns an empty vector without giving an error when m
exceeds the riuniber of elements of the given variable, provided the subscript n is in range.

3.5. Expressions

In orde.r for interesting shell scripts to be constructed it must be possible to evaluate
expressions in the shell based on the values of variables. In fact, all the arithmetic operations
of the language C are available in the shell with the same precedence that they have in C. In
particular, the operations '==' and'!=' compare strings and the operators '&&'and 'II' imple
ment the boolean and/or operations. The special operators'=-' and'!-' are similar to'==' and
'!=' except that the string on the right side can have pattern matching characters (like *, ? or
[]) and the test is whether the string on the left matches the pattern on the right.

The shell also allows file enquiries of the form

-? filename

where '?'is replace by a number of single characters. For instance the expression primitive

-e filename

telt whether the file 'filename' exists. Other primitives test for read, write and execute access
to the file, whether it is a directory, or has non-zero length.

It is possible to test whether a command terminates normally, by a primitive of the form
'{ command }'which returns true, i.e. '1' if the command succeeds exiting normally with exit
status 0, or 'O' if the command terminates abnormally or with exit status non-zero. If more
detailed information about the execution status of a command is required, it can be executed
and the variable '$status' examined in the next command. Since '$status' is set by every com
mand, it is very transient. It can be saved if it is inconvenient to use it only in the single
immediately following command.

For a full list of expression components available see the manual section for the shell.

3.6. Sample shell script

A sample shell script which makes use of the expression mechanism of the shell and
some of its control structure follows:

4-56 Introduction to the C Shell

- % cat copyc

Copyc copies those C programs in the specified list
, # to the directory -/backup if they differ from the files

· , - ~ # already in -/backup
-#
- set noglob

- - foreach i ($argv)

end

if ($i r * .c) continue # not a .c file so do nothing

if(! -r -/backup/$i:t) then

endif

echo $i:t not in backup ... not cpxed
continue

<'.mp -s $i -/backup/$i:t # to set $status

if ($status != ot theh
echo new backup of $i
cp $i -/backup/$i:t

endif

This script makes use of the f oreach command, which causes the shell to execute the
commands between the foreach and the matching end for each of the values given between'('
and ')' with the named variable, in this case 'i' set to successive values in the list. Within this
loop we may use the command break to stop executing the loop and continue to prematurely
terminate one iteration and begin the next. After the foreach loop the iteration variable (i in
this case) has the value at the last iteration.

We set the variable noglob here to prevent filename expansion of the members of argv.
This is a good idea, in general, if the arguments to a shell script are filenames which have
already been expanded or if the arguments may contain filename expansion metacharacters.
It is also possible to quote each use of a'$' variable expansion, but this is harder and less reli
able.

The other control construct used here is a statement of the form

if (expression) then
command

end if

The placement of the keywords here is not flexible due to the current implementation of the
shell.t

tThe following two formats are not currently acceptable to the shell:

and

if (expression)
then

command

endif

#Won't work!

if (expression) then command endif #Won't work

Introduction to the C Shell 4-57

The shell does have another form of the if statement of the form

if (expression) command

which can be written

if (expression) \
command

Here we have escaped the newline for the sake of appearance. The command must not
involve 'I', '&'or';' and must not be another control command. The second form requires the
final'~ to immediately precede the end-of-line.

The more general if statements above also admit a sequence of else-if pairs followed by
a single else and an endif, e.g.:

if (expression) then
commands

else if (expression) then
commands

else
commands

end if

Another important mechanism used in shell scripts is the ':' modifier. We can use the
modifier ':r'\ here to extract a(root 1 of a filename or ':e' to extract the extension:) Thus if the
variable i has the value '/mnt/foo. bar' then

3 echo $i $i:r $i:e
/mnt/foo. bar /mnt/foo bar
3

shows how the ':r' modifier strips off the trailing '.bar' and the the ':e' modifier leav~s only the
'bar'. Other modifiers will take off the last component of a pathname leaving th~ead ':h' .or
all but the last component of a pathname leaving the tail ':t'. These modifiers are fully
described in the csh manual pages in the programmers manual. It is also possible to use the
command substitution mechanism described in the next major section to perform
modifications on strings to then reenter the shells environment. Since each usage of this
mechanism involves the creation of a new process, it is much more expensive to use than the
':' modification mechanism.# Finally, we note that the character '#' lexically introduces a
shell comment in shell scripts (but not from the terminal). All subsequent characters on the
input line after a'#' are discarded by the shell. This character can be quoted using''' or'\ to
place it in an argument word.

3.7. Other control structures

The shell also has control structures while and switch similar to those of C. These take
the forms

#It is also important to note that the current implementation of the shell limits the number of ':' modifiers
on a '$' substitution to 1. Thus

% echo $i $i:h:t
/a/b/c /a/b:t
%

does not do what one would expect.

4-58 Introduction to the C Shell

and

while (expression)
commands

end

switch (word)

case strl:
commands
breaksw

case strn:
commands
breaksw

default:
commands
breaksw

endsw

For details see the manual section for csh. C programmers should note that we use breaksw to
exit from a switch while break exits a while or f oreach loop. A common mistake to make in
csh scripts is to use break rather than breaksw in switches.

Finally, csh allows a goto statement, with labels looking like they do in C, i.e.:

loop:
commands
gotQ loop

3.8. Supplying input to commands

Commands run from shell scripts receive by default the standard input of the shell
which is running the script. This is different from previous shells running under UNIX. It
allows shell scripts to fully participate in pipelines, but mandates extra notation for com
mands which are to take inline data.

Thus we need a metanotation for supplying inline data to commands in shell scripts. As
an example, consider this script which runs the editor to delete leading blanks from the lines
in each argument file

3 cat deblank
deblank -- remove leading blanks
fore a ch i ($argv)
ed - $i << 'EOF'
1,$slt[1*11
w
q
'EOF'
end
3

The notation '< < 'EOF'' means that the standard input for the ed command is to come from
the text in the shell script file up to the next line consisting of exactly ''EOF''. The fact that
the 'EOF' is enclosed in ''' characters, i.e. quoted, causes the shell to not perform variable

Introduction to the C Shell 4-59

substitution on the intervening lines. In general, if any part of the word following the '<<'
which the shell uses to terminate the text to be given to the command is quoted then these
substitutions will not be performed. In this case since we used the form '1,$' in our editor
script we needed to insure that this '$' was not variable substituted. We could also have
insured this by preceding the '$'here with a'\', i.e.:

1,\$s/t[1*11

but quoting the 'EOF' terminator is a more reliable way of achieving the same thing.

3.9 . ..-catching interrupts

If our shell script creates temporary files, we may wish to catch interruptions of the shell
script so that we can clean up these files. We can then do

onintr label

where label is a label in our program. If an interrupt is received the shell will do a 'goto label'
and we can remove the temporary files and then do an exit command (which is built in to the
shell) to exit from the shell script. If we wish to exit with a non-zero status we can do

exit(l)

e.g. to exit with status 'l'.

3.10. What else?

There are other features of the shell useful to writers of shell procedures. The verbose
and echo options and the related -v and -x command line options can be used to help trace
the actions of the shell. The -n option causes the shell only to read commands and not to
execute them and may sometimes be of use.

One other thing to note is that csh will not execute shell scripts which do not begin with
the character '#', that is shell scripts that do not begin with a comment. Similarly, the
'/bin/sh' on your system may well defer to 'csh' to interpret shell scripts which begin with'#'.
This allows shell scripts for both shells to live in harmony.

There is also another quotation mechanism using "" which allows only some of the
expansion mechanisms we have so far discussed to occur on the quoted string and serves to
make this string into a single word as ''' does.

4-60 Introduction to the C Shell

4. Other, less commonly used, shell features

4.1. Loops at the terminal; variables as vectors

It is occasionally useful to use the foreach control structure at the terminal to aid in per
forming a number of similar commands. For instance, there were at one point three shells in
use on the Cory UNIX system at Cory Hall, '/bin/sh', '/bin/nsh', and '/bin/csh'. To count the
number of persons using each shell one could have issued the commands

I .I
% grep -c csh$ /etc/passwd
27
% grep -c nsh$~ /etc/passwd
128

... ' % grep -c -v sh$ /etc/passwd
430
%

Since these commands are very similar we can use foreach to do this more easily.
N

% foreach i (~sh$' 'csh$' '-v sh$')
? grep -c $i /etc/passwd
? end
27
128
430
%

Note here that the shell prompts for input with'? 'when reading the body of the loop.

Very useful with loops are variables which contain lists of filenames or other words. You
can, for example, do

% set a=('ls')
% echo $a
csh.n csh.rm
% ls
csh.n
csh.rm
% echo $#a
2
%

The set command here gave the variable a a list of all the filenames in the current directory
as value. We can then iterate over these names to perform any chosen function.

The output of a command within ''' characters is converted by the shell to a list of
words. You can also place the ''' quoted string within '"' characters to take each (non-empty)
line as a component of the variable; preventing the lines from being split into words at blanks
and tabs. A modifier ':x' exists which can be used later to expand each component of the vari
able into another variable splitting it into separate words at embedded blanks and tabs.

4.2. Braces { ... } in argument expansion

Another form of filename expansion, alluded to before involves the characters '{'and'}'.
These characters specify that the contained strings, separated by ',' are to be consecutively
substituted into the containing characters and the results expanded left to right. Thus

A { strl,str2, ... strn} B

expands to

Introduction to the C Shell 4-61

AstrlB Astr2B ... AstrnB

This expansion occurs before the other filename expansions, and may be applied recursively
(i.e. nested). The results of each expanded string are sorted separately, left to right order
being preserved. The resulting filenames are not required to exist if no other expansion
mechanisms are used. This means that this mechanism can be used to generate arguments
which are not filenames, but which have common parts.

A typical use of this would be

mkdir -; {hdrs,retrofit,csh}

to make subdirectories 'hdrs', 'retrofit' and 'csh' in your home directory. This mechanism is
most useful when the common prefix is longer than in this example, i.e.

chown root /usr I { ucb/ { ex,edit} ,lib/ {ex?.?* ,how ex}}

4.3. Command substitution

A command enclosed in ''' characters is replaced, just before filenames are expanded, by
the output from that command. Thus it is possible to do

set pwd='pwd'

to save the current directory in the variable pwd or to do

ex 'grep 1 TRACE *.c'

to run the editor ex supplying as arguments those files whose names end in '.c' which have the
string 'TRACE' in them.*

4.4. Other details not covered here

In particular circumstances it may be necessary to know the exact nature and order of
different substitutions performed by the shell. The exact meaning of certain combinations of
quotations is also occasionally important. These are detailed fully in its manual section.

The shell has a number of command line option flags mostly of use in writing UNIX pro
grams, and debugging shell scripts. See the shells manual section for a list of these options.

*Command expansion also occurs in input redirected with'<<' and within'"' quotations. Refer to the shell
manual section for full details.

4-62 Introduction to the C Shell

Appendix - Special characters

The following table lists the special characters of csh and the UNIX system, giving for each the
section(s) in which it is discussed. A number of these characters also have special meaning in
expressiops. See the csh manual section for a complete list.

Syntactic metacharacters

' I
()
&

2.4 separates commands to be executed sequentially
1.5 separates commands in a pipeline
2.2,3.6 brackets expressions and variable values
2.5 follows commands to be executed without waiting for completion

Filename metacharacters

I
?
*
[]

{ }

1.6 separates components of a file's pathname
1.6 expansion character matching any single character
1.6 expansion character matching any sequence of characters
1.6 expansion sequence matching any single character from a set
1.6 used at the beginning of a filename to indicate home directories
4.2 used to specify groups of arguments with common parts

Quotation metacharacters

\

"

1.7 prevents meta-meaning of following single character
1.7 prevents meta-meaning of a group of characters
4.3 like', but allows variable and command expansion

Input/ output metacharacters

< 1.5 indicates redirected input
> 1.3 indicates redirected output

Expansion/substitution metacharacters

$ 3.4 indicates variable substitution
2.3 indicates history substitution
3.6 precedes substitution modifiers

t 2.3 used in special forms of history substitution
4.3 indicates command substitution

Other metacharacters

1.3,3.6 begins scratch file names; indicates shell comments
1.2 prefixes option (flag) arguments to commands

3 2.6 prefixes job name specifications

Introduction to the C Shell 4-63

Glossary

This glossary lists the most important terms introduced in the introduction to the shell
and gives references to sections of the shell document for further information about them.
References of the form 'pr (1)' indicate that the commancl pr is in the UNIX programmer's
manual in section 1. You can get an online copy of its manual page by doing

man 1 pr

References of the form (2.5) indicate that more information can be found in section 2.5 of this
manual.

a.out

Your current directory has the name '.' as well as the name printed by the
command pwd; see also dirs. The current directory'.' is usually the first com
ponent of the search path contained in the variable path, thus commands
which are in'.' are found first (2.2). The character'.' is also used in separat
ing components of filenames (1.6). The character '.' at the beginning of a
component of a pathname i~ treated specially and not matched by the
filename expansion metacharacters '?', '*', and '[' ']' pairs (1.6).

Each directory has a file ' .. ' in it which is a reference to its parent directory.
After changing into the directory with chdir, i.e.

chdtr paper

you can return to the parent directory by doing

chdir ..

The current directory is printed by pwd (2.7).

Compilers which create executable images create them, by default, in the file
a.out. for historical reasons (2.3).

absolute pathname

alias

argument

argv

background

base

A pathname which begins with a'/' is absolute since it specifies the path of
directories from the beginning of the entire directory system - called the root
directory. Pathnames which are not absolute are called relative (see
definition of relative pathname) (1.6).

An alias specifies a shorter or different name for a UNIX command, or a
transformation on a command to be performed in the shell. The shell has a
command alias which establishes aliases and ca~ print their current values.
The command unalias is used to remove aliase~ (2.4).

Commands in UNIX receive a list of argument words. Thus the command

echo ab c

consists of the command name 'echo' and three argument words 'a', 'b' and
'c'. The set of arguments after the command name is said to be the argu
ment list of the command (1.1).

The list of arguments to a command written in the shell language (a shell
script or shell procedure) is stored in a variable called argv within the shell.
This name is taken from the conventional name in the C programming
language (3.4).

Commands started without waiting for them to complete are called back
ground commands (2.6).

A filename is sometimes thought of as consisting of a base part, before any'.'
character, and an extension - the part after the '.'. See filename and exten
sion (1.6)

4-64 Introduction to the C Shell

bg

bin

break

breaksw

builtin

case

cat

cd

chdir

chsh

cmp

command

command name

The bg command causes a suspended job to continue execution in the back
ground (2.6).

A directory containing binaries of programs and shell scripts to be executed is
typically called a bin directory. The standard system bin directories are
'/bin' containing the most heavily used commands and '/usr/bin' which con·
tains most other user programs. Programs developed at UC Berkeley live in
'/usr/ucb', while locally written programs live in '/usr/local'. Games are kept
in the directory '/usr/games'. You can place binaries in any directory. If you
wish to execute them often, the name of the directories should be , a com
ponent of the variable path.

Break is a builtin command used to exit from loops within the control struc
ture of the shell (3.7).

The breaksw builtin command is used to exit from a switch control structure,
like a break exits from loops (3.7).

A command executed directly by the shell is called a builtin command. Most
commands in UNIX are not built into the shell, but rather exist as files in bin
directories. These commands are accessible because the directories in which
they reside are named in the path variable.

A case command is used as a label in a switch statement in the shell's control
structure, similar to that of the language C. Details are given in the shell
documentation 'csh(l)' (3.7).

The cat program catenates a list of specified files on the standard output. It
is usually used to look at the contents of a single file on the terminal, to 'cat a
file' (1.8, 2.3).

The cd command is used to change the working directory. With no argu
ments, cd changes your working directory to be your home directory (2.4,
2.7).

The chdir command is a synonym for cd. Cd is usually used because it is
easier to type.

The chsh command is used to change the shell which you use on UNIX. By
default, you use an different version of the shell which resides in '/bin/sh'.
You can change your shell to '/bin/csh' by doing

chsh your-login-name /bin/csh

Thus I would do

chsh bill /bin/csh

It is only necessary to do this once. The next time you log in to UNIX after
doing this command, you will be using csh rather than the shell in '/bin/sh'
(1.9).

Cmp is a program which compares files. It is usually used on binary files, or
to see if two files are identical (3.6). For comparing text files the program
diff, described in 'diff (1)' is used.

A function performed by the system, either by the shell (a builtin command)
or by a program residing in a file in a directory within the UNIX system, is
called a command (1.1).

When a command is issued, it consists of a command name, which is the first
word of the command, followed by arguments; The convention on UNIX is
that the first word of a command names the function to be performed (1.1).

Introduction to the C Shell 4-65

command substitution

component

continue

control-

core dump

cp

csh

.cshrc

cwd

date

debugging

default:

DELETE

detached

diagnostic

The replacement of a command enclosed in ''' characters by the text output
by that command is called command substitution (4.3).

A part of a pathname between '/' characters is called a component of that
pathname. A variable which has multiple strings as value is said to have
several components; each string is a component of the variable.

A builtin command which causes execution of the enclosing foreach or while
loop to cycle prematurely. Similar to the continue command in the program
ming language C (3.6).

Certain special characters, called control characters, are produced by holding
down the CONTROL key on your terminal and simultaneously pressing another
character, much like the SHIFT key is used to produce upper case characters.
Thus control- c is produced by holding down the CONTROL key while pressing
the 'c' key. Usually UNIX prints an up-arrow (ft) followed by the correspond
ing letter when you type a control character (e.g. 'ftC' for control- c (1.8).

When a program terminates abnormally, the system places an image of its
current state in a file named 'core'. This core dump can be examined with
the system debugger 'adb(l)' or 'sdb(l)' in order to determine what went
wrong with the program (1.8). If the shell produces a message of the form

Illegal instruction (core dumped)

(where 'Illegal instruction' is only one of several possible messages), you
should report this to the author of the program or a system administrator,
saving the 'core' file.

The cp (copy) program is used to copy the contents of one file into another
file. It is one of the most commonly used UNIX commands (1.6).

The name of the shell program that this document describes.

The file .cshrc in your home directory is read by each shell as it begins execu
tion. It is usually used to change the setting of the variable path and to set
alias parameters which are to take effect globally (2.1).

The cwd variable in the shell holds the absolute pathname of the current
working directory. It is changed by the shell whenever your current working
directory changes and should not be changed otherwise (2.2).

The date command prints the current date and time (1.3).

Debugging is the process of correcting mistakes in programs and shell scripts.
The shell has several options and variables which may be used to aid in shell
debugging (4.4).

The label def a ult: is used within shell switch statements, as it is in the C
language to label the code to be executed if none of the case labels matches
the value switched on (3.7).

The DELETE or RUBOUT key on the terminal normally causes an interrupt to
be sent to the current job. Many users change the interrupt character to be
ftC.

A command that continues running in the background after you logout is said
to be detached.

An error message produced by a program is often referred to as a diagnostic.
Most error messages are not written to the standard output, since that is
often directed away from the terminal (1.3, 1.5). Error messsages are instead
written to the diagnostic output which may be directed away from the termi
nal, but usually is not. Thus diagnostics will usually appear on the terminal
(2.5).

4-66 Introduction to the C Shell

directory A structure which contains files. At any time you are in one particular direc
tory whose names can be printed by the command pwd. The chdir command
will change you to another directory, and make the files in that directory
visible. The directory in which you are when you first login is your home
directory (1.1, 2.7).

directory stack The shell saves the names of previous working directories in the directory
stack when you change your current working directory via the pushd com
mand. The directory stack can be printed by using the dirs command, which
includes your current working directory as the first directory name on the left
(2.7).

dirs The dirs command prints the shell's directory stack (2. 7).

du The du command is a program (described in 'du(l)') which prints the number
of disk blocks is all directories below and including your current working
directory (2.6).

echo The echo command prints its arguments (1.6, 3.6).

else The else command is part of the 'if-then-else-endif' control command con
struct (3.6).

endif If an if statement is ended with the word then, all lines following the if up to
a line starting with the word endif or else are executed if the condition
between parentheses after the if is true (3.6).

EOF An end-of-file is generated by the terminal by a control-cl, and whenever a
command reads to the end of a file which it has been given as input. Com
mand~ receiving input from a pipe receive an end-of-file when the command
sending them input completes. Most commands terminate when they receive
an end-of-file. The shell has an option to ignore end-of-file from a terminal
input which may help you keep from logging out accidentally by typing too
many control-d's (1.1, 1.8, 3.8).

escape A character '\' used to prevent the speci~l meaning of a metacharacter is said
to escape the character from its special meaning. Thus

/etc/passwd

exit

exit status

echo*

will echo the character '*' while just

echo*

will ec4o the names of the file in the current directory. In this example, x
escapes '*' (1.7). There is also a non-printing character called escape, usually
la,belled ESC or ALTMODE on terminal keyboards. Some older UNIX systems
use this character to indicate that output is to be suspended. Most systems
use control-s to stop the output and control-q to start it.

Tpis file contains information about the accounts currently on the system. It
consist~ qf a line for each account with fields separated by ':' characters (1.8).
You can look at this file by saying

cat /etc/passwd

The commands finger and grep are often used to search for information in
this file. See 'finger(l)', 'passwd(5)', and 'grep(l)' for more details,

The exit command is used to force termination of a shell script, and is built
into the shell (3.9).

A command which discovers a problem may reflect this back to the command
(such as a shell) which invoked (executed) it. It does this by returning a
non-zero number as its exit status, a status of zero being considered 'normal

expansion

expressions

extension

f g

filename

Introduction to the C Shell 4-67

termination'. The exit command can be used to force a shell command script
to give a non-zero exit status (3.6).

The replacement of strings in the shell input which contain metacharacters by
other strings is referred to as the process of expansion. Thus the replace
ment of the word '*' by a sorted list of files in the current directory is a
'filename expansion'. Similarly the replacement of the characters '!!' by the
text of the last command is a 'history expansion'. Expansions are also
referred to as substitutions (1.6, 3.4, 4.2).

Expressions are used in the shell to control the conditional structures used in
the writing of shell scripts and in calculating values for these scripts. The
operators available in shell expressions are those of the language C (3.5).

Filenames often consist of a base name and an extension separated by the
character '.'. By convention, groups of related files often share the same root
name. Thus if 'prog.c' were a C program, then the object file for this program
would be stored in 'prog.o'. Similarly a paper written with the '-me' nroff
macro package might be stored in 'paper.me' while a formatted version of this
paper might be kept in 'paper.out' and a list of spelling errors in 'paper.errs'
(1.6).

The job control command fg is used to run a background or suspended job
in the foreground (1.8, 2.6).

Each file in UNIX has a name consisting of up to 14 characters and not includ
ing the character '/'which is used in pathname building. Most filenames do
not begin with the character '. ', and contain only letters and digits with
perhaps a '.' separating the base portion of the filename from an extension
(1.6).

filename expansion

flag

for each

foreground

goto

grep

Filename expansion uses the metacharacters '*', '?' and '[' and ']' to provide
a convenient mechanism for naming files. Using filename expansion it is
easy to name all the files in the current directory, or all files which have a
common root name. Other filename expansion mechanisms use the meta
character i-i and allow files in other users' directories to be named easily (1.6,
4.2).

Many UNIX commands accept arguments which are not the names of files or
other users but are used to modify the action of the commands. These are
referred to as ffog options, and by convention consist of one or more letters
preceded by the character '-' (1.2). Thus the ls (list files) command has an
option '-s' to list the sizes of files. This is specified

ls -s

The foreach command is used in shell scripts and at the terminal to specify
repetition of a sequence of commands while the value of a certain shell vari
able ranges through a specified list (3.6, 4.1).

When commands are executing in the normal way such that the shell is wait
ing for them to finish before prompting for another command they are said to
be foreground jobs or running in the foreground. This is as opposed to
background. Foreground jobs can be stopped by signals from the terminal
caused by typing different control characters at the keyboard (1.8, 2.6).

The shell has a command goto used in shell scripts to transfer control to a
given label (3.7).

The grep command searches through a list of argument files for a specified
string. Thus

4-68 Introduction to the C Shell

head

history

home directory

if

ignoreeof

input

interrupt

grep bill /etc/passwd

will print each line in the file /etc/passwd which contains the string 'bill'.
Actually, grep scans for regular expressions in the sense of the editors 'ed(l)'
and 'ex(l)'. Grep stands for 'globally find regular expression and print' (2.4).

The head command prints the first few lines of one or more files. If you have
a bunch of files containing text which you are wondering about it is some
times useful to run head with these files as arguments. This will usually
show enough of what is in these files to let you decide which you are
interested in (1.5).
Head is also used to describe the part of a pathname before and including
the last '/' character. The tail of a pathname is the part after the last '/'.
The ':h' and ':t' modifiers allow the head or tail of a pathname stored in a
shell variable to be used (3.6).

The history mechanism of the shell allows previous commands to be
repeated, possibly after modification to correct typing mistakes or to change
the meaning of the command. The shell has a history list where these com
mands are kept, and a history variable which controls how large this list is
(2.3).

Each user has a home directory, which is given in your entry in the password
file, /etc/passwd. This is the directory which you are placed in when you first
login. The cd or chdir command with no arguments takes you back to this
directory, whose name is recorded in the shell variable home. You can also
access the home directories of other users in forming filenames using a
filename expansion notation and the character M (1.6).

A conditional command within the shell, the if command is used in shell com
mand scripts to make decisions about what course of action to take next (3.6).

Normally, your shell will exit, printing 'logout' if you type a control-cl at a
prompt of'% '. This is the way you usually log off the system. You can set
the ignoreeof variable if you wish in your .login file and then use the com
mand logout to logout. This is useful if you sometimes accidentally type too
many control-cl characters, logging yourself off (2.2).

Many commands on UNIX take information from the terminal or from files
which they then act on. This information is called input. Commands nor
mally read for input from their standard input which is, by default, the ter
minal. This standard input can be redirected from a file using a shell
metanotation with the character '<'. Many commands will also read from a
file specified as argument. Commands placed in pipelines will read from the
output of the previous command in the pipeline. The leftmost command in a
pipeline reads from the terminal if you neither redirect its input nor give it a
filename to use as standard input. Special mechanisms exist for supplying
input to commands in shell scripts (1.5, 3.8).

An interrupt is a signal to a program that is generated by hitting the RUBOUT
or DELETE key (although users can and often do change the interrupt charac
ter, usually to ftC). It causes most programs to stop execution. Certain pro
grams, such as the shell and the editors, handle an interrupt in special ways,
usually by stopping what they are doing and prompting for another command.
While the shell is executing another command and waiting for it to finish, the
shell does not listen to interrupts. The shell often wakes up when you hit
interrupt because many commands die when they receive an interrupt (1.8,
3.9).

job

job control

job number

jobs

kill

.login

login shell

logout

.logout

lpr

ls

mail

make

makefile

manual

metacharacter

Introduction to the C Shell 4-69

One or more commands typed on the same input line separated by '\' or ';'
characters are run together and are called a job. Simple commands run by
themselves without any 'I' or ';' characters are the simplest jobs. Jobs are
classified as foreground, background, or suspended (2.6).

The builtin functions that control the execution of jobs are called job control
commands. These are bg, fg, stop, kill (2.6).

When each job is started it is assigned a small number called a job number
which is printed next to the job in the output of the jobs command. This
number, preceded by a '%' character, can be used as an argument to job con
trol commands to indicate a specific job (2.6).

The jobs command prints a table showing jobs that are either running in the
background or are suspended (2.6).

A command which sends a signal to a job causing it to terminate (2.6).

The file . login in your home directory is read by the shell each time you login
to UNIX and the commands there are executed. There are a number of com
mands which are usefully placed here, especially set commands to the shell
itself (2.1).

The shell that is started on your terminal when you login is called your login
shell. It is different from other shells which you may run (e.g. on shell
scripts) in that it reads the .login file before reading commands from the ter
minal and it reads the .logout file after you logout (2.1).

The logout command causes a login shell to exit. Normally, a login shell will
exit when you hit control-cl generating an end-of-file, but if you have set
ignoreeof in you .login file then this will not work and you must use logout to
log off the UNIX system (2.8).

When you log off of UNIX the shell will execute commands from the file
.logout in your home directory after it prints 'logout'.

The command lpr is the line printer daemon. The standard input of lpr
spooled and printed on the UNIX line printer. You can also give lpr a list of
filenames as arguments to be printed. It is most common to use lpr as the
last component of a pipeline (2.3).

The ls (list files) command is one of the most commonly used UNIX com
mands. With no argument filenames it prints the names of the files in the
current directory. It has a number of useful fiag arguments, and can also be
given the names of directories as arguments, in which case it lists the names
of the files in these directories (1.2).

The mail program is used to send and receive messages from other UNIX users
I

(1.1, 2.1).

The make command is used to maintain one ·Or more related files and to
organize functions to be performed on these files. In many ways make is
easier to use, and more helpful than shell command scripts (3.2).

The file containing commands for make is called makefile (3.2).

The manual often referred to is the 'UNIX programmer's manual'. It contains
a number of sections and a description of each UNIX program. An online ver
sion of the manual is accessible through the man command. Its documenta
tion can be obtained online via

man man

Many characters which are neither letters nor digits have special meaning

4-70 Introduction to the C Shell

mkdir

modifier

more

noclobber

noglob

notify

onintr

output

pushd

path

either to the shell or to UNIX. These characters are called metacharacters. If
it is necessary to place these characters in arguments to commands without
them having their special meaning then they must be quoted. An example of
a metacharacter is the character '>' which is used to indicate placement of
output into a file. For the purposes of the history mechanism, most
unquoted metacharacters form separate words (1.4). The appendix to this
user's manual lists the metacharacters in groups by their function.

The mkdir command is used to create a new directory.

Substitutions with the history mechanism, keyed by the character '!' or of
variables using the metacharacter '$', are often subjected to modifications,
indicated by placing the character ':' after the substitution and following this
with the modifier itself. The command substitution mechanism can also be
used to perform modification in a similar way, but this notation is less clear
(3.6).

The program more writes a file on your terminal allowing you to control how
much text is displayed at a time. More can move through the file screenful
by screenful, line by line, search forward for a string, or start again at the
beginning of the file. It is generally the easiest way of viewing a file (1.8).

The shell has a variable noclobber which may be set in the file .login to
prevent accidental destruction of files by the '>' output redirection metasyn
tax of the shell (2.2, 2.5).

The shell variable noglob is set to suppress the filename expansion of argu
ments containing the metacharacters ,_,, '*', '?', '['and']' (3.6).

The notify command tells the shell to report on the termination of a specific
background job at the exact time it occurs as opposed to waiting until just
before the next prompt to report the termination. The notify variable, if set,
causes the shell to always report the termination of background jobs exactly
when they occur (2.6).

The onintr command is built into the shell and is used to control the action
of a shell command script when an interrupt signal is received (3.9).

Many commands in UNIX result in some lines of text which are called their
output. This output is usually placed on what is known as the standard out
put which is normally connected to the user's terminal. The shell has a syn
tax using the metacharacter '>'for redirecting the standard output of a com
mand to a file (1.3). Using the pipe mechanism and the metacharacter 'I' it is
also possible for the standard output of one command to become the stan
dard input of another command (1.5). Certain commands such as the line
printer daemon p do not place their results on the standard output but
rather in more useful places such as on the line printer (2.3). Similarly the
write command places its output on another user's terminal rather than its
standard output (2.3). Commands also have a diagnostic output where they
write their error messages. Normally these go to the terminal even if the
standard output has been sent to a file or another command, but it is possi
ble to direct error diagnostics along with standard output using a special
metanotation (2.5).

The pushd command, which means 'push directory', changes the shell's work
ing directory and also remembers the current working directory before the
change is made, allowing you to return to the same directory via the popd
command later without retyping its name (2. 7).

The shell has a variable path which gives the names of the directories in
which it searches for the commands which it is given. It always checks first to
see if the command it is given is built into the shell. If it is, then it need not

pathname

pipeline

po pd

port

pr

printenv

process

program

Introduction to the C Shell 4-71

search for the command as it can do it internally. If the command is not
builtin, then the shell searches for a file with the name given in each of the
directories in the path variable, left to right. Since the normal definition of
the path variable is

path (. /usr/ucb /bin /usr/bin)

the shell normally looks in the current directory, and then in the standard
system directories '/usr/ucb', '/bin' and '/usr/bin' for the named command
(2.2). If the command cannot be found the shell will print an error diagnos
tic. Scripts of shell commands will be executed using another shell to inter
pret them if they have 'execute' permission set. This is normally true because
a command of the form

chmod 755 script

was executed to turn this execute permission on (3.3). If you add new com
mands to a directory in the path, you should issue the command rehash
(2.2).

A list of names, separated by '/' characters, forms a pathname. Each com
ponent, between successive'/' characters, names a directory in which the next
component file resides. Pathnames which begin with the character '/' are
interpreted relative to the root directory in the filesystem. Other pathnames
are interpreted relative to the current directory as reported by pwd. The last
component of a pathname may name a directory, but usually names a file.

A group of commands which are connected together, the standard output of
each connected to the standard input of the next, is called a pipeline. The
pipe mechanism used to connect these commands is indicated by the shell
metacharacter 'I' (1.5, 2.3).

The popd command changes the shell's working directory to the directory
you most recently left using the pushd command. It returns to the directory
without having to type its name, forgetting the name of the current working
directory before doing so (2.7).

The part of a computer system to which each terminal is connected is called a
port. Usually the system has a fixed number of ports, some of which are con
nected to telephone lines for dial-up access, and some of which are per
manently wired directly to specific terminals.

The pr command is used to prepare listings of the contents of files with
headers giving the name of the file and the date and tjm~ at which the file
was last modified (2.3). ·

The printenv command is used to print the current setting of variables in the
environment (2.8).

An instance of a running program is called a process (2.6). UNIX assigns each
process a unique number when it is started - called the process number.
Process numbers can be used to stop individual processes using the kill or
stop commands when the processes are part of a detached background job.

Usually synonymous with command; a binary file or shell command script
which performs a useful function is often called a program .

programmer's manuals manual'u>(750u+ ln) .hr

prompt

Also referred to as the manual. See the glossary entry for 'manual'.

Many programs will print a prompt on the terminal when they expect input.
Thus the editor 'ex(l)' will print a ':' when it expects input. The shell
prompts for input with '% ' and occasionally with '? ' when reading com
mands from the terminal (1.1). The shell has a variable prompt which may

4-72 Introduction to the C Shell

ps

pwd

quit

quotation

redirection

rehash

be set to a different value to change the shell's main prompt. This is mostly
used when debugging the shell (2.8).

The ps command is used to show the processes you are currently running.
Each process is shown with its unique process number, an indication of the
terminal name it is attached to, an indication of the state of the process
(whether it is running, stopped, awaiting some event (sleeping), and whether
it is swapped out), and the amount of CPU time it has used so far. The com
mand is identified by printing some of the words used when it was invoked
(2.6). Shells, such as the csh you use to run the ps command, are not nor
mally shown in the output.

The pwd command prints the full pathname of the current working direc
tory. The dirs builtin command is usually a better and faster choice.

The quit signal, generated by a control-xis used to terminate programs which
are behaving unreasonably. It normally produces a core image file (1.8).

The process by which metacharacters are prevented their special meaning,
usually by using the character '' in pairs, or by using the character 'x, is
referred to as quotation (1.7).

The routing of input or output from or to a file is known as redirection of
input or output (1.3).

The rehash command tells the shell to rebuild its internal table of which
commands are found in which directories in your path. This is necessary
when a new program is installed in one of these directories (2.8).

relative pathname

repeat

root

RUBOUT

scratch file

script

set

A pathname which does not begin with a '/' is called a relative pathname
since it is interpreted relative to the current working directory. The first
component of such a pathname refers to some file or directory in the working
directory, and subsequent components between '/' characters refer to direc
tories below the working directory. Pathnames that are not relative are
called absolute pathnames (1.6).

The repeat command iterates another command a specified number of times.

The directory that is at the top of the entire directory structure is called the
root directory since it is the 'root' of the entire tree structure of directories.
The name used in pathnames to indicate the root is '/'. Pathnames starting
with '/' are said to be absolute since they start at the root directory. Root is
also used as the part of a pathname that is left after removing the extension.
See filename for a further explanation (1.6).

The RUBOUT or DELETE key sends an interrupt to the current job. Most
interactive commands return to their command level upon receipt of an inter
rupt, while non-interactive commands usually terminate, returning control to
the shell. Users often change interrupt to be generated by ftC rather than
DELETE by using the stty command.

Files whose names begin with a '#' are referred to as scratch files, since they
are automatically removed by the system after a couple of days of non-use, or
more frequently if disk space becomes tight (1.3).

Sequences of shell commands placed in a file are called shell command
scripts. It is often possible to perform simple tasks using these scripts
without writing a program in a language such as C, by using the shell to selec
tively run other programs (3.3, 3.10).

The builtin set command is used to assign new values to shell variables and
to show the values of the current variables. Many shell variables have special
meaning to the shell itself. Thus by using the set command the behavior of

setenv

shell

shell script

signal

sort

source

Introduction to the C Shell 4-73

the shell can be affected (2.1).

Variables in the environment 'environ(5)' can be changed by using the setenv
builtin command (2.8). The printenv command can be used to print the
value of the variables in the environment.

A shell is a command language interpreter. It is possible to write and run
your own shell, as shells are no different than any other programs as far as
the system is concerned. This manual deals with the details of one particular
shell, called csh.

See script (3.3, 3.10).

A signal in UNIX is a short message that is sent to a running program which
causes something to happen to that process. Signals are sent either by typing
special control characters on the keyboard or by using the kill or stop com
mands (1.8, 2.6).

The sort program sorts a sequence of lines in ways that can be controlled by
argument {fogs (1.5).

The source command causes the shell to read commands from a specified file.
It is most useful for reading files such as .cshrc after changing them (2.8).

special character
See metacharacters and the appendix to this manual.

standard We refer often to the standard input and standard output of commands.

status

stop

string

stty

substitution

suspended

switch

termination

then

See input and output (1.3, 3.8).

A command normally returns a status when it finishes. By convention a
status of zero indicates that the command succeeded. Commands may return
non-zero status to indicate that some abnormal event has occurred. The shell
variable status is set to the status returned by the last command. It is most
useful in shell commmand scripts (3.6).

The stop command causes a background job to become suspended (2.6).

A sequential group of characters taken together is called a string. Strings
can contain any printable characters (2.2).

The stty program changes certain parameters inside UNIX which determine
how your terminal is handled. See 'stty(l)' for a complete description (2.6).

The shell implements a number of substitutions where sequences indicated
by metacharacters are replaced by other sequences. Notable examples of this
are history substitution keyed by the metacharacter '!' and variable substitu
tion indicated by'$'. We also refer to substitutions as expansions (3.4).

A job becomes suspended after a STOP signal is sent to it, either by typing a
control -z at the terminal (for foreground jobs) or by using the stop command
(for background jobs). When suspended, a job temporarily stops running
until it is restarted by either the fg or bg command (2.6).

The switch command of the shell allows the shell to select one of a number of
sequences of commands based on an argument string. It is similar to the
switch statement in the language C (3.7).

When a command which is being executed finishes we say it undergoes termi
nation or terminates. Commands normally terminate when they read an
end-of-file from their standard input. It is also possible to terminate com
mands by sending them an interrupt or quit signal (1.8). The kill program
terminates specified jobs (2.6).

The then command is part of the shell's 'if-then-else-endif' control construct
used in command scripts (3.6).

4-74 Introduction to the C Shell

time

tset

tty

unalias

UNIX

unset

The time command can be used to measure the amount of CPU and real time
consumed by a specified command as well as the amount of disk i/o, memory
utilized, and number of page faults and swaps taken by the command (2.1,
2.8).

The tset program is used to set standard erase and kill characters and to tell
the system what kind of terminal you are using. It is often invoked in a
.login file (2.1).

The word tty is a historical abbreviation for 'teletype' which is frequently
used in UNIX to indicate the port to which a given terminal is connected. The
tty command will print the name of the tty or port to which your terminal is
presently connected.

The unalias command removes aliases (2.8).

UNIX is an operating system on which csh runs. UNIX provides facilities
which allow csh to invoke other programs such as editors and text formatters
which you may wish to use.

The unset command removes the definitions of shell variables (2.2, 2.8).

variable expansion

variables

verbose

WC

while

See variables and expansion (2.2, 3.4).

Variables in csh hold one or more strings as value. The most common use of
variables is in controlling the behavior of the shell. See path, noclobber, and
ignoreeof for examples. Variables such as argv are also used in writing shell
programs (shell command scripts) (2.2).

The verbose shell variable can be set to cause commands to be echoed after
they are history expanded. This is often useful in debugging shell scripts.
The verbose variable is set by the shell's -v command line option (3.10).

The wc program calculates the number of characters, words, and lines in the
files whose names are given as arguments (2.6).

The while builtin control construct is used in shell command scripts (3. 7).

word A sequence of characters which forms an argument to a command is called a
word. Many characters which are neither letters, digits, '-', '.' nor '/' form
words all by themselves even if they are not surrounded by blanks. Any
sequence of characters may be made into a word by surrounding it with '''
characters except for the characters ''' and '!' which require special treatment
(1.1). This process of placing special characters in words without their special
meaning is called quoting.

working directory

write

At a11y given time you are in one particular directory, called your working
directory. This directory's name is printed by the pwd command and the
files listed by ls are the ones in this directory. You can change working direc
tories using chdir.

The write command is used to communicate with other users who are logged
in to UNIX.

Introduction 5-1

PART 5: DOCUMENT PREPARATION

This part includes articles on the features and utilities of the ULTRIX-32 system that will
help you to prepare written information for publication. Seven of the articles deal with nroff
and troff, the text formatters that convert unformatted text into a formal document ready for
output on a printer or typesetter. Nroff produces output printable on a typewriter-like termi
nal, line printer, or terminal screen. Troff prepares output for a phototypesetter. Five other
articles explain the uses of eqn, tbl, and refer. These are utilities that cooperate with the text
processors to produce mathematical equations, tables, and bibliographical references in the
text formatted by nroff or troff. An additional article describes the style and diction programs~
tools that provide criteria for evaluating written material.

Nroff and Troff

Formatting a document on the ULTRIX-32 system is a two-stage process. In stage one, you
create or change a file using vi or one of the other editors. This file should contain the text to
be processed and commands to the text formatter. The commands tell the formatter how to
treat the text, for example how wide to make the margins, when to start a new paragraph, and
when to leave the right margin unjustified. In stage two, you give a command to the shell tel
ling nroff or troff to process the text in the file you created. Nroff and troff are compatible, so
that one text file can generally serve as a source for both line printer output and typesetter
output.

The text processors allow you to define exactly how you want your text to look. However,
developing a format that is consistent throughout a document involves repeating many details
(consider page headers and multicolumn formats, for example). ULTRIX-32 includes two
macro packages (-ms and -me) that specify many details and simplify the specification of
other details for you. These macro packages serve to reduce your direct contact with nroff
and troff, making the text formatting process easier. The articles by Lesk, "Typing Docu
ments on the UNIX System: Using the -ms Macros with TROFF and NROFF," and Tuthill,
"A Revised Version of -ms," tell what there is to know about using -ms. "A Guide to Prepar
ing Documents with -ms," also by Lesk, gives comprehensive examples.

The topics include:

• Cover sheet format such as author, title, abstract

• Page headings

• Multicolumn format

• Section headings

• Paragraph control

• Italics

• Footnotes

• Specifying dates

5-2 Introduction

• Changing def a ult values

• Using accent marks

• Automatic footnote numbering

The Lesk article is readable and arranged in a tutorial format. The Tuthill article is a brief
supplement.

"Writing Papers with NROFF Using -ME," by Allman, covers many of the same topics. This
article is also tutorial. It provides good explanations and examples.

The "ME Reference Manual," also by Allman, lists all features of the -me macro package.
Read it if you want greater flexibility than is allowed by the procedures shown in the first All
man article.

The "NROFF/TROFF User's Manual," by Ossanna, is appropriate for users already familiar
with the macro packages who want to develop their own nroff or troff macros or macro pack
ages. The first part of this article lists the command line options for the text formatters, all
nroff and troff commands, escape sequences, and predefined registers. The second part
defines in detail the rules that govern use of the text formatters. A set of examples completes
the article.

"A TROFF Tutorial," by Kernighan, concentrates on features of troff that are specific to
typesetting such as:

• Point sizes

• Font changes

• Special characters

• Horizontal and vertical motions

The information in this article is appropriate for users who want more flexibility in typesetter
control than they can get with the -ms and -me macro packages.

Preprocessors

Three preprocessor utilities expand the text formatting capabilities of the ULTRIX-32 sys
tem:

eqn lets you typeset mathematical expressions.

tbl helps you to format tables easily.

ref er helps you to create bibliographical references.

These utilities process notation for mathematical expressions, tables, and bibliographical
descriptions, turning them into sequences of commands for nroff or troff.

This part includes two articles on eqn by Kernighan and Cherry. "A System for Typesetting
Mathematics" outlines the design goals and capabilities of eqn. The second article, "Typeset
ting Mathematics - User's Guide," shows how to make eqn produce:

• Equations

• Special symbols

• Greek letters

• Subscripts and superscripts

• Braces

• Piles

• Matrices

• Local motions

Read this second article for practical information on using eqn. Read the first eqn article, "A
System for Typesetting Mathematics," if you want to know more about the background of
eqn.

Introduction 5-3

eqn.

"TBL - A Program to Format Tables," by Lesk, serves as a reference and a tutorial. The first
part of the article lists rules for using tbl to create tables. The remainder of the article con
sists of examples showing sequences of commands supplied to tbl and the resulting tables.

Three of the articles in this part deal with utilities related to bibliographies and indexing.
Using refer to make bibliographical references in a text requires three steps:

1 You must build a data base that describes the items that can be referenced. Each
entry in the data base identifies the publication by several categories such as:

• Author

• Title

• Issuer (publisher)

• City where published

• Date of publication

Enter this information by running the addbib utility. Note that you can list the
entire data base, sorted by author and date, by running the sortbib and roffbib utili
ties.

2 As you write a new text to be processed by nroff or troff, you can create a standard
bibliographical reference to an item contained in the data base by specifying one or
two key fields of the data base item.

3 Run the ref er and nroff or troff utilities to process the text.

Tuthill's article, "Refer - A Bi~graphy System," is the most readable and useful of the three
articles on refer.

The Lesk articles, "Some Applications of Inverted Indexes on the UNIX System" and
"Updating Publication Lists," deal with indexing and bibliographical referencing. The exam
ples that relate to ref er may be useful, if you read the Tuthill article first. The explanations
of indexing are hard to follow. If you must use the searching and indexing utilities, you may
want help from someone who uses this software to supplement the Lesk articles.

Style and Diction

The style and diction programs can help you evaluate and refine writing skills. The texts to
be evaluated can be in a file on the system. The article entitled "Writing Tools - The Style
and Diction Programs," by Cherry and Vesterman, explains the yardsticks that style uses to
measure:

• Readability levels

• Sentence structure

• Word usage (by parts of speech)

• Sentence openers

The article also shows how to use the diction program to identify phrases that are frequently
misused or wordy. You can use the explain program together with diction to find substitutes
for the objectionable phrases.

Summary

The articles on -ms and -me (choose one) will help you to get started using nroff and troff.
Eqn, tbl, and refer work with nroff and troff to simplify typesetting mathematical expressions,
formatting tables, and making bibliographical references. The style and diction programs will
help you to evaluate what you write.

Typing Documents on the UNIX System 5-5

Typing Documents on the UNIX System:

Using the -ms Macros with Troff and Nroff

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction. This memorandum describes a package of commands to produce papers
using the troff and nroff formatting programs on the UNIX system. As with other roff -derived
programs, text is prepared interspersed with formatting commands. However, this package,
which itself is written in troff commands, provides higher-level commands than those pro
vided with the basic troff program. The commands available in this package are listed in
Appendix A.

Text. Type normally, except that instead of indenting for paragraphs, place a line read
ing ".PP" before each paragraph. This will produce indenting and extra space.

Alternatively, the command .LP that was used here will produce a left-aligned (block) para
graph. The paragraph spacing can be changed: see below under "Registers."

Beginning. For a document with a paper-type cover sheet, the input should start as fol
lows:

[optional overall format .RP - see below]
.TL
Title of document (one or more lines)
.AU
Author(s) (may also be several lines)
.AI
Author's institution(s)
.AB
Abstract; to be placed on the cover sheet of a paper.
Line length is 5/6 of normal; use .11 here to change .
. AE (abstract end)
text ... (begins with .PP, which see)

To omit some of the standard headings (e.g. no abstract, or no author's institution) just omit
the corresponding fields and command lines. The word ABSTRACT can be suppressed by writ
ing ".AB no" for ".AB". Several interspersed .AU and .AI lines can be used for multiple
authors. The headings are not compulsory: beginning with a .PP command is perfectly OK
and will just start printing an ordinary paragraph. Warning: You can't just begin a docu
ment with a line of text. Some -ms command must precede any text input. When in doubt,
use .LP to get proper initialization, although any of the commands .PP, .LP, .TL, .SH, .NH is
good enough. Figure 1 shows the legal arrangement of commands at the start of a document.

Cover Sheets and First Pages. The first line of a document signals the general format
of the first page. In particular, if it is ".RP" a cover sheet with title and abstract is prepared.
The default format is useful for scanning drafts.

UNIX is a Trademark of Bell Laboratories

5-6 Typing Documents on the UNIX System

In general -ms is arranged so that only one form of a document need be stored, contain
ing all information; the first command gives the format, and unnecessary items for that for
mat are ignored.

Warning: don't put extraneous material between the .TL and .AE commands. Process
ing of the titling items is special, and other data placed in them may not behave as you
expect. Don't forget that some -ms command must precede any input text.

Page headings. The -ms macros, by default, will print a page heading containing a
page number (if greater than 1). A default page footer is provided only in nroff, where the
date is used. The user can make minor adjustments to the page headings/footings by
redefining the strings LH, CH, and RH which are the left, center and right portions of the
page headings, respectively; and the strings LF, CF, and RF, which are the left, center and
right portions of the page footer. For more complex formats, the user can redefine the macros
PT and BT, which are invoked respectively at the top and bottom of each page. The margins
(taken from registers HM and FM for the top and bottom margin respectively) are normally 1
inch; the page header/footer are in the middle of that space. The user who redefines these
macros should be careful not to change parameters such as point size or font without resetting
them to default values.

Multi-column formats. If you place
the command ".2C" in your document, the
document will be printed in double column
format beginning at that point. This
feature is not too useful in computer termi
nal output, but is often desirable on the
typesetter. The command ".1 C" will go
back to one-column format and also skip to
a new page. The ".2C" command is actu
ally a special case of the command

.MC [column width [gutter width]]

which makes multiple columns with the
specified column and gutter width; as many
columns as will fit across the page are used.
Thus triple, quadruple, ... column pages can
be printed. Whenever the number of
columns is changed (except going from full
width to some larger number of columns) a
new page is started.

Headings. To produce a special
heading, there are two commands. If you
type

.NH
type section heading here
may be several lines

you will get automatically numbered section
headings (1, 2, 3, ...), in boldface. For
example,

.NH
Care and Feeding of Department Heads

produces

1. Care and Feeding of Department
Heads

Alternatively,

.SH
Care and Feeding of Directors

will print the heading with no number
added:

Care and Feeding of Directors

Every section heading, of either type,
should be followed by a paragraph begin
ning with .PP or .LP, indicating the end of
the heading. Headings may contain more
than one line of text.

The .NH command also supports
more complex numbering schemes. If a
numerical argument is given, it is taken to
be a "level" number and an appropriate
sub-section number is generated. Larger
level numbers indicate deeper sub-sections,
as in this example:

.NH
Erie-Lackawanna
.NH2
Morris and Essex Division
.NH3
Gladstone Branch
.NH3
Montclair Branch
.NH2
Boonton Line

generates:

Typing Documents on the UNIX System 5-7

2. Erie-Lackawanna

2.1. Morris and Essex Division

2.1.1. Gladstone Branch

2.1.2. Montclair Branch

2.2. Boonton Line

An explicit ".NH O" will reset the
numbering of level 1 to one, as here:

.NHO
Penn Central

1. Penn Central

Indented paragraphs. (Paragraphs
with hanging numbers, e.g. references.) The
sequence

.IP [1]
Text for first paragraph, typed
normally for as long as you would
like on as many lines as needed.
.IP [2]
Text for second paragraph, ...

produces

[1] Text for first paragraph, typed nor
mally for as long as you would like on
as many lines as needed.

[2] Text for second paragraph, ...

A series of indented paragraphs may be fol
lowed by an ordinary paragraph beginning
with .PP or .LP, depending on whether you
wish indenting or not. . The command .LP
was used here.

More sophisticated uses of .IP are also
possible. If the label is omitted, for exam
ple, a plain block indent is produced.

.IP
This material will
just be turned into a
block indent suitable for quotations or
such matter.
.LP

will produce

This material will just be turned into
a block indent suitable for quotations
or such matter.

If a non-standard amount of indenting is
required, it may be specified after the label

(in character positions) and will remain in
effect until the next .PP or .LP. Thus, the
general form of the .IP command contains
two additional fields: the label and the
indenting length. For example,

.IP first: 9
Notice the longer label, requiring larger
indenting for these paragraphs.
.IP second:
And so forth.
.LP

produces this:

first: Notice the longer label, requiring
larger indenting for these para
graphs.

second: And so forth.

It is also possible to produce multiple
nested indents; the command .RS indicates
that the next .IP starts from the current
indentation level. Each .RE will eat up one
level of indenting so you should balance .RS
and .RE commands. The .RS command
should be thought of as "move right" and
the .RE command as "move left". As an
example

.IP 1.
Bell Laboratories
.RS
.IP 1.1
Murray Hill
.IP 1.2
Holmdel
.IP 1.3
Whippany
.RS
.IP 1.3.1
Madison
.RE
.IP 1.4
Chester
.RE
.LP

will result in

1. Bell Laboratories

1.1 Murray Hill

1.2 Holmdel

1.3 Whippany

1.3.1 Madison

1.4 Chester

5-8 Typing Documents on the UNIX System

All of these variations on .LP leave the
right margin untouched. Sometimes, for
purposes such as setting off a quotation, a
paragraph indented on both right and left
is required.

A single paragraph like this is
obtained by preceding it with
.QP. More complicated material
(several paragraphs) should be
bracketed with .QS and .QE.

Emphasis. To get italics (on the
typesetter) or underlining (on the terminal)
say

.I
as much text as you want
can be typed here
.R

as was done for these three words. The .R
command restores the normal (usually
Roman) font. If only one word is to be ital
icized, it may be just given on the line with
the .I command,

.I word

and in this case no .R is needed to restore
the previous font. Boldface can be pro
duced by

.B
Text to be set in boldface
goes here
.R

and also will be underlined on the terminal
or line printer. As with .I, a single word
can be placed in boldface by placing it on
the same line as the .B command.

A few size changes can be specified
similarly with the commands .LG (make
larger), .SM (make smaller), and .NL
(return to normal size). The size change is
two points; the commands may be repeated
for increased effect (here one .NL canceled two
.SM commands).

If actual underlining as opposed to
italicizing is required on the typesetter, the
command

.UL word

will underline a word. There is no way to
underline multiple words on the typesetter.

Footnotes. Material placed between
lines with the commands .FS (footnote) and

.FE (footnote end) will be collected, remem
bered, and finally placed at the bottom of
the current page*. By default, footnotes
are 11/12th the length of normal text, but
this can be changed using the FL register
(see below).

Displays and Tables. To prepare
displays of lines, such as tables, in which
the lines should not be re-arranged, enclose
them in the commands .DS and .DE

.DS
table lines, like the
examples here, are placed
between .DS and .DE
.DE

By default, lines between .DS and .DE are
indented and left-adjusted. You can also
center lines, or retain the left margin.
Lines bracketed by .DS C and .DE com
mands are centered (and not re-arranged);
lines bracketed by .DS L and .DE are left
adjusted, not indented, and not re
arranged. A plain .DS is equivalent to .DS
I, which indents and left-adjusts. Thus,

whereas

these lines were preceded
by .DS C and followed by

a .DE command;

these lines were preceded
by .DS L and followed by
a .DE command.

Note that.DSC centers each line; there is a
variant .DS B that makes the display into a
left-adjusted block of text, and then centers
that entire block. Normally a display is
kept together, on one page. If you wish to
have a long display which may be split
across page boundaries, use .CD, .LD, or
.ID in place of the commands .DS C, .DS L,
or .DS I respectively. An extra argument to
the .DS I or .DS command is taken as an
amount to indent. Note: it is tempting to
assume that .DS R will right adjust lines,
but it doesn't work.

Boxing words or lines. To draw rec
tangular boxes around words the command

.BX word

*Like this.

Typing Documents on the UNIX System 5-9

will print I word I as shown. The boxes will
not be neat on a terminal, and this should
not be used as a substitute for italics.

Longer pieces of text may be boxed by
enclosing them with .Bl and .B2:

.Bl
text ...
.B2

as has been done here.
Keeping blocks together. If you wish

to keep a table or other block of lines
together on a page, there are "keep -
release" commands. If a block of lines pre
ceded by .KS and followed by .KE does not
fit on the remainder of the current page, it
will begin on a new page. Lines bracketed
by .DS and .DE commands are automati
cally kept together this way. There is also
a "keep floating" command: if the block to
be kept together is preceded by .KF instead
of .KS and does not fit on the current page,
it will be moved down through the text
until the top of the next page. Thus, no
large blank space will be introduced in the
document.

Nroff /Troff commands. Among the
useful commands from the basic formatting
programs are the following. They all work
with both typesetter and computer terminal
output:

. bp - begin new page.

. br - "break", stop running text
from line to line.

. sp n - insert n blank lines .

. na - don't adjust right margins.

Date. By default, documents pro
duced on computer terminals have the date
at the bottom of each page; documents pro
duced on the typesetter don't. To force the
date, say ".DA". To force no date, say
".ND". To lie about the date, say ".DA
July 4, 1776" which puts the specified date
at the bottom of each page. The command

.ND May 8, 1945

in ".RP" format places the specified date on
the cover sheet and nowhere else. Place
this line before the title.

Signature line. You can obtain a sig
nature line by placing the command .SG in
the document. The authors' names will be
output in place of the .SG line. An argu-

ment to .SG is used as a typing
identification line, and placed after the sig
natures. The .SG command is ignored in
released paper format.

Registers. Certain of the registers
used by -ms can be altered to change
default settings. They should be changed
with .nr commands, as with

.nr PS 9

to make the default point size 9 point. If
the effect is needed immediately, the nor
mal troff command should be used in addi
tion to changing the number register.

Register Defines Takes Default
effect

PS point size next para. 10
vs line spacing next para. 12 pts
LL line length next para. 6\"
LT title length next para. 6\"
PD para. spacing next para. 0.3 vs
PI para. indent next para. 5 ens
FL footnote length next FS 11/12 LL
cw column width next 2C 7/15 LL
GW intercolumn gap next 2C 1/15 LL
PO page offset next page 26/27\"
HM top margin next page 1\"
FM bottom margin next page 1\"

You may also alter the strings LH, CH, and
RH which are the left, center, and right
headings respectively; and similarly LF, CF,
and RF which are strings in the page footer.
The page number on output is taken from
register PN, to permit changing its output
style. For more complicated headers and
footers the macros PT and BT can be
redefined, as explained earlier .

Accents. To simplify typing certain
foreign words, strings representing common
accent marks are defined. They precede
the letter over which the mark is to appear.
Here are the strings:

Input Output Input Output
* 'e e *-a a
*'e e *Ce

v
e

*:u fl *,c ,c
*"e e

Use. After your document is
prepared arid stored on a file, you can print
it on a terminal with the command*

* If .2C was used, pipe the nroff output through
col; make the first line of the input ".pi
/usr/bin/col."

5-10 Typing Documents on the UNIX System

nroff -ms file

and you can print it on the typesetter with
the command

troff -ms file

(many options are possible). In each case,
if your document is stored in several files,
just list all the filenames where we have
used "file". If equations or tables are used,
eqn and/or tbl must be invoked as prepro
cessors.

References and further study. If
you have to do Greek or mathematics, see
eqn [1] for equation setting. To aid eqn
users, -ms provides definitions of .EQ and
.EN which normally center the equation
and set it off slightly. An argument on .EQ
is taken to be an equation number and
placed in the right margin near the equa
tion. In addition, there are three special
arguments to EQ: the letters C, I, and L
indicate centered (default), indented, and
left adjusted equations, respectively. If
there is both a format argument and an
equation number, give the format argument
first, as in

.EQ L (1.3a)

for a left-adjusted equation numbered
(1.3a).

Similarly, the macros .TS and .TE are
defined to separate tables (see [2]) from
text with a little space. A very long table
with a heading may be broken across pages
by beginning it with .TS H instead of .TS,
and placing the line .TH in the table data
after the heading. If the table has no head
ing repeated from page to page, just use the
ordinary . TS and . TE macros.

To learn more about troff see [3] for a
general introduction, and [4] for the full
details (experts only). Information on
related UNIX commands is in [5]. For jobs
that do not seem well-adapted to -ms, con
sider other macro packages. It is often far
easier to write a specific macro packages for
such tasks as imitating particular journals
than to try to adapt -ms.

Acknowledgment. Many thanks are
due to Brian Kernighan for his help in the
design and implementation of this package,
and for his assistance in preparing this
manual.

References

[1] B. W. Kernighan and L. L. Cherry,
Typesetting Mathematics - Users
Guide (2nd edition), Bell Laboratories
Computing Science Report no. 17.

[2] M. E. Lesk, Tbl - A Program to For
mat Tables, Bell Laboratories Com
puting Science Report no. 45.

[3] B. W. Kernighan, A Troff Tutorial,
Bell Laboratories, 1976.

[4] J. F. Ossanna, Nroff /Troff Reference
Manual, Bell Laboratories Computing
Science Report no. 51.

[5] K. Thompson and D. M. Ritchie,
UNIX Programmer's Manual, Bell
Laboratories, 1978.

Typing Documents on the UNIX System 5-11

Appendix A
List of Commands

IC Return to single column format. LG Increase type size.
2C Start double column format. LP Left aligned block paragraph.
AB Begin abstract.
AE End abstract.
AI Specify author's institution.
AU Specify author. ND Change or cane~ date.
B Begin boldface. NH Specify numbered heading.
DA Provide the date on each page. NL Return to normal type size.
DE End display. PP Begin paragraph.
DS Start display (also CD, LD, ID).
EN End equation. R Return to regular font (usually Roman).
EQ Begin equation. RE End one level of relative indenting.
FE End footnote. RP Use released paper format.
FS Begin footnote. RS Relative indent increased one level.

SG Insert signature line.
I Begin italics. SH Specify section heading.

SM Change to smaller type size.
IP Begin indented paragraph. TL Specify title.
KE Release keep.
KF Begin floating keep. UL Underline one word.
KS Start keep.

Register Nam es

The following register names are used by -ms internally. Independent use of these
names in one's own macros may produce incorrect output. Note that no lower case letters are
used in any -ms internal name.

Number registers used in -ms
DW GW HM IQ LL NA OJ PO T. TV

#T EF Hl HT IR LT NC PD PQ TB vs
IT FL H3 IK KI MM NF PF PX TD YE
AV FM H4 IM Ll MN NS PI RO TN yy
cw FP H5 IP LE MO OI PN ST TQ ZN

String registers used in -ms
A5 CB DW EZ I KF MR Rl RT TL
AB cc DY FA 11 KQ ND R2 so TM
AE CD El FE I2 KS NH R3 Sl TQ
AI CF E2 FJ I3 LB NL R4 S2 TS
AU CH E3 FK I4 LD NP R5 SG TT

'
B CM E4 FN I5 LG OD RC SH UL

IC BG cs E5 FO ID LP OK RE SM WB
2C BT CT EE FQ IE ME pp RF SN WH
Al c D EL FS IM MF PT RH SY WT
A2 Cl DA EM FV IP MH PY RP TA XD
A3 C2 DE EN FY IZ MN QF RQ TE XF
A4 CA DS EQ HO KE MO R RS TH XK

5-12 Typing Documents on the UNIX System

Order of Commands in Input

Figure 1

A Guide to Preparing
Documents with - ms

M. E. Lesk

Bell Laboratories August 1978

This guide gives some simple examples of do
cument preparation on Bell Labs computers,
emphasizing the use of the -ms macro pack
age. It enormously abbreviates information in
1. Typing Documents on UNIX and GCOS, by

M. E. Lesk;
2. Typesetting Mathematics - User's Guide,

by B. W. Kernighan and L. L. Cherry; and
3. Tb/ - A Program to Format Tables, by M.

E. Lesk.
These memos are all included in the UNIX
Programmer's Manual, Volume 2. The new
user should also have A Tutorial Introduction to
the UNIX Text Editor, by 8. W. Kernighan.

For more detailed information, read Advanced
Editing on UNIX and A Troff Tutorial. by 8. W.
Kernighan, and (for experts) Nroff/Troff Refer
ence Manual by J. F. Ossanna. Information on
related commands is found (for UNIX users) in
UNIX for Beginners by B. W. Kernighan and
the UNIX Programmer's Manual by K. Thomp
son and D. M. Ritchie.

Contents
ATM 2
A released paper 3
An internal memo, and headings . . . 4
Lists, displays, and footnotes S
Indents, keeps, and double column . 6
Equations and registers 7
Tables and usage 8

Throughout the examples, input is shown in
this Helvetica sans serif font

while the resulting output is shown in
this Times Roman font.

UNIX Document no. 1111

A Guide to -ms 5-13

Commands for a TM

.TM 1978-5b3 99999 99999-11

.NO April 1, 1 976

.TL
The Role of the Allen Wrench in Modern
Electronics
.AU "MH 2G-111" 2345
J. Q. Pencitpusher
.AU "MH 1 K-222" 5432
X. Y. Hardwired
.Al
.MH
.OK
Tools
Design
.AB
This abstract should be.short enough to
fit on a single page cover sheet.
It must attract the reader into sending for
the complete memorandum.
.AE
.cs 1 0 2 t 2 5 6 7
.NH
Introduction.
.PP
Now the first paragraph of actual text ...

Last line of text.
.SG MH-1234-JQP/XYH-unix
.NH
References ...

Commands not needed in a particular format are ig
nored.

@ Bell Laboratories Cover Sheet for TM

ThlJ in/omra11on iJ for emp{o_VttJ of IHI/ Labo101ont'!. (G£/ 11. 9-JJ

Title· The Role of the Allen Wrench
in Modern Electronics

Other Keywords· Tools
Design

Date·April 1, 1976

TM· 1978-Sb3

Author Location Ext. Charting Cue· 99999
J. Q. Pencilpusher MH 20-111 2345 Filina Case· 99999a
X. Y. Hardwired MH lK-222 5432

ABSTRACT

This abstract should be short enough to
fit on a singJe paae cover sheet. It must
attract the reader into sending for the com
plete memorandum.

Paaes Text 10 Other 2 Total 12

No. Figures S No. Tables 6 No. Refs. 7

E·1932·U <6-m SEE REVERSE SIDE FOR DISTRIBUTION l.JST

5-14 A Guide to -ms

A Released Paper with Mathematics

.EQ
defim SS
.EN
.AP

... (as for a TM)

. cs 1 o 2 1 2 s e 1

.NH
Introduction
.PP
The solution to the torque handle equation
.EQ (1)
sum from 0 to inf F (x sub I) - G (x)
. EN
ia found with the transformation S x - rho over
theta S where S rho • G prime (x) S and SthetaS
is derived -

The llole of the Allen Wrench
ill Modern !lectronics

J. Q. PrncilpllSMr

X. Y. Hardwiml

Bell Laboratories
Murny Hill. New Jersey 079'r4

ABSTRACT

This abstract should be short enough to fit on a
sinate s-1e cover sheet. It must attract the
reader into sendiftl for the complete memoran
dum.

April 1. 1976

The R.ole o{ the Allen Wrench
in Modem Electronics

J. Q. hnclipushwr

X. Y. Hardwtml

Bell Laiora1ories
Murray Hill. New Jersey 07974

1. huroduc:tioa
The solution to the torque handle equation -k.F<x1)-G(x) (1)

0

is round with the transformation .t - : where p-G· (x > and

f is derived from weU·known pnnc:oles.

An Internal Memorandum

.IM

.NO January 24, 1956

.TL
The 1 956 Consent Decree
.AU
Abte, Saker &
Charley, Attys •
.PP
Plaintiff, United States of America, having filed
its complaint herein on January 14, 1949: the
defendants havt.ig appeared and filed their
answer to such comoiaint denying the
substantive allegations thereof: and the parties,
by their attorneys, ...

@
Bell Laboracories

Subjece The 1956 Consent Decree dale: January 24, 19S~

from: Able. Baker &
Chatley. Anys.

Plaintiff'. United States or America. havin1 filed its com
plaint herein on January 14. l 949~ the defendants havin
appeared and filed their answer to such complaint denyin
the substantive alleprions thereof; and the parties. by the~
attorneys. having severally consented to the entry or th1
Final Judgment. without trial or adjudication of any issue
of racr or law herein and without this Final Judgment car
stituling any evidence or admission by any pany in respei
of any suc:h issues;

Now. therefore before any testimony has been take
herein. and without trial or adjudication of any issue of f a1
or law herein. and upon the consent of aH parties hereto.
is hereby

Ordered. adjudged and decreed as fallows:
I. (Sherman Acd

This Court has jurisdiction of the subject matter here1
and of all the parties hereto. The complaint states a clai1
upon which relief may be granted against each of tt
defendants under Sections l. 2 and j of the Act ~
Con1ress of July 2. 1890. entitled ··An act to protect trac
and commerce against unlawful restraints and monopt
lies.·· commonly known as the Sherman Act. as amended.
II. [Definitions)

For the purposes of this Final Judgment:
(a) .. Wes1ern" shall mean the defendant Western Ele

tric Company. Incorporated.

Other formats possible (specify before .TU are: .M
(.. memo for record ••) .. MF (··memo for file ..) .. E
(••engineer's notes ..) and .TR (Computing Scien1
Tech. Report).

.NH
Introduction.
.PP
text text text

1. Introduction
text text re~t

Headings

.SH
Accendix I
.?P
text text text

Appendix I
:ext text text

A Simple List

.IP 1.
J. Pencilpusher and X. Hardwired,
.I
A New Kind of Set Screw,
.A
Proc. IEEE
.a 1s
(1976), 23-255.
.JP 2.
H. Nails and R. Irons,
.I
Fasteners for Printed Circuit Boards,
.R
Proc. ASME
. B 23
(197 4), 23-24.
.LP (terminates list)

1. J. Pencil pusher and X. Hardwired, A Ntw Kind
Qf Set Screw, Proc. IEEE 7S (1976), 23-255.

2. H. Nails and R. Irons. Fasteners for Prinred Cir·
cuit Boards. Proc. ASME 23 (1974). 23-24.

Displays

text text text text text text
.OS
and now
for something
completely different
.OE
text text text text text text

hoboken harrison newark roseville avenue grove
meet east orange brick church orange highland ave·
nue mountain station south orange maplewood
millburn short hills summit new providence

and now
for something
completely different

murray hill berkeley heights gillette Stirling milling·
ton lyons basking ridge bernardsville far hills
peapack gladstone

Options: .OS L: left-adjust; .OS C: line-by-line
center; .OS B: make block. then center.

Footnotes

Among the most important occupants
of the workbench are the long-nosed pliers.
Without these basic tools•
.FS
• As first shown by Tiger & Leopard
(1975).
.FE
few assemblies could be completed. They may
lack the popular appeal of the sledgehammer

Among the most important occupants of the work
bench are the long-nosed pliers. Without these basic
toots• few assemblies could be completed. They
may lack the popular appeal of the sledgehammer

• As ftrst shown by Tiger & Leopard (1975).

A Guide to -ms 5-15

Multiple Indents

This is ordinary text to point out
the margins of the page.
.IP 1 .
First level item
.RS
.IP a)
Second level.
.IP b)
Continued here with another second
level item, but somewhat longer.
.RE
.IP 2.
Return to previous value of the
indenting at this point.
.IP 3 .
Another
line.

This is ordinary text to point out the margins of the
page.
1. First level item

a) Second level.
b) Continued here with another second level

item, but somewhat longer.
2. Return to previous value of the indenting at this

point.
3. Another line.

Keeps

lines bracketed by the following commands are kept
together. and will appear entirely on one page:

.KS not moved .KF may Roat

.KE through text .KE in text

Double Column

.TL
The Declaration of Independence
.2C
.PP
When in the course of human events, it becomes
necessary for one people to dissolve the
political bonds which have connected them with
another, and to assume among the powers of the
earth the separate and equal station to which
the laws of Nature and of Nature's God entitle
them, a decent respect to the opinions of

The Declaration of Independence

When in the course of they should declare the
human events. it be- causes which impel them
comes necessary for one to the separation.
people to dissolve the We hold these truths
political bonds which to be self-evident. that
have connected them ail men are created
with another. and to as· equal. that they are en·
sume among the powers dowed by their creator
of the earth the separate with certain unalienable
and equal station to rights. that among these
which the laws of Nature are life. liberty. and the
and of Nature's God en· pursuit of happiness.
title them. a decent That to secure these
respect to the opinions rights. governments are
of mankind requires that instituted among men.

5-16 A Guide to -ms

Equations

A displayed eciuation is marked
with an eQuation number at the right margin
by adding an argument to the ea line:
.ea (1.J>
x sup 2 over a sup 2 -- - SQrt {p z sup 2 +qz+r}
.EN

A displayed equation is marked with an equ1.1lion
number al lhe right margin by adding an ~1rgumenl
to the EQ line:

.ea 1 <2.2a)

l
.;. - J11:i+q: +r
a

(I .J)

bold V bar sub nu· - ·1eft (pile {a above b above
c l right 1 + left [matrix (col I A(11) above .
above . l col { . above . above . I col (. above .
above A(33) 11 right J cdot left (pile (alpha
above beta above gamma } right]
.EN

- - [QJ [Ao 1> . . J·[aJ v,, b+ . . . /3
c . . A (33) y

(2.2a)

.ea L
F hat (chi) - mark - -1 del V I sup 2
.EN
.ea L
lineup - - {left ({partial V} over (partial x} right)
} sup 2 + (left ({partial VI over {partial yJ right
) } sup 2 ------lambda -> inf
.EN

f<x.> - IV7 v1:

-1 ~: r+1 ~-~ r A-<0

S a dot S, S b dotdotS, S xi tilde times y vecS:

a. ij. ~x.v. (with delim SS on. see panel 3).

See also the equations in the second table. panel 8.

Some Registers You Can Change

Line length
.nr LL 7i

Title length
. nr LT 7i

Point size
.nr PS 9

Vertical spacing
.nr VS 11

Column width
.nr CW 3i

Intercolumn spacing
.nr GW .Si

Margins - head and foot
.nr HM .75i
.nr FM .75i

Paragraph indent
.nr Pl 2n

Paragraph spacing
.nr PD 0

Page offset
.nr PO 0.5i

Page heading
.ds CH Appendix

(center)
.ds RH 7-25-76

(right)
.ds LH Private

(left)

Page footer
.ds CF Draft
.ds LF ..

1 .ds RF s1m1 ar

Page numbers
.nr % 3

Tables

C ~ indicJtes " tab) .TS
allbox;
css AT&T Common Stock !
CCC
n n n.
AT&T Common Stock
Year© Price 'll Dividend
1971 •1)41-54©$2.60
2~41-54<!>2.70
3 a'J46°55 (!) 2.87

Year Price ; Oivid~nd i
19711-+1·541 S2.60 !

2 .+ 1.54 I 2.70 I
I

Jj~6·551 2.87 i
4 .+0-53 i 3.1.+ I

s. 45.52 I 3.40 I 4 a')40-53 <!>3.24
5 a'J45-52 ©3.40 6 s 1.59 I .95°]
6~51-59~.95• •(first quarter only)
.TE
• (first quarter only)

The meanings of lhe key·letters describing the align·
ment of each entry are:

c center n numerical
right-adjust a subcolumn
left·adjust s spanned

The global table options are center, expand. box.
doublebox. allbox, tab (x) and linesize (n).

.TS (with delim SS on. see panel 3)
doublebox. center;
cc
11.
Name~ Definition

.. sp
Gamma ~$GAMMA (z) - int sub O sup inf\

t sup lz-1 le sup ·t dtS
Sine(!)Ssin (x) - 1 over 2i (e sup ix - e sup -ix)S
Error~ S roman erf (z) - 2 over sqrt pi \

int sub 0 sup z e sup {-t sup 2 l dtS
Bessel~ S J sub O (z) - 1 over pi \

int sub O sup pi cos (z sin theta) d theta S
Zeta <1' S zeta (s) =- \

sum from k-1 to inf k sup -s --(Re-s > 1)S
.TE

Name

Gamma

Sine

Error

Bessel

Zela

Definilion

re: >-fo-1=-1e-· dt

sin(x>-L (e''·-e-''")

erf(:)- }; J::e_,i dt

1 r" J0(: >--; J
0

cos(:sin9)d9 j ..
{ (s) - !, k _, (Re s > l)

\•I

Usage

Documents with just text:
lroff ·ms files

With equations only:
eqn files I troff -ms

With tables onlv:
tbl files I troff -ms ·

With both tables and l!quations:
tbl tilesieqn! troff ·ms

The above generates ST:\RE oulput on acos: replace
-st with -ph for typesetter output.

A Revised Version of -ms 5-17

A Revised Version of-ms

Bill Tuthill

Computing Services
University of California

Berkeley, CA 94720

The -ms macros have been slightly revised and rearranged. Because of the rearrange
ment, the new macros can be read by the computer in about half the time required by the
previous version of-ms. This means that output will begin to appear between ten seconds and
several minutes more quickly, depending on the system load. On long files, however, the sav
ings in total time are not substantial. The old version of - ms is still available as -mos.

Several bugs in-ms have been fixed, including a bad problem with the .lC macro, minor
difficulties with boxed text, a break induced by .EQ before initialization, the failure to set tab
stops in displays, and several bothersome errors in the ref er macros. Macros used only at
Bell Laboratories have been removed. There are a few extensions to previous -ms macros, and
a number of new macros, but all the documented-ms macros still work exactly as they did
before, and have the same names as before. Output produced with -ms should look like out
put produced with-mos.

One important new feature is automatically numbered footnotes. Footnote numbers are
printed by means of a pre-defined string (**),which you invoke separately from .FS and .FE.
Each time it is used, this string increases the footnote number by one, whether or not you use
.FS and .FE in your text. Footnote numbers will be superscripted on the phototypesetter and
on daisy-wheel terminals, but on low-resolution devices (such as the lpr and a crt), they will
be bracketed. If you use)* * to indicate numbered footnotes, then the .FS macro will
automatically include the footnote number at the bottom of the page. This footnote, for
example, was produced as follows:1

This footnote, for example, was produced as follows:**
.FS

.FE

If you are using)** to number footnotes, but want a particular footnote to be marked with an
asterisk or a dagger, then give that mark as the first argument to .FS: t

then give that mark as the first argument to .FS: \(dg
.FS \(dg

.FE

Footnote numbering will be temporarily suspended, because the ** string is not used.
Instead of a dagger, you could use an asterisk * or double dagger :j:, represented as \(dd.

1 If you never use the "\'"*" string, no footnote numbers will appear anywhere in the text, including down
here. The output footnotes will look exactly like footnotes produced with -mos.

t In the footnote, the dagger will appear where the footnote number would otherwise appear, as on the
left.

5-18 A Revised Version of -ms

Another new feature is a macro for printing theses according to Berkeley standards.
This macro is called .TM, which stands for thesis mode. (It is much like the .th macro in
-me.) It will put page numbers in the upper right-hand corner; number the first page; suppress
the date; and doublespace everything except quotes, displays, and keeps. Use it at the top of
each file making up your thesis. Calling .TM defines the .CT macro for chapter titles, which
skips to a new page and moves the pagenumber to the center footer. The .Pl (P one) macro
can be used even without thesis mode to print the header on page 1, which is suppressed
except in thesis mode. If you want roman numeral page numbering, use an ".af PN i"
request.

There is a new macro especially for bibliography entries, called .XP, which stands for
exdented paragraph. It will exdent the first line of the paragraph by\ n(PI units, usually 5n
(the same as the indent for the first line of a .PP). Most bibliographies are printed this way.
Here are some examples of exdented paragraphs:

Lumley, Lyle S., Sex in Crustaceans: Shell Fish Habits, Harbinger Press, Tampa Bay and
San Diego, October 1979. 243 pages. The pioneering work in this field.

Leffadinger, Harry A., "Mollusk Mating Season: 52 Weeks, or All Year?" in Acta Biologica,
vol. 42, no. 11, November 1980. A provocative thesis, but the conclusions are wrong.

Of course, you will have to take care of italicizing the book title and journal, and quoting the
title of the journal article. Indentation or exdentation can be changed by setting the value of
number register PI.

If you need to produce endnotes rather than footnotes, put the references in a file of
their own. This is similar to what you would do if you were typing the paper on a conven
tional typewriter. Note that you can use automatic footnote numbering without actually hav
ing .FS and .FE pairs in your text. If you place footnotes in a separate file, you can use .IP
macros with~* as a hanging tag; this will give you numbers at the left-hand margin. With
some styles of endnotes, you would want to use .PP rather then .IP macros, and specify ~ *
before the reference begins.

There are four new macros to help produce a table of contents. Table of contents
entries must be enclosed in .XS and .XE pairs, with optional .XA macros for additional
entries; arguments to .XS and .XA specify the page number, to be printed at the right. A
final .PX macro prints out the table of contents. Here is a sample of typical input and output
text:

.XS ii
Introduction
.XA 1
Chapter 1: Review of the Literature
.XA 23
Chapter 2: Experimental Evidence
.XE
.PX

Table of Contents

Introduction ii
Chapter 1: Review of the Literature .. 1
Chapter 2: Experimental Evidence 23

The .XS and .XE pairs may also be used in the text, after a section header for instance, in
which case page numbers are supplied automatically. However, most documents that require
a table of contents are too long to produce in one run, which is necessary if this method is to
work. It is recommended that you do a table of contents after finishing your document. To
print out the table of contents, use the .PX macro; if you forget it, nothing will happen.

A Revised Version of -ms 5-19

As an aid in producing text that will format correctly with both nroff and troff, there
are some new string definitions that define quotation marks and dashes for each of these two
formatting programs. The \ * string will yield two hyphens in nroff, but in troff it will pro
duce an em dash- like this one. The *Q and *U strings will produce " and " in troff, but "
in nroff. (In typesetting, the double quote is traditionally considered bad form.)

There are now a large number of optional foreign accent marks defined by the-ms mac
ros. All the accent marks available in-mos are present, and they all work just as they always
did. However, there are better definitions available by placing .AM at the beginning of your
document. Unlike the-mos accent marks, the accent strings should come after the letter
being accented. Here is a list of the diacritical marks, with examples of what they look like.

name of accent input output

acute accent e*' e
,

grave accent e*' e '
circumflex o*,. 0

,.

cedilla c*, c,
tilde n*- n -
question *?
exclamation *!
umlaut u*: u"
digraphs *8
hacek c*v c
macron a* a
underdot s*. s
o-slash o*/ 0

angstrom a*o a
yogh kni*3t knit
Thorn *(Th
thorn *(th
Eth *(D-
eth *(d-
hooked o *q
ae ligature *(ae
AE ligature *(Ae
oe ligature *(oe
OE ligature *(Oe

If you want to use these new diacritical marks, don't forget the .AM at the top of your file.
Without it, some will not print at all, and others will be placed on the wrong letter.

It is also possible to produce custom headers and footers that are different on even and
odd pages. The .OH and .EH macros define odd and even headers, while .OF and .EF define
odd and even footers. Arguments to these four macros are specified as with .tl. This docu
ment was produced with:

.OH '\fIThe -mx Macros"Page % \fP'

.EH '\fIPage %"The -mx Macros\fP'

Note that it would be a error to have an apostrophe in the header text; if you need one, you
will have to use a different delimiter around the left, center, and right portions of the title.
You can use any character as a delimiter, provided it doesn't appear elsewhere in the argu
ment to .OH, .EH, .OF, or EF.

The-ms macros work in conjunction with the tbl, eqn, and refer preprocessors. Mac
ros to deal with these it~ms are read in only as needed, as are the thesis macros (.TM), the
special accent mark definitions (.AM), table of contents macros (.XS and .XE), and macros to

5-20 A Revised Version of -ms

format the optional cover page. The code for the ms package lives in /usr /lib/tmac/tmac.s,
and sourced files reside in the directory /usr/ucb/lib/ms.

Writing Papers with -me 5-21

WRITING PAPERS WITH NROFF USING - ME

Eric P. Allman

Electronics Research Laboratory
University of California, Berkeley

Berkeley, California 94720

This document describes the text processing facilities available on the UNIXt operating
system via NROFFt and the -me macro package. It is assumed that the reader already is gen
erally familiar with the UNIX operating system and a text editor such as ex. This is intended
to be a casual introduction, and as such not all material is covered. In particular, many varia
tions and additional features of the -me macro package are not explained. For a complete
discussion of this and other issues, see The -me Reference Manual and The NROFF/TROFF
Reference Manual.

NROFF, a computer program that runs on the UNIX operating system, reads an input file
prepared by the user and outputs a formatted paper suitable for publication or framing. The
input consists of text, or words to be printed, and requests, which give instructions to the
NROFF program telling how to format the printed copy.

Section 1 describes the basics of text processing. Section 2 describes the basic requests.
Section 3 introduces displays. Annotations, such as footnotes, are handled in section 4. The
more complex requests which are not discussed in section 2 are covered in section 5. Finally,
section 6 discusses things you will need to know if you want to typeset documents. If you are
a novice, you probably won't want to read beyond section 4 until you have tried some of the
basic features out.

When you have your raw text ready, call the NROFF formatter by typing as a request to
the UNIX shell:

nroff -me -Ttype files

where type describes the type of terminal you are outputting to. Common values are dtc for
a DTC 300s (daisy-wheel type) printer and lpr for the line printer. If the -T flag is omitted,
a "lowest common denominator" terminal is assumed; this is good for previewing output on
most terminals. A complete description of options to the NROFF comm~md can be found in
The NROFF/TROFF Reference Manual.

The word argument is used in this manual to mean a word or number which appears on
the same line as a request which modifies the meaning of that request. For example, the
request

.sp

spaces one line, but

.sp 4

spaces four lines. The number 4 is an argument to the .sp request which says to space four

5-22 Writing Papers with -me

lines instead of one. Arguments are separated from the request and from each other by
spaces.

1. Basics of Text Processing

The primary function of NROFF is to collect words from input lines, fill output lines
with those words, justify the right hand margin by inserting extra spaces in the line, and
output the result. For example, the input:

Now is the time
for all good men
to come to the aid
of their party.
Four score and seven
years ago, ...

will be read, packed onto output lines, and justified to produce:

Now is the time for all good men to come to the aid of their party. Four score
and seven years ago, ...

Sometimes you may want to start a new output line even though the line you are on is not
yet full; for example, at the end of a paragraph. To do this you can cause a break, which
starts a new output line. Some requests cause a break automatically, as do blank input
lines and input lines beginning with a space.

Not all input lines are text to be formatted. Some of the input lines are requests
which describe how to format the text. Requests always have a period or an apostrophe
(" '") as the first character of the input line.

The text formatter also does more complex things, such as automatically numbering
pages, skipping over page folds, putting footnotes in the correct place, and so forth.

I can offer you a few hints for preparing text for input to NROFF. First, keep the
input lines $hort. Short input lines are easier to edit, and NROFF will pack words onto
longer lines for you anyhow. In keeping with this, it is helpful to begin a new line after
every period, comma, or phrase, since common corrections are to add or delete sentences or
phrases. Second, do not put spaces at the end of lines, since this can sometimes confuse
the NROFF processor. Third, do not hyphenate words at the end of lines (except words
that should have hyphens in them, such as "mother-in-law"); NROFF is smart enough to
hyphenate words for you as needed, but is not smart enough to take hyphens out and join
a word back together. Also, words such as "mother-in-law" should not be broken over a
line, since then you will get a space where not wanted, such as "mother- in-law".

2. Basic Requests

2.1. Paragraphs

Paragraphs are begun by using the .pp request. For example, the input:

.pp
Now is the time for all good men
to come to the aid of their party.
Four score and seven years ago, ...

produces a blank line followed by an indented first line. The result is:

tUNIX, NHOFF, and THOFF are Trademarks of Bell Laboratories

Writing Papers with -me 5-23

Now is the time for all good men to come to the aid of their party. Four
score and seven years ago, ...

Notice that the sentences of the paragraphs must not begin with a space, since
blank lines and lines begining with spaces cause a break. For example, if I had typed:

.pp
Now is the time for all good men

to come to the aid of their party.
Four score and seven years ago, ...

The output would be:

Now is the time for all good men
to come to the aid of their party. Four score and seven years ago, ...

A new line begins after the word "men" because the second line began with a space
character.

There are many fancier types of paragraphs, which will be described later.

2.2. Headers and Footers

Arbitrary headers and footers can be put at the top and bottom of every page.
Two requests of the form .he title and .fo title define the titles to put at the head and
the foot of every page, respectively. The titles are called three-part titles, that is, there
is a left-justified part, a centered part, and a right-justified part. To separate these
three parts the first character of title (whatever it may be) is used as a delimiter. Any
character may be used, but backslash and double quote marks should be avoided. The
percent sign is replaced by the current page number whenever found in the title. For
example, the input:

.he "%"

.fo 'Jane Jones"My Book'

results in the page number centered at the top of each page, "Jane Jones" in the lower
left corner, and "My Book" in the lower right corner.

2.3. Double Spacing

NROFF will double space output text automatically if you use the request .ls 2, as

is done in this section. You can revert to single spaced mode by typing .ls 1.

2.4. Page Layout

A number of requests allow you to change the way the printed copy looks, some
times called the layout of the output page. Most of these requests adjust the placing of
"white space" (blank lines or spaces). In these explanations, characters in italics should
be replaced with values you wish to use; bold characters represent characters which
should actually be typed.

The .hp request starts a new page.

The request .sp N leaves N lines of blank space. N can be omitted (meaning skip
a single line) or can be of the form Ni (for N inches) or Ne (for N centimeters). For
example, the input:

.sp 1.5i
My thoughts on the subject
.sp

leaves one and a half inches of space, followed by the line "My thoughts on the

5-24 Writing Papers with -me

subject", followed by a single blank line.

The .in +N request changes the amount of white space on the left of the page
(the indent). The argument N can be of the form +N (meaning leave N spaces more
than you are already leaving), -N (meaning leave less than you do now), or just N
(meaning leave exactly N spaces). N can be of the form Ni or Ne also. For example,
the input: ·

initial text
.in 5
some text
.in +li
more text
.in -2c
final text

produces "some text" indented exactly five spaces from the left margin, "more text"
indented five spaces plus one inch from the left margin (fifteen spaces on a pica type
writer), and "final text" indented five spaces plus one inch minus two centimeters from
the margin. That is, tpe output is:

initial text
some text

more text
final text

The .ti +N (temporary indent) request is used like .in +N when the indent
should apply to one line only, after which it should revert to the previous indent. For
example, the input:

.in li

.ti 0
Ware, James R. The Best of Confucius,
Halcyon House, 1950.
An excellent book containing translations of
most of Confucius' most delightful sayings.
A definite must for anyone interested in the early foundations
of Chinese philosophy.

produces:
Ware, James R. The Best of Confucius, Halcyon House, 1950. An excellent book con

taining translations of most of Confucius' most delightful sayings. A
definite must for anyone interested in the early foundations of Chinese
philosophy.

Text lines can be centered by using the .ce request. The line after the .ce is cen
tered (horizontally) on the page. To center more than one line, use .ce N (where N is
the number of lines to center), followed by the N lines. If you want to center many
lines but don't want to count them, type:

.ce 1000
lines to center
.ce 0

The .ce 0 request tells NROFF to center zero more lines, in other words, stop centering.

All of these requests cause a break; that is, they always start a new line. If you
want to start a new line without performing any other action, use .hr.

Writing Papers with -me 5-25

2.5. Underlining

Text can be underlined using the .ul request. The .ul request causes the next
input line to be underlined when output. You can underline multiple lines by stating a
count of input lines to underline, followed by those lines (as with the .ce request). For
example, the input:

.ul 2
Notice that these two input lines
are underlined.

will underline those eight words in NROFF. (In TROFF they will be set in italics.)

3. Displays

Displays are sections of text to be set off from the body of the paper. Major quotes,
tables, and figures are types of displays, as are all the examples used in this document. All
displays except centered blocks are output single spaced.

3.1. Major Quotes

Major quotes are quotes which are several lines long, and hence are set in from
the rest of the text without quote marks around them. These can be generated using
the commmands .(q and .)q to surround the quote. For example, the input:

As Weizenbaum points out:
.(q
It is said that to explain is to explain away.
This maxim is nowhere so well fulfilled
as in the areas of computer programming, ...
.)q

generates as output:

As W eizenbaum points out:

It is said that to explain is to explain away. This maxim is nowhere so well fulfilled as
in the areas of computer programming, ...

3.2. Lists

A list is an indented, single spaced, unfilled display. Lists should be used when
the material to be printed should not be filled and justified like normal text, such as
columns of figures or the examples used in this paper. Lists are surrounded by the
requests .(I and .)1. For example, type:

Alternatives to avoid deadlock are:
.(1
Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding
.)1

will produce:
Alternatives to avoid deadlock are:

Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding

5-26 Writing Papers with -me

3.3. Keeps

A keep is a display of lines which are kept on a single page if possible. An exam
ple of where you would use a keep might be a diagram. Keeps differ from lists in that
lists may be broken over a page boundary whereas keeps will not.

Blocks are the basic kind of keep. They begin with the request .(b and end with
the request .)b. If there is not room on the current page for everything in the block, a
new page is begun. This has the unpleasant effect of leaving blank space at the bottom
of the page. When this is not appropriate, you can use the alternative, called floating
keeps.

Floating keeps move relative to the text. Hence, they are good for things which
will be referred to by name, such as "See figure 3". A floating keep will appear at the
bottom of the current page if it will fit; otherwise, it will appear at the top of the next
page. Floating keeps begin with the line .(z and end with the line .)z. For an example
of a floating keep, see figure 1. The .hi request is used to draw a horizontal line so that
the figure stands out from the text.

3.4. Fancier Displays

Keeps and lists are normally collected in no/ill mode, so that they are good for
tables and such. If you want a display in fill mode (for text), type .(IF (Throughout
this section, comments applied to .(1 also apply to .(b and .(z). This kind of display
will be indented from both margins. For example, the input:

.(1 F
And now boys and girls,
a newer, bigger, better toy than ever before!
Be the first on your block to have your own computer!
Yes kids, you too can have one of these modern
data processing devices.
You too can produce beautifully formatted papers
without even batting an eye!
.)1

will be output as:

.(z

.hl
Text of keep to be floated .
. sp
.ce
Figure 1. Example of a Floating Keep .
. hl
.)z

Figure 1. Example of a Floating Keep.

Writing Papers with -me 5-27

And now boys and girls, a newer, bigger, better toy than ever before! Be the
first on your block to have your own computer! Yes kids, you too can have one
of these modern data processing devices. You too can produce beautifully for
matted papers without even batting an eye!

Lists and blocks are also normally indented (floating keeps are normally left
justified). To get a left-justified list, type .(1 L. To get a list centered line-for-line,
type .(1 C. For example, to get a filled, left justified list, enter:

.(1 L F
text of block
.)1

The input:

.(1
first line of unfilled display
more lines
.)1

produces the indented text:

first line of unfilled display
more lines

Typing the character L after the .(1 request produces the left justified result:

first line of unfilled display
more lines

Using C instead of L produces the line-at-a-time centered output:

first line of unfilled display
more lines

Sometimes it may be that you want to center several lines as a group, rather than
centering them one line at a time. To do this use centered blocks, which are sur
rounded by the requests .(c and .)c. All the lines are centered as a unit, such that the
longest line is centered and the rest are lined up around that line. Notice that lines do
not move relative to each other using centered blocks, whereas they do usirig the C
argument to keeps.

Centered blocks are not keeps, and may be used in conjunction with keeps. For
example, to center a group of lines as a unit and keep them on one page, use:

.(b L

.(c
first line of unfilled display
more lines
.)c
.)b

to produce:

first line of unfilled display
more lines

If the block requests (.(b and .)b) had been omitted the result would have been the
same, but with no guarantee that the lines of the centered block would have all been on
one page. Note the use of the L argument to .(b; this causes the centered block to
center within the entire line rather than within the line minus the indent. Also, the
center requests must be nested inside the keep requests.

5-28 Writing Papers with -me

4. Annotations

There are a number of requests to save text for later printing. Footnotes are printed
at the bottom of the current page. Delayed text is intended to be a variant form of foot
note; the text is printed only when explicitly called for, such as at the end of each chapter.
Indexes are a type of delayed text having a tag (usually the page number) attached to each
entry after a row of dots. Indexes are also saved until called for explicitly.

4.1. Footnotes

Footnotes begin with the request .(f and end with the request .)f. The current
footnote number is maintained automatically, and can be used by typing **, to pro-
duce a footnote number1

• The number is automatically incremented after every foot
note. For example, the input:

.(q
A man who is not upright
and at the same time is presumptuous;
one who is not diligent and at the same time is ignorant;
one who is untruthful and at the same time is incompetent;
such men I do not count among acquaintances.~*
.(f
**James R. Ware,
.ul
The Best of Confucius,
Halcyon House, 1950.
Page 77 .
.)f
.)q

generates the result:

A man who is not upright and at the same time is presumptuous; one who is not dili
gent and at the same time is ignorant; one who is untruthful and at the same time is in-
competent; such men I do not count among acquaintances.2

It is important that the footnote appears inside the quote, so that you can be sure that
the footnote will appear on the same page as the quote.

4.2. Delayed Text

Delayed text is very similar to a footnote except that it is printed when called for
explicitly. This allows a list of references to appear (for example) at the end of each
chapter, as is the convention in some disciplines. Use*# on delayed text instead of**
as on footnotes.

If you are using delayed text as your standard reference mechanism, you can still
use footnotes, except that you may want to reference them with special characters*
rather than numbers.

4.3. Indexes

An "index" (actually more like a table of contents, since the entries are not sorted
alphabetically) resembles delayed text, in that it is saved until called for. However,
each entry has the page number (or some other tag) appended to the last line of the

1Like this.
2James R. Ware, The Best of Confucius, Halcyon House, 1950. Page 77.

*Such as an asterisk.

Writing Papers with -me 5-29

index entry after a row of dots.

Index entries begin with the request .(x and end with .)x. The .)x request may
have a argument, which is the value to print as the "page number". It defaults to the
current page number. If the page number given is an underscore (" ") no page number
or line of dots is printed at all. To get the line of dots without a page number, type .)x
'"', which specifies an explicitly null page number.

The .xp request prints the index.

For example, the input:

.(x
Sealing wax
.)x
.(x
Cabbages and kings
.)x
.(x
Why the sea is boiling hot
.)x 2.5a
.(x
Whether pigs have wings
.)x ""
.(x
This is a terribly long index entry, such as might be used
for a list of illustrations, tables, or figures; I expect it to
take at least two lines .
.)x
.xp

generates:
Sealing wax 29
Cabbages and kings
Why the sea is boiling hot 2.5a
Whether pigs have wings
This is a terribly long index entry, such as might be used for a list of illustra-

tions, tables, or figures; I expect it to take at least two lines. 29

The .(x request may have a single character argument, specifying the "name" of
the index; the normal index is x. Thus, several "indicies" may be maintained simul
taneously (such as a list of tables, table of contents, etc.).

Notice that the index must be printed at the end of the paper, rather than at the
beginning where it will probably appear (as a table of contents); the pages may have to
be physically rearranged after printing.

5. Fancier Features

A large number of fancier requests exist, notably requests to provide other sorts of
paragraphs, numbered sections of the form 1.2.3 (such as used in this document), and
multicolumn output.

5.1. More Paragraphs

Paragraphs generally start with a blank line and with the first line indented. It is
possible to get left-justified block-style paragraphs by using .Ip instead of .pp, as
demonstrated by the next paragraph.

5-30 Writing Papers with -me

Sometimes you want to use paragraphs that have the body indented, and the first line
exdented (opposite of indented) with a label. This can be done with the .ip request. A
word specified on the same line as .ip is printed in the margin, and the body is lined up
at a prespecified position (normally five spaces). For example, the input:

.ip one
This is the first paragraph.
Notice how the first line
of the resulting paragraph lines up
with the other lines in the paragraph .
.ip two
And here we are at the second paragraph already.
You may notice that the argument to .ip
appears
in the margin .
.Ip
We can continue text...

produces as output:

one This is the first paragraph. Notice how the first line of the resulting paragraph
lines up with the other lines in the paragraph.

two And here we are at the second paragraph already. You may notice that the argu
ment to .ip appears in the margin.

We can continue text without starting a new indented paragraph by using the .Ip
request.

If you have spaces in the label of a .ip request, you must use an "unpaddable
space" instead of a regular space. This is typed as a backslash character ("'\') followed
by a space. For example, to print the label "Part 1 ", enter:

.ip "Part\ 1"

If a label of an indented paragraph (that is, the argument to .ip) is longer than
the space allocated for the label, .ip will begin a new line after the label. For example,
the input:

.ip longlabel
This paragraph had a long label.
The first character of text on the first line
will not line up with the text on second and subsequent lines,
although they will line up with each other.

will produce:

longlabel
This paragraph had a long label. The first character of text on the first line will
not line up with the text on second and subsequent lines, although they will line
up with each other.

It is possible to change the size of the label by using a second argument which is
the size of the label. For example, the above example could be done correctly by say
ing:

.ip longlabel 10

which will make the paragraph indent 10 spaces for this paragraph only. If you have
many paragraphs to indent all the same amount, use the number register ii. For exam
ple, to leave one inch of space for the label, type:

Writing Papers with -me 5-31

.nr ii li

somewhere before the first call to .ip. Refer to the reference manual for more informa
tion.

If .ip is used with no argument at all no hanging tag will be printed. For example,
the input:

.ip [a]
This is the first paragraph of the example.
We have seen this sort of example before .
.ip
This paragraph is lined up with the previous paragraph,
but it has no tag in the margin.

produces as output:

[a] This is the first paragraph of the example. We have seen this sort of example
before.

This paragraph is lined up with the previous paragraph, but it has no tag in the
margin.

A special case of .ip is .np, which automatically numbers paragraphs sequentially
from 1. The numbering is reset at the next .pp, .Ip, or .sh (to be described in the next
section) request. For example, the input:

.np
This is the first point .
. np
This is the second point.
Points are just regular paragraphs
which are given sequence numbers automatically
by the .np request .
. pp
This paragraph will reset numbering by .np .
. np
For example,
we have reverted to numbering from one now.

generates:

(1) This is the first point.

(2) This is the second point. Points are just regular paragraphs which are given
sequence numbers automatically by the .np request.

This paragraph will reset numbering by .np.

(1) For example, we have reverted to numbering from one now.

5.2. Section Headings

Section numbers (such as the ones used in this document) can be automatically
generated using the .sh request. You must tell .sh the depth of the section number
and a section title. . The depth specifies how many numbers are to appear (separated by
decimal points) in the section number. For example, the section number 4.2.5 has a
depth of three.

Section numbers are incremented in a fairly intuitive fashion. If you add a
number (increase the depth), the new number starts out at one. If you subtract section
numbers (or keep the same number) the final number is incremented. For example, the
input:

5-32 Writing Papers with -me

.sh 1 "The Preprocessor"

.sh 2 "Basic Concepts"

.sh 2 "Control Inputs"

.sh 3

.sh 3

.sh 1 "Code Generation"

.sh 3

produces as output the result:

1. The Preprocessor
1.1. Basic Concepts
1.2. Control Inputs
1.2.1.
1.2.2.
2. Code Generation
2.1.1.

You can specify the section number to begin by placing the section number after
the section title, using spaces instead of dots. For example, the request:

.sh 3 "Another section" 7 3 4

will begin the section numbered 7 .3.4; all subsequent .sh requests will number relative
to this number.

There are more complex features which will cause each section to be indented pro
portionally to the depth of the section. For example, if you enter:

.nr si N

each section will be indented by an amount N. N must have a scaling factor attached,
that is, it must be of the form Nx, where x is a character telling what units N is in.
Common values for x are i for inches, c for centimeters, and n for ens (the width of a
single character). For example, to indent each section one-half inch, type:

.nr si 0.5i

After this, sections will be indented by one-half inch per level of depth in the section
number. For example, this document was produced using the request

.nr si 3n

at the beginning of the input file, giving three spaces of indent per section depth.

Section headers without automatically generated numbers can be done using:

.uh "Title"

which will do a section heading, but will put no number on the section.

5.3. Parts of the Basic Paper

There are some requests which assist in setting up papers. The .tp request initial
izes for a title page. There are no headers or footers on a title page, and unlike other
pages you can space down and leave blank space at the top. For example, a typical title
page might appear as:

.tp

.sp 2i

.(1 c
THE GROWTH OF TOENAILS
IN UPPER PRIMATES
.sp
by
.sp
Frank N. Furter
.)1
.bp

Writing Papers with -me 5-33

The request .th sets up the environment of the NROFF processor to do a thesis,
using the rules established at Berkeley. It defines the correct headers and footers (a
page number in the upper right hand corner only), sets the margins correctly, and dou
ble spaces.

The .+c T request can be used to start chapters. Each chapter is automatically
numbered from one, and a heading is printed at the top of each chapter with the
chapter number and the chapter name T. For example, to begin a chapter called "Con
clusions", use the request:

.+c "CONCLUSIONS"

which will produce, on a new page, the lines

CHAPTER 5
CONCLUSIONS

with appropriate spacing for a thesis. Also, the header is moved to the foot of the page
on the first page of a chapter. Although the .+c request was not designed to work only
with the .th request, it is tuned for the format acceptable for a PhD thesis at Berkeley.

If the title parameter T is omitted from the . +c request, the result is a chapter
with no heading. This can also be used at the beginning of a paper; for example, .+c
was used to generate page one of this document.

Although papers traditionally have the abstract, table of contents, and so forth at
the front of the paper, it is more convenient to format and print them last when using
NROFF. This is so that index entries can be collected and then printed for the table of
contents (or whatever). At the end of the paper, issue the.++ P request, which begins
the preliminary part of the paper. After issuing this request, the .+c request will begin
a preliminary section of the paper. Most notably, this prints the page number restarted
from one in lower case Roman numbers. . +c may be used repeatedly to begin different
parts of the front material for example, the abstract, the table of contents, acknowledg
ments, list of illustrations, etc. The request .++ B may also be used to begin the
bibliographic section at the end of the paper. For example, the paper might appear as
outlined in figure 2. (In this figure, comments begin with the sequence\'.)

5.4. Equations and Tables

Two special UNIX programs exist to format special types of material. Eqn and
neqn set equations for the phototypesetter and NROFF respectively. Thi arranges to
print extremely pretty tables in a variety of formats. This document will only describe
the embellishments to the standard features; consult the reference manuals for those
processors for a description of their use.

The eqn and neqn programs are described fully in the document Typesetting
Mathematics - Users' Guide by Brian W. Kernighan and Lorinda L. Cherry.

5-34 Writing Papers with -me

. th '\' set for thesis mode

.fo "DRAFT" \" define footer for each page

. tp \" begin title page

. (1 C \" center a large block
THE GROWTH OF TOENAILS
IN UPPER PRIMATES
.Sp
by
.sp
Frank Furter
.)l
.+c INTRODUCTION
.(x t
Introduction
.)x
text of chapter one
.+c "NEXT CHAPTER"
.(x t
Next Chapter
.)x
text of chapter two
.+c CONCLUSIONS
.(x t
Conclusions
.)x
text of chapter three
.++B
.+c BIBLIOGRAPHY
.(x t
Bibliography
.)x

\" end centered part
\" begin chapter named "INTRODUCTION"
\" make an entry into index 't'

\" end of index entry

Y begin another chapter
\" enter into index 't' again

\" begin bibliographic information
\" begin another 'chapter'

text of bibliography
.++ P \,, begin preliminary material
.+c "TABLE OF CONTENTS"
.xp t \" print index 't' collected above
.+c PREFACE \"begin another preliminary section
text of pref ace

Figure 2. Outline of a Sample Paper

Equations are centered, and are kept on one page. They are introduced by the .EQ
request and terminated by the .EN request.

The .EQ request may take an equation number as an optional argument, which is
printed vertically centered on the right hand side of the equation. If the equation
becomes too long it should be split between two lines. To do this, type:

.EQ (eq 34)
text of equation 34
.ENC
.EQ
continuation of equation 34
.EN

Writing Papers with -me 5-35

The C on the .EN request specifies that the equation will be continued.

The tbl program produces tables. It is fully described (including numerous exam
ples) in the document Tbl - A Program to Format Tables by M. E. Lesk. Tables begin
with the .TS request and end with the .TE request. Tables are normally kept on a sin
gle page. If you have a table which is too big to fit on a single page, so that you know it
will extend to several pages, begin the table with the request . TS H and put the
request • TH after the part of the table which you want duplicated at the top of every
page that the table is printed on. For example, a table definition for a long table might
look like:

.TSH
css
nnn.
THE TABLE TITLE
.TH
text of the table
.TE

5.5. Two Column Output

You can get two column output automatically by using the request .2c. This
causes everything after it to be output in two-column form. The request .be will start a
new column; it differs from .bp in that .bp may leave a totally blank column when it
starts a new page. To revert to single column output, use .le.

5.6. Defining Macros

A macro is a collection of requests and text which may be used by stating a simple
request. Macros begin with the line .de xx (where xx is the name of the macro to be
defined) and end with the line consisting of two dots. After defining the macro, stating
the line .xx is the same as stating all the other lines. For example, to define a macro
that spaces 3 lines and then centers the next input line, enter:

.de SS

.sp 3

.ce

and use it by typing:

.SS
Title Line
(beginning of text)

Macro names may be one or two characters. In order to avoid conflicts with
names in -me, always use upper case letters as names. The only names to avoid are
TS, TH, TE, EQ, and EN.

5.7. Annotations Inside Keeps

Sometimes you may want to put a footnote or index entry inside a keep. For
example, if you want to maintain a "list of figures" you will want to do something like:

5-36 Writing Papers with -me

.(z

.(c
text of figure
.)c
.ce
Figure 5 .
. (x f
Figure 5
.)x
.)z

which you may hope will give you a figure with a label and an entry in the index f
(presumably a list of figures index). Unfortunately, the index entry is read and inter
preted when the keep is read, not when it is printed, so the page number in the index is
likely to be wrong. The solution is to use the magic string\! at the beginning of all the
lines dealing with the index. In other words, you should use:

.(z

.(c
Text of figure
.)c
.ce
Figure 5.
\!.(x f
\!Figure 5
\!.)x
.)z

which will defer the processing of the index until the figure is output. This will guaran
tee that the page number in the index is correct. The same comments apply to blocks
(with .(b and .)b) as well.

6. TROFF and the Photosetter

With a little care, you can prepare documents that will print nicely on either a regu
lar terminal or when phototypeset using the TROFF formatting program.

6.1. Fonts

A font is a style of type. There are three fonts that are available simultaneously,
Times Roman, Times Italic, and Times Bold, plus the special math font. The normal
font is Roman. Text which would be underlined in NROFF with the .ul request is set in
italics in TROFF.

There are ways of switching between fonts. The requests .r, .i, and .b switch to
Roman, italic, and bold fonts respectively. You can set a single word in some font by
typing (for example):

.i word

which will set word in italics but does not affect the surrounding text. In NROFF, italic
and bold text is underlined.

Notice that if you are setting more than one word in whatever font, you must sur
round that word with double quote marks ('" ') so that it will appear to the NROFF pro
cessor as a single word. The quote marks will not appear in the formatted text. If you
do want a quote mark to appear, you should quote the entire string (even if a single
word), and use two quote marks where you want one to appear. For example, if you
want to produce the text:

Writing Papers with -me 5-37

"Master Control"

in italics, you must type:

.i """Master Control\ I """
The\ I produces a very narrow space so that the "l" does not overlap the quote sign in
TROFF, like this:

"Master Control"

There are also several "pseudo-fonts" available. The input:

.(b

.u underlined

.bi "bold italics"

. bx "words in a box"

.)b

generates

underlined
bold italics
I words in a box I

In NROFF these all just underline the text. Notice that pseudo font requests set only
the single parameter in the pseudo font; ordinary font requests will begin setting all
text in the special font if you do not provide a parameter. No more than one word
should appear with these three font requests in the middle of lines. This is because of
the way TROFF justifies text. For example, if you were to issue the requests:

.bi "some bold italics"
~nd
. bx "words in a box"

in the \niddle of a line TROFF would produce SHTTr:JE HH1Jli iitailirIB and !words in a box!,
which I think you will agree does not look good.

The second parameter of all font requests is set in the original font. For example,
the font request:

.b bold face

generates "bold" in bold font, but sets "face" in the font of the surrounding text,
resulting in:

boldface.

To set the two words bold and face both in bold face, type:

.b "bold face"

You can mix fonts in a word by using the special sequence \c at the end of a line
to indicate "continue text processing"; this allows input lines to be joined together
without a space inbetween them. For example, the input:

.u under\c

.i italics

generates ~talics, but if we had typed:

.u under

.i italics

the result would have been under italics as two words.

5-38 Writing Papers with -me

6.2. Point Sizes

The phototypesetter supports different sizes of type, measured in points. The
default point size is 10 points for most text, 8 points for footnotes. To change the
pointsize, type:

.sz +N

where N is the size wanted in points. The vertical spacing (distance between the bot
tom of most letters (the baseline) between adjacent lines) is set to be proportional to
the type size.

Warning: changing point sizes on the phototypesetter is a slow mechanical opera
tion. Size changes should be considered carefully.

6.3. Quotes

It is conventional when using the typesetter to use pairs of grave and acute
accents to generate double quotes, rather than the double quote character ('" '). This is
because it looks better to use grave and acute accents; for example, compare "quote" to
"quote".

In order to make quotes compatible between the typesetter and terminals, you
may use the sequences *(lq and *(rq to stand for the left and right quote respec
tively. These both appear as " on most terminals, but are typeset as " and " respec
tively. For example, use:

\ * (lq Some things aren't true
even if they did happen.* (rq

to generate the result:

"Some things aren't true even if they did happen."

As a shorthand, the special font request:

.q "quoted text"

will generate "quoted text". Notice that you must surround the material to be quoted
with double quote marks if it is more than one word.

Acknowledgments

I would like to thank Bob Epstein, Bill Joy, and Larry Rowe for having the courage to
use the -me macros to produce non-trivial papers during the development stages; Ricki Blau,
Pamela Humphrey, and Jim Joyce for their help with the documentation phase; and the
plethora of people who have contributed ideas and have given support for the project.

-me Reference Manual 5-39

-ME REFERENCE MANUAL

Release 1.1/25

Eric P. Allman

Electronics Research Laboratory
University of California, Berkeley

Berkeley, California 94720

This document describes in extremely terse form the features of the -me macro package
for version seven NROFF/TROFF. Some familiarity is assumed with those programs,
specifically, the reader should understand breaks, fonts, pointsizes, the use and definition of
number registers and strings, how to define macros, and scaling factors for ens, points, v's
(vertical line spaces), etc.

For a more casual introduction to text processing using NROFF, refer to the document
Writing Papers with NROFF using -me.

There are a number of macro parameters that may be adjusted. Fonts may be set to a
font number only. In NROFF font 8 is underlined, and is set in bold font in TROFF (although
font 3, bold in TROFF, is not underlined in NROFF). Font 0 is no font change; the font of the
surrounding text is used instead. Notice that fonts 0 and 8 are "pseudo-fonts"; that is, they
are simulated by the macros. This means that although it is legal to set a font register to zero
or eight, it is not legal to use the escape character form, such as:

\f 8

All distances are in basic units, so it is nearly always necessary to use a scaling factor.
For example, the request to set the paragraph indent to eight one-en spaces is:

.nr pi 8n

and not

.nr pi 8

which would set the paragraph indent to eight basic units, or about 0.02 inch. Default param
eter values are given in brackets in the remainder of this document.

Registers and strings of the form $x may be used in expressions but should not be
changed. Macros of the form $x perform some function (as described) and may be redefined
to change this function. This may be a sensitive operation; look at the body of the original
macro before changing it.

All names in ..;_me follow a rigid naming convention. The user may define number regis
ters, strings, and macros, provided that s/he uses single character upper case names or double
character names consisting of letters and digits, with at least one upper case letter. In no case
should special characters be used in user-defined names.

On daisy wheel type printers in twelve pitch, the -rxl flag can be stated to make lines
default to one eighth inch (the normal spacing for a newline in twelve-pitch). This is normally
too small for easy readability, so the default is to space one sixth inch.

tNROFF and TROFF are Trademarks of Bell Laboratories.

5-40 -me Reference Manual

1. Paragraphing

These macros are used to begin paragraphs. The standard paragraph macro is .pp; the
others are all variants to be used for special purposes.

The first call to one of the paragraphing macros defined in this section or the .sh macro
(defined in the next session) initializes the macro processor. After initialization it is not pos
sible to use any of the following requests: .sc, .lo, .th, or .ac. Also, the effects of changing
parameters which will have a global effect on the format of the page (notably page length and
header and footer margins) are not well defined and should be avoided .

.Ip Begin left-justified paragraph. Centering and underlining are turned
off if they were on, the font is set to \n(pf [1] the type size is set to
\n(pp [lOp], and a \n(ps space is inserted before the paragraph [0.35v
in TROFF, lv or 0.5v in NROFF depending on device resolution]. The
indent is reset to \n($i [O] plus \n(po [O] unless the paragraph is
inside a display. (see .ha). At least the first two lines of the para
graph are kept together on a page .

. pp Like .Ip, except that it puts \n(pi [5n] units of indent. This is the
standard paragraph macro .

• ip TI Indented paragraph with hanging tag. The body of the following para
graph is indented I spaces (or \n(ii [5n] spaces if I is not specified)
more than a non-indented paragraph (such as with .pp) is. The title
T is exdented (opposite of indented). The result is a paragraph with
an even left edge and T printed in the margin. Any spaces in T must
be unpaddable. If T will not fit in the space provided, .ip will start a
new line.

.np

2. Section Headings

A variant of .ip which numbers paragraphs. Numbering is reset after
a .Ip, .pp, or .sh. The current paragraph number is in \n($p.

Numbered sections are similiar to paragraphs except that a section number is automati
cally generated for each one. The section numbers are of the form 1.2.3. The depth of the
section is the count of numbers (separated by decimal points) in the section number.

Unnumbered section headings are similar, except that no number is attached to the
heading .

• sh + N T a b c d e f Begin numbered section of depth N. If N is missing the current depth
(maintained in the number register \n($0) is used. The values of the
individual parts of the section number are maintained in \n($1
through \n($6. There is a \n(ss [lv] space before the section. T is
printed as a section title in font \n(sf [8] and size \n(sp [lOp]. The
"name" of the section may be accessed via *($n. If \n(si is non-zero,
the base indent is set to \n(si times the section depth, and the section
title is exdented. (See .ha.) Also, an additional indent of \n(so [O] is
added to the section title (but not to the body of the section). The
font is then set to the paragraph font, so that more information may
occur on the line with the section number and title. .sh insures that
there is enough room to print the section head plus the beginning of a
paragraph (about 3 lines total). If a through f are specified, the sec
tion number is set to that number rather than incremented automati
cally. If any of a through fare a hyphen that number is not reset. If
T is a single underscore (" ") then the section depth and numbering is
reset, but the base indent is not reset and nothing is printed out. This

.sx +N

.uh T

.$p TB N

. $0 TB N

. $1 - .$6

-me Reference Manual 5-41

is useful to automatically coordinate section numbers with chapter
numbers.

Go to section depth N [-1], but do not print the number and title,
and do not increment the section number at level N. This has the
effect of starting a new paragraph at level N.

Unnumbered section heading. The title T is printed with the same
rules for spacing, font, etc., as for .sh.

Print section heading. May be redefined to get fancier headings. T is
the title passed on the .sh or .uh line; B is the section number for this
section, and N is the depth of this section. These parameters are not
always present; in particular, .sh passes all three, .uh passes only the
first, and .sx passes three, but the first two are null strings. Care
should be taken if this macro is redefined; it is quite complex and sub
tle .

This macro is called automatically after every call to .$p. It is nor
mally undefined, but may be used to automatically put every section
title into the table of contents or for some similiar function. T is the
section title for the section title which was just printed, B is the sec
tion number, and N is the section depth .

Traps called just before printing that depth section. May be defined
to (for example) give variable spacing before sections. These macros
are called from .$p, so if you redefine that macro you may lose this
feature.

3. Headers and Footers

Headers and footers are put at the top and bottom of every page automatically. They
are set in font \n(tf [3] and size \n(tp [lOp]. Each of the definitions apply as of the next
page. Three-part titles must be quoted if there are two blanks adjacent anywhere in the title
or more than eight blanks total.

The spacing of headers and footers are controlled by three number registers. \n(hm [4v]
is the distance from the top of the page to the top of the header, \n(fm [3v] is the distance
from the bottom of the page to the bottom of the footer, \n(tm [7v] is the distance from the
top of the page to the top of the text, and \n(bm [6v] is the distance from the bottom of the
page to the bottom of the text (nominal). The macros .ml, .m2, .m3, and .m4 are also sup
plied for compatibility with ROFF documents .

. he Tm'r' Define three-part header, to be printed on the top of every page .

. fo 'l'm'r'

. eh 'l'm'r'

.oh 'l'm'r'

.ef 'l'm'r'

. of 'l'm'r'

. hx

. ml +N

. m2+N

Define footer, to be printed at the bottom of every page.

Define header, to be printed at the top of every even-numbered page .

Define header, to be printed at the top of every odd-numbered page.

Define footer, to be printed at the bottom of every even-numbered
page .

Define footer, to be printed at the bottom of every odd-numbered
page.

Suppress headers and footers on the next page .

Set the space between the top of the page and the header [4v] .

Set the space between the header and the first line of text [2v] .

5-42 -me Reference Manual

. m3+N

• m4 +N

.ep

.$h

. $f

.$0

4. Displays

Set the space between the bottom of the text and the footer [2v] .

Set the space between the footer and the bottom of the page [4v] .

End this page, but do not begin the next page. Useful for forcing out
footnotes, but other than that hardly every used. Must be followed by
a .hp or the end of input.

Called at every page to print the header. May be redefined to provide
fancy (e.g., multi-line) headers, but doing so loses the function of the
.he, .fo, .eh, .oh, .ef, and .of requests, as well as the chapter-style
title feature of • +c.

Print footer; same comments apply as in .$h .

A normally undefined macro which is called at the top of each page
(after outputing the header, initial saved floating keeps, etc.); in other
words, this macro is called immediately before printing text on a page.
It can be used for column headings and the like.

All displays except centered blocks and block quotes are preceeded and followed by an
extra \n(bs [same as \n(ps] space. Quote spacing is stored in a separate register; centered
blocks have no default initial or trailing space. The vertical spacing of all displays except
quotes and centered blocks is stored in register \n($R instead of\n($r .

• (1 m f Begin list. Lists are single spaced, unfilled text. If f is F, the list will
be filled. If m [I] is I the list is indented by \n(bi [4n]; if M the list is
indented to the left margin; if L the list is left justified with respect to
the text (different from M only if the base indent (stored in \n($i and
set with .ha) is not zero); and if C the list is centered on a line-by-line
basis. The list is set in font \n(df [O]. Must be matched by a .)I.
This macro is almost like .(b except that no attempt is made to keep
the display on one page .

•)1 End list.

.(q

•)q

.(b mf

.)b

.(z mf

Begin major quote. These are single spaced, filled, moved in from the
text on both sides by \n(qi [4n], preceeded and followed by \n(qs
[same as \n(bs] space, and are set in point size \n(qp [one point
smaller than surrounding text] .

End major quote.

Begin block. Blocks are a form of keep, where the text of a keep is
kept together on one page if possible (keeps are useful for tables and
figures which should not be broken over a page). If the block will not
fit on the current page a new page is begun, unless that would leave
more than \n(bt [O] white space at the bottom of the text. If \n(bt is
zero, the threshold feature is turned off. Blocks are not filled unless f
is F, when they are filled. The block will be left-justified if m is L,
indented by \n(bi [4n] if m is I or absent, centered (line-for-line) if m
is C, and left justified to the margin (not to the base indent) if m is
M. The block is set in font \n(df [O] .

End block.

Begin floating keep. Like .(b except that the keep is fioated to the
bottom of the page or the top of the next page. Therefore, its position
relative to the text changes. The floating keep is preceeded and fol
lowed by \n(zs [lv] space. Also, it defaults to mode M.

•)z

.(c

.)c

5. Annotations

.(d

.)d n

.pd

. (f

.)f n

. $s

• (xx

•)x PA

.xpx

6. Columned Output

.2c +s N

. le

. be

-me Reference Manual 5-43

End floating keep .

Begin centered block. The next keep is centered as a block, rather
than on a line-by-line basis as with .(b C. This call may be nested
inside keeps .

End centered block.

Begin delayed text. Everything in the next keep is saved for output
later with .pd, in a manner similar to footnotes.

End delayed text. The delayed text number register \n($d and the
associated string *# are incremented if *# has been referenced.

Print delayed text. Everything diverted via .(d is printed and trun
cated. This might be used at the end of each chapter .

Begin footnote. The text of the footnote is floated to the bottom of
the page and set in font \n(ff [1] and size \n(fp [8p]. Each entry is
preceeded by \n(fs [0.2v] space, is indented \n(fi [3n] on the first line,
and is indented \n(fu [O] from the right margin. Footnotes line up
underneath two columned output. If the text of the footnote will not
all fit on one page it will be carried over to the next page.

End footnote. The number register \n($f and the associated string**
are incremented if they have been referenced .

The macro to output the footnote seperator. This macro may be
redefined to give other size lines or other types of separators.
Currently it draws a l.5i line .

Begin index entry. Index entries are saved in the index x [x] until
called up with .xp. Each entry is preceeded by a \n(xs [0.2v] space.
Each entry is "undented" by \n(xu [0.5i]; this register tells how far
the page number extends into the right margin .

End index entry. The index entry is finished with a row of dots with
A [null] right justified on the last line (such as for an author's name),
followed by P [\n3]. If A is specified, P must be specified; \n3 can
be used to print the current page number. If P is an underscore, no
page number and no row of dots are printed.

Print index x [x]. The index is formated in the font, size, and so forth
in effect at the time it is printed, rather than at the time it is col
lected.

Enter two-column mode. The column separation is set to +S [4n, 0.5i
in ACM mode] (saved in \n($s). The column width, calculated to fill
the single column line length with both columns, is stored in \n($1.
The current column is in \n($c. You can test register \n($m [1] to
see if you are in single column or double column mode. Actually, the
request enters N [2] columned output .

Revert to single-column mode .

Begin column. This is like .bp except that it begins a new column on
a new page only if necessary, rather than forcing a whole new page if
there is another column left on the current page.

5-44 -me Reference Manual

7. Fonts and Sizes

.sz +P

.r W X

.i w x

.b w x

.rb W X

.u w x

.q w x

.bi w x

.bx W X

8. Roff Support

. ix +N

.blN

• pa +N

.ro

. ar

. nl

. n2 N

. sk

The pointsize is set to P [lOp], and the line spacing is set proportion
ally. The ratio of line spacing to pointsize is stored in \n($r. The
ratio used internally by displays and annotations is stored in \n($R
(although this is not used by .sz).

Set W in roman font, appending X in the previous font. To append
different font requests, use X = \c. If no parameters, change to roman
font.

Set W in italics, appending X in the previous font. If no parameters,
change to italic font. Underlines in NROFF.

Set W in bold font and append X in the previous font. If no parame
ters, switch to bold font. In NROFF, underlines.

Set W in bold font and append X in the previous font. If no parame
ters, switch to bold font. .rb differs from .b in that .rb does not
underline in NROFF.

Underline Wand append X. This is a true underlining, as opposed to
the .ul request, which changes to "underline font" (usually italics in
TROFF). It won't work right if W is spread or broken (including
hyphenated). In other words, it is safe in nofill mode only.

Quote W and append X. In NROFF this just surrounds W with double
quote marks (' "'), but in TROFF uses directed quotes.

Set W in bold italics and append X. Actually, sets W in italic and
overstrikes once. Underlines in NROFF. It won't work right if W is
spread or broken (including hyphenated). In other words, it is safe in
nofill mode only.

Sets Win a box, with X appended. Underlines in NROFF. It won't
work right if W is spread or broken (including hyphenated). In other
words, it is safe in nofill mode only.

Indent, no break. Equivalent to 'in N .

Leave N contiguous white space, on the next page if not enough room
on this page. Equivalent to a .sp N inside a block.

Equivalent to .hp .

Set page number in roman numerals. Equivalent to .af % i.

Set page number in arabic. Equivalent to .af % 1 .

Number lines in margin from one on each page .

Number lines from N, stop if N = 0 .

Leave the next output page blank, except for headers and footers .
This is used to leave space for a full-page diagram which is produced
externally and pasted in later. To get a partial-page paste-in display,
say .sv N, where N is the amount of space to leave; this space will be
output immediately if there is room, and will otherwise be output at
the top of the next page. However, be warned: if N is greater than the
amount of available space on an empty page, no space will ever be out
put.

-me Reference Manual 5-45

9. Preprocessor Support

.EQ m T Begin equation. The equation is centered if m is C or omitted,
indented \n(bi [4n] if m is l, and left justified if m is L. T is a title
printed on the right margin next to the equation. See Typesetting
Mathematics - User's Guide by Brian W. Kernighan and Lorinda L.
Cherry.

.EN c

. TSh

. TH

.TE

10. Miscellaneous

. re

.ba+N

. xi +N

.11 +N

.hi

.lo

End equation. If c is C the equation must be continued by immedi
ately following with another .EQ, the text of which can be centered
along with this one. Otherwise, the equation is printed, always on one
page, with \n(es [0.5v in TROFF, 1 v in NROFF] space above and below
it.

Table start. Tables are single spaced and kept on one page if possible .
If you have a large table which will not fit on one page, use h = H and
follow the header part (to be printed on every page of the table) with
a . TH. See Tbl - A Program to Format Tables by M. E. Lesk.

With . TS H, ends the header portion of the table .

Table end. Note that this table does not float, in fact, it is not even
guaranteed to stay on one page if you use requests such as .sp inter
mi:lted with the text of the table. If you want it to float (or if you use
requests inside the table), surround the entire table (including the .TS
and. .TE requests) with the requests .(z and .)z.

Reset tabs. Set to every 0.5i in TROFF and every 0.8i in NROFF .

Set the base indent to +N [O] (saved in \n($i). All paragraphs, sec
tions, and displays come out indented by this amount. Titles and
footnotes are unaffected. The .sh request performs a .ha request if
\n(si [O] is not zero, and sets the base indent to \n(si*\n($0 .

Set the line length to N [6.0i]. This differs from .11 because it only
affects the current environment.

Set line length in all environments to N [6.0i]. This should not be
used after output has begun, and particulariy not in two-columned
output. The current line length is stored in \ri($1.

Draws a horizontal line the length of the page. This is useful inside
floating keeps to differentiate between the text and the figure.

This macro loads another set of macros (in /usr/lib/me/local.me)
which is intended to be a set of locally defined macros. These macros
should all be of the form . * X, where X is any letter (upper or lower
case) or digit.

11. Standard Papers

.tp

.th

Begin title page. Spacing at the top of the page can occur, and
headers and footers are supressed. Also, the page number is not incre
mented for this page.

Set thesis mode. This defines the modes acceptable for a doctoral
dissertation at Berkeley. It double spaces, defines the header to be a
single page number, and changes the margins to be 1.5 inch on the left
and one inch on the top. . + + and . +c should be used with it. This
macro must be stated before initialization, that is, before the first call

5-46 -me Reference Manual

. ++ mH

.+c T

.$c T

.$CKNT

.acAN

of a paragraphing macro or .sh.

This request defines the section of the paper which we are entering .
The section type is defined by m. C means that we are entering the
chapter portion of the paper, A means that we are entering the appen
dix portion of the paper, P means that the material following should
be the preliminary portion (abstract, table of contents, etc.) portion of
the paper, AB means that we are entering the abstract (numbered
independently from 1 in Arabic numerals), and B means that we are
entering the bibliographic portion at the end of the paper. Also, the
variants RC and RA are allowed, which specify renumbering of pages
from one at the beginning of each chapter or appendix, respectively.
The H parameter defines the new header. If there are any spaces in it,
the entire header must be quoted. If you want the header to have the
chapter number in it, Use the string \\\\n(ch. For example, to number
appendixes A.I etc., type .++ RA ""\\\\n(ch. %'. Each section
(chapter, appendix, etc.) should be preceeded by the .+c request. It
should be mentioned that it is easier when using TROFF to put the
front material at the end of the paper, so that the table of contents
can be collected and output; this material can then be physically
moved to the beginning of the paper.

Begin chapter with title T. The chapter number is maintained in
\n(ch. This register is incremented every time . +c is called with a
parameter. The title and chapter number are printed by .$c. The
header is moved to the footer on the first page of each chapter. If Tis
omitted, .$c is not called; this is useful for doing your own "title page"
at the beginning of papers without a title page proper. .$c calls .$C
as a hook so that chapter titles can be inserted into a table of contents
automatically. The footnote numbering is reset to one.

Print chapter number (from \n(ch) and T. This macro can be
redefined to your liking. It is defined by default to be acceptable for a
PhD thesis at Berkeley. This macro calls $C, which can be defined to
make index entries, or whatever.

This macro is called by .$c. It is normally undefined, but can be used
to automatically insert index entries, or whatever. K is a keyword,
either "Chapter" or "Appendix" (depending on the .++ mode); N is
the chapter or appendix number, and T is the chapter or appendix
title.

This macro (short for .acm) sets up the NROFF environment for
photo-ready papers as used by the ACM. This format is 25% larger,
and has no headers or footers. The author's name A is printed at the
bottom of the page (but off the part which will be printed in the
conference proceedings), together with the current page number and
the total number of pages N. Additionally, this macro loads the file
/usr/lib/me/acm.me, which may later be augmented with other mac
ros useful for printing papers for ACM conferences. It should be
noted that this macro will not work correctly in TROFF, since it sets
the page length wider than the physical width of the phototypesetter
roll.

-me Reference Manual 5-47

12. Predefined Strings

*#
*[

*]

*<

*>
*(dw

*(mo

*(td

*(lq

*(rq

*-

Footnote number, actually *[\n($f*]. This macro is incremented
after each call to .)f.

Delayed text number. Actually [\n($d].

Superscript. This string gives upward movement and a change to a
smaller point size if possible, otherwise it gives the left bracket charac
ter ('['). Extra space is left above the line to allow room for the super
script.

Unsuperscript. Inverse to *[. For example, to produce a superscript
you might type x*[2*], which will produce x 2

•

Subscript. Defaults to '<' if half-carriage motion not possible. Extra
space is left below the line to allow for the subscript.

Inverse to *<.
The day of the week, as a word.

The month, as a word.

Today's date, directly printable. The date is of the form April 8, 1984.
Other forms of the date can be used by using \n(dy (the day of the
month; for example, 8), *(mo (as noted above) or \n(mo (the same,
but as an ordinal number; for example, April is 4), and \n(yr (the last
two digits of the current year).

Left quote marks. Double quote in NROFF.

Right quote.

% em dash in TROFF; two hyphens in NROFF.

13. Special Characters and Marks

There are a number of special characters and diacritical marks (such as accents) avail
able through -me. To reference these characters, you must call the macro .sc to define the
characters before using them.

.SC Define special characters and diacritical marks, as described in the
remainder of this section. This macro must be stated before initializa
tion.

The special characters available are listed below.
Name Usage Example
Acute accent *' a*' a
Grave accent *' e*' e
Umlat *: u*: ii
Tilde *- n*- n
Caret *" e*" e
Cedilla '* c*, ~ ' Czech *v e*v

v
e

Circle *o A*o .t\
There exists *(qe =I
For all *(qa \

5-48 -me Reference Manual

Acknowledgments

I would like to thank Bob Epstein, Bill Joy, and Larry Rowe for having the courage to
use the -me macros to produce non-trivial papers during the development stages; Ricki Blau,
Pamela Humphrey, and Jim Joyce for their help with the documentation phase; and the
plethora of people who have contributed ideas and have given support for the project.

Introduction

Nro:ft'/Tro:ft' Users Manual 5-49

NROFF/TROFF User's Manual

Joseph F. Ossanna

Bell Laboratories
Murray Hill, New Jersey 07974

NROFF and TROFF are text processors under the PDP-11 UNIX Time-Sharing Systeml that format text
for typewriter-like terminals and for a Graphic Systems phototypesetter, respectively. They accept lines
of text interspersed with lines of format control information and format the text into a printable,
paginated document having a user-designed style. NROFF and TROFF offer unusual freedom in docu
ment styling, including: arbitrary style headers and footers; arbitrary style footnotes~ multiple automatic
sequence numbering for paragraphs, sections, etc; multiple column output; dynamic font and point-size
control; arbitrary horizontal and vertical local motions at any point; and a family of automatic overstrik·
ing, bracket construction, and line drawing functions.

NROFF and TROFF are highly compatible with each other and it is almost always possible to prepare
input acceptable to both. Conditional input is provided that enables the user to embed input expressly
destined for either program. NROFF can prepare output directly for a variety of terminal types and is
capable of utilizing the full resolution of each terminal.

Usage

The general form of invoking NROFF Cor TROFF) at UNIX command level is

nroff options files (or troff options files)

where options represents any of a number of option arguments and files represents the list of files con
taining the document to be formatted. An argument consisting of a single minus (-) is taken to be a
file name corresponding to the standard input. If no file names are given input is taken from the stan
dard input. The options, which may appear in any order so long as they appear before the files, are:

Option

-olist

-nN
-sN

-mname

-raN

-I

-q

EJfect

Print only pages whose page numbers appear in list, which consists of comma
separated numbers and number ranges. A number range has the form N-M and
means pages N through M: a initial - N means from the beginning to page N: and
a final N- means from N to the end.

Number first generated page N.

Stop every N pages. NROFF will halt prior to every N pages {default N-1) to
allow paper loading or changing, and will resume upon receipt of a newline.
TROFF will stop the phototypesetter every N pages, produce a trailer to allow
changing cassettes, and will resume after the phototypesetter START button is
pressed.

Prepends the macro file /usr/lib/tmac.name to the input files.

Register a Cone-character) is set to N.

Read standard input after the input files are exhausted.

Invoke the simultaneous input-output mode of the rd request.

5-50 Nroff/Troff Users Manual

NROFF Only

-Tname Specifies the name of the output terminal type. Currently defined names are 37
for the (default) Model 37 Teletype.a, tn300 for the GE TermiNet 300 (or any ter
minal without half-tine capabilities), JOOS for the DASI-3005, 300 for the DASl-
300, and 450 for the DASI-450 (Diablo Hyterm).

-e Produce equally-spaced words in adjusted lines, using full terminal resolution.

TROFF Only

-t Direct output to the standard output instead of the phototypesetter.

-f Refrain from feeding out paper and stopping phototypesetter at the end of the run.

-w Wait until phototypesetter is available, if currently busy.

-b TROFF will report whether the phototypesetter is busy or available. No text pro-
cessing is done.

-a Send a printable (ASCII) approximation of the results to the standard output.

- pN Print all characters in point size N while retaining all prescribed spacings and
motions, to reduce phototypesetter elasped time.

-1 Prepare output for the Murray Hill Computation Center phototypesetter and direct
it to the standard output.

Each option is invoked as a separate argument; for example,

nroff' -04,8-10 -T JOOS -mabc filel file2

requests formatting of pages 4, 8, 9, and 10 of a document contained in the files named file! and file2,
specifies the output terminal as a OASJ-3005, and invokes the macro package abc.

Various pre- and post-processors are available for use with NROFF and TROFF. These include the
equation preprocessors NEQN and EQN2 (for NROFF and TROFF respectively), and the table
construction preprocessor TBLJ. A reverse-line postprocessor COL 4 is available for multiple-column
NROFF output on terminals without reverse-line ability~ COL expects the Model 37 Teletype escape
sequences that NROFF produces by default. TK4 is a 37 Teletype simulator postprocessor for printing
NROFF output on a Tektronix 4014. TCAT4 is phototypesetter-simulator postprocessor for TROFF that
produces an approximation of phototypesetter output on ... Tektronix 4014. For example, in

tbl files I eqn I troff' - t options I teat

the first I indicates the piping of TBL's output to EQN's input; the second the piping of EQN's output to
TROFF's input; and the third indicates the piping of TROFF's output to TCAT. GCAT4 can be used to
send TROFF (-g) output to the Murray Hill Computation Center.

The remainder of this manual consists of: a Summary and Index; a Reference Manual keyed to the
index; and a set of Tutorial Examples. Another tutorial is [5].

Joseph F. Ossanna

References

(1) K. Thompson. 0. M. Ritchie, UNIX Programmer's Manual, Sixth Edition (May 1975).

(2) B. W. Kernighan, L. L. Cherry. Typesetting Mathematics - User's Guide (Second Edition), Bell Laboratories
internal memorandum.

[3) M. E. Lesk, Tb/ - A Program to Format Tables. Bell Laboratories internal memorandum.

[41 Internal on-line documentation, on UNIX.

[5] B. W. Kernighan, A TROFF Tutorial. Beil Laboratories internal memorandum.

Nroff/Troff Users Manual 5-51

SUMMARY AND INDEX

R~quut Initial U No
Form Yalue• Argument Nata# Explanation

1. General Explanation

2. Font and Character Size Control

.ps ±N lOpoint previous E

.ss N 12/36 em ignored E

.cs FNM otr P

.bd F N off P

.bd SF N off P

.ft F Roman previous E

.fp N F R,l,B,S ignored

3. Paae Control

.pl ±N 11 in 11 in
• bp ±N N-1
• pn ±N N-1 ignored
.po ± N O; 26/27 in previous v
• ne N N-l V D,v
.mk R none internal D
• rt ± N none internal D, v

4. Text Filllna, Adjusting, and Centering

~r 8
. fl fill 8,E
• of fill B,E
. ad c adj, both adjust E
. na adjust E
• ce N off N-1 B,E

5. Vertical Spacin1

.vs N 1/6in;l2pts previous

.ls N N-1

.sp N
• ST N
• os
.ns
.rs

space

previous
N-lV
N-1 v

6. Line Length and Indentina

E,p
E
B,v
v

D
D

Point size; also \s ± N. t
Space-character size set to N/36 em. t
Constant character space (width) mode (font F). t
Embolden font F by N-1 units. t
Embolden Special Font when current font is F.t
Change to font F - x, xx, or 1-4. Also \fx. \f (.a. \f N.
Font named F mounted on physical position 1~N~4.

Page length .
Eject current page; next page number N .
Next page number N.
Page offset.
Need N vertical space (V - vertical spacing) .
Mark current vertical place in register R.
Return (upward only) to marked vertical place .

Break .
Fill output lines .
No filling or adjusting of output lines .
Adjust output lines with mode c .
No output line adjusting .
Center following N input text lines.

Vertical base line spacing (V).

Output N-1 Vs after each text output line.
Space vertical distance N in either direction .
Save vertical distance N.
Output saved vertical distance .
Turn no-space mode on.
Restore spacing; turn no-space mode off.

.11 ± N 6.5 in previous E,m Line length .
• in ±N N-0 previous 8,E,m Indent.
.ti ± N ignored B,E,m Temporary indent.

7. Macros, Strin1s, Diversion, and Position Traps

.de xx yy .yy-.. Define or redefine macro xx; end at call of yy .
• am xx yy .yy-.. Append to a macro .
. ds xx string • ignored Define a string xx containing string .
. as xx string • ignored Append string to string xx.

•values separated by";" are for NROFF and TROFF respectively.
#Notes are explained at the end of this Summary and Index
tNo effect in NROFF.

iThe use of" •" as control character (instead of".") suppresses the break function.

5-52 Nroff/Troff Users Manual

If No Request
Form

Initial
Value Argument Note:s Explanation

.rm .a

.rn xx yy

.di :cc

.da xx
• wh N xx
. ch xx N
.dt N xx
.it N xx
.em xx none

8. Number Registers

.nr R ±NM
• af R c arabic
. rr R

ignored
ignored
end
end

off
off
none

9. Tabs, Leaders, and Fields

. ta Nt ... 0.8~ 0.Sin none

. tc c none none

. k c none

.fc a b otf off

D
D
v
y

D,v
E

Remove request, macro, or string.
Rename request, macro. or string xx to yy.
Divert output to macro xx.
Divert and append to xx.
Set location trap; negative is w .r. t. page bottom .
Change trap location .
Set a diversion trap.
Set an input-line count trap.
End macro is xx.

u Define and set number register R; auto-increment by M.
Assign format to register R (c-1, i, I, a, A) .
Remove register R .

E,m Tab settings; left type, unless t-R (right), C(centered) .
E Tab repetition character .
E Leader repetition character .

Set field delimiter a and pad character b.

10. Input and Output Conventions and Character Translations

.ec c \ \ Set escape character .

. eo on Turn off escape character mechanism .
• lg N -; on on Ligature mode on if N>O .
. ul N off N-1 E Underline (italicize in TROFF) N input lines .
• cu N off N-1 E Continuous underline in NROFF; like ul in TROFF .
• uf F Italic Italic Underline font set to F (to be switched to by ul) .
. cc c E Set control character to c .
• c2 c E Set nobreak control character to c .
• tr abed.... none 0 Translate a to b, etc. on output.

1 L Local Horizontal and Vertical Motions, and the Width Function

12. Overstrike, Bracket, Line-drawing, and Zero-width Functions

13. Hyphenation •

• nh hyphenate E No hyphenation .
• hy N hyphenate hyphenate E Hyphenate; N - mode .

Hyphenation indicator character c .
Exception words.

. he c \'le \'It E

. hw word] .•• ignored

14. Three Part Tltlese

.ti 'left' center' right'
• pc c Oft otf
• Jt ± N 6.5 in previous

ts. Output Line Numbering •

• nm ± N MS I otr
. nn N N-1

16. Conditional Acceptance of Input

.if c anything

Three part title .
Page number character .

E,m Length of title.

E Number mode on or off, set parameters .
E Do not number next N lines.

If condition c true, accept anything as input,
for multi·line use \(anything\}.

Nrotf/Trotf Users Manual 5-53

If No Request
Form

Initial
Yalue Argument Notes Explanation

.If ! c anything
• if N anything u
• if ! N anything u
• if • stringl' string)' anything
• If ! · stringl ·string)' anything
• ie c anything u
. el anything

17. Environment Switching.

. ev N N-0 previous

18. Insertions from the Standard Input

. rd prompt
• ex

prompt-BEL·

19. Input/Output Flle Swltchina

• so filename
.nx filename
• pi program

20. Miscellaneous

.me cN

end-of-file -

E,m

If condition c false, accept anything .
If expression N > 0, accept anything .
If expression N ~ 0, accept anything .
If stringl identical to string), accept anything .
If stringl not identical to string), accept anything .
If portion of if-else; all above forms Oike if) .
Else portion of if-else .

Environment switched (push down) .

Read insertion .
Exit from NROFF/TROFF .

Switch source file (push down) .
Next file.
Pipe output to program (NROFF only) .

Set margin character c and separation N.
.tm string
• 11 yy

off
newline
.yy-••

Print string on terminal (UNIX standard message output).
Ignore till call of yy .

.pm t all Print macro names and sizes;

.n B
if t present, print only total of sizes.
Flush output buffer.

21. Output and Error Messa1es

Notes-

B Request normally causes a break.
D Mode or relevant parameters associated with current diversion level.
E Relevant parameters are a part of the current environment.
0 Must stay in effect until logical output.
P Mode must be still or again in etrect at the time of physical output.

",p,m,u Default scale indicator; if not specified, scale indicators are ignored.

Alpbabetlcal Request and Section Number Cross R.efennce

ad 4 cc 10 ds 7 fc 9 ie 16 11 6 nh 13 pi 19 rn 7
af 8 c:e 4 dt 7 fl 4 if 16 ls s nm IS pl 3 rr 8
am 7 c:h 7 ec 10 n 20 ia 20 It 14 nn IS pm20 rs s
u 7 cs 2 el 16 fp 2 in 6 mc20 nr 8 pn 3 rt 3
bd 2 cu 10 em 7 ft 2 it 7 mk 3 ns s po 3 so 19
bp J da 7 eo 10 he 13 le 9 na 4 nx 19 ps 2 sp s
br 4 de 7 ev 17 hw 13 •• 10 ne 3 OS s rd 18 SS 2
cl 10 di 7 ex 18 hy 13 Ii 10 nf 4 pc 14 rm 7 SV s

ta 9 vs s
tc 9 wh 7
ti 6
ti 14
tm 20
tr 10
uf 10
ul 10

5-54 Nro1f/Tro1f Users Manual

Escape Sequences for Characters, Indicators, and Functions

St!ctlon Escaptt
Rt!ft!rence Sequenct!

10.1 \\
10.1 \e

2.1 \'
2.1 \.
2.1 \-
7 \.

11.1 \(space)
11. l \0
l t. l \I
11.l , ..

4.1 \&
10.6 \!
10.7 ,.
7.3 \SN

13 \O/o
2.1 \(.a
7.1 \•x, \•(.a
9.1 \a

12.3 \b' abc •.• •
4.2 \c

11.1 \d
2.2 \fx, \f(.a,\fN

11.1 \h'N'
11.3 \kx
12.4 \I' Ne'
12.4 \L' Ne'
8 \nx,\n(xx

12.1 \o' abc •• :
4.1 \p

11. l \r
2.3 \sN, \s±N
9.1 \t

11.1 \u
11.1 \v'N'
11.2 \w' string·
5.2 \x'N'

12.2 \zc
16 \{
16 \}
10.7 \(newline)

\X

Meaning

\ (to prevent or delay the interpretation of\)
Printable version of the current escape character.
• (acute accent)~ equivalent to \ (aa
' (grave accent); equivalent to \ (ga
- Minus sign in the current font
Period (dot) (see de)
Unpaddable space-size space character
Digit width space
1/6 em narrow space character (zero width in NROFF)
1/12 em half-narrow sp:?ce character (zero width in NROFF)
Non-printing. zero width character
Transparent line indicator
Beginning of comment
Interpolate argument 1 'N~ 9
Default optional hyphenation character
Character named :q
Interpolate string x or xx
Non-interpreted leader character
Bracket building function
Interrupt text processing
Forward (down) 1/2 em vertical motion (1/2 line in NROFF)
Change to font named x or~ or position N
Local horizontal motion; move right N (negati\•e left)
Mark horizontal input place in register x
Horizontal line drawing function {optionally with c)
Vertical line drawing function (optionally with c)
Interpolate number register x or xx
Overstrike characters a, b, c, ...
Break and spread output line
Reverse 1 em vertical motion (reverse line in NROFF)
Point-size change function
Non-interpreted horizontal tab
Reverse (up) 1/2 em vertical motion (1/2 line in NROFF)
Local vertical motion; move down N (negative up)
Interpolate width of string
Extra line-space function (negative before. positive after)
Print c with zero width (without spacing)
Begin conditional input
End conditional input
Concealed (ignored) newline
X, any character not listed above

The escape sequences \ \, \., \ •, \$, \ •, \a. \n. \t. and \(newline) are interpreted in copy mode (§1. 2).

Nroff/Troff Users Manual 5-55

Predefined General Number Registers

S~ction Regl8ter
Reference Name

3 ¥o
11.2 ct
7.4 di
7.4 dn

dw
dy

11.3 hp
IS In

mo
4.1 nl

11.2 sb
11.2 st

yr

Description

Current page number.
Character type (set by width function).
Width (maximum) of last completed diversion.
Height (vertical size) of last completed diversion.
Current day of the week (1-7).
Current day of the month 0-31).
Current horizontal place on input line.
Output line number.
Current month (1-12).
Vertical position of last printed text base-line.
Depth of string below base line (generated by width function).
Height of string above base line (generated by width function).
Last two digits of current year.

Predefined Read-Only Number Registers

~ctlon Register
Reference Name

7.3 .$
• A

11.1 .H
• T

11.1 .v
S.2 .a

. c
7.4 .d
2.2 .r
4 • b
6 .I
6 .I
4 .n
3 .o
3 • p
2.3 .s
7.5 .t
4.1 .u
5.1 .v

11.2 .w
• x
• y

7.4 . z

~scrlptlon

Number of arguments available at the current macro level.
Set to 1 in TROFF, if -a option used; always 1 in NROFF .
Available horizontal resolution in basic units.
Set to 1 in NROFF, if -T option used; always 0 in TROFF .
Available vertical resolution in basic units.
Post-line extra line-space most recently utilized using \x' N'.
Number of Jines read from current input file .
Current vertical place in current diversion; equal to nl, if no diversion.
Current font as physical quadrant (1-4).
Text base-line high-water mark on current page or diversion .
Current indent.
Current line length.
Length of text portion on previous output line.
Current page off set.
Current page length .
Current point size.
Distance to the next trap.
Equal to 1 in fill mode and 0 in nofill mode.
Current vertical line spacing.
Width of previous character.
Reserved version-dependent register .
Reserved version-dependent register .
Name of current diversion .

5-56 Nroff/Troff Users Manual

REFERENCE MANUAL

1. General Explanation

1.1. Form of input. Input consists of text lines, which are destined to be printed, interspersed with control
lines. which set parameters or otherwise control subsequent processing. Control lines begin with a con
trol character-normally • (period) or • (acute accent)-followed by a one or two character name that
specifies a basic request or the substitution of a user-defined macro in place of the control line. The
control character • suppresses the break function-the forced output of a partially filled line-caused by
certain requests. The control character may be separated from the request/macro name by white space
(spaces and/or tabs) for esth~tic reasons. Names must be followed by either space or newline. Control
lines with unrecognized names are ignored.

Various special functions may be introduced anywhere in the input by means of an escape character,
normally\. For example, the function \nR causes the interpolation of the contents of the number regis
ter R in place of the function; here R is either a single character name as in \nx, or left-parenthesis·
introduced, two-character name as in \n (.a.

1.2. Formatter and device resolution. TROFF internally uses 432 units/inch, corresponding to the Graphic
Systems phototypesetter which has a horizontal resolution of 1/432 inch and a vertical resolution of
1/144 inch. NROFF internally uses 240 units/inch, corresponding to the least common multiple of the
horizontal and vertical resolutions of various typewriter-like output devices. TROFF rounds
horizontal/vertical numerical parameter input to the actual horizontal/vertical resolution of the Graphic
Systems typesetter. NROFF similarly rounds numerical input to the actual resolution of the output dev
ice indicated by t~e -T optjon (default Model 37 Teletype).

1.J. Numerical parameter input. Both NROFF and TROFF accept numerical input with the appended scale
indicators shown in the f9llowing table, where Sis the current type size in points, Vis the current verti
cal line spacing in basic units, and C is a nominal character width in basic units.

Scale Number of basic units
Indicator Meaning TROFF NROFF

i Inch 432 240
c Centimeter 432xS0/127 240xS0/127
p Pica - 1/6 inch 72 240/6
m Em - Spoints 6xS c
n En - Em/2 JxS C. same as Em
p Point - 1/72 inch 6 240/72
u Basic unit 1 1

• Vertical line space v v
no~e Def a ult, see below

In NROFF, both the em and the en are taken to be equal to the C., which is output-device dependent~
common values are 1/10 and 1/12 inch. Actual character, widths in NROFF need not be all the same
and constructed charact~rs such as - > (-) are often extra wide. The default scaling is ems for the
horizontally-oriented requests and functions 11, in, ti, ta, It, po, me, \h, and \l; Vs for the vertically
oriented requests and functions pl, wb, ch, dt, sp, sv, ne, rt, \ v, \x, and \L; p for the vs request; and
u for the requests nr, if, and le. All other requests ignore any scale jndicators. When a number regis
ter containing an alre~dy appropriately scaled number is interpolated to provi'de numerical input, the
unit scale indicator u may need to be appended to prevent an additional inappropriate default scaling.

Nroff/Troff Users Manual 5-57

The number, N, may be specified in decimal-fraction form but the parameter finally stored is rounded
to an integer number of basic units.

The absolute position indicator I may be prepended to a number N to generate the distance to the vertical
or horizontal place N. For vertically-oriented requests and functions, IN becomes the distance in basic
units from the current vertical place on the page or in a diversion (§7.4) to the the vertical place N. For
all other requests and functions, IN becomes the distance from the current horizontal place on the input
line to the horizontal place N. For example,

.sp 13.lc

will space in the required direction to 3.2 centimeters from the top of the page.

1.4. Numerical expressions. Wherever numerical input is expected an expression involving parentheses.
the arithmetic operators +, - , I, •, o/o (mod), and the logical operators <, >, < - , > - , - (or --),
8' (and), : (or) may be used. Except where controlled by parentheses, evaluation of expressions is
left-to-right; there is no operator precedence. In the case of certain requests, an initial + or - is
stripped and interpreted as an increment or decrement indicator respectively. In the presence of default
scaling, the desired scale indicator must be attached to every number in an expression for which the
desired and default scaling differ. For example, if the number register x contains 2 and the current
point size is 10, then

.11 (4.25i+\nxP+3)/2u

will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points.

1.5. Notation. Numerical parameters are indicated in this manual in two ways. ± N means that the
argument may take the forms N, +N, or -N and that the corresponding effect is to set the affected
parameter to N, to increment it by N, or to decrement it by N respectively. Plain N means that an ini
tial algebraic sign is not an increment indicator, but merely the sign of N. Generally, unreasonable
numerical input is either ignored or truncated to a reasonable value. For example, most requests
expect to set parameters to non-negative values~ exceptions are sp, wb, ch, nr, and if. The requests
ps, ft, po, vs, ls, 11, in, and lt restore the previous parameter value in the absence of an argument.

Single character arguments are indicated by single lower case letters and one/two character arguments
are indicated by a pair of lower case letters. Character string arguments are indicated by multi-character
mnemonics.

2. Font and Character Size Control

2.1. Character set. The TROFF character set consists of the Graphics Systems Commercial II character
set plus a Special Mathematical Font character set-each having 102 characters. These character sets
are shown in the attached Table I. All ASCII characters are included, with some on the Special Font.
With three exceptions, the ASCII characters are input as themselves, and non-ASCII characters are input
in the form \(.xx- where .xx- is a two-character name given in the attached Table II. The three ASCII
exceptions are mapped as follows:

ASCII Input Printed by TROFF
Character Name Character Name . acute accent ' close quote . grave accent • open quote

- minus - hyphen

The characters ", ., and - may be input by \', \'', and \- respectively or by their names (Table II).
The ASCII characters @, #, •, ", ', <, >, \, {, }, -, "', and_ exist only on the Special Font and are
printed as a 1-em space if that Font is not mounted'.

NROFF understands the entire TROFF character set, but can in general print only ASCII characters.
additional characters as may be available on the output device, such characters as may be able to be
constructed by overstriking or other combination, and those that can reasonably be mapped into other
printable characters. The exact behavior is determined by a driving table prepared for each device. The

5-58 Nro1f/Tro1f Users Manual

characters ', ·, and _ print as themselves.

2.2. Fonts. The default mounted fonts are Times Roman (R), Times Italic (I), Times Boid (B), and
the Special Mathematical Font (S) on physical typesetter positions l, 2, 3, and 4 respectively. These
fonts are used in this document. The current font, initially Roman, may be changed (among the
mounted fontS) by use of the ft request, or by imbedding at any desired point either \fx, \f(.:a, or \CN
where ."C and xx are the name of a mounted font and N is a numerical font position. It is not necessary
to change to the Special font~ characters on that font are automatically handled. A request for a named
but not-mounted font is ignored. TROFF can be informed that any particular font is mounted by use of
the fp request. The list of known fonts is installation depender.t. In the subsequent discussion of
font-related requests, F represents either a one/two-character font name or the numerical font position,
1-4. The current font is available (as numerical position) in the read-only number register .f.

NROFF understands font control and normally underlines Italic characters (see §10.5).

2.J. Character size. Character point sizes available on the Graphic Systems typesetter are 6, 7, 8, 9, 10,
11, 12, 14, 16, 18, 20, 22, 24, 28, and 36. This is a range of 1/12 inch to 1/2 inch. The ps request is
used to change or restore the point size. Alternatively the point size may be changed between any two
characters by imbedding a \sN at the desired point to set the size to N, or a \s ± N (l ~ N~ 9) to
increment/decrement the size by M \sO restores the previous size. Requested point size values that are
between two valid sizes yield the larger of the two. The current size is available in the .s register.
NROFF ignores type size control.

Requelt Initial II No
Form Yalue Argument Notes• Explanation

.ps ± N 10 point previous

.ss N 12/36 em ignored

• cs FNM off

• bd F N off

E

E

p

p

Point size set to ± N. Alternatively imbed \sN or \s ± N.
Any positive size value may be requested; if invalid, the
next larger valid size will result, with a maximum of 36.
A paired sequence + N, - N will work because the previ
ous requested value is also remembered. Ignored in
NROFF.

Space-character size is set to N/36 ems. This size is the
minimum word spacing in adjusted text. Ignored in
NROFF .

Constant character space (width) mode is set on for font
F (if mounted); the width of every character will be
taken to be N/36 ems. If Mis absent, the em is that of
the character's point size~ if M is given, the em is M
points. All affected charac.ters are centered in this space,
including those with an actual width larger than this
space. Special Font characters occurring while the
current font is Fare also so treated. If N is absent, the
mode is turned off. The mode must be still or again in
effect when the characters are physically printed. Ignored
in NROFF .

The characters in font F will be artificially emboldened by
printing each one twice. separated by N-1 basic units. A
reasonable value for N is 3 when the character size is in
the vicinity of 10 points. If N is missing the embolden
mode is turned off. The column heads above were
printed with .bd I 3. The mode must be still or again in
etf ect when the characters. are physically printed. Ignored
in NROFF.

·s . ' otes are explained at the end of the Summary and Index above.

.bd SF N off

.ft F Roman previous

.fp N F R,l,B,S i1nored

3. Pa1e control

p

E

Nroff/Troff Users Manual 5-59

The characters in the Special Font will be emboldened
whenever the current font is F. This manual was printed
with .bd SB 3. The mode must be still or again in effect
when the characters are physically printed.

Font changed to F. Alternatively, imbed \f F. The font
name P is reserved to mean the previous font.

Font position. This is a statement that a font named Fis
mounted on position N (1-4). It is a fatal error if Fis
not known. The phototypesetter has four fonts physically
mounted. Each font consists of a film strip which can be
mounted on a numbered quadrant of a wheel. The
default mounting sequence assumed by TROFF is R, I. B.
and S on positions 1, 2, 3 and 4.

Top and bottom margins are not automatically provided~ it is conventional to define two macros and to
set traps for them at vertical positions 0 (top) and - N (N from the bottom). See §7 and Tutorial
Examples §T2. A pseudo-page transition onto the first page occurs either when the first break occurs or
when the first non-divened text processing occurs. Arrangements for a trap to occur at the top of the
first page must be completed before this transition. In the following, references to the current diversion
(§7.4) mean that the mechanism being described works during both ordinary and diverted output (the
former considered as the top diversion level).

The useable page width on the Graphic Systems phototypesetter is about 7.54 inches. beginning about
1/27 inch from the left edge of the 8 inch wide, continuous roll paper. The physical limitations on
NROFF output are output-device dependent.

Request Initial I/ No
Form Yalue Argument Notes Explanation

.pl ±N 11 in 11 in Page length set to ± N. The internal limitation is about
75 inches in TROFF and about 136 inches in NROFF.
The current page length is available in the .p register.

.hp ±N

.pn ±N

.po ±N

.ne N

N-1

N-1

s•, v Begin page. The current page is ejected and a new page
is begun. If ± N is given, the new page number will be
± N. Also see request ns.

ignored Page number. The next page (when it occurs) will have
the page number ± N. A pn must occur before the ini
tial pseudo-page transition to effect the page number of
the first page. The current page number is in the %
register.

O; 26/27 int previous ., Page offset. The current left margin is set to ± N. The
TROFF initial value provides about 1 inch of paper mar
gin including the physical typesetter margin of 1/27 inch.
In TROFF the maximum Oine-tength) +(page-offset) is
about 7 .54 inches. See §6. The current page offset is
available in the .o register.

N-1 v 0,Y Need N vertical space. If the distance. D, to the next
trap position (see §7 .5) is less than N, a forward vertical
space of size D occurs, which will spring the trap. If
there are no remaining traps on the page. D is the

9The use of • • .. as control character (instead of ... •) suppresses the break function.

tValues separated by ";"are for NROFF and TROFF respectively.

5-60 Nro1f/Tro1f Users Manual

.mk R none internal D

.rt ±N none internal D.v

4. Text Filling, Adjusting, and Centering

distance to the bottom of the page. If D < V, another
line could still be output and spring the trap. In a diver
sion. D is the distance to the diversion trap., if any. or is
very large.

~fark the current vertical place in an internal register
(both associated with the current diversion level). or in
register R, if given. See rt request.

Return upward only to a marked vertical place in the
current diversion. If ± N (w.r.t. current place) is given,
the place is ± N from the top of the page or diversion or,
if .Vis absent, to a place marked by a previous mk. Note
thaf the sp request (§5.3) may be used in all cases
instead of rt by spacing to the absolute place stored in a
explicit register; e. g. using the sequence .mk R ...
. sp l\nRu.

4.1. Filling and adjusting. Normally, words are collected from input text lines and assembled into a out
put text line until some word doesn't fit. An attempt is then made the hyphenate the word in effort to
assemble a part of it into the output line. The spaces between the words on the output line are then
increased to spread out the line to the current lir.e length minus any current indent. A word is any string
of characters delimited by the space character or the beginning/end of the input line. Any adjacent pair
of words that must be kept together (neither split across output lines nor spread apart in the adjustment
process) can be tied together by separating them with the unpaddable space character "\ " (backslash·
space). The adjusted word spacings are uniform in TROFF and the minimum interword spacing can be
controlled with the ss request (§2). In NROFF. they are normally nonuniform because of quantization
to character-size spaces~ however, the command line option -e causes uniform spacing with full output
device resolution. Filling, adjustment, and hyphenation (§13) can all be prevented or controlled. The
te."Ct length on the last line output is available in the .n register, and text base-line position on the page
for this line is in the nl register. The text base-line high-water mark (lowest place) on the current page
is in the .h register.

An input text line ending with • , ? , or ! is taken to be the end of a sentence, and an additional space
character is automatically provided during filling. Multiple inter-word space characters found in the
input are retained, except for trailing spaces; initial spaces also cause a break.

When filling is in effect. a \p may be imbedded or attached to a word to cause a break at the end of the
word and have the resulting output line spread out to fill the current line length.

A text input line that happens to begin with a control character can be made to not look like a control
line by prefacing it with the non-printing, zero-width filler character \&. Still another way is to specify
output translation of some convenient character into the control character using tr (§10.5).

4.2. Interrupted text. The copying of a input line in no.fill (non·fill) mode can be interrupted by terminat·
ing the partial line with a \c. The next encountered input text line will be considered to be a continua·
tion of the same line of input text. Similarly, a word within filled text may be interrupted by terminat
ing the word (and line) with \c; the next encountered text will be taken as a continuation of the inter
rupted word. If the intervening control lines cause a break, any partial line will be forced out along
with any partial word.

Reque$t Initial
Fo'm Ya/ue

.br

UNo
Argument Note$

B

E:rplanation

Break. The filling of the line currently being collected is
stopped and the line is output without adjustment. Text
lines beginning with space characters and empty text
lines (blank lines) also cause a break.

.fl fill on B .. E

.nf fill on B,E

.ad c adj, both adjust E

.na adjust E

.ce N off N-1 8,E

S. Vertical Spacln1

Nroff/Troff Users Manual 5-61

Fill subsequent output lines. The register . u is l in fill
mode and 0 in nofill mode.

Nofill. Subsequent output lines are neither filled nor
adjusted. Input text lines are copied direccly to output
lines without regard for the current line length.

Line adjustment is begun. If fill mode is not on, adjust·
ment will be deferred until fill mode is back on. If the
type indicator c is present, the adjustment type is
changed as shown in the following table.

Indicator Adjust Type
I adjust left margin only
r adjust right margin only
c center

born adjust both margins
absent unchanged

Noadjust. Adjustment is turned off; the right margin will
be ragged. The adjustment type for ad is not changed.
Output line filling still occurs if fill mode is on.

Center the next N input text lines within the current
(line-length minus indent). If N-0, any residual count
is cleared. A break occurs after each of the N input
lines. If the input line is too long, it will be left adjusted.

5.1. Base-line spacing. The vertical spacing (VJ between the base-lines of successive output lines can be
set using the vs request with a resolution of 1/144 inch-1/2 point in TROFF, and to the output device
resolution in NROFF. V must be large enough to accommodate the character sizes on the affected out
put lines. For the common type sizes (9-12 points), usual typesetting practice is to set V to 2 points
greater than the point size; TROFF def a ult is 10-point type on a 12-point spacing (as in this document).
The current Vis available in the .v register. Multiple- V line separation (e.g. double spacing) may be
requested with ls.

5.2. Extra /in~·space. If a word contains a vertically tall construct requiring the output line containing it
to have extra vertical space before and/or after it. the extra-line-space function \x' N · can be imbedded
in or attached to that word. In this and other functions having a pair of delimiters around their parame
ter (here"), the delimiter choice is arbitrary, except that it can't look like the continuation of a number
expression for N. If N is negative, the output line containing the word will be preceded by N extra
vertical space; if N is positive, the output line containing the word will be followed by N extra vertical
space. If successive requests for extra space apply to the same line, the· maximum values are used.
The most recently utilized post-line extra line-space is available in the .a register.

5.J. Blocks of vertical space. A block of vertical space is ordinarily requested using sp, which honors the
no-space mode and which does not space past a trap. A contiguous block of vertical space may be
reserved using sv.

R~que~t Initial
Fonn Yalue

I/No
Argument

.'fS N l/6in;l2pts previous

.ls N N-1 previous

Notes Explanation

E,p

E

Set vertical base-line spacing size V. Transient extra
vertical space available with \x' N · (see above).

Line spacing set to ± N. N-1 Vs (blank lines) are
appended to each output text line. Appended blank lines
are omitted, if the text or previous appended blank line

5-6'2 Nroff/Troff Users Manual

.sp N N-lV

.sv N N-1 v

.os

.ns space

. rs space

Blank text line.

6. Line Len1th and Indentina

B,v

y

D

D

B

reached a trap position.

Space vertically in either direction. If N is negative. the
motion is backward (upward) and is limited to the dis
tance to the top of the page. Forward (downward)
motion is truncated to the distance to the nearest trap. If
the no-space mode is on. no spacing occurs (see ns, and
rs below).

Save a contiguous vertical block of size N. If the dis·
tance to the next trap is greater than N. N vertical space
is output. No-space mode has no effect. If this distance
is less than N. no vertical space is immediately output,
but N is remembered for later output (see os). Subse
quent sv requests will overwrite any still remembered N.

Output saved vertical space. No-space mode has no
effect. Used to finally output a block of vertical space
requested by an earlier sv request.

No-space mode turned on. When on, the no-space mode
inhibits sp requests and bp requests without a next page
number. The no-space mode is turned off when a line of
output occurs, or with rs.

Restore spacing. The no-space mode is turned off .

Causes a break and output of a blank line exactly like
sp 1.

The maximum line length for fill mode may be set with 11. The indent may be set with in; an indent
applicable to only the nat output line may be set with ti. The line length includes indent space but not
page offset space. The line-length minus the indent is the basis for centering with ce. The effect of 11,
in. or ti is delayed, if a partially collected line exists, until after that line is output. In fill mode the
length of text on an output line is less than or equal to the line length minus the indent. The current
line length and indent are available in registers .I and .1 respectively. The length of three-part titles pro0

duced by ti (sec: §!4) is independently set by It.

Requ~st Initial I/ No
Form Yalue .Argument

.11 ±N 6.S in previous

Not~s Explanation

E,m Line length is set to ± N. In TROFF the maximum
(line-length)+ (page-offset) is about 7.54 inches .

• in ± N N-0 previous B,E,m Indent is set to ± N. The indent is prepended to each
output line .

. ti ± N ignored B,E,m Temporary indent. The next output text line will be
indented a distance ± N with respect to the current
indent. The resulting total indent may not be negative.
The current indent is not changed.

7. Macros, Strinas, Diversion, and Position Traps

7.1. Macros and strings. A macro is a named set of arbitrary lines that may be invoked by name or with
a trap. A string is a named string of characters, not including a newline character, that may be interpo
lated by name at any point. Request~ macro~ and string names share the same name list. Macro and
string names may be one or two characters long and may usurp previously defined request, macro, or
string names. Any of these entities may be renamed with rn or removed with rm. Macros are created
by de and ell. and appended to by am and da; di and da cause normal output to be stored in a. macro.
Strings are created by ds and appended to by as. A macro is invoked in the same way as a request; a

Nroff/Troff Users Manual 5-63

control line beginning .xx will interpolate the contents of macro xx. The remainder of the line may
contain up to nine arguments. The strings x and xx are interpolated at any desired point with \ •x and
\•(xx respectively. String references and macro invocations may be nested.

7.2. Copy mode input interpretation. During the definition and extension of strings and macros (not by
diversion) the input is read in copy mode. The input is copied without interpretation except that:

• The contents of number registers indicated by \n are interpolated.
•Strings indicated by\• are interpolated.
• Arguments indicated by \$ are interpolated.
• Concealed newlines indicated by \(newline) are eliminated.
• Comments indicated by \ • are eliminated.
• \t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9).
• \ \ is interpreted as \.
• \. is interpreted as ".".

These interpretations can be suppressed by prepending a \. For example, since \\ maps into a \. \ \n
will copy as \n which will be interpreted as a number register indicator when the macro or string is
reread.

7.J. Arguments. When a macro is invoked by name, the remainder of the line is taken to contain up to
nine arguments. The argument separator is the space character, and arguments may be surrounded by
double-quotes to permit imbedded space characters. Pairs of double-quotes may be imbedded in
double-quoted arguments to represent a single double-quote. If the desired arguments won't fit on a
line, a concealed newline may be used to continue on the next line.

When a macro is invoked the input level is pushed down and any arguments available at the previous
level become unavailable until the macro is completely read and the previous level is restored. A
macro's own arguments can be interpolated at any point within the macro with \SN, which interpolates
the Nth argument (1~N~9). If an invoked argument doesn't exist, a null string results. For exam
ple,. the macro xx may be defined by

.de xx \ "becin definition
T oclay is \ \$1 the \\$2.

\•end definition

and called by

.xx Monday 14th

to produce the text

Today is Monday the 14th.

Note that the\$ was concealed in the definition with a prepended \. The number of currently available
arguments is in the .S register.

No arguments are av!\ilable at the top (non-macro) level in this implementation. Because string
referencing is implemented as a input-level push down, no arguments are available from within a string.
No arguments are available within a trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are available for reference. The mechan
ism does not allow an argument to contain a direct reference to a long string (interpolated at copy time)
and it is advisable to conceal string references (with an extra \) to delay interpolation until argument
reference time.

7.4. Diversions. Processed output may be diverted into a macro for purposes such as footnote processing
(see Tutorial §TS) or determining the horizontal and vertical size of some text for conditional changing
of pages or columns. A single diversion trap may be set at a specified vertical position. The number
registers dn and di respectively contain the vertical and horizontal size of the most recently ended
diversion. Processed text that is diverted into a macro retains the vertical size of each of its lines when
reread in no.fill mode regardless of the current V. Constant·spaced (cs) or emboldened (bd) text that is
diverted can be reread correctly only if these modes are again or still in effect at reread time. One way

5-64. Nroff/Troff Users Manual

to do this is to imbed in the diversion the appropriate cs or bd requests with the transparent mechanism
described in § 10.6.

Diversions may be nested and certain parameters and registers are associated with the current diversion
level (the top non-diversion level may be thought of as the 0th diversion level). These are the diver
sion trap and associated macro, no-space mode, the internally-saved marked place (see mk and rt), the
current vertical place (.d register), the current high-water text base-line (.h register), and the current
diversion name (.z register).

7.5. Traps. Three types of trap mechanisms are available-page traps, a diversion trap, and an input·
line-count trap. Macro-invocation traps may be planted using wb at any page position including the top.
This trap position may be changed using ch. Trap positions at or below the bottom of the page have no
effect unless or until moved to within the page or rendered effective by an increase in page length.
Two traps may be planted at the same position only by first planting them at different positions and
then moving one of the traps; the first planted trap will conceal the second unless and until the first one
is moved (see Tutorial Examples §TS). If the first one is moved back, it again conceals the second
trap. The macro associated with a page trap is automatically invoked when a line of text is output
whose vertical size reaches or sweeps past the trap position. Reaching the bottom of a page springs the
top-of -page trap, if any, provided there is a next page. The distance to the next trap position is avail
able in the .t register; if there are no traps between the current position and the bottom of the page, the
distance returned is the distance to the page bottom.

A macro-invocation trap etrective in the current diversion may be planted using dt. The .t register
works in a di-version; if there is no subsequent trap a large distance is returned. For a description of
input-tine-count traps, see it below.

Request Initial q No
Form Yalue Argument Notes Explanation

.de xx yy

. am xx yy

.ds xx: string •

.as xx string •

.rm :ex

.m xxyy

. di :ex

.yy-..

.yy-••

ignored

ignored

ignored

ignored

end D

Define or redefine the macro :cc. The contents of the
macro begin on the next input line. Input lines are
copied in copy mode until the definition is terminated by a
line beginning with .J-Y, whereupon the macro yy is
caJled. In the absence of yy, the definition is terminated
by a line beginning with " •• ". A macro may contain de
requests provided the terminating macros differ or the
contained definition terminator is concealed. " •• " can be
concealed as \ \.. which will copy as \.. and be reread as

Append to macro (append version of de) .

Define a string xx containing string. Any initial double·
quote in string is stripped off to permit initial blanks.

Append string to string :ex (append version of els).

Remove request, macro, or string. The name :ex is
removed from the name list and any related storage
space is freed. Subsequent references will have no effect.

Rename request, macro, or string xx to yy. If yy exists, it
is first removed .

Divert output to macro :cc. Normal text processing
occurs during diversion except that page offsetting is not
done. The diversion ends when the request di or da is
encountered without an argument~ extraneous requests
of this type should not appear when nested diversions are
being used.

.da xx

.wh N xx

.ch xx N

.dt N xx

.it N xx

.em xx none

8. Number Registers

end

off

off

none

D

v

v

D,v

E

Nro:ff/Tro:ff Users Manual 5-65

Divert, appending to xx (append version of di).

Install a trap to invoke xx at page position N; a negative N
will be interpreted with respect to the page bottom. Any
macro previously planted at N is replaced by xx. A zero
N refers to the top of a page. In the absence of :cc. the
first found trap at N, if any, is removed.

Change the trap position for macro xx to be N. In the
absence of N, the trap, if any, is removed.

Install a diversion trap at position Nin the current diver
sion to invoke macro xx. Another dt will redefine the
diversion trap. If no arguments are given, the diversion
trap is removed.

Set an input-line-count trap to invoke the macro :c.'(after
N lines of text input have been read (control or request
lines don't count). The text may be in-line text or text
interpolated by inline or trap-invoked macros.

The macro xx will be invoked when all input has ended.
The effect is the same as if the contents of :a had been
at the end of the last file processed.

A variety of parameters are available to the user as predefined, named number registers (see Summary
and Index, page 7). In addition, the user may define his own named registers. Register names are one
or two characters long and do not conflict with request, macro. or string names. Except for certain
predefined read-only registers, a number register can be read, written, automatically incremented or
decremented, and interpolated into the input in a variety of formats. One common use of user-defined
registers is to automatically number sections, paragraphs, lines, etc. A number register may be used
any time numerical input is expected or desired and may be used in numerical expressions (§1.4).

Number registers are created and modified using nr, which specifies the name, numerical value, and
the auto-increment size. Registers are also modified., if accessed with an auto-incrementing sequence.
If the registers x and xx both contain N and have the auto-increment size M, the following access
sequences have the effect shown:

Effect on Value
Sequence Register Interpolated
\nx none N
\n(:c:x none N
\n+x x incremented by M N+M
\n-x x decremented by M N-M
\n+(xx xx incremented by M N+M
\n-(.xx xx decremented by M N-M

When interpolated, a number register is converted to decimal (default), decimal with leading zeros,
lower-case Roman, upper-case Roman, lower-case sequential alphabetic, or upper-case sequential alpha
betic according to the format specified by af.

Request Initial' If No
Form Value .Arrum~nt Notes

.nr R ±NM u

Explanation

The number register R is assigned the value :t N with
respect to the previous value, if any. The increment for
auto-incrementing is set to M

5-66 Nro:ff/Tro:ff Users Manual

.af R c arabic

.nR ignored

9. Tabs, Leaders, and Fields

Assign format c to register R. The available formats are:

Format I
Numbering
Sequence

1 O, l ,2,3 ,4,5 , ...
001 000,001,002,003,004,005, ...

i O,i,ii,iii,iv, v , ...
I O,l,II,IIl,IV, V , ...
a O.a,b,c, ...• z,aa,ab, ... ,zz,aaa, ...
A 0,A,B.C ,Z.AA,AB •...• ZZ.AAA •...

An arabic format having N digits specifies a field width of
N digits (example 2 above). The read 0 only registers and
the width function (§ 11.2) are always arabic.

Remove register R. If many registers are being created
dynamically, it may become necessary to remove no
longer used registers to recapture internal storage space
for newer registers.

9.1. Tabs and leaders. The ASCII horizontal tab character and the ASCII SOH (hereafter known as the
leader character) can both be used to generate either horizontal motion or a string of repeated charace
ters. The length of the generated entity is governed by internal tab stops specifiable with ta. The
default difference is that tabs generate motion and leaders generate a string of periods; tc and le offer
the choice of repeated character or motion. There are three types of internal tab stops-left adjusting 9

right adjusting, and centering. In the following table: Dis the distance from the current position on the
input line (where a tab or leader was found) to the next tab stop~ next-string consists of the input charac~
ters following the tab (or leader) up to the next tab (or leader) or end of line~ and Wis the width of
next-string.

Tab Length of motion or Location of
type repeated characters next-string

Left D Following D
Right D-W Right adjusted within D

Centered D-W/2 Centered on right end of D

The length of generated motion is allowed to be negative, but that of a repeated character string cannot
be. Repeated character strings contain an integer number of characters, and any residual distance is
prepended as motion. Tabs or leaders found after the last tab stop are ignored, but may be used as
next-string terminators.

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a non-interpreted tab and
leader respectively, and are equivalent to actual tabs and leaders in copy mode.

9.2. Fields. A field is contained between a pair of field delimiter characters, and consists of sub-strings
separated by padding indicator characters. The field length is the distance on the input line from the
position where the field begins to the next tab stop. The difference between the total length of all the
sub .. strings and the field length is incorporated as horizontal padding space that is divided among the
indicated padding places. The incorporated padding is allowed to be negative. For example. if the field
delimiter is # and the padding indicator is .. , #"'xx:{' right# specifies a right-adjusted string with the
string xxx centered in the remaining space.

Request
Form

.ta Nt ...

.tc c

.le c

.fc ab

Initial
Yalue

0.8; O.Sin

none

off

Q'No
A.rgum~nt

none

none

none

off

Nrotf/Trotf Users Manual 5-67

Notes Explanation

E,m Set tab stops and types. t-R, right adjusting~ t-C.
centering; t absent, left adjusting. TROFF tab stops are
preset every 0.5in.; NROFF every 0.8in. The stop values
are separated by spaces, and a value preceded by + is
treated as an increment to the previous stop value.

E The tab repetition character becomes c, or is re moved
specifying motion.

E The leader repetition character becomes c, or is removed
specifying motion.

The field delimiter is set to a; the padding indicator is set
to the space character or to b, if given. In the absence of
arguments the field mechanism is turned off.

10. Input and Output Conventions and Character Translations

10.1. Input character translations. Ways of inputting the graphic character set were discussed in §2. l.
The ASCII control characters horizontal tab (§9.1), SOH (§9.1), and backspace (§10.3) are discussed
elsewhere. The newline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are accepted,
and may be used as delimiters or translated into a graphic with tr (§10.5). All others are ignored.

The escape character \ introduces escape sequences-causes the following character to mean another
character, or to indicate some function. A complete list of such sequences is given in the Summary
and Index on page 6. \ should not be confused with the ASCII control character ESC of the same name.
The escape character \ can be input with the sequence \ \. The escape character can be changed with
ec, and all that has been said about the default\ becomes true for the new escape character. \e can be
used to print whatever the current escape character is. If necessary or convenient, the escape mechan
ism may be turned off with eo, and restored with ec.

Request Initial Q' No
Form Yalue Argument NoteJ Explanation

.ec c \ \ Set escape·character to \, or to c, if given.

.eo on Turn escape mechanism off.

10.2. Ligatures. Five ligatures are available in the current TROFF character set - fl, ft, ff, ffi, and fH.
They may be input (even in NROFF) by \(fi, \(fl, \(ff, \(Fi, and \(Fl respectively. The ligature mode
is normally on in TROFF, and automatically invokes ligatures during input.

Request Initial Q' No
Form Value Argument Notes Explanation

.11 N off; on on Ligature mode is turned on if N is absent or non-zero.
and turned off if N-0. If N--2, only the two-character
ligatures are automatically invoked. Ligature mode is
inhibited for request, macro, string, register, or file
names, and in copy mode. No effect in NROFF.

10.J. Backspacing, underlining, overstriking, etc. Unless in copy mode, the ASCII backspace character is
replaced by a backward horizontal motion having the width of the space character. Underlining as a
form of line-drawing is discussed in §12.4. A generalized overstriking function is described in § 12.1.

NROFF automatically underlines characters in the underline font, specifiable with uf, normally that on
font position 2 (normally Times Italic, see §2.2). In addition to ft and \f F, the underline font may be
selected by ul and cu. Underlining is restricted to an output-device-dependent subset of reasonable
characters.

5-68 Nroff/Troff Users Manual

Request
Form

.ul N

.cu N

.uf F

Initial
Value

off

off

Italic

UNo
Argument

N-1

Italic

Notes Explanation

E Underline in NROFF (italicize in TROFF) the next N
input text lines. Actually, switch to underline font. saving
the current font for later restoration~ other font changes
within the span of a ul will take effect, but the restora
tion will undo the last change. Output generated by tl
(§14) is affected by the font change, but does not decre·
ment N. If N> 1, there is the risk that a trap interpo
lated macro may provide text lines within the span;
environment switching can prevent this.

E A variant of ul that causes every character to be under
lined in NROFF. Identical to ul in TROFF.

Underline font set to F, In NROFF, F may not be on
position 1. (initially Times Roman).

I 0.4. Control characters. Both the control character • and the no-break control character ' may be
changed, if desired. Such a change must be compatible with the design of any macros used in the span
of the change, and particularly of any trap-invoked macros.

Request Initial U No
Form Value Argument Notes Explanation

.cc c E The basic control character is set to c, or reset to 19
• l'i •

. c2 c E The nobreak control character is set to c, or reset to """.

10.5. Output translation. One character can be made a stand-in for another character using tr. All text
processing (e. g. character comparisons) takes place with the input (stand-in) character which appears to
have the width of the final character. The graphic translation occurs at the moment of output (includ
ing diversion).

Request Initial
Form Value

If No
Argument Notes Explanation

.tr abed.... none 0 Translate a into b, c into d~ etc. If an odd number of
characters is given, the last one will be mapped into the
space character. To be consistent, a particular translation
must stay in effect from input to output time.

10.6. Transparent throughput. An input line beginning with a \! is read in copy mode and transparently
output (without the initial \!); the text processor is otherwise unaware of the line's presence. This
mechanism may be used to pass control information to a post·processor or to imbed control lines in a
macro created by a diversion.

10. 7. Comments and concealed newlines. An uncomfortably long input line that must stay one line (e. g.
a string definition, or nofilled text) can be split into many physical lines by ending all but the last one
with the escape\. The sequence \(newline) is always ignored-except in a comment. Comments may
be imbedded at the end of any line by prefacing them with \ •. The newline at the end of a comment
cannot be concealed. A line beginning with \ • will appear as a blank line and behave like .sp 1~ a com0

ment can be on a line by itself by beginning the line with.\•.

11. Local Horizontal and Vertical Motions, and the Width Function

11.1. Local Motions. The functions \v-w and \h-N' can be used for local vertical and horizontal motion
respectively. The distance N may be negative~ the positive directions are rightward and downward. A
local motion is one contained within a line. To avoid unexpected vertical dislocations~ it is necessary
that the net vertical local motion within a word in filled text and otherwise within a line balance to zero.
The above and certain other escape sequences providing local motion are summarized in the following
table.

Nroff/Troff Users Manual 5-69

Vertical Effect in
I

Horizontal Effect in
Local Motion TROFF NROFF Local Motion TROFF NROFF

\v'N' Move distance N \h' N' Move distance N
\(space) Unpaddable space-size space

\u 112 em up V2 line up \0 Digit-size space
\d 112 em down V2 line down I

\r 1 em up 1 line up \I 1/6 em space ignored
\ .. 1/12 em space ignored

As an example, E2 could be generated by the sequence E\s-2\v'-0.4m'2\v'0.4m'\s+2~ it should be
noted in this example that the 0.4 em vertical motions are at the smaller size.

11.2. Width Function. The width function \w' string' generates the numerical width of string (in basic
units). Size and font changes may be safely imbedded in string, and will not affect the current environ
ment. For example, .ti -\w'l. 'u could be used to temporarily indent leftward a distance equal to the
size of the string "1. ".

The width function also sets three number registers. The registers st and sb are set respectively to the
highest and lowest extent of string relative to the baseline; then, for example, the total height of the
string is \n (stu-\n (sbu. In TROFF the number register ct is set to a value between 0 and 3: 0 means
that all of the characters in string were short lower case characters without descenders (like e)~ 1 means
that at least one character has a descender {like y); 2 means that at least one character is tall {like H) ~
and 3 means that both tall characters and characters with descenders are present.

11.J. Mark horizontal place. The escape sequence \kx will cause the current horizontal position in the
input line to be stored in register x. As an example, the construction \kxword\h'l\nxu+2u' word will
embolden word by backing up to almost its beginning and overprinting it, resulting in word

12. Overstrike, Bracket, Line-drawing, and Zero-width Functions

12.1. Overstriking. Automatically centered overstriking of up to nine characters is provided by the over
strike function \o' string'. The characters in string overprinted with centers aligned; the total width is
that of the widest character. string should not contain local vertical moti.on. As examples, \o' e\"' pro
duces e, and \o'\ (mo\ (sl' produces i.
12.2. Zero-width characters. The function \zc will output c without spacing over it, and can be used to
produce left-aligned overstruck combinations. As examples, \z\ (ci\ (pl will produce EB, and
\ (br\z\ (rn \ (ul\ (hr will produce the smallest possible constructed box O.
12.J. Large Brackets. The Special Mathematical Font contains a number of bracket construction pieces
((l l J ~ } I lJ fl) that can be combined into various bracket styles. The function \b' string' may be used
to pile up vertically the characters in string (the first character on top and the last at the bottom)~ the
characters are vertically separated by 1 em and the total pile is centered 1/2 em above the current base-

line {1h line in NROFF). For example, \b'\(lc\(lf'E\j\b'\(rc\Crr\x' -0.Sm'\x'O.Sm' produces [E].

12. 4. Line drawing. The function \I' Ne' will draw a string of repeated c 's towards the right for a dis
tance N. (\l is \(lower case L). If c looks like a continuation of an expression for N, it may insulated
from N with a\&. If cis not specified, the_ {baseline rule) is used (underline character in NROFF). If
N is negative, a backward horizontal motion of size N is made before drawing the string. Any space
resulting from NI {size of c) having a remainder is put at the beginning {left end) of the string. In the
case of characters that are designed to be connected such as baseline-rule_, underrule , and root
en - , the remainder space is covered by over-lapping. If N is less than the width of c~ a si;gle c is cen
tered on a distance lV. As an example, a macro to underscore a string can be written

.de us
\\St\l 'IO\(ul'

5-70 Nroff/Troff Users Manual

or one to draw a box around a string

.de bx
\ (br\l\\Sl \I\ (br\ l 'IO\ (rn'\ l 'IO\ (ul'

such that

.ul "underlined words"

and

.bx •words in a box"

yield underlined words and I words in a box L
The function \L' Ne· will draw a vertical line consisting of the (optional) character c stacked vertically
apart 1 em (1 line in NROFFL with the first two characters overlapped, if necessary, to form a continu
ous line. The default character is the box rule I (\ (br); the other suitable character is the bold vertical I
(\ (bv). The line is begun without any initial motion relative to the current base line. A positive N
specifies a line drawn downward and a negative N specifies a line drawn upward. After the line is drawn
no compensating motions are made~ the instantaneous baseline is at the end of the line.

The horizontal and vertical line drawing functions may be used in combination to produce large boxes.
The zero-width box-rule and the 112-em wide underrule were designed to form corners when using 1-em
vertical spacings. For example the macro

.de eb

.sp -1 \"compensate for next automatic base-line spacing

.nf \•avoid possibly overflowing word buffer
\h' - .Sn'\L"I\ \nau-1'\l'\ \n(.lu+ ln\ (ul"\L' - I\ \nau + 1 '\I"lOu- .Sn\ (ul" \•draw box
.fi

will draw a box around some text whose beginning vertical place was saved in number register a (e. g.
usin_g_ .mk a) as done for this _p_ara2ra..Q.h.

13. Hyphenation.

The automatic hyphenation may be switched off and on. When switched on with by, several variants
may be set. A hyphenation indicator character may be imbedded in a word to specify desired hyphenae
tion points, or may be prepended to suppress hyphenation. In addition, the user may specify a small
exception word list.

Only words that consist of a central alphabetic string surrounded by (usually null) non°alphabetic
strings are considered candidates for automatic hyphenation. Words that were input containing hyphens
(minus), em-dashes (\(em), or hyphenation indicator characters-such as mother-in-law-are always
subject to splitting after those characters, whether or not automatic hyphenation is on or off.

Request Initial If No
Form Value Argument Notes Explanation

.nh

.hyN

.he c

hyphenate

on,N-1

\%

.hw word} ...

on,N-1

\%

ignored

E

E

E

Automatic hyphenation is turned off.

Automatic hyphenation is turned on for N ~ 1, or off for
N-0. If N-2, last lines (ones that will cause a trap)
are not hyphenated. For N =- 4 and 8, the last and first
two characters respectively of a word are not split off.
These values are additive~ i. e. N-14 will invoke all
three restrictions.

Hyphenation indicator character is set to c or to the
default\%. The indicator does not appear in the output.

Specify hyphenation points in words with imbedded
minus signs. Versions of a word with terminal s are

14'. Three Part Titles.

Nroff/Troff Users Manual 5-71

implied; i. e. dig-it implies dig-its. This list is exam·
ined initially and after each suffix stripping. The space
available is small-about 128 characters.

The titling function ti provides for automatic placement of three fields at the left. center. and right of a
line with a title-length specifiable with It. ti may be used anywhere, and is independent of the normal
text collecting process. A common use is in header and footer macros.

Request Initial II No
Form Yalue Argument Notes Explanation

.ti 'left' center right' The strings left, center. and right are respectively left
adjusted, centered. and right-adjusted in the current
title-length. Any of the strings may be empty, and over
lapping is permitted. If the page-number character (ini
tially 1/e) is found within any of the fields it is replaced by
the current page number having the format assigned to
register %. Any character may be used as the string de l
imiter.

.pc c off

.It ±N 6.Sin previous

15. Output Line Numbering.

E,m

The page number character is set to c, or removed. The
page-number register remains O/o.

Length of title set to ± N. The line-length and the title
length are independent. Indents do not apply to titles~

page-offsets do.

Automatic sequence numbering of output lines may be requested with nm. When in effect, a
three-digit, arabic number plus a digit-space is prepended to output text lines. The text lines are

3 thus offset by four digit-spaces, and otherwise retain their line length; a reduction in line length
may be desired to keep the right margin aligned with an earlier margin. Blank lines, other vertical
spaces, and lines generated by ti are not numbered. Numbering can be temporarily suspended with

6 nn, or with an .nm followed by a later .nm +o. In addition, a line number indent /, and the
number-text separation S may be specified in digit-spaces. Further, it can be specified that only
those line numbers that are multiples of some number Mare to be printed (the others will appear

9 as blank number fields).

Request Initial II No
Form Yalue Argument Notes Explanation

.am ±NM SI off E

.nn N E

Line number mode. If ± N is given, line numbering is
turned on, and the next output line numbered is num
bered ±N. Default values are M-1, s-1. and I==O.
Parameters corresponding to missing arguments are
unaffected; a non-numeric argument is considered miss
ing. In the absence of all arguments, numbering is
turned off; the next line number is preserved for possible
further use in number register In.

The next N text output lines are not numbered.

As an example, the paragraph portions of this section are numbered with M ... 3: .nm 1 3 was
placed at the beginning; .nm was placed at the end of the first paragraph: and .nm + 0 was placed

12 in front of this paragraph~ and .nm finally placed at the end. Line lengths were also changed (by
\w'OOOO'u) to keep the right side aligned. Another example is .nm +5 5 x 3 which turns on
numbering with the line number of the next line to be.$ greater than the last numbered line. with

15 M- 5, with spacing S untouched. and with the indent I set to 3.

5-72 Nroff/Troff Users Manual

16. Conditional Acceptance of Input

In the following. c is a one-character, built-in condition name, ! signifies not, N is a numerical expres
sion, string] and string2 are strings delimited by any non-blank, non-numeric character not in the
strings. and anything represents what is conditionally accepted.

Request Initial If No
Form Value .Argument Notes Explanation

.if c anything

• if ! c anything

• if N anything

.it ! N anything

• if 'string}' string)' anything

. if ! ·string]· string)' anything

. ie c anything

. el anything

u

u

u

The built-in condition names are:

Condition
Name

0

e
t
n

If condition c true. accept anything as input; in multi-line
case use \{anything\}.

If condition c false, accept anything .

If expression N > O. accept anything .

If expression N ~ 0, accept anything.

If string] identical to string2, accept anything .

tr string] not identical to string2, accept anything .

If portion of if-else; all above forms {like if) .

Else portion of if-else .

True If
Current page number is odd
~urrent page number is even
Formatter is TROFF
Formatter is NROFF

If the condition c is true, or if the number N is greater than zero, or if the strings compare identically
(including motions and character size and font), anything is accepted as input. If a ! precedes the ccndi·
tion, number, or string comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are skipped over. The anything can be
either a single input line (text, macro, or whatever) or a number of input lines. In the multi-line case,
the first line must begin with a left delimiter \ (and the last line must end with a right delimiter \}.

The request ie (if-else) is identical to if except that the acceptance state is remembered. A subsequent
and matching el (else) request then uses the reverse sense of that state. ie • el pairs may be nested.

Some examples are:

.if e .ti 'Even Page O/o

which outputs a title if the page number is even; and

.ie \no/a> 1 \ {\
'sp 0.5i
.ti· Page%
"sp lt.2i \}
.el .sp 12.Si

which treats page 1 differently from other pages.

17. Environment Switching.

A number of the parameters that control the text processing are gathered together into an environment.
which can be switched by the user. The environment parameters are those associated with requests
noting E in their Notes column; in addition, partially collected lines and words are in the environment.
Everything else is global~ examples are page-oriented parameters, diversion-oriented parameters.

number registers, and
parameter values.

Request Initial
Form Value

.ev N N-0

Nroff/Troff' Users Manual 5-73

macro and string definitions. All environments are initialized with default

I/No
Argument Notes Explanation

previous Environment switched to environment 0 ~ N~ 2. Switch·
ing is done in push-down fashion so that restoring a pre·
vious environment must be done with .ev rather than
specific reference.

18. Insertions from the Standard Input

The input can be temporarily switched to the system standard input with rd, which will switch back
when two newlines in a row are found (the extra blank line is not used). This mechanism is intended
for insertions in form-letter-like documentation. On UNIX, the standard input can be the user's key·
board, a pipe, or a file.

Request Initial
Form Value

.rd prompt

.ex

I/No
Argument Notes Explanation

prompt-BEL· Read insertion from the standard input until two new·
lines in a row are found. If the standard input is the
user's keyboard, prompt (or a BEL) is written onto the
user's terminal. rd behaves like a macro, and arguments
may be placed after prompt.

Exit from NROFF/TROFF. Text processing is terminated
exactly as if all input had ended.

If insertions are to be taken from the terminal keyboard while output is being printed on the terminal,
the command line option -q will turn off the echoing of keyboard input and prompt only with BEL.
The regular input and insertion input cannot simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the insertions for all the
copies in one file to be used as the standard input, and causing the file containing the letter to reinvoke
itself using nx (§19); the process would ultimately be ended by an ex in the insertion file.

19. Input/Output File Switching

Requut 'Initial If No
Form Value Argument Notes Explanation

.so .filename

.nx .filename

.pi program

20. Miscellaneous

Requ~st Initial
Fann Value

.me cN

end-of.file

I/No
Argument

off

Note3

E,m

Switch source file. The top input (file reading) level is
switched to .filename. The effect of an so encountered in
a macro is not felt until the input level returns to the file
level. When the new file ends, input is again taken from
the original file. so's may be nested.

Next file is filename. The current file is considered
ended, and the input is immediately switched to filename.

Pipe output to program (NROFF only). This request
must occur before any printing occurs. No arguments are
transmitted to program.

Explanation

Specifies that a margin character c appear a distance N to
the right of the right margin after each non·empty text
line (except those produced by ti). If the output line is
too-lor / ·s can happen in nofill mode) the character will

5-74 Nro:ff/Tro:ff Users Manual

.tm string newline

.lg yy .yy-..

.pm t all

.n

21. Output and Error Messages.

B

be appended to the line. If N is not given, the previou:
N is use"d~ the initial N is 0.2 inches in NROFF and l en
in TROFF. The margin character used with this para
graph was a 12-point box-rule.

After skipping initial blanks, string (rest of the line) i:
read in copy mode and written on the user's terminal.

Ignore input lines. ig. behaves exactly like de (§7) excep
that the input is discarded. The input is read in cop.
mode., and any auto-incremented registers will be
affected.

Print macros. The names and sizes of all of the define<
macros and strings are printed on the user's terminal~ if
is given, only the total of the sizes is printed. The size:
is given in blocks of 128 characters.

Flush output buffer. Used in interactive debugging t'
force output.

The output from tm, pm, and the prompt from rd, as well as various error messages are written ont'
UNIX's standard message output. The latter is different from the standard output, where NROFF format
ted output goes. By default, both are written onto the user's terminal, but they can be independent!
redirected.

Various error conditions may occur during the operation of NROFF and TROFF. Certain less seriou
errors having only local impact do not cause processing to terminate" Two examples are word overjfo¥
caused by a word that is too large to fit into the word buff er (in fill mode), and line overflow, caused b
an output line that grew too large to fit in the line buff er; in both cases, a message is printed, th
offending excess is discarded, and the affected word or line is marked at the point of truncation with a
in NROFF and a,. in TROFF. The philosophy is to continue processing, if possible, on the ground
that output useful for debugging may be produced. If a serious error occurs, processing terminates, an
an appropriate message is printed. Examples are the inability to create, read, or write files, and th
exceeding of certain internal limits that make future output unlikely to be useful.

Nroff/Troff Users Manual 5-75

TUTORIAL EXAMPLES

Tl. Introduction

Although NROFF and TROFF have by design a
syntax reminiscent of earlier text processors•
with the intent of easing their use, it is almost
always necessary to prepare at least a small set of
macro definitions to describe most documents.
Such common formatting needs as page margins
and footnotes are deliberately not built into
NROFF and TROFF. Instead, the macro and
string definition, number register, diversion,
environment switching, page-position trap, and
conditional input mechanisms provide the basis
for user-defined implementations.

The examples to be discussed are intended to be
useful and somewhat realistic, but won't neces·
sarily cover all relevant contingencies. Explicit
numerical parameters are used in the examples to
make them easier to read and to illustrate typical
values. In many cases, number registers would
really be used to reduce the number of places
where numerical information is kept, and to con
centrate conditional parameter ·initialization like
that which depends on whether TROFF or NROFF
is being used.

T2. Pace Maflins

As discussed in §3, header and footer macros are
usually defined to describe the top and bottom
page margin areas respectively. A trap is planted
at page position 0 for the header, and at -N (N
from the page bottom) for the footer. The sim·
plest such definitions might be

.de hd \•define header
·sp 11

.de fo
op

.wb 0 hd

.wb -ll fo

\•end definition
\•define footer

\•end definition

which provide blank 1 inch top and bottom mar
gins. The header will occur on the first page,
only if the definition and trap exist prior to the

•For example: P.A. Crisman. Ed., The Compatible nme·
Sharing Syston, MIT Press, 1965, Section AH9.0l (Descrip
tion of RUNOFF proetam on MIT's CTSS system).

initial pseudo-page transition (§3). In fill mode,
the output line that springs the footer trap was
typically forced out because some part or whole
word didn't fit on it. If anything in the footer
and header that follows causes a break, that word
or part word will be forced out. In this and other
examples, requests like bp and. sp that normally
cause breaks are invoked using the no-break con
trol character ' to avoid this. When the
header/footer design contains material requiring
independent text processing, the environment
may be switched, avoiding most interaction with
the running text.

A more realistic example would be

.de hd \•header

.if t .ti "\(m'\(rn' \•troff' cut mark

.if \\n1/o > 1 \ {\
'sp IO.Si-1 \•u base at 0.51
.ti,._ ¥o -·· \•centered page number
.ps \•restore size
.ft \•restore font
• vs \} \•restore vs
• sp I t.Oi \•space to 1.0i
.ns \•turn on no-space mode

.de f o \•rooter

.ps 10 \•set footer/header size

.ft R \•set font

. vs llp \•set base-line spacing

.if \\no/t=-1 \{\
'sp l\\n(.pu-O.Si-1 \•t1 base O.Si up
.ti ... - o/e - ... \} \•first page number
'bp

.wb 0 hd

.wb -li fo

which sets the size, font, and base-line spacing
for the header/footer material, and ultimately
restores them. The material in this case is a page
number at the bottom of the first page and at the
top of the remaining pages. If TROFF is used. a
cut mark is drawn in the form of root-en's at each
margin. The sp's refer to absolute positions to

avoid dependence on the base-line spacing.
Another reason for this in the footer is that the
footer is invoked by printing a line whose vertical
spacing swept past the trap position by possibly as

5-76 Nroff/Troff Users Manual

much as the base-line spacing. The no-space
mode is turned on at the end of hd to render
ineffective accidental occurrences of sp at the top
of the running text.

The above method of restoring size. font, etc.
presupposes that such requests (that set previous
value) are not used in the running text. A better
scheme is save and restore both the current and
previous values as shown for size in the follow
ing:

. de fo

.nr sl \\n (.s \•current size

.ps

.nr s2 \\n (.s \•previous size

. ••• \•rest of footer

.de hd

. --·

.ps \ \n(s2

.ps \\n(sl

\•header stuff
\•restore previous size
\•restore current size

Page numbers may be printed in the bottom mar
gin by a separate macro triggered during the
footer's page ejection:

.de bn \•bottom number

.ti .. - o/o - ,. \•centered page number

. wh -0.Si-lv bn \•t1 base O.Si up

TJ. Paragraphs and Headings

The housekeeping associated with starting a new
paragraph should be collected in a paragraph
macro that, for example, does the desired
preparagraph spacing, forces the correct font,
size. base-line spacing, and indent, checks that
enough space remains for more than one line, and
requests a temporary indent.

• de pg \•paragraph
.br \•break
.ft R \ ·rorce font,
.ps 10 \•size,
. vs 12p \•spacing,
. in 0 \•and indent
.sp 0.4 \ •prespace
.ne 1 + \\n (.Vu \•want more than 1 line
.ti 0.21 \•temp indent

The first break in pg will force out any previous
partial lines. and must occur before the vs. The
forcing of font, etc. is partly a defense against
prior error and partly to permit things like sec
tion heading macros to set parameters only once.

The prespacing parameter is suitable for TROFF~
a larger space. at least as big as the output device
vertical resolution, would be more suitable in
NROFF. The choice of remaining space to test
for in the ne is the smallest amount greater than
one line (the . V is the available vertical resolu
tion).

A macro to automatically number section head
ings might look like:

.de sc \•section

. ••• \•force font, etc .

.sp 0.4 \•pres pace

.ne 2.4+\\n<.Vu \•want 2.-'+ lines

.fl
\\n+S.

.nr S 0 1

The usage is .sc, followed by the section heading
text, followed by .pg. The ne test value includes
one line of heading 9 0.4 line in the following pg,
and one line of the paragraph text. A word .con
sisting of the next section number and a period is
produced to begin the heading line. The format
of the number may be set by af (§8).

Another common form is the labeled, indented
paragraph, where the label protrudes left into the
indent space .

.de Ip

.pg

.in O.Si

.ta 0.2i 0.51

.ti 0
\t\\$1\t\c

\•ta be led paragraph

\•paragraph indent
\"label, paragraph

\"How into paragraph

The intended usage is ".Ip label"; label will begin
at 0.2 inch, and cannot exceed a length of
0.3 inch without intruding into the paragraph .
The label could be right adjusted against 0.4 inch
by setting the tabs instead with .ta 0.4iR O.Si.
The last line of lp ends with \c so that it will
become a part of the first line of the text that fol
lows .

T4o Multiple Column Output

The production of multiple column pages
requires the footer macro to decide whether it
was invoked by other than the last column, so
that it will begin a new column rather than pro
duce the bottom margin. The header can initial
ize a column register that the footer will incre
ment and test. The following is arranged for two
columns. but is easily modified for more.

.de hd

. ·--

.nr cl 0 1

.mk

\"header

\ "init column count
\"mark top of text

.de f o \"footer

.ie \ \n +(cl< 2 \{\

.po +3.4i \"next column; 3.1+0.3

.rt \"back to mark

.ns \} \"no-space mode

.el\{\

.po \\nMu \"restore left margin

. ---
'bp \}

.ll 3. li \"column width

.nr M \\n(.o \"save left margin

Typically a portion of the top of the first page
contains full width text~ the request for the nar
rower line length, as well as another .mk would
be made where the two column output was to
begin.

TS. Footnote Processing

The footnote mechanism to be described is used
by imbedding the footnotes in the input text at
the point of reference, demarcated by an initial
.fn and a terminal .ef:

.fn
Foo11101e rext and control lines ...
.ef

In the following, footnotes are processed in a
separate environment and diverted for later
printing in the space immediately prior to the
bottom margin. There is provision for the case
where the last collected footnote doesn't com
pletely fit in the available space.

.de hd \"header

. ---

.nr x 0 1 \ "init footnote count

.nr y 0 -\ \ nb \"current footer place

.ch fo -\ \nbu \"reset footer trap

.if \\n (dn .rz \"leftover footnote

.de fo

.nr dn 0

.if\ \nx \(\

\"footer
\"zero last diversion size

.ev 1 \"expand footnotes in ev 1

. nf \"retain vertical size

.FN \"footnotes

.rm FN \"delete it

.if "\\n(.z"fy" .di\ "end overflow diversion

.nr x 0 \"disable fx

Nroff/Troff Users Manual 5-77

.ev \} \"pop environment

. ··-
'bp

.de fx \"process footnote overftow

.if \\nx .di fy \"divert overflow

.de fn \"start footnote

.da FN \"divert (append) footnote

.ev 1 \"in environment I

.if \\n + x = 1 .rs\ "if first. include separator

.fi \"fill mode

.de ef \"end footnote

.br \"finish output

.nr z \\n<.v \"save spacing

.ev \"pop ev

.di \"end diversion

.nr y -\ \ n (dn \"new footer position,

.if \\nx =-1 .nr y - (\ \n (." -\\nz) \
\"uncertainty correction

.ch fo \ \nyu \ •y is negative

.if (\\n(nl +Iv)>(\ \n (.p +\ \ny) \

.ch fo \\ n (nlu +Iv\" it didn't fit

.de fs
\I" ti'
.br

.de fz

.fn

.nf

.fy

.er

\"separator
\"1 inch rule

\"get leftover footnote

\"retain vertical size
\"where fx put it

.nr b 1.0i \"bottom margin size

.wh 0 hd \"header trap

. wh 12i fo \"footer trap, temp position

.wh -\\nbu fx\"fx at footer position

.ch fo -\ \nbu \"conceal rx with fo

The header hd initializes a footnote count regis
ter x, and sets both the current footer trap posi
tion register y and the footer trap itself to a nom
inal position specified in register b. In addition,
if the register dn indicates a leftover footnote, fz
is invoked to reprocess it. The footnote start
macro fn begins a diversion (append) in environ
ment 1. and increments the count x: if the count
is one, the footnote separator fs is interpolated .
The separator is kept in a separate macro to per
mit user redefinition. The footnote end macro ef
restores the previous environment and ends the
diversion after saving the spacing size in register
z . y is then decremented by the size of the

5-78 Nroff/Troff Users Manual

footnote, available in dn; then on the first foot·
note, y is further decremented by t!)e difference
in vertical base-line spacings of the two environ·
ments, to prevent the late triggering the footer
trap from causing the last line of the combined
footnotes to overflow. The footer trap is then set
to the lower (on the page) of y or the current
page position (nl) plus one line, to allow for
printing the reference line. If indicated by x, the
footer fo rereads the footnotes from FN in no fill
mode in environment l, and deletes FN. If the
footnotes were too large to fit, the macro fx will
be trap-invoked to redivert the overflow into fy,
and the register dn will later indicate to the
header whether fy is empty. Both fo and fx are
planted in the nominal footer trap position in an
order that causes fx to be concealed unless the fo
trap is moved. The footer then terminates the
overflow diversion, if necessary, and zeros x to
disable fx, because the uncertainty correction
together with a not-too-late triggering of the
footer can result in the footnote rereading finish·
ing before reaching the f x trap.

A good exercise for the student is to combine
:he multiple-column and footnote mechanisms.

T6. The Last Page

After the last input file has ended, NROFF and
TROFF invoke the end macro (§7), if any, and
when it finishes, eject the remainder of the page.
During the eject .. any traps encountered are pro·
cessed normally. At the end of this last page,
processing terminates unless a partial line, word,
or partial word remains. If it is desired that
another page be started, the end-macro

.de en \ •end·macro
\c
·bp

.em en

will deposit a null partial word" and effect
another last page.

Nroff/Troff Users Manual 5-79

Table I

Font Style Examples

The following fonts are printed in 12-point. with a vertical spacing of 14-point. and with non
alphanumeric characters separated by 1.4 em space. The Special Mathematical Font was specially
prepared for Bell laboratories by Graphic Systems. Inc. of Hudson. New Hampshire. The Times
Roman. Italic. and Bold are among the many standard fonts available from that company.

Times Roman

abcdef ghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!So/o&Ol.'* + -.,/:;-? l11
e 0 - · - I,4 1h l,4 fi fl ff ffi ft1°t 1

¢ ~ ~

Times Italic

abcdel~hijklmnopqrstuvwxyz

ABCDEFGHUKLMNOPQRSTUVWXYZ
1234567890
! s % & () ' ' • + - . ' I:; =- ? [JI
• 0 - - - ~ ~ 1/4.fi.fi.ff ffi.ffe 0 t, t ® (C)

Times Bold

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!SO/o&O"*+-.,/:;==?lJI
• o - • _ 1/4 111 3/4 fi ft ff ffi ffl 0 t ' e ~ c

Special Mathematical Font

"'\"_'-/< > {}#@+--·
a~y8E,~9,KAµvEo~pu~Tv~x~w
r ~eA:::rrtY<I>'I' n
~- ~ ~ = - = ;e --T 1 x + ± u n c ::> c :2 oo a
§ V' ~ f a: {ZS E ;.--.. @ I 0 (ll H H lJrl I

5-80 Nroff/Troff Users Manual

Table II

Input Naming Conventions for ', ',and
and for Non-ASCII Special Characters

Non-ASCII characters and minus on the standard fonts.

Input Character Input Character
Char Name Name Char Name Name

close quote ti \(ti ti
open quote fl \(fl fl

\(em 3/4 Em dash ff \(ff ff
hyphen or ffi \(Fi ffi

\(hy hyphen ftl \(Fl ftl
\- current font minus \(de degree

• \(bu bullet t \(dg dagger
CJ \(sq square \(fm foot mark

\(ru rule ¢ \(ct cent sign
l/4 \(14 1/4 * \(rg registered
lfl \(12 1/2 0 \(co copyright
l/4 \(34 3/4

Non-ASCII characters and ·, ', _, +, -, -, and •on the special font.

The ASCII characters @, #. ", ·, ·, <, >, \. {, }. •. ·, and _exist only on the special font and are
printed as a l~em space if that font is not mounted. The following characters exist only on the special
font except for the upper case Greek letter names followed by t which are mapped into upper case
English letters in whatever font is mounted on font position one (default Times Roman). The special
math plus, minus. and equals are provided to insulate the appearance of equations from the choice of
standard fonts.

Input Character Input Character
Char Name Name Char Name Name

+ \(pl math plus IC \(•k kappa
\(mi math minus A \(•1 lambda
\(eq math equals µ. \(•m mu

• \(.. math star II \(•n nu
§ \(sc section ~ \(•c xi

\(aa acute accent 0 \(•o omicron
\(ga gr~ve accent 1T \(•p pi
\Cui uqderrule p \(•r rho

I \ (sl slash (matching backslash) u \(•s sigma
a \(•a alpha ~ \(ts terminal sigma
/3 \(•b beta 'T \(•t tau
"'I \(•g gamma v \(•u upsilon
a \(•d delta cf> \(•f phi
E \(•e epsilon i(\(*x chi

' \(•z zeta iJI \(*q psi
.,, \(•y eta w \(•w omega
9 \ (•h theta A \(*A Alphat

\(*i iota B \(•B Be tat

Nro:tf/Tro:tr Users Manual 5-81

Input Character Input Character
Char Name Name Char Namt! Name

r \(•G Gamma I \(br box vertical rule
~ \(•D Delta * \(dd double dagger
E \(*E Epsilont ,.. \(rh right hand
z \(*Z Zetat ... \(lh left hand
H \(*Y Etat @ \(bs Bell System logo
e \(*H Theta I \(or or
I \(*I lotat 0 \(ci circle
K \(*K Kappat I \(It left top of big curly bracket
A \(*L Lambda \ \(lb left bottom
M \(•M Mut l \(rt right top
N \(*N Nut J \(rb right bot - \(•c Xi ~ \(lk left center of big curly bracket
0 \(•o Omicront } \(rk right center of big curly bracket
n \(•p Pi I \(bv bold vertical
p \(*R Rhot l \(lf left floor (left bottom of big
I \(•s Sigma square bracket)
T \(*T Taut J \(rf right floor (right bottom)
y \(*U Upsilon r \(le left ceiling {left top)
ci> \(*F Phi l \(re right ceiling {right top)
x \(*X Chit
'I' \(*Q Psi
n \(*W Omega

i \(sr square root
\(rn root en extender

~ \(>- >-
~ \(<- <-
- \ (- - identically equal

== \(-- approx -
\(ap approximates

~ \(!- not equal
\(-> right arrow
\(<- left arrow
\(ua up arrow
\(da down arrow

x \(mu multiply
-:'" \(di divide
± \(+- plus-minus
u \(cu cup (union)
(i \(ca cap (intersection)
c \(sb subset of
~ \(sp superset of
~ \(ib improper subset
~ \(ip improper superset
00 \(if infinity
a \(pd partial derivative
'7 \(gr gradient
~ \(no not
f \(is integral sign
a: \(pt proportional to
0 \(es empty set
E \(mo member of

5-82 Nroff/Troff Users Manual

Options

·h

·Z

Old Requests

.ad c

. so name

New Request

.ab text

.fz F N

Summary of Changes to N/TROFF Since October 1976 Manual

(Nroff only) Output tabs used during horizontal spacing to speed output as well as
reduce output byte count. Device tab settings assumed to be every 8 nominal character
widths. The default settings of input (logical) tabs is also initialized to every 8 nominal
character widths.

Efficiently suppresses formatted output. Only message output will occur (from ''tm"s
and diagnostics).

The adjustment type indicator "c" may now also be a number previously obtained from
the ".j" register (see below).

The contents of file "name" will be interpolated at the point the "so" is encountered .
Previously, the interpolation was done upon return to the file-reading input level.

Prints "text" on the message output and terminates without further processing. If "text"
is missing, "User Abort." is printed. Does not cause a break. The output buffer is
flushed.

forces [ont "F' to be in si~e N. N may have the form N, + N, or -N. For example .
.fz 3 -2

will cause an implicit \s-2 every time font 3 is entered. and a corresponding \s + 2 when
it is left. Special font characters occurring during the reign of font F will have the same
size modification. If special characters are to be treated differently •

.fz SF N
may be used to specify the size treatment of special characters during font F. For
example,

.fz 3 -3

.fz S 3 -0
will cause automatic reduction of font 3 by 3 points while the special characters would
not be affected. Any 0 .fp" request specifying a font on some position must precede
H .fz" requests relating to that position.

New Predefined Number Registers.

.k

.j

. P

. L

c.

Read-only. Contains the horizontal size of the text portion (without indent) of the
current partially collected output line. if any, in the current environment.

Read-only. A number representing the current adjustment mode and type. Can be
saved and later given to the "ad" request to restore a previous mode.

Read·only. 1 if the current page is being printed. and zero otherwise .

Read-only. Contains the current line-spacing parameter ("ts") .

General register access to the input line-number in the current input file. Contains the
same value as the read-only "c" register.

A Troff Tutorial 5-83

A TROFF Tutorial

Brian W. Kemighan

Bell Labor:uories
Murray Hill. New Jersey 07974

1. lnuoductlon
troff [l J is a text·f ormattin& pro1ram. writ·

ten by J. F. Ossanna. for producin1 hi1h-quality
printed output from the phototypesetter on the
UNIX and OCOS operating systems. This doc:u·
ment is an example of troff output.

The sincle most important rule of using
troff is not to use it directly. but throu1h some
intermediary. ln many ways. trotf resembles an
assembly lan1ua1e - a remarkably powerful and
nexible one - but nonetheless such that many
operations must be st>e<:itied at a level of detail
and in a form that is too hard for most people to
u.se eft"ecdvety.

For' two special applications. there are pro·
anms that provide an intcrf :acc to troff for the
majoritY of users. eqn (2} provides an easy to
learn lang~ge for typesettin& mathematics; the
eqn user need know no trO«- whatsoever to
typeset mathematics. tbl CJ I provides the same
convenience for producing table! of arbiuary
complexity.

For producin1 straight text (which may
well contain ma therm tics or tables). there :ire a
number of 'macro p:ickages· that define format·
tin& rules and operations for specific styles of
documents. and reduce the amount of direct
contact with ttotf. In particular. the ·-ms· [41
and PWB/MM (5) packaces for Bell labs inter·
nal memoranda and external papers provide most
or the facilities needed for a wide ranae or docu
ment pre~ation. (This memo was prep:ir~
with ·-ms·.> There are also pacbges for view
graphs. for simubting the older roff formatters
on U="'tX :ind ocos. :ind for other spec"~l :ipplic::i·
tions. Typic::iJly you will find these packages
e:isier to use than trotf' once you get beyond the
most trivial operations: you should :ilways con
sider them first.

ln the few ases where existing pac:k:iges
don't do the whole job. the :solution is 1ro1 to
write ln entirety new set oc' troff instructions
from scratch. but to make small chanies to :id:ipt
paciQ;es th:it llr~dy exist.

In acc:ordanc:e with this philosophy of let·
tin1 someone else do the work. the "art of troff
described here is only a small part of the whole.
althou1h it tries to concentt3te on the more use·
f ul parts. In any cue. there is na att::npt to be
complete. Rather. the emphasis is on showin1
how to do simple thinp. and how to make inc::e·
mental changes to what already ex.istS. The con·
tentS of the remaining sections are:

2. Point sizes and line spacin1
l. Fonts and spc:cbll ch:m1cters
4. lndentS and tine len1th
S. Tabs
6. Local motions: Orawin1 lines and characters
1. Strincs
8. Introduction to macros
9. Titles. pages and numberin&

10. Number reii.sters ind :irithmetic:
11. Macros with uguments
12. Conditionals
13. EnvironmentS
14. Diversions

Appendix: Typesetter character set

The troff described here is the C-language ver·
sion running on UNIX :it Mur~y Hill. u doc:u·
mented in [1].

To use troff you have to prepare not only
the actual text you want printed. but some infor·
mation that tells how you want it printed.
(Re:iders who use . roff will find the 2pproach
familiar.> For troff the text and the f ormauing
information are often intertwined quite inti·
m:ucly. Most commands to troff are placed' on :i

line separate from the text itself. b~nning with
a period (one command per line). For example.

Some tu.t.
.ps 14
Some more text.

..., iii d1 .. n~c the point size • li1a1 is. the size oi
the letters being printed. to · t .i point· (one point
is 1/72 inch) like this:

5-84 A Troff Tutorial

some text. Some more text.
Occ::isionally. thouah. somethin1 special

occurs in the middle of a line - to produce

Are:i - 1f'r
2

you have to type

Area - \ (•p\flr\fR \f\s8\ u2\d\s0

(which we will explain shortly). The backslash
character \ is used to introduce troft' commands
and special characters within a line of text.

2. Point Sizes: Line Spacinc

As mentioned above. the command .ps
:setS the point size. One point is 1172 inch. so
6.point characters are at most 1112 inch hiah.
and 36-point characters are I/: inch. There are 1 S
point sizes. listed below.

• lllOtftC hQ "" liquor ...
1 poeac Pack my bo• wed• Ave do&cn liqYOI' jup.
I point: Pack my box with ft~• dozen liquor jup.
9 point: Pack my box with ftve dozen liquor jugs.
10 point: Pac:k my box with five dozen liquor
1·1 point: Pack my box with five dozen
12 point: Pack my box with five dozen
14 point: Pack my box with five

16 point 18 point 20 point

22 24 28 36
If the number alter .ps is not one of these

lqal sizes. it is rounded up to the next valid
value. with a maximum of 36. Ir no number (ol
lows .ps. troft' revertS to the previous size. what·
ever it was. troll' begins with point size 10.
which is usually tine. This document is in 9
point.

The point size an also be chanced in the
middle of a line or even a word with the in-tine
command \s. To produce

UNIX runs on a POP-11/ 4S
type

\s8UNIX\s10 runs on a \s8POP-\s101 l/4S

As above. \s should be followed by a legal point
size. except that \sO causes the size to revert to
ics previous ·value. Notice that \slOl 1 an be
un<ic:rstoo<i correctiy as size 10. rc;,ilowc:U by au
11 •• i(the size is legaJ. but not otherwise. Be
autious with similar c:onsuuctions.

Re!ativl! size ~hanges ue atso lep.J ind
useful:

\s-2UNIX\s + 2

temporarily dea=ses the size. whatever it is. by
two points. then restores it. Relative size
chanaes have the advan~1e that the size
dift'erence is independent of the startinc size of
the document. The amount of the relative
chance is restricted to a single di&it.

The other parameter that determines what
the type looks like is the spacina between lines.
which is set independently of the point size.
Vertia1 spacina is m=sured from the bottom of
one line to the bottom of the next. The com·
mand to controi vertical spacin1 is .vs. For run
nin1 text. it is ~ually best to set the verti=l
spac:ina about 20% bigger than the character size.
For example. so far in this document. we have
used ''9 on 11 ••. that is.

.ps 9

.vs lip

IC we c:han1ed to

.ps 9

.vs 9p
the runnina text would look like this. Alter a
few lines. you will aaree it looks a litt!e cramped.
The ri&ht vertical spacing is partly a matter of
tasie. dependin1 on how much text you want to
squeeze into a liven space. and partly a matter
of traditional printin1 style. By default. troif
uses 10 on 12.

Point size and vertical spacing
make a substantial difference in the
amount of text per square inch.
This is 12 on 14.

PoiM IWI IM "lfUQ6 ..Ott1 mUc a~ diafet.,_ i•
Ille """'" ol IUI per IQUaN iftcft. fcw 10 Oft 1% Illa
IWICl9 • ftNCft ~ u 1 Oft I. n. 1, wttictt " .,,... I&
lllllCU a lol mote llCf line. IN& ,_CM 10 Mift4 lfJtftC 10 raCI II.

When used without arsumentS. .ps and • vs
reven to the previous size and vertical spacin1
respectively.

The command .sp is used to get extra ven·
ical space. Unadorned. it lives you one extra
blank line (one ~vs. whatever that has been set
to). Typically. that's more or less than you
want. so .sp an be rouowed by information
about how muc:h space you want -

.sp li

means 'two inches of verti=I space'.

.sp 2p

means 'two points of vertic::U space'; and

.sp 2

means 'two vertic::U spac:s' - two of whatever

. vs is set to (this c:in llso be made explicit with

.sp 2v); trot! also l.lndersta.nds decimal fractions
in most places. so

.sp l.5i

is a space of l .S inches. These same sale f ac·
tors can be used after . vs to define line spacing.
and in f ac:t after most commands that de2l with
physial dimensions.

It should be noted that all size numbers
are converted internally to •machine units'.
which are l/432 inch (1/6 point). For mosc put·
poses. this is enou1h resolution that you don't
have to worry about the accuracy of the
representation. The situation is not quite so
iOOd vertially. where resolution is l/l~ inc:h
(112 point>.

J. Fctncs and Special Chancten

troir and the typesetter allow four dilrerent
fonts at any one time. Normally three fonts
(Times roman. italic and bold) and one callee·
lion of special charaaers are permanently
mounted.

abc:dcf1hijklmnopqrstuvwxyz Ol 234S67S9
ABCD~FOHUKLMNOPQRSTUVWXYZ
abcd1JihijlclmnopqnruYWqr 0/1J4!6 i89
ABCDEFGH/JKLMNOPQRSTtJYW:<rz
1bcclef1hllklmnopqrstuYWXfZ 0113456789
ABCDEFGHIJKL.\L"'{OPQRSTUVWXYZ

The &reek. mathemacical symbols and miscellany
of the special font ue listed in Appendix A.

troff prints in roman unless told otherwise.
To switch into bold. use the .!t command

.Ct B

and for italics.

.Ct I

To return to roman. use .ft R.; lO return to the
previous font. whatever it was. use either .Ct P or
just lt. The 'underline· command

.ul

c:ius= the next input line to print in italics. .ul
c:in be followed by a count to indic:ue that more
than one: line is to be italicized.

Fonts an aJso be chanced within a line or
word with the in-line command \(:

bold/act' text

is produc:d by

\fBbold\fif:ice\fR text

[f you want to do this SQ the previous font.
whatever it was. is left undisturbed. insert extr:i
\11' commands. like this:

A Troff Tutorial 5-85

\fBbold\fP\fif:1c:\t1>\tlt ~e:ct\fP

Because only the immediately previous font is
remembered. you have to restore the previous
font after .::ich change or you an lose it. The
same is true of .ps and . vs when used without Jn
argument.

There are other fonts available besides the
standard set. although you can still use only four
at any 1iven time. The command .f p tells troff
what fonts ate physically mounted on the
cypeseuer:

.fp 3 H

says that the Hef\·etia font is mounted on posi·
tion 3. (For a comiJlcte list of fonts and what
they look like. see the trotl' manual.} Appropriate
.tp commands should appe:sr at the beginnin1 of
your document if you do not use the st:indard
fonts.

lt is possible to m:ike a document re!:i·
tively independent of the actual fontS used to
print it by usin1 ront numbers instad of names;
for example. \ll and .!t93 mean 'whatever font
is mounted at position l'. and thus work for iny
settins. Normal settinp ate roman font on l.
italic on l. bold on J. and special on 4.

There is also a way to get 'synthetic:" bold
ronts by overstrikin1 letters with l slight oft's:t.
Look at the .bd comn1and in [l).

Special charac:e:-s have four.chan.cter
names bqinnin1 with \ (. and they may be
inserted anywhere. For e~ample.

•t.+'h-~

is produced by

\(14 + \(12 - \(34

In particular. sreek letters arc: all of the form
\(•-, where - is an upper or lower cs4 rom3n
letter reminiscent of the grcek. Thus to get

I.(axtJ) - oo

in bare troif we have to type

\(•S(\(•a\(mu\(•b) \(->\(if

That line is unscrambled as follows:-

\(•S I.
((

\(•a Cl

\(mu x
\(•b 13
;
\(->
\Cir 00

A complete: list of these special n:mc:s occurs in
Appendix A.

5-86 A Tro1f Tutorial

In eqn [21 the same effect can be achieved
with the input

SIOMA (alpha times beta) - > inf

which is l~s concise. but elc:irer to the unini·
tiated.

Notice that exh rour-eharacter name is a
sin1le character as r:ar as troft' is concerned - the
'translate• command

. er\ (mi\ (em

is perfectly dear. meanin&

.er--

that is. to tn.nSlace - into -.

Some chanctcrs are automaticaJJy
translated into others: arave • and acute •
accerus (apostrophes) become open and close
sin1Je quotes ·-: the combination of •• ·-•• is 1en•
eraUy preferable to the double quotes• .•• •. Simi·
larly a typed minus sicn becomes a hyphen·· To
princ aa ex'Plicic - sign. use \·. To sec a
backslash printed. use \e.

4. lndeacs ud Line Lencths
trolf SW1S with I line length o(6.5 inches.

too wide for 81hx 11 paper. To reset the line
lcnath. use the JI command. as in

.u 6i

As with .sp. the actual len&th' c:an be specified in
several ways: inches ate probably the most intui
tive.

The maximum line len1th provided by the
typesetter is 7.5 inches. by the way. To use the
full width. you will have to r~et the default phy·
sical left mariin (••page otl"set'·>. which is nor·
mally slightly less than one inch rrom the left
ed1e of the paper. This is done by the .po com·
mand.

.po 0

setS the offset as rar to the left as it will go.

The indent command .la causes the left
matlin to be indented by some specified 3.mount
from the page o!Uet. IC we use .la to move the
left margin in. and .U to move the, ri1ht margin
to the left. we an make otl"sct block:s of text:

.in O.Ji

.I! --0.Ji
text to be set into a block
.11 +0.Ji
.in -0.Ji

w-ill create a block that looks lilco this:

Pater noster qui est in caetis
sanctificetur nomen tuum; adveniat
regnum tuum; fiat voluntaS tua. sic:ut
in caelo. et in terra. ... Amen.

Notice the use of • + · and ·-• to specify the
amount of change. These chan1e the previuus
scctinc by the specified amount. rather than just
overridin1 it. The distinction is quite important:
.11 + 1 i makes lines one inch lonaer~ .JI 1 i makes
them one inch lolt6 •

With .in. JI and .po. the previous value is
used if no arsument is sl)eeitied.

To indent a single line. use the •temporary
ind:nt' command· .ti. For exampl~. a!l paraaraphs
in this memo effectively begin with the com·
mand

.ti l

Three or what? The default unit for .ti. u ror
most horizontally oriented commands <.11. .in.
.po). is ems: an em is rou1hly the width or the
letter • m • in the current point size. (Precisely. a
em in size p is p point.s.> Althouch inches are
usually clearer than ems to people who don't set
type ror a livinc. ems have a place: they are a
measure o(size that. is proportional to the
current point size. Ir you want to make text that
keeps it.s proportions reaardless of point size. you
should use ems for all dimensions. Ems an be
specifted as scale factors directly. as in .ti 2.Sm.

Lines an also be indented negatively if the
indent is already positive:

.ti -0.Ji

causes the next tine to be moved back three
tenths of an inch. Thus to make a decorative
initial capital. we indent the whole paragraph.
then move the letter • p• b3ck with a .ti com·
mand:

P
a1er noster qui est in caelis
sancti.tketur nomen tuum~ ad·
veniat rcgnum tuum; fiat volun·

LU tua. sicut in aelo. et in terra. ...
Amen.

or course. there is. also some trickery to make
the •p• bi11er (just a ''.sJ6P\s0'), and to move it
down from its normal position (see the section
on loc:al mo lions).

5. Tabs
Tabs lthc ASCII 'horizontal ub' characterJ

can be used to produce output in columns. or to
set the horizontal position of output. Typically
ubs are used only in unfilled text. Tab stops .ire
set by default every haif inch from the current
indent. but an be ch:inged b~ the .ta command.
To set stops every inch. for example.

.ta li 2i Ji 4i Si 6i

Unfortunately the stops are left-justified
only (as on a typewriter). so linin1 up columns
of right-justified numbers an be painful. Ir you
h:ive many numbers. or if you need more c:om·
plicated table layout. dotr ·, use tro« directly; use
the tbl prosram described in CJ 1.

For a handtul o(numeric columns. you
an do it this way: Prec::de every number by
enouah blanks to make it line up when typed.

.nC

.ta li li Ji
l tab 2 111b 3

40 tab so tab 60
100 tab 800 rab 900
Ji·

Then change e3Ch le3.dit\I blank into the suinc
\0. This is a character that does not print. but
that has the same width u a digiL When
printed. this will produc:

l
40

700

2
so

.800

3
60

900

It is also possible to till up tabbed-over
sp:ice with some charac"'~ other than blanks by
settina the "tab replacement character' with the
.tc command:

.ta l.5i 2.Si

.tc \ (ru (\ (ru is ·-•)
Name rab Age tab

produces

Name------- A1e -----

To reset the tab replacement character to a
blank. use .tc with no argumenL (Lines an also
be drawn with the \I command. described in Sec·
tion 6.)

tro« also provides a very 1eneral mechan·
ism alled 'fields' for setting up complicated
columns. <This is used by thU. We will not go
into it in this paper.

6. Local Modons: Dr:awtnc lines Hd chanc•
ters ., .

Remember 'Area - :rr•' and the big ·p•
in the Piternoster. How are they done? troft'
provides a host of commands ror placing charac
ters of any size at any place. You can use them
to dnw speci:iJ characters or to tune your output
ror a particular appe:uanc::. Most of these com·
mands ue stnighu·orwurd. but messy to re:id
ind tough to type correctly.

If you won·t use eqn. subscriptS and super
sc:riptS ar: most ~ily done with the hatf ·line

A Troff Tutorial 5-87

loal motions \u and \d. To go bac:k up the page
half :i point-size. insert a \u at the desired place~
to go down. insert a \d. (\u and \d should always
be used in pairs. as e:<plained below.) Thus.

Are:i • \(•pr\u2\d

produces

To make the ·r smaller. bracket ic with
\s-2...\sO. Since \u and \d ::fer to the current
point size. be sure to put them either both inside
or both outSide the size c:han1es. or you will iet
an unbalanced verticl motion.

Sometimes the space given by \u and \d
isn't the riaht amounL The \v command on be
used to request an arbicruy amount oi vertic:i~
motion. The in-line command

\ v· famountr

ausc:s motion up or down the pace by the
amount specified in •<amount>•. For example. to
move the •p• down. we used

.in +0.6i (move paraarapn in)

.11 -0.Ji (shorten lines)

.ti -0.Ji (move P back)
\,t2\s36P\s0\ v· - 2' ater noster qui est
in c:aelis ·-

A minus si1n auses upward motion. while no
sign or a plus sign me:ins down the page. Thus
\v'-2• auses an upward verticl motion of two
line sixices.

There are many other ways to specify the
amount of motion -

\v·o.li·
\v.lp"
\v·-o.sm·

and so on are all l~g:il. Notice that the sc2le
specifier i or p or m goes inside the quotes. Any
character an be used in plac: of the quotes; this
is also true of alt other troff' commands desc:ribed
in this section.

Since troff' does not t.:ike within-the-line
vertic::al motions into account when figuring out
where it is on the p:ige. output. lines an have
unexpected positions 'if the left and right ends
uen • t at the same verticl position. Thus \ v.
like \u and \d. should Jlways balance upward
vertical motion in 01 line with the same amount
in the downward direction.

Arbi,r:iry hori1nnt:it mnrion~ ~re :1lsry 1v~il.

able - \h is quite analogous to \ v. exc:~t th:H
the default sale factor is ems inste:id of line
spaces. As an example.

\h. -o.1r

5-88 A Troff Tutorial

c~uses a backwards motion of a tenth of an inch.
As a practical matter. consider printing the
mathematical symbol • > > •. The default spacing
is too wide. so eqn replaces this by

>\h' -0.Jm'>

to produce >>.
Frequently \his used with the 'width func·

tion' \w to generate motions equal to the width
o(some character sttina. The consuuc:tion

\w"thina·

is a number equal tO the width of 'thins· in
machine units (1/432 inch). All troff' computa•
tions are ultimately done in these units. To
move horizontally the width of an 'x', we can
say

\h'\w·x·u·

As we mentioned above, the default scale factor
for aJl horizontal dimensions is m. ems. so here
we must have the u for machine units. or the
motion produc::d will be rar too tarie. troil' is
quite happy with the nested quoteS. by the way,
so Iona as you don't leave any out.

As a live example of this kind of consuuc·
tion. all of the command' names in the text. like
-SI'· were done by ovemrikin& with a sliaht
oif'set. The commands for .sp ue

.Jp\h" -\w" ..si»"u'\h"lu".sp

That is. put out '.sp', move left by the width of
·.sp". move right 1 unit. and print •.JP' again.
<or course there is a way to avoid typina that
much input for each command name. which we
will discuss in Section 11.)

There are also several special-purpose troil'
commands for loal motion. We have already
seen \0, which is an unpaddable white space o(
the same width as a d.i1ic. 'Unpaddable' means
that it will never be widened or split across a line
by line justification and filling. There is also
\(blank). which is an unpaddable character the
width of a space. \L which is halt that width. \ ••
which is one quarter of the width of a space. and
\A. which has zero width. (This last one is use.
ful. for ex.ample. in ente;inc a text line which
would otherwise begin wittl a •. ·.)

The command \o. used like

\o" set of characters'

auscs (up to 9) dtarac:ters to be overstruck. cen·
tered on the widest. This is nice for accents. as
in

syst\o•e\ (p·me t\o•e\ (aa·t\o"e\ (aa"phonique

which maites

systeme tclcphonique

The accents ue \(p and \(aa. or \" and \";
remember that each is just one character to troJf.

You an make your own overstrikes with
another special convention. \%. the zero-motion
command. \zx suppresses the normal horizont:il
motion after prindn& the single character x. so
another character can be laid on top of it.
Althou1h sizes ~n be chan1ed within \o. it
centers the characters on the widest, and there
can be no horizonw or vertical motions. so \z
may be the only way to 1et what you want:

is produced by

.s" 2
\s8\z\ (sq\s14\z\ (sq\s22\z\ (sq\sJ6\ (sq

The .JP is needed to le3ve room for the result.

As another example. an exua·heavy semi·
colon that looks like

; instead or ; or ;
can be consuucted with a big comma and a big
period above ic

\s+6\z.\v'-0.2Sm".\v'0.2Sm'\s0

·o.2sm· is an empirical constant.

A more ornate overstrike is given by the
brac:ketina function \b. which piles up character:1
vertically, centered on the current baseline.
Thus we can set big brackets. constructing them
with piled-up smaller pieces:

f !xi I
by typin& in only this:

.S1)

\b\ Clt\ (lk\ (lb' \b\ (le\ (1(x \b\ Crc:\ (rf \b\ (rt\ (rk\ (rb'

troil' also provides a convenient rac:ility for
drawina horizontal and venial lines of arbitrary
length with arbitrary characters. \l'li' draws a
line one inch long. like this: .
The length an be followed by the character to
use i(the _ isn•t appropriate; \1'0.Si.' draws a
halt·inch line of dots: .•••••.•••••••. The construe:·
tion \L is entirely analogous. exce;:n that it dnws
a venical line inste:id of horizontal.

7. Striacs
Obviously iC a paper contains a large

number of occurrences of an acute accent over a
le-tter ·e·. typin~ \o"e\ ... ror each e would be a

1re~t nuisance.

Fortunately. troff' provides ~ way in which
you an store an arbilruy colle:tion of text in a
·string·. :ind therQf ter U!e the string riame as a
shorthand for itS contentS. Strinp are one of
several trotf mechanisms whose judicious use
letS you type a document with less eft'ort :ind
or1anize it so that extensive format chances an
be made with few editin1 chanaes.

A ·rererence to a strinc is replaced by what·
ever text the strinc was defined u. Suinp are
defined with the command .ds. The line

.ds e \o•e\ ..

defines the strin1 e to have the value \o•e\ ...

Strini names may be either one or two
c:harac:t:rs Iona. and are referred to by \•x for
one character names or \•(xy for two character
names. Thus to set telephone. given the
deftnition or the sttina e as above. we can say
t\-el\ ~phone.

Ir a strin& must bc1in with blanks. define it
as

. ds u • text

The dou~te quote sianals the bqinnin1 or the
definition. There is no ttailin1 quote: the end or
the line terminates the strina.

A strin1 may actually be several lines tons;
if troif encounters a \ at the en4 of any line. it is
thrown away and the next line added to the
current one. So you an make a lona Strine sim
ply by endin1 each line but the last with ·a
back.slash:

.ds u this\
is a very\
Ions sttin1

Strinp may be defined in terms or Other
Strings. or even in terms or themselves; we will
discuss some or these possibilities later.

I. I ntroducdoa to Macros
Before we cut 10 much (wiher in trolf. we

need to leun a bit :about the macro facility. In
its simplest form. i macro is just a shonhand
notation quite simibr to a suina. Suppose we
want every paracraph to swt in exactly the same
way - with a space :ind a temporary indent of
two ems:

.Jp

.ti +lm

Then to save typin1. we would like to collapse
these into one ~horth::ind line. :1 troff •c:omm::ind'
like

A Troff Tutorial 5-89

.PP

that would be tr=ted by troff' ex3c:tly as

.sp

.ti +2m

.PP is c:illcd a macro. The way we tell troff' what

.PP :ne:ins is to define it with the .de ~omm::inci;

.de PP

.$p

.ti +2m

The first line names the macro (we used ·.PP•
for ~par.icr:iph·. Jnd upper case so it wouldn·t
c:onilict with :any name that troff mi1ht alre::idy
know about>. The last line .• marks the end of
the definition. In betwe:n is the tr:xt. which is
simply insened whenever troff se:s the •com·
mand • or macro all

.PP

A macro can contain any mixture of text and
ronnattin& commands.

The definition of .PP has to precede itS
ftm use: undefined macros are simply i1nored .
Names ue restricted to one or two characters.

Usin1 maaos for commonly occurring
sequences of commands is c:ritially important.
Not only does it save typinc. but it makes l~ter
c:hanaes much e:isier. Suppose we decide that
the puaaraph indent is too small. the vertial
space is much too big. and roman font snould be
(orced. lnst=d o(changing the whole doc:u·
ment. we need only c:hanie the definition o(.PP
to something like

.de pp
sp 2p
.ti +3m
.(t R

\ • paragraph m~c:ro

and the change takes eft'ect everywhere we used
.PP.

\ • is a troff ~ommand that auses the rest
of the line to be ignored. We use it here to add
commentS to the macro definition (a wise idea
once definitions aet compliated).

As another example o(macros. consider
these two which start and end :i block of otfset.
unfilled text. like most of the ex~mpfes in this
paper.

5-90 A Troff Tutorial

.de BS

. sp

.nr

.in +O.Ji

. de BE

.sp
Ji
.in -0.Ji

\ • start indented block

\ • end indented block

Now we can surround text like

Copy to
John Doe
Richard Roberts
Stanley Smith

by the commands .BS and .BE. and it will come
out as it did above. Notice that we indented by
.ill +O.Ji instead or Jn O.Ji. This way we can
nest our uses oC .BS and BE to set blocks within
blocks.

IC tater on we decide that the indent should
be q.5i. then it is only necessary to change the
de4nitions oC .BS and .BE. not the whole paper.

9. Titles. Paces and Numberlnc
This is an uea where thincs set tougher.

beause nothing is done for you automatically.
or necessity. some or this ~on is a cookbook.
to be copied literally until you set some experi
ence.

Suppose you want a title at the top or each
page. sayin1 just

-aert top center top rilht top-

In roif. one can say

.he •teft top·center top.right top·

.to •teft bottom·center bottom·ri1ht bottom·

to set headers and footers automatically on every
pa1e. Alas. this doesn't work in troif. a serious
hardship fqr the novice. Instead you have to do
a lot of specification.

You have to say what the actual tide is
(easy); when to print it (easy enough); and what
to do at and around the title line (harder). Tak
in1 these in reverse .order. first we define a
macro .NP (for ·new page') to process tides and
the like at the end of one page and the beginning
of the next:

.cic N?
'bp
'sl' O.Si
.tl ·1eft top'center top.right top·
'sp O.Ji

To maJce sure we· re at the top of a page. we

issue a 'begjn page· command 'bp. which auses
a skip to top-of-page (we'll explain the · shortly) .
Then we space down half an inch. print the title
(the use or .tl should be self explanatory: 12ter
we will discuss parameterizing the titles). space
another O.J inches. and we·re done •

To ask ror .NP at the bottom of each page.
we have to say somethin1 like 'when the text is
within an inch or the bottom of the page. start
the processing for a new pace.• This is done with
a 'when• command . wh:

.wh -Ii NP

(No •. • is used before NP: this is simply the
name or a macro. not a macro all.> The minus
sian means 'measure up from the bottom of the
page\ so ·-1r means 'one inch from the bot·
tom'.

The .wb command appears in the input
outside the definition of .NP~ typically the input
would be

.de NP

.wh -li NP

Now what happens? As text is actually
beina output. troll keeps track of its vertical
position on the page. and after a line is printed
within one 'inch from the bottom, the .NP macro
is activated. <In the jargon. the .wh command
sets a trap at the specified place. which is
'sprung' when that point is passed.) .NP causes a
skip to. the top or the next page (that's what the
'bp was for), then prints the title with the
appropriate margins.

Why 'b9 and 'sp inste:id of .bp and .SJ'~
The answer is that ..sp and .bp, like several other
commands. cause a "'mk to take place. That is.
aJl the input text collected but not yet printed is
ftushed out as soon as possible. and the nut
input line is 1uarantecd to start a new line of
outpuL If we had used .Jl' or .bp in the .NP
macro. this wouJd cause a brc3k in the middle of
the current output line when a new page is
Started. The etfect would be to print the left
over pan of th:st line at the top of the page. fol·
lowed by the next input line on a new output
line. This is not what we want. Using ' inste~d
of • ror a command tells troff that no break is to
take place - the output line currently being_
filled should not be forced out before the space
or new page.

The list of commands that c3use a bre3k is
shon and natural:

.bi> .br .a: .ft .nf .sp .in .ti

. .i.!l c:hers a~ r.= bre:ik. re--oardless of '.'!!'\ether

you use a • or a '. lf you really n=d a bre~k. add
a .br command at the appropriate place.

One other thins to beware oC - i(you"re
changina ronts or point sizes a lot. you may find
that iC you crass a pa1e boundary in an unex·
pected font or size. your tides come out in that
size and Cone instead of what you intended.
Furthermore. the len1th o(a title is independent
o(the current line len&th. so titles will come out
ll the default lcnath or 6.5 inches. unless you
chance it. which is done with the Jt command.

There are several ways to ftx the problems
or point sizes and fonts in titles. For the sim·
plcst appliations. we can change .NP ta set the
proper size and font for the tide, then restore
the previous values. like this:

.de NP
'bp
'sp 0.5i
.Ct R. \ • set tide Cont co roman
.ps 10 \•and size to 10 point
• It 6i \ • and lenath to 6 inches
.11 ·1ert"center"ri1ht"
.ps \ • rcven to previous size
.Ct P \ • and to previous Cont
'sp O.Ji

This version o(.NP does not work ir the
fields in the .ti command contain size or font
chances. To cope with that requites tro~ s
~environment' mechanism. which we will discuss
in Section ll.

To set a footer at the bottom of a page.
you can modify .NP so it does some processing
before the 'bp command. or split the job into a
footer macro invoked " the bottom margin and
a header macro invoked ac the top of the page.
These variations are left as exercises.

Output pa1e numbers ue computed
automatiaUy as e:u:h page is produced <starting
at l). but no numbers are printed unless you ask
ror them explic:itty. To get page numbers
printed. include the c:harac:tc:r ~ in the .d line at
the position where you want the number to
appear. For exampte

. ti ... % ...

centers the paie number inside hyphens. as on
this pa1e. You can set the pace number at any
time with either .bp n. which immediately starts
a new pace numbered n. or with .pn n. which
setS the pa1e number for the next paae but
doesn·t ause a skip to the new page. Again.
.bp +n setS the page number to n more than its
curri:nt value~ .bp me:ins .bp + l.

A Troff Tutorial 5-91

10. :'lumber Recisten and :\rithmetic
troff has a racility for doing arithmetic. lnd

ror dennin1 and usin1 variables with numeric
values. oiled num~r rrg1s1ers. Number regis·
ters. like suinp and m:icros. on be useful in
seuin& up a document so it is euy to ch:inge
later. And o(course they serve for iny sort of
arithmetic computation.

Like strinp, number re1isters have one or
two character names. They are set by the .nr
command. and are referenced anywhere by \rut
Cone character name) or \n (xy (two character
name).

There are quite a few pre-<ienned number
re1isters maintained by croif'. amonc them o/o for
the current pase number. n1 for the current vert·
ical position on the pase; dy, mo and yr for the
current day. month and Ye3r. and ..t :ind .C for
the current size and font. (The font is ~ number
from 1 co ~.) Any of these an be tJSed in com·
puucions like any other register. but some. like
.sand .!. c::annoc ~ c:han1ed with .nr •

As an example or the use or number relis·
ters. in the -ms maao packaae (4}. most
sianiftant parameters arc defined in terms or the
values of a handful of number registers. These
indude the point size for text. the venial spac:·
ins. and the line and tide len1ths. To set the
point size and vertical spacing for the following
paragr:iphs. for example. a user m~y say

.nr PS 9

.nr VS 11

The paragraph macro .PP is defined (roughly) as
rollows:

.de PP

.ps \\n(PS

.vs \\n(VSp

.ft R

.sp 0.5v

.ti +Jm

\ • reset size
\ • sp01c:in1
\•font
\ • half a line

This sets the font to Roman and the point size
ind line spacing to whatever v:llues are stored in
the number registers PS and VS.

Why are there: two backslashes? This is
the eternal problem of how to quote a quote .
When troff' originally reads the macro definition.
it peels od' one backslash to s= what"s coming
next. To ensure that another is left in the
definition when the macro is used. we have to
cut in two backslashes in the definition. lf only
one backslash is usc1. point size ;.ind veruc~I
spacin1 will be frozen lt the time the mac::o is
defined. not when it is used.

Protectin1 by :in extra layer of backslashes

5-92 A Troff' Tutorial

is only needed for \a. \•, \S (which we haven·t
c:ome to yet), and\ itself. Things like \s. \(, \h.
\ v. and so on do not need an extra backslash.
since they are c:onverted by tro8" to an internal
c:ode immediately upon bein& seen.

Arithmetic expressions can appear any·
where that a number is expected. As a trivial
example.

.nr PS \\n(PS-2

decrements PS by 2. Expressions can use the
arithmetic operators +, - , •, I, % (mod). the
relational operators >. > •. <. < - • - • and
! • (not equal), and parentheses.

Althou1h the arithmetic we have done so
far has been suaighd'orward. more complicated
things are so mew ha& tricky. First. number rqis·
ters hold only intcaers. trail arithmetic uses
truncatin1 intqer division. just like Fortran.
Second. in the absence or parentheses. evalua
tion is done left·to-riaht without any operator
precedence Uncludln1 relational operators).
Thus

7·-'•+l/13

becomes • -1 •. Number resisters an occur any·
where in an expression. and so an scale indica·
tors like p, i. m. and so on (but no spaces).
Althouah inteier division causes uuncadon. each
number and its. scale indicator is convened to
machine units (1/432 inch) be(ore any arithmetic
is done. so 1 i/2u evaluates to O.Si correctly.

The scaJe indicator u often has to appear
when you wouldn"t exi>eet it - in particular.
when arithmetic is bein1 done in a context that
implies horizontal or venial dimensions. For
example.

.11 7 /2i

would seem obvious· enough - J1h inches.
Sorry. Remember that the defauJt units (or hor·
izontal parameters like .11 are ems. That's really
·1 ems I 2 inches'. and when translated into
machine units. it becomes zero. How about

.11 7i/2

Sorry. still no good - the ·2· is '2 ems', so
'7i/2' is small. although not zero. You nrust use

. II 7i/2u

So again. a sale rule is to attach a scale indicator
to every number. even c:onstanLS.

For arithmetic done within a .nr c:ommand.
there is no implication or horizontal or vertical
dimension. so the default units are •units'. and
7i/2 and 7i/2u mean the same thins. Thus

.nt II 7V2

.ll \\n(llu

does just what you want. so long as you don't
Corset the u on the .11 command.

11. Macros with ariuments

The next step is to define macros that can
chan1e rrom one use to the next accordinc to
parameters supplied as ar1uments. To make· this
wor~ we need two things: first. when we define
the macro, we have to indicate that some paru
of it will be provided as ar1uments when the
macro is called. Then when the macro is ailed
we have to provide actual argumems to be
plu11ed into the definition.

Let us illustrate by definin1 a macro .SM
that will print its ar1umenl two points smaller
than the surroundin& text. That is. the macro
caJI

.SM TR.OFF

will produce TROFF.

The definition or .SM is

.de SM
\s-2\\Sl\s+l

Within a macro definition. the symbol \\Sn
refers to the ath aflument that the macro was
called with. Thus \\Sl is the strina to be placed
in a smaller point size when .SM is c:alled.

As a sliahdy more c:omplicated version, the
followin1 definition or .SM permits optional
second and third arguments that will be printed
in the normal size:

.de SM
\\Sl\s-2\ \Sl\s+2\ \S2

A1111ments not provided when the macro is
called are treated as empty, so

.SM TR.OFF) ,

produces TROFF), while

.SM TR.OFF). (

produces (TROFF). It is convenient to reverse
the order of arguments because trailing punctu.a·
lion is much more c:ommon than leading •

By the way, the number of arguments that
a macro was ailed with is avallable 1n number
register .S.

The (allowing macro .BO is the one used
to make the 'bold roman' we have been usin1
for troif c:ommand names in text. lt c:ombincs
horizontal motions. width c:omputations. :ind
arg!lm~nt r~ngemertt.

.de BO
\4'\ \Sl\fl\ \Sl \h. -\ w\ \Sl ·u + 1 u\ \Sl\fP\ \$2

Tiie \h and \ w commands need no extra
backslash. as we discussed above. The \& is
there in case the ariument be&ins with a period.

Two backslashes ue needed with the \\Sn
commands. thou1h. to protect one or them when
the macro is beina defined. Perhaps a second
example will make this clearer. Consider a
macro called .SH which produces section hud·
inp rather like those in this paper. with the sec·
lions numbered automatically. and the title in
bold in a smaller size. The '"e is

.SH '"Section title .•• •

(IC the arsumeru to a macro is to contain blanks.
then it must be sumJunMd by double quotes.
unlike a strina. where only one teadina quote is
permitted.)

Here is the definition or the .SH macro:

.nr SH 0 \•initialize section number

.de SH

.sp O.li

.(t'B

.nr SH \\n(SH+l

.ps \\n(PS-1
\\n(SH. \\Sl
• ps \\n(PS
.Jll 0.li
.tt R

\•increment number
\ • decrease PS
\ • number. tide
\ • restore PS

The section number is kept in number rqister
SH. which is incremented each time just before it
is used. (A number rqister may have the same
name as a macro without conBict but a suing
may not.)

We used \\n(SH instead of \n(SH and
\\a<PS instead of \a<PS. IC we had used \n<sH.
we would get the value or the resister at the time
the macro wu d~/iMd. nae at the time it wu
&lSCd. [f that's wtw you want. tine, but not here.
Similarly. by usinc \ \a<PS. we set the point size
., the time the macro is ailed.

As an ex:imple that does not involve
numbers. reca!J our .. 'IP macro which had a

.ti •teff c:enter·right

We could make these into parameters by usina
ir.steotd

.ti '\\•(LT\\•(CT\\•(RT

so the title comes from three strings ailed LT.
CT ind RT. [f these are eminy. then the ti:le
will be a blant tine. Normally CT would be set

with somethin~ like

.ds CT • % •

A Trotr Tutorial 5-93

to give just the pa;e number between hyphens
(as on the top of this page). but :i user could
supply private definitions ror any of the strings.

12. Conditton~s

Suppose we want the .SH macro to leave
two extra inches of space just before section 1.
but nowhere else. The cleanest way to do that is
to test inside the .SH macro whether the section
number is 1. and add some space ir it is. The .ir
command provides the conditional test that we
an add just before the he:idina line is output:

.if\ \n <SH• i .sp 2i \ • first section only

The condition artcr the .it can be any
arhhmetic or logia! expression. tr the condition
is loaically true, or :irithmetially sre:ater than
zero. the rest of the tine is tre:ated as i(it were
text - here i command. It the condition is
raise. or zero or negative. the rest of the tine is
skipped.

It is possible to do more than one com·
mand ir a condition is trUe. Suppose several
operations are to be done berore section 1. One
possibility is to define a macro .Sl :ind invoke it
if we are about to do section 1 (as determined by
an .if) •

.de Sl
- proc:essin& (or Section 1 -

.de SH

.if \\n(SH-1 .SI

An altcrmte way is to use the extended
form o(the .iC. like this:

.iC \ \n (SH• l \ (-- processing
ror section 1 -\J

The br.lc:es \ (and \} must occur in the positions
shown or you will get unexpected extra lines in
your output. trotf also provides :i.n •if·eiSe· con·
suuc:tion. whic:h we will not go into here.

A condition an be nei:ited by preceding it
with !~ we get the same effect as J.bove (but liess
c:l03rly) by using

.ir !\\n(SH> 1 .Sl

There :ire a handful of other conditions
tnat an be tested with .if. For exampi~. is the
current page even or odd?

5-94 A Troff Tutorial

.if e .ti ··even page title··

.if o .tl ··odd page title ..

aives facing pages different titles when used
inside an appropriate new page macro.

Two other conditions are t and n. which
tell you whether the formatter is tro« or nro«.

.i(t trot!' sw!' .•.

.ii' n nrotr stutf ·-

FinaJly. suin& comparisons may be made
in an .if':

.if' ·suin1rsuins2. stuff'

does •stuff" iC srrilf6l is the same u Strilf61. The
character separatina the suinas can be anythina
reasonable that is not contained in either suina.
The suinp themselves can reference strinas with
\•, araumerttS with \S. and so on.

13. EaYiroamencs
As we mentioned. there is a potential

problem when aoina across a pa1e boundary:
parameters like size and font for I page title may
Well be ditrcrent from those in etfect in the text
when the pap boundary occurs. troff provides a
very pneral way to deal with this and similar
situations. There are three ~environments'. each
or which has indepertdendy settable versions of
many or the parameters associated with process·
ins. includina size. ronc.. line and title lenaths.
ftlV nofill mode. tab stops. and even panially col·
lec:ted lines. Thus the titlin& problem may be
readily solved by processins the main text in one
environment and tides in a separate one with itS
own suitable parameters.

The command .ev 11 shiCtS to environment
n; 11 must be o. 1 or 2. The command .ev with
no ar;ument returns to the previous environ·
menL Environment names are maintained in a
stack. so calls ror ditrerent environmenis may be
nested and unwound consistently.

Suppose we say that the main te.xt is pro·
cessed in environment O. which is where troif
be&ins by defaulL Then we can modify the new
page macro .NP to process titles in environment
1 like this:

.de NP

.ev 1

.lt 6i

.f! R

.ps 10

\ • shift to new environment
\ • set parameters here

... any other processin1 .•.

.ev \•return to previous environment

It is also possible to initialize the parameters for
an environment outside the .NP macro. but the

version shown keeps all the proc:essin1 in one
place and is thus easier to understand and
chance.

1.C. Diversions

There are numerous occ:asions in pace lay·
ouc when it is necessary to store some text for a
period of time without actually printin1 it. Foot·
notes are the most obvious example: the text or
the footnote usually appears in the input wen
before the pCace on the pace where it is to be
printed is reached. In fact. the pCace where it is
output normally depends on how bi& it is. which
implies that there must be a way to process the
footnote at least enouah to decide its size
without printina it.

troff provides a mechanism called a diver·
sion for doin1 this processina. Any part of the
output may be diverted into a macro inst=d or
bein1 printed. and then at some convenient time
the macro may be put back into the input.

The command .di xy bqins a diversion -
all subsequent output is collected into the macro
rt until the command .di with no ar1umentS is
encountered. This terminates the diversion.
The processed text is available at any time
thereafter. simply by 1ivin1 the command

.xy

The vertical size of the last finished diversion is
contained in the built·in number reaister dn.

As a simple example. suppose we want to
implement a 'keep-release· operation. so that
text between the commands .KS and .KE will not
be split across a page boundary (as for i figure or
cable). Clearly, when a .KS is encountered. we
have to begin diverting the output so we on find
out how big it is. Then when a .KE is seen. we
decide whether the diverted text will fit on the
current page. and print it either there if it fits. or
at the top of the next page if it doesn•t. So:

.de KS \ • start keep

.br \ • start fresh line

.ev 1 \ • collect in new environment

.fi \ • make it filled text

.di xx \. collect in xx

.de KE \ • end keep

.br \ • 1et last partial line

.d! \ • ,.n~ diver~inn

.if\ \n(dn> -\ \n<.t .bp \" bp if doesn·t tit

.nf \ • bring it bac:k in no·till

.XX \"text

.ev \" return to normal environment

Recall that number register nl is the current

posauon on the output page. Sine:: output was
beina diverted. this remains ;it itS value when the
diversion started. dn is the 11mount of tc:~t in
the diversion; .t (another built-in register) is the
distance to the next trap. which we assume- is at
the bottom mal'lin of the page. If the di version
is large enough to 10 past the trap. the .if is
satisfied. and a .bp is issued. ln either case. the
dive:ted output is then brought back with .XX. It
is essential to brin1 it back in no-fill mode so
troff will do no further proc:essin1 on it.

This is not the most general keep-release.
nor is it robust in the face of all conceivable
inputs. but ic would require more space than we
have here to write it in full 1enerality. This sec·
uon is no~ intended to teach everythin1 about
diversions. but to sketch out enou1h that you
an read e:dstin1 macro packages with some
comprehension.

Acknowledcemencs

I am deeply indebted to J. F. Ossanna. the
author or troit for his repeated patient explana·
lions of fine poicus. and for tlis continuing wil·
lin1ness to adapt troft' to make other uses easier.
I am :1lso arateful to Jim Blinn. Ted Colona.
Oou1 Mc:llroy. Mike Lesk and Joel Sturman for
hetpf ul' comments on this paper.

ReCerenc:es

[l J J. F. Ossanna. .VROFFTTROFF User·s
Manual. Bell Llboruories Computin1 Sd·
ence T=hnial Report 54, 1976.

[ll B. W. Kemi&han. A System fOI' T_vpntttint
Mathtmatics - Us~r·s Guide (Sttand Edi·
rionJ. Beil uboratories Computing Science
Technical Report 17. 1977.

[JI M. E. Lesk. TBL - A Pro1ram to FOl'mar
Tabla. Bell Laboratories Computin1 Sci·
ence Technial Report 49. 1976.

{4) M. E. Lesk. Typin1 Documtna an UNIX.
Bell Laboratories. 1978.

(SI J. R. Mashey and 0. W. Smith. PWBIMM
- Proframm~r·s Workbtnch .'Yfemarandum
Macros. Bell Llboratories internal
memorandum.

A Troff Tutorial 5-95

5-96 A Troff Tutorial

Appendix A: Phototypesetter Character Set

These characters exist in roman, italic, and bold. To get the one on the left, type the four-character
name on the right.

ff \(ff fi \ (fi ft \(ft ffi \(Fi ffl \(Fl

- \(ru - \(em l/4 \{14 112 \(12 314 \ (34
0 \(co 0 \(de t \(dg

,
\(fm ¢ \(ct

9 \(rg • \(bu o \(sq - \(hy
On bold, \(sq is •)

The following are special-font characters:

+ \(pl \(mi x \(rnu + \(di
\(eq - \(-- ~ \(>- ~ \{<-

¢ \{!- ± \(+- ... \(no I \ (sl
\(ap - \(-- QC \(pt " \(gr
\(-> \{<- \(ua ! \(da

f \Gs a \(pd 00 \(if .J \(sr
c \(sb :::> \(sp u \(cu () \(ca
~ \(ib :2 \(ip E \(mo 0 \(es

\(aa \(ga 0 \(ci @ \(bs
§ \(sc * \(dd \(th ,.. \(rh

I \(It 1 \(rt r \(le \(re

l \{lb J \{rb l \{If \(rf

I \(lk J \(rk I \(bv ~ \(ts

I \(br \(or \(ul - \(rn
• \(••

These four characters also have two-character names. The • is the apostrophe on terminals; the • is the
other quote mark.

\' \' \- _

These characters exist only on the special font, but they do not have four-character names:

< > \ # @

For greek, precede the roman letter by\(• to get the corresponding greek; for example, \(•a is a.

abgdezyhiklmncoprstufxqw
a~y8E,~9tKX~v~o~pu;v~x~~

ABGDEZYHIKLMNCOPRSTUFXQW
ABf~EZH91KAMN50IlPITY~X~O

A System for Typesetting Mathematics 5-97

A System for Typesetting Mathematics

Brian W. Kernighan and Lorinda l. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the design and implementation of a system for typesetting
mathematics. The language has been designed to be easy to learn and to use by people
(for example. secretaries and mathematical typists) who know neither mathematics nor
typesetting. Experience indicates that the language can be learned in an hour or so. for
it has few rules and fewer exceptions. For typical expressions. the size and font
changes, positioning, line drawing, and the like necessary to print according to
mathematical conventions are all done automatically. For example. the input

sum from i-0 to infinity x sub i - pi over 2

produces

-Ix.-;
1-0

The syntax of the language is specified by a small context-free grammar~ a
compiler-compiler is used to make a compiler that translates this language into typeset·
ting commands. Output may be produced on either a phototypesetter or on a terminal
with forward and reverse half-line motions. The system interfaces directly with text
formatting programs. so mixtures of text and mathematics may be handled simply.

This paper is a revision of a paper originally published in CACM. March, 1975.

1. Introduction

.. Mathematics is known in the trade as
difficult, or penalty, copy because it is slower,
more ditlkult. and more expensive to set in type
than any other kind of copy normally occurring
in books and journals ... [1]

One difficulty with mathematical text is the
multiplicity of characters, sizes. and fonts. An
expression such as

lim (tan x >•" 1'" - 1
:c-.,,12

requires an intimale mixture of roman. italic and
greek letters. in three sizes. and a special charac·
ter or two. (.. Requires .. is perhaps the wrong
word. but mathematics has its own typographical
conventions which are quite diff~rent from those
of ordinary text.) Typesetting such an expression
by traditional methods is still an essentially
manual operation.

A second difficulty is the two dimensional

character of mathematics. which the superscript
and limits in the preceding example showed in its
simplest form. This is carried further by

bt
ao+~----------~

b2 a,+-------
a2+ b,

a3+ ...

and still further by

f d.v:
ae'"-'111-be-.... 'l(I -

These examples also show line-drawing, built-up
characters like braces and radicals. and a spec
trum of positioning problems. (Section 6 shows

5-98 A System for Typesetting Mathematics

what a user has to type to produce these on our
system.)

?. Photocomposition

Photocomposition techniques can be used
to solve some of the problems of typesetting
mathematics. A phototypesetter is a device
which exposes a piece of photographic paper or
film. placing characters wherever they are
wanted. The Graphic Systems phototypesettcr[2J
on the UNIX operating system[JI works by shin
ing light through a character stencil. The charac
ter is made the right size by lenses. and the light
beam directed by fiber optics to the desired place
on a piece of photographic paper. The exposed
paper is developed and typically used in some
form of photo-offset reproduction.

On UNIX. the phototypesetter is driven by
a formatting program called TROFF [4). TROFF
was designed for setting running text. It also
provides all of the facilities that one needs for
doing mathematics. such as arbitrary horizontal
and vertical motions. line-drawing, size changing,
but the syntax for describing these special opera
tions is difficult to learn. and difficult even for
experienced users to type correctly.

For this reason we decided to use TROFF
as an ··assembly language.·· by designing a
language for describing mathematical expres
sions. and compilina it into TROFF.

3. Langua1e Desi1n
The fundamental principle upon which we

based our language design is that the language
should be easy to use by people (for example.
s~cretaries) who know neither mathematics nor
typesetting.

This principle implies several things. First.
"normal" mathematical conventions about
operator precedence. parentheses. and the like
cannot be used. for to give special meaning to
such characters means that the user has to
understand what he or she is typing. Thus the
language should not assume, for instance, that
parentheses are always balanced. for they are not
in the half-open interval (a .b J. Nor should it
assume that that .J a +b can be replaced by
(a+b)''\ or that 1/(1-x) is better written as

J (or vice versa).
1-x

Second. there should be relatively few
rules. keywords. special symbols and operators.
and the like. This keeps the language easy to
learn and remember. Furthermore. there should
be few exceptions to the rules that do exist: if
somethina works in one situation. it should work
everywhere. If a variable can have a subscript,
then a subscript can have a subscript. and so on

without limit.

Third. ..standard" things should happen
automatically. Someone who types
.. x-y•z+l .. should get .. x-y+:~1··. Sub
scripts and superscripts should automatically be
printed in an appropriately smaller size. with no
special intervention. Fraction bars have to be
made the right length and positioned at the right
height. And so on. Indeed a mechanism for
overriding default actions has to exist. but its
application is the exception. not the rule.

We assume that the typist has a reasonable
picture (a two-dimensional representation) of the
desired final form. as might be handwritten by
the author of a paper. We also assume that the
input is typed on a computer terminal much like
an ordinary typewriter. This implies an input
alphabet of perhaps 100 characters. none of them
special.

A secondary. but still important. goal in
our design was that the system should be easy to
implement. since neither of the authors had any
desire to make a long-term project of it. Since
our design was not firm. it was also necessary
that the program be easy to change at any time.

To make the program easy to build and to
change. and to guarantee regularity (.. it should
work everywhere"), the language is defined by a
context-free grammar. described in Section 5.
The compiler for the language was built using a
compiler-compiler.

A priori. the grammar/compiler-compiler
approach seemed the right thing to do. Our sub·
sequent experience leads us to believe that any
other course would have been folly. The original
language was designed in a few days. Construc·
tion of a working system sufficient to try
significant examples required perhaps a person
month. Since then. we have spent a modest
amount of additional time over several ye:irs
tuning, adding facilities. and occasionally chang
ing the language as users make criticisms and
suggestions.

We also decided quite early that we would
let TROFF do our work for us whenever possible.
TROFF' is quite a powerful program. with a macro
facility, text and arithmetic variables. numeric:il
computation and testing, and conditional branch·
ing. Thus we have been able to avoid writing a
lot of mundane but tricky software. For exam·
pie. we store no text strings. but simply pass
them on to TROFF. Thus we avoid having to
write a storage management package. Further·
more. we have been able to isolate ourselves
f ram most details of the particular device :ind
character set currently in use. For example. we
let TROFF compute the widths of all strings of

A System for Typesetting Mathematics 5-99

characters~ we need know nothing about them.

A third design goal is special to our
environment. Since our program is only useful
for typesetting mathematics. it is necessary that it
interface cleanly with the underlying typesetting
language for the benefit of users who want to set
intermingled mathematics and text (the usual
case). The standard mode of operation is that
when a document is typed. mathematical expres
sions are input as part of the text. but marked by
user settable delimiters. The program reads this
input and treats as comments those things which
are not mathematics, simply passing them
through untouched. At the same time it con
verts the mathematical input into the necessary
TROFF commands. The resulting ioutput is
passed directly to TROFF where the comments
and the mathematical parts both become text
and/ or TROFF commands.

4. The Lanauaae

We will not try to describe the language
precisely here~ interested readers may ref er to
the appendix for more details. Throughout this
section. we will write expressions exactly as they
are handed to the typesetting program
(hereinafter calle.d ••EQN"). except that we won't
show the delimiters that the user types to mark
the beginning and end of the expression. The
interface between EQN and TROFF is described at
the end of this section.

• As we said, typing x -y + z + 1 should pro
duce x-_v +:+I. and indeed it does. Variables
are made italic, operators and digits become
roman. and normal spacinp between letters and
operators are altered slightly to give a more
pleasing appearance.

Input is free-form. Spaces and new lines
in the input are used by EQN to separate pieces
of the input: they are not used to create space in
the output. Thus

x - y
+z+l

also gives x-_v +: + 1. Free-form input is easier
to type initially~ subsequent editing is also easier.
for an expression may be typed as many short
lines.

Extra white space can be forced into the
output by several characters of various sizes. A
tilde .. ·" gives a space equal to the normal word
spacing in text; a circumflex gives half this
much. and a tab charcter spaces to the next tab
stop.

Spaces (or tildes. etc.) also serve to delimit
pieces of the input. For example. to get

.f (r)•211 J sin(ca11)dr

we write

f(t) - 2 pi int sin (omega t)dt

Here spaces are necessary in the input to indicate
that sin, pi, int, and omeKa are special. and poten·
tially worth special treatment. EQN looks up
each such string of characters in a table. and if
appropriate gives it a translation. In this case. pi

and omega become their greek equivalents. int

becomes the integral sign (which must be moved
down and enlarged so it looks .. right ..). and sin
is made roman. following conventional
mathematical practice. Parentheses. digits and
operators are automatically made roman wher
ever found.

Fractions are specified with the keyword
over:

a+b over c+d +e -

produces

a+b _
1

c+d+e

Similarly, subscripts and superscripts are
introduced by the keywords sub and su11:

x2+.v2-:2

is produced by

x sup 2 + y sup 2 - z sup 2

The spaces after the 2·s are necessary to mark
the end of the superscripts: similarly the keyword
Sllf' has to be marked off by spaces or some
equivalent delimiter. The return to the proper
base.line is automatic. Multiple levels of sub
scripts or superscripts are of course allowed:
.. x sup y sup z .. is x··=. The construct .. some
thing sub something s1111 something .. is recog
nized as a special case. so .. x sub i sup 2" is x, 2

instead of x, 2.

More complicated expressions can now be
formed with these primitives:

a2/' x2 vl ----+-ax2 a 2 b2

is produced by

(partial sup 2 fl over {partial x sup 2l
x ,up 2 over a sup 2 + y sup 2 over b sup 2

Braces () are used to group objects together: in
this case they indicate unambiguously what goes
over what on the left-hand side of the expres
sion. The language defines the precedence of sup

to be higher than that of over. so no braces are
needed to get the correct association on the ri2ht
side. Braces can always be used when in do~bt
about precedence .

The braces convention is an example of

5-100 A System for Typesetting Mathematics

the power of using a recursive grammar to define
the language. It is part of the language that if a
construct can appear in some context. then a11.v
~xpr~ssion in braces can also occur in that con·
text.

There is a sqrt operator for making square
roots of the appropriate size: .. sqrt a+ b •• pro
duces ../a +b • and

x - (-b +- sqrt(b sup 2 -4acJ J over 2a

is

-b±~b1-4ar
x- 2a

Since large radicals look poor on our typesetter.
sqn is not useful for tall expressions.

Limits on summations, integrals and simi
lar constructions are specified with the keywords
from and to. To get

-!:c,-0
1-0

we need only type

sum from i-0 to inf x sub i -> 0

Centering and makina the I big enough and the
limits smaller are all automatic. The from and ro
parts are both optional, and the central part (e.g.,
the I) can in fact be anything:

Jim from (x -> pi /2) (tan·x> - inf

is

lim (tan ."C)-oo
x--r/2

Aaain, the braces indicate just what goes into the
from part.

There is a facility for making braces,
brackets. parentheses, and vertical bars of the
right height, using the keywords left and right:

left [x+y over 2a right 1·--1
makes

[xi:· J-1
A left need not have a corresponding right. as we
shall see in the next example. Any characters
may follow l~fl and right. but generally only vari·
ous parentheses and bars are meanin1ful.

Big brackets, etc., are often used with
another facility, called piles. which make vertical
piles of objects. For example. to get

I) if x >0
sign (."C) 5 0 if x-0

-1 if :c <0

we can type

sign (x) - - - • left {
rpile { l above 0 above -1}
··1pile {if above if above if)
··tpile lx>O above :'<-0 above :<<OI

The construction .. left 1 •• makes a left brace big
enough to enclose the .. rpile (. .. } .. , which is a
right-justified pile of ••above ... above
.. tpile" makes a left-justified pile. There are also
centered piles. Because of the recursive language
definition, a pile can contain any number of ele·
ments; any element of a pile can of course con
tain piles.

Although EQN makes a valiant attempt to
use the right sizes and fonts. there are times
when the default assumptions are simply not
what is wanted. For instance the italic sign in the
previous example would conventionally be in
roman. Slides and transparencies often require
larger characters than normal text. Thus we also
provide size and font changing commands: • •s;ze
12 bold {A ·x·--yl .. will produce A X == y.
Size is followed by a number representing a char
acter size in points. (One point is 1172 inch; this
paper is set in 9 point type.)

If necessary. an input string can be quoted
in " ... ". which turns off grammatical significance.
and any font or spacing changes that might oth·
erwise be done on it. Thus we can say

um· roman "sup" ·x sub n - 0

to ensure that the supremum doesn't become a
superscript:

lim sup x., -o

Diacritical marks. long a problem in tradi·
tional typesetting, are straightforward:

~+.i+.Y+X + r-z +Z

is made by typing

x dot under + x hat + y tilde
+ X hat + Y dotdot - z+Z bar

There are also facilities for globally dung·
ing default sizes and fonts. for example for mak·
ing viewgraphs or for setting chemical equations.
The language allows for matrices. and for lining
up equations at the same horizontal position.

Finally. there is a definition facility, so a
user can say

define name " ... "

at any time in the document: henceforth. any
occurrence of the token '"name" in an expres
sion will be expanded into whatever was inside
the double quotes in its definition. This lets
users tailor the language to their own

specifications. for it is quite possible to redefine
keywords like sup or over. Section 6 shows an
example of definitions.

The EQN preprocessor reads intermixed
text and equations, and passes its output to
TROFF. Since TROFF uses lines beginning with a
period as control words (e.g., ... ce" means
.. center the next output line"), EQN uses the
sequence ... EQ" to mark the beginning of an
equation and ... EN" to mark the end. The
... EQ" and ... EN" are passed throu&h to TROFF
untouched, so they can also be used by a
knowledgeable user to center equations, number
them automatically, etc. By default, however,
... EQ" and •4>.EN" are simply ignored by TROFF,
so by default equations are printed in-line.

... EQ" and ... EN" can be supplemented
by TR.OFF commands as desired~ for example, a
centered display equation can be produced with
the input:

.ce

.EQ
x sub i - y sub i ...
.EN

Since it is tedious to type •t..EQ" and
... EN., around very short expressions (single
letters, for instance). the user can also define
two characters to serve as the left and right del
imiters of expressions. These characters are
recognized anywhere in subsequent text. For
example if the left and ri1ht delimiters have both
been set to .. #". the input:

Let #x sub i#, #y# and #alpha# be positive

produces:

Let x,. y and a be positive

Running a preprocessor is strikingly easy
on UNIX. To typeset text stored in file .. f .. , one
issues the command:

eqn f I troff

The vertical bar connects the output of one pro
cess <EQN> to the input of another <TROFF).

5. Lancuace Theory
The basic structure of the language is not a

particularly oriainal one. Equations are pictured
as a set of .. boxes." pieced together in various
ways. For example, something with a subscript
is just a box followed by another box moved
downward and shrunk by an appropriate amount.
A fraction is just a box centered above another
box, at the right altitude, with a line of correct
lenath drawn between them.

The grammar for the language is shown

A System for Typesetting Mathematics 5-101

below. For purposes of exposition, we have col
lapsed some productions. tn the original gram
mar, there are about 70 productions. but many
of these are simple ones used only to guarantee
that some keyword is recognized early enough in
the parsing process. Symbols in capital letters
are terminal symbols: lower case symbols are
non-terminals, i.e., syntactic categories. The
vertical bar I indicates an alternative: the brack
ets [] indicate optional material. A TEXT is a
string of non-blank characters or any string
inside double quotes: the other terminal symbols
represent literal occurrences of the corresponding
keyword.

eqn : box I eqn boJ<

box text
(eqn}
box OVER box
SQRT box
boit SUB box I box SUP box
[L I C I R 1 PILE ! list l
LEFT text eqn [RIGHT text]
box [FROM box 1 [TO box]
SIZE text box
[ROMAN I BOLD I IT ALIC] box
box [HAT I BAR I DOT I DOTDOT I TILDE}
DEFINE text text

list : eqn I list ABOVE eqn

text : TEXT

The grammar makes it obvious why there
are few exceptions. For example, the observa
tion that something can be replaced by a more
complicated something in braces is implicit in the
productions:

eqn : box I eqn box
box : text I { eqn I

Anywhere a single character could be used. anv
legal construction can be used. ·

Clearly, our grammar is highly ambiguous.
What, for instance, do we do with the input

a over b over c ?

Is it

(a over b) over c

or is it

a over {b over cl ?

To answer questions like this, the grammar
is supplemented with a small set of rules that
describe the precedence and associativity of
operators. In particular, we specify (more or less
arbitrarily) that over associates to the left. so the
first alternative above is the one chosen. On the
other hand. sub and sup bind to the right,

5-102 A System for Typesetting Mathematics

because this is closer to standard mathematical
practice. That is. we assume x"" is x '11

" >. not
(.l'a)".

The precedence rules resolve the ambiguity
in a construction like

a sup 2 over b

We define sup to have a higher precedence than
2

over. so this construction is parsed as ab instead

l
of a"·

Naturally. a user can always force a partic
ular parsing by placing braces around expres·
sions.

The ambiguous grammar approach seems
to be quite useful. The grammar we use is small
enough to be easily understood. for it contains
none of the productions that would be normally
used for resolving ambiguity. Instead the sup·
plemental information about precedence and
associativity (also small enough to be under
stood) provides the compiler-compiler with the
information it needs to make a fast. deterministic
parser for the specific language we want. When
the tanguaae is supplemented by the disambi·
1uatin1 rules. it is in fact LR(l > and thus easy to
parse(SJ.

The output code is generated as the input
is scanned. Any time a production of the gram·
mar is recognized. {potentially) some TROFF
commands are output. For example. when the
lexical analyzer reports that it has found a TEXT
(i.e •• a strin1 of contiauous characters), we have
reco1nized the production:

text : TEXT

The translation of this is simple. We generate a
local name ror the string, then hand the name
and the string to TROFF. and let TROFF perform
the stora1e management. All we save is the
name of the string. its height .. and its baseline.

As another example, tbe translation associ·
ated with the production

box : box OVER box

is:

Width of output box -
slightly more than largest input width

Height of output box -
slightly more than sum of input heights

Base of output box -
slightly more than height of bottom input box

String describing output box -
move down:
move right enough to center bottom box:
draw bottom box (i.e .• copy string for bottom bol >:
move up: move left enough to center top box:
draw top box (i.e .. copy string for top box);
move down and left: draw line full width:
return to proper base line.

Most of the other productions have equally sim
ple semantic actions. Picturing the output as a
set of properly placed boxes makes the right
sequence of positioning commands quite obvi
ous. The main difficulty is in finding the right
numbers to use for esthetically pleasing position
ing.

With a grammar, it is usually clear how to
extend the language. For instance. one of our
users suggested a TENSOR operator, to make
constructions like

·'° i !,, T ,,,

Grammatically. this is easy: it is sufficient to add
a production like

box : TENSOR (list I
SemanticaJly. we need only juggle the boxes to
the right places.

6. Experience

There are really three aspects of
interest-how well EQN sets mathematics. how
wen it satisfies its goal of being ·•easy to use."
and how easy it was to build.

The first question is easily addressed. This
entire paper has been set by the progr:im.
Readers can judge for themselves whether it is
good enough for their purposes. One of our
users commented that although the output is not
as good as the best hand-set material. it is still
better than average. and much better than the
worst. In any case. who cares? Printed books
cannot compete with the birds and flowers of
illuminated manuscripts on esthetic grounds.
either. but they have some clear economic
advantages.

Some of the deficiencies in the output
could be cleaned up with more work on our part.
For example. we sometimes le:.ive too much
space between a roman letter and an italic one.
If we were willing to keep track of the fonts
involved. we could do this better more of the

A System for Typesetting Mathematics 5-103

time.

Some other weaknesses are inherent in our
output device. It is hard. for instance, to draw a
line of an arbitrary lenath without getting a per
ceptible overstrike at one end.

As to ease of use. at the time of writing,
the system has been used by two distinct groups.
One user population consists of mathematicians,
chemists, physicists. and computer scientists.
Their typical reaction has been something like:

(1) It's easy to write, althouah I make the fol
lowing mistakes ...

(2) How do I do ... ?

(3) It botches the following things.... Why
don't you fix them?

(4) You really need the following features ...

The leamin1 time is short. A few minutes
gives the general flavor, and typing a page or two
of a paper generally uncovers most of the
misconceptions about how it works.

The second user group is much larger, the
secretaries and mathematical typists who were
the original target of the system. They tend to
be enthusiastic convens. They find the language
easy to learn (most are largely self-taught), and
have little trouble producing the output they
want. They are of course less critical of the
esthetics of their output than users trained in
mathematics. After a transition period. most
find using a computer more interesting than a
regular typewriter.

The main diftic:ulty that users have seems
to be rememberin1 that a blank is a delimiter~
even experienced users use blanks where they
shouldn "t and omit them when they are needed.
A common instance is typing

f(x sub i)

which produces

instead of

.f (X,)

.f (x,)

Since the EQN language knows no mathematics,
it cannot deduce that the right parenthesis is not
part of the subscript.

The language is somewhat prolix. but this
doesn't seem excessive considering how much is
being done. and it is certainly more compact than
the corresponding TROFF commands. For exam·
pie, here is the source for the continued fraction
expression in Section 1 of this paper:

a sub 0 + b sub 1 over
{a sub 1 + b sub 2 over

{a sub 2 + b sub 3 over
{a sub 3 + ... })I

This is the input for the large integral of Section
l ~ notice the use of definitions:

define emx "(e sup mxl"
define mab "(m sqrt ab}"
define sa "{sqrt a}"
define sb "(sqrt b}"
int dx over {a emx - be sup -mx} - - -
left { lpile (

1 over {2 mab} ·1og·
(sa emx - sb} over (sa emx + sb}

above
1 over mab • tanh sup -1 (sa over sb emx)

above
-1 over mab • coth sup -1 (sa over sb emx)

As to ease of construction. we have
already mentioned that there are really only a
few person-months invested. Much of this time
has gone into two things-fine-tuning (what is
the most esthetically pleasing space to use
between the numerator and denominator of a
fraction?), and changing things found deficient
by our users (shouldn't a tilde be a delimiter?).

The program consists of a number of
small, essentially unconnected modules for code
generation, a simple lexical analyzer. a canned
parser which we did not have to write, and some
miscellany associated with input files and the
macro facility. The program is now about 1600
lines of C (61. a high-level language reminiscent
of BCPL. About 20 percent of these lines are
'"print" statements, generating the output code.

The semantic routines that generate the
actual TROFF commands can be changed to
accommodate other formatting languages and
devices. For example. in less than 24 hours. one
of us changed the entire semantic package to
drive NROFF. a variant of TROFF. for typesetting
mathematics on teletypewriter devices capable of
reverse line motions. Since many potential users
do not have access to a typesetter. but still have
to type mathematics. this provides a way to get a
typed version of the final output which is close
enough for debugging purposes. and sometimes
even for ultimate use.

7. Conclusions

We think we have shown that it is possible
to do acceptably good typesetting of mathematics
on a phototypesetter. with an input language that
is easy to learn and use and that satisfies many
users' demands. Such a package can be imple·
mented in short order. given a compiler-compiler

5-104 A System for Typesetting Mathematics

and a decent typesetting program underneath.

Defining a language. and building a com
piler for it with a compiler-compiler seems like
the only sensible way to do business. Our
experience with,, the use of a grammar and a
compiler-compiler has been uniformly favorable.
If we had written everything into code directly.
we would have been locked into our original
design. Furthermore, we would have never been
sure where the exceptions and special cases were.
But because we have a grammar, we can change
our minds readily and . still be reasonably sure
that if a construction works in one place it will
work everywhere.

Ack now ledaements

We are deeply indebted to J. F. Ossanna.
the author of TROFF. for his willingness to
modify TROFF to make our task. easier and for
his continuous assistance during the develop
ment of our program. We are also grateful to A.
V. Aho for help with language theory. to S. C.
Johnson for aid with the compiler-compiler. and
to our early users A. V. Aho. S. I. Feldman. S.
C. Johnson. R. W. Hamming, and M. D. Mcilroy
for their constructive criticisms.

References
(lj A ManCtal <)f Style. 12th Edition. Univer

sity of Chicago Press. 1969. p 295.

[21 Model CIAIT Phototypesetter. Graphic Sys
tems, Inc ... Hudson, N. H.

[3] Ritchie, D. M.. and Thompson. K. L.,
.. The· UNIX time-sharing system.'' Comm.
ACM 17, 7 (July 1974), 365-375.

[4} Ossanna. J. F., TROFF User's Manual.
Bell Laboratories Computing Science
Technical Report 54, 1977.

[SJ Aho, A. V .• and Johnson. S. C.. HLR
Parsing." Comp. Surv. 6, 2 (June 1974).
99-124.

[6) B. W. Kernighan and D. M. Ritchie, The C
Programming Langua~e. Prentice-Hall.
Inc., 1978.

Typesetting Mathematics - User's Guide 5-105

Typesetting Mathematics - User's Guide (Second Edition)

Bria11 W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hill. New Jersey Oi9i 4

1. Introduction
EQN is a program for typesetting

mathematics on the Graphics Systems pho
totypesetters on UNIX and GCOS. The EQN
language was designed to be easy to use by
people who know neither mathematics nor
typesetting. Thus EQN knows relatively little
about mathematics. In particular,
mathematical symbols like +. - , x,
parentheses. and so on have no special
meanings. EQN is quite happy to set garbage
(but it will look good).

EQN works as a preprocessor for the
typesetter formatter. TROFFU 1. so the nor
mal mode of operation is to prepare a docu
ment with both mathematics and ordinary
text interspersed. and let EQN set the
mathematics while TROFF does the body of
the text.

On UNIX. EQN will also produce
mathematics on DASI and GSJ terminals and
on Model 37 teletypes. The input is identi
cal, but you have to use the programs NEQN
and NROFF instead of EQN and TROFF. Of
course., some things won't look as good
because terminals don· t provide the variety
of characters., sizes and fonts that a
typesetter does. but the output is usually
adequate for proofreading.

To use EQN on UNIX.

eqn files I trotr

ocos use is discussed in section 26.

2. Displayed Equations
To tell EQN where a mathematical

expression begins and ends. we mark it with
lines beginning .EQ and . .EN. Thus if you
type the lines

.EQ
x-y+z
.EN

your output will look like

x-y+:

The .EQ and .EN are copied through
untouched; they are not otherwise processed
by EQN. This means that you have to take
care of things like centering. numbering.
and so on yourself. The most common way
is to use the TROFF and NROFF macro pack·

"'age package ~-ms· developed by ~l. E.
Lesk[3). which allows you to center. indent.
left-justify and number equations.

With the ·-ms' package. equations are
centered ·by default. To left-justify an equa·
tion, use .EQ L instead of .EQ. To indent it.
use .EQ 1. Any of these can be followed by
an arbitrary "equation number' which will be
placed at the right margin. For example.
the input

.EQ I (3. la)
x - f(y/2) + y/2
.EN

produces the output

x-f(y/2)+y/2 (3 .1 a)

There is also a shorthand notation so
in-line expressions like -:r 1 can be entered
without .EQ and .EN. We will talk about it in
section 19.

3. Input spaces

Spaces and newlines within an expres·
sion are thrown away by EQN. (Normal text
is left absolutely alone.) Thus between EQ
and .E~.

5-106 Typesetting Mathematics - User's Guide

and

and

x-y+z

x - y
+z

and so on all produce the same output

x-y+z

You should use spaces and newlines freely
to make your input equations readable and
easy to edit. In particular, very long lines
are a bad idea, since they are often hard to
fix if you make a mistake.

4. Output spaces

To force extra spaces into the output,
use a tilde u .. " for each space you want:

x·-·y·+·z

gives

x-y+z

You can also use a circumflex w•n, which
gives a space half the width of a tilde. It is
mainly useful for fine-tuning. Tabs may
also be used to position pieces of an expres
sion, but the tab stops must be set by TROFF

commands.

S. Symbols, Special Names, Greek
EQN knows some mathematical sym

bols, some mathematical names, and the
Greek alphabet. For example,

x - 2 pi int sin (omega t) dt

produces

x-21" f sin(wt) dt

Here the spaces in the input are necessary
to tell EQN that int, pi, sin and omega are
separate entities that should get special
treatment. The sin, digit 2, and parentheses
are set in roman type instead of italic; pi and
omega are made Greek; and int becomes the
integral sign.

When in doubt, leave spaces around
separate parts of the input. A very common
error is to type J(p;) without leaving spaces
on both sides of the pi. As a result, EQN
does not recognize pi as a special word, and
it appears as f (p;) instead of f (1f).

A complete list of EQN names appears
in section 23. Knowledgeable users can also
use TROFF four-character names for any
thing EQN doesn't know about. like \ (bs for
the Bell System sign @.

6. Spaces, Again

The only way EQN can deduce that
some sequence of letters might be special is
if that sequence is separated from the letters
on either side of it. This can be done by
surrounding a special word by ordinary
spaces (or tabs or newlines). as we did in
the previous section.

You can also make special words stand
out by surrounding them with tildes or
circumflexes:

x· --rpnnCsin-c-omegaY>9dt

is much the same as the last example.
except that the tildes not only separate the
magic words like sin, omega, and so on, but
also add extra $paces, one space per tilde:

x - 2 1f' f sin (w t) dt

Special words can also be separated by
braces {) and double quotes " ... ", which
have special meanings that we will see soon.

7. Subscripts and Superscripts

Subscripts and superscripts are
obtained with the words sub and sup.

x sup 2 + y sub k

gives

x2+y"

EQN takes care of all the size changes and
vertical motions needed to make the output
look right. The words sub and sup must be
surrounded by spaces~ x sub2 will give you
xsub2 instead of x 2• Furthermore, don't
forget to leave a space (or a tilde, etc.) to
mark the end of a subscript or superscript.
A common error is to say something like

y - (x sup 2) + 1

which causes

y-(x2>+l

instead of the intended

y-(xl)+l

Typesetting~ Mathematics - User's Guide 5-107

Subscripted subscripts and super·
scripted superscripts also work:

x sub i sub 1

is

A subscript and superscript on the same
thing are printed one above the other if the
subscript comes first:

x sub i sup 2

is

x2
I

Other than this special case, sub and
sup group to the right, so x sup y sub z
means x1

:, not x1 r

8. Braces for Grouping

Normally, the end of a subscript or
superscript is marked simply by a blank (or
tab or tilde, etc.> What if the subscript or
superscript is something that has to be typed
with blanks in it? In that case, you can use
the braces { and } to mark the beginning and
end of the subscript or superscript:

e sup {i omega t}

is
e;.,,

Rule: Braces can always be used to force
EQN to treat something as a unit, or just to
make your intent perfectly clear. Thus:

x sub {i sub I} sup 2

is

with braces, but

x sub i sub 1 sup 2

is

X;(

which is rather different.

Braces can occur within braces if
necessary:

e sup {i pi sup {rho + 1}}

is

The general rule is that anywhere you could
use some single thing like x, you can use an
arbitrarily complicated thing if you enclose it
in braces. EQN will look after all the details
of positioning it and making it the right size.

In all cases. make sure you have the
right number of braces. Leaving one out or
adding an extra will cause EQN to complain
bitterly.

Occasionally you will have to print
braces. To do this. enclose them in double
quotes, like "{". Quoting is discussed in
more detail in section 14.

9. Fractions
To make a fraction, use the word over:

a+b over 2c -1

gives

a+b_1
2c

The line is made the right length and posi·
tioned automatically. Braces can be used to
make clear what goes over what:

{alpha + beta} over {sin (x)}

is

a+@
sin(x)

What happens when there is both an over
and a sup in the same expression? In such
an apparently ambiguous case, EQN does the
sup before the over, so

-b sup 2 over pi

-b2 1.
is -- instead of - b :r The rules which

1r

decide which operation is done first in cases
like this are summarized in section 23.
When in doubt, however, use braces to
make clear what goes with what.

10. Square Roots

To draw a square root, use sqrt:

sqrt a +b + 1 over sqrt (ax sup 2 +bx +cl

is

'1a+b+ , 1

'1 ax·+bx+c

5-108 Typesetting Mathematics - User's Guide

Warning - square roots of tall quant1ttes
look lousy, because a root-sign big enough
to cover the quantity is too dark and heavy:

sqrt {a sup 2 over b sub 2}

is

.Jf
Big square roots are generally better written
as something to the power 1/2:

(a 2/ bi) 111

which is

(a sup 2 /b sub 2) sup half

11. Summation, Integral, Etc.

Summations, integrals, and similar
constructions are easy:

sum from i -o to {i- inf} x sup i

produces

Notice that we used braces to indicate where
the upper part i-oo begins and ends. No
braces were necessary for the lower part
i-0, because it contained no blanks. The
braces will never hurt, and if the from and to
parts contain any blanks, you must use
braces around them.

The from and to parts are both
optional, but if both are used, they have to
occur in that order.

Other useful characters can replace the
sum in our example:

int prod union inter

become, respectively,

f II u n
Since the thing before the from can be any
thing. even something in braces, from-to can
often be used in unexpected ways:

lim from {n - > inf} x sub n -o
is

12. Size and Font Changes

By default. equations are set in 10-
point type (the same size as this guide).
with standard mathematical conventions to
determine what characters are in roman and
what in italic. Although EQN makes a vali
ant attempt to use esthetically pleasing sizes
and fonts, it is not perfect. To change sizes
and fonts, use size n and roman, italic, bold
and fat. Like sub and sup, size and font
changes affect only the thing that follows
them, and revert to the normal situation at
the end of it. Thus

is

and

gives

bold x y

xy

size 14 bold x - y +
size 14 {alpha + beta}

X-y+a+{3
As always, you can use braces if you want to
affect something more complicated than a
single letter. For example, you can change
the size of an entire equation by

size 12 { ... }

Legal sizes which may follow size are
6, 7, 8, 9, 10, 11. 12, 14, 16, 18. 20, 22, 24,
28, 36. You can also change the size by a
given amount; for example, you can say
size + 2 to make the size two points bigger,
or size -J to make it three points smaller.
This has the advantage that you don't have
to know what the current size is.

If you are using fonts other than
roman, italic and bold. you can say font X
where X is a one character TROFF name or
number for the font. Since EQN is tuned for
roman, italic and bold, other fonts may not
give quite as good an appearance.

The fat operation takes the current
font and widens it by overstriking: fat grad is
V and fat {x sub 1} is X;.

If an entire document is to be in a
non-standard size or font, it is a severe nui
sance to have to write out a size and font
change for each equation. Accordingly, you
can set a Hglobal" size or font which

Typesetting Mathematics - User's Guide 5-109

thereafter affects all equations. At the
beginning of any equation, you might say,
for instance ..

.EQ
gsize 16
gfont R

.EN

to set the size to 16 and the font to roman
thereafter. In place of R, you can use any
of the TROFF font names. The size after
gsi:e can be a relative change with + or-.

Generally, gsi:e and gfont will appear at
the beginning of a document but they can
also appear thoughout a document: the glo
bal font and size can be changed as often as
needed. For example.. in a footnote* you
will typically want the size of equations to
match the size of the footnote text, which is
two points smaller than the main text.
Don't forget to reset the global size at the
end of the footnote.

13. Diacritical Marks
To get funny marks on top of letters,

there are several words:

x dot x
x dotdot x
x hat x
x tilde x
x vec x
x dyad x
x bar x
x under ~

The diacritical mark is placed at the right
height. The bar and under are made the
right length for the entire construct, as in
x+y+z; other marks are centered.

14. Quoted Text
Any input entirely within quotes

(" .•• ") is not subject to any of the font
changes and spacing adjustments normally
done by the equation setter. This provides a
way to do your own spacing and adjusting if
needed:

itike this one. in which we have a few random
expressions like x, and ,,.i, The sizes for these
were set by the command gs1ze - 2.

italic "sin(x)" + sin (x)

is

sinlv:J +sin (x)

Quotes are also used to get braces and
other EQN keywords printed:

"{ size alpha)"

is

{ si=e alpha }

and

roman "{ size alpha }"

is

{ size alpha }

The construction "" is often used as a
place-holder when grammatically EQN needs
something, but you don't actually want anya
thing in your output. For example, to make
2He, you can't just type sup 2 roman He
because a sup has to be a superscript on
something. Thus you must say

"" sup 2 roman He

To get a literal quote use ~~\ rn TROFF
characters like \ (bs can appear unquoted,
but mote complicated things like horizontal
and vertical motions with \ h and \ v should
always be quoted. (If you've never heard of
\hand\ v, ignore this section.)

1S. Lining Up Equations

Sometimes it's necessary to line up a
series of equations at some horizontal posi
tion, often at an equals sign. This is done
with two operations called mark and lineup.

The word mark may appear once at
any place in an equation. It remembers the
horizontal position where it appeared. Suc
cessive equations can contain one
occurrence of the word lineup. The place
where lineup appears is made to line up with
the place marked by the previous mark if at
all possible. Thus, for example, you can say

5-110 Typesetting Mathematics - User's Guide

.EQ I
x+y mark - z
.EN
. EQ I
x lineup - 1
.EN

to produce

x+y-z

x-1

For reasoos too complicated to talk about.
when you use EQN and •-ms', use either
.EQ I or .EQ L. mark and lineup don't work
with centered equations. Also bear in mind
that mark doesn • t look ahead;

x mark -1

x+y lineup -z

isn't going to work, because there isn't
room for the x+y part after the mark
remembers where the x is.

16. Bi1 Brackets. Etc.
To get big brackets [], braces { }.

parentheses () , and bars 11 around things,
use the left and right commands:

left { a over b + 1 right }
--- left (c over d right)
+ left [e right l

is

The resulting brackets are made big enough
to cover whatever they enclose. Other char·
acters can be used besides these, but the are
not likely to look very good. One exception
is the floor and ceiling characters:

left floor x over y right floor
< - left ceiling a over b right ceiling

produces

Several warnings about brackets are in
order. First, braces are typically bigger than
brackets and parentheses, because they are
made up of three, five, seven. etc.. pieces.
while brackets can be made up of two,

three. etc. Second, big left and right
parentheses often look poor, because the
character set is poorly designed .

The right part may be omitted: a "'left
something" need not have a corresponding
Hright something". If the right part is omit·
ted, put braces around the thing you want
the left bracket to encompass. Otherwise.
the resulting brackets may be too large.

If you want to omit the left part, things
are more complicated, because technically
you can't have a right without a correspond·
ing left. Instead you have to say

left "" right)

for example. The left"" means a "left noth·
ing". This satisfies the rules without hurt·
ing your output.

17. Piles

There is a general facility for making
vertical piles of things; it comes in several
flavors. For example:

A --- left [
pile (a above b above c }
-- pile { x above y above z }

right l
will make

The elements of the pile (there can be as
many as you want) are centered one above
another. at the right height for most pur
poses. The keyword above is used to
separate the pieces; braces are used around
the entire list. The elements of a pile can
be as complicated as needed. even contain
ing more piles.

Three other forms of pile exist: !pile
makes a pile with the elements left-justified:
rpile makes a right-justified pile~ and cp1le
makes a centered pile, just like pile. The
vertical spacing between the pieces is some·
what larger for I-, r- and cpiles than it is for
ordinary piles.

roman sign (x)-=-
left {

!pile { 1 above 0 above -1}
-- lpile
{irx>O above irx=-0 above irx<O}

Typesetting Mathematics - User's Guide 5-111

makes

if x>O
sign(x) - 0 if x-0

-1 if x<O

Notice the left brace without a matching
right one.

18. Matrices

It is also possible to make matrices.
For example, to make a neat array like

you have to type

matrix {

X; x 2

y, yl

ecol { x sub i above y sub i }
ecol { x sup 2 above y sup 2 }

}

This produces a matrix with two centered
columns. The elements of the columns are
then listed just as for a pile, each element
separated by the word above. You can also
use /col or rcol to left or right adjust
columns. Each column can be separately
adjusted, and there can be as many columns
as you like.

The reason for using a matrix instead
of two adjacent piles. by the way. is that if
the elements of the piles don't all have the
same height, they won't line up properly. A
matrix forces them to line up, because it
looks at the entire structure before deciding
what spacing to use.

A word of warning about matrices -
each column must have the same number of
elements in it. The world will end if you get
this wrong.

19. Shorthand for In-line Equations

In a mathematical document, it is
necessary to follow mathematical conven
tions not just in display equations.. but also
in the body of the text, for example by mak
ing variable names like :c italic. Although
this could be done by surrounding the
appropriate parts with EQ and EN, the con
tinual repetition of .EQ and .EN is a nuisance.
Furthermore. with ~-ms·, .EQ and .EN imply
a displayed equation.

EQN provides a shorthand for short in
line expressions. You can define two char
acters to mark the left and right ends of an
in-line equation. and then type expressions
right in the middle of text lines. To set
both the left and right characters to dollar
signs. for example, add to the beginning of
your document the three lines

.EQ
delim SS
.EN

Having done this. you can then say things
like

Let Salpha sub iS be the primary
variable, and let SbetaS be zero.
Then we can show that $x sub 1 S is
S>-OS.

This works as you might expect - spaces.
newlines. and so on are significant in the
text, but not in the equation part itself.
Multiple equations can occur in a single
input line.

Enough room is left before and after a
line that contains in-line expressions that ,,
something like I,x, does not interfere with

1•1
the lines surrounding it.

To turn off the delimiters.

.EQ
delim off
.EN

Warning: don't use braces, tildes.
circumflexes, or double quotes as delimiters
- chaos will result.

20. Definitions

EQN provides a facility so you can give
a frequently-used string of characters a
name, and thereafter just type the name
instead of the whole string. For example, if
the sequence

x sub i sub l + y sub i sub 1

appears repeatedly throughout a paper, you
can save re-typing it each time by defining it
like this:

define x.y 'x sub i sub 1 + y sub i sub l'

This makes .\Y a shorthand for whatever
characters occur between the single quotes
in the definition. You can use any character

5-112 Typesetting Mathematics - User's Guide

instead of quote to mark the ends of the
definition, so long as it doesn't appear inside
the definition.

Now you can use .xy like this:

.EQ
f(x) - xy ...
.EN

and so on. Each occurrence of xy will
expand into what it was defined as. Be care·
ful to leave spaces or their equivalent
around the name when you actually use it,
so EQN will be able to identify it as special.

There are several things to watch out
for. First, although definitions can use pre·
vious definitions, as in

. EQ
define xi ' x sub i '
define xil ' xi sub l '
.EN

don't define something in terms of itself A
favorite error is to say

define X ' roman X '

This is a guaranteed disaster, since X is now
defined in terms of itself. If you say

define X ' roman "X" '

however, the quotes protect the second X,
and everything works fine.

EQN keywords can be redefined. You
can make I mean over by saying

define I ' over '

or redefine over as I with

define over ' I '

If you need different things to print on
a terminal and on the typesetter. it is some·
times worth defining a symbol differently in
NEQN and EQN. This can be done with
ndefine and tdefine. A definition made with
ndefi ne only takes effect if you are running
NEQN; if you use tdefine. the definition only
applies for EQN. Names defined with plain
define apply to both EQN and NEQN.

21. Local Motions
Although EQN tries to get most things

at the right place on the paper, it isn't per·
f ect. and occasionally you will need to tune
the output to make it just right. Small extra

horizontal spaces can be obtained with ti Ide
and circumtlex. You can also say back n and
fed n to move small amounts horizontally
n is how far to move in l/lOO's of an em
(an em is about the width of the letter • m ·.)
Thus back 50 moves back about half the
width of an m. Similarly you can move
things up or down with up n and down n. As
with sub or sup, the local motions affect the
next thing in the input. and this can be
something arbitrarily complicated if it is
enclosed in braces.

22. A Large Example

Here is the complete source for the
three display equations in the abstract of this
guide .

.EQI
Q(z>9mark -- e sup (In· G(z) I
·-· exp left (
sum from k> -1 (S sub k z sup k) over k right)
·-- prod from k> -1 e sup (S sub k z sup k /k}
.EN
.EQI
lineup - left (1 + S sub l z +
(S sub 1 sup 2 z sup 2 I over 2! + ... right)
left (1 + (S sub 2 z sup 2 } over 2
+ (S sub 2 sup 2 z sup 4 I over (2 sup 2 cdot 2! }
+ ... right) ...
.EN
.EQI
lineup - sum from m > -o left (
sum from
pile I k sub l ,k sub 2 k sub m > -o
above
k sub l +2k sub 2 + ... +mk sub m -ml
(S sub 1 sup {k sub l}) over (l sup k sub l k sub l ! l ·
(S sub 2 sup (k sub 21 I over (2 sup k sub 2 k sub 2 ! l ·
...
(S sub m sup (k sub ml I over {m sup k sub m k sub m ! I
right) z sup m
.EN

23. Keywords, Precedences, Etc.
If you don't use braces, EQN will do

operations in the order shown in this list.

dyad vec under bar tilde hat dot dotdot
fwd back down up
fat roman italic bold si:e
sub sup sqrt over
from to

These operations group to the left:

over sqrt left right

All others group to the right.

Typesetting Mathematics - User's Guide 5-113

Digits. parentheses, brackets, punctua
tion marks, and these mathematical words
are converted to Roman font when encoun
tered:

sin cos tan sinh cosh tanh arc
max min lim log In exp
Re Im and if for det

These character sequences are recognized
and translated as shown.

>
<---
!-
+
->
<-
< < <<
>> >>
inf oo

partial a
half 1'2
prime
approx
nothing
cdot
times
del
grad

sum

int
prod
union
inter

l:
f
II
u
n

To obtain Greek letters, simply
them out in whatever case you want:

DELTA ~ iota
GAMMA r kappa I(

LAMBDA A lambda A.
OMEGA n mu µ,
PHI <I> nu " Pl n omega w
PSI '{/ omicron 0

SIGMA I. phi

"' THETA 9 pi 1T

UPSILON Y psi t/J
XI - rho p -
alpha a sigma a'

spell

beta f3 tau ~

chi x theta IJ
delta a upsilon v
epsilon E xi g
eta 7J zeta ' gamma "'/

These are all the words known to EQN

(except for characters with names). together
with the section where they are discussed.

above 17, 18 I pile 17
back 21 mark 15
bar 13 matrix 18
bold 12 ndefine 20
ecol 18 over 9
col 18 pile 17
cpile 17 rcol 18
define 20 right 16
delim 19 roman 12
dot 13 rpile 17
dot dot 13 size 12
down 21 sqrt 10
dyad 13 sub 7
fat 12 sup 7
font 12 tdefine 20
from 11 tilde 13
fwd 21 to 11
gfont 12 under 13
gsize 12 up 21
hal 13 vec 13
italic 12

'
4, 6

lcol 18 { } 8
left 16 8, 14
lineup 15

24. Troubleshooting

If you make a mistake in an equation,
like leaving out a brace (very common) or
having one too many (very common) or
having a sup with nothing before it (com·
mon), EQN will tell you with the message

syntax error between lines x and y, file :

where x and y are approximately the lines
between which the trouble occurred. and : is
the name of the file in question. The line
numbers are approximate - look nearby as
well. There are also self-explanatory mes
sages that arise if you leave out a quote or
try to run EQN on a non-existent file.

If you want to check a document
before actually printing it (on UNIX only).

5-114 Typesetting Mathematics - User's Guide

eqn files >/dev/null

will throw away the output but print the
messages.

lf you use something like dollar signs
as delimiters. it is easy to leave one out.
This causes very strange troubles. The pro
gram checkeq (on ocos. use .lcheckeq
instead) checks for misplaced or missing
dollar signs and similar troubles.

In-line equations can only be so big
because of an internal buffer in TROFF. If
you get a message Hword overflow", you
have exceeded this limit. If you print the
equation as a displayed equation this mes
sage will usually go away. The message
Hline overflow" indicates you have
exceeded an even bigger buffer. The only
cure for . this is to break the equation into
two separate ones.

On a related topic. EQN does not break
equations by itself - you must split long
equations up across multiple lines by your
self. marking each by a separate .EQ •••. EN
sequence. EQN does warn about equations
that are too long to fit on one line.

25. Use on UNIX
To print a document that contains

mathematics on the UNIX typesetter 9

eqn files I troff

If there are any TROFF options, they go after
the TROFF part of the command. For exam
ple.

eqn files I troff -ms

To run the same document on the ocos
typesetter. use

eqn files I troff -g (other options) I gcat

A compatible version of EQN can be
used on devices like teletypes and DASI and
OSI terminals which have half-line forward
and reverse capabilities. To print equations
on a Model 37 teletype, for example .. use

neqn files I nroff

The language for equations recognized by
~EQN is identical to that of EQN. aithough of
course the output is more restricted.

To use a OSI or DASI terminal as the
output device.

neqn files I nroff -Tx

where x is the terminal type you are using.
such as JOO or JOOS.

EQN and NEQN can be used with the
TBL program [2] for setting tables that con
tain mathematics. Use TBL before (NIEQ~.
like this:

tbl files
tbl files

eqn I troff
neqn I nroff

26. Acknowledgments
We are deeply indebted to J. F.

Ossanna, the author of TROFF. for his wil
lingness to extend TROFF to make our task
easier. and for his continuous assistance
during the development and evolution of
EQN. We are also grateful to A. V. Aho for
advice on language design. to S. C. Johnson
for assistance with the YACC compiler
compiler, and to all the EQN users who have
made helpful suggestions and criticisms.

References

[l] J. F. Ossanna. H~ROFF/TROFF User's
Manual,,, Bell Laboratories Computing
Science Technical Report #54, 1976.

[2] M. E. Lesk. ""Typing Documents on
UNIX", Bell Laboratories. 1976.

(31 M. E. Lesk. HTBL - A Program for
Setting Tables", Bell Laboratories
Computing Science Technical Report
#49, 1976.

Introduction.

Tbl - A Program to Format Tables

M. E. Lesk

Bell Labor~tories
Mumy Hill. New Jersey 07974

Thi 5-115

Tbl turns a simple description or a table into a rr<)f' or nrqff [1 J program Clist of com
mands) that prints the table. Tbl may be used on the POP-11 t:NIX (21 system and on the
Honeywell 6000 ocos system. It attempts to isolate a portion or a job that it can suc:c:essfully
handle and leave the remainder for other programs. Thus rbl may be used with the equation
formatting program eqn (J) or various layout macro packages (4;5.6]. but does not duplicate
their functions.

This memorandum is divided into two parts. First we give the rules for preparing rbl
input: then some examples are shown. The description of rules i$ precise but technical, :ind the
beginning user may pref er to read the examples first. as they show some common table
arrangements. A section explaining how to invoke tbl precedes the examples. To ~void repeti·
tion. henceforth read tl'Off as "tro./f or nroff. ..

The input to tbl is text ror a document. with tables preceded by a ... TS0 (table start)
command and followed by a ".TE" (table end) command. Tb/ processes the tables. 1enerating
trq/T formattin1 commands. and leaves the remainder or the text unchanged. The ... TS .. ilnd
... TE" lines are copied. too. so that troff page layout macros (such as the memo formatting
macros [4]) can use these lines to delimit and place tables as they see fit. [n particular. any
arguments on the ••.TS·• or ... n·· lines are copied but otherwise ignored. and may be used by
document layout macro commands.

The format or the input is as follows:

text
.TS
table
.TE
text
.TS
table
.TE
text

where the format of each table is as follows:

.TS
options;
format.
data
.TE

Each table is independent. and must contain formatting information followed by the data to be
entered in the t:ible. The formatting information. which describes the individual columns and
rows or the table. may be preceded by a few options that affect the entire table. A detailed
description of tables is given in the next section.

5-116 Thi

Input commands.

As indicated above, a table contains, first, global options, then a format section describing
the layout of the table entries, and then the data to be printed. The format and data are always
required., but not the options. The various parts of the table are entered as follows:

1) OmoNs. There may be a single line of options affecting the whole table. If present, this
line must follow the • TS line immediately and must contain a list of option names
separated by spaces., tabs., or commas, and must be terminated by a semicolon. The
allowable options are:

center - center the table (default is left-adjust);

expand - make the table as wide as the current line length;

box - enclose the table in a box:

allbox - enclose each item in the table in a box:

doublebox - enclose the table in two boxes:

tab (x) - use x instead of tab to separat~ data items.

llnesize (n) - set lines or rules (e.g. from box) in n point type;

delim (xy) - recognize x and y as the eqn delimiters.

The tbl program tries to keep boxed tables on one page by issuing appropriate "need"
(. ne) commands. These requests are calculated from the number of lines in the tables,
and if there are spacing commands embedded in the input, these requests may be inaccu
rate; use normal troff procedures, such as keep-release macros, in that case. The user who
must have a multi-page boxed table should use macros designed for this purpose, as
explained below under 'Usage.'

2) FORMAT. The f onnat section of the table specifies the layout of the columns. Each line
in this section corr.esponds to one line of the table (except that the last line corresponds to
all following lines up to the next • T &, if any - see below), and each line contains a key
letter for each column of the table. It is good practice to separate the key letters for each
column by spaces or tabs. Each key-letter is one of the following:

Lor I to indicate a left-adjusted column entry;

R or r to indicate a right-adjusted column entry;

C or c to indicate a centered column entry;

Nor n to indicate a numerical column entry, to be aligned with other numerical
entries so that the units digits of numbers line up;

A or a to indicate an alphabetic subcolumn; all corresponding entries are aligned on
the left, and positioned so that the widest is centered within the column (see
example on page 12);

S or s to indicate a spanned heading, i.e. to indicate that the entry from the previous
column continues across this column (not allowed for the first column. obvi
ously); or

" to indicate a vertically spanned heading, i.e. to indicate that the entry from the
previous row continues down through this row. (Not allowed for the first row
of the table, obviously).

When numerical alignment is specified. a location for the decimal point is sought. The
rightmost dot (.) adjacent to a digit is used as a decimal point; if there is no dot adjoining
a digit, the rightmost digit is used as a units digit; if no alignment is indicated. the item is
centered in the column. However, the special non-printing character string \& may be
used to override unconditionally dots and digits, or to align alphabetic data; this string
lines up where a dot normally would, and then disappears from the final output. In the
example below, the items shown at the left will be aligned (in a numerical column) as

shown on the right:

13
4.2
26.4.12
abc:
abc\&
43\&J.22
749.12

13
4.2

26.4.12
abc

atx
433.22

749.12

Thi 5-117

Note: If numerial d~ta are used in the same column with wider L or r type table entries.
the ~dest number is centered relative to the wider L or r items (L is used instead of 1 for
reac1ability: they have the same meanin1 as key-letters). Alignmen.t within the numerical
iJems is preserved. This is similar to the behavior of a type data .. as explained above.
f{owever. alphabetic subcolumns (requested by the a key-letter) are always slightly
indente4 relative to L items: if necessary. the column width is increased to force this.
This is not true for n type entries.

W4mini: the a and a items should not be used in the same column.
For readability, the key~letters describing each column should be separated by spaces.
Th,e end of the format section is indicated by a period. The layout of the key-letters in
the format section resembles the layout of the actual data in the table. Tht.JS a simple for
mat mjght appear as:

c s s
I n n.

which s~fies a table of three columns. The first line of the table contains a heading cen
ter~ across all three columns; each remaining line contains a left-adjusted item in the
ftrsi column followed by two columns of numeriol data. A sample table in this format
mi&ht be:

Overall title
Item-a 34.22 9.1
Item·b 12.65 .02
Items: c,d.e 2J S.8
Total 69.87 14.92

There ar~ some additional features of the key-letter system:

Hori:ontal lines - A key-letter may be replaced .by ' ' (underscore) to indicate a hor
izQntal line in plac:e of the corresponding column entry' or by • - ' to indicate a dou
ble horizon~ line. It an adjacent column contains a horizontal line. or if there are
vertical lines adjoining this column. this horizontal line is extended to meet the
nearby lines. IC any data entry is provided for this column, it is ignored and a warn·
ing messa1e is printed.

Verti~al ·lines - A vertical bat may be placed between column key-letters. This will
~tise a vertical line between the corresponding columns of the table. A vertical bar
~o the left of tpe first key-letter or to the right of the last one produces a line at the
edge or the table. [f two vertical bars appear between key-letters. 3 double vertic:il
line is drawn.

Space betwttn columns - A number may follow the key-letter. This indicates the
amount o(separation between this column and the next column. The number nor
mally specifies the separation in ens (one en is about the width of the letter ~n ·). • 1f
the .. expand .. option is used. tht;n these numbers are multiplied by a constant such
that the table is as wide as the current lipe length. The default column separation

•More ~ty, an en is a n"mber o(poincs (l poinc • 1172 inch) equal to half the ~rrenc type size.

5-118 Thi

number is J. If the separation is changed the worst case (largest space requested)
governs.

Vertical spanning - Normally, venically spanned items extending over several rows of
the table are centered in their vertical range. If a key-letter is followed by t or T,
any corresponding vertically spanned item will begin at the top line of its range.

Font changes - A key-letter may be foil owed by a string containing a font name or
number preceded by the letter f or F. This indicates that the corresponding column
should be in a different font from the default font (usually Roman). All font names
are one or two letters~ a one-letter font name should be separated from whatever
follows by a space or tab. The single letters B, b. I. and I are shorter synonyms for
fB and fl. Font change commands given with the table entries override these
specifications.

Point size changes - A key-letter may be followed by the letter p or P and a number to
indicate the point size of the corresponding table entries. The number may be a
signed digit. in which case it is taken as an increment or decrement from the current
point size. If both a point size and a column separation value are given, one or
more blanks must separate them.

Vertical spacing changes - A key-letter may be followed by the letter v or V and a
number to indicate the vertical line spacing to be used within a multi-line
corresponding table entry. The number may be a signed digit. in which case it is
taken as an increment or decrement from the current vertical spacing. A column
separation value must be separated by blanks or some other specification from a
vertical spacing request. This request has no effect unless the corresponding table
entry is a text block (see below).

Column width indication - A key-letter may be followed by the letter w or W and a width
value in parentheses. This width is used as a minimum column width. If the largest
element in the column is not as wide as the width value given after the w, the larg
est element is assumed to be that wide. If the largest element in the column is
wider than the specified value. its width is used. The width is also used as a def a ult
line length for included text blocks. Normal troff units can be used to scale the
width value; if none are used, the default is ens. If the width specification is a unit·
less integer the parentheses may be omitted. If the width value is changed in a
column. the last one given controls.

Equal width columns - A key-letter may be followed by the letter e or E to indicate
equal width columns. All columns whose key-letters are followed by e or E are
made the same width. This permits the user to get a group of regularly spaced
columns.

Note: The order of the above features is immaterial; they need not be separated by
spaces, except as indicated above to avoid ambiguities involving point size and font
changes. Thus a numerical column entry in italic font and 12 point type with a
minimum width of 2.5 inches and separated by 6 ens from the next column could be
specified as

npl2w(2.Si)fl 6

Alternative notation - Instead of listing the format of successive lines of a table on con
secutive lines of the format section, successive line formats may be given on the
same line, separated by commas, so that the format for the example above might
have been written:

cs s, l n n •
Default - Column descriptors missing from the end of a format line are assumed to be

L. The longest line in the format section, however, defines the number of columns
in the table; extra columns in the data are ignored silently.

Thi 5-119

3) DATA. The data (or the table are typed after the format. Normally. each table line is
typed as one line of data. Very long input lines can be broken: any line whose last charac
ter is \ is combined with the following line Cand the \ vanishes). The data for different
columns (the table entries) are separated by tabs. or by whatever character has been
specified in the option tabs option. There are a few special cases:

Troff commands within tables - An input line beginning with a •.' followed by anything
but a number is assumed to be a command to troff and is passed through unchanged.
retaining its position in the table. So. for example. space within a table may be pro
duced by ... sp" commands in the data.

Full width hori:ontal lines - An input line containing only the character _ (underscore)
or • (equal sign) is taken to be a single or double line. respectively. extending the
full width of the table.

Sing/~ colu11tn horizontal lines - An input table entry containing only the character_ or •
is taken to be a single or double line extending the full width or the column. Such
lines are extended to meet horizontal or vertical lines adjoining this col.umn. To
obtain these characters explicitly in a column. either precede them by \& or follow
them by a space before the usual tab or newline.

Shon hori:ontal lin~s - An input table entry containing only the string _ is taken to be a
single line as wide as the contents or the column. It is not extended to meet ~djoin
ing lines.

Repeattd cl:aracters - An input table entry containing only a string of the form \ R..l'
where :t is any character is replaced by repetitions or the character x as wide as the
data in the column. The sequence of x 's is not extended to meet adjoining
'columns.

Vertically spanned items - An input table entry containing only the character string \"'
indicates that the ta6le entry immediately above spans downward over this row. It is
equivalent to a table format key-letter of •••.

Te:ct bloclc - In order to include a block or text as a table entry, precede it by T(and
follow it by T). Thus the sequence

••• T{
block of
tat
T) •••

is the way to enter. as a single entry in the table. something that cannot con
veniently be typed as a simple string between tabs. Note that the T} end delimiter
must be&in a line; additional columns of data may follow after :i tab on the same
line. See the example on page 10 for an illustration of included text blocks in a
table. It more than twenty or thirty text blocks are used in a table, various limits in
the "off program are likely to be exceeded. producing diagnostics such as I.too many
string/macro names' or 'too many number registers.'

Text blocks are pulled out from the table. processed separately by troff. and replaced
in the table as a solid block. If no line length is specified in the block ~f rexr itself.
or in the table format. the default is to use L x CI (N + 1) where L is the current line
length. C is the number of table columns spanned by the text. :ind V is the total
number of columns in the table. The other parameters (point size. font. etc.) used
in setting the block of te:ct are those in effect at the beginning of the table (including
the effect of the ".rs·· macro) and any table format specific:itions of size. spacing
and font. using the p. v and r modifiers to the column key-letters. Commands
within the text block itself are also recognized. of course. However. rro.rf commands
within the table data but not within the text block do not affect that block.

5-120 Thi

Warnings: - Although any number of lines may be present in a table. only the first 200
lines are used in calculating the widths of the various columns. A multi-page table.
of course, may be arranged as several single-page tables if this proves to be a pro~·
lem~ Other difficulties with formatting may arise because. in the calculation of
column widthspall table entries are assumed to be in the font and size being used
when the ... TS0 command was encountered. except for font and size changes indi·
cated (a) in the taple format section and (b) within the table data (as in the eritry
\~ + 3\tldata\fP\sO). Therefore, although arbitrary troff requests may be spri~kled in
a table. care must be taken to avoid confusing the width calculations; use requests
such as • .ps' with care.

'J) ADDITIONAL COMMAND LINES. If the format of a table must be changed after many simi·
hir lines. as with sub-headings or summarizations, the u. T & " (table continue) command
can be used to change column parameters. The outline of such a table input is:

.TS
options;
format.
data

.T&
format.
data
.T&
format.
data
.TE

as in the examples on pages I 0 and 12. Using this procedure. each table line can be close
to its corresponding format line.

Warning: it is not possible to change the number of columns. the space between columns.
the global ()ptions such as box, or the selection of columns to be made equal width.

Usage.

Qn UNIX, tbl can b~ run on a simple table with the command

tbl input-file I troff

but for more ~omplica~~d ~se, where there are several input files, and they contain equations
and ms memorandum layout commands as well as tables. the normal command would be

tbl file· I ftle-2 • ··• • I eqn I troff - ms

and, of cours~, ~he usual options may be used on the troff and eqn commands. The usage for
nroff is similar to that for troff, but only T~LETYPE._ Model 37 and Diablo-mechanism (DASI or
Ci~I) terminal$ can print boxed tables directly.

For the: convenience or users employing line printers without adequate driving tables or
post-filters. there is a special -:- TX command line option to rbl which produces output that docs
not have fractional line motions in it. The only other command line options recognized by rbl
are -ms and -mm whic;h are turned into commands to fetch the corresponding macro files~
usually it is more convenient to place thesq arguments on the troff part of the command line.
but they are accepted by tbl aa well.

Note that when eqn and tbl are used together on the same file rbl should be used first. If
there are no equations within tables, either Qrder works, but it is usually faster to run tbl first.
since eqn normally produces· a larger expansion of the input than rbl. However. if there· are
equati0.ns within tables (using the delim mechanism in eqn), tbl must be first or the outpu.t will
be scr~mbled. Users must also beware of using equations in n·style columns; this is nearly

Thi 5-121

always wrong. since tbl attempts to split numerical format items into two pans and this is not
possible with equations. The user can defend against this by giving the delrm(:cxJ table option:
this prevents splitting of numeric:il columns within the delimiters. For exampl~. if the eqn del·
imiters are SS. giving delim(SS) a numerical column such as 0 1245 S+· 16S .. will be divided
after 1245. not after 16.

Tb/ limits tables to twenty columns: however. use of more than 16 numerical columns
may fail because of limits in rroff. producing the 'too many number registers' message. Tro/f
number registers used by tbl must be avoided by the user within tables: these include two-digit
names from 31 to 99. and names of the forms #x, :c+, :rl ·."<', and :c-, where :c is any lower
case letter. The names ##, #-, and #. are also used in certain circumstances. To conserve
number register names. the n and a formats share a register. hence the restriction above that
they may not be used in the same column.

f'or aid in writinc layout macros. rbl defines a numbef' register TW which is the table
width: it is defined by the time that the ••. TE0 macro is invoked and may be used in the
expansion or that macro. More importantly, to assist in laying out multi-page boxed tables the
macro T# is defined to produce the bottom lines and side lines of a boxed table. and then
invoked at its end. By use or this macro in the page footer a multi-page table can be boxed. In
particular, the ms macros can be used to print a multi-page boxed table with a repeated heading
by giving the argument H to the ".TS" macro. If the table start macro is written

.TS H
a line or the form

.TH
must be given in the table after any table heading (or at the start if none). Material up to the
... TH .. is placed at the top or each page or table; the remaining lines in the table are placed on
several pages as required. Note that this is not a feature of tbl. but or the ms layout ·macros.

Examples.

Here are some examples illustr.1tin1 features of tbl. The symbol G) in the input
represents a tab character.

Input:

.TS
box;
c: c c
I l I.
Language~ Authors a'> Runs on

Fortran<» Many~ Almost anything
PL/ 1 ~IBM~ 360/370
C~BTL<» 1 l/4S.H6000,J70
BLISS (t>Camegie·Mellon ~ PDP-10.11
IDS~ Honeywell~ H6000
Pasc:al ~Stanford~ 370
.TE

Output:

Language

Fortran
PL/l
c
BLISS
IDS
Pascal

Authors Runs on

Many Almost anything
IBM 360/370
BTL l 1/4S.H6000.J70
Camegie·Mellon POP-10.11
Honeywell H6000
Stanford 370

5-122 Thi

Input:

.TS
all box;
css
CCC
n n n.
AT&T Common Stock
Year G) Price G) Dividend
1971 G)41-54CI>S2.60
2CI>41-54G)2. 70
J G)46-S5 G) 2.87
4(1)40-53 G) 3 .24
5 (1)45-52 G) J .40
6(1)51-59<1' .9s•
.TE
• (first quarter only)

Input:

.TS
box;
css
clclc
ti 1 In.
Major New York Bridges -
Bridge G) Designer G) Length

BrooklynG)J. A. Roebling<iHS9S
Manhattan <1' G. Linden1hal G) 14 70
Williamsburg G) L. L. Buck G) 1600

Queensborough G) Palmer & G) 1182
G) Hombostel

G) Cf) 1380
Tri borough CI> 0. H. Ammann G)
G) (1)383 -

Bronx WhitestoneG)Q. H. AmmannG)2300
Throgs Neck G) 0. H. Ammann G) 1800

Output:

AT&T Common Stock
Year Price Dividend
1971 41-54 $2.60

2 41-54 2.70
3 46-SS 2.87
4 40-53 3.24
s 45-52 3.40
6 51-59 .95•

• (first quarter only)

Output:

Major New York Bridges
Bridge Designer

Brooklyn J. A. Roebling
Manhattan G. Lindenthal
Williamsburg L. L. Buck
Queens borough Palmer &

Hornbostel

Tri borough 0. H. Ammann

Bronx Whitestone 0. H. Ammann
Throgs Neck 0. H. Ammann
George Washington 0. H. Ammann

George Washington <I> 0. H. Ammann G) 3 500
.TE

Length
1595
1470
1600
1182

1380

383
2300
1800
3500

Input:

.TS
cc
np-2 In I.
CfJStac:k

~-
1 ~46
CfJ_
2~23
@_

3~15
@

4~6.5
~-
5~2.1
~ .n

Input:

.TS
box:
LLL
LL
L LrLB
LL_
LL L.
january ~ february ~march
april~may
june ~ july ~Months
august~ september
oc:tober ~ november ~d~ember
.TE

Output:

Stack
1 46
2 23
J 15
4 6.5
s 2.1

Output:

january
april
june
august
oc:tober

Thi 5-123

february march
may

1 july Months
september ------i
november december

5-124 Thi

Input:

.TS
box;
cfB s s s.
Composition or Foods

.T&
c I cs s
c I cs s
c I c I c I c.
Food G'> Percent by Weight
\ '"<D
\ .. G'> Protein <D Fat <D Carbo·
\ ... <D\'" <D\'" @hydrate

.T&
I In In In.
Apples G'> .4<I>.5<1'13 .O
Halibut <I> 18 .4<D S .2 <1' •••
Lima beans<1'7 .S<D .8<1'22.0
Milk G'> 3 .J <1'4.0 <1' S .O
Mushrooms(f)J .. S<D .4@6.0
Rye bread <t>9.0<1' .6 <1' S2. 7
.TE•

Input:

.TS
all box;
cfl s s
c cw(li) cw(li)
lp9 lp9 lp9.
New York Area Rocks
Era <D Formation <D Age (years)
Precambrian (j) Reading Prong (j) > 1 billion
Paleozoic <D Manhatt.an Prong <D 400 million
Mesozoic (j) T {
.na
Newark Basin., incl.
Stockton, Lockatong, and Brunswick
formations; also Watchungs
and Palisades.
T) G'> 200 million
Cenozoic CD Coastal Plain <DT{
On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation •
. ad
TJ
.TE

Output:

Composition of Foods
Percent by Weight

Food
Protein Carbo-Fat hydrate

Apples .4 .s 13.0
Halibut 18.4 5.2 ...
Lima beans 1.S .8 22.0
Milk 3.3 4.0 5.0
Mushrooms 3.5 .4 6.0
Rye bread 9.0 .6 52.7

Output:

New York Area Rocks
Era Formation Age (years)

Prec-c&m brian Reading Prong > 1 billion
Paleozoic Manhattan Prong 400 million
Mesozoic Newark Basin, 200 million

incl. Stockton.
Lockatong, and
Brunswick for-
mations: also
Watchungs and
Palisades.

Cenozoic Coastal Plain On Long Island
30,000 years~

Cretaceous sedi·
men ts redepo-
sited by recent
glaciation.

Input:

.EQ
delim SS
.EN

.TS

Output:

Name

dam ma

Sine

Error

Definition

f(·)- r-,=-1e-'dt - Jo
sin (x)- ~i (e:.r -~-'·')

2 r= :
erf(:)-t=' Jr e-' dt

'\/1r 0

Thi 5-125

double box:
cc
I I.
Name a> Definition

Bessel

Zeta

1 r" J0Cz>--Jt cos(:sin8)d9 .

1

r. 0 -C(s)- l:k-• (Res> I) j
.sp ~--1

.vs +2p
Oamma~SOAMMA (z) - int sub 0 sup inf t sup {z·ll e sup ·t dtS
Sine~ Ssin (x) - 1 over 2i (e sup ix • e sup ·ix)S
Error~S roman erf (z) - 2 over sqrt pi int sub 0 sup z e sup {·t sup 2) dtS
Bessel°' S J sub 0 (z) - l over pi int sub 0 sup pi cos (z sin theta) d theta S
Zetaa>S zeta (s) - sum from k-1 to inf k sup ·S -c Re·s > l)S
.vs ·2P
.TE

Input:

.TS
Output:

Readability of Text
box • .tab(:>: Line Width oand Leadins ror IO.Point Type
Cb SSS S
cp-2 s s s s
cllclclclc
cllclclclc
r2fln2ln2ln21n.
Readability of Text
Line Width and Leading for 10.Point Type -Line: Set: I ·Point: 2-Point: 4-Point
Width : Solid: Leading : Leading: Leading

9 Pica: \·9 .J : \·6 .O: \·5 .J : \· 7 .1
14 Pica: \-4.S: \.0.6: \-0.J: \·I. 7
19 Pica:\·5.0:\-5.1: 0.0:\·2.0
31 Pic:a:\-3.7:\-3.8:\-2.4:\·3.6
43 Pic:a:\-9.1 :\-9.0:\-5.9:\-8.8
.TE

Line Set
Width Solid
9 Pica -9.3

14 Pica -4.S
19 Pica -s.o
31 Pica -3.7
43 Pica -9.1

I-Point 2·Point 4-Point
Leu.ding Leading Leading

-6.0 -S.3 -7.1
-0.6 -0.J -1.7
-S.1 0.0 -2.0
-J.8 -2.4 -3.6
-9.0 -5.9 -8.8

5-126 Thi

Input:

.TS
cs
cip-2 s
I n
an.
Some London Transport Statistics
(Year 1964)
Railway route miles <i> 244
Tube<?>66
Sub-surface CV 22
Surf ace <I> 1 S6
.sp .5
.T&
l r
a r.
Passenger traffic\· railway
Journeys <?>674 million
Average length ~4.SS miles
Passenger miles <I> 3,066 million
.T&
I r
a r.
Passenger traffic\· road
Journeys <I> 2.252 million
Average length <I> 2. 26 miles
Passenger miles <i> S,094 million
.T&
I n
an.
.sp .S
Vehicles <i> 12.521
Railway motor cars <I> 2.905
Railway trailer cars <I> 1,269
Total railway<i>4,174
Omnibuses <I> 8.347
.T&
In
an •
• sp .S
Statf<I> 73. 739
Administrative. etc. <1' S,582
Civil engineering <i> 5, 134
Electrical eng. G) 1. 714
Mech. eng. \- railway<I>4.J10
Mech. eng. \- road<I>9,152
Railway operations <I> 8.930
Road operations <1' 3 S. 946
Other <I> 2. 971
.TE

Output:

Some London Transport Statistics
(Y~ar 1964}

Railway route miles
Tube
Sub-surface
Surface

Passenger traffic - railway
Journeys
Average length
Passenger miles

Passenger traffic - road
Journeys
Average length
Passenger miles

Vehicles
Railway motor cars
Railway trailer cars
Total railway
Omnibuses

Staff
Administrative, etc.
Civil engineering
Electrical eng.
Mech. eng. - railway
Mech. eng. - road
Railway operations
Road operations
Other

244
66
22

156

674 million
4.SS miles

3.066 million

2.252 million
2.26 miles

S.094 million

12.521
2.905
1.269
4.174
8,34-7

73. 739
5,582
S.134
I. 714
4.310
9.152
8.930

35.946
2,971

Input:

.ps 8

.vs lOp

.TS
center box:
c s s
ci s s
c: c c
IB 1 n.
New Jersey Representatives
(Democrats)
.sp .S
Name(!) Office address~ Phone
.sp .S
James J. Florioc:»23 S. White Horse Pike. Somerdale 08083 <?>609-627-8222
William J. Hughes <1> 2920 Atlantic Ave •• Atlantic City 0840 I <?> 609-345-4844
James J. Howard~801 Bangs Ave., Asbury Park 07712~201-774-1600
Frank Thompson. Jr.~10 Rutgers Pl., Trenton 08618<!>609-599-1619
Andrew Ma1uire(j) 115 W. Passaic St., Rochelle P:irlc 07662Cf>201-843-0240
Robert .At.. Roe(!)U.S.P.O., 194 Ward St., Paterson 07Sl0<?>201-S23-SlS2
Henry Helstoski~666 Paterson Ave •• East Rutherford 07073Cf>201-939-9090
Peter W. Rodino. Jr. <!)Suite 143SA. 970 Broad St •• Newark 07102(j)201-64S-3213
Joseph O. Minish<?>308 Main St., Orange 070SOC1>201-64S-6363
Helen S. Meyner(j)J2 Bridge St •• Lambertville 08530<?>609·397-1830
Dominick V. Daniels(!)89S Bergen Ave •• Jersey City 07306(!)201-659-7700
Edward J. Patten~Natl. Bank Bldg., Perth Amboy 08861 <»201-826-4610
.sp .5
.T&
ci s s
IB l n.
(Republicans)
.sp .Sv
Millicent Fenwick<?>41 N. Bridge St •• Somerville 08876<?>201-722-8200
Edwin B. Forsythe<?>JOl Mill St •• Moorestown 08057<?)609-235-6622
Matthew J. Rinaldo<?> 1961 Morris Ave., Union 07083 <?>201-687-4235
.TE
.ps 10
.vs 12p

Thi 5-127

5-128 Thi

Output:

Name

James J. norto
Wllllam J. H ucbes
James J. Howard
Fnak nompson. Jr.
Andrew Maculre
Robert A. Roe
Henry Helstoskl
Peter W. Rodino. Jr.
Josepb G. Minish
Helen S. Meyner
Dominick V. Dan leis
Edward J. Pacten

Miiiicent Fenwick
Edwin B. Fonythe
Macthew J. Rinaldo

New Jersey Representatives
(/NmocrauJ

Oftlce address

23 S. White Horse Ptke. Somerdale 08083
2920 Atlancic Ave •• Atlantic City 08401
801 Bangs Ave •• Asbury Park 07712
l 0 Rut1ers Pt •• Trenton 08618
lt S W. Passaic St •• Rochelle Park 07662
U.S.P.O .• 194 Ward St •• Paterson 07510
666 Paterson Ave •• East Rutherford 07073
Suite 1435A. 970 Broad St •• Newark 07102
308 Main St .• Oran1e 07050
32 Bridge St •• Lambertville 08530
89S Ber1en Ave •• Jersey City 07306
Natl. Bank Bids •• Perth Amboy 08861

(R~publkans)

41 N. Bridie St •• Somerville 08876
301 Mill St •• Moorestown 08057
1961 Morris Ave •• Union 07083

Phone

609·627·8222
609-345-4844
201-774-1600
609-599-1619
20 l ·843-0240
20l-S23·Sl52
201-939-9090
201·64S·3213
20 l ·64S·6363
609-397-1830
20 l ·659· 7700
201·826·4610

201-722-8200
609· 23 5·6622
201-687-4235

This is a paragraph or normal text placed here only to indicate where the left and right margins
are. In this way the reader can judge the appearance of centered tables or expanded tables. and
observe how such tables are formatted.

Input:

.TS
expand;
csss
cc cc
11 n n.
Bell Labs Locations
Name G> Address G> Area Code G> Phone
Holmdel~ Holmdel, N. J. 07733G>201 G> 949-3000
Murray Hill<»Murray Hill. N. J. 07974G>201 <»582-6377
WhippanyG> Whippany. N. J. 07981 ~201 G>386-3000
Indian Hill G) Naperville. Illinois 60540 <V 312 G) 690-2000
.TE

Output:

Name
Holmdel
Murray Hill
Whippany
Indian Hill

Bell Labs Locations
Address

Holmdel. N. J. 07733
Murray Hill. N. J. 07974
Whippany. N. J. 07981
Naperville. Illinois 60540

Area Code
201
201
201
312

Phone
949-3000
582-6377
386-3000
690-2000

lnpuc:

.TS
box;
cb s s s
clef c s
lliw(li) I 1tw(2i) I lpl I 1w(l .6i)p8.
Some lncercstin1 P!accs

NameG) Oescrip<ion ~ Pnc:tic:al Information

fl
American Museum of Natunl Hiscory
TICf>T(
The collections ftll ll .5 acres (Michelin) or 2S acres (MTA)
or exhibition halls on four Ooors. There is a full-sized replica
of a blue whale and the wortcrs laraest star sapphire (stolen in 1964).
TICf> Hours<!> 10.s. a. Sun ll·S. Wed. to 9
\ • <1J \ • <1J Location~ Tl
Central Park Wesc ct 79ch Sc.
Tl
\ ·<1)\ ·<1) Admission(%) Donation: S1 .oo asked
\ ·°'\ •<1Jsubway(%) AA co Ilse Sc.
\•Cl)\ ·~Tcle,honcQ) 212·113-4225

ironx Zooa>T(
Abouc a mile Iona and .6 mile wide. ahis is the larsest zoo in America.
A lion eats 11 pounds
of mac a day while a sea lion eats l .S pounds of ft.sh.
Tl<1J HoursQ)TI
IM:lO winccr. to 5:00 summer
Tl
\ •(1)\ ·~ Loc:adon<1JT(
11.Sth S1.. A Southern Blvd. the Bronx •
Tl
\•(%)\.(%)Admission<1Js1.oo. buc Tu.We.Th free
\ ·~\ •<1Jsubway(1) 2. S to Ei&sc Tremont Ave. \ ·°'\ •<1JTelephoneG)2t2-9ll·l7S9

Brooklyn MuseumQ)TI
Five Roors of awlcrics contain America and ancient an •
There are American period rooms and 41tChiteciural ornamcntS saved
from wreckers. such as a dassica! ft1ure from Pennsylvania Station.
TIG)Hoursa'>Wed·Sa&. 10..S. Sun l2·S
\ ·~\ ·(%) Locacion°'T(
Eastern Park.way 4' Washinston Ave •• Brooklyn.
Tl
\ ·~\·~Admission~ Free
\•Cf>\•@subway@2.J to Eas&cm Parkway.
\ •Q)\ •a>Tcte,honcG) 212-6.ll·SOOO ,.,
New· Y ortc Historical SocictJ
TICf>T(
All Che oriainaJ paintinp for Audubon's
.1
Birds of America
.R
are here. u are exhibitS or American decorative arts. New York hiscory,
Hudson River scnoot paintinp. c:uri11es. and alass papcrweicnts.
Tl<?> HoursG) Tl
Tues·Fri A Sun. l·S: Sat lO·S
Tl
\ ·~\ ·~ Location~T(
CcnuaJ Park Wcsc A 17th Sc.
Tl
\ ·<?>\·(!)Admission@ Free
\·~,-~Subway(!)AA to Ilse Sc.
\ ·~\ ·~Tc:!ephoneG) 212·113·3400
.TE

Thi 5-129

5-130 Thi

Output:

Some Interesting Places
Name Description Practical Information

American Muse·
um of Natural
History

Bronx Zoo

Brooklyn Museum

New- York Histor·
ical Society

Acknowledgments.

The collections fill 11.S acres
(Michelin) or 25 acres (MT A)
or exhibition halls on rour
noors. There is a run-sized re·
plica of a blue whale and the
world·s largest star sapphire
(stolen in 1964).
About a mile long and .6 mile
wide. this is the largest zoo in
America. A lion eats 18
pounds or meat a day while a
sea lion eats IS pounds of fish.

Five noors of galleries contain
American and ancient art.
There are American period
rooms and architectural oma·
menlS saved from wreckers.
such as a classical figure from
Pennsylvania Station.
All the original paintings for
Audubon•s Birds qf America are
here. as are exhibits of Ameri
can decorative arts. New York
history. Hudson River school
paintings. carriages. and glass
paperweights.

Houn
Location
Admission
Subway
Telephone

Hours
Location

Admission
Subway
Telephone

Hours
Location

Admission

Subway
Telephone

Houn
Location
Admission
Subway
Telephone

10.S. ex. Sun l l·S. Wed. to 9
Central Park Wesc A 79\h St.
Doni&tion: Sl.00 asked
AA to 8 lst St.
212·11l-422S

10-4:30 winter. to S:OO summer
185th Sc. A Southern Blvd. the
Bronx.
Sl.00. but Tu.We.Th free
2. S to East Tremont Ave.
212·93J.l7S9

Wed-~c. 10..S. Sun 12·.S
Eastern Parkway A Washin1con
Ave .• Brooklyn.
Free
2.J to Eastern Parkway.
212·638-SOOO

Tues-Fri A Sun. l·.S; Sat 10.S
Central Park West A 17th St.
Free
AA to I 1st St.
212·873-3400

Many thanks are due to J. C. Blinn. who has done a large amount or testing and assisted
with the design of the program. He has also written many of the more intelligible sentences in
this document and helped edit all of it. All phototypesetting programs on UNIX are dependent
on the work or the late J. F. Ossanna. whose assistance with this program in panicular had been
most helpful. This progrctm is patterned on a table rormatter originally written by J. F. Gimpel.
The assistance or T. A. Dolotta. B. W. Kernighan. and J. N. Sturman is gratefully ack·
nowledged.

References.

(1] J. F. Ossanna. NROFF/TROFF User's Manual. Computing Science Technical Report No. S4,
Bell Laboratories. 1976.

(2) K. Thompson and D. M. Ritchie. "The UNIX Time-Sharing System:· Comm. ACM. 17,
pp. 365-75{!974).

[3) B. W. Kernigh~ and L. L. Cherry. .. A System for Typesetting Mathematics," Comm.
ACM. 18. pp. IS1-S7 (1975). ·

(4) M. E. Lesk. Typing Documents on UNIX. UNIX Programmer's Manual. Volume 2.

(SJ

[61

Thi 5-131

M. E. Lesk and B. W. Kernighan. Com11uter Typesetti11,(of T~ch11it•a/ Journals 011 UNIX. Proc.
AF/PS NCC. vol. 46. pp. 879·888 (1977).
J. R. Mashey and 0. W. Smith. "'Documentation Tools and Techniques:· Proc. 2nd Int.
Con/. on So.ftware Engin~ering. pp. 177·181 (October. 197 6).

List or Tbl Command Chancters and Words

Command M~ning s~ction

a A Alphabetic: subcolumn 2
all box Craw box around all items 1
bB Boldface item 2
box Craw box around table I
eC Centered column 2
center Center table in page l
doublebox Doubled box around table 1
eE Equal width columns 2
expand Make table ruu line width l
f F Font chan1e 2
II Italic item 2
IL Left adjusted column 2
n N Numeric:al column 2
nnn Column separation 2
pP Point size change 2
rR Right adjusted column 2
sS Spanned item 2
tT Vertical spanning at top 2
tab (x) Change data separator character 1
T{ TJ Text block 3
YV Vertical spacing change 2
wW Minimum width value i
.xx Included troff command J

I Venic:al line 2
II Double vertical line 2
.,.. Venical span 2
\" Vertical span J - Double horizontal line 2,J

Horizontal line 2.J

'- Shon horizontal line 3
\Rx Repeat character J

Refer - A Bibliography System 5-133

Introduction

Ref er - A Bibliography System

Bill Tuthill

Computing Services
University of California

Berkeley, CA 94720

Taken together, the refer programs constitute a database system for use with variable-length
information. To distinguish various types of bibliographic material, the system uses labels composed
of upper case letters, preceded by a percent sign and followed by a space. For example, one document
might be given this entry:

%A Joel Kies
3T Document Formatting on Unix Using the -ms Macros
3 I Computing Services
3C Berkeley
3D 1980

·l

Each line is called a field, and lines grouped together are called a record; records are separated from
each other by a blank line. Bibliographic information follows the labels, containing data to be used by
the ref er system. The order of fields is not important, except that authors should be entered in the
same order as they are listed on the document. Fields can be as long as necessary, and may everi be
continued on the following line(s).

The labels are meaningful to nroff/troff macros, and, with a few exceptions, the ref er program
itself does not pay attention to them. This implies that you can change the label codes, if you also
change the macros used by nroff/troff. The macro package takes care of details like proper order
ing, underlining the book title or journal name, and quoting the article's title. Here are the labels
used by refer, with an indication of what they represent:

5-134 Refer - A Bibliography System

3 H Header commentary, printed before reference
3 A Author's name
3 Q Corporate or foreign author (unreversed)
3 T Title of article or book
3 S Series title
3J Journal containing article
3 B Book containing article
3 R Report, paper, or thesis (for unpublished material)
3V Volume
3 N Number within volume
3 E Editor of book containing article
3 P Page number(s)
3 I Issuer (publisher)
3C City where published
3 D Date of publication
30 Other commentary, printed at end of reference
3 K Keywords used to locate reference
3 L Label used by - k option of ref er
3 X Abstract (used by roffbib, not by ref er)

Only relevant fields should be supplied. Except for 3 A, each field should be given only once; in the
case of multiple authors, the senior author should come first. The 3Q is for organizational authors,
or authors with Japanese or Arabic names, in which cases the order of names should be preserved.
Books should be labeled with the 3T, not with the 3B, which is reserved for books containing arti
cles. The 3J and 3B fields should never appear together, although if they do, the 3J will override
the 3 B. If there is no author, just an editor, it is best to type the editor in the 3 A field, as in this
example:

3 A Bertrand Bronson, ed.

The 3 E field is used for the editor of a book (3 B) containing an article, which has its own author.
For unpublished material such as theses, use the 3 R field; the title in the 3 T field will be quoted,
but the contents of the 3 R field will not be underlined. Unlike other fields, 3 H, 3 0, and 3 X
should contain their own punctuation. Here is a modest example:

3 A Mike E. Lesk
3 T Some Applications of Inverted Indexes on the Unix System
3B Unix Programmer's Manual
3 I Bell Laboratories
3C Murray Hill, NJ
3D 1978
3V 2a
3 K refer mkey inv hunt
3 X Difficult to read paper that dwells on indexing strategies,
giving little practical advice about using >fBrefer){P.

Note that the author's name is given in normal order, without inverting the surname; inversion is
done automatically, except when 3Q is used instead of 3A. We use 3X rather than 30 for the
commentary because we do not want the comment printed all the time. The 3 0 and 3 H fields are
printed by both ref er and roffbib; the 3 X field is printed only by roffbib, as a detached annota
tion paragraph.

Data Entry with Addbib

The addbib program is for creating and extending bibliographic databases. You must give it
the filename of your bibliography:

Refer - A Bibliography System 5-135

% addbib database

Every time you enter add bib, it asks if you want instructions. To get them, type y; to skip them,
type RETURN. Addbib prompts for various fields, reads from the keyboard, and writes records con
taining the refer codes to the database. After finishing a field entry, you should end it by typing
RETURN. If a field is too long to fit on a line, type a backslash (\) at the end of the line, and you will
be able to continue on the following line. Note: the backslash works in this capacity only inside add
bib.

A field will not be written to the database if nothing is entered into it. Typing a minus sign as
the first character of any field will cause addbib to back up one field at a time. Backing up is the
best way to add multiple authors, and it really helps if you forget to add something important. Fields
not contained in the prompting skeleton may be entered by typing a backslash as the last character
before RETURN. The following line will be sent verbatim to the database and addbib will resume
with the next field. This is identical to the procedure for dealing with long fields, but with new fields,
don't forget the % key-letter.

Finally, you will be asked for an abstract (or annotation), which will be preserved as the %X
field. Type in as many lines as you need, and end with a control-D (hold down the CTRL button, then
press the "d" key). This prompting for an abstract can be suppressed with the -a command line
option.

After one bibliographic record has been completed, addbib will ask if you want to continue. If
you do, type RETURN; to quit, type q or n (quit or no). It is also possible to use one of the system
editors to correct mistakes made while entering data. After the "Continue?" prompt, type any of the
following: edit, ex, vi, or ed - you will be placed inside the corresponding editor, and returned to
addbib afterwards, from where you can either quit or add more data.

If the prompts normally supplied by addbib are not enough, are in the wrong order, or are too
numerous, you can redefine the skeleton by constructing a promptfile. Create some file, to be named
after the -p command line option. Place the prompts you want on the left side, followed by a single
TAB (control-I), then the refer code that is to appear in the bibliographic database. Addbib will
send the left side to the screen, and the right side, along with data entered, to the database.

Printing the Bibliography

Sortbib is for sorting the bibliography by author (%A) and date (%D), or by data in other
fields. It is quite useful for producing bibliographies and annotated bibliographies, which are seldom
entered in strict alphabetical order. It takes as arguments the names of up to 16 bibliography files,
and sends the sorted records to standard output (the terminal screen), which may be redirected
through a pipe or into a file.

The -sKEYS flag to sortbib will sort by fields whose key-letters are in the KEYS string,
rather than merely by author and date. Key-letters in KEYS may be followed by a '+' to indicate
that all such fields are to be used. The default is to sort by senior author and date (printing the
senior author last name first), but -sA+D will sort by all authors and then date, and -sATD will sort
on senior author, then title, and then date.

Ro1fbib is for running off the (probably sorted) bibliography. It can handle annotated
bibliographies - annotations are entered in the % X (abstract) field. Ro1fbib is a shell script that
calls refer - B and nroff -mbib. It uses the macro definitions that reside in
/usr/lib/tmac/tmac.bib, which you can redefine if you know nroff and troff. Note that refer will
print the % H and % 0 commentaries, but will ignore abstracts in the % X field; ro1fbib will print
both fields, unless annotations are suppressed with the -x option.

The following command sequence will lineprint the entire bibliography, organized alphabetically
by author and date:

5-136 Refer - A Bibliography System

% sortbib database I roftl>ib I lpr

This is a good way to proofread the bibliography, or to produce a stand-alone bibliography at the end
of a paper. Incidentally, roftl>ib accepts all flags used with nroff. For example:

% sortbib database I roftl>ib -Tdtc -sl

will make accent marks work on a DTC daisy-wheel printer, and stop at the bottom of every page for
changing paper. The -n and -o flags may also be quite useful, to start page numbering at a selected
point, or to produce only specific pages.

Roftl>ib understands four command-line number registers, which are something like the two
letter number registers in -ms. The -rNl argument will number references beginning at one (l); use
another number to start somewhere besides one. The -rV2 flag will double-space the entire bibliogra
phy, while -rVl will double-space the references, but single-space the annotation paragraphs. Finally,
specifying -rL6i changes the line length from 6.5 inches to 6 inches, and saying -rOli sets the page
offset to one inch, instead of zero. (That's a capital 0 after -r, not a zero.)

Citing Papers with Refer

The ref er program normally copies input to output, except when it encounters an item of the
form:

. [
partial citation
.]

The partial citation may be just an author's name and a date, or perhaps a title and a keyword, or
maybe just a document number. Refer looks up the citation in the bibliographic database, and
transforms it into a full, properly formatted reference. If the partial citation does not correctly iden
tify a singl~ work (either finding nothing, or more than one reference), a diagnostic message is given.
If nothing is found, it will say "No such paper." If more than one reference is found, it will say "Too
many hits." Other diagnostic messages can be quite cryptic; if you are in doubt, use checknr to ver
ify that all your .['shave matching .]'s.

When everything goes well, the reference will be brought in from the database, numbered, and
placed at the bottom of the page. This citation, 1 for example, was produced by:

This citation,
. [
lesk inverted indexes
.]
for example, was produced by

The .[and .] markers, in essence, replace the .FS and .FE of the -ms macros, and also provide a
numbering mechanism. Footnote numbers will be bracketed on the the lineprinter, but superscripted
on daisy-wheel terminals and in troff. In the reference itself, articles will be quoted, and books and
journals will be underlined in nroff, and italicized in troff.

Sometimes you need to cite a specific page number along with more general bibliographic
material. You may have, for instance, a single document that you refer to several times, each time
giving a different page citation. This is how you could get "p. 10" in the reference:

. [
kies document formatting
%P 10
.]

The first line, a partial citation, will find the reference in your bibliography. The second line will

Refer - A Bibliography System 5-137

insert the page number into the final citation. Ranges of pages may be specified as "%P 56-78".

When the time comes to run off a paper, you will need to have two files: the bibliographic data-
base, and the paper to format. Use a command line something like one of these:

% refer -p database paper I nroff -ms
% refer -p database paper I tbl I nroff -ms
% refer -p database paper I tbl I neqn I nroff -ms

If other preprocessors are used, refer should precede tbl, which must in turn precede eqn or neqn.
The -p option specifies a "private" database, which most bibliographies are.

Refer's Command-line Options

Many people like to place references at the end of a chapter, rather than at the bottom of the
page. The -e option will accumulate references until a macro sequence of the form

. [
$LIST$
.]

is encountered (or until the end of file). Refer will then write out all references collected up to that
point, collapsing identical references. ·warning: there is a limit (currently 200) on the number of
references that can be accumulated at one time.

It is also possible to sort references that appear at the end of text. The -sKEYS flag will sort
references by fields whose key-letters are in the KEYS string, and permute reference numbers in the
text accordingly. It is unnecessary to use -e with it, since -s implies -e. Key-letters in KEYS may
be followed by a '+' to indicate that all such fields are to be used. The default is to sort by senior
author and date, but -sA + D will sort on all authors and then date, and -sA +T will sort by authors
and then title.

Refer can also make citations in what is known as the Social or Natural Sciences format.
Instead of numbering references, the -1 (letter ell) flag makes labels from the senior author's last
name and the year of publication. For example, a reference to the paper on Inverted Indexes cited
above might appear as [Lesk1978a]. It is possible to control the number of characters in the last
name, and the number of digits in the date. For instance, the command line argument -16,2 might
produce a reference such as [Kernig78c].

Some bibliography standards shun both footnote numbers and labels composed of author and
date, requiring some keyword to identify the reference. The -k flag indicates that, instead of
numbering references, key labels specified on the % L line should be used to mark references.

The -n flag means to not search the default reference file, located in /usr/dict/papers/Rv7man.
Using this flag may make refer marginally faster. The -an flag will reverse the first n author names,
printing Jones, J. A. instead of J. A. Jones. Often -al is enough; this will reverse the names of only
the senior author. In some versions of refer there is also the -f flag to set the footnote number to
some predetermined value; for example, -f23 would start numbering with footnote 23.

Making an Index

Once your database is large and relatively stable, it is a good idea to make an index to it, so that
references can be found quickly and efficiently. The indxbib program makes an inverted index to
the bibliographic database (this program is called pubindex in the Bell Labs manual). An inverted
index could be compared to the thumb cuts of a dictionary - instead of going all the way through
your bibliography, programs can move to the exact location where a citation is found.

lndxbib itself takes a while to run, and you will need sufficient disk space to store the indexes.
But once it has been run, access time will improve dramatically. Furthermore, large databases of
several million characters can be indexed with no problem. The program is exceedingly simple to use:

5-138 Refer - A Bibliography System

% indxbib database

Be aware that changing your database will require that you run indxbib over again. If you don't, you
may fail to find a reference that really is in the database.

Once you have built an inverted index, you can use lookbib to find references in the database.
Lookbib cannot be used until you have run indxbib. When editing a paper, lookbib is very useful
to make sure that a citation can be found as specified. It takes one argument, the name of the
bibliography, and then reads partial citations from the terminal, returning references that match, or
nothing if none match. Its prompt is the greater-than sign.

% lookbib database
> lesk inverted indexes
% A Mike E. Lesk
% T Some Applications of Inverted Indexes on the Unix System
%J Unix Programmer's Manual
% I Bell Laboratories
%C Murray Hill, NJ
%D 1978
%V 2a
% X Difficult to read paper that dwells on indexing strategies,
giving little practical advice about using \ fBrefer\fP.
>

If more than one reference comes back, you will have to give a more precise citation for refer.
Experiment until you find something that works; remember that it is harmless to overspecify. To get
out of the lookbib program, type a control-D alone on a line; lookbib then exits with an "EOT"
message.

Lookbib can also be used to extract groups of related citations. For example, to find all the
papers by Brian Kernighan found in the system database, and send the output to a file, type:

% lookbib /usr/dict/papers/Ind > kern.refs
> kernighan
>EOT
% cat kern.refs

Your file, "kern.refs", will be full of references. A similar procedure can be used to pull out all papers
of some date, all papers from a given journal, all papers containing a certain group of keywords, etc.

Refer Bugs and Some Solutions

The ref er program will mess up if there are blanks at the end of lines, especially the % A
author line. Addbib carefully removes trailing blanks, but they may creep in again during editing.
Use an editor command - g/ *$/s/// - to remove trailing blanks from your bibliography.

Having bibliographic fields passed through as string definitions implies that interpolated strings
(such as accent marks) must have two backslashes, so they can pass through copy mode intact. For
instance, the word "telephone" would have to be represented:

te*'le\ *'phone

in order to come out correctly. In the % X field, by contrast, you will have to use single backslashes
instead. This is because the % X field is not passed through as a string, but as the body of a para
graph macro.

Another problem arises from authors with foreign names. When a name like "Valery Giscard
d'Estaing" is turned around by the -a option of refer, it will appear as "d'Estaing, Valery Giscard,"
rather than as "Giscard d'Estaing, Valery." To prevent this, enter names as follows:

Refer - A Bibliography System 5-139

%A Vale*'ry Giscard\Od'Estaing
%A Alexander Csoma\Ode\OKo\ *:ro*:s

(The second is the name of a famous Hungarian linguist.) The backslash-zero is an nroff/troff
request meaning to insert a digit-width space. It will protect against faulty name reversal, and also
against mis-sorting.

Footnote numbers are placed at the end of the line before the . [macro. This line should be a
line of text, not a macro. As an example, if the line before the . [is a .R macro, then the .R will eat
the footnote number. (The .R is an -ms request meaning change to Roman font.) In cases where the
font needs changing, it is necessary to do the following:

\flet al. \fR
. [
awk aho kernighan weinberger
.]

Now the reference will be to Aho et al.2 The \fl changes to italics, and the \fR changes back to Roman
font. Both these requests are nroff/troff requests, not part of -ms. If and when a footnote number
is added after this sequence, it will indeed appear in the output.

Internal Details of Refer

You have already read everything you need to know in order to use the ref er bibliography sys
tem. The remaining sections are provided only for extra information, and in case you need to change
the way refer works.

The output of refer is a stream of string definitions, one for each field in a reference. To create
string names, percent signs are simply changed to an open bracket, and an [F string is added, contain
ing the footnote number. The %X, % Y and %Z fields are ignored; however, the annobib program
changes the % X to an .AP (annotation paragraph) macro. The citation used above yields this inter
mediate output:

.ds [F 1

.]-

.ds [A Mike E. Lesk

.ds [T Some Applications of Inverted Indexes on the Unix System

.ds [J Unix Programmer's Manual

.ds [I Bell Laboratories

.ds [C Murray Hill, NJ

.ds [D 1978

.ds [V 2a

.nr [T 0

.nr [A 0

.nr [O 0

.][1 journal-article

These string definitions are sent to nroff, which can use the -ms macros defined in
/usr/lib/mx/tmac.xref to take care of formatting things properly. The initializing macro .]- precedes
the string definitions, and the labeled macro.][follows. These are changed from the input.[and.] so
that running a file twice through refer is harmless.

The .][macro, used to print the reference, is given a type-number argument, which is a numeric
label indicating the type of reference involved. Here is a list of the various kinds of references:

5-140 Refer - A Bibliography System

Field Value Kind of Reference

3J 1
3B 3
3R 3G
3I 2
3M 5
none 0

Journal Article
Article in Book
4Report, Government Report

Book
Bell Labs Memorandum (undefined)
Other

The order listed above is indicative of the precedence of the various fields. In other words, a refer
ence that has both the % J and % B fields will be classified as a journal article. If none of the fields
listed is present, then the reference will be classified as "other."

The footnote number is flagged in the text with the following sequence, where number is the
footnote number:

([.number(.]

The *([. and *(.] stand for bracketing or superscripting. In nroff with low-resolution devices such
as the lpr and a crt, footnote numbers will be bracketed. In troff, or on daisy-wheel printers, foot
note numbers will be superscripted. Punctuation normally comes before the reference number; this
can be changed by using the - P (postpunctuation) option of refer.

In some cases, it is necessary to override certain fields in a reference. For instance, each time a
work is cited, you may want to specify different page numbers, and you may want to change certain
fields. This citation will find the Lesk reference, but will add specific page numbers to the output,
even though no page numbers appeared in the original reference .

. [
lesk inverted indexes
3P 7-13
3 I Computing Services
30 UNX 12.2.2 .
.]

The 3 I line will also override any previous publisher information, and the % 0 line will append some
commentary. The refer program simply adds the new % P, 3 I, and 3 0 strings to the output, and
later strings definitions cancel earlier ones.

It is also possible to insert an entire citation that does not appear in the bibliographic database.
This reference, for example, could be added as follows:

. [
3 A Brian Kernighan
3 T A Troff Tutorial
3 I Bell Laboratories
3D 1978
.]

This will cause ref er to interpret the fields exactly as given, without searching the bibliographic data
base. This practice is not recommended, however, because it's better to add new references to the
database, so they can be used again later.

If you want to change the way footnote numbers are printed, signals can be given on the.[and.]
lines. For example, to say "See reference (2)," the citation should appear as:

Refer - A Bibliography System 5-141

See reference
.[(
partial citation
.]),

Note that blanks are significant on these signal lines. If a permanent change in the footnote format is
desired, it's best to redefine the [. and .] strings.

Changing the Refer Macros

This section is provided for those who wish to rewrite or modify the refer macros. This is
necessary in order to make output correspond to specific journal requirements, or departmental stan
dards. First there is an explanation of how new macros can be substituted for the old ones. Then
several alterations are given as examples. Finally, there is an annotated copy of the refer macros
used by roffbib .

The ref er macros for nroff/troff supplied by the -ms macro package reside in
/usr/lib/mx/tmac.xref; they are reference macros, for producing footnotes or endnotes. The refer
macros used by roffbib, on the other hand, reside in /usr/lib/tmac/tmac.bib; they are for producing a
stand-alone bibliography.

To change the macros used by roffbib, you will need to get your own version of this shell script
into the directory where you are working. These two commands will get you a copy of roffbib and
the macros it uses: t

3 cp /usr/lib/tmac/tmac.bib bibmac

You can proceed to change bibmac as much as you like. Then when you use roffbib, you should
specify your own version of the macros, which will be substituted for the normal ones

3 roffbib -m bibmac filename

where filename is the name of your bibliography file. Make sure there's a space between -m and
bibmac.

If you want to modify the refer macros for use with nroff and the -ms macros, you will need
to get a copy of "tmac.xref":

3 cp /usr/lib/ms/s.ref refmac

These macros are much like "bibmac", except they have .FS and .FE requests, to be used in conjunc
tion with the -ms macros, rather than independently defined .XP and .AP requests. Now you can
put this line at the top of the paper to be formatted:

.so refmac

Your new ref er macros will override the definitions previously read in by the -ms package. This
method works only if "refmac" is in the working directory.

Suppose you didn't like the way dates are printed, and wanted them to be parenthesized, with
no comma before. There are five identical lines you will have to change. The first line below is the
old way, while the second is the new way:

.if !"*([D"", *([D\c

.if !"*([D"" \& (*([D)\c

In the first line, there is a comma and a space, but no parentheses. The "\c" at the end of each lirie
indicates to nroff that it should continue, leaving no extra space in the output. The "\&" in the
second line is the do-nothing character; when followed by a space, a space is sent to the output.

If you need to format a reference in the style favored by the Modern Language Association or
Chicago University Press, in the form (city: publisher, date), then you will have to change the middle
of the book macro [2 as follows:

5-142 Refer - A Bibliography System

\& (\c
.if !" \ *([C"" \ *([C:
\ *([I\c
.if !"\ *([D"" , \ *([D\c
)\c

This would print (Berkeley: Computing Services, 1982) if all three strings were present. The first line
prints a space and a parenthesis; the second prints the city (and a colon) if present; the third always
prints the publisher (books must have a publisher, or else they're classified as other); the fourth line
prints a comma and the date if present; and the fifth line closes the parentheses. You would need to
make similar changes to the other macros as w~ll.

Acknowledgements

Mike Lesk of Bell Laboratories wrote the original ref er software, including the indexing pro
grams. Al Stangenberger of the Forestry Department wrote the first version of addbib, then called
bibin. Greg Shenaut of the Linguistics Department wrote the original versions of sortbib and
ro:ffbib. All these contributions are greatly appreciated.

Some Applications of Inverted Indexes 5-143

Some Applications of Inverted Indexes on the UNIX System

1. Introduction.

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

The UNIXt system has many utilities (e.g. grep, awk, lex, egrep, fgrep, ...) to search
through files of text, but most of them are based on a linear scan through the entire file, using
some deterministic automaton. This memorandum discusses a program which uses inverted
indexes1 and can thus be used on much larger data bases.

As with any indexing system, of course, there are some disadvantages; once an index is
made, the files that have been indexed can not be changed without remaking the index. Thus
applications are restricted to those making many searches of relatively stable data. Further
more, these programs depend on hashing, and can only search for exact matches of whole key
words. It is not possible to look for arithmetic or logical expressions (e.g. "date greater than
1970") or for regular expression searching such as that in lex. 2

Currently there are two uses of this software, the ref er preprocessor to format refer
ences, and the lookall command to search through all text files on the UNIX system.

The remaining sections of this memorandum discuss the searching programs and their
uses. Section 2 explains the operation of the searching algorithm and describes the data col
lected for use with the look all command. The more important application, ref er has a user's
description in section 3. Section 4 goes into more detail on reference files for the benefit of
those who wish to add references to data bases or write new troff macros for use with ref er.
The options to make ref er collect identical citations, or otherwise relocate and adjust refer
ences, are described in section 5. The UNIX manual sections for ref er, lookall, and associated
commands are attached as appendices.

2. Searching.

The indexing and searching process is divided into two phases, each made of two parts.
These are shown below.

A. Construct the index.

(1) Find keys - turn the input files into a sequence of tags and keys, where each tag
identifies a distinct item in the input and the keys for each such item are the
strings under which it is to be indexed.

(2) Hash and sort - prepare a set of inverted indexes from which, given a set of keys,
the appropriate item tags can be found quickly.

B. Retrieve an item in response to a query.

t UNIX is a trademark of Bell Laboratories.
1 D. Knuth, The Art of Computer Programming: Vol. 3, Sorting and Searching, Addison-Wesley, Read

ing, Mass., 1977. See section 6.5.
2 M. E. Lesk, "Lex - A Lexical Analyzer Generator," Comp. Sci. Tech. Rep. No. 39, Bell Laboratories,

Murray Hill, New Jersey, October 1975.

5-144 Some Applications of Inverted Indexes

(3) Search - Qiven some keys, look through the files prepared by the hashing and
sor~ing facility and derive the appropriate tags.

(4~ peliver - Given the tags, find the original items. This completes the searching
process.

The firi:;t phase, making the index, is presumably done relatively infrequently. It should, of
course, be dorw whenever the data being indexed change. In contrast, the second phase,
retrieving items, is presumably done often, and must be rapid.

An effort is m&de to separate code which depends on the data being handled from code
which depends on the searching procedure. The search algorithm is involved only in programs
(2) and (3), while knowledge of the actual data files is needed only by programs (1) and (4).
Thus it is easy to adapt to different data files or different search algorithms.

To start with, it is necessary to have some way of selecting or generating keys from input
files. For dealing with files that are basically English, we have a key-making program which
automatically selects words and passes them to the hashing and sorti:q.g program (step 2). The
format used has one line for each input item, arranged as fol~ows: ·

name:start,length (tab) keyl key2 key3 ...

where name is the file name, start is the starting byte number, and length is the number of
bytes in the entry.

These lines are the only input used to make the index. The first field (the file name,
byte position, and byte count) is the tag of the item and can be used to retrieve it quickly.
Normally, an item is either a whole file or a section of a file delimited by blank lines. After
the tab, the second field contain~ the keys. The keys, if selected by the automatic program,
are any alphanumeric !:)trings which are not among the 100 most frequent words in English
and which are not entirely numeric (except for four-digit numbers beginning 19, which are
accepted as dates). Keys· are. truncated to six characters and converted to lower case. Some
selection is needed if the original items are very large. We normally just take the first n keys,
with n less than 100 or so; this replaces any attempt at intelligent selection. One file in our
system is a complete English dictionary; it woul~ presumably be retrieved for all queries.

To generate an inverted index to the list of record tags and keys, the keys are hashed
and sorted to produce an index. What is wanted, ideally, is a series of lists showing the tags
associated with each key. To condense this, what is actually produced is a list showing the
tags associated with each hash code, and thus with some set of keys. To speed up access and
further save space, a set of three or possibly four files is produced. These files are:

File Contents
entry Pointers to posting file

for each hash code
posting Lists of tag pointers for

each hash code
tag Tags for each item
key Keys for ekich item

{optional)

The posting file comprises the real data: it contains a sequence of lists of items posted under
each hash code. To speed up searching, the entry file is an array of pointers into the posting
file, one per potential hash code. Furthermore, the items in the lists in the posting file are not
referred to by their complete tag, but just by an address in the tag file, which gives the com
plete tags. The key file is optional and contains a copy of tp.e keys used in the indexing.

The searching process starts with a query, containing several keys. The goal is to obtain
all items which were indexed under these keys. The query keys are hashed, and the pointers
in the entry file used to access the lists in the posting file. These lists are addresses in the tag
file of documents posted under the hash codes derived from the query. The common items
from all lists are determined; this must include the items indexed by every key, but may also

Some Applications of Inverted Indexes 5-145

contain some items which are false drops, since items referenced by the correct hash codes
need not actually have contained the correct keys. Normally, if there are several keys in the
query, there are not likely to be many false drops in the final combined list even though each
hash code is somewhat ambiguous. The actual tags are then obtained from the tag file, and to
guard against the possibility that an item has false-dropped on some hash code in the query,
the original items are normally obtained from the delivery program (4) and the query keys
checked against them by string comparison.

Usually, therefore, the check for bad drops is made against the original file. However, if
the key derivation procedure is complex, it may be preferable to check against the keys fed to
program (2). In this case the optional key file which contains the keys associated with each
item is generated, and the item tag is supplemented by a string

;start,length

which indicates the starting byte number in the key file and the length of the string of keys
for each item. This file is not usually necessary with the present key-selection program, since
the keys always appear in the original document.

There is also an option (-Cn) for coordination level searching. This retrieves items
which match all but n of the query keys. The items are retrieved in the order of the number
of keys that they match. Of course, n must be less than the number of query keys (nothing is
retrieved unless it matches at least one key).

As an example, consider one set of 4377 references, comprising 660,000 bytes. This
included 51,000 keys, of which 5,900 were distinct keys. The hash table is kept full to save
space (at the expense of time); 995 of 997 possible hash codes were used. The total set of
index files (no key file) included 171,000 bytes, about 26% of the original file size. It took 8
minutes of processor time to hash, sort, and write the index. To search for a single query with
the resulting index took 1.9 seconds of processor time, while to find the same paper with a
sequential linear search using grep (reading all of the tags and keys) took 12.3 seconds of pro
cessor time.

We have also used this software to index all of the English stored on our UNIX system.
This is the index searched by the lookall command. On a typical day there were 29,000 files
in our user file system, containing about 152,000,000 bytes. Of these 5,300 files, containing
32,000,000 bytes (about 21 %) were English text. The total number of 'words' (determined
mechanically) was 5,100,000. Of these 227,000 were selected as keys; 19,000 were distinct,
hashing to 4,900 (of 5,000 possible) different hash codes. The resulting inverted file indexes
used 845,000 bytes, or about 2.6 % of the size of the original files. The particularly small
indexes are caused by the fact that keys are taken from only the first 50 non-common words
of some very long input files.

Even this large lookall index can be searched quickly. For example, to find this docu
ment by looking for the keys "lesk inverted indexes" required 1. 7 seconds of processor time
and system time. By comparison, just to search the 800,000 byte dictionary (smaller than
even the inverted indexes, let alone the 27,000,000 bytes of text files) with grep takes 29
seconds of processor time. The lookall program is thus useful when looking for a document
which you believe is stored on-line, but do not know where. For example, many memos from
our center are in the file system, but it is often difficult to guess where a particular memo
might be (it might have several authors, each with many directories, and have been worked on
by a secretary with yet more directories). Instructions for the use of the lookall command are
given in the manual section, shown in the appendix to this memorandum.

The only indexes maintained routinely are those of publication lists and all English files.
To make other indexes, the programs for making keys, sorting them, searching the indexes,
and delivering answers must be used. Since they are usually invoked as parts of higher-level
commands, they are not in the default command directory, but are available to any user in the
directory /usr/lib/refer. Three programs are of interest: mkey, which isolates keys from input
files; inv, which makes an index from a set of keys; and hunt, which searches the index and

5-146 Some Applications of Inverted Indexes

delivers the items. Note that the two parts of the retrieval phase are combined into one pro
gram, to avoid the excessive system work and delay which would result from running these as
separate processes.

These three commands have a large number of options to adapt to different kinds of
input. The user not interested in the detailed description that now follows may skip to sec
tion 3, which describes the refer program, a packaged-up version of these tools specifically
oriented towards formatting references.

Make Keys. The program mkey is the key-making program corresponding to step (1)
in phase A. Normally, it reads its input from the file names given as arguments, and if there
are no arguments it reads from the standard input. It assumes that blank lines in the input
delimit separate items, for each of which a different line of keys should be generated. The
lines of keys are written on the standard output. Keys are any alphanumeric string in the
input not among the most frequent words in English and not entirely numeric (except that
all-numeric strings are acceptable if they are between 1900 and 1999). In the output, keys are
translated to lower case, and truncated to six characters in length; any associated punctuation
is removed. The following flag arguments are recognized by mkey:

-c name Name of file of common words; default is /usr/lib/eign.
-f name Read a list of files from name and take each as an input argu-

-i chars

-kn
-In
-nm

-s

-w

ment.
Ignore all lines which begin with ' 3 ' followed by any character
in chars.
Use at most n keys per input item.
Ignore items shorter than n letters long.
Ignore as a key any word in the first m words of the list of
common English words. The default is 100.
Remove the labels (file:start,length) from the output; just give
the keys. Used when searching rather than indexing.
Each whole file is a separate item; blank lines in files are
irrelevant.

The normal arguments for indexing references are the defaults, which are -c
/usr/lib/eign, -nlOO, and -l3. For searching, the -s option is also needed. When the big
lookall index of all English files is run, the options are -w, -k50, and -f (filelist). When
running on textual input, the mkey program processes about 1000 English words per processor
second. Unless the -k option is used (and the input files are long enough for it to take effect)
the output of mkey is comparable in size to its input.

Hash and invert. The inv program computes the hash codes and writes the inverted
files. It reads the output of mkey and writes the set of files described earlier in this section.
It expects one argument, which is used as the base name for the three (or four) files to be
written. Assuming an argument of Index (the default) the entry file is named Index.ia, the
posting file Index.ib, the tag file Index.ic, and the key file (if present) Index.id. The inv pro
gram recognizes the following options:

-a

-d

-hn

Append the new keys to a previous set of inverted files, mak
ing new files if there is no old set using the same base name.
Write the optional key file. This is needed when you can not
check for false drops by looking for the keys in the original
inputs, i.e. when the key derivation procedure is complicated
and the output keys are not words from the input files.
The hash table size is n (default 997); n should be prime.
Making n bigger saves search time and spends disk space.

Some Applications of Inverted Indexes 5-147

-i[u] name Take input from file name, instead of the standard input; if u
is present name is unlinked when the sort is started. Using
this option permits the sort scratch space to overlap the disk
space used for input keys.

-n Make a completely new set of inverted files, ignoring previous
files.

-p Pipe into the sort program, rather than writing a temporary
input file. This saves disk space and spends processor time.

-v Verbose mode; print a summary of the number of keys which
finished indexing.

About half the time used in inv is in the contained sort. Assuming the sort is roughly
linear, however, a guess at the total timing for inv is 250 keys per second. The space used is
usually of more importance: the entry file uses four bytes per possible hash (note the - h
option), and the tag file around 15-20 bytes per item indexed. Roughly, the posting file con
tains one item for each key instance and one item for each possible hash code; the items are
two bytes long if the tag file is less than 65336 bytes long, and the items are four bytes wide if
the tag file is greater than 65536 bytes long. Note that to minimize storage, the hash tables
should be over-full; for most of the files indexed in this way, there is no other real choice,
since the entry file must fit in memory.

Searching and Retrieving. The hunt program retrieves items from an index. It
combines, as mentioned above, the two parts of phase (B): search and delivery. The reason
why it is efficient to combine delivery and search is partly to avoid starting unnecessary
processes, and partly because the delivery operation must be a part of the search operation in
any case. Because of the hashing, the search part takes place in two stages: first items are
retrieved which have the right hash codes associated with them, and then the actual items are
inspected to determine false drops, i.e. to determine if anything with the right hash codes
doesn't really have the right keys. Since the original item is retrieved to check on false drops,
it is efficient to present it immediately, rather than only giving the tag as output and later
retrieving the item again. If there were a separate key file, this argument would not apply,
but separate key files are not common.

Input to hunt is taken from the standard input, one query per line. Each query should
be in mkey -s output format; all lower case, no punctuation. The hunt program takes one
argument which specifies the base name of the index files to be searched. Only one set of
index files can be searched at a time, although many text files may be indexed as a group, of
course. If one of the text files has been changed since the index, that file is searched with
fgrep; this may occasionally slow down the searching, and care should be taken to avoid hav
ing many out of date files. The following option arguments are recognized by hunt:

-a
-en

-F[ynd]

-g

-i string
-In

-o string

Give all output; ignore checking for false drops.
Coordination level n; retrieve items with not more than n
terms of the input missing; default CO, implying that each
search term must be in the output items.
"-Fy" gives the text of all the items found; "-Fn" suppresses
them. "-Fd" where d is an integer gives the text of the first
d items. The default is -Fy.
Do not use fgrep to search files changed since the index was
made; print an error comment instead.
Take string as input, instead of reading the standard input.
The maximum length of internal lists of candidate items is n;
defaqlt 1000.
Put text output ("-Fy") in string; of use only when invoked
from another program.

5-148 Some Applications of Inverted Indexes

-p Print hash code frequencies; mostly for use in optimizing hash
table sizes.

-T[ynd] "-Ty" gives the tags of the items found; "-Tn" suppresses
them. "-Td" where d is an integer gives the first d tags. The
default is -Tn.

-t string Put tag output ("-Ty") in string; of use only when invoked
from another program.

The timing of hunt is complex. Normally the hash table is overfull, so that there will be
many false drops on any single term; but a multi-term query will have few false drops on all
terms. Thus if a query is underspecified (one search term) many potential items will be exam
ined and discarded as false drops, wasting time. If the query is overspecified (a dozen search
terms) many keys will be examined only to verify that the single item under consideration has
that key posted. The variation of search time with number of keys is shown in the table
below. Queries of varying length were constructed to retrieve a particular document from the
file of references. In the sequence to the left, search terms were chosen so as to select the
desired paper as quickly as possible. In the sequence on the right, terms were chosen
inefficiently, so that the query did not uniquely select the desired document until four keys
had been used. ·The same document was the target in each case, and the final set of eight
keys are also identical; the differences at five, six and seven keys are produced by measure
ment error, not by the slightly different key lists.

Efficient Keys Inefficient Keys
No. keys Total drops Retrieved Search time No. keys Total drops Retrieved Search time

(incl. false) Documents (seconds) (incl. false) Documents (seconds)

1 15 3 1.27 1 68 55 5.96
2 1 1 0.11 2 29 29 2.72
3 1 1 0.14 3 8 8 0.95
4 1 1 0.17 4 1 1 0.18
5 1 1 0.19 5 1 1 0.21
6 1 1 0.23 6 1 1 0.22
7 1 1 0.27 7 1 1 0.26
8 1 1 0.29 8 1 1 0.29

As would be expected, the optimal search is achieved when the query just specifies the answer;
however, overspecification is quite cheap. Roughly, the time required by hunt can be approxi
mated as 30 milliseconds per search key plus 75 milliseconds per dropped document (whether
it is a false drop or a real answer). In general, overspecification can be recommended; it pro
tects the user against additions to the data base which turn previously uniquely-answered
queries into ambiguous queries.

The careful reader will have noted an enormous discrepancy between these times and
the earlier quoted time of around 1.9 seconds for a search. The times here are purely for the
search and retrieval: they are measured by running many searches through a single invocation
of the hunt program alone. The normal retrieval operation involves using the shell to set up a
pipeline through mkey to hunt and starting both processes; this adds a fixed overhead of
about 1. 7 seconds of processor time to any single search. Furthermore, remember that all
these times are processor times: on a typical morning on our PDP 11/70 system, with about one
dozen people logged on, to obtain 1 second of processor time for the search program took
between 2 and 12 seconds of real time, with a median of 3.9 seconds and a mean of 4.8
seconds. Thus, although the work involved in a single search may be only 200 milliseconds,
after you add the 1.7 seconds of startup processor time and then assume a 4:1
elapsed/processor time ratio, it will be 8 seconds before any response is printed.

Some Applications of Inverted Indexes 5-149

3. Selecting and Formatting References for TROFF

The major application of the retrieval software is ref er, which is a troff preprocessor like
eqn.3 It scans its input looking for items of the form

. [
imprecise citation
.]

where an imprecise citation is merely a string of words found in the relevant bibliographic
citation. This is translated into a properly formatted reference. If the imprecise citation does
not correctly identify a single paper (either selecting no papers or too many) a message is
given. The data base of citations searched may be tailored to each system, and individual
users may specify their own citation files. On our system, the default data base is accumu
lated from the publication lists of the members of our organization, plus about half a dozen
personal bibliographies that were collecteq, The present total is about 4300 citations, but this
increases steadily. Even now, the data base covers a large fraction of local citations.

For example, the reference for the eqn paper above was specified as

preprocessor like
.I eqn .
. [
kernighan cherry acm 197 5
.]
It scans its input looking for items

This paper was itself printed using ref er. The above input text was processed by ref er as well
as tbl and troff by the command

refer memo-file I tbl I troff -ms

and the reference was automatically translated into a correct citation to the ACM paper on
mathematical typesetting.

The procedure to use to place a reference in a paper using ref er is as follows. First, use
the lookbib command to check that the paper is in the data base ~nd to find out what keys
are necessary to retrieve it. This is done by typing lookbib and then typipg some potential
queries until a suitable query is found. For example, had one start~d to find the eqn paper
shown above by presenting the query

$ lookbib
kernighan cherry
(EOT)

lookbib would have found several items; experimentation would quickly have shown that the
query given above is adequate. Overspecifying the query is of course harmless. A particularly
careful reader may have noticed that "acm" does not appear in the printed citation; we have
supplemented some of the data base items with common extra keywords, such as common
abbreviations for journals or other sources, to aid in searching.

If the reference is in the data base, the query that retrieved it can be inserted in the
text, between .[and •] brackets. If it is not in the data base, it can be typed into a private file
of references, using the format discussed in the next section, and then the -p option used to
search this private file. Such a command might read (if the private references are called
myfile)

:i B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm. Assoc. Comp.
Mach., vol. 18, pp. 151-157, Bell Laboratori~s, Murray Hill, New Jersey, March 1975.

5-150 Some Applications of Inverted Indexes

refer -p myfile document I tbl I eqn I troff -ms ...

where tbl and/or eqn could be omitted if not needed. The use of the -ms macros4 or some
other macro package, however, is essential. Refer only generates the data for the references;
exact formatting is done by some macro package, and if none is supplied the references will
not be printed.

By default, the references are numbered sequentially, and the -ms macros format refer
ences as footnotes at the bottom of the page. This memorandum is an example of that style.
Other possibilities are discussed in section 5 below.

4. Reference Files.

A reference file is a set of bibliographic references usable with ref er. It can be indexed
using the software described in section 2 for fast searching. What refer does is to read the
input document stream, looking for imprecise citation references. It then searches through
reference files to find the full citations, and inserts them into the document. The format of
the full citation is arranged to make it convenient for a macro package, such as the -ms mac
ros, to format the reference for printing. Since the format of the final reference is determined
by the desired style of output, which is determined by the macros used, ref er avoids forcing
any kind of reference appearance. All it does is define a set of string registers which contain
the basic information about the reference; and provide a macro call which is expanded by the
macro package to format the reference. It is the responsibility of the final macro package to
see that the reference is actually printed; if no macros are used, and the output of ref er fed
untranslated to troff, nothing at all will be printed.

The strings defined by ref er are taken directly from the files of references, which are in
the following format. The references should be separated by blank lines. Each reference is a
sequence of lines beginning with % and followed by a key-letter. The remainder of that line,
and successive lines until the next line beginning with % , contain the information specified by
the key-letter. In general, refer does not interpret the information, but merely presents it to
the macro package for final formatting. A user with a separate macro package, for example,
can add new key-letters or use the existing ones for other purposes without bothering refer.

The meaning of the key-letters given below, in particular, is that assigned by the -ms
macros. Not all information, obviously, is used with each citation. For example, if a docu
ment is both an internal memorandum and a journal article, the macros ignore the memoran
dum version and cite only the journal article. Some kinds of information are not used at all in
printing the reference; if a user does not like finding references by specifying title or author
keywords, and prefers to add specific keywords to the citation, a field is available which is
searched but not printed (K).

The key letters currently recognized by refer and -ms, with the kind of information
implied, are:

4 M. E. Lesk, Typing Documents on UNIX and GCOS: The -ms Macros for Troff, 1977.

Some Applications of Inverted Indexes 5-151

Key Information specified Key Information specified
A Author's name N Issue number
B Title of book containing item 0 Other information
c City of publication p Page(s) of article
D Date R Technical report reference
E Editor of book containing item T Title
G Government (NTIS) ordering number v Volume number
I Issuer (publisher)
J Journal name
K Keys (for searching) x or
L Label y or
M Memorandum label z Information not used by ref er

For example, a sample reference could be typed as:

3 T Bounds on the Complexity of the Maximal
Common Subsequence Problem
3Z ctr127
%A A. V. Aho
%AD. S. Hirschberg
%A J. D. Ullman
3J J. ACM
3V 23
3Nl
3P 1-12
3M abcd-78
3D Jan. 1976

Order is irrelevant, except that authors are shown in the order given. The output of ref er is a
stream of string definitions, one for each of the fields of each reference, as shown below .

. 1-

.ds [A authors' names ...

. ds [T title ...

. ds [J journal ...

.] [type-number

The special macro .]- precedes the string definitions and the special macro .][follows. These
are changed from the input .[and •] so that running the same file through ref er again is
harmless. The .]- macro can be used by the macro package to initialize. The .] [macro,
which should be used to print the reference, is given an argument type-number to indicate
the kind of reference, as follows:

Value
1
2
3
4
5
0

Kind of reference
Journal article
Book
Article within book
Technical report
Bell Labs technical memorandum
Other

The reference is flagged in the text with the sequence

([.number(.]

where number is the footnote number. The strings [. and .] should be used by the macro
package to format the reference flag in the text. These strings can be replaced for a particular
footnote, as described in section 5. The footnote number (or other signal) is available to the

5-152 Some Applications of Inverted Indexes

reference macro.][as the string register [F.

In some cases users wish to suspend the searching, and merely use the reference macro
formatting. That is, the user doesn't want to provide a search key between .[and •] brackets,
but merely the reference lines for the appropriate document. Alternatively, the user can wish
to add a few fields to those in the reference as in the standard file, or override some fields.
Altering or replacing fields, or supplying whole references, is easily done by inserting lines
beginning with % ; any such line is taken as direct input to the reference processor rather than
keys to be searched. Thus

.[
keyl key2 key3 ...
%Q New format item
% R Override report name
.]

makes the indicates changes to the result of searching for the keys. All of the search keys
must be given before the first % line.

If no search keys are provided, an entire citation can be provided in-line in the text. For
example, if the eqn paper citation were to be inserted in this way, rather than by searching
for it in the data base, the input would read

preprocessor like
.I eqn .
. [
%AB. W. Kernighan
% A L. L. Cherry
% T A System for Typesetting Mathematics
%J Comm. ACM
%V 18
%N3
%P 151-157
%D March 1975
.]
It scans its input looking for items

This would produce a citation of the same appearance as that resulting from the file search.

As shown, fields are normally turned into troff strings. Sometimes users would rather
have them defined as macros, so that other troff commands can be placed into the data.
When this is necessary, simply double the control character % in the data. Thus the input

. [
%V 23
%3M
Bell Laboratories,
Murray Hill, N.J. 07974
.]

is processed by ref er into

.ds [V 23

.de [M
Bell Laboratories,
Murray Hill, N.J. 07974

The information after % % M is defined as a macro to be invoked by .[M while the

Some Applications of Inverted Indexes 5-153

information after % V is turned into a string to be invoked by X"([V. At present -ms expects
all information as strings.

5. Collecting References and other Ref er Options

Normally, the combination of refer and -ms formats output as troff footnotes which are
consecutively numbered and placed at the bottom of the page. However, options exist to
place the references at the end; to arrange references alphabetically by senior author; and to
indicate references by strings in the text of the form [Name1975a] rather than by number.
Whenever references are not placed at the bottom of a page identical references are coalesced.

For example, the -e option to refer specifies that references are to be collected; in this
case they are output whenever the sequence

. [
$LIST$
.]

is encountered. Thus, to place references at the end of a paper, the user would run refer with
the -e option and place the above $LIST$ commands after the last line of the text. Ref er
will then move all the references to that point. To aid in formatting the collected references,
ref er writes the references preceded by the line

.]<

and followed by the line

.]>

to invoke special macros before and after the references.

Another possible option to refer is the -s option to specify sorting of references. The
default, of course, is to list references in the order presented. The -s option implies the -e
option, and thus requires a

.[
$LIST$
.]

entry to call out the reference list. The -s option may be followed by a string of letters,
numbers, and '+' signs indicating how the references are to be sorted. The sort is done using
the fields whose key-letters are in the string as sorting keys; the numbers indicate how many
of the fields are to be considered, with '+' taken as a large number. Thus the default is
-sAD meaning "Sort on senior author, then date." To sort on all authors and then title,
specify -sA+T. And to sort on two authors and then the journal, write -sA2J.

Other options to ref er change the signal or label inserted in the text for each reference.
Normally these are just sequential numbers, and their exact placement (within brackets, as
superscripts, etc.) is determined by the macro package. The -1 option replaces reference
numbers by strings composed of the senior author's last name, the date, and a disambiguating
letter. If a number follows the 1 as in -13 only that many letters of the last name are used in
the label string. To abbreviate the date as well the form -lm,n shortens the last name to the
first m letters and the date to the last n digits. For example, the option -13,2 would refer to
the eqn paper (reference 3) by the signal Ker75a, since it is the first cited reference by Ker
nighan in 1975.

A user wishing to specify particular labels for a private bibliography may use the - k
option. Specifying - kx causes the field x to be used as a label. The default is L. If this field
ends in - , that character is replaced by a sequence letter; otherwise the field is used exactly as
given.

If none of the refer-produced signals are desired, the -b option entirely suppresses
automatic text signals.

5-154 Some Applications of Inverted Indexes

If the user wishes to override the -ms treatment of the reference signal (which is nor
mally to enclose the number in brackets in nroff and make it a superscript in troff) this can
be done easily. If the lines .[or.] contain anything following these characters, the remainders
of these lines are used to surround the reference signal, instead of the default. Thus, for
example, to say "See reference (2)." and avoid "See reference.2" the input might appear

See reference
. [(
imprecise citation ...
.]).

Note that blanks are significant in this construction. If a permanent change is desired in the
style of reference signals, however, it is probably easier to redefine the strings [. and .] (which
are used to bracket each signal) than to change each citation.

Although normally ref er limits itself to retrieving the data for the reference, and leaves
to a macro package the job of arranging that data as required by the local format, there are
two special options for rearrangements that can not be done by macro packages. The -c
option puts fields into all upper case (CAPS-SMALL CAPS in troff output). The key-letters
indicated what information is to be translated to upper case follow the c, so that -cAJ means
that authors' names and journals are to be in caps. The -a option writes the names of
authors last name first, that is A. D. Hall, Jr. is written as Hall, A. D. Jr. The citation form
of the Journal of the ACM, for example, would require both -cA and -a options. This pro
duces authors' names in the style KERNIGHAN, B. W. AND CHERRY, L. L. for the previous
example. The -a option may be followed by a number to indicate how many author names
should be reversed; -al (without any -c option) would produce Kernighan, B. W. and L. L.
Cherry, for example.

Finally, there is also the previously-mentioned -p option to let the user specify a private
file of references to be searched before the public files. Note that refer does not insist on a
previously made index for these files. If a file is named which contains reference data but is
not indexed, it will be searched (more slowly) by refer using fgrep. In this way it is easy for
users to keep small files of new references, which can later be added to the public data bases.

Updating Publication Lists 5-155

Updating Publication Lists

M. E. Lesk

1. Introduction.
This note describes several commands to update the publication lists. The data base

consisting of these lists is kept in a set of files in the directory /usr/dict/papers on the Ver
sion 7 UNIXt system. The reason for having special commands to update these files is that
they are indexed, and the only reasonable way to find the items to be updated is to use the
index. However, altering the files destroys the usefulness of the index, and makes further
editing difficult. So the recommended procedure is to

(1) Prepare additions, deletions, and changes in separate files.

(2) Update the data base and reindex.

Whenever you make changes, etc. it is necessary to run the "add & index" step before logging
off; otherwise the changes do not take effect. The next section shows the format of the files in
the data base. After that, the procedures for preparing additions, preparing changes, prepar
ing deletions, and updating the public data base are given.

2. Publication Format.
The format of a data base entry is given completely in "Some Applications of Inverted

Indexes on UNIX" by M. E. Lesk, the first part of this report, and is summarized here via a
few examples. In each example, first the output format for an item is shown, and then the
corresponding data base entry.

Journal article:
A. V. Aho, D. J. Hirschberg, and J. D. Ullman, "Bounds on the Com
plexity of the Maximal Common Subsequence Problem," J. Assoc.
Comp. Mach., vol. 23, no. 1, pp. 1-12 (Jan. 1976).

3 T Bounds on the Complexity of the Maximal Common
Subsequence Problem
%AA. V. Aho
%AD. S. Hirschberg
%A J. D. Ullman
3 J J. Assoc. Comp. Mach.
3V 23
3Nl
%P 1-12
%D Jan. 1976
3M Memo abed ...

t UNIX is a trademark of Bell Laboratories.

5-156 Updating Publication Lists

Conference proceedings:

Book:

B. Prabhala and R. Sethi, "Efficient Computation of Expressions with
Common Subexpressions," Proc. 5th ACM Symp. on Principles of
Programming Languages, pp. 222-230, Tucson, Ariz. (January 1978).

% A B. Prabhala
%AR. Sethi
% T Efficient Computation of Expressions with
Common Subexpressions
% J Proc. 5th ACM Symp. on Principles
of Programming Languages
% C Tucson, Ariz.
%D January 1978
%P 222-230

B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley,
Reading, Mass. (1976).

% T Software Tools
% A B. W. Kernighan
%AP. J. Plauger
% I Addison-Wesley
% C Reading, Mass.
%D 1976

Article within book:
J. W. de Bakker, "Semantics of Programming Languages," pp. 173-227
in Advances in Information Systems Science, Vol. 2, ed. J. T. Tou,
Plenum Press, New York, N. Y. (1969).

%A J. W. de Bakker
% T Semantics of programming languages
%E J. T. Tou
% B Advances in Information Systems Science, Vol. 2
% I Plenum Press
%C New York, N. Y.
%D 1969
%P 173-227

Technical Report:
F. E. Allen, "Bibliography on Program Optimization," Report RC-
5767, IBM T. J. Watson Research Center, Yorktown Heights, N. Y.
(1975).

%AF. E. Allen
%D 1975
% T Bibliography on Program Optimization
% R Report RC-5767
31 IBM T. J. Watson Research Center
%C Yorktown Heights, N. Y.

Updating Publication Lists 5-157

Other forms of publication can be entered similarly. Note that conference proceedings are
entered as if journals, with the conference name on a 3 J line. This is also sometimes
appropriate for obscure publications such as series of lecture notes. When something is both a
report and an article, or both a memorandum and an article, enter all necessary information
for both; see the first article above, for example. Extra information (such as "In preparation"
or "Japanese translation") should be placed on a line beginning 3 0. The most common use
of 30 lines now is for "Also in ... " to give an additional reference to a secondary appearance
of the same paper.

Some of the possible fields of a citation are:

Letter Meaning Letter Meaning
A Author K Extra keys
B Book including item N Issue number
C City of publication 0 Other
D Date P Page numbers
E Editor of book R Report number
I Publisher (issuer) T Title of item
J Journal name V Volume number

Note that %B is used to indicate the title of a book containing the article being entered; when
an item is an entire book, the title should be entered with a 3 T as usual.

Normally, the order of items does not matter. The only exception is that if there are
multiple authors (%A lines) the order of authors should be that on the paper. If a line is too
long, it may be continued on to the next line; any line not beginning with 3 or . (dot) is
assumed to be a continuation of the previous line. Again, see the first article above for an
example of a long title. Except for authors, do not repeat any items; if two 3 J lines are
given, for example, the first is ignored. Multiple items on the same file should be separated
by blank lines.

Note that in formatted printouts of the file, the exact appearance of the items is deter
mined by a set of macros and the formatting programs. Do not try to adjust fonts, punctua
tion, etc. by editing the data base; it is wasted effort. In case someone has a real need for a
differently-formatted output, a new set of macros can easily be generated to provide alterna
tive appearances of the citations.

3. Updating and Re-indexing.

This section describes the commands that are used to manipulate and change the data
base. It explains the procedures for (a) finding references in the data base, (b) adding new
references, (c) changing existing references, and (d) deleting references. Remember that all
changes, additions, and deletions are done by preparing separate files and then running an
'update and reindex' step.

Checking what's there now. Often you will want to know what is currently in the data
base. There is a special command lookbib to look for things and print them out. It searches
for articles based on words in the title, or the author's name, or the date. For example, you
could find the first paper above with

lookbib aho ullman maximal subsequence 1976

or

lookbib aho ullman hirschberg

If you don't give enough words, several items will be found; if you spell some wrong, nothing
will be found. There are around 4300 papers in the public file; you should always use this
command to check when you are not sure whether a certain paper is there or not.

Additions. To add new papers, just type in, on one or more files, the citations for the
new papers. Remember to check first if the papers are already in the data base. For example,

5-158 Updating Publication Lists

if a paper has a previous memo version, this should be treated as a change to an existing
entry, rather than a new entry. If several new papers are being typed on the same file, be sure
that there is a blank line between each two papers.

Changes. To change an item, it should be extracted onto a file. This is done with the
command

pub.chg keyl key2 key3 ...

where the items keyl, key2, key3, etc. are a set of keys that will find the paper, as in the look
bib command. That is, if

lookbib johnson yacc cstr

will find a item (to, in this case, Computing Science Technical Report No. 32, "YACC: Yet
Another Compiler-Compiler," by S. C. Johnson) then

pub.chg johnson yacc cstr

will permit you to edit the item. The pub.chg command extracts the item onto a file named
"bibxxx" where "xxx" is a 3-digit number, e.g. "bib234". The command will print the file
name it has chosen. If the set of keys finds more than one paper (or no papers) an error mes
sage is printed and no file is written. Each reference to be changed must be extracted with a
separate pub.chg command, and each will be placed on a separate file. You should then edit
the "bibxxx" file as desired to change the item, using the UNIX editor. Do not delete or
change the first line of the file, however, which begins % # and is a special code line to tell the
update program which item is being altered. You may delete or change other lines, or add
lines, as you wish. The changes are not actually made in the public data base until you run
the update command pub.run (see below). Thus, if after extracting an item and modifying it,
you decide that you'd rather leave things as they were, delete the "bibxxx" file, and your
change request will disappear.

Deletions. To delete an entry from the data base, type the command

pub.del keyl key2 key3 ...

where the items keyl, key2, etc. are a set of keys that will find the paper, as with the lookbib
command. That is, if

lookbib Aho hirschberg ullman

will find a paper,

pub.del aho hirschberg ullman

deletes it. Note that upper and lower case are equivalent in keys. The pub.del command will
print the entry being deleted. It also gives the name of a "bibxxx" file on which the deletion
command is stored. The actual deletion is not done until the changes, additions, etc. are pro
cessed, as with the pub.chg command. If, after seeing the item to be deleted, you change your
mind about throwing it away, delete the "bibxxx" file and the delete request disappears.
Again, if the list of keys does not uniquely identify one paper, an error message is given.

Remember that the default versions of the commands described here edit a public data
base. Do not delete items unless you are sure deletion is proper; usually this means that there
are duplicate entries for the same paper. Otherwise, view requests for deletion with skepti
cism; even if one person has no need for a particular item in the data base, someone else may
want it there.

If an item is correct, but should not appear in the "List of Publications" as normally
produced, add the line

%KDNL

to the item. This preserves the item intact, but implies "Do Not List" to the to the com
mands that print publication lists. The DNL line is normally used for some technical reports,

Updating Publication Lists 5-159

minor memoranda, or other low-grade publications.

Update and reindex. When you have completed a session of changes, you should type
the command

pub.run filel file2 .. .

where the names "filel", ... are the new files of additions you have prepared. You need not
list the "bibxxx" files representing changes and deletions; they are processed automatically.
All of the new items are edited into the standard public data base, and then a new index is
made. This process takes about 15 minutes; during this time, searches of the data base will be
slower.

Normally, you should execute pub.run just before you logoff after performing some edit
requests. However, if you don't, the various change request files remain in your directory
until you finally do execute pub.run. When the changes are processed, the "bibxxx" files are
deleted. It is not desirable to wait too long before processing changes, however, to avoid
conflicts with someone else who wishes to change the same file. If executing pub.run produces
the message "File bibxxx too old" it means that someone else has been editing the same file
between the time you prepared your changes, and the time you typed pub.run. You must
delete such old change files and re-enter them.

Note that although pub.run discards the "bibxxx" files after processing them, your files
of additions are left around even after pub.run is finished. If they were typed in only for pur
poses of updating the data base, you may delete them after they have been processed by
pub.run.

Example. Suppose, for example, that you wish to

(1) Add to the data base the memos "The Dilogarithm Function of a Real Argument" by R.
Morris, and "UNIX Software Distribution by Communication Link," by M. E. Lesk and
A. S. Cohen;

(2) Delete from the data base the item "Cheap Typesetters", by M. E. Lesk, SIGLASH
Newsletter, 1973; and

(3) Change "J. Assoc. Comp. Mach." to "Jour. ACM" in the citation for Aho, Hirschberg,
and Ullman shown above.

The procedure would be as follows. First, you would make a file containing the additions,
here called "new.I", in the normal way using the UNIX editor. In the script shown below, the
computer prompts are in italics.

$ ed new.1
?
a
3 T The Dilogarithm Function of a Real Argument
3A Robert Morris
3M abed
3D 1978

3 T UNIX Software Distribution by Communication Link
3A M. E. Lesk
3 A A. S. Cohen
3M abed
3D 1978
w new.1
199
q

Next you would specify the deletion, which would be done with the pub.del command:

5-160 Updating Publication Lists

$ pub.del lesk cheap typesetters siglash
to which the computer responds:

Will delete: (file bibl 76)

% T Cheap Typesetters
%AM. E. Lesh
%J ACM SIGLASH Newsletter
%V6
%N4
%P 14-16
%D October 1973

And then you would extract the Aho, Hirschberg and Ullman paper. The dialogue involved is
shown below. First run pub.chg to extract the paper; it responds by printing the citation and
informing you that it was placed on file bibl23. That file is then edited.

$pub.chg aho hirschberg ullman
Extracting as file bibJ23
% T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%A A. V. Aho
% A D. S. Hirschberg
%A J. D. Ullman
%J J. Assoc. Comp. Mach.
%V23
%NJ
%P J-J2
%M abed
%D Jan. J976

$ ed bib123
3J2
/Assoc/s/ JI Jour/p
% J Jour. Assoc. Comp. Mach.
s/ Assoc.* I ACM/p
%J Jour. ACM
1,$p
% # /usr/dict/papers/p76 233 245 change
% T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%A A. V. Aho
% A D. S. Hirschberg
%A J. D. Ullman
%J Jour. ACM
%V23
%NJ
%P J-J2
%M abed
%D Jan. J976

w
292
q
$

Updating Publication Lists 5-161

Finally, execute pub.run, making sure to remember that you have prepared a new file
"new.1":

$pub.run new.1

and about fifteen minutes later the new index would be complete and all the changes would be
included.

4. Printing a Publication List

There are two commands for printing a publication list, depending on whether you want
to print one person's list, or the list of many people. To print a list for one person, use the
pub.indiv command:

pub.indiv M Lesk

This runs off the list for M. Lesk and puts it in file "output". Note that no '.' is given after
the initial. In case of ambiguity two initials can be used. Similarly, to get the list for group of

5-162 Updating Publication Lists

people, say

pub.org xxx

which prints all the publications of the members of organization xxx, taking the names for the
list in the file /usr/dict/papers/centlist/xxx. This command should normally be run in the
background; it takes perhaps 15 minutes. Two options are available with these commands:

pub.indiv -p M Lesk

prints only the papers, leaving out unpublished notes, patents, etc. Also

pub.indiv -t M Lesk I gcat

prints a typeset copy, instead of a computer printer copy. In this case it has been directed to
an alternate typesetter with the 'gcat' command. These options may be used together, and
may be used with the pub.org command as well. For example, to print only the papers for all
of organization zzz and typeset them, you could type

pub.center -t -p zzz I gcat &

These publication lists are printed double column with a citation style taken from a set of
publication list macros; the macros, of course, can be changed easily to adjust the format of
the lists.

The Style and Diction Programs 5-163

Writing Tools - The STYLE and DICTION Programs

1. Introduction

L. L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

W. Vesterman

Livingston College
Rutgers University

Computers have become important in the document preparation process, with programs
to check for spelling errors and to format documents. As the amount of text stored on line
increases, it becomes feasible and attractive to study writing style and to attempt to help the
writer in producing readable documents. The system of writing tools described here is a first
step toward such help. The system includes programs and a data base to analyze writing style
at the word and sentence level. We use the term "style" in this paper to describe the results
of a writer's particular choices among individual words and sentence forms. Although many
judgements of style are subjective, particularly those of word choice, there are some objective
measures that experts agree lead to good style. Three programs have been written to measure
some of the objectively definable characteristics of writing style and to identify some com
monly misused or unnecessary phrases. Although a document that conforms to the stylistic
rules is not guaranteed to be coherent and readable, one that violates all of the rules is likely
to be difficult or tedious to read. The program STYLE calculates readability, sentence length
variability, sentence type, word usage and sentence openers at a rate of about 400 words per
second on a PDPll/70 running the UNIXt Operating System. It assumes that the sentences
are well-formed, i. e. that each sentence has a verb and that the subject and verb agree in
number. DICTION identifies phrases that are either bad usage or unnecessarily wordy.
EXPLAIN acts as a thesaurus for the phrases found by DICTION. Sections 2, 3, and 4
describe the programs; Section 5 gives the results on a cross-section of technical documents;
Section 6 discusses accuracy and problems; Section 7 gives implementation details.

2. STYLE

The program STYLE reads a document and prints a summary of readability indices,
sentence length and type, word usage, and sentence openers. It may also be used to locate all
sentences in a document longer than a given length, of readability index higher than a given
number, those containing a passive verb, or those beginning with an expletive. STYLE is
based on the system for finding English word classes or parts of speech, PARTS [1]. PARTS
is a set of programs that uses a small dictionary (about 350 words) and suffix rules to partially
assign word classes to English text. It then uses experimentally derived rules of word order to
assign word classes to all words in the text with an accuracy of about 95 % . Because PARTS
uses only a small dictionary and general rules, it works on text about any subject, from phy
sics to psychology. Style measures have been built into the output phase of the programs that
make up PARTS. Some of the measures are simple counters of the word classes found by
PARTS; many are more complicated. For example, the verb count is the t0tal number of verb

t UNIX is a trademark of Bell Laboratories.

5-164 The Style and Diction Programs

phrases. This includes phrases like:

has been going
was only going
to go

each of which each counts as one verb. Figure 1 shows the output of STYLE run on a paper
by Kernighan and Mashey about the UNIX programming environment [2].

programming environment
readability grades:

sentence info:

sentence types:

word usage:

sentence beginnings:

(Kincaid) 12.3 (auto) 12.8 (Coleman-Liau) 11.8 (Flesch) 13.5 (46.3)

no. sent 335 no. wds 7 419
av sent Ieng 22.1 av word Ieng 4.91
no. questions 0 no. imperatives 0
no. nonfunc wds 4362 58.8 3 av Ieng 6.38
short sent (<17) 353 (118) long sent (>32) 163 (55)
longest sent 82 wds at sent 17 4; shortest sent 1 wds at sent 117

simple 34 3 (114) complex 32 3 (108)
compound 123 (41) compound-complex 213 (72)

verb types as 3 of total verbs
tobe 453 (373) aux 163 (133) inf 143 (114)
passives as 3 of non-inf verbs 203 (144)
types as 3 of total
prep 10.8 3 (804) conj 3.5 3 (262) adv 4.8 3 (354)
noun 26.73 (1983) adj 18.73 (1388) pron 5.33 (393)
nominalizations 2 3 (155)

subject opener: noun (63) pron (43) pos (O) adj (58) art (62) tot 673
prep 12 3 (39) adv 9 3 (31)
verb 03 (1) sub conj 63 (20) conj 13 (5)
expletives 4% (13)

Figure 1

As the example shows, STYLE output is in five parts. After a brief discussion of sentences,
we will describe the parts in order.

2.1. What is a sentence?

Readers of documents have little trouble deciding where the sentences end. People don't
even have to stop and think about uses of the character "." in constructions like 1.25, A. J.
Jones, Ph.D., i. e., or etc .. When a computer reads a document, finding the end of sentences
is not as easy. First we must throw away the printer's marks and formatting commands that
litter the text in computer form. Then STYLE defines a isentence as a string of words ending
in one of:

. ! ? /.

The end marker "/." may be used to indicate an imperative sentence. Imperative sentences
that are not so marked are not identified as imperative. STYLE properly handles numbers
with embedded decimal points and commas, string~ of letters and numbers with embedded

The Style and Diction Programs 5-165

decimal points used for naming computer file names, and the common abbreviations listed in
Appendix 1. Numbers that end sentences, like the preceding sentence, cause a sentence break
if the next word begins with a capital letter. Initials only cause a sentence break if the next
word begins with a capital and is found in the dictionary of function words used by PARTS.
So the string

J. D. JONES

does not cause a break, but the string

... system H. The ...

does. With these rules most sentences are broken at the proper place, although occasionally
either two sentences are called one or a fragment is called a sentence. More on this later.

2.2. Readability Grades

The first section of STYLE output consists of four readability indices. As Klare points
out in [3] readability indices may be used to estimate the reading skills needed by the reader
to understand a document. The readability indices reported by STYLE are based on meas
ures of sentence and word lengths. Although the indices may not measure whether the docu
ment is coherent and well organized, experience has shown that high indices seem to be indi
cators of stylistic difficulty. Documents with short sentences and short words have low scores;
those with long sentences and many polysyllabic words have high scores. The 4 formulae
reported are Kincaid Formula [4], Automated Readability Index [5], Coleman-Liau Formula
[6] and a normalized version of Flesch Reading Ease Score [7]. The formulae differ because
they were experimentally derived using different texts and subject groups. We will discuss
each of the formulae briefly; for a more detailed discussion the reader should see [3].

The Kincaid Formula, given by:

Reading Grade=ll.8*syl per wd s.39*wds per sent-15.59

was based on Navy training manuals that ranged in difficulty from 5.5 to 16.3 in reading grade
level. The score reported by this formula tends to be in the mid-range of the 4 scores.
Because it is based on adult training manuals rather than school book text, this formula is
probably the best one to apply to technical documents.

The Automated Readability Index (ARI), based on text from grades 0 to 7, was derived
to be easy to automate. The formula is:

Reading Grade.::4.71 *let per wd s.5*wds per sent-21.43

ARI tends to produce scores that are higher than Kincaid and Coleman-Liau but are usually
slightly lower than Flesch.

The Coleman-Liau Formula, based on text ranging in difficulty from .4 to 16.3, is:

Reading Grade-=:5.89*let per wd-.3*sent per 100 wds-15.8

Of the four formulae this one usually gives the lowest grade when applied to technical docu
ments.

The last formula, the Flesch Reading Ease Score, is based on grade school text covering
grades 3 to 12. The formula, given by:

Reading Score 206.835-84.6 *syl per wd-1.015 *wds per sent

is usually reported in the range 0 (very difficult) to 100 (very easy). The score reported by
STYLE is scaled to be comparable to the other formulas, except that the maximum grade
level reported is set to 17. The Flesch score is usually the highest of the 4 scores on technical
documents.

Coke [8] found that the Kincaid Formula is probably the best predictor for technical
documents; both ARI and Flesch tend to overestimate the difficulty; Coleman-Liau tend to

5-166 The Style and Diction Programs

underestimate. On text in the range of grades 7 to 9 the four formulas tend to be about the
same. On easy text the Coleman-Liau formula is probably preferred since it is reasonably
accurate at the lower grades and it is safer to present text that is a little too easy than a little
too hard.

If a document has particularly difficult technical content, especially if it includes a lot of
mathematics, it is probably best to make the text very easy to read, i.e. a lower readability
index by shortening the sentences and words. This will allow the reader to concentrate on the
technical content and not the long sentences. The user should remember that these indices
are estimators; they should not be taken as absolute numbers. STYLE called with "-r
number" will print all sentences with an Automated Readability Index equal to or greater
than "number".

2.3. Sentence length and structure

The next two sections of STYLE output deal with sentence length and structure.
Almost all books on writing style or effective writing emphasize the importance of variety in
sentence length and structure for good writing. Ewing's first rule in discussing style in the
book Writing for Results [9] is:

"Vary the sentence structure and length of your sentences."

Leggett, Mead and Charvat break this rule into 3 in Prentice-Hall Handbook for Writers [10]
as follows:

"34a. Avoid the overuse of short simple sentences."
"34b. Avoid the overuse of long compound sentences."
"34c. Use various sentence structures to avoid monotony and increase effectiveness."

Although experts agree that these rules are important, not all writers follow them. Sample
technical documents have been found with almost no sentence length or type variability. One
document had 90 3 of its sentences about the same length as the average; another was made
up almost entirely of simple sentences (803).

The output sections labeled "sentence info" and "sentence types" give both length and
structure measures. STYLE reports on the number and average length of both sentences and
words, and number of questions and imperative sentences (those ending in "/."). The meas
ures of non-function words are an attempt to look at the content words in the document. In
English non-function words are nouns, adjectives, adverbs, and non-auxiliary verbs; function
words are prepositions, conjunctions, articles, and auxiliary verbs. Since most function words
are short, they tend to lower the average word length. The average length of non-function
words may be a more useful measure for comparing word choice of different writers than the
total average word length. The percentages of short and long sentences measure sentence
length variability. Short sentences are those at least 5 words less than the average; long sen
tences are those at least 10 words longer than the average. Last in the sentence information
section is the length and location of the longest and shortest sentences. If the flag "-1
number" is used, STYLE will print all sentences longer than "number".

Because of the difficulties in dealing with the many uses of commas and conjunctions in
English, sentence type definitions vary slightly from those of standard textbooks, but still
measure the same constructional activity.

1. A simple sentence has one verb and no dependent clause.

2. A complex sentence has one independent clause and one dependent clause, each with
one verb. Complex sentences are found by identifying sentences that contain either a
subordinate conjunction or a clause beginning with words like "that" or "who". ·The
preceding sentence has such a clause.

3. A compound sentence has more than one verb and no dependent clause. Sentences
joined by";" are also counted as compound.

The Style and Diction Programs 5-167

4. A compound-complex sentence has either several dependent clauses or one dependent
clause and a compound verb in either the dependent or independent clause.

Even using these broader definitions, simple sentences dominate many of the technical
documents that have been tested, but the example in Figure 1 shows variety in both sentence
structure and sentence length.

2.4. Word Usage

The word usage measures are an attempt to identify some other constructional features
of writing style. There are many different ways in English to say the same thing. The con
structions differ from one another in the form of the words used. The following sentences all
convey approximately the same meaning but differ in word usage:

The cxio program is used to perform all communication between the systems.
The cxio program performs all communications between the systems.
The cxio program is used to communicate between the systems.
The cxio program communicates between the systems.
All communication between the systems is performed by the cxio program.

The distribution of the parts of speech and verb constructions helps identify overuse of par
ticular constructions. Although the measures used by STYLE are crude, they do point out
problem areas. For each category, STYLE reports a percentage and a raw count. In addition
to looking at the percentage, the user may find it useful to compare the raw count with the
number of sentences. If, for example, the number of infinitives is almost equal to the number
of sentences, then many of the sentences in the document are constructed like the first and
third in the preceding example. The user may want to transform some of these sentences into
another form. Some of the implications of the word usage measures are discussed below.

Verbs are measured in several different ways to try to determine what types of verb construc-
tions are most frequent in the document. Technical writing tends to contain many pas
sive verb constructions and other usage of the verb "to be". The category of verbs
labeled "tobe" measures both passives and sentences of the form:

subject tobe predicate

In counting verbs, whole verb phrases are counted as one verb. Verb phrases containing
auxiliary verbs are counted in the category "aux". The verb phrases counted here are
those whose tense is not simple present or simple past. It might eventually be useful to
do more detailed measures of verb tense or mood. Infinitives are listed as "inf'. The
percentages reported for these three categories are based on the total number of verb
phrases found. These categories are not mutually exclusive; they cannot be added, since,
for example, "to be going" counts as both "tobe" and "inf". Use of these three types of
verb constructions varies significantly among authors.

STYLE reports passive verbs as a percentage of the finite verbs in the document. Most
style books warn against the overuse of passive verbs. Coleman [11] has shown that sen
tences with active verbs are easier to learn than those with passive verbs. Although the
inverted object-subject order of the passive voice seems to emphasize the object,
Coleman's experiments showed that there is little difference in retention by word posi
tion. He also showed that the direct object of an active verb is retained better than the
subject of a passive verb. These experiments support the advice of the style books sug
gesting that writers should try to use active verbs wherever possible. The flag "-p"
causes STYLE to print all sentences containing passive verbs.

Pronouns
add cohesiveness and connectivity to a document by providing back-reference. They are
often a short-hand notation for something previously mentioned, and therefore connect

5-168 The Style and Diction Programs

the sentence containing the pronoun with the word to which the pronoun refers.
Although there are other mechanisms for such connections, documents with no pronouns
tend to be wordy and to have little connectivity.

Adverbs
can provide transition between sentences and order in time and space. In performing
these functions, adverbs, like pronouns, provide connectivity and cohesiveness.

Conjunctions
provide parallelism in a document by connecting two or more equal units. These units
may be whole sentences, verb phrases, nouns, adjectives, or prepositional phrases. The
compound and compound-complex sentences reported under sentence type are parallel
structures. Other uses of parallel structures are indicated by the degree that the number
of conjunctions reported under word usage exceeds the compound sentence measures.

Nouns and Adjectives.
A ratio of nouns to adjectives near unity may indicate the over-use of modifiers. Some
technical writers qualify every noun with one or more adjectives. Qualifiers in phrases
like "simple linear single-link network model" often lend more obscurity than precision
to a text.

N ominalizations
are verbs that are changed to nouns by adding one of the suffixes "ment", "ance",
"ence", or "iOh". Examples are accomplishment, admittance, adherence, and abbrevia
tion. When a writer transforms a nominalized sentence to a non-nominalized sentence,
she/he increases the effectiveness of the sentence in several ways. The noun becomes an
active verb and frequently one complicated clause becomes two shorter clauses. For
example,

Their inclusion of this provision is admission of the importance of the system.
When they included this provision, they admitted the importance of the system.

Coleman found that the transformed sentences were easier to learn, even when the
transformation produced sentences that were slightly longer, provided the transforma
tion broke one clause into two. Writers who find their document contains many nomi
nalizations may want to transform some of the sentences to use active verbs.

2.5. Sentence openers

Another agreed upon principle of style is variety in sentence openers. Because STYLE
determines the type of sentence opener by looking at the part of speech of the first word in
the sentence, the sentences counted under the heading "subject opener" may not all really
begin with the subject. However, a large percentage of sentences in this category still indi
cates lack of variety in sentence openers. Other sentence opener measures help the user
determine if there are transitions between sentences and where the subordination occurs.
Adverbs and conjunctions at the beginning of sentences are mechanisms for transition
between sentences. A pronoun at the beginning shows a link to something previously men
tioned and indicates connectivity.

The location of subordination can be determined by comparing the number of sentences
that begin with a subordinator with the number of sentences with complex clauses. If few
sentences start with subordinate conjunctions then the subordination is embedded or at the
end of the complex sentences. For variety the writer may want to transform some sentences
to have leading subordination.

The last category of openers, expletives, is commonly overworked in technical writing.
Expletives are the words "it" and "there", usually with the verb "to be", in constructions
where the subject follows the verb. For example,

The Style and Diction Programs 5-169

There are three streets used by the traffic.
There are too many users on this system.

This construction tends to emphasize the object rather than the subject of the sentence. The
flag "-e" will cause STYLE to print all sentences that begin with an expletive.

3. DICTION

The program DICTION prints all sentences in a document containing phrases that are
either frequently misused or indicate wordiness. The program, an extension of Aho's FGREP
[12] string matching program, takes as input a file of phrases or patterns to be matched and a
file of text to be searched. A data base of about 450 phrases has been compiled as a default
pattern file for DICTION. Before attempting to locate phrases, the program maps upper case
letters to lower case and substitutes blanks for punctuation. Sentence boundaries were
deemed less critical in DICTION than in STYLE, so abbreviations and other uses of the char
acter "." are not treated specially. DICTION brackets all pattern matches in a sentence with
the characters "[" "]" . Although many of the phrases in the default data base are correct in
some contexts, in others they indicate wordiness. Some examples of the phrases and sug
gested alternatives are:

Phrase
a large number of
arrive at a decision
collect together
for this reason
pertaining to
through the use of
utilize
with the exception of

Alternative
many
decide
collect
so
about
by or with
use
except

Appendix 2 contains a complete list of the default file. Some of the entries are short forms of
problem phrases. For example, the phrase "the fact" is found in all of the following and is
sufficient to point out the wordiness to the user:

Phrase
accounted for by the fact that
an example of this is the fact that
based on the fact that
despite the fact that
due to the fact that
in light of the fact that
in view of the fact that
notwithstanding the fact that

Alternative
caused by
thus
because
although
because
because
since
although

Entries in Appendix 2 preceded by "-" are not matched. See Section 7 for details on the use
of"-".

The user may supply her/his own pattern file with the flag "-f patfile". In this case the
default file will be loaded first, followed by the user file. This mechanism allows users to
suppress patterns contained in the default file or to include their own pet peeves that are not
in the default file. The flag "-n" will exclude the default file altogether. In constructing a
pattern file, blanks should be used before and after each phrase to avoid matching substrings
in words. For example, to find all occurrences of the word "the", the pattern " the " should
be used. The blanks cause only the word "the" to be matched and not the string "the" in
words like there, other, and therefore. One side effect of surrounding the words with blanks is
that when two phrases occur without intervening words, only the first will be matched.

5-170 The Style and Diction Programs

4. EXPLAIN

The last program, EXPLAIN, is an interactive thesaurus for phrases found by DIC-
TION. The user types one of the phrases bracketed by DICTION and EXPLAIN responds
with suggested substitutions for the phrase that will improve the diction of the document.

Table 1
Text Statistics on 20 Technical Documents

:£ariahle minimum maximum mean standard de:£iation
Readability Kincaid 9.5 16.9 13.3 2.2

automated 9.0 17.4 13.3 2.5
Cole-Liau 10.0 16.0 12.7 1.8
Flesch 8.9 1'.Z.O 144 22

sentence info. av sent length 15.5 30.3 21.6 4.0
av word length 4.61 5.63 5.08 .29
av nonfunction length 5.72 7.30 6.52 .45
short sent 23% 46% 33% 5.9
long sent '.Z'!ln 20% 14% 29

sentence types simple 31% 71% 49% 11.4
complex 19% 50% 33% 8.3
compound 2% 14% 7% 3.3
compound-complex 2% 19% 10% 4.8

verb types to be 26% 64% 44.7% 10.3
auxiliary 10% 40% 21% 8.7
infinitives 8% 24% 15.1% 4.8
passh~es 12% 50% 29% 93

word usage prepositions 10.1% 15.0% 12.3% 1.6
conjunction 1.8% 4.8% 3.4% .9
adverbs 1.23 5.03 3.43 1.0
nouns 23.63 31.63 27.83 1.7
adjectives 15.43 27.13 21.13 3.4
pronouns 1.23 8.43 2.53 1.1
nominalizations 2% 5% 33% 8

sentence openers prepositions 6% 193 123 3.4
adverbs 03 203 93 4.6
subject 56% 853 703 8.0
verbs 0% 43 13 1.0
subordinating conj 1% 123 53 2.7
conjunctions 0% 43 03 1.5
expletives 0% 63 23 1.7

5. Results

5.1. STYLE

To get baseline statistics and check the program's accuracy, we ran STYLE on 20 techni
cal documents. There were a total of 3287 sentences in the sample. The shortest document
was 67 sentences long; the longest 339 sentences. The documents covered a wide range of sub
ject matter, including theoretical computing, physics, psychology, engineering, and affirmative
action. Table 1 gives the range, median, and standard deviation of the various style measures.
As you will note most of the measurements have a fairly wide range of values across the sam
ple documents.

As a comparison, Table 2 gives the median results for two different technical authors, a
sample of instructional material, and a sample of the Federalist Papers. The two authors

The Sty le and Diction Programs 5-171

show similar styles, although author 2 uses somewhat shorter sentences and longer words than
author 1. Author 1 uses all types of sentences, while author 2 prefers simple and complex sen
tences, using few compound or compound-complex sentences. The other major difference in
the styles of these authors is the location of subordination. Author 1 seems to prefer embed
ded or trailing subordination, while author 2 begins many sentences with the subordinate
clause. The documents tested for both authors 1 and 2 were technical documents, written for
a technical audience. The instructional documents, which are written for craftspeople, vary
surprisingly little from the two technical samples. The sentences and words are a little longer,
and they contain many passive and auxiliary verbs, few adverbs, and almost no pronouns.
The instructional documents contain many imperative sentences, so there are many sentence
with verb openers. The sample of Federalist Papers contrasts with the other samples in
almost every way.

Table 2
Text Statistics on Single Authors

-·--·----·-----·- yariable author 1 author 2 inst. _EED__

readability Kincaid 11.0 10.3 10.8 16.3
automated 11.0 10.3 11.9 17.8
Coleman-Liau 9.3 10.1 10.2 12.3

__ _Fle.scll_ 103 10'.Z 10.1 15.0
sentence info av sent length 22.64 19.61 22.78 31.85

av word length 4.47 4.66 4.65 4.95
av nonfunction length 5.64 5.92 6.04 6.87
short sent 35% 43% 35% 40%
long sent 18% 15% 16% 21%

sentence types simple 36% 43% 40% 31%
complex 34% 41% 37% 34%
compound 13% 7% 4% 10%
compound-complex 16% 8% 14% 25%

verb type to be 42% 43% 45% 37%
auxiliary 17% 19% 32% 32%
infinitives 17% 15% 12% 21%
passiYes 20% 19% 36% 20%

word usage prepositions 10.0% 10.8% 12.3% 15.9%
conjunctions 3.2% 2.4% 3.9% 3.4%
adverbs 5.053 4.6% 3.5% 3.7%
nouns 27.7% 26.5% 29.1% 24.9%
adjectives 17.0% 19.0% 15.4% 12.4%
pronouns 5.33 4.3% 2.1% 6.5%
nominalizations 1% 2% 2% 3%

sentence openers prepositions 113 143 63 53
adverbs 9% 9% 6% 43
subject 65% 593 543 663
verb 3% 2% 143 23
subordinating conj 83 14% 113 3%
conjunction 13 03 03 3%
expletives 3% 33 03 33

5.2. DICTION

In the few weeks that DICTION has been available to users about 35,000 sentences have
been run with about 5,000 string matches. The authors using the program seem to make the
suggested changes about 50-753 of the time. To date, almost 200 of the 450 strings in the

5-172 The Style and Diction Programs

default file have been matched. Although most of these phrases are valid and correct in some
contexts, the 50-753 change rate seems to show that the phrases are used much more often
than concise diction warrants.

6. Accuracy

6.1. Sentence Identification

The correctness of the STYLE output on the 20 document sample was checked in detail.
STYLE misidentified 129 sentence fragments as sentences and incorrectly joined two or more
sentences 75 times in the 3287 sentence sample. The problems were usually because of non
standard formatting commands, unknown abbreviations, or lists of non-sentences. An impos
sibly long sentence found as the longest sentence in the document usually is the result of a
long list of non-sentences.

6.2. Sentence Types

Style correctly identified sentence type on 86.5 3 of the sentences in the sample. The
type distribution of the sentences was 52.5 3 simple, 29.9 3 complex, 8.5 3 compound and 9 3
compound-complex. The program reported 49.53 simple, 31.9% complex, 83 compound and
10.43 compound-complex. Looking at the errors on the individual documents, the number of
simple sentences was under-reported by about 4 3 and the complex and compound-complex
were over-reported by 3 3 and 2 3, respectively. The following matrix shows the programs
output vs. the actual sentence type.

Actual
Sentence

Type

simple
complex
compound
comp-complex

Program Results
simple complex

1566 132
47 892
40 6

0 52

compound
49
6

207
5

comp-complex
17
65
23

249

The system's inability to find imperative sentences seems to have little effect on most of
the style statistics. A document with half of its sentences imperative was run, with and
without the imperative end marker. The results were identical except for the expected errors
of not finding verbs as sentence openers, not counting the imperative sentences, and a slight
difference (1 3) in the number of nouns and adjectives reported.

6.3. Word Usage

The accuracy of identifying word types reflects that of PARTS, which is about 95 3
correct. The largest source of confusion is between nouns and adjectives. The verb counts
were checked on about 20 sentences from each document and found to be about 98 3 correct.

7. Technical Details

7.1. Finding Sentences

The formatting commands embedded in the text increase the difficulty of finding sen
tences. Not all text in a document is in sentence form; there are headings, tables, equations
and lists, for example. Headings like "Finding Sentences" above should be discarded, not
attached to the next sentence. However, since many of the documents are formatted to be
phototypeset, and contain font changes, which usually operate on the most important words in
the document, discarding all formatting commands is not correct. To improve the programs'
ability to find sentence boundaries, the deformatting program, DEROFF [13], has been given
some knowledge of the formatting packages used on the UNIX operating system. DEROFF
will now do the following:

The Style and Diction Programs 5-173

1. Suppress all formatting macros that are used for titles, headings, author's name, etc.

2. Suppress the arguments to the macros for titles, headings, author's name, etc.

3. Suppress displays, tables, footnotes and text that is centered or in no-fill mode.

4. Substitute a place holder for equations and check for hidden end markers. The place
holder is necessary because many typists and authors use the equation setter to change
fonts on important words. For this reason, header files containing the definition of the
EQN delimiters must also be included as input to STYLE. End markers are often hid
den when an equation ends a sentence and the period is typed inside the EQN delim
iters.

5. Add a "." after lists. If the flag -ml is also used, all lists· are suppressed. This is a
separate flag because of the variety of ways the list macros are used. Often, lists are sen
tences that should be included in the analysis. The user must determine how lists are
used in the document to be analyzed.

Both STYLE and DICTION call DEROFF before they look at the text. The user should
supply the -ml flag if the document contains many lists of non-sentences that should be
skipped.

7.2. Details of DICTION

The program DICTION is based on the string matching program FGREP. FGREP
takes as input a file of patterns to be matched and a file to be searched and outputs each line
that contains any of the patterns with no indication of which pattern was matched. The fol
lowing changes have been added to FGREP:

1. The basic unit that DICTION operates on is a sentence rather than a line. Each sen
tence that contains one of the patterns is output.

2. Upper case letters are mapped to lower case.

3. Punctuation is replaced by blanks.
i

4 All pattern matches in the sentence are found and surrouritled with "[" "]" .

5. A method for suppressing a string match has been added. Any pattern that begins with
"~"will not be matched. Because the matching algorithm finds the longest substring, the
suppression of a match allows words in some correct ~bntexts not to be matched while
allowing the word in another context to be found. For example, the word "which" is
often incorrectly used instead of "that" in restrictive clauses. However, "which" is usu
ally correct when preceded by a preposition or ",". The default pattern file suppresses
the match of the common prepositions or a double blank followed by "which" and there
fore matches only the suspect uses. The double blank accounts for the replaced comma.

8. Conclusions

A system of writing tools that measure some of the objective characteristics of writing
style has been developed. The tools are sufficiently general that they may be applied to docu
ments on any subject with equal accuracy. Although the measurements are only of the surface
structure of the text, they do point out problem areas. In addition to helping writers produce
better documents, these programs may be useful for studying the writing process and finding
other formulae for measuring readability.

5-174 The Style and Diction Programs

References

1. L. L. Cherry, "PARTS - A System for Assigning Word Classes to English Text," submit
ted Communications of the ACM.

2. B. W. Kernighan and J. R. Mashey, "The UNIX Programming Environment," Software
- Practice & Experience , 9, 1-15 (1979).

3. G. R. Klare, "Assessing Readability," Reading Research Quarterly, 1974-1975, 10 , 62-
102.

4. E. A. Smith and P. Kincaid, "Derivation and validation of the automated readability
index for use with technical materials," Human Factors, 1970, 12, 457-464.

5. J.P. Kincaid, R. P. Fishburne, R. L. Rogers, and B. S. Chissom, "Derivation of new rea
dability formulas (Automated Readability Index, Fog count, and Flesch Reading Ease
Formula) for Navy enlisted personnel," Navy Training Command Research Branch
Report 8-75, Feb., 1975.

6. M. Coleman and T. L. Liau, "A Computer Readability Formula Designed for Machine
Scoring," Journal of Applied Psychology, 1975, 60, 283-284.

7. R. Fl~sch, "A New Readability Yardstick," Journal of Applied Psychology, 1948, 32,
221-233.

8. E. U. Coke, private communication.

9. D. W. Ewing, Writing for Results, John Wiley & Sons, Inc., New York, N. Y. (1974).

10. G. Leggett, C. D. Mead and W. Charvat, Prentice-Hall Handbook for Writers, Seventh
Edition, Prentice-Hall Inc~, Englewood Cliffs, N. J. (1978).

11. E. B. Coleman, "Learning of Prose Written in Four Grammatical Transformations,"
Journal of Applied Psychology, 1965, vol. 49, no. 5, pp. 332-341.

12 A. V. Aho and M. J. Corasick, "Efficient String Matching: an aid to Bibliographic
Search," Communications of the ACM, 18, (6), 333-340, June 1975.

13. Bell Laboratories, "UNIX TIME-SHARING SYSTEM: UNIX PROGRAMMER'S
MANUAL," Seventh Edition, Vol. 1 (January 1979).

a. d.
A.M.
a.m.
b. c.
Ch.
ch.
ckts.
dB.
Dept.
dept.
Depts.
depts.
Dr.
Drs.
e.g.
Eq.
eq.
et al.
etc.
Fig.
fig.
Figs.
figs.
ft.
i. e.
in.
Inc.
Jr.
jr.
mi.
Mr.
Mrs.
Ms.
No.
no.
Nos.
nos.
P.M.
p.m.
Ph.D.
Ph. d.
Ref.
ref.
Refs.
refs.
St.
vs.
yr.

The Style and Diction Programs 5-175

Appendix 1

STYLE Abbreviations

5-176 The Style and Diction Programs

a great. deal of
a large number of
a lot of
a majority of
a need for
a number of
a particular preference for
a preference for
a small number of
a tendency to
a hove mentioned
absolutely complete
absolutely essential
accomplished
accordingly
activate
actual
added increments
adequate enough
advent
afford an opportunity
aggregate
all of
all throughout
along the line
an indication of
analyzation
and etc
and or
another additional
any and all
arrive at a
as a matter of fact
as a method of
as good or better than
as of now
as per
as regards
as related to
as to
assistance
assistance to
assistance to
assuming that
at a later date
at about
at above
at all times
at an early date
at below
at the present
at the time when
at this point in time
at this tjme
at which tim~
at your earliest convenience
authorization
awful
basic fundamentals
basically
be cognizant of
being as
~eing that
brief in duration
bring to a conclusion
but that
but what
by means of
by the use of
carry out experiments
center about
center around

Appendix 2

Default DICTION Patterns

center portion
check into
check on
check up on
circle around
close proximity
collaborate together
collect together
combine together
come to an end
commence
common accord
compensation
completely eliminated
comprise
concerning
conduct an investigation of
conjecture
connect up
consensus of opinion
consequent result
consolidate together
construct
contemplate
continue on
continue to remain
could of
count up
couple together
debate about
decide on
deleterious effect
demean
demonstrate
depreciate in value
deserving of
desirable benefits
desirous of
different than
discontinue
disutility
divide up
doubt but
due to
duly noted
during the time that
each and every
early beginnings
~tfectuate

emotional feelings
empty out
enclosed herein
enclosed herewith
end result
end up
e~deavor
enter in
enter into
enthused
entirely complete
equally good as
essentially
eventuate
every now and then
exactly identical
experiencing difficulty
fabricate
face up to
facilitate
facts and figures
fast in action
fearful of

fearful that.
few in number
file away
final completion
final ending
final outcome
final result
finalize
find it interesting to know
first and foremost
first beginnings
first initiated
firstly
follow after
following after
for the purpose of
for the reason that
for the simple reason that
for this reason
for your information
from the point of view of
full and complete
generally agreed
good and
got to
gratuitous
greatly minimize
head up
help hut
helps in the production of
hopeful
if and when
if at all possible
impact
implement
important essentials
importantly
in a large measure
in a position to
in accordance
in advance of
in agreement with
in all cases
in back of
in behalf of
in behind
in between
in case
in close proximity
in conflict with
in conjunction with
in connection with
in fact
in large measure
in many cases
in most cases
in my opinion I think
in order to
in rare cases
in reference to
in regard to
in regards to
in relation with
in short supply
in size
in terms of
in the amount of
in the case of
in the course of
in the event
in the field of

in the form of
in the instance of
in the interim
in the last analysis
in the matter of
in the near future
in the neighborhood of
in the not too distant future
in the proximity of
in the range of
in the same way as described
in the shape of
in the vicinity of
in this case
in view of the
in violation of
inasmuch as
indicate
indicative of
initialize
initiate
injurious to
inquire
inside of
institute a
intents and purposes
intermingle
irregardless
is defined as
is used to control
is when
is where
it is incumbent
it stands to reason
it was noted that if
joint cooperation
joint partnership
just exactly
kind of
know about
last but not least
later on
leaving out of consideration
liable
link up
literally
little doubt that
lose out on
lots of
main essentials
make a
make adjustments to
make an
make application to
make contact with
make mention of
make out a list of
make the acquaintance of
make the adjustment
manner
maximum possible
meaningful
meet up with
melt down
melt up
methodology
might of
minimize as far as possible
minor importance
miss out on
modification

more preferable
most unique
must of
mutual cooperation
ne<;essary requisite
necessitate
need for
nice
not he un
not in a position to
not of a high order of accuracy
not un
notwithstanding
of considerable magnitude
of that
of the opinion that
otf of
on a few occasions
on account of
on behalf of
on the grounds that
on the occasion
on the part of
one of the
open up
operates to correct
outside of
over with
overall
past history
perceptive of
perform a measurement
perform the measurement
permits the reduction of
personalize
pertaining to
physical size
plan ahead
plan for the future
plan in advance
plan on
present a conclusion
present a report
presently
prior to
prioritize
proceed to
procure
productive of
prolong the duration
protrude out from
provided that
pursuant to
put to use in
range all the way from
reason is because
reason why
recur again
reduce down
refer hack
reference to this
reflective of
regarding
regretful
reinitiate
relative to
repeat. again
representative of
resultant. effect
resume again
retreat hack
return again
rel.urn hack
revert hack
seal off

seems apparent
send a communication
short space of time
should of
single unit
situation
so as to
sort of
spell out
still continue
still remain
subsequent
substantially in agreement
succeed in
suggestive of
superior than
surrounding circumstances
take appropriate
take cognizance of
take into consideration
termed as
terminate
termination
the author
the authors
the case that
the fact
the foregoing
the foreseeable future
the fullest possible extent
the majority of
the nature
the necessity of
the only ditference being that
the order of
the point that
the truth is
there are not many
through the medium of
through the use of
throughout the entire
time interval
to summarize the above
total effect of all this
totality
transpire
true facts
try and
ultimate end
under a separate cover
under date of
under separate cover
under the necessity to
underlying purpose
undertake a study
uniformly consistent
unique
until suc·h time as
up to this time
upshot
utilize
very
very complete
very unique
vital
which
with a view to
with reference to
with regard to
with the exception of
with the object of
with the result that.
with this in mind, it is clear that.
within the realm of possibility
without further delay

The Style and Diction Programs 5-177

worth while
would of

ing behavior
wise
- which
- about which
- after which
- at which
- between which
- by which
- for which
- from which
- in which
- into which
- of which
- on which
- on which
- over which
- through which
- to which
- under which
- upon which
- with which
- without which
"clockwise
"likewise
"otherwise

Introduction 6-1

PART 6: MISCELLANEOUS

This part contains articles you may find helpful on unsupported software.

Learn
The article on Learn, by Kernighan and Lesk, tells how you can create and use computer
aided-instruction (CAI) courses. Read "LEARN - Computer-Aided Instruction on UNIX" if
you plan to develop CAI courses. This article is not for people new to ULTRIX-32 or those
who want help in using a CAI course that has already been developed. The Learn utility is
available on ULTRIX-32, but it is not supported.

Rogue

When you feel comfortable with the ULTRIX-32 system, you may want to play Rogue. "A
Guide to the Dungeons of Doom" is the first step on an adventure that will test your courage
and intuition. With the help of the guide, you may be able to return from the dungeons of
doom. Rogue and a variety of other games are available on the UL TRIX-32 system, but they
are not supported.

Berkeley Fonts
The "Berkeley Font Catalogue" shows sample raster fonts developed at Berkeley. These fonts
are available on the ULTRIX-32 system, but are not supported.

PDP-11 Assembler

The "UNIX Assembler Reference Manual" included in this part describes the assembly
language for the UNIX system that runs on the PDP-11. The PDP-11 assembler is not avail
able on the ULTRIX-32 system.

LEARN - Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan

Michael E. Lesk

Bell Laboratories
Murray Hill. New Jersey 0797 4

Learn 6-3

1. Introduction.
Learn is a driver for CAI scripts. It is intended to permit the easy composition of lessons

and lesson fragments to teach people computer skills. Since it is teaching the same system on
which it is implemented. it makes direct use of UNtxt facilities to create a controlled UNIX
environment. The system includes two main parts: (1) a driver that interprets the lesson
scripts; and (2) the lesson scripts themselves. At present there are six scripts:

ina:

basic file handling commands
the UNIX text editor ed

advanced ftle handling
the eqn language for typing mathematics
the "-ms,. macro package for document formatting
the C programming language

The purported advantages of CAI scripts for training in computer skills include the follow-

(a) students are forced to perform the ~xerc:ises that :.re in fact the t>asis of training in
any case;

(b) students receive immediate f eedbac:k and confirmation of progress;
(c) students may progress at their own rate;
(d) no schedule requirementS are imposed; students may study at any time convenient

for them;
(e) the lessons may be improved individually and the improvements are immediately

available to new users;
(C) since the student has access to a computer for the CAI script there is a place to do

exercises;
(g) the use o(high technology wilt improve student motivation and the interest of their

management.
Opposed to this. of course. is the absence of anyone to whom the student may direct questions.
Ir CAI is used without a .. counselor,. or other assistance, it should properly be compared to a
textbook. lecture series. or taped course, rather than to a seminar. CAI has been used for
many years in a variety of educational areas.I· 2. 3 The use of a computer to teach itself, how
ever. offers unique advantages. The skills develop.ed to get through the script are exactly those
needed to use the computer. there is no waste effort.

The s.;1ii)tS written sv r;u ar~ basad on :iorn; f amilfar assurn;>tic::s :.bo~t education~ these

tUNIX is a Trademark of Bell Laboracories.

6-4 Learn

assumptions are outlined in the next section. The remaining sections describe the operation of
the script driver and the particular scripts now available. The driver puts few restrictions on the
script writer. but the current scripts are of a rather rigid and stereotyped form in ac:cordanc:e
with the theory in the next section and practical limitations.

2. Educational Assumptions and Design.
First. the way to teach people how to do something is to have them do it. Scripts should

not contain long pieces or explanation: they should instead frequently ask the student to do
some task. So teaching is always by example: the typical script fragment shows a small example
of some technique and then asks the user to either 'repeat that example or produce a variation
on it. All are intended to be easy enough that most students will get most -questions right. rein·
forcing the desired oehavior.

Most lessons fall into one of three types. The simplest presents a lesson and asks for a
yes or no answer to a question. The student is given a chante to experiment before replying.
The script checks for the correct reply. Problems of this form are sparingly used.

The second type asks for a word or number as an answer. For example a lesson on files
might say

How many files are there in the current directory? Type .. answer N'•, where N is the number
offiks.

The student is expected to respond (perhaps after experimenting) with

answer 17
or whatever. Surprisingly often. however. the idea of a substitutable argument (i.e.. replacing
N by 17) is difficult for non-programmer students. so the first few such lessons need real care.

The third type or lesson is open-ended - a task is set for the student. appropriate parts or
the input or output are monitored. and the student types ready when the task is done. Figure 1
shows a sample dialog that illustrates the last of these. using two lessons about the cat (con·
catenate. i.e .• print) command taken from early in the script that teaches file handling. Most
learn lessons are of this form.

After each correct response the computer congratulates the student and indicates the les
son number that has just been completed. permitting the student to restart the script after that
lesson. If the answer is wrong. the student is otf ered a chance to repeat the lesson. The
"speed'" rating of the student (explained in section S) is given after the lesson number when
the lesson is completed successfully~ it is printed only for the aid of script authors checking out
possible errors in the lessons.

It is assumed that there is no foolproof way to determine if the student truly .. under·
stands .. what he or she is doing: ac:cordingly. the current learn scripts only measure perfor·
mance. not comprehension. If the student can perform a given task. that is deemed to be
"learning. n 4

The main point of using the computer is that what the student does is checked for
correctness immediately. Unlike many CAI scripts. however, these scripts provide few facilities
for dealing with wrong answers. In practice. if most of the answers are not right the script is a
failure: the universal solution to student error is to provide a new. easier script. Anticipating
possible wrong answers is an endless job., and it is really easier as well as better to provide a
simpler script.

Along with this goes the assumption that anything can be taught to anybody if it can be
brc~en into sufficiently !ma!! p?~e!. Anything n~t absorbea !n a s!ng!e chtm.!c !s just ~'Jbcti·
vided.

To avoid boring the faster students. however. an etfort is made: in the files and editor
scripts to provide three tracks of different difficulty. The fastest sequence of lessons is aimed at
roughly the bulk and speed or a typical tutorial manual and should be adequate for review and
for well-prepared students. The next track is intended for most users and is roughly twice as

Figure 1: Sample dialog from basic: files script

(Student responses in italics~ ·s· is the prompt)

A tile can be printed on your terminal
by using the "cat" command. Just say
"cat tile" where "file" is the file name.
For example. there is a file named
"food" in this directory. List it
by saying "cat food"; then type "ready".
S cat/ood

this is the file
named food.

S nady

Good. Lesson 3.Ja (1)

Of course, you can print any tile with "cat".
In particular. it is common to first use
is• to find the name of a file and then "cat"
to print it. Note the difference between
is·. which tells you the name of the file,
and "cat". which tells you. the contents.
One ftle in the current directory is named for
a President. Print the tile, then type "ready".
S cat Pnsident
cac can't open President
S ready

Sorry, that's not right. Do you want to try again? yes
Try the problem again.
s Is
.ocopy
Xl
roosevelt
$ cat roosevelt

this file is named roosevelt
and contains three lines of
text.

S ready

Good. Lesson 3.Jb (0)

The "cat" command can also print several files
at once. In fact, it is named "cat" as an abbreviation
for "concatenate"

Learn 6-5

long. Typically. for example. the fast track might present an idea and ask for a variation on the
example shown; 1he normal track wiii first asic the ~tudent to repeat 1he exampie tha1 was
shown before attempting a variation. The third and slowest track, which is often three or four
times the length of the fast track. is intended to be adequate for anyone. (The lessons of Fig
ure 1 are from the third track.) The multiple tracks also mean that a student repeating a course
is unlikely to hit the same series of lessons: this makes it profitable for a shaky user to back up

6-6 Learn

and try again .. and many students have done so.
The tracks are not completely distinct, however. Depending on the number of correct

answers the student has given for the last few lessons, the program may switch tracks. The
driver is actually capable gf following an arbitrary directed graph of lesson sequences .. as dis
cussed. in section 5. Some more structured arrangement, however, is used in all current scripts
to aid the script writer in organizing the material into lessons. It is sufficiently difficult to wri~e
lessons that the three·trac:k · theory is not followed very closely except in the files and editor
scripts. Accordingly, in some cases, the fast track is produced merely by skipping lessons from
the slower track. In others, there is essentially only one track.

The main reason for using the learn program rather than simply writing the same material
as a workbook is not the selection of tracks, but actual hands-on experience. Learning by doing
is much more etf ective than pencil and paper exercises.

Learn also provides a mechanical check on performance. The first version in fact would
not let the student proceed unless it received correct answers to the questions it set and it
would not tell a student the right answer. This somewhat Draconian approach has been
moderated in version 2. Lessons are sometimes badly worded or even just plain wrong: in such
cases, the student has no recourse. But if a student is simply unable to complete one lesson,
that should not prevent access to the rest. Accordingly, the current version of /eQrn allows the
student to skip a lesson that he cannot pass; a Hno" answer to the uDo you want to try again?"
question in Figure 1 will pass to the next lesson. It is still true that learn will not tell the stu·
dent the right answer.

Of course, there are valid objections to the assumptions above. In particular, some stu·
dents may object to not u11i:terstanding what they are doing: and the procedure of smashing
everything into small pieces may provoke the retort "you can't cross a ditch in two jumps."
Since writing CAI scripts is considerably more tedious than ordinary manuals, however, it is
safe to assume that there will always be alternatives. to the scripts as a way of learning. In fact,
for a ref erenc:e manual of 3 or 4 pages it would not be surprising to have a tutorial manual of
20 pages and a (multi•trac:k) script of 100 pages. Thus the reference manual will exist long
before the scripts.

J. Scripts.
As mentioned above., the present scripts try at most to rollow a three-track theory. Thus

little of the potential complexity of the possible directed graph is employed., since care must be
taken in lesson constructiQn to see that every necessary fact is presented in every possible path
through the units. In addition. it is desirable that every unit have alternate successors to deal
with student errors.

In most existing courses., the first few lessons are devoted to checking prerequisites. For
example, before the stuqent is allowed to proceed through the editor script the script verifies
that the student understands files and is able to type. It is fell that the sooner lack of student
preparation is detected., the easier it will be on the student. Anyone proceeding through the
scripts should be getting mostly correct answers; otherwise, the system will be unsatisfactory
both because the wrong ~~bits are being learned and because the scripts make little effort to
deal with wrong answers.""' Unprepared students should not be encouraged to continue with
scripts.

There are some preliminary items whic:h the student must know before any scripts can be
tried. In panicular, the student mµst know how to connect to a UNIX system, set the terminal
properly, log in. and execute simple commands (e.g., learn itselO. In addition, the character
erase and. line kill conventions (#and @) should be known. It is hard to see how this much
could be t~ught by computer-aided instruction, since a student who does not know these basic
skills will not be able to run the learning program. A brief description on paper is provided
(see Appendix A), although assistance will be needed for the first few minutes. This assis·
tance, however .. need not be highly skilled.

Learn 6-7

The first script in the current set deals with tiles. It assumes the basic knowledge above
and teaches the student about the Is. car. mv. rm, cp and di/I commands. It also deals with
the 3.bbreviation characters •, ? , and [1 in file names. It does not cover pipes or I/O redirec
tion. nor does it present the many options on the Is command.

This script contains 31 lessons in the fast track: two are intended as prerequisite checks.
seven are review exercises. There are a total of 75 lessons in all three tracks, and the instruc
tional passages typed 3.t the student to begin each lesson total 4, 4 7 6 words. The average lesson
thus begins with a 60-word message. In general, the fast track lessons have somewhat longer
introductions. and the slow tracks somewhat shorter ones. The longest message is 144 words
and the shortest 14.

The second script trains students in the use of the context editor ed, a sophisticated editor
using regular expressions for searching.s All editor features except encryption, mark names and
•;' in addressing are covered. The fast track contains 2 prerequisite checks, 93 lessons, and a
review lesson. It is supplemented by 146 additional lessons in other tracks.

A comparison of sizes may be of interest. The ed description in the reference manual is
2.Si2 words long. The ed tutorial6 is 6,138 words long. The fast track throu1h the ed script is
7,407 words of explanatory messages. and the total ed script, 242 lessons, has 15,615 words.
The average ed lesson is thus also about 60 words~ the largest is 171 words and the smallest 10.
The original ed script represents about three man-weeks of effort.

The advanced tile handling script deals with Is options, 110 diversion, pipes, and support·
ing programs like pr. we, rail, spell and grep. (The basic file handling script is a prerequisite.)
It is not as refined as the first two scripts; this is reflected at least partly in the fact that it pro
vides much less of a run three-track sequence than they do. On the other hand, since it is per
ceived as .. advanced, ... it is hoped that the student will have somewhat more sophistication and
be better able to cope with it at a reasonably high l~vel of performance.

A rounh script covers the eqn language for typing mathematics. This script must be run
on a terminal capable of printing mathematics .. for instance the DASI 300 and similar Diriblo
based terminals, or the· nearly extinct Model 37 teletype. Again. this scrfpt is relatively short of
tracks: of 76 lessons, only 17 are in the second track and 2 in the third track. Most of these
provide additional pr-"ctice ror students who are having trouble in the first track.

The -ms script ror formatting macros is a short one-track only script. The macro pack
ace it describes is no longer the standard. so this script will undoubtedly be superseded in the
future. Furthermore. the linear style of a single learn script is somewhat inappropriate for the
macros, since the macro package is composed of many independent features, and few users
need all of them. It would be better to have a selection of short lesson sequences dealing with
the reatures independently.

The script on C is in a state of transition. It was originally designed to follow a tutorial on
C, but that document has since become obsolete. The current script has been partially con·
verted to follow the order of presentation in The C Programming Language.1 but this job is not
complete. The C script was never intended to teach C; rather it is supposed to be a series of
exercises for which the computer provides checking and (upon success) a suggested solution.

This combination of scripts covers much of the material which any user will need to know
to make eft"ective use of the UNIX system. With enlargement of the advanced files course to
include more on the command interpreter, there will be a r~latively complete introduction to
UNIX available via learn. Although we make no pretense that learn will replace other instruc
tional materials, it should provide a useful supplement to existing tutorials and reference manu
als.

6-8 Learn

4. Experience with Students.
Learn has been installed on many dift"erent UNIX systems. Most of the usage is on the

first two scriptS, so these are more thoroughly debugged and polished. As a (random) sample
of user experience, the learn program has been used at Bell Labs at Indian Hill for 10,500 les
sons in a four month period. About 3600 of these are in the files script, 4100 in the editor, and
1400 in advanced tiles. The passing rate is about 80%, that is. about 4 lessons are passed for
every one failed. There have been 86 distinct users of the files script. and 58 of the editor. On
our system at Murray Hill, there have been nearly 4000 lessons over four weeks that include
Christmas and New Year. Users have ranged in age from six up.

It is difficult to characterize typical sessions with the scripts; many instances exist of some
one doing one or two lessons and then logging out, as do instances of someone pausing in a
script for twenty minutes or more. In the earlier version of l~arn, the average session in the
files course took 32 minutes and covered 23 lessons. The distribution is quite broad and
skewed. however: the longest session was 130 minutes and there were five sessions shoner
than five minutes. The average lesson took about 80 seconds. These numbers are roughly typ·
ical for non-programmers; a UNIX ex pen can do the scripts at approximately 30 seconds per les
son, most of which is the system printing.

At present working throuah a section of the middle of the files script took about 1.4
seconds of processor time per lesson. and a system expert typing quickly took 1 S seconds of
real time per lesson. A novice would probably take at least a minute. Thus. as a rough approx·
imation. a UNIX system could support ten students working simultaneously with some spare
capacity.

S. The Script Interpreter.
The learn program itself merely interprets scripts. It provides facilities for the script writer

to capture student responses and their eft"ects, and simplifies the job of passing control to and
recovering control from the student. This section describes the operation and usage of the
driver program. and indicates what is required to produce a new script. Readers only interested
in the existing scripts may skip this section.

The file structure used by learn is shown in Figure 2. There is one parent directory
(named lib) containing the script data. Within this directory are subdirectories, one for each
subject in which a course is available. one for logging (named log), and one in which user sub·
directories are created (named play). The subject directory contains master copies of all les·
sons, plus any supporting material for that subject. In a given subdirectory. each lesson is a
single text tile. Lessons are usually named systematically: the file that contains lesson n is
called Ln.

When learn is executed, it makes a private directory for the user to work in, within the
learn portion of the file system. A fresh CQPY of all the files used in each lesson (mostly data
for the student to operate· upon) is made each time a student start,s a lesson, so the script writer
may .assume that everything is reinitialized each time a lesson is entered. The student directory
is deleted after each session; any permanent records must be kept elsewhere.

The script writer must provide certain basic items in eac:h lesson:
(1) the text of the lesson;

(2) the set-up commands to be executed before the user getS control;

(3) the data, if any, which the user is supposed to edit. transform. or otherwise process;

(4) the evaluating commands to be executed after the user has finished the lesson, to decide
whethl!f' the answer i~ right; and

(5) a list of possible successor lessons.

Learn tries to minimize the work of bookkeeping and installation. so that most of the effon
involved in script production is in planning lessons, writing tutorial paragraphs, and coding tests
of student performance.

lib

Figure 2: Directory structure for learn

play

ftles

editor

(other courses)

log

studentl
files ror student 1...

student2
tiles ror student2 .•.

LO. la lessons for files course
LO.lb

Learn 6-9

The basic sequence of events is as follows. First, learn creates the .working directory.
Then. for each lesson, learn reads the script for the lesson and processes it a tine at a time.
The lines in the script are: (1} commands to the script interpreter to print something. to create
a tiles, to test something, etc.; (2) text to be printed or put in a ftle; (3) other lines. which are
sent to the shell to be executed. One line in each lesson turns control over to the user; the
user can run any UNIX commands. The user mode terminates when the user types yes. 110 •

ready, or answer. At this point. the user's work is tested: if the lesson is passed. a new lesson
is selected, and if not the old one is repeated.

Let us illustrate this with the script ror the second lesson of Figure l; this is shown in
Figure 3.
Lines which begin with # are commands to the learn script inter1>reter. For example,

#print
causes printina of any text that rollows, up to the next tine that begins with a sharp.

#print flit
prints the contents of file; it is the same as cat file but has less overhead. Both forms of #print
have the added property that if a lesson is failed, the #print will not be executed the second
time .through~ this avoids annoying the student by repeating the preamble to a lesson.

#create filename
creates a ftle of the specified name, and copies any subsequent text up to a # to the file. This
is used for creating and initializing working ftles and reference data for the lessons.

#user
gives control to the student; each line he or she types is passed to the shell for execution. The
#user mode is terminated when the student types one of yes, no, ready or a11swer. At that
time, the driver resumes interpretation of the script.

t!c!!pyi!!
#uncop.vin

Anything the student types between these commands is copied onto a file called .copy. This lets
the script writer interrogate the student's responses upon regaining control.

6-10 Learn

#copyout
#uncopyout

Fiaure 3: Sample Lesson

#print
Of course, you can print any file with "cat".
In particular, it is common to first use
is" to find the name of a file and then "cat"
to print it. Note the difference between
is", which tells you the name of the tiles,
and "cat". which tells you the contents.
One file in the current directory is named for
a President. Print the ftle, then type "ready".
#create roosevelt

this ftle is named roosevelt
and contains three lines of
text.

#copyout
#user
#uncopyout
tail -3 .ocopy >XI
#cmp XI roosevelt
#101
#next
3.2b 2

Between these commands, any material typed at the student by any program is copied to the file
.ocopy. This lets the script writer interropte the etf ect of what the student typed. which true
believers in the performance theory of learning usually prefer to the student's actual input.

#pi/M
#unpi~

Normally the student input and the script commands are fed to the UNIX command interpreter
(the .. shell0

) one line at a time. This won't do if, for example, a sequence of editor commands
is provided, 'Since the input to the editor must be handed to the editor. not to the shell.
Accordingly, the material between #pi~ and #unpi~ commands is fed continuously through a
pipe so that such sequences work. If copyout is also desired the copyout brc1ckets must include
the pifM brackets.

There are several commands for setting status after the student has attempted the lesson.
#cmp file I jile2

is an in-line implementation of cmp. which, compares two files for identity.
#match stuff

The last line of the student's input is compared to stu.lf. and the success or fail status is set
according to it. Extraneous things like the word answ~r are stripped before the comparison is
made. There may be several #match tines: this provides a convenient mechanism for handling
multiple ""right .. answers. Any text up to a # on subsequent lines after a successful #match is
printed: this is illustrated in Figure 4. another sample lesson.

#bad Sti(/f

This is similar to #match. except that it corresponds to specific failure answers: this can be
used to produce hints for particular wrong answers that have been anticipated by the sci"ipt

writer.

#succetd
#fail

Figure 4: Another Sample Lesson

#print
What command will move the current line
to the end of the tile? Type
"answer COMMAND", where COMMAND is the command.
#copyin
#user
#Uncopyin
#match ms
#match .ms
"mS" is easier.
#log
#next
63.ld 10

Learn 6-11

print a message upon success or failure (as determined by some previous mechanism).

When the student types one or the 0 commands" yes, no, ready, or an~r, the driver
terminates the #user command, and evaluation or the student's work can begin. This can be
done either by the built-in commands above, such as #march and #cmp. or by status returned
by normal UNIX commands, typically grep and test. The last command should return status true
(0) if the task was done successfully and false (non-zero) otherwise; this status return tells the
driver whether or not the student has successfully passed the lesson.

Penormance c:an be logged:

#log file

writes the date, lesson, user name and speed rating, and a success/failure indication on file.
The command

#log

by itself writes the logging information in the logging directory within the learn hierarchy. and
is the normal form.

#next

is followed by a few lines, each with a successor lesson name and an optional speed rating on it.
A typical set might read

25.la 10
2S.2a S
25.Ja 2

indicating that unit 25. la is a suitable foil ow-on lesson for students with a speed rating of 1 O
units, 2S.2a for student with speed near S, and 25.Ja for speed near 2. Speed ratings are main·
tained for each session with a student; the rating is increased by one each time the student gets
a lesson right and decreased by four each time the student gets a lesson wrong. Thus the driver
tries to maintain a level such that the users get 80% right answers. The maximum rating is lim·
ited tc 10 and the minimum to 0. The initia! :-:?ting ~~ ze!"o unless the student spedfl.~s ~
different rating when starting a session.

If the student passes a lesson, a new lesson i:s selected and the process repeats. If the stu
dent fails, a false status is returned and the program reverts to the previous lesson and tries

6-12 Learn

another alternative. If it can not find another alternative, it skips forward a lesson. The stu
dent can terminate a session at any time by typing bye, which causes a graceful exit from learn.
Hanging up is the usual novice's way out.

The lessons may form an arbitrary directed graph, although the present program imposes
a limitation on cycles in that it will not present a lesson twice in the same session. If the stu
dent is unable to answer one of the exercises correctly, the driver searches for a previous lesson
with a set of alternatives as successors (following the #ne.Tt line). From the previous lesson
with alternatives one route was taken earlier. the program simply tries a different one.

It is perfectly possible to write sophisticated scripts that evaluate the student's speed of
response, or try to estimate the elegance of the answer, or provide detailed analysis of wrong
answers. Lesson writing is so tedious already. however, that most of these abilities are likely to
go unused.

The driver program depends heavily on features of the UNIX system that are not available
on many other operating systems. These include the ease of manipulating files and directories,
file redirection. the ability to use the command interpreter as just another program (even in a
pipeline), command status testing and branching, the ability to catch signals like interrupts. and
of course the pipeline mechanism itself. Although some parts of learn might be transferable to
other systems, some generality will probably be lost.

A bit of history: The first version of learn had fewer built-in commands in the driver pro·
gram, and made more use of the facilities of the UNIX system itself. For example, tile com·
parison . was done by creating a cmp process, rather than comparing the two files within learn.
Lessons were not stored as text tiles, but as archives. There was no concept of the in-line
document; even #print had to be foil owed by a file name. Thus the initialization for each les
son was to extract the archive into the workjng directory (typically 4-8 files), then #pr;n1 the
lesson text.

The combination of such thinas made learn rather slow and demanding of system
resources. The new version is about 4 or S times faster, because fewer files and processes are
created. Furthermore, it appears even faster to the user because in a typical lesson. the printing
of the message comes first .. and file setup with #create can be overlapped with printing, so that
when the program finishes printing, it is really ready for the user to type at it.

It is also a great advantage to the script maintainer that lessons are now just ordinary text
files, rather than archives. They can be edited without any difficulty, and UNIX text manipula
tion tools can be applied to them. The result has been that there is much less resistance to
going in and fixing substandard lessons.

6. Conclusions
The following observations can be made about secretaries .. typists, and other non·

programmers who have used learn:
(a) A novice must have assistance with the mechanics of communicating with the computer

to get through to the first lesson or two; once the first few lessons are passed people can
proceed on their own.

(b) The terminology used in the first few lessons is obscure to those inexperienced with com
puters. It would help if there were a low level reference card for UNIX to supplement the
existing programmer oriented bulky manual and bulky reference card.

(c) The concept of .. substitutable argument" is hard to grasp, and requires help.
(d) Th:y enjoy the SY!tem for the most pa!"!. M~!iv!t!on matters a gr~~t deal, however.
It takes an hour or two for a novice to get through the script on file handling. The total time
for a reasonably intelligent and motivated novice to proceed from ignorance to a reasonable
ability to create new files and manipulate old ones seems to be a few days. with perhaps half of
each day spent on the machine.

Learn 6-13

The normal way of proceeding has been to have students in the same room with someone
who knows the UNIX system and the scripts. Thus the student is not brought to a halt by
difficult questions. The burden on the counselor. however. is much lower than that on a
teacher of a course. Ideally. the students should be encouraged to proceed with instruction
immediately prior to their actual use of the computer. They should exercise the scripts on the
same c:omputer and the same kind of terminal that they will later use for their real work. and
their first few jobs for the computer should be relatively easy ones. Also. both training and ini
tial work should take place on days when the hardware and software are working reliably.
Rarely is all of this possible. but the closer one comes the better the result. For example. if it
is known that the hardware is shaky one day, it is better to attempt to reschedule training for
another one. Students are very frustrated by machine downtime; when nothing is happening. it
takes some sophistication and experience to distinguish an infinite loop. a slow but functioning
program, a prognim waiting for the user, and a broken machine.

One disadvantage of training with learn is that students come to depend completely on the
CAI system. and do not try to read manuals or use other learning aids. This is unfortunate. not
only because of the increased demands for completeness and accuracy of the scripts, but
because the scripts do not cover all of the UNIX system. New users should have manuals
(appropriate for their level) and re:id them; the scripts ought to be altered to recommend suit
able doc:uments and urge students to read them.

There are several other difficulties which are clearly evident. From the student's
viewpoint, the most serious is that lessons still crop up which simply can't be passed. Some
times this is due to poor explanations, but just as often it is some error in the lesson itself - a
botched setup, a missing tile, an invalid test for correctness, or some system facility that
doesn't work on the local system in the same way it did on the development system. It takes
knowledge and a c:ertain healthy arrogance on the part of the user to recognize that the fault is
not his or hers, but the script writer's. Permitting the student to get on with the next lesson
regardless does alleviate this somewhat, and the logging facilities make it easy to watch for les
sons that no one can pass, but it is still a problem.

The big1est problem with the previous learn was speed (or lack thereof) - it· was ·Often
excruciatingly slow and a significant drain on the system. The current version so far does not
seem to have that difficulty. although some seripts, notably eqn, are intrinsically slow. eqn, for
example. must do a lot of work even to print its introductions, let alone check the student
responses, but delay is perceptible in all scripts from time to time.

Another potential problem is that it is possible to break learn inadvertently, by pushing
interrupt at the wrong time, or by removing critical files, or any number of similar slips. The
defenses against such problems have steadily been improved, to the point where most students
should not notice difficulties. Of course, it will always be possible to break learn maliciously,
but this is not likely to be a problem.

One area is more fundamental - some commands are sufficiently global in their effect
that learn currently does not allow them to be executed at all. The most obvious is cd, which
changes to another directory. The prospect of a student who is teaming about directories inad
vertently moving to some random directory and removing files has deterred us from even writ
ing lessons on cd. but ultimately lessons or. such topics probably should be added.

7. Acknowledcments

We are grateful to all those who have tried learn. for we have benefited greatly from their
suggestions and criticisms. In particular. M. E. Bittrich, J. L. Blue, S. I. Feldman. P. A. Fox.
and M. J. McAlpin have provided substantial feedback. Conversations with E. z. Rothkopf also
provided many of the ideas in the system. We are also indebted to Don Jackowski for serving

• We have even known an expert proar•mmer to decide the computer was broken when he 11.ad sim!'IY left
his terminal in locaJ mO<ie. Novices 111.lve area& diffkuJties wi&h suc:h problems.

6-14 Learn

as a guinea pig for the second version, and to Tom Plum for his etforts to improve the C script.

References

1. D. L. Bitzer and D. Skaperdas., HThe ·Economics of a Large Scale Computer Based Educa·
tion System: Plato IV," pp. 17-29 in Computer Assisted Instruction, Testing and Guidance.
ed. Wayne Holtzman, Harper and Row, New York (1970).

2. D. C. Gray, J. P. Hulskamp., J. H. Kumm, S. Lichtenstein, and N. E. Nimmervoll.
''COALA • A Minicomputer CAI System, .. IEEE Trans. Education E-ZO(l), pp.73-77
(Feb. 1977).

3. P. Suppes, "On Usin1 Computers to Individualize Instruction," pp. 11-24 in The Com·
purer in American Education, ed. D. D. Bushnell and D. W. Allen, John Wiley. New York
(1967).

4. B. F. Skinner, "Why We Need Teaching Machines," Harv. Educ. Review 31, pp.377-398,
Reprinted in Educational Technology. ed. J. P. DeCec:co, Holt, Rinehart & Winston (New
York, 1964). (1961).

5. K. Thompson and D. M. Ritchie., UNIX Programmer's Manual, Bell Laboratories (1978).
See section ed (I).

6. B. W. Kernighan, A tutorial introduction to the UNIX text editor, Bell Laboratories internal
memorandum (197 4).

7. B.: W. Kernighan and D. M. Ritchie., The C Programming Language, Prentice-Hall, Engle·
wood Clitrs, New Jersey (1978).

A Guide to the Dungeons of Doom 6-17

A Guide to the Dungeons of Doom

Michael C. Toy
Kenneth C. R. C. Arnold

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California
Berkeley, California 94720

1. Introduction

You have just finished your years as a student at the local fighter's guild. After much
practice and sweat you have finally completed your training and are ready to embark upon a
perilous adventure. As a test of your skills, the local guildmasters have sent you into the
Dungeons of Doom. Your task is to return with the Amulet of Yendor. Your reward for the
completion of this task will be a full membership in the local guild. In addition, you are
allowed to keep all the loot you bring back from the dungeons.

In preparation for your journey, you are given an enchanted mace, a bow, and a quiver
of arrows taken from a dragon's hoard in the far off Dark Mountains. You are also outfitted
with elf-crafted armor and given enough food to reach the dungeons. You say goodbye to
family and friends for what may be the last time and head up the road.

You set out on your way to the dungeons and after several days of uneventful travel, you
see the ancient ruins that mark the entrance to the Dungeons of Doom. It is late at night, so
you make camp at the entrance and spend the night sleeping under the open skies. In the
morning you gather your weapons, put on your armor, eat what is almost your last food, and
enter the dungeons.

2. What is going on here?

You have just begun a game of rogue. Your goal is to grab as much treasure as you can,
find the Amulet of Yendor, and get out of the Dungeons of Doom alive. On the screen, a map
of where you have been and what you have seen on the current dungeon level is kept. As you
explore more of the level, it appears on the screen in front of you.

Rogue differs from most computer fantasy games in that it is screen oriented. Com
mands are all one or two keystrokes1 and the results of your commands are displayed graphi
cally on the screen rather than being explained in words. 2

Another major difference between rogue and other computer fantasy games is that once
you have solved all the puzzles in a standard fantasy game, it has lost most of its excitement
and it ceases to be fun. Rogue, on the other hand, generates a new dungeon every time you
play it and even the author finds it an entertaining and exciting game.

1 As opposed to pseudo English sentences.
2 A minimum screen size of 24 lines by 80 columns is required. If the screen is larger, only the 24x80 section

will be used for the map.

6-18 A Guide to the Dungeons of Doom

3. What do all those things on the screen mean?

In order to understand what is going on in rogue you have to first get some grasp of what
rogue is doing with the screen. The rogue screen is intended to replace the "You can see ... "
descriptions of standard fantasy games. Figure 1 is a sample of what a rogue screen might
look like.

3.1. The bottom line

At the bottom line of the screen are a few pieces of cryptic information describing your
current status. Here is an explanation of what these things mean:

Level This. number indicates how deep you have gone in the dungeon. It starts at one and
goes up as you go deeper into the dungeon.

Gold The number of gold pieces you have managed to find and keep with you so far.

Hp Your current and maximum hit points. Hit points indicate how much damage you can
take before you die. The more you get hit in a fight, the lower they get. You can
regain hit points by resting. The number in parentheses is the maximum number your
hit points can reach.

Str Your current strength and maximum ever strength. This can be any integer less than
or equal to 31, or greater than or equal to three. The higher the number, the stronger
you are. The number in the parentheses is the maximum strength you have attained so
far this game.

Ac Your current armor class. This number indicates how effective your armor is in stop
ping blows from unfriendly creatures. The lower this number is, the more effective the
armor.

Exp These two numbers give your current experience level and experience points. As you
do things, you gain experience points. At certain experience point totals, you gain an
experience level. The more experienced you are, the better you are able to fight and to
withstand magical attacks.

3.2. The top line

The top line of the screen is reserved for printing messages that describe things that are
impossible to represent visually. If you see a "--More--" on the top line, this means that
rogue wants to print another message on the screen, but it wants to make certain that you

+
. @. .] .

. B

- - + - -

Level: 1 Gold: 0 Hp: 12(12) Str: 16(16) Ac: 6 Exp: 1/0

Figure 1

A Guide to the Dungeons of Doom 6-19

have read the one that is there first. To read the next message, just type a space.

3.3. The rest of the screen

The rest of the screen is the map of the level as you have explored it so far. Each sym
bol on the screen represents something. Here is a list of what the various symbols mean:

@ This symbol represents you, the adventurer.

-1 These symbols represent the walls of rooms.

+ A door to/from a room.

*

The floor of a room.

The floor of a passage between rooms.

A pile or pot of gold.

A weapon of some sort.

A piece of armor.

I A flask containing a magic potion.

~ A piece of paper, usually a magic scroll.

= A ring with magic properties

I A magical staff or wand

A trap, watch out for these.

% A staircase to other levels

A piece of food.

A-Z The uppercase letters represent the various inhabitants of the Dungeons of Doom.
Watch out, they can be nasty and vicious.

4. Commands

Commands are given to rogue by typing one or two characters. Most commands can be
preceded by a count to repeat them (e.g. typing "10s" will do ten searches). Commands for
which counts make no sense have the count ignored. To cancel a count or a prefix, type
<ESCAPE>. The list of commands is rather long, but it can be read at any time during the
game with the "?" command. Here it is for reference, with a short explanation of each com
mand.

? The help command. Asks for a character to give help on. If you type a "*", it will list
all the commands, otherwise it will explain what the character you typed does.

I This is the "What is that on the screen?" command. A "/" followed by any character
that you see on the level, will tell you what that character is. For instance, typing "/@"
will tell you that the "@" symbol represents you, the player.

h,H,"H
Move left. You move one space to the left. If you use upper case "h", you will continue
to move left until you run into something. This works for all movement commands (e.g.
"L" means run in direction "l") If you use the "control" "h", you will continue moving
in the specified direction until you pass something interesting or run into a wall. You
should experiment with this, since it is a very useful command, but very difficult to
describe. This also works for all movement commands.

j Move down.

k Move up.

6-20 A Guide to the Dungeons of Doom

Move right.

y Move diagonally up and left.

u Move diagonally up and right.

b Move diagonally down and left.

n Move diagonally down and right.

t Throw an object. This is a prefix command. When followed with a direction it throws
an object in the specified direction. (e.g. type "th" to throw something to the left.)

f Fight until someone dies. When followed with a direction this will force you to fight the
creature in that direction until either you or it bites the big one.

m Move onto something without picking it up. This will move you one space in the direc
tion you specify and, if there is an object there you can pick up, it won't do it.

z Zap prefix. Point a staff or wand in a given direction and fire it. Even non-directional
staves must be pointed in some direction to be used.

s

>

<

*
I

q

r

e

w

w
T
p

R

d

c

Identify trap command. If a trap is on your map and you can't remember what type it
is, you can get rogue to remind you by getting next to it and typing """ followed by the
direction that would move you on top of it.

Search for traps and secret doors. Examine each space immediately adjacent to you for
the existence of a trap or secret door. There is a large chance that even if there is some
thing there, you won't find it, so you might have to search a while before you find some
thing.

Climb down a staircase to the next level. Not surprisingly, this can only be done if you
are standing on staircase.

Climb up a staircase to the level above. This can't be done without the Amulet of Yen
dor in your possession.

Rest. This is the "do nothing" command. This is good for waiting and healing.

Inventory. List what you are carrying in your pack.

Selective inventory.· Tells you what a single item in your pack is.

Quaff one of the potions you are carrying.

Read one of the scrolls in your pack.

Eat food from your pack.

Wield a weapon. Take a weapon out of your pack and carry it for use in combat, replac
ing the one you are currently using (if any).

Wear armor. You can only wear one suit of armor at a time. This takes extra time.

Take armor off. You can't remove armor that is cursed. This takes extra time.

Put on a ring. You can wear only two rings at a time (one on each hand). If you aren't
wearing any rings, this command will ask you which hand you want to wear it on, other
wise, it will place it on the unused hand. The program assumes that you wield your
sword in your right hand.

Remove a ring. If you are only wearing one ring, this command takes it off. If you are
wearing two, it will ask you which one you wish to remove,

Drop an object. Take something out of your pack and leave it lying on the floor. Only
one object can occupy each space. You cannot drop a cursed object at all if you are
wielding or wearing it.

Call an object something. If you have a type of object in your pack which you wish to
remember something about, you can use the call command to give a name to that type of

A Guide to the Dungeons of Doom 6-21

object. This is usually used when you figure out what a potion, scroll, ring, or staff is
after you pick it up, or when you want to remember which of those swords in your pack
you were wielding.

D Print out which things you've discovered something about. This command will ask you
what type of thing you are interested in. If you type the character for a given type of
object (e.g. "!" for potion) it will tell you which kinds of that type of object you've
discovered (i.e., figured out what they are). This command works for potions, scrolls,
rings, and staves and wands.

o Examine and set options. This command is further explained in the section on options.

"R Redraws the screen. Useful if spurious messages or transmission errors have messed up
the display.

"P Print last message. Useful when a message disappears before you can read it. This only
repeats the last message that was not a mistyped command so that you don't loose any
thing by accidentally typing the wrong character instead of "P.

<ESCAPE>
Cancel a command, prefix, or count.

Escape to a shell for some commands.

Q Quit. Leave the game.

S Save the current game in a file. It will ask you whether you wish to use the default save
file. Caveat: Rogue won't let you start up a copy of a saved game, and it removes the
save file as soon as you start up a restored game. This is to prevent people from saving a
game just before a dangerous position and then restarting it if they die. To restore a
saved game, give the file name as an argument to rogue. As in

% rogue save file

To restart from the default save file (see below), run
% rogue -r

v Prints the program version number.

Print the weapon you are currently wielding

Print the armor you are currently wearing

= Print the rings you are currently wearing

@ Reprint the status line on the message line

5. Rooms

Rooms in the dungeons are either lit or dark. If you walk into a lit room, the entire
room will be drawn on the screen-as soon as you enter. If you walk into a dark room, it will
only be displayed as you explore it. Upon leaving a room, all monsters inside the room are
erased from the scre:i;. In the darkness you can only see one space in all directions around
you. A corridor is always dark.

6. Fighting

If you see a monster and you wish to fight it, just attempt to run into it. Many times a
monster you find will mind its own business unless you attack it. It is often the case that dis
cretion is the better part of valor.

7. Objects you can find

When you find something in the dungeon, it is common to want to pick the object up.
This is accomplished in rogue by walking over the object (unless you use the "m" prefix, see

6-22 A Guide to the Dungeons of Doom

above). If you are carrying too many things, the program will tell you and it won't pick up
the object, otherwise it will add it to your pack and tell you what you just picked up.

Many bf the cdmmands that operate on objects must prompt you to find out which
object you want to use. If you change your mind and don't want to do that command after
all, just type art <ESCAPE> and the command will be aborted.

Some objects, like armor and weapons, are easily differentiated. Others, like scrolls and
potions, are given labels which vary according to type. During a game, any two of the same
kind of object with the same label are the same type. However, the labels will vary from game
to game.

When you use one of these labeled objects, if its effect is obvious, rogue will remember
what it is for you. If it's effect isn't extremely obvious you will be asked what you want to
scribble on it so you will recognize it later, or you can use the "call" command (see above).

7.1. Weapons

Some weapons, like arrows, come in bunches, but most come one at a time. In order to
use a weapon, you must wield it. To fire an arrow out of a bow, you must first wield the bow,
then throw the arrow. You can only :wield one weapon at a time, but you can't change
weapons if the one you are currently wielding is cursed. The commands to use weapons are
"w" (wield) and "t" (throw).

7.2. Armor

There are various sorts of armor lying around in the dungeon. Some of it is enchanted,
some is cursed, and some is just normal. Different armor types have different armor classes.
The lower the armor class, the more protection the armor affords against the blows of mon
sters. Here is a list of the various armor types and their normal armor class:

Type
None
Leather armor
Studded leather I Ring mail
Scale mail
Chain mail
Banded mail I Splint mail

Class
10
8
7
6
5
4

If a piece of armor is enchanted, its armor class will be lower than normal. If a suit of armor
is cursed, its armor class will be higher, and you will not be able to remove it. However, not
all armor with a class that is higher than normal is cursed.

The commands to use weapons are "W" ('\¥ear) and "T" (take off).

7 .3. Scrolls

Scrolls come with titles in an unknown tongue3• After you read a scroll, it disappears
from your pack. The command to use a scroll is "r" (read).

7.4. Potions

Potions are labeled by the color of the liquid inside the flask. They disappear after
being quaffed. The command to use a scroll is "q" (quaff).

3 Actually, it's a dialect spoken only by the twenty-seven members of a tribe in Outer Mongolia, but you're not
supposed to know that.

A Guide to the Dungeons of Doom 6-23

7 .5. Staves and Wands

Staves and wands do the same kinds of things. Staves are identified by a type of wood;
wands by a type of metal or bone. They are generally things you want to do to something
over a long distance, so you must point them at what you wish to affect to use them. Some
staves are not affected by the direction they are pointed, though. Staves come with multiple
magic charges, the number being random, and when they are used up, the staff is just a piece
of wood or metal.

The command to use a wand or staff is "z" (zap)

7.6. Rings

Rings are very useful items, since they are relatively permanent magic, unlike the usually
fleeting effects of potions, scrolls, and staves. Of course, the bad rings are also more powerful.
Most rings also cause you to use up food more rapidly, the rate varying with the type of ring.
Rings are differentiated by their stone settings. The commands to use rings are "P" (put on)
and "R" (remove).

7.7. Food

Food is necessary to keep you going. If you go too long without eating you will faint,
and eventually die of starvation. The command to use food is "e" (eat).

8. Options

Due to variations in personal tastes and conceptions of the way rogue should do things,
there are a set of options you can set that cause rogue to behave in various different ways.

8.1. Setting the options

There are two ways to set the options. The first is with the "o" command of rogue; the
second is with the "ROGUEOPTS" environment variable4•

8.1.1. Using the 'o' command

When you type "o" in rogue, it clears the screen and displays the current settings for all
the options. It then places the cursor by the value of the first option and waits for you to
type. You can type a <RETURN> which means to go to the next option, a"-" which means to
go to the previous option, an <ESCAPE> which means to return to the game, or you can give
the option a value. For boolean options this merely involves typing "t" for true or "f'' for
false. For string options, type the new value followed by a <RETURN>.

8.1.2. Using the ROGUEOPTS variable

The ROGUEOPTS variable is a string containing a comma separated list of initial values
for the various options. Boolean variables can be turned on by listing their name or turned off
by putting a "no" in front of the name. Thus to set up an environment variable so that jump
is on, terse is off, and the name is set to "Blue Meanie", use the command

% setenv ROGUEOPTS "jump,noterse,name=Blue Meanie"5

4 On Version 6 systems, there is no equivalent of the ROGUEOPTS feature.
5 For those of you who use the bourne shell, the commands would be
$ ROGUEOPTS="jump,noterse,name=Blue Meanie"
$export ROGUEOPTS

6-24 A Guide to the Dungeons of Doom

8.2. Option list

Here is a list of the options and an explanation of what each one is for. The default
value for each is enclosed in square brackets. For character string options, input over fifty
characters will be ignored.

terse [no terse]
Useful for those who are tired of the sometimes lengthy messages of rogue. This is a
useful option for playing on slow terminals, so this option defaults to terse if you are on
a slow (1200 baud or under) terminal.

jump [no jump]
If this option is set, running moves will not be displayed until you reach the end of the
move. This saves considerable cpu and display time. This option defaults to jump if
you are using a slow terminal.

flush [nofiush]
All typeahead is thrown away after each round of battle. This is useful for those who
type far ahead and then watch in dismay as a Bat kills them.

seefloor [seefioor]
Display the floor around you on the screen as you move through dark rooms. Due to the
amount of characters generated, this option defaults to noseefioor if you are using a slow
terminal.

passgo [nopassgo]
Follow turnings in passageways. If you run in a passage and you run into stone or a
wall, rogue will see if it can turn to the right or left. If it can only turn one way, it will
turn that way. If it can turn either or neither, it will stop. This is followed strictly,
which can sometimes lead to slightly confusing occurrences (which is why it defaults to
nopassgo).

tombstone [tombstone]
Print out the tombstone at the end if you get killed. This is nice but slow, so you can
turn it off if you like.

inven [overwrite]
Inventory type. This can have one of three values: overwrite, slow, or clear. With
overwrite the top lines of the map are overwritten with the list when inventory is
requested or when "Which item do you wish to ... ? "questions are answered with a"*".
However, if the list is longer than a screenful, the screen is cleared. With slow, lists are
displayed one item at a time on the top of the screen, and with clear, the screen is
cleared, the list is displayed, and then the dungeon level· is re-displayed. Due to speed
considerations, clear is the default for terminals without clear-to-end-of-line capabilities.

name [account name]
This is the name of your character. It is used if you get on the top ten scorer's list.

fruit [slime-mold]
This should hold the name of a fruit that you enjoy eating. It is basically a whimsey
that rogue uses in a couple of places.

file [-/rogue.save]
The default file name for saving the game. If your phone is hung up by accident, rogue
will automatically save the game in this file. The file name may start with the special
character"-" which expands to be your home directory.

9. Scoring

Rogue usually maintains a list of the top scoring people or scores on your machine.
Depending on how it is set up, it can post either the top scores or the top players. In the

A Guide to the Dungeons of Doom 6-25

latter case, each account on the machine can post only one non-winning score on this list. If
you score higher than someone else on this list, or better your previous score on the list, you
will be inserted in the proper place under your current name. How many scores are kept can
also be set up by whoever installs it on your machine.

If you quit the game, you get out with all of your gold intact. If, however, you get killed
in the Dungeons of Doom, your body is forwarded to your next-of-kin, along with 903 of your
gold; ten percent of your gold is kept by the Dungeons' wizard as a fee6• This should make
you consider whether you want to take one last hit at that monster and possibly live, or quit
and thus stop with whatever you have. If you quit, you do get all your gold, but if you swing
and live, you might find more.

If you just want to see what the current top players/games list is, you can type
3 rogue -s

10.
Acknowledgements

Rogue was originally conceived of by Glenn Wichman and Michael Toy. Ken Arnold
and Michael Toy then smoothed out the user interface, and added jillions of new features.
We would like to thank Bob Arnold, Michelle Busch, Andy Hatcher, Kipp Hickman, Mark
Horton, Daniel Jensen, Bill Joy, Joe Kalash, Steve Maurer, Marty McNary, Jan Miller, and
Scott Nelson for their ideas and assistance; and also the teeming multitudes who graciously
ignored work, school, and social life to play rogue and send us bugs, complaints, suggestions,
and just plain flames. And also Mom.

6 The Dungeon's wizard is named Wally the Wonder Badger. Invocations should be accompanied by a sizable
donative.

Berkeley Font Catalogue 6-27

Berkeley Font Catalogue

Introduction
This catalog gives samples of the various fonts available at Berkeley using

vtrot! on our Versatec and Varian. We have them working 4 pages across in a 36
inch Versatec, and rotated 90 degrees on a Benson-Varian 11 inch plotter. The
same software should be adaptable to an 11 inch Versatec, and in fact is running
at several other sites, however, not having orie here, it isn't part of this distribu
tion. Such a driver is available from Tom Ferrin at UCSF.

(1)

(2)

To use these fonts:
Hershey. This is the default font. The Hershey font is currently the only
complete font, with all 16 point sizes and ail the special characters trot!
knows about. To get it, use vtrotr directly. To illustrate this wi.th the -ms
macro package:

vtroir -ms paper.nr

Fonts with roman, italic, and bold, such as nonie. You can load all three
fonts with, for example:

vtroir -F nonie -ms paper.nr

To get just one of these fonts, use (3) below, appending .r, .i, or .b to the
font name to specify which font you want mounted, e.g., to get italics in
delegate,

vtrotr-2 delegate.i -ms paper.nr

(3) To get a font without a complete set, choose which font (1, 2, or 3) you want
replaced by the chosen font. For example, to use bocklin as though it were
bold, since font 3 is bold, use:

vtrot! -3 bocklio. -ms paper.nr

To switch between fonts in troff, use

.ft 3

to switch to font 3, for example, or use

\t3word\f1

to switch within a line. For more information see the Nroff/Trot! Users Manual.
Special note: troff thinks it is talking to a CAT phototypesetter. Thus, it

does all sorts of strange things. such as enforcing restrictions like 7.54 inches
maximum width. 4 fonts, a certain 16 point sizes, proportional spacing by point
size, etc.

In particular, the following glyphs will always be taken from the special
font, no matter what font you are using at the time:

@, #. ", ', ', <. >. \, ~. J, -. -. and_

This may explain what are otherwise surprising results in some of the subse
quent pages.

In addition, the following Greek letters have been decreed by troff as look
ing so much like their Roman counterparts that the Roman version (font 1) is
always printed, no matter what font is mounted on font 1 at the time:

A. B, E, Z. H, I. K. M, N, 0, P, T, X.

(See table 11 in the back of the NrotVTrotI Users's Manual for details about what
glyphs are in each font and how to generate the special glyphs.)

6-28 Berkeley Font Catalogue

Font Layout Positions

Code N"ormal Soecial Code Norm.al Special
000 100 0
001 :tl \(:ti - \(if 101 A A \(•A
002 ft \(tl ~ \(i]> 102 B B \(•B
003 fl \(tf c \(pt 103 c r \(~
004 - ,_ - \(rh 104 D A \(•D
005 - \(ru u \(cu 10:5 E E \(•E
006 \(em - \(rn 108 F z \(.Z -
007 . \(bu 0 \(bs 107 G H \(•Y
010 • \(sq : \(+- 110 H 8 \(•H
OU \(fI ~ \(<:I 111 I I \(•r
012 \(fL a \(>= l' 112 T K \(•K " 013 • \(de ...; \(sr 113 K A \(•L
014 t \(dg r \(ts 114 r. M \(•M
010 ,

\(tm I \(is W5 ll N \(•N' .
018 • \(co / \(sl 118 N - ''~ I 017 • \(rg I \(bv 117 0 0 'c~ I 020 • \(ct l \(lf I 120 p n \(•P
oe1 ~ \(14 l \(rf 121 Q p

\(•R II 022 ff \(12 \(le 122 R E \(-S
023 I \(34 1 \(re 123 s T \("'!'
024 ' \(It 124 T T \(•U
ce l \(lb 12:5 u • \(•F
oee l \(rt 128 v x \(•X
~ J \(rb 127 w i' \(~
000 i \~ 130 x n \(•W
001 I \(rlc I 131 y f \(dd
OS2 c

\(•• 1
13~ z \(br

053 ::> \(sp 133 [c:: \(ib I

034 n \(ca 134 ' ,~i I ~ ~ \(no .. 13:5 J 0
OC36 ... \(lb 138
007 £ \(mo 137 I - - -
040 space 140

I
.. ,.

041 I 141 a Q \(•a
042 " 142 b p \(•b
043 # 143 c 7 ,c., I
044 s 144 d cS \(•d
040 " 14:S e e \(•e
046 de 148 t (' \(~
047 . 147 g '7

,,.,.
oeo (v \(gr 100 h ,, \(•h
~l) l:Sl i ' \(~
062 • x \(mu H52 j " \(•k
06-1 + + \(pl U53 k ~ \(•!
064 ' lM 1 µ, \(•m
OM . - \(mi l:S~ m II \(~
OC5e U56 n e \(~
067 I '"l" \(di l:S? 0 0 \(•o
060 0 • \(== 180 p 1r \(9p
061 l =- \(""''=. 161 q p \(~
062 2 \(a.p 162 r a \(-S
063 3 .. \(!= 163 s T \(4't
064 4 .. \(<· 164 t v \(~
065 ~ ~ \(·> 165 u :p \(~
oee 6 t \(ua 166 I v x \(~
067 7 • \(de. I 167 .w " \(•q, '
0'70 8 § \(sc 170 % c.a ,c.,, I
(Jt71 9 • \(.. 171 y a \(pd
Qo72 : I 172

z ; \(es
()73 ; 173 f !
074 < 174

I
I I \(or

0'7t5 ::: ~ 170
j l

Qr76 > I 176 - - II _J:tJ'] .,
-111

Berkeley Font Catalogue 6-29
APL FONI', 10 POINT ONLY

Aa.B.i.CnDLEE F _C'i1Hol't.J•K' LOMINrOoP• Q?RPSrT-Ul VuWX:;:,YtZc: 01234 56789

("#$••~VA~1'+··{} ~ ~ - ~_\J@~<+/\.>, <

! ... (%-+•&-a'_. '{ ... v)-+A: ... ~ - = [... {] ... J! ... 3• ... -.

..... <+ ... +? ... \

Baskerville font, roman. ibold, italic, 12 point only (Called -Oa.sk.er• on line.)

ABCDE FGHIJ KLMNO PQ..RST UVWXYZ abcde fghij klrnno pqrst uvwxyz 01~4 56789

!"#S~&c'():•-·(] f J ,...._\!@';•/?.>.<

If time be of all things the most precious, wasting time must be, as Poor Richard says, the greates:

prodigality; since, as he elsewhere tells u.s, lost time is never found again; and what we call time

enough, always proves little enough: Let us then up and be doing, and doing to the purpose; so by

diligence shall we do more with less perplexity.

ABC DE FGH IJ KLMNO PQRST UVWXYZ ahcdt fgliij klmno pqrst u.vwx;;z 01234 56789

!"#$~&1'():•--l J ~ ~ ---\1@';+/~.>. <

If timd bt of all tltings tM most prectcus, wasting timt must bt, a..s Poor Rich.a,rd StrjS, tltt gua.test

prodiga.if.t'; sinct, a..s '11 1lsewl&n1 ttlls us, lost timt £s MVn found again; and wltat w1 call timt

11ZDUglt, alwa"}S prov1s llttl1 t1UJuglt: Lit us th.m up and b1 doing, and doing tD tJ1.1 purpose; so lry

d.Utgrnu sh.al.l we dtJ mort witlt less pnplexu,.

ABCDE FGHIJ KLMNO PQRST UVWXYZ abcde fghij klmno pqrst uvwxyz 01234 56789

! "# $1. &: ' (): • • • (l ~ J - _\I@';+ I?.>,<

If time be of all things the most precious, wasting time must be, as Poor Richard says, the

greatest prodigality; sinct!.. u he el~where tells us. lost time is never found again; and what we

call time enough. always proves little enough: Let as then up and be doing, and doing to the

purpose; so by diligence shall we do more with less perplexity.

6-30 Berkeley Font Catalogue

Jloch.lin tont. 14 zznd 28 point only.

14 point

rtl3CD! 1ei11l! KLMR0 P~l\~1' tf.V'WXYX ztbcde Jghij ltlmno pqrst uvwxyz
01234 56169

"():-=[l':/? ••

lt time be of zzll things the rpost precious. wzisting time must be. zzs Poor
Rich22rd s22ys. the _grezatest prodignlity: since. zss ne elsewhere tells us.
lost time is never IOund. qgain: ztnd what we cnll time enough. zzlwzays
proves little enough: 1et us then up nnd be doing. ztnd doing to the
purpose: so by diligence shzill we do more with less perplexity.

28 point <Ro punctuzition except period.)

ff13C!D:E f ~lHl KL'ffi'R0 P~lUiT
liVWXYX abcde ighij klmno pqrst
u-vwxyz 01234 56~89 .

1i time be oi all things the most
precious wasting time must be as
Poor Richard says the gretitest
prodigtility since as he elsewhere
tells us lost time is never found
again and what we call time enough
always pro-ves little enough Let us
then up and be doing and doing to
the purpose so by diligence sh'111 we
do more with less perplexity.

Berkeley Font Catalogue 6-31
Bodoni font, roman, bold, italic, 10 point only.

ABCDE FCHIJ KLMNO PQRST UVWXYZ abcde frhij klmno pqrst u•wxJ'I 01234 56789

! "II Si & ' (>: * -• [l l J ... - -'I@';• I?.>,<

If time be of all thin11 the most precious, wasting time muat be, u Poor Richard says, the ireatest

prodiplity; since, H he elsewhere tells ua, loat time i1 ne•er found arain; and what we call time enough,

.J.way1 pro•es little enough: Let u then up and be doin1, and doing to the purpoce; 10 by dilirence 1hall we

do more with less perplexity.

ABCDE FCHIJ KLMNO PORST UVWXYZ abctl.e f 61aij lclmno pqrd 11ft0sy.s 01234 56789

/"#St&'():*-•[] l J ... __ \I 0':+/P. >, <

1/ rilM be of all thing• the mod preciov.1, t11anin6 time nuui be, a Poor Riclwutl. myt. the veated

pro4i6ality; dnce, a.a Jae elu•lwwe tell• l&'9 lad rinN u neuer /ou.ntl. again; antl. •lwu IH call dme

enou.6Ja, altGGy• prOtJe• linle enou.61t: !At wu dwn up anti be tl.oing, on4 tl.oing to the pv.rpou; '° 6,.

tl.ili6ence llaall SH do more t11itla lea paplnily.

ABCDE FGBIJ XLMNO PQRST UVTIYZ ahcde lghij klmno P(Ht u~ OUM 56'189

! "II Ii & 'C >: * -• [l l J ... - -'Io';• I?.>,<

If time be of all tlllnp tlae most preciou, wasting time mut be,• Poor lliclaard says, tile greatest

prodigality; since, u lae elsewhere tella a, lou time i• 118"1' folllld again; and what we call time enoac&,

always pro•el little enoup: Let 1ll tJien up and he doiaf1 and doing to die purpoM; 10 by dilirence mall we

do more witla lea perplexity.

6-32 Berkeley Font Catalogue

Chess, 18 point only

Note: Our attempt at compatibility with Stanford was only 99~ successful. If you use
a blank space to indicate an empty white square it will come out narrow due to the
stupidity of troff. Either include the line

.cs ch 38
to put yourself in constant spacing mode or else use zero instead of space. You
should also set the vertical spacing to 18 points.

.nl p .1 p .a . ft ch

.cs ch 38 0 ~:'~ 0 ~/~ ~lb ~~ .ps 18 '· .. , '· .. 'JI

.vs 18 b .l B .ii Hrrtlltn'X
VOZOZOAOZF ~-~ A ~-~ a {ti ~ VZOZOZOOOF
VOoOZOZOZF n ~ N ~ VZOZOZOZOF
VOJIOZOZOZF Ill ~ M ~ VjPZOZOZOF : • ~ •

VOZI<ZOZOZF r a R !S VZOZOZOZOF
1IUWWWOO "/'''' s "/'''" s ~1~ ~~~ , ,
.sp , .. , ,
.ft p q \Ml Q 'IAY .ps 8

1 "/;'//' .cs p ·wf L ;I'///~

~ , '\JM' •... , ~ ... : ~

k m K ~ . ~-,~

J ~ J -~;
~-.:" ,

~~ r@~
u T

~ ~~~---·~(~~ F v ~{~~~~~~&~
G

.. w ~k~~~~ ~~~~~~~~ x • H
rtiB.'~~~~~ 0 z ~ ',~~~~~~
~~r~~~~ ~ ~ ~ ~

'lhi te JJBtes in three DDTea.

Berkeley Font Catalogue 6-33

Clarendon, 14 and 18 point roman only. From SAIL (Paul Martin & Andy
Moorer)

ABCDE FGHIJ KLMNO PQBST lJ'VWXY abcde fghij klmno pqr~
uvwxyz 01234 56789

" # $ ix • < > : - =.C l f J - ""' - \I @'; + I? • > , <

If time be of all things the most precious, wasting time must be,
as Poor Richard says, the greatest prodigality; since, as he
elsewhere tells us, lost time is never found again; and what we
call time enough, always proves little enough: Let us then up
and be doing, and doing to the purpose; so by diligence shall we
do more with less perplexity.

ABCDE FGHIJ KLMNO PQRST UVWXY abcde
fghij klmno pqrst uvwxyz 01234 56789

"#$ix'<>: -=[J ~~~~-\I@';+/?.>,<

If time be of all things the most precious, wasting
time must be, as Poor Richard says, the greatest
prodigality; since, as he elsewhere tells us, lost
time is never found again; and what we call time
enough, always proves little enough: Let us then
up and be doing, and doing to the purpose; so by
diligence shall we do more with less perplexity.

6-34 Berkeley Font Catalogue

CampvMr Modena follM,ramu,it~dM:,and bald.('b7 Doa KDutb) 1,T,8,9,10,ll,12 pain. (AYllilable • ~

N• th• the cm. fold1 .. lnaded for TBX aad doa't f•e 10 well with trotr. Thi 1peci11c l1 aa• propor
tion.a b,. pohat 1tse,aad benc1 oaJ7 oae pohat 1be c• be tuucl to be Dic1l7 1p11C1d. We laaw tuaed tile 10 poim
li•e,bai tbe I poiat loob 1aa.wb• cramped.

Soa:. ol tbe puctu-*ioa It :mialq ha 1a1m ol tb1 foath KA.ab alto UH• a aaoa .. aad•d aoiloa ot ASCIJ.
IAcl JaeDCI IGlm •nm We aTlliJable OWJ with 1peda l)'mboil IUCJa • \(U. 0.bett CUlloi be ICCtUed Iii •II•

Kamla'• foah 1om1wb• larpr naaa aarma, 1i11ca be late11d1 tbe onput to be reduced before priuatae
Slnce tralr la• a Umitlliloa t:/11 TM l11cm1 wid\b Oil onp.n, tbi1 II 11• prlldlcal. Hence, tbe oriajaal fon1 ban
beea rele.belled ~h tbe poia 1ue tla.7 •• da11n to witbout reductioa. Saa. fold• (e paiua bold, 1 pciui romaa,
I poiat lbllc acl bolcl,0 poi11t bolcl,aacl 11 paim it.ale) which would haw oihetwile bHD m11iq Wlfl p111ni1d
b7 d11i11kiac tbe asi lupr paim aiH at tbe H1m nyl• (Tbia eo11 lfjllian the idea af metdoa,bui we un tu
toal1"" ban~

10 Pohl i Roman

.ABCDE FGHIJ KL:MNO PQRST TJVWXYZ abcde tghiJ klmno pqrst uvwxy101234
se1s9 t "# ~ • c) * - l J - ~ _, o -:; .> ,< ',,I:,r.B,T,t,n, ... ~,e,.A,'P,0,1J,,,,

It time be ot all things the most precious,wasting Ume must be,as Poor Richard says,the
greatest prodigality since,as he elsewhere tells us,loli time is never found again and
what we call time enough,aJways proves little enough Let us then up &nd be domg,a.nd
doing to the purpose so by diligence shall we do more with less perplexity.

1.0 Poini Italic

ABCDE FGHIJ KLMNO PQ.RST UVWXl'Z a.bctle /gh# A:lmno pqrd uvw:ya 0:1!34.
58189 I " # p 8 8 ' () : * -= I 1 i J - - \ w @ I ; + I 'I • > I < ', ', J:, i -; s, T, • I II,
,,, '· "· 4'1, 8, .4, .,, fl, Cl,#, ,, '16

I/ time be of cr.ll th.mg• the most precioua, waifing time mud be, "Poor Rich.a,rd. 1ay1,
fh~ grea.iest prodiga,lity; nnce, <JS h,e els~h.ere tells UI, lost fin" is n~er /ound a,ga,in,·
e1nd. wha.t we cc&ll time enough., tlltu41JB pro1Jes little enough: Let us th.en up a,nd. be
tloing, e1nd. <Joing to the purpose; 10 by diligmce 1M.ll we clo more with. less perp l~ity.

10 Poini Bold

ABCDE FGBIJ KLMNO PQRST UVWXYZ abcde f&hll klmno pqrti UVW'X'11 0123'
58189 I If II ft " ct • () I •• = (J ·~ J - - \ 1l @. I + I ? • >' < •, •, E, ., ., I, T' ., D,
"', -, ·; ~. e, A,•, n, 1, J, ·; ;·;· ..

Ir time be of all thinp the moat prec!otU, wutin1 time mun be, u Poor Richard 1a71,
the ll'eatest pr1>dlgallty; since, at he elsewhere tells ua, Ioli time ii never found again;
and what we call time enou&h, alwa71 proves little enoughs Let us then up and be dome,
and doing to the purpo1e; 10 b7 dlllgence ahall we do more with le11 perplexity.

I Na 11.aam, Dllld,lftd~
T Pata aamm,.Boid,.ad lmUa.
8 Paint Romaa,Bold,ud !t4lit.
9 Point Roma.n,Bold,and !fa.Zic.
10 Point Roman,Bold,a.nd Ita,Uc.
11 Point Roman,Bold,and !tali~.
12 Point Roman1Bold,and Italic.

Berkeley Font Catalogue 6-35

Countdown (22 point. upper case letters only.) From SAIL (Paul Martin)

Cyrillic, 12 point only

ell 'MVtfe 6e oclt a.u 1'DID'C ne MOC': npe11oyc aerar 'MOie aryCT 6e ac ocp mpJt caAc TXe rpeafte':

npoJtlD'IJlllTA cae ac 1e ucexepe Te.UC ye Jlac:T Tmre BC 1esep ct>oyBJt araim IJlll 111' e au Tmre eaoyn

&Ide opoaec JIHTT Jle eHayn eT ye nes yu IHJl 6e JlORHI' aQ JtOHHI' TO n:e nypnoce co ~A AUHl'eHe CX1J1J1 e

J.O Mope llTX JlecC oepMer:A

1f...,)1(x ... u y Z-+3 a-+a b-+d d-+,1, e-+e f-+41 g-+r h-+z i-+11 k-+x l-+J1 m-+w n-+11 o-+o

p-+11 r-+p s-+c t-+T u-+y v-+a y-+A z-+a

Delegate, roman, italic, and bold, 12 point only

ABCDE PGHIJ KlMNO PQRST UVWXYZ abcde fghij klmno pqrst uvwxyz 01234 56789

l "II$% & '(): * - •Cl f ~ - __ ,I@ t; +I 1. >, <

If time be of all things the most precious, wasting time must be, as Poor Richard
says, the greatest prod1gal1 ty; since, as he elsewhere tells us, lost time is
never found again; and what we call time enough, a.l ways proves 11 ttl e enough: let
us then up and be doing, and doing to the purpose; so by diligence shall we do more
with less perplexity.

ABCDE FGHIJ KLMNO PQ.RST UVWXYZ abctle Jghij k.lmno pqr$'t U.UU1%UZ 01.234 56789

!"lfSS&'():•-z[JfJ--_,/@ ;+/?.>.<

If time be of all things the mo.st precious, wasting time 71Dl..St be, a.s Poor Richard sa11.s,
the greatest prodigalitll; .since, as he elsewhere tells u.s, lo.st ti.me i.s neuer fou.nd

again; and ~hat ~e caLL time enough, alwaus proues iittle enough: Let u.s then up and be
doing, and doing to the purpose; .so bu diligence s ha LL we do more IBi th l e~.s per pl exi ti;.

6-36 Berkeley Font Catalogue

ABtDE FGHIJ D.MNO PQllST 1JVWXYZ abcde fghij klmio pqrst uvwxyz 01234 56 789

I "Ii Si'' (): • - •Cl t J - - _\I@ t; + 11. >, <

If tbe be of all things the •ost precious, wasting t111e llUSt be, as Poor Richard
says, the greatest prodigality; since, as he elsewhere tells us, lost tae is
never found again; and vbat we call ti•e enough, always proves little enough: Let
us then up and be doing, and doing to the purpose; so by diligence shall we do mre
with less perplexity.

FiK fi~ed width font, 6, 9, 18, 12, 14 point

! ••• ' • c , I • - • [I _, • ' • I?. >. <

If ti• 1111 ef •ll Ut•n• Ute•• IW•leu•• ... tine ti• 11Uft i.. •float' llchrtl ..,, •• the r•t8St .,..-1,.lit,.1 since. •he el....,_.•

t•ll• 118• lest ti• is n..,.,. '•llH ... '"' ... Mhet .. c:811 ti, • .,,, el...,.. !lr8"9 11Ul• """"""' Lat us t,._ ._ 8"tl be dei"9• Mtl de1"'
te the llW ... , t111i...- nu.,..•-· .. iv. i- 1-;t,..

9 point

ABCDE FGHlJ KLftNO PQRST UVUXY 1bcd• fghlj tlMno pqr•t uvwxyz 11234 58789

I "# s % & ' () I • - • t l ' f - ,... _,I 0. J +I? • >, <

If ti•• b• of all thing• the •o•t precious, w••tlng ti•• •u•t be, ••Poor Rlch1rd says, th•
gr••t.•t prodlgal ltya alnce, •• h• elHwh•r• tel la 1.1a, loat ti•• I• n•v•,. found 19aln; and
Mhlt Me call ti•• enough, llwaya provea llttl• 1nou9h1 Let ua then up and b• doln9, and dofn1
to th• purpo••• ao by di I l9enc• aha I I w• do •• ,., Mith I••• perplexity.

18 point

ABCE FGHIJ KLJNJ PORST UVUXY abcde fghlj kl111na pqrst uvw>eyz 91234 56789

! ,, 'I%'' () I. - • [l I I-._, I •• I+ I?.>'<

If time be of all thin;• the 1ROst precious, wasting time must be, as Poor Richard
eaya, ttie greatest prodigal ity1 eince, as he eleewher• tel fa us, lost ti111e i• never
found again1 and whet we cal I ti Me enough, always proves Ii ttl• enough: Lat ue then
up ana b• doing, and doing ta th• purpon1 10 by d1 I igenca 1hat I we do more with lee
perp I e>e i t y.

Berkeley Font Catalogue 6-37

12 point

ABCCE FGHIJ KLMNC PORST UVLJXY abcde fghij klmno pqrst uvwxyz 91234

56789

I "fl%&'<>:•-· Cl l 1-,..,_\I@'; +/?. >. <

If time be of all thlngs the most precious, wasting time must be, as
Paar Richard sa~s. the '1"eateet prodigal it~; since, as he elsewhere
tel la us, last time is never found again; and what we cal I time
enough, always proves little enough: Let us then up and be doing, and

dolng ta the purpose; sob~ diligence ehal I we do mere with less

p~p I a><_l ~\I· ...

14 point

ABlE FGHJ KLrNJ FORST UVWXV abcde fghi j klmno pqrst
l.Ml><yz 01234 5678S

"#8%&' ():*-=[] ~J-'N_\f@';+/?.>

' <

If time be of al I things the most precious, wasting time
must be, as Poor Richard says, the greatest prodigality;
since, as he else&-iiere tel Is us, lost time is never found
again; and IJiat we cal I time enough, always proves little
enough: Let us then up and be doing, and doing to the
pu-pose; so by diligence shal I~ do more ~ith less
f:Jerple)(ity.

6-38 Berkeley Font Catalogue

Gacham, roman, bold~ 1ta71c, 19 point only
The gacham font is almost indistinguishable from the fix font.
pointed out that our gacham roman and bold fonts really are fix.
eluded anyway for convenience.

In fact, it has been
Sigh. They are in-

ASCOE FGHIJ KLMNO PORST UVWXVZ abcde fghij klmno pqrst uvwxyz 01234 5678S

! "# S % & ' C > : * - •CJ ~ J ... - _\I@';+ I?.>,<

If time be of al I things the most precious, ~asting time must be, as Poor Richard

says, the greatest prodigality; since, as he elsewhere tel Is us, lost time is never

found again; and what we cal I time enough, always proves little enough: Let us then

up and be doing, and doing to the purpose; so by diligence shal I ~e do more with les~

perp I e>< i ty.

ABCDE FGHIJ Kl.JflO PQRST UVWXYZ abcde fgh1j k1mno pqrst uvwxyz 01234 56789

I"# S % & ' (): • - : {] ~ i - - _\I@•;+ I?.>,<

If time be of a11 th1ngs the most prec1ous, wasting time 111Jst be, as Poor Richard

says, the greates; prod1ga11ty; since, as he e1sewhere te11s us, 1ost t1me ts never

round agatn; and what we ca77 time enough, a1ways prpves 7itt7e eno~gh: Let us then

up and be do1ng, and doing to the purpose; so by df1igence sha11 we do more w1th 1es~

perp1ex1ty.

ABaE FGfIJ KU'NJ PORST l.NlJXYZ abcde fghij klmno pqrst uvwxyz 81234 5678!3

! II# I% & ' () : * - • [] ~ ~ - - _\I@.;+ I?.>'<

If time be of al I things the 1110et precious, wasting time 111Ust be, as Poer Richard

says, the greatest prodigality; since, as he elsewhere tel Is us, lost time is never

fot.nd aga i m and s.iiat we ca I I ti me enough, a I ~ys proves I i tt I e encvgh: Let us then

up and be de i ng, and de i ng to the purpose; so by di I i genes sha I I 1.1e de mere w i th I es~.·

perple>eity.

Greek, 10 point only

This font provides an alternative to the Greek characters on the standard special

font.

AHCDE FGHI.1 KUCNO PQRST UV1fXYZ abcde fchij klm.no pqrst

ABL1E trHI., lUMNO nePrr TO~~z -'xi•

I• "'"' $c ~ 4IU ~,, 'f"1'I .,...." T~xiow,.,Ul"'1 ,.,,. "'"""" ~ • !loop PLx,,a~I ~tr¥1" ,.,,. -rPl«'f'W'f'

.,,..,.,.,_f°Y "P"X' •'fl •A..-.~ ~ "MNt' '"'"' w- ,.", ••w-1 ...,.., al .,..,. *" x-AA ,.,,_ ,......,,.

..... ,, ~"°"• Mt'1'M ·~, Att' w ,.... n _, 6it I~ M ICMry "°,.. ••'7"• ~o H l&M'1•FX• •..U
• le ,,.. _.., ~ Tt_.,M•ti

Berkeley Font Catalogue 6-39

The h19 font includes a subset of the hlS's graphic character set, plus a
few logical extensions to allow forms and diagrams to be drawn. The characters
are the same as the hlS's graphic interpratation set.

a b c d e f s t u v m n h k

f 1 .J L r T 1 .L r
The characters are designed to overlap.

Example of usage for diagrams:

ZSS
microcomputer

system

60K bytes RAM J11--4..._~ -4

MC68009 DESIGN MOOULE:
* 16-bit CPU
* 32K bytes RAM ~1 Te~m i na 11
*SK bytes monitor ROM . .
* Paral lei Ports
* 16-bi t timers

_L ~ J S4K bytes RAM j ' -, 1 -------

6-40 Berkeley Font Catalogue

Hebrew, 16, 24, and. 38 point only

18 point

1 "# '1J.(): - [] f J.--..r-w_\f@•:y ?.>.<

t:rfl1 imMi~ a'ct: ~rz M~]1MCl1''11~= Cii~Cl1 ~~ Di~~~, ci11.,~==~'CVJ.. ~= ;;M=r cm:.:·
M.,iM~t:Mll7 ~~ ::11~n "'c~= ~~il1MiM:'11.. t:tu:i .,, ;ti ~1 ,,, ~ ~ •'TI e~~.. ~ ~ ~~~:.
'1 :;1 "'c~ ~~!? ..

24point

ton ronNi n ~to rtJ H= no '' ~to on o

Ei i Oto ~rD. ?Q MNrD ton Ni1N~?QN~ .:

~i HiN:' .

38 point (rather ragged)

, ~, ;j

j~ H'~ rD~

Berkeley Font Catalogue 6-41

10 point Hershey

ABCDE FGHIJ KLMNO PQRST UVWXYZ abcde fgbij klmno pqrst uvwxyz 01234 56789 !, S.
"· &, ', (,), :, •,-, [.]. ', :. /, ?, .

\(em ... -. - ... -, \- ... -,\(bu ... •, \(sq ... •, \(ru ... _ \(14 ... ~. \(12 ... }ii, \(34 ... J, \(fi ...
ti, \(fl ... ti, \(ff ... tl, \(Fi ... m. \(Fl ... m. \(de ... •• \(dg ... t. \(fm ... ',\(ct ... ~\(rg ... ~
\(co ... •
When you tiex your tlngers in a comn. it can bame a giratfe.

ABCDE FGHIJ KLMNO PQRST UVWXi'Z a.bc:d.s Jghi; klmn.o pqrst U.'U'UJ%YZ 01234 56789 !,
$, %. 4', ', (.). :, ~ -. [.], ', ;, /, ? •.

\(em ... -. - ... -, \- ... -, \(bu ... •, \(sq ... •, \(ru ... - \(14 ... ?(\(12 ... ~\(34 ... J\(fi ... ft,
\(fl ... ft, \(ff ... fl, \(Fi ... !ft, \(Fl ... !JI, \(de ... 11

, \(dg ... t. \(fm ... ', \(ct ... '\(rg ... '9'\(co
When you flu: your ft:ngers in. a coffin., it ca.n. bat!fe a g'i:ra.jfe.

ABCDE FGHIJ KIJINO PQRST UVWXYZ abcde fghij klmno pq_rst. uvwxyz 01234 58789 !, I.
~ ck. t I (,). :. •, •, [.]. I• :. I, ? 9 •

\(em, - ... -, \- ... -.\(bu ... •, \(sq ... •, \(ru ... -· \(14 ... X\(12 ... l\(34 ... l\(fi ... tl.
\(fl ... ti.. \(ff ... 1!. \(Fi ... m. \(Fl ... m. \(de ... •, \(dg ... f, \(fm ... ',\(ct ... '\(rg ... !'\(co
When you ft.ex your tlngers in a comn. it can bam.e a giratre.
From special font: " I = ~ ~ - - \ I @ ' ' + > <

Special characters: \(pl ... +, \(mi ... -. \(eq ... =, \(..... •, \(sc ... §, \(aa ... ', \(ga ... ',
\(ul ... -· \(sl ... I, \(•a ... a, \(•b ... (J, \(•g ... 1. '\(•d ... d, \(•e ... t, \(•z ... (", \(•y ... 17,
\(•b. ... 1'. \(•i ... c., \(•k ... JC, \(•l ... J.., \(•m ... µ.,\(en ... v, \(•c ... t. \(•o ... o, \(•p ... 11',

\("T ... p, \(•s ... a, \(ts ... \,\(~ ... T, \(~ ... v, \(•f ... rp, \(-X ... x. \(•q ... "/I.\(~ ... "'·
\(•A ... A. \(•B ... B, \(•G ... r. \(•D ... fl, \(•E ... E. \(•Z ... Z. \(•Y ... H, \(•H ... 9, \(•I ... I.
\(•K ... K. \(•L ... A. \(•M .. M, \(•N .. N, \(•c ... ~. \(•O ... o. \(•P .. n. '(•R .. P. \(•S -- t.
\(-! ... T. \(•U ... T, \(•F .. t, \(•X ... X. \(•Q ... +. \(•W ... 0, \(sr ... v. \(rn ... - , \(>= ... ~.
\(<= ... ~. \(== ... •, \(-= ... c., \(ap ... -. \(!= ... iJI!, \(-> , \(<- ... +-, \(ua .. f, \(da ...
•. \(mu .. x, \(di ... +, \(+- ... ±:,\(cu ... u, \(ca ... n, \(sb ... c:, \(sp ... ::>, \(ib ... ~. \(ip ...
~. \{if ... ao, \(pd .. a. \(gr ... V, \(no I \(is ... f, \(pt .. cc, \(eq ... =.\(no I \(br .. 1,

\(dd ... i. \(rh ... 'l"'\(lh \(bs ... C \(or ... I. \(ct ... o. \(lt .. 1. \(lb ... L \(rt ... r. \(rb .. J.
\(lk ... i. \(rk ... ~. \(bv ... I. \(lf ... L \(rt ... J, \(le .. r. \(re ... 1

If time be of all things the most precious, wasting time must be, as Poor Richard says,
the greatest prodigality; since, as he elsewhere tells us, lost time is never found again:
and what we call time enough, always proves little enough: Let us then up and be doing,
and doing to the purpose; so by diligence shall we do more with less perplexity.

This is an e::a:m.ple of a sample in various fonts.

6-42 Berkeley Font Catalogue

Hershey font. This is the default font for vtrot!. Roman. Italic and Bold in 6, 7, B. 9, 10,
11, 12, 14, 16, 18, 20, 22, 24, 28, and 36 point. The following examples are 10 point.

If time be of all things the most precious, wasting time must be, as Poor Richard says,
the greatest prodigality~ since, as he elsewhere tells us, lost time is never found again;
and what we call time enough, always proves little enough: Let us then up and be doing.
and doing to the purpose: so by diligence shall we do more with less perplexity.

tJ.S Poor Rich.a.rd. sa.ys, the grea.test prod:iga.lity; since, as he elsewhere tells us, lost time
u never found. a.gain,· and 'What 'We ca.ll ti:tn.e enough, a.lwa:ys pro11es little enough: Lat
us then up a.nd. be doing, and. doing to the 'JYl.'rpose; so by d.uigenc e shall 'We d.o more
tui.th less perplezity.

If time be of all things the most precious, wasting time must be, as Poor Richard says.
the greatest prodigality: since, as he elsewhere tells us, lost time is never found
again; and what we call time enough, always proves litUe enough: Let us then up and
be doing, and doing to the purpose; so by diligence shall we do more with less
perplexity .

• p.mt. Roma. aJlll Jtalfc.
7 poJm Roman. BaW. and /WV:.
8 point Roman. Bald. and Italic.
9 point Raman, Bold. and ltalic.
10 point Roman, Bold. and /ta.Lie.
11 point Roman, Bold, and /ta.Lie.
12 point Roman, Bold and Italic.
14 point Roman, Bold, and Italic.
16 point Roman, Bold, and Jt)ilic.
18 point Roman, Bold, and Italic.
20 point Roinan, Bold, and Italic.
22 point Roman, Bold, and Italic.
24 point Roman, Bold, and Italic.
28 point Roman, Bold, and
Italic.
36 point Roman, Bold,
and Italic.

Berkeley Font Catalogue 6-43

Meteor, roman, bold, italic, 8, 10, 12 point, no 12 point italic.

ABCDE FGHIJ KLMNO PQRST uvwxyz aboie fghij klmno pqrst uvwxyz 01234 56789

!"#$%&'<>=•-=(]~ J---\I@';+/?.>, <

If time be of all things the most precious, wasting time must be, as Poor Richard says,~

greatest prodigality; since, as he elsewhere tells us, lost time is never found again; and

what we call time enough, always proves little enough: Let us then up and be doing, a.:

doing to the purpose; so by diligence shall we do more with less perplexity.

ABCDE FGHIJ KLMNO PQRsr UVWXYZ abcde tghi.J klmno pqrst uvwxyz 01234 567 c

! "#S % &: I ():. - Ill { 1 ~ J - - _,I@ I;+ I?.>'<

If time be of all thin.gs the most precious, wasting ti.me must be, a.s Poor Richard say.

the greatest prodigal.tty; si.nce, a.she elsewhere tells us, lost time is never toun.d

agai.n; and what we call time e.nough, always proves little enough: Let us then up and

be doing, and doing to the purpose; so by diligence shall we do more with less

perplexity.

ABCDE FGHIJ KLMNO PQBST UVWXYZ abcde !ghiJ klm.D.o pqrst UV'WXY'Z 01234

56789

! "# s ~ ac' C >: • - • [] l J - - -'Io';+ I?.>,<

If time be or all things the most precious, wasting time must be, as Poor Richard

says, the greatest prodigality; since, as he elsewhere tells us, lost time is never

found again; and what we call time enough, always proves little enough: Let us

then up and be doing, and doing to the purpose; so by diligence shall we do more

with less perplexity.

6-44 Berkeley Font Catalogue

Kicrocramma font. 10 point only

ABCOE FGHl.J KLMNO PQRST U~ abcde f ghij klmna pqnst uvwxyz 01:234 56799

l"fSi.&'[):C-•[]~ J-N-\10';+/?.>,<

If time be of all things the meat precious, wasting time must be, aa Poer ~ichard says, tr.r

greatest prodigality; sires, as he elsewhere tells us, lost time ia never found again; and w ...

we call time enough, always proves little enough: Lat us then up and be doing, and doing t: ..

the purpose; ao by diligence shall we do more with less perplexity.

Mona font, 2-1 point only

ABC~%: 'FE>lj3J 1\IMNQ'.> P<QitS«: lIUHr?tlJZ
abde f ghtj him no pqrst oowxyz 0123i 56789

I"#f¢&'C): -
>~<

~ ~ ""'-\@; ?.

Phtlaadphla ls the most pechsnlffian of Amertcan
Ci tles, ana thos probably Jeaas the Worf a.

- lj. I. Menchen

Berkeley Font Catalogue 6-45

Nonie, roman, bold, Italic, 8, 10, 12 point

8 point
ASCOE FGHIJ KLMNO PQAST uvwxvz abed• fghlJ kmno pqr11 uvwxyz 01234 6878Q

I .. I$% & • ():. - • [] f I"" ... _, I •• ; +I? • >. <

If time b• of all things th• most precious, waatilg time mu•t be, aa Poor Richard uy1, th• greatest prodlgallty:
since, as he elsewhere tells us, lost time la n•v•r found again; and wnat we call time enough, always proves 11t·:
enoughs Let us then up and b• doing, and doing to th• purpos•; so by dRlgence shall we do more with le.a
perplex tty.

ASCDE FGHl.J KLMNO PORST IJVWXYZ abcde fghlj /cJmno pqrst uvwxyz 01234 667Bg

1 "# $ s a' (), • - • CJ t I _,/ o', ~I,.>,<

If tlm• b• of ail thing• the moat fXllC/ous, watlng time must be,•• POOi" Rlch•d ••11, the gr••••t 1XodlgaJlty1 31,

a he e/rewhere tell• us, /au tJme /1 ne11er found ag•ln1 Mid wh6t we caJ/ tlm• enough, aJways fX011e1 llttl• enou9 ·
L« u1 then up and be doing, Mid doing to th• purpose, so by diligence 1haJI we do more with 1ea1 perplexity.

ABCDE FQHIJ KLNNO PQAST UVWXVZ abeda fghij klmno pqrat uvwxyz 01234 68780

I"# s % • I ()I. - • [] l I _, I. I;+ I?.>'<

If time be of all 1hlnga 1h• moat precioua, waatlng tJme muat b•, aa Poor Richard aaya, 1t1• grea1Bst prodlg41;·:.
ahle•, aa he eiaewhere tells ua, !oat time la never found again; and what we call time enough, always prov"'.1;

little enoughs Let ua Ulen up and be doing, and doing to 1h• pwpoae; so by dlligenee ahall we do more with :a .. ~
perptaxity.

10 point
ABCOE FGHIJ l<LMNO PQRST UVWXVZ abcde fghlj klmno pqrst uvwxyz 01234 58789

! ,, II $ % & I () : • - • [] ~ ~ - - \ I @ I ; + I ? . > ' <

If time be of all things the most precious, wasting time must be, as Poor Richard says, th B

greatest prodigality; since, as he elsewhere tells us, lost time Is never found again; and
what we call time enough, always proves little enough: Let us then up and be doing, and
doing to the purpose; so by dlllgence shall we do more with less perplexity.

ABCDE FGH/J KLMNO PQRST UVWXYZ abcde fgh/j l</mno pqrst uvwxyz 01234 56789

l"/1$%&'():•-a[]~ J---\/@';+/?.>,<

If time be of all things the most precious, wasting time must be, as Poor Richard says, the
greatest prodigality; since, as he elsewhere tells us, {ost. time Is never found again; and wr·.
we ca// time enough, always proves little enough: Let us then up and be doing, and doing tc
the purpose, so by d/Jlgence shsJI we do more with less perplexity.

ABCOE FGHIJ KLMNO PORST UVWXYZ abcde fghfj klmno pqrst uvwxyz 01234 56789

I" II$% & I ():. - :I [] ~ j - - _,I@.;+ I?.>.<

If time be of an things the most precious, wasting time must be, as Poor Richard says,
the greatest prodigality; since, as he elsewhere tells us, lost time is never found again·
and what we can time enough, atways proves llttte enough: Let us then up and be doini;-,.
and doing to the purpose; so by diligence shaU we do more with less perplexity.

6-46 Berkeley Font Catalogue

12 point
ABCDE FGHIJ KLMNO PQRST UVWXYZ abcde fghlj klmno pqrst uvwxyz 01234
56789

1,, # $ % & I ():. - = [] f ~ - - _\I@.;+ I?.>'<

If time be of all things the most precious, wasting time must be, as Poor
Richard says, the greatest prodigality; since, as he elsewhere tells us, lost
time is never found again; and what we call time enough, always proves llU!e
enough: Let us then up and be doing, and doing to the purpose; so by
diligence shall we do more with less perplexity.

ABCDE FGHIJ l<LMNO PQRST UVWXYZ abcde fghlj klmno pqrst uvwxyz 01234
56789

! "# $ % & I (): :r - = [1 f J - - _,I@ I;+ I?.>'<

If time be of all things the most precious, wasting time must be, as Poor
Richard says, the greatest prodigality; since, as he elsewhere tells us, lost
time Is never found again; and what we ca/I time enough, always proves llttle
enough: Le~ us then up and be doing, and doing to the purpose; so by
diligence shall we do more with less perplexity.

ABCOE FGHIJ KLJVWO PQRST UVWXYZ abcda fghlj klmno pqrst uvwxyz
01234 56789

! ,, # $ % & I ():. - = [] ~ ~ - - _\I@ I;+ I?.>'<

If time be of all things the most precious, wasting time must be, as Poor
Richard says, the greatest prodigality; since, as he elsewhere tells us,
lost time Is never found again; and what we call time enough, always
proves little enough: Let us than up and be doing, and doing to the
purpose; so by diligence shall we do more with less perplexity.

Berkeley Font Catalogue 6-47

°'Ja $nglish,. 8., 14" ana 18 point onl~. (~his font is caIJea
''olaenglish'' on Jin~J

Spml

~B ~~M~ ~~(9 lJ~ ~B ~~ 11~ £sittl IJmno ~ u~Dl:?H $1e

"# • : • I ! - - -' o ·: . > • <

14 point

~3'1~~$ lr~1'13 ~~1\t?Y0 Jr4»lttS1r lrV''l/X°'f ahcile fghii kltttna
pqrst "'.._"'XllZ 0)234 56~9

" # • . ~~-"'-\@: . >. <

1f time be of aD things the mact pret:ioas. u."11.sting time must be .. as ~oo ...
~hara sau-. the greatest proaigalitu:.sinl!e., as he eLse-whent tell.s tis., L:ast
time is mh~r foun.a again:m.a u~at u.~ osll tinse enaagh .. aht.-11ias pro,~~
little enaugh:~et us then up ana be aoing .. an.a ilaing to the purpose:.s.a bu
atligence shall u-e aa more u.-ith less perplexitu.

18 point

~~~~~ lf ~~l3 ~~~tl';~ ~©lt?S~ lt1VWX~~ 
abrae fghij kltnno pqrst uv·w·x!-tz 01234 56789 

" # 11.>.,< 

1£ time be of aJI things the most precious,. w·astin!1 time 

must be., as ~oor ~irhara sa!-ts .. the greate~d proai!1alit!-t 

since., as he else·\\.'·here tells us., los-t time is nver f .ouna 

again ana '-'-"hat l.ve c:afl titne enouAh., ah,,_..a~s proves JittJe 

enou!lh ana 1 think lT tn """asting time f!,tping all this stuff 



6-48 Berkeley Font Catalogue 

PIP F"IIHT' 1& PtJIHT IJHL y' NII LIJlJER cast: 

llBCDE F"IralJ KLMHIJ PQRST UUlJSYZ D 12:34 Sli92B9 

!"# '(): - ~ i ..._. ~-\ @•; ?. >, < 

IT CDID.D PRIIBffBL Y BE SHIJIJN BY F RCTS AHn FlGURES THllT THERE IS HD 

DISTIHCTL Y MllTIUE llMERJCllH CHJMIHRL CUISS EXI:EPT CIIHCHESS.. 

- HllRK 11JfllN 

1··1sz1·c1:•-·Cl l J-""-' o :•If.>,< 

I Uu h d U1 tlhfS tb am rnctas. n:fhf Uaa 1ut h. u P=r !J&brd $ifs. t'9 tnitn1 JndJ(tlltr. iiu1, u l:a 
dn1ian tdls u. list Uaa 1: uwr fau &f d&: w 1at n ull U•• 11ni L llwos ,nws U Ula uaai l: r..i u tb 1 •• 1u h 
il&af. 11~ il&&f ta tb par;m: :a )7 Ullf llCI WU 11 •• ut 1ttk las: fl~iuitf. 

Script, 18 point only. This font appears to be almost identical. to the 
••Coronet" font from SAIL, except that the period and one other glyph 
of Coronet are missing a row, and Coronet is supposed to be 16 point. 

(They are both really the same size .. ) 

.ABe:JJl ~qJJ.JJ Y.tmno PQl<.S5 uvwxyz "lcJ, 
I'll;; l/ .. ,.. ,,,.J &llWZJZ 01~34 56789 

,, # : .>.< 

.!} I u ... lw ./ all tlu·,.'I, ti ... ,...J ,,,..d .. ~,, ,.aJi,.,. u""' ,..tUf In,, tU p 001' 

f< 1'ef..a,.J '41'1~• tfu 'l"r•i11i ,,..J;'la/U'I; ,;,cc,_ 1u /.., ,/u.,/..,,.. f,//, 1u,, loa u .. , iA 

11rvrP /oa11J ra1ai11; ra1tJ .. ~ai .,. ca// liwu ,,. •• ,,.~,, ta!wa'f4 l'"ovr' /ut/1 1110_,,.J..: .f ,f 
~ fk,,. •p 1211J l. J,,;,.,, .,.J J,,;,.'f f. f~, !'•"fl•H; ,. l., J;/;'l"tt:' Jla// wr Jo 
,...,.. wllk /,,4 l'"P/,.,;t'I· 



Berkeley Font Catalogue 6-49 

V" # ' • 121 f J """"-\ @'10 • >, < 

'i?CDG 5CD!Dml!JC!J ITl!Jaro' DSj (Dal CSm!!St!&G1llv l!mDl!C5 ITI!Jlll 
IJJfmJl!m!JCDl!l OOCSWEvam~. D'i? ~ 'iiGJC5 aJC!lW!rl]'if (ij~f5 ml 
m:51J1IJIE mbtmJ5i l!JGJ~GJ~. 

SIGN, 22 POINT o·NL Y 

ABCDE FGHIJ KLMNO PQRST 
UVWXYZ >< ~1234 56789 

f"# ':*-•. f ~ ..... ,....,_@;I.>,< 

THIS FONT WAS INVENTED BY A 
DRAFTSMAN WHO HAD LOST HIS 
FRENCH CURVE. >SO IT GOES < 

LOWER CASE L IS >,LOWER CASE 
R IS<. 



6-50 Berkeley Font Catalogue 

Stare hershey font. This font is identical to the hershey font except that the point sizes are one pair: 
smaller, and the width tables are these used for the real typesetter. Hence, this font i3 useful whe'·~ 
previewing documents that are to be sent to a typesetter to make sure the spacing. paging, and so cc .·: 
right There are Roman.. Italic and Bald in 8, 9, 10, 11, 12, 14, and 16 point. The following example:; 
.,, 10 point. 

ABCDE FGHIJ KLM NO PQRST UVWXYZ abaie fghij klmno pqm uvwxyz 01234 56789 

! "II s ~ck. (): •• = [] l J ... ,... _,I@.:+ I?.>. < 

If time be of all things the most precious, westtna time must be, as Poor Richard says. the aree.test 
prodigality; since, es he elsewhere tells ws, lost time is never found again; and what we call time 
enouah. always proves liWe eno111h: Let us then up and be doing. and doing to the purpo:te; SJ by 
dili&ence shall we do more with less perplexity. 

ABC DE FGHIJ KLM NO PQRST CIVW XYZ abcdl hh:i/ J;trnm pqrst ~ 01234 56789 

!"#6X4t'(J:•·= (lll""'""-\10',·+ I?.>.< 

l/ timt be of all things tha most~. 'UlZ.fl:ing time mid be, as Poor R'icha:rd. sar,s. flll greatest prodigaHi:tj,· 
sira, CIS M 8'Slru.nen taJls UT, lost ffml "is .,,.,,.,. /:NNJ. ~ Q.7d 1J.hat U8 call ffn18 ~ ~ P"""AIS 
littla antJ1Jf1h,: Ld ut then. t.tp and be dD'irlg, mad dDttlg m tha pt./l"P's: so 'by di/:igrmca sMJJ. ue dD ,.,..,.,.. 1JJiJh lss:! 

~ 

ABCDE FGBIJ KLJI MO PQRST UVYXYZ ab:de fghij Jdmna pqrst. UYWXJZ 01254 56789 

!"#S~a:·():•-= []lJ ... --\1@•:+ /?.>.< 

If time be al all thinp the mmt preciam. wasting time most be., as Paar R icbard :says. the g?91.test. 

prudigallty; since. as he ebewhere tells us. last time is nser faond again; and what we mil time 
m.augb. always proves liWe enaucJi: Let us then up and be daing. and daing to the purpose; so by 
cl.lipnce :shall we do mare with less perpla:ity. 

8 point. Romm. Bald. md It:allt:. 
9 point Roman, Bald. .md !ID.lit:. 
10 point Roman.. Bald. and lfaJit:. 
11 point Rom.an, Bold. and Jtal:iJ:. 
12 point Roman, Bold. and JfrJJit;. 
14 point Roman, Bold, and Italic. 
16 point Roman, Bold, and ltal'ic. 



Berkeley Font Catalogue 6-51 

Times fonts, roman, italic, and hold. 10 point only. 
These fonts showed up in a directory labelled "timesroman" along with three other fonts which turned out 
to be nonie, meteor, and news got.hie. They are probably not r'eally times fonts, but seem to be pretty close. 
Notice the top of the "2" for a clear difference from a real Times Roman font. 

It i1 our desire to have a real, digitized Teraion of the times fonta from the phototypesetter. We eTentually 
plan to do thiL At that point, the times font will probably replace the hershey font as the default.. Such a 
Times font i1 already anilal>le from Johns Hopkins Uni•ersity for a fee, but we couldn't redistribute it, so 
we plan do dicitize them oursel•ea. 

10 Point 
.ABCDE FCHIJ XLMNO PORST UVWXYZ abcde f1hij klmno pqrst u...wxyz 01%34 56789 
! "/IS i & • ( >: * · • [] ~ t .... - _\I 0'; +I?.>,< 
', ', -, .• , ., -, •, c, ' ~' ~. ~ a. fl, ff, f6., fB, o, t, ', ,~ 

ABCDE FCHIJ KLMNO PQRST UVWXYZ ahctle /1laij klmno pqrst u.t11Ds-y.z: 01234 56789 
1"#1%&'():*·•[]f ~ ......... _,1@•;+/?.>, < 
•, ', -, -. -. -, •, a, , ~ lit "'49 JI, fl, 6, 114 !fl, •, t, ', • f>O 

ABQ)E FGHIJ lll\INO PQBST UVWX!Z ahcde lghij klmno pqrst.11.TirXJS 01234 56'189 
! "#1%&'0:*·•[] f ~ .... ""'-\I 0';+/!. >, < 
·, ', -, ., -,_-,!'1 ~, ~, ~, "'49 s, a,&, m, m, •, t, •,,re 





0. Introduction 

UNIX Assembler Reference Manual 6-53 

UNIXt Assembler Reference Manual 

Dennis M. Ritchie 

Bell Laboratories 
Murray Hill, New iersey 07974 

This document describes the usage and input syntax of the UNIX PDP-11 assembler as. 
The details of the PDP-11 are not described. 

The input syntax of the UNIX assembler is generally similar to that of the DEC assembler 
PAL-llR, although its internal workings and output format are unrelated. It may be useful to 
read the publication DEC-11-ASDB-D, which describes PAL-llR, although naturally one must use 
care in assuming that its rules apply to as. 

As is a rather ordinary assembler without macro capabilities. It produces an output file 
that contains relocation information and a complete symbol table~ thus the output is acceptable 
to the UNIX link-editor Id, which may be used to combine the outputs of several assembler runs 
and to obtain object programs from libraries. The output format has been designed so that if a 
program contains no unresolved references to external symbols, it is executable without further 
processing. 

1. Usage 

as is used as follows: 

as [ -u] [ -o output] .file, ... 

If the optional " - u" argument is given, all undefined symbols in the current assembly will be 
made undefined-external. See the .globl directive below. 

The other arguments name files which are concatenated and assembled. Thus programs 
may be written in several pieces and assembled together. 

The output of the assembler is by default placed on the file a.out in the current directory~ 
the "-o" tlag causes the output to be placed on the named file. If there were no unresolved 
external references, and no errors detected, the output file is marked executable~ otherwise, if 
it is produced at all, it is made non-executable. 

2. Lexical conventions 

Assembler tokens include identifiers (alternatively, "symbols" or "names"), temporary 
symbols, constants, and operators. 

2.1 Identifiers 

An identifier consists of a sequence of alphanumeric characters (including period " . ", 
underscore "_", and tilde "-" as alphanumeric) of which the first may not be numeric. Only 
the first eight characters are significant. When a name begins with a tilde, the tilde is discarded 
and that occurrence of the identifier generates a unique entry in the symbol table which can 
match no other occurrence of the identifier. This feature is used by the C compiler to place 

t UNIX is a Trademark of Bell Laboratories. 



6-54 UNIX Assembler Reference Manual 

names of local variables in the output symbol table without having to worry about making them 
unique. 

2.2 Temporary symbols 

A temporacy symbol torlsists of a digit followed by ".f" or "b". Temporary symbols are 
discussed fully in §5. i. 

2.3 Constants 

An octal constant consists of a sequence of digits; "8" and "9" are taken to have octal 
value 10 and 11. The constant is truncated to 16 bits and interpreted in two's complement 
notation. 

A decimal constant consists of a sequence of digits terminated by a decimal point ".". 
The magnitude of the constant should be representable in 15 bits; i.e., be less than 32, 768. 

A single-character constant consists of a single quote " '" followed by an ASCII character 
not a new-line. Certain dual-character escape sequences are acceptable in place of the ASCII 
character to represent new-line and other non-graphics (see String statements. §5.5). The 
constant's value has the code for the given character in the least significant byte of the word 
and is null-padded on the left. 

A double-character constant consists of a double quote """ followed by a pair of ASCII 
characters not including new-line. Certain dual-character escape sequences are acceptable in 
place of either of the ASCII characters to represent new-line and other non-graphics (see String 
statements, §5.5). The constant's value has the code for the first given character in the least 
significant byte and that for the second character in the most significant byte. 

2.4 Operators 

There are several single- and double-character operators; see §6. 

2.5 Blanks 

Blank and tab characters may be interspersed freely between tokens, but may not be used 
within tokens (except character constants). A blank or tab is required to separate adjacent 
identifiers or constants not otherwise separated. 

2.6 Comments 

The character "I " introduces a comment, which extends through the end of the line on 
which it appears. Comments are ignored by the assembler. 

3. Segments 

Assembled code and data fall into three segments: the text segment, the data segment, 
and the bss segment. The text segment is the one in which the assembler begins, and it is the 
one into which instructions are typically placed. The UNIX system will, if desired, enforce the 
purity of the text segment of programs by trapping write operations into it. Object programs 
produced by the assembler must be processed by the link-editor Id (using its "-n" flag) if the 
text segment is to be write-protected. A single copy of the text segment is shared among all 
processes executing such a program. 

The data segment is available for placing data or instructions which will be modified dur
ing execution. Anything which may go in the text segment may be put into the data segment. 
In programs with write-protected, sharable text segments, data segment contains the initialized 
but variable parts of a program. If the text segment is not pure, the data segment begins 
immediately after the text segment~ if the text segment is pure, th.e data segment begins at the 
lowest SK byte boundary after the text segment. 

The bss segment may not contain any explicitly initialized code or data. The length of the 



UNIX Assembler Reference Manual 6-55 

bss segment (like that of text or data) is determined by the high-water mark of the location 
counter within it. The bss segment is actually an extension of the data segment and begins 
immediately after it. At the start of execution of a program, the bss segment is set to 0. Typi
cally the bss segment is set up by statements exemplified by 

lab: • - .+ 10 

The advantage in using the bss segment for storage that starts off empty is that the initialization 
information need not be stored in the output file. See also Location counter and Assignment 
statements below. 

4. The location counter 

One special symbol, " • ", is the location counter. Its value at any time is the offset 
within the appropriate segment of the start of the statement in which it appears. The location 
counter may be assigned to, with the restriction that the current segment may not change~ 
furthermore, the value of " . " may not decrease. If the effect of the assignment is to increase 
the value of " • ", the required number of null bytes are generated (but see Segments above). 

S. Statements 

A source program is composed of a sequence of statements. Statements are separated 
either by new-lines or by semicolons. There are five kinds of statements: null statements, 
expression statements, assignment statements, string statements, and keyword statements. 

Any kind of statement may be preceded by one or more labels. 

5.1 Labels 

There are two kinds of label: name labels and numeric labels. A name label consists of a 
name followed by a colon (:). The effect of a name label is to assign the current value and 
type of the location counter •• . " to the name. An error is indicated in pass 1 if the name is 
already defined~ an error is indicated in pass 2 if the " . '' value assigned changes the definition 
of the label. 

A numeric label consists of a digit 0 to 9 followed by a colon ( : ) . Such a label serves to 
define temporary symbols of the form "nb" and "nf", where n is the digit of the label. As in 
the case of name labels, a numeric label assigns the current value and type of " . " to the tem
porary symbol. However, several nume_ric labels with the same digit may be used within the 
same assembly. References of the form •• n f" refer to the first numeric label ••,,:" forward 
from the reference; "'nb" symbols refer to the first "n :" label backward from the reference. 
This sort of temporary label was introduced by Knuth [The Art of Compwer Programming, Vol/: 
Fundamental Algorithms]. Such labels tend to conserve both the symbol table space of the 
assembler and the inventive powers of the programmer. 

5.2 Null statements 

A null statement is an empty statement (which may, however, have labels). A null state
ment is ignored by the assembler. Common examples of null statements are empty lines or 
lines containing only a label. 

5.3 Expression statements 

An expression statement consists of an arithmetic expression not beginning with a key
word. The assembler computes its 06-bit) value and places it in the output stream, together 
with the appropriate relocation bits. 



6-56 UNIX Assembler Reference Manual 

S.4 Assignment statements 

An assignment statement consists of an identifier, an equals sign ( - ) , and an expression. 
The value and type of the ~xpression are assigned to the identifier. It is not required that the 
type or value be the same in pass 2 as in pass I, nor is it an error to redefine any symbol by 
assignment. 

Any external attribute of the expression is lost across an assignment. This means that it 
is not possible to declare a global symbol by assigning to it, and that it is impossible to define a 
symbol to be offset from a non-locally defined global symbol. 

As mentioned, it is permissible to assign to the location counter " . ". It is required, how
ever, that the type of the expression assigned be of the same type as ". ", and it is forbidden 
to decrease the value of " . ". In practice, the most common assignment to " . " has the form 
" .... + n" for some number n; this has the effect of generating n null bytes. 

5.5 String statements 

A string statement generates a sequence of bytes containing ASCII characters. A string 
statement consists of a left string quote "<" followed by a sequence of ASCII characters not 
including newline, followed by a right string quote "> ". Any of the ASCII characters may be 
replaced by a two-character escape sequence to represent certain non-graphic characters, as fol
lows: 

\n NL (012) 
\s SP (040) 
\t HT (011) 
\e EOT (004) 
\0 NUL (000) 
\r CR (015) 
\a ACK (006) 
\p PFX (033) 
\\ \ 
\> > 

The last two are· included so that the escape character and the right string quote may be 
represented. The same escape sequences may also be used within single- and double-character 
constants (see §2.3 above). 

5.6 Keyword statements 

Keyword statements are numerically the most common type, since most machine instruc
tions are of this sort. A keyword statement begins with one of the many predefined keywords 
of the assembler; the syntax of the remainder depends on the keyword. All the keywords are 
listed below with the syntax they require. 

6. Expressions 

An expression is a sequence of symbols representing a value. Its constituents are 
identifiers, constants, temporary symbols, operators, and brackets. Each expression has a type. 

All operators in expressions are fundamentally binary in nature; if an operand is missing 
on the left, a 0 of absolute type is assumed. Arithmetic is two's complement and has 16 bits of 
precision. All operators have equal precedence, and expressions are evaluated strictly left to 
right except for the effect of brackets. 



UNIX Assembler Reference Manual 6-57 

6.1 Expression operators 

The operators are: 

(blank) when there is no operand between operands, the effect is exactly the same as if a "+" 
had appeared. 

+ addition 

• 
\/ 
8 

I 
\> 
\< 
% 

subtraction 

multiplication 

division (note that plain "I" starts a comment) 

bitwise and 

bitwise or 

logical right shift 

logical left shift 

modulo 

a! b is a or (not b ); i.e., the or of the first operand and the one's complement of the 
second; most common use is as a unary. 

result has the value of first operand and the type of the second; most often used to 
define new machine instructions with syntax identical to existing instructions. 

Expressions may be grouped by use of square brackets " [ ) ". (Round parentheses are 
reserved for address modes.) 

6.2 Types 

The assembler deals with a number of types of expressions. Most types are attached to 
keywords and used to select the routine which treats that keyword. The types likely to be met 
explicitly are: 

undefined 
Upon first encounter. each symbol is undefined. It may become undefined if it is 
assigned an undefined expression. It is an error to attempt to assemble an undefined 
expression in pass 2~ in pass 1, it is not (except that certain keywords require operands 
which are not undefined). 

undefined external 
A symbol which is declared .globl but not defined in the current assembly is an 
undefined external. If such a symbol is declared, the link editor Id must be used to 
load the assembler's output with another routine that defines the undefined reference. 

absolute An absolute symbol is defined ultimately from a constant. Its value is unaffected by 
any possible future applications of the link-editor to the output file. 

text The value of a text symbol is measured with respect to the beginning of the text seg
ment of the program. If the assembler output is link-edited, its text symbols may 
change in value since the program need not be the first in the link editor's output. 
Most text symbols are defined by appearing as labels. At the start of an assembly. the 
value of H • ,. is text 0. 

data The value of a data symbol is measured with respect to the origin of the data segment 
of a program. Like text symbols, the value of a data symbol may change during a sub
sequent link-editor run since previously loaded programs may have, data segments. 
After the first .data statement, the value of " . " is data 0. 

bss The value of a bss symbol is measured from the beginning of the bss segment of a 
program. Like text and data symbols, the value of a bss symbol may change during a 
subsequent link-editor run, since previously loaded programs may have bss segments. 
After the first .bss statement, the value of 44 

• " is bss 0. 



6-58 UNIX Assembler Reference Manual 

external absolute, text, data, or bss 

register 

symbols declared .globl but defined within an assembly as absolute, text, data, or bss 
symbols may be used exactly as if they were not declared .globl; however, their value 
and type are available to the link editor so that the program may be loaded with others 
that reference these symbols. 

The symbols 

rO ... rS 
frO ... frS 
sp 
pc 

are predefined as register symbols. Either they or symbols defined from them must be 
used to ref er to the six general-purpose, six floating-point, and the 2 special-purpose 
machine registers. The behavior of the floating register names is identical to that of 
the corresponding general register names; the former are provided as a mnemonic aid. 

other types 
Each keyword known to the assembler has a type which is used to select the routine 
which processes the associated keyword statement. The behavior of such symbols 
when not used as keywords is the same as if they were absolute. 

6.3 Type propagation in expressions 

When operands are combined by expression operators, the result has a type which 
depends on the types of the operands and on the operator. The rules involved are complex to 
state but were intended to be sensible and predictable. For purposes of expression evaluation 
the important types are 

undefined 
absolute 
text 
data 
bss 
undefined external 
other 

The combination rules are then: If one of the operands is undefined. the result is undefined. If 
both operands are absolute, the result is absolute. If an absolute is combined with one of the 
"other types" mentioned above, or with a register expression. the result has the register or 
other type. As a consequence, one can refer to r3 as uro+ 3". If two operands of uother 
type" are combined, the result has the numerically larger type An "other type" combined with 
an explicitly discussed type other than absolute acts like an absolute. 

Further rules applying to particular operators are: 

+ If one operand is text-, data-, or bss-segment relocatable, or is an undefined external, the 
result has the postulated type and the other operand must be absolute. 

If the first operand is a relocatable text-, data-. or bss-segment symbol, the second 
operand may be absolute (in which case the result has the type of the first operand)~ or 
the second operand may have the same type as the first (in which case the result is abso
lute). If the first operand is external undefined, the second must be absolute. All other 
combinations are illegal. 

This operator follows no other rule than that the result has the value of the first operand 
and the type of the second. 



UNIX Assembler Reference Manual 6-59 

others 
It is illegal to apply these operators to any but absolute symbols. 

7. Pseudo-operations 

The keywords listed below introduce statementS that generate data in unusual forms or 
influence the later operations of the assembler. The nietanotation 

[stuff] ... 

means that 0 or more instances of the given sttiff may appear. Also, boldface tokens are 
literals, italic words are substitutable. 

7 .1 .byte expression [ , expression ] 

The expressions in the comma-separated list are truncated to 8 bits and assembled in suc
cessive bytes. The expressions must be absoiute. This statement and the string statement 
above are the only ones that assemble data one byte at at time. 

7.2 .even 

If the location counter " • ., is odd, it is advanced by one so the next statement will be 
assembled at a word boundary. 

7 .3 .if expression 

The expression must be absolute and defined in pass l. If its value is nonzero, the .if is 
ignored~ if zero, the statemants between the .if and the matching .endif (below) are ignored . 
. if may be nested. The effect of .if cannot extend beyond the end of the input file in which it 
appears. (The statements ate not totally ignored, in the foil owing sense: .ifs and .end ifs are 
scanned for, and moreover all names are entered in the symbol table. Thus names occurring 
only inside an .if will show up as undefined if the symbol table is listed.) 

7.4 .endif 

This statement marks the end of a conditionally-assembled section of code. See .if above. 

7 .5 .glob I name [ , name ] ... 

This statement makes the names external. If they are otherwise defined (by assigrUnent or 
appearance as a label) they act within the assembly exactly as if the .globl statement were not 
given~ however, the link editor Id may be used to combine this routine with other routines that 
ref er these symbols. 

Conversely, if the given symbols are not defined within the current assembly, the link 
editor can combine the output of this assembly with that of others which define the symbols. 
As discussed in §1, it is possible to force the assembler to make all otherwise undefined sym
bols external. 

7.6 .text 

7.7 .data 

7.8 .bss 

These three pseudo-operations cause the assembler to begin assembling into the text, 
data, or bss segment respectively. Assembly starts in the text segment. It is forbidden to 
assemble any code or data into the bss segment, but symbols may be defined and •• . " moved 
about by assignment. 



6-60 UNIX Assembler Reference Manual 

7 .9 .comm name , expression 

Provided the name is not defined elsewhere, this statement is equivalent to 

.globl name 
name - expression .. name 

That is, the type of name is "undefined external", and its value is expression. In fact the name 
behaves in the current assembly just like an undefined external. However, the link-editor Id 
has been special-cased so that all external symbols which are not otherwise defined, and which 
have a non-zero value, are defined to lie in the bss segment, and enough space is left after the 
symbol to hold expression bytes. All symbols which become defined in this way are located 
before all the explicitly defined bss-segment locations. 

8. Machine instructions 

Because of the rather complicated instruction and addressing structure of the PDP-11, the 
syntax of machine instruction statements is varied. Although the following sections give the 
syntax in detail, the machine handbooks should be consulted on the semantics. 

8.1 Sources and Destinations 

The syntax of general source and destination addresses is the same. Each must have one 
of the following forms, where reg is a register symbol, and expr is any sort of expression: 

syntax words mode 
reg 0 OO+reg 
(reg)+ 0 20+reg 
- (reg) 0 40+reg 
expr (reg) 1 60+reg 
(reg) 0 IO+reg 
*reg 0 lO+reg 
*(reg) + 0 30+reg 
* - (reg) 0 SO+reg 
* (reg) 1 70+reg 
* expr (reg) I 70+reg 
ex pr 1 67 
$expr 1 27 
*expr 1 77 
* $expr I 37 

The words column gives the number of address words generated~ the mode column gives the 
octal address-mode number. The syntax of the address forms is identical to that in DEC assem
blers, except that "*" has been substituted for H@" and "$" for "#"~ the UNIX typing con
ventions make 44 @" and "#" rather inconvenient. 

Notice that mode "*reg" is identical to "(reg)"~ that "*(reg)" generates an index word 
(namely, 0)~ and that addresses consisting of an unadorned expression are assembled as pc
relative references independent of the type of the expression. To force a non-relative refer
ence, the form H•Sexpr" can be used, but notice that further indirection is impossible. 

8.3 Simple machine instructions 

The following instructions are defined as absolute symbols: 



clc 
clv 
clz 
cln 
sec 
sev 
sez 
sen 

UNIX Assembler Reference Manual 6-61 

They therefore require no special syntax. The PDP-11 hardware allows more than one of the 
uclear" class, or alternatively more than one of the "set" class to be or-ed together~ this may 
be expressed as follows: 

clc I clv 

8.4 Branch 

The following instructions take an expression as operand. The expression must lie in the 
same segment as the reference, cannot be undefined-external, and its value cannot differ from 
the current location of " . " by more than 254 bytes: 

br blos 
bne bvc 
beq bvs 
bge bhis 
bit bee (- bee) 
hgt bee 
hie blo 
bpi bes 
bmi bes (- bes) 
bhi 

bes ("branch on error set") and bee ("branch on error clear") are intended to test the error bit 
returned by system calls (which is the c-bit). 

8.5 Extended branch instructions 

The following symbols are followed by an expression representing an address in the same 
segment as " . ". If the target address is close enough, a branch-type instruction is generated~ if 
the address is too far away, a jmp will be used. 

jbr jlos 
jne jvc 
jeq jvs 
jge jhis 
jlt jec 
jgt jcc 
jle jlo 
jpl jcs 
jmi jes 
jhi 

jbr turns into a plain jmp if its target is too remote~ the others (whose names are contructed by 
replacing the Hb" in the branch instruction's name by ~T') turn into the converse branch over 
a jmp to the target address. 



6-62 UNIX Assembler Reference Manual 

8.6 Single operand instructions 

The foil owing symbols are names of ~ingle-operand machine instructions. The form of 
address expected is discussed in §8.1 above. 

cir sbcb 
clrb ror 
com rorb 
comb rot 
inc rpl~ 
incb asr 
dee asrb 
decb asl 
neg aslb 
negb jmp 
adc swab 
a deb tst 
sbc tstb 

8. 7 Double operand instructions 

The following instructions take a general source and destination {§8.1), separated by a 
comma, as operands. 

mov 
movb • 
cmp 
cmpb 
~if 
bitb 
hie 
bicb 
bis 
bisb 
add 
-sub 

8.8 Miscellaneous instructions 

The following instructions have more specialized syntax. Here reg is a register name, src 
and dst a general source or destination (§8.1), and expr is an expression: 

jsr reg,dst 
rts reg 
sys ex pr 
ash src. reg (or, als) 
ashc src. reg (or, alsc) 
mul src. reg (or, mpy) 
div src. reg (or, dvd) 
xor reg. dst 
sxt dst 
mark ex pr 
sob reg, expr 

sys is another name for the trap instruction. It is used to code system calls. Its operand is 
required to be expressible in 6 bits. The expression in mark must be expressible in six bits, 
and the expression in sob must be in the same segment as H • ". must not be external
undefined, must be less than u • ", and must be within 510 bytes of H • ". 



UNIX Assembler Reference Manual 6-63 

8.9 Floating-point unit instructions 

The following floating-point operations are defined., with syntax as indicated: 

cf cc 
setf 
setd 
seti 
set I 
clrf fdst 
negf fast 
ab sf fdst 
tstf fsrc 
movf .tsrcJreg ( =- ldf) 
movf .keg,fdst ( =- stf) 
movif src,j;eg (-= ldcif) 
movfi .keg, dst ( =- stcfi) 
movof .tsrc,j;eg ( =- ldcdf) 
movfo .1;eg,.fas1 (- stcfd) 
movie src .. J;eg (- ldexp) 
movei freg, dst ( .. stexp) 
addf .tsrc,./;eg 
subf fsrc,j;eg 
mulf .tsrc .. keg 
divf fsrc .. keg 
cm pf fsrc,freg 
modf .fsrc,freg 
ldfps src 
stfps dst 
st st dst 

fsrc, fdst, and freg mean floating-point source, destination, and register respectively. Their syn
tax is identical to that for their non-floating counterparts, but note that only floating registers 
0-3 can be a freg. 

The names of several of the operations have been changed to bring out an analogy with 
certain fixed-point instructions. The only strange case is movf, which turns into either stf or 
ldf depending respectively on whether its first operand is or is not a register. Warning: ldf sets 
the floating condition codes, stf doc::s not. 

9. Other symbols 

9.1 .. 

The symbol " .. ,, is the relocation counter. Just before each assembled word is placed in 
the output stream, the current value of this symbol is added to the word if the word refers to a 
text, data or bss segment location. If the output word is a pc-relative address word that refers 
to an absolute location, the value of " .. ,, is subtracted. 

Thus the value of •• .. " can be taken to mean the starting memory location of the pro
gram. The initial value of " .. ,, is 0. 

The value of •• .. " may be changed by assignment. Such a course of action is sometimes 
necessary, but the consequences should be carefully thought out. It is particularly ticklish to 
change •• .. " midway in an assembly or to do so in a program which will be treated by the 
loader, which has its own notions of •• .. ". 



6-64 UNIX As~embler Reference Manual 

9.2 System calls 

System call names are not predefined. They may be found in the file lusr/i11cludelsys.s 

10. Diagnostics 

When an input file cannot be read, its name followed by a question mark is typed and 
assembly ceases. When syntactic or semantic errors occur, a single-character diagnostic is typed 
out together with the line number and the file name in which it occurred. Errors in pass I 
cause cancellation of pass 2. The possible errors are: 

) 

1 
> 
• 

A 

B 

E 

F 
G 
I 

M 
0 
p 

R 
u 
x 

parentheses error 
parentheses error 
string not terminated properly 
indirection ( •) used illegally 
illegal assignment to " . " 
error in address 
branch address is odd or too remote 
error in expression 
error in local ("f" or "b") type symbol 
garbage (unknown) character 
end of file inside an .if 
multiply defined symbol as label 
word quantity assembled at odd address 
phase error- '~." different in pass I and 2 
relocation error 
undefined symbol 
syn tax error 



UNIX MASTER INDEX 
Index - i 

The UNIX Master Index is a cumulative index; it brings together the indexes 
of all the UNIX volumes. The Master Index appears at the end of each 
volume. 

Each entry is followed by one or more shortened volume titles, indicating the 
volumes in which the topic is discussed and the pages containing the informa
tion. The volumes and their shortened titles are shown in the following table: 

Shortened 

General use 

Programming 

System manager 

Volume Title 

GEN 

PGM 

SYS 

If a topic is discussed in two or more volumes, the shortened volume names 
are presented in alphabetical order. For example, an entry in the Master 
Index might appear in the following way: 

ed line editor 

description, GEN 4-8 to 4-9, SYS 4-6 

ed_.hup file 

saving text, GEN 2-6 

This entry indicates that a description of the ed line editor can be found on 
pages 4-8 through 4-9 of the GEN volume and page 4-6 of the SYS volume. 
The ed_.hup file is discussed on page 3-43 of the GEN volume. 

ACRONYMS AND MNEMONICS 

The acronym (or mnemonic) is the preferred entry. The acronym is cross
referred from the complete form. 

DEFINITIONS 

Defined terms and glossary terms are indexed. 

HOMONYMS 

Things of the same name but different meaning are followed by a descriptive 
word or by an abbreviation in parentheses. 

KEYS FOR EXAMPLES, FIGURES, TABLES, AND FOOTNOTES 

Page references for example, figure, and table index entries are keyed. Exam
ple: 

Example 

Figure 

Table 

Footnote 

4-13E 

4-13F 

4-13T 

4-13n 



ii-Index 

NONALPHABETIC CHARACTERS 

Entries containing leading nonalphabetic characters (symbols, numbers, and 
punctuation) are placed at the beginning of the index. Nonalphabetic charac
ters within index entries are sorted before alphabetic characters. 

Nonalphabetic characters that serve as terms are indexed in a spelled-out 
form whenever possible. 



INDEX 

! command (DC) 
descripton, GEN 2-58 

! command (ed) 
escaping to use UNIX command, 

GEN 3-51E 
! command (ex) 

description, GEN 3-95 
! command (Mail) 

marking commands for the shell, 
GEN 2-28 

! escape (Mail) 
description, GEN 2-25 

$character (ed) 
printing last line, GEN 3-28 

% command (DC) 
descripton, GEN 2-57 

% prompt 
defined, GEN 3-5 

& command (ex) 
description, GEN 3-96 

+ command (DC) 
descripton, GEN 2-57 

- command (DC) 
descripton, GEN 2-57 

- command (Mail) 
printing previous message, GEN 

2-28 
.. file 

defined, GEN 4-63 
/etc/passwd file 

defined, GEN 4-66 

/etc/re command file 
starting network servers, SYS 5-49 

/sys directory 
contents, SYS 5-36T 

I sys/ sys directory 
file prefixes, SYS 5-36T 

/usr/ spooVmail directory 
system :mailbox and, GEN 2-17 

0 command 
defined, GEN 5-88 

0 command (troff) 
right-justifying digits, GEN 5-87 

0 macro (me) 
specifying section titles for 

contents, GEN 5-41 
1822 interface 

See imp network interface driver 
le command (me) 

defined, GEN 5-43 
returning one-column format, 

GEN 5-35 
1 C command (ms) 

returning one-column format, 
GEN 5-6 

2c command (me) 
defined, GEN 5-43 
specifying two-column format, 

GEN 5-35 
2C command (ms) 

specifying two-column format, 
GEN 5-6 

lndex-1 



3Com Ethernet controller 
See ec network interface driver 

4.2BSD file system 
file set, SYS 5-32T 

4.2BSD Interprocess Communication 
Primer 

See also Interprocess 
communication 

4.2BSD Interprocess Communication 
Primer, SYS 3-5 to 3-28 

4.2BSD Line Printer Spooler 
Manual, PGM 4-99 to 4-105 

See also Line printer spooling 
system (4.2BSD) 

4.2BSD system 
4.lBSD files and, SYS 5-32 to 

5-34 
4.lBSD language processors and, 

SYS 5-34 
adding device drivers, SYS 5-88 
adding users, SYS 5-43 
bug fixes and changes, SYS 1-3 to 

1-21 
changes to the kernel, SYS 5-3 to 

5-15 
configuring for networking support, 

SYS 5-47 to 5-51 
configuring multiple networks, 

SYS 5-48 
creating boot floppy, SYS 5-35 
disk space and, SYS 5-18 
distribution format, SYS 5-18 
hardware supported, SYS 5-17 
installing on VAXNMS, SYS 

5-17 to 5-71 
making boot cassette, SYS 5-35 
setting up, SYS 5-35 to 5-46 
source directory organization, SYS 

5-89T 
system manual, PGM 4-15 to 4-52 
tailoring to your site, SYS 5-43 
upgrading, SYS 5-32 to 5-34 

4.2BSD System Manual, PGM 4-15 
to 4-52 

: command (DC) 
description, GEN 2-63 

: escape (Mail) 
description, GEN 2-25 

; command (DC) 
description, GEN 2-63 

<symbol 
meaning, GEN 2-10 

= command (sed) 
defined, GEN 3-114 

Index-2 

>symbol 
meaning, GEN 2-10 

? escape (Mail) 
description, GEN 2-26 

[ ... ] 
pattern-matching and, GEN 2-8 

\ * command (troff) 
entering comments in macros, 

GEN 5-89 
_exit function 

description, PGM 1-8 

A 

a command ( ed) 
defined, GEN 3-34 
using, GEN 3-25 to 3-26 

a command (edit) 
entering, GEN 3-6E 

a command (ex) 
description, GEN 3-88 

A command (me) 
defined, GEN 5-46 

a command (sed) 
See also i command (sed) 
defined, GEN 3-108 

A command (vi) 
defined, GEN 3-78 

a command (vi) 
defined, GEN 3-80 

a option (hunt) 
defined, GEN 5-148 

a option (inv) 
defined, GEN 5-14 7 

a option (troff) 
defined, GEN 5-50 

a.out file 
as assembler and, GEN 6-53 
defined, GEN 4-63 

aardvark game 
4.2BSD and, SYS 1-17 

ab command (ex) 
See also una command (ex) 
description, GEN 3-87 

AB command (me) 
defined, GEN 5-46 

AB command (ms) 
entering abstract in text, GEN 

5-5 
ab command (nroff/troff) 

message output, GEN 5-81 
abbreviate command (ex) 

See ab command (ex) 



abort command (lpc) 
description, PGM 4-103 

Absolute pathname 
See also Relative pathname 
defined, GEN 4-63 
description, GEN 4-33 

Abstract 
entering with -ms, GEN 5-5 

ac command (me) 
defined, GEN 5-46 

ACC LH/DH IMP interface 
See ace network driver 

ace network driver 
4.2BSD improvement, SYS 1-15 

Accent 
ere a ting with troff, GEN 5-88E 
entering with -ms, GEN 5-9 
new in -ms, GEN 5-19 

access system call 
4.2BSD improvement, SYS 1-10 

ACM (Association for Computing 
Machinery) 

formatting papers for, GEN 5-46 
acommute routine 

operators and, PGM 2-67 to 2-68 
Action statement (awk) 

description, PGM 3-7 to 3-9 
Active system 

defined, SYS 5-123 
Acute accent 

See Metacharacters 
ad command (nroff/troff) 

defined, GEN 5-61 
j register and, GEN 5-81 

ad driver 
4.2BSD improvement, SYS 1-15 

ad.c device driver 
4.2BSD improvement, SYS 5-12 

ADB debugging program 
4.2BSD improvement, SYS 1-5 
C and, GEN 2-15 
description, PGM 3-51 to 3-77 

addbib utility 
See also refer 
description, SYS 1-5 

addch routine 
defined, PG M 4-80 

Addition 
DC and, GEN 2-60 

Additive operator 
description, GEN 2-53 

Address (edit) 
defined for buffer line, GEN 3-18 

Address (sed) 
description, GEN 3-107 to 3-108 

Address Resolution Protocol 
See arp driver 

addstr routine 
defined, PGM 4-81 

Advisory lock 
compared to hard lock, SYS 1-33 

AE command (ms) 
TL command and, GEN 5-6 

af command (nroff/troff) 
defined, GEN 5-66 

Aho, A. V., & others 
awk programming language, PGM 

3-5 to 3-12 
AI command (ms) 

formatting author's institution 
name, GEN 5-5 

Alias 
defined, GEN 2-21, 2-38, 4-63 
removing from shell, GEN 4-52 
specifying, GEN 2-21 

alias command (C shell) 
See also unalias command ( C 

shell) 
displaying aliases, GEN 4-50E 

alias command (Mail) 
See also alternates command 

(Mail) 
See also metoo option 
defining an alias, GEN 2-21 
description, GEN 2-29 
restriction, GEN 2-21 

alias facility 
shell command files and, GEN 

4-43 
startup and, GEN 4-44 
uses for, GEN 4-43 to 4-44 

aliens game 
distribution and, SYS 1-17 

Allman, E. 
-Me Reference Manual, GEN 5-39 

to 5-48 
introduction to SCCS, PGM 3-23 

to 3-37 
sendmail, SYS 3-59 to 3-71 
Sendmail Installation and 

Operation Guide, SYS 2-27 to 
2-60 

writing papers with nroff using 
-me, GEN 5-21 to 5-38 

Allocator 
description, GEN 2-59 to 2-60 
design rationale, GEN 2-63 

Index-3 



ALT key 
See ESCAPE key 

alternates command (Mail) 
description, GEN 2-29 

am command (nroff/troff) 
defined, GEN 5-64 

AM macro 
diacritical marks and, GEN 5-19 

Ampersand character (C shell) 
background jobs and, GEN 4-45 
routing output, GEN 4-44 

Ampersand character ( ed) 
meaning, GEN 3-42 
printing, GEN 3-42 
s command and, GEN 3-33 to 

3-34 
turning off, GEN 3-34 
uses, GEN 3-42 

Ampersand character (edit) 
repeatings command, GEN 3-20 

Ampersand character (shell) 
multitasking and, GEN 1-29 

ANAME operator (C compiler) 
defined, PG M 2-65 

ANSI Standard X3.9 1978 
exceptions to, PG M 2-88 
extensions, PG M 2-82 to 2-83 

append commap.~ (ed) 
See a command ( ed) 

append comm~nd (ecOt) 
See a command (edit) 

append command (ex) 
See a command (ex) 

Append mode ' 
See Input mode 

append option (Mail) 
defined, GEN 2-34 

Appendix 
specifying page numbers, GEN 

5-46 
apply program 

description, SYS 1-5 
ar 

4.2BSD improvement, SYS 1-5 
ar command (me) 

defined, GEN 5-44 
Arabic number 

setting page number, GEN 5-44 
arff program 

4.2BSD improvement, SYS 1-18 
args command (ex) 

description, GEN 3-88 
Argument (C shell) 

defined, GEN 4-63 

Index-4 

Argument (C shell) (Cont.) 
expanding, GEN 4-60 to 4-61 

Argument (nroff) 
defined, GEN 5-21 

argv variable (C shell) 
defined, GEN 4-63 
script files and, GEN 4-53 

Arithmetic expression (troff) 
entering, GEN 5-92 

Arithmetic language 
See BC language 

Arnold, K.C.R.C. 
Screen package, PGM 4-75 to 

4-98 
Arnold, K.C.R.C., & Toy, M.C. 

guide to the dungeons of doom, 
GEN 6-17 to 6-25 

arp driver 
4.2BSD improvement, SYS 1-15 

ARP A File Transfer Protocol 
ftp program and, SYS 1-6 

ARP A Telnet protocol 
See telnet program 

ARPANET 
sending mail to, GEN 2-26 
UUCP network and, GEN 2-26 

Array (awk) 
description, PGM 3-9 

Array element 
defined, GEN 2-51 

Array identifier 
description, GEN 2-50 

as assembler 
command line format, GEN 6-53E 
defined, GEN 6-53 
errors, GEN 6-64 
reference manual, GEN 6-53 to 

6-64, PGM 4-53 to 4-65 
segment types, GEN 6-54 

as command (nroff/troff) 
defined, GEN 5-64 

ask option (Mail) 
defined, GEN 2-34 
prompting for subject header, 

GEN 2-20 
setting, GEN 2-20 

askcc option (Mail) 
cfofined, GEN 2-34 

asm...sed file 
4.2BSD improvement, SYS 5-13 

Assembler 
replacing, SYS 5-118 

Assignment operator 
description, GEN 2-53 



Assignment statement (as) 
defined, GEN 6-56 

Assignment statement (BC) 
value and, GEN 2-48 

Association for Computing 
Machinery 

See ACM 
Asterisk character 

dot character and, GEN 3-40 
ed and, GEN 3-33 
printing multiple files, GEN 2-8 
shell and, GEN 4-33 
turning off, GEN 2-8 
uses, GEN 3-40 to 3-41 
zero and, GEN 3-41 

Asymmetric protocol 
defined, SYS 3-17 

At sign 
See also CTRL-H 
See also u command (edit) 
deleting a line, GEN 3-8E 
entering in text, GEN 2-4 
erasing characters on input line, 

GEN 2-4 
printing, GEN 3-39 

AU command (ms) 
formatting author's name in text, 

GEN 5-5 
Author institution 

formatting in text, GEN 5-5 
Author name 

formatting in text, GEN 5-5 
Auto array 

specifying, GEN 2-54 
auto statement (BC) 

forming, GEN 2-55 
autoconf.c file 

4.2BSD improvement, SYS 5-13 
Autoconfiguration 

building systems with config, SYS 
5-73 to 5-105 

hardware devices and, SYS 5-75 
requirements for V AXNMS, SYS 

5-95 
autoindent option (ex) 

description, GEN 3-97 
autoindent option (vi) 

enabling, GEN 3-67 
lisp and, GEN 3-68 
using, GEN 3-73 

autoprint option (ex) 
description, GEN 3-98 

autoprint option (Mail) 
defined, GEN 2-34 

autowrite option (ex) 
description, GEN 3-98 

awk programming language 
command line format, PGM 3-5 
compared with grep, PGM 3-5 
defined, GEN 2-13, PGM 3-5 
description, PGM 3-5 to 3-12 
design, PG M 3-9 to 3-10 
execution time compared, PGM 

3-12T 
fields, PGM 3-5 
implementation, PGM 3-10 
printing output, PGM 3-6 
program structure, PGM 3-5 
records, PGM 3-5 
uses, PGM 3-10 
variables, PGM 3-8 

B 

B command (me) 
defined, GEN 5-46 
specifying bibliographic section, 

GEN 5-33 
b command (me) 

See also rh command (me) 
defined, GEN 5-42, 5-44 
entering, GEN 5-26 
specifying bold font, GEN 5-36 
specifying fill mode, GEN 5-26 

B command (ms) 
specifying boldface, GEN 5-8 

b command (sed) 
defined, GEN 3-114 

b command (troff) 
creating large brackets, GEN 

5-88E 
B command (vi) 

defined, GEN 3-78 
b command (vi) 

defined, GEN 3-80 
B flag (tar) 

reading block records, SYS 1-9 
writing block records, SYS 1-9 

b option (troff) 
defined, GEN 5-50 

B_CALL flag 
4.2BSD improvement, SYS 5-6 

ba command (me) 
defined, GEN 5-45 

backgammon game 
See also teachgammon program 
4.2BSD improvement, SYS 1-17 

lndex-5 



Background command ( C shell) 
defined, GEN 4-63 

Background job 
description, GEN 4-45 to 4-48 
reading input from terminal, GEN 

4-47E 
suspending, GEN 4-46 

Backslash character 
erasing, GEN 2-4 

Backslash character (ed) 
context search and, GEN 3-43 
restriction, GEN 3-33 
searching for, GEN 3-39E 
special characters and, GEN 3-39 

Backslash character (troff) 
translating for typesetter, GEN 

5-86 
Backus Functional Programming 

Language 
See FP programming language 

Bad block forwarding 
support, SYS 1-18 

bad144 program 
4.2BSD improvement, SYS 1-18 

Baden, S. 
Berkeley FP User Manual, PGM 

2-359 to 2-391 
badsect program 

See also fsck program 
4.2BSD improvement, SYS 1-18 

Base (BC) 
See also ibase; obase 
description, GEN 2-44 to 2-45 

be command (me) 
defined, GEN 5-43 
starting a column, GEN 5-35 

BC language 
C language and, GEN 2-43 
defined, GEN 2-43 
description, GEN 2-43 to 2-55 
displaying library of math 

functions, GEN 2-49 
output bases and, GEN 2-45 
restriction, GEN 2-43 
simple computations and, GEN 

2-43 to 2-44 
subscript restriction, GEN 2-46 

BC program 
exiting, GEN 2-49 

hemp library routine 
4.2BSD improvement, SYS 1-14 

bcopy library routine 
4.2BSD improvement, SYS 1-14 

Index-6 

bd command (troff) 
defined, GEN 5-59 

BDATA operator (C compiler) 
defined, PGM 2-64 

beautify option (ex) 
description, GEN 3-98 

BEGIN/END pattern 
description, PGM 3-6 

Bell character 
printing, GEN 3-37 

Benson-Varian printer 
output filters and, PGM 4-102 

Berkeley font catalogue, GEN 6-27 
to 6-51 

Berkeley FP User's Manual, PGM 
2-359 to 2-391 

See also FP programming 
language 

Berkeley network 
See Berknet 

Berkeley Pascal programming 
language 

user's manual, PGM 2-159 to 
2-209 

Berkeley Pascal User Manual 
See also Pascal programming 

language 
Berkeley Pascal User Manual, PGM 

2-159 to 2-209 
Berkeley system 

See UNIX Operating System 
Berkeley VAX/UNIX Assembler 

Reference Manual, PGM 4-53 to 
4-65 

See also as assembler 
Ber kn et 

sending mail to, GEN 2-27 
bg command (C shell) 

continuing background jobs, GEN 
4-46E 

defined, GEN 4-64 
running suspended job in 

background, GEN 4-4 7 
bi command (me) 

defined, GEN 5-44 
Bibliographic citations 

formatting, GEN 2-13, 5-18, 5-33 
specifying, GEN 5-34F 

Bibliographic databases 
See roffbib program, SYS 1-8 

Bibliography 
See Bibliographic citations 

bin directory 
defined, GEN 4-64 



Binary date 
Mail program and, GEN 2-37 

Binary operator (C compiler) 
description, PGM 2-66 

Binary option (Mail) 
See Option (Mail) 

bind system call 
assigning socket name, SYS 3-7E 
binding names to sockets, SYS 

1-10 
specifying association, SYS 3-25 

Bit mask 
creating, SYS 3-11 

bl command (me) 
defined, GEN 5-44 

Blau, R., & Joyce, J. 
Edit tutorial, GEN 3-3 to 3-23 

Block device 
description, SYS 5-20 

Block map 
layout of blocks and fragments, 

SYS 1-27F 
Block of text 

footnotes and, GEN 5-36 
indenting from left and right, 

GEN 5-86E 
index entries and, GEN 5-36 
keeping together in text, GEN 

5-26 
Block size 

selecting, SYS 5-41 
Boldface 

entering, GEN 5-8 
Bootstrap monitor 

loading, SYS 5-65 to 5-68 
Bootstrap procedure 

booting from tape, SYS 5-22 
description, SYS 5-22 to 5-31 
details, SYS 5-59 to 5-64 
messages about console bootstrap 

cassette, SYS 5-71 
messages about the distributed 

console media, SYS 5-69 
messages about the distributed 

system, SYS 5-70 
Bootstrap program 

4.2BSD improvement, SYS 5-15 
loading, SYS 5-25 

Bourne shell 
background command, GEN 4-3E 
changing prompt, GEN 4-6 
command execution, GEN 4-23 to 

4-24 
command grammar, GEN 4-26 

Bourne shell (Cont.) 
command substitution and, GEN 

4-18 to 4-20 
command syntax, GEN 4-3 
defined, GEN 4-3 
description, GEN 4-3 to 4-27 
error handling, GEN 4-21 
error signals, GEN 4-21F 
fault handling, GEN 4-21 
group set and, SYS 1-8 
invoking, GEN 4-24 
prompt, GEN 4-6 
redirecting input, GEN 4-4 
redirecting output, GEN 4-3 

Bourne, S.R. 
introducing the UNIX shell, GEN 

4-3 to 4-27 
Bourne, S.R., & Maranzano, J.F. 

ADB debugging program, PGM 
3-51 to 3-77 

Box (nroff/troff) 
creating smallest, GEN 5-68 

box routine 
defined, PGM 4-81 

Boxing 
description, GEN 5-69 
entering, GEN 5-8 to 5-9 

hp command (me) 
See also pa command (me) 
specifying blank column, GEN 

5-35 
specifying page break, GEN 5-23 

hp command (nroff/troff) 
See also ns command (nroff/troff) 
defined, GEN 5-59 

hr command (me) 
starting a line, GEN 5-24 

hr command (nroff/troff) 
defined, GEN 5-60 

Braces 
argument expansion and, GEN 

4-60E 
Braces (EQN) 

typesetting in proper size, GEN 
5-lOOE 

Brackets (Bourne shell) 
matching any. single character, 

GEN 4-34 
Brackets (DC) 

placing character string on stack, 
GEN 2-58 

Brackets (ed) 
appearing in character class, GEN 

3-41 

Index-7 



Brackets (ed) (Cont.) 
deleting line numbers, GEN 3-41, 

3-41E 
Brackets (EQN) 

typesetting in proper size, GEN 
5-lOOE 

Brackets (Mail) 
beginning a line with, GEN 2-26 

Brackets (nroff/troff) 
creating, GEN 5-88E 
creating large, GEN 5-68 

BRANCH operator (C compiler) 
defined, PG M 2-65 

Break 
defined, GEN 5-22 
space and, GEN 5-23 
specifying, GEN 5-24 

break command (C shell) 
See also breaksw command ( C 

shell) 
csh script and, GEN 4-58 
defined, GEN 4-64 

break statement (awk) 
defined, PGM 3-9 

break statement (BC) 
forming, GEN 2-54 

breaksw command (C shell) 
defined, GEN 4-64 
exiting from switch statement, 

GEN 4-58 
Broadcast message 

sending, SYS 3-27E 
Broadcast packet 

See also Broadcast message 
datagram sockets and, SYS 3-27 

Broken bar 
shell and, GEN 2-27 

BSS operator (C compiler) 
defined, PG M 2-64 

bss segment (as) 
See also Assignment statement 

(as) 
See also Location counter (as) 
description, GEN 6-54 

bss statement 
defined, GEN 6-59 

bstring library 
4.2BSD improvement, SYS 1-14 

btlgammon game 
See backgammon game 

buf.h file 
4.2BSD improvement, SYS 5-6 

Buffer 
defined, GEN 3-4 

Index-8 

Buffer (Cont.) 
ed and, GEN 3-25 
writing part of, GEN 3-22 

Buffer (nroff/troff) 
flushing output buffer, GEN 5-73 

Buffer (vi) 
description, GEN 3-54 
system commands and, GEN 3-68 
types of, GEN 3-62 

BUFSIZ 
defined, PGM 1-21 

bugfiler program 
4.2BSD improvement, SYS 1-19 

Built-in (M4) 
See Command (M4) 

built-in command (C shell) 
defined, GEN 4-64 

bx command (me) 
boxing words, GEN 5-37 
defined, GEN 5-44 

byte statement (as) 
defined, GEN 6-59 

bzero library routine 
4.2BSD improvement, SYS 1-14 

c 
C argument (nroff) 

specifying, GEN 5-27 
c command (DC) 

descripton, GEN 2-58 
c command (ed) 

defined, GEN 3-34 
using, GEN 3-31 to 3-32 

c command (edit) 
description, GEN 3-18 

c command (ex) 
description, GEN 3-88 

C command (me) 
defined, GEN 5-46 

c command (me) 
centering blocks of text, GEN 

5-27 
defined, GEN 5-43, 5-46 
specifying a chapter without 

number, GEN 5-33 
specifying chapters, GEN 5-33 

c command (sed) 
defined, GEN 3-109 

C command (vi) 
defined, GEN 3-78 

C compiler 
description, PGM 2-63 to 2-77 
as programming tool, GEN 2-15 



C compiler (Cont.) 
replacing, SYS 5-118 

c escape (Mail) 
description, GEN 2-25 

C flag (lint) 
creating libraries from C source 

code, SYS 1-7 
c flag (mkey) 

specifying file of common words, 
GEN 5-147 

C library 
reinstalling, SYS 5-56E 

c macro (me) 
defined, GEN 5-46 

c number register (nroff/troff) 
defined, GEN 5-81 

c operator (vi) 
defined, GEN 3-80 

C option (hunt) 
defined, GEN 5-148 

C option (tar) 
forcing chdir operations in an 

operation, SYS 1-9 
c option (uucp) 

defined, SYS 5-132 
C preprocessor 

if statements and, SYS 1-5 
line numbers and, SYS 1-5 

C program 
debugging, PGM 3-53 to 3-58 

C programming language 
See also M4 macro processor 
CAI script for, GEN 6-7 
command line format, PG M 1-3 
computers supporting, GEN 2-15 
programming in, GEN 2-14 to 

2-15 
reference manual, PGM 2-5 to 

2-35 
supporting programs, GEN 2-15 

C Programming Language Ref ere nee 
Manual, The, PGM 2-5 to 2-35 

See also C programming language 
C shell 

4.2BSD improvement, SYS 1-5 
built-in commands, GEN 4-50 to 

4-52 
compared to other command 

interpreters, GEN 4-30 
defined, GEN 4-29 
details for terminal users, GEN 

4-39 to 4-52 
history list and, GEN 4-41 
interrupts and, GEN 4-36 

C shell (Cont.) 
introduction, GEN 4-29 to 4-74 
logging in, GEN 4-39 
metacharacters and, GEN 4-32 
overwriting files and, GEN 4-41 
purpose of, GEN 4-29 
using from the terminal, GEN 

4-30 to 4-38 
C shell variables 

description, GEN 4-40 to 4-41 
set command and, GEN 4-40E 

c2 command (nroff/troff) 
defined, GEN 5-67 

CAI script, GEN 6-9E to 6-llE 
description, GEN 6-6 to 6-7 
prerequisites, GEN 6-6 
prerequisites for the writer, GEN 

6-8 
types of, GEN 6-7 

Campbell, R. 
line printer spooling system 

(4.2BSD), PGM 4-99 to 4-105 
CANBSIZ parameter 

description, SYS 5-121 
canfield game 

See also cfscores program 
4.2BSD improvement, SYS 1-17 

Carbon copy 
See CC: list 

Caret 
See Circumflex character ( ed) 

case branch 
description, GEN 4-8 to 4-9 
form of, GEN 4-8E 

case command (C shell) 
defined, GEN 4-64 

cat command (C shell) 
collecting files, PGM 1-5E 
combining files, GEN 3-48, 3-48E 
defined, GEN 4-64 
listing system users, GEN 4-35E 
printing files, GEN 2-7 
printing merged files, GEN 2-11 
printing pipeline information, 

GEN 2-11 
terminating, GEN 4-36 

cat program 
See cat command (C shell) 

CBRANCH operator (C compiler) 
defined, PG M 2-66 

cc 
dbx and, SYS 1-5 

cc command (nroff/troff) 
defined, GEN 5-67 

lndex-9 



CC: list 
See also askcc option 
adding people to, GEN 2-25 

cctab table 
defined, PGM 2-68 

cd command (C shell) 
See also pushd command (C shell) 
changing working directory, GEN 

2-10 
defined, GEN 4-64 
description, GEN 2-29 
working directory and, GEN 4-48 

ce command (me) 
entering, GEN 5-24 

ce command (nroff/troff) 
defined, GEN 5-61 

Cedilla 
See Metacharacters 

Centering 
blocks of text, GEN 5-27, 5-61 
specifying, GEN 5-24 

ch command (nroff/troff) 
defined, GEN 5-65 

Change bars (nroff/troff) 
specifying, GEN 5-72 

change command ( ed) 
See c command ( ed) 

change command (edit) 
See c command (edit) 

change command (ex) 
See c command (ex) 

change directory command 
See cd command (C shell) 

Changequote command (M4) 
description, PGM 2-395E 

Chapter 
formatting, GEN 5-33 
inserting in table of contents 

automatically, GEN 5-46 
specifying page numbers, GEN 

5-46 
specifying without number, GEN 

5-33 
Chapter-oriented document 

formatting, GEN 5-34F 
Character class 

circumflex within, GEN 3-42 
defined, GEN 3-41 
forming, GEN 3-33E 
lowercase letters and, GEN 3-41 
number ranges and, GEN 3-41 
special characters and, GEN 3-41 
specifying exceptions, GEN 3-42 
uppercase letters and, GEN 3-41 

Index-10 

chase game 
obsolete, SYS 1-17 

chdir command ( C shell) 
See cd command (C shell) 

Cherry, L., & Morris, R. 
BC and, GEN 2-43 to 2-55 
DC and, GEN 2-57 to 2-64 

Cherry, L.L., & Kernighan, B.W. 
typesetting mathematics, GEN 

5-97 to 5-104 
Typesetting Mathematics - User's 

Guide, GEN 5-105 to 5-114 
Cherry, L.L., & Vesterman, W. 

style and diction programs, GEN 
5-163 to 5-177 

chfn 
4.2BSD improvement, SYS 1-5 

chgrp 
4.2BSD improvement, SYS 1-5 

ching game 
4.2BSD improvement, SYS 1-17 

chmod command (Bourne shell) 
making a file executable, GEN 

4-7E 
marking executable files, GEN 

2-12 
chsh command ( C shell) 

defined, GEN 4-64 
CHSHR file 

incoming mail and, GEN 2-17 
chshrc file 

putting into effect before next 
login, GEN 4-51 

Circle 
See Metacharacters 

Circumflex (edit) 
searching and, GEN 3-20 

Circumflex character ( ed) 
at beginning of line and, GEN 

3-40 
meaning, GEN 3-33 
uses, GEN 3-40 

Circumflex character (me) 
See Metacharacters 

clear routine 
defined, PGM 4-81 

clearok routine 
defined, PGM 4-81 

Client process 
See also Server process 
description, SYS 3-19 

Clist segment 
setting number, SYS 5-122 



close function 
description, PGM 1-11 

clrtoeol routine 
defined, PGM 4-81 

cmp program 
defined, GEN 4-64 

co command (edit) 
description, GEN 3-15 

co command (ex) 
description, GEN 3-88 

Code generation (C compiler) 
description, PGM 2-68 to 2-76 
matching table entries against 

trees, PGM 2-69 
Column 

specifying, GEN 5-43 
specifying headers for continuing 

pages, GEN 5-42 
specifying headers for continuing 

pages with a macro, GEN 
5-75E 

specifying in text file, GEN 5-6 
starting, GEN 5-35 
text formatting commands for 

double columns, GEN 5-15E, 
5-35 

Comma character ( ed) 
compared with semicolon, GEN 

3-45 
COMMA operator (C compiler) 

defined, PG M 2-66 
Command (Bourne shell) 

See also specific commands 
grammar, GEN 4-26 
grouping, GEN 4-14 

Command (C shell) 
See also Program 
See also specific commands 
defined, GEN 4-64 
reference list, GEN 4-63 to 4-7 4 
regenerating, SYS 5-118 
repeating, GEN 4-41 to 4-43, 

4-51E 
substituting output for, GEN 

4-61E 
suspending temporarily, GEN 

4-36 
terminating, GEN 4-35 to 4-38 
typing, GEN 2-4 
within quotation marks, GEN 

4-60 
Command (DC) 

See also specific commands 
for human use 

Command (DC) 
for human use (Cont.) 

reference list, GEN 2-57 to 2-59 
how they work, GEN 2-57 

Command (ed) 
See also specific commands 
description, GEN 3-25 
reference list, GEN 3-34 

Command (ex) 
See also specific commands 
addressing primitives, GEN 3-87 
combining addressing primitives, 

GEN 3-87 
exceeding thresholds, GEN 3-86 
reference list, GEN 3-87 to 3-96 
structure of, GEN 3-86 
syntax, GEN 3-87E 

Command (M4) 
See also specific commands 
reference list, PG M 2-398 

Command (Mail) 
See also specific commands 
reference list, GEN 2-28 to 2-33, 

2-39T 
Command (make) 

defined, PGM 3-16 
Command (nroff) 

description, GEN 5-22 to 5-25 
Command (nroff/troff) 

See also specific commands 
reference list, GEN 5-51 

Command (vi) 
See also specific commands 
case and, GEN 3-59 
ex 3.5 changes and, GEN 3-103 
for file manipulation, GEN 3-71 T 
preceding counts and, GEN 3-70 

Command file 
description, GEN 1-29 

Command line 
running two programs with one, 

GEN 2-11 
Command line flag (Mail) 

See Flag (Mail) 
Command mode (ex) 

defined, GEN 3-85 
Command name 

defined, GEN 4-64 
Command procedure 

See Shell procedure 
Command substitution 

See also Modifier ( C shell) 
defined, GEN 4-65 

Index-11 



Command-list 
defined, GEN 4-8 
grouping commands, GEN 4-14 

Comment (awk) 
defined, PGM 3-9 

Comment (BC) 
convention, GEN 2-49, 2-50 

Comment (ex) 
description, GEN 3-86 

Comment (nroff/troff) 
specifying, GEN 5-67 

Communication domain 
defined, SYS 3-6 

Component 
defined, GEN 4-65 

Compound statement (BC) 
forming, GEN 2-54 

Computer-aided instruction 
See CAI scripts 

comsat program 
4.2BSD improvement, SYS 1-19 

CON operator (C compiler) 
defined, PGM 2-66 

Conditional 
See if/endif commands 

conf.c file 
4.2BSD improvement, SYS 5-14 
installing device driver and, SYS 

5-119 
conf.h file 

4.2BSD improvement, SYS 5-6 
config program 

4.2BSD improvement, SYS 1-19 
adding nonstandard system 

facilities, SYS 5-96 
defined, SYS 5-73 
description, SYS 5-73 to 5-105 
device defaults, SYS 5-99 to 5-100 
files generated by, SYS 5-76 
modifying system code, SYS 5-88 
modifying system configuration, 

SYS 5-76 
prerequisite information, SYS 

5-74 
profiled ~ystems and, SYS 5-78 
specifying options items, SYS 

5-75 
Configuration clause 

description, SYS 5-80 
Configuration file 

contents, SYS 5-76 
creating, SYS 5-76 
grammar, SYS 5-97 to 5-98 
specifying devices, SYS 5-81 

Index-12 

Configuration file (Cont.) 
specifying multiple bootable 

images, SYS 5-80 
syntax, SYS 5-79 to 5-83 
VAX-11/780 sample, SYS 5-84 to 

5-87 
connect system call 

datagram sockets and, SYS 3-10 
errors, SYS 3-8 
establishing connection between 

sockets, SYS 1-10 
initiating connection, SYS 3-8E 

Connect time accounting 
summarizing, SYS 5-56 

Connection 
accepting, SYS 3-9E 
receiving, SYS 3-8 to 3-9 

Constant (BC) 
defined, GEN 2-50 

Context search (ed) 
backslash character and, GEN 

3-43 
defined, GEN 3-35 
methods, GEN 3-30 to 3-31 
question mark character and, 

GEN 3-43 
repeating a search, GEN 3-31 
reverse order and, GEN 3-31 
slashes and, GEN 3-39 

Context search (edit) 
d command and, GEN 3-16 
delete command and, GEN 3-16C 
move command and, GEN 3-15 
repeating, GEN 3-20E 
reversing, GEN 3-20 
s command and, GEN 3-20 

continue command (C shell) 
defined, GEN 4-65 

continue statement (awk) 
defined, PGM 3-9 

Control character (C shell) 
defined, GEN 4-65 

Control character (nroff/troff) 
changing, GEN 5-67 
commands and, GEN 5-56 

Control character (vi) 
in text file, GEN 3-61 

Control statement (BC), GEN 
2-47E 

description, GEN 2-47 to 2-48 
Cooper, E., & others 

4.2BSD System Manual, PGM 
4-15 to 4-52 



copy command ( C shell) 
See cp command (C shell) 

copy command (edit) 
See co command (edit) 

copy command (ex) 
See co command (ex) 

copy command (Mail) 
See also save command (Mail) 
description, GEN 2-29 
using, GEN 2-23E 

copy program 
loading, SYS 5-24E 
mini-root file system and, SYS 

5-24 
Core dump file 

defined, GEN 4-65 
program faults and, GEN 1-31 
terminating a program and, GEN 

4-37 
Cover sheet 

entering in text file, GEN 5-5 
formatting commands, GEN 5-5E 

cp command (C shell) 
4.2BSD improvement, SYS 1-5 
copying a file, GEN 2-7E, 3-47 
defined, GEN 4-65 
saving a file, GEN 3-47E 

cpu type parameter (config) 
defined, SYS 5-79 

CR key 
See RETURN key 

Crash 
recovering files after, GEN 3-22 

creat function 
description, PGM 1-10 

creat system call 
obsolete in 4.2BSD, SYS 1-10 

cref program 
defined, GEN 2-13 

crmode routine 
defined, PG M 4-84 

crt option (Mail) 
paging mail, GEN 2-20 
type command and, GEN 2-32 

crtO.ex file 
4.2BSD improvement, SYS 5-13 

cs command (troff) 
defined, GEN 5-58 

csh program 
See C shell 

cshrc file 
defined, GEN 4-65 
logging in and, GEN 4-39 

CSPACE operator (C compiler) 
defined, PG M 2-64 

css network driver 
4.2BSD improvement, SYS 1-15 

ctags 
4.2BSD improvement, SYS 1-5 

ctime library 
4.2BSD improvement, SYS 1-14 

CTRL-B 
defined, GEN 3-75 
description, GEN 3-56 

CTRL-C 
ULTRIX-32 and, GEN 2-1 

CTRL-D 
See also CTRL-U 
defined, GEN 3-75 
description, GEN 3-56 

CTRL-E 
defined, GEN 3-75 
description, GEN 3-56 

CTRL-F 
defined, GEN 3-7 5 
description, GEN 3-56 

CTRL-G 
defined, GEN 3-75 
vi and, GEN 3-57 

CTRL-H 
See also At sign 
See also u command (edit) 
defined, GEN 3-75 
deleting characters, GEN 3-7 

CTRL-J 
defined, GEN 3-75 

CTRL-L 
defined, GEN 3-7 5 

CTRL-M 
defined, GEN 3-75 

CTRL-N 
defined, GEN 3-75 

CTRL-P 
defined, GEN 3-76 

CTRL-R 
defined, GEN 3-76 

CTRL-U 
See also CTRL-D 
defined, GEN 3-76 
description, GEN 3-56 
ULTRIX-32 and, GEN 2-1 

CTRL-Y 
defined, GEN 3-76 
description, GEN 3-56 

CTRL-Z 
defined, GEN 3-76 

lndex-13 



cu command (nroff) 
defined, GEN 5-67 

cu program 
See tip program 

Current line 
printing, GEN 3-llE 

curses library 
4.2BSD improvement, SYS 1-14 

Cursor motion optimization 
stand alone, PGM 4-78 to 4-80 

Cursor positioning key 
terminals and, GEN 3-55 

Cut mark 
specifying for troff, GEN 5-74E 

Cutting and pasting 
See cp command ( ed) 
Seem command (ed) 
See mv program (ed) 
withed, GEN 3-49 to 3-51 
with UNIX commands, GEN 3-47 

to 3-49 
cwd variable (C shell) 

defined, GEN 4-65 
working directory and, GEN 4-41 

Cylinder group 
description, SYS 1-26, 2-8 

Czech 
See Metacharacters 

D 

d command (DC) 
descripton, GEN 2-58 

d command (ed) 
defined, GEN 3-34 
using, GEN 3-29 

d command (edit) 
context search and, GEN 3-16 
description, GEN 3-15 

d command (ex) 
description, GEN 3-88 

d command (me) 
defined, GEN 5-43 

d command (sed) 
defined, GEN 3-108 

D command (vi) 
defined, GEN 3-78 

d escape (Mail) 
description, GEN 2-24 

d flag (Mail) 
See also debug option 
debugging information and, GEN 

2-36 

Index-14 

d flag (make) 
defined, PGM 3-17 

d operator (vi) 
defined, GEN 3-80 

d option (inv) 
defined, GEN 5-147 

d option (uucico) 
defined, SYS 5-135 

d option (uuclean) 
defined, SYS 5-137 

d option (uucp) 
defined, SYS 5-131 

DA command (ms) 
specifying date on text page, GEN 

5-9 
da command (nroff/troff) 

defined, GEN 5-65 
Daisy wheel printer 

setting for 12-pitch, GEN 5-39 
DARPA File Transfer Protocol 

server program 
See ftpd program 

DARPA Internet 
network architecture support, SYS 

1-15 
DARPA Internet protocol 

support, SYS 5-47 
DARPA Request For Comments 

#833 
sendmail and, SYS 1-4 

DARPA Simple Mail Transfer 
Protocol 

sendmail and, SYS 1-4 
DARPA TELNET protocol 

See telnetd server program 
DARPA Trivial File Transfer 

Protocol 
See tftpd server program 

Dash 
specifying em dash, GEN 5-4 7 

Data block 
kinds of, SYS 2-12 

Data file 
defined, SYS 5-131 

DATA operator (C compiler) 
defined, PGM 2-64 

Data segment (as) 
description, GEN 6-54 

data statement 
defined, GEN 6-59 

Data Translation AID converter 
See ad driver 

Datagram socket 
See also Raw socket 



Datagram socket (Cont.) 
creating for on-machine use, SYS 

3-7E 
defined, SYS 3-6 
description, SYS 3-10 
sending broadcast packets on 

networks, SYS 3-27 
Date 

specifying with -me, GEN 5-47 
specifying with -ms, GEN 5-9 

date command (C shell) 
defined, GEN 4-65 
using, GEN 2-4 

dbx symbolic debugger 
description, SYS 1-4 
Pascal compiler pc and, SYS 1-8 

DC program 
See also BC language 
defined, GEN 2-57 
description, GEN 2-57 to 2-64 
internal arithmetic and, GEN 

2-60 
programming, GEN 2-62 

de command (nroff/troff) 
See also ig command (nroff/troff) 
defined, GEN 5-64 
defining macros, GEN 5-89E 

Dead.letter file, GEN 2-24 
canceling mail and, GEN 2-18 

debug option (Mail) 
See also -d flag 
defined, GEN 2-34 

Debugging 
defined, GEN 4-65 

DecWriter III printer 
setting for serial lines, PGM 

4-lOlE 
Default 

defined, GEN 4-65 
define command (M4) 

description, PGM 2-393 to 2-395 
define keyword (BC), GEN 2-46E 
define program (EQN) 

description, GEN 5-100 
define statement (BC) 

forming, GEN 2-55 
delay routine 

description, PGM 2-76 
Delayed text 

defined, GEN 5-28 
delch routine 

defined, PGM 4-82 
delete command (ed) 

See d command ( ed) 

delete command (edit) 
See d command (edit) 

delete command (ex) 
See d command (ex) 

delete command (Mail) 
See also autoprint option (Mail) 
See also dt command (Mail) 
See also undelete command 

(Mail) 
abbreviating, GEN 2-20 
description, GEN 2-29 
keeping message from m box, GEN 

2-20E 
DELETE key 

defined, GEN 4-65 
description, GEN 3-55 
ULTRIX-32 and, GEN 2-1 

deleteln routine 
defined, PG M 4-82 

delivermail program 
See sendmail program 

delwin routine 
defined, PG M 4-85 

DES encryption algorithm 
chips and, SYS 4-11 

Description file (make), PGM 3-14E 
See also -f flag (make) 
description, PGM 3-15 to 3-16 

Detached command 
defined, GEN 4-65 

Device driver 
converting local to 4.2BSD, SYS 

5-4 
CSR value list, SYS 5-61 
1/0 system and, PGM 4-67 to 

4-73 
installing new, SYS 5-119 
prerquisites, SYS 5-89 

Device name 
convention, SYS 5-19 

devices. vax file 
4.2BSD improvement, SYS 5-11 

df 
reporting disk space in kilobytes, 

SYS 1-5 
dh.c device driver 

4.2BSD improvement, SYS 5-12 
di command (nroff/troff) 

defined, GEN 5-64 
diverting output to a macro, GEN 

5-94 
Diacritical marks 

available 
reference list, GEN 5-19 

lndex-15 



Diacritical marks (Cont.) 
entering with EQN, GEN 5-100 

Diagnostic 
defined, GEN 4-65 

Diagnostic output 
redirecting, GEN 4-44E 

Dial-up network 
description, SYS 5-123 to 5-129 
operation, SYS 5-124 
processing, SYS 5-125 to 5-126 
protocol and, SYS 5-124, 5-126 
security, SYS 5-125 
starting your network, SYS 5-128 
transmission speed, SYS 5-127 
uses, SYS 5-126 

Diction program 
See also Style program 
description, GEN 5-163 to 5-177 

diff utility 
comparing files, GEN 2-13 

dir 
4.2BSD improvement, SYS 1-16 

dir.h file 
4.2BSD improvement, SYS 5-6 

directories command 
See dirs command ( C shell) 

Directory 
See also Home directory 
See also Root directory 
See also Working directory 
allocating, SYS 1-33 
alternate name for, GEN 2-10 
changing, GEN 2-10 
changing working directory, GEN 

2-10 
creating, GEN 2-10 
defined, GEN 4-66, PGM 4-10 
description, GEN 1-21, 2-9 
determining, GEN 2-10 
listing basic, GEN 2-9 
moving up one level, GEN 2-lOE 
organization changes for 4.2BSD, 

SYS 5-4 
project-related, GEN 4-48 
removing, GEN 2-lOE 
security of, SYS 4-4 

Directory data block 
defined, SYS 2-12 

directory library 
4.2BSD improvement, SYS 1-14 

directory option (ex) 
description, GEN 3-98 

Directory stack 
defined, GEN 4-66 

Index-16 

dirs command ( C shell) 
See also pwd command ( C shell) 
compared with pwd, GEN 4-49 
defined, GEN 4-66 
saving name of previous directory, 

GEN 4-49 
Disk 

balancing load, SYS 5-39 
configuring load, SYS 5-37 to 5-43 
defined, GEN 3-4 
dividing into partitions, SYS 5-38 
formatting, SYS 5-22 to 5-24 
reporting space in kilobytes, SYS 

1-5 
reporting usage in kilobytes, SYS 

1-5 
space limits, SYS 4-3 
space per device, SYS 5-38, 5-39T 

Disk bandwith 
4.2BSD improvement, SYS 1-3 

Disk driver 
UNIX implementation and, PGM 

4-9 
Disk partition 

description, SYS 5-19 
sizes, SYS 5-38 

Disk quota 
4.2BSD improvement, SYS 1-18 
disabling, SYS 2-4 
enabling, SYS 2-4 
enforcing, SYS 5-57 
per filesystem, SYS 1-4 
per user, SYS 1-4 
recovering from over quota 

condition, SYS 2-3 
restricting, SYS 1-35 
setting, SYS 2-4 
types of, SYS 2-3 

Disk quota system 
configuration requirement, SYS 

5-57 
description, SYS 2-3 to 2-5 
establishing, SYS 2-4 
history, SYS 2-5 
including, SYS 2-4E 
programs, SYS 5-57 

diskpart program 
4.2BSD improvement, SYS 1-19 

disktab file 
4.2BSD improvement, SYS 1-16 

Display (nroff) 
defined, GEN 5-25, 5-42 
description, GEN 5-25 to 5-27 
specifying in fill mode, GEN 5-26 



Display (nroff) (Cont.) 
text formatting commands for, 

GEN 5-15E 
distrib routine 

description, PGM 2-68 
Distribution tape 

constructing, SYS 5-59 to 5-61 
contents, SYS 5-59T 

Diversion (troff) 
description, GEN 5-94 

divert command (M4) 
description, PGM 2-396 

Division 
DC and, GEN 2-61 

divnum command (M4) 
description, PGM 2-396 

DL-llW 
See kg driver 

dmc network interface driver 
4.2BSD improvement, SYS 1-15 

DMC-11/DMR-11 point-to-point 
communications device 

See dmc network interface driver 
dmf.c device driver 

4.2BSD improvement, SYS 5-12 
dnl command (M4) 

description, PGM 2-397 
Document preparation 

description, GEN 2-12 to 2-14 
hints, GEN 2-13 to 2-14 
reading list, GEN 2-16 

DOD Standard TCP/IP network 
communication protocols 

support for, SYS 1-3 
Dollar sign character (ed) 

end of line and, GEN 3-39 
meaning, GEN 3-33, 3-40 
p command and, GEN 3-28 
printing value, GEN 3-35 

Dollar sign character (edit) 
equal sign and, GEN 3-17 
printing last buffer line, GEN 

3-17 
searching and, GEN 3-20 

domain.h file 
4.2BSD improvement, SYS 5-5 

don't command (sed) 
defined, GEN 3-113 

Dot character ( C shell) 
at beginning of file, GEN 4-34 
defined, GEN 4-63 
separating filename components, 

GEN 4-33 

Dot character ( ed) 
determining value, GEN 3-29E 
equal sign and, GEN 3-35 
line number defaults and, GEN 

3-44 to 3-45 
meaning, GEN 3-38, 3-39 
meaning for context searching, 

GEN 3-33 
p command and, GEN 3-28 
printing, GEN 3-39 
s command and, GEN 3-29 
setting with semicolon, GEN 3-45 

to 3-46 
using, GEN 3-28, 3-33 

Dot character (edit) 
equal sign and, GEN 3-17 
uses, GEN 3-17 

Dot character (nroff/troff) 
See Control character (nroff/troff) 
specifying lines of, GEN 5-88 

dot option (Mail) 
See also ignoreof option 
defined, GEN 2-34 

Doublespacing 
specifying, GEN 5-23 

drtest program 
4.2BSD improvement, SYS 1-19 

DS command (ms) 
specifying line breaks, GEN 5-8 

ds command (nroff/troff) 
defined, GEN 5-64 
defining strings, GEN 5-89 

DSTFLAG parameter 
description, SYS 5-122 

dt command (Mail) 
description, GEN 2-29 

dt command (nroff/troff) 
defined, GEN 5-65 

du command (C shell) 
defined, GEN 4-66 
reporting disk usage in kilobytes, 

SYS 1-5 
du program 

See du command (C shell) 
dump program 

See also rdump program 
4.2BSD improvement, SYS 1-16, 

1-19 
using, SYS 5-53 

dumpdef command (M4) 
description, PG M 2-397 

dumpfs program 
4.2BSD improvement, SYS 1-19 

Index-17 



Dungeons of doom 
See Rogue game 

Dynamic string storage allocator 
See Allocator 

E 

e command ( ed) 
defined, GEN 3-34 
using, GEN 3-27, 3-49E 

e command (edit) 
copying a file, GEN 3-14 
r option and, GEN 3-23 
u command and, GEN 3-16 

e command (ex) 
description, GEN 3-88 

E command (vi) 
defined, GEN 3-79 

e command (vi) 
defined, GEN 3-80 

e escape (Mail) 
description, GEN 2-24 

e flag (sed) 
defined, GEN 3-106 

e modifier ( C shell) 
extracting filename extension, 

GEN 4-57E 
e option (nroff) 

defined, GEN 5-50 
ec command (nroff/troff) 

defined, GEN 5-66 
ec network interface driver 

4.2BSD improvement, SYS 1-15 
echo command ( C shell) 

defined, GEN 4-66 
echo routine 

defined, PGM 4-84 
ed line editor 

See also edit line editor 
See also ex line editor 
accessing, GEN 3-25 
adding text, GEN 3-25 
addressing lines, GEN 3-43 to 

3-46 
advanced editing, GEN 3-37 to 

3-52 
backslash character and, GEN 

3-33 
breaking lines, GEN 3-42 
CAI script for, GEN 6-7 
changing text, GEN 3-31 to 3-32 
command summary, GEN 3-34 
context searching, GEN 3-30 to 

3-31 

Index-18 

ed line editor (Cont.) 
copying lines, GEN 3-51 
creating text, GEN 3-25 
deleting text, GEN 3-29 
description, GEN 2-6 
escaping to use UNIX command, 

GEN 3-51 
global commands, GEN 3-32 
inserting text, GEN 3-31 to 3-32 
interrupting, GEN 3-46 
introduction, GEN 3-25 to 3-35 
joining lines, GEN 3-42 
line number defaults, GEN 3-44 

to 3-45 
marking a line, GEN 3-50 
moving text, GEN 3-32, 3-50 
printing a file, GEN 2-7 
printing lines, GEN 3-27 
reading a file, GEN 3-27 
rearranging a line, GEN 3-43 
repeating searches, GEN 3-44 
searching for first occurrence of 

text string, GEN 3-46 
sed and, GEN 3-105 
setting dot, GEN 3-45 to 3-46 
specifying lines with text patterns, 

GEN 3-46 to 3-4 7 
specifying the second occurrence 

of text string, GEN 3-46 
substituting text, GEN 3-29 
supporting tools, GEN 3-51 to 

3-52 
using special characters, GEN 

3-33 
writing a file, GEN 3-26 

ed.hup file 
saving text, GEN 2-6 

edcompatible option (ex) 
description, GEN 3-98 

edit command (ed) 
See e command ( ed) 

edit command (edit) 
See e command 

edit command (ex) 
See e command (ex) 

edit command (Mail) 
See also visual command (Mail) 
description, GEN 2-29 

edit line editor 
See also ed line editor 
See also ex line editor 
accessing, GEN 3-5 to 3-6 
adding text, GEN 3-9 
correcting text, GEN 3-9 



edit line editor (Cont.) 
current line and, GEN 3-11 
defined, GEN 3-3 
entering text, GEN 3-6 
ex editor and, GEN 3-23 
finding a line, GEN 3-llE 
issuing UNIX command from, 

GEN 3-21 
messages, GEN 3-6 
moving around in the buffer, GEN 

3-17 
opening a file, GEN 3-9E, 3-14E 
prerequisites, GEN 3-3 
printing current line number, 

GEN 3-11 
printing nonprinting characters, 

GEN 3-10 
quitting, GEN 3-8 
reversing last command, GEN 

3-16 
saving modified text, GEN 3-13 
searching for characters, GEN 

3-10, 3-lOE 
tutorial, GEN 3-3 to 3-23 

Editing 
hints for, GEN 2-13 

Editor 
See ed editor 
See edit editor 
See ex editor 
See Screen editor 
See sed stream editor 
See vi screen editor 

EDITOR option (Mail) 
defined, GEN 2-33 
setting, GEN 2-33 
specifying an editor, GEN 2-24 

edquota program 
4.2BSD improvement, SYS 1-19 

ef command (me) 
defined, GEN 5-41 

efftab table 
defined, PGM 2-68 

EFL programming language 
description, PGM 2-123 to 2-157 

eh command (me) 
defined, GEN 5-41 

el command (nroff/troff) 
defined, GEN 5-71 

else command (C shell) 
See also if/endif commands (C 

shell) 
See also then command (C shell) 
defined, GEN 4-66 

else command (Mail) 
See also if/endif commands (Mail) 
description, GEN 2-30 

else statement (awk) 
defined, PGM 3-9 

Elz, R. 
disk quota system, SYS 2-3 to 2-5 

em 
defined, GEN 5-86 

em command (nroff/troff) 
defined, GEN 5-65 

Em dash 
in nroff/troff output, GEN 5-19 

Emphasis 
See Boldface 
See Italic 
See Overstriking 
See Underlining 

en network interface driver 
4.2BSD improvement, SYS 1-16 

enable/disable command (lpc) 
description, PGM 4-103 

endif command ( C shell) 
See if/endif commands (C shell) 

endif command (Mail) 
See if/endif commands (Mail) 

endif statement (as) 
See if/endif statement (as) 

endwin routine 
defined, PG M 4-85 

Entry file 
defined, GEN 5-145 

Environment (C shell) 
displaying, GEN 4-51E 

Environment (nroff/troff) 
description, GEN 5-71, 5-94 

eo command (nroff/troff) 
defined, GEN 5-66 

EOF (End of File) 
defined, GEN 2-5, 4-66 

EOF operator (C compiler) 
defined, PGM 2-64 

EOF value 
defined, PGM 1-21 
description, PGM 1-4 

ep command (me) 
defined, GEN 5-42 

EQ command (EQN) 
specifying continuation, GEN 5-35 
specifying equations, GEN 5-34 
supplementing with troff 

commands, GEN 5-101 
EQ command (me) 

defined, GEN 5-45 

Index-19 



EQ command (ms) 
specifying equations, GEN 5-10 

EQN program 
See also NEQN program 
CAI script for, GEN 6-7 
connecting output to troff, GEN 

5-101 
deficiencies, GEN 5-102 
defined, GEN 5-105 
description, GEN 5-33, 5-97 to 

5-104 
forcing extra white space, GEN 

5-99 
formatting mathematics, GEN 

2-13 
grammar, GEN 5-101 
language design, GEN 5-98 
language theory, GEN 5-101 
quoting an input string, GEN 

5-100 
Equal sign (ed) 

dot character and, GEN 3-35 
Equation 

continuing, GEN 5-35E 
formatting, GEN 5-33 
numbering, GEN 5-34 
setting with -ms, GEN 5-10 
text formatting commands for, 

GEN 5-16E 
Erase character 

See also Backspace character 
default, GEN 4-30 

erase routine 
defined, PG M 4-82 

errno cell 
description, PGM 1-12 

errno.h file 
4.2BSD improvement, SYS 5-5 

error 
troff messages and, SYS 1-5 

error bells option (ex) 
description, GEN 3-98 

Error condition (fsck) 
conventions, SYS 2-14 

Error log file 
examining, SYS 5-53 

Error message ( ed) 
description, GEN 3-26 

errprint command (M4) 
description, PG M 2-397 

Escape character (Mail) 
changing, GEN 2-26 

Escape character (nroff/troff) 
description, GEN 5-66 

Index-20 

Escape character(C shell) 
defined, GEN 4-66 

escape command 
See ! command ( ed) 

ESCAPE key 
description, GEN 3-55 

escape option (Mail) 
changing escape character, GEN 

2-26 
defined, GEN 2-34 

Escape sequence (nroff/troff) 
reference list, GEN 5-54 

ev command (nroff/troff) 
changing environment, GEN 5-94 
description, GEN 5-72 

eval command (M4) 
description, PGM 2-396 

Evans and Sutherland Picture 
System 2 

See ps.c device driver 
EVEN operator (C compiler) 

defined, PG M 2-64 
even statement (as) 

defined, GEN 6-59 
ex command (ex) 

See e command (ex) 
ex command (nroff/troff) 

defined, GEN 5-72 
ex line editor 

See also ed line editor 
See also edit line editor 
See also sed stream editor 
See also vi screen editor 
3.5 changes, GEN 3-102 
command line format, GEN 3-83 
editing modes, GEN 3-85 
encryption code and, GEN 3-102 
entering multiple commands on a 

line, GEN 3-86 
errors and, GEN 3-85 
file manipulation, GEN 3-84 to 

3-85 
limitations, GEN 3-101 
printing current line number, 

GEN 3-95 
printing version number, GEN 

3-94 
recovering from crash, GEN 3-85 
recovering work, GEN 3-85E 
reference manual, GEN 3-83 to 

3-104 
starting, GEN 3-83 
vi and, GEN 3-73 



Ex Reference Manual, GEN 3-83 to 
3-104 

See also ex line editor 
Examples 

entering with troff, GEN 5-89 
Exception word list (nroff/troff) 

specifying, GEN 5-69 
Exclamation mark (C shell) 

using in command arguments, 
GEN 4-35 

Exclamation mark character (ed) 
shell command and, GEN 3-35 

Exclamation mark character (edit) 
shell command and, GEN 3-21 

Exclusive lock 
process and, SYS 1-3 

execl function 
See also execv 
See also fork function 
description, PGM 1-13 

Execute tile 
defined, SYS 5-133 to 5-134 

execv routin 
description, PGM 1-13 

exit command (C shell) 
defined, GEN 4-66 

exit command (Mail) 
description, GEN 2-30 

exit function 
error handling and, PG M 1-8 

exit statement (awk) 
defined, PG M 3-9 

exit status 
defined, GEN 4-66 

exp function (awk) 
defined, PG M 3-8 

Expansion 
defined, GEN 4-67 

Exponentiation 
DC and, GEN 2-61 

Exponentiation operator 
description, GEN 2-52 

EXPR operator (C compiler) 
defined, PG M 2-65 

Expression 
defined, GEN 4-67 

Expression (as) 
defined, GEN 6-56 
types of 

reference list, GEN 6-57 
Expression (BC) 

See also Primitive expression 
defined, GEN 2-50 to 2-53 
length, GEN 2-51 

Expression (C shell) 
evaluating, GEN 4-55 

Expression operator (as) 
reference list, GEN 6-57 

Expression statement (as) 
defined, GEN 6-55 

Expression statement (BC) 
description, GEN 2-54 

Extended For~ran Language 
See EFL programming language 

Extension 
defined, GEN 4-67 

External security code 
password security and, SYS 4-12 

eyacc 
4.2BSD improvement, SYS 1-5 

F 

F argument (nroff) 
specifying fill mode, GEN 5-26 

f command (ed) 
defined, GEN 3-34 
determining the filename, GEN 

3-49 
renaming a file, GEN 3-49E 

f command (edit) 
description, GEN 3-21 

f command (ex) 
description, GEN 3-89 

f command (me) 
defined, GEN 5-43 
entering, GEN 5-28 

f command (troff) 
mixing fonts within a line, GEN 

5-86 
mixing fonts within a word, GEN 

5-86 
F command (vi) 

defined, GEN 3-79 
using, GEN 3-61 

f command (vi) 
defined, GEN 3-80 
using, GEN 3-61 

f flag (Mail) 
defined, GEN 2-36 
reading mail from specified file, 

GEN 2-21 
f flag (make) 

defined, PG M 3-17 
f flag (mkey) 

reading file list, GEN 5-147 
f flag (sed) 

defined, GEN 3-106 

Index-21 



f flag (su) 
fast su and, SYS 1-9 

f macro (me) 
defined, GEN 5-42 

F option (hunt) 
defined, GEN 5-148 

f option (troff) 
defined, GEN 5-50 

f77 1/0 library 
4.2BSD improvement, SYS 1-6 
description, PGM 2-79 to 2-88 
error messages, PG M 2-85 to 2-87 
exceptions to ANSI standard, 

PGM 2-88 
Fabry, R., & others 

4.2BSD System Manual, PGM 
4-15 to 4-52 

Fabry, R.S., & others 
4. 2BSD Interprocess 

Communication Primer, SYS 
3-5 to 3-28 

fast file system, SYS 1-23 to 1-38 
networking implementation notes, 

SYS 3-29 to 3-57 
factor program 

4.2BSD improvement, SYS 1-17 
fastboot script 

See also fasthalt script 
4.2BSD improvement, SYS 1-19C 

fasthalt script 
See also fastboot script 
4.2BSD improvement, SYS 1-19 

fc command (nroff/troff) 
defined, GEN 5-66 

fchmod system call 
4.2BSD improvement fchmod, 

SYS 1-10 
fchown system call 

4.2BSD improvement, SYS 1-10 
fclose function 

description, PGM 1-7 
fcntl system call 

4.2BSD improvement, SYS 1-10 
FCON operator (C compiler) 

defined, PGM 2-66 
fed font editor 

value of, SYS 1-6 
Feldman, S.I. 

EFL programming language, PGM 
2-123 to 2-157 

Make program, PGM 3-13 to 3-21 
Feldman, S.I., & Weinberger, P.J. 

Fortran 77 compiler, PGM 2-89 to 
2-109 

Index-22 

feof macro 
breakpoints and, PGM 1-21 

ferror macro 
breakpoints and, PGM 1-21 

fflush function 
description, PGM 1-8 

fg command ( C shell) 
defined, GEN 4-67 
running background job in 

foreground, GEN 4-4 7E 
running suspended job in 

foreground, GEN 4-47 
fgets function 

description, PGM 1-8 
fgrep 

hunt program and, GEN 5-148 
fi command (nroff/troff) 

defined, GEN 5-61 
Field (awk) 

description, PGM 3-8 
Field (nroff/troff) 

defined, GEN 5-66 
Figure 

specifying blank page for, GEN 
5-44 

specifying ruling for, GEN 5-45 
specifying space for, GEN 5-44 

FILE 
defined, PGM 1-21 

File 
See also File system 
See also specific files 
advisory locking and, SYS 1-3 
appending, GEN 3-48 
appending contents to mail, GEN 

2-24 
arranging, GEN 2-10 
CAI script for, GEN 6-7 
combining, GEN 2-10, 3-48, 3-49 
comparing, GEN 2-13 
copying, GEN 2-7E, 3-4 7 
copying from other directories, 

GEN 2-9 
creating, GEN 2-6 
defined, GEN 2-6, 3-3, PGM 4-10 
description, GEN 1-20 
displaying, GEN 2-10 
handling multiple, GEN 2-8 
I/0 device and, GEN 1-21 
marking executable, GEN 2-12 
merging multiple, GEN 2-14E 
open limit, PGM 1-11 
opening with edit, GEN 3-14 
optimal size, SYS 1-28 



File (Cont.) 
paging, GEN 2-7 
printing, GEN 2-7 
printing from other directories, 

GEN 2-9 
printing merged, GEN 2-11 
printing multiple, GEN 2-7, 2-8, 

2-11 
printing on high-speed printer, 

GEN 2-7 
programs executed by the shell 

and, GEN 1-27 
protection information, SYS 4-3 
recovering with edit, GEN 3-22 
removing, GEN 3-48 
removing multiple from directory, 

GEN 2-lOE 
renaming, GEN 2-7 
replacing the terminal, GEN 2-10 
sending to several people, GEN 

2-11 
size of, GEN 1-23, 2-13 
splitting, GEN 2-13 
truncating to specific length, SYS 

1-4 
viewing in other directories, GEN 

2-9 
writing part of, GEN 3-49 
writing to disk, GEN 3-8 

File ( C shell) 
See also specific files 
accessing from other directories, 

GEN 4-34 
directing input from, GEN 4-32E 

to 4-33E 
inputting to, GEN 4-31 
maint~ining related, GEN 4-53 
outpuWng from, GEN 4-31 
redirectjng terminal output to, 

GEN 4-31E 
terminating a command, GEN 

4-36E 
File (line printer system) 

reference· list, PG M 4-99 
File (M4) 

manipulating, PGM 2-396 
File (vi) 

quitting, GEN 3-63 
recovering, GEN 3-66 
writing, GEN 3-63 

file command 
symbolic links and, SYS 1-6 

file command (edit) 
See f command (edit) 

file command (ex) 
See f command (ex) 

file command (Mail) 
See folder command (Mail) 

File descriptor 
changing assignments, GEN 1-28 
description, PGM 1-8 

File locking 
description, SYS 1-33 

File pointer 
defined, PG M 1-5 

File system 
accessing directories on old and 

new systems, SYS 1-33 
block size, SYS 2-8 
checking structural integrity, SYS 

2-10 
data structure, PGM 4-12F 
defined, PGM 4-10 to 4-13 
description, GEN 1-20 to 1-24 
fixing corrupted, SYS 2-10 to 2-13 
fragmentation of, SYS 2-9 
implementation, PGM 4-11 
implementing, GEN 1-24 to 1-26 
overview, SYS 2-8 to 2-9 
protecting, GEN 1-22 
removable volume and, GEN 1-22 
updating, SYS 2-9 

File system (4.2BSD) 
See also File system (Bell) 
allocating data blocks, SYS 1-30 
allocating directories, SYS 1-30 
allocating new blocks, SYS 1-29 
allocation strategy, SYS 1-30 
block size, SYS 1-26 
block size and wasted space, SYS 

1-27T 
compared to previous file system, 

SYS 1-23 to 1-38 
creating file versions, SYS 1-35 
fragments and, SYS 1-27 
free blocks and, SYS 1-28 
hardware parameters and, SYS 

1-28 to 1-29 
implementing layout, SYS 5-42 
layout policies, SYS 1-29 to 1-30 
locking files, SYS 1-33 
moving, SYS 5-54 
optimizing storage, SYS 1-26 
organization, SYS 1-26 to 1-30 
performance, SYS 1-31 to 1-32 
quotas and, SYS 2-4 
reading rates, SYS 1-31T 
restricting quota, SYS 1-35 

Index-23 



File system (4.2BSD) (Cont.) 
selecting parameters, SYS 5-40 to 

5-41 
software engineering, SYS 1-36 
space overhead, SYS 1-28 
writing rates, SYS 1-31T 

File system (Bell) 
description, SYS 1-25 

File System Check Program 
See fsck program 

file.h file 
4.2BSD improvement, SYS 5-6 

Filelist file 
creating, GEN 2-10 

Filename 
4.2BSD changes, SYS 5-4 
arbitrary length and, SYS 1-3 
changing, GEN 3-47, 3-47W 

restriction, GEN 3-4 7 
conventions for, GEN 2-8 
description, GEN 1-21 
edit editor and, GEN 3-21 
folder name and, GEN 2-23 
maximum length, SYS 1-33 
renaming in same file system, 

SYS 1-4 
specifying, GEN 3-8 
suggestions, GEN 2-7 

Filename (C shell) 
base part and, GEN 4-63 
characters in, GEN 4-33 
defined, GEN 4-67 

Filename expansion 
defined, GEN 4-67 

FILENAME variable (awk) 
determining current input file, 

PGM 3-6 
files file 

4.2BSD improvement, SYS 5-11 
adding device driver and, SYS 

5-89 
files. vax file 

4.2BSD improvement, SYS 5-11 
Fill mode 

specifying, GEN 5-26 
Filling (nroff/troff) 

description, GEN 5-60 to 5-61 
filsys.h file 

See fs.h file 
Filter 

calling, PGM 4-103E 
creating for printers, PG M 4-102 
defined, GEN 4-4 
description, GEN 1-28 

Index-24 

find 
finding symbolic links, SYS 1-6 

Find key 
defined, GEN 5-144 

First page 
entering in text file, GEN 5-5 

fl command (nroff/troff) 
defined, GEN 5-73 

Flag (C shell) 
purpose of, GEN 4-31 

Flag (ex) 
description, GEN 3-86 

Flag (Mail) 
reference list, GEN 2-41 T 

Flag option (C shell) 
defined, GEN 4-67 

Flag option (Mail) 
defined, GEN 2-38 

flags field ( config 
description, SYS 5-82 

Floating keep, GEN 5-26F 
defined, GEN 5-26 

flock system call 
4.2BSD improvement, SYS 1-10 

fmt command 
formatting outgoing mail, GEN 

2-26 
fo command (me) 

defined, GEN 5-41 
entering, GEN 5-23 

Foderaro, J.K., & others 
Franz Lisp Manual, The, PGM 

2-211 to 2-358 
Folder 

specifying for file, GEN 2-23 
folder command (Mail) 

See also folders command (Mail) 
description, GEN 2-30 
directing Mail to a folder, GEN 

2-23 
Folder directory 

specifying, GEN 2-23 
Folder facility 

description, GEN 2-23 
folder option (Mail) 

defined, GEN 2-34 
Folders 

maintaining, GEN 2-23 
folders command (Mail) 

See also folder command (Mail) 
description, GEN 2-30 
listing folder set, GEN 2-23 

Font 
changing, GEN 5-58, 5-86 



Font (Cont.) 
command list, GEN 5-51 
default, GEN 5-58 
defined, GEN 5-36 
description, GEN 5-36 to 5-37 
mixing within a line, GEN 5-86 
mixing within a word, GEN 5-37, 

5-86 
setting, GEN 5-39 
specifying, GEN 5-44, 5-85 
specifying for a word, GEN 5-36E 
specifying for more than one word, 

GEN 5-36 
style examples, GEN 5-78T 
switching, GEN 5-36 

Font library 
installing, SYS 5-31 

Footer 
See also Header 
formatting, GEN 5-41 to 5-42 
specifying, GEN 5-23 

Footnote 
See also Delayed text 
entering, GEN 5-8, 5-28, 5-43 
entering with a macro, GEN 

5-76E 
numbered automatically, GEN 

5-17 
resetting the numbering, GEN 

5-46 
separating footnotes, GEN 5-43 
specifying point size, GEN 5-8 
text formatting commands for, 

GEN 5-15E 
fopen function 

See also fclose function 
See also open function 
calling, PGM 1-5E 
description, PGM 1-5 

for loop 
description, GEN 4-7 
form, GEN 4-8E 

for statement (awk) 
defined, PG M 3-9 

for statement (BC) 
forming, GEN 2-54 
process, GEN 2-4 7 
writing, GEN 2-47 

For system call 
description, GEN 1-26 

foreach command ( C shell), GEN 
4-56E 

defined, GEN 4-67 
exiting loop, GEN 4-58 

foreach command (C shell) (Cont.) 
performing similar commands, 

GEN 4-60E 
Foreground 

defined, GEN 4-67 
Foreground job 

continuing, GEN 4-46 
description, GEN 4-45 to 4'.""48 
suspending, GEN 4-46 

fork function 
description, PGM 1-14 

Form feed character 
printing, GEN 3-37 

Form letter 
using with nroff/troff, GEN 5-72 

format program 
4.2BSD improvement, SYS 1-18, 

1-19, 5-15 
formatting disks, SYS 5-22 to 

5-24 
loading, SYS 5-23 

Fortran 
See f'77 I/O library 
See Fortran 77 
See Ratfor language 

Fortran 77 
C and, GEN 2-15 
running old programs, PG M 2-83 

Fortran 77 compiler 
4.2BSD improvement, SYS 1-4 
description, PGM 2-89 to 2-109 

Fortran 1/0 
See also f'77 I/O library 
constraints, PGM 2-80 to 2-82 
execution, PGM 2-80 
forms of, PG M 2-79 to 2-80 
general concepts, PGM 2-79 to 

2-80 
logical units and, PGM 2-80 
unit numbers and, PGM 2-80 

fortune game 
4.2BSD improvement, SYS 1-17 

Forward slash 
searching for, GEN 3-39 

fp command 
specifying fonts on the typesetter, 

GEN 5-86 
fp compiler/interpreter 

Functional Programming language 
and, SYS 1-6 

FP programming language 
description, PGM 2-359 to 2-391 

fpr program 
printing Fortran files, SYS 1-6 

Index-25 



fprintf function 
description, PGM 1-7 

Fraction 
setting with troff, GEN 5-86E 
specifying with EQN, GEN 5-99 

Fragment size 
selecting, SYS 5-41 

frame.h file 
4.2BSD improvement, SYS 5-13 

Franz Lisp Manual, The, PGM 
2-211 to 2-358 

See also Franz Lisp system 
Franz Lisp system 

user manual, PGM 2-211 to 2-358 
from command (Mail) 

description, GEN 2-30 
message lists and, GEN 2-28 

from keyword (EQN), GEN 5-lOOE 
Front matter 

specifying, GEN 5-33 
f s 

4.2BSD improvement, SYS 1-16 
FS command (ms) 

specifying footnotes, GEN 5-8 
FS variable (awk) 

defined, PGM 3-6 
fs.h file 

4.2BSD improvement, SYS 5-5 
fscanf function 

See also sscanf function 
description, PGM 1-8 

fsck program 
See also badsect program 
4.2BSD improvement, SYS 1-19 
checking connectivity, SYS 2-12 
checking directory data blocks, 

SYS 2-12 
checking free blocks, SYS 2-10 
checking inode block count, SYS 

2-12 
checking in ode links, SYS 2-11 
checking inode state, SYS 2-11 
checking super-block, SYS 2-10 
description, SYS 2-7 to 2-25 
error conditions, SYS 2-14 to 2-25 
rebuilding block allocation maps, 

SYS 2-11 
fsplit program 

splitting multi-function Fortran 
files, SYS 1-6 

fstab library 
4.2BSD improvement, SYS 1-15 

fstat system call 
4.2BSD improvement, SYS 1-11 

Index-26 

fsync system call 
4.2BSD improvement, SYS 1-11 

ft command (troff) 
defined, GEN 5-59 
specifying fonts, GEN 5-86 

FTP server 
description, SYS 5-50 

ftp server program 
ARP A file transfer protocol and, 

SYS 1-6 
ftpd server program 

4.2BSD improvement, SYS 1-19 
ftpusers file 

description, SYS 5-50 
ftruncate system call 

4.2BSD improvement, SYS 1-11 
Function (BC) 

description, GEN 2-45 to 2-46 
number permitted, GEN 2-45 

Function call 
defined, GEN 2-51 

Function identifier 
description, GEN 2-50 

fz command (nroff/troff) 
specifying font size, GEN 5-81 

G 

g command ( ed) 
defined, GEN 3-34 
process, GEN 3-46 
s command and, GEN 3-46E 
s command restriction and, GEN 

3-47 
specifying line numbers, GEN 

3-47 
specifying lines with text patterns, 

GEN 3-46 to 3-4 7 
specifying more than one 

command, GEN 3-47 
using, GEN 3-32 

g command (edit) 
description, GEN-3-19 
p command and, GEN 3-19 
substitute command and, GEN 

3-19 
uppercase letters and, GEN 3-19 
using, GEN 3-19E 

g command (ex) 
description, GEN 3-89 

G command (sed) 
defined, GEN 3-113 

g command (sed) 
defined, GEN 3-113 



G command (vi) 
defined, GEN 3-79 
finding text lines, GEN 3-57 

g flag (sed) 
defined, GEN 3-110 

g option (hunt) 
defined, GEN 5-148 

g option (troff) 
defined, GEN 5-50 

g option (uucp) 
defined, SYS 5-132 

gcore program 
creating a core dump of running 

process, SYS 1-6 
genassym.c file 

4.2BSD improvement, SYS 5-14 
getc macro 

defined, PG M 1-6 
getch routine 

defined, PGM 4-84 
getchar macro 

input and, PGM 1-4 
getdtablesize system call 

4.2BSD improvement, SYS 1-11 
getgroups system call 

4.2BSD improvement, SYS 1-11 
gethostbynameandnet routine, SYS 

3-13E 
gethostid system call 

4.2BSD improvement, SYS 1-11 
gethostname system call 

4.2BSD improvement, SYS 1-11 
getitimer system call 

4.2BSD improvement, SYS 1-11 
getpagesize system call 

4.2BSD improvement, SYS 1-11 
getpass library 

4.2BSD improvement, SYS 1-14 
getpriority system call 

4.2BSD improvement, SYS 1-11 
getrlimit system call 

4.2BSD improvement, SYS 1-11 
getservbyname routine 

specifying a protocl, SYS 3-14 
getsockopt system call 

4.2BSD improvement, SYS 1-11 
getstr routine 

defined, PG M 4-84 
gettable program 

4.2BSD improvement, SYS 1-19 
retrieving NIC host data base, 

SYS 5-48 
gettimeofday system call 

4.2BSD improvement, SYS 1-11 

gettimeofday system call (Cont.) 
specifying value, SYS 5-74 

gettmode routine 
defined, PGM 4-88 
variables set by, PGM 4-90T 

getty program 
See also gettytab file 
4.2BSD improvement, SYS 1-18, 

1-19 
gettytab file 

4.2BSD improvement, SYS 1-16 
getwd library 

4.2BSD improvement, SYS 1-15 
getyx routine 

defined, PG M 4-85 
GID 

description, SYS 4-4 
global command ( ed) 

See g command ( ed) 
See v command (ed) 

global command (edit) 
See g command (edit) 

global command (ex) 
See g command (ex) 

globl statement (as) 
defined 

go flag 
accessing sdb symbol information, 

SYS 1-5 
goto command (C shell) 

defined, GEN 4-67 
form of, GEN 4-58E 

gprof command 
profiled systems and, SYS 5-78 

gprof program 
See also gprof.h file 
displaying execution time, SYS 

1-6 
gprof.h file 

4.2BSD improvement, SYS 5-5 
Graham, S.L., & others 

Berkeley Pascal User Manual, 
PGM 2-159 to 2-209 

Grave accent 
See Metacharacters 

Greek letters 
setting with -ms, GEN 5-10 
setting with troff, GEN 5-86E 
troff command list, GEN 5-96 

grep command (C shell) 
defined, GEN 4-67 

grep program 
finding lines with combinations of 

text patterns, GEN 3-51 

Index-27 



grep program (Cont.) 
finding lines without specified text, 

GEN 3-51E 
finding specified text in a set of 

files, GEN 3-51, 3-51E 
nonalphabetic characters and, 

GEN 3-51 
spell and, GEN 2-13 
using, GEN 2-13E 

Grep program 
searching for text patterns, GEN 

2-13 
Group Identification Number 

See GID 
Group set 

description, SYS 1-3 
grouping command (sed) 

defined, GEN 3-113 
groups program 

display access list for user's group, 
SYS 1-6 

H 

H command (sed) 
defined, GEN 3-113 

h command (sed) 
defined, GEN 3-113 

h command (troff) 
moving text backwards on a line, 

GEN 5-87 
specifying horizontal motion, GEN 

5-68 
H command (vi) 

defined, GEN 3-79 
h escape (Mail) 

description, GEN 2-25 
h flag (Mail) 

defined, GEN 2-36 
H macro (me) 

specifying column heads on 
continuing pages, GEN 5-42 

h macro (me) 
defined, GEN 5-42 

h option (inv) 
defined, GEN 5-14 7 

h option (nroff) 
defined, GEN 5-81 

Haley, C.B., & others 
Berkeley Pascal User Manual, 

PGM 2-159 to 2-209 
hangman game 

4.2BSD improvement, SYS 1-17 

Index-28 

Hard limit 
defined, SYS 2-3 

Hard lock 
compared to advisory lock, SYS 

1-33 
Hardcopy terminal 

vi and, GEN 3-73 
hardtabs option (ex) 

description, GEN 3-98 
Hash character 

See Sharp character 
Hat 

See Circumflex character ( ed) 
he command (nroff/troff) 

defined, GEN 5-69 
he command (me) 

defined, GEN 5-41 
entering, GEN 5-23 

head command (C shell) 
defined, GEN 4-68 

Header 
See also Footer 
formatting, GEN 5-41 to 5-42 
specifying, GEN 5-23 
suppressing, GEN 2-36 

Header field 
defined, GEN 2-38 

headers command (Mail) 
See also ignore command (Mail) 
abbreviating, GEN 2-30 
description, GEN 2-30 

help command (Mail) 
description, GEN 2-30 
restriction, GEN 2-30 
using, GEN 2-22 

Henry, R.R., & Reiser, J.F. 
Berkeley VAX/UNIX Assembler 

Reference Manual, PGM 4-53 
to 4-65 

Here document 
description, GEN 4-9 to 4-10 

Hexadecimal notation 
BC language and, GEN 2-44 

hi er 
4.2BSD improvement, SYS 1-17 

history command ( C shell) 
defined, GEN 4-68 
repeating previous commands, 

GEN 4-43 
History list 

description, GEN 4-41 to 4-43 
using, GEN 4-42E 

hi command (me) 
defined, GEN 5-45 



hi command (me) (Cont.) 
figures and, GEN 5-26 

hold command (Mail) 
See also preserve command (Mail) 
description, GEN 2-31 

hold option (Mail) 
defined, GEN 2-34 
storing mail, GEN 2-20 

Home directory 
defined, GEN 4-68 
returning to, GEN 4-49 

HOME variable (Bourne shell) 
description, GEN 4-11 

home variable (C shell) 
displaying your home directory, 

GEN 4-41 
Horizonal line 

See Ruling 
Horton, M., & Joy, W. 

editing with vi, GEN 3-53 to 3-82 
Ex Reference Manual, GEN 3-83 

to 3-104 
Host name 

represented by hostent structure, 
SYS 3-12E 

Hostent structure 
getting for host, SYS 3-13E 

hostid program 
displaying system unique 

identifier, SYS 1-6 
hostname program 

setting host name, SYS 1-6 
hosts database 

4.2BSD improvement, SYS 1-16 
hosts.equiv file 

description, SYS 5-49 
hp.c device driver 

4.2BSD improvement, SYS 5-14 
htable program 

converting NIC host data base, 
SYS 5-48 

hunt program 
defined, GEN 5-146 
description, GEN 5-148 
fgrep and, GEN 5-148 
options list, GEN 5-148 
timing, GEN 5-149 

hw command (nroff/troff) 
defined, GEN 5-69 

hx command (me) 
defined, GEN 5-41 

hy command (nroff/troff) 
defined, GEN 5-69 

hy network interface driver 
4.2BSD improvement, SYS 1-16 

Hyphen 
entering with text, GEN 5-22 

Hyphenation (nroff/troff) 
automatic, GEN 5-69 
command list, GEN 5-52 

Hyphenation indicator character 
specifying, GEN 5-69 

HZ parameter 
description, SYS 5-122 

I 

i command (DC) 
changing the base of input 

numbers, GEN 2-62 
description, GEN 2-59 

i command ( ed) 
defined, GEN 3-34 
using, GEN 3-31 to 3-32 

i command (ex) 
description, GEN 3-89 

i command (me) 
defined, GEN 5-44 
specifying italic font, GEN 5-36 

I command (ms) 
specifying italic, GEN 5-8 

i command (sed) 
See also a command (sed) 
defined, GEN 3-109 

I command (vi) 
defined, GEN 3-79 

i command (vi) 
defined, GEN 3-81 
description, GEN 3-58 

i flag (Mail) 
See also ignore option 
defined, GEN 2-36 

i flag (make) 
defined, PG M 3-17 

i flag (mkey) 
ignoring lines, GEN 5-14 7 

I option 
changed to -i, SYS 1-6 

i option 
specifying directory search paths, 

SYS 1-6 
i option (hunt) 

defined, GEN 5-148 
i option (inv) 

defined, GEN 5-148 
i option (nroff/troff) 

defined, GEN 5-49 

lndex-29 



i-list 
description, GEN 1-24 

i-node 
defined, PGM 4-10 
file description and, GEN 1-24 

i-number 
defined, GEN 1-24 

I/O 
essentials of, GEN 1-23 to 1-24 

I/O request 
multiplexing among sockets and 

files, SYS 3-11 
I/0 system 

description, PGM 4-8 to 4-10 
overview, PG M 4-67 to 4-73 

ibase 
defined, GEN 2-44, 2-51 

icheck program 
4.2BSD improvement, SYS 1-19 

ident parameter (config) 
defined, SYS 5-79 

Identifier 
defined, GEN 2-51 
kinds of, GEN 2-50 

Identifier (as) 
defined, GEN 6-53 

ie command (nroff/troff) 
defined, GEN 5-71 

if command (Bourne shell) 
description, GEN 4-13 to 4-14 

if command ( C shell) 
See if/endif commands (C shell) 

if command (Mail) 
See if/endif commands (Mail) 

if command (nroff/troff) 
defined, GEN 5-71 

if/endif commands (C shell) 
See also else command (C shell) 
See also then command ( C shell) 
defined, GEN 4-66, 4-68 
forms of, GEN 4-56 to 4-57 

if/endif commands (Mail) 
description, GEN 2-31 
restriction, GEN 2-31 

if/endif commands (nroff/troff) 
description, GEN 5-93 to 5-94 
reference list, GEN 5-52 

if/endif statement (as) 
defined, GEN 6-59 

if statement (as) 
See if/endif statement (as) 

if statement (awk) 
defined, PG M 3-9 

Index-30 

if statement (BC) 
forming, GEN 2-54 
restriction, GEN 2-4 7 
writing, GEN 2-4 7 

ifdef command (M4) 
description, PGM 2-395 

ifelse command (M4) 
description, PGM 2-397 

IFS variable 
defined, GEN 4-12 

ig command (nroff/troff) 
defined, GEN 5-73 

ignore command (Mail) 
description, GEN 2-31 

ignore option (Mail) 
See also i flag (Mail) 
defined, GEN 2-34 

ignorecase option (ex) 
description, GEN 3-98 

ignoreeof variable (C shell) 
defined, GEN 4-68 
setting, GEN 4-41E 

ignoreof option (Mail) 
See also dot option 
defined, GEN 2-34 

ik driver 
4.2BSD improvement, SYS 1-16 

ik.c device driver 
4.2BSD improvement, SYS 5-12 

Ikonas frame buffer graphics device 
interface 

See ik driver 
Ikonas frame buffer graphics 

interface 
See ik.c device driver 

ii network interface driver 
4.2BSD improvement, SYS 1-16 

Image 
defined, GEN 1-26 

imp network interface driver 
4.2BSD improvement, SYS 1-16 

IMP-1 lA LH/DH IMP interface 
See css network driver 

in command (me) 
See also ix command (me) 
entering, GEN 5-24 

in command (nroff/troff) 
defined, GEN 5-62 

in_cksum.c file 
4.2BSD improvement, SYS 5-13 

include command (M4) 
description, PGM 2-396 

incr command (M 4) 
description, PGM 2-395 



indent program 
formatting C program source, SYS 

1-6 
Indention 

command list, GEN 5-51 
resetting base, GEN 5-45 
specifying, GEN 5-24 
specifyng with nroff/troff, GEN 

5-62 
Index 

See Table of contents 
index command (M4) 

description, PGM 2-397 
Index entry 

specifying, GEN 5-43 
Indexing 

description, GEN 5-143 to 5-155 
Indirect block 

in ode and, SYS 2-8 
init program 

4.2BSD improvement, SYS 1-19 
description, GEN 1-30 

init__main.c file 
contents, SYS 5-8 

init_sysent.c file 
contents, SYS 5-8 

initscr routine 
defined, PG M 4-86 

in ode 
allocations states, SYS 2-11 
defined, SYS 2-8 
disk space and, SYS 2-8 
types of, SYS 2-11 

Inode table 
setting size, SYS 5-121 

inode.h file 
4.2BSD improvement, SYS 5-6 

input 
defined, GEN 4-68 

Input base 
DC, and, GEN 2-62 

Input mode 
description, GEN 3-7 

Input/output 
See I/O 

insch routine 
defined, PGM 4-82 

Insert command (ed) 
See i command ( ed) 

insert command (ex) 
See i command (ex) 

insert command (vi) 
See i command (vi) 

insertln routine 
defined, PGM 4-82 

install command, SYS 5-55E 
install script 

installing software, SYS 1-6 
int function (awk) 

defined, PGM 3-8 
Interlan Ethernet interface 

See il network interface driver 
Intermediate language (C compiler) 

description, PGM 2-63 to 2-66 
Internet address 

binding, SYS 3-24 to 3-26 
binding in Internet domain, SYS 

3-8E 
binding with wildcard address, 

SYS 3-25E 
Internet port 

printing, SYS 3-16E 
Interprocess communication 

description, SYS 3-5 to 3-28 
transferring data, SYS 3-9E 

Interprocess comm uni ca ti on 
facilities 

4.2BSD improvement, SYS 1-3 
Interrupt message 

description, GEN 3-9 
Interrupt signal 

See also oninvr command (C 
shell) 

See also stty command (C shell) 
creating, GEN 1-31 
defined, GEN 4-68 
ignoring, GEN 2-36 
scripts and, GEN 4-59 

intro system call 
4.2BSD improvement, SYS 1-10 

inv program 
defined, GEN 5-146 
description, GEN 5-147 
options list, GEN 5-147 

Inverted indexes 
See Indexing 

I/0 library 
restriction, GEN 2-15 

ioctl system call 
4.2BSD improvement, SYS 1-11 

ioctl.h file 
4.2BSD improvement, SYS 5-6 

iostat 
reporting kilobytes per second 

transferred for each disk, SYS 
1-6 

Index-31 



ip command (me) 
See also np command 
defined, GEN 5-40 
specifying with label, GEN 5-30 

IP command (ms) 
indenting paragraphs, GEN 5-7 
references and, GEN 5-7E 

isprint library 
4.2BSD improvement, SYS 1-14 

it command (nroff/troff) 
defined, GEN 5-65 

Italic 
See also Underlining 
holding, GEN 5-44 
specifying, GEN 5-8 
troff and, GEN 5-66 

ix command (me) 
defined, GEN 5-44 

J 

j command (ed) 
joining lines, GEN 3-42, 3-43E 

j command (ex) 
description, GEN 3-90 

J command (vi) 
defined, GEN 3-79 

j number register (nroff/troff) 
defined, GEN 5-81 

Job 
defined, GEN 4-45, 4-69 
determining current job, GEN 

4-46 
suspending, GEN 4-46 

Job control command 
See also bg command (C shell) 
See also fg command ( C shell) 
See also kill command (C shell) 
See also stop command ( C shell) 
defined, GEN 4-69 

Job name 
beginning character, GEN 4-46 

Job number 
defined, GEN 4-69 
description, GEN 4-45 

jobs command (C shell) 
defined, GEN 4-69 
displaying jobs, GEN 4-47E 

Johnson, S.C. 
Lint command, PGM 3-39 to 3-50 
tour through portable C compiler, 

PGM 2-37 to 2-61 
Yacc, PGM 3-79 to 3-111 

Index-32 

join command (ex) 
See j command (ex) 

Joy, W. 
C shell introduction, GEN 4-29 to 

4-74 
Joy, W., & Horton, M. 

editing with vi, GEN 3-53 to 3-82 
Ex Reference Manual, GEN 3-83 

to 3-104 
Joy, W., & Leffler, S.J. 

4.2BSD on VAXNMS, SYS 5-17 
to 5-71 

Joy, W., & others 
4.2BSD Interprocess 

Communication Primer, SYS 
3-5 to 3-28 

4.2BSD System Manual, PGM 
4-15 to 4-52 

Berkeley Pascal User Manual, 
PGM 2-159 to 2-209 

fast file system, SYS 1-23 to 1-38 
networking implementation notes, 

SYS 3-29 to 3-57 
Joyce, J., & Blau, R. 

Edit tutorial, GEN 3-3 to 3-23 
Justifying (nroff/troff) 

command list, GEN 5-51 
description, GEN 5-60 to 5-61 

K 

k command (DC) 
description, GEN 2-59 
scale value and, GEN 2-60 

k command (ed) 
marking a line, GEN 3-50E 

k command (ex) 
See also mark command (ex) 
description, GEN 3-90 

k escape sequence (nroff/troff) 
description, GEN 5-68 

k flag (mkey) 
specifying number of keys, GEN 

5-147 
k number register (nroff/troff) 

defined, GEN 5-81 
Keep 

See also Floating keep 
defined, GEN 5-26 
footnotes and, GEN 5-35 to 5-36 
index entries and, GEN 5-35 to 

5-36 
text formatting commands for, 

GEN 5-15E 



keep option (Mail) 
defined, GEN 2-34 

keepsave option (Mail) 
See also nosave option 
defined, GEN 2-35 

kern_acct.c file 
contents, SYS 5-8 

kern_clock.c file 
4.2BSD improvement, SYS 5-8 

kern_descrip.c file 
contents, SYS 5-8 

kern_exec.c file 
contents, SYS 5-8 

kern_exit.c file 
contents, SYS 5-8 

kern_fork.c file 
contents, SYS 5-8 

kern_mman.c file 
contents, SYS 5-8 

kern_proc.c file 
contents, SYS 5-8 

kern_prot.c file 
contents, SYS 5-8 

kern_resource.c file 
contents, SYS 5-8 

kern_sign.c file 
contents, SYS 5-8 

kern_subr .c file 
contents, SYS 5-8 

kern_synch.c file 
contents, SYS 5-8 

kern_time.c file 
contents, SYS 5-8 

kern_xxx.c file 
contents, SYS 5-8 

Kernel 
4.2BSD improvement, SYS 5-3 to 

5-15 
configuration, SYS 5-36 to 5-37 
implementation, PGM 4-5 to 4-8 
implementing devices, SYS 5-37 

kernel.h file 
4.2BSD improvement, SYS 5-5 

Kernighan, B.W. 
advanced editing with ed, GEN 

3-37 to 3-52 
introduction toed, GEN 3-25 to 

3-35 
Ratfor language, PGM 2-111 to 

2-122 
troff tutorial, GEN 5-83 to 5-96 
UNIX for beginners, GEN 2-3 to 

2-16 

Kernighan, B.W., & Cherry, L.L. 
typesetting mathematics, GEN 

5-97 to 5-104 
Typesetting Mathematics - User's 

Guide, GEN 5-105 to 5-114 
Kernighan, B.W., & Lesk, M.E. 

computer-naided instruction for 
UNIX, GEN 6-3 to 6-16 

Kernighan, B.W., & others 
awk programming language, PGM 

3-5 to 3-12 
Kernighan, B.W., & Ritchie, D.M. 

M4 macro processor, PGM 2-393 
to 2-398 

programming UNIX, PG M 1-3 to 
1-24 

Kessler, P.B., & others 
Berkeley Pascal User Manual, 

PGM 2-159 to 2-209 
Key 

defined, GEN 5-14 7 
selected by program, GEN 5-145 

Key file 
defined, GEN 5-145 

Key letters 
reference list, GEN 5-152 

Key-making program 
format used, GEN 5-145 

Keyword 
supplementing, GEN 5-150 

Keyword (BC) 
reserved 

reference list, GEN 2-50 
Keyword parameter 

description, GEN 4-17 to 4-25 
Keyword statement (as) 

defined, GEN 6-56 
reference list, GEN 6-59 to 6-60 

KF command (ms) 
moving blocks of text, GEN 5-9 

kg driver 
4.2BSD improvement, SYS 1-16 

kgclock.c device driver 
4.2BSD improvement, SYS 5-12 

kgmon program 
See also gmon.out file 
4.2BSD improvement, SYS 1-19 

Kill character 
default, GEN 4-30 

kill command (C shell) 
background commands and, GEN 

4-37 
background jobs and, GEN 4-4 7E 
defined, GEN 4-69 

Index-33 



kill command (C shell) (Cont.) 
killing processes, GEN 2-11 
suspended jobs and, GEN 4-4 7 

killpg library routine 
See killpg system call 

killpg system call 
4.2BSD improvement, SYS 1-11 

KL-11 
See kg driver 

Kowalski, T.J., & McKusick, M.K. 
fsck, SYS 2-7 to 2-25 

KS command (ms) 

L 

keeping text blocks together, GEN 
5-9, 5-94E 

L argument (nroff) 
centering and, GEN 5-27 
specifying, GEN 5-27 

1 command (DC) 
programming DC, GEN 2-62 

1 command (ed) 
backspaces and, GEN 3-37 
description, GEN 3-37 
long lines and, GEN 3-37 
p command and, GEN 3-37 
tabs and, GEN 3-37 

1 command (me) 
centering list elements, GEN 5-27 
defined, GEN 5-42 
entering, GEN 5-25 
specifying fill mode, GEN 5-26 
specifying left justification, GEN 

5-27 
L command (vi) 

defined, GEN 3-79 
1 flag (mkey) 

specifying items to be ignored, 
GEN 5-147 

L number register (nroff/troff) 
defined, GEN 5-81 

1 option ( C shell) 
description, GEN 2-6 

1 option (hunt) 
defined, GEN 5-148 

L-devices file 
defined, SYS 5-139 

L-dialcodes file 
defined, SYS 5-139 

L.sys file 
contents, SYS 5-135 
defined, SYS 5-141 
ownership of, SYS 5-138 

Index-34 

Label (as) 
See Name label; Numeric label 

label command (sed) 
defined, GEN 3-114 

LABEL operator (C compiler) 
defined, PG M 2-65 

last 
displaying remote host, SYS 1-6 

lastcomm 
indicating program activity, SYS 

1-7 
Layer, K., & others 

Franz Lisp Manual, The, PGM 
2-211 to 2-358 

le command (nroff/troff) 
defined, GEN 5-66 

LCK file 
description, SYS 5-143 

Leader character (nroff/troff) 
setting, GEN 5-66 
uninterpreted, GEN 5-66 

Leadering 
specifying with troff, GEN 5-88 

Leading 
See Vertical spacing 

LEARN driver program 
defined, GEN 6-3 
description, GEN 2-6 
directory structure, GEN 6-8 
experience with students, GEN 

6-8 
introduction to UNIX, GEN 6-3 

to 6-16 
sequence of events, GEN 6-9 
vi and, SYS 1-7 

leaveok routine 
defined, PGM 4-86 

Leffler, S.J. 
building 4.2BSD systems with 

config, SYS 5-73 to 5-105 
improvements in 4.2BSD, SYS 

1-3 to 1-21 
kernel and 4.2BSD, SYS 5-3 to 

5-15 
Leffler, S.J., & Joy, W.N. 

4.2BSD on VAXNMS, SYS 5-17 
to 5-71 

Leffler, S.J., & others 
4.2BSD Interprocess 

Communication Primer, SYS 
3-5 to 3-28 

4.2BSD System Manual, PGM 
4-15 to 4-52 

fast file system, SYS 1-23 to 1-38 



Leffler, S.J., & others (Cont.) 
networking implementation notes, 

SYS 3-29 to 3-57 
left keyword (EQN), GEN 5-lOOE 
len command (M4) 

description, PGM 2-397 
length function (awk) 

defined, PG M 3-8 
Leres, C., & Shoens, K. 

Mail Reference Manual, GEN 
2-17 to 2-41 

Lesk, M.E. 
formatting tables, GEN 5-115 to 

5-131 
inverted indexes, GEN 5-143 to 

5-155 
preparing documents with -ms, 

GEN 5-13 to 5-16 
updating publication lists, GEN 

5-155 to 5-162 
using -ms macros with troff and 

nroff, GEN 5-5 to 5-12 
Lesk, M.E., & Kernighan, B.W. 

computer-aided instruction for 
UNIX, GEN 6-3 to 6-16 

Lesk, M.E., & Nowitz, D.A. 
a dial-up network of UNIX 

systems, SYS 5-123 to 5-129 
Lesk, M.E., & Schmidt, E. 

Lex program generator, PGM 
3-113 to 3-125 

Lex program generator 
description, PGM 3-113 to 3-125 

LG command (ms) 
increasing type size, GEN 5-8 

lg command (troff) 
defined, GEN 5-66 

Ube.a library 
remaking, SYS 5-120 

libl77 .a library 
See f77 1/0 library 

Life game 
program for, PG M 4-94E 

Ligature (troff) 
types available, GEN 5-66 

limit command (C shell) 
displaying current limitations, 

GEN 4-51E 
setting limits, GEN 4-51E 

Line 
See Line drawing (nroff/troff) 

Line dot 
See Dot character (ed) 

Line drawing (nroff/troff) 
description, GEN 5-68 

Line length (nroff/troff) 
specifying, GEN 5-62, 5-86 

Line printer 
setting for serial lines, PGM 4-101 
setting remote, PGM 4-101 

Line printer control program 
See lpc program 

Line Printer Dameon 
See lpd program 

Line Printer Queue program 
See lpq program 

Line printer spooling system 
devices supported, PGM 4-99, 

SYS 5-44 
file list, SYS 5-44 
setting up, SYS 5-44 

Line printer spooling system 
(4.2BSD) 

See also lpc program; pac program 
4.2BSD improvement, SYS 1-4, 

1-7, 1-18 
controlling access, PG M 4-100 to 

4-101 
error messages, PGM 4-103 to 

4-105 
filters and, PGM 4-102 
setting up, PGM 4-101 to 4-102 
user manual, PGM 4-99 to 4-105 

Line spacing 
See Vertical spacing 

Linking 
description, GEN 1-21 

Lint command 
checking C programs, PGM 3-39 

to 3-50 
lint command 

C and, GEN 2-15 
creating libraries from C source 

code, SYS 1-7 
LINT configuration file 

using, SYS 5-88E 
LINT file 

4.2BSD improvement, SYS 5-11 
LINTRUP request 

See fcntl system call 
lisp option (ex) 

description, GEN 3-99 
lisp option (vi) 

setting, GEN 3-68 
Lisp program 

See also vlp program 
4.2BSD improvement, SYS 1-7 

Index-35 



Lisp program (Cont.) 
editing with vi, GEN 3-68 

List 
defined, GEN 5-25 
specifying in text, GEN 5-25 
text formatting commands for, 

GEN 5-15E 
text formatting commands for 

nested, GEN 5-15E 
list command 

See ls command (C shell) 
List command (ed) 

See 1 command ( ed) 
list command (ex) 

description, GEN 3-90 
list command (Mail) 

description, GEN 2-31 
list files command 

See ls command (C shell) 
list option (ex) 

description, GEN 3-99 
listen system call 

4.2BSD improvement, SYS 1-11 
incoming requests and, SYS 3-9E 

II command (me) 
See also xl command (me) 
defined, GEN 5-45 

II command (nroff/troff) 
defined, GEN 5-62 
resetting line length, GEN 5-86E 

In 
creating symbolic links, SYS 1-7 

lo command (me) 
defined, GEN 5-45 

lo network interface 
4.2BSD improvement, SYS 1-16 

load command (DC) 
See 1 command (DC) 

local command (Mail) 
description, GEN 2-31 

Local motion 
defined, GEN 5-67 

Location counter (as) 
See also bss segment 
defined, GEN 6-55 

Locore.c file 
4.2BSD improvement, SYS 5-13 

locore.s file 
4.2BSD improvement, SYS 5-14 
installing device drive and, SYS 

5-119 
LOG file 

description, SYS 5-142 

Index-36 

log function (awk) 
defined, PG M 3-8 

Logging in 
description, GEN 2-3 to 2-4 
prerequisites, GEN 2-3 
procedure, GEN 3-5 
recording attempts, SYS 4-12 

Logging out, GEN 3-8E 
description, GEN 2-5 

Login directory 
startup file and, GEN 2-12 

login file 
See also logout file 
background jobs and, GEN 4-48E 
defined, GEN 4-69 
logging in and, GEN 4-39, 4-39E 
rlogin server and, SYS 1-7 
telnetd server program and, SYS 

1-7 
Login shell 

See also Script file 
defined, GEN 4-69 
logging in and, GEN 4-39 

logout command 
exiting from UNIX, GEN 3-8 

logout command ( C shell) 
defined, GEN 4-69 

logout file 
See also login file 
C shell and, GEN 4-39 
defined, GEN 4-69 

London, T.B., & Reiser, J.F. 
regenerating system software, SYS 

5-117 to 5-122 
setting up UNIX/32V Vl.O, SYS 

5-107 to 5-115 
longjmp library 

old semantics and, SYS 1-15 
longjump library 

4.2BSD improvement, SYS 1-15 
longname routine 

defined, PGM 4-86 
lookbib command 

checking the data base, GEN 
5-150 

Loop 
variables and, GEN 4-60 

Low-level 1/0 
description, PGM 1-8 to 1-12 

Ip command (me) 
defined, GEN 5-40 
entering, GEN 5-29 



LP command (ms) 
specifying block paragraphs, GEN 

5-5 
lp.c device driver 

4.2BSD improvement, SYS 5-12 
lpc program 

4.2BSD improvement, SYS 1-4, 
1-18, 1-19 

description, PGM 4-100 
lpd program 

description, PGM 4-99 
requests understood 

reference list, PGM 4-100 
lpd server program 

4.2BSD improvement, SYS 1-20 
lpq program 

4.2BSD improvement, SYS 1-7 
description, PGM 4-100 

lpr command (C shell) 
defined, GEN 4-'69 

lpr program 
lpd and, PGM 4-100 

lprm program 
4.2BSD improvement 
description, PGM 4-100 

lq command (me) 
specifying quotation marks, GEN 

5-38 
ls command (C shell) 

4.2 BSD improvement, SYS 1-7 
defined, GEN 4-69 
description, GEN 2-6 
listing files in three columns, 

GEN 2-11 
specifying numeric sort, GEN 

4-32E 
ls command (Mail) 

displaying files on your terminal, 
GEN 2-10 

ls command (me) 
entering, GEN 5-23 

ls command (nroff/troff) 
defined, GEN 5-61 

lseek system call 
4.2BSD improvement, SYS 1-11 
description, PGM 1-11 

It command (nroff/troff) 
defined, GEN 5-70 

M 

m command (e) 
reversing two adjacent lines, GEN 

3-50E 

m command (ed) 
caution, GEN 3-50 
defined, GEN 3-34 
moving text, GEN 3-50E 
using, GEN 3-32 

m command (edit) 
context search and, GEN 3-15 
moving text, GEN 3-14 

m command (ex) 
description, GEN 3-90 

M command (vi) 
defined, GEN 3-79 

m command (vi) 
defined, GEN 3-81 

m escape (Mail) 
description, GEN 2-25 

m option (nroff/troff) 
defined, GEN 5-49 

m option (uuclean) 
defined, SYS 5-137 

m option (uucp) 
defined, SYS 5-132 

ml command (me) 
defined, GEN 5-41 

m2 command (me) 
defined, GEN 5-41 

m3 command (me) 
defined, GEN 5-42 

m4 command (me) 
defined, GEN 5-42 

M4 macro processor 
arguments, PGM 2-395 
arithmetic built-ins, PGM 2-395 
command line format, PG M 2-393 
conditionals, PGM 2-397 
defining macros, PG M 2-393 to 

2-395 
description, PGM 2-393 to 2-398 
manipulating files, PGM 2-396 
manipulating strings, PGM 2-397 
operation, PGM 2-393 
printing, PGM 2-397 

m4 macro processor 
4.2BSD improvement, SYS 1-7 

machdep.c tile 
4.2BSD improvement, SYS 5-14 

machine tile 
4.2BSD improvement, SYS 5-4 

Machine instruction statement (as) 
syntax, GEN 6-60 to 6-63 

machine type parameter (config) 
defined, SYS 5-79 

Macro (M4) 
defining, PGM 2-393 to 2-395 

Index-37 



Macro (nroff) 
defined, GEN 5-35 
defining, GEN 5-35E 
naming, GEN 5-35 
using, GEN 5-35E 

Macro (nroff/troff) 
arguments, GEN 5-63 
defined, GEN 5-62 
description, GEN 5-62 to 5-65 
diversions, GEN 5-63 
printing, GEN 5-73 
traps, GEN 5-64 

Macro (troff) 
arguments and, GEN 5-92 to 5-93 
arguments and blanks, GEN 5-93 
arguments and trailing 

punctuation, GEN 5-92 
Macro (vi) 

See also Word abbreviation 
types of, GEN 3-68 

Macro definition (make), PGM 
3-15E 

defined, PGM 3-15 
Macro-invocation trap (nroff/troff) 

description, GEN 5-64 
magic option (ex) 

description, GEN 3-96 
magic option (ex) 

description, GEN 3-99 
Magnetic tape 

FORTRAN-77 and, PGM 2-84 
Mail 

adding to mail list, GEN 2-25 
answering, GEN 2-19 to 2-20 
C shell watching for, GEN 4-39E 
canceling, GEN 2-18 
changing the subject line, GEN 

2-25 
commands to be executed by the 

shell, GEN 2-28 
defined, GEN 2-38 
deleting, GEN 2-20 
description, GEN 2-5 
filing, GEN 2-24 
format, GEN 2-37 
forwarding, GEN 2-25 
holding in system mail box, GEN 

2-31 
including in other mail, GEN 2-25 
indicating indirect recipients, 

GEN 2-25 
keeping, GEN 2-35 
keeping outgoing, GEN 2-35 
length restricted, GEN 2-37 

Index-38 

Mail (Cont.) 
line width, GEN 2-37 
maintaining groups of mail, GEN 

2-23 
message lists and user names, 

GEN 2-28 
notification of, GEN 2-17 
paging, GEN 2-20 
process, GEN 2-17 
protecting, GEN 2-34E 
reading, GEN 2-18 to 2-19 
reading in home directory, GEN 

2-21 
reading next, GEN 2-19 
reading other people's, GEN 2-36 
recovering deleted, GEN 2-30 
saving related in a file, GEN 2-32 
searching for subjects, GEN 2-28 
sending, GEN 2-18 
sending multiple messages, GEN 

2-28 
sending remote, SYS 5-126 
sending source program text, GEN 

2-33 
sending to file, GEN 2-27 
sending to folder, GEN 2-27 
sending to list, GEN 2-21 
sending to multiple users, GEN 

2-18 
sending to other machines, GEN 

2-26 to 2-27 
sending to programs, GEN 2-27 
sending to user name, GEN 2-27 
specifying mailbox, GEN 2-36 
terms defined, GEN 2-38 
writing to others online, GEN 2-5 

mail command 
abbreviating, GEN 2-20 
description, GEN 2-31 
uses of, GEN 2-18 

Mail list 
editing, GEN 2-25 

Mail program 
setting up, SYS 5-44 

mail program 
4.2BSD improvement, SYS 1-7 
defined, GEN 4-69 
escaping temporarily to command 

mode, GEN 2-26 
escaping temporarily to shell, 

GEN 2-25 
reading folders, GEN 2-23 
reference manual, GEN 2-17 to 

2-41 



mail program (Cont.) 
sen ting source program text, GEN 

2-33 
shell and, GEN 2-32 
suspending, GEN 4-37E 
using, GEN 2-17 to 2-41 

Mail Reference Manual 
See also Mail program 

Mail routing facility 
See sendmail 

mail system 
See also sendmail 

MAIL variable 
description, GEN 4-11 

mailaddr 
4.2BSD improvement, SYS 1-17 

Mailbox 
defined, GEN 2-38 

mailrc file, GEN 2-21E 
defined, GEN 2-21 
specifying folder directory, GEN 

2-23 
make command 

command line format, PGM 3-16 
operation, PGM 3-16 to 3-17 

make depend command 
system source code and, SYS 5-77 

make directory command 
See mkdir command (C shell) 

make program 
See also makefile 
4.2BSD improvement, SYS 1-7 
C and, GEN 2-15 
defined, GEN 4-69 
description, PGM 3-13 to 3-21 
description file for, PGM 3-18 to 

3-20 
maintaining related files, GEN 

4-53 
operation, PGM 3-13 to 3-15 
suffix list, PG M 3-17 
transformation paths 

summary, PG M 3-17 
warnings, PGM 3-20 

MAKEDEV script 
See also MAKEDEV .local file 
4.2BSD improvement, SYS 1-20 

makefile 
See also make program 
defined, GEN 4-69 
description, GEN 4-53 
modifying for uucp, SYS 5-139 

makefile. vax file 
contents, SYS 5-11 

makelinks command 
source modules and, SYS 5-78 

maketemp command (M4) 
description, PGM 2-396 

man command (Bourne shell) 
printing the UNIX manual, GEN 

4-15 
printing UNIX manual, GEN 

4-16F 
man command ( C shell) 

accessing online programmer's 
manual, GEN 4-63E, 4-69E 

using, GEN 2-6 
Manual 

defined, GEN 4-69 
map command (ex) 

See also unmap command (ex) 
description, GEN 3-90 

Maranzano, J.F., & Bourne, S.R. 
ADB debugging program, PGM 

3-51 to 3-77 
Margin number 

setting, GEN 5-44 
mark command (ex) 

See also k command (ex) 
description, GEN 3-90 

Mass storage 
UNIX interfaces, SYS 1-36 

MAS SB US 
description, SYS 5-18 
specifying, SYS 5-19 

MASTER mode 
description, SYS 5-135 

Mathematics 
text formatting commands for, 

GEN 5-14E 
typesetting, GEN 5-97 to 5-104, 

5-105 to 5-114 
MAXMEM parameter 

description,_ SYS 5-121 
MAXUMEM parameter 

See also MAXMEM parameter 
description, SYS 5-121 

MAXUPRC parameter 
description, SYS 5-121 

maxusers parameter ( config) 
defined, SYS 5-79 

mba.c device driver 
4.2BSD improvement, SYS 5-14 

mbox command (Mail) 
abbreviating, GEN 2-22 
description, GEN 2-31 
saving unread mail, GEN 2-22 

Index-39 



mbox file 
mail and, GEN 2-20 
system mailbox and, GEN 2-20 

mbuf.h file 
4.2BSD improvement, SYS 5-5 

me command (nroff/troff) 
defined, GEN 5-72 

McKusick, M.K., & Kowalski, T.J. 
fsck, SYS 2-7 to 2-25 

McKusick, M.K., & others 
4.2BSD System Manual, PGM 

4-15 to 4-52 
Berkeley Pascal User Manual, 

PGM 2-159 to 2-209 
fast file system, SYS 1-23 to 1-38 

McMahon, L.E. 
sed stream editor and, GEN 3-105 

to 3-114 
me macro package 

initializing, GEN 5-40 
naming convention, GEN 5-39 
predefined strings, GEN 5-4 7 
reference manual, GEN 5-39 to 

5-48 
Me Ref ere nee Manual, GEN 5-39 

See also me macro package 
mem.c file 

4.2BSD improvement, SYS 5-14 
Memorandum 

text formatting commands for, 
GEN 5-14E 

mesg option (ex) 
description, GEN 3-99 

Message 
See also Mail 
defined, GEN 2-38 

Message list 
defined, GEN 2-28, 2-38 

Metacharacters (Bourne shell) 
defined, GEN 4-5 
quoting, GEN 4-5 
quoting a string, GEN 4-5E 
quoting mechanisms, GEN 4-20F 
reference list, GEN 4-27 

Metacharacters (C shell) 
defined, GEN 4-69 
description, GEN 4-32 
reference list, GEN 4-62 
using with command arguments, 

GEN 4-35 
Metacharacters (ed) 

character classes and, GEN 3-41 
deleting, GEN 3-38 

Index-40 

Metacharacters (ed) (Cont.) 
delimiting text for s command, 

GEN 3-39 
editing with, GEN 3-37 to 3-43 
entering, GEN 3-33 
reference list, GEN 3-33 
searching for, GEN 3-39, 3-41 

Metacharacters (ed) (ed) 
combining, GEN 3-40 
description, GEN 3-38 to 3-42 

Metacharacters (ex) 
X and, GEN 3-96 

Metacharacters (me) 
reference list, GEN 5-4 7 

Metacharacters (nroff/troff) 
specifying, GEN 5-79 

Metacharacters (troff) 
automatically translated, GEN 

5-86 
command list, GEN 5-96 
entering, GEN 5-86 

metoo option (Mail) 
defined, GEN 2-35 

MFLAGS macro 
supplying flags to make, SYS 1-7 

mille game 
4.2BSD improvement, SYS 1-17 

Mini-root file system 
booting from, SYS 5-25 
copying, SYS 5-24 

Minus sign 
translating for troff, GEN 5-86 

mk command (nroff/troff) 
See also rt command (nroff/troff); 

sp command (nroff/troff) 
defined, GEN 5-60 

mkdir command 
4.2BSD improvement, SYS 1-7 
creating directories, GEN 2-10 

mkdir command ( C shell) 
creating a directory, GEN 4-48 
defined, GEN 4-70 

mkdir system call 
4.2BSD improvement, SYS 1-11 

mkey program 
defined, GEN 5-146 
description, GEN 5-147 

mkfs program 
See newfs program 
4.2BSD improvement, SYS 1-20 

mman.h file 
future plans and, SYS 5-5 

Modifier (C shell) 
See also Command substitution 



Modifier (C shell) (Cont.) 
defined, GEN 4-70 
description, GEN 4-57 
restriction, GEN 4-57n 

more program 
defined, GEN 4-70 
paging mail, GEN 2-20 
terminal screen and, GEN 4-37 

Morris, R., & Cherry, L. 
BC and, GEN 2-43 to 2-55 
DC and, GEN 2-57 to 2-64 

Morris, R., & Thompson, K. 
password system, SYS 4-7 to 4-12 

mos 
old version of -ms, GEN 5-17 

Mosher, D., & others 
4.2BSD System Manual, PGM 

4-15 to 4-52 
mount command 

unprivileged users and, SYS 4-5 
mount program 

4.2BSD improvement, SYS 1-20 
mount.h file 

4.2BSD improvement, SYS 5-6 
Move command (ed) 

See m command (ed) 
move command (edit) 

See m command 
move command (ex) 

See m command (ex) 
move routine 

defined, PG M 4-83 
mpx system call 

See socket system call and related 
system calls 

ms macro package 
See also -mos 
4.2BSD improvement, SYS 1-18 
CAI script for, GEN 6-7 
command reference list, GEN 

5-11 
default settings, GEN 5-9 
entering cover sheet, GEN 5-5 
entering first page, GEN 5-5 
entering page footer, GEN 5-6 
entering page heading, GEN 5-6 
entering paragraphs, GEN 5-5 
entering section heads, GEN 5-6 
keeping text blocks together, GEN 

5-9 
order for input commands, GEN 

5-12F 
preparing documents, GEN 5-13 

to 5-16 

ms macro package (Cont.) 
printing files on the terminal, 

GEN 5-9E 
register name reference list, GEN 

5-11 
revised version, GEN 5-17 to 5-19 
specifying column format, GEN 

5-6 
using with troff and nroff, GEN 

5-5 to 5-12 
ms package 

description, GEN 2-12 
formatting a document with nroff, 

GEN 2-13 
formatting a document with troff, 

GEN 2-12 
MSGBUFS parameter 

description, SYS 5-122 
mt 

showing state of tape drive, SYS 
1-7 

mtab 
4.2BSD improvement, SYS 1-16 

Multiplication 
DC and, GEN 2-61 

Multiplicative operator 
description, GEN 2-52 

Multitasking 
description, GEN 1-29 

MV command 
renaming a file, GEN 2-7 

mv program 
4.2BSD improvement, SYS 1-7 

mv program (ed) 
renaming a file, GEN 3-47 

mvcur routine 
defined, PGM 4-88 

mvwin routine 
defined, PGM 4-86 

N 

n command (ex) 
description, GEN 3-90 

n command (sed) 
defined, GEN 3-108 

N command (vi) 
See also n command (vi) 
defined, GEN 3-79 

'n command (vi) 
See also N command (vi) 
defined, GEN 3-81 

N flag (Mail) 
See also noheader option 

Index-41 



N flag (Mail) (Cont.) 
defined, GEN 2-36 

n flag (Mail) 
defined, GEN 2-36 

n flag (make) 
defined, PG M 3-17 

n flag (mkey) 
ignoring words, GEN 5-147 

n flag (sed) 
defined, GEN 3-106 

n option 
specifying numeric sort, GEN 4-32 

n option (inv) 
defined, GEN 5-148 

n option (nroff/troff) 
defined, GEN 5-49 

n option (uuclean) 
defined, SYS 5-137 

nl command (me) 
defined, GEN 5-44 

n2 command (me) 
defined, GEN 5-44 

Name label (as) 
defined, GEN 6-55 

NAME operator (C compiler) 
defined, PG M 2-66 

Named expression 
defined, GEN 2-51 

nami routine 
See also nami.h file 

nami.h file 
4.2BSD improvement, SYS 5-5 

NBUF parameter 
description, SYS 5-121 

NCALL parameter 
description, SYS 5-122 

NCARGS parameter 
description, SYS 5-122 

NCLIST parameter 
description, SYS 5-122 

ND command (ms) 
cover sheet and, GEN 5-9 

ne command (nroff/troff) 
defined, GEN 5-59 

NEQN program 
See also EQN program 
description, GEN 5-33 
formatting mathematics, GEN 

2-13 
net library 

4.2BSD improvement, SYS 1-15 
net program 

UNIX distribution and, SYS 1-7 

Index-42 

netstat program 
displaying network statistics, SYS 

1-7, 5-51E 
displaying routing table contents, 

SYS 5-51E 
Network 

See Dial-up network 
See uucp system 
troubleshooting, SYS 5-57 

Network data base 
files list, SYS 5-48 

Network library routines 
description, SYS 3-12 to 3-16 

Network name 
represented by netent structure, 

SYS 3-13E 
Network server program 

included with system, SYS 5-50T 
started up automatically at boot 

time, SYS 5-49T 
network server program 

reference list, SYS 5-49 
Network Systems Hyperchannel 

Adapter 
See hy network interface driver 

Networking 
implementation, SYS 3-29 to 3-57 

networks database 
4.2BSD improvement, SYS 1-16 

newfs program 
See also mkfs program 
4.2BSD improvement, SYS 1-18, 

1-20 
newgrp command 

See Group set 
newwin routine 

defined, PG M 4-86 
next command (ex) 

See n command (ex) 
next command (Mail) 

abbreviating, GEN 2-31 
description, GEN 2-31 

next statement (awk) 
defined, PG M 3-9 

NF variable (awk) 
determining number of fields, 

PGM 3-6 
NFILE parameter 

description, SYS 5-121 
NH command (ms) 

entering section heads, GEN 5-6E 
specifying numbered section heads, 

GEN 5-6 



nh command (nroff/troff) 
defined, GEN 5-69 

NIC host data base 
retrieving, SYS 5-48E 

NINODE parameter 
description, SYS 5-121 

nl routine 
defined, PG M 4-87 

NLABEL operator (C compiler) 
defined, PGM 2-64 

nm command (nroff/troff) 
defined, GEN 5-70 

NMOUNT parameter 
description, SYS 5-121 

nn command (nroff/troff) 
defined, GEN 5-70 

Nobreak control character 
changing, GEN 5-67 

noclobber variable (C shell) 
defined, GEN 4-70 
protecting files and, GEN 4-41 

NOFILE parameter 
description, SYS 5-121 

noglob variable (C shell), GEN 
4-56E 

defined, GEN 4-70 
noheader option (Mail) 

See also -N flag 
See also quiet option 
defined, GEN 2-35 

nosave option (Mail) 
See also keepsave option 
defined, GEN 2-35 

notify command ( C shell) 
See also notify variable 
defined, GEN 4-70 
reporting job complete, GEN 4-47 

notify variable (C shell) 
See also notify command (C shell) 
background jobs and, GEN 4-45 

Nowitz, D.A. 
implementing uucp, SYS 5-131 to 

5-144 
Nowitz, D.A., & Lesk, M.E. 

a dial-up network of UNIX 
systems, SYS 5-123 to 5-129 

np command (me) 
defined, GEN 5-40 
numbering paragraphs 

automatically, GEN 5-31E 
NPROC parameter 

description, SYS 5-121 
nr command (me) 

indenting sections, GEN 5-32E 

nr command (me) (Cont.) 
specifying with li, GEN 5-30 

nr command (nroff/troff) 
defined, GEN 5-65 

NR variable (awk) 
determining current record 

number, PGM 3-5 
nroff text processor 

See also nroff/troff text processor 
See also troff text processor 
calling, GEN 5-21E 
defined, GEN 2-12 
device resolution and, GEN 5-56 
entering text, GEN 5-22 
formatting a document with -ms, 

GEN 2-13 
function, GEN 5-22 
invoking, GEN 5-49 
stopping printer to change paper, 

GEN 5-49 
writing papers using -me, GEN 

5-21 to 5-38 
nroff/troff text processor 

See also -ms macros 
See also nroff text processor 
See also troff text processor 
-ms macros and, GEN 5-5 to 5-12 
boxing words, GEN 5-69 
breaking a line, GEN 5-60 
character set, GEN 5-57 
character translation, GEN 5-66 
concealed newlines and, GEN 

5-67 
contol characters beginning lines, 

GEN 5-60 
defined, GEN 5-49 
description, GEN 2-12 
error messages, GEN 5-73 
input, GEN 5-56 
justifying text, GEN 5-61 
marking horizontal space, GEN 

5-68 
numbering output lines, GEN 

5-70 
numerical expressions, GEN 5-57 
numerical parameters, GEN 5-56 
post processors and, GEN 5-50 
preprocessors and, GEN 5-50 
specifying conditional input, GEN 

5-71 
specifying indention, GEN 5-62 
specifying line length, GEN 5-62 
specifying page margins, GEN 

5-74E 

Index-43 



nroff/troff text processor (Cont.) 
specifying vertical spacing, GEN 

5-61 
switching environment, GEN 5-71 
transparent throughput, GEN 

5-67 
transposing characters, GEN 5-67 
underlining words, GEN 5-69 
user's manual, GEN 5-49 to 5-81 
writing paragraph macros, GEN 

5-75E 
Nroff/Troff User's Manual 

update, GEN 5-81 
Nroff/Troff User's Manual, GEN 

5-49 to 5-81 
See also nroff/troff text processor 

ns command (nroff/troff) 
defined, GEN 5-62 

NTEXT parameter 
description, SYS 5-122 

nu command (edit) 
printing text with line numbers, 

GEN 3-11 
nu command (ex) 

description, GEN 3-91 
NULL 

defined, PGM 1-21 
NULL operator (C compiler) 

defined, PG M 2-66 
Null statement (as) 

defined, GEN 6-55 
Number 

internal representation in DC, 
GEN 2-59 

right justifying with troff, GEN 
5-87 

number command (DC) 
descripton, GEN 2-57 

number command (edit) 
See nu command (edit) 

number command (ex) 
See nu command (ex) 

number option (ex) 
description, GEN 3-99 

Number register (nroff/troff) 
See also nr command (nroff/troff) 
See also specific registers 
command list, GEN 5-52, 5-55 
description, GEN 5-65 to 5-66 

Number register (troff) 
description, GEN 5-91 to 5-92 
predefined, GEN 5-91 

Numeric label (as) 
defined, GEN 6-55 

Index-44 

nx command (nroff/troff) 
defined, GEN 5-72 

0 

o command (DC) 
changing the output base, GEN 

2-62 
description, GEN 2-59 

o command (ex) 
See also open option 
description, GEN 3-91 
line editing and, GEN 3-85 

o command (nroff/troff) 
description, GEN 5-68 

0 command (Rogue) 
using, GEN 6-23 

0 command (vi) 
See also o command (vi) 
See also slowopen option 
defined, GEN 3-79 

o command (vi) 
See also 0 command (vi) 
defined, GEN 3-81 

o option (hunt) 
defined, GEN 5-148 

o option (nroff/troff) 
defined, GEN 5-49 

obase 
defined, GEN 2-44, 2-51 

Octal 
converting to decimal, GEN 2-44 

od 
4.2BSD improvement, SYS 1-7 

of command (me) 
defined, GEN 5-41 

of filter 
calling, PGM 4-102E 
printers and, PG M 4-102 

OF macro 
specifying page footers, GEN 5-19 

OFS variable 
defined, PG M 3-6 

oh command (me) 
defined, GEN 5-41 

OH macro 
specifying page headings, GEN 

5-19 
oldcsh 

4.2BSD and, SYS 1-7 
onintr command (C shell) 

See also Interrupt signal 
defined, GEN 4-70 



open command (ex) 
See o command ex) 

open function 
See also open function 
description, PGM 1-10 

open option (ex) 
description, GEN 3-99 

open system call 
4.2BSD improvement, SYS 1-11 

Operators 
available, GEN 2-43 

optim routine (C compiler) 
description, PGM 2-66 to 2-67 

optim routine (C shell) 
See also unoptim routine (C shell) 

optimize option (ex) 
description, GEN 3-99 

Option (C shell) 
combining, GEN 2-6 

Option (ex) 
See also specific options 
reference list, GEN 3-97 to 3-101 

Option (Mail) 
See also specific options 
defined, GEN 2-38 
reference list, GEN 2-33 to 2-36, 

2-40T 
setting, GEN 2-32, 2-32E 

Option (nroff/troff) 
invoking, GEN 5-50 
reference list, GEN 5-49 to 5-50 

Option (vi) 
See also specific options 
listing values, GEN 3-65 
reference list, GEN 3-65 
setting, GEN 3-65 
setting automatically, GEN 3-65 

options parameter (config) 
defined, SYS 5-79 

ORS variable 
defined, PG M 3-6 

os command (nroff/troff) 
defined, GEN 5-62 

Ossanna, J.F. 
Nroff/Troff User's Manual, GEN 

5-49 to 5-81 
Out of band data 

descriptfon, SYS 3-23 
flushing 1/0 on receipt, SYS 

3-23F 
Output 

defined, GEN 4-70 
Output base 

DC and, GEN 2-62 

over keyword (EQN) 
specifying fractions, GEN 5-99E 

overlay routine 
defined, PG M 4-83 

Overstrike command (nroff/troff) 
See o command (nroff/troff) 

Overstriking 
creating with troff, GEN 5-88 

overwrite routine 
defined, PGM 4-83 

p 

p command (DC) 
descripton, GEN 2-58 

p command ( ed) 
defined, GEN 3-34 
printing a line, GEN 3-28 
printing all lines, GEN 3-28 
printing last line, GEN 3-28 
printing lines, GEN 3-27 
stopping, GEN 3-28 
using, GEN 3-27 to 3-28 

p command (edit) 
printing buffer contents, GEN 

3-10 
u command and, GEN 3-16 

p command (ex) 
description, GEN 3-91 

P command (me) 
defined, GEN 5-46 
specifying front matter, GEN 5-33 

p command (sed) 
defined, GEN 3-111 

P command (vi) 
See also p command (vi) 
defined, GEN 3-79 

p command (vi) 
See also P command (vi) 
defined, GEN 3-81 

p escape (Mail) 
description, GEN 2-24 

p flag (make) 
defined, PG M 3-17 

p flag (sed) 
defined, GEN 3-110 

p macro (me) 
defined, GEN 5-41 

P number register (nroff/troff) 
defined, GEN 5-81 

p option (hunt) 
defined, GEN 5-149 

p option (inv) 
defined, GEN 5-148 

Index-45 



p option (troff) 
defined, GEN 5-50 

p option (uuclean) 
defined, SYS 5-137 

pa command (me) 
defined, GEN 5-44 

pac program 
4.2BSD improvement, SYS 1-18, 

1-20 
Page 

command list, GEN 5-51 
formatting the last page with a 

macro, GEN 5-77E 
printing specific, GEN 5-49 
setting margins with nroff/troff, 

GEN 5-74E 
specifying blank, GEN 5-44 
specifying new, GEN 5-23 

Page commands 
description, GEN 5-59 

Page footer 
entering in text file, GEN 5-6 
specifying, GEN 5-70 
specifying for multiple columns 

with a macro, GEN 5-75E 
specifying with troff, GEN 5-91 
varying on alternate pages, GEN 

5-19 
Page header 

entering in text file, GEN 5-6 
specifying for multiple columns 

with a macro, GEN 5-75E 
specifying formats for alternating, 

GEN 5-71 
specifying with troff, GEN 5-90 

Page heading 
specifying, GEN 5-70 
varying on alternate pages, GEN 

5-19 
Page layout 

specifying, GEN 5-23 
Page number 

setting arabic, GEN 5-44 
setting roman, GEN 5-44 
specifying, GEN 5-59, 5-91 
specifying for appendix, GEN 5-46 
specifying for chapter, GEN 5-46 

Page offset (nroff/troff) 
specifying, GEN 5-59 

Page trap (nroff/troff) 
description, GEN 5-64 

pagesize program 
printing system page size, SYS 

1-7 

Index-46 

Paging 
defined, GEN 3-13 
versus scrolling, GEN 3-56 

Paper 
formatting, GEN 5-34F 

Paragraph, GEN 5-40 
-me restrictions, GEN 5-40 
creating decorative initial capital 

with troff, GEN 5-86 
editing with vi, GEN 3-61 
entering in text file, GEN 5-5 
indenting, GEN 5-7 to 5-8 
numbering automatically, GEN 

5-31 
specifying, GEN 5-22 
specifying block format, GEN 

5-29 
specifying hanging indent format, 

GEN 5-29 
specifying hanging indent format 

with a macro, GEN 5-75E 
specifying indention, GEN 5-30 
specifying indention amount, 

GEN 5-39E 
vi definition, GEN 3-61 
writing a macro for, GEN 5-75E 

paragraph option (ex) 
description, GEN 3-99 

param.c file 
contents, SYS 5-11, 5-103 

param.h file 
See also kernel.h file 
4.2BSD improvement, SYS 5-6, 

5-13 
Parentheses (BC) 

primitive expression and, GEN 
2-51 

Parentheses (EQN) 
typesetting in proper size, GEN 

5-lOOE 
Pascal programming language 

See Berkeley Pascal programming 
language 

Passive system 
defined, SYS 5-123 

passwd 
concurrent updates to password 

file and, SYS 1-8 
Password 

entering, GEN 3-5 
Password entry program 

predictable passwords and, SYS 
4-10 

random numbers and, SYS 4-11 



Password file 
restricting users, GEN 1-31 
security and, SYS 4-8 

Password system 
history, SYS 4-7 to 4-12 

Pasting and cutting 
See m command ( ed) 

PATH variable (Bourne shell) 
description, GEN 4-11 to 4-12 

path variable (C shell) 
See also rehash command ( C 

shell) 
default value, GEN 4-40 
defined, GEN 4-40, 4-70 

Pathname 
See also Absolute pathname 
defined, GEN 2-9, 4-71 
description, GEN 4-33 

Pattern (awk) 
description, PGM 3-6 to 3-7 

Pattern space 
defined, GEN 3-106 

pc 
4.2BSD improvement, SYS 1-8 

pc command (nroff/troff) 
defined, GEN 5-70 

pc/pi 
4.2BSD improvement, SYS 1-8 

pcb.h file 
4.2BSD improvement, SYS 5-14 

pcl network interface driver 
4.2BSD improvement, SYS 1-16 

pd command (me) 
defined, GEN 5-43 

pdx debugger 
pi and, SYS 1-8 

Period 
See Dot character ( ed) 

perror function 
description, PGM 1-12 

perror library 
4.2BSD improvement, SYS 1-15 

pg flag 
collecting information for gprof, 

SYS 1-5 
pg option 

creating images for gprof, SYS 1-6 
phones database 

See also tip program 
4.2BSD improvement, SYS 1-17 

Phototypesetter 
defined, GEN 5-98 
stopping automatically to reload, 

GEN 5-49 

Phototypesetting 
See nroff/troff text processor 

PHYSP AGES parameter 
description, SYS 5-121 

pi command (nroff) 
defined, GEN 5-72 

Picture System 2 graphics device 
See ps driver 

piles program (EQN) 
description, GEN 5-100 

Pipe 
defined, GEN 1-26, 2-11, PGM 

1-14 
description, GEN 2-11, PGM 1-14 

to 1-17 
optimal size, SYS 1-28 
programs and, GEN 2-11 

pipe system call 
description, PGM 1-15 to 1-17 

Pipeline, GEN 4-4E 
combining command input/output, 

GEN 4-32 
defined, GEN 2-11, 4-~, 4-71 
description, GEN 4-32 to 4-33 
elements in, GEN 2-11 
files read from terminal and, GEN 

2-11 
pl command (nroff/troff) 

defined, GEN 5-59 
Plain data block 

defined, SYS 2-12 
pm command (nroff/troff) 

defined, GEN 5-73 
pn command (nroff/troff) 

defined, GEN 5-59 
po command (nroff/troff) 

defined, GEN 5-59 
setting left margin, GEN 5-86E 

Point size 
changing, GEN 5-38, 5-58 
defaults, GEN 5-38 
setting, GEN 5-84 

pop directory command 
See popd command (C shell) 

popd command (C shell) 
See also pushd command (C shell) 
defined, GEN 4-71 
without argument, GEN 4-49 

Port 
defined, GEN 4-71 

Port number 
algorithm for selecting, SYS 3-26 
overriding selection algorithm, 

SYS 3-26E 

Index-47 



Portable C Compiler 
description, PGM 2-37 to 2-61 

Posting tile 
defined, GEN 5-145 

Pound sign 
See Sharp character 

pp command (me) 
See also ip command (me) 
See also lp command (me) 
defined, GEN 5-40 
description, GEN 5-22 
meaning of, GEN 2-12 

pr command (C shell) 
defined, GEN 4-71 
printing files, GEN 2-7 
printing files in three columns, 

GEN 2-11 
pre command (edit) 

recovering files, GEN 3-22 
Preface 

formatting, GEN 5-34F 
Preliminary text 

See Front matter 
preserve command (edit) 

See pre command (edit) 
preserve command (ex) 

description, GEN 3-91 
preserve command (Mail) 

See also hold command (Mail) 
abbreviating, GEN 2-22 
description, GEN 2-31 
keeping mail in your system 

mailbox, GEN 2-21 
primes program 

4.2BSD improvement, SYS 1-17 
Primitive expression 

description, GEN 2-51 
Print command 

See p command 
print command (awk) 

description, PGM 3-6 
print command (edit) 

See p command (edit) 
print command (ex) 

See p command (ex) 
print command (Mail) 

See also ignore command (Mail) 
description, GEN 2-29 
ignored fields and, GEN 2-31 

Print file 
UNIX and, PGM 2-83 

print working directory command 
See pwd command ( C shell) 

Index:....48 

printcap file 
4.2BSD improvement, SYS 1-17 
creating, PGM 4-101 

printenv command (C shell) 
See also setenv command (C 

shell) 
defined, GEN 4-71 

printf function 
See also fprintf function 
output and, PGM 1-4 

printf statement (awk) 
formatting output, PGM 3-6 

printw routine 
defined, PG M 4-83 

proc.h file 
4.2BSD improvement, SYS 5-7 

Process 
See also ps command (C shell) 
See also System process 
See also User process 
defined, GEN 1-26, 4-71 
maximum active, SYS 5-121 
maximum per user, SYS 5-121 
setting maximum files for, SYS 

5-121 
space for, SYS 5-121 
stopping, GEN 2-11 
syncronizing, GEN 1-27 
terminating, GEN 1-27 

Process control 
data structure, PGM 4-6F 
description, PGM 4-5 to 4-6 

Process number 
defined, GEN 2-11 
determining, GEN 2-11 

Process stack 
setting growth increment, SYS 

5-121 
setting initial size, SYS 5-121 

Process time accounting 
summarizing, SYS 5-56 

PROFIL operator (C compiler) 
defined, PG M 2-65 

profil system call 
4.2BSD improvement, SYS 1-12 

profile file 
login and, GEN 4-6 
shell and, GEN 2-12 

Profiled system 
description, SYS 5-78 

PROG operator (C compiler) 
defined, PG M 2-64 

Program 
See also Command ( C shell) 



Program (Cont.) 
defined, GEN 3-3, 4-71 
editing with vi, GEN 3-67 
executing, GEN 1-26 
executing from another, PCM 

1-12 
maintaining with make, PCM 

3-13 to 3-21 
running simultaneously, GEN 

2-11 
running two with one command 

line, GEN 2-11 
saving output, GEN 2-11 
setting maximum executing, SYS 

5-122 
stopping, GEN 2-4, 2-11 

Programmer's manual 
See Manual 

Programming 
reading list, GEN 2-16 
tools for, GEN 2-14 to 2-15 
translating a language, GEN 2-15 

Prompt 
defined, GEN 4-71 

Prompt character 
defined, GEN 2-4 

prompt option (ex) 
description, GEN 3-99 

Protection mode 
description, PCM 1-10 

Proteon proNET ring network 
controller 

See vv network interface driver 
Protocol name 

represented by protoent structure, 
SYS 3-13, 3-14E 

protocol switch table 
See also protosw.h file 

protocols database 
4.2BSD improvement, SYS 1-17 

protosw .h file 
4.2BSD improvement, SYS 5-5 

ps command (C shell) 
See also Process 
4.2BSD improvement, SYS 1-8 
defined, GEN 4-72 
determining the process number, 

GEN 2-11 
displaying all programs running, 

GEN 2-11 
displaying unstarted background 

jobs, GEN 4-48 
ps command (troff) 

defined, GEN 5-58 

ps command (troff) (Cont.) 
setting point size, GEN 5-84 

ps driver 
4.2BSD improvement, SYS 1-16 

ps.c device driver 
4.2BSD improvement, SYS 5-12 

PSI variable 
defined, GEN 4-12 

PS2 variable 
defined, GEN 4-12 

Pseudo device 
specifying, SYS 5-82 

Pseudo terminal 
creating, SYS 5-48E 
description, SYS 3-24 
remote login sessions and, SYS 

3-24 
Pseudo-font 

description, GEN 5-37 
restriction, GEN 5-37 

psignal library 
4.2BSD improvement, SYS 1-15 

pstat program 
4.2BSD improvement, SYS 1-20 

ptx program 
defined, GEN 2-13 

pty driver 
4.2BSD improvement, SYS 1-16 

pu command (ex) 
description, GEN 3-91 

Publication list 
indexing, GEN 5-143 to 5-155 
updating, GEN 5-155 to 5-162 

pup_cksum.c file 
4.2BSD improvement, SYS 5-13 

purchar function 
output and, PCM 1-4 

push directory command 
See pushd command (C shell) 

push directory command (C shell) 
See pushd command 

pushd command (C shell) 
See also cd command (C shell) 
See also popd command (C shell) 
defined, GEN 4-70 
saving name of previous directory, 

GEN 4-49 
without argument, GEN 4-49 

put command (ex) 
See pu command (ex) 

putc macro 
See also fflush function 
defined, PCM l-6 

Index-49 



pwd command (C shell) 
See also dirs command (C shell) 
4.2BSD improvement, SYS 1-8 
defined, GEN 4-72 
print your directory name, GEN 

2-9 
working directory pathname and, 

GEN 4-48E 
PX macro 

description, GEN 5-18 

Q 

Q command 
quitting ed, GEN 2-6 

q command (DC) 
descri pton, GEN 2-58 

q command (ed) 
defined, GEN 3-34 
using, GEN 3-26 

q command (edit) 
exiting without saving edits, GEN 

3-13 
using, GEN 3-8 

q command (ex) 
See also wq command (ex) 
description, GEN 3-91 

q command (me) 
defined, GEN 5-42, 5-44 
entering, GEN 5-25 
specifying quoted text, GEN 5-38 

q command (sed) 
defined, GEN 3-114 

Q command (vi) 
defined, GEN 3-79 

q flag (make) 
defined, PGM 3-17 

q option (nroff/troff) 
defined, GEN 5-49 

qsort library 
4.2BSD improvement, SYS 1-15 

Question mark character (C shell) 
description, GEN 4-34 

Question mark character (DC) 
description, GEN 2-59 
pattern matching and, GEN 2-8 

Question mark character (ed) 
context search and, GEN 3-43 

qu\et option (Mail) 
See also noheader option 
defined, GEN 2~35 

Quit command (ed) 
See q command ( ed) 

lndex-50 

quit command (edit) 
See q command (edit) 

quit command (ex) 
See q command (ex) 

quit command (Mail) 
abbreviating, GEN 2-22 
description, GEN 2-31 
saving typed mail, GEN 2-22 

Quit signal 
defined, GEN 4-72 
terminating a program, GEN 4-37 

quit statement (BC) 
description, GEN 2-55 

quot program 
4.2BSD improvement, SYS 1-20 

Quota 
exceeding, GEN 3-22 

Quota file 
comparing with allocated disk 

space, SYS 2-4 
description, SYS 2-5 

Quota system 
See Disk quota system 

quota system call 
4.2BSD improvement, SYS 1-12 

quota.h file 
4.2BSD improvement, SYS 5-5 

quota_kern.c file 
contents, SYS 5-9 

quota_subr .c file 
contents, SYS 5-9 

quota_sys.c file 
contents, SYS 5-9 

quota_ufs.c file 
contents, SYS 5-9 

quotacheck program 
4.2BSD improvement, SYS 1-20 

quotaon program 
See also quotaoff 
4.2BSD improvement, SYS 1-20 

Quotation 
defined, GEN 4-72 
setting apart, GEN 5-25 

Quotation marks (C shell) 
using metacharacters in command 

arguments, GEN 4-35 
Quotation marks (me) 

making compatible for printers 
and typesetters, GEN 5-38 

translating for typesetter, GEN 
5-38 

Quotation marks (ms) 
translating for typesetter, GEN 

5-19 



Quotation marks (nroff) 
specifying font, GEN 5-36 

Quotation marks (troff) 
translating, GEN 5-86 

Quoted string statement (BC) 
forming, GEN 2-54 

R 

r command ( ed) 
defined, GEN 3-34 
using, GEN 3-27 
without line address, GEN 3-49 

r command (edit) 
description, GEN 3-22 

r command (ex) 
description, GEN 3-91 

r command (me) 
defined, GEN 5-44 
specifying roman font, GEN 5-36 

R command (ms) 
restoring regular font, GEN 5-8 

r command (sed), GEN 3-112E 
defined, GEN 3-112 

R command (vi) 
See also r command (vi) 
defined, GEN 3-79 

r command (vi) 
See also R command (vi) 
L.efind, GEN 3-81 

r er~ape (Mail) 
description, GEN 2-24 

r flag (cp) 
file system tree and, SYS 1-5 

r flag (Mail) 
defined, GEN 2-36 

r flag (make) 
defined, PGM 3-17 

r modifier ( C shell) 
extracting filename root, GEN 

4-57E 
r option (edit) 

recovering files, GEN 3-23 
r option (nroff/troff) 

defined, GEN 5-49 
r option (uucp) 

defined, SYS 5-132 
r option (uux) 

description, SYS 5-133 
RA60 disk drive 

See uda driver 
RASO disk drive 

See uda driver 

RA81 disk drive 
See uda driver 

Rand MH system 
mail program and, SYS 1-7 

random library 
4.2BSD improvement, SYS 1-15 

Ratfor language 
See also EFL programming 

language 
See also M4 macro processor 
C and, GEN 2-15 
description, PGM 2-111 to 2-122 

Raw device 
description, SYS 5-20 

raw routine 
defined, PG M 4-85 

Raw socket 
See also Datagram socket 
defined, SYS 3-6 

rb command (me) 
defined, GEN 5-44 

RC command (me) 
defined, GEN 5-46 

re program 
4.2BSD improvement, SYS 1-20 

rcexpr routine 
arguments, PGM 2-68 

rep program 
cp support and, SYS 1-8 

rd command (nroff/troff) 
defined, GEN 5-72 

rdump program 
See also rmt program 
4.2BSD improvement, SYS 1-18, 

1-20 
re command (me) 

defined, GEN 5-45 
Read command (ed) 

See r command ( ed) 
read command (edit) 

See r command (edit) 
read command (ex) 

See r command (ex) 
read function 

description, PGM 1-9 
Read only mode (ex) 

description, GEN 3-85 
read system call 

4.2BSD improvement, SYS 1-12 
Read-ahead 

description, GEN 2-4 
readlink system call 

4.2BSD improvement, SYS 1-12 

Index-51 



readv system call 
4.2BSD improvement, SYS 1-12 

record option (Mail) 
defined, GEN 2-35 

recover command (edit) 
description, GEN 3-22 

recover command (ex) 
description, GEN 3-92 

recv system call 
4.2BSD improvement, SYS 1-12 
previewing data, SYS 3-10 
transferring data, SYS 3-9E 

recvfrom system call 
4.2BSD improvement, SYS 1-12 
receiving data, SYS 3-lOE 

recvmsg system call 
See also sendmsg system call 
4.2BSD improvement, SYS 1-12 

Redirection 
defined, GEN 4-72 

redraw option (ex) 
description, GEN 3-99 

refer program 
See also Refer system .if ref 
output, GEN 5-152E 
placing a reference in a paper, 

GEN 5-150 
Refer system 

See also addbib utility 
See also Indexing 
4.2BSD improvement, SYS 1-8 
description, GEN 5-133 to 5-142 
formatting bibliographic citations, 

GEN 2-13 
Reference 

formatting, GEN 5-151 
overriding numbering, GEN 5-155 
private file of, GEN 5-155 

Reference file 
defined, GEN 5-151 

refresh routine 
defined, PGM 4-83 

Register 
changing for text formatting, GEN 

5-16 
used by -ms 

reference list, GEN 5-11 
regtab table 

defined, PG M 2-68 
Regular expression (ex) 

defined, GEN 3-96 
description, GEN 3-96 to 3-97 
reference list, GEN 3-96 

Index-52 

rehash command (C shell) 
See also path variable 
adding commands to directory 

and, GEN 4-40 
defined, GEN 4-72 
required for current path, GEN 

4-51 
Reiser, J.F., & Henry. R.R. 

Berkeley VAX/UNIX Assembler 
Reference Manual, PGM 4-53 
to 4-65 

Reiser, J.F., & London, T.B. 
regenerating system software, SYS 

5-117 to 5-122 
setting up UNIX/32V Vl.O, SYS 

5-107 to 5-115 
Relational operator 

description, GEN 2-53 
form, GEN 2-47 

Relative pathname 
See also Absolute pathname 
defined, GEN 4-72 

Reliably delivered message socket 
(unsupported) 

defined, SYS 3-6 
Remainder 

DC and, GEN 2-61 
remap option (ex) 

description, GEN 3-99 
remote database 

See also tip program 
4.2BSD improvement, SYS 1-17 

Remote login program, SYS 3-15F 
Remote login server program 

main loop, SYS 3-18F 
pseudo terminals and, SYS 3-24 

Remote. system 
calling, SYS 5-125 

rename system call 
4.2BSD improvement, SYS 1-12 
description, SYS 1-35 

renice program 
4.2BSD improvement, SYS 1-20 

reorder routine 
description, PGM 2-76 to 2-77 

repeat command (C shell) 
defined, GEN 4-72 
repeating a command, GEN 4-51 

Reply command (Mail) 
See also reply command (Mail) 
abbreviating, GEN 2-20 
answering mail, GEN 2-19 
answering the sender only, GEN 

2-20 



Reply command (Mail) (Cont.) 
definition, GEN 2-29 

reply command (Mail) 
See also Reply command (Mail) 
description, GEN 2-32 

report option (ex) 
description, GEN 3-100 

repquota program 
4.2BSD improvement, SYS 1-20 

Request (nroff) 
See Command (nroff) 

Reserved word 
reference list, GEN 4-27 

reset command 
include file and, SYS 1-8 

resource.h file 
4.2BSD improvement, SYS 5-5 

restart command (lpc) 
description, PG M 4-103 

restor program 
See restore program 

restore program 
See also rrestore 
4.2BSD improvement, SYS 1-18 

restore server program 
See also tar program 

RETRN operator (C compiler) 
defined, PGM 2-65 

RETURN key 
commands and, GEN 2-4 
description, GEN 3-55 
moving the cursor in vi, GEN 

3-57 
return statement (BC) 

form of, GEN 2-46 
forming, GEN 2-55 

rew command (ex) 
description, GEN 3-92 

rewind command (ex) 
See rew command (ex) 

rexecd server program 
4.2BSD improvement, SYS 1-20 

rhosts file 
description, SYS 5-49 

Ritchie, D.M. 
C Programming Language 

Reference Manual, The, PGM 
2-5 to 2-35 

1/0 system, PGM 4-67 to 4-73 
standard 1/0 library, PGM 1-21 to 

1-24 
system security, SYS 4-3 to 4-5 
tour through C compiler, PGM 

2-63 to 2-77 

Ritchie, D.M. (Cont.) 
UNIX Assembler Reference 

Manual, GEN 6-53 to 6-64 
Ritchie, D.M., & Kernighan, B.W. 

M4 macro processor, PGM 2-393 
to 2-398 

programming UNIX, PG M 1-3 to 
1-24 

Ritchie, D.M., & Thompson, K. 
implementation of file system and 

user command interface, GEN 
1-19 to 1-34 

rk.c device driver 
4.2BSD improvement, SYS 5-12 

RK07 disk 
See va driver 

rl option (uucico) 
defined, SYS 5-135 

rl.c device driver 
4.2BSD improvement, SYS 5-12 

RLll controller 
See rl.c device driver 

RLABEL operator (C compiler) 
defined, PGM 2-65 

rlogin server program 
.login file and, SYS 1-7 
cu program and, SYS 1-8 
description, SYS 1-8 

rlogind server program 
4.2BSD improvement, SYS 1-20 

rm command (nroff/troff) 
defined, GEN 5-64 

rm command (shell) 
deleting files, GEN 2-7 
recover command (edit) and, GEN 

3-22 
removing a file, GEN 3-48E 

rmdir command 
4.2BSD improvement, SYS 1-8 

rmdir system call 
4.2BSD improvement, SYS 1-12 

rmt program 
4.2BSD improvement, SYS 1-20 

rn command (nroff/troff) 
defined, GEN 5-64 

RNAME operator (C compiler) 
defined, PGM 2-65 

ro command (me) 
defined, GEN 5-44 

roffbib program 
bibliographic databases and, SYS 

1-8 
rogue game 

4.2BSD improvement, SYS 1-17 

Index-53 



rogue game (Cont.) 
command reference list, GEN 

6-19 to 6-21 
displaying top players, GEN 6-25 
fighting, GEN 6-21 
objects you can find, GEN 6-21 
option reference list, GEN 6-24 
playing, GEN 6-17 to 6-25 
rooms, GEN 6-21 
sample screen, GEN 6-18F 
scoring, GEN 6-24 
screen layout, GEN 6-18 to 6-19 
screen symbol reference list, GEN 

6-19 
setting options, GEN 6-23 

ROGUEOPTS variable 
using, GEN 6-23 

Roman number 
setting page number, GEN 5-44 
specifying for front matter, GEN 

5-33 
Root directory 

defined 
description, GEN 1-21 

Root file system 
block size, SYS 5-40 
dump and, SYS 5-54 
rebuilding, SYS 5-32 
restoring, SYS 5-26 

route program 
4.2BSD improvement, SYS 1-20 
description, SYS 5-51 

routed server program 
4.2BSD improvement, SYS 1-20 
description, SYS 5-51 

RP command (ms) 
specifying cover sheet, GEN 5-5 

RP06 disk 
bad block forwarding support, 

SYS 1-18 
rr command (nroff/troff) 

defined, GEN 5-66 
rrestore program 

See also rmt program 
4.2BSD improvement, SYS 1-20 

RS command (ms) 
specifying indention level, GEN 

5-7 
rs command (nroff/troff) 

defined, GEN 5-62 
RS variable (awk) 

defined, PGM 3-6 
rsh command 

See also rshd server program 

Index-54 

rsh server program 
executing remote commands, SYS 

1-8 
rshd server program 

4.2BSD improvement, SYS 1-20 
rsp.h file 

4.2BSD improvement, SYS 5-13 
rt command (nroff/troff) 

See also mk command 
(nroff/troff); sp command 
(nroff/troff) 

defined, GEN 5-60 
RUBOUT character 

ignoring while sending mail, GEN 
2-34 

RUBOUT key 
See DELETE key 

Ruling 
specifying, GEN 5-88 
specifying for figure, GEN 5-45 
specifying in text, GEN 5-26 
with tab character, GEN 5-87E 

Ruling (nroff/troff) 
outside text margin, GEN 5-72 

Running foot 
See Page footer 

Running head 
See Page header 

Runtime routine ( C) 
handling network addresses and 

values, SYS 3-15T 
ruptime program 

See also rwhod server program 
displaying status for cluster, SYS 

1-8 
output, SYS 3-20E 

rwho program 
See also rwhod server program 
displaying users on clusters, SYS 

1-8 
rwho server program 

description, SYS 3-20 to 3-22 
simplified form, SYS 3-21F 

rwhod server program 
4.2BSD improvement, SYS 1-21 

rx driver 
4.2BSD improvement, SYS 1-16 

rx.c device driver 
4.2BSD improvement, SYS 5-12 

RX02 floppy disk unit 
See rx driver 

rxl flag (me) 
setting 12 pitch, GEN 5-39 



RX211 floppy disk controller 
See rx.c device driver 

rxformat program 
4.2BSD improvement, SYS 1-21 

s 
s command (DC) 

affecting register content, GEN 
2-62 

descripton, GEN 2-58 
destructive, GEN 2-63 
programming DC, GEN 2-62 

s command ( ed) 
ampersand character and, GEN 

3-34 
breaking lines, GEN 3-42 
changing all occurrences, GEN 

3-30 
changing every occurrence, GEN 

3-38E 
defined, GEN 3-34 
deleting text, GEN 3-30 
delimiters, GEN 3-30 
description, GEN 3-37 to 3-38 
g command and, GEN 3-46E 
g command restriction and, GEN 

3-47 
rearranging a line, GEN 3-43 
undoing the last substitution, 

GEN 3-38 
using, GEN 3-29 

s command (edit) 
replacing text, GEN 3-11 
uppercase letters and, GEN 3-19 

s command (ex) 
See also & command (ex) 
description, GEN 3-92 

S command (vi) 
defined, GEN 3-79 

s command (vi) 
defined, GEN 3-81 

s escape (Mail) 
description, GEN 2-25 

s flag (In) 
creating symbolic links, SYS 1-7 

s flag (Mail) 
defined, GEN 2-36 

s flag (make) 
defined, PG M 3-17 

s flag (mkey) 
ignoring labels, GEN 5-147 

s macro (me) 
defined, GEN 5-43 

s option (nroff/troff) 
defined, GEN 5-49 

s option ( uucico) 
defined, SYS 5-135 

s option (uucp) 
defined, SYS 5-132 

s option (uulog) 
defined, SYS 5-137 

sail game 
4.2BSD improvement, SYS 1-17 

save command (Mail) 
See also write command (Mail) 
abbreviating, GEN 2-32 
system mailbox and, GEN 2-23 

SAVE operator (C compiler) 
defined, PGM 2-65 

savehist variable 
saving history across terminal 

sessions, SYS 1-5 
sa vetty routine 

defined, PG M 4-88 
sc command (me) 

defined, GEN 5-4 7 
Scale 

defined, GEN 2-45, 2-51 
increasing value, GEN 2-45E 
limits, GEN 2-45 
printing current value, GEN 

2-45E 
rules for, GEN 2-45 

Scale factor 
defined, GEN 2-59 

Scale indicator 
attaching to numbers for troff, 

GEN 5-92 
Scale register 

description, GEN 2-60 
Scaling 

BC language and, GEN 2-45 
scanf function 

See also fscanf function 
input and, PGM 1-4 

scanw routine 
defined, PGM 4-85 

SCCS 
introduction, PGM 3-23 to 3-37 

Schmidt, E., & Lesk, M.E. 
Lex program generator, PGM 

3-113 to 3-125 
Scratch character 

creating a scratch file, GEN 4-31 
Scratch file 

creating, GEN 4-31 
defined, GEN 4-72 

Index-55 



Scratch file (Cont.) 
Fortran and, PGM 2-83 

Screen (Screen package) 
defined, PGM 4-75 
updating, PGM 4-92E 
updating, PGM 4-76 to 4-77 

Screen (vi) 
breaking lines at right margin, 

GEN 3-67 
controlling window size, GEN 

3-65 
refreshing, GEN 3-64 

Screen editor 
invoking from Mail, GEN 2-24 

screen option (Mail) 
defined, GEN 2-35 

Screen package 
description, PGM 4-75 to 4-98 
input functions, PGM 4-78 

reference list, PGM 4-84 to 4-85 
miscellaneous functions 

reference list, PGM 4-85 to 4-88 
output functions, PGM 4-78 

reference list, PGM 4-80 to 4-84 
prerequisites, PGM 4-75 
starting, PGM 4-77 
terminal information and, PGM 

4-79 
Script 

See also Script file 
script 

4.2BSD improvement, SYS 1-8 
Script file, GEN 4-55E 

See also Login shell 
See also make command (C shell) 
break statement and, GEN 4-58 
commands useful to writers of, 

GEN 4-53 
comments in, GEN 4-59 
creating, GEN 2-10, 3-52E 
defined, GEN 3-51, 4-53, 4-72 
interrupts and, GEN 4-59 
invoking, GEN 4-53 
making executable, GEN 4-53 
preventing variable substitution 

by the shell, GEN 4-59 
shell input and, GEN 4-58 

Script.out file 
creating, GEN 2-11 

scroll routine 
defined, PGM 4-88 

Scrolling 
versus paging, GEN 3-56 

Index-56 

scrollok routine 
defined, PG M 4-87 

sdb symbolic debugger 
See also dbx symbolic debugger 
accessing symbol information, 

SYS 1-5 
locating, SYS 1-8 
support, SYS 1-6 

search command (edit) 
See Context search (edit) 

Search path 
See PATH variable 

Section 
editing with vi, GEN 3-61 
indenting, GEN 5-32E 
vi definition, GEN 3-62 

Section head 
coordinating numbers with 

chapter numbers, GEN 5-41 
entering in text file, GEN 5-6 
indenting, GEN 5-7E 
numbering automatically, GEN 

5-31 to 5-32, 5-40 to 5-41 
numbering automatically with a 

macro, GEN 5-75E 
specifying beginning number, 

GEN 5-32E 
specifying unnumbered, GEN 

5-32E 
text formatting commands for, 

GEN 5-14E 
sections option (ex) 

description, GEN 3-100 
Security 

dial-up network and, SYS 5-125 
UNIX and, SYS 4-3 to 4-5 
uucp system and, SYS 5-138 

sed stream editor 
address types, GEN 3-107 to 

3-108 
command line format, GEN 

3-105E 
defined, GEN 2-13, 3-52 
description, GEN 3-105 to 3-114 
ed and, GEN 3-105 
functions, GEN 3-108 to 3-114 
operation, GEN 3-105 to 3-106 
taking commands from a file, 

GEN 3-52E 
uses, GEN 3-105 

seek function 
See also lseek 
description, PGM 1-12 



select system call 
4.2BSD improvement, SYS 1-12 
multiplexing I/0 requests, SYS 

3-llE 
Semicolon character (ed) 

compared with comma, GEN 3-45 
setting dot, GEN 3-45 to 3-46 

send system call 
4.2BSD improvement, SYS 1-12 
transferring data, SYS 3-9E 

sendbug program 
See also bugfiler program 
submitting 4.2BSD bug reports, 

SYS 1-8 
sendmail 

installation and operation guide, 
SYS 2-27 to 2-60 

Sendmail Installation and Operation 
Guide, SYS 2-27 to 2-60 

See also sendmail 
sendmail option (Mail) 

defined, GEN 2-35 
sendmail program 

See also mailaddr 
See also sendmail option 
See also syslog server program 
4.2BSD improvement, SYS 1-4, 

1-21 
implementing aliases, GEN 2-21 

sendmsg system call 
See also recvmsg system call 
4.2BSD improvement, SYS 1-12 

sendto primitive 
sending data, SYS 3-lOE 

sendto system call 
4.2BSD improvement, SYS 1-12 

Sentence 
editing with vi, GEN 3-61 
vi definition, GEN 3-61 

Sequenced packet socket 
(unsupported) 

defined, SYS 3-6 
Server process 

See also Client process 
description, SYS 3-17 

Service name 
represented by the servent 

structure, SYS 3-14 
Service process 

See also Service server 
Service server 

See also Xerox Courier protocol 
description, SYS 3-17 

services database 
4.2BSD improvement, SYS 1-17 

set command ( C shell) 
C shell variables and, GEN 4-40E 
defined, GEN 4-72 

set command (ex) 
description, GEN 3-92 

set command (Mail) 
See also unset command (Mail) 
forms of, GEN 2-20 
options and, GEN 2-32 
restriction, GEN 2-21 

Set terminal options command 
See stty command (C shell) 

Set-GID bit 
description, SYS 4-4 
security and, SYS 4-5 

Set-UID bit 
description, SYS 4-4 
security and, SYS 4-5 

setbuf library routine 
See also setbuffer library routine 

setbuffer library routine 
See also setbuf library routine 
4.2BSD improvement, SYS 1-14 

setenv command (C shell) 
See also printenv command (C 

shell) 
defined, GEN 4-73 
setting variables in environment, 

GEN 4-51E 
setgid system call 

See setregid system call 
Sethi-Ullman algorithm 

C compiler and, PGM 2-69 to 
2-70 

setifaddr program 
4.2BSD improvement, SYS 1-21 

setlinebuf library routine 
4.2BSD improvement, SYS 1-14 

setquota system call 
4.2BSD improvement, SYS 1-12 

SETREG operator (C compiler) 
defined, PG M 2-65 

setregid system call 
4.2BSD improvement, SYS 1-12 

setreuid system call 
4.2BSD improvement, SYS 1-12 

setterm routine 
defined, PGM 4-88 

setuid system call 
See setreuid system call 

SFCON operator (C compiler) 
defined, PGM 2-66 

Index-57 



SG command (ms) 
specifying signature line, GEN 5-9 

sh command (ex) 
description, GEN 3-92 

sh command (me) 
See also uh command (me) 
defined, GEN 5-40 
numbering section heads, GEN 

5-31 to 5-32 
SH command (ms) 

specifying unnumbered section 
head, GEN 5-6 

sh program 
See Bourne shell 

Shared lock 
multiple processes and, SYS 1-3 

Sharp character 
printing, GEN 3-39 

Sharp character (#) 
entering in text, GEN 2-4 
erasing last character typed, GEN 

2-4 
shell comments and, GEN 4-57 

Shell 
See also C shell 
See Bourne shell 
defined, GEN 4-73 
description, GEN 1-27 to 1-31 
implementing, GEN 1-29 

shell command (ex) 
See sh command (ex) 

shell command (Mail) 
See also SHELL option 
description, GEN 2-32 
executing Shell command from 

Mail, GEN 2-22 
shell option (ex) 

description, GEN 3-100 
SHELL option (Mail) 

defined, GEN 2-33 
setting, GEN 2-32 
specifying, GEN 2-20 

Shell procedure 
debugging, GEN 4-15 
defined, GEN 4-7 
description, GEN 4-7 to 4-16 

Shell program 
definition, GEN 2-11 
description, GEN 2-11 to 2-12 
escaping to from Mail, GEN 2-25 
profile file and, GEN 2-12 
programming aids, GEN 2-14 
as programming language, GEN 

2-14 

Index-58 

Shell program (Cont.) 
reading a file for commands, GEN 

2-12 
specifying for Mail, GEN 2-20 

Shell script 
See Script file 

shiftwidth option (ex) 
description, GEN 3-100 

Shoens, K., & Leres, C. 
Mail Reference Manual, GEN 

2-17 to 2-41 
showmatch option (ex) 

description, GEN 3-100 
showmatch option (vi) 

lisp and, GEN 3-68 
shutdown system call 

4.2BSD improvement, SYS 1-12 
data pending and, SYS 3-lOE 

sigblock system call 
4.2BSD improvement, SYS 1-12 

SIGCHLD signal 
constructing server processes, SYS 

3-27 
reaping child processes, SYS 

3-28E 
SIGIO signal 

4.2BSD improvement, SYS 1-13, 
5-7 

interrupt-drive 1/0 and, SYS 3-27 
Signal 

defined, GEN 4-73 
description, PGM 1-17 to 1-20 
handling methods, GEN 4-22 

Signal facilities 
4.2BSD improvement, SYS 1-3 

signal function 
descripton, PGM 1-17 to 1-20 

signal.h file 
4.2BSD improvement, SYS 5-7 
signals and, PG M 1-17 

Signataure line 
specifying, GEN 5-9 

sigpause system call 
4.2BSD improvement, SYS 1-12 

SIGPROF signal 
4.2BSD improvement, SYS 1-13, 

5-7 
sigsetmask system call 

4.2BSD improvement, SYS 1-12 
sigstack system call 

4.2BSD improvement, SYS 1-12 
sigsys system call 

See signal facilities 



SIGTINT signal 
See SIGIO signal 

SIGURG signal 
4.2BSD improvement, SYS 1-13, 

5-7 
out of band data and, SYS 3-27 

sigvec system call 
4.2BSD improvement, SYS 1-13 

SIGVTALRM signal 
4.2BSD improvement, SYS 1-13, 

5-7 
sinclude command (M4) 

description, PGM 2-396 
SINCR parameter 

description, SYS 5-121 
Singles pacing 

specifying, GEN 5-23 
size keyword (EQN) 

changing point size, GEN 5-100 
sk command (me) 

defined, GEN 5-44 
Sklower, K.L., & others 

Franz Lisp Manual, The, PGM 
2-211 to 2-358 

Slash 
See Backslash 

Slow terminal 
editing on, GEN 3-64 
vi and, GEN 3-74 

slowopen option (ex) 
description, GEN 3-100 

SM command (ms) 
decreasing type size, GEN 5-8 

SMAPSIZ parameter 
description, SYS 5-122 

SMTP 
See DARPA Simple Mail Transfer 

Protocol 
SNAME operator (C compiler) 

defined, PGM 2-65 
so command (ex) 

See so command (ex) 
description, GEN 3-92 

so command (nroff/troff) 
defined, GEN 5-72 
interpolating file name, GEN 5-81 

SO_DEBUG option 
network and, SYS 5-57 

Socket 
binding, SYS 3-7 
creating, SYS 3-7 
description, SYS 3-6 to 3-11 
discarding, SYS 3-10, 3-lOE 
naming, SYS 3-6 

Socket (Cont.) 
optimal size, SYS 1-28 
process group and, SYS 3-23 
types of, SYS 3-6 

Socket name 
binding to UNIX domain socket, 

SYS 3-8E 
description, SYS 3-7 

Socket system call 
creating a socket, SYS 3-7E 

socket system call 
4.2BSD improvement, SYS 1-13 
failure, SYS 3-7 

socket.h file 
4.2BSD improvement, SYS 5-5 

socketpair system call 
4.2BSD improvement, SYS 1-13 

socketvar .h file 
4.2BSD improvement, SYS 5-5 

Soft limit 
defined, SYS 2-3 

Software maintenance 
using network for, SYS 5-127 

SOH 
See Leader character (nroff/troff) 

sort program 
defined, GEN 2-13, 4-73 
specifying numeric sort, GEN 

4-32E 
sortbib command 

sorting bibliographic databases 
and, SYS 1-9 

Source Code Control System 
See SCCS 

source command 
description, GEN 2-32 

source command (C shell) 
defined, GEN 4-73 
effecting changes to .chshrc 

immediately, GEN 4-51 
Source file 

locating 
reference list, SYS 5-117 

Source management system 
defined, PGM 3-23 

sp command (me) 
See also bl command (me) 
entering, GEN 5-23 

sp command (nroff/troff) 
defined, GEN 5-62 
setting, GEN 5-84 

Space character 
edit and, GEN 3-7 

Index-59 



Special character 
See Metacharacters 
searching, GEN 3-21 

Spell 
defined, GEN 2-13 
detecting spelling errors, GEN 

2-13 
sprintf function 

See also fprintf function 
description, PGM 1-8 

sprintf function (awk) 
defined, PGM 3-8 

sptab table 
defined, PGM 2-68 

SQFILE 
description, SYS 5-142 

sqrt function (awk) 
defined, PGM 3-8 

sqrt keyword, GEN 2-44E 
defined, GEN 2-51 

sqrt operator (EQN) 
creating square roots, GEN 5-100 

Square root 
creating with EQN, GEN 5-100 
DC and, GEN 2-61 

Square root (BC), GEN 2-44 
ss command (troff) 

defined, GEN 5-58 
sscanf function 

description, PGM 1-8 
SSIZE parameter 

description, SYS 5-121 
SSPACE operator (C compiler) 

defined, PGM 2-64 
Stack command (DC) 

description, GEN 2-62 
Standalone 1/0 library 

4.2BSD improvement, SYS 5-15 
Standard error output file 

description, PGM 1-6 
Standard 1/0 library 

call formats, PGM 1-21to1-24 
defined, PGM 1-5 
description, PGM 1-5 to 1-8, 1-21 

to 1-24 
Standard input 

See Input 
typing form letters or text with 

nroff/troff, GEN 5-72 
Standard input file 

description, PGM 1-6 
Standard output 

See Output 

lndex-60 

Standard output file 
description, PGM 1-6 

standout routine 
defined, PGM 4-84 

Star 
See Asterisk charader 

start command (lpc) 
description, PGM 4-103 

Startup file 
running, GEN 2-12 

stat system call 
4.2BSD improvement, SYS 1-13 

stat.h file 
4.2BSD improvement, SYS 5-7 

Statement (as) 
description, GEN 6-55 to 6-56 

Statement (BC) 
See also specific statements 
description, GEN 2-54 to 2-55 
typing several on one line, GEN 

2-48 
Status 

defined, GEN 4-73 
status command (mt) 

showing state of tape drive, SYS 
1-7 

stderr file pointer 
description, PGM 1-6 
error handling and, PG M 1-7 

stdin file pointer 
description, PGM 1-6 

stdio library 
4.2BSD improvement, SYS 1-14 

stdout file pointer 
description, PGM 1-6 

stop command (C shell) 
background jobs and, GEN 4-46E 
defined, GEN 4-73 

stop command (ex) 
Berkeley TTY driver and, GEN 

3-102 
description, GEN 3-93 

stop command (lpc) 
description, PGM 4-103 

Stopped message 
suspending jobs and, GEN 4-46 

Storage class 
description, GEN 2-53 

store command (DC) 
Sees command (DC) 

Stream socket 
See also Datagram socket 
creating in Internet domain, SYS 

3-7E 



Stream socket (Cont.) 
defined, SYS 3-6 

String (C shell) 
defined, GEN 4-73 

String (nroff/troff) 
defined, GEN 5-62 
description, GEN 5-62 to 5-65 

String statement (as) 
defined, GEN 6-56 

strip 
4.2BSD improvement, SYS 1-9 

STST file 
description, SYS 5-143 

stterm routine 
variables set by, PGM 4-89T to 

4-90T 
stty command 

DEC standard values and, SYS 
1-9 

stty command (C shell) 
background jobs and, GEN 4-48 
defined, GEN 4-73 

Style program 
See also Diction program 
description, GEN 5-163 to 5-177 

SU 

4.2BSD improvement and, SYS 
1-9 

sub keyword (EQN) 
specifying subscripts, GEN 5-99 

subr_mcount.c file 
contents, SYS 5-9 

subr_prf.c file 
contents, SYS 5-9 

subr_rmap.c file 
contents, SYS 5-9 

subr_xxx.c file 
contents, SYS 5-9 

Subscript 
specifying, GEN 5-4 7 

Subscript (EQN) 
specifying, GEN 5-99 

Subscript (nroff/troff) 
specifying, GEN 5-68 

Subscript (troff) 
specifying, GEN 5-87E 

Subscripted variable 
defined, GEN 2-46 to 2-4 7 

Substitute command 
See s command 

substitute command (edit) 
See s command (edit) 

substitute command (ex) 
See s command (ex) 

substitute command (sed), GEN 
3-lllE 

description, GEN 3-110 to 3-111 
special characters and, GEN 

3-110 
Substitution 

See also Expansion 
defined, GEN 4-73 

substr command (M4) 
description, PG M 2-397 

substr function (awk) 
defined, PG M 3-8 

Subtraction 
DC and, GEN 2-60 

subwin routine 
defined, PGM 4-87 

Suffix list (make), PGM 3-17 
description, PGM 3-21 

Summary information 
contents, SYS 2-8 

sup keyword (EQN) 
specifying superscripts, GEN 5-99 

Super user 
security and, SYS 4-4 

Super-block 
description, SYS 2-8 

Superscript 
specifying, GEN 5-4 7 

Superscript (EQN) 
specifying, GEN 5-99 

Superscript (nroff/troff) 
specifying, GEN 5-68 

Superscript (troff) 
specifying, GEN 5-87E 

Suspended job 
defined, GEN 4-73 
description, GEN 4-36 

sv command (me) 
specifying blank lines, GEN 5-44 

sv command (nroff/troff) 
defined, GEN 5-62 

Swap space configuration 
4.2BSD improvement, SYS 1-4 

swapgeneric.c file 
4.2BSD improvement, SYS 5-14 

swapon system call 
4.2BSD improvement, SYS 1-13 

SWIT operator (C compiler) 
defined, PG M 2-65 

switch command (C shell) 
defined, GEN 4-73 
exiting from, GEN 4-58 
forms of, GEN 4-58 

Index-61 



sx command (me) 
defined, GEN 5-41 

Symbolic link 
description, SYS 1-3, 1-34 

Symbolic link data block 
defined, SYS 2-12 

SYMDEF operator (C compiler) 
defined, PG M 2-64 

symlink system call 
4.2BSD improvement, SYS 1-13 

Symmetric protocol 
defined, SYS 3-17 

sys directory 
file prefixes, SYS 5-8T 

sys_errno 
printing, PGM 1-12 

sys_generic.c file 
contents, SYS 5-9 

sys_inode.c file 
contents, SYS 5-9 

sys_machdep.c file 
4.2BSD improvement, SYS 5-13 

sys_process.c file 
contents, SYS 5-9 

sys_socket.c file 
contents, SYS 5-9 

syscmd command (M4) 
description, PGM 2-396 

sysline program 
maintaining terminal status, SYS 

1-9 
syslog server program 

4.2BSD improvement, SYS 1-21 
System function 

description, PGM 1-12 
System identifier 

defined, SYS 5-74 
System mailbox file 

commands for folders and, GEN 
2-23 

hold option and, GEN 2-32 
incoming mail and, GEN 2-17 
mbox and, GEN 2-20 
storing mail, GEN 2-20, 2-21 

System management 
best reference, SYS 

System process 
defined, PG M 4-5 

System time 
4.2BSD improvement, SYS 1-4 

System-wide file 
defined, GEN 2-21 

Systems Industries 9700 tape drive 
See ut.c device driver 

Index-62 

systm.h file 
See also kernel.h file 
4.2BSD improvement, SYS 5-7 

sz command (me) 

T 

changing point size, GEN 5-38W 
defined, GEN 5-44 

t command ( ed) 
compared with m command, GEN 

3-51 
creating a series of variable lines, 

GEN 3-51 
t command (ex) 

See copy command (ex) 
t command (sed) 

defined, GEN 3-114 
T command (vi) 

defined, GEN 3-79 
t command (vi) 

defined, GEN 3-81 
t escape (Mail) 

description, GEN 2-25 
T flag (Mail) 

defined, GEN 2-36 
t flag (make) 

defined, PGM 3-17 
T option (hunt) 

defined, GEN 5-149 
t option (hunt) 

defined, GEN 5-149 
T option (nroff) 

defined, GEN 5-50 
t option (troff) 

defined, GEN 5-50 
ta command (nroff/troff) 

defined, GEN 5-66 
Tab 

resetting, GEN 5-45 
setting multiple, GEN 5-87 

Tab character 
printing, GEN 3-37 
terminals without, GEN 2.-4 

Tab character (nroff/troff) 
setting, GEN 5-66 
uninterpreted, GEN 5-66 

Tab replacement character 
See tc command (troff), GEN 

5-87 
Tab stop 

setting, GEN 3-61n 
vi and, GEN 3-61 



Table 
breaking across pages, GEN 5-10 
continuing, GEN 5-35 
entering with -ms, GEN 5-8 
floating, GEN 5-45 
formatting, GEN 2-13, 5-33 
keeping on one page, GEN 5-42 
text formatting commands for, 

GEN 5-16E 
Table of contents 

entering, GEN 5-28 
formatting, GEN 5-34F 
producing, GEN 5-18, 5-18E 
specifying multiple, GEN 5-29 
specifying section titles for, GEN 

5-41 
specifying without leadering, GEN 

5-29 
Tables 

formatting, GEN 5-115 to 5-131 
tabstop option (ex) 

description, GEN 3-100 
Tag 

defined, GEN 5-145 
tag command (ex) 

description, GEN 3-93 
Tag file 

defined, GEN 5-145 
taglength option (ex) 

description, GEN 3-100 
tags option (ex) 

3.5 changes, GEN 3-103 
description, GEN 3-100 

tail 
4.2BSD improvement, SYS 1-9 

talk program 
description, SYS 1-9 

tar program 
4.2BSD improvement, SYS 1-9, 

1-17 
tbl program 

description, GEN 5-33, 5-115 to 
5-131 

formatting tables, GEN 2-13 
tc command (nroff/troff) 

defined, GEN 5-66 
tc command (troff) 

replacing tab character, GEN 5-87 
TCP program 

See trpt program 
teachgammon program 

4.2BSD improvement, SYS 1-17 

Technical memorandum 
text formatting commands for, 

GEN 5-13E 
Tektronix 4025 terminal 

command character for, GEN 3-76 
Tektronix 4027 terminal 

command character for, GEN 3-76 
telnet program 

ARPA Telnet protocol and, SYS 
1-9 

telnetd server program 
.login file and, SYS 1-7 
4.2BSD improvement, SYS 1-21 

term option (ex) 
description, GEN 3-101 

Terminal 
See also Hardcopy terminal 
See also Pseudo terminal 
See also Screen (Screen package) 
See also Screen package 
See also Slow terminal 
See also Uppercase terminal 
configuring, SYS 5-42 
programs changing mode of, GEN 

4-48 
replacing with a file, GEN 2-10 
specifying output type with nroff, 

GEN 5-50 
specifying standard output with 

troff, GEN 5-50 
specifying type, GEN 3-54E 
strange behavior, GEN 2-4 
supported 

reference list, GEN 2-3 
switch settings, GEN 2-3 
type codes, GEN 3-53T 
without tabs, GEN 2-4 

Terminal screen 
defined, PGM 4-75 

Termination 
defined, GEN 4-73 

terse option (ex) 
description, GEN 3-101 

test command 
Bourne shell and, GEN 4-12 

Text editor 
See ed editor 
defined, GEN 3-3, 3-25 
See also Edit editor, GEN 3-3 

Text Formatting 
See also nroff/troff text processor 

Text input mode (ex) 
defined, GEN 3-85 

Index-63 



Text segment (as) 
description, GEN 6-54 

text statement 
defined, GEN 6-59 

tftpd server program 
4.2BSD improvement, SYS 1-21 

TH command (me) 
continuing a table, GEN 5-35E 

th command (me) 
defined, GEN 5-45 
formatting a thesis, GEN 5-33 

then command (C shell) 
See also else command (C shell) 
See also if/endif commands (C 

shell) 
defined, GEN 4-73 

Thesis 
formatting, GEN 5-18, 5-33, 5-45 
text formatting commands for, 

GEN 5-13E 
Thompson, K. 

UNIX implementation, PGM 4-5 
to 4-14 

Thompson, K., & Morris, R. 
password system, SYS 4-7 to 4-12 

Thompson, K., & Ritchie, D.M. 
implementation of file system and 

user command interface, GEN 
1-19 to 1-34 

ti command (me) 
entering, GEN 5-24 

ti command (nroff/troff) 
defined, GEN 5-62 
ems and, GEN 5-86 

Tilde character (C shell) 
accessing files from other 

directories, GEN 4-34 
Tilde character (me) 

See Metacharacters 
Tilde escape (Mail) 

defined, GEN 2-24 
description, GEN 2-24 to 2-26 
lines beginning with, GEN 2-26 
printing summary of, GEN 2-26 
reference list, GEN 2-40T 

time command (C shell) 
defined, GEN 4-7 4 
timing a command, GEN 4-52E 

time.h file 
4.2BSD improvement, SYS 5-7 

timeout option (ex) 
description, GEN 3-102 

TIMEZONE parameter 
description, SYS 5-122 

Index-64 

timezone parameter (config) 
defined, SYS 5-79 

tip program 
cu program as front end, SYS 1-5 
description, SYS 1-4, 1-9 

Title page 
formatting informal, GEN 5-46 
specifying, GEN 5-32, 5-45 

TL command (ms) 
AE command and, GEN 5-6 

ti command (nroff/troff) 
defined, GEN 5-70 

ti command (troff) 
printing page numbers, GEN 

5-91E 
tm command (nroff/troff) 

defined, GEN 5-73 
TM file 

description, SYS 5-142 
TM macro 

description, GEN 5-18 
tm.c device driver 

4.2BSD improvement, SYS 5-12 
to keyword (EQN), GEN 5-lOOE 
Token 

defined, GEN 2-50 
top command (Mail) 

See also toplines option 
abbreviating, GEN 2-32 
description, GEN 2-32 

toplines option (Mail) 
defined, GEN 2-35 
setting, GEN 2-32E 

topq command (lpc) 
description, PGM 4-103 

touchwin routine 
defined, PGM 4-87 

Toy, M.C., & Arnold, K.C.R.C. 
guide to the dungeons of doom, 

GEN 6-17 to 6-25 
tp command (me) 

defined, GEN 5-45 
specifying a title page, GEN 5-32 
specifying title page, GEN 5-33E 

tr command (nroff/troff) 
defined, GEN 2-13, ff-67 
using, GEN 2-13E 

transfer command 
See t command (ed) 

translit command (M4) 
description, PGM 2-397 

Transparent throughput (nroff/troff) 
specifying, GEN 5-67 



Trap 
description, GEN 1-31 

trap command (Bourne shell) 
fault handling, GEN 4-21 to 4-23 

trap.c file 
4.2BSD improvement, SYS 5-14 

trek game 
4.2BSD improvement, SYS 1-17 

troff text processor 
See also EQN program 
See also ms macro package 
See also nroff text processor 
See also nroff/troff text processor 
See also tbl program 
defined, GEN 2-12, 5-83 
defining macros, GEN 5-89 to 

5-90 
defining strings, GEN 5-88, 5-89 
device resolution and, GEN 5-56 
drawing horizontal and vertical 

lines of characters, GEN 5-88 
entering arithmetic expressions, 

GEN 5-92 
entering commands, GEN 5-83 
environments, GEN 5-94 
formatting a document with -ms, 

GEN 2-12 
indenting lines, GEN 5-86 
invoking, GEN 5-49 
moving characters up and down, 

GEN 5-87 
moving text backwards on a line, 

GEN 5-87 
setting point sizes, GEN 5-84 
setting tabs, GEN 5-86 
setting vertical spacing, GEN 5-84 
specifying cut mark, GEN 5-74E 
specifying fonts, GEN 5-85 
specifying fonts on the typesetter, 

GEN 5-86 
specifying metacharacters, GEN 

5-86 
specifying page heading, GEN 

5-90 
specifying unpaddable characters, 

GEN 5-88 
stopping phototypesetter to reload, 

GEN 5-49 
tutorial, GEN 5-83 to 5-96 

trpt program 
4.2BSD improvement, SYS 1-21 

truncate system call 
4.2BSD improvement, SYS 1-13 

TS command (me) 
continuing tables, GEN 5-35 
defined, GEN 5-45 
formatting tables, GEN 5-35 

ts driver 
4.2BSD improvement, SYS 1-16 

ts.c device driver 
4.2BSD improvement, SYS 5-13 

tset command ( C shell) 
defined, GEN 4-74 
using, GEN 4-30E 

tstp routine 
defined, PG M 4-88 

tty 
See also ttydev .h file 
handling, SYS 5-6 

tty character 
See also ttychars.h file 
handling, SYS 5-5 

tty command ( C shell) 
defined, GEN 4-7 4 

tty.c file 
4.2BSD improvement, SYS 5-9 

tty.h file 
4.2BSD improvement, SYS 5-7 

tty_bk.c file 
obsolete, SYS 5-9 

tty_conf.c file 
contents, SYS 5-9 

tty_pty .c file 
4.2BSD improvement, SYS 5-9 

tty _subr .c file 
contents, SYS 5-9 

tty _tb.c file 
contents, SYS 5-9 

tty _tty .c file 
contents, SYS 5-9 

ttychars.h file 
4.2BSD improvement, SYS 5-5 

ttydev. h file 
4.2BSD improvement, SYS 5-6 

tu driver 
4.2BSD improvement, SYS 1-16 

tu.c file 
4.2BSD improvement, SYS 5-14 

TU58 cartridge tape cassette 
See uu driver 
See uu.c device driver 

TU80 tape drive 
See ts driver 

tunefs program 
4.2BSD improvement, SYS 1-21 

Index-65 



Tuthill, B. 
-ms revised version, GEN 5-17 to 

5-19 
using refer, GEN 5-133 to 5-142 

Twinkle program 
description, PGM 4-92E 
motion optimization and, PGM 

4-97E 
Two-column output 

See Column 
type command (Mail) 

See print command (Mail) 
abbreviating, GEN 2-18 
description, GEN 2-32 
reading mail and, GEN 2-18 to 

2-19 
Type-number (refer) 

reference list, GEN 5-152 
Typesetting Mathematics - User's 

Guide, GEN 5-105 to 5-114 
Typing 

correcting mistakes, GEN 2-4 
Typo 

defined, GEN 2-13 
detecting spelling errors, GEN 

2-13 

u 
u command (ed) 

using, GEN 3-38 
u command (edit) 

See also At sign 
See also CTRL-H 
description, GEN 3-16 
recovering files, GEN 3-23 

u command (ex) 
description, GEN 3-93 

u command (me) 
defined, GEN 5-44 

u command (troff) 
specifying superscripts and 

subscripts, GEN 5-87 
U command (vi) 

defined, GEN 3-79 
u command (vi) 

defined, GEN 3-81 
u flag (Mail) 

defined, GEN 2-36 
u option ( uulog) 

defined, SYS 5-137 
uba.c device driver 

4.2BSD improvement, SYS 5-13 

Index-66 

uba_ctrl structure 
description, SYS 5-93 

uba_device structure 
description, SYS 5-94 

uba_driver structure 
description, SYS 5-90 

uLaddr routine 
description, SYS 5-93 

uLattach routine 
description, SYS 5-92 

uLdgo routine 
description, SYS 5-93 

ud_dinfo routine 
description, SYS 5-93 

uLdname routine 
description, SYS 5-93 

ud_minfo routine 
description, SYS 5-93 

ud-11lname routine 
description, SYS 5-93 

ud_probe routine 
description, SYS 5-91 

ud_slave routine 
description, SYS 5-91 

ud_xclu routine 
description, SYS 5-93 

uda driver 
4.2BSD improvement, SYS 1-16 

uda.c device driver 
4.2BSD improvement, SYS 5-13 

uf command (nroff/troff) 
defined, GEN 5-67 

ufs_alloc.c file 
contents, SYS 5-9 

ufs_bio.c file 
contents, SYS 5-10 

ufs_bmap.c file 
contents, SYS 5-10 

ufs_dsort.c file 
contents, SYS 5-10 

ufs_fio.c file 
contents, SYS 5-10 

ufs_inode.c file 
contents, SYS 5-10 

ufs-111achdep.c file 
4.2BSD improvement, SYS 5-13 

ufs-ltlount.c file 
contents, SYS 5-10 

ufs_nami.c file 
contents, SYS 5-10 

ufs_subr .c file 
contents, SYS 5-10 

ufs_syscalls.c file 
contents, SYS 5-10 



ufs_tables.c file 
contents, SYS 5-10 

ufs_xxx.c file 
contents, SYS 5-10 

uh command (me) 
defined, GEN 5-41 
specifying unnumbered section 

heads, GEN 5-32E 
uLaddr routine 

description, SYS 5-95 
uLalive routine 

description, SYS 5-95 
uLctlr routine 

description, SYS 5-94 
uLdk routine 

description, SYS 5-95 
uLdriver routine 

description, SYS 5-94 
uLflags routine 

description, SYS 5-95 
ui_hd routine 

description, SYS 5-95 
ui_intr routine 

description, SYS 5-95 
ui_mi routine 

description, SYS 5-95 
uLphysaddr routine 

description, SYS 5-95 
uLslave routine 

description, SYS 5-94 
uLtype routine 

description, SYS 5-95 
uLubanum routine 

description, SYS 5-94 
uLunit routine 

description, SYS 5-94 
UID 

description, GEN 1-22, SYS 4-4 
uio.h file 

4.2BSD improvement, SYS 5-6 
uipc_domain.c file 

contents, SYS 5-10 
uipc_mbuf.c file 

contents, SYS 5-10 
uipc_pipe.c file 

contents, SYS 5-10 
uipc_proto.c file 

contents, SYS 5-10 
uipc_socket.c file 

contents, SYS 5-10 
uipc_socket2.c file 

contents, SYS 5-10 
uipc_syscalls.c file 

contents, SYS 5-10 

uipc_usrreq.c file 
contents, SYS 5-10 

ul command 
4.2BSD improvement, SYS 1-9 

ul command (me) 
See also u command (me) 
entering, GEN 5-25 
troff and, GEN 5-36 

UL command (ms) 
underlining a word, GEN 5-8 

ul command (nroff/troff) 
defined, GEN 5-67 

ul command (troff) 
specifying italic lines, GEN 5-86 

ULTRIX-32 
See also UNIX 

ULTRIX-32 Operating System 
getting started, GEN 2-1 to 2-64 

um_cmd ·routine 
description, SYS 5-94 

um_ctrl routine 
description, SYS 5-94 

um_driver routine 
description, SYS 5-94 

um_hd routine 
description, SYS 5-94 

um_intr routine 
description, SYS 5-94 

um_tab routine 
description, SYS 5-94 

um_ubinfo routine 
description, SYS 5-94 

Umlat 
See Metacharacters 

un network interface driver 
4.2BSD improvement, SYS 1-16 

un.h file 
4.2BSD improvement, SYS 5-6 

una command (ex) 
See also abcommand (ex) 
description, GEN 3-93 

unabbreviate command (ex) 
See una command (ex) 

unalias command ( C shell) 
See also alias command ( C shell) 
defined, GEN 4-7 4 

Unary operator 
defined, GEN 2-52 

Unary operator (C compiler) 
description, PG M 2-66 

unctrl routine 
defined, PGM 4-87 

undelete command (Mail) 
See also delete command (Mail) 

lndex-67 



undelete command (Mail) (Cont.) 
abbreviating, GEN 2-33 
description, GEN 2-33 

Underlining 
See also Italic 
nroff and, GEN 5-66 
on the typesetter, GEN 5-8 
specifying, GEN 5-8, 5-25 
technique for, GEN 3-42 

Undo command 
See u command 

undo command (edit) 
See u command (edit) 

undo command (ex) 
See u command (ex) 

Unger:mann-Bass network interface 
unit 

See un network interface driver 
ungetc function 

description, PGM 1-8 
UNIBUS 

device naming, SYS 5-20 
UNIBUS devic~ driver 

support routines, ·sys 5-95 
univec.c file 

installing device driver and, SYS 
5-119 

UNIX Assembler Reference Manual, 
GEN 6-53 to 6-64 

See also as assembler 
UNIX Operating System 

See also 4.2BSD 
See also ULTRIX-32 
See also VAX UNIX system 
bootstrapping and 4.2BSD, SYS 

5-15 
building process, SYS 5-76 to 

5-78 
building with config, SYS 5-73 to 

5-105 
changes in 4.2BSD, SYS 1-3 to 

1-21 
computer-aided instruction for, 

GEN 6-3 to 6-16 
crashing, SYS 4-3 
defined, GEN 3-3 
design considerations, GEN 1-31 
device naming, SYS 5-19 
distinguishing block and raw 

devices, SYS 5-20 
for beginners, 'GEN 2-3 to 2-16 
getting started, GEN 6-15 to 6-16 
hardware environment, GEN 1-20 
implementation, PGM 4-5 to 4-14 

Index-68 

UNIX Operating System (Cont.) 
introduction, GEN 1-19 to 1-20 
managing 

See SYS 
other operating systems and, 

PGM 4-13 
programming, PGM 1-3 to 1-24 
reading list, GEN 2-15 
software environment, GEN 1-20 

UNIX Programmer's Manual 
accessing on line, GEN 2-5 

UNIX/32V Operating System 
hardware requirements, GEN 1-4 
highlights, GEN 1-3 to 1-18 
recreating, SYS 5-119 
regenerating system software, SYS 

5-117 to 5-122 
setting up Vl.O, SYS 5-107 to 

5-115 
tuning, SYS 5-121 to 5-122 

UNIX/32V Programmer's Manual 
online, GEN 1-11 

unlink function 
description, PGM 1-11 

unlink system call 
See mkdir command 

unmap command (ex) 
See also map command (ex) 
description, GEN 3-93 

unoptim routine (C shell) 
See also optim routine (C shell) 
description, PGM 2-67 to 2-68 

Unpaddable space character 
(nroff/troff) 

defined, GEN 5-60, 5-88 
specifying for digits, GEN 5-88 
specifying for spaces, GEN 5-88 

unpcb.h file 
4.2BSD improvement, SYS 5-6 

unset command ( C shell) 
defined, GEN 4-7 4 

unset command (Mail) 
See also set command (Mail) 
description, GEN 2-33 

until statement (C shell) 
See also while statement (C shell) 
d~scription, GEN 4-13 

up driver 
4.2BSD improvement, SYS 1-16 

up.c device driver 
4.2BSD improvement, SYS 5-13 

Uppercase terminal 
vi and 



User ID 
See UID 

User Identification Number 
See um 

User identification number 
See um 

User process 
defined, PGM 4-5 

user.h file 
4.2BSD improvement, SYS 5-7 

USERFILE 
defined, SYS 5-140 

USR directory 
block size, SYS 5-40 
description, GEN 2-9 
rebuilding, SYS 5-32 
setting up, SYS 5-28 

ut.c device driver 
4.2BSD improvement, SYS 5-12 

utime system call 
See utimes system call 

utimes system call 
4.2BSD improvement, SYS 1-13 

utmp file 
See also wtmp file 
4.2BSD improvement, SYS 1-17 

uu driver 
4.2BSD improvement, SYS 1-16 

uu.c device driver 
4.2BSD improvement, SYS 5-12 

uucico program 
defined, SYS 5-131 
description, SYS 5-124, 5-134 to 

5-137 
functions, SYS 5-125 
starting, SYS 5-125, 5-134 
starting with shell file, SYS 5-143 

uuclean program 
defined, SYS 5-131 
description, SYS 5-137 

uucp command 
command line format, SYS 5-131 
defined, SYS 5-125 
description, SYS 5-131 to 5-133 
transferring files between 

machines, SYS 5-132E 
UUCP network 

ARPANET and, GEN 2-26 
uucp program 

defined, SYS 5-131 
uucp system 

4.2BSD improvement, SYS 1-4, 
1-9, 5-45 

uucp system (Cont.) 
administration, SYS 5-142 to 

5-144 
defined, SYS 5-131 
directory list, SYS 5-45 
file list, SYS 5-45 to 5-46 
implementing, SYS 5-131 to 5-144 
installing, SYS 5-138 to 5-142 
login entry and, SYS 5-144 
security and, SYS 5-138 
setting up, SYS 5-45 to 5-46 

uucp.h file 
modifying for uucp, SYS 5-138 

uulog program 
defined, SYS 5-131 
description, SYS 5-137 

uusnap program 
description, SYS 1-9 

uux command 
command line format, SYS 5-133 
defined, SYS 5-125 
description, SYS 5-133 to 5-134 
providing remote output, SYS 

5-127 
uux program 

defined, SYS 5-131 
uuxqt program 

defined, SYS 5-131 
description, SYS 5-137 

v 
v command (DC) 

descripton, GEN 2-58 
v command ( ed) 

defined, GEN 3-34 
specifying line numbers, GEN 

3-47 
specifying lines without text 

patterns, GEN 3-46 to 3-47 
using, GEN 3-33 

v command (troff) 
creating decorative initial capital, 

GEN 5-87E 
moving characters up and down, 

GEN 5-87 
specifying vertical motion, GEN 

5-68 
v escape (Mail) 

description, GEN 2-24 
v flag (Mail) 

See also verbose option 
defined, GEN 2-36 

Index-69 



v option (inv) 
defined, GEN 5-148 

va driver 
4.2BSD improvement, SYS 1-16 

va.c file 
4.2BSD improvement, SYS 5-13 

Valued option (Mail) 
See also Option (Mail) 
defined, GEN 2-20 

Variable (BC) 
declaring automatic, GEN 2-46 
number permitted, GEN 2-45 

Variable (Bourne shell) 
description, GEN 4-10 to 4-12 
reference list, GEN 4-11 

Variable (C shell) 
accessing components, GEN 4-54 
checking for assigned value, GEN 

4-53 
defined, GEN 4-74 
removing definition from shell, 

GEN 4-52 
removing from environment, GEN 

4-52 
Variable (Screen package) 

reference list, PG M 4-77 
Variable expansion 

See Expansion 
See Variable 

\ Variable substitution 
description, GEN 4-53 

VAX UNIX system 
accounting, SYS 5-56 
booting, SYS 5-52 
booting for single user, SYS 5-52 
changing from single user to 

multiuser status, SYS 5-52 
changing to multiuser from single 

user status, SYS 5-52 
checking file system, SYS 5-53 
file maintenance list, SYS 5-57 
monitoring system performance, 

SYS 5-54 
operating procedures, SYS 5-52 
regenerating, SYS 5-55 
resource control, SYS 5-56 
tracking changes, SYS 5-56 

VAX-11/750 
configuration file, SYS 5-85 

V AX-11/750 console cassette 
interface 

See tu driver 
VAX-11/780 

configuration file, SYS 5-84 

Index-70 

VAX/VMS Operating System 
autoconfiguration, SYS 5-89 to 

5-95 
data structure sizing rules, SYS 

5-103 to 5-105 
VAX/VMS system sources 

directory list, SYS 5-4 
ve command (ex) 

description, GEN 3-94 
verbose option (Mail) 

See also -v flag 
defined, GEN 2-35 

verbose variable (C shell) 
defined, GEN 4-7 4 

Version 
suppressing for Mail, GEN 2-35 

version command (ex) 
See ve command ex) 

Vertical bar (EQN) 
typesetting in proper size, GEN 

5-lOOE 
Vertical spacing 

setting with troff, GEN 5-84 
Vesterman, W., & Cherry, L.L. 

style and diction programs, GEN 
5-163 to 5-177 

vfontinfo program 
font information and, SYS 1-9 

vfork system call 
future plans, SYS 1-13 

vgrind 
4.2BSD improvement, SYS 1-9 

vgrindefs file 
4.2BSD improvement, SYS 1-17 

vi command (ex) 
See also open option 
3.5 changes, GEN 3-102 
description, GEN 3-94 
screen editing and, GEN 3-85 

vi screen editor 
4.2BSD improvement, SYS 1-9 
changing words, GEN 3-60 
character editing, GEN 3-59 
character editing, low level, GEN 

3-61 
character functions, GEN 3-75T 
characters for making corrections 

in input mode, GEN 3-72T 
commands for file manipulation, 

GEN 3-71T 
deleting lines, GEN 3-60 
deleting words, GEN 3-59 
description, GEN 3-53 to 3-82 



vi screen editor (Cont.) 
determining state of file, GEN 

3-57 
editing programs, GEN 3-67 
ending a session, GEN 3-55 
ex 3.5 changes and, GEN 3-103 to 

3-104 
ex and, GEN 3-73 
executing shell command from, 

GEN 3-63 
ignoring case, GEN 3-72 
inserting text, GEN 3-58 
invoking, GEN 3-54E 
line editing, GEN 3-60 
manipulating files, GEN 3-70 
marking return points, GEN 3-64 
moving blocks of text, GEN 3-62 
moving in the file, GEN 3-56 to 

3-58 
moving on the screen, GEN 3-57 
moving to previous position, GEN 

3-57 
moving within a line, GEN 3-57 
option list, GEN 3-65 
presenting lines, GEN 3-69 
recovering lost files, GEN 3-66 
recovering lost lines, GEN 3-66 
reversing your changes, GEN 3-60 
saving changes automatically, 

GEN 3-63 
searching for strings in text, GEN 

3-56, 3-71 
sentences and, GEN 3-61 

view command (ex) 
description, GEN 3-102 

view command (vi) 
reading a file, GEN 3-58 

vipw program 
4.2BSD improvement, SYS 1-21 

vipw script 
See vipw program 

visual command (ex) 
See vi command (ex) 

visual command (Mail) 
See also edit command (Mail) 
description, GEN 2-33 

VISUAL option (Mail) 
defined, GEN 2-33 
setting, GEN 2-33 
specifying an editor, GEN 2-24 

vlimit system call 
See getrlimit system call 

vlp program 
printing lisp programs, SYS 1-9 

vm_machdep.c file 
4.2BSD improvement, SYS 5-13 

vm_mem.c file 
contents, SYS 5-11 

vm_mon.c file 
contents, SYS 5-11 

vm_page.c file 
4.2BSD improvement, SYS 5-11 

vm_proc.c file 
contents, SYS 5-11 

vm_pt.c file 
contents, SYS 5-11 

vm_sched.c file 
contents, SYS 5-11 

vm_subr .c file 
contents, SYS 5-11 

vm_sw.c file 
contents, SYS 5-11 

vm_swap.c file 
contents, SYS 5-11 

vm_swp.c file 
contents, SYS 5-11 

vm_text.c file 
contents, SYS 5-11 

vmmac.h file 
4.2BSD improvement, SYS 5-7 

vmparam.h file 
4.2BSD improvement, SYS 5-7, 

5-13 
vmstat program 

4.2BSD improvement, SYS 1-9 
monitoring system activity, SYS 

5-54 
vmsystm.h file 

4.2BSD improvement, SYS 5-7 
vpr program 

shell scripts and, SYS 1-10 
vread system call 

obsolete, SYS 1-13 
vs command (nroff/troff) 

defined, GEN 5-61 
setting, GEN 5-84 

vswapon system call 
See swapon system call 

vtimes system call 
See getrusage system call 

vv network interface driver 
4.2BSD improvement, SYS 1-16 

vwidth program 
troff width tables and, SYS 1-10 

vwrite system call 
obsolete, SYS 1-13 

lndex-71 



w 

w command (ed) 
defined, GEN 3-34 
e command and, GEN 3-27 
entering text into a file, GEN 2-6 
saving lines for input, GEN 3-50 
using, GEN 3-26 

w command (edit) 
description, GEN 3-22 
u command and, GEN 3-16 
using, GEN 3-8 

w command (ex) 
See also wq command (ex) 
description, GEN 3-94 

w command (nroff/troff) 
description, GEN 5-68 

w command (sed) 
defined, GEN 3-111 

W command (vi) 
defined, GEN 3-80 

w command (vi) 
defined, GEN 3-81 

w escape (Mail) 
description, GEN 2-24 

w flag (mkey) 
specifying a file, GEN 5-147 

w flag (sed) 
defined, GEN 3-110 

w option (troff) 
defined, GEN 5-50 

wait function 
description, PG M 1-14 

wait system call 
See also wait.h file 
4.2BSD improvement, SYS 1-14 

wait.h file 
4.2BSD improvement, SYS 5-6 

wait3 system call 
See also wait.h file 
4.2BSD improvement, SYS 1-14 

warn option (ex) 
description, GEN 3-101 

Wasley, D.L. 
introduction to f77 1/0 library, 

PG M 2-79 to 2-88 
wc command (C shell) 

4.2 BSD improvements, SYS 1-10 
defined, GEN 2-13, 4-74 
printing a list of files and, GEN 

2-11 
WDATA operator (C compiler) 

defined, PGM 2-64 

Index-72 

Weinberger, P.J., & Feldman, S.I. 
Fortran. 77 compner, PGM 2-89 to 

2-109 
Weinberger, P.J., & others 

a wk programming language, PG M 
3-5 to 3-12 

wh command (nroff/troff) 
defined, GEN 5-65 

whereis 
4.2BSD improvement, SYS 1-10 

which 
4.2BSD improvement, SYS 1-10 

while statement (awk) 
defined, PG M 3-9 

while statement (BC), GEN 2-47 
forming, GEN 2-54 
writing, GEN 2-4 7 

while statement (C shell) 
See also until statement (C shell) 
defined, GEN 4-7 4 
description, GEN 4-12 to 4-13 
exiting, GEN 4-58 
form of, GEN 4-12E 
forms of, GEN 4-58 

who command 
4.2BSD improvement, SYS 1-10 
printing list of people logged on, 

GEN 2-llE 
using, GEN 2-4 

Width command (nroff/troff) 
See w command (nroff/troff) 

winch routine 
defined, PG M 4-86 

Window 
defined, PGM 4-75 
description, PGM 4-76 
moving, GEN 2-33 

window option (ex) 
description, GEN 3-101 

window option (Mail) 
headers command and, GEN 2-30 

WINDOW structure 
defined, PGM 4-91E 
description, PGM 4-76 

Word (C shell) 
defined, GEN 4-7 4 

Word (nroff/troff) 
defined, GEN 5-60 

Word abbreviation 
See also Macro (vi) 
description, GEN 3-69 

Word list 
specifying for hyphenation, GEN 

5-69 



Work file 
defined, SYS 5-132 

Working directory 
changing, GEN 4-48 
changing background job to 

foreground job and, GEN 4-50 
changing with programs, GEN 

4-50 
defined, GEN 4-7 4 
description, GEN 4-48 to 4-50 

wq command (ex) 
See also xit command (ex) 
description, GEN 3-94 

wrapmargin option (ex) 
3.5 changes, GEN 3-102 
description, GEN 3-101 

wrapscan option (ex) 
description, GEN 3-101 

write command (C shell) 
defined, GEN 4-7 4 

write command (ed) 
See w command ( ed) 

write command (edit) 
See w command (edit) 

write command (ex) 
See w command (ex) 

write command (Mail) 
See also save command (Mail) 
description, GEN 2-33 

write function 
description, PGM 1-9 

write system call 
4.2BSD improvement, SYS 1-14 

writeany option (ex) 
description, GEN 3-101 

writev system call 
4.2BSD improvement, SYS 1-14 

wtmp file 
See also utmp file 
4.2BSD improvement, SYS 1-17 

x 
x command (Mail) 

exiting Mail, GEN 2-22 
x command (me) 

defined, GEN 5-43 
entering, GEN 5-29 

X command ( sed) 
defined, GEN 3-113 

X command (vi) 
defined, GEN 3-80 

x command (vi) 
defined, GEN 3-81 

x option ( uucico) 
defined, SYS 5-135 

x option (uuclean) 
defined, SYS 5-138 

x option (uucp) 
defined, SYS 5-132 

x option (uux) 
description, SYS 5-133 

Xerox Courier protocol 
description, SYS 3-17 

Xerox experimental Ethernet 
controller 

See en network interface driver 
Xerox NS Sequenced Packet 

protocol 
sequenced packet socket and, SYS 

3-6 
Xerox Routing Informatfon Protocol 

See routed program 
xit command (ex) 

See also wq command (ex) 
description, GEN 3-94 

xi command (me) 
defined, GEN 5-45 

xp command (me) 
defined, GEN 5-43 

XP macro 
description, GEN 5-18 

XS macro 
description, GEN 5-18 

xtr script file 
running, SYS 5-26E 

y 

Y command (vi) 
defined, GEN 3-80 
using, GEN 3-62 

y operator 
See also Y command (vi) 
moving blocks of text, GEN 3-62 

ya command (ex) 
description, GEN 3-95 

Yacc 
See also Lex program generator 
description, PGM 3-79 to 3-111 

yank command (ex) 
See ya command (ex) 

z 
z command (DC) 

description, GEN 2-59 

Index-73 



z command (edit) 
printing a screen of text, GEN 

3-12, 3-13E 
z command (ex) 

description, GEN 3-95 
z command (Mail) 

description, GEN 2-33 
z command (me) 

defined, GEN 5-42 
entering, GEN 5-26 
specifying fill mode, GEN 5-26 

z command (nroff/troff) 
creating overstruck characters, 

GEN 5-88 

Index-74 

z command. (nroff/troff) (Cont.) 
description, GEN 5-68 

z command (vi) 
defined, GEN 3-81 
positioning screen text, GEN 3-64 

z option (nroff/troff) 
defined, GEN 5-81 

Zero 
as legal line number, GEN 3-46 

ZZ command (vi) 
defined, GEN 3-80 
description, GEN 3-55 



Notes: 



Notes: 



Notes: 



Notes: 



Notes: 



Notes: 



Notes: 



Notes: 


